Close
The page header's logo
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
The opening of the blood brain barrier by homogenized perillyl alcohol
(USC Thesis Other) 

The opening of the blood brain barrier by homogenized perillyl alcohol

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Contact Us
Contact Us
Copy asset link
Request this asset
Transcript (if available)
Content
 

 
THE
 OPENING
 OF
 THE
 BLOOD
 BRAIN
 BARRIER
 BY
 HOMOGENIZED
 PERILLYL
 
ALCOHOL
 

 

 
by
 

 

 
Samantha
 Stack
 

 

 

 

 

 

 
A
 Thesis
 Presented
 to
 the
 

 FACULTY
 OF
 THE
 USC
 KECK
 SCHOOL
 OF
 MEDICINE
 
UNIVERSITY
 OF
 SOUTHERN
 CALIFORNIA
 

 In
 Partial
 Fulfillment
 of
 the
 
 
Requirements
 for
 the
 Degree
 
 
MASTER
 OF
 SCEINCE
 

 (MOLECULAR
 MICROBIOLOGY
 AND
 IMMUNOLOGY)
 

 

 

 

 
May
 2020
 




Copyright
 2020
   
   
   
   
   
   
   
   
 
 
 
 Samantha
 Stack

  ii
 
Acknowledgements
 


  I
 would
 like
 to
 thank
 Dr.
 Axel
 Schönthal
 for
 giving
 me
 the
 opportunity
 to
 work
 in
 his
 
lab.
 He
 gave
 me
 the
 guidance
 and
 support
 I
 needed.
 He
 pushed
 me
 in
 the
 right
 direction
 but
 
also
 gave
 me
 the
 freedom
 to
 take
 the
 project
 in
 the
 direction
 I
 wanted
 to.
 
 

  I
 would
 also
 like
 to
 thank
 Dr.
 Steve
 Swenson.
 He
 has
 helped
 me
 tremendously
 with
 
learning
 new
 things
 in
 lab
 and
 the
 best
 techniques
 to
 use.
 He
 also
 allowed
 me
 to
 work
 in
 his
 
lab
 as
 an
 Undergrad
 student
 and
 for
 that
 I
 will
 always
 be
 grateful.
 He
 was
 the
 one
 to
 open
 
my
 eyes
 to
 the
 research
 field.
 

  Next
 I
 would
 like
 to
 thank
 Robert
 Herrera,
 my
 fellow
 masters
 student
 and
 friend.
 
Our
 collaboration
 gave
 me
 insight
 into
 new
 experiments
 and
 when
 I
 needed
 help
 he
 was
 
always
 there.
 Our
 projects
 both
 dealt
 with
 the
 blood
 brain
 barrier
 and
 his
 collaborations
 
really
 helped
 me
 gain
 results
 and
 troubleshoot
 issues.
 
I
 would
 also
 like
 to
 thank
 Franny
 Ferri.
 She
 was
 always
 there
 to
 help
 and
 she
 is
 a
 
great
 friend
 who
 got
 me
 through
 the
 tough
 days.
 It
 was
 nice
 having
 a
 good
 friend
 to
 turn
 to
 
when
 needed.
 
Lastly,
 I
 would
 like
 to
 give
 a
 special
 thanks
 to
 my
 husband
 XanTh
 Stack.
 Without
 him
 
these
 last
 two
 years
 would
 not
 have
 been
 possible.
 He
 worked
 2
 jobs
 and
 countless
 hours
 
so
 I
 could
 pursue
 my
 dreams
 in
 this
 program.
 I
 would
 not
 be
 here
 without
 him.
 

 

 

  iii
 
Table
 of
 Contents
 

 
Acknowledgements
 ..........................................................................................................................................
 ii
 

 
List
 of
 Figures
 ......................................................................................................................................................
 v
 

 
List
 of
 Abbreviations
 .......................................................................................................................................
 vi
 

 
Abstract
 ...............................................................................................................................................................
 vii
 

 
Chapter
 1
 –
 Introduction
 ..................................................................................................................................
 1
 
1.1
 The
 blood
 brain
 barrier
 ..............................................................................................................
 1
 
1.1.1
 Introduction
 ..................................................................................................................
 1
 
1.1.2
 Structure
 and
 function
 ..............................................................................................
 1
 
1.1.2.1
 Brain
 endothelial
 cells
 ............................................................................
 2
 
1.1.2.2
 Tight
 junctions
 ...........................................................................................
 3
 
1.1.2.3
 Pericytes
 .......................................................................................................
 3
 
1.1.2.4
 Astrocytes
 ....................................................................................................
 4
 
1.2
 Brain
 metastasis
 ............................................................................................................................
 4
 
1.3
 Mannitol
 as
 a
 current
 therapy
 to
 open
 the
 BBB
 ...............................................................
 4
 
1.4
 Trastuzumab
 to
 treat
 metastatic
 breast
 cancer
 ...............................................................
 5
 
1.5
 Perillyl
 alcohol/NEO100
 ............................................................................................................
 6
 
1.6
 Hypothesis
 ........................................................................................................................................
 6
 

 
Chapter
 2
 –
 Material
 and
 Methods
 ...............................................................................................................
 8
 
2.1
 Pharmacological
 agents
 ..............................................................................................................
 8
 
2.2
 Homogenization
 .............................................................................................................................
 8
 
2.3
 In
 vitro
 analysis
 ..............................................................................................................................
 9
 
2.3.1
 Cell
 lines
 and
 maintenance
 .....................................................................................
 9
 
2.3.2
 MTT
 cell
 viability
 assays
 .......................................................................................
 10
 
2.3.3
 Trans
 endothelial
 electrical
 resistance
 (TEER)
 ..........................................
 11
 
2.4
 In
 vivo
 analysis
 .............................................................................................................................
 12
 
2.4.1
 Evans
 blue
 analysis
 .................................................................................................
 12
 
2.5
 Immunohistochemistry
 ...........................................................................................................
 13
 
2.6
 Western
 Blotting
 .........................................................................................................................
 15
 

 
Chapter
 3
 –
 Results
 ..........................................................................................................................................
 16
 
3.1
 Homogenized
 POH
 at
 higher
 concentrations
 does
 not
 affect
 cell
 viability
 .......
 16
 
3.1.1
 Purpose
 of
 Study
 ......................................................................................................
 16
 
3.1.2
 Effect
 of
 homogenized
 POH
 on
 cell
 viability
 compared
 to
 POH
 
 
in
 DMSO
 or
 EtOH/Gly
 on
 MDCK
 cells
 ..........................................
 16
 
3.1.3
 Effect
 of
 homogenized
 POH
 on
 cell
 viability
 to
 POH
 in
 DMSO
 
 
on
 BBB
 cells
 ............................................................................................
 22
 
3.2
 POH
 decreases
 trans
 endothelial
 resistance
 ..................................................................
 25
 
3.2.1
 Purpose
 of
 Study
 ......................................................................................................
 25
 

  iv
 
3.2.2
 POH
 in
 DMSO
 lowers
 TEER
 in
 MDCK
 ..............................................................
 26
 
3.2.3
 Homogenized
 POH
 lowers
 TEER
 in
 BBB
 cells
 .............................................
 29
 
3.3
 Homogenized
 POH
 opens
 the
 BBB
 in
 mice
 .....................................................................
 32
 
3.3.1
 Purpose
 of
 Study
 ......................................................................................................
 32
 
3.3.2
 Homogenized
 POH
 allows
 EB
 into
 brain
 ........................................................
 32
 
3.3.3
 Homogenized
 POH
 increases
 levels
 of
 EB
 in
 the
 brain
 ............................
 35
 
3.4
 Homogenized
 POH
 shows
 no
 change
 in
 claudin-­‐5
 expression
 ...............................
 36
 
3.4.1
 Purpose
 of
 Study
 ......................................................................................................
 36
 
3.4.2
 Homogenized
 POH
 does
 not
 change
 claudin-­‐5
 expression
 ...................
 36
 

 
Chapter
 4
 –
 Discussion
 ...................................................................................................................................
 39
 

 
References
 ...........................................................................................................................................................
 43
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  v
 
List
 of
 Figures
 

 
Figure
 1.1:
 Structure
 of
 normal
 capillaries
 vs.
 brain
 capillaries
 ...................................................
 2
 

 
Figure
 2.1:
 Visualization
 for
 the
 process
 of
 homogenization
 .........................................................
 9
 

 
Figure
 2.2:
 Blood
 brain
 barrier
 model
 set-­‐up
 on
 inserts
 ...............................................................
 12
 

 
Figure
 2.3:
 Intracardiac
 injection
 of
 mice
 ............................................................................................
 13
 

 
Figure
 3.1:
 Effect
 of
 POH
 in
 DMSO
 on
 cell
 viability
 in
 MDCK
 cells
 ............................................
 17
 

 
Figure
 3.2:
 Effect
 of
 POH
 in
 DMSO
 vs.
 EtOH/Gly
 on
 cell
 viability
 in
 MDCK
 cells
 ................
 18
 

 
Figure
 3.3:
 Effect
 of
 old
 vs.
 new
 homogenized
 POH
 on
 cell
 viability
 in
 MDCK
 cells
 ..........
 20
 

 
Figure
 3.4:
 Effect
 of
 homogenized
 POH
 +
 DMSO
 on
 cell
 viability
 in
 MDCK
 cells
 ................
 21
 

 
Figure
 3.5:
 Effect
 of
 homogenized
 POH
 at
 high
 concentrations
 on
 cell
 viability
 in
 
 
MDCK
 cells
 ..........................................................................................................................................
 22
 
Figure
 3.6:
 Effect
 of
 homogenized
 POH
 on
 cell
 viability
 in
 BECs,
 ACs
 and
 PCs
 ...................
 23
 

 
Figure
 3.7:
 Effect
 of
 homogenized
 POH
 and
 mannitol
 on
 cell
 viability
 in
 BECs
 at
 
 
different
 time
 points
 .......................................................................................................................
 25
 
Figure
 3.8:
 Change
 in
 resistance
 of
 MDCK
 cells
 by
 Nagore
 Marin
 Ramos
 ..............................
 26
 

 
Figure
 3.9:
 Change
 in
 resistance
 of
 MDCK
 cell
 model
 with
 POH
 in
 DMSO
 treatment
 .......
 27
 

 
Figure
 3.10:
 Change
 in
 resistance
 of
 MDCK
 cell
 model
 with
 homogenized
 POH
 

 
 
 
 
 
 
 
 
 
 
 
 
 treatment
 .............................................................................................................................................
 28
 
Figure
 3.11:
 Change
 in
 resistance
 of
 BBB
 cell
 model
 ......................................................................
 30
 

 
Figure
 3.12:
 Change
 in
 resistance
 of
 BBB
 cell
 model
 with
 recovery
 ........................................
 32
 

 
Figure
 3.13:
 Effect
 of
 POH
 on
 opening
 the
 BBB
 in
 vivo
 ..................................................................
 34
 

 
Figure
 3.14:
 Levels
 of
 EB
 in
 the
 brain
 after
 treatment
 ...................................................................
 35
 

 
Figure
 3.15:
 Change
 in
 claudin-­‐5
 expression
 .....................................................................................
 37
 

 
Figure
 3.16:
 Expression
 levels
 of
 claudin-­‐5
 ........................................................................................
 38
 

 

  vi
 
List
 of
 Abbreviations
 
AC:
 Astrocytes
 
BBB:
 Blood
 brain
 barrier
 
BEC:
 Brain
 endothelial
 cells
 
BM:
 Brain
 metastasis
 
CNS:
 Central
 nervous
 system
 
DAPI:
 Diamidino
 phenylindole
 
DMSO:
 Dimethyl
 sulfoxide
 
EC:
 Endothelial
 cell
 
 
FBS:
 Fetal
 bovine
 serum
 
HER2:
 Human
 epidermal
 growth
 factor
 receptor
 
homPOH:
 homogenized
 POH
 
IHC:
 Immunohistochemistry
 
IP:
 Intraperitoneal
 
MDCK:
 Madine
 Darby
 canine
 kidney
 
MTT:
 methylthiazoletetrazolium
 
NEO
 100:
 pure
 form
 of
 POH
 
PC:
 Pericytes
 
POH:
 Perillyl
 alcohol
 
TEER:
 Trans
 endothelial
 electrical
 resistance
 
TJ:
 Tight
 Junction
 

 

 

 

 

  vii
 
Abstract
 
Background:
 Cancer
 was
 the
 second
 highest
 cause
 of
 death
 in
 the
 United
 States
 in
 2017
 
and
 10%
 to
 26%
 of
 cancers
 will
 metastasize
 to
 the
 brain
 (Amsbaugh
 and
 Kim
 2020).
 The
 
blood
 brain
 barrier
 (BBB)
 acts
 as
 a
 block
 to
 treating
 these
 metastatic
 cancers.
 An
 estimated
 
98%
 of
 all
 therapeutics
 for
 metastatic
 and
 primary
 brain
 cancers
 are
 not
 able
 to
 cross
 the
 
BBB.
 
Methods:
 We
 investigated
 the
 effect
 of
 homogenized
 perillyl
 alcohol
 (homPOH)
 on
 opening
 
the
 BBB
 both
 in
 vitro
 and
 in
 vivo.
 POH
 is
 a
 naturally
 occurring
 monoterpene
 that
 can
 be
 
isolated
 from
 several
 plants.
 In
 vitro
 experiments
 used
 MDCK
 cells
 and
 BBB
 cell
 lines
 as
 
models
 to
 mimic
 the
 BBB.
 
 The
 BBB
 cells
 included
 human
 brain
 endothelial
 cells,
 astrocytes
 
and
 pericytes.
 These
 cell
 lines
 were
 treated
 with
 homPOH
 and
 we
 measured
 cell
 viability
 
and
 changes
 in
 trans
 endothelial
 electrical
 resistance
 (TEER).
 In
 vivo
 experiments
 
measured
 the
 effect
 of
 POH
 in
 allowing
 a
 large
 molecule
 of
 Evans
 blue
 albumin
 to
 cross
 the
 
BBB.
 
Results:
 Homogenized
 POH
 displayed
 low
 toxicity
 in
 both
 MDCK
 cells
 and
 BBB
 cells,
 
resulting
 in
 a
 significant
 drop
 in
 TEER
 after
 treatment
 in
 these
 cell
 lines.
 In
 vivo
 results
 
indicated
 an
 increase
 of
 Evan
 blue
 albumin
 uptake
 into
 the
 brain
 through
 qualitative
 and
 
quantitative
 analyses.
 One
 key
 player
 contributing
 to
 the
 leakiness
 in
 the
 BBB
 appears
 to
 be
 
Claudin-­‐5,
 a
 tight
 junction
 marker.
 
Conclusions:
 Homogenized
 POH
 displayed
 promising
 results
 in
 opening
 the
 BBB.
 The
 
decrease
 in
 Claudin-­‐5
 expression
 seems
 to
 play
 a
 major
 role
 in
 opening
 of
 the
 BBB.
 We
 
propose
 that
 POH
 should
 be
 investigated
 further
 toward
 clinical
 testing
 in
 conjunction
 with
 
other
 chemotherapeutics
 to
 treat
 metastatic
 brain
 cancers.

