Close
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected
Invert selection
Deselect all
Deselect all
Click here to refresh results
Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Neutron and x-ray crystallographic studies on metal hydride compelxes and organic ring inversion
(USC Thesis Other)
Neutron and x-ray crystallographic studies on metal hydride compelxes and organic ring inversion
PDF
Download
Share
Open document
Flip pages
Contact Us
Contact Us
Copy asset link
Request this asset
Transcript (if available)
Content
NEUTRON AND X-RAY CRYSTALLOGRAPHIC STUDIES ON METAL
HYDRIDE COMPELXES AND ORGANIC RING INVERSION
by
Timothy James Stewart
A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY
(CHEMISTRY)
August 2009
Copyright 2009 Timothy James Stewart
ii
EPIGRAPH
When asked how I assign the Bragg peaks from the Fourier difference
maps to construct a three dimensional structure. I say, “I do not assign the peaks
that make up a structure but rather remove peaks that are not my structure.”
iii
DEDICATION
To My Parents,
Peter and Mary Ellen Stewart
And To My Brothers And Sisters In-law,
Daniel and Teresa Stewart,
Lance and Rebecca Stewart
iv
ACKNOWLEDGEMENTS
First and foremost I would like to thank the late Professor Robert Bau for
the superb guidance and exuberant support he has given me all these years in
southern California. It is difficult to find a research director who is not only a
internationally recognized scientist but also a warm and sympathetic individual
who took his chances with me.
Profound thanks also to Professor Surya Prakash, who unselfishly devoted
extra time to my needs after Dr. Bau passed on, and saw me through to
graduation severing as my de-facto advisor. He has shown a remarkable amount
of patience and tolerance in answering the many silly questions I was asking in
both lecture and lab projects. Thank you for the opportunity to co-author with your
groups research studies.
To Professor Thieo Hogen-Esch, for serving on both my qualifying and
thesis dissertation committees. It is a pleasure collaborating with your group in X-
ray studies; thank you for allowing me to contribute to your science.
To Professor John Petruska of the biological sciences department for who
graciously sat through structural chemistry discussions at both my qualifying and
thesis defense talks. And who has enrich my life from storys told and
recommended places to visit around Southern California.
I would like to extend my sincere appreciation to all the people I had the
pleasure of working with at the University of Southern California: to Dr.
Muhammed Yousufuddin, and Dr. Kristen Aznavour of the Bau group, with whom
v
I shared the success and failures of X-ray and Neutron diffraction studies;
to Dr. Michael Quinlan and Dr. James Ellern for allowing me to share my
knowledge of chemistry with undergraduate students as a teaching assistant.
I would acknowledge and thank my compound collaborators without them
this research would not be possible: Dr. Henry Wong from the Chinese University
of Hong Kong who provided the TBCOT samples. Dr. Zhaomin Hou and Dr.
Takanori Shima of RIKEN who provided the anionic dysprosium hydride clusters
and mixed yttrium-tungsten cluster complexes. Professor William Evans and Dr.
Kevin Miller of University of California Irvine, who provided the uranium hydride
complex.
A special thanks to the neutron instrument primary operators whom lost
much sleep when I was in running experiments: Dr. Garry McIntyre and Dr. Sax
Mason of ILL operating VIVALDI and D19 respectively. Dr. Matthias Gutmann of
ISIS, operating SXD. Dr. Takashi Ohhara of JAEA operating BIX-3. Dr. Arthur
Schultz of Argonne National Laboratory operating SCD.
Finally, this work was financially supported by the American Chemical
Society (Grant PRF-40715-AC3) and the Chemistry Department of University of
Southern California.
vi
TABLE OF CONTENTS
EPIGRAPH
ii
DEDICATION
iii
ACKNOWLEDGMENTS
iv
LIST OF TABLES
viii
LIST OF FIGURES
xi
ABSTRACT
xvi
CHAPTER 1: Neutron Diffraction Instrumentation
1-1. Introduction
1-2. Instrumentation
1-3. References
1
5
15
CHAPTER 2: The Space Between: Neutron
Diffraction Studies Reveal Multiple Hydrogen Atom
Coordination Numbers in an Anionic Dysprosium Hydride
Cluster
2-1. Introduction
2-2. Experimental
2-3. Results and Discussion
2-4. Acknowledgment
2-5. References
16
18
24
31
78
CHAPTER 3: Neutron Diffraction Studies of a
Distorted Tetrahedral 4-coordinate Hydrogen and an
Unprecedented Trigonal Bipyramidal 5-coordinate
Hydrogen in Mixed Yttrium-Tungsten Cluster Complexes
3-1. Introduction
3-2. Experimental
3-3. Results and Discussion
3-4. Acknowledgment
3-5. References
80
80
93
99
211
vii
CHAPTER 4: Diffraction Studies on Actinide
Complex [(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
4-1. Introduction
4-2. Experimental
4-3. Results and Discussion
4-4. Acknowledgments
4-5. References
214
216
228
233
260
CHAPTER 5: To Flip or Not To Flip? Assessing the
Inversion Barrier of the Tetraphenylene Framework with
Enantiopure 2,15-Dideuteriotetraphenylene and 2,7-
Dimethyltetraphenylene
5-1. Introduction
5-2. Experimental
5-3. Results and Discussion
5-4. Conclusion
5-5. Future Direction
5-6. Acknowledgment
5-7. References
262
264
284
302
303
303
315
BIBIOGRAPHY
319
viii
LIST OF TABLES
Table 2-1. Experimental details for the X-Ray and
neutron diffraction studies of [Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
(µ-
Cl)(µ-H)
8
].
23
Table 2-2. Select key distances and angles in the
[Dy
4
H
8
Cl] core from 150 K and 10 K neutron refinements.
The population deviations of the averages are given in
parentheses.
26
Table 2-3. Key similar average bond lengths between
[((C
5
Me
4
SiMe
3
)YH
2
)
4
](THF), the first reported tetrahedral
cluster with one interstitial, one face-bridging, and six edge-
bridging hydride ligands and our current
[Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
H
8
Cl] organometallic cluster
with one interstitial, two face-bridging and five edge-bridging
hydrides.
32
Table 2-4. Full [Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
H
8
Cl]
crystallographic information including ORTEP generated
numbering scheme with thermal ellipsoids drawn at 50%
level from X-ray data at 150(2) K collected at University of
Southern California.
33
Table 2-5. Full [Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
H
8
Cl]
crystallographic information including ORTEP generated
numbering scheme with thermal ellipsoids drawn at 50%
level from Neutron data at 10(2) K collected at ILL.
49
Table 3-1. Crystallographic Data and Parameters for
[C
5
Me
4
(SiMe
3
)Y]
4
H
11
[(C
5
Me
5
)WPMe
3
] (1).
88
Table 3-2. Crystallographic Data and Parameters for
[C
5
Me
4
SiMe
3
Y]
4
H
11
(Cp*W) (2).
92
Table 3-3. Selected distances and angles in the
WY
4
H
11
cores of compound (1). The population deviations in
the average values are given in square brackets i n terms of
the least significant digits.
100
Table 3-4. Selected distances and angles in the
WY
4
H
11
cores of compound (2). The population deviations in
the average values are given in square brackets in terms of
the least significant digits.
102
ix
Table 3-5. Full crystallographic information on
compound (1) including ORTEP generated numbering
scheme with thermal ellipsoids drawn at 50% level from X-
ray data at 300(2) K collected at USC.
104
Table 3-6. Full crystallographic information on
compound (2) including ORTEP generated numbering
scheme with thermal ellipsoids drawn at 50% level from X-
ray data at 163(2) K collected at USC.
120
Table 3-7. Full crystallographic information on
compound (1) including ORTEP generated numbering
scheme with thermal ellipsoids drawn at 50% level from
neutron data at 20(2) K collected at ILL on D19.
151
Table 3-8. Full crystallographic information on
compound (2) including ORTEP generated numbering
scheme with thermal ellipsoids drawn at 50% level from
neutron data at 20(2) K collected at ILL on VIVALDI.
181
Table 4-1. Crystallographic Data Collection
Parameters for [(C
5
Me
5
)
2
U(H)(µ-H
2
)]
2
.
a
Definitions: wR
2
=
[ Σ[w(F
o
2
-F
c
2
)
2
] / Σ[w(F
o
2
)
2
] ]
1/2
, R
1
= Σ||F
o
|-|F
c
|| / Σ|F
o
|
227
Table 4-2. Selected Bond Distances (Å) and Angles
(degrees) for [(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
.
236
Table 4-3. Selected Bond Distances (Å) and Angles
(degrees) by Neutron Diffraction Studies of Characterized
Actinide Hydride Compounds.
237
Table 4-4. Full crystallographic [(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
information including ORTEP generated numbering scheme
with thermal ellipsoids drawn at 50% level from X-ray data at
148 K collected at University of Southern California.
238
Table 4-5. Full crystallographic [(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
information including ORTEP generated numbering scheme
with thermal ellipsoids drawn at 50% level from neutron data
at 217 K collected at ILL.
246
Table 5-1. X-ray crystallographic results for 2,15-
Dideuteriotetraphenylene for data collected at the University
of Southern California.
281
x
Table 5-2. Neutron crystallographic results for 2,15-
Dideuteriotetraphenylene for data collected at I.S.I.S. on
SXD.
284
Table 5-3. Full 2,15-Dideuteriotetraphenylene
crystallographic information including ORTEP generated
numbering scheme with thermal ellipsoids drawn at 50%
level from neutron data at 30(2) K collected at ISIS on SXD.
305
xi
LIST OF FIGURES
Figure 1-1. Example scattering of some atoms for
both X-rays and neutrons (the dotted areas denote negative
scattering, a negative scattering factor indicates that the
neutron wave undergoes a phase inversion upon scattering,
whereas a positive factor corresponds to no phase change.
3
Figure 1-2. Layout of the Intense Pulse Neutron
Source (IPNS) at Argonne National Laboratory.
6
Figure 1-3. SCD instrument parameters and
schematic drawing without shielding.
7
Figure 1-4. Neutron diffraction instrument for
biological crystallography [6]. The layout of BIX-3 (left) and a
schematic view of the instrument (right) Instrument
specifications (below).
8
Figure 1-5. Neutron diffraction instrument for large
single crystals. (top) The layout of D19, (below) instrument
specifications.
10
Figure 1-6. Instrumentation layout in ILL neutron
experiment hall. Notice the relative distance between D19’s
closeness to the neutron source and VIVALDI greater
distance away.
11
Figure 1-7. Schematic diagram of VIVALDI in ILL at
Grenoble, France. Schematic diagram of VIVALDI. General
instrument specifications.
12
Figure 1-8. (top) Instrument layout surrounding ISIS at
Target Station 1. (middle) Drawing of the beamline
components on SXD. The detectors are not shown for clarity.
(bottom) General instrument specifications.
14
Figure 2-1. Molecular structure of [Li(THF)
4
] -
[(C
5
Me
4
SiMe
3
)
4
Dy
4
(µ-Cl)(µ-H)
8
] by neutron diffraction
analysis at 10 K. All hydrogen atoms have been omitted for
clarity.
24
Figure 2-2. ORTEP plot of the core [Li(THF)
4
] -
[(C
5
Me
4
SiMe
3
)
4
Dy
4
(µ-Cl)(µ-H)
8
] (figure derived from 10 K
results; thermal ellipsoids drawn at 50% probability)
25
xii
Figure 3-1. Compound (1) was prepared via the
reaction of Y
4
H
8
(Cp’)
4
(THF) with Cp*WPMe
3
H
5
in hexane;
subsequent reaction of compound (1) with benzene
produced compound (2).
93
Figure 3-2. ORTEP plot of the Y
4
WH
11
core of
[(C
5
Me
4
(SiMe
4
)Y]
4
H
11
(Cp*PMe
3
W)(1). The [(C
5
Me
4
(SiMe
4
)]
and Cp* ligands, as well as the methyl groups of the PMe
3
ligand, have been removed for clarity. The thermal
displacement ellipsoids are drawn at 50% probability
95
Figure 3-3. ORTEP plot of the Y
4
WH
11
core of
[(C
5
Me
4
SiMe
3
)Y]
4
H
11
(Cp*W) (2). The C
5
Me
4
SiMe
3
on Y and
Cp* ligand on W have been removed for clarity. (Cp*=
C
5
Me
5
) The thermal displacement ellipsoids are drawn at
50% probability.
97
Figure 4-1. ORETP perspective view of the
[(C
5
Me
5
)
2
Th(H)( µ-H
2
]
2
dimer as determined by single-crystal
neutron diffraction with the automatic diffractometer at Oak
Ridge High Flux Isotope Reactor ( λ = 1.016 Å). For clarity,
hydrogen atoms on the four pentamethylcyclopentadienyl
ligands are not included [12].
216
Figure 4-2. Diagram for sealing crystals of
[(C
5
Me
5
)
2
U(H)(µ-H
2
]
2
under H
2
. Sealing process insured title
complex longer shelf-life resisting decomposing.
219
Figure 4-3. Molecular structure of X-ray diffraction
data of title complex [(C
5
Me
5
)
2
UH
2
]
2
with thermal ellipsoids
drawn at the 30% level final R
int
= 4.9% and R
1
= 5.5%. A.)
There is one crystallographically independent molecule in
the unit cell and the two metallocenes are equivalent by
symmetry. Methyl hydrides are excluded for clarity. B.) Same
molecular orientation as (A) but entire methyl substituents
are excluded for clarity. C.) Molecular structure shows H(1)
location 116.25
o
obtuse and 51.21
o
acute bond angle below
the U(1)-U(1)A plane. D.) Same molecular orientation as (C)
with entire methyl substituents excluded. E.) All carbon and
corresponding hydrogens excluded for clarity. Bridging
hydride ligands viewed through uranium axis U(1) in-front
and U(1)A behind, this placement accounts for 1.6
occupancy of the expected 2.0. F.) Schematic (E) has been
rotated 180
o
about an axis horizontal to the plane of the
paper.
234
xiii
Figure 4-4. Molecular structure of the neutron diffraction
data of title complex [(C
5
Me
5
)
2
UH
2
]
2
with thermal ellipsoids drawn
at the 30% level final R
int
= 5.1% and R
1
= 11.4%. A.) There is one
crystallographically independent molecule in the unit cell and the
two metallocenes are equivalent by symmetry. Methyl hydrides
are excluded for clarity. B.) Same molecular orientation as (A) but
entire methyl substituents are excluded for clarity. C.) Molecular
structure shows H(1) location 110.20
o
obtuse and 60.30
o
acute
bond angle below the U(1)-U(1)A plane. D.) Same molecular
orientation as (C) with entire methyl substituents excluded. E.) All
carbon and corresponding hydrogens excluded for clarity. Bridging
hydride ligands viewed through uranium axis U(1) in-front and
U(1)A behind, this placement accounts for 1.6 occupancy of the
expected 2.0. H(4 terminal)-U(1)-H(1) bond angle is 83.27
o
, H(4
terminal)-U(1)-H(1)A bond angle equals 129.90
o
. H(1)-U(1)-H(1)A
bond angles is 60.30
o
F.) Schematic (E) has been rotated 180
o
about an axis horizontal to the plane of the paper.
235
Figure 5-1. Saddle-shape structure of
Dideuteriotetraphenylene.
262
Figure 5-2. Different inversion barrier estimations.
264
Figure 5-3. Reaction scheme for the synthesis of
2,15-dideuteriotetraphenylene.
267
Figure 5-4. Schematic drawing of
dideuteriotetraphenylene maintaining its chirality consistent
with a high barrier of inversion [hypothesis (a)]. The title
molecule is shown packed in two orientations (I and II) and
superimposed to yield the disordered structure (III), in which
four of the outer hydrogens are 50% deuterium : 50%
hydrogen hybrids. The remaining four outer hydrogens in (III)
are 100% pure hydrogen atoms. In contrast, a low barrier to
inversion [hypothesis (b)] would cause complete hydrogen /
deuterium scrambling throughout all eight outer positions
(IV), with each position consisting of 25% deuterium : 75%
hydrogen hybrids.
287
xiv
Figure 5-5. ORTEP stereoview of the Molecule One of
(S)-7 (neutron results) corresponding to R
1
= 7.5% with
9,161 unique reflections. The C – H and C – (D / H) bond
lengths are 1.095 ± 0.006 Å and 1.095 ± 0.002 Å
respectively. The average C – C – (D/H) angles between
neighboring carbons are 120.0 ± 0.9
o
. The overall result is
consistent with structure III of Figure 3, with atoms that are
labeled D / H being 50% deuterium : 50% hydrogen hybrids.
The results are consistent with a molecule whose chirality
has been maintained.
290
Figure 5-6. Three dimensional rendering of the
neutron results from the SXD instrument at ISIS for both
Molecule One and Molecule Two in the asymmetric unit of
crystals of 7. Note that the two molecules have retained their
intrinsic chirality. The inner hydrogen atoms have been
omitted for clarity. The yellow colored atoms represent the
50% D / 50% H hybrid atomic positions. Upon close
examination, the reader can be convinced that the two
molecules have the same chirality and are not mirror images
of each other.
291
Figure 5-7. Scheme of the synthesis of 2,7-
Dimethyltetraphenylene.
293
Figure 5-8. ORTEP drawing of biscamphorsulfonate.
295
Figure 5-9. ORTEP drawing of 2,7-
Dimethyltetraphenylene.
296
Figure 5-10. Resolution of (rac)- 2,7-
Dimethyltetraphenylene through chiral HPLC (OD column;
Hex / i-PrOH = 99.3/0.7; 0.7ml/min; uv, 220nm).
297
Figure 5-11. CD spectra of (S)- 2,7-
Dimethyltetraphenylene and (R)- 2,7-
Dimethyltetraphenylene in methanol.
297
Figure 5-12. Kinetic of decomposition of 2,7-
Dimethyltetraphenylene at 580
o
C and 600
o
C.
299
Figure 5-13. Kinetic of decomposition of
tetraphenylene at 580
o
C and 600
o
C.
300
xv
Figure 5-14. Scheme of decomposition reations and
corresponding activation energy (kcal/mol).
300
Figure 5-15. Computational energy gaps between the
saddle shape ground state and the planar conformation of 1,
24 and 25.
302
xvi
ABSTRACT
Chapter 1 gives a brief description about neutron diffraction and how
neutrons are used to locate hydrogen atoms, an importance over X-rays,
especially in the case of metal hydride complexes. Listed individually are 5
different neutron diffraction instruments that have made my research possible.
Chapter 2 describes our single–crystal neutron diffraction results that
unambiguously reveal a four-coordinate H atom located in the center of a soluble
organometallic tetrahedral complex [Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
( µ-Cl)( µ-H)
8
].
The core of the molecule consists of a tetranuclear cluster with one interstitial,
two face-bridging and five edge-bridging hydride ligands. Neutron data were
collected on the Quasi-Laue diffractometer VIVALDI at Institut Laue-Langevin
(ILL) (Grenoble, France). The existence of a 4-coordinate hydrogen reinforces
previous results observed with a series of high-connectivity hydride ligands
located at the interstitial cavities of molecular clusters. Interestingly, the 4-
coordinate yttrium allows us to analyze simultaneously three different types of
hydride coordination in the same molecule (M
2
( µ
2
– H), M
3
( µ
3
– H), and M
4
( µ
4
–
H)).
Chapter 3 describes the structures of (Cp’-Y)
4
H
11
[Cp*WPMe
3
] (1) and
(Cp’-Y)
4
H
11
[Cp*W] (2) [Cp’= C
5
Me
4
(SiMe
3
)] which have been determined by
single-crystal neutron diffraction on the monochromatic four-circle diffractometer
D19 (for 1) and the quasi-Laue diffractometer VIVALDI (for 2) at ILL. A highly
distorted 4-coordinate tetrahedral hydrogen and an unprecedented 5-coordinate
xvii
trigonal bipyramidal hydrogen have been unambiguously located in the
complexes cores, for the first time.
Chapter 4 describes our studies to accurately measure the length of the U-
H single bond by single crystal neutron diffraction in the molecular complex
[(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
. Presented here is the first accurate covalent bond
measurement between the lightest and heaviest naturally occurring elements.
Successful single-crystal neutron diffraction has accurately determined both
terminal U-H and bridging U-H-U hydride distances on two instruments, VIVALDI
of ILL, and SXD of ISIS.
Chapter 5 describes two chiral tetraphenylenes, 2,15-
dideuteriotetraphenylene (7) and 2,7-dimethyltetraphenylene (15). They were
synthesized and resolved to address the tetraphenylene inversion barrier
problem. Neutron diffraction investigation of enantiopure 7 showed that the
molecule retained its chirality integrity during its synthesis from enantiopure
precursors and rules out the possibility of tetraphenylene framework possessing
a very low-energy barrier to its inversion.
1
CHAPTER 1
Neutron Diffraction Instrumentation
Introduction Section 1-1.
According to the Cambridge Crystallographic Data Center three-
dimensional structures of molecules are mainly determined by X-ray diffraction
analysis, about 3 : 1 times over neutron diffraction studies. Both X-ray and
neutron techniques have made extraordinary contributions to science. Today,
because of Companies like Bruker Corporation, Oxford Diffraction and Rigaku, a
variety of X-ray diffractometers are available to researchers throughout the world
at any given time. In the past 90 years instrumentation has become compact,
efficient, safe, and affordable. While researchers have seen great improvements
in the physical mechanics of the instrumentation, the mathematics and theory
have not changed greatly, since the pioneering work of 1914 Nobel laureate in
Physics, Max von Laue [1] and later William Henry Bragg [2]. Von Laue
formulated a law that connects the well defined spots arranged in a pattern of
intersecting circles around the incident beam (i.e. Laue plot) to the scattering
angles and the size and orientation of the unit cell spacings in the crystal lattice.
William Henry Bragg developed the Bragg’s law which connects the observed
scattering “Laue plots” with reflections from evenly spaced planes within the
crystal lattice. The integration and overlap of the Laue plots builds a three-
dimensional picture of the molecule in the crystal lattice.
It is widely known that X-ray crystal structures provide accurate and
precise geometrical information (i.e. bonds angles and lengths) in the solid state.
2
In addition, X-rays are useful in characterizing absolute stereochemistry.
Neutron and X-ray studies are similar in their implementation of Laue plots,
Bragg’s law and de Broglie equation. However, in certain areas, neutrons offer
additional valuable information. For instance, the degree of scattering by X-rays
is directly proportional to the electron density of the target atom. Thus, a sample
with heavy transition metals will scatter X-rays better then an organic crystal
sample. In contrast, the scattering factors for neutrons are not proportional to
atomic number. The point of diffraction for neutrons is the nucleus of an atom.
Figure 1-1 compares the scattering factors of some atoms. Notice that hydrogen
scatters neutrons better by both a larger cross-sectional diameter and negative
scatting factor. A negative scattering factor indicates the neutron undergoes a
phase inversion upon scattering. This means hydrogen appears as a negative
peak in a neutron difference Fourier map, whereas, a deuterium atom appears as
a positive peak. It can be inferred that the use of X-rays to study chemically
interesting hydrogen atoms is very limited, and the ability to distinguish between
isotopes (e.g. H of D) is in fact impossible. This makes neutron diffraction
invaluable for studies of metal hydrides, agnostic interactions, and H/D
exchange.
3
Figure 1-1. Examples of the scattering of some atoms for both X-rays and
neutrons (the dotted areas denote negative scattering, a negative scattering
factor indicates that the neutron wave undergoes a phase inversion upon
scattering, whereas a positive factor corresponds to no phase change] [3].
4
Neutron sources around the world are of two types: (a) older nuclear reactors that
emit a constant beam of neutron radiation and (b) newer spallation sources that
emit pulsed beam of neutrons. All reactors produce neutron radiation through
nuclear fission, where the fuel source (enriched U-235) is bombarded by
neutrons causing it to split into 2 smaller atoms and 2 or 3 fast moving neutrons.
Under controlled conditions the process is a self-sustaining chain reaction. The
fast moving neutrons are slowed down by a moderator. These slowed neutrons,
which are much cooler than those in the reactor core and are termed thermal
neutrons are the collimated neutrons we use for diffraction studies.
Neutron radiation from a spallation source is produced differently then a
state state reactor. An ion source produces hydride ions (H
-
) directly from
hydrogen plasma and injects them into a linear accelerator at an extremely low
temperature (2 K) and pressure (1x10
-10
atm). The ions are then accelerated to
velocities approaching the speed of light and then stripped of their electrons to
produce high energy protons. The protons are injected into a synchrotron ring
where they are accumulated into bunches. Periodically (20 to 60 times a second),
a proton bunch is pulsed out of the synchrotron. The pulsed protons are
concentrated onto a heavy atom target like solid, tungsten, tantalum, or uranium
or liquid mercury, and the resulting collisions produce a corresponding pulse of
neutrons. The neutrons are then guided to various instruments via their own
collimator surrounding the proton target site.
5
In contrast to X-ray sources, the availability of neutrons for science is very
limited, and costly. The dozen institutions which have such capabilities only
operate a few cycles a year. They shut-down in-between cycles for maintenance
and up-grades, which increases user demand and total cost. The single-crystal
diffractometers I have used over the course of my research cost approximately 10
– 15 thousand dollars per day to operate. Thus, the research facilities have an
appointed committee which selects studies from user submitted proposals that
they believe will generate successful publishable projects. In the following section
I introduce 5 single-crystal diffractometers, from 4 different facilities I have had
the pleasure of operating during my Ph.D. pursuits. They are, Single-Crystal
Diffractometer (SCD) of the Intense Neutron Pulse Source of Argonne National
Laboratory, United States of America, Single-Crystal Diffractometer (SXD) of ISIS
of Rutherford Appleton Laboratory, Didcot, United Kingdom, D19 and Very
Intense Vertical Axis Laue Diffraction Instrument (VIVALDI) of the Institut Laue-
Langevin, France, and BIX-3 of Japan Atomic Energy Association, Japan.
Instrument Section 1-2.
Single Crystal Diffractometer (SCD), Argonne National Laboratory,
Argonne, IL. The Intense Pulse Neutron Source (IPNS) Single Crystal
Diffractometer (SCD) has been operating since 1981 primarily as a general
purpose instrument for small molecule crystallography and for surveying
reciprocal space. Arthur J. Schultz Ph.D. was the primary operator until SCD was
6
moved to Los Alamos Laboratory in 2008, after IPNS was decommissioned in
Fall, 2007.
I had the opportunity to conduct an experiment with SCD in the Fall, 2005
on [Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
(µ-Cl)(µ-H)
8
] complex, the results of which are
described in chapter 2. Figure 1-2 shows details of IPNS design and Figure 1-3 is
a schematic of SCD construction without the protective shielding and instrument
specifications.
Figure 1-2. Layout of the Intense Pulse Neutron Source (IPNS) at Argonne
National Laboratory [4].
7
Figure 1-3. SCD instrument parameters and schematic drawing without shielding
[5].
Biological crystallography (BIX-3), Japan Atomic Energy Association
(JAEA), Tokia, Japan. BIX-3 is a small compact neutron diffractometer powered
by a classic reactor source JRR-3 at JAEA and is mainly used to determine
hydrogen atom positions in biological macromolecules and proteins. Dr. Takashi
Ohhara is the primary operator and has analyzed 2 samples for my neutron
research. BIX-3 was used in chapter 3 and chapter 5 neutron studies. Once a
year, BIX-3 technical staff change components to allow for data collection on
small molecule samples, that is when I had the opportunity to analyze my
samples (Spring, 2006 and 2007).
8
BIX-3 does not have a cooling system and therefore samples are analyzed
at room temperature. To make-up for the lack of cooling often samples are
collected for a couple of weeks and even a month at a time. With longer
collection times, Dr. Ohhara will scan a sample in as much reciprocal space as
possible. Covering all reciprocal space can lead to very good (i.e. low) residual
factors. BIX-3 is shown in Figure 1-4.
Figure 1-4. Neutron diffraction instrument for biological crystallography [6]. The
layout of BIX-3 (left) and a schematic view of the instrument (right) Instrument
specifications (below).
BIX-3 Specifications:
Diffraction principle
Incident neutron
Intensity (ns
-1
cm
-2
)
Sample to detector distance
Detector
Maximum reflection angle
Data resolution
Detector reading side
Signal to noise ratio
Data collection period
Monochromatic
Elastically bent silicon Si (2.35/1.23Å)
3 x 10
6
( ∆λ / λ= 0.015)
200 mm
Neutron Imaging Plate 500 x 450 mm
143
o
1.2 Å / 0.6 Å
Incident: front, data read front
10
22 days d
min
= 1.5 Å
9
Institut Laue-Langevin, Grenoble, France, single crystal diffraction
instruments D19 and VIVALDI. The Institute is a high-flux classic reactor which
produces the most intense neutron source in the world. The primary operator of
D19 is Dr. Sax Mason, and VIVALDI is Dr. Garry McIntyre. D19 is used in
chapters 3 and 4; VIVALDI in chapters 2 and 3.
A large structure diffractometer D19 is the thermal neutron single crystal
diffractometer of choice for determination of crystal structures with unit cells in the
range of 10
3
to 10
5
Å
3
or cell edges from 10 to 50 Å. Shown in Figure 1-5 is
D19’s close proximity to the main incident bean enables or “sees” the neutrons
first allowing for more total neutron counts per second. The monochromator
position is relatively close to the core giving high flux, and the monochromator
may be rotated into a specific diffracting position so that the wavelength choice
can be matched to the user’s sample [7]. This simplifies raw data integration and
increases final result precision.
10
Figure 1-5. Neutron diffraction instrument for large single crystals [7]. The layout
of D19 (top), instrument specifications (below).
D19 Specifications:
Monochromators
Bragg angle 2 ϑ
Wavelength (Å)
Max beam size
Flux
Detector
Sample-detector distance
Data collection period
Graphite, gemanium, and copper
42.7
o
, 70
o
, or 90
o
0.95 < λ < 2.4
10 mm
10
7
– 10
9
ns
-1
cm
-2
Gas Position sensitive (
3
He + CF
4
)
75 cm
14 days
The Very Intense Vertical Axis Laue Diffractometer (VIVALDI) [8],
operational in late 2001, is designed for small crystals of large structures allowing
researchers to obtain detailed atomic structural information from crystals
previously considered to be too small for neutron diffraction. In addition to
VIVALDI’s sample size tolerability, data collection is very fast (about 3 minutes).
This is counter intuitive to what one may infer because of the instrument’s
physical distance from the neutron source compared to D19, shown in Figure 1-6.
VIVALDI has faster collection time over D19
11
because it is a Laue-diffractometer which detects all available wavelengths at
once [8].
Figure 1-6. Instrumentation layout in ILL neutron experiment hall. Notice the
relative distance between D19’s closeness to the neutron source and VIVALDI
greater distance away.
.
The 360
o
cylinder (i.e solid angle) detector makes it an excellent choice for
large reciprocal space surveys and identification of structural twinning. VIVALDI
is equipped with a helium cryostat which allows temperature to be as low as 2 K.
Such low temperatures enable resolution of temperature dependent structural
phase changes and super-structure lattices. VIVALDI results are discussed in
chapters (2, and 3). Figure 1-7 contains a schematic diagram of VIVALDI and
instrument specifications.
12
Figure 1-7. Schematic diagram of VIVALDI in ILL at Grenoble, France [9].
Schematic diagram of VIVALDI. General instrument specifications.
VIVALDI
Specifications:
Monochromator
Beam size
Flux
Sample Space
Detector
Data collection
Laue, white beam
(0.8 < λ< 4.5 Å)
< 10 x10 mm
2
~ 10
9
s
-1
cm
-2
120 mm
Neutron image
plate (Gd
2
O
3
)
3 minutes
ISIS Facility, Rutherford Appleton Laboratory, Didcot, United Kingdom.
The single crystal diffractometer SXD [10], at the ISIS Spallation Neutron Source
(Figure 1-8 top) at the CCLRC Rutherford Appleton Laboratory has been
operational since 1990. Dr. Matthias Gutmann is the primary operator and SXD’s
data results are discussed in chapters 4 and 5.
The measurement method used on SXD is described as a “time-sorted
Laue” technique [11]. A polychromatic beam of neutrons is used and each
neutron is “labeled” independently accourdinglyto the time it takes to reach the
detector from the spallation target via the sample. The diffraction data are
13
collected on an array of two-dimensional position sensitive detectors (eleven
detectors in total) throughout very large volumes of reciprocal space. SXD in
some ways is a combination of D19 detectors system and VIVALDI speed and
functionality. SXD has the largest detector coverage and the highest integrated
neutron flux of any instrument of its type in the world and is a benchmark for all
single crystal time-of-flight neutron diffractometers under construction (TOPAZ,
SNS) or being designed.
14
Figure 1-8. (top) Instrument layout surrounding ISIS at Target Station 1. (middle)
Drawing of the beamline components on SXD [12]. The detectors are not shown
for clarity. (bottom) General instrument specifications.
SXD Specifications:
Wavelength
Beam size at sample position
Sample size
Data collection time
Detectors
Sample environment
0.2 – 10 Å
< 15 mm
1 mm
3
to 100m
3
1 – 2 hours
Position sensitive (11 total)
1.5 – 1200 K
15
Reference Section 1-3.
[1] von Laue, M.: Concerning the detection of X-ray interferences, Nobel
Lecture, 1915.
[2] Bragg, W.: Nature, 1912, 90, 410.
[3] Bacon, G.: Neutron Diffraction, third edition, Clarendon Press, 1975.
[4] http://www.pns.anl.gov/
[5] Schultz, A.; De Lurgio, P.; Hammonds, J.; Mikkelson, D.; Mikkelson, R.;
Miller, M.; Naday, I.; Peterson, R.; Worlton, T.: Physica B., 2006, 385-386,
1059-1062.
[6] Tanaka, I.; Kurihara, K.; Chatake, T.; Niimura, N.: J. Appl. Cryst., 2002,
35, 34-40.
[7] http://www.ill.eu/instruments-support/instruments-groups/instruments/
d19/
[8] Wilkinson, C.; Cowan, J.; Myles, D.; Cipriani, F.; McIntyre, G.: Neutron
News, 2002, 13, 37.
[9] http://www.ill.eu/instruments-support/instruments-groups/instruments/
vivaldi/
[10] Wilson, C.: IOP Conf. Ser., 1990, 107, 145-163.
[11] Turberfield, K.: Thermal Neutron Diffraction, edited by BTM Willis,
1970, page 34, Oxford Press.
[12] Keen, D.; Gutmann, M.; Wilson, C.: J. Appl. Cryst., 2006, 39, 714-722.
16
CHAPTER 2
The Space Between: Neutron Diffraction Studies Reveal Multiple
Hydrogen Atom Coordination Numbers in an Anionic Dysprosium Hydride Cluster
Introduction Section 2-1.
For many years our group and others have utilized single-crystal neutron
diffraction to characterize accurately hydride ligands; in particular, hydrogen
atoms which are positioned interstitially within heavy-metal lattices. The
phenomenon of hydrogen atoms occupying vacant interstitial sites has led to
extraordinary coordination numbers (e.g. 2,3,4,5 and 6) [1-7]. Neutron diffraction
has greatly improved our ability to accurately characterize hydrogen atoms in the
presence of heavy metals which is an infamously weak aspect of X-ray
diffraction.
Recently reported by our group was a 4 coordinate hydride ligand ( µ
4
– H)
in a [Y
4
H
8
[C
5
Me
4
(SiMe
3
)]
4
(THF)] metal complex [3]. Those findings completed a
long standing goal to characterize a series of multiple-bonded hydride ligands in
an organometallic compound. Curiously, upon refinement of the
[Y
4
H
8
[C
5
Me
4
(SiMe
3
)]
4
(THF)] structure we located further types of H linkage ( µ
2
– H
and µ
3
– H) in the same molecule in addition to the targeted interstitial ( µ
4
– H). We
had previously noted that there appears to be a relationship between the number
of metal atoms surrounding a hydrogen atom and its corresponding metal (M) – H
distance: since there is a decrease in bond order due to the coordination number
of hydrogen increasing, the overall M – H distance increases accordingly. This
was true in the cases where there is exclusively one type of linkage in the
17
compound. Introducing different types of linkages in the same molecule disrupts
the previously observed M – H bond length trends. Our study set out to determine
whether this phenomenon is an anomaly of the particular compound or whether
such effects are in other complexes.
In 2003, Hou and co-workers proposed the idea of multiple H coordination
in the same molecule using X-ray diffraction [7]. They reported the synthesis and
X-ray structures of two organolanthanoide complexes (the non-solvate form
[(C
5
Me
4
SiMe
3
)Lu( µ-H)
2
]
4
and the solvated [(C
5
Me
4
SiMe
3
)Lu( µ-H)
2
]
4
(THF).
Although X-ray diffraction is not an accurate technique for such compounds, the
hydride atoms near the Lu tetrahedral cluster were located by difference Fourier
analysis and the coordinates and isotropic parameters were allowed to vary in the
least-squares refinement (SHELX-97). The remaining hydrogen atoms were
placed at the calculated positions appropriate to a riding model. structural
characterization by Hou et al. demonstrates three distinct hydride metal bond
types in the same molecule. Later on, the analogous yttrium complexes
[(C
5
Me
4
SiMe
3
)Y( µ-H)
2
]
4
and [(C
5
Me
4
SiMe
3
)Y( µ-H)
2
]
4
(THF) were also reported
[9,10]. Our recent publication [3] was the first neutron study to accurately
characterize multiple hydride coordinations in the same molecule containing the
[(C
5
Me
4
SiMe
3
)
4
Y
4
H
8
](THF) complex. Reported here is a neutron diffraction study
on such metal hydride bondings in an anionic dysprosium hydride cluster
[Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
( µ-Cl)( µ-H)
8
], and is the second known study of this
type with similar convincing results.
18
Experimental Section 2-2.
Preparation and Crystallization of [Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
(µ-Cl)(µ-
H)
8
]. The title complex [Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
(µ-Cl)(µ-H)
8
] was prepared
from the neutral compound [(C
5
Me
4
SiMe
3
)
4
Dy
4
(µ-H)
8
(THF)
2
] as previously
described elsewhere [11]. To a THF solution (1.0 mL) of [(C
5
Me
4
SiMe
3
)
4
Dy
4
(µ-
H)
8
(THF)
2
] (49.4 mg, 0.0313 mmol) was added a THF solution (1.0 mL) of LiCl
(1.3 mg, 0.0313 mmol). The colorless solution was stirred at room temperature
for 1 hour. After removal of the solvent under vacuum, the resulting white residue
was dissolved in THF (0.3 mL). Hexane (1.5 mL) was carefully layered on the
solution. Crystals were obtained after the mixture was cooled to −30 °C and kept
at this temperature overnight to give pale-yellow crystals of
[Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
(µ-Cl)(µ-H)
8
] (38.3 mg, 0.0217 mmol, 69%), some of
which were of size and forms suitable for X-ray and neutron diffraction studies.
The
1
H NMR of [Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
(µ-Cl)(µ-H)
8
] was not informative
because of the influence of the paramagnetic Dy(III) ion. Anal. Calcd for
C
64
H
124
Cl
1
Dy
4
Li
1
O
4
Si
4
: C, 43.62; H, 7.09. Found: C, 43.36; H, 6.91. To delay
crystalline decomposition, the single-crystal samples were stored in an inert (Ar)
atmosphere in separate quartz glass ampoules.
X-Ray Data Collection, Structure Determination and Refinement for
[Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
(µ-Cl)(µ-H)
8
]. X-ray analysis on the title compound
[Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
( µ-Cl)( µ-H)
8
] was carried out at 150 K on a SMART
APEX CCD diffractometer using fine-focused graphite-monochromated Mo-K
α
radiation ( λ = 0.71073 Ǻ). The crystal sample was selected under streaming
19
nitrogen gas and flash frozen into a nylon loop bathed in mineral oil at the end of
a copper pin. The cell parameters for [Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
( µ-Cl)( µ-H)
8
]
were obtained from the least-squares refinement of the spots (from 60 collected
frames) using the SMART program of a rhombohedral pale-yellow single-crystal
sample measuring 0.20 x 0.08 x 0.05 mm
3
in size. A hemisphere of data were
collected up to a resolution of 0.77 Ǻ, the intensity data were processed using the
Saint Plus program. All calculations for the structure determination were carried
out using the SHELXTL package (version 6.14) [12]. Initial atomic positions were
located direct methods and refined by least square using SHELX with 16,519
independent reflections and within the θ range 1.27 to 26.73
o
(completeness 99.6
%). Empirical absorption corrections were applied by SADABS [13]. Calculated
hydrogen positions were input and refined as riding the corresponding carbon
atoms. A summary of the refinement details and the resulting agreement factors
are given in Table 2-1. A complete listing of all crystallographic information is
given in Table 2-4.
Final X-ray structure refinement for [Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
( µ-Cl)( µ-
H)
8
] yielded an R(int) = 6.7 %, R
1
= 4.8 % and wR
2
= 8.9 %. Data to parameter
ratio equals 22 : 1. The crystal system is monoclinic with space group P2
1
/n, Z =
4, and unit-cell dimensions are: a = 13.86 Ǻ, b = 29.57 Ǻ, c = 19.03 Ǻ and β =
91.2180(10)
o
.
Neutron Data Collection, Structure Determination and Refinement for
[Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
(µ-Cl)(µ-H)
8
]. Neutron analysis on the title compound
20
[Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
( µ-Cl)( µ-H)
8
] was carried out at two temperatures,
150 K and 10 K on the Very-Intense Vertical-Axis Laue Diffractometer Instrument
(VIVALDI) at the Institut Laue-Langevin. The sample was mounted in an inert-
argon atmosphere, the pale-yellow rhombohedral shaped single crystal sample of
dimensions 3.25 x 1.25 x 0.75 mm
3
rested alone at the bottom of a sealed 4 mm
diameter quartz glass ampoule. This sample, which is normal size (~ 3 mm
3
) for
neutron studies, were then mounted in a He cryostat on VIVALDI and analyzed
with the intense neutron source at ILL. VIVALDI uses an unconventional quasi-
Laue geometry for data collection [14]. In this technique the sample is bathed in
the full waveband of the un-monochromated thermal neutron beam. In addition
the diffraction data were recorded using a cylindrical area detector made from
Gd
2
O
3
-doped BAFBR:Eu
2+
image plates and which subtends 8 sterad at the
sample position [15]. The combination of the high flux at the sample position and
the large-solid angle detector gives a gain in data-collection efficiency of one to
two orders of magnitude over conventional monochromatic diffractometers at the
same source. At 150 K, a total of 15 Laue diffraction patterns, each accumulated
over two hours were collected at 20
o
intervals in rotation of the crystal about the
vertical detector axis. At 10 K a total number of 13 Laue diffraction patterns, each
accumulated over three hours, were collected, again at 20
o
rotational intervals.
These patterns were indexed using the program LAUEGEN from the Daresbury
Laboratory Suite [16,17] and the reflections were integrated and the background
subtracted using the INTEGRATE+, which uses a two-dimensional version of the
minimum σ(I)/I algorithm [18]. The reflections were normalized to a common
21
incident wavelength, using a curve derived by comparing equivalent reflections
and multiple observations via the program LAUENORM [19]. Normalization
corrected for most small absorption variations arising from the sample shape.
Reflections were observed with wavelengths between 1.0 and 3.5 Ǻ but only
reflections with wavelengths between 1.1 and 2.5 Ǻ were accepted for scaling;
those outside the range were too weak or had too few equivalents to determine
the normalization curve with confidence. At 150 K, 42,229 reflections were
observed, of which 6,023 were unique. At 10 K, 57,133 reflections were
observed, of which 28,384 were single reflections with wavelengths between 0.8
and 2.6 Ǻ, to yield 11,343 unique reflections, of those 6,947 are greater than 4 σ,
leaving 78 % of the unique data for d-spacing greater than 1.04 Ǻ, The merged
reflections were phased with the isotropic / non-hydrogen positions from the X-
ray analysis.
The title complex, [Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
( µ-Cl)( µ-H)
8
], crystallizes in
space group P2
1
/n (No. 14) with one independent anion / cation pair in the
asymmetric unit-cell and has the parameters: a = 14.585(1) Ǻ, b = 30.200(1) Ǻ, c
= 19.287(1) Ǻ, β = 91.485(1)
o
. Recall that initially from the X-ray analysis the
position of hydride ligands were not constrained in the studies. However, in the
present neutron analysis hydrogen atoms appear as negative peaks in the
difference Fourier maps. Hydride ligands were found to be on the cluster surfaces
at the edge and face bridging sites in addition to the four-coordinated interstitial
position. All other H atoms in the 150 K and 10 K data sets (116 hydrogen atoms
of the C-H groups) were also unambiguously located in this manner. The
22
positional and anisotropic thermal displacement parameters for all atoms in the
10 K data asymmetric unit were refined by a full matrix least-squares procedure
[20]. All atoms in the 10 K data set behaved well under anisotropic refinement
with a data to parameter ratio 6 : 1. The refinement successfully converged to
give the following agreement factors: R1 = 10.1 % for all 6,947 reflections with I >
4 σ(I), and R(F) = 20.5 % for all data. In particular, the Dy
4
H
8
Cl core of both 150 K
and 10 K data sets were anisotropically well behaved with average thermal
parameter values of U(aniso) = 0.0037(1) and 0.0278(1) Ǻ
2
for the dysprosium
and hydrogen atoms, respectively. A summary of the crystal data and refinement
parameters is given in Table 2-1, and a complete list of all crystallographic
information is given in Table 2-5. The overall anion / cation structure is shown in
Figure 2-1, where all hydrogen atoms have been excluded for clarity. During
structural analysis few ill-behaved atoms arose. Some low-level restraints were
applied in the early refinements, but all restraints were released in the final least-
squares refinement. Also, only the temperature dependent ratios between the
linear unit-cell parameters can be determined in the Laue method. In the analysis
of the 150 K neutron data we assumed the X-ray values at the same temperature;
in the analysis of the 10 K neutron data these values were reduced by 1% to
account for the likely thermal contraction.
23
TABLE 2-1. Experimental details for the X-Ray and neutron diffraction studies
of [Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
(µ-Cl)(µ-H)
8
]. See text for discusson of the unit
cell parameters.
Empirical
Formula
C
64
H
124
Cl
Dy
4
Li
O
4
Si
4
C
64
H
124
Cl
Dy
4
Li
O
4
Si
4
C
64
H
124
Cl
Dy
4
Li
O
4
Si
4
Source X-Ray Neutron Neutron
Formula
Weight
1752.3 1754.0 1754.0
Crystal
System
Monoclinic,
P2
1
/n
Monoclinic
, P2
1
/n
Monoclinic,
P2
1
/n
Z 4 4 4
Unit Cell
Parameters
a =
13.8656(8) Ǻ
b =
29.5705(17) Ǻ
c =
19.0368(11) Ǻ
β =
91.2180(10)
o
a =
14.5850(8) Ǻ
b =
30.2000(17) Ǻ
c =
19.2870(11) Ǻ
β =
91.4850
o
a = 14.5900(8) Ǻ
b = 29.9700(17)
Ǻ
c = 19.3100(11)
Ǻ
β = 91.260
o
Volume
( Ǻ
3
)
7,803.6(8) 7,803.6 7,803.6
Temperatur
e (K)
150(4) 150(2) 10(2)
Crystal Size
(mm
3)
0.20 x 0.08
0.05
3.25 x 1.25
x 0.75
3.25 x 1.25 x
0.75
Wavelength
( Ǻ)
0.71073 1.1 – 2.5 1.1 – 2.5
Data
Collection Time
6 hours 30 hours 39 hours
θ range 1.27 – 26.73
o
1.62 –
72.00
o
1.62 – 72.00
o
Number of
Reflections
46,418 42,117 57,042
Number of
Unique Reflections
16,519 6,023 11,343
Number of
Parameters Refined
731 1,239 1,819
G.o.f. 0.976 1.105 1.115
Number of
Reflections (> 4 σ)
13,042 4,357 6,947
Final
agreement factors (I
> 2 σ data)
R1 = 0.0352
wR2 =
0.0891
R1 =
0.1302
wR2 =
0.3341
R1 = 0.1011
wR2 = 0.2315
24
Figure 2-1. Molecular structure of [Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
(µ-Cl)(µ-H)
8
] by
neutron diffraction analysis at 10 K. All hydrogen atoms have been omitted for
clarity.
Results and Discussion Section 2-3.
We have collected two neutron data sets at different temperatures (150 K
and 10 K) on the same crystal sample with VIVALDI. The 10 K data set result
gave a lower final agreement factor then the 150 K data set; due in part to the
larger number of unique reflections measured. Despite the differences in
agreement factors, the final results for the two temperatures, especially those
Dy3
Dy4
Dy2
Dy1
Cl
Li
25
results concerning the central Dy
4
H
8
Cl core (Figure 2-2), are remarkably
consistent. Table 2-2 lists the distance and angles in the Dy
4
H
8
Cl cores from the
two neutron structural determinations.
Figure 2-2. ORTEP plot of the core [Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
(µ-Cl)(µ-H)
8
]
(figure derived from 10 K results; thermal ellipsoids drawn at 50% probability).
26
Table 2-2. Select key distances and angles in the [Dy
4
H
8
Cl] core from 150 K
and 10 K neutron refinements. The population deviations of the averages
are given in parentheses.
150 K 10 K
Bond
lengths (Å)
Dy-Dy Distances
Dy(1)-
Dy(2)
3.335(5) 3.310(2)
Dy(1)-
Dy(3)
3.554(5) 3.532(2)
Dy(1)-
Dy(4)
3.586(5) 3.542(2)
Dy(2)-
Dy(3)
3.581(5) 3.549(2)
Dy(2)-
Dy(4)
3.597(5) 3.527(2)
Dy(3)-
Dy(4)
3.856(5) 3.913(2)
Average
3.585 3.562
Dy-Cl Distances
Dy(3)-
Cl(1)
2.803(9) 2.778(4)
Dy(4)-
Cl(1)
2.793(9) 2.784(2)
Average 2.798
2.781
Dy-H (Central) Distances
Dy(1)-
H(1)
2.264(18) 2.249(9)
Dy(2)-
H(1)
2.309(19) 2.255(9)
Dy(3)-
H(1)
2.111(21) 2.158(12)
Dy(4)-
H(1)
2.187(22) 2.160(12)
Average 2.218
2.205
Dy-H (face-bridging) Distances
Dy(1)-
H(2)
2.442(2) 2.452(11)
Dy(2)-
H(2)
2.421(2) 2.400(12)
Dy(3)- 2.289(20) 2.228(9)
27
H(2)
Dy(1)-
H(3)
2.429(21) 2.424(11)
Dy(2)-
H(3)
2.420(22) 2.387(12)
Dy(4)-
H(3)
2.346(18) 2.282(10)
Average
2.391 2.362
Dy-H (edge-bridging) Distances
Dy(1)-
H(4)
2.255(19
)
2.209(10)
Dy(2)-
H(4)
2.221(22
)
2.188(9)
Dy(1)-
H(5)
2.232(19
)
2.236(11)
Dy(3)-
H(5)
2.190(22
)
2.148(10)
Dy(1)-
H(6)
2.284(20
)
2.248(10)
Dy(4)-
H(6)
2.160(20
)
2.189(9)
Dy(2)-
H(7)
2.263(24
)
2.254(12)
Dy(3)-
H(7)
2.173(20
)
2.210(9)
Dy(2)-
H(8)
2.254(28
)
2.233(10)
Dy(4)-
H(8)
2.162(22
)
2.161(11)
Table 2-2.
continued.
Average 2.219
2.208
Selected
Bond Angles
(deg)
Core-
Bridging
Dy(1)-
H(1)-Dy(2)
93.6(7) 94.6(4)
Dy(1)-
H(1)-Dy(3)
108.6(9) 106.5(5)
Dy(1)- 107.3(9) 106.9(5)
28
H(1)-Dy(4)
Dy(2)-
H(1)-Dy(3)
108.2(9) 107.1(5)
Dy(2)-
H(1)-Dy(4)
106.3(8) 106.1(5)
Dy(3)-
H(1)-Dy(4)
127.6(9) 130.0(5)
Average
108.6 108.5
Face-
Bridging
Dy(1)-
H(2)-Dy(2)
86.6(9) 86.0(4)
Dy(1)-
H(2)-Dy(3)
97.4(9) 97.9(4)
Dy(2)-
H(2)-Dy(3)
99.1(9) 100.1(4)
Average
94.4 94.7
Dy(1)-
H(3)-Dy(2)
86.9(8) 86.9(4)
Dy(1)-
H(3)-Dy(4)
97.4(7) 97.6(4)
Dy(2)-
H(3)-Dy(4)
98.0(8) 98.1(4)
Average
94.1 94.2
Edge-
Bridging
Dy(1)-
H(4)-Dy(2)
96.4(7) 97.7(4)
Dy(1)-
H(5)-Dy(3)
107.0(9) 107.3(4)
Dy(1)-
H(6)-Dy(4)
107.6(8) 106.0(4)
Dy(2)-
H(7)-Dy(3)
107.7(8) 105.3(5)
Dy(3)-
H(8)-Dy(4)
109.1(11
)
106.8(5)
Average
105.5 104.6
Dy(3)-
Cl(1)-Dy(3)
87.1(2) 89.4(11)
29
The rational for carrying out the present neutron study was to locate a 4-
coordinate hydrogen atom interstitially in an anionic tetrahedral dysprosium metal
cluster. Our neutron data analysis has revealed that in addition to the 4-
coordinate hydrogen atom, the Dy
4
H
8
Cl core contains one edge-bridging
chloride, two face-bridging hydrides and five edge-bridging hydrides.
The interstitial hydrogen atom is bonded to the four dysprosium atoms,
giving an average Dy – H distance of 2.205(3) Ǻ (Table 2-2). The individual
angles are, as expected, close to the ideal tetrahedral angle of 109
o
. The cluster
is however slightly distorted from ideal tetrahedral symmetry because of the
presence of a chloride atom bridging Dy(3) to Dy(4), a motif which is absent from
the remaining Dy atoms in the cluster. The most obvious manifestation of the
lowered symmetry is the presence of the two unique face-bridging hydrogen
atoms H(2) and H(3), which lie above the Dy(1)-Dy(2)-Dy(4) and Dy(1)-Dy(2)-
Dy(3) faces of the tetrahedron, respectively, but which is absent from other faces
of the cluster. Other, less pronounced manifestations of slightly lowered
symmetry are the fact that the Dy(3)-Dy(4) distance, which involves the edge-
bridging chloride atom is longer than the Dy(1)-Dy(2) distance (Table 2-2), thus
giving a concomitant larger interstitial Dy(3)-H(1)-Dy(4) angle compared to the
Dy(1)-H(1)-Dy(2) angle.
In the past, neutron diffraction studies have shown a relationship between
the number of metal atoms surrounding a hydrogen atom and its corresponding
M – H distance [21]. In these studies the hydride-metal bond distance increases
systematically with each addition of metal atom coordination. However, in each
30
structural M – H example each molecule possessed only one type of hydrogen
atom coordination [22-24]. Very recently, we found that in the tetrahedral yttrium
complex [(C
5
Me
4
SiMe
3
)
4
Y
4
( µ-H)
2
]
4
(THF), which possesses three different types
of linkages in the same compound: Y
2
( µ
2
– H), Y
3
( µ
3
– H), and Y
4
( µ
4
– H) metal-
hydride bonds, the relation between the M – H bond distance and the coordination
number is not that straightforward [3]. There is the usual bond length increase as
one goes from edge-bridging to face-bridging (Y
2
( µ
2
– H) to Y
3
( µ
3
– H)), but there
is a decrease in bond length in the next bonding type, Y
3
(( µ
3
– H) to Y
4
(( µ
4
– H)).
Until now, this is the first example of its kind to (a) demonstrate accurately the
existence of a 4-coordinate hydrogen atom in a soluble organometallic hydride
and (b) compare the tightness of the tetrahedral cavity for different metal-
coordinated hydride atoms in the same molecule. In our current neutron study on
the anionic dysprosium cluster, we observed analogous bonding trends [3].
Comparisons of lengths are given in Table 2-3. The usual (as expected) increase
in bond length is observed as one goes from Dy
2
( µ
2
– H) [2.20(1) Ǻ] to Dy
3
( µ
3
– H)
[2.36(1) Ǻ], then, the Dy – H distance actually decreases in the next step, from
Dy
3
( µ
3
– H) [2.36(1) Ǻ] to Dy
4
( µ
4
– H) [2.21(5) Ǻ], due to the tightness of the
tetrahedral cavity. This idea was first proposed in our previous work. In our
current work we observe analogous trends as before with different hydrogen
atom coordination numbers but we also notice the lengths and angles are almost
identical. This is, in part, most likely a result of dysprosium’s similar covalent
radius (1.59 Ǻ) to yttrium (1.62 Ǻ) [25].
31
Acknowlodgment Section 2-4
The work reported in this chapter has been published in Inorganica Chimica Acta
(ICA doi:12827, 2009). Only slight modifications were made to the chapter for the
purpose of this Ph.D. dissertation. The synthesis and NMR characterization work
described in this chapter were conducted by Professor Zhaomin Hou’s group at
RIKEN Advanced Science Institute, Japan. The X-ray and neutron work
described were conducted by our group at the USC.
32
Table 2-3. Key similar average bond lengths between
[((C
5
Me
4
SiMe
3
)YH
2
)
4
](THF), the first reported tetrahedral cluster with one
interstitial, one face-bridging, and six edge-bridging hydride ligands and our
current [Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
H
8
Cl] organometallic cluster with one
interstitial, two face-bridging and five edge-bridging hydrides.
[((C
5
Me
4
SiMe
3
)YH
2
)
4
](THF) [Li(THF)
4
][(C
5
Me
4
SiMe
3
)
4
Dy
4
H
8
Cl]
Average Bond Lengths (Å)
M – M Distances
M – M 3.459 3.563
M – (TFH), M – Cl – M 3.693 3.781
M – H (Central) 2.197 2.205
M – H (face-bridging) 2.344 2.362
M – H (edge-bridging) 2.166 2.208
33
Table 2-4. Full crystallographic information including ORTEP generated
numbering scheme with thermal ellipsoids drawn at 50% level from X-ray data at
150(2) K collected at University of Southern California.
Empirical formula C64 H114 Cl Dy4 Li O4 Si4
Formula weight 1752.30
Temperature 150(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group P2(1)/n
Unit cell dimensions a = 13.8656(8) Å α= 90°.
b = 29.5705(17) Å β= 91.2180(10)°.
c = 19.0368(11) Å γ= 90°.
Volume 7803.6(8) Å
3
Z 4
Density (calculated) 1.492 Mg/m
3
Absorption coefficient 3.919 mm
-1
F(000) 3480
Crystal size 0.20 x 0.08 x 0.05 mm
3
Theta range for data collection 1.27 to 26.73°.
Index ranges -17<=h<=10, -37<=k<=37, -24<=l<=23
Reflections collected 46418
Independent reflections 16519 [R(int) = 0.0667]
Completeness to theta = 26.73° 99.6 %
Absorption correction Semi-empirical
Max. and min. transmission 0.8281 and 0.5078
Refinement method Full-matrix least-squares on F
2
Data / restraints / parameters 16519 / 0 / 731
Goodness-of-fit on F
2
0.976
Final R indices [I>2sigma(I)] R1 = 0.0351, wR2 = 0.0811
R indices (all data) R1 = 0.0494, wR2 = 0.0891
Largest diff. peak and hole 2.453 and -1.028 e.Å
-3
34
Atomic coordinates ( x 10
4
) and equivalent isotropic displacement parameters
(Å
2
x 10
3
). U(eq) is defined as one third of the trace of the orthogonalized U
ij
tensor. ___________________________________________________________
x y z U(eq)
___________________________________________________________
Dy(1) 2619(1) 2333(1) 8184(1) 20(1)
Dy(2) 1000(1) 1742(1) 7126(1) 20(1)
Dy(3) 2920(1) 1243(1) 8034(1) 21(1)
Dy(4) 1124(1) 1621(1) 9124(1) 21(1)
Si(1) 1523(1) 3509(1) 8634(1) 28(1)
Si(2) -292(1) 809(1) 5987(1) 29(1)
Si(3) 5349(1) 1215(1) 7041(1) 33(1)
Si(4) -1271(1) 1067(1) 9780(1) 41(1)
Cl(1) -321(1) 1687(1) 8145(1) 44(1)
C(1) 2658(4) 3206(2) 8420(3) 23(1)
C(2) 3374(4) 3020(2) 8884(2) 22(1)
C(3) 3357(4) 2994(2) 9674(3) 36(1)
C(4) 4148(4) 2854(2) 8493(3) 26(1)
C(5) 5041(4) 2640(2) 8796(3) 38(1)
C(6) 3935(4) 2938(2) 7769(3) 28(1)
C(7) 4583(4) 2824(2) 7168(3) 45(2)
35
C(8) 3030(4) 3160(2) 7721(3) 26(1)
C(9) 2572(4) 3337(2) 7054(3) 35(1)
C(10) 489(5) 3314(2) 8080(4) 67(2)
C(11) 1146(5) 3442(2) 9559(3) 61(2)
C(12) 1679(5) 4126(2) 8497(4) 54(2)
C(13) 133(4) 1406(2) 6006(2) 22(1)
C(14) 1027(4) 1595(2) 5765(2) 25(1)
C(15) 1879(4) 1338(2) 5483(3) 36(1)
C(16) 983(4) 2069(2) 5817(2) 27(1)
C(17) 1741(4) 2398(2) 5593(3) 39(1)
C(18) 71(4) 2183(2) 6093(2) 25(1)
C(19) -280(5) 2661(2) 6190(3) 43(2)
C(20) -454(4) 1784(2) 6196(2) 23(1)
C(21) -1476(4) 1763(2) 6451(3) 30(1)
C(22) -791(5) 625(2) 6855(3) 50(2)
C(23) 675(5) 397(2) 5776(4) 54(2)
C(24) -1242(4) 761(2) 5280(3) 41(2)
C(25) 4568(4) 887(2) 7644(3) 25(1)
C(26) 3845(4) 572(2) 7413(3) 27(1)
C(27) 3600(4) 446(2) 6668(3) 33(1)
C(28) 3422(4) 365(2) 8012(3) 28(1)
C(29) 2639(4) 15(2) 8006(3) 44(2)
C(30) 3890(4) 549(2) 8619(3) 29(1)
C(31) 3711(5) 402(2) 9357(3) 43(2)
C(32) 4582(4) 869(2) 8404(3) 31(1)
C(33) 5237(4) 1124(2) 8905(3) 45(2)
C(34) 6132(5) 809(2) 6558(3) 51(2)
C(35) 6178(5) 1623(2) 7497(4) 52(2)
C(36) 4629(4) 1542(2) 6365(3) 42(2)
C(37) -107(4) 1339(2) 10049(3) 26(1)
C(38) 88(4) 1800(2) 10231(2) 24(1)
C(39) -590(4) 2201(2) 10159(3) 33(1)
C(40) 1055(4) 1839(2) 10482(2) 24(1)
C(41) 1531(4) 2255(2) 10761(3) 33(1)
36
C(42) 1471(4) 1399(2) 10465(2) 27(1)
C(43) 2478(4) 1274(2) 10698(3) 39(1)
C(44) 768(4) 1091(2) 10211(3) 30(1)
C(45) 916(5) 587(2) 10167(3) 46(2)
C(46) -1702(5) 710(3) 10522(4) 69(2)
C(47) -1170(6) 680(2) 9007(3) 68(2)
C(48) -2240(5) 1478(3) 9559(4) 76(2)
Li(1) 7518(8) 4099(3) 8033(5) 42(2)
O(1) 6134(3) 4167(2) 7894(2) 52(1)
O(2) 7837(3) 3462(1) 8117(2) 39(1)
O(3) 7917(3) 4329(1) 8928(2) 51(1)
O(4) 8192(3) 4401(2) 7313(3) 64(1)
C(49) 7614(4) 4760(2) 9182(3) 35(1)
C(50) 8266(4) 4870(2) 9802(3) 44(2)
C(51) 9153(5) 4593(2) 9656(3) 55(2)
C(52) 8791(5) 4213(3) 9295(5) 82(3)
C(53) 7908(7) 4798(2) 6926(4) 71(2)
C(54) 8752(7) 4932(3) 6518(5) 101(3)
C(55) 9476(7) 4584(4) 6614(6) 123(4)
C(56) 9185(7) 4340(5) 7219(7) 159(6)
C(57) 5470(5) 3987(3) 8379(4) 74(2)
C(58) 4499(5) 4143(3) 8152(4) 67(2)
C(59) 4583(5) 4191(3) 7392(5) 78(2)
C(60) 5615(6) 4293(3) 7264(4) 76(2)
C(61) 7791(6) 3171(2) 7515(3) 58(2)
C(62) 7644(8) 2716(3) 7746(4) 105(4)
C(63) 7890(6) 2706(2) 8496(4) 73(2)
C(64) 7796(6) 3175(2) 8732(3) 56(2)
___________________________________________________________
Bond lengths [Å] and angles [°].
Dy(1)-C(1) 2.621(5)
Dy(1)-C(2) 2.635(4)
Dy(1)-C(8) 2.666(5)
Dy(3)-C(28) 2.687(5)
Dy(3)-Dy(4) 3.4614(3)
Dy(4)-C(37) 2.614(5)
37
Dy(1)-C(4) 2.675(5)
Dy(1)-C(6) 2.686(5)
Dy(1)-Dy(3) 3.2643(4)
Dy(1)-Dy(2) 3.4577(3)
Dy(1)-Dy(4) 3.4772(3)
Dy(2)-C(13) 2.621(5)
Dy(2)-C(14) 2.627(5)
Dy(2)-C(20) 2.657(5)
Dy(2)-C(18) 2.667(5)
Dy(2)-C(16) 2.671(5)
Dy(2)-Cl(1) 2.7013(15)
Dy(2)-Dy(3) 3.4733(3)
Dy(2)-Dy(4) 3.8207(4)
Dy(3)-C(25) 2.636(5)
Dy(3)-C(32) 2.639(5)
Dy(3)-C(26) 2.652(5)
Dy(3)-C(30) 2.682(5)
C(14)-C(15) 1.514(7)
C(16)-C(18) 1.420(7)
C(16)-C(17) 1.500(7)
C(18)-C(20) 1.401(7)
C(18)-C(19) 1.510(7)
C(20)-C(21) 1.510(7)
C(25)-C(26) 1.430(7)
C(25)-C(32) 1.448(7)
C(26)-C(28) 1.431(7)
C(26)-C(27) 1.500(7)
C(28)-C(30) 1.420(7)
C(28)-C(29) 1.500(7)
C(30)-C(32) 1.413(7)
C(30)-C(31) 1.498(7)
C(32)-C(33) 1.505(7)
C(37)-C(38) 1.431(7)
C(37)-C(44) 1.445(7)
Dy(4)-C(38) 2.630(5)
Dy(4)-C(44) 2.651(5)
Dy(4)-C(40) 2.668(5)
Dy(4)-C(42) 2.671(5)
Dy(4)-Cl(1) 2.7137(15)
Si(1)-C(10) 1.853(7)
Si(1)-C(11) 1.857(6)
Si(1)-C(12) 1.858(6)
Si(1)-C(1) 1.863(5)
Si(2)-C(13) 1.861(5)
Si(2)-C(23) 1.861(6)
Si(2)-C(24) 1.868(6)
Si(2)-C(22) 1.886(6)
Si(3)-C(35) 1.867(6)
Si(3)-C(25) 1.866(5)
Si(3)-C(34) 1.873(6)
Si(3)-C(36) 1.879(6)
Si(4)-C(48) 1.853(8)
Si(4)-C(37) 1.866(5)
Si(4)-C(47) 1.870(6)
Si(4)-C(46) 1.872(7)
C(1)-C(2) 1.425(7)
C(1)-C(8) 1.444(7)
C(2)-C(4) 1.408(7)
C(2)-C(3) 1.507(6)
C(4)-C(6) 1.425(7)
C(4)-C(5) 1.496(7)
C(6)-C(8) 1.418(7)
C(6)-C(7) 1.508(7)
C(8)-C(9) 1.502(7)
C(13)-C(20) 1.434(7)
C(13)-C(14) 1.443(7)
C(14)-C(16) 1.406(7)
C(1)-Dy(1)-C(2) 31.45(15)
38
C(38)-C(40) 1.420(7)
C(38)-C(39) 1.516(7)
C(40)-C(42) 1.425(7)
C(40)-C(41) 1.488(7)
C(42)-C(44) 1.410(7)
C(42)-C(43) 1.502(7)
C(44)-C(45) 1.509(7)
Li(1)-O(4) 1.899(12)
Li(1)-O(3) 1.906(10)
Li(1)-O(2) 1.940(11)
Li(1)-O(1) 1.942(11)
O(1)-C(57) 1.420(8)
O(1)-C(60) 1.435(8)
O(2)-C(61) 1.433(7)
O(2)-C(64) 1.448(7)
O(3)-C(52) 1.428(7)
O(3)-C(49) 1.427(6)
O(4)-C(56) 1.403(10)
O(4)-C(53) 1.436(8)
C(49)-C(50) 1.508(8)
C(50)-C(51) 1.508(8)
C(51)-C(52) 1.406(9)
C(53)-C(54) 1.474(11)
C(54)-C(55) 1.448(12)
C(55)-C(56) 1.424(12)
C(57)-C(58) 1.479(9)
C(58)-C(59) 1.460(10)
C(59)-C(60) 1.488(10)
C(61)-C(62) 1.433(9)
C(62)-C(63) 1.462(11)
C(63)-C(64) 1.464(9)
C(14)-Dy(2)-Dy(4)164.68(11)
C(20)-Dy(2)-Dy(4)133.23(11)
C(18)-Dy(2)-Dy(4)142.24(11)
C(1)-Dy(1)-C(8) 31.67(15)
C(2)-Dy(1)-C(8) 51.24(15)
C(1)-Dy(1)-C(4) 51.83(15)
C(2)-Dy(1)-C(4) 30.74(15)
C(8)-Dy(1)-C(4) 51.00(16)
C(1)-Dy(1)-C(6) 51.89(15)
C(2)-Dy(1)-C(6) 50.95(15)
C(8)-Dy(1)-C(6) 30.74(15)
C(4)-Dy(1)-C(6) 30.84(15)
C(1)-Dy(1)-Dy(3) 170.28(11)
C(2)-Dy(1)-Dy(3) 139.09(11)
C(8)-Dy(1)-Dy(3) 148.08(11)
C(4)-Dy(1)-Dy(3) 119.02(11)
C(6)-Dy(1)-Dy(3) 122.88(11)
C(1)-Dy(1)-Dy(2) 127.49(11)
C(2)-Dy(1)-Dy(2) 158.49(11)
C(8)-Dy(1)-Dy(2) 114.33(11)
C(4)-Dy(1)-Dy(2) 157.00(11)
C(6)-Dy(1)-Dy(2) 127.01(11)
Dy(3)-Dy(1)-Dy(2) 62.145(7)
C(1)-Dy(1)-Dy(4) 121.24(11)
C(2)-Dy(1)-Dy(4) 116.20(11)
C(8)-Dy(1)-Dy(4) 149.28(11)
C(4)-Dy(1)-Dy(4) 135.51(11)
C(6)-Dy(1)-Dy(4) 166.11(11)
Dy(3)-Dy(1)-Dy(4) 61.693(7)
Dy(2)-Dy(1)-Dy(4) 66.864(7)
C(13)-Dy(2)-C(14) 31.93(15)
C(13)-Dy(2)-C(20) 31.52(14)
C(14)-Dy(2)-C(20) 51.49(15)
C(13)-Dy(2)-C(18) 51.69(15)
C(14)-Dy(2)-C(18) 51.02(15)
C(20)-Dy(2)-C(18) 30.52(14)
C(13)-Dy(2)-C(16) 52.00(15)
39
C(16)-Dy(2)-Dy(4)164.07(11)
Cl(1)-Dy(2)-Dy(4) 45.25(3)
Dy(1)-Dy(2)-Dy(4)56.812(7)
Dy(3)-Dy(2)-Dy(4)56.418(6)
C(25)-Dy(3)-C(32)31.87(15)
C(25)-Dy(3)-C(26)31.36(15)
C(32)-Dy(3)-C(26)51.53(16)
C(25)-Dy(3)-C(30)51.80(16)
C(32)-Dy(3)-C(30)30.80(16)
C(26)-Dy(3)-C(30)50.97(15)
C(25)-Dy(3)-C(28)51.97(15)
C(32)-Dy(3)-C(28)51.27(16)
C(26)-Dy(3)-C(28)31.08(15)
C(30)-Dy(3)-C(28)30.68(15)
C(25)-Dy(3)-Dy(1)122.16(11)
C(32)-Dy(3)-Dy(1)120.22(12)
C(26)-Dy(3)-Dy(1)147.27(11)
C(30)-Dy(3)-Dy(1)141.56(12)
C(28)-Dy(3)-Dy(1)171.42(12)
C(25)-Dy(3)-Dy(4)159.52(11)
C(32)-Dy(3)-Dy(4)127.65(12)
C(26)-Dy(3)-Dy(4)150.39(11)
C(30)-Dy(3)-Dy(4)111.06(11)
C(28)-Dy(3)-Dy(4)120.74(11)
Dy(1)-Dy(3)-Dy(4)62.181(7)
C(25)-Dy(3)-Dy(2)133.58(11)
C(32)-Dy(3)-Dy(2)165.28(12)
C(26)-Dy(3)-Dy(2)117.96(11)
C(30)-Dy(3)-Dy(2)154.71(12)
C(28)-Dy(3)-Dy(2)126.80(11)
Dy(1)-Dy(3)-Dy(2)61.662(7)
Dy(4)-Dy(3)-Dy(2)66.866(8)
C(37)-Dy(4)-C(38)31.68(15)
C(37)-Dy(4)-C(44)31.85(16)
C(14)-Dy(2)-C(16) 30.77(15)
C(20)-Dy(2)-C(16) 50.99(15)
C(18)-Dy(2)-C(16) 30.85(15)
C(13)-Dy(2)-Cl(1) 104.75(11)
C(14)-Dy(2)-Cl(1) 136.21(12)
C(20)-Dy(2)-Cl(1) 87.99(11)
C(18)-Dy(2)-Cl(1) 103.59(12)
C(16)-Dy(2)-Cl(1) 134.36(12)
C(13)-Dy(2)-Dy(1) 161.18(10)
C(14)-Dy(2)-Dy(1) 129.47(11)
C(20)-Dy(2)-Dy(1) 146.98(10)
C(18)-Dy(2)-Dy(1) 118.69(11)
C(16)-Dy(2)-Dy(1) 110.69(11)
Cl(1)-Dy(2)-Dy(1) 93.08(3)
C(13)-Dy(2)-Dy(3) 125.22(11)
C(14)-Dy(2)-Dy(3) 113.17(11)
C(20)-Dy(2)-Dy(3) 156.07(10)
C(18)-Dy(2)-Dy(3) 158.07(11)
C(16)-Dy(2)-Dy(3) 127.53(12)
Cl(1)-Dy(2)-Dy(3) 98.11(3)
Dy(1)-Dy(2)-Dy(3) 56.193(7)
C(13)-Dy(2)-Dy(4) 141.62(10)
C(1)-C(8)-Dy(1) 72.5(3)
C(9)-C(8)-Dy(1) 120.6(3)
C(20)-C(13)-C(14) 105.8(4)
C(20)-C(13)-Si(2) 124.4(4)
C(14)-C(13)-Si(2) 129.4(4)
C(20)-C(13)-Dy(2) 75.6(3)
C(14)-C(13)-Dy(2) 74.3(3)
Si(2)-C(13)-Dy(2) 121.1(2)
C(16)-C(14)-C(13) 109.0(4)
C(16)-C(14)-C(15) 124.1(5)
C(13)-C(14)-C(15) 126.9(5)
C(16)-C(14)-Dy(2) 76.3(3)
40
C(38)-Dy(4)-C(44)51.64(15)
C(37)-Dy(4)-C(40)52.20(15)
C(38)-Dy(4)-C(40)31.07(15)
C(44)-Dy(4)-C(40)51.31(15)
C(37)-Dy(4)-C(42)52.01(16)
C(38)-Dy(4)-C(42)51.25(16)
C(44)-Dy(4)-C(42)30.73(16)
C(40)-Dy(4)-C(42)30.96(15)
C(37)-Dy(4)-Cl(1) 90.16(12)
C(38)-Dy(4)-Cl(1) 97.36(12)
C(44)-Dy(4)-Cl(1)115.59(13)
C(40)-Dy(4)-Cl(1)127.39(11)
C(42)-Dy(4)-Cl(1)142.16(12)
C(37)-Dy(4)-Dy(3)142.08(11)
C(38)-Dy(4)-Dy(3)163.31(11)
C(44)-Dy(4)-Dy(3)115.16(11)
C(40)-Dy(4)-Dy(3)134.39(11)
C(42)-Dy(4)-Dy(3)112.07(12)
Cl(1)-Dy(4)-Dy(3) 98.15(3)
C(37)-Dy(4)-Dy(1)160.83(11)
C(38)-Dy(4)-Dy(1)129.22(11)
C(44)-Dy(4)-Dy(1)151.96(13)
C(40)-Dy(4)-Dy(1)112.73(11)
C(42)-Dy(4)-Dy(1)122.95(11)
Cl(1)-Dy(4)-Dy(1) 92.44(3)
Dy(3)-Dy(4)-Dy(1)56.127(7)
C(37)-Dy(4)-Dy(2)133.19(11)
C(38)-Dy(4)-Dy(2)139.94(11)
C(44)-Dy(4)-Dy(2)145.86(12)
C(40)-Dy(4)-Dy(2)160.11(10)
C(42)-Dy(4)-Dy(2)168.02(12)
Cl(1)-Dy(4)-Dy(2) 44.99(3)
Dy(3)-Dy(4)-Dy(2)56.716(7)
Dy(1)-Dy(4)-Dy(2)56.325(6)
C(13)-C(14)-Dy(2) 73.8(3)
C(15)-C(14)-Dy(2) 117.4(3)
C(14)-C(16)-C(18) 107.6(4)
C(14)-C(16)-C(17) 126.5(5)
C(18)-C(16)-C(17) 125.8(5)
C(14)-C(16)-Dy(2) 72.9(3)
C(18)-C(16)-Dy(2) 74.4(3)
C(17)-C(16)-Dy(2) 120.5(3)
C(20)-C(18)-C(16) 108.7(4)
C(20)-C(18)-C(19) 127.0(5)
C(16)-C(18)-C(19) 124.1(5)
C(20)-C(18)-Dy(2) 74.3(3)
C(16)-C(18)-Dy(2) 74.7(3)
C(19)-C(18)-Dy(2) 121.3(3)
C(18)-C(20)-C(13) 108.8(4)
C(18)-C(20)-C(21) 125.1(5)
C(13)-C(20)-C(21) 126.1(5)
C(18)-C(20)-Dy(2) 75.1(3)
C(13)-C(20)-Dy(2) 72.8(3)
C(21)-C(20)-Dy(2) 119.2(3)
C(26)-C(25)-C(32) 106.1(4)
C(26)-C(25)-Si(3) 124.2(4)
C(32)-C(25)-Si(3) 129.6(4)
C(26)-C(25)-Dy(3) 74.9(3)
C(32)-C(25)-Dy(3) 74.2(3)
Si(3)-C(25)-Dy(3) 118.9(2)
C(28)-C(26)-C(25) 109.3(4)
C(28)-C(26)-C(27) 124.0(5)
C(25)-C(26)-C(27) 126.6(5)
C(28)-C(26)-Dy(3) 75.8(3)
C(25)-C(26)-Dy(3) 73.7(3)
C(27)-C(26)-Dy(3) 120.4(3)
C(30)-C(28)-C(26) 107.2(5)
C(30)-C(28)-C(29) 126.0(5)
41
C(10)-Si(1)-C(11)106.0(4)
C(10)-Si(1)-C(12)108.5(3)
C(11)-Si(1)-C(12)105.9(3)
C(10)-Si(1)-C(1) 111.9(3)
C(11)-Si(1)-C(1) 114.4(3)
C(12)-Si(1)-C(1) 109.8(3)
C(13)-Si(2)-C(23)113.3(3)
C(13)-Si(2)-C(24)107.7(2)
C(23)-Si(2)-C(24)107.2(3)
C(13)-Si(2)-C(22)112.2(2)
C(23)-Si(2)-C(22)106.3(3)
C(24)-Si(2)-C(22)110.0(3)
C(35)-Si(3)-C(25)114.2(3)
C(35)-Si(3)-C(34)106.6(3)
C(25)-Si(3)-C(34)108.6(2)
C(35)-Si(3)-C(36)107.4(3)
C(25)-Si(3)-C(36)112.4(2)
C(34)-Si(3)-C(36)107.3(3)
C(48)-Si(4)-C(37)113.4(3)
C(48)-Si(4)-C(47)106.8(4)
C(37)-Si(4)-C(47)113.6(3)
C(48)-Si(4)-C(46)107.5(4)
C(37)-Si(4)-C(46)108.9(3)
C(47)-Si(4)-C(46)106.2(3)
Dy(2)-Cl(1)-Dy(4) 89.75(5)
C(2)-C(1)-C(8) 106.1(4)
C(2)-C(1)-Si(1) 129.1(4)
C(8)-C(1)-Si(1) 124.5(4)
C(2)-C(1)-Dy(1) 74.8(3)
C(8)-C(1)-Dy(1) 75.9(3)
Si(1)-C(1)-Dy(1) 119.7(2)
C(4)-C(2)-C(1) 109.6(4)
C(4)-C(2)-C(3) 122.5(5)
C(1)-C(2)-C(3) 127.8(5)
C(26)-C(28)-C(29) 126.7(5)
C(30)-C(28)-Dy(3) 74.5(3)
C(26)-C(28)-Dy(3) 73.1(3)
C(29)-C(28)-Dy(3) 118.6(4)
C(32)-C(30)-C(28) 108.8(5)
C(32)-C(30)-C(31) 126.3(5)
C(28)-C(30)-C(31) 124.7(5)
C(32)-C(30)-Dy(3) 72.9(3)
C(28)-C(30)-Dy(3) 74.9(3)
C(31)-C(30)-Dy(3) 121.4(3)
C(30)-C(32)-C(25) 108.6(5)
C(30)-C(32)-C(33) 123.8(5)
C(25)-C(32)-C(33) 127.6(5)
C(30)-C(32)-Dy(3) 76.3(3)
C(25)-C(32)-Dy(3) 74.0(3)
C(33)-C(32)-Dy(3) 118.1(4)
C(38)-C(37)-C(44) 106.2(4)
C(38)-C(37)-Si(4) 129.4(4)
C(44)-C(37)-Si(4) 123.9(4)
C(38)-C(37)-Dy(4) 74.8(3)
C(44)-C(37)-Dy(4) 75.4(3)
Si(4)-C(37)-Dy(4) 121.7(2)
C(40)-C(38)-C(37) 109.3(4)
C(40)-C(38)-C(39) 123.2(4)
C(37)-C(38)-C(39) 127.5(5)
C(40)-C(38)-Dy(4) 76.0(3)
C(37)-C(38)-Dy(4) 73.6(3)
C(39)-C(38)-Dy(4) 115.7(3)
C(38)-C(40)-C(42) 107.4(4)
C(38)-C(40)-C(41) 126.5(5)
O(3)-Li(1)-O(1) 110.7(6)
O(2)-Li(1)-O(1) 109.5(5)
C(57)-O(1)-C(60) 108.7(5)
C(57)-O(1)-Li(1) 121.7(5)
42
C(4)-C(2)-Dy(1) 76.2(3)
C(1)-C(2)-Dy(1) 73.7(3)
C(3)-C(2)-Dy(1) 116.7(3)
C(2)-C(4)-C(6) 107.8(4)
C(2)-C(4)-C(5) 125.4(5)
C(6)-C(4)-C(5) 126.8(5)
C(2)-C(4)-Dy(1) 73.1(3)
C(6)-C(4)-Dy(1) 75.0(3)
C(5)-C(4)-Dy(1) 119.2(3)
C(8)-C(6)-C(4) 107.9(4)
C(8)-C(6)-C(7) 126.5(5)
C(4)-C(6)-C(7) 125.5(5)
C(8)-C(6)-Dy(1) 73.9(3)
C(4)-C(6)-Dy(1) 74.2(3)
C(7)-C(6)-Dy(1) 119.6(3)
C(6)-C(8)-C(1) 108.5(4)
C(6)-C(8)-C(9) 125.0(5)
C(1)-C(8)-C(9) 126.4(5)
C(6)-C(8)-Dy(1) 75.4(3)
C(42)-C(40)-C(41)125.9(5)
C(38)-C(40)-Dy(4)73.0(3)
C(42)-C(40)-Dy(4)74.6(3)
C(41)-C(40)-Dy(4)121.4(3)
C(44)-C(42)-C(40)108.6(5)
C(44)-C(42)-C(43)125.1(5)
C(40)-C(42)-C(43)126.3(5)
C(44)-C(42)-Dy(4)73.8(3)
C(40)-C(42)-Dy(4)74.4(3)
C(43)-C(42)-Dy(4)119.4(3)
C(42)-C(44)-C(37)108.5(4)
C(42)-C(44)-C(45)124.2(5)
C(56)-O(4)-Li(1) 122.0(6)
C(53)-O(4)-Li(1) 128.3(6)
C(60)-O(1)-Li(1) 128.1(5)
C(61)-O(2)-C(64) 107.0(5)
C(61)-O(2)-Li(1) 120.7(5)
C(64)-O(2)-Li(1) 128.6(5)
C(52)-O(3)-C(49) 107.6(4)
C(52)-O(3)-Li(1) 125.3(5)
C(49)-O(3)-Li(1) 122.6(5)
C(56)-O(4)-C(53) 107.4(6)
O(2)-C(61)-C(62) 108.9(6)
C(61)-C(62)-C(63) 106.6(6)
C(64)-C(63)-C(62) 105.1(6)
O(2)-C(64)-C(63) 107.6(5)
O(3)-C(49)-C(50) 106.4(4)
C(49)-C(50)-C(51) 102.4(5)
C(52)-C(51)-C(50) 104.0(6)
C(51)-C(52)-O(3) 109.7(6)
O(4)-C(53)-C(54) 106.2(7)
C(55)-C(54)-C(53) 107.3(7)
C(56)-C(55)-C(54) 104.8(9)
O(4)-C(56)-C(55) 109.5(8)
O(1)-C(57)-C(58) 106.9(6)
C(59)-C(58)-C(57) 103.2(6)
C(58)-C(59)-C(60) 106.2(6)
O(1)-C(60)-C(59) 106.1(7)
C(37)-C(44)-C(45) 127.2(5)
C(42)-C(44)-Dy(4) 75.4(3)
C(37)-C(44)-Dy(4) 72.7(3)
C(45)-C(44)-Dy(4) 120.9(3)
O(4)-Li(1)-O(3) 109.8(5)
O(4)-Li(1)-O(2) 113.6(6)
O(3)-Li(1)-O(2) 102.2(5)
O(4)-Li(1)-O(1) 110.7(5)
43
Anisotropic displacement parameters (Å
2
x 10
3
). The anisotropic
displacement factor exponent takes the form: -2 π
2
[ h
2
a*
2
U
11
+ ... + 2 h
k a* b* U
12
___________________________________________________________
U
11
U
22
U
33
U
23
U
13
U
12
___________________________________________________________
Dy(1) 19(1) 20(1) 20(1) -1(1) 1(1) -1(1)
Dy(2) 19(1) 24(1) 17(1) -1(1) 1(1) -1(1)
Dy(3) 20(1) 21(1) 22(1) -3(1) 3(1) 1(1)
Dy(4) 22(1) 23(1) 17(1) 1(1) 4(1) 1(1)
Si(1) 26(1) 23(1) 36(1) -1(1) 3(1) 3(1)
Si(2) 34(1) 25(1) 26(1) -2(1) 4(1) -4(1)
Si(3) 28(1) 29(1) 44(1) -4(1) 15(1) 1(1)
Si(4) 43(1) 42(1) 40(1) -5(1) 7(1) -20(1)
Cl(1) 37(1) 61(1) 35(1) 3(1) 3(1) -1(1)
C(1)25(3) 17(2) 25(3) 0(2) -1(2) 2(2)
C(2)23(3) 19(2) 26(3) -4(2) -2(2) -10(2)
C(3)46(4) 38(3) 23(3) -2(2) -7(3) 7(3)
C(4)22(3) 26(3) 31(3) -3(2) -1(2) -5(2)
C(5)22(3) 40(3) 53(4) -7(3) -6(3) 3(2)
C(6)25(3) 24(3) 34(3) -4(2) 7(2) -10(2)
C(7)46(4) 47(4) 42(3) -3(3) 20(3) -3(3)
C(8)32(3) 19(3) 27(3) 3(2) 2(2) -2(2)
C(9)44(4) 34(3) 25(3) 5(2) 1(3) -8(3)
C(10) 30(4) 63(5) 108(7) -39(4) -10(4) 12(3)
C(11) 52(5) 67(5) 64(5) 16(4) 28(4) 34(4)
C(12) 54(4) 29(3) 78(5) 4(3) 15(4) 10(3)
C(13) 25(3) 26(3) 15(2) -2(2) 2(2) -1(2)
C(14) 23(3) 36(3) 15(2) 0(2) 1(2) 2(2)
C(15) 34(3) 48(4) 26(3) -7(3) 9(3) -9(3)
C(16) 31(3) 33(3) 17(2) 3(2) -3(2) -6(2)
C(17) 44(4) 44(4) 29(3) 1(3) 2(3) -18(3)
C(18) 31(3) 22(3) 22(3) 1(2) -7(2) -2(2)
44
C(19) 55(4) 26(3) 48(4) -2(3) -6(3) 3(3)
C(20) 19(3) 29(3) 19(2) -2(2) -6(2) 4(2)
C(21) 23(3) 41(3) 27(3) -9(2) -1(2) 10(2)
C(22) 62(5) 47(4) 40(4) 3(3) 5(3) -23(3)
C(23) 59(5) 31(3) 73(5) -12(3) 12(4) 6(3)
C(24) 44(4) 37(3) 42(3) -5(3) -6(3) -17(3)
C(25) 20(3) 25(3) 31(3) -4(2) 7(2) 9(2)
C(26) 28(3) 25(3) 28(3) -5(2) 7(2) 3(2)
C(27) 41(4) 31(3) 28(3) -6(2) 3(3) 3(3)
C(28) 29(3) 17(3) 38(3) -3(2) 7(2) 3(2)
C(29) 50(4) 28(3) 56(4) -3(3) 22(3) -11(3)
C(30) 32(3) 27(3) 27(3) 3(2) 2(2) 13(2)
C(31) 55(4) 41(4) 34(3) 4(3) 5(3) 17(3)
C(32) 25(3) 31(3) 36(3) -5(2) 2(2) 11(2)
C(33) 35(4) 55(4) 44(4) -10(3) -12(3) 6(3)
C(34) 50(4) 32(3) 73(5) -6(3) 34(4) 3(3)
C(35) 37(4) 47(4) 73(5) -15(3) 19(3) -13(3)
C(36) 39(4) 37(3) 52(4) 9(3) 15(3) -1(3)
C(37) 29(3) 27(3) 23(3) 0(2) 6(2) -8(2)
C(38) 27(3) 25(3) 20(2) 2(2) 8(2) 1(2)
C(39) 30(3) 36(3) 33(3) -3(2) 2(3) 4(3)
C(40) 28(3) 27(3) 17(2) 3(2) 3(2) 4(2)
C(41) 36(3) 39(3) 24(3) -3(2) -1(2) -5(3)
C(42) 30(3) 34(3) 16(2) 6(2) 0(2) -3(2)
C(43) 34(3) 50(4) 32(3) 4(3) -5(3) 10(3)
C(44) 47(4) 21(3) 21(3) 6(2) 10(2) 6(2)
C(45) 74(5) 28(3) 38(3) 4(3) 14(3) 8(3)
C(46) 72(5) 72(5) 62(5) -4(4) 19(4) -41(4)
C(47) 102(7) 57(5) 46(4) -11(3) 2(4) -33(4)
C(48) 40(4) 82(6) 106(7) -17(5) -16(4) -16(4)
Li(1) 43(6) 36(6) 46(6) -9(5) -8(5) -4(5)
O(1) 32(3) 69(3) 55(3) 7(2) -4(2) 0(2)
O(2) 48(3) 37(2) 32(2) -5(2) 2(2) 1(2)
O(3) 39(3) 54(3) 58(3) -26(2) -19(2) 21(2)
45
O(4) 46(3) 73(4) 74(3) 26(3) 0(3) -5(3)
C(49) 29(3) 34(3) 42(3) 1(3) 2(3) 1(3)
C(50) 49(4) 43(4) 40(3) -4(3) 4(3) 2(3)
C(51) 47(4) 64(5) 52(4) -19(3) -12(3) 14(4)
C(52) 47(5) 88(6) 109(7) -46(5) -31(5) 25(4)
C(53) 107(7) 43(4) 63(5) 12(4) 9(5) 7(4)
C(54) 87(8) 98(8) 120(8) 47(6) 5(6) -31(6)
C(55) 73(7) 116(9) 180(12) 43(8) 23(8) -30(7)
C(56) 51(6) 231(14) 194(12) 157(11) 7(7) -5(8)
C(57) 45(5) 108(7) 67(5) 27(5) -2(4) -24(5)
C(58) 44(5) 66(5) 91(6) -22(4) 9(4) -8(4)
C(59) 45(5) 93(7) 94(7) 3(5) -12(5) -1(4)
C(60) 56(5) 103(7) 68(5) 0(5) -19(4) 1(5)
C(61) 87(6) 52(4) 34(4) -13(3) 1(4) -6(4)
C(62) 216(12) 41(5) 59(5) -15(4) 33(6) -38(6)
C(63) 97(7) 45(5) 77(6) 16(4) -3(5) 17(4)
C(64) 66(5) 64(5) 39(4) 4(3) 5(3) -10(4)
___________________________________________________________
Hydrogen coordinates ( x 10
4
) and isotropic displacement parameters (Å
2
x 10
3
).
x y z U(eq)
___________________________________________________________
H(3A) 2701 2922 9822 53
H(3B) 3557 3285 9875 53
H(3C) 3800 2756 9838 53
H(5A) 5402 2863 9075 57
H(5B) 5443 2530 8414 57
H(5C) 4863 2385 9096 57
H(7A) 5119 3039 7158 67
H(7B) 4213 2841 6724 67
H(7C) 4837 2517 7230 67
H(9A) 2481 3665 7092 52
H(9B) 1945 3191 6975 52
H(9C) 2991 3271 6658 52
46
H(10A) 591 3401 7591 101
H(10B) -106 3453 8245 101
H(10C) 435 2984 8112 101
H(11A) 1066 3120 9664 91
H(11B) 533 3599 9625 91
H(11C) 1640 3571 9875 91
H(12A) 2156 4243 8837 80
H(12B) 1061 4280 8561 80
H(12C) 1903 4181 8019 80
H(15A) 2454 1531 5504 54
H(15B) 1743 1250 4994 54
H(15C) 1993 1066 5767 54
H(17A) 2374 2250 5611 58
H(17B) 1747 2659 5910 58
H(17C) 1596 2499 5112 58
H(19A) -794 2665 6536 65
H(19B) -531 2779 5741 65
H(19C) 256 2852 6358 65
H(21A) -1469 1753 6966 46
H(21B) -1792 1491 6264 46
H(21C) -1831 2031 6289 46
H(22A) -297 665 7226 74
H(22B) -977 305 6829 74
H(22C) -1357 808 6962 74
H(23A) 934 468 5314 81
H(23B) 407 90 5769 81
H(23C) 1193 416 6133 81
H(24A) -1817 928 5419 62
H(24B) -1409 442 5209 62
H(24C) -999 887 4842 62
H(27A) 4075 228 6499 50
H(27B) 3608 717 6372 50
H(27C) 2956 309 6645 50
H(29A) 2926 -285 8067 66
47
H(29B) 2282 28 7557 66
H(29C) 2198 75 8391 66
H(31A) 4111 137 9470 64
H(31B) 3029 323 9404 64
H(31C) 3876 649 9682 64
H(33A) 4949 1131 9371 68
H(33B) 5322 1433 8735 68
H(33C) 5865 972 8936 68
H(34A) 6577 660 6891 77
H(34B) 6501 974 6206 77
H(34C) 5727 581 6322 77
H(35A) 5803 1825 7794 78
H(35B) 6519 1802 7147 78
H(35C) 6647 1456 7789 78
H(36A) 4361 1333 6013 64
H(36B) 5048 1761 6137 64
H(36C) 4102 1701 6595 64
H(39A) -249 2478 10297 49
H(39B) -1144 2156 10463 49
H(39C) -817 2227 9670 49
H(41A) 1258 2520 10522 49
H(41B) 2226 2239 10677 49
H(41C) 1424 2278 11267 49
H(43A) 2471 1161 11182 58
H(43B) 2894 1541 10676 58
H(43C) 2727 1038 10388 58
H(45A) 1608 520 10168 70
H(45B) 614 472 9732 70
H(45C) 621 440 10572 70
H(46A) -1230 470 10623 103
H(46B) -2325 574 10392 103
H(46C) -1775 898 10941 103
H(47A) -771 823 8651 102
H(47B) -1815 620 8807 102
48
H(47C) -872 395 9158 102
H(48A) -2358 1670 9968 115
H(48B) -2832 1314 9429 115
H(48C) -2042 1666 9164 115
H(49A) 6933 4747 9327 42
H(49B) 7674 4992 8811 42
H(50A) 7972 4779 10250 52
H(50B) 8419 5197 9821 52
H(51A) 9607 4764 9363 65
H(51B) 9487 4503 10099 65
H(52A) 8666 3966 9632 98
H(52B) 9273 4105 8957 98
H(53A) 7725 5043 7252 85
H(53B) 7351 4731 6610 85
H(54A) 8570 4961 6014 122
H(54B) 9004 5227 6686 122
H(55A) 9494 4383 6198 147
H(55B) 10123 4719 6692 147
H(56A) 9327 4014 7159 190
H(56B) 9547 4450 7639 190
H(57A) 5626 4096 8860 88
H(57B) 5498 3652 8379 88
H(58A) 4000 3918 8270 80
H(58B) 4339 4436 8373 80
H(59A) 4166 4440 7215 93
H(59B) 4387 3908 7151 93
H(60A) 5846 4117 6858 91
H(60B) 5703 4619 7165 91
H(61A) 8399 3192 7254 69
H(61B) 7253 3265 7197 69
H(62) 7429 2468 7465 126
H(63) 8070 2451 8772 88
H(64A) 7176 3218 8971 68
H(64B) 8328 3252 9067 68
49
Table 2-5. Full crystallographic information including ORTEP generated
numbering scheme with thermal ellipsoids drawn at 50% level from Neutron data
at 10(2) K collected at ILL.
Identification code dyli10
Empirical formula C64 H124 Cl Dy4 Li O4 Si4
Formula weight 1754.00
Temperature 10(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group P2(1)/n
Unit cell dimensions a = 13.8656(8) Å α= 90°.
b = 29.5705(17) Å β= 91.2180(10)°.
c = 19.0368(11) Å γ= 90°.
Volume 7803.6(8) Å
3
Z 4
Density (calculated) 1.493 Mg/m
3
Absorption coefficient 0.000 mm
-1
F(000) 305
Crystal size 3.25 x 1.25 x 0.75 mm
3
Theta range for data collection 1.62 to 30.26°.
Index ranges -19<=h<=19, -40<=k<=33, -19<=l<=19
Reflections collected 57041
Independent reflections 11343 [R(int) = 0.2898]
Completeness to theta = 30.26° 48.7 %
Refinement method Full-matrix least-squares on F
2
Data / restraints / parameters 11343 / 38 / 1819
Goodness-of-fit on F
2
1.113
Final R indices [I>2sigma(I)] R1 = 0.1011, wR2 = 0.1995
R indices (all data) R1 = 0.2054, wR2 = 0.2321
Largest diff. peak and hole 1.124 and -1.211 e.Å
-3
50
Atomic coordinates ( x 10
4
) and equivalent isotropic displacement parameters
(Å
2
x 10
3
). U(eq) is defined as one third of the trace of the orthogonalized U
ij
tensor. ___________________________________________________________
x y z U(eq)
___________________________________________________________
Dy(1) 7381(1) 2316(1) 6793(1) 7(1)
Dy(2) 7085(1) 1224(1) 6937(1) 9(1)
Dy(3) 9015(1) 1724(1) 7864(1) 7(1)
Dy(4) 8892(1) 1606(1) 5846(1) 8(1)
Cl(1) 10358(2) 1677(1) 6833(2) 25(1)
Si(1) 8542(5) 3489(2) 6358(4) 8(2)
Si(2) 4621(5) 1204(2) 7907(5) 12(2)
Si(3) 10311(5) 800(2) 9042(5) 12(2)
Si(4) 11338(5) 1083(2) 5176(5) 11(2)
Li(1) 7572(10) 907(5) 1920(9) 15(3)
O(1) 6875(4) 558(2) 2608(4) 16(1)
O(2) 8935(4) 831(2) 2075(4) 16(2)
O(3) 7149(4) 697(2) 997(4) 15(1)
O(4) 7209(4) 1541(2) 1868(4) 15(1)
C(1) 7381(3) 3191(1) 6562(3) 11(1)
C(2) 6991(3) 3147(1) 7268(3) 12(1)
51
C(3) 7451(3) 3319(2) 7943(3) 14(1)
C(4) 6065(3) 2930(2) 7195(3) 13(1)
C(5) 5382(3) 2824(2) 7783(4) 16(1)
C(6) 5873(3) 2849(1) 6468(3) 11(1)
C(7) 4960(3) 2644(2) 6136(3) 12(1)
C(8) 6670(3) 3012(2) 6075(3) 10(1)
C(9) 6712(3) 2988(2) 5284(3) 13(1)
C(10) 8378(3) 4117(2) 6481(4) 16(2)
C(11) 8951(4) 3393(2) 5432(4) 22(1)
C(12) 9587(3) 3303(2) 6960(4) 20(2)
C(13) 5423(3) 874(2) 7324(3) 12(2)
C(14) 6149(3) 557(1) 7578(3) 11(1)
C(15) 6386(3) 441(2) 8342(3) 14(1)
C(16) 6589(3) 344(1) 6991(3) 16(1)
C(17) 7379(4) -4(2) 7016(5) 19(2)
C(18) 6124(3) 518(1) 6361(3) 13(1)
C(19) 6316(4) 356(2) 5618(4) 19(1)
C(20) 5419(3) 840(2) 6561(3) 14(2)
C(21) 4759(3) 1091(2) 6036(4) 17(2)
C(22) 3846(3) 796(2) 8404(3) 18(1)
C(23) 3767(3) 1594(2) 7413(3) 18(1)
C(24) 5308(3) 1563(2) 8572(3) 16(1)
C(25) 9882(3) 1395(1) 8999(3) 11(1)
C(26) 8982(3) 1577(1) 9242(3) 11(1)
C(27) 8116(3) 1326(2) 9526(4) 15(1)
C(28) 9015(3) 2053(1) 9178(3) 10(1)
C(29) 8239(3) 2391(2) 9387(4) 12(1)
C(30) 9933(3) 2176(2) 8903(3) 15(1)
C(31) 10306(3) 2653(2) 8788(3) 14(1)
C(32) 10463(3) 1771(1) 8793(3) 11(1)
C(33) 11503(3) 1754(2) 8557(4) 15(2)
C(34) 11289(4) 753(2) 9762(4) 20(2)
C(35) 10824(4) 612(2) 8157(4) 19(1)
C(36) 9339(4) 380(2) 9255(4) 20(2)
52
C(37) 10145(3) 1331(1) 4915(3) 13(1)
C(38) 9911(3) 1798(1) 4734(3) 13(1)
C(39) 10579(3) 2199(1) 4812(4) 14(1)
C(40) 8937(3) 1817(1) 4476(3) 11(1)
C(41) 8420(3) 2230(2) 4190(4) 13(2)
C(42) 8535(3) 1373(2) 4493(3) 15(1)
C(43) 7513(3) 1239(2) 4270(4) 16(2)
C(44) 9276(3) 1075(1) 4756(3) 13(1)
C(45) 9176(3) 567(2) 4810(4) 17(2)
C(46) 11803(3) 726(2) 4441(4) 22(2)
C(47) 11274(4) 689(2) 5969(4) 23(2)
C(48) 12281(3) 1522(2) 5396(4) 24(2)
C(49) 7210(3) 207(2) 3086(3) 17(1)
C(50) 6318(4) 39(2) 3478(5) 24(2)
C(51) 5567(3) 418(2) 3350(3) 20(1)
C(52) 5821(3) 569(2) 2609(4) 23(2)
C(53) 9468(3) 692(2) 2706(3) 16(1)
C(54) 10515(3) 855(2) 2617(4) 17(2)
C(55) 10606(3) 871(2) 1818(3) 17(2)
C(56) 9601(3) 1042(2) 1587(4) 18(2)
C(57) 7387(3) 230(2) 827(3) 14(1)
C(58) 6722(3) 108(2) 191(4) 15(1)
C(59) 5818(3) 386(2) 356(3) 18(1)
C(60) 6241(3) 822(2) 636(3) 14(1)
C(61) 7238(3) 1840(2) 1259(3) 15(1)
C(62) 7067(3) 2314(2) 1546(3) 19(1)
C(63) 7509(4) 2285(2) 2289(3) 18(1)
C(64) 7268(4) 1801(2) 2513(3) 15(1)
___________________________________________________________
Bond lengths [Å] and angles [°].
Dy(1)-C(1) 2.627(4)
Dy(1)-C(8) 2.651(5)
Dy(1)-C(2) 2.679(5)
Dy(1)-C(6) 2.682(4)
Dy(4)-C(42) 2.702(6)
Dy(4)-Cl(1) 2.747(4)
Dy(4)-H(101) 2.132(12)
Dy(4)-H(103) 2.160(10)
53
Dy(1)-C(4) 2.697(5)
Dy(1)-Dy(2) 3.266(2)
Dy(1)-Dy(3) 3.484(2)
Dy(1)-Dy(4) 3.493(2)
Dy(1)-H(100) 2.418(12)
Dy(1)-H(102) 2.205(11)
Dy(1)-H(103) 2.215(11)
Dy(1)-H(104) 2.219(9)
Dy(1)-H(106) 2.391(11)
Dy(1)-H(107) 2.179(10)
Dy(2)-C(13) 2.644(5)
Dy(2)-C(20) 2.659(5)
Dy(2)-C(14) 2.670(5)
Dy(2)-C(16) 2.692(4)
Dy(2)-C(18) 2.697(5)
Dy(2)-Dy(4) 3.478(2)
Dy(2)-Dy(3) 3.501(2)
Dy(2)-H(100) 2.368(12)
Dy(2)-H(101) 2.201(11)
Dy(2)-H(104) 2.224(9)
Dy(2)-H(105) 2.223(13)
Dy(2)-H(106) 2.354(12)
Dy(2)-H(107) 2.158(10)
Dy(3)-C(25) 2.636(6)
Dy(3)-C(32) 2.652(5)
Dy(3)-C(26) 2.661(6)
Dy(3)-C(28) 2.685(6)
Dy(3)-C(30) 2.687(6)
Dy(3)-Cl(1) 2.739(5)
Dy(3)-H(100) 2.197(9)
Dy(3)-H(102) 2.119(10)
Dy(3)-H(104) 2.128(12)
Dy(3)-H(105) 2.181(10)
Dy(4)-C(38) 2.632(6)
Dy(4)-H(104) 2.129(12)
Dy(4)-H(106) 2.250(10)
Si(1)-C(1) 1.883(8)
Si(1)-C(10) 1.885(8)
Si(1)-C(11) 1.885(11)
Si(1)-C(12) 1.910(9)
Si(2)-C(13) 1.865(9)
Si(2)-C(22) 1.885(9)
Si(2)-C(23) 1.890(9)
Si(2)-C(24) 1.892(9)
Si(3)-C(25) 1.861(8)
Si(3)-C(36) 1.884(9)
Si(3)-C(34) 1.912(10)
Si(3)-C(35) 1.924(10)
Si(4)-C(37) 1.867(8)
Si(4)-C(46) 1.878(10)
Si(4)-C(48) 1.881(8)
Si(4)-C(47) 1.909(10)
Li(1)-O(2) 1.921(14)
Li(1)-O(1) 1.943(17)
Li(1)-O(4) 1.942(15)
Li(1)-O(3) 1.944(19)
O(1)-C(49) 1.448(8)
O(1)-C(52) 1.462(6)
O(2)-C(53) 1.455(9)
O(2)-C(56) 1.464(8)
O(3)-C(57) 1.455(7)
O(3)-C(60) 1.470(7)
O(4)-C(64) 1.450(9)
O(4)-C(61) 1.460(8)
C(1)-C(8) 1.440(7)
C(1)-C(2) 1.464(8)
C(2)-C(4) 1.441(6)
C(2)-C(3) 1.511(8)
54
Dy(4)-C(37) 2.636(5)
Dy(4)-C(44) 2.665(5)
Dy(4)-C(40) 2.683(6)
C(16)-C(18) 1.443(8)
C(16)-C(17) 1.504(7)
C(17)-H(17A) 1.116(12)
C(17)-H(17B) 1.110(17)
C(17)-H(17C) 1.13(3)
C(18)-C(20) 1.423(6)
C(18)-C(19) 1.523(9)
C(19)-H(19A) 1.096(12)
C(19)-H(19B) 1.077(17)
C(19)-H(19C) 1.103(12)
C(20)-C(21) 1.532(8)
C(21)-H(21A) 1.109(12)
C(21)-H(21B) 1.087(11)
C(21)-H(21C) 1.06(2)
C(22)-H(22A) 1.107(13)
C(22)-H(22B) 1.115(12)
C(22)-H(22C) 1.101(14)
C(23)-H(23A) 1.099(13)
C(23)-H(23B) 1.111(13)
C(23)-H(23C) 1.097(13)
C(24)-H(24A) 1.103(13)
C(24)-H(24B) 1.094(13)
C(24)-H(24C) 1.097(13)
C(25)-C(32) 1.433(6)
C(25)-C(26) 1.443(6)
C(26)-C(28) 1.414(6)
C(26)-C(27) 1.519(6)
C(27)-H(27A) 1.084(13)
C(27)-H(27B) 1.09(2)
C(27)-H(27C) 1.073(13)
C(28)-C(30) 1.434(6)
C(3)-H(3A) 1.091(10)
C(3)-H(3B) 1.100(15)
C(3)-H(3C) 1.095(11)
C(4)-C(6) 1.424(8)
C(4)-C(5) 1.515(8)
C(5)-H(5A) 1.089(12)
C(5)-H(5B) 1.072(11)
C(5)-H(5C) 1.085(18)
C(6)-C(8) 1.431(7)
C(6)-C(7) 1.528(6)
C(7)-H(7A) 1.089(13)
C(7)-H(7B) 1.090(12)
C(7)-H(7C) 1.062(15)
C(8)-C(9) 1.510(8)
C(9)-H(9A) 1.053(14)
C(9)-H(9B) 1.082(13)
C(9)-H(9C) 1.058(14)
C(10)-H(10A) 1.03(2)
C(10)-H(10B) 1.093(11)
C(10)-H(10C) 1.092(13)
C(11)-H(11A) 1.089(11)
C(11)-H(11B) 1.097(16)
C(11)-H(11C) 1.084(11)
C(12)-H(12A) 1.064(13)
C(12)-H(12B) 1.078(11)
C(12)-H(12C) 1.12(2)
C(13)-C(14) 1.451(6)
C(13)-C(20) 1.456(9)
C(14)-C(16) 1.431(7)
C(14)-C(15) 1.523(8)
C(15)-H(15A) 1.101(12)
C(15)-H(15B) 1.082(12)
C(15)-H(15C) 1.081(13)
C(46)-H(46C) 1.083(13)
55
C(28)-C(29) 1.527(6)
C(29)-H(29A) 1.061(13)
C(29)-H(29B) 1.090(12)
C(29)-H(29C) 1.14(2)
C(30)-C(32) 1.424(6)
C(30)-C(31) 1.519(6)
C(31)-H(31A) 1.099(12)
C(31)-H(31B) 1.063(18)
C(31)-H(31C) 1.054(18)
C(32)-C(33) 1.520(6)
C(33)-H(33A) 1.125(11)
C(33)-H(33B) 1.090(11)
C(33)-H(33C) 1.15(2)
C(34)-H(34A) 1.077(11)
C(34)-H(34B) 1.102(16)
C(34)-H(34C) 1.086(12)
C(35)-H(35A) 1.096(13)
C(35)-H(35B) 1.073(17)
C(35)-H(35C) 1.070(10)
C(36)-H(36A) 1.124(11)
C(36)-H(36B) 1.131(14)
C(36)-H(36C) 1.03(2)
C(37)-C(44) 1.450(6)
C(37)-C(38) 1.459(6)
C(38)-C(40) 1.428(6)
C(38)-C(39) 1.510(6)
C(39)-H(39A) 1.100(12)
C(39)-H(39B) 1.091(19)
C(39)-H(39C) 1.094(11)
C(40)-C(42) 1.429(6)
C(40)-C(41) 1.510(6)
C(41)-H(41A) 1.114(13)
C(41)-H(41B) 1.086(9)
C(41)-H(41C) 1.11(2)
C(47)-H(47A) 1.115(13)
C(47)-H(47B) 1.097(19)
C(47)-H(47C) 1.063(16)
C(48)-H(48A) 1.075(17)
C(48)-H(48B) 1.098(12)
C(48)-H(48C) 1.120(18)
C(49)-C(50) 1.541(8)
C(49)-H(49A) 1.089(14)
C(49)-H(49B) 1.116(11)
C(50)-C(51) 1.546(7)
C(50)-H(50A) 1.112(13)
C(50)-H(50B) 1.11(2)
C(51)-C(52) 1.528(9)
C(51)-H(51A) 1.098(11)
C(51)-H(51B) 1.109(16)
C(52)-H(52A) 1.114(12)
C(52)-H(52B) 1.101(15)
C(53)-C(54) 1.541(6)
C(53)-H(53A) 1.104(10)
C(53)-H(53B) 1.153(15)
C(54)-C(55) 1.529(9)
C(54)-H(54A) 1.084(11)
C(54)-H(54B) 1.115(11)
C(55)-C(56) 1.539(7)
C(55)-H(55A) 1.088(11)
C(55)-H(55B) 1.102(12)
C(56)-H(56A) 1.086(12)
C(56)-H(56B) 1.10(2)
C(57)-C(58) 1.549(8)
C(57)-H(57A) 1.107(10)
C(57)-H(57B) 1.087(13)
C(58)-C(59) 1.537(7)
C(58)-H(58A) 1.103(11)
C(58)-H(58B) 1.106(18)
56
C(42)-C(44) 1.435(6)
C(42)-C(43) 1.522(6)
C(43)-H(43A) 1.069(10)
C(43)-H(43B) 1.109(15)
C(43)-H(43C) 1.091(19)
C(44)-C(45) 1.514(6)
C(45)-H(45A) 1.078(11)
C(45)-H(45B) 1.074(18)
C(45)-H(45C) 1.080(18)
C(46)-H(46A) 1.100(18)
C(46)-H(46B) 1.108(13)
H(100)-Dy(1)-H(102) 62.0(4)
C(1)-Dy(1)-H(103) 83.8(3)
C(8)-Dy(1)-H(103) 85.4(3)
C(2)-Dy(1)-H(103) 113.0(3)
C(6)-Dy(1)-H(103) 114.5(3)
C(4)-Dy(1)-H(103) 134.3(3)
Dy(2)-Dy(1)-H(103) 98.1(3)
Dy(3)-Dy(1)-H(103) 85.8(3)
Dy(4)-Dy(1)-H(103) 36.5(3)
H(100)-Dy(1)-H(103) 120.5(4)
H(102)-Dy(1)-H(103) 85.3(5)
C(1)-Dy(1)-H(104) 144.0(3)
C(8)-Dy(1)-H(104) 150.5(3)
C(2)-Dy(1)-H(104) 148.0(3)
C(6)-Dy(1)-H(104) 160.1(3)
C(4)-Dy(1)-H(104) 158.0(3)
Dy(2)-Dy(1)-H(104) 42.7(2)
Dy(3)-Dy(1)-H(104) 35.8(3)
Dy(4)-Dy(1)-H(104) 35.7(3)
H(100)-Dy(1)-H(104) 55.2(4)
H(102)-Dy(1)-H(104) 67.1(4)
H(103)-Dy(1)-H(104) 66.9(4)
C(1)-Dy(1)-H(106) 129.2(3)
C(59)-C(60) 1.509(7)
C(59)-H(59A) 1.069(14)
C(59)-H(59B) 1.143(13)
C(60)-H(60A) 1.120(11)
C(60)-H(60B) 1.116(12)
C(61)-C(62) 1.522(7)
C(61)-H(61A) 1.084(14)
C(61)-H(61B) 1.116(13)
C(62)-C(63) 1.533(9)
C(62)-H(62A) 1.091(12)
C(62)-H(62B) 1.120(11)
C(63)-C(64) 1.530(7)
C(63)-H(25A) 1.119(10)
C(63)-H(63B) 1.121(14)
C(64)-H(64A) 1.103(14)
C(64)-H(64B) 1.121(14)
C(1)-Dy(1)-C(8) 31.67(15)
C(1)-Dy(1)-C(2) 32.02(17)
C(8)-Dy(1)-C(2) 52.05(17)
C(1)-Dy(1)-C(6) 51.97(13)
C(8)-Dy(1)-C(6) 31.11(15)
C(2)-Dy(1)-C(6) 51.37(14)
C(1)-Dy(1)-C(4) 52.12(15)
C(8)-Dy(1)-C(4) 51.42(17)
C(2)-Dy(1)-C(4) 31.09(13)
C(6)-Dy(1)-C(4) 30.70(17)
C(1)-Dy(1)-Dy(2) 171.39(12)
C(8)-Dy(1)-Dy(2) 139.88(12)
C(2)-Dy(1)-Dy(2) 148.48(14)
C(6)-Dy(1)-Dy(2) 120.12(10)
C(4)-Dy(1)-Dy(2) 123.68(12)
C(1)-Dy(1)-Dy(3) 126.20(12)
C(8)-Dy(1)-Dy(3) 157.17(11)
C(2)-Dy(1)-Dy(3) 113.40(13)
57
C(8)-Dy(1)-H(106) 103.5(3)
C(2)-Dy(1)-H(106) 154.9(3)
C(6)-Dy(1)-H(106) 105.3(3)
C(4)-Dy(1)-H(106) 132.0(3)
Dy(2)-Dy(1)-H(106) 46.0(3)
Dy(3)-Dy(1)-H(106) 91.6(3)
Dy(4)-Dy(1)-H(106) 39.7(2)
H(100)-Dy(1)-H(106) 91.6(4)
H(102)-Dy(1)-H(106) 122.5(4)
H(103)-Dy(1)-H(106) 64.7(4)
H(104)-Dy(1)-H(106) 56.3(4)
C(1)-Dy(1)-H(107) 132.0(3)
C(8)-Dy(1)-H(107) 106.7(3)
C(2)-Dy(1)-H(107) 115.0(3)
C(6)-Dy(1)-H(107) 80.3(3)
C(4)-Dy(1)-H(107) 85.0(3)
Dy(2)-Dy(1)-H(107) 40.9(3)
Dy(3)-Dy(1)-H(107) 95.4(3)
Dy(4)-Dy(1)-H(107) 95.8(3)
H(100)-Dy(1)-H(107) 61.8(4)
H(102)-Dy(1)-H(107) 123.7(5)
H(103)-Dy(1)-H(107) 126.6(4)
H(104)-Dy(1)-H(107) 83.6(4)
H(106)-Dy(1)-H(107) 62.0(4)
C(13)-Dy(2)-C(20) 31.86(18)
C(13)-Dy(2)-C(14) 31.68(14)
C(20)-Dy(2)-C(14) 51.66(17)
C(13)-Dy(2)-C(16) 52.19(14)
C(20)-Dy(2)-C(16) 51.42(14)
C(14)-Dy(2)-C(16) 30.95(16)
C(13)-Dy(2)-C(18) 52.02(17)
C(20)-Dy(2)-C(18) 30.80(14)
C(14)-Dy(2)-C(18) 51.21(17)
C(16)-Dy(2)-C(18) 31.06(17)
C(6)-Dy(1)-Dy(3) 157.57(15)
C(4)-Dy(1)-Dy(3) 127.42(15)
Dy(2)-Dy(1)-Dy(3) 62.39(5)
C(1)-Dy(1)-Dy(4) 120.21(13)
C(8)-Dy(1)-Dy(4) 114.88(14)
C(2)-Dy(1)-Dy(4) 148.51(12)
C(6)-Dy(1)-Dy(4) 135.00(14)
C(4)-Dy(1)-Dy(4) 165.37(15)
Dy(2)-Dy(1)-Dy(4) 61.82(5)
Dy(3)-Dy(1)-Dy(4) 67.12(5)
C(1)-Dy(1)-H(100) 139.1(3)
C(8)-Dy(1)-H(100) 153.9(3)
C(2)-Dy(1)-H(100) 109.1(3)
C(6)-Dy(1)-H(100) 124.4(3)
C(4)-Dy(1)-H(100) 102.8(3)
Dy(2)-Dy(1)-H(100) 46.3(3)
Dy(3)-Dy(1)-H(100) 38.6(2)
Dy(4)-Dy(1)-H(100) 90.4(3)
C(1)-Dy(1)-H(102) 91.0(3)
C(8)-Dy(1)-H(102) 122.6(3)
C(2)-Dy(1)-H(102) 80.9(3)
C(6)-Dy(1)-H(102) 132.1(3)
C(4)-Dy(1)-H(102) 104.5(3)
Dy(2)-Dy(1)-H(102) 97.5(3)
Dy(3)-Dy(1)-H(102) 35.5(3)
Dy(4)-Dy(1)-H(102) 87.3(3)
H(100)-Dy(2)-H(101) 120.6(4)
C(13)-Dy(2)-H(104) 160.1(3)
C(20)-Dy(2)-H(104) 156.4(3)
C(14)-Dy(2)-H(104) 151.9(3)
C(16)-Dy(2)-H(104) 144.8(3)
C(18)-Dy(2)-H(104) 147.2(3)
Dy(1)-Dy(2)-H(104) 42.6(2)
Dy(4)-Dy(2)-H(104) 36.0(3)
58
C(13)-Dy(2)-Dy(1) 121.46(11)
C(20)-Dy(2)-Dy(1) 120.67(12)
C(14)-Dy(2)-Dy(1) 146.23(12)
C(16)-Dy(2)-Dy(1) 172.09(12)
C(18)-Dy(2)-Dy(1) 142.49(13)
C(13)-Dy(2)-Dy(4) 159.50(16)
C(20)-Dy(2)-Dy(4) 127.67(16)
C(14)-Dy(2)-Dy(4) 151.23(11)
C(16)-Dy(2)-Dy(4) 121.64(13)
C(18)-Dy(2)-Dy(4) 111.40(13)
Dy(1)-Dy(2)-Dy(4) 62.31(5)
C(13)-Dy(2)-Dy(3) 133.31(16)
C(20)-Dy(2)-Dy(3) 165.12(16)
C(14)-Dy(2)-Dy(3) 117.07(13)
C(16)-Dy(2)-Dy(3) 125.57(13)
C(18)-Dy(2)-Dy(3) 153.81(12)
Dy(1)-Dy(2)-Dy(3) 61.86(5)
Dy(4)-Dy(2)-Dy(3) 67.11(5)
C(13)-Dy(2)-H(100) 105.2(3)
C(20)-Dy(2)-H(100) 130.8(3)
C(14)-Dy(2)-H(100) 108.4(3)
C(16)-Dy(2)-H(100) 135.5(3)
C(18)-Dy(2)-H(100) 156.9(3)
Dy(1)-Dy(2)-H(100) 47.6(3)
Dy(4)-Dy(2)-H(100) 91.6(3)
Dy(3)-Dy(2)-H(100) 38.1(2)
C(13)-Dy(2)-H(101) 133.2(4)
C(20)-Dy(2)-H(101) 107.9(4)
C(14)-Dy(2)-H(101) 115.6(3)
C(16)-Dy(2)-H(101) 85.7(3)
C(18)-Dy(2)-H(101) 81.5(4)
Dy(1)-Dy(2)-H(101) 98.1(3)
Dy(4)-Dy(2)-H(101) 35.9(3)
Dy(3)-Dy(2)-H(101) 85.5(4)
Dy(3)-Dy(2)-H(104) 35.5(3)
H(100)-Dy(2)-H(104) 55.9(4)
H(101)-Dy(2)-H(104) 66.7(4)
C(13)-Dy(2)-H(105) 111.7(3)
C(20)-Dy(2)-H(105) 136.0(3)
C(14)-Dy(2)-H(105) 84.9(3)
C(16)-Dy(2)-H(105) 88.7(3)
C(18)-Dy(2)-H(105) 118.4(3)
Dy(1)-Dy(2)-H(105) 98.6(3)
Dy(4)-Dy(2)-H(105) 86.3(3)
Dy(3)-Dy(2)-H(105) 36.9(2)
H(100)-Dy(2)-H(105) 62.9(4)
H(101)-Dy(2)-H(105) 83.0(5)
H(104)-Dy(2)-H(105) 67.3(4)
C(13)-Dy(2)-H(106) 125.4(3)
C(20)-Dy(2)-H(106) 99.8(3)
C(14)-Dy(2)-H(106) 151.1(3)
C(16)-Dy(2)-H(106) 130.6(3)
C(18)-Dy(2)-H(106) 102.7(3)
Dy(1)-Dy(2)-H(106) 47.0(3)
Dy(4)-Dy(2)-H(106) 39.8(2)
Dy(3)-Dy(2)-H(106) 91.8(3)
H(100)-Dy(2)-H(106) 93.8(4)
H(101)-Dy(2)-H(106) 64.3(4)
H(104)-Dy(2)-H(106) 56.8(4)
H(105)-Dy(2)-H(106) 122.5(4)
C(13)-Dy(2)-H(107) 81.1(3)
C(20)-Dy(2)-H(107) 81.9(3)
C(14)-Dy(2)-H(107) 110.7(3)
C(16)-Dy(2)-H(107) 131.1(3)
C(18)-Dy(2)-H(107) 110.6(3)
Dy(1)-Dy(2)-H(107) 41.4(3)
Dy(4)-Dy(2)-H(107) 96.7(3)
Dy(3)-Dy(2)-H(107) 95.3(3)
59
C(26)-Dy(3)-Cl(1) 136.42(13)
C(28)-Dy(3)-Cl(1) 134.42(13)
C(30)-Dy(3)-Cl(1) 103.56(14)
C(25)-Dy(3)-Dy(1) 160.69(12)
C(32)-Dy(3)-Dy(1) 146.85(11)
C(26)-Dy(3)-Dy(1) 129.37(11)
C(28)-Dy(3)-Dy(1) 110.52(10)
C(30)-Dy(3)-Dy(1) 118.22(11)
Cl(1)-Dy(3)-Dy(1) 92.87(10)
C(25)-Dy(3)-Dy(2) 125.98(11)
C(32)-Dy(3)-Dy(2) 156.68(11)
C(26)-Dy(3)-Dy(2) 113.49(11)
C(28)-Dy(3)-Dy(2) 127.42(11)
C(30)-Dy(3)-Dy(2) 157.89(12)
Cl(1)-Dy(3)-Dy(2) 98.15(10)
Dy(1)-Dy(3)-Dy(2) 55.74(4)
C(25)-Dy(3)-H(100) 122.3(3)
C(32)-Dy(3)-H(100) 141.7(4)
C(26)-Dy(3)-H(100) 93.1(4)
C(28)-Dy(3)-H(100) 91.0(4)
C(30)-Dy(3)-H(100) 117.6(3)
Cl(1)-Dy(3)-H(100) 129.8(4)
Dy(1)-Dy(3)-H(100) 43.4(3)
Dy(2)-Dy(3)-H(100) 41.7(3)
C(25)-Dy(3)-H(102) 132.9(3)
C(32)-Dy(3)-H(102) 109.7(3)
C(26)-Dy(3)-H(102) 113.6(4)
C(28)-Dy(3)-H(102) 84.6(4)
C(30)-Dy(3)-H(102) 82.2(3)
Cl(1)-Dy(3)-H(102) 93.1(4)
Dy(1)-Dy(3)-H(102) 37.2(3)
Dy(2)-Dy(3)-H(102) 92.5(3)
H(101)-Dy(4)-H(106) 67.2(4)
H(103)-Dy(4)-H(106) 68.0(4)
H(100)-Dy(2)-H(107) 63.0(4)
H(101)-Dy(2)-H(107) 127.2(4)
H(104)-Dy(2)-H(107) 84.0(4)
H(105)-Dy(2)-H(107) 125.8(5)
H(106)-Dy(2)-H(107) 62.9(4)
C(25)-Dy(3)-C(32) 31.45(13)
C(25)-Dy(3)-C(26) 31.61(13)
C(32)-Dy(3)-C(26) 51.65(14)
C(25)-Dy(3)-C(28) 51.56(14)
C(32)-Dy(3)-C(28) 51.24(14)
C(26)-Dy(3)-C(28) 30.68(13)
C(25)-Dy(3)-C(30) 51.61(14)
C(32)-Dy(3)-C(30) 30.92(13)
C(26)-Dy(3)-C(30) 51.17(15)
C(28)-Dy(3)-C(30) 30.95(14)
C(25)-Dy(3)-Cl(1) 105.27(13)
C(32)-Dy(3)-Cl(1) 87.91(14)
H(100)-Dy(3)-H(102) 67.1(4)
C(25)-Dy(3)-H(104) 156.8(3)
C(32)-Dy(3)-H(104) 158.0(3)
C(26)-Dy(3)-H(104) 149.8(3)
C(28)-Dy(3)-H(104) 146.9(3)
C(30)-Dy(3)-H(104) 151.1(3)
Cl(1)-Dy(3)-H(104) 70.2(3)
Dy(1)-Dy(3)-H(104) 37.6(3)
Dy(2)-Dy(3)-H(104) 37.4(3)
H(100)-Dy(3)-H(104) 59.8(4)
H(102)-Dy(3)-H(104) 70.3(4)
C(25)-Dy(3)-H(105) 89.5(4)
C(32)-Dy(3)-H(105) 119.0(3)
C(26)-Dy(3)-H(105) 87.9(4)
C(28)-Dy(3)-H(105) 115.0(4)
C(30)-Dy(3)-H(105) 138.1(4)
Cl(1)-Dy(3)-H(105) 101.5(4)
60
H(104)-Dy(4)-H(106) 59.7(4)
Dy(3)-Cl(1)-Dy(4) 89.38(11)
C(1)-Si(1)-C(10) 109.3(4)
C(1)-Si(1)-C(11) 113.5(4)
C(10)-Si(1)-C(11) 107.8(5)
C(1)-Si(1)-C(12) 112.4(5)
C(10)-Si(1)-C(12) 107.6(4)
C(11)-Si(1)-C(12) 106.1(4)
C(13)-Si(2)-C(22) 108.5(4)
C(13)-Si(2)-C(23) 113.5(5)
C(22)-Si(2)-C(23) 106.4(4)
C(13)-Si(2)-C(24) 113.2(4)
C(22)-Si(2)-C(24) 107.9(5)
C(23)-Si(2)-C(24) 107.0(4)
C(25)-Si(3)-C(36) 113.8(4)
C(25)-Si(3)-C(34) 108.7(4)
C(36)-Si(3)-C(34) 107.4(5)
C(25)-Si(3)-C(35) 111.0(5)
C(36)-Si(3)-C(35) 106.1(5)
C(34)-Si(3)-C(35) 109.7(4)
C(37)-Si(4)-C(46) 109.8(5)
C(37)-Si(4)-C(48) 113.3(4)
C(46)-Si(4)-C(48) 107.8(4)
C(37)-Si(4)-C(47) 113.2(4)
C(46)-Si(4)-C(47) 105.5(4)
C(48)-Si(4)-C(47) 106.8(5)
O(2)-Li(1)-O(1) 109.6(7)
O(2)-Li(1)-O(4) 111.9(8)
O(1)-Li(1)-O(4) 114.6(8)
O(2)-Li(1)-O(3) 112.2(8)
O(1)-Li(1)-O(3) 107.1(8)
O(4)-Li(1)-O(3) 101.0(7)
C(49)-O(1)-C(52) 108.9(4)
C(49)-O(1)-Li(1) 130.3(5)
Dy(1)-Dy(3)-H(105) 93.3(3)
Dy(2)-Dy(3)-H(105) 37.8(3)
H(100)-Dy(3)-H(105) 66.4(4)
H(102)-Dy(3)-H(105) 129.4(4)
H(104)-Dy(3)-H(105) 69.8(4)
C(38)-Dy(4)-C(37) 32.16(13)
C(38)-Dy(4)-C(44) 51.79(14)
C(37)-Dy(4)-C(44) 31.75(13)
C(38)-Dy(4)-C(40) 31.16(14)
C(37)-Dy(4)-C(40) 52.38(14)
C(44)-Dy(4)-C(40) 51.04(14)
C(38)-Dy(4)-C(42) 51.63(15)
C(37)-Dy(4)-C(42) 52.48(14)
C(44)-Dy(4)-C(42) 31.00(14)
C(40)-Dy(4)-C(42) 30.76(13)
C(38)-Dy(4)-Cl(1) 97.56(15)
C(37)-Dy(4)-Cl(1) 89.67(14)
C(44)-Dy(4)-Cl(1) 114.86(14)
C(40)-Dy(4)-Cl(1) 127.94(14)
C(42)-Dy(4)-Cl(1) 142.14(14)
C(38)-Dy(4)-Dy(2) 163.04(13)
C(37)-Dy(4)-Dy(2) 142.62(11)
C(44)-Dy(4)-Dy(2) 115.58(11)
C(40)-Dy(4)-Dy(2) 133.46(11)
C(42)-Dy(4)-Dy(2) 111.48(11)
Cl(1)-Dy(4)-Dy(2) 98.54(11)
C(38)-Dy(4)-Dy(1) 128.60(11)
C(37)-Dy(4)-Dy(1) 160.63(12)
C(44)-Dy(4)-Dy(1) 152.59(12)
C(40)-Dy(4)-Dy(1) 112.89(11)
C(42)-Dy(4)-Dy(1) 123.08(11)
Cl(1)-Dy(4)-Dy(1) 92.54(10)
Dy(2)-Dy(4)-Dy(1) 55.87(5)
C(38)-Dy(4)-H(101) 133.1(3)
61
C(52)-O(1)-Li(1) 120.0(6)
C(53)-O(2)-C(56) 109.2(4)
C(53)-O(2)-Li(1) 129.9(7)
C(56)-O(2)-Li(1) 119.0(6)
C(57)-O(3)-C(60) 109.3(4)
C(57)-O(3)-Li(1) 116.0(6)
C(60)-O(3)-Li(1) 125.5(6)
C(64)-O(4)-C(61) 110.4(5)
H(10A)-C(10)-H(10B) 109.1(12)
Si(1)-C(10)-H(10C) 112.0(8)
H(10A)-C(10)-H(10C) 105.8(11)
H(10B)-C(10)-H(10C) 105.7(11)
Si(1)-C(11)-H(11A) 110.6(8)
Si(1)-C(11)-H(11B) 112.1(9)
H(11A)-C(11)-H(11B) 106.9(11)
Si(1)-C(11)-H(11C) 110.0(9)
H(11A)-C(11)-H(11C) 106.5(11)
H(11B)-C(11)-H(11C) 110.5(12)
Si(1)-C(12)-H(12A) 110.9(9)
Si(1)-C(12)-H(12B) 111.9(8)
H(12A)-C(12)-H(12B) 108.8(11)
Si(1)-C(12)-H(12C) 111.5(8)
H(12A)-C(12)-H(12C) 106.4(14)
H(12B)-C(12)-H(12C) 107.0(11)
C(14)-C(13)-C(20) 106.0(4)
C(14)-C(13)-Si(2) 123.9(5)
C(20)-C(13)-Si(2) 129.9(4)
C(14)-C(13)-Dy(2) 75.1(2)
C(20)-C(13)-Dy(2) 74.6(2)
Si(2)-C(13)-Dy(2) 119.7(3)
C(16)-C(14)-C(13) 109.1(5)
C(16)-C(14)-C(15) 124.1(4)
C(13)-C(14)-C(15) 126.8(5)
C(16)-C(14)-Dy(2) 75.4(3)
C(37)-Dy(4)-H(101) 105.3(3)
C(44)-Dy(4)-H(101) 81.3(3)
C(40)-Dy(4)-H(101) 120.5(4)
C(42)-Dy(4)-H(101) 90.0(4)
Cl(1)-Dy(4)-H(101) 101.4(4)
Dy(2)-Dy(4)-H(101) 37.3(3)
Dy(1)-Dy(4)-H(101) 93.1(3)
C(38)-Dy(4)-H(103) 91.9(3)
C(37)-Dy(4)-H(103) 123.2(3)
C(44)-Dy(4)-H(103) 136.4(4)
C(40)-Dy(4)-H(103) 85.4(4)
C(42)-Dy(4)-H(103) 109.7(4)
Cl(1)-Dy(4)-H(103) 90.3(4)
Dy(2)-Dy(4)-H(103) 93.3(3)
Dy(1)-Dy(4)-H(103) 37.6(3)
H(101)-Dy(4)-H(103) 130.1(4)
C(38)-Dy(4)-H(104) 157.0(3)
C(37)-Dy(4)-H(104) 156.9(3)
C(44)-Dy(4)-H(104) 150.8(3)
C(40)-Dy(4)-H(104) 150.1(3)
C(42)-Dy(4)-H(104) 146.5(3)
Cl(1)-Dy(4)-H(104) 70.0(3)
Dy(2)-Dy(4)-H(104) 37.9(3)
Dy(1)-Dy(4)-H(104) 37.4(3)
H(101)-Dy(4)-H(104) 69.6(4)
H(103)-Dy(4)-H(104) 69.5(4)
C(38)-Dy(4)-H(106) 127.0(4)
C(37)-Dy(4)-H(106) 140.7(3)
C(44)-Dy(4)-H(106) 111.8(3)
C(40)-Dy(4)-H(106) 96.5(3)
C(42)-Dy(4)-H(106) 88.4(3)
Cl(1)-Dy(4)-H(106) 129.4(3)
Dy(2)-Dy(4)-H(106) 42.1(3)
Dy(1)-Dy(4)-H(106) 42.7(3)
62
C(13)-C(14)-Dy(2) 73.2(3)
C(15)-C(14)-Dy(2) 120.4(3)
C(14)-C(15)-H(15A) 112.6(9)
C(14)-C(15)-H(15B) 112.0(9)
H(15A)-C(15)-H(15B) 104.3(13)
C(14)-C(15)-H(15C) 111.8(9)
H(15A)-C(15)-H(15C) 107.3(13)
H(15B)-C(15)-H(15C) 108.4(14)
C(14)-C(16)-C(18) 107.6(4)
C(14)-C(16)-C(17) 126.7(5)
C(18)-C(16)-C(17) 125.6(5)
C(14)-C(16)-Dy(2) 73.7(3)
C(18)-C(16)-Dy(2) 74.7(2)
C(17)-C(16)-Dy(2) 118.5(3)
C(16)-C(17)-H(17A) 110.0(8)
C(16)-C(17)-H(17B) 110.7(8)
H(17A)-C(17)-H(17B) 107.6(12)
C(16)-C(17)-H(17C) 111.7(8)
H(17A)-C(17)-H(17C) 106.6(12)
H(17B)-C(17)-H(17C) 109.9(13)
C(20)-C(18)-C(16) 108.2(5)
C(20)-C(18)-C(19) 126.4(5)
C(16)-C(18)-C(19) 125.2(4)
C(20)-C(18)-Dy(2) 73.1(3)
C(16)-C(18)-Dy(2) 74.3(3)
C(19)-C(18)-Dy(2) 121.8(3)
C(18)-C(19)-H(19A) 110.1(8)
C(18)-C(19)-H(19B) 114.4(8)
H(19A)-C(19)-H(19B) 107.9(11)
C(18)-C(19)-H(19C) 108.4(9)
H(31A)-C(31)-H(31B) 109.2(14)
C(30)-C(31)-H(31C) 112.1(9)
H(31A)-C(31)-H(31C) 107.1(14)
H(31B)-C(31)-H(31C) 106.1(16)
C(64)-O(4)-Li(1) 117.3(7)
C(61)-O(4)-Li(1) 127.9(7)
C(8)-C(1)-C(2) 107.3(4)
C(8)-C(1)-Si(1) 128.0(5)
C(2)-C(1)-Si(1) 124.4(4)
C(8)-C(1)-Dy(1) 75.1(3)
C(2)-C(1)-Dy(1) 76.0(2)
Si(1)-C(1)-Dy(1) 120.0(3)
C(4)-C(2)-C(1) 107.3(4)
C(4)-C(2)-C(3) 126.3(5)
C(1)-C(2)-C(3) 126.4(4)
C(4)-C(2)-Dy(1) 75.1(3)
C(1)-C(2)-Dy(1) 72.0(2)
C(3)-C(2)-Dy(1) 120.7(3)
C(2)-C(3)-H(3A) 111.6(9)
C(2)-C(3)-H(3B) 112.2(7)
H(3A)-C(3)-H(3B) 106.0(11)
C(2)-C(3)-H(3C) 112.6(8)
H(3A)-C(3)-H(3C) 107.4(11)
H(3B)-C(3)-H(3C) 106.7(11)
C(6)-C(4)-C(2) 108.4(4)
C(6)-C(4)-C(5) 125.2(4)
C(2)-C(4)-C(5) 126.3(5)
C(6)-C(4)-Dy(1) 74.1(2)
C(2)-C(4)-Dy(1) 73.8(2)
C(5)-C(4)-Dy(1) 120.5(3)
C(4)-C(5)-H(5A) 113.5(8)
C(4)-C(5)-H(5B) 112.3(9)
H(5A)-C(5)-H(5B) 106.9(11)
C(4)-C(5)-H(5C) 113.1(7)
H(5A)-C(5)-H(5C) 105.4(13)
H(5B)-C(5)-H(5C) 105.0(13)
C(4)-C(6)-C(8) 108.7(4)
C(4)-C(6)-C(7) 127.2(4)
63
C(30)-C(32)-C(25) 108.5(4)
C(30)-C(32)-C(33) 124.7(4)
C(25)-C(32)-C(33) 126.7(4)
C(30)-C(32)-Dy(3) 75.9(3)
C(25)-C(32)-Dy(3) 73.7(3)
C(33)-C(32)-Dy(3) 120.7(4)
C(32)-C(33)-H(33A) 112.1(7)
C(32)-C(33)-H(33B) 113.5(7)
H(33A)-C(33)-H(33B) 105.0(11)
C(32)-C(33)-H(33C) 112.7(8)
H(33A)-C(33)-H(33C) 105.0(11)
H(33B)-C(33)-H(33C) 107.8(12)
Si(3)-C(34)-H(34A) 111.4(8)
Si(3)-C(34)-H(34B) 109.0(8)
H(34A)-C(34)-H(34B) 108.1(12)
Si(3)-C(34)-H(34C) 113.4(9)
H(34A)-C(34)-H(34C) 107.5(11)
H(34B)-C(34)-H(34C) 107.2(12)
Si(3)-C(35)-H(35A) 111.8(9)
Si(3)-C(35)-H(35B) 112.1(9)
H(35A)-C(35)-H(35B) 109.2(12)
Si(3)-C(35)-H(35C) 109.7(9)
H(35A)-C(35)-H(35C) 106.3(11)
H(35B)-C(35)-H(35C) 107.4(11)
Si(3)-C(36)-H(36A) 108.3(8)
Si(3)-C(36)-H(36B) 110.3(9)
H(36A)-C(36)-H(36B) 107.4(11)
Si(3)-C(36)-H(36C) 113.1(9)
H(36A)-C(36)-H(36C) 107.5(12)
H(36B)-C(36)-H(36C) 110.1(12)
C(44)-C(37)-C(38) 105.3(4)
C(44)-C(37)-Si(4) 125.4(4)
C(38)-C(37)-Si(4) 128.8(4)
C(44)-C(37)-Dy(4) 75.2(3)
C(8)-C(6)-C(7) 124.0(5)
C(4)-C(6)-Dy(1) 75.2(2)
C(8)-C(6)-Dy(1) 73.2(2)
C(7)-C(6)-Dy(1) 119.8(3)
C(6)-C(7)-H(7A) 113.4(7)
C(6)-C(7)-H(7B) 112.4(7)
H(7A)-C(7)-H(7B) 104.5(13)
C(6)-C(7)-H(7C) 111.1(9)
H(7A)-C(7)-H(7C) 105.2(14)
H(7B)-C(7)-H(7C) 109.9(13)
C(6)-C(8)-C(1) 108.3(5)
C(6)-C(8)-C(9) 123.5(4)
C(1)-C(8)-C(9) 128.2(4)
C(6)-C(8)-Dy(1) 75.7(3)
C(1)-C(8)-Dy(1) 73.3(3)
C(9)-C(8)-Dy(1) 117.2(3)
C(8)-C(9)-H(9A) 115.2(9)
C(8)-C(9)-H(9B) 113.6(10)
H(9A)-C(9)-H(9B) 103.4(15)
C(8)-C(9)-H(9C) 110.6(10)
H(9A)-C(9)-H(9C) 103.9(15)
H(9B)-C(9)-H(9C) 109.5(16)
Si(1)-C(10)-H(10A) 113.5(9)
Si(1)-C(10)-H(10B) 110.3(8)
H(19A)-C(19)-H(19C) 107.7(11)
H(19B)-C(19)-H(19C) 108.2(13)
C(18)-C(20)-C(13) 109.0(4)
C(18)-C(20)-C(21) 123.6(6)
C(13)-C(20)-C(21) 127.4(4)
C(18)-C(20)-Dy(2) 76.1(3)
C(13)-C(20)-Dy(2) 73.5(3)
C(21)-C(20)-Dy(2) 118.1(3)
C(20)-C(21)-H(21A) 109.0(9)
C(20)-C(21)-H(21B) 112.4(9)
64
C(38)-C(37)-Dy(4) 73.8(3)
Si(4)-C(37)-Dy(4) 122.4(4)
C(40)-C(38)-C(37) 108.8(4)
C(40)-C(38)-C(39) 125.2(4)
C(37)-C(38)-C(39) 126.0(4)
C(40)-C(38)-Dy(4) 76.4(3)
C(37)-C(38)-Dy(4) 74.1(3)
C(39)-C(38)-Dy(4) 115.4(4)
C(38)-C(39)-H(39A) 112.7(8)
C(38)-C(39)-H(39B) 113.3(8)
H(39A)-C(39)-H(39B) 105.6(11)
C(38)-C(39)-H(39C) 110.4(7)
H(39A)-C(39)-H(39C) 107.6(12)
H(39B)-C(39)-H(39C) 106.9(12)
C(42)-C(40)-C(38) 108.8(4)
C(42)-C(40)-C(41) 124.6(4)
C(38)-C(40)-C(41) 126.4(4)
C(42)-C(40)-Dy(4) 75.3(3)
C(38)-C(40)-Dy(4) 72.4(3)
C(41)-C(40)-Dy(4) 121.2(4)
C(40)-C(41)-H(41A) 112.0(8)
C(40)-C(41)-H(41B) 111.2(7)
H(41A)-C(41)-H(41B) 108.0(11)
C(40)-C(41)-H(41C) 112.8(8)
H(41A)-C(41)-H(41C) 103.5(11)
H(41B)-C(41)-H(41C) 108.9(11)
C(40)-C(42)-C(44) 107.2(4)
C(40)-C(42)-C(43) 126.5(4)
C(44)-C(42)-C(43) 126.4(4)
C(40)-C(42)-Dy(4) 73.9(3)
C(44)-C(42)-Dy(4) 73.1(3)
C(43)-C(42)-Dy(4) 118.8(4)
C(42)-C(43)-H(43A) 111.2(7)
C(42)-C(43)-H(43B) 111.3(8)
H(21A)-C(21)-H(21B) 108.5(12)
C(20)-C(21)-H(21C) 111.7(8)
H(21A)-C(21)-H(21C) 107.0(14)
H(21B)-C(21)-H(21C) 108.1(13)
Si(2)-C(22)-H(22A) 109.3(9)
Si(2)-C(22)-H(22B) 109.4(7)
H(22A)-C(22)-H(22B) 109.5(12)
Si(2)-C(22)-H(22C) 111.2(8)
H(22A)-C(22)-H(22C) 108.3(11)
H(22B)-C(22)-H(22C) 109.0(12)
Si(2)-C(23)-H(23A) 113.3(8)
Si(2)-C(23)-H(23B) 111.5(7)
H(23A)-C(23)-H(23B) 106.8(12)
Si(2)-C(23)-H(23C) 109.1(9)
H(23A)-C(23)-H(23C) 109.2(11)
H(23B)-C(23)-H(23C) 106.7(10)
Si(2)-C(24)-H(24A) 111.1(7)
Si(2)-C(24)-H(24B) 111.5(9)
H(24A)-C(24)-H(24B) 107.1(10)
Si(2)-C(24)-H(24C) 114.9(8)
H(24A)-C(24)-H(24C) 102.3(12)
H(24B)-C(24)-H(24C) 109.4(11)
C(32)-C(25)-C(26) 107.2(4)
C(32)-C(25)-Si(3) 124.4(4)
C(26)-C(25)-Si(3) 128.0(4)
C(32)-C(25)-Dy(3) 74.9(3)
C(26)-C(25)-Dy(3) 75.1(3)
Si(3)-C(25)-Dy(3) 121.7(4)
C(28)-C(26)-C(25) 108.2(4)
C(28)-C(26)-C(27) 122.9(4)
C(25)-C(26)-C(27) 128.9(4)
C(28)-C(26)-Dy(3) 75.6(3)
C(25)-C(26)-Dy(3) 73.3(3)
C(27)-C(26)-Dy(3) 117.4(4)
65
C(60)-C(59)-C(58) 102.5(4)
C(60)-C(59)-H(59A) 111.4(9)
C(58)-C(59)-H(59A) 112.7(8)
C(60)-C(59)-H(59B) 112.6(7)
C(58)-C(59)-H(59B) 112.5(8)
H(59A)-C(59)-H(59B) 105.3(10)
O(3)-C(60)-C(59) 105.8(4)
O(3)-C(60)-H(60A) 107.3(8)
C(59)-C(60)-H(60A) 113.5(7)
O(3)-C(60)-H(60B) 109.6(6)
C(59)-C(60)-H(60B) 110.6(7)
H(60A)-C(60)-H(60B) 109.8(9)
O(4)-C(61)-C(62) 105.4(5)
O(4)-C(61)-H(61A) 108.0(8)
C(62)-C(61)-H(61A) 112.2(7)
O(4)-C(61)-H(61B) 108.4(8)
C(62)-C(61)-H(61B) 113.6(7)
H(61A)-C(61)-H(61B) 109.0(12)
C(61)-C(62)-C(63) 102.5(4)
C(61)-C(62)-H(62A) 111.4(9)
C(63)-C(62)-H(62A) 113.4(8)
C(61)-C(62)-H(62B) 110.9(8)
C(63)-C(62)-H(62B) 110.7(9)
H(62A)-C(62)-H(62B) 108.0(10)
C(64)-C(63)-C(62) 103.0(4)
C(64)-C(63)-H(25A) 110.9(8)
C(62)-C(63)-H(25A) 111.9(9)
C(64)-C(63)-H(63B) 110.2(8)
C(62)-C(63)-H(63B) 115.4(9)
H(25A)-C(63)-H(63B) 105.6(10)
O(4)-C(64)-C(63) 105.6(5)
O(4)-C(64)-H(64A) 109.7(8)
C(63)-C(64)-H(64A) 113.7(8)
O(4)-C(64)-H(64B) 108.3(8)
C(26)-C(27)-H(27A) 110.1(8)
C(26)-C(27)-H(27B) 113.1(8)
H(27A)-C(27)-H(27B) 107.4(11)
C(26)-C(27)-H(27C) 112.5(8)
H(27A)-C(27)-H(27C) 106.9(11)
H(27B)-C(27)-H(27C) 106.5(11)
C(26)-C(28)-C(30) 108.4(4)
C(26)-C(28)-C(29) 127.3(4)
C(30)-C(28)-C(29) 124.3(4)
C(26)-C(28)-Dy(3) 73.7(3)
C(30)-C(28)-Dy(3) 74.6(3)
C(29)-C(28)-Dy(3) 119.5(4)
C(28)-C(29)-H(29A) 110.4(8)
C(28)-C(29)-H(29B) 112.5(8)
H(29A)-C(29)-H(29B) 110.2(13)
C(28)-C(29)-H(29C) 109.4(8)
H(29A)-C(29)-H(29C) 108.2(14)
H(29B)-C(29)-H(29C) 105.9(14)
C(32)-C(30)-C(28) 107.8(4)
C(32)-C(30)-C(31) 125.4(4)
C(28)-C(30)-C(31) 126.7(4)
C(32)-C(30)-Dy(3) 73.2(3)
C(28)-C(30)-Dy(3) 74.4(3)
C(31)-C(30)-Dy(3) 120.8(4)
C(30)-C(31)-H(31A) 110.8(7)
C(30)-C(31)-H(31B) 111.4(9)
H(43A)-C(43)-H(43B) 105.1(11)
C(42)-C(43)-H(43C) 113.4(8)
H(43A)-C(43)-H(43C) 107.8(12)
H(43B)-C(43)-H(43C) 107.6(11)
C(42)-C(44)-C(37) 109.8(4)
C(42)-C(44)-C(45) 124.5(4)
C(37)-C(44)-C(45) 125.5(4)
C(42)-C(44)-Dy(4) 75.9(3)
66
C(63)-C(64)-H(64B) 113.2(8)
H(64A)-C(64)-H(64B) 106.3(12)
O(3)-C(57)-H(57B) 110.1(8)
C(58)-C(57)-H(57B) 111.6(8)
H(57A)-C(57)-H(57B) 110.0(10)
C(59)-C(58)-C(57) 100.9(4)
C(59)-C(58)-H(58A) 112.7(8)
C(57)-C(58)-H(58A) 110.7(8)
C(59)-C(58)-H(58B) 110.8(7)
C(57)-C(58)-H(58B) 111.3(6)
H(58A)-C(58)-H(58B) 110.0(10)
H(54A)-C(54)-H(54B) 108.4(10)
C(54)-C(55)-C(56) 101.6(4)
C(54)-C(55)-H(55A) 111.4(8)
C(56)-C(55)-H(55A) 109.7(8)
C(54)-C(55)-H(55B) 112.4(8)
C(56)-C(55)-H(55B) 111.4(7)
H(55A)-C(55)-(55B) 110.0(10)
O(2)-C(56)-C(55) 104.9(5)
O(2)-C(56)-H(56A) 110.0(8)
C(55)-C(56)-H(56A) 112.4(7)
O(2)-C(56)-H(56B) 106.3(7)
C(55)-C(56)-H(56B) 114.5(8)
O(2)-C(53)-H(53A) 108.3(7)
C(54)-C(53)-H(53A) 111.6(7)
O(2)-C(53)-H(53B) 108.3(7)
C(54)-C(53)-H(53B) 111.0(7)
H(53A)-C(53)-H(53B) 110.9(11)
C(55)-C(54)-C(53) 102.5(4)
C(55)-C(54)-H(54A) 109.4(8)
C(53)-C(54)-H(54A) 110.3(7)
C(55)-C(54)-H(54B) 114.5(8)
C(53)-C(54)-H(54B) 111.7(7)
H(56A)-C(56)-H(56B) 108.5(11)
C(37)-C(44)-Dy(4) 73.0(3)
C(45)-C(44)-Dy(4) 120.8(4)
C(44)-C(45)-H(45A) 111.8(7)
C(44)-C(45)-H(45B) 111.0(9)
H(45A)-C(45)-H(45B) 106.5(12)
C(44)-C(45)-H(45C) 114.0(8)
H(45A)-C(45)-H(45C) 106.1(13)
H(45B)-C(45)-H(45C) 106.9(14)
Si(4)-C(46)-H(46A) 110.0(8)
Si(4)-C(46)-H(46B) 109.4(9)
H(46A)-C(46)-H(46B) 107.9(11)
Si(4)-C(46)-H(46C) 112.1(8)
H(46A)-C(46)-H(46C) 110.0(13)
H(46B)-C(46)-H(46C) 107.3(11)
Si(4)-C(47)-H(47A) 108.7(8)
Si(4)-C(47)-H(47B) 113.6(9)
H(47A)-C(47)-H(47B) 105.1(15)
Si(4)-C(47)-H(47C) 112.3(10)
H(47A)-C(47)-H(47C) 108.4(13)
H(47B)-C(47)-H(47C) 108.3(15)
Si(4)-C(48)-H(48A) 112.6(8)
Si(4)-C(48)-H(48B) 108.7(8)
H(48A)-C(48)-H(48B) 106.9(11)
Si(4)-C(48)-H(48C) 110.2(9)
H(48A)-C(48)-H(48C) 110.3(13)
H(48B)-C(48)-H(48C) 107.9(12)
O(1)-C(49)-C(50) 106.6(4)
O(1)-C(49)-H(49A) 109.6(11)
C(50)-C(49)-H(49A) 114.4(9)
O(1)-C(49)-H(49B) 107.6(7)
C(50)-C(49)-H(49B) 109.8(9)
H(49A)-C(49)-H(49B) 108.6(12)
C(49)-C(50)-C(51) 103.5(4)
C(49)-C(50)-H(50A) 110.7(9)
67
O(3)-C(57)-C(58) 105.1(4)
O(3)-C(57)-H(57A) 107.5(7)
C(58)-C(57)-H(57A) 112.3(8)
O(1)-C(52)-C(51) 104.1(5)
O(1)-C(52)-H(52A) 108.1(7)
C(51)-C(52)-H(52A) 115.4(9)
O(1)-C(52)-H(52B) 110.1(8)
C(51)-C(52)-H(52B) 112.8(8)
H(52A)-C(52)-H(52B) 106.3(12)
O(2)-C(53)-C(54) 106.5(5)
C(51)-C(50)-H(50A) 108.4(8)
C(49)-C(50)-H(50B) 112.3(9)
C(51)-C(50)-H(50B) 113.1(9)
H(50A)-C(50)-H(50B) 108.7(12)
C(52)-C(51)-C(50) 101.0(5)
C(52)-C(51)-H(51A) 112.1(8)
C(50)-C(51)-H(51A) 113.1(8)
C(52)-C(51)-H(51B) 111.9(8)
C(50)-C(51)-H(51B) 110.4(8)
H(51A)-C(51)-H(51B) 108.4(11)
Anisotropic displacement parameters (Å
2
x 10
3
). The anisotropic displacement
factor exponent takes the form: -2 π
2
[ h
2
a*
2
U
11
+ ... + 2 h k a* b* U
12
]
___________________________________________________________
U
11
U
22
U
33
U
23
U
13
U
12
___________________________________________________________
Dy(1) 5(1) 4(1) 14(2) 1(1) -1(1) 1(1)
Dy(2) 2(1) 7(1) 17(2) 0(1) 1(1) 0(1)
Dy(3) 4(1) 7(1) 10(2) 1(1) 1(1) -1(1)
Dy(4) 4(1) 6(1) 14(2) -2(1) 2(1) 1(1)
Cl(1) 11(2) 21(2) 42(4) -1(2) -4(2) -1(1)
Si(1) 6(3) 12(3) 6(6) -1(3) 0(3) 1(2)
Si(2) 6(3) 12(3) 16(7) -3(3) -3(3) 0(2)
Si(3) 16(3) 10(3) 10(7) -2(3) 3(3) 2(2)
Si(4) 6(3) 4(3) 23(7) 4(3) -7(3) 0(2)
Li(1) 11(5) 23(6) 11(9) 11(6) 3(5) 9(5)
O(1) 8(2) 12(2) 27(5) 4(2) 2(2) 0(2)
O(2) 5(2) 17(2) 27(5) 2(2) 4(2) 0(2)
O(3) 17(2) 10(2) 17(5) -2(2) 0(2) -1(2)
O(4) 12(2) 13(2) 20(5) 1(2) 2(2) 0(2)
C(1) 6(2) 7(2) 19(4) 1(2) -1(2) -3(1)
C(2) 9(2) 9(2) 19(5) -1(2) 1(2) 2(2)
68
C(3)10(2) 11(2) 21(5) 0(2) 1(2) 1(2)
C(4)13(2) 8(2) 18(5) -1(2) 3(2) 4(2)
C(5)9(2) 12(2) 27(5) 5(2) 7(2) 1(2)
C(6)2(2) 11(2) 20(5) -3(2) 0(2) 2(1)
C(7)14(2) 14(2) 10(4) 1(2) 1(2) -2(2)
C(8)8(2) 11(2) 9(5) 1(2) 2(2) 1(1)
C(9)12(2) 16(2) 12(5) 1(2) 0(2) -1(2)
C(10)11(2) 13(2) 24(5) 0(2) 1(2) -5(2)
C(11)15(2) 22(3) 30(4) -7(2) 11(2) -8(2)
C(12)12(2) 16(2) 31(5) 8(2) 1(2) -1(2)
C(13)9(2) 8(2) 20(5) 0(2) 4(2) -2(1)
C(14)11(2) 6(2) 15(5) -2(2) 4(2) 1(1)
C(15)14(2) 12(2) 17(5) 0(2) 6(2) 3(2)
C(16)12(2) 5(2) 32(5) 2(2) 5(2) 0(2)
C(17)15(3) 9(2) 32(6) -4(2) 8(3) 8(2)
C(18)12(2) 7(2) 18(5) -3(2) 4(2) -2(2)
C(19)18(2) 14(2) 25(5) -5(2) 4(2) -1(2)
C(20)9(2) 7(2) 27(5) 0(2) 5(2) 0(1)
C(21)13(2) 12(2) 24(6) 3(2) -2(2) -1(2)
C(22)10(2) 15(2) 29(5) 4(2) 2(2) -1(2)
C(23)11(2) 14(2) 29(5) 4(2) 2(2) 6(2)
C(24)18(2) 9(2) 20(5) 0(2) 2(2) -4(2)
C(25)8(2) 9(2) 17(4) -1(2) 6(2) -2(1)
C(26)6(2) 12(2) 16(4) 0(2) 4(2) -3(1)
C(27)17(2) 15(2) 13(5) 3(2) 6(2) 1(2)
C(28)11(2) 9(2) 10(4) 0(2) -1(2) 2(1)
C(29)11(2) 15(2) 9(5) -1(2) 6(2) 5(2)
C(30)8(2) 10(2) 28(5) -1(2) 3(2) -4(2)
C(31)13(2) 10(2) 20(5) 4(2) 0(2) -1(2)
C(32)7(2) 11(2) 16(4) 1(2) 2(2) 0(1)
C(33)6(2) 19(2) 20(5) 2(2) 3(2) 1(2)
C(34)17(2) 12(2) 31(5) 3(2) -1(2) 4(2)
C(35)20(3) 14(2) 24(5) 1(2) 8(3) 6(2)
C(36)19(3) 9(2) 31(6) 0(2) -3(3) -3(2)
69
C(37)11(2) 7(2) 22(4) 1(2) 2(2) 3(1)
C(38)8(2) 7(2) 25(4) 1(2) 5(2) 2(1)
C(39)9(2) 8(2) 23(5) -1(2) 0(2) -2(2)
C(40)10(2) 8(2) 16(4) -2(2) 0(2) 0(1)
C(41)13(2) 10(2) 15(5) 3(2) 0(2) 1(2)
C(42)9(2) 10(2) 27(5) -3(2) -1(2) -2(2)
C(43)13(2) 14(2) 21(5) -2(2) 3(2) -2(2)
C(44)13(2) 6(2) 21(4) -1(2) 2(2) -3(1)
C(45)16(2) 11(2) 25(5) 2(2) 3(2) -2(2)
C(46)16(2) 13(2) 37(6) -2(2) 3(2) 4(2)
C(47)18(2) 22(3) 28(5) 5(2) -2(2) 6(2)
C(48)12(2) 14(2) 45(6) -2(3) -6(2) 6(2)
C(49)8(2) 13(2) 28(5) 1(2) 4(2) 0(2)
C(50)12(2) 17(3) 44(7) 11(2) 9(3) -1(2)
C(51)15(2) 22(3) 23(5) -2(2) 6(2) -3(2)
C(52)4(2) 21(3) 42(5) 7(3) 2(2) 2(2)
C(53)12(2) 10(2) 24(5) -3(2) 3(2) -2(2)
C(54)9(2) 12(2) 29(6) 4(2) 2(2) 2(2)
C(55)9(2) 17(2) 23(6) -7(2) 5(2) 1(2)
C(56)8(2) 19(3) 27(6) 9(2) 4(2) -2(2)
C(57)10(2) 9(2) 25(5) 2(2) -1(2) 3(2)
C(58)11(2) 13(2) 22(5) -3(2) 0(2) -2(2)
C(59)11(2) 12(2) 32(5) -4(2) 0(2) -3(2)
C(60)10(2) 7(2) 26(5) 0(2) -2(2) 1(2)
C(61)17(2) 8(2) 20(5) 1(2) 1(2) -2(2)
C(62)16(2) 10(2) 32(5) -2(2) -1(2) 1(2)
C(63)18(2) 16(2) 19(5) -4(2) 5(2) -5(2)
C(64)18(2) 14(2) 14(5) -3(2) 3(2) -2(2)
H(3A) 55(7) 13(5) 50(11) -2(4) 4(6) -10(4)
H(3B) 42(7) 60(8) 5(10) 2(6) 11(6) -19(6)
H(3C) 32(6) 54(7) 29(10) -10(6) -1(5) 22(5)
H(5A) 39(6) 33(6) 79(13) 5(6) 39(7) 13(5)
H(5B) 47(7) 24(6) 37(10) -5(4) 17(6) -10(4)
H(5C) 29(6) 99(12) 14(11) -1(8) 1(6) -26(6)
70
H(7A) 28(6) 53(8) 70(13) -39(8) -11(6) 5(5)
H(7B) 24(5) 29(6) 85(13) 14(6) -27(6) -1(4)
H(7C) 28(6) 114(14) 19(11) 5(8) -2(6) -42(7)
H(9A) 42(7) 102(12) 20(11) -23(8) 18(6) 17(7)
H(9B) 69(11) 114(15) 50(14) -13(10) -2(8) -72(11)
H(9C) 131(16) 36(7) 23(12) 10(6) 10(9) 24(8)
H(10A) 36(6) 25(6) 67(14) -9(6) 13(7) 7(4)
H(10B) 24(5) 18(5) 88(13) 0(5) 2(5) -10(4)
H(10C) 37(6) 35(6) 61(12) 10(6) -15(6) 8(5)
H(11A) 26(5) 53(7) 40(11) -16(6) 11(5) -25(5)
H(11B) 50(8) 51(8) 39(11) 14(7) -11(7) -6(6)
H(11C) 60(8) 17(5) 72(13) -18(5) 21(7) -10(5)
H(12A) 36(6) 26(6) 101(14) 18(6) -11(7) 6(5)
H(12B) 15(5) 49(7) 41(10) 8(6) 6(5) -9(4)
H(12C) 23(5) 77(10) 45(13) -17(9) 5(6) 4(6)
H(15A) 29(6) 89(11) 39(11) 14(8) 6(6) 27(6)
H(15B) 62(9) 56(8) 39(12) 24(7) -1(7) -39(7)
H(15C) 81(10) 28(6) 41(12) -6(6) 11(7) 24(6)
H(17A) 45(6) 15(5) 53(11) -3(5) 4(6) 2(4)
H(17B) 41(7) 29(6) 72(14) 17(6) 14(7) 2(5)
H(17C) 59(9) 55(9) 40(16) 4(7) 20(9) 44(7)
H(19A) 36(6) 56(7) 23(10) -3(6) 13(5) 19(5)
H(19B) 49(7) 39(7) 33(11) -7(6) 2(6) 12(5)
H(19C) 56(9) 26(6) 74(14) -20(6) 14(8) -17(5)
H(21A) 25(6) 47(8) 96(14) 16(7) -20(6) -17(5)
H(21B) 60(8) 21(5) 55(12) -10(5) -1(7) 24(5)
H(21C) 71(10) 50(8) 40(14) -1(7) 3(9) 34(7)
H(22A) 41(6) 39(6) 53(11) -5(6) -6(6) -26(5)
H(22B) 30(5) 51(7) 49(11) 32(7) 7(5) 9(5)
H(22C) 39(7) 42(7) 60(12) -2(6) 28(7) 10(5)
H(23A) 34(6) 44(7) 40(10) -5(6) -13(5) -6(5)
H(23B) 38(6) 22(5) 69(12) 16(5) 8(6) 0(4)
H(23C) 31(6) 35(6) 57(12) -1(6) 16(6) 16(5)
H(24A) 33(6) 43(6) 30(10) -19(6) 4(5) -1(5)
71
H(24B) 44(7) 38(6) 39(11) -3(6) 10(6) -16(5)
H(24C) 56(8) 43(7) 30(11) 16(6) -14(6) 6(6)
H(25A) 11(4) 55(7) 53(11) -2(6) 6(5) -10(4)
H(27A) 50(7) 26(6) 45(11) -12(5) 15(6) -21(5)
H(27B) 40(7) 47(7) 42(13) 15(7) 4(6) -1(5)
H(27C) 32(6) 40(6) 52(12) 6(6) 16(6) 5(5)
H(29A) 60(8) 31(6) 49(12) 23(6) 31(7) 24(5)
H(29B) 14(5) 47(7) 117(15) -29(8) 17(6) -4(5)
H(29C) 40(8) 98(13) 47(14) -25(10) -27(8) 33(7)
H(31A) 29(6) 16(5) 130(16) 22(6) -17(7) -4(4)
H(31B) 82(11) 35(7) 57(14) 14(7) -32(9) -31(7)
H(31C) 79(12) 31(7) 107(18) 14(8) 55(12) -13(7)
H(33A) 30(5) 31(5) 50(11) -16(5) 8(5) -14(4)
H(33B) 16(4) 34(6) 63(11) 19(6) 11(5) 14(4)
H(33C) 33(6) 75(10) 26(12) -5(8) 12(6) -13(6)
H(34A) 49(7) 15(5) 65(12) 8(5) -8(6) 6(4)
H(34B) 48(7) 41(7) 19(10) -12(6) 8(6) 12(5)
H(34C) 27(6) 53(7) 47(11) 16(6) 6(5) -14(5)
H(35A) 42(7) 45(7) 52(12) 7(6) 21(6) -10(5)
H(35B) 40(7) 51(8) 46(12) -12(7) -5(7) -2(6)
H(35C) 53(7) 18(5) 50(11) -3(5) 7(6) 24(5)
H(36A) 31(6) 10(5) 90(14) 1(5) 3(6) 0(4)
H(36B) 32(6) 29(6) 55(11) -6(5) -12(6) -8(4)
H(36C) 56(8) 43(7) 25(13) 12(6) 20(8) 0(6)
H(39A) 17(5) 47(7) 48(11) -6(6) 10(5) -13(4)
H(39B) 35(6) 35(6) 52(13) 2(6) -9(7) -11(5)
H(39C) 32(6) 16(5) 79(13) 9(5) -15(7) -2(4)
H(41A) 34(6) 23(5) 44(11) -8(5) -7(6) 8(4)
H(41B) 8(4) 42(6) 49(10) 27(5) 1(4) 5(4)
H(41C) 51(7) 45(7) 12(11) 10(6) 2(6) 11(6)
H(43A) 10(4) 30(5) 78(12) -17(5) -7(5) 9(4)
H(43B) 32(6) 45(7) 68(13) 23(7) -10(6) -10(5)
H(43C) 35(5) 51(6) 9(9) -10(6) 1(5) -17(5)
H(45A) 20(5) 26(6) 96(13) 8(6) -2(6) -9(4)
72
H(45B) 66(9) 15(5) 85(15) -13(6) 24(9) 0(5)
H(45C) 101(12) 21(6) 46(13) 6(6) -30(10) -15(6)
H(46A) 44(7) 67(9) 13(11) 12(7) 11(6) 13(6)
H(46B) 41(7) 54(8) 49(12) 5(7) 17(6) 32(6)
H(46C) 37(6) 36(6) 71(12) -18(6) 13(6) -10(5)
H(47A) 37(7) 76(10) 63(13) 50(9) -9(7) 9(6)
H(47B) 99(13) 79(11) 37(14) 21(9) 43(10) 55(11)
H(47C) 71(10) 36(7) 74(14) 20(7) -1(9) -13(7)
H(48A) 39(7) 33(7) 61(14) 10(6) -8(6) -12(5)
H(48B) 19(5) 51(8) 87(14) 14(7) -11(6) 2(5)
H(48C) 57(8) 39(7) 70(14) -35(8) -24(8) 1(6)
H(49A) 39(7) 40(6) 35(11) 5(6) 13(6) 18(5)
H(49B) 33(6) 32(5) 48(11) 1(5) -25(6) -12(4)
H(50A) 33(6) 11(5) 87(13) 5(5) 6(6) -7(4)
H(50B) 37(7) 74(10) 17(12) 7(7) 7(7) 10(6)
H(51A) 23(5) 46(7) 43(10) 19(6) 11(5) -5(4)
H(51B) 37(6) 36(6) 45(11) -1(6) 7(6) 5(5)
H(52A) 22(5) 43(7) 68(12) 16(6) 4(5) 20(5)
H(52B) 29(6) 59(8) 33(11) -12(6) 1(5) -12(5)
H(53A) 27(5) 16(5) 47(10) 10(4) -11(5) 1(3)
H(53B) 24(5) 54(7) 36(11) -10(6) 2(5) 2(5)
H(54A) 28(5) 18(5) 44(10) -4(4) 12(5) -2(4)
H(54B) 24(5) 35(6) 46(11) 13(5) -10(5) 1(4)
H(55A) 32(5) 23(5) 38(10) -12(5) 13(5) 4(4)
H(55B) 24(5) 38(6) 39(10) 11(5) 11(5) 1(4)
H(56A) 35(6) 24(5) 45(11) 12(5) 4(5) 3(4)
H(56B) 32(6) 42(7) 28(11) 8(6) 4(6) -7(5)
H(57A) 14(4) 30(5) 38(10) -2(5) 10(4) 5(3)
H(57B) 47(7) 22(5) 29(11) 16(5) 7(6) 2(4)
H(58A) 51(7) 12(5) 53(11) -20(5) 1(6) 1(4)
H(58B) 21(5) 35(6) 31(11) -6(5) -5(5) -2(4)
H(59A) 30(5) 44(7) 31(10) 13(6) 13(5) 6(5)
H(59B) 29(5) 32(5) 27(10) 8(5) -8(5) 1(4)
H(60A) 24(5) 21(5) 52(10) -13(5) 14(5) 9(4)
73
H(60B) 25(5) 26(5) 26(9) 7(5) -7(4) -12(4)
H(61A) 44(7) 20(5) 54(11) 6(5) 12(6) 2(4)
H(61B) 45(6) 23(5) 39(10) -9(5) -16(6) -1(4)
H(62A) 46(7) 24(5) 33(10) 21(5) -6(6) 2(4)
H(62B) 17(5) 42(6) 58(12) -1(6) 6(5) 8(4)
H(63B) 42(7) 35(6) 36(11) -17(5) 7(6) -7(5)
H(64A) 63(8) 26(6) 35(11) 5(5) -21(7) 2(5)
H(64B) 44(7) 32(6) 38(11) -4(5) 10(6) -6(5)
H(100) 13(4) 30(5) 27(9) 5(5) 7(4) 2(3)
H(101) 35(6) 32(5) 33(10) 5(5) 23(5) 10(4)
H(102) 30(5) 17(4) 45(10) -2(5) -9(5) 1(4)
H(103) 29(5) 20(5) 51(10) -2(5) 26(5) 5(4)
H(104) 18(4) 15(4) 45(10) -1(4) 9(4) 0(3)
H(105) 35(6) 13(4) 70(12) 0(4) -1(6) -8(4)
H(106) 28(5) 21(5) 39(10) -5(4) 6(5) 8(4)
H(107) 29(5) 17(5) 50(10) 4(4) 14(5) 1(4)
___________________________________________________________
Hydrogen coordinates ( x 10
4
) and isotropic displacement parameters (Å
2
x 10
3
).