  1
 
Chapter
 1
 –
 Introduction
 

 

 
1.1
 The
 Blood
 Brain
 Barrier
 

 
1.1.1
 Introduction
 

 

  The
 blood
 brain
 barrier
 (BBB)
 is
 important
 for
 normal
 brain
 function
 and
 
maintaining
 homeostasis.
 There
 is
 a
 strict
 regulation
 of
 components
 that
 are
 permitted
 to
 
enter
 the
 brain.
 Regulation
 and
 homeostatic
 control
 is
 maintained
 in
 the
 brain
 by
 a
 physical
 
barrier
 formed
 in
 the
 Central
 Nervous
 System
 (CNS)
 [Serlin
 et
 al.
 2015].
 The BBB is not
one physiology, but a series of physiological properties that need to be induced or
inhibited, i.e., tight junctions, transporters, and metabolic enzymes in endothelial cells of
the central nervous system” [Daneman and Prat 2015]. Manipulating the BBB is an
important aspect in treatments that need to enter the brain.

 
1.1.2
 Structure
 and
 function
 

  The
 BBB
 is
 composed
 of
 three
 main
 cell
 types.
 These
 include
 brain
 endothelial
 cells
 
(BEC),
 pericytes
 (PC)
 and
 astrocytes
 (AC).
 BECs
 grow
 tightly
 together
 and
 form
 tight
 
junctions
 making
 up
 the
 luminal
 side
 of
 the
 vasculature.
 ACs
 and
 PCs
 form
 the
 abluminal
 
side
 and
 associate
 with
 the
 endothelial
 cells.
 The
 presence
 of
 these
 three
 cell
 types
 and
 
tight
 junctions
 contribute
 to
 the
 tightness
 of
 the
 BBB
 and
 the
 association
 between
 cells
 
influences
 the
 ability
 of
 the
 BBB
 to
 highly
 regulate
 passage
 through
 the
 cranial
 vasculature.

 

 

 

 

  2
 
1.1.2.1
 Brain
 Endothelial
 Cells
 
The
 BECs
 compose
 the
 blood
 vessel
 wall
 and
 establish
 the
 main
 properties
 of
 the
 
BBB,
 but
 maintenance
 of
 these
 properties
 are
 provided
 by
 cells
 that
 interact
 with
 the
 BECs
 
[Daneman and Prat 2015].
 Figure
 1.1
 shows
 the
 difference
 between
 capillaries
 in
 the
 brain
 
and
 other
 capillaries.
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Capillaries,
 in
 general,
 are
 comprised
 of
 endothelial
 cells
 with
 intercellular
 spaces.
 
This
 allows
 for
 exchange
 of
 both
 large
 and
 small
 molecules
 between
 the
 blood
 and
 tissues.
 
Brain
 capillaries
 consist
 of
 astrocytes,
 pericytes
 and
 tight
 junctions
 in
 addition
 to
 the
 
endothelial
 cells.
 BECs
 have
 unique
 properties
 of
 tightly
 regulating
 movement
 of
 ions,
 
molecules
 and
 cells
 between
 the
 blood
 and
 the
 brain
 tissue.
 Mitochondria
 are
 seen
 in
 
higher
 amounts
 in
 BECs
 compared
 to
 general
 endothelial
 cells.
 The
 increase
 in
 
Figure
 1.1
 Comparison
 of
 brain
 capillaries
 vs.
 capillaries
 in
 general
 
(outside
 of
 the
 brain)
 to
 show
 the
 Blood
 Brain
 Barrier
 structure.
(Adapted
 from:
 Prasad
 et
 al.,
 2012)

  3
 
mitochondria
 aids
 in
 ATP
 production
 needed
 for
 transport.
 Tight
 junctions
 hold
 BECs
 
together,
 limiting
 the
 paracellular
 flux
 in
 between
 cells
 [Daneman and Prat 2015].
 

 
1.1.2.2
 Tight
 Junctions
 
Tight
 junctions
 (TJ)
 seal
 the
 endothelium
 and
 represent
 the
 core
 structure
 of
 the
 
BBB
 [Bauer
 et
 al.
 2014].
 
 The
 molecular
 interactions
 of
 TJs
 are
 indicative
 of
 low
 ion
 
permeability,
 providing
 high
 transcellular
 electrical
 resistance
 in
 the
 BBB
 endothelial
 cells
 
[Bauer
 et
 al.
 2014].
 
 There
 are
 three
 major
 TJ-­‐
 associated
 proteins:
 claudins,
 TAMPs
 (TJ-­‐
associated
 MARVEL
 proteins),
 and
 immunoglobulin
 superfamily
 membrane
 proteins.
 
Claudins
 comprise
 27
 different
 members,
 claudin-­‐3
 and
 claudin-­‐5
 are
 expressed
 in
 the
 BBB
 
and
 claudin-­‐5
 is
 the
 most
 abundant
 [Bauer
 et
 al.
 2014].
 TAMPs
 are
 a
 group
 of
 proteins
 
containing
 the
 MARVEL
 motif,
 occludin
 being
 among
 them
 [Bauer
 et
 al.
 2014].
 The
 
immunoglobulin
 superfamily
 membrane
 proteins
 are
 JAMs,
 CARs
 (coxsackie-­‐
 and
 
adenovirus
 receptor)
 and
 ESAMs
 (endothelial
 cell
 selective
 adhesion
 molecules).
 Tight
 
junctions
 function
 in
 maintaining
 homeostasis
 in
 the
 brain
 and
 it
 is
 suggested
 that
 claudins
 
are
 essential
 for
 the
 paracellular
 barrier
 [Daneman and Prat 2015].
 

 
1.1.2.3
 Pericytes
 
Pericytes
 (PC)
 sit
 on
 the
 ablumenal
 surface
 of
 the
 endothelial
 tube
 and
 extend
 long
 
cellular
 processes
 along
 this
 surface
 covering
 multiple
 endothelial
 cells. The
 ratio
 of
 ECs
 to
 
PCs
 in
 the
 CNS
 is
 1:1
 or
 3:1,
 compared
 to
 muscles
 having
 a
 100:1
 ratio
 [Daneman and Prat
2015].
 This
 creates
 higher
 coverage
 of
 ECs
 by
 PCs,
 which
 is
 believed
 to
 be
 instrumental
 for
 
BBB
 function
 and
 regulation
 [Daneman and Prat 2015].
 
 

  4
 
1.1.2.4
 Astrocytes
 

  Astrocytes
 are
 a
 glial
 cell
 type
 and
 provide
 a
 cellular
 link
 between
 neuronal
 circuitry
 
and
 blood
 vessels
 [Daneman et al. 2015].
 Mature
 astrocytes
 maintain
 the
 BBB
 by
 secreting
 
growth
 factors
 (GF)
 such
 as
 VEGF,
 glial
 cell
 line-­‐derived
 neurotrophic
 factor
 (GDNF),
 basic
 
fibroblast
 growth
 factor
 (bFGF),
 and
 ANG-­‐1.
 Tight
 junction
 formation
 relies
 on
 secretion
 of
 
these
 growth
 factors,
 as
 well
 as
 promotion
 of
 polarization
 of
 transporters
 [Cabezas
 et
 al.
 
2014].
 
 
 

 
1.2
 Brain
 Metastasis
 
 

  The
 most
 common
 brain
 tumors
 in
 adults
 are
 metastatic
 brain
 tumors.
 Metastatic
 
brain
 tumors
 occur
 10
 times
 more
 frequently
 than
 primary
 brain
 tumors
 [Ostrom
 et
 al.
 
2018].
 The
 most
 common
 cancer
 types
 to
 metastasize
 to
 the
 brain
 are
 Lung(44%),
 
Breast(11.9%)
 and
 Melanoma(10.2%)
 [Text
 book
 of
 Neuro-­‐Oncology
 2005].
 Breast
 to
 brain
 
metastasis
 is
 more
 common
 in
 triple
 negative
 or
 HER2/neu
 positive
 primary
 breast
 
cancers
 [Ostrom
 et
 al.
 2018].
 
 There
 is
 an
 incidence
 of
 up
 to
 50%
 of
 patients
 with
 HER2+
 
breast
 cancer
 developing
 intracranial
 metastases
 (Venur
 and
 Leone
 2016).
 
 

 
1.3
 Mannitol
 as
 a
 current
 therapy
 to
 open
 the
 BBB
 

  Mannitol
 is
 a
 six-­‐carbon
 linear
 simple
 sugar
 that
 is
 not
 fully
 metabolized
 by
 the
 body
 
and
 can
 be
 used
 as
 a
 sugar
 substitute
 (Tenny
 et
 al.
 2020).
 Mannitol
 solution
 is
 
hyperosmolar
 and
 can
 be
 used
 to
 disrupt
 the
 BBB
 by
 causing
 a
 loss
 of
 water
 in
 cells.
 This
 
loss
 of
 water
 loosens
 the
 cell-­‐cell
 junction
 interaction
 [Brown
 at
 al.
 2004].
 The
 method
 is
 
considered
 to
 be
 an
 osmotic
 opening
 of
 the
 BBB
 mediated
 by
 vasodilation
 and
 shrinkage
 of
 

  5
 
BECs,
 creating
 an
 increase
 in
 the
 interendothelial
 space
 and
 loosening
 TJs.
 (Rapoport
 
2000).
 Mannitol
 administration
 occurs
 by
 intracarotid
 infusion
 and
 the
 effects
 only
 last
 for
 
a
 short
 time,
 approximately
 ten
 minutes
 (Rapoport
 2000).
 Current
 therapies
 use
 mannitol
 
in
 conjunction
 with
 chemotherapies
 to
 open
 the
 BBB
 for
 a
 brief
 time.
 It
 has
 been
 shown
 
that
 mannitol
 increases
 permeability
 of
 sucrose
 but
 not
 of
 Evans
 blue
 albumin,
 which
 has
 a
 
molecular
 weight
 of
 ~66kDa.
 
 (Brown
 et
 al.
 2004).
 Current
 mannitol
 therapies
 are
 limited
 
in
 that
 they
 do
 not
 allow
 penetrability
 of
 larger
 molecules
 such
 as
 antibodies.
 
 

 
1.4
 Trastuzumab
 to
 treat
 for
 metastatic
 breast
 cancer
 

  Treatment
 for
 HER2+
 metastatic
 breast
 cancer
 is
 done
 with
 administration
 of
 
Trastuzumab,
 or
 Herceptin.
 Herceptin
 is
 a
 recombinant
 humanized
 IgG
 monoclonal
 
antibody
 against
 the
 extracellular
 domain
 of
 the
 HER2(EGF)
 receptor
 (Boekhout
 et
 al.
 
2011).
 Herceptin
 binds
 to
 the
 extracellular
 domain
 of
 HER2
 preventing
 activation
 of
 the
 
receptor
 and
 the
 down
 stream
 cleavage
 of
 the
 intracellular
 domain,
 which
 in
 turn
 results
 in
 
cell
 mediated
 cytotoxicity
 (Boekhout
 et
 al
 2011).
 Herceptin
 has
 shown
 promising
 result
 in
 
treatment
 of
 HER2+
 breast
 cancers
 but
 once
 these
 cancers
 metastasize
 to
 the
 brain,
 there
 is
 
no
 current
 approach
 in
 the
 clinic
 to
 administer
 Herceptin
 to
 allow
 passage
 through
 the
 
BBB.
 Brain
 metastasis
 is
 a
 major
 cause
 of
 morbidity
 in
 patients
 with
 advanced
 breast
 
cancer
 (Venur
 and
 Leone
 2016)
 and
 leads
 to
 the
 need
 for
 a
 necessary
 therapy
 that
 allows
 
large
 drug
 molecules,
 such
 as
 antibodies
 to
 cross
 the
 BBB.
 
 

 

 

 

  6
 
1.5
 Perillyl
 alcohol/NEO100
 
Neo
 100
 is
 a
 synthetic
 highly
 pure
 form
 of
 Perillyl
 alcohol
 (POH),
 manufactured
 
under
 good
 laboratory
 practice
 conditions
 (Chen
 et
 al.
 2015).
 POH
 is
 a
 naturally
 occurring
 
monocyclic
 terpene
 that
 can
 be
 isolated
 from
 several
 plants:
 e.g.,
 lavender,
 peppermint,
 
cherries,
 caraway,
 lilac
 oil,
 cranberries,
 sage,
 celery
 seeds,
 and
 certain
 other
 plants
 (Chen
 et
 
al.
 2015).
 It
 is
 a
 metabolite
 of
 limonene
 and
 is
 thus
 derived
 from
 the
 
mevalonate/isoprenoid
 pathway
 (Chen
 et
 al.
 2018).
 The
 impact
 of
 POH
 is
 pleiotropic
 on
 
many
 cellular
 targets.
 POH
 was
 shown
 to
 be
 a
 cytotoxic
 agent
 by
 functioning
 as
 a
 Ras
 
inhibitor,
 cell-­‐cycle
 inhibitor,
 and
 upregulator
 of
 the
 proapoptotic
 protein
 Bax
 (Cho
 2012).
 
It
 has
 also
 been
 shown
 that
 POH
 induces
 apoptosis
 in
 human
 glioblastoma
 multiforme
 cells
 
in
 vitro
 by
 exhibiting
 morphological
 alterations
 in
 treated
 cells
 (Fernandez
 et
 al.
 2005).
 
Further
 studies
 now
 show
 that
 POH
 may
 play
 a
 role
 in
 opening
 the
 BBB
 thus
 increasing
 
permeability
 of
 substances.
 POH
 exhibits
 physical
 properties
 that
 are
 similar
 to
 oil,
 
meaning
 that
 POH
 is
 not
 miscible
 with
 water.
 This
 leads
 to
 a
 need
 for
 a
 vehicle
 that
 will
 
completely
 solubilize
 POH
 and
 allow
 for
 a
 uniform
 mixture.
 
 

 
1.6
 Hypothesis
 

  Based
 on
 current
 data
 suggesting
 Trastuzumab
 increases
 the
 overall
 survival
 of
 
patients
 with
 HER2+
 metastatic
 breast
 cancer
 (Venur
 and
 Leone
 2016),
 there
 is
 a
 push
 to
 
find
 a
 way
 to
 administer
 the
 drug
 into
 the
 brain.
 The
 extensive
 use
 of
 POH
 has
 been
 
widespread
 and
 in
 particular,
 intranasal
 delivery
 to
 glioblastoma
 patients
 showed
 
promising
 results
 as
 a
 chemotherapeutic
 with
 low
 toxic
 effects
 compared
 to
 oral
 
administration
 (Chen
 et
 al.
 2015).
 
 

  7
 
After
 continued
 research
 and
 administration
 of
 POH
 we
 concluded
 that
 POH
 might
 
have
 an
 advantage
 in
 altering
 the
 BBB.
 After
 using
 many
 vehicles
 we
 hypothesize
 that
 using
 
homogenized
 POH
 is
 effective
 in
 disrupting
 the
 BBB
 allowing
 for
 larger
 molecules
 to
 cross.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  8
 
Chapter
 2
 –
 Materials
 and
 Methods
 

 
2.1
 Pharmacological
 Agents
 

  NEO
 100
 or
 POH,
 purchased
 from
 Sigma
 Aldrich
 (St.
 Louis,
 MO).
 Will
 be
 referred
 to
 
as
 POH.
 POH
 was
 dissolved
 in
 DMSO
 (Santa
 Cruz
 Biotechnology,
 Dallas,
 TX)
 or
 a
 50:50(v:v)
 
solution
 of
 ethanol/glycerol
 (EtOH/Gly)
 (Sigma,
 St
 Louis,
 Missouri).
 POH
 was
 diluted
 from
 
6.3M
 to
 a
 concentration
 of
 800
 mM
 or
 homogenized
 at
 3%
 (~189
 mM).
 POH
 was
 diluted
 
further
 in
 cell
 culture
 medium
 to
 get
 experimental
 concentrations.
 DMSO
 percentage
 was
 
calculated
 based
 on
 the
 amount
 of
 DMSO
 in
 total
 solution.
 The
 20%
 OSMITROL
 Injection
 or
 
20%
 Mannitol
 (Baxter,
 Deerfield,
 IL)
 were
 heated
 in
 a
 water
 bath
 and
 then
 diluted
 to
 a
 final
 
working
 concentration
 in
 cell
 culture
 medium.
 