___________________________________________________________
x y z U(eq)
___________________________________________________________
H(3A) 7548(9) 3685(3) 7933(7) 39(3)
H(3B) 7007(9) 3248(5) 8402(7) 35(3)
H(3C) 8160(8) 3168(4) 8052(7) 38(3)
H(5A) 4803(9) 3070(4) 7832(9) 50(4)
H(5B) 5048(10) 2499(3) 7721(9) 36(3)
H(5C) 5737(9) 2813(6) 8296(8) 47(4)
H(7A) 5102(9) 2358(5) 5792(9) 51(4)
H(7B) 4567(8) 2884(4) 5802(8) 46(4)
H(7C) 4498(9) 2516(6) 6526(8) 54(5)
H(9A) 7352(10) 2850(6) 5086(8) 54(4)
H(9B) 6153(13) 2779(7) 5046(9) 78(6)
H(9C) 6680(15) 3316(5) 5063(8) 63(5)
74
H(10A) 8171(9) 4206(4) 6981(10) 43(4)
H(10B) 9044(8) 4296(4) 6358(8) 43(4)
H(10C) 7826(9) 4255(4) 6124(8) 45(4)
H(11A) 9650(8) 3551(4) 5352(7) 40(3)
H(11B) 8449(10) 3538(5) 5041(8) 47(4)
H(11C) 9048(10) 3034(4) 5339(8) 49(4)
H(12A) 9629(9) 2944(4) 6986(9) 55(4)
H(12B) 10269(7) 3433(4) 6788(7) 35(3)
H(12C) 9490(8) 3424(6) 7514(10) 48(4)
H(15A) 7142(9) 335(6) 8424(8) 52(4)
H(15B) 5968(11) 157(5) 8524(8) 52(4)
H(15C) 6263(12) 725(4) 8687(8) 50(4)
H(17A) 7077(9) -345(3) 6889(7) 38(3)
H(17B) 7936(10) 73(4) 6624(9) 47(4)
H(17C) 7723(13) -31(5) 7556(10) 51(6)
H(19A) 7086(9) 282(5) 5561(7) 38(3)
H(19B) 6106(10) 592(4) 5212(8) 40(3)
H(19C) 5915(11) 38(4) 5527(9) 52(4)
H(21A) 4025(9) 942(5) 6051(9) 56(4)
H(21B) 4708(10) 1450(4) 6152(8) 45(4)
H(21C) 4999(12) 1055(5) 5513(10) 54(5)
H(22A) 3360(9) 616(4) 8029(8) 45(4)
H(22B) 4316(8) 546(5) 8686(8) 43(4)
H(22C) 3400(9) 973(4) 8788(8) 46(4)
H(23A) 3272(8) 1415(4) 7050(7) 39(3)
H(23B) 4163(9) 1845(4) 7094(8) 43(4)
H(23C) 3345(8) 1787(4) 7791(8) 41(4)
H(24A) 4815(8) 1783(4) 8865(7) 35(3)
H(24B) 5829(9) 1783(4) 8318(8) 40(3)
H(24C) 5673(10) 1372(4) 8994(8) 43(3)
H(25A) 8307(7) 2340(5) 2292(7) 40(3)
H(27A) 7935(9) 1042(4) 9189(8) 40(3)
H(27B) 8241(9) 1194(5) 10057(9) 43(4)
H(27C) 7486(9) 1536(4) 9547(8) 41(3)
75
H(29A) 8288(10) 2689(4) 9080(8) 46(4)
H(29B) 7514(8) 2250(5) 9342(10) 59(5)
H(29C) 8349(11) 2487(6) 9961(11) 62(6)
H(31A) 9720(9) 2879(4) 8613(10) 59(5)
H(31B) 10635(12) 2786(5) 9253(9) 59(5)
H(31C) 10838(13) 2664(5) 8400(11) 72(6)
H(33A) 11925(8) 2060(4) 8731(7) 37(3)
H(33B) 11905(7) 1467(4) 8770(7) 38(3)
H(33C) 11565(9) 1746(5) 7954(10) 44(4)
H(34A) 11455(9) 406(4) 9882(8) 43(4)
H(34B) 11029(9) 916(4) 10243(7) 36(3)
H(34C) 11960(8) 919(4) 9628(8) 42(3)
H(35A) 11441(9) 819(5) 8008(8) 46(4)
H(35B) 10288(10) 620(5) 7741(8) 46(4)
H(35C) 11082(9) 272(4) 8197(7) 40(3)
H(36A) 9669(9) 32(3) 9268(9) 44(4)
H(36B) 8759(8) 380(4) 8828(8) 39(3)
H(36C) 9036(11) 436(5) 9738(9) 41(4)
H(39A) 11212(7) 2174(4) 4476(7) 37(3)
H(39B) 10866(9) 2243(4) 5345(9) 41(4)
H(39C) 10199(9) 2512(3) 4673(9) 42(4)
H(41A) 8638(9) 2543(3) 4476(8) 33(3)
H(41B) 7643(6) 2194(4) 4226(7) 33(3)
H(41C) 8601(10) 2304(4) 3638(9) 36(3)
H(43A) 7026(7) 1517(4) 4322(8) 39(3)
H(43B) 7228(9) 970(5) 4615(9) 49(4)
H(43C) 7455(8) 1118(4) 3730(8) 32(3)
H(45A) 8431(8) 463(4) 4816(8) 48(4)
H(45B) 9489(11) 402(4) 4367(10) 55(5)
H(45C) 9513(13) 423(4) 5275(9) 57(5)
H(46A) 11908(9) 935(5) 3971(8) 41(3)
H(46B) 12511(9) 580(5) 4600(8) 48(4)
H(46C) 11325(9) 446(4) 4316(8) 48(4)
H(47A) 12022(9) 604(6) 6148(9) 59(5)
76
H(47B) 10937(14) 844(6) 6426(9) 71(6)
H(47C) 10903(12) 383(5) 5848(9) 60(5)
H(48A) 12424(9) 1742(5) 4960(8) 44(4)
H(48B) 12961(8) 1349(5) 5531(9) 53(4)
H(48C) 12063(11) 1724(5) 5863(9) 55(5)
H(49A) 7582(11) -54(4) 2793(11) 38(3)
H(49B) 7733(8) 365(4) 3465(7) 38(3)
H(50A) 6034(8) -278(3) 3238(8) 43(4)
H(50B) 6476(10) -24(5) 4046(10) 43(4)
H(51A) 4819(8) 298(4) 3379(7) 37(3)
H(51B) 5673(9) 693(4) 3739(8) 39(3)
H(52A) 5584(8) 917(4) 2462(8) 44(4)
H(52B) 5524(8) 343(5) 2199(8) 40(3)
H(53A) 9428(7) 320(3) 2747(7) 30(3)
H(53B) 9123(8) 862(5) 3184(8) 38(3)
H(54A) 10604(7) 1193(3) 2830(7) 30(3)
H(54B) 11042(8) 627(4) 2889(7) 35(3)
H(55A) 10727(8) 536(3) 1601(7) 31(3)
H(55B) 11178(7) 1104(4) 1652(7) 34(3)
H(56A) 9541(8) 1408(4) 1617(7) 35(3)
H(56B) 9365(9) 934(4) 1056(8) 34(3)
H(57A) 8160(7) 220(3) 695(7) 27(3)
H(57B) 7255(9) 13(3) 1276(7) 32(3)
H(58A) 6581(9) -259(3) 175(7) 39(3)
H(58B) 7038(8) 219(4) -309(8) 29(3)
H(59A) 5374(8) 226(4) 735(7) 35(3)
H(59B) 5329(8) 440(4) -128(7) 30(3)
H(60A) 5778(7) 993(3) 1030(7) 32(3)
H(60B) 6393(7) 1059(3) 196(6) 26(3)
H(61A) 7941(9) 1807(3) 1027(8) 39(3)
H(61B) 6674(9) 1728(4) 870(7) 36(3)
H(62A) 7402(9) 2571(4) 1220(7) 35(3)
H(62B) 6276(8) 2390(4) 1566(8) 39(3)
H(63B) 7220(10) 2533(4) 2677(8) 37(3)
77
H(64A) 7812(10) 1650(4) 2873(8) 42(3)
H(64B) 6559(9) 1774(4) 2782(8) 38(3)
H(100) 7440(7) 1796(3) 7774(7) 24(2)
H(101) 8178(8) 1009(4) 6184(7) 33(3)
H(102) 8575(7) 2385(3) 7570(7) 31(3)
H(103) 8528(7) 2309(3) 6000(7) 33(3)
H(104) 8310(7) 1705(3) 6860(7) 26(3)
H(105) 8258(8) 1083(3) 7720(7) 39(3)
H(106) 7296(7) 1707(3) 5968(7) 29(3)
H(107) 6213(8) 1828(3) 6889(7) 32(3)
___________________________________________________________
78
Reference Section 2-4.
[1] Lutz, F.; Bau, R.; Wu, P.; Koetzle, T. F.; Krueger, C.; Schneider, J. J.: Inorg.
Chem., 1996, 35, 2698.
[2] Teller, R. G.; Wilson, R. D.; McMullan, R. K.; Koetzle, T. F.; Bau, R: J. Am
Chem. Soc., 1978, 100, 3071.
[3] Yousufuddin, M.; Baldamus, J.; Tardif, O.; Hou, Z.; Mason, S.A.; McIntyre,
G.J.; and Bau, R.: J. Am Chem. Soc., 2008, 130, 3888-3891.
[4] Bau, R.; Drabnis, M. H.; Garlaschelli, L.; Klooster, W. T.; Xie, Z.; Koetzle, T.
F.; Martinengo, S.: Science, 1997, 275, 1099.
[5] Hart, D. W.; Teller, R. G.; Wei, C. Y.; Bau, R.; Longoni, G.; Campanella, S.;
Chini, P.; Koetzle, T. F.: Angew. Chem. Int. Ed. Engl., 1978, 18, 80.
[6] Hart, D. W.; Teller, R. G.; Wei, C. Y.; Bau, R.; Longoni, G.; Campanella, S.;
Chini, P.; Koetzle, T. F.: J. Am. Chem. Soc., 1981, 103, 1458.
[7] Jackson, P. F.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R; McPartlin, M.;
Nelson, W. J. H.; Rouse, K. D.; Allibon, J., Mason, S. A.: J. Chem. Soc. Chem.
Commun., 1980, 7, 295-297.
[8] Tardif, O.; Nishiura, M.; Hou, Z.: Organometallics, 2003, 22(6), 1171 – 1173.
[9] Cui, D.; Tardif, O.; and Hou, Z.: J. Am. Chem. Soc. Comm., 2004, 126(5),
1312-1313.
[10] Luo, Y.; Baldamus, J.; Tardif, O.; Hou, Z.: Organometallics, 2005, 24(18),
4362-4366.
[11] Cui, D.; Nishiura, M.; Hou, Z.: Macromolecules, 2005, 38, 4089-4095.
[12] Sheldrick, G.M.; SHELXTL, version 6.14; Bruker Analytical X-ray System,
Inc., Madison, WI, 1997.
[13] Blessing, R.H.: Acta Crystallogr., 1995, A51, 33.
[14] Wilkinson, C.; Cowan, J.A.; Myles, D.A.A.; Cipriani, F.; McIntyre, G.J.:
Neutron News, 2002, 13, 37- 41.
[15] Capriani, F.; Castsgna, J.C.; Lehmann, M.S.; Wilkinson, C.: Physica B, 1995,
213, 975.
[16] Campbell, J.W.: J. Appl. Crystallogr., 1995, 28, 228 – 236.
79
[17] Campbell, J.W.; Hao, Q.; Harding, M.M.; Nguti, N.D.; Wilkinson, C.: J. Appl.
Crystallogr., 1998, 31, 23 – 31.
[18] Wilkinson, C.; Khamis, H.W.; Stansfield, R.F.D.; McIntyre, G.J.: J. Appl
Crystallogr., 1988, 21, 471 – 478.
[19] Campbell, J.W.; Habash, J.; Helliwell, J.R.; Moffat, K.: Information Quarterly
of Protein Crystallography, 1988, 18, SERC Daresbury Laboratory, Warrington
England.
[20] Sheldrick, G.M.; SHELX-97, A Computer Program for the Refinement of
Crystal Structures; University of Göttingen: Göttingen Germany, 1997.
[21] Bau, R.; Dradnis, M.H.; Garlaschelli, L.; Klooster, W.T.; Xie, Z.; Koetzle, T.F.;
Martinengo, S.: Science, 1997, 275, 1099 – 1102.
[22] Hanke, D.; Wieghardt, K.; Nuber, B.; Lu, R.S.; McMullan, E.L.; Koetzle, T.F.;
Bau, R.: Inorganic Chemistry, 1993, 32, 4300.
[23] Brown, R.K.; Williams, J.M.; Sivak, A.J.; Muetterties, E.L.: Inorganic
Chemistry, 1980, 19, 370.
[24] Ricci, J.S.; Koetzle, T.F.; Goodfellow, R.J.; Espinet, P.; Maitlis, P.M.: ibid,
1984, 23, 1828.
[25] Barbalace, K.; Periodic Table of Elements - Dysprosium – Dy.
EnvironmentalChemistry.com. 1995 - 2008. Accessed on-line: 10/8/2008
http://EnvironmentalChemistry.com/yogi/periodic/Dy.html
80
CHAPTER 3
Neutron Diffraction Studies of a Distorted Tetrahedral 4-coordinate
Hydrogen and an Unprecedented Trigonal Bipyramidal 5-coordinate Hydrogen in
Mixed Yttrium-Tungsten Cluster Complexes
Introduction Section 3-1.
Neutron diffraction has shown that hydrogen atoms can bond to transition
metals in a variety of forms. In addition to the common terminal (M-H), edge-
bridging [(M( µ-H)
2
M) and face-bridging [M( µ-H)
3
M] H atoms identified in a variety
of metal cluster complexes, higher coordination numbers of hydrogen atoms have
also been reported via neutron diffraction: our group and others have previously
reported a 6-coordinate octahedral H in [HCo
6
(CO)
15
] [1] and [HRu
6
(CO)
18
] [2], a
5-coordinate square pyramidal H in [H
2
Rh
13
(CO)
24
]
3-
[3], and most recently, a 4-
coordinate tetrahedral H in [Y
4
H
8
(Cp’)]THF
[Cp’= C
5
Me
4
(SiMe
3
)] [4]. Herein we
report unprecedented examples of a distorted 4-coordinate tetrahedral hydrogen
and a 5-coordinate trigonal bipyramidal hydrogen in the cores of (Cp’-
Y)
4
H
11
(Cp*WPMe
3
) (1) and (Cp’-Y)
4
H
11
(Cp*W) (2) title complexes.
Experimental Section 3-2.
General Methods. All reactions were carried out under dry and oxygen free
argon atmosphere using a Schlenk techniques and an Mbraun glovebox. The
argon was purified by being passed through a Dryclean column (4A molecular
sieve, Nikka Seiko Co.) and Glasclean CC-XR column (Nikka Seiko Co.). The
nitrogen in the glove box was constantly circulated through a copper molecular
sieves (4A) catalyst unit. The oxygen and moisture concentrations in the glove
box atmosphere were monitored by an O
2
/H
2
O Combi-Analyzer (Mbraun) to
81
ensure both were always below 1 ppm. Samples from NMR spectroscopic
measurements were prepared in the glove box by use of J Young valve NMR
tubes. NMR (
1
H,
13
C
31
P) spectra were recorded on a JNM-Alpha 400, JNM-EX
100,75 or JNM-LX 162 spectrometer. Assignment of the signals was also
confirmed by
1
H-
1
H COSY NMR experiments. IR spectra were recorded on a
Shimadzu FT-IR-8100M spectrometer using nujol mulls between KBr disks.
Elemental analyses were performed by Chemical analysis Team, D. & S. Center
RIKEN. Solvents were distilled from sodium / benzophenone ketyl, degassed by
the freeze-pump-thaw method, and dried over fresh Na chips in the glove box.
Preparation and Crystallization of [(C
5
Me
4
SiMe
3
)Y]
4
H
11
[(C
5
Me
5
)WPMe
3
]
(1). All chemical manipulations were carried out under inert-atmosphere
conditions. [(C
5
Me
4
SiMe
3
)Y( µ-H)
2
]
4
(THF) (66 mg, 0.053 mmol), preparation
described elsewhere [5], (C
5
Me
5
)WPMe
3
H
5
(22 mg, 0.055 mmol), preparation
described elsewhere [6, 7], and hexane (0.3 mL) were mixed at room
temperature, which gave immediately an orange solution mixture. After stirring at
room temperature for few minutes, the mixture was cooled to –33 °C and afforded
(1) as orange microcrystals (80 mg, 0.052 mmol, 98%). Solution structure has
been confirmed by
1
H NMR (400 MHz, toluene-d
8
, –40 °C, δ/ppm): 5.85 (t, J
HY
=
34.4 Hz, 2H, Y-H-Y), 5.81 (t, J
HY
= 34.4 Hz, 2H, Y-H-Y), 4.48 (t, J
HY
= 20.4 Hz,
3H, Y-H-Y), 2.63 (s, 6H, C
5
Me
4
SiMe
3
), 2.59 (s, 6H, C
5
Me
4
SiMe
3
), 2.54 (s, 6H,
C
5
Me
4
SiMe
3
), 2.43 (s, 6H, C
5
Me
4
SiMe
3
), 2.42 (s, 6H, C
5
Me
4
SiMe
3
), 2.41 (s, 6H,
C
5
Me
4
SiMe
3
), 2.35 (s, 6H, C
5
Me
4
SiMe
3
), 2.33 (s, 6H, C
5
Me
4
SiMe
3
), 2.06 (s, 15H,
C
5
Me
5
), 1.28 (d, J
HP
= 8.4 Hz, 9H, PMe
3
), 0.61 (s, 9H, C
5
Me
4
SiMe
3
), 0.60 (s, 9H,
82
C
5
Me
4
SiMe
3
), 0.54 (s, 18H, C
5
Me
4
SiMe
3
), *0.5 (1H, W-H-Y obscured by SiMe
3
), –
7.20 (brs, 2H, W-H-Y), –7.37 (brs, 1H, W-H-Y). * by
1
H-
1
H COSY.
13
C NMR (100
MHz, C
6
D
6
, rt, δ/ppm): 129.1, 128.6, 128.1, 127.4, 125.2, 124.9, 124.8, 124.7 (s,
C
5
Me
4
SiMe
3
), 116.0, 115.2, 113.8 (s, ipso- C
5
Me
4
SiMe
3
), 94.1 (s, C
5
Me
5
), 27.2
(d, J
CP
= 28.9 Hz, PMe
3
), 18.0, 17.4, 16.24, 16.21, 14.6 (s, C
5
Me
4
SiMe
3
), 14.5
(C
5
Me
5
), 14.3, 14.1, 13.3, 12.9 (s, C
5
Me
4
SiMe
3
), 4.0 (s, C
5
Me
4
SiMe
3
), 3.4 (s,
C
5
Me
4
SiMe
3
).
31
P NMR (162 MHz, C
6
D
6
, rt, δ/ppm): –76.2 (s, J
PW
= 199.8 Hz, W-
PMe
3
). IR (Nujol mull) 2953 (s), 2924 (s), 2853 (s), 1458 (m), 1377 (w), 1244 (m),
845 (w), 833 (w) cm
–1
. Anal. Calcd. for C
61
H
119
WPSi
4
Y
4
: C, 47.68; H, 7.75. Found:
C, 48.24; H, 7.44.
Preparation and Crystallization of [(C
5
Me
4
SiMe
3
)Y]
4
H
11
[(C
5
Me
5
)W] (2).
Complex (1) (120 mg, 0.0780 mmol) and benzene (3 mL) were placed in a
Schlenk flask that contained a stir bar. The solution was microwave irradiated at
60 Hz for 5 hours. The solvent was removed in vacuum, and the residue was
taken up in a minimal amount of benzene and crystallized to give (2) (85 mg,
0.058 mmol, 74%) as red crystals.
1
H NMR (400 MHz, toluene-d
8
, 50 °C, δ/ppm):
4.89 (quint, J
HY
= 14.4 Hz, 6H, Y-H-Y), 2.62 (s, 24H, C
5
Me
4
SiMe
3
), 2.36 (s, 24H,
C
5
Me
4
SiMe
3
), 2.31 (s, 15H, C
5
Me
5
), 0.50 (s, 36H, C
5
Me
4
SiMe
3
), –6.03 (s, J
HW
=
59.2 Hz, 5H, W-H-Y).
13
C NMR (75 MHz, toluene-d
8
, rt, δ/ppm): 129 (obscured by
toluene, C
5
Me
4
SiMe
3
), 123.9 (s, C
5
Me
4
SiMe
3
), 114.6 (s, ipso-C
5
Me
4
SiMe
3
), 92.3
(s, C
5
Me
5
), 17.1 (s, C
5
Me
4
SiMe
3
), 14.8 (s, C
5
Me
4
SiMe
3
), 12.6 (s, C
5
Me
5
), 2.3 (s,
C
5
Me
4
SiMe
3
). IR (Nujol mull) Anal. Calcd. for C
58
H
110
WSi
4
Y
4
: C, 47.69; H, 7.54.
Found: C, 48.10; H, 7.58.
83
X-ray Data Collection, Structure Determination and Refinement for
[(C
5
Me
4
SiMe
3
)Y]
4
H
11
[(C
5
Me
5
)WPMe
3
] (1). An orange cubic crystal of approximate
dimensions 1.1 x 0.9 x 0.8 mm
3
was glued to a glass filament with two-part epoxy
and transferred to a Bruker CCD platform diffractometer. The data were collected
at room temperature 163 (2) K using phi and omega scans. The crystal-to-
detector distance was 60 mm and exposure time was 10 seconds per frame
using a scan width of 0.3
o
. The SMART [8] program package was used to
determine the unit-cell parameters and for data collection (20 sec / frame scan
time for a sphere of diffraction data). The raw frame data was processed using
SAINT [9] and SADABS [10] to yield the reflection data file. Subsequent
calculations were carried out using the SHEXLTL [11] program. The structure
was solved by direct methods (SIR-97) and refined on F
2
by full-matrix least
squares techniques to produce a complete heavy-atom phasing model consistent
with the proposed structure. The analytical scattering factors [12] for neutral
atoms were used throughout the analysis. Data collection was 62.4 % complete
to 27.52
o
in theta. A total of 15033 reflections were collected covering the -7<= h
<=17, -17<= k <=16, -29<= l <=29. 11082 reflections were found to be symmetry
independent, with a R(int) of 0.0439. Indexing and unit-cell refinement indicated a
primitive, triclinic lattice. The space group was found to be P-1 (No. 2). All non-
hydrogen atoms were refined anisotropically by the full matrix least-squares
(SHELXL-97). All hydrogen atoms were placed using a riding model
corresponding to the respective carbon. Their positions were constrained using
an appropriate HFIX cards in SHEXL-97 software. Final structure refinement for
84
title complex (1) convergence resulted in R
1
= 0.090 and wR
2
= 0.235 for those
data I > 2 σ(I). The data to parameter ratio is 16 : 1 and Goodness-of-fit on F
2
equals 0.951. Z equals 2 and unit cell dimensions: a = 13.6049(12) Å, b =
14.1401(12) Å, c = 22.801(2) Å, and α = 95.071(1)
o
, β = 91.974(1)
o
, γ =
117.711(1)
o
. Relevant crystallographic data is summarized in Table 3-1 and full
information is listed in Table 3-5.
X-ray Data Collection, Structure Determination and Refinement for
[(C
5
Me
4
SiMe
3
)Y]
4
H
11
[(C
5
Me
5
)W] (2). A yellow cubic crystal of approximate
dimensions 0.17 x 0.10 x 0.10 mm
3
was mounted on a Cryoloop with Paratone oil
and transferred to a Bruker CCD platform diffractometer. The data were collected
in a nitrogen gas stream at 295 (1) K using phi and omega scans. The crystal-to-
detector distance was 60 mm and exposure time was 10 seconds per frame
using a scan width of 0.3
o
. The SMART [8] program package was used to
determine the unit-cell parameters and for data collection (20 sec / frame scan
time for a sphere of diffraction data). The raw frame data was processed using
SAINT [9] and SADABS [10] to yield the reflection data file. Subsequent
calculations were carried out using the SHEXLTL [11] program. The structure
was solved by direct methods (SIR-97) and refined on F
2
by full-matrix least
squares techniques to produce a complete heavy-atom phasing model consistent
with the proposed structure. The analytical scattering factors [12] for neutral
atoms were used throughout the analysis. Data collection was 97.0% complete to
27.57
o
in theta. A total of 44969 reflections were collected covering the -17<= h
<=17, -39<= k <=37, -23<= l <=18. 16583 reflections were found to be symmetry
85
independent, with a R(int) of 0.1153. Indexing and unit-cell refinement indicated a
Primitive, monoclinic lattice. The space group was found to be P2(1)/n (No. 14).
All non-hydrogen atoms were refined anisotropically by the full matrix least-
squares (SHELXL-97). All hydrogen atoms were placed using a riding model
corresponding to the respective carbon. Their positions were constrained using
an appropriate HFIX cards in SHEXL-97 software.
Final structure refinement for title molecule (2) convergence resulted in R
1
= 0.0782 and wR
2
= 0.1898 for those data I > 2 σ(I). The data to parameter ratio is
29 : 1 and Goodness-of-fit on F
2
equals 0.91. Z equals 4 and unit cell dimensions:
a = 13.465(2) Å, b = 30.697(5) Å, c = 17.893(3) Å, and β = 92.610(3)
o
. Relevant
crystallographic data is summarized in Table 3-2 and full information is listed in
Table 3-6.
Neutron Data Collection, Structure Determination and Refinement for
[C
5
Me
4
(SiMe
3
)Y]
4
H
11
[(C
5
Me
5
)WPMe
3
] (1). Neutron data on this compound were
first collected at room temperature (297 K) at Japan Atomic Energy Agency
(JAEA) at Tokai, Japan. The neutron experiment at JAEA was performed under
the approval of the common-use facility program of JAEA (proposal: 2007B-A19).
However, due to unsatisfying results of the subsequent least-squares refinement,
it was decided, for this thesis, to use a 20K neutron data set on a larger crystal
collected several months later at the Institut-Laue Langevin, Grenoble, France.
Never the less, since the refined bipyramidal structure at 297 K also shows the
same trends as that at 20 K, we report details of the 297 K data collection and
analysis here.
86
For the 297 K data collection a crystal of approximately 3 mm
3
in size was
inserted into a quartz glass capillary and mounted on the BIX-3 diffractometer
[13, 14] equipped with a neutron imaging plate [15, 16] detector at the JRR-3
reactor of the Japan Atomic Energy Agency (JAEA). The neutron diffraction data
were collected by the ω scan method (oscillation range ω = 1.0
o
) at 297K using a
monochromated thermal neutron beam ( λ = 1.5100Å). Since the BIX-3 is a
single-axis cylindrical diffractometer, data were collected by changing the angle
of the capillary to the vertical (about 0
o
and 45
o
) equivalent to changing the χ
setting on a conventional X-ray diffractometer. A total of 353 oscillation
‘photographs’ were recorded on the image-plate detector; the exposure time for
each image was 38 minutes. Reflections were processed with the programs
DENZO and Scalepack [17] which yields cell parameters in the triclinic space
group P-1 (No.2) with a = 13.57 Ǻ, b = 14.09 Ǻ, c = 22.76 Ǻ, α = 95.02
o
, β =
91.97
o
and γ = 117.67
o
. The number of unique reflections is 8532 and total
number of reflections is 16477. Completeness is 65.7 %. R(int) = 11.8 % , and
after structure refinement using SHELXTL, R1 = 20.8 %, R2 = 45.2 %.
Despite the poor completeness and R values, the overall bond lengths and
angles, especially those surrounding the WY
4
H
11
core are well behaved and
consistent with the later results on a larger sample at 20 K, given in Table 3-3.
Our reported better results for compound (1) came from a plate-like
orange/red crystal, of approximate volume 7 mm
3
, which was glued with grease
in an inert atmosphere to the inside of a thin-walled silica glass tube. The ampule
was glued onto an Al base, which was then mounted on a Displex cryo-
87
refrigerator on the ILL thermal-beam diffractometer D19 equipped with a new
large horizontally-curved position-sensitive detector [18]. This detector is
mounted symmetrically about the equatorial plane, with sample to detector
distance 76 cm, and subtends 30 degrees vertically and 120 degrees
horizontally. It is based on a novel multi-wire gas counter technology, to be
described elsewhere. Readout of 256 x 640 pixels per frame with pixel spacing’s
of 0.12 degrees vertically and 0.19 degrees horizontally. The crystal was cooled
slowly to 20 K (3 K / min), while monitoring the diffraction pattern. The triclinic
space group and the unit cell found by X-rays were confirmed at 20 K. No
significant change in the crystal mosaic was observed during cooling. The chosen
neutron wavelength of 1.24803(3) Å from a Ge (115) monochomator in reflection
(take-off angle 70°), was accurately determined by refining the 2 θ values of 1755
reflections from a DKDP standard crystal. The accessible reflections, up to 2 θ ≤
123.38°, were measured, to pre-set monitor counts, in a series of 80° ω scans,
typically in steps of 0.07° and counting times of about 12 seconds per step. The
average number of reflections per detector frame (i.e. at any one orientation) was
75.
A range of crystal orientations (different φ and χ positions) were used to
explore as much of reciprocal space as time permitted. Because of its large
horizontal opening, only one detector position was required. Between the long
scans, three strong or medium reflections were monitored every 4 hours in
shorter scans, and showed no significant change. Note that, unusually, the ILL
reactor ran at 35 MW rather than the usual 55 MW during most of the experiment,
88
so that the beam intensity was reduced by about one-third: the total
measurement time at 20 K was 3.6 days. The unit-cell dimensions were
calculated (ILL program Rafd19) at the end of the data collection, from the
centroids in 3D of 4621 strong reflections (6.3 ≤ 2θ ≤ 123.9°).
Raw intensity data were corrected for vertical and horizontal positional
distortion by a procedure to be described elsewhere (Clergeau, personal
communication). Bragg intensities were integrated in 3D using a version of the
ILL program Retreat [19], modified for the new detector geometry. For the 4621
strongest reflections the mean positional errors for the centroids were 0.02°,
0.05° and 0.03° (in the scan, horizontal, and vertical directions, respectively).
A total of 39244 Bragg reflections were obtained, of which 19529 were
independent. The Bragg intensities were corrected for attenuation by the
cylindrical Al and V Displex heat-shields (minimum and maximum transmission
coefficients 0.9015 and 0.9675) using the program D19abs (ILL program) [11].
Present Shelxl residual values are R(int) = 0.1024 & R(sigma) = 0.1235.
89
Table 3-1. Crystallographic Data and Parameters for
[C
5
Me
4
(SiMe
3
)Y]
4
H
11
[(C
5
Me
5
)WPMe
3
] (1).
X-ray Analysis
Empirical formula [C
5
Me
4
SiMe
3
Y]
4
H
11
[(C
5
Me
5
)WPMe
3
]·C
6
H
14
Formula Weight (amu) 1524.29
Crystal System, space group Triclinic, P-1(No.2)
Unit cell dimensions
a = 13.6049(12) Å α = 95.071(1) °
b = 14.1401(12) Å β = 91.974(1) °
c = 22.801(2) Å γ = 117.711(1) °
V, Z 7849.7(10)Å
3
, 2
Temperature (K) 300(2)
Crystal size (mm) 1.1 x 0.9 x 0.8
wavelength 0.71073 Å
No. of reflns collected 15033
No. of independent reflns 11082
No. of reflns with I>2 σ (I)
8043
Fina R indices [I>2 σ (I)]
R1=0.09, wR2=0.23
Neutron Analysis
Instrument, Facility (D19, I.L.L.) (BIX-3, J.A.E.A)
Empirical formula [C
5
Me
4
SiMe
3
Y]
4
H
11
[(C
5
Me
5
)WPMe
3
]·C
6
H
14
Formula Weight (amu) 1578.5 1578.5
Crystal System, space group Triclinic, P-1 (No. 2)
Unit cell dimensions a = 13.411(1) Å a = 13.567(1) Å
b = 14.068(1) Å b = 14.092(1) Å
c = 22.368(2) Å c = 22.759(2) Å
α = 95.138(1) ° α = 95.024(8) °
β = 92.056(1) ° β = 91.972(7) °
γ = 118.155(1) ° γ = 117.669(9) °
V, Z 3690.9(6) Å
3
, 2 3825.3(6) Å
3
, 2
Temperature (K) 20 (2) 298 (2)
Crystal size (mm) 3.65 x 2.0 x 1.25 1.9 x 1.8 x 0.5
Wavelength 1.24803(3) Å 1.5100 Å
No. of reflns collected 39244 16477
No. of independent reflns 19529 8532
No. of reflns with I>2 σ (I)
12223 6419
No. of params refined 1802 864
Fina R indices [I>2 σ (I)]
R1= 0.103,
wR2= 0.232
R1= 0.208,
wR2= 0.452
R indices (all data) R1= 0.168,
wR2= 0.279
R1= 0.240, wR2=
0.476
90
Neutron Data Collection, Structure Determination and Refinement for
[C
5
Me
4
(SiMe
3
)Y]
4
H
11
[(C
5
Me
5
)W] (2). The data collection method chosen for
compound (2) was different from that of compound (1), because of the
significantly smaller size of crystal (2), which necessitated the use of an
instrument that can accept a smaller crystal, albeit at the price of somewhat less
precise data. A nearly rectangular red single crystal with maximum dimensions
2.0 x 1.5 x 0.6 mm
3
was inserted into a thin-walled glass capillary in a glove box.
The capillary was then mounted in the He cryostat on the Very-Intense Vertical-
Axis Laue Diffractometer (VIVALDI) [21, 22] at the Institut Laue-Langevin in
Grenoble, France. The crystal was first cooled to 150 K where 12 Laue patterns
were collected, each for 90 min with successive patterns distinguished by a
rotation of 10
o
or 20
o
of the crystal about the vertical axis. An attempt to cool to
20 K to repeat the data collection in the expectation that the reduced thermal
motion would yield data to higher resolution revealed that the crystal undergoes a
reversible transition to a twinned triclinic structure between 120 K and 100 K. The
lattice parameters at 20 K are a = 13.43 Å, b = 30.74 Å, c = 17.54 Å, α = 89.41 °, β
= 92.57 °, γ = 90.80 °. The twin domains are related by a 180° rotation around the
monoclinic b axis and correspond to removal of the 2-fold symmetry axis in
P2(1)/n. Since at this stage we had not succeeded in indexing the 150 K
patterns, the crystal was warmed to 295 K where we were certain of the lattice
parameters from the earlier X-ray study. At 295 K a further set of 12 Laue
patterns were collected, each for 180 min. The crystal was then cooled again to
150 K, where a smaller set of five patterns each for 240 min was collected to aid
91
in indexing. Finally the crystal was cooled to 20 K, where nine patterns were
collected, each for 150 min. Just as in the D19 data collection for compound (1),
the reactor power was mostly at 35 MW, two thirds its usual operating value.
Here we consider the analysis of just the monoclinic 295 K and 150 K data. The
twinning in the triclinic structure will require modification of our integration
routines.
The Laue patterns at 295 K and 150 K were eventually indexed [23] and
processed using LAUEGEN [24], reflections were integrated and the background
removed using INTEGRATE+ [19], reflections at each temperature were
normalized separately to a common incident wavelength using LAUENORM [25],
and the neutron data were phased using the atomic coordinates determined from
the X-ray structure [26],in order to initiate refinement by least-squares.
Reflections were observed with wavelengths between 0.8 and 5.2 Å, but only the
26388 / 51635 with wavelengths between 0.8 and 3.25 Å were accepted for the
empirical normalization at 295 K / 150K. Since only the ratios between unit-cell
dimensions can be determined in the white-beam Laue technique, the
dimensions found by X-ray diffraction at 295 K were used in the refinement of the
150 K neutron data; the observed ratios and angles were, however, in accord
with the X-ray values.
Although this is one of the largest unit cells that have been successfully
studied on VIVALDI, typically only 5% of the spots on a single pattern were
rejected because of spatial overlap. This low percentage of rejected data is in
92
part due to the small crystal size and the good crystal quality which led to small
spots on the detector.
Table 3-2. Crystallographic Data and Parameters for [C
5
Me
4
SiMe
3
Y]
4
H
11
(Cp*W)
(2). Definitions:
a
From the X-ray structure determination carried out at 163 K.
X-ray Analysis
Empirical formula [C
5
Me
4
SiMe
3
Y]
4
H
11
[(C
5
Me
5
)W] C
6
H
14
Formula Weight (amu) 1551.44
Crystal System, space
group
Monoclinic, P2(1)/n (No.14)
Unit cell dimensions a = 13.279(4) Å
b = 30.431(6) Å
c = 17.893(3) Å
β = 92.610(3) °
V, Z 7322.8(6)Å
3
, 4
Temperature (K) 163(2)
Crystal size (mm) 0.17 x 0.10x 0.10
Wavelength 0.71073 Å
No. of reflns collected 45697
No. of independent reflns 16452
No. of reflns with I>2 σ (I)
9313
Fina R indices [I>2 σ (I)]
R1=0.078, wR2=0.01898
Neutron Analysis
Empirical formula [C
5
Me
4
SiMe
3
Y]
4
H
11
[(C
5
Me
5
)W] C
6
H
14
Formula Weight (amu) 1459.34
Crystal System, space
group
Monoclinic P2(1)/n (No.14)
Unit cell dimensions
a = 13.279(4) Å
b = 30.431(6) Å
c = 18.131(1) Å
β = 91.851(1) °
V, Z 7322.8(6) Å
3
, 4
Temperature (K) 150 (2)
Crystal size (mm) 2.0 x 1.5x 0.6
θ range for data collection
4-72°
No. of reflns collected 51635
No. of independent reflns 5268
No. of reflns with I>2 σ (I)
4107
No. of params refined 1780
Refinement method Full matrix, least-squares on F
2
Final R indices [I>2 σ (I)]
R1=0.0989, wR2=0.254
R indices (all data) R1 = 0.139, wR2 = 0.293
93
Results and Discussion Section 3-3.
Compound (1) was prepared via the reaction of Y
4
H
8
(Cp’)
4
(THF) with
Cp*WPMe
3
H
5
in hexane; subsequent reaction of compound (1) with benzene
produced compound (2) ( Figure 3-1). Details of the experiment are described in
the experimental section. Tables 3-1 and 3-2 list the crystallographic data for
compound (1) and (2), respectively. Tables 3-3 and 3-4 list the selected distances
and angles in the WY
4
H
11
cores of compounds (1) and (2), respectively.
Complete tables of atomic positions and thermal displacement parameters are
available in the Tables 3-5, 3-6, 3-7, and 3-8.
Figure 3-1. Compound (1) was prepared via the reaction of Y
4
H
8
(Cp’)
4
(THF) with
Cp*WPMe
3
H
5
in hexane; subsequent reaction of compound (1) with benzene
produced compound (2).
(3) (1) (2)
Essentially, the structures from earlier X-ray analyses [26] of compounds
(1) and (2) were confirmed; however, neutron analysis provides more precise H
atom parameters. Note in particular, estimated standard deviations (esd’s) in
bond lengths involving H positions are much lower (i.e. results are more precise)
in the neutron studies than those from X-ray analyses (Tables 3-3 and 3-4). The
benzene
94
structure of (1) is established by the 20 K single-crystal neutron diffraction study.
The core (Figure 3-2) consists of one W atom, one 4-coordinate H atom, two
face-bridging hydrides, and eight edge-bridging hydrides. The central hydride is
bonded to the four Y atoms to form a highly distorted tetrahedron. The Y-central
H distances are comparable with each other giving an average Y – central H
distance of 2.239(3) Å; however, the Y – central H – Y angles range from 102.6(1)
o
to 125.5(1)
o
. The Y1 – central H – Y2 angle of 125.5(1)
o
shows the largest amount
of distortion as compared with the ideal tetrahedral geometry of 109.5
o
, which
gives the center of the core more space to accommodate the two face-bridging
hydrides (H2 and H3) bonded to Y1, Y2 and W (Figure 3-2). In contrast, the W – H
distances are significantly shorter than the Y – H distances. We had previously
reported the first accurate neutron diffraction study of a 4-coordinate hydrogen
atom in [Cp*YH
2
]
4
(THF) [4]. In this complex (compound (3) in Figure 3-1), the
central hydride forms a nearly ideal tetrahedral geometry with the four Y atoms.
The overall geometry of the Y
4
WH
11
clusters in compound (1) suggests that the
entire molecule is behaving like a donor-acceptor complex, with the
Cp*WPMe
3
( µ-H)
4
fragment serving as a donor to the Y-H cluster through four
bridging hydride ligands (H2, H3, H4 and H5) (Figure 3-2).
95
Figure 3-2. ORTEP plot of the Y
4
WH
11
core of [(C
5
Me
4
(SiMe
4
)Y]
4
H
11
(Cp*PMe
3
W)(1). The [(C
5
Me
4
(SiMe
4
)] and Cp* ligands, as well as the methyl
groups of the PMe
3
ligand, have been removed for clarity. The thermal
displacement ellipsoids are drawn at 50% probability.
96
For compound (2), the neutron analysis at 150 K unambiguously locates,
for the first time, a 5-coordinate trigonal bipyramidal hydride in the WY
4
H
11
core
(Figure 3-3). Although we have previously reported a 5-coordinate square
pyramidal H in the [H
2
Rh
13
(CO)
24
]
3-
metal cluster anion [3], a 5-coordinate trigonal
bipyramidal H is unprecedented, in the sense that this bonding arrangement has
not been observed before (to the best of our knowledge), not even in solid – state
metal-hydride materials. The central hydride is bonded to four Y atoms and one
W atom to form a distorted trigonal bipyramidal; the axial Y – H distances are
significantly longer than the equatorial Y – H and Y – W distances (Table 3-4). The
central hydride, W atom, and two Y atoms (Y1 and Y4) are essentially coplanar,
as evidenced by the sum of the angles around the central hydride being close to
360
o
[Y2 – H1 – Y3 = 101.0(2)
o
, Y2 – H1 – W1 = 130.6(3)
o
, Y3 – H1 – W1 =
126.8(3)
o
. The sum of the three angles = 358.4(3)
o
. Moreover, the Y1 – H1 – Y4
angle is nearly linear [Y1 – H1 – Y4 = 175.9(3)
o
], re-enforcing the idea that the
geometry of the central H atom in (2) is essentially trigonal bipyramidal (Figure 3-
3). From Figure 3-2, one can observe the changes in the coordination of the
central hydride during the chemical transformation from (3) to (1) to (2), in other
words, from an ideal tetrahedral geometry in (3) to a distorted tetrahedral
structure in (1) upon the insertion of Cp
*
WPMe
3
H
5
, then to a distorted trigonal
bipyramidal geometry in (2) when the trimethylphosphine is removed from the
complex. Thus, the removal of the phosphine ligand from (1) results in an
97
electron-deficiency in the tungsten atom, which is partially relieved by the
formation of the W – H bond.
Figure 3-3. ORTEP plot of the Y
4
WH
11
core of [(C
5
Me
4
SiMe
3
)Y]
4
H
11
(Cp*W) (2).
The C
5
Me
4
SiMe
3
on Y and Cp* ligand on W have been removed for clarity. (Cp*=
C
5
Me
5
) The thermal displacement ellipsoids are drawn at 50% probability.
We have previously discussed the trend between the metal-hydride
distances and the hydrogen coordination number [3,4]. In the series of Rh
complexes containing Rh-H bonds with different hydrogen coordination number,
one can observe that as the hydrogen coordination number increases, the Rh – H
98
distance increases [3, 27-29]. (Rh – terminal H 1.536(2)Å; Rh – ( µ
2
-H) 1.765(11)Å,
Rh – ( µ
3
-H) 1.859(6)Å, Rh – ( µ
5
-H) 1.948(21)Å). However, for the Y
4
H
8
(Cp’)
4
(THF)
complex, we do not observe the same trend (average Y – ( µ
2
-H) 2.170, Y – ( µ
3
-H)
2.346Å, Y – ( µ
4
-H) 2.193Å)
[3]. In both compounds (1) and (2), there exist three
[( µ
2
-H), ( µ
3
-H) and (µ
4
-H)] and four [( µ
2
-H), ( µ
3
-H), ( µ
4
-H) and ( µ
5
-H)] different
types of H linkage to the metal atoms. Therefore, we can again compare bond
lengths with respect to the different H coordination numbers. We observe the
same trend in compound (1) as that in the Y
4
H
8
(Cp’)
4
(THF) complex: there is the
expected increase in Y – H distance from average Y( µ
2
-H) 2.195 Å to average
Y( µ
3
-H) 2.515 Å, then there is a decrease from Y( µ
3
-H) to average Y( µ
4
-H) 2.239
Å. Compound (2), however, exhibits the previously observed trends of the
rhodium compounds. There is the expected increase as one goes from average
Y( µ
2
-H) 2.179 Å to average Y( µ
3
-H) 2.259 Å to average Y( µ
5
-H) 2.490 Å (average
bond length of Y2 – H1 and Y3 – H1). We believe the difference in internal cavity
volumes between compounds (1) and (2) effects the observed trends presumably
because the cavity in compound (2) is larger. The bond distance between Y1 and
Y2 is 5.266 (3) Å whereas the Y1 – Y2 bond distance in compound (1) is 4.002(3)
Å. Though the Y3 – Y4 distances in the two molecules are similar at 3.487(1) Å for
title molecule (1) and 3.479(3) Å for title molecule (2).
The neutron data sets exploited here are noteworthy examples of what
one may achieve by careful experimental technique and critical data analysis on
state-of-the-art neutron diffractometers. In all examples the data-to-parameter
99
ratio is low, the agreement indices are high, but the Goodness-of-fit are near 1.0
and the consistency amongst the same types of bond in each structure signals
the validity of our results. Steadily we and our collaborators are pushing the
limits of the single-crystal neutron diffractometers and their data-reduction
software to elucidate these fascinating structures. We strongly believe that it is
only through careful study of several series of compounds of this type that we can
begin to understand the geometrical factors that stabilize this unusual form of
bonding (a hydrogen atom simultaneously attached to multiple metal atoms).
Acknowledgment Section 3-4
Manuscript is currently in progress, Within Professor Bau’s group Dr.
Aznavor and I collaborated on this project and finished our portion Fall, 2008. Dr.
Zhaomin Hou of RIKEN( Institute of Physical and Chemical Research), Wako,
Saitama, Japan is adding a synthetic portion to this neutron study and will submit
a larger manuscript in Spring, 2009.
100
Table 3-3. Selected distances and angles in the WY
4
H
11
cores of compound (1).
The population deviations in the average values are given in square brackets in
terms of the least significant digits.
Neutron X-ray
D19, 20 K BIX-3, 297 K Bruker D8,163 K
Bond lengths
Y-Y Distances (Å)
Y1-Y2 4.002 (2) 4.026 (13) 4.020 (1)
Y1-Y3 3.512 (1) 3.612 (11) 3.591 (1)
Y1-Y4 3.526 (1) 3.670 (11) 3.614 (1)
Y2-Y3 3.627 (1) 3.565 (14) 3.604 (1)
Y2-Y4 3.678 (1) 3.597 (13) 3.628 (1)
Y3-Y4 3.487 (1) 3.513 (12) 3.484 (1)
Average
3.64 [19] 3.66 [18] 3.66 [18]
Y-W Distances (Å)
Y1-W1 3.352 (2) 3.245 (17) 3.281 (1)
Y2-W1 3.218 (2) 3.296 (14) 3.278 (1)
Average 3.29 [9]
3.27 [4] 3.280 [2]
Y-(Central H) Distances (Å)
Y1-H1 2.273 (3) 2.215 (19) 2.19 (6)
Y2-H1 2.229 (3) 2.309 (24) 2.20 (6)
Y3-H1 2.208 (3) 2.194 (27) 2.44 (6)
Y4-H1 2.246 (3) 2.301 (24) 2.25 (6)
Average 2.24 [3]
2.25 [6] 2.27 [12]
Y-(face-bridging) Distances (Å)
Y1-H2 2.626 (3) 2.545 (19) 2.45 (6)
Y1-H3 2.554 (3) 2.574 (27) 2.43 (6)
Y2-H2 2.439 (3) 2.558 (24) 2.43 (6)
Y2-H3 2.439 (3) 2.516 (28) 2.42 (6)
Average 2.52 [9]
2.55 [2] 2.43 [1]
W-(face-bridging) Distances (Å)
W1-H2 1.767 (3) 1.727 (24) 1.91 (7)
W1-H3 1.753 (3) 1.662 (30) 1.90 (7)
Average
1.760 1.695 1.91
Y-(edge-bridging H) Distances (Å)
Y1-H4 2.318 (2) 2.250 (28) 2.38 (5)
Y2-H5 2.249 (2) 2.250 (30) 2.37 (5)
Y1-H6 2.159 (4) 2.192 (26) 1.88 (7)
Y4-H6 2.141 (3) 2.128 (22) 2.40 (7)
Table 3-3. continued.
101
Y1-H7 2.172 (3) 2.187 (26) 2.13 (6)
Y3-H7 2.158 (3) 2.112 (23) 2.19 (6)
Y2-H8 2.186 (3) 2.164 (21) 2.02 (6)
Y4-H8 2.150 (3) 2.099 (23) 2.28 (6)
Y2-H9 2.168 (3) 2.117 (29) 2.27 (6)
Y3-H9 2.166 (3) 2.230 (31) 2.08 (6)
Y3-H10 2.257 (4) 2.126 (36) 2.40 (5)
Y4-H10 2.272 (3) 2.145 (43) 2.12 (5)
Y3-H11 2.169 (3) 2.199 (28) 2.41 (5)
Y4-H11 2.169 (3) 2.265 (23) 2.12 (5)
Average 2.20 [5]
2.18 [6] 2.22 [17]
W-(edge-bridging H) Distances (Å)
W1-H4 1.778 (4) 1.737 (25) 1.87 (4)
W1-H5 1.774 (4) 1.760 (29) 1.87 (4)
Average
1.776 [3] 1.75 [2] 1.87 [0]
Selected Bond Angles (degrees)
Y1-H1-Y2 (core) 125.5° (1) 125.7° (1.1) 133° (3)
Y1-H1-Y3 (core) 103.2° (1) 110.0° (1.1) 101° (2)
Y1-H1-Y4 (core) 102.6° (1) 108.7° (0.9) 109° (3)
Y2-H1-Y3 (core) 109.6° (1) 104.6° (0.8) 102° (2)
Y2-H1-Y4 (core) 110.6° (1) 102.6° (0.9) 109° (3)
Y3-H1-Y4 (core) 103.0° (1) 102.8° (1.0) 96° (2)
Y1-H2-W1 (face) 97.5° (1) 97.0° (1.2) 97° (3)
Y1-H2-Y2 (face) 104.3° (1) 104.2° (0.9) 112° (2)
Y2-H2-W1 (face) 98.6° (2) 98.7° (0.9) 97° (3)
Y1-H3-W1 (face) 100.5° (2) 97.7° (1.1) 98° (3)
Y1-H3-Y2 (face) 106.5° (1) 104.6° (0.9) 112° (2)
Y2-H3-W1 (face) 99.0° (1) 102.2° (1.6) 98° (3)
Y1-H4-W1 (edge) 109.2° (1) 108.2° (1.0) 112° (4)
Y2-H5-W1 (edge) 105.6° (1) 110.0° (1.6) 114° (3)
Y1-H6-Y4 (edge) 110.2° (1) 116.3° (1.0) 115° (3)
Y1-H7-Y3 (edge) 108.6° (1) 114.3° (1.0) 112° (3)
Y2-H8-Y4 (edge) 116.1° (1) 115.1° (1.0) 115° (3)
Y2-H9-Y3 (edge) 113.6° (2) 110.2° (1.0) 112° (3)
Y3-H10-Y4 (edge) 100.7° (1) 103.8° (2.6) 101° (2)
Y3-H11-Y4 (edge) 107.0° (1) 110.7° (0.9) 101° (2)
102
Table 3-4. Selected distances and angles in the WY
4
H
11
cores of compound (2).
The population deviations in the average values are given in square brackets in
terms of the least significant digits.
Neutron (VIVALDI) X-ray (Bruker
D8)
Bond lengths
Y-Y Distances (Å)
Y1-Y2 3.523 (3) 3.538 (6)
Y1-Y3 3.472 (3) 3.521 (6)
Y1
…
Y4
5.266 (3) 5.305 (6)
Y2-Y3 3.616 (3) 3.684 (6)
Y2-Y4 3.465 (3) 3.504 (6)
Y3-Y4
3.479 (3) 3.507 (6)
Y-W Distances (Å)
Y1-W1 3.192 (5) 3.253 (5)
Y2-W1 3.741 (4) 3.807 (5)
Y3-W1 3.638 (4) 3.579 (5)
Y4-W1 3.219 (5) 3.174 (5)
Average
3.45 [28] 3.453 [29]
Y-(central H) Distances (Å)
Y1-H1 2.492 (9) 2.90 (4)
Y2-H1 2.369 (7) 2.32 (2)
Y3-H1 2.319 (6) 2.33 (2)
Y4-H1 2.778 (5) 2.41 (4)
Average 2.49 [21]
2.49 [28]
W-(central H) Distances (Å)
W1-H1 1.739 (8)
1.83 (2)
Y-(face-bridging H) Distances (Å)
Y1-H2 2.369 (7) 2.23 (4)
Y2-H2 2.189 (6) 2.28 (2)
Y3-H2 2.209 (6) 2.31 (2)
Y2-H3 2.193 (6) 2.29 (2)
Y3-H3 2.231 (6) 2.30 (2)
Y4-H3 2.363 (6) 2.33 (4)
Average 2.26 [8]
2.29 [3]
Y-(edge-bridging H) Distances (Å)
Y1-H4 2.071 (7) 2.06 (4)
Y3-H4 2.100 (8) 2.18 (3)
Y1-H5 2.101 (7) 2.01 (4)
Table 3-4. continued.
103
Y2-H5 2.170 (7) 2.19 (4)
Y2-H6 2.168 (6) 2.12 (4)
Y4-H6 2.083 (6) 2.03 (4)
Y3-H7 2.196 (6) 2.10 (3)
Y4-H7 2.038 (6) 2.12 (3)
Y1-H8 2.305 (7) 2.30 (2)
Y1-H9 2.292 (8) 2.33 (2)
Y4-H10 2.322 (8) 2.31 (2)
Y4-H11 2.307 (7) 2.32 (2)
Average 2.18 [10]
2.17 [12]
W-(edge-bridging H) Distances (Å)
W1-H8 1.761 (8) 1.33 (2)
W1-H9 1.722 (8) 1.35 (2)
W1-H10 1.762 (9) 1.35 (2)
W1-H11 1.694 (6) 1.38 (2)
Average
1.74 [3] 1.35 [2]
Selected Bond Angles (degrees)
Y1-H1-Y2 (core) 92.9° (3) 85° (1)
Y1-H1-Y3 (core) 92.3° (3) 84° (1)
Y1-H1-Y4 (core) 175.9° (3) 180° (1)
Y2-H1-Y3 (core) 101.0° (3) 105° (1)
Y2-H1-Y4 (core) 84.3° (3) 96° (1)
Y3-H1-Y4 (core) 85.3° (3) 96° (1)
Y1-H1-W1 (core) 94.0° (3) 84° (2)
Y4-H1-W1 (core) 87.8° (4) 96° (1)
Y2-H1-W1 (core) 130.6° (3) 133° (1)
Y3-H1-W1 (core) 126.8° (4) 119° (1)
Y1-H2-Y2 (face) 101.2° (3) n.a.
Y1-H2-Y3 (face) 98.6° (3) n.a.
Y2-H2-Y3 (face) 110.6° (3) n.a.
Y2-H3-Y4 (face) 109.7° (3) n.a.
Y2-H3-Y4 (face) 100.0° (2) n.a.
Y3-H3-Y4 (face) 98.0° (3) n.a.
Y1-H4-Y3 (edge) 112.7° (3) n.a.
Y1-H5-Y2 (edge) 111.2° (3) n.a.
Y2-H6-Y4 (edge) 109.2° (3) n.a.
Y3-H7-Y4 (edge) 110.0° (3) n.a.
Y1-H8-W1 (edge) 102.7° (3) n.a.
Y1-H9-W1 (edge) 104.5° (4) n.a.
Y4-H10-W1 (edge) 103.2° (3) n.a.
Y4-H11-W1 (edge) 106.1° (3) n.a.
104
Table 3-5. Full crystallographic information on compound (1) including ORTEP
generated numbering scheme with thermal ellipsoids drawn at 50% level from X-
ray data at 300(2) K collected at USC.
Identification code y4hpme3m_xray
Empirical formula C61 H108 P Si4 W Y4
Formula weight 1524.29
Temperature 300(2) K
Wavelength 0.71073 Å
Crystal system Triclinic
Space group P-1
Unit cell dimensions a = 13.6049(12) Å α= 95.0710(10)°.
b = 14.1401(12) Å β= 91.9740(10)°.
c = 22.801(2) Å γ = 117.7110(10)°.
Volume 3853.8(6) Å
3
Z 2
Density (calculated) 1.314 Mg/m
3
Absorption coefficient 4.578 mm
-1
F(000) 1550
Crystal size 1.1 x 0.9 x 0.8 mm
3
Theta range for data collection 1.64 to 27.52°.
Index ranges -7<=h<=17, -17<=k<=16, -29<=l<=29
Reflections collected 15033
Independent reflections 11082 [R(int) = 0.0439]
Completeness to theta = 27.52° 62.4 %
Absorption correction Empirical
Refinement method Full-matrix least-squares on F
2
Data / restraints / parameters 11082 / 0 / 671
Goodness-of-fit on F
2
0.951
Final R indices [I>2sigma(I)] R1 = 0.0901, wR2 = 0.2352
R indices (all data) R1 = 0.1209, wR2 = 0.2492
Largest diff. peak and hole 3.109 and -1.810 e.Å
-3
105
Atomic coordinates ( x 10
4
) and equivalent isotropic displacement parameters
(Å
2
x 10
3
). U(eq) is defined as one third of the trace of the orthogonalized U
ij
tensor.
___________________________________________________________
x y z U(eq)
___________________________________________________________
W(1) 7341(1) 10832(1) 3298(1) 34(1)
Y(3) 3805(1) 7068(1) 2603(1) 35(1)
Y(1) 6676(1) 8232(1) 3092(1) 36(1)
Y(2) 5339(1) 9784(1) 2240(1) 35(1)
Y(4) 5744(1) 7576(1) 1555(1) 38(1)
P(1) 9021(3) 11707(4) 2761(2) 52(1)
C(38) 1970(12) 6060(12) 3166(7) 48(3)
C(5) 8014(12) 11391(12) 4297(6) 44(3)
C(26) 4180(13) 10848(11) 2049(5) 41(3)
C(8) 6363(13) 11329(13) 3924(6) 45(3)
C(41) 1786(12) 5558(12) 2165(6) 44(3)
C(4) 6817(14) 10729(12) 4231(7) 54(4)
C(50) 6715(15) 7443(13) 564(7) 57(4)
C(17) 6748(14) 6579(13) 3544(8) 57(4)
C(29) 5478(14) 10965(14) 1384(7) 51(4)
106
C(7) 7283(14) 12308(12) 3817(6) 48(3)
Si(3) 1822(4) 6689(4) 3896(2) 58(1)
Si(4) 8010(8) 8493(6) 315(4) 111(3)
C(39) 2403(12) 5295(10) 3068(6) 39(3)
C(16) 7331(13) 7459(12) 3983(6) 46(3)
C(14) 8329(13) 7742(13) 3180(7) 50(3)
C(54) 6635(14) 6555(14) 873(7) 56(4)
C(10) 8853(18) 11230(20) 4651(9) 83(7)
C(18) 7380(14) 6754(13) 3056(6) 49(3)
C(6) 8281(12) 12360(12) 4031(6) 47(3)
C(28) 4475(18) 9990(15) 1216(6) 60(5)
Si(2) 3243(4) 11231(4) 2475(2) 61(1)
C(43) 942(16) 6811(17) 2510(10) 73(5)
C(45) 2590(20) 4203(14) 2116(11) 89(8)
C(27) 3693(14) 9884(13) 1637(7) 49(3)
C(55) 7570(20) 6390(20) 1077(9) 95(8)
C(40) 2264(12) 5011(11) 2443(7) 48(3)
C(36) 2260(20) 11290(30) 1899(14) 130(13)
C(3) 9343(19) 13020(20) 2527(14) 104(9)
C(35) 3970(20) 12596(18) 2921(11) 100(9)
C(30) 5295(14) 11538(13) 1867(7) 53(4)
C(1) 8947(19) 11010(20) 2051(9) 85(6)
C(42) 1590(12) 6192(13) 2618(7) 48(3)
C(51) 5560(20) 7130(20) 375(7) 82(7)
C(11) 9476(17) 13335(15) 4119(10) 74(5)
C(44) 2791(16) 4844(14) 3517(8) 63(4)
Si(1) 7015(5) 7298(4) 4778(2) 62(1)
C(56) 5080(40) 7590(40) -49(10) 168(19)
C(9) 6173(18) 9744(15) 4528(8) 67(5)
C(12) 7200(20) 13242(15) 3624(10) 81(6)
C(57) 3610(20) 5490(30) 412(13) 138(15)
C(13) 5155(14) 11034(16) 3853(9) 69(5)
C(33) 4270(20) 9150(20) 691(8) 88(7)
C(52) 4868(17) 6140(20) 594(8) 75(6)
107
C(32) 2545(16) 8968(16) 1579(10) 73(5)
C(19) 9330(14) 9112(15) 4083(10) 68(5)
C(15) 8326(12) 8167(12) 3743(8) 50(4)
C(53) 5552(19) 5824(14) 888(7) 69(5)
C(23) 7810(20) 8470(20) 5332(8) 90(7)
C(48) 2700(20) 8146(19) 3979(12) 123(12)
C(20) 5670(18) 5580(15) 3597(10) 78(6)
C(2) 10331(16) 11936(19) 3118(10) 77(5)
C(25) 5550(20) 6970(20) 4913(11) 97(8)
C(46) 1389(18) 5410(20) 1524(8) 91(8)
C(24) 7270(30) 6140(20) 4972(11) 111(10)
C(22) 9238(16) 8207(18) 2785(9) 71(5)
C(37) 2464(19) 10270(20) 3023(13) 100(8)
C(34) 6503(18) 11457(18) 1056(9) 78(6)
C(21) 7130(20) 5949(17) 2510(8) 79(6)
C(31) 6084(18) 12671(15) 2081(12) 85(6)
C(58) 5120(30) 4748(18) 1128(12) 110(9)
C(49) 2200(20) 6250(30) 4530(9) 130(13)
C(47) 350(19) 6410(20) 3927(10) 85(6)
C(60) 8360(20) 7881(19) -347(10) 104(9)
C(59) 9190(30) 9060(40) 870(20) 200(30)
C(61) 7950(60) 9620(60) 40(40) 330(40)
___________________________________________________________
Bond lengths [Å] and angles [°].
W(1)-C(4) 2.262(14)
W(1)-C(8) 2.264(12)
W(1)-C(7) 2.343(13)
W(1)-C(5) 2.350(13)
W(1)-C(6) 2.397(14)
W(1)-P(1) 2.466(4)
W(1)-Y(2) 3.2549(14)
W(1)-Y(1) 3.3347(13)
Y(3)-C(40) 2.660(14)
Y(3)-C(41) 2.661(15)
Y(2)-Y(4) 3.6458(15)
Y(4)-C(52) 2.668(17)
Y(4)-C(51) 2.683(15)
Y(4)-C(53) 2.686(14)
Y(4)-C(50) 2.693(14)
Y(4)-C(54) 2.707(13)
P(1)-C(1) 1.794(18)
P(1)-C(2) 1.81(2)
P(1)-C(3) 1.83(2)
C(38)-C(42) 1.39(2)
108
Y(3)-C(38) 2.674(14)
Y(3)-C(42) 2.676(14)
Y(3)-C(39) 2.684(13)
Y(3)-Y(4) 3.4869(17)
Y(3)-Y(1) 3.5494(18)
Y(3)-Y(2) 3.6081(18)
Y(1)-C(14) 2.650(13)
Y(1)-C(18) 2.671(13)
Y(1)-C(17) 2.677(15)
Y(1)-C(15) 2.690(14)
Y(1)-C(16) 2.700(14)
Y(1)-Y(4) 3.5743(17)
Y(1)-Y(2) 4.0151(16)
Y(2)-C(29) 2.635(14)
Y(2)-C(27) 2.654(15)
Y(2)-C(28) 2.678(14)
Y(2)-C(26) 2.686(10)
Y(2)-C(30) 2.718(15)
C(29)-C(34) 1.50(2)
C(7)-C(6) 1.39(2)
C(7)-C(12) 1.48(2)
Si(3)-C(49) 1.78(3)
Si(3)-C(48) 1.83(2)
Si(3)-C(47) 1.86(2)
Si(4)-C(61) 1.81(8)
Si(4)-C(59) 1.81(4)
Si(4)-C(60) 1.859(18)
C(39)-C(40) 1.427(19)
C(39)-C(44) 1.46(2)
C(16)-C(15) 1.42(2)
C(16)-Si(1) 1.885(16)
C(14)-C(15) 1.37(2)
C(14)-C(18) 1.39(2)
C(14)-C(22) 1.48(2)
C(38)-C(39) 1.458(19)
C(38)-Si(3) 1.879(14)
C(5)-C(6) 1.44(2)
C(5)-C(4) 1.45(2)
C(5)-C(10) 1.49(2)
C(26)-C(27) 1.44(2)
C(26)-C(30) 1.47(2)
C(26)-Si(2) 1.869(13)
C(8)-C(7) 1.42(2)
C(8)-C(4) 1.47(2)
C(8)-C(13) 1.49(2)
C(41)-C(40) 1.40(2)
C(41)-C(42) 1.42(2)
C(41)-C(46) 1.50(2)
C(4)-C(9) 1.50(2)
C(50)-C(54) 1.45(2)
C(50)-C(51) 1.46(3)
C(41)-Y(3)-C(38) 51.0(4)
C(40)-Y(3)-C(42) 50.2(5)
C(41)-Y(3)-C(42) 30.9(4)
C(38)-Y(3)-C(42) 30.2(5)
C(40)-Y(3)-C(39) 31.0(4)
C(41)-Y(3)-C(39) 51.4(4)
C(4)-W(1)-C(8) 37.9(6)
C(4)-W(1)-C(7) 60.4(5)
C(8)-W(1)-C(7) 35.8(6)
C(4)-W(1)-C(5) 36.5(6)
C(8)-W(1)-C(5) 60.8(5)
C(7)-W(1)-C(5) 58.4(5)
C(4)-W(1)-C(6) 60.2(5)
C(8)-W(1)-C(6) 59.4(5)
C(7)-W(1)-C(6) 34.2(5)
C(5)-W(1)-C(6) 35.3(5)
C(4)-W(1)-P(1) 140.3(5)
109
C(54)-C(53) 1.35(3)
C(54)-C(55) 1.47(3)
C(18)-C(21) 1.52(2)
C(6)-C(11) 1.56(2)
C(28)-C(27) 1.42(2)
C(28)-C(33) 1.53(2)
Si(2)-C(36) 1.88(3)
Si(2)-C(35) 1.88(2)
Si(2)-C(37) 1.89(3)
C(43)-C(42) 1.53(2)
C(45)-C(40) 1.55(2)
C(27)-C(32) 1.49(3)
C(50)-Si(4) 1.848(18)
C(17)-C(18) 1.40(2)
C(17)-C(16) 1.41(2)
C(17)-C(20) 1.51(3)
C(29)-C(30) 1.41(2)
C(29)-C(28) 1.43(3)
C(30)-C(31) 1.48(2)
C(51)-C(52) 1.42(3)
C(51)-C(56) 1.49(3)
Si(1)-C(23) 1.84(2)
Si(1)-C(25) 1.87(2)
Si(1)-C(24) 1.91(2)
C(57)-C(52) 1.53(3)
C(52)-C(53) 1.39(3)
C(19)-C(15) 1.52(2)
C(53)-C(58) 1.52(3)
C(38)-Y(3)-C(39) 31.6(4)
C(42)-Y(3)-C(39) 51.1(5)
C(40)-Y(3)-Y(4) 110.2(3)
C(41)-Y(3)-Y(4) 111.4(3)
C(38)-Y(3)-Y(4) 160.7(3)
C(42)-Y(3)-Y(4) 137.8(3)
C(8)-W(1)-P(1) 138.0(4)
C(7)-W(1)-P(1) 102.2(4)
C(5)-W(1)-P(1) 103.9(4)
C(6)-W(1)-P(1) 85.2(4)
C(4)-W(1)-Y(2) 116.3(5)
C(8)-W(1)-Y(2) 94.1(4)
C(7)-W(1)-Y(2) 108.7(4)
C(5)-W(1)-Y(2) 152.3(4)
C(6)-W(1)-Y(2) 142.1(4)
P(1)-W(1)-Y(2) 102.85(11)
C(4)-W(1)-Y(1) 92.7(4)
C(8)-W(1)-Y(1) 117.7(4)
C(7)-W(1)-Y(1) 152.1(4)
C(5)-W(1)-Y(1) 105.1(4)
C(6)-W(1)-Y(1) 139.5(4)
P(1)-W(1)-Y(1) 103.81(10)
Y(2)-W(1)-Y(1) 75.07(3)
C(40)-Y(3)-C(41) 30.4(5)
C(40)-Y(3)-C(38) 50.8(4)
C(42)-Y(3)-Y(2) 119.0(3)
C(39)-Y(3)-Y(2) 164.2(3)
Y(4)-Y(3)-Y(2) 61.81(3)
Y(1)-Y(3)-Y(2) 68.24(4)
C(14)-Y(1)-C(18) 30.2(5)
C(14)-Y(1)-C(17) 50.1(5)
C(18)-Y(1)-C(17) 30.3(5)
C(14)-Y(1)-C(15) 29.7(5)
C(18)-Y(1)-C(15) 49.4(5)
C(17)-Y(1)-C(15) 49.9(5)
C(14)-Y(1)-C(16) 50.2(5)
C(18)-Y(1)-C(16) 50.1(4)
C(17)-Y(1)-C(16) 30.4(5)
C(15)-Y(1)-C(16) 30.6(5)
C(14)-Y(1)-W(1) 117.3(4)
110
C(39)-Y(3)-Y(4) 134.0(3)
C(40)-Y(3)-Y(1) 129.7(3)
C(41)-Y(3)-Y(1) 158.4(3)
C(38)-Y(3)-Y(1) 131.5(4)
C(42)-Y(3)-Y(1) 161.0(3)
C(39)-Y(3)-Y(1) 117.2(3)
Y(4)-Y(3)-Y(1) 61.05(3)
C(40)-Y(3)-Y(2) 156.4(4)
C(41)-Y(3)-Y(2) 128.3(3)
C(38)-Y(3)-Y(2) 133.2(3)
C(17)-Y(1)-Y(4) 111.3(4)
C(15)-Y(1)-Y(4) 133.4(4)
C(16)-Y(1)-Y(4) 140.7(3)
W(1)-Y(1)-Y(4) 101.31(4)
Y(3)-Y(1)-Y(4) 58.61(3)
C(14)-Y(1)-Y(2) 146.5(4)
C(18)-Y(1)-Y(2) 149.0(3)
C(17)-Y(1)-Y(2) 157.3(4)
C(15)-Y(1)-Y(2) 152.7(3)
C(16)-Y(1)-Y(2) 160.2(3)
W(1)-Y(1)-Y(2) 51.56(3)
Y(3)-Y(1)-Y(2) 56.57(3)
Y(4)-Y(1)-Y(2) 57.07(3)
C(29)-Y(2)-C(27) 52.0(5)
C(29)-Y(2)-C(28) 31.1(6)
C(27)-Y(2)-C(28) 31.0(5)
C(29)-Y(2)-C(26) 51.8(4)
C(27)-Y(2)-C(26) 31.3(4)
C(28)-Y(2)-C(26) 51.0(4)
C(29)-Y(2)-C(30) 30.4(5)
C(27)-Y(2)-C(30) 51.5(5)
C(28)-Y(2)-C(30) 50.4(5)
C(26)-Y(2)-C(30) 31.6(5)
C(29)-Y(2)-W(1) 117.0(4)
C(18)-Y(1)-W(1) 147.5(4)
C(17)-Y(1)-W(1) 146.9(4)
C(15)-Y(1)-W(1) 102.7(3)
C(16)-Y(1)-W(1) 116.5(3)
C(14)-Y(1)-Y(3) 141.2(4)
C(18)-Y(1)-Y(3) 111.4(4)
C(17)-Y(1)-Y(3) 100.9(4)
C(15)-Y(1)-Y(3) 149.5(4)
C(16)-Y(1)-Y(3) 119.8(4)
W(1)-Y(1)-Y(3) 100.78(3)
C(14)-Y(1)-Y(4) 103.8(4)
C(18)-Y(1)-Y(4) 92.0(3)
C(27)-Y(2)-Y(4) 109.8(3)
C(28)-Y(2)-Y(4) 91.9(3)
C(26)-Y(2)-Y(4) 140.5(3)
C(30)-Y(2)-Y(4) 135.4(3)
W(1)-Y(2)-Y(4) 101.39(4)
Y(3)-Y(2)-Y(4) 57.46(3)
C(29)-Y(2)-Y(1) 147.2(3)
C(27)-Y(2)-Y(1) 153.3(4)
C(28)-Y(2)-Y(1) 147.2(3)
C(26)-Y(2)-Y(1) 159.6(3)
C(30)-Y(2)-Y(1) 155.1(4)
W(1)-Y(2)-Y(1) 53.37(3)
Y(3)-Y(2)-Y(1) 55.19(3)
Y(4)-Y(2)-Y(1) 55.37(3)
C(52)-Y(4)-C(51) 30.9(7)
C(52)-Y(4)-C(53) 30.0(6)
C(51)-Y(4)-C(53) 50.1(6)
C(52)-Y(4)-C(50) 51.6(6)
C(51)-Y(4)-C(50) 31.5(6)
C(53)-Y(4)-C(50) 50.7(5)
C(52)-Y(4)-C(54) 49.4(6)
C(51)-Y(4)-C(54) 50.4(5)
111
C(27)-Y(2)-W(1) 148.6(3)
C(28)-Y(2)-W(1) 148.1(5)
C(26)-Y(2)-W(1) 117.4(3)
C(30)-Y(2)-W(1) 102.9(4)
C(29)-Y(2)-Y(3) 141.1(4)
C(27)-Y(2)-Y(3) 98.3(4)
C(28)-Y(2)-Y(3) 110.4(5)
C(26)-Y(2)-Y(3) 117.3(3)
C(30)-Y(2)-Y(3) 148.2(4)
W(1)-Y(2)-Y(3) 101.13(4)
C(29)-Y(2)-Y(4) 104.9(3)
C(1)-P(1)-W(1) 114.5(8)
C(2)-P(1)-W(1) 117.6(7)
C(3)-P(1)-W(1) 117.0(7)
C(42)-C(38)-C(39) 108.1(12)
C(42)-C(38)-Si(3) 124.5(10)
C(39)-C(38)-Si(3) 127.2(12)
C(42)-C(38)-Y(3) 75.0(8)
C(39)-C(38)-Y(3) 74.6(7)
Si(3)-C(38)-Y(3) 120.2(7)
C(6)-C(5)-C(4) 108.2(13)
C(6)-C(5)-C(10) 123.0(16)
C(4)-C(5)-C(10) 128.2(17)
C(6)-C(5)-W(1) 74.1(8)
C(4)-C(5)-W(1) 68.5(8)
C(10)-C(5)-W(1) 130.2(10)
C(27)-C(26)-C(30) 106.8(12)
C(27)-C(26)-Si(2) 119.0(12)
C(30)-C(26)-Si(2) 129.4(10)
C(27)-C(26)-Y(2) 73.1(7)
C(30)-C(26)-Y(2) 75.4(7)
Si(2)-C(26)-Y(2) 136.0(6)
C(7)-C(8)-C(4) 106.9(13)
C(7)-C(8)-C(13) 127.5(13)
C(53)-Y(4)-C(54) 29.1(6)
C(50)-Y(4)-C(54) 31.3(5)
C(52)-Y(4)-Y(3) 111.0(5)
C(51)-Y(4)-Y(3) 133.4(6)
C(53)-Y(4)-Y(3) 115.2(4)
C(50)-Y(4)-Y(3) 162.6(4)
C(54)-Y(4)-Y(3) 140.4(4)
C(52)-Y(4)-Y(1) 150.7(6)
C(51)-Y(4)-Y(1) 165.6(5)
C(53)-Y(4)-Y(1) 124.2(5)
C(50)-Y(4)-Y(1) 134.1(4)
C(54)-Y(4)-Y(1) 117.3(4)
Y(3)-Y(4)-Y(1) 60.34(3)
C(52)-Y(4)-Y(2) 135.8(5)
C(51)-Y(4)-Y(2) 120.8(4)
C(53)-Y(4)-Y(2) 165.2(5)
C(50)-Y(4)-Y(2) 129.7(4)
C(54)-Y(4)-Y(2) 158.7(4)
Y(3)-Y(4)-Y(2) 60.73(3)
Y(1)-Y(4)-Y(2) 67.57(3)
C(1)-P(1)-C(2) 103.7(10)
C(1)-P(1)-C(3) 98.3(13)
C(2)-P(1)-C(3) 103.2(11)
C(46)-C(41)-Y(3) 122.3(12)
C(5)-C(4)-C(8) 106.5(14)
C(5)-C(4)-C(9) 125.7(16)
C(8)-C(4)-C(9) 126.7(15)
C(5)-C(4)-W(1) 75.1(8)
C(8)-C(4)-W(1) 71.1(8)
C(9)-C(4)-W(1) 128.3(10)
C(54)-C(50)-C(51) 103.9(16)
C(54)-C(50)-Si(4) 125.3(14)
C(51)-C(50)-Si(4) 129.1(15)
C(54)-C(50)-Y(4) 74.9(7)
112
C(4)-C(8)-C(13) 124.6(16)
C(7)-C(8)-W(1) 75.2(8)
C(4)-C(8)-W(1) 71.0(7)
C(13)-C(8)-W(1) 127.9(11)
C(40)-C(41)-C(42) 106.9(12)
C(40)-C(41)-C(46) 127.9(16)
C(42)-C(41)-C(46) 124.6(16)
C(40)-C(41)-Y(3) 74.8(8)
C(42)-C(41)-Y(3) 75.1(9)
C(28)-C(29)-Y(2) 76.1(8)
C(34)-C(29)-Y(2) 121.6(11)
C(6)-C(7)-C(8) 110.7(12)
C(6)-C(7)-C(12) 123.4(18)
C(8)-C(7)-C(12) 124.7(16)
C(6)-C(7)-W(1) 75.0(7)
C(8)-C(7)-W(1) 69.0(7)
C(12)-C(7)-W(1) 132.6(12)
C(49)-Si(3)-C(48) 105.2(17)
C(49)-Si(3)-C(47) 107.9(12)
C(48)-Si(3)-C(47) 108.2(13)
C(49)-Si(3)-C(38) 115.5(10)
C(48)-Si(3)-C(38) 110.8(8)
C(47)-Si(3)-C(38) 108.8(9)
C(61)-Si(4)-C(59) 106(3)
C(61)-Si(4)-C(50) 117(3)
C(59)-Si(4)-C(50) 114.3(18)
C(61)-Si(4)-C(60) 102(3)
C(59)-Si(4)-C(60) 108.9(15)
C(50)-Si(4)-C(60) 107.7(9)
C(40)-C(39)-C(44) 127.7(13)
C(40)-C(39)-C(38) 105.1(12)
C(44)-C(39)-C(38) 127.0(13)
C(40)-C(39)-Y(3) 73.6(8)
C(44)-C(39)-Y(3) 121.8(11)
C(51)-C(50)-Y(4) 73.9(8)
Si(4)-C(50)-Y(4) 127.4(8)
C(18)-C(17)-C(16) 108.1(15)
C(18)-C(17)-C(20) 125.0(17)
C(16)-C(17)-C(20) 126.8(19)
C(18)-C(17)-Y(1) 74.6(9)
C(16)-C(17)-Y(1) 75.7(8)
C(20)-C(17)-Y(1) 119.0(11)
C(30)-C(29)-C(28) 108.4(14)
C(30)-C(29)-C(34) 122.2(17)
C(28)-C(29)-C(34) 128.3(16)
C(30)-C(29)-Y(2) 78.0(9)
C(14)-C(18)-C(17) 108.1(13)
C(14)-C(18)-C(21) 125.9(17)
C(17)-C(18)-C(21) 125.7(17)
C(14)-C(18)-Y(1) 74.0(8)
C(17)-C(18)-Y(1) 75.1(8)
C(21)-C(18)-Y(1) 121.6(11)
C(7)-C(6)-C(5) 107.8(13)
C(7)-C(6)-C(11) 129.6(15)
C(5)-C(6)-C(11) 121.4(14)
C(7)-C(6)-W(1) 70.8(8)
C(5)-C(6)-W(1) 70.6(7)
C(11)-C(6)-W(1) 134.0(11)
C(27)-C(28)-C(29) 108.9(13)
C(27)-C(28)-C(33) 125(2)
C(29)-C(28)-C(33) 126.5(19)
C(27)-C(28)-Y(2) 73.6(8)
C(29)-C(28)-Y(2) 72.8(8)
C(33)-C(28)-Y(2) 117.4(10)
C(26)-Si(2)-C(36) 104.9(9)
C(26)-Si(2)-C(35) 114.5(9)
C(36)-Si(2)-C(35) 106.9(11)
C(26)-Si(2)-C(37) 114.0(8)
113
C(38)-C(39)-Y(3) 73.8(8)
C(17)-C(16)-C(15) 106.2(14)
C(17)-C(16)-Si(1) 119.5(13)
C(15)-C(16)-Si(1) 130.0(12)
C(17)-C(16)-Y(1) 73.9(8)
C(15)-C(16)-Y(1) 74.3(8)
Si(1)-C(16)-Y(1) 135.2(7)
C(15)-C(14)-C(18) 108.7(15)
C(15)-C(14)-C(22) 126.0(17)
C(18)-C(14)-C(22) 125.1(15)
C(15)-C(14)-Y(1) 76.8(8)
C(18)-C(14)-Y(1) 75.7(8)
C(22)-C(14)-Y(1) 118.1(10)
C(53)-C(54)-C(50) 110.0(17)
C(53)-C(54)-C(55) 123.9(19)
C(50)-C(54)-C(55) 125.7(18)
C(53)-C(54)-Y(4) 74.6(8)
C(50)-C(54)-Y(4) 73.8(7)
C(55)-C(54)-Y(4) 124.0(11)
C(26)-C(30)-C(31) 129.4(15)
C(29)-C(30)-Y(2) 71.5(8)
C(26)-C(30)-Y(2) 73.0(7)
C(31)-C(30)-Y(2) 125.7(12)
C(38)-C(42)-C(41) 109.3(12)
C(38)-C(42)-C(43) 126.6(14)
C(41)-C(42)-C(43) 123.7(15)
C(38)-C(42)-Y(3) 74.8(8)
C(41)-C(42)-Y(3) 74.0(8)
C(43)-C(42)-Y(3) 123.0(12)
C(52)-C(51)-C(50) 107.8(16)
C(52)-C(51)-C(56) 121(3)
C(50)-C(51)-C(56) 131(3)
C(52)-C(51)-Y(4) 74.0(9)
C(52)-C(53)-C(58) 123(2)
C(36)-Si(2)-C(37) 111.4(14)
C(35)-Si(2)-C(37) 105.0(12)
C(28)-C(27)-C(26) 107.7(15)
C(28)-C(27)-C(32) 122.4(15)
C(26)-C(27)-C(32) 129.5(15)
C(28)-C(27)-Y(2) 75.4(9)
C(26)-C(27)-Y(2) 75.6(7)
C(32)-C(27)-Y(2) 120.6(11)
C(41)-C(40)-C(39) 110.5(12)
C(41)-C(40)-C(45) 124.5(15)
C(39)-C(40)-C(45) 124.9(16)
C(41)-C(40)-Y(3) 74.8(8)
C(39)-C(40)-Y(3) 75.4(8)
C(45)-C(40)-Y(3) 116.9(11)
C(29)-C(30)-C(26) 107.7(14)
C(29)-C(30)-C(31) 122.6(17)
C(50)-C(51)-Y(4) 74.6(9)
C(56)-C(51)-Y(4) 124.8(11)
C(23)-Si(1)-C(25) 101.3(12)
C(23)-Si(1)-C(16) 117.5(9)
C(25)-Si(1)-C(16) 113.9(9)
C(23)-Si(1)-C(24) 109.1(12)
C(25)-Si(1)-C(24) 108.9(13)
C(16)-Si(1)-C(24) 106.0(9)
C(53)-C(52)-C(51) 108.0(18)
C(53)-C(52)-C(57) 128(3)
C(51)-C(52)-C(57) 123(2)
C(53)-C(52)-Y(4) 75.7(10)
C(51)-C(52)-Y(4) 75.2(10)
C(57)-C(52)-Y(4) 124.0(12)
C(14)-C(15)-C(16) 108.8(14)
C(14)-C(15)-C(19) 124.0(16)
C(16)-C(15)-C(19) 126.1(16)
C(14)-C(15)-Y(1) 73.5(8)
114
C(54)-C(53)-Y(4) 76.3(9)
C(52)-C(53)-Y(4) 74.3(9)
C(58)-C(53)-Y(4) 121.2(11)
C(16)-C(15)-Y(1) 75.1(8)
C(19)-C(15)-Y(1) 127.1(10)
C(54)-C(53)-C(52) 110.2(18)
C(54)-C(53)-C(58) 126(2)
Symmetry transformations used to generate equivalent atoms: Anisotropic
displacement parameters (Å
2
x 10
3
). The anisotropic displacement factor
exponent takes the form: -2 π
2
[ h
2
a*
2
U
11
+ ... + 2 h k a* b* U
12
___________________________________________________________
___________________________________________________________
U
11
U
22
U
33
U
23
U
13
U
12
W(1) 34(1) 24(1) 34(1) -1(1) 12(1) 4(1)
Y(3) 33(1) 27(1) 35(1) 3(1) 12(1) 5(1)
Y(1) 37(1) 32(1) 33(1) 4(1) 9(1) 12(1)
Y(2) 40(1) 31(1) 32(1) 5(1) 12(1) 13(1)
Y(4) 43(1) 32(1) 32(1) -3(1) 14(1) 13(1)
P(1) 41(2) 44(2) 54(2) 2(2) 21(2) 5(2)
C(38) 39(7) 35(7) 60(8) 2(7) 28(7) 9(7)
C(5) 44(7) 38(7) 36(6) -11(6) 2(6) 10(7)
C(26) 69(9) 44(8) 28(5) 17(6) 7(6) 39(8)
C(8) 53(9) 46(8) 44(7) 3(7) 9(6) 30(8)
C(41) 46(8) 34(7) 29(6) 11(6) 8(6) -3(7)
C(4) 60(9) 38(8) 48(8) -10(7) 31(7) 9(8)
C(50) 70(11) 39(8) 50(8) 8(7) 36(8) 12(9)
C(17) 54(9) 37(8) 69(10) 1(8) -15(8) 15(8)
C(29) 60(10) 51(9) 42(7) 25(8) 19(7) 23(9)
C(7) 65(10) 42(8) 45(7) 9(7) 14(7) 32(8)
Si(3) 57(3) 42(2) 54(2) -5(2) 27(2) 6(2)
Si(4) 125(6) 61(4) 112(5) -4(4) 82(5) 13(4)
C(39) 44(7) 21(6) 40(6) 15(5) 19(6) 1(6)
C(16) 54(8) 39(8) 40(7) 3(6) 0(6) 19(7)
C(14) 48(8) 46(8) 60(9) 9(8) 13(7) 24(8)
C(54) 57(10) 50(9) 54(8) -8(8) 23(8) 21(9)
C(10) 75(13) 103(17) 78(12) -37(12) -17(11) 56(14)
115
C(18) 58(9) 44(8) 46(7) 1(7) 12(7) 25(8)
C(6) 41(7) 35(7) 44(7) -10(6) 11(6) 3(7)
C(28) 101(14) 70(12) 34(7) 8(8) 6(8) 60(12)
Si(2) 63(3) 61(3) 67(3) -10(2) 7(2) 38(3)
C(43) 65(11) 79(14) 89(13) 44(12) 26(10) 38(12)
C(45) 100(16) 29(8) 114(17) -16(10) 57(14) 10(10)
C(27) 56(9) 39(8) 46(8) -4(7) 1(7) 19(8)
C(55) 114(18) 150(20) 64(11) -6(13) 21(12) 100(20)
C(40) 40(7) 23(6) 53(8) -2(6) 23(7) -8(6)
C(36) 98(19) 160(30) 150(20) -60(20) -38(18) 100(20)
C(3) 71(14) 81(16) 160(30) 61(18) 74(16) 24(14)
C(35) 111(19) 83(16) 117(18) -52(14) -25(15) 69(16)
C(30) 59(9) 43(8) 55(8) 9(7) 10(7) 21(8)
C(1)71(12) 98(18) 68(11) -4(12) 35(10) 25(14)
C(42) 30(7) 50(9) 52(8) 7(7) 17(6) 9(7)
C(51) 140(20) 105(18) 33(7) -17(10) 5(10) 91(18)
C(11) 65(11) 40(9) 80(13) -18(9) 0(10) -2(9)
C(44) 70(11) 36(8) 74(11) 17(8) 24(9) 14(9)
Si(1) 78(3) 55(3) 42(2) 16(2) 6(2) 20(3)
C(56) 330(50) 240(40) 47(11) -22(18) -3(19) 240(40)
C(9)84(13) 57(11) 48(8) 18(9) 22(9) 20(11)
C(12) 113(18) 43(10) 88(14) 6(10) 35(13) 37(12)
C(57) 65(14) 160(30) 130(20) -90(20) 16(15) 19(18)
C(13) 43(9) 63(11) 101(14) -3(11) 27(9) 25(9)
C(33) 120(20) 106(19) 44(9) -17(11) -13(11) 68(18)
C(52) 69(12) 86(16) 52(10) -30(11) 12(9) 27(13)
C(32) 64(11) 54(11) 84(13) -10(10) -4(10) 19(10)
C(19) 43(9) 53(11) 93(14) 10(10) 7(9) 10(9)
C(15) 36(7) 36(8) 70(10) 5(7) 2(7) 9(7)
C(53) 99(15) 40(9) 52(9) -8(8) 37(10) 21(11)
C(23) 120(20) 86(16) 36(8) 8(10) -7(11) 28(16)
C(48) 130(20) 61(14) 103(17) -45(14) 63(16) -16(14)
C(20) 76(13) 44(10) 91(15) 18(11) -4(12) 8(10)
C(2)52(10) 82(15) 81(13) 16(12) 27(10) 16(11)
116
C(25) 104(18) 95(18) 92(15) 35(15) 66(15) 40(17)
C(46) 69(13) 130(20) 38(9) -1(12) -11(9) 21(16)
C(24) 180(30) 120(20) 70(14) 27(15) 16(17) 90(20)
C(22) 61(11) 84(14) 83(12) 38(12) 32(10) 40(12)
C(37) 58(12) 95(18) 130(20) -12(16) 34(13) 23(14)
C(34) 88(14) 82(15) 75(12) 55(12) 38(12) 40(14)
C(21) 111(18) 69(13) 62(10) -20(10) -6(11) 52(14)
C(31) 69(13) 35(9) 130(20) 11(12) 7(13) 4(10)
C(58) 140(20) 49(12) 102(18) -9(13) 53(17) 15(15)
C(49) 110(20) 210(40) 46(10) -42(17) -5(12) 70(30)
C(47) 84(14) 94(17) 86(13) 8(13) 41(12) 49(15)
C(60) 130(20) 65(14) 92(15) 15(12) 86(16) 22(15)
C(59) 130(30) 160(40) 190(40) -100(30) 50(30) -20(30)
___________________________________________________________
Hydrogen coordinates ( x 10
4
) and isotropic displacement parameters (Å
2
x 10
3
).
___________________________________________________________
x y z U(eq)
___________________________________________________________
H(10A) 9395 11208 4399 125
H(10B) 8488 10568 4820 125
H(10C) 9218 11817 4961 125
H(43A) 188 6313 2365 110
H(43B) 1287 7297 2223 110
H(43C) 945 7212 2873 110
H(45A) 1944 3515 2027 134
H(45B) 3135 4133 2363 134
H(45C) 2903 4462 1756 134
H(55A) 7322 5835 1332 143
H(55B) 8143 7049 1289 143
H(55C) 7872 6188 742 143
H(36A) 2591 11402 1530 194
H(36B) 2108 11874 2020 194
H(36C) 1576 10626 1853 194
117
H(3A) 9781 13136 2194 156
H(3B) 9754 13572 2846 156
H(3C) 8662 13031 2418 156
H(35A) 4764 12881 2911 149
H(35B) 3782 12532 3322 149
H(35C) 3743 13071 2756 149
H(1A) 9661 11346 1893 127
H(1B) 8398 11040 1788 127
H(1C) 8744 10274 2091 127
H(11A) 9659 13656 3758 111
H(11B) 10003 13093 4227 111
H(11C) 9503 13858 4427 111
H(44A) 3092 4411 3330 95
H(44B) 2179 4407 3733 95
H(44C) 3359 5418 3784 95
H(56A) 4624 7844 153 252
H(56B) 4632 7041 -365 252
H(56C) 5672 8176 -208 252
H(9A) 6598 9364 4562 101
H(9B) 5479 9286 4299 101
H(9C) 6029 9949 4916 101
H(12A) 7123 13656 3960 121
H(12B) 6557 12992 3346 121
H(12C) 7857 13684 3440 121
H(57A) 3283 4914 649 207
H(57B) 3497 5208 3 207
H(57C) 3274 5955 469 207
H(13A) 4922 11186 4227 104
H(13B) 4726 10281 3718 104
H(13C) 5040 11445 3571 104
H(33A) 3483 8708 598 131
H(33B) 4603 8713 789 131
H(33C) 4596 9510 355 131
H(32A) 2033 9190 1420 109
118
H(32B) 2342 8739 1961 109
H(32C) 2519 8382 1319 109
H(19A) 9889 8902 4175 102
H(19B) 9110 9336 4443 102
H(19C) 9627 9698 3847 102
H(23A) 8558 8865 5228 135
H(23B) 7811 8238 5713 135
H(23C) 7463 8934 5343 135
H(48A) 3095 8379 4365 184
H(48B) 2247 8491 3930 184
H(48C) 3230 8334 3685 184
H(20A) 5813 5119 3832 117
H(20B) 5353 5206 3210 117
H(20C) 5158 5777 3782 117
H(2A) 10198 11397 3378 116
H(2B) 10687 12635 3343 116
H(2C) 10804 11897 2825 116
H(25A) 5543 7341 5285 145
H(25B) 5114 6208 4922 145
H(25C) 5237 7190 4602 145
H(46A) 1940 5377 1283 137
H(46B) 1271 6005 1439 137
H(46C) 702 4753 1440 137
H(24A) 8049 6416 5094 166
H(24B) 7066 5618 4632 166
H(24C) 6835 5817 5288 166
H(22A) 9411 8939 2749 106
H(22B) 9004 7796 2401 106
H(22C) 9888 8188 2947 106
H(37A) 2247 10634 3325 150
H(37B) 2939 10020 3199 150
H(37C) 1812 9668 2822 150
H(34A) 6874 11023 1059 117
H(34B) 6994 12168 1245 117
119
H(34C) 6296 11495 656 117
H(21A) 7574 6311 2203 118
H(21B) 6354 5638 2375 118
H(21C) 7299 5392 2606 118
H(31A) 6811 12739 2168 127
H(31B) 5838 12891 2432 127
H(31C) 6116 13119 1782 127
H(58A) 5497 4844 1509 164
H(58B) 5247 4260 863 164
H(58C) 4332 4459 1166 164
H(49A) 1658 5521 4563 195
H(49B) 2237 6705 4877 195
H(49C) 2919 6283 4494 195
H(47A) 170 6390 4331 127
H(47B) -131 5724 3705 127
H(47C) 250 6962 3763 127
H(60A) 8373 8263 -677 156
H(60B) 7807 7141 -436 156
H(60C) 9078 7924 -270 156
H(59A) 9610 9823 850 304
H(59B) 9660 8734 786 304
H(59C) 8932 8930 1251 304
H(61A) 8378 9813 -299 494
H(61B) 8238 10221 339 494
H(61C) 7185 9426 -82 494
___________________________________________________________
120
Table 3-6. Full crystallographic information on compound (2) including ORTEP
generated numbering scheme with thermal ellipsoids drawn at 50% level from X-
ray data at 163(2) K collected at USC.
Identification code Y4W
Empirical formula C58 H110 Si4 W Y4
Formula weight 1459.31
Temperature 295(1) K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group P2(1)/n
Unit cell dimensions a = 13.465(2) Å α= 90°.
b = 30.697(5) Å β= 92.610(3)°.
c = 17.893(3) Å γ = 90°.
Volume 7388(2) Å
3
Z 4
Density (calculated) 1.312 Mg/m
3
Absorption coefficient 4.752 mm
-1
F(000) 2976
Crystal size 0.17 x 0.10 x 0.10 mm
3
Theta range for data collection 1.65 to 27.57°.
Index ranges -17<=h<=17, -39<=k<=37, -23<=l<=18
Reflections collected 44969
Independent reflections 16583 [R(int) = 0.1153]
Completeness to theta = 27.57° 97.0 %
Refinement method Full-matrix least-squares on F
2
Data / restraints / parameters 16583 / 4 / 573
Goodness-of-fit on F
2
0.910
Final R indices [I>2sigma(I)] R1 = 0.0782, wR2 = 0.1898
R indices (all data) R1 = 0.2032, wR2 = 0.2255
Extinction coefficient 0.00022(5)
Largest diff. peak and hole 1.963 and -0.863 e.Å
-3
121
Atomic coordinates ( x 10
4
) and equivalent isotropic displacement parameters
(Å
2
x 10
3
). U(eq) is defined as one third of the trace of the orthogonalized U
ij
tensor.
_________________________________________________________________
x y z U(eq)
_________________________________________________________________
W(1) 7897(1) 1469(1) 1486(1) 48(1)
Y(1) 8413(1) 521(1) 2185(1) 47(1)
Y(2) 10066(1) 1357(1) 2737(1) 36(1)
Y(3) 8356(1) 2217(1) 2693(1) 42(1)
Y(4) 7605(1) 1254(1) 3546(1) 46(1)
Si(1) 6361(3) -371(1) 1440(3) 74(2)
Si(2) 12321(3) 1602(2) 1625(3) 84(2)
Si(3) 6181(3) 3145(1) 2721(3) 64(1)
C(1) 6553(11) 1456(5) 672(8) 52(4)
C(2) 7298(15) 1167(6) 449(8) 78(5)
C(3) 8150(13) 1415(7) 243(8) 86(6)
C(4) 7906(15) 1864(5) 358(8) 67(5)
C(5) 6940(13) 1887(5) 624(9) 64(4)
C(6) 5540(12) 1334(6) 804(12) 107(7)
C(7) 7150(20) 665(7) 303(15) 190(14)
122
C(8) 9089(17) 1271(7) -168(11) 135(9)
C(9) 8656(14) 2237(6) 166(10) 98(6)
C(10) 6421(15) 2289(6) 726(13) 117(8)
C(11) 7652(11) -253(4) 1770(9) 52(4)
C(12) 8051(16) -295(4) 2517(11) 82(5)
C(13) 9124(15) -260(5) 2491(16) 104(9)
C(14) 9390(15) -190(5) 1752(13) 75(5)
C(15) 8523(13) -209(5) 1370(11) 68(5)
C(16) 7420(20) -404(6) 3198(12) 130(9)
C(17) 9738(18) -314(6) 3265(15) 148(11)
C(18) 10403(13) -204(6) 1525(14) 132(10)
C(19) 8619(14) -222(5) 533(12) 105(7)
C(20) 6174(14) -404(7) 429(12) 125(9)
C(21) 5993(13) -925(5) 1727(13) 110(7)
C(22) 5514(12) 55(5) 1770(12) 95(6)
C(23) 11976(9) 1424(5) 2571(8) 53(4)
C(24) 11786(9) 1711(4) 3171(9) 49(4)
C(25) 11513(10) 1484(5) 3782(8) 55(4)
C(26) 11552(12) 1045(6) 3589(11) 74(5)
C(27) 11862(9) 994(5) 2865(11) 62(4)
C(28) 11960(11) 2188(5) 3197(10) 74(5)
C(29) 11357(15) 1673(7) 4540(10) 110(7)
C(30) 11384(14) 662(7) 4108(13) 142(10)
C(31) 12070(11) 568(5) 2455(13) 120(9)
C(32) 11228(18) 1894(11) 1089(11) 182(14)
C(33) 12871(18) 1156(8) 1093(13) 161(12)
C(34) 13252(15) 1978(7) 1635(12) 130(9)
C(35) 7526(10) 3010(4) 2790(8) 46(3)
C(36) 8085(12) 2935(4) 3469(7) 51(4)
C(37) 9077(11) 2929(4) 3329(8) 53(4)
C(38) 9186(11) 2997(4) 2590(10) 56(4)
C(39) 8260(12) 3052(4) 2227(8) 52(4)
C(40) 7708(14) 2923(5) 4219(8) 88(6)
C(41) 9933(13) 2908(6) 3873(11) 97(6)
123
C(42) 10130(12) 3060(5) 2184(11) 93(6)
C(43) 8035(15) 3209(5) 1436(8) 83(6)
C(44) 5421(15) 2681(7) 3050(17) 170(13)
C(45) 5769(15) 3360(6) 1738(11) 112(7)
C(46) 5929(13) 3607(5) 3337(11) 94(6)
C(47) 6151(4) 1141(2) 4470(3) 14(4)
C(48) 6757(6) 727(3) 4504(6) 48(7)
C(49) 7777(8) 836(4) 4837(7) 34(6)
C(50) 7801(8) 1317(4) 5009(6) 52(7)
C(51) 6797(6) 1506(3) 4782(5) 22(5)
Si(4) 5020(5) 1185(2) 4157(4) 46(2)
C(52) 6382(9) 253(4) 4233(10) 83(10)
C(53) 8676(12) 499(5) 4983(10) 105(13)
C(54) 8732(12) 1582(5) 5370(10) 116(14)
C(55) 6472(9) 2006(4) 4859(9) 69(9)
C(56) 4380(30) 1750(12) 4350(20) 86(11)
C(58) 5070(20) 1214(10) 3090(17) 63(8)
C(57) 4190(20) 905(9) 4720(16) 283(11)
_________________________________________________________________
Bond lengths [Å] and angles [°].
W(1)-C(2) 2.194(15)
W(1)-C(1) 2.271(14)
W(1)-C(3) 2.270(15)
W(1)-C(5) 2.346(15)
W(1)-C(4) 2.355(14)
W(1)-Y(3) 3.1956(15)
W(1)-Y(1) 3.2282(15)
W(1)-Y(2) 3.6141(14)
Y(1)-C(12) 2.626(14)
Y(1)-C(13) 2.631(14)
Y(1)-C(14) 2.681(16)
Y(1)-C(11) 2.680(13)
Y(1)-C(15) 2.683(15)
Y(1)-Y(2) 3.5080(17)
Y(4)-C(48) 2.652(10)
Y(4)-C(47) 2.642(6)
Si(1)-C(20) 1.82(2)
Si(1)-C(11) 1.845(14)
Si(1)-C(22) 1.848(17)
Si(1)-C(21) 1.852(17)
Si(2)-C(34) 1.70(2)
Si(2)-C(33) 1.84(2)
Si(2)-C(23) 1.858(16)
Si(2)-C(32) 1.94(3)
Si(3)-C(46) 1.837(17)
Si(3)-C(35) 1.857(14)
Si(3)-C(44) 1.86(2)
Si(3)-C(45) 1.936(18)
124
Y(1)-Y(4) 3.5228(19)
Y(2)-C(23) 2.611(12)
Y(2)-C(26) 2.639(13)
Y(2)-C(24) 2.643(12)
Y(2)-C(27) 2.663(13)
Y(2)-C(25) 2.668(13)
Y(2)-Y(3) 3.5023(17)
Y(2)-Y(4) 3.6893(18)
Y(3)-C(37) 2.628(14)
Y(3)-C(36) 2.638(13)
Y(3)-C(38) 2.652(13)
Y(3)-C(35) 2.686(12)
Y(3)-C(39) 2.695(12)
Y(3)-Y(4) 3.5000(18)
Y(4)-C(50) 2.626(12)
Y(4)-C(49) 2.642(12)
Y(4)-C(51) 2.625(10)
C(24)-C(28) 1.481(18)
C(25)-C(26) 1.39(2)
C(25)-C(29) 1.50(2)
C(26)-C(27) 1.39(2)
C(26)-C(30) 1.52(2)
C(27)-C(31) 1.53(2)
C(35)-C(36) 1.418(18)
C(35)-C(39) 1.448(18)
C(36)-C(37) 1.370(19)
C(36)-C(40) 1.46(2)
C(37)-C(38) 1.35(2)
C(37)-C(41) 1.48(2)
C(38)-C(39) 1.389(19)
C(38)-C(42) 1.50(2)
C(39)-C(43) 1.513(19)
C(47)-C(48) 1.510(5)
C(47)-C(51) 1.510(5)
C(1)-C(2) 1.41(2)
C(1)-C(5) 1.43(2)
C(1)-C(6) 1.44(2)
C(2)-C(3) 1.44(2)
C(2)-C(7) 1.57(2)
C(3)-C(4) 1.43(2)
C(3)-C(8) 1.56(2)
C(4)-C(5) 1.41(2)
C(4)-C(9) 1.57(2)
C(5)-C(10) 1.43(2)
C(11)-C(15) 1.41(2)
C(11)-C(12) 1.42(2)
C(12)-C(13) 1.45(3)
C(12)-C(16) 1.55(3)
C(13)-C(14) 1.40(3)
C(13)-C(17) 1.59(3)
C(14)-C(15) 1.33(2)
C(14)-C(18) 1.44(2)
C(15)-C(19) 1.51(2)
C(23)-C(24) 1.421(18)
C(23)-C(27) 1.43(2)
C(24)-C(25) 1.36(2)
C(2)-W(1)-C(1) 36.8(6)
C(2)-W(1)-C(3) 37.6(6)
C(1)-W(1)-C(3) 61.4(6)
C(2)-W(1)-C(5) 60.4(6)
C(1)-W(1)-C(5) 35.9(5)
C(3)-W(1)-C(5) 59.9(6)
C(2)-W(1)-C(4) 60.6(5)
C(1)-W(1)-C(4) 59.6(6)
C(3)-W(1)-C(4) 36.1(6)
C(5)-W(1)-C(4) 34.8(5)
C(2)-W(1)-Y(3) 158.1(5)
C(1)-W(1)-Y(3) 124.8(4)
125
C(47)-Si(4) 1.605(5)
C(48)-C(49) 1.510(5)
C(48)-C(52) 1.605(5)
C(49)-C(50) 1.510(5)
C(49)-C(53) 1.605(5)
C(50)-C(51) 1.510(5)
C(50)-C(54) 1.605(5)
C(51)-C(55) 1.605(5)
Si(4)-C(57) 1.76(3)
Si(4)-C(58) 1.91(3)
Si(4)-C(56) 1.98(4)
C(11)-Y(1)-W(1) 128.2(3)
C(15)-Y(1)-W(1) 123.9(4)
C(12)-Y(1)-Y(2) 139.1(5)
C(13)-Y(1)-Y(2) 112.8(4)
C(14)-Y(1)-Y(2) 111.3(4)
C(11)-Y(1)-Y(2) 163.0(3)
C(15)-Y(1)-Y(2) 135.6(4)
W(1)-Y(1)-Y(2) 64.74(3)
C(12)-Y(1)-Y(4) 112.7(4)
C(13)-Y(1)-Y(4) 123.9(7)
C(14)-Y(1)-Y(4) 152.9(5)
C(11)-Y(1)-Y(4) 129.1(3)
C(15)-Y(1)-Y(4) 159.3(4)
W(1)-Y(1)-Y(4) 68.01(4)
Y(2)-Y(1)-Y(4) 63.30(4)
C(23)-Y(2)-C(26) 50.9(5)
C(23)-Y(2)-C(24) 31.4(4)
C(26)-Y(2)-C(24) 49.3(5)
C(23)-Y(2)-C(27) 31.5(4)
C(26)-Y(2)-C(27) 30.3(5)
C(24)-Y(2)-C(27) 50.7(4)
C(23)-Y(2)-C(25) 51.4(5)
C(26)-Y(2)-C(25) 30.4(5)
C(3)-W(1)-Y(3) 132.9(5)
C(5)-W(1)-Y(3) 97.7(4)
C(4)-W(1)-Y(3) 101.5(4)
C(2)-W(1)-Y(1) 90.7(5)
C(1)-W(1)-Y(1) 112.6(4)
C(3)-W(1)-Y(1) 106.0(6)
C(5)-W(1)-Y(1) 148.2(4)
C(4)-W(1)-Y(1) 141.9(4)
Y(3)-W(1)-Y(1) 110.76(4)
C(2)-W(1)-Y(2) 137.7(6)
C(1)-W(1)-Y(2) 173.4(4)
C(3)-W(1)-Y(2) 116.5(5)
C(5)-W(1)-Y(2) 149.7(4)
C(4)-W(1)-Y(2) 123.0(5)
Y(3)-W(1)-Y(2) 61.54(3)
Y(1)-W(1)-Y(2) 61.38(3)
C(12)-Y(1)-C(13) 32.0(6)
C(12)-Y(1)-C(14) 52.2(6)
C(13)-Y(1)-C(14) 30.6(6)
C(12)-Y(1)-C(11) 31.1(5)
C(13)-Y(1)-C(11) 51.7(5)
C(14)-Y(1)-C(11) 52.0(5)
C(12)-Y(1)-C(15) 48.8(6)
C(13)-Y(1)-C(15) 47.4(6)
C(14)-Y(1)-C(15) 28.7(5)
C(11)-Y(1)-C(15) 30.4(4)
C(12)-Y(1)-W(1) 155.3(5)
C(13)-Y(1)-W(1) 166.3(7)
C(14)-Y(1)-W(1) 136.2(5)
C(24)-Y(2)-C(25) 29.7(4)
C(27)-Y(2)-C(25) 50.9(5)
C(23)-Y(2)-Y(3) 126.0(3)
C(26)-Y(2)-Y(3) 140.0(5)
C(24)-Y(2)-Y(3) 105.2(3)
126
C(25)-Y(2)-W(1) 164.6(3)
Y(3)-Y(2)-W(1) 53.34(3)
Y(1)-Y(2)-W(1) 53.88(3)
C(23)-Y(2)-Y(4) 163.4(3)
C(26)-Y(2)-Y(4) 114.4(4)
C(24)-Y(2)-Y(4) 135.3(3)
C(27)-Y(2)-Y(4) 139.3(4)
C(25)-Y(2)-Y(4) 112.2(3)
Y(3)-Y(2)-Y(4) 58.18(3)
Y(1)-Y(2)-Y(4) 58.55(4)
W(1)-Y(2)-Y(4) 62.40(3)
C(37)-Y(3)-C(36) 30.2(4)
C(37)-Y(3)-C(38) 29.7(4)
C(36)-Y(3)-C(38) 49.6(5)
C(37)-Y(3)-C(35) 50.6(4)
C(36)-Y(3)-C(35) 30.9(4)
C(38)-Y(3)-C(35) 50.6(4)
C(37)-Y(3)-C(39) 49.9(4)
C(36)-Y(3)-C(39) 50.4(4)
C(38)-Y(3)-C(39) 30.1(4)
C(35)-Y(3)-C(39) 31.2(4)
C(37)-Y(3)-W(1) 161.2(4)
C(36)-Y(3)-W(1) 158.3(3)
C(38)-Y(3)-W(1) 132.2(4)
C(35)-Y(3)-W(1) 128.8(3)
C(39)-Y(3)-W(1) 118.0(3)
C(37)-Y(3)-Y(4) 128.5(3)
C(36)-Y(3)-Y(4) 115.3(3)
C(38)-Y(3)-Y(4) 157.6(4)
C(35)-Y(3)-Y(4) 127.5(3)
C(39)-Y(3)-Y(4) 158.1(3)
W(1)-Y(3)-Y(4) 68.65(4)
C(37)-Y(3)-Y(2) 112.8(3)
C(36)-Y(3)-Y(2) 136.4(3)
C(27)-Y(2)-Y(3) 155.6(3)
C(25)-Y(2)-Y(3) 111.3(3)
C(23)-Y(2)-Y(1) 129.9(3)
C(26)-Y(2)-Y(1) 110.6(4)
C(24)-Y(2)-Y(1) 156.9(3)
C(27)-Y(2)-Y(1) 106.3(3)
C(25)-Y(2)-Y(1) 137.6(4)
Y(3)-Y(2)-Y(1) 97.89(4)
C(23)-Y(2)-W(1) 134.0(3)
C(26)-Y(2)-W(1) 164.2(4)
C(24)-Y(2)-W(1) 144.6(3)
C(27)-Y(2)-W(1) 142.9(4)
C(47)-Y(4)-Y(3) 128.38(14)
C(50)-Y(4)-Y(1) 135.8(2)
C(49)-Y(4)-Y(1) 106.1(2)
C(51)-Y(4)-Y(1) 157.4(2)
C(48)-Y(4)-Y(1) 102.31(19)
C(47)-Y(4)-Y(1) 127.57(14)
Y(3)-Y(4)-Y(1) 97.65(5)
C(50)-Y(4)-Y(2) 109.5(2)
C(49)-Y(4)-Y(2) 109.9(2)
C(51)-Y(4)-Y(2) 136.02(19)
C(48)-Y(4)-Y(2) 136.63(18)
C(47)-Y(4)-Y(2) 163.99(14)
Y(3)-Y(4)-Y(2) 58.24(3)
Y(1)-Y(4)-Y(2) 58.15(3)
C(20)-Si(1)-C(11) 114.5(8)
C(20)-Si(1)-C(22) 107.3(9)
C(11)-Si(1)-C(22) 110.3(7)
C(20)-Si(1)-C(21) 101.4(9)
C(11)-Si(1)-C(21) 110.5(7)
C(22)-Si(1)-C(21) 112.6(9)
C(34)-Si(2)-C(33) 101.3(11)
C(34)-Si(2)-C(23) 113.9(9)
127
C(38)-Y(3)-Y(2) 113.8(3)
C(35)-Y(3)-Y(2) 163.1(3)
C(39)-Y(3)-Y(2) 138.3(3)
W(1)-Y(3)-Y(2) 65.12(3)
Y(4)-Y(3)-Y(2) 63.59(4)
C(50)-Y(4)-C(49) 33.30(14)
C(50)-Y(4)-C(51) 33.42(15)
C(49)-Y(4)-C(51) 55.3(2)
C(50)-Y(4)-C(48) 55.1(2)
C(49)-Y(4)-C(48) 33.13(15)
C(51)-Y(4)-C(48) 55.1(2)
C(50)-Y(4)-C(47) 55.3(2)
C(49)-Y(4)-C(47) 55.1(2)
C(51)-Y(4)-C(47) 33.31(14)
C(48)-Y(4)-C(47) 33.14(14)
C(50)-Y(4)-Y(3) 110.7(2)
C(49)-Y(4)-Y(3) 140.9(2)
C(51)-Y(4)-Y(3) 104.92(19)
C(48)-Y(4)-Y(3) 159.86(19)
C(2)-C(1)-W(1) 68.6(8)
C(5)-C(1)-W(1) 74.9(8)
C(6)-C(1)-W(1) 129.1(11)
C(1)-C(2)-C(3) 108.9(16)
C(1)-C(2)-C(7) 125.1(18)
C(3)-C(2)-C(7) 125(2)
C(1)-C(2)-W(1) 74.6(9)
C(3)-C(2)-W(1) 74.1(9)
C(7)-C(2)-W(1) 126.4(15)
C(4)-C(3)-C(2) 106.4(17)
C(4)-C(3)-C(8) 122.6(17)
C(2)-C(3)-C(8) 130(2)
C(4)-C(3)-W(1) 75.2(9)
C(2)-C(3)-W(1) 68.3(9)
C(8)-C(3)-W(1) 130.2(13)
C(33)-Si(2)-C(23) 112.0(10)
C(34)-Si(2)-C(32) 103.6(12)
C(33)-Si(2)-C(32) 113.6(11)
C(23)-Si(2)-C(32) 111.8(8)
C(46)-Si(3)-C(35) 109.8(7)
C(46)-Si(3)-C(44) 106.3(11)
C(35)-Si(3)-C(44) 110.8(8)
C(46)-Si(3)-C(45) 103.3(8)
C(35)-Si(3)-C(45) 112.0(8)
C(44)-Si(3)-C(45) 114.2(11)
C(2)-C(1)-C(5) 107.5(14)
C(2)-C(1)-C(6) 124.9(16)
C(5)-C(1)-C(6) 126.9(15)
C(13)-C(12)-C(16) 128(2)
C(11)-C(12)-Y(1) 76.5(8)
C(13)-C(12)-Y(1) 74.2(8)
C(16)-C(12)-Y(1) 119.8(11)
C(14)-C(13)-C(12) 109.8(17)
C(14)-C(13)-C(17) 134(2)
C(12)-C(13)-C(17) 116(3)
C(14)-C(13)-Y(1) 76.6(10)
C(12)-C(13)-Y(1) 73.8(8)
C(17)-C(13)-Y(1) 116.6(12)
C(15)-C(14)-C(13) 102.9(18)
C(15)-C(14)-C(18) 132(2)
C(13)-C(14)-C(18) 123(2)
C(15)-C(14)-Y(1) 75.8(10)
C(13)-C(14)-Y(1) 72.8(9)
C(18)-C(14)-Y(1) 126.0(12)
C(14)-C(15)-C(11) 118.4(18)
C(14)-C(15)-C(19) 113.6(18)
C(11)-C(15)-C(19) 127.8(16)
C(14)-C(15)-Y(1) 75.6(10)
C(11)-C(15)-Y(1) 74.7(8)
128
C(5)-C(4)-C(3) 108.5(14)
C(5)-C(4)-C(9) 130.6(16)
C(3)-C(4)-C(9) 120.9(17)
C(5)-C(4)-W(1) 72.3(9)
C(3)-C(4)-W(1) 68.7(8)
C(9)-C(4)-W(1) 126.2(11)
C(4)-C(5)-C(1) 108.6(14)
C(4)-C(5)-C(10) 123.2(16)
C(1)-C(5)-C(10) 127.6(17)
C(4)-C(5)-W(1) 72.9(8)
C(1)-C(5)-W(1) 69.1(8)
C(10)-C(5)-W(1) 130.1(13)
C(15)-C(11)-C(12) 101.5(14)
C(15)-C(11)-Si(1) 130.6(13)
C(12)-C(11)-Si(1) 126.3(13)
C(15)-C(11)-Y(1) 74.9(8)
C(12)-C(11)-Y(1) 72.3(8)
Si(1)-C(11)-Y(1) 127.2(7)
C(11)-C(12)-C(13) 107.3(17)
C(11)-C(12)-C(16) 124.1(19)
C(24)-C(25)-C(29) 125.7(15)
C(26)-C(25)-C(29) 127.5(17)
C(24)-C(25)-Y(2) 74.1(8)
C(26)-C(25)-Y(2) 73.6(8)
C(29)-C(25)-Y(2) 124.3(10)
C(27)-C(26)-C(25) 111.0(15)
C(27)-C(26)-C(30) 122.7(19)
C(25)-C(26)-C(30) 126(2)
C(27)-C(26)-Y(2) 75.8(8)
C(25)-C(26)-Y(2) 76.0(8)
C(30)-C(26)-Y(2) 120.2(10)
C(26)-C(27)-C(23) 106.2(14)
C(26)-C(27)-C(31) 127.8(18)
C(23)-C(27)-C(31) 125.9(17)
C(19)-C(15)-Y(1) 124.8(11)
C(24)-C(23)-C(27) 105.6(13)
C(24)-C(23)-Si(2) 124.5(12)
C(27)-C(23)-Si(2) 129.9(12)
C(24)-C(23)-Y(2) 75.6(7)
C(27)-C(23)-Y(2) 76.3(7)
Si(2)-C(23)-Y(2) 114.5(6)
C(25)-C(24)-C(23) 110.7(13)
C(25)-C(24)-C(28) 121.8(14)
C(23)-C(24)-C(28) 127.1(15)
C(25)-C(24)-Y(2) 76.2(8)
C(23)-C(24)-Y(2) 73.1(7)
C(28)-C(24)-Y(2) 123.4(9)
C(24)-C(25)-C(26) 106.3(14)
C(39)-C(38)-C(42) 121.3(16)
C(37)-C(38)-Y(3) 74.2(8)
C(39)-C(38)-Y(3) 76.7(8)
C(42)-C(38)-Y(3) 121.1(9)
C(38)-C(39)-C(35) 106.9(13)
C(38)-C(39)-C(43) 127.8(15)
C(35)-C(39)-C(43) 124.4(14)
C(38)-C(39)-Y(3) 73.2(8)
C(35)-C(39)-Y(3) 74.0(7)
C(43)-C(39)-Y(3) 126.6(9)
C(48)-C(47)-C(51) 108.0
C(48)-C(47)-Si(4) 126.0
C(51)-C(47)-Si(4) 126.0
C(48)-C(47)-Y(4) 73.8(3)
C(51)-C(47)-Y(4) 72.7(3)
Si(4)-C(47)-Y(4) 119.3(3)
C(47)-C(48)-C(49) 108.0
C(47)-C(48)-C(52) 126.0
C(49)-C(48)-C(52) 126.0
C(47)-C(48)-Y(4) 73.1(3)
129
C(26)-C(27)-Y(2) 73.9(8)
C(23)-C(27)-Y(2) 72.3(7)
C(31)-C(27)-Y(2) 120.1(9)
C(36)-C(35)-C(39) 104.9(12)
C(36)-C(35)-Si(3) 124.8(11)
C(39)-C(35)-Si(3) 128.9(11)
C(36)-C(35)-Y(3) 72.7(7)
C(39)-C(35)-Y(3) 74.7(7)
Si(3)-C(35)-Y(3) 127.2(6)
C(37)-C(36)-C(35) 109.2(12)
C(37)-C(36)-C(40) 123.4(14)
C(35)-C(36)-C(40) 126.8(15)
C(37)-C(36)-Y(3) 74.5(8)
C(35)-C(36)-Y(3) 76.4(7)
C(40)-C(36)-Y(3) 121.7(10)
C(38)-C(37)-C(36) 109.0(13)
C(38)-C(37)-C(41) 122.3(16)
C(36)-C(37)-C(41) 128.2(15)
C(38)-C(37)-Y(3) 76.1(8)
C(36)-C(37)-Y(3) 75.3(8)
C(41)-C(37)-Y(3) 120.8(10)
C(37)-C(38)-C(39) 109.9(14)
C(37)-C(38)-C(42) 128.5(16)
C(47)-Si(4)-C(56) 115.4(11)
C(57)-Si(4)-C(56) 92.0(15)
C(49)-C(48)-Y(4) 73.1(3)
C(52)-C(48)-Y(4) 119.7(3)
C(48)-C(49)-C(50) 108.0
C(48)-C(49)-C(53) 126.0
C(50)-C(49)-C(53) 126.0
C(48)-C(49)-Y(4) 73.8(3)
C(50)-C(49)-Y(4) 72.7(4)
C(53)-C(49)-Y(4) 119.3(3)
C(51)-C(50)-C(49) 108.0
C(51)-C(50)-C(54) 126.0
C(49)-C(50)-C(54) 126.0
C(51)-C(50)-Y(4) 73.3(3)
C(49)-C(50)-Y(4) 74.0(4)
C(54)-C(50)-Y(4) 118.7(3)
C(50)-C(51)-C(47) 108.0
C(50)-C(51)-C(55) 126.0
C(47)-C(51)-C(55) 126.0
C(50)-C(51)-Y(4) 73.3(3)
C(47)-C(51)-Y(4) 73.9(3)
C(55)-C(51)-Y(4) 118.7(3)
C(47)-Si(4)-C(57) 112.0(10)
C(47)-Si(4)-C(58) 106.2(9)
C(57)-Si(4)-C(58) 130.1(13)
C(58)-Si(4)-C(56) 99.6(14)
Symmetry transformations used to generate equivalent atoms: Anisotropic
displacement parameters (Å
2
x 10
3
). The anisotropic displacement factor
exponent takes the form: -2 π
2
[ h
2
a*
2
U
11
+ ... + 2 h k a* b* U
12
]
_________________________________________________________________
U
11
U
22
U
33
U
23
U
13
U
12
_________________________________________________________________
W(1) 46(1) 62(1) 36(1) 7(1) 6(1) 4(1)
130
Y(1) 39(1) 34(1) 68(1) -9(1) 0(1) -2(1)
Y(2) 31(1) 34(1) 42(1) -4(1) 3(1) -2(1)
Y(3) 44(1) 33(1) 49(1) 5(1) 7(1) 4(1)
Y(4) 39(1) 37(1) 63(1) 6(1) 14(1) 1(1)
Si(1) 54(3) 40(2) 128(5) -15(3) 0(3) -9(2)
Si(2) 49(3) 121(5) 83(4) -17(3) 20(3) -10(3)
Si(3) 55(3) 46(3) 91(4) -3(2) 1(2) 6(2)
C(1) 56(9) 55(9) 46(8) -7(8) -6(7) 2(8)
C(2) 121(16) 72(12) 42(9) 0(9) -8(10) -34(12)
C(3) 81(12) 137(18) 38(9) -4(11) 0(8) -33(13)
C(4) 123(16) 47(10) 28(8) 8(7) -11(9) -10(10)
C(5) 68(11) 61(11) 60(11) -4(8) -14(9) -1(9)
C(6) 65(12) 106(15) 147(19) 21(14) -43(12) -9(11)
C(7) 290(40) 78(16) 210(30) -76(18) 120(30) -60(20)
C(8) 190(20) 122(18) 103(16) -16(13) 111(17) 4(17)
C(9) 133(17) 72(12) 88(14) 18(11) 4(12) -43(12)
C(10) 107(16) 73(13) 170(20) 26(14) -9(15) 31(12)
C(11) 61(10) 35(8) 58(10) -8(7) -1(8) -11(7)
C(12) 131(18) 22(8) 92(14) 4(9) 19(13) -1(9)
C(13) 75(14) 18(8) 210(30) -5(12) -87(16) 8(8)
C(14) 73(14) 43(10) 108(15) -22(11) -8(13) 21(9)
C(15) 64(11) 42(9) 99(14) -30(9) 1(11) 2(8)
C(16) 230(30) 42(11) 118(18) -2(11) 38(18) -46(14)
C(17) 180(20) 57(12) 200(20) -19(14) -130(20) 22(13)
C(18) 72(13) 64(12) 260(30) -75(16) 27(16) 5(10)
C(19) 105(15) 58(11) 160(20) -47(13) 48(14) 4(10)
C(20) 88(15) 117(17) 170(20) -90(16) 0(14) -12(13)
C(21) 67(12) 63(12) 200(20) 4(14) -9(14) -13(10)
C(22) 89(13) 51(10) 145(18) -9(11) 7(12) -3(9)
C(23) 26(7) 55(9) 78(10) -12(8) 6(7) -15(7)
C(24) 38(8) 43(8) 64(10) -18(8) -9(7) -3(6)
C(25) 36(8) 63(10) 63(10) -13(9) -17(7) 2(7)
C(26) 45(10) 75(13) 97(14) 34(11) -38(10) -5(9)
C(27) 21(7) 56(10) 107(14) -18(10) -12(8) 5(7)
131
C(28) 65(11) 54(10) 102(13) -22(9) -3(9) -9(8)
C(29) 113(17) 150(20) 63(13) -17(13) -22(12) -22(14)
C(30) 91(15) 124(18) 200(20) 92(18) -75(16) -45(13)
C(31) 34(9) 73(12) 250(30) -65(15) 28(13) 16(9)
C(32) 130(20) 360(40) 65(15) -30(20) 24(14) 10(20)
C(33) 160(20) 210(30) 120(20) -70(20) 70(17) -80(20)
C(34) 117(18) 140(20) 130(20) 73(16) 31(15) -1(15)
C(35) 53(9) 34(7) 51(9) 2(6) 8(7) 4(6)
C(36) 76(11) 39(8) 38(9) -5(6) -6(8) 4(7)
C(37) 64(10) 49(9) 44(9) -11(7) -17(8) 19(7)
C(38) 50(9) 26(7) 92(13) 4(8) 0(9) -7(6)
C(39) 82(11) 19(7) 55(9) -3(6) 12(8) 1(7)
C(40) 145(17) 69(12) 50(11) -8(9) 11(11) 21(11)
C(41) 90(14) 83(13) 113(16) -18(12) -33(12) 8(11)
C(42) 80(13) 44(10) 158(19) -5(11) 35(13) -2(9)
C(43) 155(18) 44(9) 50(10) 8(8) 17(11) -2(10)
C(44) 83(16) 82(16) 340(40) 50(20) -10(20) -13(13)
C(45) 114(16) 107(16) 112(16) 5(13) -43(13) 56(13)
C(46) 75(12) 64(12) 146(18) -14(12) 35(12) -1(9)
_________________________________________________________________
Hydrogen coordinates ( x 10
4
) and isotropic displacement parameters (Å
2
x 10
3
).
_________________________________________________________________
x y z U(eq)
_________________________________________________________________
H(6A) 5317 1488 1246 161
H(6B) 5505 1019 888 161
H(6C) 5110 1412 367 161
H(7A) 6558 620 -28 284
H(7B) 7062 516 780 284
H(7C) 7734 548 67 284
H(8A) 9316 987 26 202
H(8B) 9617 1487 -83 202
H(8C) 8924 1247 -706 202
132
H(9A) 9317 2111 105 146
H(9B) 8690 2451 572 146
H(9C) 8428 2380 -301 146
H(10A) 5962 2341 295 176
H(10B) 6902 2529 772 176
H(10C) 6046 2273 1182 176
H(18A) 10493 -458 1203 198
H(18B) 10854 -225 1969 198
H(18C) 10550 63 1249 198
H(19A) 9123 -11 390 158
H(19B) 7978 -147 283 158
H(19C) 8816 -515 382 158
H(20A) 6428 -138 201 188
H(20B) 5462 -434 298 188
H(20C) 6530 -657 244 188
H(21A) 6429 -1140 1503 165
H(21B) 5303 -980 1555 165
H(21C) 6053 -949 2273 165
H(22A) 5628 95 2310 143
H(22B) 4824 -35 1662 143
H(22C) 5641 329 1511 143
H(28A) 11456 2326 3496 111
H(28B) 11917 2306 2688 111
H(28C) 12622 2246 3425 111
H(29A) 11089 1969 4485 165
H(29B) 11993 1683 4829 165
H(29C) 10887 1492 4803 165
H(30A) 11907 657 4508 213
H(30B) 11404 389 3823 213
H(30C) 10734 691 4328 213
H(31A) 11616 542 2013 180
H(31B) 11969 321 2791 180
H(31C) 12758 568 2299 180
H(32A) 11490 2115 757 273
133
H(32B) 10800 2033 1448 273
H(32C) 10841 1680 792 273
H(33A) 13322 1277 732 242
H(33B) 12341 992 825 242
H(33C) 13243 961 1437 242
H(34A) 13628 1965 2117 194
H(34B) 12966 2270 1564 194
H(34C) 13696 1915 1230 194
H(40A) 7014 2825 4192 131
H(40B) 7747 3215 4440 131
H(40C) 8108 2720 4530 131
H(41A) 9822 2678 4239 145
H(41B) 10007 3189 4131 145
H(41C) 10539 2845 3609 145
H(42A) 10657 2879 2418 140
H(42B) 10328 3367 2211 140
H(42C) 10019 2975 1659 140
H(43A) 8048 3528 1426 124
H(43B) 7375 3106 1263 124
H(43C) 8535 3095 1107 124
H(44A) 5806 2517 3434 255
H(44B) 5245 2488 2628 255
H(44C) 4814 2793 3262 255
H(45A) 5065 3442 1732 168
H(45B) 5865 3132 1365 168
H(45C) 6169 3615 1618 168
H(46A) 6410 3840 3257 142
H(46B) 5988 3511 3860 142
H(46C) 5254 3715 3224 142
H(1) 8930(70) 850(30) 3330(50) 30(30)
H(2) 7330(70) 660(30) 2850(60) 30(30)
H(4) 9810(60) 2060(30) 2690(50) 10(20)
H(6) 8380(80) 1380(30) 2500(60) 40(30)
H(7) 8650(60) 1460(20) 1450(40) 0(20)
134
H(8) 8600(50) 1740(20) 1660(40) 0(20)
H(9) 7480(60) 1470(20) 1950(50) 10(20)
H(10) 7600(120) 1520(40) 2240(70) 410(90)
_________________________________________________________________
Torsion angles [°].
C(2)-W(1)-Y(1)-C(12) -46.7(11)
C(1)-W(1)-Y(1)-C(12) -16.3(10)
C(3)-W(1)-Y(1)-C(12) -81.5(11)
C(5)-W(1)-Y(1)-C(12) -23.3(13)
C(4)-W(1)-Y(1)-C(12) -85.4(12)
Y(3)-W(1)-Y(1)-C(12) 128.5(10)
Y(2)-W(1)-Y(1)-C(12) 166.6(10)
C(1)-W(1)-Y(1)-C(14) 82.0(7)
C(3)-W(1)-Y(1)-C(14) 16.8(8)
C(5)-W(1)-Y(1)-C(14) 75.0(10)
C(4)-W(1)-Y(1)-C(14) 12.9(9)
Y(3)-W(1)-Y(1)-C(14) -133.1(6)
Y(2)-W(1)-Y(1)-C(14) -95.1(6)
C(2)-W(1)-Y(1)-C(11) -20.2(7)
C(1)-W(1)-Y(1)-C(11) 10.1(6)
C(3)-W(1)-Y(1)-C(11) -55.0(6)
C(5)-W(1)-Y(1)-C(11) 3.1(10)
C(4)-W(1)-Y(1)-C(11) -59.0(8)
Y(3)-W(1)-Y(1)-C(11) 155.0(4)
Y(2)-W(1)-Y(1)-C(11) -166.9(4)
C(2)-W(1)-Y(1)-C(15) 17.3(7)
C(1)-W(1)-Y(1)-C(15) 47.7(6)
C(3)-W(1)-Y(1)-C(15) -17.5(6)
C(5)-W(1)-Y(1)-C(15) 40.7(10)
C(4)-W(1)-Y(1)-C(15) -21.4(9)
Y(3)-W(1)-Y(1)-C(15) -167.4(5)
Y(2)-W(1)-Y(1)-C(15) -129.4(5)
C(2)-W(1)-Y(1)-Y(2) 146.7(5)
C(1)-W(1)-Y(1)-Y(2) 177.1(4)
C(2)-W(1)-Y(1)-C(13) 63.9(16)
C(1)-W(1)-Y(1)-C(13) 94.3(16)
C(3)-W(1)-Y(1)-C(13) 29.1(16)
C(5)-W(1)-Y(1)-C(13) 87.3(17)
C(4)-W(1)-Y(1)-C(13) 25.2(17)
Y(3)-W(1)-Y(1)-C(13) -120.8(15)
Y(2)-W(1)-Y(1)-C(13) -82.8(15)
C(2)-W(1)-Y(1)-C(14) 51.6(8)
C(13)-Y(1)-Y(2)-C(27) 20.6(9)
C(14)-Y(1)-Y(2)-C(27) -12.4(7)
C(11)-Y(1)-Y(2)-C(27) -2.0(12)
C(15)-Y(1)-Y(2)-C(27) -31.1(7)
W(1)-Y(1)-Y(2)-C(27) -144.7(4)
Y(4)-Y(1)-Y(2)-C(27) 138.4(4)
C(12)-Y(1)-Y(2)-C(25) -5.3(8)
C(13)-Y(1)-Y(2)-C(25) -28.6(9)
C(14)-Y(1)-Y(2)-C(25) -61.6(7)
C(11)-Y(1)-Y(2)-C(25) -51.2(12)
C(15)-Y(1)-Y(2)-C(25) -80.2(8)
W(1)-Y(1)-Y(2)-C(25) 166.2(5)
Y(4)-Y(1)-Y(2)-C(25) 89.2(5)
C(12)-Y(1)-Y(2)-Y(3) -139.4(6)
C(13)-Y(1)-Y(2)-Y(3) -162.7(8)
C(14)-Y(1)-Y(2)-Y(3) 164.3(5)
C(11)-Y(1)-Y(2)-Y(3) 174.7(12)
C(15)-Y(1)-Y(2)-Y(3) 145.7(6)
W(1)-Y(1)-Y(2)-Y(3) 32.07(3)
Y(4)-Y(1)-Y(2)-Y(3) -44.86(4)
C(12)-Y(1)-Y(2)-W(1) -171.5(6)
135
C(3)-W(1)-Y(1)-Y(2) 111.9(4)
C(5)-W(1)-Y(1)-Y(2) 170.1(8)
C(4)-W(1)-Y(1)-Y(2) 108.0(7)
Y(3)-W(1)-Y(1)-Y(2) -38.06(4)
C(2)-W(1)-Y(1)-Y(4) -143.5(5)
C(1)-W(1)-Y(1)-Y(4) -113.1(4)
C(3)-W(1)-Y(1)-Y(4) -178.3(4)
C(5)-W(1)-Y(1)-Y(4) -120.1(9)
C(4)-W(1)-Y(1)-Y(4) 177.8(7)
Y(3)-W(1)-Y(1)-Y(4) 31.74(4)
Y(2)-W(1)-Y(1)-Y(4) 69.80(4)
C(12)-Y(1)-Y(2)-C(23) 67.8(8)
C(13)-Y(1)-Y(2)-C(23) 44.5(9)
C(14)-Y(1)-Y(2)-C(23) 11.5(7)
C(11)-Y(1)-Y(2)-C(23) 21.9(12)
C(15)-Y(1)-Y(2)-C(23) -7.1(7)
W(1)-Y(1)-Y(2)-C(23) -120.7(4)
Y(4)-Y(1)-Y(2)-C(23) 162.3(4)
C(12)-Y(1)-Y(2)-C(26) 12.1(8)
C(13)-Y(1)-Y(2)-C(26) -11.1(9)
C(14)-Y(1)-Y(2)-C(26) -44.2(8)
C(11)-Y(1)-Y(2)-C(26) -33.7(13)
C(15)-Y(1)-Y(2)-C(26) -62.8(8)
W(1)-Y(1)-Y(2)-C(26) -176.4(5)
Y(4)-Y(1)-Y(2)-C(26) 106.7(5)
C(12)-Y(1)-Y(2)-C(24) 39.0(11)
C(13)-Y(1)-Y(2)-C(24) 15.7(12)
C(14)-Y(1)-Y(2)-C(24) -17.3(11)
C(11)-Y(1)-Y(2)-C(24) -6.9(15)
C(15)-Y(1)-Y(2)-C(24) -35.9(11)
W(1)-Y(1)-Y(2)-C(24) -149.5(9)
Y(4)-Y(1)-Y(2)-C(24) 133.5(9)
C(12)-Y(1)-Y(2)-C(27) 43.9(8)
Y(1)-W(1)-Y(2)-Y(3) -139.03(4)
C(13)-Y(1)-Y(2)-W(1) 165.3(8)
C(14)-Y(1)-Y(2)-W(1) 132.2(5)
C(11)-Y(1)-Y(2)-W(1) 142.7(12)
C(15)-Y(1)-Y(2)-W(1) 113.6(6)
Y(4)-Y(1)-Y(2)-W(1) -76.94(4)
C(12)-Y(1)-Y(2)-Y(4) -94.5(6)
C(13)-Y(1)-Y(2)-Y(4) -117.8(8)
C(14)-Y(1)-Y(2)-Y(4) -150.8(5)
C(11)-Y(1)-Y(2)-Y(4) -140.4(12)
C(15)-Y(1)-Y(2)-Y(4) -169.5(6)
W(1)-Y(1)-Y(2)-Y(4) 76.94(4)
C(2)-W(1)-Y(2)-C(23 ) 58.9(8)
C(1)-W(1)-Y(2)-C(23) 89(3)
C(3)-W(1)-Y(2)-C(23) 19.0(7)
C(5)-W(1)-Y(2)-C(23) -56.1(10)
C(4)-W(1)-Y(2)-C(23) -22.1(7)
Y(3)-W(1)-Y(2)-C(23) -107.5(4)
Y(1)-W(1)-Y(2)-C(23) 113.5(4)
C(2)-W(1)-Y(2)-C(26) -42.1(18)
C(1)-W(1)-Y(2)-C(26) -12(4)
C(3)-W(1)-Y(2)-C(26) -81.9(18)
C(5)-W(1)-Y(2)-C(26) -157.1(19)
C(4)-W(1)-Y(2)-C(26) -123.1(18)
Y(3)-W(1)-Y(2)-C(26) 151.6(17)
Y(1)-W(1)-Y(2)-C(26) 12.5(17)
C(2)-W(1)-Y(2)-C(24) 105.3(8)
C(1)-W(1)-Y(2)-C(24) 136(3)
C(3)-W(1)-Y(2)-C(24) 65.4(8)
C(5)-W(1)-Y(2)-C(24) -9.7(10)
C(4)-W(1)-Y(2)-C(24) 24.3(7)
Y(3)-W(1)-Y(2)-C(24) -61.1(5)
Y(1)-W(1)-Y(2)-C(24) 159.9(5)
C(2)-W(1)-Y(2)-C(27) 12.5(9)
C(1)-W(1)-Y(2)-C(27) 43(3)
136
C(2)-W(1)-Y(2)-Y(1) -54.6(6)
C(1)-W(1)-Y(2)-Y(1) -24(3)