 
2.2
 Homogenization
 
 
POH
 was
 homogenized
 by
 pushing
 liquid
 at
 a
 speed
 of
 400m/s
 and
 at
 10,000-­‐
20,000psi
 through
 a
 sharp
 filter
 with
 10,000,000
 pores.
 The
 homogenizer
 machine
 is
 a
 
model
 M110L
 from
 Microfluidics
 (Westwood,
 Massachusetts).
 Figure
 2.1
 shows
 the
 process
 
of
 homogenization.
 POH
 samples
 were
 homogenized
 at
 1,
 2.2,
 or
 3%(~63,
 138.6
 or
 189
 mM
 
respectively).
 The
 homogenized
 samples
 were
 used
 immediately
 for
 in
 vivo
 experiments.
 
For
 in
 vitro
 analysis,
 fetal
 bovine
 serum
 (FBS),
 from
 Omega
 Scientific
 (Tarzana,
 CA),
 was
 
added
 to
 samples
 allowing
 them
 to
 sit
 for
 an
 extended
 amount
 of
 time
 at
 4
 deg
 C.
 
 

 

  9
 

 

 

 

 

 

 

 

 

 

 

 
2.3
 In
 vitro
 analysis
 
2.3.1
 Cells
 and
 maintenance
 

  Madin-­‐Darby
 Canine
 Kidney
 (MDCK)
 cells
 (Science
 Cell
 Research
 Labratories,
 
Carlsbad,
 CA)
 were
 propagated
 in
 Dulbecco’s
 Modification
 of
 Eagle’s
 Medium
 (DMEM)
 with
 
4.5
 g/L
 glucose,
 L-­‐glutamine,
 sodium
 pyruvate
 supplemented
 with
 10%
 fetal
 bovine
 serum
 
(FBS),
 100
 u/mL
 penicillin,
 and
 0.1
 mg/mL
 streptomycin.
 FBS,
 penicillin
 and
 streptomycin
 
were
 obtained
 from
 the
 USCs
 Cell
 Culture
 Core
 (Los
 Angeles,
 CA).
 
Human
 brain
 endothelial
 cells
 (HBEC)
 transfected
 with
 SV40,
 human
 pericytes
 
transfected
 with
 SV40
 and
 human
 astrocytes
 transfected
 with
 SV40
 were
 obtained
 
 Science
 
Cell
 Research
 Labratories,
 Carlsbad,
 CA.
 
 The
 human
 cell
 lines
 were
 used
 to
 reconstitute
 the
 
Figure
 2.1:
 Visualization
 on
 how
 the
 homogenization
 process
 works.
 
POH
 is
 added
 to
 medium
 then
 run
 through
 the
 machine
 under
 high
 
pressure,
 pushing
 it
 through
 a
 sharp
 filter
 that
 evenly
 distributes
 POH
 
molecules
 in
 liquid.

 

 

 

 

 

 

   
 

 

 

 
Un-­‐
homogenized
 
POH
Homogenized
 
POH

 

 

 
Sharp
 Filter

 

 

 

 
High
 
Pressure

  10
 
BBB
 in
 vitro
 and
 were
 grown
 in
 special
 medium
 consisting
 of:
 
50%
 Gibco
 Advanced
 DMEM/F12
 purchased
 from
 Thermo
 Fisher
 (Grand
 Islands,
 NY)
 
50%
 Nerobasal
 A
 purchased
 from
 Fisher
 Scientific
 (Grand
 Island,
 NY)
 
 
2.5%
 Gibco
 B-­‐27
 Supplement
 -­‐
 serum
 free
 (50X)
 purchased
 from
 Thermo
 Fisher
 (Grand
 
Island,
 NY)
 
1%
 Antibiotic-­‐Antimycotic
 (100X)
 purchased
 from
 Thermo
 fisher
 (Grand
 Island,
 NY)
 
1%
 Gibco
 GlutaMAX
 Supplement
 purchased
 from
 Thermo
 fisher
 (Grand
 Island,
 NY)
 
5%
 FBS
 
 

 
All
 cells
 were
 kept
 in
 a
 humidified
 incubator
 at
 37°C
 and
 a
 5%
 CO2
 atmosphere.
 
 

 
2.3.2
 MTT
 Cell
 Viability
 Assays
 
Methylthiazoletetrazolium
 (MTT)
 assays
 were
 performed
 as
 follow:
 cells
 were
 
seeded
 into
 96-­‐well
 plates
 in
 a
 volume
 of
 50
 μL
 per
 well.
 Cell
 densities
 varied
 from
 1.0-­‐8.0
 
×
 10
5
 
cells/mL.
 An
 additional
 50
 μL
 of
 medium
 containing
 various
 concentrations
 of
 drug
 
was
 added
 24
 hours
 later
 to
 allow
 cells
 to
 completely
 adhere.
 Cells
 were
 incubated
 for
 the
 
various
 time
 intervals
 with
 drug
 depending
 on
 each
 experimental
 design,
 this
 could
 be
 5
 
min,
 10
 min,
 30
 min,
 60
 min
 or
 24h.
 This
 was
 followed
 by
 the
 addition
 of
 thiazolyl
 blue
 
tetrazoliumbromide
 (methylthiazoletetrazolium,
 MTT;
 Sigma–Aldrich,
 St.
 Louis,
 MO)
 at
 
10%
 for
 4
 hours
 at
 37°C
 (stock
 solution
 of
 MTT
 is
 5
 mg/mL
 in
 PBS).
 
 Cells
 uptake
 the
 MTT
 
dye
 and
 mitochondrial
 succinate
 dehydrogenase
 reduces
 MTT
 to
 MTT
 formazan,
 a
 purple
 
product.
 The
 reaction
 was
 stopped
 at
 4
 hours
 and
 the
 cell
 cultures
 lysed
 by
 the
 addition
 of
 

  11
 
100
 μL
 of
 solubilization
 solution
 (10%
 sodium
 dodecyl
 sulfate
 (SDS),
 in
 0.01
 M
 
hydrochloric
 acid,
 HCl).
 The
 96-­‐well
 plate
 was
 left
 in
 the
 cell
 culture
 incubator
 over
 night
 
for
 complete
 solubilization
 of
 the
 MTT
 crystals,
 and
 the
 optical
 density
 (OD)
 of
 each
 well
 
was
 determined
 in
 a
 Varioskan
 Lux
 Reader
 (Thermo
 Scientific,
 Waltham,
 MA)
 at
 570
 nm.
 
The
 background
 value
 (OD
 of
 control
 well
 containing
 medium
 without
 cells
 +
 MTT
 +
 
solubilization
 solution)
 was
 subtracted
 from
 all
 measured
 values.
 Cell
 viability
 percentages
 
were
 calculated
 by
 dividing
 all
 samples
 by
 untreated.
 In
 individual
 experiments,
 each
 
treatment
 condition
 was
 set
 up
 in
 duplicates
 or
 triplicates.
 
 
2.3.3
 Trans
 endothelial
 electrical
 resistance
 
 

  MDCK
 and
 human
 BBB
 cells
 were
 used
 to
 create
 a
 blood
 brain
 model
 and
 measure
 
resistance.
 MDCK
 cells
 (1.0-­‐1.5
 ×
 10
5
 
cells/mL)
 were
 plated
 on
 the
 inside
 of
 inserts
 (8um
 
Thincert™
 12
 Well
 Plates
 Inserts
 from
 Greiner
 Bio-­‐One).
 MDCK
 cells
 took
 approximately
 6-­‐
8
 days
 to
 reach
 resistance.
 Human
 astrocytes
 and
 pericytes
 were
 plated
 in
 a
 1:1
 ratio
 at
 3.3
 
×
 10
5
 
cells/mL
 in
 300μL
 on
 the
 bottom
 of
 inserts
 (8um
 Thincert™
 12
 Well
 Plates
 Inserts
 
from
 Greiner
 Bio-­‐One).
 Cells
 were
 allowed
 to
 attach
 overnight,
 then
 inserts
 were
 flipped
 
and
 HBEC
 cells
 were
 plated
 on
 other
 side
 of
 insert
 at
 1.3
 ×
 10
5
 
cells/mL
 in
 1mL.
 Human
 
cells
 took
 approximately
 10-­‐14
 days
 to
 reach
 resistance.
 Treatments
 with
 POH
 at
 different
 
concentrations
 were
 then
 started
 and
 resistance
 was
 measured
 with
 an
 epithelial
 ohm
 
meter
 (MERSSTX01
 Electrode
 from
 Millipore).
 A
 blank
 well
 was
 measured
 with
 medium
 
alone
 and
 no
 cells.
 This
 blank
 was
 subtracted
 from
 all
 measurements
 and
 final
 
measurements
 were
 multiplied
 by
 1.1
 to
 account
 for
 area
 of
 the
 insert,
 giving
 final
 
ohmsŸcm
2
.
 Figure
 2.2
 shows
 the
 set
 up
 of
 MDCK
 cells
 and
 BBB
 cells
 to
 measure
 resistance.
 

  12
 

 

 
2.4
 In
 vivo
 analysis
 
2.4.1
 Evans
 blue
 

  Opening
 of
 BBB
 was
 visualized
 in
 vivo
 with
 IV
 injection
 of
 2%
 Evans
 blue
 (EB)
 into
 
the
 tail
 vein
 of
 mice
 (Sigma
 St
 Louis,Missouri).
 
 EB
 was
 injected
 at
 4mL/kg.
 Immediately
 
following
 IV
 injection
 was
 intracardiac
 injection
 (40
 μL)
 of
 POH
 or
 controls.
 The
 
intracardiac
 injection
 can
 be
 visualized
 in
 Figure
 2.3.
 Mice
 were
 anesthetized
 with
 2%
 
isoflurane
 before
 the
 start
 of
 any
 injections.
 Intracardiac
 injection
 protocol
 was
 performed
 
by
 Ivetta
 Vorobyova
 at
 the
 imaging
 center
 at
 USC.
 After
 injections
 mice
 were
 left
 to
 awaken.
 
Perfusions
 were
 performed
 1-­‐2
 hours
 later.
 Mice
 were
 injected
 intraperitoneally
 (IP)
 with
 
150uL
 of
 xylazine
 (Sigma,
 St
 Louis,
 Missouri)
 and
 allowed
 to
 become
 fully
 unconscious
 with
 
no
 pain
 perception,
 tested
 by
 squeezing
 the
 feet
 of
 the
 mice.
 Mice
 were
 then
 perfused
 

 

   
 

 

 

 

 

 
MDCK
 cells
 
Electrode

 

 

   
   
 

   
   
   
   
   
   
   
   
   
 
Brain
 endothelial
 
cells
Astrocytes
 and
 
Pericytes

 

 

 

 

 
Figure
 2.2
 Visualization
 of
 set-­‐up
 for
 measuring
 resistance.
 The
 left
 depicts
 set
 up
 
for
 MDCK
 cells
 and
 the
 right
 represents
 the
 model
 set
 up
 for
 the
 BBB
 cells.
 MDCK
 
cells
 are
 plated
 directly
 in
 the
 inserts.
 Astrocytes
 and
 Pericytes
 are
 plated
 on
 the
 
bottom
 of
 the
 inserts
 and
 are
 left
 to
 adhere
 overnight.
 The
 brain
 endothelial
 cells
 
are
 plated
 on
 the
 inside
 of
 the
 inserts.
Electrode

  13
 
according
 to
 standard
 protocol
 (Devraj
 et
 al.
 2018).
 Brains
 and
 Kidneys
 were
 dissected
 out
 
and
 imaged.
 Brain
 and
 kidneys
 were
 also
 homogenized
 in
 1
 mL
 pure
 methanol
 using
 a
 glass
 
tissue
 homogenizer.
 After
 tissue
 was
 completely
 emulsified
 samples
 were
 centrifuged
 at
 
8,000
 g
 for
 15
 min.
 Supernatant
 was
 collected
 and
 absorbance
 was
 measure
 at
 620nm.
 
 

 

 

 

 
2.5
 Immunohistochemistry
 (IHC)
 
To
 determine
 levels
 of
 claudin-­‐5
 expression,
 HBEC
 cells
 and
 mouse
 brain
 samples
 
were
 used.
 HBEC
 cells
 were
 plated
 onto
 glass
 discs
 and
 allowed
 to
 propagate
 until
 
confluent.
 Cells
 were
 treated
 with
 POH
 and
 then
 fixed
 in
 1%
 formaldehyde
 for
 10
 minutes.
 
 
Figure
 2.3
 Mice
 intracardiac
 injection.
 Top
 image
 shows
 set
 up
 for
 how
 mouse
 is
 
staged
 and
 how
 needle
 is
 set
 to
 inject.
 The
 bottom
 images
 depict
 the
 sonogram
 
of
 the
 mouse
 heart.
 The
 red
 circle
 indicates
 the
 needle
 that
 is
 being
 pushed
 into
 
the
 left
 ventricle
 of
 the
 heart.

 

 

  14
 
Paraffin
 sections
 obtained
 from
 mouse
 brains
 treated
 with
 POH
 were
 stained
 with
 a
 
fluorescent
 antibody.
 Slides
 were
 initially
 dewaxed
 in
 xylene
 2
 times,
 for
 5
 minutes
 each.
 
Then
 the
 slides
 were
 hydrated
 through
 decreasing
 concentrations
 of
 ethanol,
 beginning
 
with
 two
 100%
 ethanol
 washes
 for
 three
 minutes.
 Hydration
 continued
 through
 a
 single
 
wash
 in
 95%
 and
 80%
 for
 one
 minute
 each,
 then
 a
 final
 wash
 in
 distilled
 water
 for
 5
 
minutes.
 Afterwards,
 slides
 were
 processed
 for
 antigen
 recovery
 and
 placed
 in
 a
 10
 mM,
 pH
 
6.0
 sodium
 citrate
 (Sigma
 Aldrich
 –
 St.
 Louis,
 Missouri,
 USA)
 buffer
 at
 approximately
 95-­‐
100°C
 for
 30
 minutes.
 The
 slides
 remained
 in
 the
 buffer
 but
 the
 container
 was
 removed
 
from
 the
 hot
 plate
 and
 placed
 on
 the
 bench
 to
 cool
 for
 an
 additional
 20
 minutes.
 Tissues
 
were
 then
 washed
 with
 isotonic,
 phosphate-­‐buffered
 saline
 (PBS)
 for
 5
 minutes.
 
Afterwards,
 tissues
 were
 washed
 three
 times
 in
 PBS
 for
 5
 minutes
 each.
 Tissue
 samples
 
were
 then
 blocked
 for
 an
 hour
 with
 50%
 SEA
 block
 (Thermo
 Scientific
 -­‐
 Waltham,
 
Massachusetts,
 USA).
 