C(3)-W(1)-Y(2)-Y(1) -94.5(6)
C(5)-W(1)-Y(2)-Y(1) -169.6(9)
C(4)-W(1)-Y(2)-Y(1) -135.6(5)
Y(3)-W(1)-Y(2)-Y(1) 139.03(4)
C(2)-W(1)-Y(2)-Y(4) -124.3(6)
C(1)-W(1)-Y(2)-Y(4) -94(3)
C(3)-W(1)-Y(2)-Y(4) -164.2(6)
C(5)-W(1)-Y(2)-Y(4) 120.7(9)
C(4)-W(1)-Y(2)-Y(4) 154.7(5)
Y(3)-W(1)-Y(2)-Y(4) 69.35(4)
Y(1)-W(1)-Y(2)-Y(4) -69.67(4)
C(2)-W(1)-Y(3)-C(37 ) -67.0(17)
C(1)-W(1)-Y(3)-C(37) -94.4(10)
C(3)-W(1)-Y(3)-C(37) -13.1(11)
C(5)-W(1)-Y(3)-C(37) -68.6(10)
C(4)-W(1)-Y(3)-C(37) -33.5(11)
Y(1)-W(1)-Y(3)-C(37) 125.9(9)
Y(2)-W(1)-Y(3)-C(37) 87.9(9)
C(2)-W(1)-Y(3)-C(36) 30.5(16)
C(1)-W(1)-Y(3)-C(36) 3.0(10)
C(3)-W(1)-Y(3)-C(36) 84.4(11)
C(5)-W(1)-Y(3)-C(36) 28.8(10)
C(4)-W(1)-Y(3)-C(36) 63.9(10)
Y(1)-W(1)-Y(3)-C(36) -136.7(9)
Y(2)-W(1)-Y(3)-C(36) -174.7(9)
C(2)-W(1)-Y(3)-C(38) -54.5(14)
C(1)-W(1)-Y(3)-C(38) -81.9(6)
C(3)-W(1)-Y(3)-C(38) -0.5(8)
C(5)-W(1)-Y(3)-C(38) -56.1(6)
C(4)-W(1)-Y(3)-C(38) -21.0(7)
Y(1)-W(1)-Y(3)-C(38) 138.4(4)
Y(2)-W(1)-Y(3)-C(38) 100.4(4)
C(3)-W(1)-Y(2)-C(27) -27.4(9)
C(5)-W(1)-Y(2)-C(27) -102.6(11)
C(4)-W(1)-Y(2)-C(27) -68.6(8)
Y(3)-W(1)-Y(2)-C(27) -153.9(6)
Y(1)-W(1)-Y(2)-C(27) 67.1(6)
C(2)-W(1)-Y(2)-C(25) 162.8(15)
C(1)-W(1)-Y(2)-C(25) -167(4)
C(3)-W(1)-Y(2)-C(25) 122.9(15)
C(5)-W(1)-Y(2)-C(25) 47.8(16)
C(4)-W(1)-Y(2)-C(25) 81.8(15)
Y(3)-W(1)-Y(2)-C(25) -3.5(14)
Y(1)-W(1)-Y(2)-C(25) -142.6(14)
C(2)-W(1)-Y(2)-Y(3) 166.4(6)
C(1)-W(1)-Y(2)-Y(3) -163(3)
C(3)-W(1)-Y(2)-Y(3) 126.5(6)
C(5)-W(1)-Y(2)-Y(3) 51.3(9)
C(4)-W(1)-Y(2)-Y(3) 85.4(5)
C(4)-W(1)-Y(3)-Y(4) 168.8(5)
Y(1)-W(1)-Y(3)-Y(4) -31.82(4)
Y(2)-W(1)-Y(3)-Y(4) -69.81(3)
C(2)-W(1)-Y(3)-Y(2) -154.9(14)
C(1)-W(1)-Y(3)-Y(2) 177.7(5)
C(3)-W(1)-Y(3)-Y(2) -100.9(7)
C(5)-W(1)-Y(3)-Y(2) -156.5(5)
C(4)-W(1)-Y(3)-Y(2) -121.4(5)
Y(1)-W(1)-Y(3)-Y(2) 37.99(4)
C(23)-Y(2)-Y(3)-C(37) -37.6(6)
C(26)-Y(2)-Y(3)-C(37) 32.0(7)
C(24)-Y(2)-Y(3)-C(37) -11.3(5)
C(27)-Y(2)-Y(3)-C(37) -19.5(11)
C(25)-Y(2)-Y(3)-C(37) 19.4(6)
Y(1)-Y(2)-Y(3)-C(37) 168.1(4)
W(1)-Y(2)-Y(3)-C(37) -159.6(4)
Y(4)-Y(2)-Y(3)-C(37) 123.0(4)
137
C(2)-W(1)-Y(3)-C(35) 13.7(14)
C(1)-W(1)-Y(3)-C(35) -13.7(6)
C(3)-W(1)-Y(3)-C(35) 67.7(8)
C(5)-W(1)-Y(3)-C(35) 12.1(6)
C(4)-W(1)-Y(3)-C(35) 47.2(6)
Y(1)-W(1)-Y(3)-C(35) -153.4(4)
Y(2)-W(1)-Y(3)-C(35) 168.6(4)
C(2)-W(1)-Y(3)-C(39) -21.6(14)
C(1)-W(1)-Y(3)-C(39) -49.1(6)
C(3)-W(1)-Y(3)-C(39) 32.3(8)
C(5)-W(1)-Y(3)-C(39) -23.3(6)
C(4)-W(1)-Y(3)-C(39) 11.8(6)
Y(1)-W(1)-Y(3)-C(39) 171.2(4)
Y(2)-W(1)-Y(3)-C(39) 133.2(4)
C(2)-W(1)-Y(3)-Y(4) 135.3(14)
C(1)-W(1)-Y(3)-Y(4) 107.9(5)
C(3)-W(1)-Y(3)-Y(4) -170.8(7)
C(5)-W(1)-Y(3)-Y(4) 133.7(5)
W(1)-Y(3)-Y(4)-C(48) -145.4(5)
Y(2)-Y(3)-Y(4)-C(48) 142.7(5)
C(37)-Y(3)-Y(4)-C(47) 63.0(4)
C(36)-Y(3)-Y(4)-C(47) 30.8(4)
C(38)-Y(3)-Y(4)-C(47) 73.4(9)
C(35)-Y(3)-Y(4)-C(47) -2.7(4)
C(39)-Y(3)-Y(4)-C(47) -13.6(9)
W(1)-Y(3)-Y(4)-C(47) -125.93(17)
Y(2)-Y(3)-Y(4)-C(47) 162.14(18)
C(37)-Y(3)-Y(4)-Y(1) -143.9(4)
C(36)-Y(3)-Y(4)-Y(1) -176.1(4)
C(38)-Y(3)-Y(4)-Y(1) -133.6(8)
C(35)-Y(3)-Y(4)-Y(1) 150.4(4)
C(39)-Y(3)-Y(4)-Y(1) 139.4(8)
W(1)-Y(3)-Y(4)-Y(1) 27.12(4)
Y(2)-Y(3)-Y(4)-Y(1) -44.82(4)
C(23)-Y(2)-Y(3)-C(36) -60.9(6)
C(26)-Y(2)-Y(3)-C(36) 8.8(8)
C(24)-Y(2)-Y(3)-C(36) -34.5(6)
C(27)-Y(2)-Y(3)-C(36) -42.8(11)
C(25)-Y(2)-Y(3)-C(36) -3.9(6)
Y(1)-Y(2)-Y(3)-C(36) 144.8(5)
W(1)-Y(2)-Y(3)-C(36) 177.2(5)
Y(4)-Y(2)-Y(3)-C(36) 99.7(5)
C(23)-Y(2)-Y(3)-C(38) -5.2(6)
C(26)-Y(2)-Y(3)-C(38) 64.4(7)
C(24)-Y(2)-Y(3)-C(38) 21.1(6)
C(27)-Y(2)-Y(3)-C(38) 12.9(11)
C(25)-Y(2)-Y(3)-C(38) 51.8(6)
Y(1)-Y(2)-Y(3)-C(38) -159.5(4)
W(1)-Y(2)-Y(3)-C(38) -127.2(4)
Y(4)-Y(2)-Y(3)-C(38) 155.4(4)
C(23)-Y(2)-Y(3)-C(35) -26.2(11)
C(26)-Y(2)-Y(3)-C(35) 43.5(12)
C(24)-Y(2)-Y(3)-C(35) 0.2(11)
C(27)-Y(2)-Y(3)-C(35) -8.1(14)
C(25)-Y(2)-Y(3)-C(35) 30.8(11)
Y(1)-Y(2)-Y(3)-C(35) 179.5(10)
W(1)-Y(2)-Y(3)-C(35) -148.2(10)
Y(4)-Y(2)-Y(3)-C(35) 134.4(10)
C(23)-Y(2)-Y(3)-C(39) 17.0(6)
C(26)-Y(2)-Y(3)-C(39) 86.7(8)
C(24)-Y(2)-Y(3)-C(39) 43.4(6)
C(27)-Y(2)-Y(3)-C(39) 35.1(11)
C(25)-Y(2)-Y(3)-C(39) 74.0(6)
Y(1)-Y(2)-Y(3)-C(39) -137.3(5)
W(1)-Y(2)-Y(3)-C(39) -105.0(5)
Y(4)-Y(2)-Y(3)-C(39) 177.6(5)
C(23)-Y(2)-Y(3)-W(1) 122.0(4)
C(26)-Y(2)-Y(3)-W(1) -168.4(6)
138
C(37)-Y(3)-Y(4)-Y(2) -99.1(4)
C(36)-Y(3)-Y(4)-Y(2) -131.3(4)
C(38)-Y(3)-Y(4)-Y(2) -88.8(8)
C(35)-Y(3)-Y(4)-Y(2) -164.8(4)
C(39)-Y(3)-Y(4)-Y(2) -175.7(8)
W(1)-Y(3)-Y(4)-Y(2) 71.93(3)
C(12)-Y(1)-Y(4)-C(50) 49.3(6)
C(13)-Y(1)-Y(4)-C(50) 15.0(6)
C(14)-Y(1)-Y(4)-C(50) -0.9(10)
C(11)-Y(1)-Y(4)-C(50) 80.4(5)
C(15)-Y(1)-Y(4)-C(50) 73.0(12)
W(1)-Y(1)-Y(4)-C(50) -157.5(4)
Y(2)-Y(1)-Y(4)-C(50) -85.7(4)
C(12)-Y(1)-Y(4)-C(49) 31.2(6)
C(13)-Y(1)-Y(4)-C(49) -3.1(6)
C(14)-Y(1)-Y(4)-C(49) -18.9(10)
C(11)-Y(1)-Y(4)-C(49) 62.3(5)
C(15)-Y(1)-Y(4)-C(49) 55.0(11)
W(1)-Y(1)-Y(4)-C(49) -175.6(3)
Y(2)-Y(1)-Y(4)-C(49) -103.8(3)
C(12)-Y(1)-Y(4)-C(51) -0.5(7)
C(13)-Y(1)-Y(4)-C(51) -34.8(7)
C(14)-Y(1)-Y(4)-C(51) -50.6(11)
C(11)-Y(1)-Y(4)-C(51) 30.6(6)
C(15)-Y(1)-Y(4)-C(51) 23.3(12)
W(1)-Y(1)-Y(4)-C(51) 152.7(5)
Y(2)-Y(1)-Y(4)-C(51) -135.4(5)
C(12)-Y(1)-Y(4)-C(48) -2.8(6)
C(13)-Y(1)-Y(4)-C(48) -37.1(5)
C(14)-Y(1)-Y(4)-C(48) -52.9(10)
C(11)-Y(1)-Y(4)-C(48) 28.3(5)
C(15)-Y(1)-Y(4)-C(48) 21.0(11)
W(1)-Y(1)-Y(4)-C(48) 150.42(19)
Y(2)-Y(1)-Y(4)-C(48) -137.76(19)
C(24)-Y(2)-Y(3)-W(1) 148.3(4)
C(27)-Y(2)-Y(3)-W(1) 140.1(10)
C(25)-Y(2)-Y(3)-W(1) 179.0(4)
Y(1)-Y(2)-Y(3)-W(1) -32.33(4)
Y(4)-Y(2)-Y(3)-W(1) -77.42(4)
C(23)-Y(2)-Y(3)-Y(4) -160.6(4)
C(26)-Y(2)-Y(3)-Y(4) -90.9(6)
C(24)-Y(2)-Y(3)-Y(4) -134.3(4)
C(27)-Y(2)-Y(3)-Y(4) -142.5(10)
C(25)-Y(2)-Y(3)-Y(4) -103.6(4)
Y(1)-Y(2)-Y(3)-Y(4) 45.09(4)
W(1)-Y(2)-Y(3)-Y(4) 77.42(4)
C(37)-Y(3)-Y(4)-C(50) 1.6(5)
C(36)-Y(3)-Y(4)-C(50) -30.6(5)
C(38)-Y(3)-Y(4)-C(50) 11.9(9)
C(35)-Y(3)-Y(4)-C(50) -64.1(5)
C(39)-Y(3)-Y(4)-C(50) -75.1(9)
W(1)-Y(3)-Y(4)-C(50) 172.6(3)
Y(2)-Y(3)-Y(4)-C(50) 100.7(3)
C(37)-Y(3)-Y(4)-C(49) -16.4(6)
C(36)-Y(3)-Y(4)-C(49) -48.6(5)
C(38)-Y(3)-Y(4)-C(49) -6.0(9)
C(35)-Y(3)-Y(4)-C(49) -82.1(5)
C(39)-Y(3)-Y(4)-C(49) -93.0(9)
W(1)-Y(3)-Y(4)-C(49) 154.6(4)
Y(2)-Y(3)-Y(4)-C(49) 82.7(4)
C(37)-Y(3)-Y(4)-C(51) 36.2(5)
C(36)-Y(3)-Y(4)-C(51) 4.0(4) C(38)-
Y(3)-Y(4)-C(51) 46.5(9)
C(35)-Y(3)-Y(4)-C(51) -29.5(4)
C(39)-Y(3)-Y(4)-C(51) -40.4(9)
W(1)-Y(3)-Y(4)-C(51)-152.76(19)
Y(2)-Y(3)-Y(4)-C(51) 135.31(19)
C(37)-Y(3)-Y(4)-C(48) 43.6(7)
139
C(12)-Y(1)-Y(4)-C(47) -26.8(5)
C(13)-Y(1)-Y(4)-C(47) -61.1(5)
C(14)-Y(1)-Y(4)-C(47) -76.9(10)
C(11)-Y(1)-Y(4)-C(47) 4.3(4)
C(15)-Y(1)-Y(4)-C(47) -3.1(11)
W(1)-Y(1)-Y(4)-C(47) 126.41(17)
Y(2)-Y(1)-Y(4)-C(47) -161.77(17)
C(12)-Y(1)-Y(4)-Y(3) 179.8(5)
C(13)-Y(1)-Y(4)-Y(3) 145.5(5)
C(14)-Y(1)-Y(4)-Y(3) 129.7(10)
C(11)-Y(1)-Y(4)-Y(3) -149.1(4)
C(15)-Y(1)-Y(4)-Y(3) -156.4(11)
W(1)-Y(1)-Y(4)-Y(3) -26.95(4)
Y(2)-Y(1)-Y(4)-Y(3) 44.87(4)
C(12)-Y(1)-Y(4)-Y(2) 135.0(5)
C(13)-Y(1)-Y(4)-Y(2) 100.6(5)
C(14)-Y(1)-Y(4)-Y(2) 84.8(10)
C(11)-Y(1)-Y(4)-Y(2) 166.1(4)
C(15)-Y(1)-Y(4)-Y(2) 158.7(11)
W(1)-Y(2)-Y(4)-Y(1) 62.62(3)
C(3)-W(1)-C(1)-C(2) 38.9(10)
C(5)-W(1)-C(1)-C(2) 116.1(14)
C(4)-W(1)-C(1)-C(2) 80.5(10)
Y(3)-W(1)-C(1)-C(2) 163.3(8)
Y(1)-W(1)-C(1)-C(2) -57.6(10)
Y(2)-W(1)-C(1)-C(2) -35(4)
C(2)-W(1)-C(1)-C(5) -116.1(14)
C(3)-W(1)-C(1)-C(5) -77.2(10)
C(4)-W(1)-C(1)-C(5) -35.6(9)
Y(3)-W(1)-C(1)-C(5) 47.2(10)
Y(1)-W(1)-C(1)-C(5) -173.7(8)
Y(2)-W(1)-C(1)-C(5) -151(3)
C(2)-W(1)-C(1)-C(6) 118.3(19)
C(3)-W(1)-C(1)-C(6) 157.2(18)
C(36)-Y(3)-Y(4)-C(48) 11.3(7)
C(38)-Y(3)-Y(4)-C(48) 53.9(10)
C(35)-Y(3)-Y(4)-C(48) -22.1(7)
C(39)-Y(3)-Y(4)-C(48) -33.1(10)
W(1)-Y(1)-Y(4)-Y(2) -71.81(3)
C(23)-Y(2)-Y(4)-C(50) 7.0(11)
C(26)-Y(2)-Y(4)-C(50) 32.3(5)
C(24)-Y(2)-Y(4)-C(50) -23.7(5)
C(27)-Y(2)-Y(4)-C(50) 54.4(6)
C(25)-Y(2)-Y(4)-C(50) -0.8(5)
Y(3)-Y(2)-Y(4)-C(50) -102.9(3)
Y(1)-Y(2)-Y(4)-C(50) 132.5(3)
W(1)-Y(2)-Y(4)-C(50) -164.9(3)
C(23)-Y(2)-Y(4)-C(49) -28.4(11)
C(26)-Y(2)-Y(4)-C(49) -3.1(5)
C(24)-Y(2)-Y(4)-C(49) -59.1(5)
C(27)-Y(2)-Y(4)-C(49) 19.0(6)
C(25)-Y(2)-Y(4)-C(49) -36.2(5)
Y(3)-Y(2)-Y(4)-C(49) -138.3(3)
Y(1)-Y(2)-Y(4)-C(49) 97.0(3)
W(1)-Y(2)-Y(4)-C(49) 159.6(3)
C(23)-Y(2)-Y(4)-C(51) 31.7(12)
C(26)-Y(2)-Y(4)-C(51) 57.0(5)
C(24)-Y(2)-Y(4)-C(51) 1.0(5)
C(27)-Y(2)-Y(4)-C(51) 79.2(6)
C(25)-Y(2)-Y(4)-C(51) 23.9(5)
Y(3)-Y(2)-Y(4)-C(51) -78.1(3)
Y(1)-Y(2)-Y(4)-C(51) 157.2(3)
W(1)-Y(2)-Y(4)-C(51) -140.2(3)
C(23)-Y(2)-Y(4)-C(48) -52.4(12)
C(26)-Y(2)-Y(4)-C(48) -27.1(6)
C(24)-Y(2)-Y(4)-C(48) -83.1(5)
C(27)-Y(2)-Y(4)-C(48) -5.0(6)
C(25)-Y(2)-Y(4)-C(48) -60.2(5)
140
C(5)-W(1)-C(1)-C(6) -126(2)
C(4)-W(1)-C(1)-C(6) -161.2(18)
Y(3)-W(1)-C(1)-C(6) -78.4(16)
Y(1)-W(1)-C(1)-C(6) 60.7(16)
Y(2)-W(1)-C(1)-C(6) 84(4)
C(5)-C(1)-C(2)-C(3) -1.3(17)
C(6)-C(1)-C(2)-C(3) 169.7(15)
W(1)-C(1)-C(2)-C(3) -66.7(11)
C(5)-C(1)-C(2)-C(7) -170.7(18)
C(6)-C(1)-C(2)-C(7) 0(3)
W(1)-C(1)-C(2)-C(7) 123.9(19)
C(5)-C(1)-C(2)-W(1) 65.4(10)
C(6)-C(1)-C(2)-W(1) -123.5(15)
C(3)-W(1)-C(2)-C(1) -115.4(15)
C(5)-W(1)-C(2)-C(1) -37.3(9)
C(4)-W(1)-C(2)-C(1) -77.5(10)
Y(3)-W(1)-C(2)-C(1) -39.2(19)
Y(1)-W(1)-C(2)-C(1) 128.8(9)
Y(2)-W(1)-C(2)-C(1) 174.4(7)
C(1)-W(1)-C(2)-C(3) 115.4(15)
C(5)-W(1)-C(2)-C(3) 78.0(12)
C(4)-W(1)-C(2)-C(3) 37.8(11)
Y(3)-W(1)-C(2)-C(3) 76(2)
Y(1)-W(1)-C(2)-C(3) -115.9(12)
Y(2)-W(1)-C(2)-C(3) -70.2(13)
C(1)-W(1)-C(2)-C(7) -123(2)
C(3)-W(1)-C(2)-C(7) 122(3)
C(5)-W(1)-C(2)-C(7) -160(2)
C(4)-W(1)-C(2)-C(7) 160(2)
Y(3)-W(1)-C(2)-C(7) -161.8(13)
Y(1)-W(1)-C(2)-C(7) 6.2(19)
Y(2)-W(1)-C(2)-C(7) 52(2)
C(1)-C(2)-C(3)-C(4) 0.8(17)
C(7)-C(2)-C(3)-C(4) 170.2(19)
Y(3)-Y(2)-Y(4)-C(48) -162.3(3)
Y(1)-Y(2)-Y(4)-C(48) 73.0(3)
W(1)-Y(2)-Y(4)-C(48) 135.6(3)
C(23)-Y(2)-Y(4)-C(47) -9.5(12)
C(26)-Y(2)-Y(4)-C(47) 15.8(7)
C(24)-Y(2)-Y(4)-C(47) -40.2(7)
C(27)-Y(2)-Y(4)-C(47) 38.0(7)
C(25)-Y(2)-Y(4)-C(47) -17.3(6)
Y(3)-Y(2)-Y(4)-C(47) -119.3(5)
Y(1)-Y(2)-Y(4)-C(47) 116.0(5)
W(1)-Y(2)-Y(4)-C(47) 178.6(5)
C(23)-Y(2)-Y(4)-Y(3) 109.9(11)
C(26)-Y(2)-Y(4)-Y(3) 135.2(5)
C(24)-Y(2)-Y(4)-Y(3) 79.2(4)
C(27)-Y(2)-Y(4)-Y(3) 157.3(5)
C(25)-Y(2)-Y(4)-Y(3) 102.1(4)
Y(1)-Y(2)-Y(4)-Y(3) -124.68(5)
W(1)-Y(2)-Y(4)-Y(3) -62.06(3)
C(23)-Y(2)-Y(4)-Y(1) -125.4(11)
C(26)-Y(2)-Y(4)-Y(1) -100.2(5)
C(24)-Y(2)-Y(4)-Y(1) -156.1(5)
C(27)-Y(2)-Y(4)-Y(1) -78.0(5)
C(25)-Y(2)-Y(4)-Y(1) -133.3(4)
Y(3)-Y(2)-Y(4)-Y(1) 124.68(5)
(2)-W(1)-C(4)-C(5) -150.3(8)
C(2)-W(1)-C(4)-C(3) -39.5(10)
C(1)-W(1)-C(4)-C(3) -82.1(10)
C(5)-W(1)-C(4)-C(3) -118.9(14)
Y(3)-W(1)-C(4)-C(3) 154.2(9)
Y(1)-W(1)-C(4)-C(3) 6.4(14)
Y(2)-W(1)-C(4)-C(3) 90.8(10) C(2)-
W(1)-C(4)-C(9) -152.9(19)
C(1)-W(1)-C(4)-C(9) 164.5(18)
C(3)-W(1)-C(4)-C(9) -113(2)
141
W(1)-C(2)-C(3)-C(4) -66.2(10)
C(1)-C(2)-C(3)-C(8) -168.0(18)
C(7)-C(2)-C(3)-C(8) 1(3)
W(1)-C(2)-C(3)-C(8) 125.0(19)
C(1)-C(2)-C(3)-W(1) 67.1(10)
C(7)-C(2)-C(3)-W(1) -124(2)
C(2)-W(1)-C(3)-C(4) 114.8(16)
C(1)-W(1)-C(3)-C(4) 76.7(11)
C(5)-W(1)-C(3)-C(4) 35.3(10)
Y(3)-W(1)-C(3)-C(4) -35.6(13)
Y(1)-W(1)-C(3)-C(4) -175.9(9)
Y(2)-W(1)-C(3)-C(4) -110.3(10)
C(1)-W(1)-C(3)-C(2) -38.0(10)
C(5)-W(1)-C(3)-C(2) -79.4(12)
C(4)-W(1)-C(3)-C(2) -114.8(16)
Y(3)-W(1)-C(3)-C(2) -150.3(10)
Y(1)-W(1)-C(3)-C(2) 69.4(12)
Y(2)-W(1)-C(3)-C(2) 134.9(10)
C(2)-W(1)-C(3)-C(8) -125(3)
C(1)-W(1)-C(3)-C(8) -163(2)
C(5)-W(1)-C(3)-C(8) 156(2)
C(4)-W(1)-C(3)-C(8) 120(2)
Y(3)-W(1)-C(3)-C(8) 85(2)
Y(1)-W(1)-C(3)-C(8) -55.5(19)
Y(2)-W(1)-C(3)-C(8) 10(2)
C(2)-C(3)-C(4)-C(5) 0.0(17)
C(8)-C(3)-C(4)-C(5) 169.9(16)
W(1)-C(3)-C(4)-C(5) -61.6(11)
C(2)-C(3)-C(4)-C(9) -178.0(13)
C(8)-C(3)-C(4)-C(9) -8(2)
W(1)-C(3)-C(4)-C(9) 120.4(13)
C(2)-C(3)-C(4)-W(1) 61.6(10)
C(8)-C(3)-C(4)-W(1) -128.5(17)
C(2)-W(1)-C(4)-C(5) 79.4(11)
C(5)-W(1)-C(4)-C(9) 128(2)
Y(3)-W(1)-C(4)-C(9) 40.8(16)
Y(1)-W(1)-C(4)-C(9) -107.0(14)
Y(2)-W(1)-C(4)-C(9) -22.6(17)
C(3)-C(4)-C(5)-C(1) -0.8(17)
C(9)-C(4)-C(5)-C(1) 177.0(14)
W(1)-C(4)-C(5)-C(1) -60.2(10)
C(3)-C(4)-C(5)-C(10) -173.5(16)
C(9)-C(4)-C(5)-C(10) 4(3)
W(1)-C(4)-C(5)-C(10) 127.1(17)
C(3)-C(4)-C(5)-W(1) 59.4(10)
C(9)-C(4)-C(5)-W(1) -122.8(16)
C(2)-C(1)-C(5)-C(4) 1.3(17)
C(6)-C(1)-C(5)-C(4) -169.5(15)
W(1)-C(1)-C(5)-C(4) 62.6(11)
C(2)-C(1)-C(5)-C(10) 173.6(17)
C(6)-C(1)-C(5)-C(10) 3(3)
W(1)-C(1)-C(5)-C(10) -125.2(18)
C(2)-C(1)-C(5)-W(1) -61.3(10)
C(6)-C(1)-C(5)-W(1) 127.9(16)
C(2)-W(1)-C(5)-C(4) -80.2(10)
C(1)-W(1)-C(5)-C(4) -118.3(13)
C(3)-W(1)-C(5)-C(4) -36.6(9)
Y(3)-W(1)-C(5)-C(4) 99.1(9)
Y(1)-W(1)-C(5)-C(4) -107.3(10)
Y(2)-W(1)-C(5)-C(4) 55.3(13)
C(2)-W(1)-C(5)-C(1) 38.2(9)
C(3)-W(1)-C(5)-C(1) 81.8(10)
C(4)-W(1)-C(5)-C(1) 118.3(13)
Y(3)-W(1)-C(5)-C(1) -142.5(9)
Y(1)-W(1)-C(5)-C(1) 11.1(15)
Y(2)-W(1)-C(5)-C(1) 173.6(7)
C(2)-W(1)-C(5)-C(10) 160(2)
C(1)-W(1)-C(5)-C(10) 122(2)
142
C(1)-W(1)-C(4)-C(5) 36.8(9)
C(3)-W(1)-C(4)-C(5) 118.9(14)
Y(3)-W(1)-C(4)-C(5) -86.9(9)
Y(1)-W(1)-C(4)-C(5) 125.3(9)
C(15)-Y(1)-C(11)-Si(1) -129.8(15)
W(1)-Y(1)-C(11)-Si(1) -36.3(11)
Y(2)-Y(1)-C(11)-Si(1) -172.0(4)
Y(4)-Y(1)-C(11)-Si(1) 55.3(11)
C(15)-C(11)-C(12)-C(13) 1.5(15)
Si(1)-C(11)-C(12)-C(13)168.0(10)
Y(1)-C(11)-C(12)-C(13) -68.4(10)
C(15)-C(11)-C(12)-C(16) 173.0(1)
Si(1)-C(11)-C(12)-C(16) -6(2)
Y(1)-C(11)-C(12)-C(16) 117.1(15)
C(15)-C(11)-C(12)-Y(1) 69.9(9)
Si(1)-C(11)-C(12)-Y(1) -123.6(11)
C(13)-Y(1)-C(12)-C(11)-112.7(17)
C(14)-Y(1)-C(12)-C(11) -77.1(10)
C(15)-Y(1)-C(12)-C(11) -40.0(9)
W(1)-Y(1)-C(12)-C(11) 42.7(16)
Y(2)-Y(1)-C(12)-C(11) -156.0(7)
Y(4)-Y(1)-C(12)-C(11) 129.1(9)
C(14)-Y(1)-C(12)-C(13) 35.5(12)
C(11)-Y(1)-C(12)-C(13) 112.7(17)
C(15)-Y(1)-C(12)-C(13) 72.7(13)
W(1)-Y(1)-C(12)-C(13) 155.4(13)
Y(2)-Y(1)-C(12)-C(13) -43.3(16)
Y(4)-Y(1)-C(12)-C(13) -118.2(13)
C(13)-Y(1)-C(12)-C(16) 125(3)
C(14)-Y(1)-C(12)-C(16) 161(2)
C(11)-Y(1)-C(12)-C(16) -122(2)
C(15)-Y(1)-C(12)-C(16) -162(2)
W(1)-Y(1)-C(12)-C(16) -79(2)
Y(2)-Y(1)-C(12)-C(16) 82.2(18)
C(3)-W(1)-C(5)-C(10) -156(2)
C(4)-W(1)-C(5)-C(10) -119(2)
Y(3)-W(1)-C(5)-C(10) -20.3(18)
Y(1)-W(1)-C(5)-C(10) 133.3(14)
Y(2)-W(1)-C(5)-C(10) -64(2)
C(20)-Si(1)-C(11)-C(15) -4.0(17)
C(22)-Si(1)-C(11)-C(15) -125.1(14)
C(21)-Si(1)-C(11)-C(15) 109.7(15)
C(20)-Si(1)-C(11)-C(12) -166.5(13)
C(22)-Si(1)-C(11)-C(12) 72.4(15)
C(21)-Si(1)-C(11)-C(12) -52.8(16)
C(20)-Si(1)-C(11)-Y(1) 98.6(11)
C(22)-Si(1)-C(11)-Y(1) -22.5(12)
C(21)-Si(1)-C(11)-Y(1) -147.7(10)
C(12)-Y(1)-C(11)-C(15) -107.6(14)
C(13)-Y(1)-C(11)-C(15) -69.0(12)
C(14)-Y(1)-C(11)-C(15) -29.8(10)
W(1)-Y(1)-C(11)-C(15) 93.6(10)
Y(2)-Y(1)-C(11)-C(15) -42.1(18)
Y(4)-Y(1)-C(11)-C(15) -174.9(8)
C(13)-Y(1)-C(11)-C(12) 38.6(12)
C(14)-Y(1)-C(11)-C(12) 77.8(11)
C(15)-Y(1)-C(11)-C(12) 107.6(14)
W(1)-Y(1)-C(11)-C(12) -158.8(9)
Y(2)-Y(1)-C(11)-C(12) 65.5(17)
Y(4)-Y(1)-C(11)-C(12) -67.3(11)
C(12)-Y(1)-C(11)-Si(1) 122.6(15)
C(13)-Y(1)-C(11)-Si(1) 161.2(15)
C(14)-Y(1)-C(11)-Si(1) -
159.6(13)
W(1)-Y(1)-C(14)-C(18) 55(2)
Y(2)-Y(1)-C(14)-C(18) -20(2)
Y(4)-Y(1)-C(14)-C(18) -92(2)
C(13)-C(14)-C(15)-C(11) 5(2)
143
Y(4)-Y(1)-C(12)-C(16) 7.3(18)
C(11)-C(12)-C(13)-C(14) 1.1(18)
C(16)-C(12)-C(13)-C(14) 175.3(2)
Y(1)-C(12)-C(13)-C(14) -68.9(12)
C(11)-C(12)-C(13)-C(17)-177.9(2)
C(16)-C(12)-C(13)-C(17) -4(2)
Y(1)-C(12)-C(13)-C(17) 112.1(13)
C(11)-C(12)-C(13)-Y(1) 70.0(10)
C(16)-C(12)-C(13)-Y(1)-115.8(16)
C(12)-Y(1)-C(13)-C(14) 115.6(17)
C(11)-Y(1)-C(13)-C(14) 78.1(12)
C(15)-Y(1)-C(13)-C(14) 38.1(11)
W(1)-Y(1)-C(13)-C(14) -17(2)
Y(2)-Y(1)-C(13)-C(14) -93.6(11)
Y(4)-Y(1)-C(13)-C(14) -165.9(10)
C(14)-Y(1)-C(13)-C(12)-115.6(17)
C(11)-Y(1)-C(13)-C(12) -37.4(10)
C(15)-Y(1)-C(13)-C(12) -77.4(11)
W(1)-Y(1)-C(13)-C(12) -132.4(15)
Y(2)-Y(1)-C(13)-C(12) 150.8(11)
Y(4)-Y(1)-C(13)-C(12) 78.6(13)
C(12)-Y(1)-C(13)-C(17) -112(3)
C(14)-Y(1)-C(13)-C(17) 133(3)
C(11)-Y(1)-C(13)-C(17) -149(2)
C(15)-Y(1)-C(13)-C(17) 171(2)
W(1)-Y(1)-C(13)-C(17) 116(2)
Y(2)-Y(1)-C(13)-C(17) 39(2)
Y(4)-Y(1)-C(13)-C(17) -33(2)
C(12)-C(13)-C(14)-C(15) -3.4(19)
C(17)-C(13)-C(14)-C(15) 175.4(2)
Y(1)-C(13)-C(14)-C(15) -70.4(11)
C(12)-C(13)-C(14)-C(18)-170.8(2)
C(17)-C(13)-C(14)-C(18) 8(3)
Y(1)-C(13)-C(14)-C(18) 122.2(16)
C(18)-C(14)-C(15)-C(11) 170.5(18)
Y(1)-C(14)-C(15)-C(11) -63.3(13)
C(13)-C(14)-C(15)-C(19)-169.8(14)
C(18)-C(14)-C(15)-C(19) -4(3)
Y(1)-C(14)-C(15)-C(19) 122.0(13)
C(13)-C(14)-C(15)-Y(1) 68.2(11)
C(18)-C(14)-C(15)-Y(1) -126(2)
C(12)-C(11)-C(15)-C(14) -4.1(18)
Si(1)-C(11)-C(15)-C(14) -169.8(12)
Y(1)-C(11)-C(15)-C(14) 63.8(13)
C(12)-C(11)-C(15)-C(19) 169.6(15)
Si(1)-C(11)-C(15)-C(19) 4(2)
Y(1)-C(11)-C(15)-C(19) -122.4(16)
C(12)-C(11)-C(15)-Y(1) -67.9(9)
Si(1)-C(11)-C(15)-Y(1) 126.3(12)
C(12)-Y(1)-C(15)-C(14) -84.5(14)
C(13)-Y(1)-C(15)-C(14) -41.0(12)
C(11)-Y(1)-C(15)-C(14) -125.4(18)
W(1)-Y(1)-C(15)-C(14) 125.5(12)
Y(2)-Y(1)-C(15)-C(14) 38.3(15)
Y(4)-Y(1)-C(15)-C(14) -114.1(15)
C(12)-Y(1)-C(15)-C(11) 40.9(9)
C(13)-Y(1)-C(15)-C(11) 84.4(12)
C(14)-Y(1)-C(15)-C(11) 125.4(18)
W(1)-Y(1)-C(15)-C(11) -109.1(9)
Y(2)-Y(1)-C(15)-C(11) 163.7(7)
Y(4)-Y(1)-C(15)-C(11) 11.3(18)
C(12)-Y(1)-C(15)-C(19) 166.6(19)
C(13)-Y(1)-C(15)-C(19) -149.9(19)
C(14)-Y(1)-C(15)-C(19) -109(2)
C(11)-Y(1)-C(15)-C(19) 125.7(19)
W(1)-Y(1)-C(15)-C(19) 16.6(16)
Y(2)-Y(1)-C(15)-C(19) -70.6(16)
Y(4)-Y(1)-C(15)-C(19) 137.0(13)
144
C(12)-C(13)-C(14)-Y(1) 67.0(11)
C(17)-C(13)-C(14)-Y(1)-114.1(19)
C(12)-Y(1)-C(14)-C(15) 71.4(13)
C(13)-Y(1)-C(14)-C(15) 108.6(18)
C(11)-Y(1)-C(14)-C(15) 31.6(11)
W(1)-Y(1)-C(14)-C(15) -77.0(14)
Y(2)-Y(1)-C(14)-C(15) -152.2(11)
Y(4)-Y(1)-C(14)-C(15) 135.0(11)
C(12)-Y(1)-C(14)-C(13) -37.3(10)
C(11)-Y(1)-C(14)-C(13) -77.0(12)
C(15)-Y(1)-C(14)-C(13)-108.6(18)
W(1)-Y(1)-C(14)-C(13) 174.3(8)
Y(2)-Y(1)-C(14)-C(13) 99.1(11)
Y(4)-Y(1)-C(14)-C(13) 26.4(18)
C(12)-Y(1)-C(14)-C(18) -156(2)
C(13)-Y(1)-C(14)-C(18) -119(3)
C(11)-Y(1)-C(14)-C(18) 164(2)
C(15)-Y(1)-C(14)-C(18) 133(3)
Y(3)-Y(2)-C(24)-C(28) -12.8(13)
Y(1)-Y(2)-C(24)-C(28) 168.9(8)
W(1)-Y(2)-C(24)-C(28) 33.9(16)
Y(4)-Y(2)-C(24)-C(28) -72.6(14)
C(23)-C(24)-C(25)-C(26) 1.6(15)
C(28)-C(24)-C(25)-C(26)-171.9(2)
Y(2)-C(24)-C(25)-C(26) 67.2(9)
C(23)-C(24)-C(25)-C(29) 173.4(2)
C(28)-C(24)-C(25)-C(29) 0(2)
Y(2)-C(24)-C(25)-C(29)-121.1(15)
C(23)-C(24)-C(25)-Y(2) -65.6(9)
C(28)-C(24)-C(25)-Y(2) 121.0(13)
C(23)-Y(2)-C(25)-C(24) 36.4(8)
C(26)-Y(2)-C(25)-C(24) 112.8(14)
C(27)-Y(2)-C(25)-C(24) 77.1(9)
Y(3)-Y(2)-C(25)-C(24) -83.4(8)
C(34)-Si(2)-C(23)-C(24) 48.5(15)
C(33)-Si(2)-C(23)-C(24) 162.8(13)
C(32)-Si(2)-C(23)-C(24) -68.4(15)
C(34)-Si(2)-C(23)-C(27) -130.2(14)
C(33)-Si(2)-C(23)-C(27) -16.0(15)
C(32)-Si(2)-C(23)-C(27) 112.8(15)
C(34)-Si(2)-C(23)-Y(2) 137.4(9)
C(33)-Si(2)-C(23)-Y(2) -108.3(10)
C(32)-Si(2)-C(23)-Y(2) 20.5(12)
C(26)-Y(2)-C(23)-C(24) -73.7(10)
C(27)-Y(2)-C(23)-C(24) -110.4(13)
C(25)-Y(2)-C(23)-C(24) -34.4(8)
Y(3)-Y(2)-C(23)-C(24) 55.3(10)
Y(1)-Y(2)-C(23)-C(24) -158.7(7)
W(1)-Y(2)-C(23)-C(24) 126.4(8)
Y(4)-Y(2)-C(23)-C(24) -43.6(17)
C(26)-Y(2)-C(23)-C(27) 36.7(9)
C(24)-Y(2)-C(23)-C(27) 110.4(13)
C(25)-Y(2)-C(23)-C(27) 76.1(10)
Y(3)-Y(2)-C(23)-C(27) 165.8(8)
Y(1)-Y(2)-C(23)-C(27) -48.3(11)
W(1)-Y(2)-C(23)-C(27) -123.1(9)
Y(4)-Y(2)-C(23)-C(27) 66.8(16)
C(26)-Y(2)-C(23)-Si(2) 164.6(11)
C(24)-Y(2)-C(23)-Si(2) -121.7(13)
C(27)-Y(2)-C(23)-Si(2) 127.9(13)
C(25)-Y(2)-C(23)-Si(2) -156.0(10)
Y(3)-Y(2)-C(23)-Si(2) -66.3(8)
Y(1)-Y(2)-C(23)-Si(2) 79.6(8)
W(1)-Y(2)-C(23)-Si(2) 4.8(9)
Y(4)-Y(2)-C(23)-Si(2) -165.3(5)
C(27)-C(23)-C(24)-C(25) -3.4(15)
Si(2)-C(23)-C(24)-C(25) 177.6(9)
Y(2)-C(23)-C(24)-C(25) 67.5(10)
145
Y(1)-Y(2)-C(25)-C(24) 146.4(7)
W(1)-Y(2)-C(25)-C(24) -80.3(16)
Y(4)-Y(2)-C(25)-C(24) -146.5(7)
C(23)-Y(2)-C(25)-C(26) -76.4(11)
C(24)-Y(2)-C(25)-C(26)-112.8(14)
C(27)-Y(2)-C(25)-C(26) -35.7(10)
Y(3)-Y(2)-C(25)-C(26) 163.9(10)
Y(1)-Y(2)-C(25)-C(26) 33.6(13)
W(1)-Y(2)-C(25)-C(26) 166.9(11)
Y(4)-Y(2)-C(25)-C(26) 100.8(11)
C(23)-Y(2)-C(25)-C(29) 159.0(17)
C(26)-Y(2)-C(25)-C(29) -125(2)
C(24)-Y(2)-C(25)-C(29) 122.7(19)
C(27)-Y(2)-C(25)-C(29)-160.2(18)
Y(3)-Y(2)-C(25)-C(29) 39.3(16)
Y(1)-Y(2)-C(25)-C(29) -90.9(15)
W(1)-Y(2)-C(25)-C(29) 42(2)
Y(4)-Y(2)-C(25)-C(29) -23.8(16)
C(24)-C(25)-C(26)-C(27) 0.9(16)
C(29)-C(25)-C(26)-C(27)-170.6(2)
Y(2)-C(25)-C(26)-C(27) 68.4(10)
C(24)-C(25)-C(26)-C(30) 175.2(2)
C(29)-C(25)-C(26)-C(30) 4(3)
Y(2)-C(25)-C(26)-C(30)-117.3(16)
C(24)-C(25)-C(26)-Y(2) -67.5(9)
C(29)-C(25)-C(26)-Y(2) 120.9(15)
C(23)-Y(2)-C(26)-C(27) -38.1(9)
C(24)-Y(2)-C(26)-C(27) -79.4(10)
C(25)-Y(2)-C(26)-C(27)-116.4(15)
Y(3)-Y(2)-C(26)-C(27) -140.2(9)
Y(1)-Y(2)-C(26)-C(27) 87.1(9)
W(1)-Y(2)-C(26)-C(27) 76.3(19)
Y(4)-Y(2)-C(26)-C(27) 150.9(8)
C(23)-Y(2)-C(26)-C(25) 78.3(10)
C(27)-C(23)-C(24)-C(28) 169.6(13)
Si(2)-C(23)-C(24)-C(28) -9(2)
Y(2)-C(23)-C(24)-C(28) -119.4(14)
C(27)-C(23)-C(24)-Y(2) -70.9(8)
Si(2)-C(23)-C(24)-Y(2) 110.1(10)
C(23)-Y(2)-C(24)-C(25) -117.1(13)
C(26)-Y(2)-C(24)-C(25) -38.0(9)
C(27)-Y(2)-C(24)-C(25) -77.9(10)
Y(3)-Y(2)-C(24)-C(25) 106.5(8)
Y(1)-Y(2)-C(24)-C(25) -71.9(13)
W(1)-Y(2)-C(24)-C(25) 153.2(7)
Y(4)-Y(2)-C(24)-C(25) 46.6(10)
C(26)-Y(2)-C(24)-C(23) 79.1(10)
C(27)-Y(2)-C(24)-C(23) 39.2(9)
C(25)-Y(2)-C(24)-C(23) 117.1(13)
Y(3)-Y(2)-C(24)-C(23) -136.4(8)
Y(1)-Y(2)-C(24)-C(23) 45.2(15)
W(1)-Y(2)-C(24)-C(23) -89.7(9)
Y(4)-Y(2)-C(24)-C(23) 163.7(7)
C(23)-Y(2)-C(24)-C(28) 123.6(18)
C(26)-Y(2)-C(24)-C(28) -157.2(16)
C(27)-Y(2)-C(24)-C(28) 162.8(16)
C(25)-Y(2)-C(24)-C(28) -119.2(17)
C(24)-Y(2)-C(26)-C(30) 161(2)
C(27)-Y(2)-C(26)-C(30) -120(2)
C(25)-Y(2)-C(26)-C(30) 124(2)
Y(3)-Y(2)-C(26)-C(30) 100.0(17)
Y(1)-Y(2)-C(26)-C(30) -32.7(18)
W(1)-Y(2)-C(26)-C(30) -44(3)
Y(4)-Y(2)-C(26)-C(30) 31.1(19)
C(25)-C(26)-C(27)-C(23) -3.0(16)
C(30)-C(26)-C(27)-C(23)-177.5(13)
Y(2)-C(26)-C(27)-C(23) 65.5(9)
C(25)-C(26)-C(27)-C(31) 175.6(13)
146
C(24)-Y(2)-C(26)-C(25) 37.1(9)
C(27)-Y(2)-C(26)-C(25) 116.4(15)
Y(3)-Y(2)-C(26)-C(25) -23.8(14)
Y(1)-Y(2)-C(26)-C(25) -156.5(9)
W(1)-Y(2)-C(26)-C(25) -167.3(11)
Y(4)-Y(2)-C(26)-C(25) -92.7(10)
C(23)-Y(2)-C(26)-C(30) -158(2)
C(39)-C(35)-C(36)-C(37) -0.4(15)
Si(3)-C(35)-C(36)-C(37)-168.3(1)
Y(3)-C(35)-C(36)-C(37) 68.0(10)
C(39)-C(35)-C(36)-C(40)
Si(3)-C(35)-C(36)-C(40) 4(2)
Y(3)-C(35)-C(36)-C(40)-119.7(15)
C(39)-C(35)-C(36)-Y(3) -68.4(8)
Si(3)-C(35)-C(36)-Y(3) 123.7(10)
C(38)-Y(3)-C(36)-C(37) -36.4(8)
C(35)-Y(3)-C(36)-C(37)-114.7(12)
C(39)-Y(3)-C(36)-C(37) -76.0(9)
W(1)-Y(3)-C(36)-C(37) -140.6(9)
Y(4)-Y(3)-C(36)-C(37) 123.8(8)
Y(2)-Y(3)-C(36)-C(37) 46.4(10)
C(37)-Y(3)-C(36)-C(35) 114.7(12)
C(38)-Y(3)-C(36)-C(35) 78.4(9)
C(39)-Y(3)-C(36)-C(35) 38.8(8)
W(1)-Y(3)-C(36)-C(35) -25.9(14)
Y(4)-Y(3)-C(36)-C(35) -121.4(7)
Y(2)-Y(3)-C(36)-C(35) 161.1(6)
C(37)-Y(3)-C(36)-C(40)-120.1(17)
C(38)-Y(3)-C(36)-C(40)-156.5(16)
C(35)-Y(3)-C(36)-C(40) 125.2(18)
C(39)-Y(3)-C(36)-C(40) 163.9(16)
W(1)-Y(3)-C(36)-C(40) 99.3(14)
Y(4)-Y(3)-C(36)-C(40) 3.8(14)
Y(2)-Y(3)-C(36)-C(40) -73.7(15)
C(30)-C(26)-C(27)-C(31) 1(2)
Y(2)-C(26)-C(27)-C(31) -115.8(14)
C(25)-C(26)-C(27)-Y(2) -68.6(10)
C(30)-C(26)-C(27)-Y(2) 117.0(14)
C(24)-C(23)-C(27)-C(26) 3.8(14)
Si(2)-C(23)-C(27)-C(26) -177.3(10)
Y(2)-C(23)-C(27)-C(26) -66.6(10)
C(24)-C(23)-C(27)-C(31)-174.9(13)
Si(2)-C(23)-C(27)-C(31) 4(2)
Y(2)-C(23)-C(27)-C(31) 114.7(13)
C(24)-C(23)-C(27)-Y(2) 70.4(8)
Si(2)-C(23)-C(27)-Y(2) -110.7(11)
C(23)-Y(2)-C(27)-C(26) 113.4(13)
C(24)-Y(2)-C(27)-C(26) 74.4(10)
C(25)-Y(2)-C(27)-C(26) 35.7(9)
Y(3)-Y(2)-C(27)-C(26) 84.7(15)
Y(1)-Y(2)-C(27)-C(26) -103.2(9)
W(1)-Y(2)-C(27)-C(26) -154.0(8)
Y(4)-Y(2)-C(27)-C(26) -42.8(12)
C(26)-Y(2)-C(27)-C(23) -113.4(13)
C(24)-Y(2)-C(27)-C(23) -39.1(8)
C(25)-Y(2)-C(27)-C(23) -77.7(9)
Y(3)-Y(2)-C(27)-C(23) -28.8(17)
Y(1)-Y(2)-C(27)-C(23) 143.4(8)
W(1)-Y(2)-C(27)-C(23) 92.6(9)
Y(4)-Y(2)-C(27)-C(23) -156.2(7)
C(23)-Y(2)-C(27)-C(31) -122(2)
C(26)-Y(2)-C(27)-C(31) 125(2)
C(24)-Y(2)-C(27)-C(31) -160.9(18)
C(25)-Y(2)-C(27)-C(31) 160.5(18)
Y(3)-Y(2)-C(27)-C(31) -150.6(11)
Y(1)-Y(2)-C(27)-C(31) 21.6(16)
W(1)-Y(2)-C(27)-C(31) -29.2(18)
Y(4)-Y(2)-C(27)-C(31) 82.0(16)
147
C(35)-C(36)-C(37)-C(38) 0.1(16)
C(40)-C(36)-C(37)-C(38)-172.6(2)
Y(3)-C(36)-C(37)-C(38) 69.3(10)
C(35)-C(36)-C(37)-C(41) 172.9(2)
C(40)-C(36)-C(37)-C(41) 0(2)
Y(3)-C(36)-C(37)-C(41)-117.9(16)
C(35)-C(36)-C(37)-Y(3) -69.3(9)
C(40)-C(36)-C(37)-Y(3) 118.1(14)
C(36)-Y(3)-C(37)-C(38)-114.3(12)
C(35)-Y(3)-C(37)-C(38) -77.3(9)
C(39)-Y(3)-C(37)-C(38) -36.3(8)
W(1)-Y(3)-C(37)-C(38) 18.9(16)
Y(4)-Y(3)-C(37)-C(38) 172.1(7)
Y(2)-Y(3)-C(37)-C(38) 98.5(8)
C(38)-Y(3)-C(37)-C(36) 114.3(12)
C(35)-Y(3)-C(37)-C(36) 37.1(8)
C(39)-Y(3)-C(37)-C(36) 78.0(9)
W(1)-Y(3)-C(37)-C(36) 133.2(10)
Y(4)-Y(3)-C(37)-C(36) -73.6(9)
Y(2)-Y(3)-C(37)-C(36) -147.2(7)
C(36)-Y(3)-C(37)-C(41) 126.1(18)
C(38)-Y(3)-C(37)-C(41)-119.6(18)
C(35)-Y(3)-C(37)-C(41) 163.1(16)
C(39)-Y(3)-C(37)-C(41)-155.9(17)
W(1)-Y(3)-C(37)-C(41) -100.7(15)
Y(4)-Y(3)-C(37)-C(41) 52.5(15)
Y(2)-Y(3)-C(37)-C(41) -21.2(15)
C(36)-C(37)-C(38)-C(39) 0.3(17)
C(41)-C(37)-C(38)-C(39)-173.0(1)
Y(3)-C(37)-C(38)-C(39) 69.1(10)
C(36)-C(37)-C(38)-C(42)173.7(2)
C(41)-C(37)-C(38)-C(42) 0(2)
Y(3)-C(37)-C(38)-C(42)-117.5(15)
C(36)-C(37)-C(38)-Y(3)-68.8(10)
C(46)-Si(3)-C(35)-C(36) 51.9(14)
C(44)-Si(3)-C(35)-C(36) -65.3(16)
C(45)-Si(3)-C(35)-C(36) 166.0(12)
C(46)-Si(3)-C(35)-C(39) -113.0(13)
C(44)-Si(3)-C(35)-C(39) 129.8(15)
C(45)-Si(3)-C(35)-C(39) 1.1(14)
C(46)-Si(3)-C(35)-Y(3) 146.1(9)
C(44)-Si(3)-C(35)-Y(3) 28.9(13)
C(45)-Si(3)-C(35)-Y(3) -99.8(10)
C(37)-Y(3)-C(35)-C(36) -36.2(8)
C(38)-Y(3)-C(35)-C(36) -74.9(9)
C(39)-Y(3)-C(35)-C(36) -111.4(12)
W(1)-Y(3)-C(35)-C(36) 168.1(7)
Y(4)-Y(3)-C(35)-C(36) 76.5(9)
Y(2)-Y(3)-C(35)-C(36) -49.8(15)
C(37)-Y(3)-C(35)-C(39) 75.2(9)
C(36)-Y(3)-C(35)-C(39) 111.4(12)
C(38)-Y(3)-C(35)-C(39) 36.5(8)
W(1)-Y(3)-C(35)-C(39) -80.5(9)
Y(4)-Y(3)-C(35)-C(39) -172.1(7)
Y(2)-Y(3)-C(35)-C(39) 61.6(15)
C(37)-Y(3)-C(35)-Si(3) -157.1(11)
C(36)-Y(3)-C(35)-Si(3) -121.0(13)
C(38)-Y(3)-C(35)-Si(3) 164.1(11)
C(39)-Y(3)-C(35)-Si(3) 127.6(13)
W(1)-Y(3)-C(35)-Si(3) 47.1(9)
Y(4)-Y(3)-C(35)-Si(3) -44.5(9)
Y(2)-Y(3)-C(35)-Si(3) -170.8(3)
Si(3)-C(35)-C(39)-C(38) 167.7(10)
Y(3)-C(35)-C(39)-C(38) -66.4(9)
C(36)-C(35)-C(39)-C(43)-169.3(12)
Si(3)-C(35)-C(39)-C(43) -2.1(19)
Y(3)-C(35)-C(39)-C(43) 123.8(12)
C(36)-C(35)-C(39)-Y(3) 66.9(8)
148
C(41)-C(37)-C(38)-Y(3) 117.9(14)
C(36)-Y(3)-C(38)-C(37) 37.0(8)
C(35)-Y(3)-C(38)-C(37) 77.6(9)
C(39)-Y(3)-C(38)-C(37) 115.5(13)
W(1)-Y(3)-C(38)-C(37) -171.9(7)
Y(4)-Y(3)-C(38)-C(37) -16.5(15)
Y(2)-Y(3)-C(38)-C(37) -94.7(9)
C(37)-Y(3)-C(38)-C(39)-115.5(13)
C(36)-Y(3)-C(38)-C(39) -78.5(9)
C(35)-Y(3)-C(38)-C(39) -37.9(8)
W(1)-Y(3)-C(38)-C(39) 72.6(10)
Y(4)-Y(3)-C(38)-C(39) -132.0(9)
Y(2)-Y(3)-C(38)-C(39) 149.9(8)
C(37)-Y(3)-C(38)-C(42) 125.8(18)
C(36)-Y(3)-C(38)-C(42) 162.8(16)
C(35)-Y(3)-C(38)-C(42)-156.6(16)
C(39)-Y(3)-C(38)-C(42)-118.7(19)
W(1)-Y(3)-C(38)-C(42) -46.1(15)
Y(4)-Y(3)-C(38)-C(42) 109.3(15)
Y(2)-Y(3)-C(38)-C(42) 31.1(15)
C(37)-C(38)-C(39)-C(35) -0.5(15)
C(42)-C(38)-C(39)-C(35)-174.5(1)
Y(3)-C(38)-C(39)-C(35) 66.9(8)
C(37)-C(38)-C(39)-C(43) 168.9(1)
C(42)-C(38)-C(39)-C(43) -5(2)
Y(3)-C(38)-C(39)-C(43)-123.7(13)
C(37)-C(38)-C(39)-Y(3) -67.4(10)
C(42)-C(38)-C(39)-Y(3) 118.6(13)
C(36)-C(35)-C(39)-C(38) 0.5(14)
C(47)-Y(4)-C(49)-C(50)-78.29(19)
Y(3)-Y(4)-C(49)-C(50) 31.7(3)
Y(1)-Y(4)-C(49)-C(50) 156.8(2)
Y(2)-Y(4)-C(49)-C(50) 95.4(2)
C(50)-Y(4)-C(49)-C(53)-122.10(2)
Si(3)-C(35)-C(39)-Y(3) -125.9(11)
C(37)-Y(3)-C(39)-C(38) 35.8(9)
C(36)-Y(3)-C(39)-C(38) 75.4(10)
C(35)-Y(3)-C(39)-C(38) 113.7(13)
W(1)-Y(3)-C(39)-C(38) -126.8(9)
Y(4)-Y(3)-C(39)-C(38) 130.6(10)
Y(2)-Y(3)-C(39)-C(38) -43.6(11)
C(37)-Y(3)-C(39)-C(35) -77.9(9)
C(36)-Y(3)-C(39)-C(35) -38.3(8)
C(38)-Y(3)-C(39)-C(35) -113.7(13)
W(1)-Y(3)-C(39)-C(35) 119.5(7)
Y(4)-Y(3)-C(39)-C(35) 16.9(14)
Y(2)-Y(3)-C(39)-C(35) -157.4(6)
C(37)-Y(3)-C(39)-C(43) 160.8(16)
C(36)-Y(3)-C(39)-C(43) -159.6(16)
C(38)-Y(3)-C(39)-C(43) 125.0(18)
C(35)-Y(3)-C(39)-C(43) -121.3(18)
W(1)-Y(3)-C(39)-C(43) -1.8(15)
Y(4)-Y(3)-C(39)-C(43) -104.4(14)
Y(2)-Y(3)-C(39)-C(43) 81.4(15)
C(50)-Y(4)-C(47)-C(48) -77.87(16)
C(49)-Y(4)-C(47)-C(48) -37.00(12)
C(51)-Y(4)-C(47)-C(48)-115.28(13)
Y(3)-Y(4)-C(47)-C(48) -167.9(3)
Y(1)-Y(4)-C(47)-C(48) 46.7(2)
Y(2)-Y(4)-C(47)-C(48) -58.9(5)
C(50)-Y(4)-C(47)-C(51) 37.42(12)
C(49)-Y(4)-C(47)-C(51) 78.28(16)
C(48)-Y(4)-C(47)-C(51) 115.28(13)
Y(3)-Y(4)-C(47)-C(51) -52.6(3)
Y(1)-Y(4)-C(47)-C(51) 161.9(3)
Y(2)-Y(4)-C(47)-C(51) 56.4(5)
C(50)-Y(4)-C(47)-Si(4) 159.52(5)
C(49)-Y(4)-C(47)-Si(4) -159.61(5)
149
C(51)-Y(4)-C(49)-C(53)-159.52(6)
C(48)-Y(4)-C(49)-C(53)122.60(1)
C(47)-Y(4)-C(49)-C(53) 159.6
Y(3)-Y(4)-C(49)-C(53) -90.4(3)
Y(1)-Y(4)-C(49)-C(53) 34.68(16)
Y(2)-Y(4)-C(49)-C(53) -26.67(13)
C(48)-C(49)-C(50)-C(51) 0.0
C(53)-C(49)-C(50)-C(51) 180.0
Y(4)-C(49)-C(50)-C(51) 65.9(3)
C(48)-C(49)-C(50)-C(54) 180.0
C(53)-C(49)-C(50)-C(54) 0.0
Y(4)-C(49)-C(50)-C(54) -114.1(3)
C(48)-C(49)-C(50)-Y(4) -65.9(3)
C(53)-C(49)-C(50)-Y(4) 114.1(3)
C(49)-Y(4)-C(50)-C(51)-114.97(1)
C(48)-Y(4)-C(50)-C(51)-77.93(13)
C(47)-Y(4)-C(50)-C(51)-37.29(10)
Y(3)-Y(4)-C(50)-C(51) 85.76(15)
Y(1)-Y(4)-C(50)-C(51) -147.9(3)
Y(2)-Y(4)-C(50)-C(51) 148.17(14)
C(51)-Y(4)-C(50)-C(49) 114.97(1)
C(48)-Y(4)-C(50)-C(49) 37.03(11)
C(47)-Y(4)-C(50)-C(49) 77.68(18)
Y(3)-Y(4)-C(50)-C(49) -159.3(2)
Y(1)-Y(4)-C(50)-C(49) -32.9(3)
Y(2)-Y(4)-C(50)-C(49) -96.86(19)
C(49)-Y(4)-C(50)-C(54) 122.67(2)
C(51)-Y(4)-C(50)-C(54)-122.36(1)
C(48)-Y(4)-C(50)-C(54) 159.70(6)
C(47)-Y(4)-C(50)-C(54) -159.7
Y(3)-Y(4)-C(50)-C(54) -36.60(17)
Y(1)-Y(4)-C(50)-C(54) 89.8(2)
Y(2)-Y(4)-C(50)-C(54) 25.81(13)
C(49)-C(50)-C(51)-C(47) 0.0
C(51)-Y(4)-C(47)-Si(4) 122.11(16)
C(48)-Y(4)-C(47)-Si(4) -122.61(16)
Y(3)-Y(4)-C(47)-Si(4) 69.5(3)
Y(1)-Y(4)-C(47)-Si(4) -76.0(3)
Y(2)-Y(4)-C(47)-Si(4) 178.5(4)
C(51)-C(47)-C(48)-C(49) 0.0
Si(4)-C(47)-C(48)-C(49) 180.0
Y(4)-C(47)-C(48)-C(49) 65.2(3)
C(51)-C(47)-C(48)-C(52) 180.0
Si(4)-C(47)-C(48)-C(52) 0.0
Y(4)-C(47)-C(48)-C(52) -114.8(3)
C(51)-C(47)-C(48)-Y(4) -65.2(3)
Si(4)-C(47)-C(48)-Y(4) 114.8(3)
C(50)-Y(4)-C(48)-C(47) 78.26(18)
C(49)-Y(4)-C(48)-C(47) 115.50(17)
C(51)-Y(4)-C(48)-C(47) 37.24(9)
Y(3)-Y(4)-C(48)-C(47) 28.6(6)
Y(1)-Y(4)-C(48)-C(47) -143.84(18)
Y(2)-Y(4)-C(48)-C(47) 159.89(19)
C(50)-Y(4)-C(48)-C(49) -37.23(9)
C(51)-Y(4)-C(48)-C(49) -78.25(16)
C(47)-Y(4)-C(48)-C(49)-115.50(17)
Y(3)-Y(4)-C(48)-C(49) -86.9(6)
Y(1)-Y(4)-C(48)-C(49) 100.7(2)
Y(2)-Y(4)-C(48)-C(49) 44.40(19)
C(50)-Y(4)-C(48)-C(52) -159.49(6)
C(49)-Y(4)-C(48)-C(52)-122.26(12)
C(51)-Y(4)-C(48)-C(52) 159.49(7)
C(47)-Y(4)-C(48)-C(52) 122.25(15)
Y(3)-Y(4)-C(48)-C(52) 150.8(6)
Y(1)-Y(4)-C(48)-C(52) -21.6(2)
Y(2)-Y(4)-C(48)-C(52) -77.9(2)
C(47)-C(48)-C(49)-C(50) 0.0
C(52)-C(48)-C(49)-C(50) 180.0
150
C(54)-C(50)-C(51)-C(47) 180.0
Y(4)-C(50)-C(51)-C(47) 66.4(3)
C(49)-C(50)-C(51)-C(55) 180.0
C(54)-C(50)-C(51)-C(55) 0.0
Y(4)-C(50)-C(51)-C(55) -113.6(4)
C(49)-C(50)-C(51)-Y(4) -66.4(4)
C(54)-C(50)-C(51)-Y(4) 113.6(4)
C(48)-C(47)-C(51)-C(50) 0.0
Si(4)-C(47)-C(51)-C(50) 180.0
Y(4)-C(47)-C(51)-C(50) -65.9(3)
C(48)-C(47)-C(51)-C(55) 180.0
Si(4)-C(47)-C(51)-C(55) 0.0
Y(4)-C(47)-C(51)-C(55) 114.1(3)
C(48)-C(47)-C(51)-Y(4) 65.9(3)
Si(4)-C(47)-C(51)-Y(4) -114.1(3)
C(49)-Y(4)-C(51)-C(50) 37.29(8)
C(48)-Y(4)-C(51)-C(50) 77.92(15)
C(47)-Y(4)-C(51)-C(50)114.96(2)
Y(3)-Y(4)-C(51)-C(50) -105.2(2)
Y(1)-Y(4)-C(51)-C(50) 75.2(5)
Y(2)-Y(4)-C(51)-C(50) -45.72(19)
C(50)-Y(4)-C(51)-C(47)-114.96(2)
C(49)-Y(4)-C(51)-C(47) -77.68(2)
C(48)-Y(4)-C(51)-C(47) -37.04(9)
Y(3)-Y(4)-C(51)-C(47) 39.88(18)
Y(1)-Y(4)-C(51)-C(47) -39.8(5)
Y(2)-Y(4)-C(51)-C(47) -160.68(2)
C(50)-Y(4)-C(51)-C(55) 22.37(12)
Y(4)-C(48)-C(49)-C(50) 65.2(3)
C(47)-C(48)-C(49)-C(53) 180.0
C(52)-C(48)-C(49)-C(53) 0.0
Y(4)-C(48)-C(49)-C(53) -114.8(3)
C(47)-C(48)-C(49)-Y(4) -65.2(3)
C(52)-C(48)-C(49)-Y(4) 114.8(3)
C(50)-Y(4)-C(49)-C(48) 115.29(14)
C(51)-Y(4)-C(49)-C(48) 77.88(14)
C(47)-Y(4)-C(49)-C(48) 37.00(10)
Y(3)-Y(4)-C(49)-C(48) 147.0(3)
Y(1)-Y(4)-C(49)-C(48) -87.93(15)
Y(2)-Y(4)-C(49)-C(48) -149.27(14)
C(51)-Y(4)-C(49)-C(50) -37.42(12)
C(48)-Y(4)-C(49)-C(50)-115.29(14)
Y(2)-Y(4)-C(51)-C(55) 76.7(2)
C(48)-C(47)-Si(4)-C(57) 66.5(11)
C(51)-C(47)-Si(4)-C(57) -113.5(11)
Y(4)-C(47)-Si(4)-C(57) 157.3(11)
C(48)-C(47)-Si(4)-C(58) -80.6(10)
C(51)-C(47)-Si(4)-C(58) 99.4(10)
Y(4)-C(47)-Si(4)-C(58) 10.1(10)
C(48)-C(47)-Si(4)-C(56) 170.1(13)
C(51)-C(47)-Si(4)-C(56) -9.9(13)
Y(4)-C(47)-Si(4)-C(56) -99.2(12)
C(49)-Y(4)-C(51)-C(55) 159.65(6)
C(48)-Y(4)-C(51)-C(55) -159.71(6)
C(47)-Y(4)-C(51)-C(55) -122.67(14)
Y(3)-Y(4)-C(51)-C(55) 17.2(2)
Y(1)-Y(4)-C(51)-C(55) -162.5(5)
Symmetry transformations used to generate equivalent atoms:
151
Table 3-7. Full crystallographic information on compound (1) including ORTEP
generated numbering scheme with thermal ellipsoids drawn at 50% level from
neutron data at 20(2) K collected at ILL on D19.
Identification code y4wpme3_ill_neutron_d19_instrument
Empirical formula C64 H126 P Si4 W Y4
Formula weight 811.00
Temperature 20(2) K
Wavelength 1.24800(3) Å
Crystal system Triclinic
Space group p-1
Unit cell dimensions a = 13.4105(12) Å α= 95.1377(10)°.
b = 14.0678(12) Å β= 92.0563(10)°.
c = 22.368(2) Å γ= 118.1546(10)°.
Volume 3690.9(6) Å
3
Z 2
Density (calculated) 0.730 Mg/m
3
Absorption coefficient 0.000 mm
-1
F(000) 23
Crystal size 3.65 x 2.0 x 1.25 mm
3
Theta range for data collection 3.14 to 61.98°.
Index ranges -18<=h<=10, -19<=k<=19, -31<=l<=31
Reflections collected 39244
Independent reflections 19529 [R(int) = 0.1024]
Completeness to theta = 61.98° 88.9 %
Absorption correction Calculated attenuation
Max. and min. transmission 0.9675 and 0.9015
Refinement method Full-matrix least-squares on F
2
Data / restraints / parameters 19529 / 0 / 1802
Goodness-of-fit on F
2
1.016
Final R indices [I>2sigma(I)] R1 = 0.1031, wR2 = 0.2328
R indices (all data) R1 = 0.1676, wR2 = 0.2812
Extinction coefficient 0.00172(5)
Largest diff. peak and hole 4.040 and -2.133 e.Å
-3
152
Atomic coordinates ( x 10
4
) and equivalent isotropic displacement parameters
(Å
2
x 10
3
). U(eq) is defined as one third of the trace of the orthogonalized U
ij
tensor.
_________________________________________________________________
x y z U(eq)
_________________________________________________________________
W(1) 7329(1) 10846(1) 3302(1) 16(1)
Y(1) 6631(1) 8210(1) 3078(1) 18(1)
Y(2) 5295(1) 9801(1) 2241(1) 19(1)
Y(3) 3735(1) 7025(1) 2584(1) 18(1)
Y(4) 5726(1) 7580(1) 1527(1) 19(1)
P(1) 9020(1) 11752(1) 2738(1) 22(1)
Si(1) 6951(2) 7274(1) 4782(1) 22(1)
Si(2) 3136(2) 11177(1) 2499(1) 22(1)
Si(3) 1745(2) 6625(1) 3899(1) 21(1)
Si(4) 8007(2) 8486(2) 254(1) 43(1)
C(1) 8956(1) 10979(1) 2022(1) 25(1)
C(2) 10388(1) 11996(1) 3093(1) 24(1)
C(3) 9345(1) 13060(1) 2480(1) 25(1)
C(4) 6837(1) 10756(1) 4258(1) 20(1)
C(5) 8048(1) 11409(1) 4328(1) 20(1)
153
C(6) 8338(1) 12380(1) 4073(1) 20(1)
C(7) 7330(1) 12355(1) 3836(1) 20(1)
C(8) 6385(1) 11357(1) 3949(1) 20(1)
C(9) 6166(1) 9745(1) 4544(1) 24(1)
C(10) 8862(1) 11191(1) 4693(1) 25(1)
C(11) 9494(1) 13361(1) 4146(1) 24(1)
C(12) 7272(1) 13320(1) 3628(1) 24(1)
C(13) 5151(1) 11071(1) 3867(1) 25(1)
C(14) 8352(1) 7767(1) 3154(1) 22(1)
C(15) 8326(1) 8183(1) 3749(1) 21(1)
C(16) 7297(1) 7448(1) 3983(1) 21(1)
C(17) 6715(1) 6551(1) 3519(1) 22(1)
C(18) 7363(1) 6737(1) 3019(1) 21(1)
C(19) 9359(1) 9160(1) 4068(1) 24(1)
C(20) 5657(1) 5497(1) 3553(1) 25(1)
C(21) 7102(1) 5931(1) 2476(1) 26(1)
C(22) 9310(1) 8284(1) 2765(1) 26(1)
C(23) 7850(1) 8452(1) 5368(1) 26(1)
C(24) 7204(1) 6125(1) 4978(1) 30(1)
C(25) 5438(1) 6901(1) 4903(1) 28(1)
C(26) 4082(1) 10820(1) 2045(1) 22(1)
C(27) 3620(1) 9862(1) 1615(1) 23(1)
C(28) 4431(1) 9976(1) 1201(1) 23(1)
C(29) 5422(1) 10991(1) 1371(1) 24(1)
C(30) 5199(1) 11527(1) 1879(1) 24(1)
C(31) 5978(1) 12687(1) 2118(1) 26(1)
C(32) 2434(1) 8919(1) 1545(1) 28(1)
C(33) 4221(1) 9189(1) 658(1) 30(1)
C(34) 6491(1) 11452(1) 1057(1) 28(1)
C(35) 3855(1) 12570(1) 2931(1) 28(1)
C(36) 2029(1) 11144(1) 1946(1) 33(1)
C(37) 2401(1) 10210(1) 3064(1) 28(1)
C(38) 1891(1) 5988(1) 3162(1) 20(1)
C(39) 2321(1) 5236(1) 3039(1) 21(1)
154
C(40) 2198(1) 4947(1) 2405(1) 20(1)
C(41) 1675(1) 5489(1) 2130(1) 20(1)
C(42) 1478(1) 6125(1) 2591(1) 22(1)
C(43) 833(1) 6732(1) 2494(1) 26(1)
C(44) 2752(1) 4773(1) 3498(1) 23(1)
C(45) 2484(1) 4136(1) 2071(1) 24(1)
C(46) 1277(1) 5315(1) 1475(1) 26(1)
C(47) 231(1) 6342(1) 3955(1) 26(1)
C(48) 2697(1) 8131(1) 3986(1) 28(1)
C(49) 2163(1) 6131(1) 4570(1) 27(1)
C(50) 6702(1) 7429(1) 532(1) 28(1)
C(51) 5547(1) 7110(1) 331(1) 27(1)
C(52) 4838(1) 6117(1) 552(1) 25(1)
C(53) 5537(1) 5793(1) 874(1) 22(1)
C(54) 6680(1) 6591(1) 858(1) 24(1)
C(55) 7712(1) 6494(1) 1055(1) 31(1)
C(56) 5175(1) 7645(1) -109(1) 41(1)
C(57) 3575(1) 5444(1) 401(1) 35(1)
C(58) 5106(1) 4720(1) 1119(1) 28(1)
C(59) 9275(2) 9062(2) 835(1) 72(1)
C(60) 8322(1) 7815(1) -429(1) 40(1)
C(61) 7886(2) 9687(2) 46(1) 74(1)
C(71) 9051(2) 12594(2) 111(2) 136(1)
C(72) -1124(2) 3577(2) 130(1) 55(1)
C(73) 3(2) 4512(2) -28(1) 81(1)
_________________________________________________________________
Bond lengths [Å] and angles [°].
W(1)-C(8) 2.240(2)
W(1)-C(4) 2.258(2)
W(1)-C(7) 2.341(2)
W(1)-C(5) 2.3695(19)
W(1)-C(6) 2.4228(17)
W(1)-P(1) 2.474(2)
W(1)-Y(2) 3.2185(17)
Y(4)-C(51) 2.6719(16)
Y(4)-C(53) 2.6884(16)
Y(4)-C(54) 2.6926(18)
Y(4)-H(1) 2.246(3)
Y(4)-H(6) 2.141(3)
Y(4)-H(8) 2.150(3)
Y(4)-H(10) 2.272(3)
155
W(1)-Y(1) 3.3518(18)
W(1)-H(2) 1.767(3)
W(1)-H(3) 1.753(3)
W(1)-H(4) 1.778(4)
W(1)-H(5) 1.774(4)
Y(1)-H(3) 2.554(4)
Y(1)-H(2) 2.626(3)
Y(1)-C(17) 2.6625(17)
Y(1)-C(14) 2.6628(18)
Y(1)-C(18) 2.6752(18)
Y(1)-C(16) 2.6838(17)
Y(1)-C(15) 2.6953(17)
Y(1)-Y(3) 3.5123(13)
Y(1)-Y(4) 3.5259(14)
Y(1)-Y(2) 4.0017(16)
Y(1)-H(1) 2.273(3)
Y(1)-H(2) 2.626(3)
Y(1)-H(3) 2.554(4)
Y(1)-H(4) 2.317(2)
Y(1)-H(6) 2.158(4)
Y(1)-H(7) 2.172(3)
Y(1)-H(10) 2.516(3)
Y(2)-C(29) 2.6384(17)
Y(2)-C(27) 2.6437(17)
Y(2)-C(28) 2.6458(17)
Y(2)-C(26) 2.6758(18)
Y(2)-C(30) 2.6848(18)
Y(2)-Y(3) 3.6265(13)
Y(2)-Y(4) 3.6780(15)
Y(2)-H(1) 2.229(3)
Y(2)-H(2) 2.439(3)
Y(2)-H(3) 2.439(3)
Y(2)-H(5) 2.249(2)
Y(2)-H(8) 2.186(3)
Y(4)-H(11) 2.169(3)
P(1)-C(3) 1.833(2)
P(1)-C(1) 1.830(2)
P(1)-C(2) 1.834(2)
Si(1)-C(16) 1.873(2)
Si(1)-C(25) 1.878(2)
Si(1)-C(23) 1.878(2)
Si(1)-C(24) 1.884(3)
Si(2)-C(26) 1.869(3)
Si(2)-C(35) 1.875(2)
Si(2)-C(36) 1.879(3)
Si(2)-C(37) 1.884(2)
Si(3)-C(38) 1.866(2)
Si(3)-C(48) 1.874(2)
Si(3)-C(49) 1.882(3)
Si(3)-C(47) 1.887(2)
Si(4)-C(50) 1.858(2)
Si(4)-C(61) 1.868(4)
Si(4)-C(60) 1.888(3)
Si(4)-C(59) 1.895(3)
C(1)-H(1A) 1.086(4)
C(1)-H(1B) 1.075(4)
C(1)-H(1C) 1.072(3)
C(2)-H(2A) 1.087(3)
C(2)-H(2B) 1.080(3)
C(2)-H(2C) 1.080(4)
C(3)-H(3A) 1.071(4)
C(3)-H(3B) 1.066(4)
C(3)-H(3C) 1.072(4)
C(4)-C(5) 1.4324(15)
C(4)-C(8) 1.4551(19)
C(4)-C(9) 1.4966(16)
C(5)-C(6) 1.4134(17)
C(5)-C(10) 1.500(2)
156
Y(2)-H(9) 2.167(3)
Y(3)-C(40) 2.6465(13)
Y(3)-C(39) 2.6563(14)
Y(3)-C(38) 2.6601(14)
Y(3)-C(41) 2.6656(12)
Y(3)-C(42) 2.6751(15)
Y(3)-Y(4) 3.4866(14)
Y(3)-H(1) 2.208(2)
Y(3)-H(7) 2.154(3)
Y(3)-H(9) 2.166(3)
Y(3)-H(10) 2.257(4)
Y(3)-H(11) 2.169(3)
Y(4)-C(50) 2.6628(17)
Y(4)-C(52) 2.6658(14)
C(19)-H(19C) 1.080(4)
C(20)-H(20A) 1.076(4)
C(20)-H(20B) 1.067(5)
C(20)-H(20C) 1.070(4)
C(21)-H(21A) 1.041(5)
C(21)-H(21B) 1.058(5)
C(21)-H(21C) 1.030(4)
C(22)-H(22A) 1.067(4)
C(22)-H(22B) 1.066(4)
C(22)-H(22C) 1.087(4)
C(23)-H(23A) 1.110(3)
C(23)-H(23B) 1.069(4)
C(23)-H(23C) 1.056(4)
C(24)-H(24A) 1.071(4)
C(24)-H(24B) 1.073(4)
C(24)-H(24C) 1.078(4)
C(25)-H(25A) 1.089(4)
C(25)-H(25B) 1.090(4)
C(25)-H(25C) 1.067(6)
C(26)-C(27) 1.4365(15)
C(6)-C(7) 1.4170(18)
C(6)-C(11) 1.5022(14)
C(7)-C(8) 1.4309(14)
C(7)-C(12) 1.5080(19)
C(8)-C(13) 1.5072(18)
C(9)-H(9A) 1.062(4)
C(9)-H(9B) 1.086(3)
C(9)-H(9C) 1.087(4)
C(10)-H(10A) 1.075(4)
C(10)-H(10B) 1.073(3)
C(10)-H(10C) 1.063(4)
C(11)-H(11A) 1.068(4)
C(11)-H(11B) 1.083(4)
C(11)-H(11C) 1.099(4)
C(12)-H(12A) 1.064(4)
C(12)-H(12B) 1.080(4)
C(12)-H(12C) 1.068(3)
C(13)-H(13A) 1.075(3)
C(13)-H(13B) 1.067(4)
C(13)-H(13C) 1.084(4)
C(14)-C(15) 1.4128(17)
C(14)-C(18) 1.4239(13)
C(14)-C(22) 1.4993(17)
C(15)-C(16) 1.4320(15)
C(15)-C(19) 1.5081(14)
C(16)-C(17) 1.4334(15)
C(17)-C(18) 1.4084(17)
C(17)-C(20) 1.5031(14)
C(18)-C(21) 1.4941(17)
C(19)-H(19A) 1.078(3)
C(19)-H(19B) 1.085(4)
C(57)-H(57C) 1.067(6)
C(58)-H(58A) 1.064(5)
C(58)-H(58B) 1.071(4)
157
C(26)-C(30) 1.4393(15)
C(27)-C(28) 1.4137(18)
C(27)-C(32) 1.5056(14)
C(28)-C(29) 1.4240(14)
C(28)-C(33) 1.4900(18)
C(29)-C(30) 1.4245(18)
C(29)-C(34) 1.4985(18)
C(30)-C(31) 1.4957(15)
C(31)-H(31A) 1.080(4)
C(31)-H(31B) 1.073(4)
C(31)-H(31C) 1.076(4)
C(32)-H(32A) 1.073(4)
C(32)-H(32B) 1.086(4)
C(32)-H(32C) 1.073(4)
C(33)-H(33A) 1.069(4)
C(8)-W(1)-H(3) 79.12(12)
C(4)-W(1)-H(3) 77.36(11)
C(7)-W(1)-H(3) 113.76(14)
C(5)-W(1)-H(3) 110.63(12)
C(6)-W(1)-H(3) 134.58(13)
P(1)-W(1)-H(3) 140.10(13)
Y(2)-W(1)-H(3) 48.44(11)
Y(1)-W(1)-H(3) 48.52(12)
H(2)-W(1)-H(3) 68.77(14)
C(8)-W(1)-H(4) 127.49(14)
C(4)-W(1)-H(4) 89.88(13)
C(7)-W(1)-H(4) 136.51(13)
C(5)-W(1)-H(4) 78.70(12)
C(6)-W(1)-H(4) 103.83(12)
P(1)-W(1)-H(4) 81.37(12)
Y(2)-W(1)-H(4) 112.60(11)
Y(1)-W(1)-H(4) 40.78(8)
H(2)-W(1)-H(4) 71.64(16)
H(3)-W(1)-H(4) 86.87(15)
C(58)-H(58C) 1.077(4)
C(59)-H(59A) 1.087(6)
C(59)-H(59B) 1.055(6)
C(59)-H(59C) 1.091(8)
C(60)-H(60A) 1.083(4)
C(60)-H(60B) 1.057(5)
C(60)-H(60C) 1.075(5)
C(61)-H(61A) 1.062(6)
C(61)-H(61B) 0.970(9)
C(61)-H(61C) 1.088(5)
C(71)-C(72)#1 1.504(4)
C(71)-H(71A) 1.077(8)
C(71)-H(71B) 1.107(7)
C(71)-H(71C) 1.227(10)
C(72)-C(71)#2 1.504(4)
C(72)-C(73) 1.544(3)
C(72)-H(72A) 1.077(6)
C(72)-H(72B) 0.853(7)
C(73)-C(73)#3 1.370(7)
C(73)-H(73A) 1.121(8)
C(73)-H(73B) 1.124(8)
C(8)-W(1)-C(4) 37.76(6)
C(8)-W(1)-C(7) 36.33(4)
C(4)-W(1)-C(7) 60.74(6)
C(8)-W(1)-C(5) 60.42(6)
C(4)-W(1)-C(5) 35.96(4)
C(7)-W(1)-C(5) 58.53(6)
C(8)-W(1)-C(6) 59.17(5)
C(4)-W(1)-C(6) 59.00(5)
C(7)-W(1)-C(6) 34.56(5)
C(5)-W(1)-C(6) 34.28(4)
C(8)-W(1)-P(1) 136.89(8)
C(4)-W(1)-P(1) 140.08(7)
C(7)-W(1)-P(1) 100.60(6)
158
C(8)-W(1)-H(5) 87.04(13)
C(4)-W(1)-H(5) 124.27(14)
C(7)-W(1)-H(5) 78.72(12)
C(5)-W(1)-H(5) 137.19(13)
C(6)-W(1)-H(5) 106.37(11)
P(1)-W(1)-H(5) 80.06(11)
Y(2)-W(1)-H(5) 42.30(8)
Y(1)-W(1)-H(5) 115.23(10)
H(2)-W(1)-H(5) 72.02(16)
H(3)-W(1)-H(5) 87.12(14)
H(4)-W(1)-H(5) 142.85(17)
H(3)-Y(1)-H(2) 45.10(9)
H(3)-Y(1)-C(17) 146.17(8)
H(2)-Y(1)-C(17) 164.60(8)
H(3)-Y(1)-C(14) 146.30(6)
H(2)-Y(1)-C(14) 113.71(8)
C(17)-Y(1)-C(14) 50.96(4)
H(3)-Y(1)-C(18) 174.90(8)
H(2)-Y(1)-C(18) 136.92(8)
C(17)-Y(1)-C(18) 30.60(4)
C(14)-Y(1)-C(18) 30.94(3)
H(3)-Y(1)-C(16) 123.89(8)
H(2)-Y(1)-C(16) 141.62(7)
C(17)-Y(1)-C(16) 31.10(3)
C(14)-Y(1)-C(16) 51.41(4)
C(18)-Y(1)-C(16) 51.22(4)
H(3)-Y(1)-C(15) 124.82(7)
H(2)-Y(1)-C(15) 116.32(7)
C(17)-Y(1)-C(15) 50.54(4)
C(14)-Y(1)-C(15) 30.57(4)
C(18)-Y(1)-C(15) 50.47(4)
C(16)-Y(1)-C(15) 30.88(3)
H(3)-Y(1)-W(1) 30.93(6)
H(2)-Y(1)-W(1) 31.52(6)
C(5)-W(1)-P(1) 104.23(6)
C(6)-W(1)-P(1) 85.32(6)
C(8)-W(1)-Y(2) 94.86(6)
C(4)-W(1)-Y(2) 117.01(6)
C(7)-W(1)-Y(2) 109.38(7)
C(5)-W(1)-Y(2) 152.59(7)
C(6)-W(1)-Y(2) 143.48(8)
P(1)-W(1)-Y(2) 102.20(6)
C(8)-W(1)-Y(1) 118.33(6)
C(4)-W(1)-Y(1) 93.26(6)
C(7)-W(1)-Y(1) 153.15(7)
C(5)-W(1)-Y(1) 105.03(6)
C(6)-W(1)-Y(1) 138.28(7)
P(1)-W(1)-Y(1) 104.31(7)
Y(2)-W(1)-Y(1) 75.01(4)
C(8)-W(1)-H(2) 142.03(13)
C(4)-W(1)-H(2) 141.84(12)
C(7)-W(1)-H(2) 150.53(15)
C(5)-W(1)-H(2) 150.33(15)
C(6)-W(1)-H(2) 156.58(12)
P(1)-W(1)-H(2) 71.33(10)
Y(2)-W(1)-H(2) 48.52(11)
Y(1)-W(1)-H(2) 50.97(11)
C(17)-Y(1)-W(1) 146.95(5)
C(14)-Y(1)-W(1) 115.95(4)
C(18)-Y(1)-W(1) 146.89(5)
C(16)-Y(1)-W(1) 115.85(4)
C(15)-Y(1)-W(1) 101.56(4)
H(3)-Y(1)-Y(3) 71.72(6)
H(2)-Y(1)-Y(3) 93.29(7)
C(17)-Y(1)-Y(3) 100.88(4)
C(14)-Y(1)-Y(3) 141.89(4)
C(18)-Y(1)-Y(3) 111.49(4)
C(16)-Y(1)-Y(3) 119.64(4)
159
H(3)-Y(1)-H(2) 45.10(9)
H(2)-Y(1)-H(2) 0.00(17)
C(17)-Y(1)-H(2) 164.60(8)
C(14)-Y(1)-H(2) 113.71(8)
C(18)-Y(1)-H(2) 136.92(8)
C(16)-Y(1)-H(2) 141.62(7)
C(15)-Y(1)-H(2) 116.32(7)
W(1)-Y(1)-H(2) 31.52(6)
Y(3)-Y(1)-H(2) 93.29(7)
Y(4)-Y(1)-H(2) 71.16(6)
Y(2)-Y(1)-H(2) 36.19(7)
H(1)-Y(1)-H(2) 58.61(9)
H(3)-Y(1)-H(3) 0.00(16)
H(2)-Y(1)-H(3) 45.10(9)
C(17)-Y(1)-H(3) 146.17(8)
C(14)-Y(1)-H(3) 146.30(6)
C(18)-Y(1)-H(3) 174.90(8)
C(16)-Y(1)-H(3) 123.89(8)
C(15)-Y(1)-H(3) 124.82(7)
W(1)-Y(1)-H(3) 30.93(6)
Y(3)-Y(1)-H(3) 71.72(6)
Y(4)-Y(1)-H(3) 93.78(7)
Y(2)-Y(1)-H(3) 35.75(7)
H(1)-Y(1)-H(3) 58.78(10)
H(2)-Y(1)-H(3) 45.10(9)
H(3)-Y(1)-H(4) 59.53(10)
H(2)-Y(1)-H(4) 49.14(10)
C(17)-Y(1)-H(4) 121.60(10)
C(14)-Y(1)-H(4) 86.77(9)
C(18)-Y(1)-H(4) 117.45(10)
C(16)-Y(1)-H(4) 92.60(9)
C(15)-Y(1)-H(4) 72.32(9)
W(1)-Y(1)-H(4) 30.06(9)
Y(3)-Y(1)-H(4) 131.05(10)
C(15)-Y(1)-Y(3) 149.82(4)
W(1)-Y(1)-Y(3) 101.22(4)
H(3)-Y(1)-Y(4) 93.78(7)
H(2)-Y(1)-Y(4) 71.16(6)
C(17)-Y(1)-Y(4) 111.06(4)
C(14)-Y(1)-Y(4) 103.02(4)
C(18)-Y(1)-Y(4) 91.29(4)
C(16)-Y(1)-Y(4) 141.15(5)
C(15)-Y(1)-Y(4) 133.53(5)
W(1)-Y(1)-Y(4) 101.30(4)
Y(3)-Y(1)-Y(4) 59.39(3)
H(3)-Y(1)-Y(2) 35.75(7)
H(2)-Y(1)-Y(2) 36.19(7)
C(17)-Y(1)-Y(2) 158.05(4)
C(14)-Y(1)-Y(2) 145.54(4)
C(18)-Y(1)-Y(2) 149.28(4)
C(16)-Y(1)-Y(2) 159.03(5)
C(15)-Y(1)-Y(2) 151.25(4)
W(1)-Y(1)-Y(2) 50.98(3)
Y(3)-Y(1)-Y(2) 57.27(3)
Y(4)-Y(1)-Y(2) 58.09(3)
H(3)-Y(1)-H(1) 58.78(10)
H(2)-Y(1)-H(1) 58.61(9)
C(17)-Y(1)-H(1) 132.80(7)
C(14)-Y(1)-H(1) 141.14(9)
C(18)-Y(1)-H(1) 126.22(8)
C(16)-Y(1)-H(1) 157.35(7)
C(15)-Y(1)-H(1) 170.22(9)
W(1)-Y(1)-H(1) 77.95(8)
Y(3)-Y(1)-H(1) 37.73(6)
Y(4)-Y(1)-H(1) 38.44(8)
Y(2)-Y(1)-H(1) 26.98(7)
H(1)-Y(1)-H(10) 52.99(10)
H(2)-Y(1)-H(10) 107.00(10)
160
Y(4)-Y(1)-H(4) 117.15(9)
Y(2)-Y(1)-H(4) 79.22(9)
H(1)-Y(1)-H(4) 105.58(11)
H(2)-Y(1)-H(4) 49.14(10)
H(3)-Y(1)-H(4) 59.53(10)
H(3)-Y(1)-H(6) 108.53(13)
H(2)-Y(1)-H(6) 67.80(12)
C(17)-Y(1)-H(6) 104.86(11)
C(14)-Y(1)-H(6) 73.69(11)
C(18)-Y(1)-H(6) 75.52(11)
C(16)-Y(1)-H(6) 123.50(12)
C(15)-Y(1)-H(6) 102.18(11)
W(1)-Y(1)-H(6) 97.74(10)
Y(3)-Y(1)-H(6) 94.08(8)
Y(4)-Y(1)-H(6) 34.75(8)
Y(2)-Y(1)-H(6) 76.97(11)
H(1)-Y(1)-H(6) 68.37(12)
H(2)-Y(1)-H(6) 67.80(12)
H(3)-Y(1)-H(6) 108.53(13)
H(4)-Y(1)-H(6) 97.01(11)
H(3)-Y(1)-H(7) 70.65(12)
H(2)-Y(1)-H(7) 110.90(13)
C(17)-Y(1)-H(7) 84.33(11)
C(14)-Y(1)-H(7) 135.22(11)
C(18)-Y(1)-H(7) 109.47(11)
C(16)-Y(1)-H(7) 89.98(10)
C(15)-Y(1)-H(7) 120.23(11)
W(1)-Y(1)-H(7) 99.98(11)
Y(3)-Y(1)-H(7) 35.54(9)
Y(4)-Y(1)-H(7) 94.64(9)
Y(2)-Y(1)-H(7) 78.11(11)
H(1)-Y(1)-H(7) 69.24(12)
H(2)-Y(1)-H(7) 110.90(13)
H(3)-Y(1)-H(7) 70.65(12)
H(3)-Y(1)-H(10) 107.53(11)
H(4)-Y(1)-H(10) 155.98(12)
H(6)-Y(1)-H(10) 66.56(10)
H(7)-Y(1)-H(10) 65.65(11)
C(29)-Y(2)-C(27) 51.61(4)
C(29)-Y(2)-C(28) 31.27(3)
C(27)-Y(2)-C(28) 31.00(4)
C(29)-Y(2)-C(26) 51.91(5)
C(27)-Y(2)-C(26) 31.33(4)
C(28)-Y(2)-C(26) 51.68(4)
C(29)-Y(2)-C(30) 31.03(4)
C(27)-Y(2)-C(30) 51.19(4)
C(28)-Y(2)-C(30) 51.14(4)
C(26)-Y(2)-C(30) 31.15(4)
C(29)-Y(2)-W(1) 117.24(4)
C(27)-Y(2)-W(1) 150.18(6)
C(28)-Y(2)-W(1) 148.41(5)
C(26)-Y(2)-W(1) 118.85(5)
C(30)-Y(2)-W(1) 103.78(4)
C(29)-Y(2)-Y(3) 140.36(4)
C(27)-Y(2)-Y(3) 97.82(4)
C(28)-Y(2)-Y(3) 109.41(4)
C(26)-Y(2)-Y(3) 116.68(4)
C(30)-Y(2)-Y(3) 147.17(5)
W(1)-Y(2)-Y(3) 101.46(4)
C(29)-Y(2)-Y(4) 104.81(4)
C(27)-Y(2)-Y(4) 108.83(4)
C(28)-Y(2)-Y(4) 90.75(4)
C(26)-Y(2)-Y(4) 139.73(4)
C(30)-Y(2)-Y(4) 135.83(5)
W(1)-Y(2)-Y(4) 100.74(5)
Y(3)-Y(2)-Y(4) 57.02(3)
C(29)-Y(2)-Y(1) 147.21(5)
C(27)-Y(2)-Y(1) 151.93(4)
161
H(4)-Y(1)-H(7) 120.90(13)
H(6)-Y(1)-H(7) 128.94(12)
H(3)-Y(1)-H(10) 107.53(11)
H(2)-Y(1)-H(10) 107.00(10)
C(17)-Y(1)-H(10) 80.85(8)
C(14)-Y(1)-H(10) 104.02(9)
C(18)-Y(1)-H(10) 76.78(9)
C(16)-Y(1)-H(10) 110.97(9)
C(15)-Y(1)-H(10) 126.66(9)
W(1)-Y(1)-H(10) 130.94(9)
Y(3)-Y(1)-H(10) 39.82(8)
Y(4)-Y(1)-H(10) 39.95(7)
Y(2)-Y(1)-H(10) 79.96(8)
Y(3)-Y(2)-H(9) 33.17(9)
Y(4)-Y(2)-H(9) 88.60(9)
Y(1)-Y(2)-H(9) 79.52(10)
H(1)-Y(2)-H(9) 67.12(12)
H(2)-Y(2)-H(9) 117.06(12)
H(3)-Y(2)-H(9) 76.04(10)
H(5)-Y(2)-H(9) 128.26(12)
H(8)-Y(2)-H(9) 116.78(11)
C(40)-Y(3)-C(39) 31.07(4)
C(40)-Y(3)-C(38) 51.72(4)
C(39)-Y(3)-C(38) 31.32(4)
C(40)-Y(3)-C(41) 30.97(4)
C(39)-Y(3)-C(41) 51.25(4)
C(38)-Y(3)-C(41) 51.60(4)
C(40)-Y(3)-C(42) 51.12(4)
C(39)-Y(3)-C(42) 51.27(4)
C(38)-Y(3)-C(42) 31.31(4)
C(41)-Y(3)-C(42) 30.78(4)
C(40)-Y(3)-Y(4) 109.78(4)
C(39)-Y(3)-Y(4) 133.94(5)
C(38)-Y(3)-Y(4) 161.28(4)
C(28)-Y(2)-Y(1) 145.21(5)
C(26)-Y(2)-Y(1) 160.11(5)
C(30)-Y(2)-Y(1) 156.83(4)
W(1)-Y(2)-Y(1) 54.01(4)
Y(3)-Y(2)-Y(1) 54.56(3)
Y(4)-Y(2)-Y(1) 54.46(3)
C(29)-Y(2)-H(1) 139.68(9)
C(27)-Y(2)-H(1) 125.75(7)
C(28)-Y(2)-H(1) 120.99(8)
C(26)-Y(2)-H(1) 151.17(8)
C(30)-Y(2)-H(1) 170.70(9)
W(1)-Y(2)-H(1) 81.55(8)
Y(3)-Y(2)-H(1) 34.99(7)
Y(4)-Y(2)-H(1) 34.88(8)
Y(1)-Y(2)-H(1) 27.55(7)
C(29)-Y(2)-H(2) 113.62(8)
C(27)-Y(2)-H(2) 164.99(8)
C(28)-Y(2)-H(2) 135.05(8)
C(26)-Y(2)-H(2) 145.35(8)
C(30)-Y(2)-H(2) 118.62(8)
W(1)-Y(2)-H(2) 32.88(7)
Y(3)-Y(2)-H(2) 93.87(8)
Y(4)-Y(2)-H(2) 70.03(7)
Y(1)-Y(2)-H(2) 39.48(7)
H(1)-Y(2)-H(2) 62.19(10)
C(29)-Y(2)-H(3) 148.97(7)
C(27)-Y(2)-H(3) 145.63(9)
C(28)-Y(2)-H(3) 176.47(10)
C(26)-Y(2)-H(3) 124.98(9)
C(30)-Y(2)-H(3) 127.00(8)
W(1)-Y(2)-H(3) 32.53(6)
Y(3)-Y(2)-H(3) 70.63(6)
Y(4)-Y(2)-H(3) 92.14(8)
Y(1)-Y(2)-H(3) 37.73(8)
162
C(41)-Y(3)-Y(4) 111.77(4)
C(42)-Y(3)-Y(4) 137.94(4)
C(40)-Y(3)-Y(1) 129.05(5)
C(39)-Y(3)-Y(1) 117.49(5)
C(38)-Y(3)-Y(1) 130.92(5)
C(41)-Y(3)-Y(1) 158.40(5)
C(42)-Y(3)-Y(1) 161.48(5)
Y(4)-Y(3)-Y(1) 60.50(3)
C(40)-Y(3)-Y(2) 156.86(5)
C(39)-Y(3)-Y(2) 163.82(5)
C(38)-Y(3)-Y(2) 133.04(5)
C(41)-Y(3)-Y(2) 128.42(5)
C(42)-Y(3)-Y(2) 118.56(5)
Y(4)-Y(3)-Y(2) 62.24(3)
Y(1)-Y(3)-Y(2) 68.17(3)
C(40)-Y(3)-H(1) 147.35(10)
C(39)-Y(3)-H(1) 155.54(10)
C(38)-Y(3)-H(1) 159.78(9)
C(41)-Y(3)-H(1) 146.20(9)
C(42)-Y(3)-H(1) 153.10(10)
Y(4)-Y(3)-H(1) 38.87(8)
Y(1)-Y(3)-H(1) 39.04(8)
Y(2)-Y(3)-H(1) 35.38(9)
C(40)-Y(3)-H(7) 115.32(10)
C(39)-Y(3)-H(7) 90.26(9)
C(38)-Y(3)-H(7) 95.44(9)
C(41)-Y(3)-H(7) 141.45(9)
C(42)-Y(3)-H(7) 125.62(10)
Y(4)-Y(3)-H(7) 96.09(9)
Y(1)-Y(3)-H(7) 35.88(9)
Y(2)-Y(3)-H(7) 87.65(9)
H(1)-Y(3)-H(7) 70.78(11)
C(40)-Y(3)-H(9) 138.64(9)
C(39)-Y(3)-H(9) 131.26(10)
H(1)-Y(2)-H(3) 61.16(10)
H(2)-Y(2)-H(3) 48.11(10)
C(29)-Y(2)-H(5) 86.67(8)
C(27)-Y(2)-H(5) 122.29(10)
C(28)-Y(2)-H(5) 117.72(9)
C(26)-Y(2)-H(5) 93.11(9)
C(30)-Y(2)-H(5) 72.27(9)
W(1)-Y(2)-H(5) 32.07(9)
Y(3)-Y(2)-H(5) 132.87(9)
Y(4)-Y(2)-H(5) 120.50(9)
Y(1)-Y(2)-H(5) 84.84(9)
H(1)-Y(2)-H(5) 111.91(11)
H(2)-Y(2)-H(5) 52.56(11)
H(3)-Y(2)-H(5) 62.31(10)
C(29)-Y(2)-H(8) 75.65(10)
C(27)-Y(2)-H(8) 99.64(10)
C(28)-Y(2)-H(8) 71.75(10)
C(26)-Y(2)-H(8) 122.65(10)
C(30)-Y(2)-H(8) 106.08(10)
W(1)-Y(2)-H(8) 103.61(9)
Y(3)-Y(2)-H(8) 87.80(8)
Y(4)-Y(2)-H(8) 31.68(8)
Y(1)-Y(2)-H(8) 76.63(10)
H(1)-Y(2)-H(8) 64.97(12)
H(2)-Y(2)-H(8) 71.34(11)
H(3)-Y(2)-H(8) 111.73(13)
H(5)-Y(2)-H(8) 106.69(11)
C(29)-Y(2)-H(9) 129.13(10)
C(27)-Y(2)-H(9) 77.55(10)
C(28)-Y(2)-H(9) 102.03(9)
C(26)-Y(2)-H(9) 86.40(10)
C(30)-Y(2)-H(9) 117.43(10)
W(1)-Y(2)-H(9) 107.53(9)
H(7)-Y(3)-H(11) 132.05(12)
163
C(38)-Y(3)-H(9) 99.99(9)
C(41)-Y(3)-H(9) 109.08(9)
C(42)-Y(3)-H(9) 88.59(9)
Y(4)-Y(3)-H(9) 93.75(9)
Y(1)-Y(3)-H(9) 91.99(8)
Y(2)-Y(3)-H(9) 33.20(8)
H(1)-Y(3)-H(9) 67.52(11)
H(7)-Y(3)-H(9) 94.49(13)
C(40)-Y(3)-H(10) 92.95(8)
C(39)-Y(3)-H(10) 102.40(9)
C(38)-Y(3)-H(10) 133.16(9)
C(41)-Y(3)-H(10) 114.66(8)
C(42)-Y(3)-H(10) 143.55(8)
Y(4)-Y(3)-H(10) 39.81(8)
Y(1)-Y(3)-H(10) 45.55(7)
Y(2)-Y(3)-H(10) 92.06(7)
H(1)-Y(3)-H(10) 57.47(11)
H(7)-Y(3)-H(10) 70.84(13)
H(9)-Y(3)-H(10) 124.94(11)
C(40)-Y(3)-H(11) 94.20(9)
C(39)-Y(3)-H(11) 125.27(9)
C(38)-Y(3)-H(11) 132.00(8)
C(41)-Y(3)-H(11) 81.46(8)
C(42)-Y(3)-H(11) 102.31(9)
Y(4)-Y(3)-H(11) 36.52(9)
Y(1)-Y(3)-H(11) 96.17(8)
Y(2)-Y(3)-H(11) 66.30(10)
H(1)-Y(3)-H(11) 64.81(10)
C(16)-Si(1)-C(24) 105.81(12)
C(25)-Si(1)-C(24) 108.08(10)
C(23)-Si(1)-C(24) 105.62(12)
C(26)-Si(2)-C(35) 114.90(10)
C(26)-Si(2)-C(36) 106.30(11)
C(35)-Si(2)-C(36) 106.59(13)
H(9)-Y(3)-H(11) 84.87(14)
H(10)-Y(3)-H(11) 70.74(13)
C(50)-Y(4)-C(52) 51.32(4)
C(50)-Y(4)-C(51) 31.21(4)
C(52)-Y(4)-C(51) 30.75(4)
C(50)-Y(4)-C(53) 51.11(4)
C(52)-Y(4)-C(53) 30.79(5)
C(51)-Y(4)-C(53) 50.81(4)
C(50)-Y(4)-C(54) 30.98(5)
C(52)-Y(4)-C(54) 50.69(4)
C(51)-Y(4)-C(54) 50.86(5)
C(53)-Y(4)-C(54) 30.46(3)
C(50)-Y(4)-Y(3) 161.63(4)
C(52)-Y(4)-Y(3) 110.31(4)
C(51)-Y(4)-Y(3) 133.18(4)
C(53)-Y(4)-Y(3) 113.66(4)
C(54)-Y(4)-Y(3) 140.17(4)
C(50)-Y(4)-Y(1) 134.41(5)
C(52)-Y(4)-Y(1) 149.58(5)
C(51)-Y(4)-Y(1) 165.43(5)
C(53)-Y(4)-Y(1) 122.29(5)
C(54)-Y(4)-Y(1) 115.92(5)
Y(3)-Y(4)-Y(1) 60.11(3)
C(50)-Y(4)-Y(2) 131.05(5)
C(52)-Y(4)-Y(2) 136.42(5)
C(51)-Y(4)-Y(2) 122.15(5)
C(53)-Y(4)-Y(2) 166.10(5)
C(54)-Y(4)-Y(2) 158.73(4)
Y(3)-Y(4)-Y(2) 60.75(3)
Y(1)-Y(4)-Y(2) 67.45(3)
C(50)-Y(4)-H(1) 159.78(7)
C(52)-Y(4)-H(1) 147.07(8)
C(51)-Y(4)-H(1) 154.19(10)
C(53)-Y(4)-H(1) 147.44(8)
164
C(26)-Si(2)-C(37) 113.99(13)
C(35)-Si(2)-C(37) 106.11(11)
C(36)-Si(2)-C(37) 108.61(10)
C(38)-Si(3)-C(48) 110.46(11)
C(38)-Si(3)-C(49) 113.47(13)
C(48)-Si(3)-C(49) 105.66(10)
C(38)-Si(3)-C(47) 110.57(10)
C(48)-Si(3)-C(47) 108.96(13)
C(49)-Si(3)-C(47) 107.51(11)
C(50)-Si(4)-C(61) 114.08(17)
C(50)-Si(4)-C(60) 107.02(12)
C(61)-Si(4)-C(60) 109.46(17)
C(50)-Si(4)-C(59) 112.35(16)
C(61)-Si(4)-C(59) 105.24(14)
C(60)-Si(4)-C(59) 108.58(17)
P(1)-C(1)-H(1A) 109.2(2)
P(1)-C(1)-H(1B) 109.2(2)
H(1A)-C(1)-H(1B) 108.1(3)
P(1)-C(1)-H(1C) 110.82(19)
H(1A)-C(1)-H(1C) 109.6(3)
H(1B)-C(1)-H(1C) 109.9(3)
P(1)-C(2)-H(2A) 109.8(2)
P(1)-C(2)-H(2B) 111.4(2)
H(2A)-C(2)-H(2B) 108.9(2)
P(1)-C(2)-H(2C) 107.39(18)
H(2A)-C(2)-H(2C) 110.2(3)
H(2B)-C(2)-H(2C) 109.2(3)
P(1)-C(3)-H(3A) 112.2(2)
P(1)-C(3)-H(3B) 107.77(19)
H(3A)-C(3)-H(3B) 107.4(4)
P(1)-C(3)-H(3C) 110.4(2)
H(3A)-C(3)-H(3C) 108.5(3)
H(3B)-C(3)-H(3C) 110.6(3)
C(5)-C(4)-C(8) 107.05(10)
C(54)-Y(4)-H(1) 154.85(10)
Y(3)-Y(4)-H(1) 38.10(6)
Y(1)-Y(4)-H(1) 38.98(8)
Y(2)-Y(4)-H(1) 34.58(8)
C(50)-Y(4)-H(6) 99.73(11)
C(52)-Y(4)-H(6) 137.87(12)
C(51)-Y(4)-H(6) 130.91(11)
C(53)-Y(4)-H(6) 108.46(11)
C(54)-Y(4)-H(6) 88.28(11)
Y(3)-Y(4)-H(6) 95.12(10)
Y(1)-Y(4)-H(6) 35.07(9)
Y(2)-Y(4)-H(6) 85.13(10)
H(1)-Y(4)-H(6) 69.16(12)
C(50)-Y(4)-H(8) 98.80(9)
C(52)-Y(4)-H(8) 121.28(9)
C(51)-Y(4)-H(8) 95.84(9)
C(53)-Y(4)-H(8) 146.32(9)
C(54)-Y(4)-H(8) 127.69(10)
Y(3)-Y(4)-H(8) 92.07(9)
Y(1)-Y(4)-H(8) 88.83(8)
Y(2)-Y(4)-H(8) 32.27(8)
H(1)-Y(4)-H(8) 65.24(11)
H(6)-Y(4)-H(8) 89.44(13)
C(50)-Y(4)-H(10) 137.50(10)
C(52)-Y(4)-H(10) 107.57(8)
C(51)-Y(4)-H(10) 138.14(8)
C(53)-Y(4)-H(10) 91.15(9)
C(54)-Y(4)-H(10) 106.55(10)
Y(3)-Y(4)-H(10) 39.49(9)
Y(1)-Y(4)-H(10) 45.32(6)
Y(2)-Y(4)-H(10) 90.49(9)
H(1)-Y(4)-H(10) 56.75(11)
H(6)-Y(4)-H(10) 71.56(11)
H(8)-Y(4)-H(10) 121.99(12)
165
C(5)-C(4)-C(9) 125.79(12)
C(8)-C(4)-C(9) 126.40(10)
C(5)-C(4)-W(1) 76.28(8)
C(8)-C(4)-W(1) 70.45(8)
C(9)-C(4)-W(1) 126.50(9)
C(6)-C(5)-C(4) 108.46(12)
C(6)-C(5)-C(10) 124.89(9)
C(4)-C(5)-C(10) 125.99(10)
C(6)-C(5)-W(1) 74.93(7)
C(4)-C(5)-W(1) 67.76(7)
C(10)-C(5)-W(1) 130.34(10)
C(5)-C(6)-C(7) 108.88(9)
C(5)-C(6)-C(11) 125.11(12)
C(7)-C(6)-C(11) 125.06(11)
C(5)-C(6)-W(1) 70.79(7)
C(7)-C(6)-W(1) 69.54(7)
C(11)-C(6)-W(1) 134.43(9)
C(6)-C(7)-C(8) 108.22(11)
C(6)-C(7)-C(12) 124.34(9)
C(8)-C(7)-C(12) 126.22(11)
C(6)-C(7)-W(1) 75.90(8)
C(8)-C(7)-W(1) 67.99(8)
C(12)-C(7)-W(1) 131.70(9)
C(7)-C(8)-C(4) 107.38(10)
C(7)-C(8)-C(13) 126.09(12)
C(4)-C(8)-C(13) 125.66(10)
C(7)-C(8)-W(1) 75.68(8)
C(4)-C(8)-W(1) 71.80(8)
C(13)-C(8)-W(1) 126.46(8)
C(4)-C(9)-H(9A) 111.4(2)
C(4)-C(9)-H(9B) 111.3(2)
H(9A)-C(9)-H(9B) 107.1(3)
C(4)-C(9)-H(9C) 110.8(2)
H(9A)-C(9)-H(9C) 108.8(3)
C(50)-Y(4)-H(11) 129.50(9)
C(52)-Y(4)-H(11) 83.64(9)
C(51)-Y(4)-H(11) 98.35(9)
C(53)-Y(4)-H(11) 102.50(10)
C(54)-Y(4)-H(11) 132.11(10)
Y(3)-Y(4)-H(11) 36.52(9)
Y(1)-Y(4)-H(11) 95.79(9)
Y(2)-Y(4)-H(11) 65.17(10)
H(1)-Y(4)-H(11) 64.17(11)
H(6)-Y(4)-H(11) 130.74(13)
H(8)-Y(4)-H(11) 85.08(14)
H(10)-Y(4)-H(11) 70.45(13)
C(3)-P(1)-C(1) 100.01(10)
C(3)-P(1)-C(2) 103.39(8)
C(1)-P(1)-C(2) 100.52(11)
C(3)-P(1)-W(1) 118.59(11)
C(1)-P(1)-W(1) 114.00(7)
C(2)-P(1)-W(1) 117.46(9)
C(16)-Si(1)-C(25) 113.95(12)
C(16)-Si(1)-C(23) 116.80(10)
C(25)-Si(1)-C(23) 106.02(12)
H(19B)-C(19)-H(19C) 107.1(3)
C(17)-C(20)-H(20A) 112.89(19)
C(17)-C(20)-H(20B) 111.1(2)
H(20A)-C(20)-H(20B) 107.8(4)
C(17)-C(20)-H(20C) 111.6(2)
H(20A)-C(20)-H(20C) 107.3(3)
H(20B)-C(20)-H(20C) 105.8(3)
C(18)-C(21)-H(21A) 112.5(2)
C(18)-C(21)-H(21B) 113.9(3)
H(21A)-C(21)-H(21B) 106.7(4)
C(18)-C(21)-H(21C) 111.9(3)
H(21A)-C(21)-H(21C) 105.0(5)
H(21B)-C(21)-H(21C) 106.2(4)
166
H(9B)-C(9)-H(9C) 107.3(3)
C(5)-C(10)-H(10A) 112.3(2)
C(5)-C(10)-H(10B) 111.2(2)
H(10A)-C(10)-H(10B) 107.3(3)
C(5)-C(10)-H(10C) 110.8(3)
H(10A)-C(10)-H(10C) 107.5(3)
H(10B)-C(10)-H(10C) 107.5(3)
C(6)-C(11)-H(11A) 112.8(2)
C(6)-C(11)-H(11B) 108.32(19)
H(11A)-C(11)-H(11B) 107.3(3)
C(6)-C(11)-H(11C) 114.96(19)
H(11A)-C(11)-H(11C) 107.3(3)
H(11B)-C(11)-H(11C) 105.7(3)
C(7)-C(12)-H(12A) 111.5(2)
C(7)-C(12)-H(12B) 113.2(2)
H(12A)-C(12)-H(12B) 107.6(3)
C(7)-C(12)-H(12C) 110.1(2)
H(12A)-C(12)-H(12C) 108.2(3)
H(12B)-C(12)-H(12C) 106.1(3)
C(8)-C(13)-H(13A) 110.8(2)
C(8)-C(13)-H(13B) 110.5(2)
H(13A)-C(13)-H(13B) 108.2(3)
C(8)-C(13)-H(13C) 110.50(18)
H(13A)-C(13)-H(13C) 107.5(3)
H(13B)-C(13)-H(13C) 109.2(3)
C(15)-C(14)-C(18) 107.64(10)
C(15)-C(14)-C(22) 125.20(9)
C(18)-C(14)-C(22) 126.93(11)
C(15)-C(14)-Y(1) 75.99(8)
C(18)-C(14)-Y(1) 75.01(8)
C(22)-C(14)-Y(1) 119.34(10)
C(14)-C(15)-C(16) 109.20(9)
C(14)-C(15)-C(19) 120.47(10)
C(16)-C(15)-C(19) 129.61(11)
C(14)-C(22)-H(22A) 112.3(2)
C(14)-C(22)-H(22B) 111.0(3)
H(22A)-C(22)-H(22B) 107.9(4)
C(14)-C(22)-H(22C) 112.5(2)
H(22A)-C(22)-H(22C) 106.7(4)
H(22B)-C(22)-H(22C) 106.2(3)
Si(1)-C(23)-H(23A) 105.38(19)
Si(1)-C(23)-H(23B) 114.5(2)
H(23A)-C(23)-H(23B) 106.1(3)
Si(1)-C(23)-H(23C) 113.6(2)
H(23A)-C(23)-H(23C) 107.6(3)
H(23B)-C(23)-H(23C) 109.1(3)
Si(1)-C(24)-H(24A) 110.3(2)
Si(1)-C(24)-H(24B) 113.0(3)
H(24A)-C(24)-H(24B) 107.4(4)
Si(1)-C(24)-H(24C) 111.5(3)
H(24A)-C(24)-H(24C) 108.0(4)
H(24B)-C(24)-H(24C) 106.5(3)
Si(1)-C(25)-H(25A) 110.2(2)
Si(1)-C(25)-H(25B) 113.6(3)
H(25A)-C(25)-H(25B) 106.1(3)
Si(1)-C(25)-H(25C) 112.4(2)
H(25A)-C(25)-H(25C) 106.8(4)
H(25B)-C(25)-H(25C) 107.3(3)
C(27)-C(26)-C(30) 106.36(11)
C(27)-C(26)-Si(2) 121.05(9)
C(30)-C(26)-Si(2) 128.77(10)
C(27)-C(26)-Y(2) 73.10(8)
C(30)-C(26)-Y(2) 74.77(8)
Si(2)-C(26)-Y(2) 134.51(9)
C(28)-C(27)-C(26) 108.93(9)
C(28)-C(27)-C(32) 122.74(10)
C(26)-C(27)-C(32) 127.99(12)
C(28)-C(27)-Y(2) 74.58(8)
167
C(14)-C(15)-Y(1) 73.44(8)
C(16)-C(15)-Y(1) 74.12(8)
C(19)-C(15)-Y(1) 126.25(9)
C(15)-C(16)-C(17) 105.92(10)
C(15)-C(16)-Si(1) 129.89(9)
C(17)-C(16)-Si(1) 119.86(9)
C(15)-C(16)-Y(1) 75.00(8)
C(17)-C(16)-Y(1) 73.63(8)
Si(1)-C(16)-Y(1) 134.64(10)
C(18)-C(17)-C(16) 109.19(9)
C(18)-C(17)-C(20) 122.33(10)
C(16)-C(17)-C(20) 128.12(11)
C(18)-C(17)-Y(1) 75.20(8)
C(16)-C(17)-Y(1) 75.27(8)
C(20)-C(17)-Y(1) 121.44(10)
C(17)-C(18)-C(14) 107.96(10)
C(17)-C(18)-C(21) 124.95(9)
C(14)-C(18)-C(21) 126.80(11)
C(17)-C(18)-Y(1) 74.20(8)
C(14)-C(18)-Y(1) 74.05(8)
C(21)-C(18)-Y(1) 122.53(9)
C(15)-C(19)-H(19A) 112.26(17)
C(15)-C(19)-H(19B) 112.4(2)
H(19A)-C(19)-H(19B) 107.5(3)
C(15)-C(19)-H(19C) 109.99(19)
H(19A)-C(19)-H(19C) 107.4(3)
H(35B)-C(35)-H(35C) 108.7(3)
Si(2)-C(36)-H(36A) 111.7(3)
Si(2)-C(36)-H(36B) 112.4(3)
H(36A)-C(36)-H(36B) 107.4(3)
Si(2)-C(36)-H(36C) 110.3(3)
H(36A)-C(36)-H(36C) 106.6(4)
H(36B)-C(36)-H(36C) 108.1(4)
Si(2)-C(37)-H(37A) 111.2(2)
C(26)-C(27)-Y(2) 75.57(8)
C(32)-C(27)-Y(2) 121.46(9)
C(27)-C(28)-C(29) 108.25(10)
C(27)-C(28)-C(33) 124.56(9)
C(29)-C(28)-C(33) 127.05(11)
C(27)-C(28)-Y(2) 74.42(8)
C(29)-C(28)-Y(2) 74.08(8)
C(33)-C(28)-Y(2) 120.98(10)
C(30)-C(29)-C(28) 107.76(11)
C(30)-C(29)-C(34) 125.56(9)
C(28)-C(29)-C(34) 126.59(11)
C(30)-C(29)-Y(2) 76.29(8)
C(28)-C(29)-Y(2) 74.65(8)
C(34)-C(29)-Y(2) 117.68(10)
C(29)-C(30)-C(26) 108.62(9)
C(29)-C(30)-C(31) 122.48(11)
C(26)-C(30)-C(31) 128.40(12)
C(29)-C(30)-Y(2) 72.69(8)
C(26)-C(30)-Y(2) 74.08(8)
C(31)-C(30)-Y(2) 125.52(9)
C(30)-C(31)-H(31A) 112.48(19)
C(30)-C(31)-H(31B) 112.0(2)
H(31A)-C(31)-H(31B) 104.8(4)
C(30)-C(31)-H(31C) 112.8(2)
H(31A)-C(31)-H(31C) 107.1(3)
H(31B)-C(31)-H(31C) 107.0(3)
C(27)-C(32)-H(32A) 111.96(18)
C(27)-C(32)-H(32B) 111.7(2)
H(32A)-C(32)-H(32B) 106.2(3)
C(27)-C(32)-H(32C) 112.2(2)
H(32A)-C(32)-H(32C) 107.6(3)
H(32B)-C(32)-H(32C) 106.8(3)
C(28)-C(33)-H(33A) 111.8(2)
C(28)-C(33)-H(33B) 111.5(3)
168
Si(2)-C(37)-H(37B) 111.4(2)
H(37A)-C(37)-H(37B) 106.8(3)
Si(2)-C(37)-H(37C) 112.0(2)
H(37A)-C(37)-H(37C) 107.9(3)
H(37B)-C(37)-H(37C) 107.4(4)
C(39)-C(38)-C(42) 106.72(10)
C(39)-C(38)-Si(3) 129.84(12)
C(42)-C(38)-Si(3) 123.28(12)
C(39)-C(38)-Y(3) 74.19(7)
C(42)-C(38)-Y(3) 74.92(7)
Si(3)-C(38)-Y(3) 120.03(7)
C(40)-C(39)-C(38) 108.32(11)
C(40)-C(39)-C(44) 125.43(12)
C(38)-C(39)-C(44) 126.13(11)
C(40)-C(39)-Y(3) 74.08(6)
C(38)-C(39)-Y(3) 74.49(7)
C(44)-C(39)-Y(3) 120.65(7)
C(41)-C(40)-C(39) 108.35(11)
C(41)-C(40)-C(45) 124.62(10)
C(39)-C(40)-C(45) 126.88(12)
C(41)-C(40)-Y(3) 75.26(6)
C(39)-C(40)-Y(3) 74.85(6)
C(45)-C(40)-Y(3) 119.63(7)
C(40)-C(41)-C(42) 108.13(11)
C(40)-C(41)-C(46) 125.56(12)
C(42)-C(41)-C(46) 125.95(13)
C(40)-C(41)-Y(3) 73.77(6)
C(42)-C(41)-Y(3) 74.98(6)
C(46)-C(41)-Y(3) 122.65(7)
C(41)-C(42)-C(38) 108.46(12)
C(41)-C(42)-C(43) 124.70(11)
C(38)-C(42)-C(43) 126.53(12)
C(41)-C(42)-Y(3) 74.24(7)
C(38)-C(42)-Y(3) 73.77(7)
H(33A)-C(33)-H(33B) 106.7(3)
C(28)-C(33)-H(33C) 113.8(2)
H(33A)-C(33)-H(33C) 106.5(4)
H(33B)-C(33)-H(33C) 106.2(3)
C(29)-C(34)-H(34A) 112.5(2)
C(29)-C(34)-H(34B) 112.1(2)
H(34A)-C(34)-H(34B) 105.6(4)
C(29)-C(34)-H(34C) 111.6(2)
H(34A)-C(34)-H(34C) 108.2(3)
H(34B)-C(34)-H(34C) 106.4(3)
Si(2)-C(35)-H(35A) 108.12(17)
Si(2)-C(35)-H(35B) 113.1(2)
H(35A)-C(35)-H(35B) 107.0(3)
Si(2)-C(35)-H(35C) 113.7(2)
H(35A)-C(35)-H(35C) 105.8(3)
C(58)-C(53)-Y(4) 122.56(9)
C(53)-C(54)-C(50) 108.53(12)
C(53)-C(54)-C(55) 125.96(12)
C(50)-C(54)-C(55) 124.75(11)
C(53)-C(54)-Y(4) 74.61(8)
C(50)-C(54)-Y(4) 73.36(9)
C(55)-C(54)-Y(4) 125.99(9)
C(54)-C(55)-H(55A) 110.7(3)
C(54)-C(55)-H(55B) 111.7(2)
H(55A)-C(55)-H(55B) 105.7(4)
C(54)-C(55)-H(55C) 113.9(3)
H(55A)-C(55)-H(55C) 106.9(3)
H(55B)-C(55)-H(55C) 107.5(3)
C(51)-C(56)-H(56A) 114.8(3)
C(51)-C(56)-H(56B) 111.1(3)
H(56A)-C(56)-H(56B) 105.8(4)
C(51)-C(56)-H(56C) 110.4(3)
H(56A)-C(56)-H(56C) 105.0(4)
H(56B)-C(56)-H(56C) 109.4(3)
169
C(43)-C(42)-Y(3) 123.10(7)
C(42)-C(43)-H(43A) 112.9(2)
C(42)-C(43)-H(43B) 111.2(2)
H(43A)-C(43)-H(43B) 105.9(3)
C(42)-C(43)-H(43C) 112.1(3)
H(43A)-C(43)-H(43C) 106.7(3)
H(43B)-C(43)-H(43C) 107.6(3)
C(39)-C(44)-H(44A) 112.4(2)
C(39)-C(44)-H(44B) 110.1(2)
H(44A)-C(44)-H(44B) 108.4(3)
C(39)-C(44)-H(44C) 112.0(2)
H(44A)-C(44)-H(44C) 107.4(3)
H(44B)-C(44)-H(44C) 106.2(3)
C(40)-C(45)-H(45A) 111.7(2)
C(40)-C(45)-H(45B) 112.6(3)
H(45A)-C(45)-H(45B) 107.0(3)
C(40)-C(45)-H(45C) 112.9(2)
H(45A)-C(45)-H(45C) 106.2(3)
H(45B)-C(45)-H(45C) 105.9(3)
C(41)-C(46)-H(46A) 112.7(2)
C(41)-C(46)-H(46B) 111.3(2)
H(46A)-C(46)-H(46B) 106.2(4)
C(41)-C(46)-H(46C) 111.4(3)
H(46A)-C(46)-H(46C) 107.2(4)
H(46B)-C(46)-H(46C) 107.8(4)
Si(3)-C(47)-H(47A) 110.8(2)
Si(3)-C(47)-H(47B) 111.4(3)
H(47A)-C(47)-H(47B) 108.2(3)
Si(3)-C(47)-H(47C) 112.7(2)
H(47A)-C(47)-H(47C) 106.6(4)
H(47B)-C(47)-H(47C) 106.9(3)
Si(3)-C(48)-H(48A) 109.6(3)
Si(3)-C(48)-H(48B) 110.6(2)
H(48A)-C(48)-H(48B) 108.0(3)
C(52)-C(57)-H(57A) 112.6(3)
C(52)-C(57)-H(57B) 109.9(3)
H(57A)-C(57)-H(57B) 107.6(4)
C(52)-C(57)-H(57C) 112.5(2)
H(57A)-C(57)-H(57C) 105.0(4)
H(57B)-C(57)-H(57C) 108.9(4)
C(53)-C(58)-H(58A) 111.6(2)
C(53)-C(58)-H(58B) 110.6(3)
H(58A)-C(58)-H(58B) 107.6(4)
C(53)-C(58)-H(58C) 113.5(3)
H(58A)-C(58)-H(58C) 106.0(4)
H(58B)-C(58)-H(58C) 107.2(3)
Si(4)-C(59)-H(59A) 112.0(4)
Si(4)-C(59)-H(59B) 110.4(5)
H(59A)-C(59)-H(59B) 109.1(6)
Si(4)-C(59)-H(59C) 113.4(3)
H(59A)-C(59)-H(59C) 104.1(6)
H(59B)-C(59)-H(59C) 107.5(6)
Si(4)-C(60)-H(60A) 110.0(3)
Si(4)-C(60)-H(60B) 111.9(3)
H(60A)-C(60)-H(60B) 107.1(4)
Si(4)-C(60)-H(60C) 112.9(3)
H(60A)-C(60)-H(60C) 106.1(4)
H(60B)-C(60)-H(60C) 108.5(4)
Si(4)-C(61)-H(61A) 112.4(4)
Si(4)-C(61)-H(61B) 117.7(5)
H(61A)-C(61)-H(61B) 105.8(6)
Si(4)-C(61)-H(61C) 109.3(4)
H(61A)-C(61)-H(61C) 108.7(4)
H(61B)-C(61)-H(61C) 102.2(6)
C(72)#1-C(71)-H(71A) 114.5(5)
C(72)#1-C(71)-H(71B) 111.5(4)
H(71A)-C(71)-H(71B) 119.2(6)
C(72)#1-C(71)-H(71C) 108.8(4)
170
Si(3)-C(48)-H(48C) 112.8(2)
H(48A)-C(48)-H(48C) 107.2(4)
H(48B)-C(48)-H(48C) 108.5(4)
Si(3)-C(49)-H(49A) 112.9(2)
Si(3)-C(49)-H(49B) 113.6(2)
H(49A)-C(49)-H(49B) 108.0(3)
Si(3)-C(49)-H(49C) 107.6(3)
H(49A)-C(49)-H(49C) 106.7(3)
H(49B)-C(49)-H(49C) 107.7(3)
C(54)-C(50)-C(51) 106.99(10)
C(54)-C(50)-Si(4) 123.66(15)
C(51)-C(50)-Si(4) 127.21(14)
C(54)-C(50)-Y(4) 75.66(8)
C(51)-C(50)-Y(4) 74.75(8)
Si(4)-C(50)-Y(4) 128.37(10)
C(52)-C(51)-C(50) 108.11(13)
C(52)-C(51)-C(56) 125.72(12)
C(50)-C(51)-C(56) 125.61(11)
C(52)-C(51)-Y(4) 74.39(7)
C(50)-C(51)-Y(4) 74.04(7)
C(56)-C(51)-Y(4) 124.28(10)
C(51)-C(52)-C(53) 108.33(11)
C(51)-C(52)-C(57) 125.73(14)
C(53)-C(52)-C(57) 125.46(12)
H(71A)-C(71)-H(71C) 109.1(7)
H(71B)-C(71)-H(71C) 90.7(6)
C(71)#2-C(72)-C(73) 106.1(2)
C(71)#2-C(72)-H(72A) 105.4(4)
C(73)-C(72)-H(72A) 110.8(3)
C(71)#2-C(72)-H(72B) 111.3(4)
C(73)-C(72)-H(72B) 113.9(4)
H(72A)-C(72)-H(72B) 109.0(6)
C(73)#3-C(73)-C(72) 112.2(3)
C(73)#3-C(73)-H(73A) 111.0(5)
C(72)-C(73)-H(73A) 112.2(4)
C(73)#3-C(73)-H(73B) 108.3(7)
C(72)-C(73)-H(73B) 110.9(4)
H(73A)-C(73)-H(73B) 101.6(6)
C(57)-C(52)-Y(4) 122.14(10)
C(54)-C(53)-C(52) 108.00(11)
C(54)-C(53)-C(58) 127.45(13)
C(52)-C(53)-C(58) 124.20(10)
C(54)-C(53)-Y(4) 74.93(7)
C(52)-C(53)-Y(4) 73.72(8)
C(51)-C(52)-Y(4) 74.86(7)
C(53)-C(52)-Y(4) 75.49(7)
Symmetry transformations used to generate equivalent atoms:
#1 x+1,y+1,z #2 x-1,y-1,z #3 -x,-y+1,-z
Anisotropic displacement parameters (Å
2
x 10
3
) for Y4WPMe3. The anisotropic
displacement factor exponent takes the form: -2 π
2
[ h
2
a*
2
U
11
+ ... + 2 h k a* b*
U
12
]
_________________________________________________________________
U
11
U
22
U
33
U
23
U
13
U
12
_________________________________________________________________
W(1) 19(1) 15(1) 15(1) 0(1) 1(1) 9(1)
171
Y(1) 22(1) 19(1) 16(1) 3(1) 3(1) 12(1)
Y(2) 24(1) 18(1) 17(1) 3(1) 3(1) 12(1)
Y(3) 22(1) 17(1) 16(1) 2(1) 4(1) 9(1)
Y(4) 23(1) 20(1) 16(1) 0(1) 4(1) 12(1)
P(1) 25(1) 20(1) 21(1) 1(1) 3(1) 11(1)
Si(1) 22(1) 23(1) 22(1) 4(1) 3(1) 12(1)
Si(2) 24(1) 21(1) 21(1) -3(1) -1(1) 13(1)
Si(3) 24(1) 20(1) 21(1) 1(1) 6(1) 12(1)
Si(4) 52(1) 24(1) 52(1) 4(1) 38(1) 17(1)
C(1) 31(1) 26(1) 20(1) 1(1) 6(1) 16(1)
H(1A) 39(1) 46(1) 40(1) -6(1) -4(1) 17(1)
H(1B) 59(1) 40(1) 36(1) 5(1) 7(1) 27(1)
H(1C) 45(1) 49(1) 35(1) 4(1) 13(1) 18(1)
C(2) 23(1) 25(1) 24(1) 2(1) 2(1) 11(1)
H(2A) 51(1) 53(1) 35(1) -6(1) -1(1) 26(1)
H(2B) 32(1) 52(1) 43(1) 15(1) 8(1) 17(1)
H(2C) 47(1) 36(1) 59(2) 7(1) 0(1) 25(1)
C(3) 29(1) 22(1) 25(1) 6(1) 6(1) 12(1)
H(3A) 95(2) 33(1) 41(2) -2(1) 1(2) 34(1)
H(3B) 46(1) 45(1) 61(2) 18(1) -1(1) 27(1)
H(3C) 46(1) 48(1) 59(2) 25(1) 25(1) 24(1)
C(4) 22(1) 20(1) 20(1) 1(1) 4(1) 11(1)
C(5) 25(1) 18(1) 18(1) 3(1) 4(1) 10(1)
C(6) 26(1) 19(1) 18(1) 2(1) 3(1) 12(1)
C(7) 20(1) 21(1) 19(1) 4(1) 4(1) 10(1)
C(8) 24(1) 21(1) 18(1) 1(1) 3(1) 13(1)
C(9) 27(1) 25(1) 19(1) 5(1) 6(1) 12(1)
H(9A) 47(1) 40(1) 59(2) 19(1) 14(1) 22(1)
H(9B) 41(1) 41(1) 40(1) 9(1) 1(1) 10(1)
H(9C) 68(2) 37(1) 35(1) 6(1) 21(1) 17(1)
C(10) 28(1) 26(1) 22(1) 0(1) 0(1) 16(1)
H(10A) 40(1) 52(1) 50(2) 14(1) 9(1) 26(1)
H(10B) 41(1) 41(1) 60(2) 16(1) -2(1) 20(1)
H(10C) 69(1) 70(1) 37(1) -14(1) -13(1) 49(1)
172
C(11) 24(1) 22(1) 23(1) 2(1) 5(1) 8(1)
H(11A) 41(1) 37(1) 54(2) -1(1) -7(1) 15(1)
H(11B) 43(1) 38(1) 53(2) -9(1) 12(1) 14(1)
H(11C) 48(1) 38(1) 37(1) 11(1) 6(1) 11(1)
C(12) 29(1) 20(1) 25(1) 3(1) 4(1) 14(1)
H(12A) 52(1) 42(1) 66(2) 15(1) -5(1) 27(1)
H(12B) 50(1) 45(1) 54(2) 25(1) 21(1) 27(1)
H(12C) 78(1) 41(1) 38(1) -1(1) 4(1) 38(1)
C(13) 24(1) 26(1) 26(1) 3(1) 5(1) 14(1)
H(13A) 35(1) 39(1) 55(2) 11(1) 9(1) 14(1)
H(13B) 46(1) 58(1) 41(1) 15(1) 7(1) 32(1)
H(13C) 39(1) 59(1) 50(2) -5(1) 7(1) 32(1)
C(14) 25(1) 20(1) 22(1) 0(1) 3(1) 12(1)
C(15) 24(1) 21(1) 19(1) 1(1) 3(1) 12(1)
C(16) 24(1) 20(1) 20(1) 2(1) 3(1) 10(1)
C(17) 27(1) 18(1) 19(1) 4(1) 3(1) 10(1)
C(18) 24(1) 19(1) 23(1) 0(1) 3(1) 11(1)
C(19) 25(1) 22(1) 23(1) 1(1) 4(1) 10(1)
H(19A) 47(1) 36(1) 37(1) -4(1) 6(1) 15(1)
H(19B) 44(1) 36(1) 49(2) 13(1) -2(1) 10(1)
H(19C) 34(1) 39(1) 62(2) -7(1) -1(1) 17(1)
C(20) 29(1) 22(1) 25(1) 4(1) 2(1) 11(1)
H(20A) 46(1) 40(1) 36(1) 0(1) 14(1) 9(1)
H(20B) 60(2) 29(1) 72(2) 11(1) 6(2) 17(1)
H(20C) 43(1) 36(1) 49(2) 1(1) -11(1) 9(1)
C(21) 30(1) 23(1) 26(1) -3(1) 2(1) 14(1)
H(21A) 53(2) 100(2) 57(2) -35(2) 1(1) 36(1)
H(21B) 102(2) 93(2) 45(2) -27(1) -27(1) 76(1)
H(21C) 97(3) 33(2) 70(2) -8(2) 37(2) 1(2)
C(22) 26(1) 25(1) 26(1) 1(1) 6(1) 13(1)
H(22A) 64(2) 58(2) 36(1) -7(1) 10(1) 17(2)
H(22B) 41(1) 70(2) 67(2) 26(2) 19(1) 30(1)
H(22C) 55(1) 46(1) 65(2) 18(1) 25(1) 30(1)
C(23) 33(1) 26(1) 20(1) 3(1) 1(1) 13(1)
173
H(23A) 62(2) 48(1) 25(1) 7(1) 6(1) 16(1)
H(23B) 64(1) 37(1) 43(2) 3(1) -8(1) 26(1)
H(23C) 45(1) 58(2) 45(2) -7(1) -3(1) 25(1)
C(24) 40(1) 24(1) 30(1) 6(1) 1(1) 17(1)
H(24A) 49(1) 53(1) 89(3) 12(2) 0(2) 36(1)
H(24B) 68(2) 43(1) 54(2) 4(1) -3(2) 27(1)
H(24C) 94(2) 61(1) 46(2) 21(1) 13(2) 46(1)
C(25) 29(1) 26(1) 27(1) 3(1) 5(1) 12(1)
H(25A) 54(1) 82(2) 49(2) -1(2) 20(1) 32(1)
H(25B) 50(1) 48(2) 62(2) -3(2) 16(1) 17(1)
H(25C) 57(1) 69(2) 89(3) 33(2) 21(2) 39(1)
C(26) 26(1) 22(1) 20(1) 0(1) 2(1) 14(1)
C(27) 28(1) 26(1) 19(1) -2(1) 1(1) 18(1)
C(28) 28(1) 26(1) 20(1) 0(1) 3(1) 17(1)
C(29) 33(1) 25(1) 19(1) 4(1) 5(1) 18(1)
C(30) 31(1) 26(1) 19(1) 3(1) 3(1) 17(1)
C(31) 31(1) 23(1) 25(1) 3(1) 5(1) 14(1)
H(31A) 55(2) 39(1) 43(2) -8(1) 8(1) 14(1)
H(31B) 79(2) 29(1) 66(2) 1(1) -31(2) 19(1)
H(31C) 37(1) 41(1) 77(2) -1(1) 4(1) 22(1)
C(32) 28(1) 31(1) 28(1) -5(1) -2(1) 17(1)
H(32A) 36(1) 51(1) 46(2) 2(1) 5(1) 16(1)
H(32B) 47(1) 37(1) 57(2) -9(1) -3(1) 21(1)
H(32C) 43(1) 57(2) 52(2) 1(1) -6(1) 23(1)
C(33) 39(1) 36(1) 21(1) -3(1) 0(1) 24(1)
H(33A) 71(2) 53(1) 43(1) -3(1) 21(1) 30(1)
H(33B) 95(2) 79(1) 47(2) -12(1) -16(1) 68(1)
H(33C) 67(2) 46(1) 47(2) -3(1) 8(1) 29(1)
C(34) 34(1) 34(1) 24(1) 8(1) 9(1) 22(1)
H(34A) 77(2) 56(1) 56(2) 7(1) 35(1) 36(1)
H(34B) 48(1) 85(2) 42(2) 1(2) 7(1) 33(1)
H(34C) 63(1) 93(1) 74(2) 56(1) 32(1) 57(1)
C(35) 34(1) 23(1) 30(1) 0(1) 2(1) 18(1)
H(35A) 52(1) 41(1) 51(2) -3(1) 7(1) 28(1)
174
H(35B) 50(1) 31(1) 45(1) 5(1) 10(1) 16(1)
H(35C) 50(1) 45(1) 46(2) -4(1) -10(1) 23(1)
C(36) 38(1) 42(1) 27(1) -7(1) -5(1) 27(1)
H(36A) 67(1) 91(1) 69(2) -10(2) -5(1) 64(1)
H(36B) 56(1) 59(2) 66(2) -15(2) -20(2) 33(1)
H(36C) 76(2) 80(2) 57(2) 20(2) 2(2) 47(1)
C(37) 26(1) 26(1) 30(1) 0(1) 5(1) 11(1)
H(37A) 50(1) 59(1) 46(2) 8(1) 12(1) 34(1)
H(37B) 45(1) 60(1) 47(2) 18(1) 3(1) 24(1)
H(37C) 70(2) 34(1) 56(2) -5(1) 14(2) 16(1)
C(38) 23(1) 19(1) 18(1) 1(1) 5(1) 10(1)
C(39) 26(1) 20(1) 19(1) 3(1) 5(1) 13(1)
C(40) 25(1) 22(1) 17(1) 0(1) 3(1) 13(1)
C(41) 23(1) 20(1) 17(1) 3(1) 4(1) 10(1)
C(42) 23(1) 23(1) 21(1) 0(1) 1(1) 12(1)
C(43) 27(1) 27(1) 28(1) 5(1) 4(1) 14(1)
H(43A) 49(1) 39(1) 50(2) -3(1) -4(1) 26(1)
H(43B) 31(1) 51(1) 70(2) 19(1) 8(1) 20(1)
H(43C) 70(1) 65(1) 40(2) 11(1) 4(1) 45(1)
C(44) 27(1) 26(1) 18(1) 6(1) 4(1) 15(1)
H(44A) 52(1) 50(1) 43(1) 10(1) 7(1) 37(1)
H(44B) 43(1) 47(1) 43(1) 22(1) 14(1) 21(1)
H(44C) 53(1) 38(1) 41(1) 0(1) -7(1) 24(1)
C(45) 30(1) 23(1) 22(1) 4(1) 9(1) 14(1)
H(45A) 72(1) 47(1) 46(1) 13(1) 33(1) 31(1)
H(45B) 55(2) 35(1) 71(2) -12(1) 10(2) 18(1)
H(45C) 79(1) 66(1) 52(2) 0(1) 2(1) 59(1)
C(46) 24(1) 30(1) 21(1) 2(1) 1(1) 10(1)
H(46A) 95(2) 49(1) 38(1) 3(1) -19(1) 36(1)
H(46B) 38(2) 88(3) 35(2) 4(2) -5(1) 3(2)
H(46C) 68(1) 92(2) 33(1) -11(1) -1(1) 53(1)
C(47) 27(1) 26(1) 29(1) 3(1) 7(1) 15(1)
H(47A) 48(1) 78(2) 41(1) -1(1) 11(1) 40(1)
H(47B) 40(1) 39(1) 82(3) -6(2) 5(2) 8(1)
175
H(47C) 56(1) 55(1) 66(2) 21(1) 13(1) 36(1)
C(48) 31(1) 20(1) 30(1) 1(1) 9(1) 9(1)
H(48A) 39(1) 51(1) 69(2) 4(2) 14(1) 18(1)
H(48B) 76(2) 38(1) 52(2) -12(1) 23(1) 15(1)
H(48C) 72(2) 32(1) 68(2) 17(1) -4(2) 16(1)
C(49) 34(1) 29(1) 19(1) 2(1) 7(1) 17(1)
H(49A) 44(1) 63(1) 46(2) 3(1) 1(1) 33(1)
H(49B) 52(1) 42(1) 49(2) 11(1) 6(1) 19(1)
H(49C) 61(1) 66(1) 34(1) -2(1) 4(1) 42(1)
C(50) 39(1) 22(1) 23(1) 2(1) 13(1) 14(1)
C(51) 45(1) 30(1) 17(1) 3(1) 7(1) 25(1)
C(52) 31(1) 27(1) 18(1) 0(1) 3(1) 17(1)
C(53) 26(1) 21(1) 20(1) 0(1) 3(1) 13(1)
C(54) 26(1) 23(1) 22(1) -1(1) 4(1) 12(1)
C(55) 31(1) 38(1) 26(1) -5(1) 0(1) 21(1)
H(55A) 52(1) 83(2) 43(2) -8(1) 7(1) 42(1)
H(55B) 60(1) 51(1) 51(2) 1(1) -5(1) 36(1)
H(55C) 36(1) 58(2) 55(2) -20(1) -9(1) 15(1)
C(56) 74(1) 56(1) 20(1) 6(1) 7(1) 52(1)
H(56A) 85(2) 83(2) 60(2) 19(2) 18(2) 57(1)
H(56B) 83(1) 82(1) 70(2) -4(2) -24(2) 64(1)
H(56C) 93(1) 121(2) 43(2) 9(2) 5(1) 84(1)
C(57) 30(1) 47(1) 29(1) -9(1) -1(1) 21(1)
H(57A) 36(1) 80(2) 63(2) 15(2) 15(1) 18(1)
H(57B) 43(2) 104(2) 65(2) -49(2) -4(2) 22(2)
H(57C) 43(1) 84(2) 90(3) -4(2) -14(2) 41(1)
C(58) 37(1) 24(1) 24(1) 2(1) 10(1) 14(1)
H(58A) 67(2) 49(1) 79(2) 22(1) 10(2) 37(1)
H(58B) 59(2) 36(1) 58(2) 5(1) -4(2) 6(1)
H(58C) 79(2) 48(1) 44(2) 7(1) 29(1) 27(1)
C(59) 55(1) 43(1) 74(1) -29(1) 35(1) -8(1)
H(59A) 65(2) 101(3) 95(3) -55(2) 17(2) 9(2)
H(59B) 77(3) 57(3) 162(6) -25(3) 46(3) -21(3)
H(59C) 45(2) 86(3) 88(3) -11(3) 3(2) 23(2)
176
C(60) 54(1) 35(1) 36(1) 9(1) 29(1) 24(1)
H(60A) 82(2) 93(2) 54(2) 21(2) 24(2) 62(1)
H(60B) 76(1) 45(1) 59(2) 1(1) 20(1) 38(1)
H(60C) 91(2) 53(2) 71(2) 6(2) 51(2) 20(2)
C(61) 92(1) 42(1) 105(1) 35(1) 77(1) 39(1)
H(61A) 106(2) 71(2) 168(4) 18(2) 92(2) 55(1)
H(61B) 97(2) 195(3) 281(7) 182(3) 107(3) 106(2)
H(61C) 80(2) 52(2) 246(6) 68(2) 97(2) 40(1)
H(1) 38(1) 33(1) 35(1) 6(1) 8(1) 20(1)
H(2) 39(1) 37(1) 25(1) -1(1) 2(1) 17(1)
H(3) 28(1) 31(1) 35(1) 2(1) 2(1) 8(1)
H(4) 42(1) 30(1) 48(1) 6(1) -1(1) 21(1)
H(5) 38(1) 33(1) 33(1) 4(1) -2(1) 19(1)
H(6) 37(1) 40(1) 46(2) 1(1) 2(1) 18(1)
H(7) 40(1) 43(1) 36(1) 5(1) 4(1) 18(1)
H(8) 54(1) 37(1) 31(1) 5(1) 7(1) 27(1)
H(9) 38(1) 31(1) 43(1) 6(1) 9(1) 19(1)
H(10) 45(1) 37(1) 37(1) 13(1) 11(1) 23(1)
H(11) 31(1) 66(2) 33(1) 9(1) 9(1) 22(1)
C(71) 83(1) 140(1) 182(2) -125(1) -70(1) 81(1)
H(71A) 91(2) 126(3) 131(4) -83(2) -28(3) 64(2)
H(71B) 100(2) 66(2) 179(7) 34(3) 41(3) 55(2)
H(71C) 88(2) 97(2) 248(10) 41(4) -6(4) 64(2)
C(72) 58(1) 49(1) 53(1) -3(1) 18(1) 22(1)
H(72A) 58(2) 78(3) 73(2) -12(2) 20(2) 18(2)
H(72B) 85(2) 61(2) 119(4) 0(2) 52(2) 28(2)
C(73) 49(1) 96(2) 51(1) 37(1) -8(1) -8(1)
H(73A) 70(3) 118(4) 78(3) 41(3) -20(3) -12(3)
H(73B) 93(3) 223(7) 79(3) 49(3) -40(2) 34(4)
_________________________________________________________________
Hydrogen coordinates ( x 10
4
) and isotropic displacement parameters (Å
2
x 10
3
)
_________________________________________________________________
x y z U(eq)
_________________________________________________________________
177
H(1A) 8231(3) 10861(3) 1732(2) 44(1)
H(1B) 8839(3) 10193(2) 2104(2) 44(1)
H(1C) 9719(3) 11398(3) 1804(1) 44(1)
H(2A) 10551(3) 12448(3) 3538(2) 47(1)
H(2B) 11076(2) 12449(3) 2826(2) 43(1)
H(2C) 10335(3) 11214(2) 3129(2) 45(1)
H(3A) 9550(4) 13683(2) 2848(2) 56(1)
H(3B) 8604(3) 12958(2) 2228(2) 48(1)
H(3C) 10046(3) 13316(3) 2207(2) 49(1)
H(9A) 6592(3) 9273(2) 4557(2) 47(1)
H(9B) 5343(3) 9234(3) 4295(2) 44(1)
H(9C) 6012(3) 9941(3) 5001(1) 49(1)
H(10A) 9660(2) 11455(3) 4500(2) 45(1)
H(10B) 8519(3) 10339(2) 4728(2) 46(1)
H(10C) 9034(3) 11599(3) 5138(2) 54(1)
H(11A) 10146(3) 13186(3) 4301(2) 46(1)
H(11B) 9484(3) 13962(3) 4480(2) 48(1)
H(11C) 9762(3) 13766(3) 3739(2) 45(1)
H(12A) 6448(3) 13098(2) 3428(2) 51(1)
H(12B) 7873(3) 13708(2) 3305(2) 46(1)
H(12C) 7471(3) 13928(2) 4002(2) 49(1)
H(13A) 4614(2) 10207(3) 3834(2) 44(1)
H(13B) 4982(2) 11348(3) 3467(2) 45(1)
H(13C) 4925(2) 11436(3) 4250(2) 47(1)
H(19A) 9244(3) 9337(2) 4532(1) 42(1)
H(19B) 9583(3) 9887(3) 3852(2) 46(1)
H(19C) 10082(2) 9017(3) 4067(2) 47(1)
H(20A) 5173(3) 5541(3) 3918(1) 45(1)
H(20B) 5855(3) 4858(3) 3608(2) 55(1)
H(20C) 5107(3) 5242(3) 3146(2) 47(1)
H(21A) 7828(3) 5940(4) 2320(2) 74(1)
H(21B) 6669(3) 6044(3) 2107(2) 71(1)
H(21C) 6601(5) 5146(3) 2566(2) 80(2)
178
H(22A) 9115(4) 7867(3) 2319(2) 59(1)
H(22B) 10060(3) 8298(3) 2953(2) 56(1)
H(22C) 9535(3) 9123(3) 2722(2) 52(1)
H(23A) 7569(3) 8156(3) 5807(1) 49(1)
H(23B) 7725(3) 9145(2) 5347(2) 48(1)
H(23C) 8726(3) 8698(3) 5373(2) 50(1)
H(24A) 8081(3) 6341(3) 4957(2) 59(1)
H(24B) 6716(3) 5389(3) 4679(2) 55(1)
H(24C) 6981(4) 5931(3) 5426(2) 62(1)
H(25A) 5344(3) 7012(4) 5382(2) 62(1)
H(25B) 4836(3) 6056(3) 4744(2) 56(1)
H(25C) 5160(3) 7394(3) 4689(2) 66(1)
H(31A) 5786(3) 12908(3) 2557(2) 50(1)
H(31B) 5909(3) 13238(3) 1838(2) 62(1)
H(31C) 6857(3) 12878(3) 2156(2) 51(1)
H(32A) 2014(3) 8861(3) 1951(2) 46(1)
H(32B) 2433(3) 8149(2) 1443(2) 48(1)
H(32C) 1914(3) 8973(3) 1189(2) 51(1)
H(33A) 4977(3) 9393(3) 436(2) 56(1)
H(33B) 3605(3) 9175(3) 332(2) 65(1)
H(33C) 3907(3) 8363(3) 754(2) 53(1)
H(34A) 6620(3) 10834(3) 813(2) 60(1)
H(34B) 7221(3) 11901(4) 1362(2) 58(1)
H(34C) 6495(3) 11997(3) 748(2) 65(1)
H(35A) 3225(3) 12693(2) 3158(2) 46(1)
H(35B) 4226(3) 13200(2) 2649(2) 43(1)
H(35C) 4494(3) 12681(3) 3281(2) 48(1)
H(36A) 1463(3) 11364(3) 2164(2) 67(1)
H(36B) 1528(3) 10360(3) 1697(2) 60(1)
H(36C) 2420(4) 11714(4) 1633(2) 66(1)
H(37A) 1731(3) 10328(3) 3235(2) 48(1)
H(37B) 2972(3) 10328(3) 3440(2) 51(1)
H(37C) 2039(4) 9363(3) 2868(2) 58(1)
H(43A) 1164(3) 7488(2) 2788(2) 45(1)
179
H(43B) -50(2) 6261(3) 2582(2) 49(1)
H(43C) 846(3) 6934(3) 2037(2) 53(1)
H(44A) 3110(2) 4296(2) 3299(2) 43(1)
H(44B) 2069(3) 4266(3) 3754(2) 43(1)
H(44C) 3399(3) 5401(2) 3823(2) 44(1)
H(45A) 2907(3) 4432(3) 1667(2) 52(1)
H(45B) 1755(3) 3378(3) 1931(2) 56(1)
H(45C) 3039(3) 3959(3) 2336(2) 56(1)
H(46A) 1390(4) 6049(3) 1307(2) 61(1)
H(46B) 379(3) 4744(4) 1393(2) 65(2)
H(46C) 1715(3) 5013(3) 1210(2) 60(1)
H(47A) 84(3) 6493(3) 4414(2) 52(1)
H(47B) -369(3) 5503(3) 3786(2) 59(1)
H(47C) 20(3) 6843(3) 3703(2) 54(1)
H(48A) 3568(3) 8303(3) 3969(2) 54(1)
H(48B) 2625(4) 8494(3) 4409(2) 61(1)
H(48C) 2516(4) 8517(3) 3636(2) 61(1)
H(49A) 3027(3) 6298(3) 4591(2) 48(1)
H(49B) 1639(3) 5273(3) 4593(2) 49(1)
H(49C) 2074(3) 6562(3) 4968(2) 49(1)
H(55A) 8225(3) 6552(3) 678(2) 56(1)
H(55B) 7482(3) 5716(3) 1204(2) 51(1)
H(55C) 8257(3) 7104(3) 1408(2) 55(1)
H(56A) 5585(4) 8492(4) -33(2) 68(1)
H(56B) 4256(3) 7383(3) -103(2) 70(1)
H(56C) 5353(3) 7456(4) -564(2) 73(1)
H(57A) 3166(3) 4950(4) 739(2) 63(1)
H(57B) 3405(3) 4926(4) -5(2) 80(1)
H(57C) 3166(3) 5928(4) 355(3) 70(1)
H(58A) 5766(3) 4518(3) 1197(2) 60(1)
H(58B) 4465(4) 4081(3) 808(2) 58(1)
H(58C) 4741(3) 4701(3) 1542(2) 58(1)
H(59A) 9050(5) 9191(5) 1286(3) 104(2)
H(59B) 9921(5) 9805(5) 722(4) 122(3)
180
H(59C) 9643(4) 8524(5) 878(3) 79(2)
H(60A) 7622(3) 7506(4) -775(2) 67(1)
H(60B) 8430(3) 7148(3) -327(2) 56(1)
H(60C) 9061(4) 8367(4) -630(2) 76(1)
H(61A) 7544(4) 9996(4) 385(3) 107(2)
H(61B) 7446(4) 9599(6) -328(4) 163(3)
H(61C) 8722(4) 10327(3) -28(4) 117(2)
H(1) 5408(2) 8306(2) 2387(1) 34(1)
H(2) 7129(2) 10019(2) 2618(1) 34(1)
H(3) 6009(2) 9667(2) 3231(1) 34(1)
H(4) 7946(2) 9995(2) 3417(2) 39(1)
H(5) 6763(2) 11304(2) 2733(1) 34(1)
H(6) 7160(2) 8185(2) 2179(2) 41(1)
H(7) 4924(3) 7493(3) 3366(1) 41(1)
H(8) 5983(2) 9207(2) 1516(1) 39(1)
H(9) 3804(2) 8598(2) 2606(1) 36(1)
H(10) 5163(2) 6679(2) 2347(1) 38(1)
H(11) 3969(2) 7155(3) 1635(1) 44(1)
H(71A) 9323(5) 12395(5) -307(3) 118(2)
H(71B) 8376(5) 11936(4) 326(4) 107(3)
H(71C) 9752(5) 12742(5) 525(5) 135(3)
H(72A) -1280(4) 3729(4) 588(2) 77(2)
H(72B) -1700(4) 3454(4) -104(3) 90(2)
H(73A) 757(5) 4573(6) 240(3) 111(3)
H(73B) 181(6) 4343(9) -501(3) 148(4)
_________________________________________________________________
181
Table 3-8. Full crystallographic information on compound (2) including ORTEP
generated numbering scheme with thermal ellipsoids drawn at 50% level from
neutron data at 20(2) K collected at ILL on VIVALDI.
Identification code y4w_ill_neutron_vivaldi_instrument
Empirical formula C63.75 H124 Si4 W Y4
Formula weight 792.50
Temperature 150(2) K
Wavelength 0.8 - 3.25 Å
Crystal system Monoclinic
Space group P2(1)/n
Unit cell dimensions a = 13.2794(6) Å α= 90°.
b = 30.4306(14) Å β= 91.8510(10)°.
c = 18.1306(8) Å γ= 90°.
Volume 7322.8(6) Å
3
Z 4
Density (calculated) 0.719 Mg/m
3
Absorption coefficient 0.000 mm
-1
F(000) 49
Crystal size 2.0 x 1.5 x 0.6 mm
3
Theta range for data collection 1.75 to 20.23°.
Index ranges -12<=h<=12, -28<=k<=29, -16<=l<=16
Reflections collected 51635
Independent reflections 5268 [R(int) = 0.3317]
Completeness to theta = 20.23° 74.6 %
Absorption correction Calculated attenuation
Refinement method Full-matrix least-squares on F
2
Data / restraints / parameters 5268 / 72 / 1780
Goodness-of-fit on F
2
1.154
Final R indices [I>2sigma(I)] R1 = 0.0989, wR2 = 0.2334
R indices (all data) R1 = 0.1387, wR2 = 0.2541
Extinction coefficient 0.0023(2)
Largest diff. peak and hole 0.891 and -0.956 e.Å
-3
182
Atomic coordinates ( x 10
4
) and equivalent isotropic displacement parameters
(Å
2
x 10
3
). U(eq) is defined as one third of the trace of the orthogonalized U
ij
tensor.
_________________________________________________________________
x y z U(eq)
_________________________________________________________________
W(1) 2862(3) 1452(1) 6515(2) 29(1)
Y(1) 3438(2) 512(1) 7187(1) 34(1)
Y(2) 2557(2) 1243(1) 8528(1) 33(1)
Y(3) 5035(2) 1354(1) 7778(1) 33(1)
Y(4) 3317(2) 2213(1) 7714(2) 36(1)
Si(1) 1387(3) -370(2) 6435(3) 45(2)
Si(2) -70(3) 1215(2) 9125(3) 53(2)
Si(3) 7291(3) 1574(2) 6691(3) 53(2)
Si(4) 1180(3) 3163(2) 7778(3) 47(2)
C(1) 3062(2) 1442(1) 5207(2) 44(1)
C(2) 2850(2) 1874(1) 5407(2) 49(1)
C(3) 1912(2) 1901(1) 5700(2) 47(1)
C(4) 1515(2) 1462(1) 5707(2) 39(1)
C(5) 2236(2) 1185(1) 5394(2) 46(1)
C(6) 3984(3) 1281(1) 4863(2) 82(1)
183
C(7) 3490(3) 2257(1) 5231(3) 79(1)
C(8) 1352(3) 2289(1) 5891(3) 87(2)
C(9) 454(2) 1347(1) 5851(2) 60(1)
C(10) 2006(3) 724(1) 5106(3) 104(2)
C(11) 2715(2) -260(1) 6739(2) 43(1)
C(12) 3099(2) -315(1) 7508(2) 45(1)
C(13) 4135(2) -281(1) 7524(2) 52(1)
C(14) 4421(2) -200(1) 6776(2) 47(1)
C(15) 3561(2) -192(1) 6299(2) 42(1)
C(16) 2494(3) -450(1) 8169(2) 56(1)
C(17) 4832(2) -341(1) 8220(2) 56(1)
C(18) 5471(2) -194(1) 6545(2) 61(1)
C(19) 3647(2) -200(1) 5451(2) 50(1)
C(20) 556(3) 66(1) 6803(2) 58(1)
C(21) 1146(2) -386(1) 5367(2) 60(1)
C(22) 1027(2) -921(1) 6792(3) 75(1)
C(23) 1216(2) 1148(1) 9532(2) 37(1)
C(24) 1866(2) 1475(1) 9853(2) 46(1)
C(25) 2788(2) 1278(2) 10021(2) 68(1)
C(26) 2707(3) 832(1) 9836(2) 52(1)
C(27) 1746(2) 749(1) 9540(2) 45(1)
C(28) 1591(3) 1933(1) 10049(2) 86(1)
C(29) 3676(3) 1475(2) 10448(3) 109(2)
C(30) 3481(3) 458(2) 9973(3) 98(2)
C(31) 1303(3) 298(1) 9348(2) 82(1)
C(32) -7(3) 1203(2) 8057(2) 92(2)
C(33) -666(3) 1749(1) 9322(2) 78(1)
C(34) -961(3) 789(2) 9424(3) 98(2)
C(35) 6947(2) 1413(1) 7655(2) 36(1)
C(36) 6758(2) 1708(1) 8244(2) 37(1)
C(37) 6438(2) 1485(1) 8879(2) 45(1)
C(38) 6454(2) 1037(1) 8722(2) 50(1)
C(39) 6797(2) 980(1) 7976(2) 54(1)
C(40) 6951(2) 2199(1) 8230(2) 53(1)
184
C(41) 6216(3) 1683(1) 9638(2) 67(1)
C(42) 6272(3) 669(1) 9257(2) 76(1)
C(43) 7060(3) 564(1) 7603(3) 74(2)
C(44) 7757(3) 1130(2) 6108(2) 86(1)
C(45) 8277(3) 2007(1) 6712(2) 69(1)
C(46) 6181(3) 1835(3) 6166(3) 129(3)
C(47) 2543(2) 3012(1) 7828(2) 42(1)
C(48) 3084(2) 2920(1) 8533(2) 39(1)
C(49) 4111(2) 2913(1) 8388(2) 49(1)
C(50) 4214(2) 2990(1) 7614(2) 44(1)
C(51) 3255(2) 3053(1) 7264(2) 37(1)
C(52) 2660(3) 2901(1) 9308(2) 57(1)
C(53) 4910(3) 2873(1) 8991(2) 70(1)
C(54) 5156(3) 3047(1) 7213(3) 78(1)
C(55) 3103(3) 3234(1) 6471(2) 51(1)
C(56) 434(3) 2690(1) 8018(3) 86(2)
C(57) 740(3) 3355(1) 6835(2) 65(1)
C(58) 998(3) 3618(1) 8433(2) 62(1)
C(59) -387(4) -618(2) 8725(3) 126(2)
C(60) 7260(4) 3961(2) 7188(3) 114(2)
C(61) -2094(4) 3318(3) 7852(6) 205(4)
C(62) -1720(6) -592(2) 7650(5) 204(3)
C(63) -1296(5) -393(3) 8361(4) 141(3)
C(64) 2408(5) 1249(2) 2924(5) 203(3)
_________________________________________________________________
Bond lengths [Å] and angles [°].