 
For
 immunostaining,
 fixed
 HBEC
 cells
 or
 mouse
 brain
 tissues
 were
 incubated
 with
 
the
 primary
 antibody
 overnight
 at
 4°C.
 Sections
 were
 stained
 with
 anti-­‐claudin-­‐5
 (1:200,
 
Invitrogen
 –polyclonal
 antibody
 from
 Thermo
 Fisher
 Scientific,
 catalog
 #
 34-­‐1600).
 The
 
day
 after,
 samples
 were
 quickly
 rinsed
 then
 washed
 three
 times
 with
 PBS
 for
 5
 minutes
 
each.
 Next,
 the
 samples
 were
 incubated
 with
 the
 secondary
 antibody
 for
 an
 hour
 at
 room
 
temperature.
 Secondary
 antibodies
 used
 were
 Rhodamine(cat#
 sc-­‐2091
 from
 Santa
 Cruz
 
Biotech)
 .
 Coverslips
 were
 then
 mounted
 with
 Immunogold+DAPI
 (Fisher
 Scientific
 -­‐
 
Waltham,
 Massachusetts,
 USA)
 and
 sealed
 with
 nail
 polish.
 
 

 

  15
 
2.6
 Western
 blotting
 
 
Total
 cell
 lysates
 were
 prepared
 by
 disrupting
 cells
 with
 RIPA
 buffer(Thermo
 
Scientific,
 Rockford,
 IL)
 +protease
 inhibitors(Thermo
 Scientific,
 Rockford,
 IL);
 protein
 
concentrations
 were
 determined
 using
 the
 Pierce
 BCA
 protein
 assay
 reagent
 (Thermo
 
Scientific,
 Waltham
 MA).
 Fifty
 μg
 of
 total
 cell
 lysate
 was
 added
 to
 each
 lane
 of
 10%
 SDS-­‐
 
PAGE
 gels.
 Trans-­‐blot
 (BioRad,
 Hercules,
 CA)
 was
 used
 for
 the
 semi-­‐dry
 transfer.
 For
 the
 
detection
 of
 claudin-­‐5,
 I
 used
 a
 polyclonal
 antibody
 (Thermo
 Fisher
 Scientific,
 catalog
 #34-­‐
1600).
 Horseradish
 peroxidase-­‐antibody
 conjugates
 (i.e.,
 secondary
 antibodies)
 were
 
obtained
 from
 Jackson
 ImmunoResearch
 Laboratories
 Inc
 (West
 Grove,
 PA).
 All
 antibodies
 
were
 used
 according
 to
 the
 suppliers’
 recommendations.
 For
 detection
 Prometheus
 Pro
 
Signal
 Pico
 was
 used
 (Genesee
 Scientific,
 El
 Cajon,
 CA).
 
 

 

 

 

 

 

 

 

 

 

 

 

  16
 
Chapter
 3
 -­‐
 Results
 
3.1
 Homogenized
 POH
 at
 higher
 concentrations
 does
 not
 affect
 cell
 viability
 in
 MDCK
 
cells
 or
 the
 three
 BBB
 cell
 lines:
 Human
 brain
 endothelial
 cells,
 pericytes
 and
 
astrocytes
 
3.1.1
 Purpose
 of
 Study
 

  The
 purpose
 of
 this
 study
 was
 to
 use
 MTT
 assays
 to
 determine
 the
 highest
 
concentrations
 of
 POH
 that
 could
 be
 used
 in
 either
 MDCK
 cells
 or
 BBB
 cells
 without
 
creating
 cell
 toxicity.
 MTT
 assays
 are
 an
 efficient
 way
 to
 measure
 the
 metabolic
 activity
 of
 
living
 cells
 by
 indirectly
 measuring
 cell
 viability
 based
 on
 the
 amount
 of
 formazan
 blue
 that
 
is
 present.
 Mitochondria
 of
 living,
 healthy
 cells
 will
 reduce
 MTT
 dye
 to
 formazan
 blue,
 an
 
insoluble
 dye
 that
 can
 be
 measured.
 When
 opening
 the
 BBB
 the
 goal
 was
 to
 use
 
concentrations
 of
 drug
 that
 showed
 minimal
 cell
 death.
 We
 want
 to
 be
 able
 to
 open
 the
 BBB
 
and
 then
 once
 the
 drug
 is
 removed
 allow
 recovery
 of
 cells
 in
 re-­‐forming
 tight
 junctions
 and
 
continuing
 with
 normal
 metabolic
 activity.
 
 
3.1.2
 Effect
 of
 homogenized
 POH
 on
 cell
 viability
 compared
 to
 POH
 in
 DMSO
 or
 EtOH/Gly
 on
 
MDCK
 cells
 
The
 first
 few
 MTT
 assays
 used
 Madin-­‐Darby
 Canine
 Kidney
 (MDCK)
 cells.
 These
 cells
 
are
 an
 expedient
 model
 system
 and
 can
 mimic
 properties
 of
 the
 BBB
 and
 are
 widely
 used
 to
 
represent
 a
 model
 for
 in
 vitro
 analysis.
 MDCK
 cells
 create
 a
 monolayer
 after
 7
 days
 of
 
growth
 and
 they
 exhibit
 high
 TEER
 values.
 MDCK
 cells
 are
 of
 epithelial
 origin
 instead
 of
 
endothelial
 and
 they
 are
 derived
 from
 dog
 kidney
 cells
 (Wang
 et
 al.
 2005),
 indicating
 the
 
cells
 do
 exhibit
 some
 limitations
 when
 trying
 to
 study
 effects
 on
 the
 BBB.
 We
 wanted
 to
 
determine
 cell
 viability
 in
 MDCK
 cells
 treated
 with
 POH
 diluted
 in
 DMSO.
 Pure
 POH
 was
 
diluted
 from
 6.3M
 to
 800mM
 in
 DMSO.
 This
 was
 then
 further
 diluted
 to
 obtain
 differing
 

  17
 
POH
 concentrations
 that
 correlated
 with
 different
 DMSO
 percentages,
 as
 indicated
 in
 
Figure
 3.1.
 
 DMSO,
 or
 dimethyl
 sulfoxide,
 is
 a
 clear
 odorless
 liquid
 that
 can
 be
 used
 as
 a
 
polar,
 aprotic
 solvent
 that
 is
 miscible
 with
 water
 and
 can
 easily
 dissolve
 many
 polar
 and
 
non-­‐polar
 small
 molecules
 (Capriotti
 2012).
 We
 can
 see
 complete
 cell
 death
 starting
 at
 2
 
mM
 POH
 and
 0.65%
 DMSO
 (Figure
 3.1).
 Tests
 were
 done
 with
 DMSO
 alone
 in
 cell
 culture
 
medium
 up
 to
 concentrations
 of
 1%
 and
 displayed
 no
 effect
 on
 cell
 viability
 and
 are
 not
 
displayed
 in
 the
 figures.
 There
 was
 a
 drastic
 drop
 in
 cell
 viability
 from
 1
 mM
 to
 2
 mM.
 The
 
percentage
 of
 DMSO
 in
 1
 mM
 and
 2
 mM
 POH
 were
 0.3%
 and
 0.65%
 respectively.
 The
 
different
 cell
 densities
 tested
 show
 similar
 toxicities.
 The
 smaller
 input
 of
 5k
 cells
 show
 an
 
IC50
 at
 1
 mM
 while
 the
 other
 two
 cell
 inputs
 show
 very
 little
 cell
 death.
 We
 determined
 
treating
 with
 POH
 diluted
 in
 DMSO
 displayed
 high
 cell
 toxicity
 at
 low
 concentrations.
 These
 
findings
 were
 unexpected
 and
 as
 2mM
 had
 been
 used
 in
 previous
 studies,
 this
 indicated
 the
 
experiment
 needed
 to
 be
 repeated.
 
 

 

 

 

 

 

 

 

 

 

 
Figure
 3.1
 Effect
 of
 POH
 diluted
 in
 DMSO
 on
 MDCK
 cell
 viability.
 MTT
 assay
 with
 
increasing
 concentrations
 of
 POH
 in
 DMSO
 treated
 for
 24hrs.
 Cell
 viability
 
percentage
 was
 calculated
 using
 the
 untreated
 sample
 as
 the
 divisor.
 Three
 
different
 cell
 inputs
 were
 plated
 in
 a
 96
 well
 plate:
 15k,
 10k
 and
 5k.
 POH
 
concentrations
 used
 were
 0.3,
 1,
 2,
 4
 and
 8
 mM
 with
 corresponding
 DMSO
 
percentages
 at
 0.1,
 0.3,
 0.65,
 1.3,
 and
 2.5
 %
 respectively.
 
-­‐50.000
 
0.000
 
50.000
 
100.000
 
150.000
 
0.000
  1.000
  2.000
  3.000
  4.000
  5.000
  6.000
  7.000
  8.000
 
Cell
 Viability
 (%)
 
Concentration
 of
 POH
 (mM)
 
MDCK
 cells:
 POH
 in
 DMSO
 
15k
 cells
  10k
 cells
  5k
 cells
 
DMSO
 %
 
 
 
 0.1
 
 
 
 0.3
 
 
 
 
 
 
 
 
 
 0.65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1.3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  18
 
The
 next
 idea
 was
 to
 perform
 a
 comparison
 in
 MDCK
 cells
 to
 determine
 if
 there
 was
 
any
 difference
 in
 using
 DMSO
 verse
 EtOH/Gly
 as
 a
 vehicle.
 EtOH/Gly
 or
 ethanol/glycerol
 is
 
a
 solvent
 that
 can
 be
 used
 for
 lipophilic
 drugs.
 Glycerol
 shows
 low
 toxicity
 in
 cells
 but
 was
 
not
 sufficient
 by
 itself
 as
 a
 solvent
 for
 POH.
 Previous
 experiments,
 not
 displayed,
 showed
 
that
 the
 best
 vehicle
 combination
 for
 a
 POH
 solvent
 was
 50%
 ethanol
 and
 50%
 glycerol.
 
Experiments
 indicated
 that
 POH
 dissolved
 in
 both
 vehicles
 have
 a
 similar
 effect
 on
 
MDCK
 cell
 viability
 revealing
 over
 50%
 cell
 death
 at
 2
 mM
 (Figure
 3.2).
 The
 different
 cell
 
densities
 show
 a
 similar
 curve
 in
 toxicity
 as
 concentrations
 increase,
 indicating
 that
 the
 
results
 cause
 a
 constant
 decrease
 in
 viability
 regardless
 of
 cell
 volume.
 
 These
 results
 
indicated
 that
 diluting
 POH
 in
 either
 DMSO
 or
 EtOH/Gly
 was
 unfavorable
 on
 cell
 viability.
 

 
0.000
 
50.000
 
100.000
 
150.000
 
0
  0.5
  1
  1.5
  2
  2.5
 
Cell
 Viability
 (%)
 
Concentrations
 (mM)
 
POH
 in
 DMSO
 [mM]
 
10k
 cells
  5k
 cells
  2.5k
 cells
 
0.000
 
50.000
 
100.000
 
150.000
 
0
  0.5
  1
  1.5
  2
  2.5
  3
  3.5
  4
  4.5
 
Cell
 Viabilty
 (%)
 
Concentrations
 (mM)
 
POH
 in
 EtOH/Gly
 [mM]
 
Figure
 3.2
 Comparison
 of
 POH
 in
 two
 different
 vehicles:
 DMSO
 vs
 EtOH/Gly.
 MTT
 
assay
 of
 MDCK
 cells
 treated
 with
 increasing
 concentrations
 of
 POH
 for
 24hrs.
 
MDCK
 cells
 were
 plated
 at
 different
 inputs:
 10k,
 5k,
 or
 2.5k.
 Vehicles
 of
 DMSO
 and
 
50:50
 Ethanol/Glycerol
 were
 used.
 Percent
 of
 vehicle
 was
 the
 same
 for
 DMSO
 and
 
EtOH/Gly:
 0.15%
 0.325%
 0.485%
 0.65%
 respectively
 for
 0.5,
 1,
 1.5,
 2
 mM.
 Cell
 
viability
 percentage
 was
 calculated
 using
 the
 untreated
 sample
 as
 the
 divider.

 

  19
 
After
 completing
 the
 first
 few
 assays
 with
 MDCK
 cells,
 experimental
 data
 indicated
 
that
 diluting
 POH
 in
 DMSO
 had
 an
 adverse
 side
 effect
 due
 to
 cell
 toxicity.
 This
 led
 us
 to
 
develop
 a
 new
 method
 that
 would
 not
 require
 the
 use
 of
 a
 solvent.
 We
 came
 up
 with
 the
 
idea
 to
 homogenize
 POH
 in
 an
 aqueous
 solvent,
 known
 as
 homogenized
 POH
 (homPOH).
 
This
 method
 allowed
 us
 to
 increase
 drug
 concentration
 without
 the
 adverse
 effect
 of
 
lowering
 cell
 viability.
 
We
 then
 were
 able
 to
 satisfactorily
 dilute
 POH
 and
 not
 use
 the
 previously
 mentioned
 
vehicles
 as
 solvents.
 We
 first
 homogenized
 POH
 in
 PBS,
 then
 moved
 to
 homogenizing
 in
 
DMEM
 medium.
 Homogenizing
 POH
 in
 PBS
 was
 hard
 to
 visualize
 if
 POH
 was
 actually
 being
 
mixed
 into
 PBS.
 By
 homogenizing
 POH
 in
 medium
 we
 could
 visualize
 the
 particles
 in
 
solution,
 as
 the
 medium
 would
 turn
 a
 lighter
 pink
 color
 to
 indicate
 a
 colloidal
 mixture
 was
 
occurring.
 HomPOH
 concentrations
 up
 to
 6
 mM
 indicated
 very
 little
 cell
 toxicity
 in
 MDCK
 
cells
 (Figure
 3.3).
 
 A
 comparison
 was
 done
 between
 POH
 homogenized
 21
 days
 prior
 to
 use
 
(old)
 and
 POH
 that
 was
 immediately
 homogenized
 and
 used.
 Our
 results
 indicated
 that
 POH
 
used
 immediately
 after
 homogenization
 or
 weeks
 after
 showed
 no
 significant
 difference
 in
 
activity.
 We
 can
 also
 see
 that
 using
 homPOH
 resulted
 in
 lower
 cell
 toxicity
 at
 higher
 
concentrations,
 up
 to
 6
 mM.
 

 

 

 

 

  20
 

 

 

 

 

 

 

 

 
Knowing
 that
 diluting
 POH
 in
 DMSO
 resulted
 in
 toxicity
 at
 low
 concentrations,
 we
 
wanted
 to
 test
 if
 adding
 DMSO
 to
 homogenized
 POH
 right
 before
 treatment
 showed
 similar
 
effects.
 This
 was
 done
 by
 first
 homogenizing
 POH,
 followed
 by
 dilution
 to
 the
 desired
 final
 
concentration,
 and
 then
 mixing
 with
 DMSO
 right
 before
 treatment.
 We
 observed
 very
 
similar
 response
 curves
 in
 Figure
 3.4
 as
 in
 Figure
 3.3.
 Homogenized
 POH
 up
 to
 2
 mM
 at
 
lower
 cell
 densities,
 showed
 no
 significant
 change
 in
 cell
 viability
 with
 a
 slight
 drop
 to
 70%
 
survival
 at
 6
 mM.
 At
 high
 cell
 density
 there
 was
 no
 decrease
 in
 cell
 viability
 up
 to
 6
 mM
 
(Figure
 3.4).
 These
 results
 indicated
 that
 adding
 DMSO
 to
 our
 treatments
 were
 not
 having
 
an
 effect
 on
 cell
 viability,
 but
 diluting
 POH
 in
 DMSO
 did
 result
 in
 cell
 toxicity.
 
 

 

 
0
 
20
 
40
 
60
 
80
 
100
 
120
 
140
 
0
  Hom
 Med
  1
  2
  4
  6
 
Cell
 Viability
 (%)
 
Concentration
 of
 homPOH
 (mM)
 
MDCK
 cells:
 homogenized
 POH
 
10k
 cells
 (old)
  10k
 cells
 
Figure
 3.3
 Cell
 viability
 of
 MDCK
 cells
 treated
 with
 increasing
 concentrations
 of
 
homogenized
 POH
 for
 24hrs.
 Cells
 were
 plated
 at
 a
 density
 of
 10k.
 Old
 
represents
 POH
 that
 was
 homogenized
 a
 few
 weeks
 prior.
 Cell
 viability
 
percentage
 was
 calculated
 using
 the
 untreated
 sample
 as
 the
 divider.
 

  21
 

 

 

 

 
After
 testing
 different
 cell
 densities
 I
 tested
 toxicity
 of
 homPOH
 in
 confluent
 MDCK
 
cells
 at
 increasing
 drug
 concentrations.
 When
 working
 with
 a
 BBB
 model,
 cells
 will
 be
 at
 
maximum
 confluency
 so
 as
 to
 allow
 for
 tight
 junction
 formation
 and
 polarization
 of
 the
 
cells.
 The
 goal
 was
 to
 mimic
 a
 BBB
 model
 for
 drug
 treatment.
 After
 the
 cells
 were
 plated
 
they
 were
 left
 to
 grow
 for
 a
 few
 days
 until
 90%
 confluence
 was
 seen.
 After
 treatment
 with
 
homPOH
 we
 observed
 that
 treatment
 with
 up
 to
 6
 mM
 homPOH
 showed
 little
 toxicity
 in
 
MDCK
 cells
 (Figure
 3.5).
 
 The
 results
 indicated
 that
 homPOH
 can
 be
 used
 at
 higher
 
concentrations
 compared
 to
 POH
 diluted
 in
 DMSO.
 
 
0
 
50
 
100
 
0
  1
  2
  3
  4
  5
  6
  7
 
Cell
 Viability
 
 (%)
 
Concentration
 of
 homPOH
 (mM)
 +
 1%
 DMSO
 
MDCK
 cells:
 homPOH
 plus
 1%
 DMSO
 
10k
 cells
  5k
 cells
 
Figure
 3.4
 Cell
 viability
 of
 MDCK
 cells
 treated
 with
 homogenized
 POH
 plus
 DMSO
 
added
 right
 before
 treatment.
 MTT
 assay
 was
 performed
 after
 cells
 were
 treated
 
with
 increasing
 concentrations
 of
 homPOH
 for
 24hrs.
 DMSO
 at
 1%
 was
 added
 
separately
 to
 homPOH.
 Cells
 were
 plated
 at
 two
 separate
 inputs
 of
 10k
 and
 5k.
 
Cell
 viability
 was
 expressed
 as
 a
 percentage
 using
 the
 untreated
 sample
 as
 the
 
divisor.
 

  22
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.1.3
 Effect
 of
 homogenized
 POH
 on
 cell
 viability
 on
 BBB
 cells
 

 
A
 comparison
 was
 done
 to
 determine
 the
 toxicity
 of
 homogenized
 POH
 on
 the
 three
 
main
 cell
 types
 of
 the
 BBB:
 HBEC,
 pericytes
 and
 astrocytes.
 The
 results
 showed
 that
 all
 
three
 cell
 lines
 displayed
 the
 same
 trends
 with
 increasing
 concentration
 of
 homogenized
 
POH.
 I
 found
 all
 three
 cells
 lines
 showed
 an
 IC50
 of
 approximately
 6
 mM
 of
 homogenized
 
POH
 and
 complete
 cell
 death
 at
 ~13
 mM
 (Figure
 3.6).
 Student
 t
 tests
 showed
 no
 statistical
 
differences
 between
 each
 of
 the
 individual
 BBB
 cell
 types.
 These
 results
 indicated
 that
 all
 of
 
the
 BBB
 cells
 reacted
 similarly
 to
 homPOH.
 This
 also
 showed
 that
 the
 BBB
 cells
 are
 more
 
sensitive
 to
 homPOH
 compared
 to
 MDCK
 cells
 as
 these
 cells
 showed
 no
 cell
 death
 at
 6
 mM
 
homPOH.
 
 
Figure
 3.5
 Affect
 of
 homogenized
 POH
 on
 cell
 viability
 in
 MDCK
 cells
 at
 
increasing
 homPOH
 concentrations.
 MTT
 assay
 of
 confluent
 MDCK
 cells
 
treated
 for
 24
 hours.
 Cell
 viability
 percentage
 was
 calculated
 using
 the
 
untreated
 sample
 as
 the
 divider.
0.000
 
20.000
 
40.000
 
60.000
 
80.000
 
100.000
 
120.000
 
0
  20
  40
  60
  80
  100
 
Cell
 Viability
 (%)
 
Concentration
 of
 homPOH
 (mM)
 
MDCK
 cells:
 homPOH
 

  23
 

 

 

 
The
 next
 consideration
 was
 to
 investigate
 treatments
 at
 shorter
 time
 intervals,
 using
 
the
 same
 concentrations
 but
 up
 to
 one
 hour
 would
 be
 the
 longest
 drug
 treatment
 when
 
working
 with
 the
 BBB
 model
 in
 inserts.
 Results
 from
 this
 study
 this
 showed
 the
 same
 
trends
 but
 indicated
 lower
 toxicities
 with
 higher
 concentrstions.
 After
 a
 24
 hour
 treatment
 
we
 saw
 complete
 cell
 death
 at
 approximately
 13
 mM
 (Figure
 3.6),
 and
 when
 the
 treatment
 
-­‐50
 
0
 
50
 
100
 
150
 
0
  10
  20
  30
  40
  50
  60
 
Cell
 Viability
 %
 
homPOH
 Concentrations
 (mM)
 
BBB
 cells:
 homPOH
 
Brain
 endothelial
 cells
 
Pericytes
 
Astrocytes
 
0
 
20
 
40
 
60
 
80
 
100
 
120
 
140
 
0
  5
  10
  15
  20
 
Cell
 Viabilty
 (%)
 
homPOH
 Concentration
 (mM)
 
Figure
 3.6
 Effect
 of
 homogenized
 POH
 on
 cell
 viability
 in
 cells
 that
 make
 up
 the
 blood
 
brain
 barrier.
 All
 cells
 were
 grown
 to
 confluence
 and
 treatments
 were
 done
 for
 24h.
 The
 
top
 graph
 shows
 homPOH
 concentrations
 up
 to
 63
 mM,
 while
 the
 bottom
 graph
 is
 a
 
zoomed
 in
 version
 of
 concentration
 up
 to
 20
 mM.

  24
 
time
 was
 reduced
 we
 saw
 that
 complete
 cell
 death
 occured
 around
 20
 mM
 homPH
 for
 the
 
30
 and
 60
 minutes
 treatment
 times(Figure
 3.7).
 When
 treatment
 lasted
 for
 5
 and
 15
 
minutes,
 complete
 cell
 death
 was
 observed
 at
 homPOH
 concentrations
 over
 30
 mM
 (Figure
 
3.7).
 This
 graph
 was
 important
 because
 I
 determined
 the
 working
 concentration
 I
 will
 use
 
in
 TEER
 experiments
 to
 be
 3.15
 mM.
 At
 this
 concentration
 in
 any
 time
 point
 there
 was
 no
 
indication
 of
 any
 decrease
 in
 cell
 viability.
 These
 results
 indicated
 the
 best
 homPOH
 
concentrations
 for
 use
 in
 follow
 up
 experiments.
 
 
A
 comparison
 was
 also
 done
 with
 mannitol
 treatments
 for
 5,
 15
 and
 60
 minutes.
 
Currently,
 mannitol
 is
 used
 in
 clinic
 to
 open
 the
 BBB.
 So
 we
 wanted
 to
 have
 a
 comparison
 of
 
what
 is
 currently
 being
 used
 to
 our
 new
 drug
 homPOH.
 Mannitol
 showed
 very
 different
 
trends
 on
 cell
 viability.
 Even
 up
 to
 concentrations
 of
 20%
 cell
 viability
 did
 not
 reach
 an
 
IC50
 value(Figure
 3.7).
 
 We
 use
 20%
 mannitol
 as
 that
 is
 what
 is
 currently
 administered
 in
 
the
 clinic.
 The
 molar
 concentration
 of
 20%
 mannitol
 is
 1M.
 The
 treatment
 periods
 of
 5
 and
 
15
 minutes
 do
 not
 show
 any
 significant
 difference
 but
 a
 1
 hour
 treatment
 shows
 a
 
statistical
 difference
 and
 decline
 in
 cell
 viability.
 Viability
 dropped
 to
 approximately
 80%
 
after
 this
 treatment
 time.
 This
 indicated
 that
 mannitol
 has
 very
 low
 toxicity
 to
 cells
 but
 was
 
likely
 not
 useful
 when
 we
 need
 to
 open
 the
 BBB
 to
 allow
 entry
 of
 large
 molecules.
 

   
 

 

  25
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.2
 POH
 decreases
 trans
 endothelial
 resistance
 (TEER)
 
3.2.1
 Purpose
 of
 Study
 

  After
 establishing
 that
 homPOH
 showed
 lower
 cell
 toxicities
 at
 higher
 drug
 
concentrations,
 the
 next
 step
 was
 to
 determine
 if
 homogenized
 POH
 had
 an
 effect
 on
 
cellular
 resistance
 at
 non-­‐toxic
 levels.
 The
 MDCK
 cells
 were
 used
 as
 an
 initial
 test
 for
 
barrier
 resistance
 then
 we
 switched
 to
 using
 the
 more
 physiological
 BBB
 model
 with
 
HBECs,
 ACs
 and
 PCs.
 
0
 
50
 
100
 
150
 
0
  5
  10
  15
  20
 
Cell
 Viability
 (%)
 
Mannitol
 (%)
 
BBB
 cells:
 Mannitol
 
5min
 
  15min
 
60min
 
Figure
 3.7
 Cell
 viability
 of
 HBECs
 treated
 with
 homPOH
 or
 mannitol
 for
 different
 time
 
intervals.
 Cell
 viability
 percentage
 was
 calculated
 by
 using
 the
 untreated
 sample
 as
 
the
 divisor.
 Cells
 were
 treated
 at
 5,
 15,
 30
 or
 60
 minutes.
 *p-­‐value
 <
 0.05;
 **p-­‐value
 <
 
0.001.
 
-­‐50
 
0
 
50
 
100
 
150
 
0
  10
  20
  30
  40
  50
  60
 
Cell
 Viability
 (%)
 
homPOH
 Concentration
 (mM)
 
BBB
 cells:
 homPOH
 
5min
 
  15min
 
30min
  60min
 

 
ns

 
ns
**

 
 
 
 
 
 *
 
 
 
 
 *

  26
 
3.2.2
 POH
 in
 DMSO
 lowers
 TEER
 in
 MDCK
 

  The
 first
 step
 was
 to
 look
 at
 POH
 diluted
 in
 DMSO
 as
 a
 positive
 control
 in
 MDCK
 
cells.
 Previous
 data
 showed
 that
 POH
 in
 DMSO
 lowered
 resistance
 in
 MDCK
 cells
 (Figure
 
3.8).
 
 After
 10
 minutes
 of
 treatment
 there
 was
 a
 drastic
 drop
 from
 1000
 to
 500
 ohmsŸcm
2
.
 
The
 next
 drop
 was
 seen
 at
 120
 minutes,
 where
 we
 see
 almost
 a
 complete
 loss
 in
 resistance.
 
 

 

 
Using
 these
 data
 I
 ran
 TEER
 using
 1
 mM
 POH
 in
 DMSO
 as
 a
 positive
 control.
 I
 used
 1
 
mM
 because
 my
 MTTs
 revealed
 2mM
 showed
 toxicity
 to
 MDCK
 cells
 (Figure
 3.2).
 The
 
percent
 of
 DMSO
 used
 was
 0.3%.
 DMSO
 alone
 showed
 no
 change
 to
 resistance
 (data
 not
 
shown).
 
 With
 1
 mM
 POH
 in
 DMSO
 treatment,
 there
 was
 a
 significant
 drop
 in
 resistance
 at
 
1hr
 (Figure
 3.9).
 Resistance
 dropped
 from
 1500
 to
 under
 200
 ohmsŸcm
2

 with
 1
 mM
 POH.
 
The
 p-­‐values
 for
 1
 mM
 were
 less
 than
 0.001
 indicating
 a
 highly
 significant
 drop
 in
 
Figure
 3.8
 Effect
 of
 POH
 in
 DMSO
 on
 TEER
 for
 MDCK
 cells.
 NEO
 100
 (POH)
 was
 used
 
at
 a
 concentration
 of
 2mM.
 Time
 point
 measurements
 were
 done
 at
 0,
 10,
 20,
 40,
 60,
 
80,
 120
 and
 180
 minutes.
 The
 resistance
 was
 measured
 in
 OhmŸcm
2
 
.
 
Figure
 by
 Nagore
 Marin
 Ramos
 

  27
 
resistance
 from
 the
 untreated
 to
 1
 hour
 after
 treatment
 and
 the
 0.5
 mM
 treatment
 had
 p-­‐
values
 less
 than
 0.05,
 also
 indicating
 a
 significant
 difference.
 After
 3
 hours
 the
 drug
 was
 
removed
 to
 see
 if
 the
 cells
 would
 recover
 and
 increase
 resistance.
 There
 was
 no
 significant
 
recovery
 of
 resistance
 for
 the
 0.5
 mM
 or
 the
 1
 mM
 drug
 treatments.
 This
 could
 have
 been
 
due
 to
 allowing
 treatment
 for
 up
 to
 three
 hours.
 In
 later
 tests
 we
 use
 a
 shorter
 treatment
 
time.
 

 

 

 
0
 
200
 
400
 
600
 
800
 
1000
 
1200
 
1400
 
1600
 
1800
 
MDCK
 cells:
 POH
 in
 DMSO
 
1
 mM
 POH
 in
 DMSO
 
0.5
 mM
 POH
 in
 
DMSO
 
**
 
*
 
ns
 
ns
 
Figure 3.9 Disruption of the BBB in MDCK cells. TEER procedure with resistance
measured before and after treatment with POH in DMSO at two concentrations of 1 mM
and 0.5 mM. Recovery was tested for after 3 hours. *p-value < 0.05; **p-value < 0.001.
Resistance
 OhmsŸcm
2

 

  28
 
The
 next
 goal
 was
 to
 use
 homPOH
 on
 MDCK
 cells.
 When
 looking
 at
 homPOH
 in
 
MDCK
 cells
 we
 saw
 no
 drop
 in
 resistance
 after
 2
 hours,
 with
 concentrations
 up
 to
 4
 mM
 
(Figure
 3.10).
 There
 was
 no
 significant
 difference
 between
 any
 of
 the
 treatments.
 One
 issue
 
with
 this
 experiment
 was
 that
 the
 POH
 was
 homogenized
 in
 PBS
 instead
 of
 cell
 culture
 
medium.
 We
 had
 just
 started
 working
 with
 the
 homogenization
 process
 and
 we
 were
 
testing
 different
 formulation
 approaches.
 We
 also
 assayed
 homogenates
 passed
 through
 
the
 machine
 multiple
 times
 to
 determine
 the
 optimum
 number
 of
 homogenization
 cycles.
 