W(1)-C(4) 2.275(5)
W(1)-C(5) 2.318(5)
W(1)-C(3) 2.350(5)
W(1)-C(2) 2.382(5)
W(1)-C(1) 2.394(5)
W(1)-Y(1) 3.192(4)
W(1)-Y(4) 3.219(5)
W(1)-Y(3) 3.638(4)
Y(3)-H(4) 2.100(8)
Y(3)-H(7) 2.196(6)
Y(4)-C(48) 2.639(4)
Y(4)-C(47) 2.652(4)
Y(4)-C(49) 2.657(4)
Y(4)-C(50) 2.656(4)
Y(4)-C(51) 2.684(4)
Y(4)-H(1) 2.777(9)
185
W(1)-Y(2) 3.741(4)
W(1)-H(1) 1.739(8)
W(1)-H(8) 1.761(8)
W(1)-H(9) 1.722(8)
W(1)-H(10) 1.762(8)
W(1)-H(11) 1.694(7)
Y(1)-C(12) 2.625(4)
Y(1)-C(14) 2.648(4)
Y(1)-C(13) 2.649(4)
Y(1)-C(11) 2.656(4)
Y(1)-C(15) 2.687(4)
Y(1)-Y(3) 3.472(3)
Y(1)-Y(2) 3.523(3)
Y(1)-H(1) 2.492(9)
Y(1)-H(2) 2.369(7)
Y(1)-H(4) 2.071(7)
Y(1)-H(5) 2.101(7)
Y(1)-H(8) 2.305(7)
Y(1)-H(9) 2.292(8)
Y(2)-C(23) 2.602(4)
Y(2)-C(27) 2.630(4)
Y(2)-C(26) 2.683(4)
Y(2)-C(24) 2.692(4)
Y(2)-C(25) 2.715(4)
Y(2)-Y(4) 3.465(3)
Y(2)-Y(3) 3.616(3)
Y(2)-H(1) 2.369(7)
Y(2)-H(2) 2.189(6)
Y(2)-H(3) 2.193(6)
Y(2)-H(5) 2.170(7)
Y(2)-H(6) 2.167(6)
Y(3)-C(35) 2.562(3)
Y(3)-C(39) 2.615(4)
Y(3)-C(36) 2.643(3)
Y(4)-H(3) 2.363(6)
Y(4)-H(6) 2.083(6)
Y(4)-H(7) 2.038(6)
Y(4)-H(10) 2.322(8)
Y(4)-H(11) 2.307(7)
Si(1)-C(20) 1.864(6)
Si(1)-C(11) 1.861(5)
Si(1)-C(22) 1.865(6)
Si(1)-C(21) 1.953(7)
Si(2)-C(34) 1.849(7)
Si(2)-C(23) 1.849(5)
Si(2)-C(33) 1.848(7)
Si(2)-C(32) 1.942(7)
Si(3)-C(44) 1.834(7)
Si(3)-C(45) 1.857(7)
Si(3)-C(35) 1.885(6)
Si(3)-C(46) 1.903(7)
Si(4)-C(56) 1.808(6)
Si(4)-C(58) 1.843(6)
Si(4)-C(47) 1.867(5)
Si(4)-C(57) 1.882(7)
C(1)-C(2) 1.394(4)
C(1)-C(5) 1.399(4)
C(1)-C(6) 1.476(5)
C(2)-C(3) 1.372(5)
C(2)-C(7) 1.483(5)
C(3)-C(4) 1.437(4)
C(3)-C(8) 1.444(5)
C(4)-C(5) 1.409(4)
C(4)-C(9) 1.483(4)
C(5)-C(10) 1.523(5)
C(6)-H(6A) 1.062(13)
C(6)-H(6B) 0.987(9)
C(6)-H(6C) 1.119(10)
186
Y(3)-C(38) 2.683(4)
Y(3)-C(37) 2.715(4)
Y(3)-Y(4) 3.469(3)
Y(3)-H(1) 2.318(6)
Y(3)-H(2) 2.209(6)
Y(3)-H(3) 2.231(6)
C(38)-C(39) 1.451(5)
C(38)-C(42) 1.506(5)
C(39)-C(43) 1.483(5)
C(40)-H(40A) 1.124(10)
C(40)-H(40B) 1.054(9)
C(40)-H(40C) 1.083(8)
C(41)-H(41A) 1.065(12)
C(41)-H(41B) 1.057(14)
C(41)-H(41C) 0.961(12)
C(42)-H(42A) 1.045(14)
C(42)-H(42B) 1.083(14)
C(42)-H(42C) 0.927(12)
C(43)-H(43A) 1.131(12)
C(43)-H(43B) 1.015(9)
C(43)-H(43C) 1.102(12)
C(44)-H(44A) 1.008(12)
C(44)-H(44B) 1.066(12)
C(44)-H(44C) 1.264(13)
C(45)-H(45A) 1.099(13)
C(45)-H(45B) 1.095(10)
C(45)-H(45C) 1.004(9)
C(46)-H(46A) 1.009(13)
C(46)-H(46B) 1.104(17)
C(46)-H(46C) 1.121(11)
C(47)-C(51) 1.420(4)
C(47)-C(48) 1.473(4)
C(48)-C(49) 1.397(4)
C(48)-C(52) 1.532(5)
C(7)-H(7A) 1.062(13)
C(7)-H(7B) 1.130(10)
C(7)-H(7C) 1.061(15)
C(8)-H(8A) 1.117(13)
C(8)-H(8B) 1.110(13)
C(8)-H(8C) 1.050(12)
C(9)-H(9A) 1.112(9)
C(9)-H(9B) 1.071(11)
C(9)-H(9C) 0.964(9)
C(10)-H(10A) 0.988(11)
C(10)-H(10B) 1.085(11)
C(10)-H(10C) 1.010(12)
C(11)-C(15) 1.414(4)
C(11)-C(12) 1.478(5)
C(12)-C(13) 1.379(4)
C(12)-C(16) 1.521(5)
C(13)-C(14) 1.440(5)
C(13)-C(17) 1.552(5)
C(14)-C(15) 1.410(4)
C(14)-C(18) 1.469(4)
C(15)-C(19) 1.546(5)
C(16)-H(16A) 1.012(9)
C(16)-H(16B) 1.028(9)
C(16)-H(16C) 1.195(10)
C(17)-H(17A) 1.017(10)
C(17)-H(17B) 1.005(13)
C(17)-H(17C) 0.950(14)
C(18)-H(18A) 1.207(9)
C(18)-H(18B) 0.949(9)
C(18)-H(18C) 1.005(9)
C(19)-H(19A) 1.059(10)
C(19)-H(19B) 1.142(9)
C(19)-H(19C) 0.958(10)
C(20)-H(20A) 1.079(9)
187
C(49)-C(50) 1.434(5)
C(49)-C(53) 1.503(5)
C(50)-C(51) 1.418(4)
C(50)-C(54) 1.476(5)
C(51)-C(55) 1.547(5)
C(52)-H(52A) 1.171(10)
C(52)-H(52B) 1.003(9)
C(52)-H(52C) 1.075(10)
C(53)-H(53A) 0.979(13)
C(53)-H(53B) 1.041(13)
C(53)-H(53C) 0.915(16)
C(54)-H(54A) 1.036(11)
C(54)-H(54B) 1.034(11)
C(54)-H(54C) 1.029(10)
C(55)-H(55A) 0.975(10)
C(55)-H(55B) 1.051(10)
C(55)-H(55C) 1.032(10)
C(56)-H(56A) 1.146(13)
C(56)-H(56B) 0.957(12)
C(56)-H(56C) 1.052(9)
C(57)-H(57A) 1.078(10)
C(57)-H(57B) 1.040(10)
C(57)-H(57C) 1.058(9)
C(58)-H(58A) 1.107(9)
C(58)-H(58B) 1.081(9)
C(58)-H(58C) 1.108(9)
C(59)-C(63) 1.519(9)
C(59)-H(59A) 0.876(13)
C(59)-H(59B) 1.074(15)
C(59)-H(59C) 0.656(13)
C(60)-C(64)#1 1.488(10)
C(60)-C(62)#2 1.570(9)
C(60)-H(60A) 0.789(16)
C(60)-H(60B) 1.252(15)
C(20)-H(20B) 0.948(9)
C(20)-H(20C) 1.138(12)
C(21)-H(21A) 1.124(9)
C(21)-H(21B) 0.968(9)
C(21)-H(21C) 1.069(10)
C(22)-H(22A) 1.042(10)
C(22)-H(22B) 1.122(9)
C(22)-H(22C) 1.000(12)
C(23)-C(27) 1.404(4)
C(23)-C(24) 1.428(4)
C(24)-C(25) 1.388(5)
C(24)-C(28) 1.487(5)
C(25)-C(26) 1.401(5)
C(25)-C(29) 1.514(6)
C(26)-C(27) 1.391(4)
C(26)-C(30) 1.549(6)
C(27)-C(31) 1.527(5)
C(28)-H(28A) 1.098(9)
C(28)-H(28B) 1.002(11)
C(28)-H(28C) 1.121(11)
C(29)-H(29A) 1.117(17)
C(29)-H(29B) 1.156(15)
C(29)-H(29C) 0.887(13)
C(30)-H(30A) 0.975(13)
C(30)-H(30B) 1.032(11)
C(30)-H(30C) 0.947(14)
C(31)-H(31A) 1.082(10)
C(31)-H(31B) 0.911(9)
C(31)-H(31C) 1.099(11)
C(32)-H(32A) 1.144(11)
C(32)-H(32B) 1.012(13)
C(32)-H(32C) 1.015(12)
C(33)-H(33A) 1.108(14)
C(33)-H(33B) 1.064(11)
188
C(61)-C(64)#3 1.481(10)
C(61)-H(61A) 0.767(19)
C(61)-H(61B) 1.09(2)
C(61)-H(61C) 1.05(3)
C(62)-C(63) 1.516(10)
C(62)-C(60)#4 1.570(9)
C(62)-H(62A) 1.123(19)
C(62)-H(62B) 0.977(12)
C(63)-H(63A) 0.953(17)
C(63)-H(63B) 1.050(14)
C(64)-C(60)#5 1.487(10)
C(64)-C(61)#6 1.481(10)
C(64)-H(64A) 1.205(17)
C(64)-H(64B) 0.976(12)
C(4)-W(1)-C(5) 35.71(12)
C(4)-W(1)-C(3) 36.17(12)
C(5)-W(1)-C(3) 58.85(14)
C(4)-W(1)-C(2) 57.80(14)
C(5)-W(1)-C(2) 57.18(14)
C(3)-W(1)-C(2) 33.71(12)
C(4)-W(1)-C(1) 58.20(13)
C(5)-W(1)-C(1) 34.49(12)
C(3)-W(1)-C(1) 57.26(14)
C(2)-W(1)-C(1) 33.93(12)
C(4)-W(1)-Y(1) 115.50(16)
C(5)-W(1)-Y(1) 95.43(15)
C(3)-W(1)-Y(1) 151.40(18)
C(2)-W(1)-Y(1) 143.06(17)
C(1)-W(1)-Y(1) 109.50(16)
C(4)-W(1)-Y(4) 123.49(17)
C(5)-W(1)-Y(4) 153.97(18)
C(3)-W(1)-Y(4) 95.27(15)
C(2)-W(1)-Y(4) 100.25(15)
C(1)-W(1)-Y(4) 130.80(17)
C(33)-H(33C) 1.099(13)
C(34)-H(34A) 1.084(11)
C(34)-H(34B) 0.966(11)
C(34)-H(34C) 1.162(14)
C(35)-C(36) 1.423(4)
C(35)-C(39) 1.455(4)
C(36)-C(37) 1.414(4)
C(36)-C(40) 1.517(4)
C(37)-C(38) 1.394(5)
C(37)-C(41) 1.540(5)
C(14)-Y(1)-C(11) 50.71(10)
C(13)-Y(1)-C(11) 52.01(11)
C(12)-Y(1)-C(15) 51.90(11)
C(14)-Y(1)-C(15) 30.64(10)
C(13)-Y(1)-C(15) 52.00(11)
C(11)-Y(1)-C(15) 30.68(9)
C(12)-Y(1)-W(1) 154.55(13)
C(14)-Y(1)-W(1) 137.72(13)
C(13)-Y(1)-W(1) 169.08(14)
C(11)-Y(1)-W(1) 126.63(13)
C(15)-Y(1)-W(1) 120.28(13)
C(12)-Y(1)-Y(3) 138.22(12)
C(14)-Y(1)-Y(3) 112.86(11)
C(13)-Y(1)-Y(3) 113.28(11)
C(11)-Y(1)-Y(3) 163.35(11)
C(15)-Y(1)-Y(3) 136.43(11)
W(1)-Y(1)-Y(3) 66.01(9)
C(12)-Y(1)-Y(2) 112.86(11)
C(14)-Y(1)-Y(2) 152.61(12)
C(13)-Y(1)-Y(2) 122.48(12)
C(11)-Y(1)-Y(2) 130.14(11)
C(15)-Y(1)-Y(2) 160.81(11)
W(1)-Y(1)-Y(2) 67.50(9)
Y(3)-Y(1)-Y(2) 62.25(7)
189
Y(1)-W(1)-Y(4) 110.44(12)
C(4)-W(1)-Y(3) 175.91(18)
C(5)-W(1)-Y(3) 141.06(16)
C(3)-W(1)-Y(3) 147.45(17)
C(2)-W(1)-Y(3) 123.98(15)
C(1)-W(1)-Y(3) 120.77(14)
Y(1)-W(1)-Y(3) 60.69(8)
Y(4)-W(1)-Y(3) 60.43(8)
C(4)-W(1)-Y(2) 121.49(15)
C(5)-W(1)-Y(2) 138.46(16)
C(3)-W(1)-Y(2) 129.77(16)
C(2)-W(1)-Y(2) 156.37(17)
C(1)-W(1)-Y(2) 169.47(18)
Y(1)-W(1)-Y(2) 60.47(9)
Y(4)-W(1)-Y(2) 59.15(8)
Y(3)-W(1)-Y(2) 58.67(8)
C(4)-W(1)-H(1) 148.7(3)
C(5)-W(1)-H(1) 146.2(4)
C(3)-W(1)-H(1) 152.2(4)
C(2)-W(1)-H(1) 151.9(3)
C(1)-W(1)-H(1) 147.9(3)
Y(1)-W(1)-H(1) 50.9(3)
Y(4)-W(1)-H(1) 59.6(3)
Y(3)-W(1)-H(1) 30.7(2)
Y(2)-W(1)-H(1) 28.7(2)
C(4)-W(1)-H(8) 81.4(3)
C(5)-W(1)-H(8) 83.5(3)
C(3)-W(1)-H(8) 114.2(3)
C(2)-W(1)-H(8) 137.6(3)
C(1)-W(1)-H(8) 115.8(3)
Y(1)-W(1)-H(8) 44.8(2)
Y(4)-W(1)-H(8) 112.6(3)
Y(3)-W(1)-H(8) 96.1(3)
Y(2)-W(1)-H(8) 55.3(3)
C(12)-Y(1)-H(1) 155.0(2)
C(14)-Y(1)-H(1) 150.84(18)
C(13)-Y(1)-H(1) 152.0(2)
C(11)-Y(1)-H(1) 154.43(18)
C(15)-Y(1)-H(1) 151.5(2)
W(1)-Y(1)-H(1) 32.77(17)
Y(3)-Y(1)-H(1) 41.85(15)
Y(2)-Y(1)-H(1) 42.18(16)
C(12)-Y(1)-H(2) 109.73(18)
C(14)-Y(1)-H(2) 120.53(18)
C(13)-Y(1)-H(2) 99.89(18)
C(11)-Y(1)-H(2) 141.54(19)
C(15)-Y(1)-H(2) 150.50(18)
W(1)-Y(1)-H(2) 86.04(17)
Y(3)-Y(1)-H(2) 38.98(15)
Y(2)-Y(1)-H(2) 37.55(15)
H(1)-Y(1)-H(2) 53.3(2)
C(12)-Y(1)-H(4) 118.4(2)
C(14)-Y(1)-H(4) 79.5(2)
C(13)-Y(1)-H(4) 88.3(2)
C(11)-Y(1)-H(4) 130.2(2)
C(15)-Y(1)-H(4) 103.1(2)
W(1)-Y(1)-H(4) 86.3(2)
Y(3)-Y(1)-H(4) 33.9(2)
Y(2)-Y(1)-H(4) 94.7(2)
H(1)-Y(1)-H(4) 72.9(2)
H(2)-Y(1)-H(4) 62.7(3)
C(12)-Y(1)-H(5) 81.0(2)
C(14)-Y(1)-H(5) 130.8(2)
C(13)-Y(1)-H(5) 101.0(2)
C(11)-Y(1)-H(5) 95.2(2)
C(15)-Y(1)-H(5) 125.9(2)
W(1)-Y(1)-H(5) 89.9(2)
Y(3)-Y(1)-H(5) 95.58(19)
190
H(1)-W(1)-H(8) 70.5(4)
C(4)-W(1)-H(9) 122.8(3)
C(5)-W(1)-H(9) 87.6(3)
C(3)-W(1)-H(9) 135.9(3)
C(2)-W(1)-H(9) 105.3(3)
C(1)-W(1)-H(9) 78.8(3)
Y(1)-W(1)-H(9) 44.0(3)
Y(4)-W(1)-H(9) 112.9(3)
Y(3)-W(1)-H(9) 53.7(3)
Y(2)-W(1)-H(9) 94.2(3)
H(1)-W(1)-H(9) 70.0(4)
H(8)-W(1)-H(9) 86.4(4)
C(4)-W(1)-H(10) 89.7(3)
C(5)-W(1)-H(10) 124.9(3)
C(3)-W(1)-H(10) 81.0(3)
C(2)-W(1)-H(10) 107.9(3)
C(1)-W(1)-H(10) 138.3(3)
Y(1)-W(1)-H(10) 108.3(3)
Y(4)-W(1)-H(10) 44.6(3)
Y(3)-W(1)-H(10) 93.0(3)
Y(2)-W(1)-H(10) 49.8(3)
H(1)-W(1)-H(10) 72.6(4)
H(8)-W(1)-H(10) 80.5(4)
H(9)-W(1)-H(10) 142.6(4)
C(4)-W(1)-H(11) 132.5(3)
C(5)-W(1)-H(11) 130.0(3)
C(3)-W(1)-H(11) 96.8(3)
C(2)-W(1)-H(11) 78.3(3)
C(1)-W(1)-H(11) 95.6(3)
Y(1)-W(1)-H(11) 110.4(3)
Y(4)-W(1)-H(11) 43.5(2)
Y(3)-W(1)-H(11) 50.8(3)
Y(2)-W(1)-H(11) 91.3(3)
H(1)-W(1)-H(11) 73.6(4)
Y(2)-Y(1)-H(5) 35.05(18)
H(1)-Y(1)-H(5) 74.6(2)
H(2)-Y(1)-H(5) 61.5(2)
H(4)-Y(1)-H(5) 124.2(3)
C(12)-Y(1)-H(8) 123.7(2)
C(14)-Y(1)-H(8) 145.8(2)
C(13)-Y(1)-H(8) 153.9(2)
C(11)-Y(1)-H(8) 104.8(2)
C(15)-Y(1)-H(8) 115.8(2)
W(1)-Y(1)-H(8) 32.55(19)
Y(3)-Y(1)-H(8) 91.1(2)
Y(2)-Y(1)-H(8) 60.0(2)
H(1)-Y(1)-H(8) 49.6(2)
H(2)-Y(1)-H(8) 93.5(3)
H(4)-Y(1)-H(8) 117.8(3)
H(5)-Y(1)-H(8) 66.1(3)
C(12)-Y(1)-H(9) 155.6(2)
C(14)-Y(1)-H(9) 109.4(2)
C(13)-Y(1)-H(9) 138.2(2)
C(11)-Y(1)-H(9) 126.0(2)
C(15)-Y(1)-H(9) 103.7(2)
W(1)-Y(1)-H(9) 31.48(18)
Y(3)-Y(1)-H(9) 57.6(2)
Y(2)-Y(1)-H(9) 90.9(2)
H(1)-Y(1)-H(9) 48.8(3)
H(2)-Y(1)-H(9) 92.5(3)
H(4)-Y(1)-H(9) 62.4(3)
H(5)-Y(1)-H(9) 119.8(3)
H(8)-Y(1)-H(9) 62.5(3)
C(23)-Y(2)-C(27) 31.13(10)
C(23)-Y(2)-C(26) 50.47(11)
C(27)-Y(2)-C(26) 30.35(10)
C(23)-Y(2)-C(24) 31.23(10)
C(27)-Y(2)-C(24) 50.84(11)
191
H(8)-W(1)-H(11) 144.1(4)
H(9)-W(1)-H(11) 83.2(4)
H(10)-W(1)-H(11) 87.3(4)
C(12)-Y(1)-C(14) 50.80(10)
C(12)-Y(1)-C(13) 30.31(10)
C(14)-Y(1)-C(13) 31.56(11)
C(12)-Y(1)-C(11) 32.51(10)
C(26)-Y(2)-Y(3) 109.48(11)
C(24)-Y(2)-Y(3) 130.66(11)
C(25)-Y(2)-Y(3) 107.24(10)
Y(4)-Y(2)-Y(3) 58.62(6)
Y(1)-Y(2)-Y(3) 58.18(6)
C(23)-Y(2)-W(1) 143.05(11)
C(27)-Y(2)-W(1) 146.92(12)
C(26)-Y(2)-W(1) 159.16(12)
C(24)-Y(2)-W(1) 151.25(12)
C(25)-Y(2)-W(1) 162.48(13)
Y(4)-Y(2)-W(1) 52.89(8)
Y(1)-Y(2)-W(1) 52.03(8)
Y(3)-Y(2)-W(1) 59.23(7)
C(23)-Y(2)-H(1) 163.37(19)
C(27)-Y(2)-H(1) 150.8(2)
C(26)-Y(2)-H(1) 142.8(2)
C(24)-Y(2)-H(1) 158.2(2)
C(25)-Y(2)-H(1) 145.8(2)
Y(4)-Y(2)-H(1) 52.9(2)
Y(1)-Y(2)-H(1) 44.9(2)
Y(3)-Y(2)-H(1) 39.00(16)
W(1)-Y(2)-H(1) 20.66(16)
C(23)-Y(2)-H(2) 134.3(2)
C(27)-Y(2)-H(2) 104.05(19)
C(26)-Y(2)-H(2) 85.76(19)
C(24)-Y(2)-H(2) 129.1(2)
C(25)-Y(2)-H(2) 99.4(2)
C(26)-Y(2)-C(24) 49.60(10)
C(23)-Y(2)-C(25) 50.63(10)
C(27)-Y(2)-C(25) 50.41(12)
C(26)-Y(2)-C(25) 30.09(12)
C(24)-Y(2)-C(25) 29.76(10)
C(23)-Y(2)-Y(4) 127.42(11)
C(27)-Y(2)-Y(4) 156.35(12)
C(26)-Y(2)-Y(4) 139.47(12)
C(24)-Y(2)-Y(4) 105.64(11)
C(25)-Y(2)-Y(4) 111.52(13)
C(23)-Y(2)-Y(1) 131.49(11)
C(27)-Y(2)-Y(1) 105.86(11)
C(26)-Y(2)-Y(1) 107.38(11)
C(24)-Y(2)-Y(1) 155.70(12)
C(25)-Y(2)-Y(1) 133.08(13)
Y(4)-Y(2)-Y(1) 97.79(8)
C(23)-Y(2)-Y(3) 157.62(11)
C(27)-Y(2)-Y(3) 135.55(11)
C(38)-Y(3)-W(1) 163.22(13)
C(37)-Y(3)-W(1) 164.18(12)
Y(4)-Y(3)-W(1) 53.80(8)
Y(1)-Y(3)-W(1) 53.30(8)
Y(2)-Y(3)-W(1) 62.09(8)
C(35)-Y(3)-H(1) 157.1(2)
C(39)-Y(3)-H(1) 150.5(2)
C(36)-Y(3)-H(1) 158.3(2)
C(38)-Y(3)-H(1) 145.9(2)
C(37)-Y(3)-H(1) 149.4(2)
Y(4)-Y(3)-H(1) 52.9(2)
Y(1)-Y(3)-H(1) 45.8(2)
Y(2)-Y(3)-H(1) 40.02(18)
W(1)-Y(3)-H(1) 22.49(18)
C(35)-Y(3)-H(2) 137.78(19)
C(39)-Y(3)-H(2) 105.35(19)
192
Y(4)-Y(2)-H(2) 93.31(17)
Y(1)-Y(2)-H(2) 41.28(17)
Y(3)-Y(2)-H(2) 34.87(16)
W(1)-Y(2)-H(2) 75.77(18)
H(1)-Y(2)-H(2) 57.0(2)
C(23)-Y(2)-H(3) 130.5(2)
C(27)-Y(2)-H(3) 133.4(2)
C(26)-Y(2)-H(3) 103.6(2)
C(24)-Y(2)-H(3) 99.32(19)
C(25)-Y(2)-H(3) 85.4(2)
Y(4)-Y(2)-H(3) 42.34(17)
Y(1)-Y(2)-H(3) 93.59(18)
Y(3)-Y(2)-H(3) 35.52(16)
W(1)-Y(2)-H(3) 77.30(19)
H(1)-Y(2)-H(3) 62.9(3)
H(2)-Y(2)-H(3) 64.6(2)
C(23)-Y(2)-H(5) 97.83(19)
C(27)-Y(2)-H(5) 75.32(19)
C(26)-Y(2)-H(5) 87.98(19)
C(24)-Y(2)-H(5) 125.8(2)
C(25)-Y(2)-H(5) 118.1(2)
Y(4)-Y(2)-H(5) 127.56(19)
Y(1)-Y(2)-H(5) 33.78(17)
Y(3)-Y(2)-H(5) 90.36(18)
W(1)-Y(2)-H(5) 75.29(18)
H(1)-Y(2)-H(5) 76.0(3)
H(2)-Y(2)-H(5) 63.6(2)
H(3)-Y(2)-H(5) 125.7(2)
C(23)-Y(2)-H(6) 93.00(18)
C(27)-Y(2)-H(6) 123.39(19)
C(26)-Y(2)-H(6) 122.7(2)
C(24)-Y(2)-H(6) 75.96(18)
C(25)-Y(2)-H(6) 93.4(2)
Y(4)-Y(2)-H(6) 34.58(16)
C(36)-Y(3)-H(2) 134.1(2)
C(38)-Y(3)-H(2) 88.33(19)
C(37)-Y(3)-H(2) 103.7(2)
Y(4)-Y(3)-H(2) 92.83(17)
Y(1)-Y(3)-H(2) 42.44(17)
Y(2)-Y(3)-H(2) 34.50(16)
W(1)-Y(3)-H(2) 77.96(18)
H(1)-Y(3)-H(2) 57.6(3)
C(35)-Y(3)-H(3) 134.92(19)
C(39)-Y(3)-H(3) 134.9(2)
C(36)-Y(3)-H(3) 103.25(19)
C(38)-Y(3)-H(3) 103.4(2)
C(37)-Y(3)-H(3) 87.31(19)
Y(4)-Y(3)-H(3) 42.40(17)
Y(1)-Y(3)-H(3) 94.28(17)
Y(2)-Y(3)-H(3) 34.82(15)
W(1)-Y(3)-H(3) 79.31(18)
H(1)-Y(3)-H(3) 63.1(2)
H(2)-Y(3)-H(3) 63.7(2)
C(35)-Y(3)-H(4) 95.0(2)
C(39)-Y(3)-H(4) 74.6(2)
C(36)-Y(3)-H(4) 124.2(2)
C(38)-Y(3)-H(4) 90.8(2)
C(37)-Y(3)-H(4) 120.5(2)
Y(4)-Y(3)-H(4) 127.7(2)
Y(1)-Y(3)-H(4) 33.39(18)
Y(2)-Y(3)-H(4) 91.5(2)
W(1)-Y(3)-H(4) 74.8(2)
H(1)-Y(3)-H(4) 76.2(3)
H(2)-Y(3)-H(4) 65.3(3)
H(3)-Y(3)-H(4) 126.2(3)
C(35)-Y(3)-H(7) 93.14(18)
C(39)-Y(3)-H(7) 124.16(19)
C(36)-Y(3)-H(7) 75.32(17)
193
Y(1)-Y(2)-H(6) 128.31(18)
Y(3)-Y(2)-H(6) 91.57(17)
W(1)-Y(2)-H(6) 76.89(18)
H(1)-Y(2)-H(6) 84.6(3)
H(2)-Y(2)-H(6) 126.3(2)
H(3)-Y(2)-H(6) 64.8(2)
H(5)-Y(2)-H(6) 146.2(3)
C(35)-Y(3)-C(39) 32.61(10)
C(35)-Y(3)-C(36) 31.67(9)
C(39)-Y(3)-C(36) 51.06(10)
C(35)-Y(3)-C(38) 53.36(10)
C(39)-Y(3)-C(38) 31.75(12)
C(36)-Y(3)-C(38) 50.19(10)
C(35)-Y(3)-C(37) 52.80(10)
C(39)-Y(3)-C(37) 51.21(11)
C(36)-Y(3)-C(37) 30.56(10)
C(38)-Y(3)-C(37) 29.91(10)
C(35)-Y(3)-Y(4) 126.64(11)
C(39)-Y(3)-Y(4) 156.42(12)
C(36)-Y(3)-Y(4) 105.41(10)
C(38)-Y(3)-Y(4) 137.73(12)
C(37)-Y(3)-Y(4) 110.43(11)
C(35)-Y(3)-Y(1) 128.43(11)
C(39)-Y(3)-Y(1) 104.86(11)
C(36)-Y(3)-Y(1) 155.90(11)
C(38)-Y(3)-Y(1) 109.93(11)
C(37)-Y(3)-Y(1) 137.14(11)
Y(4)-Y(3)-Y(1) 98.68(8)
C(35)-Y(3)-Y(2) 162.84(12)
C(39)-Y(3)-Y(2) 136.78(12)
C(36)-Y(3)-Y(2) 134.99(11)
C(38)-Y(3)-Y(2) 110.82(11)
C(37)-Y(3)-Y(2) 110.39(11)
Y(4)-Y(3)-Y(2) 58.51(6)
C(38)-Y(3)-H(7) 120.8(2)
C(37)-Y(3)-H(7) 91.20(19)
Y(4)-Y(3)-H(7) 33.51(15)
Y(1)-Y(3)-H(7) 127.89(18)
Y(2)-Y(3)-H(7) 90.47(17)
W(1)-Y(3)-H(7) 75.49(18)
H(1)-Y(3)-H(7) 83.3(3)
H(2)-Y(3)-H(7) 124.9(2)
H(3)-Y(3)-H(7) 64.5(2)
H(4)-Y(3)-H(7) 145.1(3)
C(48)-Y(4)-C(47) 32.34(10)
C(48)-Y(4)-C(49) 30.59(10)
C(47)-Y(4)-C(49) 51.52(10)
C(48)-Y(4)-C(50) 51.20(10)
C(47)-Y(4)-C(50) 50.56(10)
C(49)-Y(4)-C(50) 31.31(11)
C(48)-Y(4)-C(51) 52.47(10)
C(47)-Y(4)-C(51) 30.86(10)
C(49)-Y(4)-C(51) 51.96(10)
C(50)-Y(4)-C(51) 30.78(9)
C(48)-Y(4)-H(1) 156.94(19)
C(47)-Y(4)-H(1) 157.35(17)
C(49)-Y(4)-H(1) 150.57(17)
C(50)-Y(4)-H(1) 147.44(17)
C(51)-Y(4)-H(1) 150.03(19)
C(48)-Y(4)-W(1) 160.70(13)
C(47)-Y(4)-W(1) 130.37(13)
C(49)-Y(4)-W(1) 161.81(14)
C(50)-Y(4)-W(1) 131.96(13)
C(51)-Y(4)-W(1) 118.47(13)
H(1)-Y(4)-W(1) 32.67(16)
C(48)-Y(4)-Y(2) 114.45(11)
C(47)-Y(4)-Y(2) 129.01(11)
C(49)-Y(4)-Y(2) 127.10(12)
194
Y(1)-Y(3)-Y(2) 59.57(7)
C(35)-Y(3)-W(1) 135.01(12)
C(39)-Y(3)-W(1) 144.08(14)
C(36)-Y(3)-W(1) 145.94(12)
C(47)-Y(4)-H(7) 125.9(2)
C(49)-Y(4)-H(7) 80.25(19)
C(50)-Y(4)-H(7) 75.73(19)
C(51)-Y(4)-H(7) 102.3(2)
H(1)-Y(4)-H(7) 75.3(2)
W(1)-Y(4)-H(7) 88.0(2)
Y(2)-Y(4)-H(7) 97.62(19)
Y(3)-Y(4)-H(7) 36.51(17)
H(3)-Y(4)-H(7) 64.4(2)
H(6)-Y(4)-H(7) 127.4(3)
C(48)-Y(4)-H(10) 131.4(2)
C(47)-Y(4)-H(10) 110.5(2)
C(49)-Y(4)-H(10) 161.2(2)
C(50)-Y(4)-H(10) 145.1(2)
C(51)-Y(4)-H(10) 116.7(2)
H(1)-Y(4)-H(10) 46.9(2)
W(1)-Y(4)-H(10) 32.20(19)
Y(2)-Y(4)-H(10) 56.8(2)
Y(3)-Y(4)-H(10) 88.5(2)
H(3)-Y(4)-H(10) 91.3(3)
H(6)-Y(4)-H(10) 65.0(3)
H(7)-Y(4)-H(10) 118.4(3)
C(48)-Y(4)-H(11) 156.2(2)
C(47)-Y(4)-H(11) 131.2(2)
C(49)-Y(4)-H(11) 131.9(2)
C(50)-Y(4)-H(11) 105.8(2)
C(51)-Y(4)-H(11) 105.1(2)
H(1)-Y(4)-H(11) 46.6(2)
W(1)-Y(4)-H(11) 30.38(17)
Y(2)-Y(4)-H(11) 89.36(19)
C(50)-Y(4)-Y(2) 157.59(13)
C(51)-Y(4)-Y(2) 159.14(11)
H(1)-Y(4)-Y(2) 42.85(15)
W(1)-Y(4)-Y(2) 67.96(9)
C(48)-Y(4)-Y(3) 133.19(12)
C(47)-Y(4)-Y(3) 160.88(11)
C(49)-Y(4)-Y(3) 109.73(11)
C(50)-Y(4)-Y(3) 112.13(10)
C(51)-Y(4)-Y(3) 137.87(11)
H(1)-Y(4)-Y(3) 41.76(13)
W(1)-Y(4)-Y(3) 65.77(9)
Y(2)-Y(4)-Y(3) 62.87(7)
C(48)-Y(4)-H(3) 106.44(19)
C(47)-Y(4)-H(3) 137.4(2)
C(49)-Y(4)-H(3) 99.96(18)
C(50)-Y(4)-H(3) 122.74(18)
C(51)-Y(4)-H(3) 151.67(19)
H(1)-Y(4)-H(3) 54.5(2)
W(1)-Y(4)-H(3) 87.19(17)
Y(2)-Y(4)-H(3) 38.69(15)
Y(3)-Y(4)-H(3) 39.55(15)
C(48)-Y(4)-H(6) 83.16(19)
C(47)-Y(4)-H(6) 92.84(19)
C(49)-Y(4)-H(6) 106.8(2)
C(50)-Y(4)-H(6) 134.3(2)
C(51)-Y(4)-H(6) 123.39(19)
H(1)-Y(4)-H(6) 76.4(2)
W(1)-Y(4)-H(6) 91.33(19)
Y(2)-Y(4)-H(6) 36.19(16)
Y(3)-Y(4)-H(6) 97.27(17)
H(3)-Y(4)-H(6) 63.0(2)
C(48)-Y(4)-H(7) 110.1(2)
C(10)-C(5)-W(1) 133.3(3)
C(1)-C(6)-H(6A) 113.0(7)
195
Y(3)-Y(4)-H(11) 55.58(18)
H(3)-Y(4)-H(11) 91.2(2)
H(6)-Y(4)-H(11) 119.7(3)
H(7)-Y(4)-H(11) 62.9(2)
H(10)-Y(4)-H(11) 62.1(2)
C(20)-Si(1)-C(11) 109.4(3)
C(20)-Si(1)-C(22) 110.8(3)
C(11)-Si(1)-C(22) 108.1(3)
C(20)-Si(1)-C(21) 107.0(3)
C(11)-Si(1)-C(21) 114.9(3)
C(22)-Si(1)-C(21) 106.7(3)
C(34)-Si(2)-C(23) 113.5(3)
C(34)-Si(2)-C(33) 106.1(3)
C(23)-Si(2)-C(33) 114.5(3)
C(34)-Si(2)-C(32) 109.2(4)
C(23)-Si(2)-C(32) 109.1(3)
C(33)-Si(2)-C(32) 103.9(3)
C(44)-Si(3)-C(45) 106.4(3)
C(44)-Si(3)-C(35) 116.1(4)
C(45)-Si(3)-C(35) 111.0(3)
C(44)-Si(3)-C(46) 106.8(3)
C(45)-Si(3)-C(46) 104.4(4)
C(35)-Si(3)-C(46) 111.4(3)
C(56)-Si(4)-C(58) 111.0(3)
C(56)-Si(4)-C(47) 109.3(3)
C(58)-Si(4)-C(47) 107.5(3)
C(56)-Si(4)-C(57) 108.0(3)
C(58)-Si(4)-C(57) 108.0(3)
C(47)-Si(4)-C(57) 113.1(3)
C(2)-C(1)-C(5) 107.3(3)
C(2)-C(1)-C(6) 127.0(3)
C(5)-C(1)-C(6) 125.7(3)
C(2)-C(1)-W(1) 72.6(2)
C(5)-C(1)-W(1) 69.8(2)
C(1)-C(6)-H(6B) 114.4(6)
H(6A)-C(6)-H(6B) 109.7(9)
C(1)-C(6)-H(6C) 108.9(7)
H(6A)-C(6)-H(6C) 102.1(11)
H(6B)-C(6)-H(6C) 107.9(9)
C(2)-C(7)-H(7A) 108.1(6)
C(2)-C(7)-H(7B) 111.3(7)
H(7A)-C(7)-H(7B) 103.9(10)
C(2)-C(7)-H(7C) 111.0(8)
H(7A)-C(7)-H(7C) 117.5(11)
H(7B)-C(7)-H(7C) 104.8(10)
C(3)-C(8)-H(8A) 114.0(7)
C(3)-C(8)-H(8B) 111.9(6)
H(8A)-C(8)-H(8B) 113.9(9)
C(3)-C(8)-H(8C) 113.4(5)
H(8A)-C(8)-H(8C) 109.0(9)
H(8B)-C(8)-H(8C) 92.8(10)
C(4)-C(9)-H(9A) 109.5(5)
C(4)-C(9)-H(9B) 110.5(5)
H(9A)-C(9)-H(9B) 104.1(8)
C(4)-C(9)-H(9C) 109.9(6)
H(9A)-C(9)-H(9C) 109.1(8)
H(9B)-C(9)-H(9C) 113.5(9)
C(5)-C(10)-H(10A) 108.9(6)
C(5)-C(10)-H(10B) 108.0(6)
H(10A)-C(10)-H(10B) 113.9(8)
C(5)-C(10)-H(10C) 106.6(6)
H(10A)-C(10)-H(10C) 111.5(10)
H(10B)-C(10)-H(10C) 107.6(9)
C(15)-C(11)-C(12) 107.0(3)
C(15)-C(11)-Si(1) 128.4(3)
C(12)-C(11)-Si(1) 123.6(3)
C(15)-C(11)-Y(1) 75.89(17)
C(12)-C(11)-Y(1) 72.58(17)
196
C(6)-C(1)-W(1) 122.8(2)
C(3)-C(2)-C(1) 110.6(3)
C(3)-C(2)-C(7) 124.8(3)
C(1)-C(2)-C(7) 124.2(3)
C(3)-C(2)-W(1) 71.9(2)
C(1)-C(2)-W(1) 73.5(2)
C(7)-C(2)-W(1) 128.1(3)
C(2)-C(3)-C(4) 106.6(3)
C(2)-C(3)-C(8) 128.6(3)
C(4)-C(3)-C(8) 124.5(3)
C(2)-C(3)-W(1) 74.4(2)
C(4)-C(3)-W(1) 69.08(19)
C(8)-C(3)-W(1) 126.5(3)
C(5)-C(4)-C(3) 107.4(3)
C(5)-C(4)-C(9) 126.3(3)
C(3)-C(4)-C(9) 124.8(3)
C(5)-C(4)-W(1) 73.8(2)
C(3)-C(4)-W(1) 74.8(2)
C(9)-C(4)-W(1) 128.0(2)
C(1)-C(5)-C(4) 108.1(3)
C(1)-C(5)-C(10) 125.7(3)
C(4)-C(5)-C(10) 123.8(3)
C(1)-C(5)-W(1) 75.7(2)
C(4)-C(5)-W(1) 70.48(19)
Si(1)-C(22)-H(22A) 111.9(6)
Si(1)-C(22)-H(22B) 107.5(6)
H(22A)-C(22)-H(22B) 101.5(8)
Si(1)-C(22)-H(22C) 116.2(5)
H(22A)-C(22)-H(22C) 108.3(9)
H(22B)-C(22)-H(22C) 110.4(9)
C(27)-C(23)-C(24) 107.6(3)
C(27)-C(23)-Si(2) 123.7(3)
C(24)-C(23)-Si(2) 128.7(3)
C(27)-C(23)-Y(2) 75.51(18)
Si(1)-C(11)-Y(1) 125.4(2)
C(13)-C(12)-C(11) 108.9(3)
C(13)-C(12)-C(16) 123.8(3)
C(11)-C(12)-C(16) 126.8(3)
C(13)-C(12)-Y(1) 75.81(18)
C(11)-C(12)-Y(1) 74.91(17)
C(16)-C(12)-Y(1) 122.2(2)
C(12)-C(13)-C(14) 106.7(3)
C(12)-C(13)-C(17) 125.2(3)
C(14)-C(13)-C(17) 128.1(3)
C(12)-C(13)-Y(1) 73.88(18)
C(14)-C(13)-Y(1) 74.19(18)
C(17)-C(13)-Y(1) 119.4(2)
C(15)-C(14)-C(13) 110.3(3)
C(15)-C(14)-C(18) 125.6(3)
C(13)-C(14)-C(18) 123.5(3)
C(15)-C(14)-Y(1) 76.23(18)
C(13)-C(14)-Y(1) 74.25(18)
C(18)-C(14)-Y(1) 123.5(2)
C(14)-C(15)-C(11) 107.1(3)
C(14)-C(15)-C(19) 121.7(3)
C(11)-C(15)-C(19) 130.1(3)
C(14)-C(15)-Y(1) 73.13(18)
C(11)-C(15)-Y(1) 73.43(18)
C(19)-C(15)-Y(1) 128.1(2)
C(12)-C(16)-H(16A) 108.0(6)
C(12)-C(16)-H(16B) 111.3(5)
H(16A)-C(16)-H(16B) 115.2(8)
C(12)-C(16)-H(16C) 111.1(6)
H(16A)-C(16)-H(16C) 104.8(8)
H(16B)-C(16)-H(16C) 106.3(7)
C(13)-C(17)-H(17A) 106.8(7)
C(13)-C(17)-H(17B) 117.0(6)
H(17A)-C(17)-H(17B) 109.5(11)
197
C(24)-C(23)-Y(2) 77.83(18)
Si(2)-C(23)-Y(2) 110.7(2)
C(25)-C(24)-C(23) 107.8(3)
C(25)-C(24)-C(28) 125.0(3)
C(23)-C(24)-C(28) 126.9(3)
C(25)-C(24)-Y(2) 76.1(2)
C(23)-C(24)-Y(2) 70.93(18)
C(28)-C(24)-Y(2) 123.5(2)
C(24)-C(25)-C(26) 107.8(3)
C(24)-C(25)-C(29) 127.5(4)
C(26)-C(25)-C(29) 124.0(4)
C(24)-C(25)-Y(2) 74.2(2)
C(26)-C(25)-Y(2) 73.67(19)
C(29)-C(25)-Y(2) 125.9(3)
C(27)-C(26)-C(25) 109.3(3)
C(27)-C(26)-C(30) 121.7(3)
C(25)-C(26)-C(30) 128.9(3)
C(27)-C(26)-Y(2) 72.73(19)
C(25)-C(26)-Y(2) 76.24(19)
C(30)-C(26)-Y(2) 121.0(2)
C(26)-C(27)-C(23) 107.5(3)
C(26)-C(27)-C(31) 126.3(3)
C(23)-C(27)-C(31) 125.9(3)
C(26)-C(27)-Y(2) 76.92(18)
C(23)-C(27)-Y(2) 73.36(18)
C(31)-C(27)-Y(2) 121.2(2)
C(24)-C(28)-H(28A) 111.4(5)
C(24)-C(28)-H(28B) 116.8(6)
H(28A)-C(28)-H(28B) 100.2(8)
C(24)-C(28)-H(28C) 108.7(6)
H(28A)-C(28)-H(28C) 110.2(7)
H(28B)-C(28)-H(28C) 109.2(8)
C(25)-C(29)-H(29A) 111.9(8)
C(25)-C(29)-H(29B) 101.8(8)
C(13)-C(17)-H(17C) 107.8(9)
H(17A)-C(17)-H(17C) 113.6(12)
H(17B)-C(17)-H(17C) 102.4(12)
C(14)-C(18)-H(18A) 108.1(4)
C(14)-C(18)-H(18B) 112.8(6)
H(18A)-C(18)-H(18B) 109.6(7)
C(14)-C(18)-H(18C) 113.2(5)
H(18A)-C(18)-H(18C) 101.0(7)
H(18B)-C(18)-H(18C) 111.3(7)
C(15)-C(19)-H(19A) 108.7(6)
C(15)-C(19)-H(19B) 113.4(5)
H(19A)-C(19)-H(19B) 106.8(7)
C(15)-C(19)-H(19C) 109.1(5)
H(19A)-C(19)-H(19C) 108.9(8)
H(19B)-C(19)-H(19C) 109.7(7)
Si(1)-C(20)-H(20A) 107.2(6)
Si(1)-C(20)-H(20B) 111.4(6)
H(20A)-C(20)-H(20B) 110.4(8)
Si(1)-C(20)-H(20C) 111.1(5)
H(20A)-C(20)-H(20C) 108.0(8)
H(20B)-C(20)-H(20C) 108.8(8)
Si(1)-C(21)-H(21A) 110.6(6)
Si(1)-C(21)-H(21B) 116.6(6)
H(21A)-C(21)-H(21B) 110.3(7)
Si(1)-C(21)-H(21C) 110.2(7)
H(21A)-C(21)-H(21C) 104.1(8)
H(21B)-C(21)-H(21C) 104.2(8)
H(31B)-C(31)-H(31C) 111.8(9)
Si(2)-C(32)-H(32A) 111.9(7)
Si(2)-C(32)-H(32B) 112.7(7)
H(32A)-C(32)-H(32B) 106.0(11)
Si(2)-C(32)-H(32C) 110.1(7)
H(32A)-C(32)-H(32C) 104.8(10)
H(32B)-C(32)-H(32C) 111.0(10)
198
H(29A)-C(29)-H(29B) 105.6(11)
C(25)-C(29)-H(29C) 115.6(7)
H(29A)-C(29)-H(29C) 102.7(14)
H(29B)-C(29)-H(29C) 119.0(13)
C(26)-C(30)-H(30A) 110.0(7)
C(26)-C(30)-H(30B) 106.9(7)
H(30A)-C(30)-H(30B) 103.7(11)
C(26)-C(30)-H(30C) 116.4(8)
H(30A)-C(30)-H(30C) 116.5(11)
H(30B)-C(30)-H(30C) 101.7(12)
C(27)-C(31)-H(31A) 107.0(5)
C(27)-C(31)-H(31B) 112.5(6)
H(31A)-C(31)-H(31B) 108.8(8)
C(27)-C(31)-H(31C) 110.9(6)
H(31A)-C(31)-H(31C) 105.5(8)
C(47)-C(48)-Y(4) 74.30(17)
C(52)-C(48)-Y(4) 122.6(2)
C(48)-C(49)-C(50) 107.8(3)
C(48)-C(49)-C(53) 122.3(3)
C(50)-C(49)-C(53) 129.6(3)
C(48)-C(49)-Y(4) 73.99(18)
C(50)-C(49)-Y(4) 74.31(19)
C(53)-C(49)-Y(4) 122.0(2)
C(51)-C(50)-C(49) 110.3(3)
C(51)-C(50)-C(54) 121.8(3)
C(49)-C(50)-C(54) 127.6(3)
C(51)-C(50)-Y(4) 75.69(17)
C(49)-C(50)-Y(4) 74.38(18)
C(54)-C(50)-Y(4) 121.8(2)
C(47)-C(51)-C(50) 106.0(3)
C(47)-C(51)-C(55) 129.0(3)
C(50)-C(51)-C(55) 123.6(3)
C(47)-C(51)-Y(4) 73.31(17)
C(50)-C(51)-Y(4) 73.53(17)
Si(2)-C(33)-H(33A) 111.8(7)
Si(2)-C(33)-H(33B) 107.4(6)
H(33A)-C(33)-H(33B) 110.6(9)
Si(2)-C(33)-H(33C) 112.1(7)
H(33A)-C(33)-H(33C) 105.0(9)
H(33B)-C(33)-H(33C) 110.1(9)
Si(2)-C(34)-H(34A) 102.7(8)
Si(2)-C(34)-H(34B) 119.6(7)
H(34A)-C(34)-H(34B) 118.7(11)
Si(2)-C(34)-H(34C) 111.8(9)
H(34A)-C(34)-H(34C) 99.8(11)
H(34B)-C(34)-H(34C) 102.7(13)
C(36)-C(35)-C(39) 103.9(3)
C(36)-C(35)-Si(3) 125.8(3)
C(39)-C(35)-Si(3) 130.3(3)
C(36)-C(35)-Y(3) 77.29(16)
C(39)-C(35)-Y(3) 75.70(16)
Si(3)-C(35)-Y(3) 111.70(19)
C(37)-C(36)-C(35) 111.9(3)
C(37)-C(36)-C(40) 122.7(3)
C(35)-C(36)-C(40) 125.2(3)
C(37)-C(36)-Y(3) 77.55(17)
C(35)-C(36)-Y(3) 71.04(16)
C(40)-C(36)-Y(3) 122.72(19)
C(38)-C(37)-C(36) 107.2(3)
C(38)-C(37)-C(41) 124.8(3)
C(36)-C(37)-C(41) 127.8(3)
C(38)-C(37)-Y(3) 73.78(19)
C(36)-C(37)-Y(3) 71.90(18)
C(41)-C(37)-Y(3) 124.6(2)
C(37)-C(38)-C(39) 108.3(3)
C(37)-C(38)-C(42) 126.3(3)
C(39)-C(38)-C(42) 125.1(3)
C(37)-C(38)-Y(3) 76.31(19)
199
C(55)-C(51)-Y(4) 128.5(2)
C(48)-C(52)-H(52A) 112.5(5)
C(48)-C(52)-H(52B) 113.7(5)
H(52A)-C(52)-H(52B) 107.8(8)
C(48)-C(52)-H(52C) 109.6(6)
H(52A)-C(52)-H(52C) 104.1(7)
H(52B)-C(52)-H(52C) 108.7(8)
C(49)-C(53)-H(53A) 119.2(8)
C(49)-C(53)-H(53B) 114.2(9)
H(53A)-C(53)-H(53B) 103.9(12)
C(49)-C(53)-H(53C) 118.4(10)
H(53A)-C(53)-H(53C) 106.7(13)
H(53B)-C(53)-H(53C) 90.0(13)
C(50)-C(54)-H(54A) 114.4(5)
C(50)-C(54)-H(54B) 108.5(7)
H(54A)-C(54)-H(54B) 108.9(9)
C(50)-C(54)-H(54C) 113.0(6)
H(54A)-C(54)-H(54C) 101.7(10)
H(54B)-C(54)-H(54C) 110.2(8)
C(51)-C(55)-H(55A) 108.5(5)
C(51)-C(55)-H(55B) 112.6(5)
H(55A)-C(55)-H(55B) 111.5(8)
C(51)-C(55)-H(55C) 109.6(6)
H(55A)-C(55)-H(55C) 111.3(8)
H(55B)-C(55)-H(55C) 103.3(7)
Si(4)-C(56)-H(56A) 116.2(8)
Si(4)-C(56)-H(56B) 113.0(8)
H(56A)-C(56)-H(56B) 104.5(10)
Si(4)-C(56)-H(56C) 110.0(7)
H(56A)-C(56)-H(56C) 107.6(12)
H(56B)-C(56)-H(56C) 104.6(11)
Si(4)-C(57)-H(57A) 112.2(7)
Si(4)-C(57)-H(57B) 114.8(6)
H(57A)-C(57)-H(57B) 105.2(9)
C(39)-C(38)-Y(3) 71.53(18)
C(42)-C(38)-Y(3) 123.7(2)
C(38)-C(39)-C(35) 108.5(3)
C(38)-C(39)-C(43) 127.7(3)
C(35)-C(39)-C(43) 123.6(3)
C(38)-C(39)-Y(3) 76.71(18)
C(35)-C(39)-Y(3) 71.69(16)
C(43)-C(39)-Y(3) 122.1(2)
C(36)-C(40)-H(40A) 110.3(5)
C(36)-C(40)-H(40B) 114.6(5)
H(40A)-C(40)-H(40B) 105.7(7)
C(36)-C(40)-H(40C) 107.0(5)
H(40A)-C(40)-H(40C) 109.6(7)
H(40B)-C(40)-H(40C) 109.6(7)
C(37)-C(41)-H(41A) 108.8(6)
C(37)-C(41)-H(41B) 112.4(8)
H(41A)-C(41)-H(41B) 110.1(10)
C(37)-C(41)-H(41C) 115.2(6)
H(41A)-C(41)-H(41C) 106.8(11)
H(41B)-C(41)-H(41C) 103.2(10)
C(38)-C(42)-H(42A) 114.1(8)
C(38)-C(42)-H(42B) 114.3(7)
H(42A)-C(42)-H(42B) 94.8(11)
C(38)-C(42)-H(42C) 117.0(7)
H(42A)-C(42)-H(42C) 118.3(11)
H(42B)-C(42)-H(42C) 93.9(11)
C(39)-C(43)-H(43A) 108.9(8)
C(39)-C(43)-H(43B) 110.2(6)
H(43A)-C(43)-H(43B) 108.7(9)
C(39)-C(43)-H(43C) 117.4(5)
H(43A)-C(43)-H(43C) 104.8(10)
H(43B)-C(43)-H(43C) 106.5(10)
Si(3)-C(44)-H(44A) 108.6(7)
Si(3)-C(44)-H(44B) 112.2(7)
200
Si(4)-C(57)-H(57C) 112.7(6)
H(57A)-C(57)-H(57C) 101.4(8)
H(57B)-C(57)-H(57C) 109.5(8)
Si(4)-C(58)-H(58A) 113.9(5)
Si(4)-C(58)-H(58B) 105.2(6)
H(58A)-C(58)-H(58B) 111.7(8)
Si(4)-C(58)-H(58C) 108.7(5)
H(58A)-C(58)-H(58C) 107.2(7)
H(58B)-C(58)-H(58C) 110.1(7)
C(63)-C(59)-H(59A) 116.6(10)
C(63)-C(59)-H(59B) 105.0(11)
H(59A)-C(59)-H(59B) 98.2(13)
C(63)-C(59)-H(59C) 100.3(14)
H(59A)-C(59)-H(59C) 127.3(17)
H(59B)-C(59)-H(59C) 107.4(14)
C(64)#1-C(60)-C(62)#2104.7(6)
C(64)#1-C(60)-H(60A) 108.0(11)
C(62)#2-C(60)-H(60A) 110.1(11)
C(64)#1-C(60)-H(60B) 108.0(11)
C(62)#2-C(60)-H(60B) 115.4(13)
H(60A)-C(60)-H(60B) 110.4(16)
C(64)#3-C(61)-H(61A) 132.5(14)
C(64)#3-C(61)-H(61B) 118.5(11)
H(61A)-C(61)-H(61B) 100(2)
C(64)#3-C(61)-H(61C) 115.4(19)
H(61A)-C(61)-H(61C) 92(3)
H(61B)-C(61)-H(61C) 86(2)
C(63)-C(62)-C(60)#4 110.3(6)
C(63)-C(62)-H(62A) 114.3(11)
C(60)#4-C(62)-H(62A) 104.9(11)
C(48)-C(47)-Y(4) 73.36(17)
Si(4)-C(47)-Y(4) 126.8(2)
C(49)-C(48)-C(47) 107.0(3)
C(49)-C(48)-C(52) 124.2(3)
H(44A)-C(44)-H(44B) 112.2(9)
Si(3)-C(44)-H(44C) 107.1(7)
H(44A)-C(44)-H(44C) 112.8(9)
H(44B)-C(44)-H(44C) 103.9(9)
Si(3)-C(45)-H(45A) 111.6(7)
Si(3)-C(45)-H(45B) 105.3(7)
H(45A)-C(45)-H(45B) 111.9(10)
Si(3)-C(45)-H(45C) 112.0(6)
H(45A)-C(45)-H(45C) 109.8(9)
H(45B)-C(45)-H(45C) 106.1(8)
Si(3)-C(46)-H(46A) 112.5(7)
Si(3)-C(46)-H(46B) 107.0(9)
H(46A)-C(46)-H(46B) 118.1(10)
Si(3)-C(46)-H(46C) 109.5(6)
H(46A)-C(46)-H(46C) 109.8(12)
H(46B)-C(46)-H(46C) 99.0(10)
C(51)-C(47)-C(48) 108.9(2)
C(51)-C(47)-Si(4) 127.7(3)
C(48)-C(47)-Si(4) 122.2(3)
C(51)-C(47)-Y(4) 75.84(17)
C(49)-C(48)-Y(4) 75.42(19)
C(63)-C(62)-H(62B) 106.7(8)
C(60)#4-C(62)-H(62B) 118.6(8)
H(62A)-C(62)-H(62B) 102.0(14)
C(62)-C(63)-C(59) 117.3(6)
C(62)-C(63)-H(63A) 118.0(11)
C(59)-C(63)-H(63A) 117.9(11)
C(62)-C(63)-H(63B) 98.9(9)
C(59)-C(63)-H(63B) 107.8(9)
H(63A)-C(63)-H(63B) 89.5(13)
C(60)#5-C(64)-C(61)#6110.4(7)
C(60)#5-C(64)-H(64A) 113.0(10)
C(61)#6-C(64)-H(64A) 108.1(10)
C(60)#5-C(64)-H(64B) 105.6(9)
201
C(47)-C(48)-C(52) 128.3(3)
C(61)#6-C(64)-H(64B) 115.4(9)
H(64A)-C(64)-H(64B) 104.3(13)
Symmetry transformations used to generate equivalent atoms:
#1 x+1/2,-y+1/2,z+1/2 #2 -x+1/2,y+1/2,-z+3/2
#3 x-1/2,-y+1/2,z+1/2 #4 -x+1/2,y-1/2,-z+3/2
#5 x-1/2,-y+1/2,z-1/2 #6 x+1/2,-y+1/2,z-1/2
Anisotropic displacement parameters (Å
2
x 10
3
). The anisotropic
displacement factor exponent takes the form: -2 π
2
[ h
2
a*
2
U
11
+ ... + 2 h k a* b*
U
12
]
_________________________________________________________________
U
11
U
22
U
33
U
23
U
13
U
12
_________________________________________________________________
W(1) 21(2) 45(2) 23(2) 14(2) 6(2) 10(2)
Y(1) 39(1) 24(1) 38(2) -7(1) 1(1) 3(1)
Y(2) 30(1) 37(1) 33(2) 0(1) 2(1) 4(1)
Y(3) 27(1) 35(1) 35(1) -8(1) 0(1) -3(1)
Y(4) 33(1) 20(1) 54(2) 11(1) 2(1) 3(1)
Si(1) 36(2) 28(2) 72(4) -14(2) 6(2) 4(2)
Si(2) 20(2) 72(3) 66(4) 5(3) -5(2) 13(2)
Si(3) 27(2) 88(4) 43(3) -20(3) -1(2) 5(3)
Si(4) 37(2) 27(2) 79(4) -6(3) 4(3) -5(2)
C(1) 46(2) 47(2) 40(2) 3(2) 16(1) -9(1)
C(2) 67(2) 33(2) 45(2) 12(2) -2(2) -9(2)
C(3) 47(2) 39(2) 53(2) 3(2) -2(2) 1(2)
C(4) 43(2) 38(2) 35(2) 6(1) -7(1) -3(1)
C(5) 59(2) 34(2) 45(2) -6(2) 4(2) -4(2)
C(6) 105(3) 76(3) 67(2) -7(2) 49(2) -10(2)
H(6A) 171(7) 141(8) 180(8) -56(7) 88(6) 41(7)
H(6B) 63(4) 130(7) 79(5) -11(5) 26(4) 2(5)
H(6C) 187(9) 289(14) 52(5) -64(6) 63(5) 14(9)
C(7) 60(2) 59(2) 116(3) 29(2) -17(2) -22(2)
H(7A) 139(6) 211(7) 174(8) 140(6) -67(6) -125(5)
H(7B) 55(4) 180(9) 226(11) 83(8) -49(6) -44(5)
202
H(7C) 134(8) 74(6) 289(17) -34(7) 19(10) -48(5)
C(8) 77(2) 35(2) 144(4) 0(2) -50(3) 22(2)
H(8A) 157(9) 96(6) 155(9) 61(6) -15(8) 43(6)
H(8B) 84(6) 73(6) 307(17) -18(7) -53(9) 2(5)
H(8C) 1(4) 48(4) 201(9) 6(5) 17(5) 22(3)
C(9) 31(2) 70(2) 79(2) -13(2) 15(2) -14(2)
H(9A) 69(4) 154(7) 77(5) -62(5) 0(4) -23(5)
H(9B) 69(4) 89(6) 193(9) 34(6) 23(5) -6(4)
H(9C) 83(5) 151(7) 70(5) 66(5) -16(4) -1(5)
C(10) 102(3) 56(2) 158(4) -68(2) 54(3) -14(2)
H(10A) 109(6) 60(4) 127(7) -26(5) -14(5) -26(4)
H(10B) 118(5) 50(4) 209(9) -28(5) 54(5) -79(3)
H(10C) 151(7) 77(4) 302(11) -134(5) 79(7) -57(5)
C(11) 42(2) 31(2) 56(2) -7(2) 5(2) -5(1)
C(12) 59(2) 24(2) 54(2) 3(2) 12(2) -1(1)
C(13) 43(2) 30(2) 82(2) -7(2) -4(2) -1(1)
C(14) 48(2) 26(2) 65(2) -4(2) -3(2) -11(1)
C(15) 29(2) 30(2) 66(2) -16(2) 1(2) -5(1)
C(16) 61(2) 39(2) 68(2) -4(2) 11(2) 0(2)
H(16A) 151(6) 66(5) 115(6) 22(5) 51(5) -32(5)
H(16B) 113(5) 90(5) 87(5) 6(4) 53(4) -12(5)
H(16C) 145(7) 115(7) 57(5) 2(5) -23(5) 7(6)
C(17) 54(2) 46(2) 67(2) -3(2) -18(2) 8(2)
H(17A) 242(9) 69(6) 167(7) 1(5) -157(6) 23(6)
H(17B) 94(5) 270(13) 108(7) -46(8) -93(5) 49(7)
H(17C) 112(7) 228(12) 140(9) 58(9) 7(7) -25(9)
C(18) 25(2) 52(2) 108(2) -64(2) 11(2) 5(1)
H(18A) 59(4) 91(5) 200(8) -98(5) 13(5) 17(4)
H(18B) 88(4) 96(5) 98(5) -26(4) 48(4) 17(4)
H(18C) 43(4) 84(5) 106(6) 25(4) 6(4) 20(3)
C(19) 41(2) 72(2) 36(2) -17(2) -3(2) 1(2)
H(19A) 93(5) 121(7) 76(5) 4(5) 26(4) -17(5)
H(19B) 55(4) 99(5) 105(6) -3(5) -13(4) -4(4)
H(19C) 93(5) 107(6) 61(5) -2(4) 8(4) 34(4)
203
C(20) 54(2) 38(2) 83(3) -11(2) -7(2) 14(2)
H(20A) 44(3) 105(6) 219(9) -17(6) 64(5) 20(4)
H(20B) 106(5) 74(5) 134(6) 15(5) 67(4) 22(4)
H(20C) 86(5) 133(7) 134(7) -13(6) 49(5) 56(4)
C(21) 42(2) 73(2) 64(2) -28(2) -7(2) 9(2)
H(21A) 110(5) 76(5) 136(6) -57(4) 39(5) 10(4)
H(21B) 90(5) 65(4) 106(6) -63(4) -11(4) -2(4)
H(21C) 90(5) 115(6) 164(8) -60(6) 7(6) -35(5)
C(22) 43(2) 25(2) 158(4) -22(2) 4(2) -16(2)
H(22A) 105(5) 43(4) 248(11) 20(5) 40(6) 54(4)
H(22B) 38(3) 108(6) 216(10) -16(7) 17(5) -31(4)
H(22C) 111(6) 51(4) 135(7) 28(5) -38(6) -19(4)
C(23) 36(2) 36(2) 40(2) 3(1) 8(1) 0(1)
C(24) 41(2) 48(2) 49(2) 0(2) 8(2) -11(2)
C(25) 39(2) 136(3) 29(2) 9(2) 8(2) -26(2)
C(26) 80(2) 43(2) 35(2) 23(1) 15(2) 15(2)
C(27) 38(2) 41(2) 57(2) 9(2) 10(2) 13(1)
C(28) 145(3) 50(2) 68(2) -36(2) 74(2) -41(2)
H(28A) 141(5) 84(5) 128(5) -51(4) 94(4) -45(4)
H(28B) 125(6) 59(5) 152(8) -29(5) 35(6) 9(5)
H(28C) 122(6) 95(6) 104(6) -33(5) 29(5) -24(5)
C(29) 67(2) 186(5) 75(3) 23(3) -10(2) -60(3)
H(29A) 152(8) 234(11) 225(13) -105(10) 18(9) -109(8)
H(29B) 109(7) 144(10) 302(16) 17(10) -113(8) -13(7)
H(29C) 78(5) 277(13) 104(8) -47(8) -26(6) -58(7)
C(30) 73(3) 129(4) 94(3) 58(3) 13(2) 31(3)
H(30A) 181(6) 180(6) 149(9) 57(6) 2(7) 160(5)
H(30B) 101(5) 143(7) 249(13) 55(8) 47(7) 99(5)
H(30C) 286(12) 108(6) 146(9) -25(7) -95(9) 113(7)
C(31) 126(3) 39(2) 86(3) -1(2) 48(2) -14(2)
H(31A) 165(6) 50(4) 134(6) 5(4) 86(5) -35(4)
H(31B) 69(4) 68(5) 144(7) -7(5) 28(5) -16(4)
H(31C) 108(6) 102(6) 114(7) 3(5) -13(5) -54(5)
C(32) 49(2) 159(4) 67(3) 30(3) 0(2) 26(2)
204
H(32A) 74(5) 228(12) 135(9) -5(9) -40(6) 37(7)
H(32B) 186(10) 147(7) 72(5) -72(5) -33(6) 12(7)
H(32C) 164(9) 123(7) 85(6) 51(5) -26(6) -26(7)
C(33) 83(2) 72(2) 81(3) 29(2) 23(2) 50(2)
H(33A) 143(6) 171(8) 170(9) -26(7) 60(6) 91(6)
H(33B) 91(5) 117(7) 134(8) -1(6) 32(5) 12(5)
H(33C) 193(9) 101(7) 135(7) 13(6) 73(6) 44(6)
C(34) 27(2) 145(4) 121(4) 81(3) 23(2) -1(2)
H(34A) 34(4) 229(11) 215(11) 81(9) -13(6) 0(6)
H(34B) 104(5) 87(5) 282(13) 10(6) 66(6) -79(4)
H(34C) 212(9) 264(13) 188(8) 126(8) 128(6) 18(10)
C(35) 22(1) 45(2) 40(2) -18(1) 3(1) -1(1)
C(36) 24(1) 39(2) 49(2) -6(2) 2(1) -1(1)
C(37) 32(2) 44(2) 59(2) 6(2) -1(2) -2(1)
C(38) 30(2) 53(2) 68(2) 23(2) -2(2) -3(1)
C(39) 33(2) 31(2) 97(3) -12(2) -5(2) 3(1)
C(40) 31(2) 49(2) 78(2) -22(2) -2(2) 4(1)
H(40A) 141(7) 86(5) 111(6) -72(4) 32(5) -31(5)
H(40B) 108(5) 32(3) 80(5) 9(4) -19(4) -22(4)
H(40C) 58(4) 65(4) 120(6) -22(4) -33(4) -28(3)
C(41) 52(2) 104(3) 43(2) -14(2) 7(2) -11(2)
H(41A) 99(6) 343(15) 59(5) -70(7) 11(5) -83(8)
H(41B) 219(9) 184(11) 112(6) -20(7) 104(6) 22(9)
H(41C) 144(7) 158(8) 79(6) -46(6) -16(6) 60(6)
C(42) 45(2) 95(3) 87(3) 44(2) -27(2) -11(2)
H(42A) 96(7) 276(8) 412(12) 292(7) -16(8) 7(7)
H(42B) 175(9) 148(8) 135(8) 63(7) 24(7) -48(7)
H(42C) 240(11) 79(5) 111(7) 29(5) -5(7) -81(6)
C(43) 39(2) 29(2) 153(4) -21(2) -11(2) -9(2)
H(43A) 106(6) 25(4) 410(20) -10(7) 25(10) -16(4)
H(43B) 45(4) 80(5) 275(12) -72(6) -16(6) 13(4)
H(43C) 97(5) 70(5) 150(7) -39(5) 49(5) -5(4)
C(44) 76(2) 98(3) 86(3) -47(2) 34(2) 1(2)
H(44A) 150(8) 119(7) 113(7) -63(5) 32(6) -11(6)
205
H(44B) 119(7) 187(7) 183(8) -146(5) 22(6) -61(6)
H(44C) 111(6) 133(9) 208(11) -18(8) 64(7) -4(6)
C(45) 50(2) 75(2) 81(3) 8(2) 19(2) -6(2)
H(45A) 134(7) 99(7) 194(10) 19(7) 56(7) -7(6)
H(45B) 105(6) 211(10) 69(5) 49(6) 37(4) 31(6)
H(45C) 70(4) 137(7) 110(6) 24(5) 32(4) -33(5)
C(46) 24(2) 296(7) 68(3) 38(4) 14(2) 6(3)
H(46A) 121(6) 127(6) 115(7) -8(6) -42(6) 76(5)
H(46B) 97(6) 343(19) 119(7) -26(9) -101(5) -8(9)
H(46C) 77(5) 312(15) 63(6) 33(7) 11(5) 51(7)
C(47) 36(2) 40(2) 50(2) 5(2) 8(1) 1(1)
C(48) 54(2) 27(2) 34(2) 3(1) -7(2) -1(1)
C(49) 46(2) 38(2) 61(2) 3(2) -13(2) 2(2)
C(50) 44(2) 31(2) 57(2) 0(2) 9(2) -2(1)
C(51) 30(1) 28(2) 54(2) 5(1) 8(1) -5(1)
C(52) 76(2) 55(2) 40(2) 8(2) -4(2) 12(2)
H(52A) 146(7) 114(6) 51(5) 33(5) 12(5) 28(6)
H(52B) 96(5) 77(5) 78(5) -7(4) 16(4) -11(4)
H(52C) 159(8) 106(6) 51(5) -24(4) -20(5) -32(6)
C(53) 52(2) 64(2) 93(3) 9(2) -24(2) -10(2)
H(53A) 276(9) 295(8) 220(7) -223(6) -199(7) 204(7)
H(53B) 99(7) 231(13) 201(12) 94(10) -4(8) -22(8)
H(53C) 132(9) 183(12) 169(11) 34(10) -71(8) -11(9)
C(54) 69(2) 44(2) 124(3) 39(2) 26(2) 7(2)
H(54A) 91(4) 160(7) 215(7) -109(6) 116(4) -53(5)
H(54B) 48(4) 80(5) 233(11) -6(6) 42(5) 14(4)
H(54C) 138(5) 56(5) 308(11) -16(6) 143(6) -26(4)
C(55) 73(2) 44(2) 38(2) 16(2) 2(2) 1(2)
H(55A) 147(7) 96(6) 35(4) -7(4) 17(4) -22(5)
H(55B) 138(6) 96(5) 51(4) 17(4) 12(4) -46(5)
H(55C) 124(6) 124(7) 66(5) 18(5) 36(4) -25(5)
C(56) 45(2) 48(2) 165(4) 49(2) -4(2) 1(2)
H(56A) 179(11) 171(8) 165(8) 134(6) -48(8) -36(7)
H(56B) 159(8) 133(7) 151(9) -81(6) 27(7) -70(6)
206
H(56C) 41(4) 130(8) 303(14) 51(8) 47(6) -10(5)
C(57) 57(2) 66(2) 71(3) 15(2) -13(2) 26(2)
H(57A) 92(5) 115(6) 158(9) -18(6) -61(6) 50(5)
H(57B) 146(7) 45(4) 119(7) -9(4) -48(6) 28(4)
H(57C) 92(5) 58(4) 123(6) 44(4) -25(5) 3(4)
C(58) 61(2) 45(2) 82(2) -3(2) 29(2) 8(2)
H(58A) 139(7) 92(6) 55(5) -6(4) 8(5) 17(5)
H(58B) 78(5) 103(6) 138(7) -31(5) -1(5) 40(4)
H(58C) 84(4) 73(5) 101(6) 5(4) 27(4) -18(4)
C(59) 106(3) 179(4) 92(4) 32(3) -18(3) -91(3)
H(59A) 51(5) 195(9) 230(11) -105(8) -3(6) 25(6)
H(59B) 260(16) 151(8) 199(10) 128(7) 25(10) 25(10)
H(59C) 252(14) 70(6) 103(8) 16(6) 13(8) 13(7)
C(60) 110(3) 101(3) 130(4) 45(3) -9(3) -25(3)
H(60A) 213(12) 95(7) 173(11) 44(7) 42(9) 34(8)
H(60B) 260(7) 460(30) 633(18) -202(18) 369(7) -188(11)
C(61) 109(3) 148(5) 349(9) 30(6) -140(5) -40(4)
H(61A) 197(11) 142(9) 740(50) -4(17) -64(19) 140(7)
H(61B) 175(13) 131(9) 600(40) -141(14) -17(19) -47(9)
H(61C) 1190(50) 217(8) 1360(30) 524(11) -1000(30) -394(15)
C(62) 238(6) 72(3) 292(8) -73(4) -156(5) 82(3)
H(62A) 245(15) 128(11) 261(18) -6(11) -91(14) 53(10)
H(62B) 87(4) 182(8) 99(6) -2(6) 32(4) -80(5)
C(63) 114(4) 205(7) 106(4) 3(4) 26(3) 5(4)
H(63A) 176(10) 179(9) 226(14) -63(10) -10(10) 99(8)
H(63B) 162(9) 89(6) 159(9) 64(6) 46(7) 27(6)
C(64) 208(5) 63(3) 323(7) 41(4) -203(4) -6(3)
H(64A) 295(12) 224(14) 292(14) 46(11) -194(10) 100(11)
H(64B) 172(6) 105(7) 241(8) 55(6) 159(5) 40(5)
H(1) 31(3) 154(6) 66(4) 57(4) 1(3) 20(4)
H(2) 59(3) 37(3) 64(4) 11(3) 15(3) 7(3)
H(3) 57(3) 34(3) 75(4) -12(3) 30(3) -8(3)
H(4) 44(3) 65(4) 94(5) 10(4) -4(3) 6(3)
H(5) 61(3) 56(4) 52(4) 8(3) 17(3) -3(3)
207
H(6) 45(3) 52(3) 47(4) 9(3) 1(3) 29(3)
H(7) 40(3) 39(3) 80(4) -17(3) 6(3) 4(3)
H(8) 45(3) 127(5) 113(5) 90(4) -2(4) 16(4)
H(9) 49(3) 121(5) 97(5) 63(4) 20(3) 37(4)
H(10) 38(3) 138(6) 69(5) -2(5) 5(3) -18(4)
H(11) 53(3) 95(5) 50(4) -17(3) 15(3) -36(3)
_________________________________________________________________
Hydrogen coordinates ( x 10
4
) and isotropic displacement parameters (Å
2
x 10
3
).
_________________________________________________________________
x y z U(eq)
_________________________________________________________________
H(6A) 4126(8) 943(4) 4970(7) 162(4)
H(6B) 4595(5) 1454(3) 4986(4) 90(3)
H(6C) 3865(9) 1284(5) 4250(5) 175(5)
H(7A) 3416(7) 2316(4) 4654(6) 177(4)
H(7B) 4316(6) 2178(4) 5323(8) 155(5)
H(7C) 3353(10) 2524(3) 5590(11) 165(6)
H(8A) 873(10) 2425(3) 5427(7) 136(4)
H(8B) 1837(8) 2538(3) 6175(10) 156(6)
H(8C) 906(5) 2246(2) 6353(6) 103(4)
H(9A) 180(6) 1555(3) 6308(4) 100(3)
H(9B) 404(6) 1019(3) 6059(7) 117(4)
H(9C) 38(6) 1398(3) 5414(4) 102(3)
H(10A) 1619(7) 748(3) 4633(6) 99(3)
H(10B) 1616(6) 547(2) 5531(6) 125(3)
H(10C) 2676(8) 575(3) 5041(7) 175(4)
H(16A) 2514(7) -782(3) 8207(5) 110(3)
H(16B) 1785(6) -314(3) 8145(4) 96(3)
H(16C) 2885(8) -323(3) 8733(5) 106(3)
H(17A) 4929(9) -670(3) 8290(6) 163(4)
H(17B) 4600(7) -208(5) 8692(6) 159(5)
H(17C) 5440(9) -187(5) 8141(7) 160(5)
H(18A) 5592(5) -503(3) 6139(6) 116(3)
208
H(18B) 5942(6) -209(3) 6949(5) 93(3)
H(18C) 5624(5) 58(2) 6209(5) 77(3)
H(19A) 4150(7) 51(3) 5296(5) 96(3)
H(19B) 2900(6) -135(3) 5140(5) 87(3)
H(19C) 3912(6) -479(3) 5305(4) 87(3)
H(20A) -202(5) -6(3) 6608(7) 121(4)
H(20B) 754(6) 349(3) 6643(5) 103(3)
H(20C) 569(6) 62(3) 7430(6) 117(3)
H(21A) 1589(7) -659(3) 5113(5) 107(3)
H(21B) 1250(6) -113(2) 5103(5) 87(3)
H(21C) 379(7) -469(3) 5239(6) 123(4)
H(22A) 1471(7) -1171(2) 6581(7) 131(4)
H(22B) 267(5) -1004(3) 6542(7) 120(4)
H(22C) 1025(7) -953(2) 7341(6) 100(3)
H(28A) 1073(6) 1940(3) 10508(5) 116(3)
H(28B) 1189(7) 2103(3) 9669(6) 111(3)
H(28C) 2297(7) 2119(3) 10199(5) 106(3)
H(29A) 3961(10) 1778(5) 10179(9) 203(6)
H(29B) 4291(9) 1211(5) 10370(10) 188(6)
H(29C) 3552(7) 1566(5) 10901(6) 154(5)
H(30A) 3447(7) 352(3) 10479(7) 170(4)
H(30B) 4188(7) 597(3) 9954(8) 163(5)
H(30C) 3514(11) 240(4) 9601(7) 182(5)
H(31A) 763(7) 222(2) 9764(5) 114(3)
H(31B) 1780(6) 83(3) 9349(6) 93(3)
H(31C) 867(7) 310(3) 8823(6) 108(3)
H(32A) -782(7) 1256(5) 7777(7) 147(5)
H(32B) 248(10) 913(4) 7864(5) 136(4)
H(32C) 419(9) 1457(3) 7880(5) 125(4)
H(33A) -662(8) 1819(4) 9922(7) 160(4)
H(33B) -1418(7) 1736(3) 9101(6) 113(4)
H(33C) -260(9) 2025(4) 9078(6) 142(4)
H(34A) -1685(6) 919(5) 9235(8) 160(5)
H(34B) -816(6) 482(3) 9335(8) 156(5)
209
H(34C) -1067(10) 798(5) 10058(7) 219(6)
H(40A) 6556(8) 2364(3) 8694(5) 112(3)
H(40B) 6691(6) 2358(2) 7744(4) 74(2)
H(40C) 7756(5) 2245(2) 8301(5) 82(3)
H(41A) 6880(7) 1840(5) 9853(5) 167(5)
H(41B) 5969(10) 1444(5) 10015(6) 170(5)
H(41C) 5687(8) 1899(4) 9637(5) 127(4)
H(42A) 6901(9) 587(4) 9591(9) 262(5)
H(42B) 5806(10) 759(4) 9713(7) 152(5)
H(42C) 5847(10) 444(3) 9097(6) 144(4)
H(43A) 6673(8) 282(3) 7885(10) 179(7)
H(43B) 7816(6) 514(3) 7639(7) 134(4)
H(43C) 6836(6) 531(3) 7015(6) 105(3)
H(44A) 7959(9) 1260(3) 5623(6) 127(4)
H(44B) 7222(8) 872(4) 6037(6) 163(4)
H(44C) 8486(8) 952(4) 6459(8) 149(5)
H(45A) 7984(8) 2322(4) 6911(8) 141(4)
H(45B) 8528(7) 2031(4) 6144(5) 127(4)
H(45C) 8885(6) 1918(3) 7021(5) 105(3)
H(46A) 5959(7) 2119(3) 6397(6) 122(4)
H(46B) 5612(8) 1574(6) 6072(6) 189(7)
H(46C) 6386(7) 1894(5) 5580(5) 150(5)
H(52A) 3129(8) 2671(3) 9706(4) 104(3)
H(52B) 1938(6) 2804(3) 9315(4) 83(3)
H(52C) 2721(8) 3220(3) 9563(4) 106(3)
H(53A) 4889(10) 3070(4) 9417(7) 268(5)
H(53B) 5643(9) 2905(5) 8811(8) 177(6)
H(53C) 5062(10) 2599(5) 9170(9) 163(6)
H(54A) 5159(5) 2892(3) 6704(6) 153(3)
H(54B) 5748(5) 2927(3) 7540(7) 120(4)
H(54C) 5289(7) 3368(3) 7071(7) 164(4)
H(55A) 3111(7) 3554(3) 6492(4) 92(3)
H(55B) 2439(7) 3116(3) 6207(4) 95(3)
H(55C) 3664(7) 3116(3) 6143(5) 104(3)
210
H(56A) 633(11) 2528(4) 8574(7) 173(5)
H(56B) 472(10) 2456(3) 7666(7) 147(4)
H(56C) -334(6) 2775(4) 8016(8) 157(5)
H(57A) -25(7) 3474(3) 6828(6) 123(4)
H(57B) 752(8) 3116(3) 6426(5) 104(3)
H(57C) 1132(6) 3637(2) 6658(5) 91(3)
H(58A) 1174(8) 3530(3) 9015(4) 95(3)
H(58B) 219(6) 3715(3) 8351(6) 106(3)
H(58C) 1503(6) 3892(3) 8289(5) 85(3)
H(59A) 32(6) -747(4) 8431(8) 159(5)
H(59B) -683(14) -907(4) 8980(8) 203(6)
H(59C) -277(12) -477(3) 8990(6) 141(5)
H(60A) 6902(12) 3808(4) 6944(8) 160(6)
H(60B) 8104(9) 3993(9) 6904(12) 442(11)
H(61A) -1553(12) 3251(5) 7770(20) 360(16)
H(61B) -2511(14) 3052(5) 7572(17) 303(13)
H(61C) -2100(30) 3118(5) 8324(18) 944(18)
H(62A) -2310(14) -386(5) 7358(11) 213(8)
H(62B) -1177(6) -590(4) 7300(5) 122(3)
H(63A) -1748(11) -242(5) 8670(10) 194(6)
H(63B) -1056(10) -90(3) 8154(7) 136(4)
H(64A) 2910(13) 1030(6) 3350(10) 275(7)
H(64B) 1743(7) 1256(4) 3137(6) 169(4)
H(1) 3357(4) 1321(3) 7387(4) 84(3)
H(2) 3949(4) 898(2) 8270(4) 53(2)
H(3) 3914(4) 1653(2) 8519(4) 55(2)
H(4) 4908(5) 740(2) 7253(4) 68(2)
H(5) 2385(5) 603(2) 8013(3) 56(2)
H(6) 2286(4) 1943(2) 8427(3) 48(2)
H(7) 4808(4) 2065(2) 7651(4) 53(2)
H(8) 2185(5) 1009(3) 6878(5) 95(3)
H(9) 3848(5) 1089(3) 6440(4) 89(2)
H(10) 2150(5) 1737(3) 7163(4) 81(3)
H(11) 3800(4) 1818(2) 6698(3) 66(2)
211
Reference Section 3-5.
[1] Hart, D. W.; Teller, R. G.; Wei, C. Y.; Bau, R.; Longoni, G.; Campanella, S.;
Chini, P.; Koetzle, T. F.: Angew. Chem. Int. Ed. Engl. 1979, 18, 80.
[2] Hart, D. W.; Teller, R. G.; Wei, C. Y.; Bau, R.; Longoni, G.; Campanella, S.;
Chini, P.; Koetzle, T. F.: JACS. 1981, 103, 1458.
[3] Bau, R.; Drabnis, M. H.; Garlaschelli, L.; Klooster, T.; Xie, Z.; Koetzle, T. F.;
Martinengo, S.: Science, 1997, 275, 1099.
[4] Yousufuddin, M.; Gutmann, M. J.; Baldamus, J.; Tardif, O.; Hou, Z.; Mason, S.
A.; McIntyre, G. J.; Bau, R.: JACS, 2008, 130, 3888.
[5] Cui, D.; Tardif, O.; Hou, Z.: J. Am. Chem. Soc., 2008, 126, 5, 1312-1313.
[6] Shin, J.; Parkin, G.: Polyhedron, 1994, 13, 1489-1493.
[7] Okuda, J.; Murray, R.; Dewan, J.; Schrock, R.: Organometallics, 1986, 5,
1681-1690.
[8] SMART Software Users Guide, Version 5.1, Bruker Analytical X-Ray Systems,
Inc.; Madison, WI, 1999.
[9] SAINT Software Users Guide, Version 6.0, Bruker Analytical X-Ray Systems,
Inc.; Madison, WI, 1999.
[10] Sheldrick, G.M.: SADABS, Version 2.10, Bruker Analytical X-Ray Systems,
Inc.; Madison, WI, 2002.
[11] Sheldrick, G.M.: SHELXTL, Version 6.12, Bruker Analytical X-Ray Systems,
Inc. Madison, WI, 2001.
[12] International Tables for X-Ray Crystallography 1992, Vol. C., Dordrecht:
Kluwer Academic Publishers.
[13] Tanaka, I.; Kurihara, K.; Chatake, T.; Niimura, N.: J. Phys. Soc. Jpn., Suppl.
A., 2001, 70, 459.
[14] Tanaka, I.; Kurihara, K.; Chatake, T.; Niimura, N.: J. Appl. Crystallogr. 2002,
35, 34.
[15] Niimura, N.; Karasawa, Y.; Tanaka, I.; Miyahara, J.; Takahashi, K.; Saito, H.;
Koizumi, S.; Hidaka, M.: Nucl. Instrum. Methods Phys. Res., Sect. A. 1994, 349,
521.
212
[16] Haga, Y.; Kumazawa, S.; Niimura, N.: J. Appl. Crystallogr. 1999, 32, 878.
[17] Otwinowski, Z.; Minor, W.: Processing of X-ray Diffraction Data Collected in
Oscillation Mode, Methods in Enzymology, ed. by C. W. Carter, Jr.: R. M. Sweet
Academic Press, 1997, Col. 276, Part A, pp. 307-326.
[18] http://www.ill.eu/instruments-support/instruments groups/instruments
/d19 / characteristics/
[19] Wilkinson, C.; Khamis, H. W.; Stansfield, R. F. D.; McIntyre, G.J.: J. Appl.
Crystallogr., 1998, 21, 471.
[20] Matthewman, J.C.; Thompson, P.; Brown, P.J.: J. Appl. Crystallogr., 1982,
15, 167.
[21] Wilkinson, C.; Cowan, J. A.; Myles, D. A. A.; Cipriani, F.; McIntyre G. J.:
Neutron News, 2002, 13, 37.
[22] McIntyre, G. J.; Lemée-Cailleau, M. H.; Wilkinson, C: Physica B, 2006, 385-
386, 1055.
[23] The b lattice parameter of 30 Å is one of the longest that has been studied
on VIVALDI, yet it did not cause undue difficulties in the integration of reflections
in the un-twinned phase due to excessive overlap of spots. The initial indexing
did prove difficult, even with our knowing the likely unit cell. Finally the spots
were indexed by trial and error by initially assuming a cubic cell, and
subsequently adjusting or transforming the cell to cater for observed systematic
absences. This eventually gave a unit cell that could be rescaled to that of the
known X-ray unit cell. A little trick was also needed to obtain refinement of Laue
spots over as large an area of the detector as possible, viz. the b value was
halved for orientation refinement, then restored to the correct value for
integration. At 295K the data were too weak on the higher-angle regions of the
image plate detector to allow any plausible models to be determined; the model
integration envelopes found at 150K were used to integrate the reflections at
295K.
[24] Campbell, J.W.; Hao, Q.; Harding, M. M.; Nguti, N. D.; Wilkinson, C.: J. Appl.
Crystallogr., 1998, 31, 23.
[25] Campbell, J. W.; Habash, J.; Helliwell, J. R.; Moffat, K.: Information Quarterly
for Protein Crystallography, 1986, No. 18. SERC Daresbury Laboratory,
Warrington, England.
[26] Stewart, T.; Shima, T.; Hou, Z.: unpublished results.
213
[27] Hanke D.; Wieghardt, K.; Nuber B.; Lu, R. S.; McMullan, R. K.; Koetzle, T. F.;
Bau. R.: Inorg Chem. 1993, 32, 4300.
[28] Brown, R. K.; Williams, J. M.; Sivak, A. J.; Muetterties, E. L.; Inorg. Chem.
1980, 19, 370.
[29] Ricci, J. S.; Koetzle, T. F.; Goodfellow, R. J.; Espinet, P.; Maitlis, P. M.: ibid.
1984, 23, 1828.
214
CHAPTER 4
Diffraction Studies on Actinide Complex [(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
Introduction 4-1.
Evans group is actively investigating actinide hydride complexes as multi-
electron reductants. Recent studies of the sterically crowded organoactinide
complex (C
5
Me
5
)
3
U [2] have shown that it can function as a multi-electron
reductant by combining its traditional U
3+
reductive chemistry [3-5] with (C
5
Me
5
)
1-
based reduction [6,7]. This type of ligand-based reduction is called sterically
induced reduction since it occurs only in complexes with unusually long metal
ligand bonds [8]. Evans group contacted us to further investigate these unusually
long actinide metal ligand bonds by means of neutron diffraction studies.
The length of the U-H single bond has never been accurately measured,
especially that in a molecular compound by single-crystal neutron diffraction. In
solid state literature, the structure of UH
3
had been analyzed by Rundle more
than 50 years ago [9,10]. However, in Rundle’s study, the hydrogen atoms are
embedded in the interstitial sites of the metal lattice, and the bonding in that
compound is profoundly different from the classical 2-electron single bond that
we analyzed in our target compound, the dimeric complex [(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
.
Another somewhat related study involved a single-crystal investigation of
polymeric [(BH
4
)
4
U]
n
. In this complex uranium-hydrogen bonding is again
completely different, consisting solely of U-H-B bridged bonds [11]. The closest
analogy to this phenomenon is the single-crystal neutron study of the
215
isostructural thorium analog [(C
5
Me
5
)
2
Th(H)( µ-H
2
)]
2
conducted by Broach and co-
workers in 1979 [12] (Figure 4-1).
We were able to grow single-crystal samples of neutron diffraction size (
>4 mm
3
) of the title compound [(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
., which presented us with
the unique opportunity to not only accurately measure terminal U-H and bridging
U-H-U distances but also,
compare them with the reported thorium analog [12].
The length of a simple covalent bond between the lightest and heaviest of the
naturally-occurring elements was an unknown quantity until our present study
that elucidated this key parameter. Due to difficulties in this study we collected
neutron data at two different sources. Initially, data was collected at I.S.I.S.
located in Didcot, United Kingdom; and more recently at I.L.L. in Grenoble,
France. Herein the results are discussed along with comparison between both
I.S.I.S. SXD and I.L.L. D19 instruments.
216
Figure 4-1. ORETP perspective view of the [(C
5
Me
5
)
2
Th(H)( µ-H
2
)]
2
dimer as
determined by single-crystal neutron diffraction with the automatic diffractometer
at Oak Ridge High Flux Isotope Reactor ( λ = 1.016 Å). For clarity, hydrogen
atoms on the four pentamethylcyclopentadienyl ligands are not included [12].
Experimental Section 4-2.
General Procedures. The manipulations described below were performed
under argon with rigorous exclusion of air and water using a Schlenk, vacuum
line, and glovebox techniques. Solvents were dried over Q-5 and molecular
sieves, and were saturated with argon using GlassContour[13] columns.
Compound (C
5
Me
5
)
2
UMe
2
was subsequently used to synthesize
[(C
5
Me
5
)
2
U(H)(µ-H
2
)]
2
, and were prepared as previously described [14]. NMR
spectra were recorded with a Bruker DRX 500 MHz system. Infrared spectra
were recorded as KBr pellets on a PerkinElmer Spectrum One FT-IR
spectrometer. X-ray and neutron data collection parameters are given in Table 4-
217
1, and full crystallographic information is given in the corresponding following
sections.
Crystallization of [(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
. Addition of 4 mL of hot hexane
and 4 mL of hot toluene to (C
5
Me
5
)
2
UMe
2
(668 mg, 1.25 mmol) produced a
saturated red solution that was transferred to a Fisher Porter high pressure
reaction vessel. This was degassed to the vapor pressure of the solvent and
pressurized to 80 psi with H
2
gas. After 2 days, large black crystalline rods were
formed. The pressure was reduced to 20 psi, the reaction vessel was brought into
the argon glove box, and the vessel was evacuated to the vapor pressure of the
solvent and backfilled with argon three separate times. The mother liquor solvent
was decanted to leave black crystals that were analyzed by
1
H NMR and IR
spectroscopy to be [(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
[14]. X-ray samples were transferred
directly from the glove box to streaming nitrogen for diffraction sample selection.
To obtain larger (approximately 4 mm
3
in size) neutron diffraction quality
crystal samples, they must remain in the Fisher Porter high pressure reaction
vessel at 80 psi with H
2
gas for 10 days; a week longer than the X-ray sized
samples. As long as the crystals sit in the reaction vessel at high pressure they
continue to grow. If we leave our title complex for greater than 10 days, many
crystal samples grow on top of each other making it difficult to separate into
single samples.
Since a large crystal of [(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
could be grown, attempts to
obtain neutron diffraction data were sought. Because [(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
converts to [(C
5
Me
5
)
2
UH]
2
in the absence of one atmosphere of hydrogen gas, a
218
method for sealing the crystals under hydrogen gas was devised (Figure 4-2).
Crystals of [(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
mounted and sealed by this procedure showed
no significant decomposition for months at room temperature.
The procedure for mounting crystal samples under hydrogen gas was
successful, and to the best of our knowledge this discovery is original. We have
not found any published literature on sealing crystal samples in a hydrogen
atmosphere. Therefore, instructions on how to perform this procedure is
elaborated in the following section.
Procedure for sealing [(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
crystal under hydrogen gas.
Eleven step procedure to mount single-crystal samples in a hydrogen
environment, schematic shown in Figure 4-2. 1). Introduce a constriction in a 3-4
mm inner diameter quartz tube about 2.0-2.5 cm from one end. Using a thinner
walled ampule is better because it is easier to seal. An ampule of 0.5-0.8 mm
thickness worked well for us. 2). Insert quartz wool into quartz tubing and pack it
down gently next to the constriction on the long side of the tube. 3). have all parts
into the glovebox. 4). Insert crystal into open end of quartz tubing (crystal can be
coated with vacuum grease, but this may make it more difficult to seal quartz
tubing with a torch. Any impurities on the quartz glass make it more difficult to
seal). 5). Pack quartz wool on top of the crystal. It may be easier to pack if the
quartz wool is pre-rolled before transferring the apparatus to the glovebox. 6).
Place a septum over the long end of the quartz tubing and seal a J-young adapter
to the short end near the constriction. 7). Bring apparatus out of the glovebox and
attach it to a Schlenk line fitted with a J-young tube fitting. Evacuate the head
219
space of the J-young fitting. 8). Introduce hydrogen gas into the system by
opening the J-young adapter. 9). Insert needle in septum and light the hydrogen
gas that exits with a flame. 10). Seal the large end of the quartz tubing with a
torch. 11). Seal the constricted end of the quartz tubing with a torch.
Figure 4-2. Diagram for sealing crystals of [(C
5
Me
5
)
2
U(H)(µ-H
2
)]
2
under H
2
.
Sealing process insured title complex longer shelf-life resisting decomposing.
X-ray Data Collection, Structure Determination and Refinement for
[(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
. At University of San Diego, a black cubic crystal of
approximate dimensions 0.17 x 0.10 x 0.10 mm
3
was mounted on a Cryoloop
with Paratone oil and transferred to a Bruker CCD platform diffractometer. The
data were collected in a nitrogen gas stream at 208(2) K using phi and omega
scans. The crystal-to-detector distance was 60 mm and exposure time was 5
220
seconds per frame using a scan width of 0.3
o
. The SMART [15] program package
was used to determine the unit-cell parameters and for data collection (25 sec /
frame scan time for a sphere of diffraction data). The raw frame data was
processed using SAINT [16] and SADABS [17] to yield the reflection data file.
Subsequent calculations were carried out using the SHEXLTL [18] program. The
structure was solved by direct methods (SIR-97) and refined on F
2
by full-matrix
least squares techniques to produce a complete heavy-atom phasing model
consistent with the proposed structure. The analytical scattering factors [19] for
neutral atoms were used throughout the analysis. Data collection was 99.9%
complete to 25.00
o
in theta. A total of 13055 reflections were collected covering
the -25<= h <=13, -16<= k <=17, -21<= l <=19. 4442 reflections were found to be
symmetry independent, with a R
int
of 0.0305. Indexing and unit-cell refinement
indicated a C centered, monoclinic lattice. The space group was found to be C2/c
(No. 15). All non-hydrogen atoms were refined anisotropically by the full matrix
least-squares (SHELXL-97). All hydrogen atoms, with the exception of the
hydride hydrogen H(1)U, were placed using a riding model corresponding to the
respective carbon. Their positions were constrained using an appropriate HFIX
card in SHEXL-97 software. The hydride hydrogen H(1)U was located from the
difference map and its position was refined isotropically.
Final structure refinement for [(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
convergence resulted
in R
1
= 0.048 and wR
2
= 0.119 for those data I > 2 σ(I). The data to parameter
ratio is 18 : 1 and Goodness-of-fit on F
2
equals 1.103. Z equals 8 and unit cell
221
dimensions: a = 18.897(1) Å, b = 12.877(1) Å, c = 16.219(1) Å, and β =
104.811(1)
o
. Relevant crystallographic data is summarized in Table 4-1.
At University of Southern California, a black cubic crystal of approximate
dimensions 0.7 x 0.5 x 0.5 mm
3
was mounted on a Cryoloop with Paratone oil
and transferred to a Bruker CCD platform diffractometers with a graphite fine-
focused monochromatic Mo-K α radiation ( λ = 0.71073 Å). The data were
collected in a nitrogen gas stream at 148(2) K using phi and omega scans. The
crystal-to-detector distance was 60 mm, and the exposure time was 10 seconds
per frame using a scan width of 0.3
o
. The SMART [15] program package was
used to determine the unit-cell parameters and for data collection (20 sec / frame
scan time for a hemisphere of diffraction data) up to a resolution of 0.77 Å. The
raw frame data was processed using SAINT [16] and SADABS [17] to yield the
reflection data file. Subsequent calculations were carried out using the SHEXLTL
[18] program. The structure was solved by direct methods (SIR-97) and refined
on F
2
by full-matrix least squares techniques to produce a complete heavy-atom
phasing model consistent with the proposed structure. The analytical scattering
factors [19] for neutral atoms were used throughout the analysis. Data collection
was 97.4% complete to 1.93
o
- 27.44
o
in theta. A total of 11069 reflections were
collected covering the -24<= h <=21, -16<= k <=15, -11<= l <=20. 4231
reflections were found to be symmetry independent, with a R
int
of 0.0489.
Indexing and unit-cell refinement indicated a C centered, monoclinic lattice. The
space group was found to be C2/c (No. 15). All non-hydrogen atoms were refined
anisotropically by the full matrix least-squares (SHELXL-97). All hydrogen atoms
222
were placed using a riding model corresponding with the respective carbon. Their
positions were constrained using an appropriate HFIX cards in SHEXL-97
software.
Final structure refinement for [(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
convergence resulted
in R
1
= 0.055 and wR
2
= 0.1437 for those data I > 2 σ(I). The data to parameter
ratio is 21: 1 and Goodness-of-fit on F
2
equals 1.039. Z equals 8 and unit cell
dimensions: a = 18.968(3) Å, b = 12.864(2) Å, c = 16.141(3) Å, and β =
104.680(2)
o
. Relevant crystallographic data is summarized in Table 4-1. Full
crystallographic data is listed in Table 4-4.
Neutron Data Collection, Structure Determination and Refinement
[(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
. Neutron diffraction data were collected at 30 K on SXD,
the single crystal diffractometer at I.S.I.S. spallation neutron source [20]. The
ampule was mounted in an aluminum block and was shielded with cadmium to
minimize background scattering from the aluminum. Each crystal orientation was
exposed to the neutron beam for 2.5 hours per orientation, at positions of ω = –90,
–150, –40, 0, +90 (5 orientations). Then the crystal was tilted by 45 degrees in χ,
and 4 more orientations were collected, ω = +90, +150, +130 and 0, yielding a
total of 11 sets of data, with each set consisting of results from 11 detectors. Data
reduction, integration and absorption correction were performed using the
SXD2001 software. The intensities are extracted using a least-squares procedure
with a “three-dimensional Gauss-ellipsoid, taking into account the asymmetry
with respect to time-of-flight as a profile function. For the absorption correction,
223
the following expression was used: µ = 3.1447 + 0.0063 * λ. ( λ = wavelength in Ǻ,
µ in cm
-1
). The minimum, maximum and average transmissions were 1.618,
2.262, and 1.715 respectively. Minimum d-spacing is equal to 0.31 Ǻ, and the
wavelength ranged from 0.37 to 8.8 Ǻ. The minimum and maximum 2 θ values
were 12.5 and 165 degrees respectively. As part of the time-sorted Laue
procedure, the wavelength range and 2 θ range are combined (i.e. at each 2 θ
value), and the full wavelength range is recorded.
Initial USC X-ray atomic coordinates of the primary uranium and carbon
framework were used to phase the neutron residual file. The final refinement of
the structural analysis gives an agreement fact of 17.8% for 2478 unique
reflections, R1 = 16.5%, wR2 = 43.0%, for those data I > 2 σ(I) and all atoms
refined anisotropically. Data to parameter ratio is 15:1and Goodness-of-fit on F
2
equals 0.997. Z equals 8 and unit cell dimensions: a = 18.943(4) Å, b = 12.817(3)
Å, c = 16.128(4) Å, and β = 104.742(3)
o
. Relevant crystallographic data is
summarized in Table 4-1.
We attempted the 33 K collection temperature to improve disorder in the
pentylmethylcyclopentadienyl ligands ((C
5
Me
5
)
1-
) rings. Previous to my 150 K X-
ray work, repeated attempts to obtain X-ray diffraction data in the typical low
temperature range around 165 K were unsuccessful because the crystals
cracked during data collection. I am the first to obtain cold temperature data.
Therefore, we used our 148 K data to phase the neutron data set. However, the
cooler temperature did not improve (C
5
Me
5
)
1-
ring disorder. We located an
224
obvious case of position disorder in the (C
5
Me
5
)
1-
ring ligands located in the
cyclopentadienyl flat plane. Second set of Q peaks were located and assigned a
corresponding label to its primary component. A second FVAR cards was added;
the site occupancy factors (sof) of PART 1 were changed to one times the
second free variable and the sof of PART 2 were changed to one minus the value
of the second free variable. For clearer imaging, geometrical restraints DFIX were
applied to obtain target bond lengths and angles (1.34 Å sp2 C – C and 120
o
C1 –
C3). Also appearing are different nuclear configurations where the methyl
substituent group bond angles approach 110
o
and 125
o
in alternating pairs
instead of all bond angles 120
o
. Therefore, the methyl substituents were
restrained to a target 1.54 Å bond lengths and 120
o
angles.
A second better neutron diffraction data set was collected at 217 K on
D19, a single crystal diffractometer at Institut Laue Langevin in Grenoble, France.