Results
 showed
 that
 running
 the
 sample
 through
 10
 times
 sufficiently
 homogenized
 the
 
POH
 and
 vehicle;
 theses
 conditions
 will
 be
 used
 later
 on.
 We
 later
 discovered
 that
 
homogenizing
 in
 cell
 culture
 medium
 was
 better
 as
 we
 were
 able
 to
 qualitatively
 visualize
 
the
 mixture.
 Another
 hypothesis
 was
 that
 MDCK
 cells
 did
 not
 realistically
 represent
 the
 
BBB
 and
 are
 not
 an
 applicable
 model.
 MDCK
 are
 epithelial
 while
 BECs
 are
 endothelial,
 
which
 could
 be
 responsible
 for
 the
 observed
 results
 in
 Figure
 3.10.
 
0
 
500
 
1000
 
1500
 
2000
 
2500
 
3000
 
Before
 Treatment
 
  1h
  2h
 
Resistance
 OhmsŸcm
2
 
After
 Treatment
 
MDCK
 cells:
 homPOH
 
1
 mM
 homPOH
 
 
2
 mM
 homPOH
 
 
4
 mM
 homPOH
 
Figure
 3.10
 Disruption
 of
 resistance
 in
 MDCK
 cells.
 TEER
 procedure
 with
 resistance
 
measured
 before
 and
 after
 treatment
 with
 homogenized
 POH
 at
 1
 mM,
 2
 mM
 and
 4
 
mM.
 There
 was
 no
 significant
 drop
 in
 resistance.

  29
 
3.2.3
 Homogenized
 POH
 lowers
 TEER
 in
 BBB
 cells
 
The
 TEER
 experiment
 was
 repeated
 using
 the
 three
 co
 cultured
 BBB
 cell
 types.
 
Homogenized
 POH
 at
 3.2
 mM
 and
 1
 mM
 POH
 in
 DMSO
 were
 used
 for
 a
 comparison.
 The
 
first
 significant
 drop
 in
 resistance
 values
 were
 seen
 at
 45
 minutes
 for
 1
 mM
 POH
 in
 DMSO
 
and
 60
 minutes
 for
 3.2
 mM
 homPOH
 (Figure
 3.11).
 The
 p-­‐values
 for
 each
 treatment
 were
 
below
 0.05
 starting
 at
 these
 two
 time
 points.
 The
 p-­‐values
 were
 obtained
 by
 doing
 a
 
Student,
 paired
 t-­‐test
 between
 the
 untreated
 and
 the
 individual
 time
 points.
 The
 interesting
 
result
 that
 was
 not
 expected
 was
 that
 at
 each
 of
 the
 45
 and
 60
 min
 time
 points
 there
 was
 
not
 a
 significant
 difference
 in
 values
 compared
 to
 the
 control
 samples.
 
 The
 p-­‐values
 for
 
these
 tests
 were
 determined
 using
 a
 Student,
 independent
 t-­‐test.
 These
 results
 end
 up
 
being
 inconclusive.
 A
 big
 problem
 that
 may
 have
 occurred
 during
 this
 experiment
 was
 the
 
cell
 inserts
 grew
 longer
 than
 the
 standard
 8
 days.
 The
 barrier
 became
 leaky
 as
 evident
 from
 
medium
 flowing
 slowly
 from
 top
 to
 bottom.
 This
 could
 have
 indicated
 a
 problem
 with
 this
 
test.
 

 

 

 

 

 

 

 

  30
 

 

 

 

 

 

 

 

 

 

 

 
The
 TEER
 experiment
 was
 repeated
 but
 also
 including
 a
 recovery
 step
 after
 drug
 
removal.
 We
 observed
 a
 significant
 drop
 in
 resistance
 compared
 to
 the
 untreated
 cells
 at
 45
 
min
 for
 both
 the
 1
 mM
 POH
 in
 DMSO
 and
 3.2
 mM
 homPOH
 treatments
 (Figure
 3.12).
 We
 
saw
 that
 resistance
 in
 cells
 treated
 with
 homPOH
 started
 above
 40
 ohmsŸcm
2

 and
 after
 
treatment
 for
 one
 hour,
 the
 resistance
 dropped
 to
 below
 10
 ohmsŸcm
2
.
 All
 p-­‐values
 were
 
calculated
 using
 Student
 t-­‐test.
 We
 also
 saw
 that
 the
 treated
 samples
 were
 statistically
 
different
 from
 the
 untreated
 samples
 indicating
 a
 significance
 to
 the
 drop
 of
 resistance.
 
Figure
 3.11
 Disruption
 of
 resistance
 in
 BBB
 model.
 TEER
 procedure
 with
 resistance
 
measure
 before
 and
 after
 treatment
 of
 POH
 in
 DMSO
 at
 1
 mM
 and
 homPOH
 at
 3.2
 
mM.
 The
 3.2
 mM
 concentration
 was
 obtained
 from
 MTT
 results
 Measurements
 were
 
done
 before
 treatment
 and
 in
 time
 intervals
 of
 5,
 10,
 15,
 30
 45
 and
 60
 min
 after
 
treatment.
 There
 was
 an
 untreated
 measurement
 at
 each
 time
 interval
 which
 is
 
depicted.
 *p-­‐value
 <
 0.05;
 **p-­‐value
 <
 0.001.
 
 
0
 
5
 
10
 
15
 
20
 
25
 
30
 
35
 
40
 
45
 
Before
 
treatment
 
5
 min
  10
 min
  15
 min
  30
 min
  45
 min
  60
 min
 
After
 Treatment
 
BBB
 cells:
 HPOH
 
UT
 
3.2
 mM
 POH
 Homogenized
 
1mM
 POH
 in
 DMSO
 
*
 
*
 
ns
 
ns
 
Resistance
 OhmsŸcm
2

 

  31
 
Two
 hours
 after
 drug
 removal
 we
 also
 observed
 a
 significant
 difference
 in
 resistance
 and
 
recovery
 of
 the
 3.2
 mM
 treatments.
 The
 1
 mM
 homPOH
 in
 DMSO
 treatments
 did
 not
 
indicate
 a
 significant
 recovery.
 This
 correlated
 with
 findings
 from
 Figure
 3.9
 that
 MDCK
 
cells
 do
 not
 show
 significant
 recovery
 after
 treatment
 as
 well.
 The
 BBB
 cells
 may
 have
 the
 
same
 trend
 indicating
 another
 reason
 why
 POH
 in
 DMSO
 may
 not
 be
 the
 best
 option.
 The
 
last
 thing
 to
 note
 is
 that
 at
 all
 recovery
 stages
 the
 untreated
 and
 treated
 samples
 were
 not
 
significantly
 different.
 At
 the
 2
 hour
 and
 19
 hour
 recoveries
 we
 can
 see
 the
 untreated
 
samples
 and
 treatment
 samples
 were
 all
 near
 the
 same
 levels
 but
 the
 1
 mM
 POH
 in
 DMSO
 
never
 reached
 a
 full
 recovery.
 By
 48
 hours
 the
 resistance
 had
 substantially
 dropped
 in
 
treated
 and
 untreated
 samples.
 The
 thought
 for
 this
 occurring
 is
 that
 these
 inserts
 were
 
taken
 out
 multiple
 times
 to
 measure
 resistance
 and
 an
 electrode
 was
 inserted
 into
 the
 well
 
at
 each
 time
 point.
 The
 physical
 harshness
 of
 this
 on
 the
 cells
 could
 be
 physically
 creating
 a
 
break
 in
 the
 barrier
 over
 time.
 These
 results
 still
 indicated
 that
 with
 3
 mM
 homPOH
 there
 
was
 a
 significant
 drop
 in
 resistance
 with
 treatment
 and
 recovery
 of
 resistance
 after
 
treatment.
 The
 1
 mM
 POH
 in
 DMSO
 showed
 a
 significant
 drop
 in
 resistance
 but
 not
 a
 
significant
 recovery.
 

  32
 

 

 

 
3.3
 Homogenized
 POH
 opens
 the
 BBB
 in
 mice
 
3.3.1
 Purpose
 of
 Study
 

  The
 purpose
 was
 to
 use
 a
 mouse
 model
 to
 show
 penetrance
 of
 the
 blood
 brain
 
barrier
 with
 homogenized
 POH.
 This
 was
 done
 so
 as
 to
 determine
 if
 a
 larger
 molecule,
 like
 
Evans
 blue
 albumin,
 was
 able
 to
 cross
 the
 BBB
 into
 the
 brain.
 
3.3.2
 Homogenized
 POH
 allows
 EB
 into
 brain
 

  Mice
 were
 first
 injected
 with
 Evans
 blue
 (EB)
 followed
 by
 injection
 of
 intracardiac
 
POH
 in
 different
 vehicles.
 Intracardiac
 injection
 needed
 to
 be
 done
 so
 that
 POH
 reached
 the
 
Figure
 3.12
 Disruption
 of
 resistance
 in
 BBB
 cells.
 TEER
 procedure
 with
 resistance
 
measure
 before
 and
 after
 treatment
 of
 homogenized
 POH.
 Recovery
 of
 cells
 was
 
measured
 after
 removal
 of
 drug.
 Cells
 were
 treated
 and
 measurements
 were
 done
 at
 
5,
 15,
 30,
 45,
 and
 60minute
 intervals.
 There
 was
 an
 untreated
 measurement
 at
 each
 
time
 interval
 which
 is
 depicted
 .
 
 *p-­‐value
 <
 0.05;
 **p-­‐value
 <
 0.001.
 
0
 
10
 
20
 
30
 
40
 
50
 
60
 
After
 treatment
 
BBB
 cells:
 HPOH
 
UT
  3.2
 mM
 homPOH
  1mM
 POH
 in
 DMSO
 
*
*
*
ns
ns
ns
ns
ns
*
*
 
Resistance
 OhmsŸcm
2

 

  33
 
brain
 without
 being
 metabolized
 by
 the
 liver.
 After
 treatments
 and
 perfusions
 we
 saw
 that
 
with
 homPOH
 treatment,
 there
 was
 presence
 of
 EB
 in
 the
 brain
 compared
 to
 the
 controls
 
(Figure
 3.13).
 
 Blocks
 A,
 B
 and
 C
 represent
 three
 separate
 negative
 controls.
 Column
 A
 
represents
 a
 normal
 untreated
 mouse,
 column
 B
 shows
 a
 negative
 control
 with
 
homogenized
 medium
 and
 EB
 and
 column
 C
 shows
 only
 2%
 EB.
 In
 each
 of
 the
 negative
 
controls
 we
 see
 no
 presence
 of
 EB
 in
 the
 brain.
 Column
 D
 and
 E
 represent
 homPOH
 at
 two
 
different
 concentrations
 of
 1%
 and
 3%;
 we
 can
 see
 presence
 of
 EB
 in
 the
 brain
 at
 both
 of
 
these
 concentrations.
 
 Column
 F
 represents
 1%
 POH
 in
 DMSO
 and
 column
 G
 represents
 1%
 
POH
 in
 saline.
 Both
 columns
 F
 and
 G
 also
 confirm
 that
 EB
 was
 in
 the
 brain.
 The
 presence
 of
 
EB
 indicated
 that
 there
 was
 a
 break
 in
 the
 BBB
 to
 allow
 EB
 to
 cross.
 The
 POH
 in
 saline
 was
 
a
 technique
 used
 as
 an
 alternative
 to
 injecting
 mice
 with
 DMSO
 as
 to
 avoid
 the
 use
 of
 DMSO
 
if
 possible.
 The
 issue
 with
 POH
 in
 PBS
 is
 that
 the
 two
 are
 not
 miscible.
 This
 creates
 a
 bolus
 
of
 drug
 that
 was
 injected
 in
 the
 mouse,
 which
 could
 have
 an
 effect
 on
 the
 brain
 and
 other
 
organs.
 The
 use
 of
 homPOH
 showed
 a
 positive
 result
 and
 is
 a
 good
 indicator
 that
 this
 future
 
technique
 may
 be
 used.
 

 

 

 

 

 

 

 

  34
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure
 3.13
 Effect
 of
 POH
 opening
 the
 BBB
 in
 different
 vehicles
 with
 presence
 of
 Evans
 blue.
 
All
 mice
 were
 perfused
 before
 dissection.
 The
 kidneys
 shown
 are
 positive
 controls
 for
 each
 
respective
 mouse
 to
 show
 presence
 of
 Evans
 Blue.
 Column
 A,
 B
 and
 C
 are
 negative
 controls.
 
POH
 in
 saline
 was
 used
 as
 a
 positive
 control
 as
 previous
 experimental
 results
 have
 shown
 
POH
 in
 saline.
 

 

 

 

   
   
   
 
1%
 
homPOH
 +
 
2%
 EB
3%
 homPOH
 
+
 2%
 EB
1%
 POH
 in
 
DMSO
 
+
 2%
 EB
1%
 POH
 in
 
saline

 +
 2%
 EB
D E F G
Normal
 
Brain
And
 Kidney

 
Homogenized
 
medium
 only
 +
 
2%
 EB
2%
 EB
 
only
A B C

 

 

  35
 
3.3.3
 Homogenized
 NEO
 100
 increases
 levels
 of
 EB
 in
 the
 brain
 

  Another
 in
 vivo
 experiment
 looked
 at
 the
 amount
 of
 EB
 that
 was
 able
 to
 get
 into
 the
 
brain
 quantitated
 by
 tissue
 homogenization
 and
 measuring
 the
 absorbance
 of
 EB
 in
 the
 
positive
 control
 brains
 compared
 to
 the
 negative
 controls.
 I
 compared
 absorbance
 values
 to
 
a
 standard
 curve
 of
 EB
 dilutions
 to
 calculate
 the
 actual
 micrograms
 of
 EB
 in
 each
 tissue.
 The
 
final
 microgram
 amounts
 were
 calculated
 by
 dividing
 the
 amount
 in
 the
 brain
 by
 the
 
amount
 in
 the
 kidney,
 to
 use
 the
 kidney
 as
 the
 reference
 control.
 Results
 indicated
 that
 
mice
 treated
 with
 1%
 homPOH
 had
 more
 EB
 in
 the
 brain
 compared
 to
 mouse
 with
 no
 
treatment
 (Figure
 3.14).
 There
 was
 a
 significant
 difference
 in
 μg
 amounts
 of
 EB
 in
 the
 brain
 
compared
 to
 that
 in
 the
 untreated.
 There
 was
 also
 no
 significant
 difference
 in
 amount
 of
 EB
 
between
 medium
 only
 treatment
 and
 untreated.
 

 

 

 
0
 
0.05
 
0.1
 
0.15
 
0.2
 
0.25
 
0.3
 
0.35
 
0.4
 
0.45
 
No
 treatment
  2%
 EB
 only
  1%
 homPOH
 homogenized
 
medium
 only
 
Ratio
 of
 ug
 EB
 in
 brain/
 
 
 
 
 
 
 EB
 in
 
kidney
 
Amount
 of
 EB
 in
 the
 Brain
 
Figure
 3.14:
 Amount
 of
 Evans
 blue
 in
 the
 brain
 of
 a
 mouse
 after
 treatments.
 There
 were
 
three
 negative
 control
 of
 homogenized
 medium
 only,
 2%
 EB
 only
 and
 untreated
 mouse.
 
Treatment
 was
 1%
 homPOH.
 Values
 were
 calculated
 by
 dividing
 μg
 EB
 levels
 in
 the
 brain
 
by
 μg
 levels
 in
 the
 kidney.
 *p-­‐value
 <
 0.05;
 **p-­‐value
 <
 0.001.
 
*
ns μg
 

  36
 
3.4
 Homogenized
 POH
 shows
 a
 change
 in
 claudin-­‐5
 expression
 
 
3.4.1
 Purpose
 of
 Study
 

  The
 purpose
 of
 this
 study
 was
 to
 determine
 if
 claudin-­‐5
 expression,
 a
 tight
 junction
 
marker,
 was
 affected
 by
 addition
 of
 homPOH.
 The
 idea
 was
 to
 determine
 a
 possible
 
molecular
 mechanism
 for
 the
 breakdown
 of
 the
 BBB.
 
 
3.4.2
 Treatment
 with
 Homogenized
 POH
 shows
 a
 change
 in
 claudin-­‐5
 expression
 in
 HBEC
 and
 
in
 mouse
 brain
 tissue
 samples
 

  The
 first
 step
 was
 to
 measure
 claudin-­‐5
 expression
 in
 HBEC
 cells
 in
 vitro.
 Results
 for
 
this
 indicated
 that
 expression
 of
 claudin-­‐5
 in
 homPOH
 treated
 cells
 had
 decreased
 (Figure
 
3.15).
 Compared
 to
 the
 untreated
 samples,
 it
 appeared
 that
 claudin-­‐5
 expression
 in
 both
 
1mM
 POH
 in
 DMSO
 and
 1mM
 homPOH
 had
 decreased.
 Diamidino
 phenylindole
 (DAPI)
 was
 
used
 for
 nuclear
 staining
 as
 it
 binds
 to
 DNA.
 When
 comparing
 DAPI
 nuclear
 staining
 to
 
claudin-­‐5
 as
 a
 ratio,
 the
 expression
 of
 claudin-­‐5
 appears
 to
 decrease
 with
 treatment.
 One
 
problem
 with
 this
 experiment
 is
 the
 lower
 numbers
 of
 nuclei
 in
 the
 untreated
 samples.
 This
 
could
 have
 been
 due
 to
 the
 percent
 of
 paraformaldehyde
 used.
 I
 used
 1%
 when
 a
 4%
 
solution
 would
 have
 been
 a
 better
 solution,
 as
 it
 would
 have
 made
 the
 cells
 more
 
permeable
 to
 DAPI.
 
 

  37
 

 

   
 

   
 

 

 

 

 

 

 

 

 
The
 next
 step
 was
 to
 confirm
 claudin-­‐5
 expression
 in
 HBEC
 cells
 after
 treatment
 
with
 homPOH.
 To
 confirm
 claudin-­‐5
 expression
 I
 ran
 a
 western
 blot
 using
 3.15
 mM
 
homPOH
 and
 treated
 cells
 for
 different
 times.
 Claudin
 5
 expression
 began
 to
 decrease
 
starting
 at
 15
 minutes
 (Figure
 3.16).
 By
 45
 and
 60
 minute
 treatment
 times
 we
 saw
 a
 
substantial
 decrease
 in
 expression.
 This
 coincided
 with
 data
 from
 TEER
 showing
 a
 
significant
 drop
 in
 resistance
 at
 45
 and
 60
 minutes
 (Figure
 3.12).
 The
 45
 minute
 and
 60
 
minute
 treatment
 times
 represent
 that
 there
 is
 a
 significant
 break
 in
 the
 BBB
 at
 these
 time
 
points.
 

 
1mM
 POH
 in
 
DMSO

 
Untreated

 
1mM
 
homPOH

 

 

 
DAPI Claudin-­‐5 Merge
Figure
 3.15
 Claudin-­‐5
 expression
 in
 HBEC
 cells
 after
 treatment
 for
 1
 hour
 
with
 1
 mM
 POH
 in
 DMSO
 or
 1
 mM
 homPOH.
 DAPI
 is
 used
 for
 nuclear
 
staining.
 All
 images
 were
 taken
 at
 60X.
 

  38
 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Claudin-­‐5
Actin
HBEC
 cells:
 homPOH
 at
 3.15
 mM
 

 
 
 0
 
 
 
 
 
 
 
 5
 
 
 
 
 
 
 15
 
 
 
 
 45
 
 
 
 
 
 60
 
 
 
 
 
 min
Figure
 3.16
 Expression
 of
 claudin-­‐5
 in
 Human
 BEC
 cells
 after
 
treatment
 with
 homPOH
 using
 Western
 Blot
 analysis.
 
Concentration
 of
 homPOH
 was
 the
 same
 for
 each
 treatment
 at
 
3.15
 mM.
 There
 were
 four
 treatments
 for
 5,
 15,
 45
 and
 60
 
minutes.
 Cells
 were
 collected
 at
 the
 end
 of
 each
 time
 point.
 
Actin
 was
 used
 as
 loading
 control.
 
 
 
 

  39
 
Chapter
 4
 –
 Discussion
 

 

 

  Current
 therapies
 for
 brain
 metastasis
 (BM)
 are
 surgical
 resection
 and
 radiation
 
therapy
 with
 some
 therapies
 that
 are
 directed
 towards
 alleviating
 symptoms
 but
 not
 
targeting
 the
 cancer
 itself
 (Dagogo
 et
 al.
 2017).
 The
 inability
 to
 successfully
 penetrate
 the
 
BBB
 is
 limiting
 treatments
 and
 leads
 to
 lower
 survival
 rates
 in
 patients
 that
 end
 up
 with
 
BMs.
 The
 median
 survival
 rate
 for
 BMs
 is
 6
 months
 and
 the
 one-­‐year
 survival
 rate
 is
 8.3%,
 
dropping
 to
 1.4%
 for
 two-­‐year
 survivals
 (Rastogi
 2018).
 
 
In
 this
 study
 we
 aimed
 to
 find
 a
 drug
 that
 could
 open
 the
 BBB
 and
 have
 minimal
 
cytotoxic
 effects.
 The
 idea
 for
 using
 POH
 for
 brain
 tumors
 was
 first
 introduced
 during
 the
 
treatments
 of
 glioblastomas.
 Because
 POH
 is
 seen
 to
 have
 a
 pleiotropic
 effect,
 it
 has
 been
 
tested
 in
 several
 different
 cancer
 types.
 During
 the
 testing
 of
 glioblastoma
 multiformes
 
(GMB),
 results
 indicate
 that
 POH
 is
 able
 to
 enter
 the
 brain
 (Cho
 et
 al.
 2012).
 This
 discovery
 
has
 led
 to
 further
 testing
 of
 POH
 within
 the
 brain
 microenvironment.
 
The
 first
 approach
 to
 using
 POH
 in
 vitro
 involved
 diluting
 it
 in
 DMSO.
 My
 data
 
indicated
 that
 DMSO
 may
 be
 having
 an
 adverse
 side
 effect
 on
 cells
 (Figure
 3.1
 and
 3.2).
 At
 
concentrations
 as
 low
 as
 1.5
 mM,
 we
 began
 to
 see
 a
 drop
 in
 cell
 viability.
 The
 goal
 was
 to
 
stray
 away
 from
 using
 DMSO
 as
 a
 vehicle;
 however
 further
 research
 into
 why
 we
 were
 
seeing
 this
 adverse
 side
 effect
 was
 not
 pursued.
 After
 determining
 DMSO
 was
 not
 a
 
practical
 option,
 we
 tested
 a
 combination
 of
 different
 vehicles
 so
 as
 to
 be
 able
 to
 administer
 
the
 drug
 intravenously.
 Previous
 testing
 found
 that
 POH
 had
 an
 unfavorable
 effect
 in
 
patients
 when
 it
 is
 taken
 orally
 as
 it
 causes
 gastrointestinal
 side
 effects
 (Cho
 et
 al.
 2012).
 

  40
 
After
 testing
 the
 solvent
 capability
 of
 multiple
 vehicles
 we
 came
 up
 with
 the
 idea
 to
 
homogenize
 the
 drug,
 which
 turned
 out
 to
 be
 very
 promising
 and
 could
 effectively
 be
 
administered
 to
 mice.
 Previous
 studies
 by
 our
 lab
 group
 indicated
 that
 injecting
 the
 drug
 
into
 the
 heart,
 intracardiac
 injection,
 gave
 better
 results
 compared
 to
 an
 IV
 tail
 injection
 of
 
the
 drug.
 The
 intracardiac
 injection
 is
 used
 as
 a
 model
 for
 intra-­‐arterial
 injections
 (Chen
 et
 
al.
 2018).
 By
 contract,
 an
 intravenous
 tail
 injection
 led
 to
 the
 drug
 being
 filtered
 through
 
the
 liver
 and
 diluted
 before
 reaching
 the
 brain,
 while
 injecting
 directly
 into
 the
 left
 
ventricle
 of
 the
 heart
 allowed
 a
 higher
 concentration
 of
 drug
 to
 reach
 the
 brain.
 
 
Once
 we
 had
 the
 homogenized
 version
 of
 the
 drug
 we
 were
 able
 to
 find
 
concentrations
 of
 POH
 that
 exhibited
 no
 toxicity
 to
 BBB
 model
 cells.
 Our
 assays
 indicated
 
that
 we
 could
 go
 up
 to
 10
 mM
 of
 homPOH
 for
 1
 hour
 with
 no
 adverse
 effect
 to
 the
 BBB
 cells
 
(Figure
 3.7).
 The
 next
 step
 was
 to
 test
 the
 homogenized
 drug
 on
 a
 BBB
 model
 to
 determine
 
if
 there
 was
 a
 change
 to
 electrical
 current
 resistance.
 We
 arbitrarily
 decided
 to
 use
 3.2
 mM
 
drug
 concentration.
 At
 this
 concentration
 there
 was
 no
 decline
 in
 cell
 viability,
 making
 it
 a
 
good
 candidate.
 Our
 data
 indicated
 that
 homPOH
 at
 3.2
 mM
 was
 able
 to
 disrupt
 the
 barrier
 
and
 lower
 the
 electrical
 resistance
 (Figure
 3.11).
 This
 drop
 was
 concomitant
 with
 a
 break
 
in
 the
 barrier
 and
 opening
 of
 the
 BBB.
 We
 also
 were
 able
 to
 show
 that
 the
 cells
 were
 able
 to
 
substantially,
 fully
 recover,
 once
 the
 drug
 was
 removed.
 These
 results
 indicated
 that
 
whatever
 mechanism
 POH
 has,
 it
 can
 be
 reversed
 once
 the
 drug
 was
 removed.
 The
 
capability
 of
 POH
 to
 be
 reversed
 is
 essential
 to
 treatments
 especially
 when
 it
 comes
 to
 
disrupting
 the
 BBB.
 The
 BBB
 has
 an
 important
 physiological
 function
 in
 the
 brain
 and
 it
 can
 
not
 be
 permanently
 altered.
 These
 results
 are
 important
 as
 they
 indicate
 that
 there
 is
 some
 

  41
 
type
 of
 mechanism
 that
 POH
 has
 that
 is
 lowering
 the
 tightness
 of
 the
 cells
 comprising
 the
 
brain
 barrier,
 but
 once
 the
 drug
 is
 removed
 the
 tightness
 is
 able
 to
 re-­‐establish.
 
 
In
 conjunction
 with
 in
 vitro
 testing,
 in
 vivo
 testing
 was
 an
 integral
 part
 of
 the
 puzzle.
 
Results
 from
 this
 testing
 indicated
 that
 the
 homPOH
 was
 effective
 in
 disrupting
 the
 BBB.
 
We
 saw
 the
 presence
 of
 Evans
 blue
 albumin
 in
 the
 brain
 after
 the
 perfusion
 of
 mice
 
indicating
 that
 the
 BBB
 was
 altered
 by
 homPOH
 allowing
 EB
 to
 enter
 (Figure
 3.12).
 Seeing
 
the
 entry
 of
 EB
 into
 the
 brain
 is
 an
 important
 aspect
 in
 determining
 if
 POH
 is
 able
 to
 open
 
the
 BBB
 enough
 to
 allow
 entry
 of
 large
 molecules.
 Mannitol
 treatment
 does
 not
 allow
 for
 
passage
 of
 large
 molecules,
 so
 POH
 being
 able
 to
 facilitate
 the
 entry
 of
 EB
 can
 be
 a
 big
 step
 
in
 finding
 a
 new
 technique
 for
 opening
 the
 BBB.
 
 
The
 last
 step
 was
 trying
 to
 find
 a
 molecular
 mechanism
 for
 the
 break
 down
 of
 the
 
BBB.
 Claudin-­‐5
 was
 a
 good
 candidate
 to
 be
 tested,
 as
 it
 is
 a
 prominent
 tight
 junction
 protein
 
in
 the
 brain.
 Our
 results
 indicated
 that
 there
 was
 a
 decrease
 in
 claudin-­‐5
 expression
 after
 
treatment
 with
 homPOH
 (Figure
 3.15
 and
 3.16).
 We
 saw
 through
 western
 blot
 analysis
 and
 
IHC
 that
 there
 is
 decreased
 presence
 of
 claudin-­‐5
 after
 treatment
 with
 homPOH.
 With
 the
 
western
 blot
 analysis
 we
 saw
 that
 starting
 at
 15
 minutes
 there
 began
 a
 change
 in
 claudin-­‐5
 
expression.
 A
 repeat
 of
 this
 experiment
 would
 be
 essential
 in
 furthering
 this
 research
 as
 
well
 as
 additional
 information
 showing
 RNA
 expression
 of
 claudin-­‐5.
 
Our
 results
 show
 promise
 in
 the
 ability
 of
 POH
 opening
 the
 BBB
 but
 more
 studies
 
need
 to
 be
 done
 to
 confirm
 that
 homPOH
 is
 the
 best
 treatment
 for
 BMs.
 Testing
 of
 
antibodies
 would
 be
 a
 vital
 piece
 of
 information,
 and
 in
 vitro
 and
 in
 vivo
 analysis
 could
 be
 
done
 to
 determine
 the
 capability
 of
 antibodies
 to
 cross
 the
 BBB.
 Antibody
 treatment
 is
 a
 
current
 prevalent
 focus
 of
 cancer
 care,
 so
 it
 would
 be
 important
 to
 further
 this
 study.
 
 It
 

  42
 
would
 also
 be
 a
 good
 idea
 to
 test
 a
 variety
 of
 different
 sized
 substances
 for
 their
 ability
 to
 
cross
 the
 BBB
 to
 validate
 claims
 that
 POH
 is
 truly
 opening
 the
 BBB.
 
 
Further
 investigation
 would
 also
 need
 to
 go
 into
 the
 mechanism
 for
 why
 POH
 is
 disrupting
 
the
 BBB.
 Finding
 the
 molecular
 mechanism
 of
 how
 POH
 is
 altering
 endothelial
 cells
 and
 all
 
other
 aspects
 of
 the
 BBB
 is
 important
 to
 understanding
 long
 term
 consequences
 of
 opening
 
the
 BBB.
 Additional
 knowledge
 can
 lead
 to
 future
 treatments
 of
 patients
 with
 BMs
 and
 a
 
possibility
 of
 longer
 life
 expectancies.
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  43
 
References
 

 

 

 
Amsbaugh,
 M.J.,
 and
 Kim,
 C.S.
 (2020).
 Cancer,
 Brain
 Metastasis.
 In
 StatPearls,
 (Treasure
 
Island
 (FL):
 StatPearls
 Publishing),
 p.
 

 
Anatomy
 and
 Physiology
 of
 the
 Blood-­‐Brain
 Barrier.
 Semin
 Cell
 Dev
 Biol
 38,
 2–6.
 

 
Bauer,
 H.-­‐C.,
 Krizbai,
 I.A.,
 Bauer,
 H.,
 and
 Traweger,
 A.
 (2014).
 “You
 Shall
 Not
 Pass”—tight
 
junctions
 of
 the
 blood
 brain
 barrier.
 Front
 Neurosci
 8.
 

 
Boekhout,
 A.H.,
 Beijnen,
 J.H.,
 and
 Schellens,
 J.H.M.
 (2011).
 Trastuzumab.
 Oncologist
 16,
 
800–810.
 

 
Brown,
 R.C.,
 Egleton,
 R.D.,
 and
 Davis,
 T.P.
 (2004).
 Mannitol
 opening
 of
 the
 blood–brain
 
barrier:
 regional
 variation
 in
 the
 permeability
 of
 sucrose,
 but
 not
 86Rb+
 or
 albumin.
 
Brain
 Research
 1014,
 221–227.
 

 
Cabezas,
 R.,
 Ávila,
 M.,
 Gonzalez,
 J.,
 El-­‐Bachá,
 R.S.,
 Báez,
 E.,
 García-­‐Segura,
 L.M.,
 Jurado
 
Coronel,
 J.C.,
 Capani,
 F.,
 Cardona-­‐Gomez,
 G.P.,
 and
 Barreto,
 G.E.
 (2014).
 Astrocytic
 
modulation
 of
 blood
 brain
 barrier:
 perspectives
 on
 Parkinson’s
 disease.
 Front
 Cell
 
Neurosci
 8.
 

 
Coronel,
 J.C.,
 Capani,
 F.,
 Cardona-­‐Gomez,
 G.P.,
 and
 Barreto,
 G.E.
 (2014).
 Astrocytic
 
modulation
 of
 blood
 brain
 barrier:
 perspectives
 on
 Parkinson’s
 disease.
 Front
 Cell
 
Neurosci
 8.
 

 
Capriotti,
 K.,
 and
 Capriotti,
 J.A.
 (2012).
 Dimethyl
 Sulfoxide.
 J
 Clin
 Aesthet
 Dermatol
 5,
 24–
26.
 

 
Chen,
 T.C.,
 Cho,
 H.-­‐Y.,
 Wang,
 W.,
 Nguyen,
 J.,
 Jhaveri,
 N.,
 Rosenstein-­‐Sisson,
 R.,
 Hofman,
 F.M.,
 
and
 Schönthal,
 A.H.
 (2015).
 A
 novel
 temozolomide
 analog,
 NEO212,
 with
 enhanced
 
activity
 against
 MGMT-­‐positive
 melanoma
 in
 vitro
 and
 in
 vivo.
 Cancer
 Lett.
 358,
 
144–151.
 

 
Chen,
 T.,
 Wang,
 W.,
 Hofman,
 F.,
 and
 Schonthal,
 A.
 (2018).
 CADD-­‐56.
 INTRA-­‐ARTERIAL
 
NEO100
 TRANSIENTLY
 OPENS
 THE
 BLOOD
 BRAIN
 BARRIER.
 Neuro
 Oncol
 20,
 
vi283.
 

 
Chen,
 T.C.,
 da
 Fonseca,
 C.O.,
 and
 Schönthal,
 A.H.
 (2018).
 Intranasal
 Perillyl
 Alcohol
 for
 
Glioma
 Therapy:
 Molecular
 Mechanisms
 and
 Clinical
 Development.
 Int
 J
 Mol
 Sci
 19.
 

 

  44
 
Chen,
 T.C.,
 Fonseca,
 C.O.D.,
 and
 Schönthal,
 A.H.
 (2015).
 Preclinical
 development
 and
 clinical
 
use
 of
 perillyl
 alcohol
 for
 chemoprevention
 and
 cancer
 therapy.
 Am
 J
 Cancer
 Res
 5,
 
1580–1593.
 

 
Cho,
 H.-­‐Y.,
 Wang,
 W.,
 Jhaveri,
 N.,
 Torres,
 S.,
 Tseng,
 J.,
 Leong,
 M.N.,
 Lee,
 D.J.,
 Goldkorn,
 A.,
 Xu,
 
T.,
 Petasis,
 N.A.,
 et
 al.
 (2012).
 Perillyl
 alcohol
 for
 the
 treatment
 of
 temozolomide-­‐
resistant
 gliomas.
 Mol.
 Cancer
 Ther.
 11,
 2462–2472.
 

 
Dagogo-­‐Jack,
 I.,
 Gill,
 C.M.,
 Cahill,
 D.P.,
 Santagata,
 S.,
 and
 Brastianos,
 P.K.
 (2017).
 Treatment
 
of
 brain
 metastases
 in
 the
 modern
 genomic
 era.
 Pharmacology
 &
 Therapeutics
 170,
 
64–72.
 

 
Daneman,
 R.,
 and
 Prat,
 A.
 (2015).
 The
 Blood–Brain
 Barrier.
 Cold
 Spring
 Harb
 Perspect
 Biol
 
7.
 Serlin,
 Y.,
 Shelef,
 I.,
 Knyazer,
 B.,
 and
 Friedman,
 A.
 (2015).
 
 

 
Fernandes,
 J.,
 Fonseca,
 C.,
 Teixeira,
 A.,
 and
 Gattass,
 C.
 (2005).
 Perillyl
 alcohol
 induces
 
apoptosis
 in
 human
 glioblastoma
 multiforme
 cells.
 Oncology
 Reports
 13,
 943–947.
 

 
Neearti,
 Prasad
 &
 Mohammada,
 Rokjahabegam
 &
 Bangarua,
 Raju
 &
 Devde,
 Raju
 &
 R,
 Jagat.
 
(2012).
 The
 effects
 of
 verapamil,
 curcumin,
 and
 capsaicin
 pretreatments
 on
 the
 BBB
 
uptake
 clearance
 of
 digoxin
 in
 rats.
 Journal
 of
 Pharmacy
 Research.
 5.
 2126-­‐2133.
 

 
Ostrom,
 Q.T.,
 Wright,
 C.H.,
 and
 Barnholtz-­‐Sloan,
 J.S.
 (2018).
 Chapter
 2
 -­‐
 Brain
 metastases:
 
epidemiology.
 In
 Handbook
 of
 Clinical
 Neurology,
 D.
 Schiff,
 and
 M.J.
 van
 den
 Bent,
 
eds.
 (Elsevier),
 pp.
 27–42.
 

 
Rapoport,
 S.I.
 (2000).
 Osmotic
 opening
 of
 the
 blood-­‐brain
 barrier:
 principles,
 mechanism,
 
and
 therapeutic
 applications.
 Cell.
 Mol.
 Neurobiol.
 20,
 217–230.
 

 
Rastogi,
 K.,
 Bhaskar,
 S.,
 Gupta,
 S.,
 Jain,
 S.,
 Singh,
 D.,
 and
 Kumar,
 P.
 (2018).
 Palliation
 of
 Brain
 
Metastases:
 Analysis
 of
 Prognostic
 Factors
 Affecting
 Overall
 Survival.
 Indian
 J
 Palliat
 
Care
 24,
 308–312.
 

 
Serlin,
 Y.,
 Shelef,
 I.,
 Knyazer,
 B.,
 and
 Friedman,
 A.
 (2015).
 Anatomy
 and
 Physiology
 of
 the
 
Blood-­‐Brain
 Barrier.
 Semin
 Cell
 Dev
 Biol
 38,
 2–6.
 

 
Tenny,
 S.,
 Patel,
 R.,
 and
 Thorell,
 W.
 (2020).
 Mannitol.
 In
 StatPearls,
 (Treasure
 Island
 (FL):
 
StatPearls
 Publishing),
 p.
 

 
Textbook
 of
 Neuro-­‐Oncology
 (2005)
 (Elsevier).
 

 
Venur,
 V.A.,
 and
 Leone,
 J.P.
 (2016).
 Targeted
 Therapies
 for
 Brain
 Metastases
 from
 Breast
 
Cancer.
 Int
 J
 Mol
 Sci
 17.
 

 

  45
 
Wang,
 Q.,
 Rager,
 J.D.,
 Weinstein,
 K.,
 Kardos,
 P.S.,
 Dobson,
 G.L.,
 Li,
 J.,
 and
 Hidalgo,
 I.J.
 (2005).
 
Evaluation
 of
 the
 MDR-­‐MDCK
 cell
 line
 as
 a
 permeability
 screen
 for
 the
 blood–brain
 
barrier.
 International
 Journal
 of
 Pharmaceutics
 288,
 349–359. 
Abstract (if available)
Abstract Background: Cancer was the second highest cause of death in the United States in 2017 and 10% to 26% of cancers will metastasize to the brain (Amsbaugh and Kim 2020). The blood brain barrier (BBB) acts as a block to treating these metastatic cancers. An estimated 98% of all therapeutics for metastatic and primary brain cancers are not able to cross the BBB. ❧ Methods: We investigated the effect of homogenized perillyl alcohol (homPOH) on opening the BBB both in vitro and in vivo. POH is a naturally occurring monoterpene that can be isolated from several plants. In vitro experiments used MDCK cells and BBB cell lines as models to mimic the BBB. The BBB cells included human brain endothelial cells, astrocytes and pericytes. These cell lines were treated with homPOH and we measured cell viability and changes in trans endothelial electrical resistance (TEER). In vivo experiments measured the effect of POH in allowing a large molecule of Evans blue albumin to cross the BBB. ❧ Results: Homogenized POH displayed low toxicity in both MDCK cells and BBB cells, resulting in a significant drop in TEER after treatment in these cell lines. In vivo results indicated an increase of Evan blue albumin uptake into the brain through qualitative and quantitative analyses. One key player contributing to the leakiness in the BBB appears to be Claudin-5, a tight junction marker. ❧ Conclusions: Homogenized POH displayed promising results in opening the BBB. The decrease in Claudin-5 expression seems to play a major role in opening of the BBB. We propose that POH should be investigated further toward clinical testing in conjunction with other chemotherapeutics to treat metastatic brain cancers. 
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button
Conceptually similar
Corisol's role in breast-to-brain metastasis
PDF
Corisol's role in breast-to-brain metastasis 
Cytotoxic effect of NEO212, a novel perillyl alcohol-temozolomide conjugate, on canine lymphoma
PDF
Cytotoxic effect of NEO212, a novel perillyl alcohol-temozolomide conjugate, on canine lymphoma 
Neuronal master regulator SRRM4 in breast cancer cells facilitates CNS-acclimation and colonization leading to brain metastasis
PDF
Neuronal master regulator SRRM4 in breast cancer cells facilitates CNS-acclimation and colonization leading to brain metastasis 
The role of serotonergic receptor, HTR2B, on myeloid-derived suppressor cells in the brain metastatic environment
PDF
The role of serotonergic receptor, HTR2B, on myeloid-derived suppressor cells in the brain metastatic environment 
MGMT in emergence of melanoma resistance to temozolomide
PDF
MGMT in emergence of melanoma resistance to temozolomide 
Development of a temozolomide-perillyl alcohol conjugate, NEO212, for the treatment of hematologic malignancies
PDF
Development of a temozolomide-perillyl alcohol conjugate, NEO212, for the treatment of hematologic malignancies 
Effect of NEO212, a novel perillyl alcohol-temozolomide conjugate, on mycosis fungoides and Sézary syndrome
PDF
Effect of NEO212, a novel perillyl alcohol-temozolomide conjugate, on mycosis fungoides and Sézary syndrome 
Reactivation of the Epstein Barr virus lytic cycle in nasopharyngeal carcinoma by NEO212, a novel temozolomide-perillyl alcohol conjugate
PDF
Reactivation of the Epstein Barr virus lytic cycle in nasopharyngeal carcinoma by NEO212, a novel temozolomide-perillyl alcohol conjugate 
Radiosensitization of nasopharyngal carcinoma cells by NEO212, a perillyl alcohol-temozolomide conjugate drug
PDF
Radiosensitization of nasopharyngal carcinoma cells by NEO212, a perillyl alcohol-temozolomide conjugate drug 
Analysis of human brain endothelial cells versus human tumor associated brain endothelial cell tight junction and adherens junction expression differences in glioblastoma multiforme
PDF
Analysis of human brain endothelial cells versus human tumor associated brain endothelial cell tight junction and adherens junction expression differences in glioblastoma multiforme 
Role of a novel transmembrane protein, MTTS1 in mitochondrial regulation and tumor suppression
PDF
Role of a novel transmembrane protein, MTTS1 in mitochondrial regulation and tumor suppression 
Novel approaches of mobilizing human iNKT cells for cancer immunotherapies
PDF
Novel approaches of mobilizing human iNKT cells for cancer immunotherapies 
Understanding the role of APP and DYRK1A in human brain pericytes
PDF
Understanding the role of APP and DYRK1A in human brain pericytes 
Medulloblastoma, the GABA shunt, and possible insight on metastatic capabilities
PDF
Medulloblastoma, the GABA shunt, and possible insight on metastatic capabilities 
Targeting glioma cancer stem cells for the treatment of glioblastoma multiforme
PDF
Targeting glioma cancer stem cells for the treatment of glioblastoma multiforme 
The role of GRP78 in the regulation of apoptosis and prostate cancer progression
PDF
The role of GRP78 in the regulation of apoptosis and prostate cancer progression 
Effect of reductants on sodium chromate-induced  cytotoxicity and morphological transformation to C3H/10T1/2 Cl 8 mouse embryo cells
PDF
Effect of reductants on sodium chromate-induced cytotoxicity and morphological transformation to C3H/10T1/2 Cl 8 mouse embryo cells 
Action button
Asset Metadata
Creator Stack, Samantha M. (author) 
Core Title The opening of the blood brain barrier by homogenized perillyl alcohol 
Contributor Electronically uploaded by the author (provenance) 
School Keck School of Medicine 
Degree Master of Science 
Degree Program Molecular Microbiology and Immunology 
Publication Date 05/05/2020 
Defense Date 02/28/2020 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag BBB,blood brain barrier,brain metastasis,cancer biology,homogenized perillyl alcohol,MMI,Molecular Microbiology and Immunology,NEO100,OAI-PMH Harvest,POH 
Language English
Advisor Schonthal, Axel (committee chair), Neman, Josh (committee member), Tahara, Stanley (committee member) 
Creator Email sam.stack0902@gmail.com,sstack@usc.edu 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c89-297336 
Unique identifier UC11664196 
Identifier etd-StackSaman-8401.pdf (filename),usctheses-c89-297336 (legacy record id) 
Legacy Identifier etd-StackSaman-8401.pdf 
Dmrecord 297336 
Document Type Thesis 
Rights Stack, Samantha M. 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law.  Electronic access is being provided by the USC Libraries in agreement with the a... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Tags
BBB
blood brain barrier
brain metastasis
cancer biology
homogenized perillyl alcohol
MMI
NEO100
POH