I.L.L. is an older nuclear reactor source that emits a constant beam of neutron
radiation. Better results for our titled compound [(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
came from
a cubic black crystal, of approximate volume 5 mm
3
, which was sealed in the
quartz ampule under hydrogen gas. This was glued onto an Al base, which was
then mounted on a Displex cryo-refrigerator on the ILL thermal-beam
diffractometer D19 equipped with a new large horizontally-curved position-
sensitive detector [22-25]. This detector is mounted symmetrically about the
equatorial plane, with sample to detector distance of 76 cm, and subtends 30
degrees vertically and 120 degrees horizontally. It is based on a novel multi-wire
gas counter technology, which is described elsewhere. Readout of 256 x 640
225
pixels per frame, with pixel spacings 0.12 degrees vertically and 0.19 degrees
horizontally. The crystal was cooled slowly to 217 K (3 K / min), while monitoring
the diffraction pattern. The space group and the unit cell found by X-rays were
confirmed. The chosen neutron wavelength of 1.24803(3) Å from a Ge(115)
monochromator in reflection (take-off angle 70°), was accurately determined by
refining the 2 θ values of 1755 reflections from a DKDP standard crystal. The
accessible reflections, up to 2 θ ≤ 123.38°, were measured, to pre-set monitor
counts, in a series of 80° ω scans, typically in steps of 0.07° and counting times
of about 12 seconds per step. The average number of reflections per detector
frame (i.e. at any one orientation) was 75.
A range of crystal orientations (different φ and χ positions) was used to
explore as much of reciprocal space as time permitted. Because of its large
horizontal opening, only one detector position was required. Between the long
scans, three strong or medium reflections were monitored every 4 hours in
shorter scans, and showed no significant change. The ILL reactor ran at 55MW
during most of the experiment, and the total measurement time at 217 K was 3
days. The unit-cell dimensions were calculated (ILL program Rafd19) at the end
of the data collection, from the centroids in 3D of 4 strong reflections (6.3 ≤ 2θ ≤
123.9°).
Raw intensity data were corrected for vertical and horizontal positional
distortion by a procedure that is described elsewhere (Clergeau, personal
communication). Bragg intensities were integrated in 3D using a version of the
ILL program Retreat [26,27], modified for the new detector geometry. For the
226
4231 strongest reflections, the mean positional errors for the centroids were
0.02°, 0.05° and 0.03° (in the scan, horizontal, and vertical directions,
respectively).
A total of 11344 Bragg reflections was obtained, of which 3228 were
independent with -24 <= h <= 21, -16 <= k <=15, -11 <= l <=20. The Bragg
intensities were corrected for attenuation by the cylindrical Al and V Displex heat-
shields (minimum and maximum transmission coefficients 0.9015 and 0.9675 )
using the program D19abs (ILL program) [28].
Initial USC X-ray atomic coordinates of the primary uranium and carbon
framework were used to phase the neutron residual file from 217 K temperature.
Present SHELXL residual values for [(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
convergence result in
R
1
= 0.114 and wR
2
= 0.2597, for those data I > 2 σ(I). The data to parameter ratio
is 8 :1 and Goodness-of-fit on F
2
equals 1.001. Z equals 8 and unit cell
dimensions: a = 18.968(3) Å, b = 12.863(1) Å, c = 16.140(2) Å, and β =
104.680(2)
o
. Relevant crystallographic data is summarized in Table 4-1. Full
crystallographic data is listed in Table 4-5.
Again, we observed (C
5
Me
5
)
1-
ring disorder. We located the obvious cases
of position disorder in the (C
5
Me
5
)
1-
rings located in the cyclopentadienyl flat
plane. Second set of Q peaks were located and assigned a corresponding label
to its primary component. A second FVAR cards was added; the site occupancy
factors (sof) of PART 1 were changed to one times the second free variable and
the sof of PART 2 were changed to one minus the value of the second free
variable. For aesthetic purposes, geometrical restraints DFIX were applied to
227
obtain the target bond lengths and angles (1.34 Å sp2 C – C and 120
o
C1 – C3).
Also appearing are different nuclear configurations where the methyl substituent
group bond angles approach 110
o
and 125
o
in alternating pairs instead of all bond
angles 120
o
. Therefore, the methyl substituents were restrained to a target 1.54 Å
bond lengths and 120
o
angles.
Table 4-1. Crystallographic Data Collection Parameters for [(C
5
Me
5
)
2
U(H)(µ-
H
2
)]
2
.
a
Definitions: wR
2
= [ Σ[w(F
o
2
-F
c
2
)
2
] / Σ[w(F
o
2
)
2
] ]
1/2
, R
1
= Σ||F
o
|-|F
c
|| / Σ|F
o
|.
Empirical Formula
Facility
Source
C
40
H
64
U
2
UCSB
Mo X-Ray
C
40
H
64
U
2
USC
Mo X-Ray
C
40
H
64
U
2
I.S.I.S.
Spallation
C
40
H
64
U
2
I.L.L.
Reactor
Formula weight 1020.99 1016.94 1021.00 1016.94
Temperature (K) 208(2) 148(2) 33(2) 217
Λ (Å) 0.71073 0.71073 0.37 - 8.80 1.24803(3)
Crystal system Monoclinic Monoclinic Monoclinic Monoclinic
Space group C2/c C2/c C2/c C2/c
a (Å) 18.8970(1) 18.968(3) 18.943(4) 18.968(3)
b (Å) 12.8770(7) 12.864(2) 12.818(3) 12.863(2)
c (Å) 16.2190(9) 16.141(3) 16.129(4) 16.140(3)
α (deg) 90.000 90.000 90.000 90.000
β (deg) 104.811(1) 104.680(2) 104.742(15) 104.680(0)
γ (deg) 90.000 90.000 90.000 90.000
Crystal size (mm
3
) 0.0017 0.1750 4.0000 5.0000
Volume Å
3
3815.5(4) 3809.7(11) 3787.3(14) 3809.7(3)
Z 8 8 8 8
GOF 1.103 1.039 0.998 1.034
# of reflections 13055 11069 8838 16213
Indep. Reflcns. 4442 4231 2478 3228
ρ
calcd
(Mg/m
3
) 1.774 1.773 1.775 1.773
µ (mm
-1
) 8.502 8.515 8.580 8.530
R
1
[I > 2.0 σ(I)]
a
0.0477 0.0489 0.1653 0.1142
WR
2
(all data)
a
0.1225 0.1498 0.4300 0.2597
228
Results and DiDiscussion Section 4-3.
X-ray Structural Results. The solid state structure of [(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
was initially determined by single crystal X-ray diffraction analysis, shown in
Figure 4-3 for studies at both USC and UCSD. Crystallographic data, selected
bond distances, and angles are given in Tables 4-1 and 4-2. Repeated attempts
to obtain low temperature (150 K) X-ray diffraction data at UCSD were
unsuccessful since the crystals cracked during data collection. At room
temperature, the crystal showed no sign of cracking in the paratone oil used to
mount the crystals in a nylon loop. Ultimately, data collected at 208 K on a
modern instrument that had a shorter data collection time (less then 4 hours)
provided the first structural characterization of U-H bonding, and is shown in
Figure 4-3.
Our X-ray analyses from USC were successful in characterizing the title
complex at 148(2) K. Our goal was to more accurately locate the non-hydrogen
atoms by collecting data at colder temperatures. Neutron instruments cool to as
low as 2 K, and we were most interested to collect at the lowest temperature
possible to minimized atomic vibrations. In order to collect X-ray data at 150 K, it
was necessary to select the single-crystal sample under streaming nitrogen gas
and transfer the selected crystal in cryo-tongs to the goniometer head where
there was streaming nitrogen gas. This process of snap freezing kept the crystal
from cracking as we experienced during a room temperature cool down to 150 K.
229
Both X-ray samples crystallized in the space group C2/c. There is one
crystallographically independent molecule in the unit cell and the metallocenes
are equivalent by symmetry.
The average U •••U distance refined to be 3.648 Å. In the X-ray
data, one bridging hydride was located from the difference Fourier map and its
position refined isoptropically at 1.94(9) Å. The U-C(C
5
Me
5
) distances range from
2.720(4) to 2.888(6) Å, a wide range that may reflect the higher than usual data
collection temperature. The average mean distance is 2.766(1) Å. Important
angles in the structure are the (C
5
Me
5
)(centroid 1)C-U-C(C
5
Me
5
)(centroid 2) at
128.24
o
. Centroid 1-U-H(1) equals 115.3
o
, centroid 2-U-H(1) equals 101.0
o
, and
the U(1)-H(1)-U(1)A obtuse 116.25
o
and acute 51.25
o
angles.
Neutron Structural Results. Neutron analysis was successful to
characterize the title complex at 150 K and 217 K. Our goal was to accurately
locate the hydrogen atoms using the initial X-ray atomic coordinates to phase the
neutron residual data. Neutron instruments cool to as low as 2 K but were not
able to collect at such range because the samples would crack inside the quartz
glass ampule similar to our experience during X-ray data collection.
Neutron studies revea thatl the title compound crystallized in space group
C2/c. There is one crystallographically independent molecule in the unit cell and
the metallocenes are equivalent by symmetry.
The average U •••U distance refined to be 3.649 Å. Two uranium
bridging hydrides were located and refined anisoptropically to be 2.259(1) Å and
2.134(9) Å. A terminal hydride ligand was located 2.052(15) Å from uranium. The
230
U-C(C
5
Me
5
) distances range from 2.662(11) to 2.831(13) Å, an average distance
of 2.734(11) Å. Important angles in the structure are the (C
5
Me
5
)(centroid 1)C-U-
C(C
5
Me
5
)(centroid 2) at 126.81
o
. (Centroid 1)-U-H(1) equals 117.23
o
and
(centroid 2)-U-H(1) equals 98.08
o
; also given are U(1)-H(1)-U(1)A obtuse 110.20
o
and acute 60.30
o
angles. (Centroid 1)-U-H(1)A equals 87.89
o
, and (centroid 2)-U-
H(1)A equals 145.29
o
as shown in Figure 4-4.
Both neutron data sets indicated an additional bridging hydride atom
disordered about a special position. Uranium (IV) has 2 f-electrons, our NMR and
IR results suggest that there are a total of 4 hydrogens present [1]; for charge
balance: 2(U
4+
), 4(CP*
1-
monoanions), 4(monoanionic H
-
). If each uranium has
one terminal hydride, there should only be a net of 2 bridging hydrides. It is very
unlikely to have a U
5+
complex formed under reducing conditions under H
2
. We
expected there to be one regular bridging hydride (i.e. one hydride has a site
occupancy factor (sof) equaling 1.0) and one that is disordered between 2
positions (i.e. two hydrides have sof equaling 0.5 each) to make it look as if there
are three bridges. We explored two possibilities to eliminate the geometrical
problem. First, we changed the C2/c space group to a lower Cc space group,
which eliminates the two-fold symmetry axis with this particular special position.
However, three hydrides positions were once again located, indicating this was
not an resonable possibility. Second, a better possibility to explain our 3 bridging
disorder, we assumed disorder of the molecule about this third particular special
position, and allowed the site occupancy factors (sof) of all 3 bridging hydrides to
refine independently of the rest of the molecule. Based on the refined sof we
231
discovered the 3 separate positions to sum for a total 2 hydrides occupancy. We
find this result to be consistence with that from the X-ray data. Recall, we were
able to assign 1 hydride atom to our UCSD data. The site occupancy factor was
allowed to refine independently of the whole model and results gave a total of 1.4
hydrogens. Our neutron results have successfully located the remaining 0.4 and
1.0 terminal hydride positions fulfilling our title complex U
4+
complex charge
balance. The special position hydride has a U(1)-H(3) bond distance of 2.148(7)
Å. Important angles in the structure are the (centroid 1)-U-H(3) of 142.34
o
and
(centroid 2)-U-H(1) of 89.44
o
, also noted are the U(1)-H(3)-U(1)A obtuse 114.00
o
and acute 56.48
o
angles.
Discussion. Presented here is the first accurate covalent bond
measurement between the lightest and heaviest naturally occurring elements.
Successful single-crystal neutron diffraction has accurately determined both
terminal U-H (2.048 Å) and bridging U-H-U (2.141 Å) hydride distances.
Unlike X-ray sources, there are a limited number of facilities dedicated to
neutron scattering research. I.L.L. and I.S.I.S. represent two major science
facilities in the world. Despite I.L.L.’s older nuclear reactor design which emits a
constant beam of radiation, its high flux reactor delivers the most intense neutron
flux in the world (~58 MW). I.S.I.S. is a newer facility that is a spallation source
which emits a pulsed beam of neutrons. Spallation process is more efficient with
less heat production, a modest 160kW compared to I.L.L.’s steady state source.
Our neutron studies results from I.L.L. were slightly better on the basis of final
residual R
1
values of 11.5% compared with I.S.I.S. residual value of 16.4%. We
232
believe the difference in R values is not due to instrumentation differences but
partly due to data collection techniques. At I.S.I.S. we cooled the sample down to
30 K, not realizing the single crystal broke apart during data collection. We
depended on software to sort out the systematic inconsistency in the Laue plots,
and found it very difficult to eliminate all bad equivalents. Another contributing
factor was the collection time, which was only half the amount of time (1.5 days)
as data from I.L.L.. Learning from the results at I.S.I.S. we did not make the same
oversight at I.L.L.. Crystal samples were only cooled to 217K, and we spent 3 full
days collecting data. We believe that not cooling the sample as low and spending
more time collecting on the sample produced crystallographically better data in
this study. Despite the difference in residual values, both neutron sources and
corresponding data sets have comparable bond lengths and angles, especially
those concerning the H-U-H bridging and U-H terminal hydrides which are the
main focus of our neutron diffraction studies.
These results provide a unique opportunity to closely compare bond
angles and lengths to the isostructural thorium analog [(C
5
Me
5
)
2
Th(H)( µ-H
2
)]
2
[12]
shown in Table 3. Thorium (IV) has a covalent radius (206 pm) which is 10
picometers larger than uranium’s (IV) covalent radius (196 pm). This difference
accounts for the difference in their M-M distances 4.0 Å for Th and 3.6 Å for U,
and also the shorter M-C(ring) (2.83 Å to 2.73 Å) and M-H-M(bridging) (2.29 Å to
2.14 Å) bond lengths. The terminal hydride-M bond lengths are approximately
equal at 2.04 Å. The center of the cyclopentadienyl groups to the actinide metal
are in close agreement Cp*-Th-Cp* 130
o
and Cp*-U-Cp* 127
o
.
233
Our result provides the first true covalent bond measurement between U-H
and accurate metrical information about the second known organometallic
actinide hydride complex. Only further studies of this type will we begin to
elucidate the fascinating bonding characteristics between hydrides and metals.
Acknowledgment Section 4-4
This chapter is currently written for publication submission. Only slight
modifications were made to the chapter for purpose of the Ph.D. dissertation.
Synthesis work described in this chapter was conducted and published [1] by
Professor Williams Evans and Dr. Kevin Miller at University of California Irvine
(UCI). Initial X-ray diffraction studies at 208 K were carried out by Dr. Arnold
Rheingold of University of California San Diego. However, as a part of my work, I
later re-collected X-ray diffraction data at the University of Southern California
(USC) and solved the structure at a lower temperature (150 K) to phase our
neutron diffraction data sets. The single-crystal growth and sealing steps were
carried out in collaboration with Dr. Miller at UCI chemistry department.
234
Figure 4-3. Molecular structure of X-ray diffraction data of title complex
[(C
5
Me
5
)
2
UH
2
]
2
with thermal ellipsoids drawn at the 30% level final R
int
= 4.9%
and R
1
= 5.5%. A.) There is one crystallographically independent molecule in the
unit cell and the two metallocenes are equivalent by symmetry. Methyl hydrides
are excluded for clarity. B.) Same molecular orientation as (A) but entire methyl
substituents are excluded for clarity. C.) Molecular structure shows H(1) location
116.25
o
obtuse and 51.21
o
acute bond angle below the U(1)-U(1)A plane. D.)
Same molecular orientation as (C) with entire methyl substituents excluded. E.)
All carbon and corresponding hydrogens excluded for clarity. Bridging hydride
ligands viewed through uranium axis U(1) in-front and U(1)A behind, this
placement accounts for 1.6 occupancy of the expected 2.0. F.) Schematic (E) has
been rotated 180
o
about an axis horizontal to the plane of the paper.
A. B.
C. D.
E. F.
U1
U1A
H1A
H1
H1
U1
U1A
U1A
H1
U1
U1
H1A
H1
H1
U1
U1A
H1
U1
H1A
U1A
235
Figure 4-4. Molecular structure of the neutron diffraction data of title complex
[(C
5
Me
5
)
2
UH
2
]
2
with thermal ellipsoids drawn at the 30% level final R
int
= 5.1% and R
1
=
11.4%. A.) There is one crystallographically independent molecule in the unit cell and the
two metallocenes are equivalent by symmetry. Methyl hydrides are excluded for clarity.
B.) Same molecular orientation as (A) but entire methyl substituents are excluded for
clarity. C.) Molecular structure shows H(1) location 110.20
o
obtuse and 60.30
o
acute
bond angle below the U(1)-U(1)A plane. D.) Same molecular orientation as (C) with
entire methyl substituents excluded. E.) All carbon and corresponding hydrogens
excluded for clarity. Bridging hydride ligands viewed through uranium axis U(1) in-front
and U(1)A behind, this placement accounts for 1.6 occupancy of the expected 2.0. H(4
terminal)-U(1)-H(1) bond angle is 83.27
o
, H(4 terminal)-U(1)-H(1)A bond angle equals
129.90
o
. H(1)-U(1)-H(1)A bond angles is 60.30
o
F.) Schematic (E) has been rotated 180
o
about an axis horizontal to the plane of the paper.
F.
E.
D.
C.
B. A
U1
U
1
H1A
H4A H4 terminal
H1
U1
H4A H4 terminal
H1
U1A U1
U1A
U1
H4A
H4 terminal
H1
U1A
H1A H4A
H4 terminal
H1
U1A
H1
U1A U1
H4A H4 terminal
H1
H4A
H4 terminal
H1A
236
Table 4-2. Selected Bond Distances (Å) and Angles (degrees) for
[(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
.
Facility
Source
UCSB
Mo X-Ray
USC
Mo X-Ray
I.S.I.S.
Spallation
I.L.L.
Reactor
U(1)-U(1A) 3.606(6) 3.689(1) 3.694 3.603
U(1)-Cnt1 2.499 2.494 2.489 2.551
U(1)-Cnt2 2.475 2.486 2.478 2.449
U(1)-C(1) 2.801(9) 2.743 (9) 2.748(6) 2.742(11)
U(1)-C(2) 2.768(9) 2.743(9) 2.736(5) 2.740(18)
U(1)-C(3) 2.725(9) 2.803(9) 2.779(5) 2.764(9)
U(1)-C(4) 2.740(8) 2.774(9) 2.774(10) 2.708(9)
U(1)-C(5) 2.750(9) 2.727(9) 2.734(6) 2.662(11)
U(1)-C(11A) 2.867(6) 2.740(11)2.708(1) 2.831(13)
U(1)-C(12A) 2.809(7) 2.720(14)2.766(6) 2.787(10)
U(1)-C(13A) 2.794(7) 2.732(13)2.769(7) 2.807(11)
U(1)-C(14A) 2.843(7) 2.744(10) 2.735(10) 2.813(13)
U(1)-C(15A) 2.888(6) 2.735(12)2.749(7) 2.745(14)
U(1)-C(11B) 2.755(6) n/a 2.720(30) 2.700(16)
U(1)-C(12B) 2.754(7) n/a 2.776(16) 2.680(13)
U(1)-C(13B) 2.738(7) n/a 2.784(25) 2.674(14)
U(1)-C(14B) 2.729(6) n/a 2.680(19) 2.671(14)
U(1)-C(15B) 2.739(7) n/a 2.883(22) 2.689(14)
U(1)-H1U (bridge) 1.94(9) n/a 2.198(17) 2.148(7)
U(1)-H1UA (bridge) n/a n/a 2.125(9) 2.133(9)
U(1)-H3 (terminal) n/a n/a 2.029(23) 2.048(15)
Cnt1-U(1)-Cnt2 127.6 128.87 128.84 126.81
Cnt1-U(1)-H1U 115.3 n/a 138.51 117.23
Cnt1-U(1)-H1UA 92.6 n/a 88.92 87.89
Cnt2-U(1)-H1U 101.0 n/a 91.47 98.08
Cnt2-U(1)-H1UA 139.5 n/a 142.16 145.29
Cnt1-U(1)-H3 n/a n/a 94.12 92.31
Cnt2-U(1)-H3 n/a n/a 93.89 93.73
237
Table 4-3. Selected Bond Distances (Å) and Angles (degrees) by Neutron
Diffraction Studies of Characterized Actinide Hydride Compounds.
[(C
5
Me
5
)
2
Th(H)( µ-H
2
)]
2
[12] [(C
5
Me
5
)
2
U(H)( µ-H
2
]
2
M-H-M acute angle 58(1) 60(1)
M-H-M obtuse angle 122(4) 110(1)
M-M 4.007(8) 3.603
M-H (terminal) 2.03(1) 2.05(1)
M-H (bridging) 2.29(3) 2.14(1)
M-C(ring) 2.83(1) 2.73(1)
C(ring)-C(ring) 1.43(1) 1.44(1)
C(ring)-C(methyl) 1.50(1) 1.50(1)
centroid-M-centroid 130(1) 126(1)
238
Table 4-4. Full crystallographic [(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
information including
ORTEP generated numbering scheme with thermal ellipsoids drawn at 50% level
from X-ray data at 148 K collected at University of Southern California.
Identification code bisucpm
Empirical formula C20 H30 U
Formula weight 508.47
Temperature 148(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group C2/c
Unit cell dimensions a = 18.968(3) Å α= 90°.
b = 12.864(2) Å β= 104.680(2)°.
c = 16.141(3) Å γ = 90°.
Volume 3809.7(11) Å
3
Z 8
Density (calculated) 1.773 Mg/m
3
Absorption coefficient 8.515 mm
-1
F(000) 1936
Crystal size 0.7 x 0.5 x 0.5 mm
3
Theta range for data collection 1.93 to 27.44°.
Index ranges -24<=h<=21, -16<=k<=15, -11<=l<=20
Reflections collected 11069
Independent reflections 4231 [R(int) = 0.0489]
Completeness to theta = 27.44° 97.4 %
Absorption correction Empirical
Max. and min. transmission 0.1003 and 0.0659
Refinement method Full-matrix least-squares on F
2
Data / restraints / parameters 4231 / 0 / 200
Goodness-of-fit on F
2
1.039
Final R indices [I>2sigma(I)] R1 = 0.0549, wR2 = 0.1437
R indices (all data) R1 = 0.0620, wR2 = 0.1498
Largest diff. peak and hole 5.245 and -4.591 e.Å
-3
239
Atomic coordinates ( x 10
4
) and equivalent isotropic displacement parameters
(Å
2
x 10
3
). U(eq) is defined as one third of the trace of the orthogonalized U
ij
tensor.
x y z U(eq)
_________________________________________________________________
U(1) 697(1) 2673(1) 1884(1) 28(1)
C(1) 145(7) 895(10) 1023(7) 60(4)
C(2) 876(8) 718(8) 1291(7) 54(3)
C(3) 1222(6) 1317(9) 819(7) 49(3)
C(4) 741(7) 1929(8) 284(6) 50(3)
C(5) 30(6) 1696(12) 392(6) 66(4)
C(6) -673(16) 2070(30) -142(15) 270(30)
C(7) 840(20) 2638(12) -414(13) 156(15)
C(8) 1998(8) 1137(19) 792(17) 157(13)
C(9) 1239(17) -107(15) 1919(11) 144(11)
C(10) -479(14) 310(20) 1214(16) 192(16)
C(11) 1869(9) 3900(14) 1848(8) 77(5)
C(12) 1392(11) 4539(12) 2019(17) 107(8)
C(13) 1362(8) 4367(18) 2769(15) 101(8)
C(14) 1774(9) 3570(17) 3143(7) 97(7)
C(15) 2129(7) 3226(10) 2476(15) 94(7)
C(16) 2711(13) 2470(20) 2590(50) 440(60)
C(17) 1850(20) 3370(40) 4071(13) 390(40)
240
C(18) 954(14) 5120(30) 3190(30) 340(40)
C(19) 1060(20) 5370(30) 1400(40) 380(40)
C(20) 2210(20) 3980(30) 1090(20) 300(30)
_________________________________________________________________
Bond lengths [Å] and angles [°].
U(1)-C(12) 2.720(14)
U(1)-C(5) 2.727(9)
U(1)-C(13) 2.732(13)
U(1)-C(15) 2.735(12)
U(1)-C(11) 2.740(11)
U(1)-C(2) 2.743(9)
U(1)-C(1) 2.743(9)
U(1)-C(14) 2.744(10)
U(1)-C(4) 2.774(9)
U(1)-C(3) 2.803(9)
U(1)-U(1)#1 3.6890(7)
C(1)-C(2) 1.362(18)
C(1)-C(5) 1.426(19)
C(1)-C(10) 1.501(17)
C(2)-C(3) 1.364(16)
C(2)-C(9) 1.509(19)
C(3)-C(4) 1.340(16)
C(3)-C(8) 1.503(17)
C(4)-C(5) 1.433(18)
C(4)-C(7) 1.501(17)
C(5)-C(6) 1.475(19)
C(12)-U(1)-C(5) 125.8(7)
C(12)-U(1)-C(13) 26.4(6)
C(5)-U(1)-C(13) 151.5(7)
C(12)-U(1)-C(15) 47.5(5)
C(5)-U(1)-C(15) 128.7(5)
C(13)-U(1)-C(15) 47.5(4)
C(12)-U(1)-C(11) 27.6(6)
C(5)-U(1)-C(11) 116.4(4)
C(13)-U(1)-C(11) 44.1(5)
C(6)-H(6A) 0.9801
C(6)-H(6B) 0.9801
C(6)-H(6C) 0.9801
C(7)-H(7A) 0.9800
C(7)-H(7B) 0.9800
C(7)-H(7C) 0.9800
C(8)-H(8A) 0.9800
C(8)-H(8B) 0.9800
C(8)-H(8C) 0.9800
C(9)-H(9A) 0.9800
C(9)-H(9B) 0.9800
C(9)-H(9C) 0.9800
C(10)-H(10A) 0.9800
C(10)-H(10B) 0.9800
C(10)-H(10C) 0.9800
C(11)-C(12) 1.30(3)
C(11)-C(15) 1.33(2)
C(11)-C(20) 1.53(2)
C(12)-C(13) 1.25(3)
C(12)-C(19) 1.50(3)
C(13)-C(14) 1.34(3)
C(13)-C(18) 1.51(2)
C(14)-C(15) 1.48(3)
C(14)-C(17) 1.49(2)
C(15)-C(16) 1.45(2)
C(16)-H(16A) 0.9810
C(16)-H(16B) 0.9809
C(16)-H(16C) 0.9809
C(17)-H(17A) 1.0012
C(17)-H(17B) 1.0009
241
C(15)-U(1)-C(11) 28.1(5)
C(12)-U(1)-C(2) 137.5(7)
C(5)-U(1)-C(2) 48.7(4)
C(13)-U(1)-C(2) 146.3(5)
C(15)-U(1)-C(2) 99.2(4)
C(11)-U(1)-C(2) 110.4(5)
C(12)-U(1)-C(1) 153.1(7)
C(5)-U(1)-C(1) 30.2(4)
C(13)-U(1)-C(1) 175.1(5)
C(15)-U(1)-C(1) 127.7(4)
C(11)-U(1)-C(1) 132.6(4)
C(2)-U(1)-C(1) 28.8(4)
C(12)-U(1)-C(14) 46.8(5)
C(5)-U(1)-C(14) 159.9(5)
C(13)-U(1)-C(14) 28.3(6)
C(15)-U(1)-C(14) 31.2(5)
C(11)-U(1)-C(14) 46.9(3)
C(2)-U(1)-C(14) 120.6(6)
C(1)-U(1)-C(14) 147.4(6)
C(12)-U(1)-C(4) 104.5(7)
C(5)-U(1)-C(4) 30.2(4)
C(13)-U(1)-C(4) 130.0(5)
C(15)-U(1)-C(4) 98.8(6)
C(11)-U(1)-C(4) 87.9(4)
C(2)-U(1)-C(4) 47.4(3)
C(1)-U(1)-C(4) 48.6(3)
C(14)-U(1)-C(4) 129.9(5)
C(12)-U(1)-C(3) 111.0(7)
C(5)-U(1)-C(3) 47.8(3)
C(13)-U(1)-C(3) 128.9(4)
C(15)-U(1)-C(3) 84.3(4)
C(11)-U(1)-C(3) 85.9(4)
C(2)-U(1)-C(3) 28.4(3)
C(1)-U(1)-C(3) 47.1(3)
C(1)-C(5)-C(4) 105.1(9)
C(17)-H(17C) 1.0011
C(18)-H(18A) 0.9800
C(18)-H(18B) 0.9800
C(18)-H(18C) 0.9800
C(19)-H(19A) 0.9800
C(19)-H(19B) 0.9800
C(19)-H(19C) 0.9800
C(20)-H(20A) 1.1149
C(20)-H(20B) 1.1149
C(20)-H(20C) 1.1135
C(14)-U(1)-C(3) 113.7(6)
C(4)-U(1)-C(3) 27.8(3)
C(12)-U(1)-U(1)#1110.8(7)
C(5)-U(1)-U(1)#1103.9(3)
C(13)-U(1)-U(1)#191.0(4)
C(15)-U(1)-U(1)#1126.6(5)
C(11)-U(1)-U(1)#1135.1(3)
C(2)-U(1)-U(1)#1110.9(3)
C(1)-U(1)-U(1)#1 92.3(2)
C(14)-U(1)-U(1)#195.8(4)
C(4)-U(1)-U(1)#1134.1(3)
C(3)-U(1)-U(1)#1138.2(2)
C(2)-C(1)-C(5) 107.8(9)
C(2)-C(1)-C(10) 130.0(19)
C(5)-C(1)-C(10) 121.7(19)
C(2)-C(1)-U(1) 75.6(6)
C(5)-C(1)-U(1) 74.3(6)
C(10)-C(1)-U(1) 122.3(8)
C(1)-C(2)-C(3) 108.9(10)
C(1)-C(2)-C(9) 125.8(16)
C(3)-C(2)-C(9) 124.8(16)
C(1)-C(2)-U(1) 75.6(6)
C(3)-C(2)-U(1) 78.2(6)
C(9)-C(2)-U(1) 119.1(9)
C(4)-C(3)-C(2) 110.2(10)
242
C(1)-C(5)-C(6) 127(2)
C(4)-C(5)-C(6) 127(2)
C(1)-C(5)-U(1) 75.5(5)
C(4)-C(5)-U(1) 76.7(6)
C(6)-C(5)-U(1) 120.8(9)
C(5)-C(6)-H(6A) 109.5
C(5)-C(6)-H(6B) 109.5
H(6A)-C(6)-H(6B)109.5
C(5)-C(6)-H(6C) 109.5
H(6A)-C(6)-H(6C)109.5
H(6B)-C(6)-H(6C)109.5
C(4)-C(7)-H(7A) 109.4
C(4)-C(7)-H(7B) 109.5
H(7A)-C(7)-H(7B)109.5
C(4)-C(7)-H(7C) 109.5
H(7A)-C(7)-H(7C)109.5
H(7B)-C(7)-H(7C)109.5
C(3)-C(8)-H(8A) 109.5
C(3)-C(8)-H(8B) 109.5
H(8A)-C(8)-H(8B)109.5
C(3)-C(8)-H(8C) 109.5
H(8A)-C(8)-H(8C)109.5
H(10B)-C(10)-H(10C)
C(12)-C(11)-C(15)113.2(16)
C(12)-C(11)-C(20)126(3)
C(15)-C(11)-C(20)120(3)
C(12)-C(11)-U(1) 75.4(9)
C(15)-C(11)-U(1) 75.8(7)
C(20)-C(11)-U(1)124.6(10)
C(13)-C(12)-C(11)107.4(17)
C(13)-C(12)-C(19)132(4)
C(11)-C(12)-C(19)121(4)
C(13)-C(12)-U(1) 77.3(11)
C(11)-C(12)-U(1) 77.0(8)
C(19)-C(12)-U(1)117.7(12)
C(4)-C(3)-C(8) 125.8(16)
C(2)-C(3)-C(8) 122.9(16)
C(4)-C(3)-U(1) 74.9(5)
C(2)-C(3)-U(1) 73.3(5)
C(8)-C(3)-U(1) 128.1(8)
C(3)-C(4)-C(5) 107.9(10)
C(3)-C(4)-C(7) 130.0(18)
C(5)-C(4)-C(7) 121.6(18)
C(3)-C(4)-U(1) 77.3(6)
C(5)-C(4)-U(1) 73.1(5)
C(7)-C(4)-U(1) 121.9(8)
H(8B)-C(8)-H(8C)109.5
C(2)-C(9)-H(9A) 109.5
C(2)-C(9)-H(9B) 109.5
H(9A)-C(9)-H(9B)109.5
C(2)-C(9)-H(9C) 109.4
H(9A)-C(9)-H(9C)109.5
H(9B)-C(9)-H(9C)109.5
C(1)-C(10)-H(10A)109.5
C(1)-C(10)-H(10B)109.5
H(10A)-C(10)-H(10B)
C(1)-C(10)-H(10C)109.5
H(10A)-C(10)-H(10C)
H(18A)-C(18)-H(18C)
H(18B)-C(18)-H(18C)
C(12)-C(19)-H(19A)109.5
C(12)-C(19)-H(19B)109.5
H(19A)-C(19)-H(19B)
C(12)-C(19)-H(19C)109.4
H(19A)-C(19)-H(19C)
H(19B)-C(19)-H(19C)
C(11)-C(20)-H(20A)122.8
C(11)-C(20)-H(20B)122.8
H(20A)-C(20)-H(20B)
C(11)-C(20)-H(20C)122.7
243
C(12)-C(13)-C(14)114.2(16)
C(12)-C(13)-C(18)119(3)
C(14)-C(13)-C(18)127(3)
C(12)-C(13)-U(1) 76.3(8)
C(14)-C(13)-U(1) 76.4(9)
C(18)-C(13)-U(1)121.9(11)
C(13)-C(14)-C(15)102.9(12)
C(13)-C(14)-C(17)119(3)
C(15)-C(14)-C(17)137(3)
C(13)-C(14)-U(1) 75.4(6)
C(15)-C(14)-U(1) 74.0(7)
C(17)-C(14)-U(1)122.5(10)
C(11)-C(15)-C(16)131(4)
C(11)-C(15)-C(14)102.2(13)
C(16)-C(15)-C(14)125(4)
C(13)-C(18)-H(18B)109.5
H(18A)-C(18)-H(18B)
C(13)-C(18)-H(18C)109.4
H(20A)-C(20)-H(20C)
H(20B)-C(20)-H(20C)
C(11)-C(15)-U(1) 76.1(8)
C(16)-C(15)-U(1)121.8(11)
C(14)-C(15)-U(1) 74.7(6)
C(15)-C(16)-H(16A)109.7
C(15)-C(16)-H(16B)109.6
H(16A)-C(16)-H(16B)
C(15)-C(16)-H(16C)109.4
H(16A)-C(16)-H(16C)
H(16B)-C(16)-H(16C)
C(14)-C(17)-H(17A)111.7
C(14)-C(17)-H(17B)111.5
H(17A)-C(17)-H(17B)
C(14)-C(17)-H(17C)111.6
H(17A)-C(17)-H(17C)
H(17B)-C(17)-H(17C)
C(13)-C(18)-H(18A)109.5
Symmetry transformations used to generate equivalent atoms:
#1 -x,y,-z+1/2
Anisotropic displacement parameters (Å
2
x 10
3
). The anisotropic
displacement factor exponent takes the form: -2 π
2
[ h
2
a*
2
U
11
+ ... + 2 h k a* b*
U
12
_________________________________________________________________
U
11
U
22
U
33
U
23
U
13
U
12
U(1) 36(1) 26(1) 26(1) -8(1) 16(1) -6(1)
C(1) 89(9) 62(7) 45(6) -37(5) 47(6) -48(7)
C(2) 93(9) 23(5) 43(5) -8(4) 14(6) 14(5)
C(3) 46(6) 55(7) 53(6) -27(5) 25(5) 3(5)
C(4) 95(9) 30(5) 40(5) -5(4) 42(6) -7(5)
C(5) 54(6) 103(11) 29(5) -37(6) -10(4) 40(7)
C(6) 200(30) 400(50) 127(18) -180(30) -114(19) 250(30)
C(7) 390(50) 49(9) 76(12) -9(7) 140(20) -36(15)
244
C(8 ) 48(8) 180(20) 250(30) -160(20) 52(12) -16(11)
C(9) 290(30) 67(12) 76(11) 18(9) 52(15) 83(17)
C(10) 220(20) 230(30) 190(20) -170(20) 180(20) -190(20)
C(11) 105(12) 89(11) 44(6) -18(7) 33(7) -70(10)
C(12) 96(13) 31(7) 158(19) -2(10) -38(13) -22(8)
C(13) 41(7) 131(16) 130(15) -104(14) 20(9) -28(9)
C(14) 73(9) 169(18) 29(5) 25(7) -21(6) -95(11)
C(15) 33(6) 28(6) 200(20) -20(9) 0(9) 1(5)
C(16) 51(13) 110(20) 1030(160) -270(50) -100(40) 37(13)
C(17) 360(50) 670(90) 63(12) 130(30) -80(20) -440(60)
C(18) 104(17) 320(50) 610(80) -410(60) 130(30) -90(20)
C(19) 200(30) 160(30) 580(80) 250(40) -230(40) -130(30)
C(20) 430(60) 370(50) 190(30) -180(30) 230(30) -360(50)
Hydrogen coordinates ( x 10
4
) and isotropic displacement parameters (Å
2
x 10
3
)
_________________________________________________________________
H(6A) -696 1948 -747 408
H(6B) -718 2820 -47 408
H(6C) -1072 1703 14 408
H(7A) 1174 2312 -715 235
H(7B) 1053 3298 -163 235
H(7C) 372 2769 -818 235
H(8A) 2131 1634 397 235
H(8B) 2050 427 596 235
H(8C) 2320 1232 1367 235
H(9A) 1387 193 2495 216
H(9B) 1669 -372 1756 216
H(9C) 896 -679 1914 216
H(10A) -908 367 728 288
H(10B) -591 598 1727 288
H(10C) -346 -427 1313 288
H(16A) 3010 2614 2192 661
H(16B) 2502 1769 2482 661
H(16C) 3015 2505 3181 661
H(17A) 2131 2725 4237 582
H(17B) 1369 3294 4177 582
245
H(17C) 2111 3949 4408 582
H(18A) 1280 5377 3727 505
H(18B) 537 4766 3325 505
H(18C) 780 5706 2809 505
H(19A) 607 5115 1013 563
H(19B) 1401 5572 1059 563
H(19C) 951 5981 1710 563
H(20A) 2013 4595 745 450
H(20B) 2095 3357 734 450
H(20C) 2740 4052 1299 450
246
Table 4-5. Full crystallographic [(C
5
Me
5
)
2
U(H)( µ-H
2
)]
2
information including
ORTEP generated numbering scheme with thermal ellipsoids drawn at 50% level
from neutron data at 217 K collected at ILL.
Identification code cp2uh2
Empirical formula C20 H32.50 U
Formula weight 244.50
Temperature 217(2) K
Wavelength 0.71073 Å
Crystal system monoclinic
Space group C2/c
Unit cell dimensions a = 18.968(3) Å α = 90°.
b = 12.864(2) Å β = 104.680(2)°
c = 16.141(3) Å γ = 90°.
Volume 3809.7(11) Å
3
Z 8
Density (calculated) 0.853 Mg/m
3
Absorption coefficient 0.000 mm
-1
F(000) 158
Crystal size ~5 mm
3
Theta range for data collection 1.93 to 25.48°.
Index ranges -22<=h<=17, -15<=k<=9, -19<=l<=18
Reflections collected 11344
Independent reflections 3228 [R(int) = 0.0513]
Completeness to theta = 25.48° 91.1 %
Refinement method Full-matrix least-squares on F
2
Data / restraints / parameters 3228 / 142 / 672
Goodness-of-fit on F
2
1.036
Final R indices [I>2sigma(I)] R1 = 0.1142, wR2 = 0.2403
R indices (all data) R1 = 0.1395, wR2 = 0.2597
Extinction coefficient 0.0044(6)
Largest diff. peak and hole 0.737 and -1.265 e.Å
-3
247
Atomic coordinates ( x 10
4
) and equivalent isotropic displacement parameters
(Å
2
x 10
3
). U(eq) is defined as one third of the trace of the orthogonalized U
ij
tensor.
_________________________________________________________________
x y z U(eq)
_________________________________________________________________
U(1) 664(1) 2702(2) 1875(2) 45(1)
C(1A) 126(5) 923(8) 1042(7) 58(3)
C(2A) 883(5) 748(7) 1327(6) 58(3)
C(3A) 1239(4) 1384(8) 843(6) 59(2)
C(4A) 710(6) 1979(7) 285(6) 59(3)
C(5A) 20(4) 1714(8) 406(5) 58(3)
C(6A) -681(7) 2096(13) -133(5) 141(7)
C(7A) 837(9) 2675(7) -399(6) 120(5)
C(8A) 2007(5) 1218(11) 793(10) 145(7)
C(9A) 1263(8) -48(7) 1941(5) 123(6)
C(10A) -472(7) 301(10) 1224(7) 125(6)
C(1B) 320(20) 650(20) 1110(30) 66(10)
C(2B) 1050(14) 880(30) 1102(16) 51(9)
C(3B) 1037(16) 1640(30) 480(20) 76(17)
C(4B) 310(20) 1970(20) 174(18) 64(10)
248
C(5B) -129(10) 1350(18) 540(30) 52(8)
C(6B) -925(16) 1420(40) 250(30) 120(20)
C(7B) 220(60) 2560(40) -580(40) 370(90)
C(8B) 1550(50) 1970(60) 70(50) 250(60)
C(9B) 1690(30) 300(50) 1470(60) 250(60)
C(10B) 90(60) -100(30) 1580(30) 260(60)
C(11A) 1999(7) 3695(10) 1894(7) 78(5)
C(12A) 1487(6) 4491(8) 1868(6) 74(4)
C(13A) 1318(5) 4523(8) 2662(7) 65(4)
C(14A) 1700(8) 3723(9) 3177(6) 62(4)
C(15A) 2129(7) 3214(9) 2708(7) 81(5)
C(16A) 2681(7) 2379(10) 3036(12) 155(9)
C(17A) 1731(8) 3640(11) 4110(6) 126(7)
C(18A) 927(6) 5404(8) 2957(11) 135(8)
C(19A) 1204(9) 5215(10) 1125(9) 162(10)
C(20A) 2465(9) 3622(15) 1276(9) 188(14)
C(11B) 1757(8) 4016(12) 1796(9) 46(4)
C(12B) 1297(7) 4570(10) 2200(10) 53(4)
C(13B) 1363(9) 4128(12) 2989(9) 53(4)
C(14B) 1842(12) 3288(13) 3089(10) 61(5)
C(15B) 2088(7) 3198(10) 2327(9) 45(3)
C(16B) 2722(8) 2611(12) 2239(16) 104(7)
C(17B) 2119(8) 2727(15) 3856(11) 102(8)
C(18B) 1071(10) 4594(17) 3662(11) 109(9)
C(19B) 935(7) 5585(9) 1874(15) 96(7)
C(20B) 1855(11) 4408(17) 975(8) 101(7)
_________________________________________________________________
Bond lengths [Å] and angles [°].
U(1)-C(13B) 2.674(15)
U(1)-C(12B) 2.678(14)
U(1)-C(14B) 2.68(2)
U(1)-C(15B) 2.691(14)
U(1)-C(5A) 2.695(8)
U(1)-C(11B) 2.703(16)
U(1)-C(1A) 2.719(11)
U(1)-C(13A) 2.801(11)
U(1)-H(1) 2.148(7)
U(1)-H(2) 2.134(9)
U(1)-H(3) 2.052(15)
C(1A)-C(2A) 1.411(11)
C(1A)-C(5A) 1.423(10)
C(1A)-C(10A) 1.478(10)
249
U(1)-C(2A) 2.731(10)
U(1)-C(4A) 2.751(9)
U(1)-C(12A) 2.783(10)
U(1)-C(3A) 2.786(9)
C(2A)-C(10B) 1.98(7)
C(3A)-C(4A) 1.395(11)
C(3A)-C(8A) 1.494(10)
C(3A)-C(9B) 1.81(8)
C(4A)-C(5A) 1.414(11)
C(4A)-C(7A) 1.487(10)
C(4A)-C(8B) 1.72(6)
C(5A)-C(6A) 1.477(10)
C(5A)-C(7B) 2.04(7)
C(6A)-H(6A) 1.052(17)
C(6A)-H(6B) 1.024(14)
C(6A)-H(6C) 1.028(17)
C(7A)-C(8B) 1.65(12)
C(7A)-H(7A) 1.033(14)
C(7A)-H(7B) 1.031(17)
C(7A)-H(7C) 1.024(15)
C(8A)-C(9B) 1.82(12)
C(8A)-H(8A) 1.007(17)
C(8A)-H(8B) 1.058(14)
C(8A)-H(8C) 1.027(17)
C(9A)-H(9A) 1.029(17)
C(9A)-H(9B) 1.029(15)
C(9A)-H(9C) 1.046(15)
C(10A)-H(10A) 1.012(13)
C(10A)-H(10B) 1.051(16)
C(10A)-H(10C) 1.032(17)
C(1B)-C(10B) 1.37(4)
C(1B)-C(5B) 1.408(19)
C(1B)-C(2B) 1.41(2)
C(18A)-H(18C) 1.018(16)
C(19A)-H(19A) 1.006(18)
C(1A)-C(4B) 2.03(3)
C(2A)-C(3A) 1.415(11)
C(2A)-C(9A) 1.479(10)
C(2B)-C(3B) 1.40(3)
C(2B)-C(9B) 1.43(4)
C(3B)-C(8B) 1.38(3)
C(3B)-C(4B) 1.41(2)
C(4B)-C(5B) 1.39(3)
C(4B)-C(7B) 1.41(5)
C(5B)-C(6B) 1.47(4)
C(6B)-H(6A) 0.75(7)
C(7B)-H(7A) 1.13(15)
C(7B)-H(7C) 1.30(4)
C(8B)-H(7B) 1.20(11)
C(8B)-H(8C) 1.26(11)
C(9B)-H(8A) 1.57(10)
C(9B)-H(9C) 1.15(10)
C(10B)-H(10A) 1.56(9)
C(10B)-H(10B) 0.97(10)
C(11A)-C(12A) 1.405(12)
C(11A)-C(15A) 1.416(13)
C(11A)-C(20A) 1.494(13)
C(11A)-C(16B) 1.94(2)
C(11A)-C(14B) 2.092(19)
C(12A)-C(13A) 1.398(13)
C(12A)-C(19A) 1.505(14)
C(13A)-C(14A) 1.403(12)
C(13A)-C(18A) 1.497(13)
C(14A)-C(15A) 1.405(14)
C(14A)-C(17A) 1.495(12)
C(15A)-C(16A) 1.500(14)
C(16A)-H(16A) 1.007(16)
C(16A)-H(16B) 1.018(18)
C(16A)-H(16C) 1.069(18)
C(17A)-H(17A) 1.036(18)
250
C(19A)-H(19B) 1.054(17)
C(19A)-H(19C) 1.013(18)
C(20A)-C(16B) 1.99(3)
C(20A)-H(20A) 1.061(16)
C(20A)-H(20B) 1.042(16)
C(20A)-H(20C) 1.010(18)
C(11B)-C(15B) 1.401(15)
C(11B)-C(12B) 1.408(13)
C(11B)-C(20B) 1.474(16)
C(12B)-C(13B) 1.371(18)
C(12B)-C(19B) 1.507(16)
C(13B)-C(14B) 1.394(16)
C(13B)-C(18B) 1.466(16)
C(14B)-C(17B) 1.414(18)
C(14B)-C(15B) 1.43(2)
C(15B)-C(16B) 1.456(16)
C(16B)-H(16A) 1.47(3)
C(16B)-H(16C) 1.18(5)
C(16B)-H(20C) 1.46(4)
C(17B)-H(16B) 1.46(4)
C(17B)-H(17A) 0.98(4)
C(18B)-H(17B) 1.36(4)
C(18B)-H(18A) 1.13(4)
C(19B)-H(18B) 1.23(4)
C(19B)-H(19A) 1.61(5)
C(19B)-H(19B) 1.26(5)
C(20B)-H(19C) 1.08(4)
C(20B)-H(20A) 1.34(5)
C(20B)-H(20B) 1.61(4)
C(13B)-U(1)-C(12B) 29.7(4)
C(13B)-U(1)-C(14B) 30.2(4)
C(12B)-U(1)-C(14B) 49.8(4)
C(13B)-U(1)-C(15B) 50.3(4)
C(5A)-U(1)-C(12A) 121.1(3)
C(11B)-U(1)-C(12A) 17.2(3)
C(17A)-H(17B) 1.066(17)
C(17A)-H(17C) 1.014(15)
C(18A)-H(18A) 1.056(17)
C(18A)-H(18B) 1.031(18)
C(12B)-U(1)-C(15B) 50.6(3)
C(14B)-U(1)-C(15B) 30.8(5)
C(13B)-U(1)-C(5A) 162.2(4)
C(12B)-U(1)-C(5A) 132.6(4)
C(14B)-U(1)-C(5A) 152.2(5)
C(15B)-U(1)-C(5A) 123.4(4)
C(13B)-U(1)-C(11B) 49.2(4)
C(12B)-U(1)-C(11B) 30.3(3)
C(14B)-U(1)-C(11B) 49.5(4)
C(15B)-U(1)-C(11B) 30.1(3)
C(5A)-U(1)-C(11B) 115.8(4)
C(13B)-U(1)-C(1A) 166.0(4)
C(12B)-U(1)-C(1A) 161.0(4)
C(14B)-U(1)-C(1A) 137.5(4)
C(15B)-U(1)-C(1A) 124.0(3)
C(5A)-U(1)-C(1A) 30.5(2)
C(11B)-U(1)-C(1A) 134.4(3)
C(13B)-U(1)-C(2A) 139.4(4)
C(12B)-U(1)-C(2A) 142.4(3)
C(14B)-U(1)-C(2A) 109.2(4)
C(15B)-U(1)-C(2A) 94.7(3)
C(5A)-U(1)-C(2A) 49.7(2)
C(11B)-U(1)-C(2A) 112.3(4)
C(1A)-U(1)-C(2A) 30.0(2)
C(13B)-U(1)-C(4A) 137.0(4)
C(12B)-U(1)-C(4A) 111.6(4)
C(14B)-U(1)-C(4A) 124.0(5)
C(15B)-U(1)-C(4A) 93.8(4)
C(5A)-U(1)-C(4A) 30.1(2)
C(11B)-U(1)-C(4A) 87.8(4)
C(1A)-U(1)-C(4A) 49.5(2)
251
C(1A)-U(1)-C(12A) 146.6(3)
C(2A)-U(1)-C(12A) 128.9(3)
C(4A)-U(1)-C(12A) 97.2(3)
C(13B)-U(1)-C(3A) 128.1(4)
C(12B)-U(1)-C(3A) 116.1(4)
C(14B)-U(1)-C(3A) 103.2(5)
C(15B)-U(1)-C(3A) 77.8(3)
C(5A)-U(1)-C(3A) 49.2(2)
C(11B)-U(1)-C(3A) 86.1(4)
C(1A)-U(1)-C(3A) 49.2(3)
C(2A)-U(1)-C(3A) 29.7(2)
C(4A)-U(1)-C(3A) 29.2(2)
C(12A)-U(1)-C(3A) 101.3(3)
C(13B)-U(1)-C(13A) 14.9(3)
C(12B)-U(1)-C(13A) 15.3(3)
C(14B)-U(1)-C(13A) 40.7(4)
C(15B)-U(1)-C(13A) 51.6(3)
C(5A)-U(1)-C(13A) 147.5(3)
C(11B)-U(1)-C(13A) 40.6(3)
C(1A)-U(1)-C(13A) 174.9(3)
C(2A)-U(1)-C(13A) 146.1(3)
C(4A)-U(1)-C(13A) 126.2(3)
C(12A)-U(1)-C(13A) 29.0(3)
C(3A)-U(1)-C(13A) 125.8(3)
C(13B)-U(1)-H(1) 63.9(4)
C(12B)-U(1)-H(1) 72.9(4)
C(2A)-C(1A)-U(1) 75.5(5)
C(5A)-C(1A)-U(1) 73.8(5)
C(10A)-C(1A)-U(1) 124.6(6)
C(4B)-C(1A)-U(1) 71.0(9)
C(1A)-C(2A)-C(3A) 108.4(6)
C(1A)-C(2A)-C(9A) 127.7(9)
C(3A)-C(2A)-C(9A) 123.4(9)
C(1A)-C(2A)-C(10B) 52(3)
C(3A)-C(2A)-C(10B) 158(2)
C(2A)-U(1)-C(4A) 49.0(2)
C(13B)-U(1)-C(12A) 41.6(4)
C(12B)-U(1)-C(12A) 15.1(3)
C(14B)-U(1)-C(12A) 53.5(4)
C(15B)-U(1)-C(12A) 43.9(3)
C(14B)-U(1)-H(1) 89.0(4)
C(15B)-U(1)-H(1) 114.3(3)
C(5A)-U(1)-H(1) 118.7(2)
C(11B)-U(1)-H(1) 103.3(4)
C(1A)-U(1)-H(1) 120.0(3)
C(2A)-U(1)-H(1) 144.0(4)
C(4A)-U(1)-H(1) 141.5(2)
C(12A)-U(1)-H(1) 87.0(4)
C(3A)-U(1)-H(1) 167.7(3)
C(13A)-U(1)-H(1) 65.0(3)
C(13B)-U(1)-H(2) 75.8(5)
C(12B)-U(1)-H(2) 104.1(5)
C(14B)-U(1)-H(2) 73.9(5)
C(15B)-U(1)-H(2) 102.3(4)
C(5A)-U(1)-H(2) 121.2(4)
C(11B)-U(1)-H(2) 121.8(4)
C(1A)-U(1)-H(2) 94.8(4)
C(2A)-U(1)-H(2) 96.5(4)
C(4A)-U(1)-H(2) 143.2(4)
C(12A)-U(1)-H(2) 117.3(4)
C(3A)-U(1)-H(2) 123.7(4)
C(13A)-U(1)-H(2) 89.0(4)
H(1)-U(1)-H(2) 58.0(4)
C(13B)-U(1)-H(3) 95.8(6)
C(12B)-U(1)-H(3) 71.2(6)
C(14B)-U(1)-H(3) 121.0(6)
C(15B)-U(1)-H(3) 110.1(6)
C(5A)-U(1)-H(3) 69.9(5)
C(11B)-U(1)-H(3) 80.1(6)
C(1A)-U(1)-H(3) 98.2(6)
252
C(9A)-C(2A)-C(10B) 75(3)
C(1A)-C(2A)-U(1) 74.5(5)
C(3A)-C(2A)-U(1) 77.3(6)
C(9A)-C(2A)-U(1) 120.5(6)
C(10B)-C(2A)-U(1) 104.6(19)
C(4A)-C(3A)-C(2A) 107.9(7)
C(4A)-C(3A)-C(8A) 126.6(9)
C(2A)-C(3A)-C(8A) 123.7(9)
C(4A)-C(3A)-C(9B) 161(2)
C(2A)-C(3A)-C(9B) 58(3)
C(8A)-C(3A)-C(9B) 66(3)
C(4A)-C(3A)-U(1) 74.0(5)
C(2A)-C(3A)-U(1) 73.0(5)
C(8A)-C(3A)-U(1) 130.8(7)
C(9B)-C(3A)-U(1) 110(3)
C(3A)-C(4A)-C(5A) 108.6(7)
C(3A)-C(4A)-C(7A) 125.7(10)
C(5A)-C(4A)-C(7A) 125.2(10)
C(3A)-C(4A)-C(8B) 65(4)
C(5A)-C(4A)-C(8B) 165(2)
C(7A)-C(4A)-C(8B) 61(4)
C(3A)-C(4A)-U(1) 76.8(5)
C(5A)-C(4A)-U(1) 72.8(4)
C(7A)-C(4A)-U(1) 122.6(6)
C(8B)-C(4A)-U(1) 116.3(18)
C(4A)-C(5A)-C(1A) 107.7(6)
C(4A)-C(5A)-C(6A) 124.5(10)
C(1A)-C(5A)-C(6A) 127.2(11)
C(4A)-C(5A)-C(7B) 53(3)
C(1A)-C(5A)-C(7B) 157(4)
C(6A)-C(5A)-C(7B) 71(3)
C(4A)-C(5A)-U(1) 77.2(5)
C(1A)-C(5A)-U(1) 75.7(5)
C(6A)-C(5A)-U(1) 120.0(6)
C(7B)-C(5A)-U(1) 107.6(11)
C(2A)-U(1)-H(3) 118.2(5)
C(4A)-U(1)-H(3) 72.9(5)
C(12A)-U(1)-H(3) 69.5(6)
C(3A)-U(1)-H(3) 101.3(5)
C(13A)-U(1)-H(3) 82.0(6)
H(1)-U(1)-H(3) 73.0(5)
H(2)-U(1)-H(3) 129.1(6)
C(2A)-C(1A)-C(5A) 107.2(6)
C(2A)-C(1A)-C(10A) 128.2(10)
C(5A)-C(1A)-C(10A) 123.7(10)
C(2A)-C(1A)-C(4B) 89.6(10)
C(5A)-C(1A)-C(4B) 17.8(9)
C(10A)-C(1A)-C(4B) 140.2(13)
C(5A)-C(6A)-H(6C) 114.3(13)
H(6A)-C(6A)-H(6C) 106.8(16)
H(6B)-C(6A)-H(6C) 108.8(19)
C(4A)-C(7A)-C(8B) 66.2(13)
C(4A)-C(7A)-H(7A) 108.8(12)
C(8B)-C(7A)-H(7A) 108(2)
C(4A)-C(7A)-H(7B) 110.0(12)
C(8B)-C(7A)-H(7B) 46.6(19)
H(7A)-C(7A)-H(7B) 107.6(16)
C(4A)-C(7A)-H(7C) 112.5(10)
C(8B)-C(7A)-H(7C) 142(2)
H(7A)-C(7A)-H(7C) 108.0(17)
H(7B)-C(7A)-H(7C) 109.8(17)
C(3A)-C(8A)-C(9B) 65.6(10)
C(3A)-C(8A)-H(8A) 113.0(12)
C(9B)-C(8A)-H(8A) 59.5(17)
C(3A)-C(8A)-H(8B) 105.2(11)
C(9B)-C(8A)-H(8B) 88(2)
H(8A)-C(8A)-H(8B) 107.8(18)
C(3A)-C(8A)-H(8C) 110.9(12)
C(9B)-C(8A)-H(8C) 167.5(19)
H(8A)-C(8A)-H(8C) 114.3(17)
253
C(5A)-C(6A)-H(6A) 112.3(13)
C(5A)-C(6A)-H(6B) 109.6(11)
H(6A)-C(6A)-H(6B) 104.5(19)
C(1A)-C(10A)-H(10B) 109.5(13)
H(10A)-C(10A)-H(10B)105.9(18)
C(1A)-C(10A)-H(10C) 112.8(12)
H(10A)-C(10A)-H(10C)109.3(16)
H(10B)-C(10A)-H(10C)106.9(16)
C(10B)-C(1B)-C(5B) 125(5)
C(10B)-C(1B)-C(2B) 127(5)
C(5B)-C(1B)-C(2B) 107.4(13)
C(10B)-C(1B)-U(1) 118(3)
C(5B)-C(1B)-U(1) 74.3(18)
C(2B)-C(1B)-U(1) 72.7(19)
C(3B)-C(2B)-C(1B) 108.1(13)
C(3B)-C(2B)-C(9B) 122(5)
C(1B)-C(2B)-C(9B) 128(5)
C(3B)-C(2B)-U(1) 76.9(16)
C(1B)-C(2B)-U(1) 78.9(19)
C(9B)-C(2B)-U(1) 122(2)
C(8B)-C(3B)-C(2B) 132(6)
C(8B)-C(3B)-C(4B) 119(6)
C(2B)-C(3B)-C(4B) 107.5(13)
C(8B)-C(3B)-U(1) 126(2)
C(2B)-C(3B)-U(1) 74.8(16)
C(4B)-C(3B)-U(1) 73.7(17)
C(5B)-C(4B)-C(7B) 137(5)
C(5B)-C(4B)-C(3B) 108.4(14)
C(7B)-C(4B)-C(3B) 111(6)
C(5B)-C(4B)-C(1A) 26.0(12)
C(7B)-C(4B)-C(1A) 161(3)
C(3B)-C(4B)-C(1A) 83.1(13)
C(5B)-C(4B)-U(1) 78.3(18)
C(7B)-C(4B)-U(1) 128(3)
C(3B)-C(4B)-U(1) 77.6(17)
H(8B)-C(8A)-H(8C) 104.8(18)
C(2A)-C(9A)-H(9A) 109.6(12)
C(2A)-C(9A)-H(9B) 112.6(11)
H(9A)-C(9A)-H(9B) 110.6(18)
C(2A)-C(9A)-H(9C) 111.4(11)
H(9A)-C(9A)-H(9C) 107.1(16)
H(9B)-C(9A)-H(9C) 105.4(17)
C(1A)-C(10A)-H(10A) 112.1(11)
C(1B)-C(5B)-U(1) 78(2)
C(6B)-C(5B)-U(1) 120.1(18)
C(5B)-C(6B)-H(6A) 123(4)
C(4B)-C(7B)-C(5A) 17(2)
C(4B)-C(7B)-H(7A) 115(7)
C(5A)-C(7B)-H(7A) 127(5)
C(4B)-C(7B)-H(7C) 108(3)
C(5A)-C(7B)-H(7C) 118(4)
H(7A)-C(7B)-H(7C) 86(7)
C(3B)-C(8B)-C(7A) 78(4)
C(3B)-C(8B)-C(4A) 26(2)
C(7A)-C(8B)-C(4A) 52(3)
C(3B)-C(8B)-H(7B) 114(7)
C(7A)-C(8B)-H(7B) 39(3)
C(4A)-C(8B)-H(7B) 89(6)
C(3B)-C(8B)-H(8C) 112(6)
C(7A)-C(8B)-H(8C) 153(4)
C(4A)-C(8B)-H(8C) 134(4)
H(7B)-C(8B)-H(8C) 120(3)
C(2B)-C(9B)-C(3A) 29(2)
C(2B)-C(9B)-C(8A) 77(5)
C(3A)-C(9B)-C(8A) 49(3)
C(2B)-C(9B)-H(8A) 105(6)
C(3A)-C(9B)-H(8A) 77(4)
C(8A)-C(9B)-H(8A) 34(2)
C(2B)-C(9B)-H(9C) 114(5)
C(3A)-C(9B)-H(9C) 141(3)
254
C(1A)-C(4B)-U(1) 65.9(9)
C(4B)-C(5B)-C(1B) 108.2(13)
C(4B)-C(5B)-C(6B) 120(4)
C(1B)-C(5B)-C(6B) 131(4)
C(4B)-C(5B)-U(1) 73.5(16)
H(8A)-C(9B)-H(9C) 140(2)
C(1B)-C(10B)-C(2A) 29(3)
C(1B)-C(10B)-H(10A) 92(4)
C(2A)-C(10B)-H(10A) 118.2(17)
C(1B)-C(10B)-H(10B) 124(6)
C(2A)-C(10B)-H(10B) 137(3)
H(10A)-C(10B)-H(10B) 77(7)
C(12A)-C(11A)-C(15A) 107.6(8)
C(12A)-C(11A)-C(20A) 123.2(12)
C(15A)-C(11A)-C(20A) 126.8(12)
C(12A)-C(11A)-C(16B) 165.4(11)
C(15A)-C(11A)-C(16B) 58.3(9)
C(20A)-C(11A)-C(16B) 69.6(11)
C(12A)-C(11A)-C(14B) 87.2(8)
C(15A)-C(11A)-C(14B) 21.1(7)
C(20A)-C(11A)-C(14B)147.8(12)
C(16B)-C(11A)-C(14B) 79.1(9)
C(12A)-C(11A)-U(1) 73.7(7)
C(15A)-C(11A)-U(1) 76.0(8)
C(20A)-C(11A)-U(1) 130.1(8)
C(16B)-C(11A)-U(1) 104.2(7)
C(14B)-C(11A)-U(1) 63.9(7)
C(13A)-C(12A)-C(11A) 108.1(9)
C(13A)-C(12A)-C(19A) 126.5(11)
C(11A)-C(12A)-C(19A) 125.4(12)
C(13A)-C(12A)-U(1) 76.2(6)
C(11A)-C(12A)-U(1) 77.3(7)
C(19A)-C(12A)-U(1) 115.3(7)
C(12A)-C(19A)-H(19A) 110.4(14)
C(12A)-C(19A)-H(19B) 106.2(14)
C(8A)-C(9B)-H(9C) 152(5)
C(12A)-C(13A)-C(14A)108.6(8)
C(12A)-C(13A)-C(18A)124.1(11)
C(14A)-C(13A)-C(18A)126.1(11)
C(12A)-C(13A)-U(1) 74.8(6)
C(14A)-C(13A)-U(1) 76.0(7)
C(18A)-C(13A)-U(1) 125.3(7)
C(13A)-C(14A)-C(15A)107.7(7)
C(13A)-C(14A)-C(17A)122.2(11)
C(15A)-C(14A)-C(17A)128.9(11)
C(13A)-C(14A)-U(1) 75.1(7)
C(15A)-C(14A)-U(1) 76.7(7)
C(17A)-C(14A)-U(1) 124.1(8)
C(14A)-C(15A)-C(11A)108.0(8)
C(14A)-C(15A)-C(16A)126.2(11)
C(11A)-C(15A)-C(16A)125.5(12)
C(14A)-C(15A)-U(1) 74.5(8)
C(11A)-C(15A)-U(1) 75.1(7)
C(16A)-C(15A)-U(1) 120.8(8)
C(15A)-C(16A)-H(16A)111.1(13)
C(15A)-C(16A)-H(16B)110.5(16)
H(16A)-C(16A)-H(16B)116(2)
C(15A)-C(16A)-H(16C)104.1(13)
H(16A)-C(16A)-H(16C)108(2)
H(16B)-C(16A)-H(16C)106.8(19)
C(14A)-C(17A)-H(17A)109.6(12)
C(14A)-C(17A)-H(17B)110.8(11)
H(17A)-C(17A)-H(17B)108.7(15)
C(14A)-C(17A)-H(17C)107.9(12)
H(17A)-C(17A)-H(17C)112(2)
H(17B)-C(17A)-H(17C)107.3(19)
C(13A)-C(18A)-H(18A)110.4(11)
C(13A)-C(18A)-H(18B)109.5(13)
H(18A)-C(18A)-H(18B)111.2(17)
C(13A)-C(18A)-H(18C)107.7(13)
255
H(19A)-C(19A)-H(19B) 104(2)
C(12A)-C(19A)-H(19C) 105.1(15)
H(19A)-C(19A)-H(19C) 117(2)
H(19B)-C(19A)-H(19C) 114(2)
C(11A)-C(20A)-C(16B) 65.7(8)
C(11A)-C(20A)-H(20A) 108.4(13)
C(16B)-C(20A)-H(20A) 133.0(19)
C(11A)-C(20A)-H(20B) 109.3(13)
C(16B)-C(20A)-H(20B) 124(2)
H(20A)-C(20A)-H(20B) 102.3(18)
C(11A)-C(20A)-H(20C) 109.9(12)
C(16B)-C(20A)-H(20C) 44.8(11)
H(20A)-C(20A)-H(20C) 111.9(18)
H(20B)-C(20A)-H(20C) 115(2)
C(15B)-C(11B)-C(12B) 109.4(9)
C(15B)-C(11B)-C(20B) 131.9(15)
C(12B)-C(11B)-C(20B) 118.5(15)
C(15B)-C(11B)-U(1) 74.5(8)
C(12B)-C(11B)-U(1) 73.9(8)
C(20B)-C(11B)-U(1) 122.0(11)
C(13B)-C(12B)-C(11B) 107.3(10)
C(13B)-C(12B)-C(19B) 127.6(14)
C(11B)-C(12B)-C(19B) 123.9(15)
C(13B)-C(12B)-U(1) 75.0(8)
C(11B)-C(12B)-U(1) 75.8(9)
C(19B)-C(12B)-U(1) 124.6(9)
C(12B)-C(13B)-C(14B) 109.5(11)
C(12B)-C(13B)-C(18B) 123.7(16)
C(14B)-C(13B)-C(18B) 126.1(17)
C(12B)-C(13B)-U(1) 75.3(8)
C(14B)-C(13B)-U(1) 75.1(10)
C(18B)-C(13B)-U(1) 124.2(10)
C(13B)-C(14B)-C(17B) 125.7(18)
C(12B)-C(19B)-H(18B) 101.4(16)
C(12B)-C(19B)-H(19A) 92.4(14)
H(18A)-C(18A)-H(18C)105.6(19)
H(18B)-C(18A)-H(18C)112(2)
C(13B)-C(14B)-C(15B)108.0(11)
C(17B)-C(14B)-C(15B)125.7(16)
C(13B)-C(14B)-C(11A) 86.6(9)
C(17B)-C(14B)-C(11A)145.8(17)
C(15B)-C(14B)-C(11A) 21.7(6)
C(13B)-C(14B)-U(1) 74.7(10)
C(17B)-C(14B)-U(1) 123.5(12)
C(15B)-C(14B)-U(1) 75.0(9)
C(11A)-C(14B)-U(1) 71.5(6)
C(11B)-C(15B)-C(14B)105.8(9)
C(11B)-C(15B)-C(16B)125.7(16)
C(14B)-C(15B)-C(16B)125.8(15)
C(11B)-C(15B)-U(1) 75.4(9)
C(14B)-C(15B)-U(1) 74.2(10)
C(16B)-C(15B)-U(1) 130.3(9)
C(15B)-C(16B)-C(11A) 27.5(8)
C(15B)-C(16B)-C(20A) 72.1(12)
C(11A)-C(16B)-C(20A) 44.7(7)
C(15B)-C(16B)-H(16A) 93.0(13)
C(11A)-C(16B)-H(16A)118.4(11)
C(20A)-C(16B)-H(16A)151.0(13)
C(15B)-C(16B)-H(16C)107.8(16)
C(11A)-C(16B)-H(16C)120.9(12)
C(20A)-C(16B)-H(16C)130.1(15)
H(16A)-C(16B)-H(16C) 77.7(18)
C(15B)-C(16B)-H(20C)100.7(17)
C(11A)-C(16B)-H(20C) 73.6(12)
C(20A)-C(16B)-H(20C) 29.2(8)
H(16A)-C(16B)-H(20C)145.9(18)
H(16C)-C(16B)-H(20C)126(2)
C(14B)-C(17B)-H(16B) 99.4(17)
C(14B)-C(17B)-H(17A)115.0(19)
H(16B)-C(17B)-H(17A)142.4(15)
256
H(18B)-C(19B)-H(19A)133.0(18)
C(12B)-C(19B)-H(19B)107.6(17)
H(18B)-C(19B)-H(19B)143.8(17)
H(19A)-C(19B)-H(19B) 67.5(17)
C(11B)-C(20B)-H(19C)114.9(18)
C(11B)-C(20B)-H(20A)103.1(17)
H(20A)-C(20B)-H(20B) 66.5(16)
C(13B)-C(18B)-H(17B) 97.8(17)
C(13B)-C(18B)-H(18A)108.8(17)
H(17B)-C(18B)-H(18A)138.9(15)
H(19C)-C(20B)-H(20A)135(2)
C(11B)-C(20B)-H(20B) 94.2(13)
H(19C)-C(20B)-H(20B)130(3)
Symmetry transformations used to generate equivalent atoms: Anisotropic
displacement parameters (Å
2
x 10
3
). The anisotropic displacement factor
exponent takes the form: -2 π
2
[ h
2
a*
2
U
11
+ ... + 2 h k a* b* U
12
]
________________________________________________________________
U
11
U
22
U
33
U
23
U
13
U
12
_________________________________________________________________
U(1) 46(1) 48(1) 43(1) -3(1) 17(1) 1(1)
H(1) 126(11) 67(7) 159(13) 0 101(11) 0
H(2) 77(5) 167(11) 82(5) 61(6) 20(4) -2(6)
H(3) 182(15) 140(12) 130(11) 24(9) 35(10) 29(11)
C(1A) 73(5) 58(6) 53(4) -17(4) 32(4) -23(5)
C(2A) 79(7) 49(3) 48(4) 0(3) 18(4) 10(4)
C(3A) 47(4) 73(5) 63(6) -15(5) 28(4) 0(3)
C(4A) 81(8) 56(4) 49(4) 2(3) 35(6) 6(5)
C(5A) 57(5) 71(8) 42(4) -14(4) 5(3) 8(5)
C(6A) 90(8) 237(17) 71(5) -53(8) -29(5) 94(10)
H(6A) 70(11) 250(30) 290(40) -130(30) -16(14) 49(15)
H(6B) 320(30) 730(80) 210(20) -320(40) -190(20) 370(50)
H(6C) 190(20) 210(20) 200(20) 56(19) -37(18) 90(20)
C(7A) 248(16) 69(5) 66(5) 2(4) 84(8) -17(7)
H(7A) 420(50) 139(15) 81(10) -2(9) 100(20) -74(19)
H(7B) 290(30) 200(20) 220(30) 40(20) 170(30) -60(20)
H(7C) 500(50) 98(11) 160(15) 51(11) 180(20) 55(18)
C(8A) 64(6) 184(14) 208(16) -133(12) 75(9) -27(7)
H(8A) 77(11) 270(30) 300(30) 20(30) 33(15) 81(16)
H(8B) 110(12) 460(50) 570(60) -420(50) 150(20) -64(19)
H(8C) 117(14) 310(30) 210(20) -80(20) 97(15) -76(19)
257
C(9A) 204(15) 78(6) 75(5) 6(4) 10(6) 78(8)
H(9A) 350(40) 135(16) 180(20) 97(16) 120(20) 80(20)
H(9B) 350(40) 127(14) 200(20) -18(14) -160(20) 73(19)
H(9C) 330(30) 159(16) 172(16) 30(14) 49(19) 170(20)
C(10A) 165(11) 133(10) 106(8) -64(7) 84(7) -110(9)
H(10A) 310(30) 230(20) 240(20) -163(19) 190(20) -210(20)
H(10B) 390(50) 350(40) 151(19) -10(20) 150(30) -230(40)
H(10C) 200(20) 260(30) 370(40) -170(30) 220(30) -160(20)
C(1B) 100(30) 44(14) 64(16) -15(10) 41(19) 1(14)
C(2B) 36(12) 80(20) 42(15) -17(13) 16(9) 15(12)
C(3B) 90(40) 80(30) 70(30) -50(30) 40(20) -40(30)
C(4B) 80(20) 62(12) 45(12) 7(9) 2(15) -16(19)
C(5B) 43(10) 27(11) 90(20) -22(12) 19(12) -8(8)
C(6B) 31(12) 200(40) 120(30) -120(30) 4(13) -27(19)
C(7B) 610(150) 140(40) 170(50) 140(40) -280(80) -230(70)
C(8B) 320(90) 300(80) 240(60) -200(70) 270(70) -240(80)
C(9B) 100(30) 200(60) 360(100) -190(70) -130(50) 120(40)
C(10B) 660(180) 57(19) 90(20) -13(16) 150(60) -150(50)
C(11A) 63(9) 102(14) 80(9) -40(8) 39(7) -27(8)
C(12A) 79(10) 75(8) 63(7) 19(6) 6(5) -34(7)
C(13A) 60(5) 53(6) 87(11) -24(7) 26(8) -5(5)
C(14A) 65(9) 74(9) 44(4) 4(5) 9(5) -19(7)
C(15A) 58(6) 71(6) 99(12) -29(8) -10(8) 7(4)
C(16A) 83(9) 102(9) 240(20) -67(13) -34(12) 29(7)
H(16A) 200(20) 83(10) 720(70) -90(20) -260(40) 51(12)
H(16B) 140(20) 350(50) 620(90) 270(60) -150(40) -10(30)
H(16C) 62(10) 130(15) 740(80) -60(30) 40(20) 13(10)
C(17A) 156(14) 158(14) 59(6) -16(6) 18(7) -90(13)
H(17A) 163(17) 370(40) 99(11) 115(18) 24(11) 10(20)
H(17B) 310(30) 290(30) 95(10) -59(14) 130(17) -150(30)
H(17C) 610(70) 610(70) 113(13) -90(30) 110(20) -510(70)
C(18A) 91(9) 77(8) 250(20) -62(12) 71(11) -21(6)
H(18A) 135(14) 200(20) 210(20) -96(17) 64(14) 49(15)
H(18B) 200(20) 102(13) 350(40) 4(17) 90(30) 64(14)
H(18C) 124(16) 440(50) 770(90) -490(70) 100(30) -40(20)
C(19A) 210(20) 89(9) 138(14) 35(9) -39(15) -50(12)
258
H(19A) 220(30) 400(50) 480(70) 340(50) -180(40) 130(30)
H(19B) 280(30) 108(15) 440(50) 140(20) -60(30) -23(19)
H(19C) 430(60) 310(50) 200(30) 170(30) 180(30) 70(40)
C(20A) 170(20) 310(30) 123(11) -115(16) 110(13) -170(20)
H(20A) 420(50) 440(50) 120(14) -150(20) 170(20) -270(40)
H(20B) 640(70) 480(50) 360(40) -260(40) 420(50) -450(60)
H(20C) 180(20) 340(40) 300(40) -180(30) 200(30) -80(20)
C(11B) 51(11) 39(8) 53(6) 6(6) 23(6) -2(6)
C(12B) 55(6) 38(5) 73(13) -1(8) 32(9) -3(4)
C(13B) 54(8) 54(10) 48(9) -10(6) 8(6) -6(7)
C(14B) 48(9) 83(13) 47(8) 9(8) 4(5) -9(10)
C(15B) 31(5) 41(6) 58(9) 2(6) 3(6) -1(4)
C(16B) 49(7) 78(9) 200(20) -63(11) 50(10) 8(6)
C(17B) 69(9) 128(14) 80(9) 67(10) -33(7) -37(8)
C(18B) 104(12) 149(17) 97(12) -92(13) 67(10) -62(12)
C(19B) 51(6) 36(5) 177(19) 12(8) -13(8) 2(4)
C(20B)108(12) 145(15) 52(7) 27(8) 26(7) -66(11)
_________________________________________________________________
Hydrogen coordinates ( x 10
4
) and isotropic displacement parameters (Å
2
x 10
3
)
_________________________________________________________________
x y z U(eq)
_________________________________________________________________
H(1) 0 3611(10) 2500 106(5)
H(2) 468(5) 2241(11) 3067(6) 109(4)
H(3) 101(10) 3746(13) 990(10) 151(5)
H(6A) -1120(8) 1930(30) 136(17) 216(19)
H(6B) -806(12) 1710(30) -706(11) 460(40)
H(6C) -694(17) 2882(16) -250(17) 215(15)
H(7A) 604(18) 2343(15) -987(8) 206(16)
H(7B) 1388(11) 2750(20) -345(18) 218(15)
H(7C) 610(17) 3396(11) -387(12) 234(15)
H(8A) 2340(9) 990(20) 1353(15) 219(14)
H(8B) 1980(9) 610(20) 350(20) 370(30)
H(8C) 2194(11) 1847(17) 519(16) 201(13)
H(9A) 886(13) -511(16) 2122(16) 213(14)
H(9B) 1617(15) 273(14) 2471(13) 266(19)
259
H(9C) 1584(13) -534(16) 1666(12) 224(14)
H(10A) -597(12) -324(14) 834(13) 237(15)
H(10B) -308(19) 0(30) 1850(10) 280(20)
H(10C) -938(10) 732(17) 1190(20) 250(20)
H(16A) 2542(10) 1711(10) 2710(20) 400(30)
H(16B) 2785(18) 2320(30) 3685(14) 410(40)
H(16C) 3168(8) 2663(15) 2900(30) 320(30)
H(17A) 1894(14) 2897(17) 4325(12) 212(14)
H(17B) 1211(11) 3790(20) 4222(10) 215(15)
H(17C) 2078(16) 4190(20) 4423(11) 440(40)
H(18A) 602(10) 5125(16) 3352(14) 178(10)
H(18B) 616(14) 5794(15) 2432(17) 214(14)
H(18C) 1308(10) 5870(20) 3340(20) 450(40)
H(19A) 660(11) 5150(30) 910(20) 410(40)
H(19B) 1280(20) 5974(10) 1380(20) 300(20)
H(19C) 1510(20) 5060(30) 705(18) 290(20)
H(20A) 2120(16) 3580(30) 647(9) 310(20)
H(20B) 2732(18) 4330(20) 1264(16) 440(40)
H(20C) 2797(14) 3000(20) 1420(20) 250(20)
260
Reference Section 4-5.
[1] Evans, W.J.; Miller, K.A.; Kozimor, S.A.; Ziller, J.W.; DiPasquale, A.g.;
Rheingold, A.L.: Organometallics, 2007, 26, 3568.
[2] Evans, W.J.; Forrestal, K.J.; Ziller, J.W.: Angew. Chem. Int. Ed., 1997, 36,
774.
[3] Evans, W.J.; Kozimor, S.A.: Coord. Chem. Rev., 2006, 250, 911.
[4] Castro-Rodriquez, I.; Meyer, K.: Chem. Commun., 2006, 1353.
[5] Ephritikhine, M.; Dalton Trans.; 2006, 2501.
[6] Evans, W.J.; Nyce, G.W., Ziller, J.W.: Angew. Chem. Int. Ed., 2000, 39, 240.
[7] Evans, W.J.; Kozimor, S.A.; Ziller, J.W.: Chem. Commun., 2005, 4681.
[8] Evans, W.J.: Coord. Chem. Rev., 2000, 206-207, 263.
[9] Rundle, R.E.: J. Am. Chem. Soc., 1947, 69, 1719.
[10] Rundle, R.E. J. Am. Chem. Soc., 1951, 73, 4172.
[11] Bernstein, E.R.; Keiderling, T.A.; Lippard, S.J.; Mayerle, J.J., J. Am. Chem.
Soc., 1972, 94, 2552.
[12] Broach, R.W.; Schultz, A.J.; Williams, J.M.; Brown, G.M.; Manriquez, J.M.;
Fagan, P.J.; Marks, T.J.: Science, 1979, 203, 172.
[13] For more information on drying systems, see www.glasscontour.com.
[14] Marks, T.J.; Fagan, P.J.; Manriquez, J.M.; Maatta, E.A.; Seyam, A.M.: J. Am.
Chem. Soc., 1981, 103, 6650.
[15] SMART Software Users Guide, Version 5.1, Bruker Analytical X-Ray
Systems, Inc.; Madison, WI, 1999.
[16] SAINT Software Users Guide, Version 6.0, Bruker Analytical X-Ray Systems,
Inc.; Madison, WI, 1999.
[17] Sheldrick, G.M.: SADABS, Version 2.10, Bruker Analytical X-Ray Systems,
Inc.; Madison, WI, 2002.
[18] Sheldrick, G.M.: SHELXTL, Version 6.12, Bruker Analytical X-Ray Systems,
Inc. Madison, WI, 2001.
261
[19] International Tables for X-Ray Crystallography 1992, Vol. C., Dordrecht:
Kluwer Academic Publishers.
[20] Keen, D.A.; Gutmann, M.J.; Wilson, C.C.: SXD – The Single Crystal
Diffractometer at the ISIS Spallation Neutron Source. J. Appl. Crystallogr. Vol. 39,
pg. 714 – 722, 2006.
[21] Gutmann, M.J.: SXD2001, ISIS Facility, Rutherford Appleton Laboratory,
Oxfordshire, England, 2005.
[22] For more information see http://www.ill.eu/instruments-support/instruments
groups/instruments /d19 / characteristics/
[23] Wilkinson, C.; Cowan, J.A.; Myles, D.A.; Cipriani, F.; McIntyre G.J.: Neutron
News, 2002, 13, 37.
[24] McIntyre, G.J.; Lemée-Cailleau, M.H.; Wilkinson, C.: Physica B, 2006, 385-
386, 1055.
[25] Campbell, J.W.; Hao, Q.; Harding, M.M.; Nguti, N.D.; Wilkinson, C.J.: J. Appl.
Crystallogr., 1998, 31, 23.
[26] Wilkinson, C.; Khamis, H.W.; Stansfield, R. F.; McIntyre, G.J.: J. Appl.
Crystallogr., 1998, 21, 471.
[27] Campbell, J.W.; Habash, J.; Helliwell, J. R.; Moffat, K.: 1986 Information
Quarterly for Protein Crystallography, No. 18. SERC Daresbury Laboratory,
Warrington, England.
[28] Matthewman, J.C.; Thompson, P.; Brown, P.J.: J. Appl. Crystallogr., 1982,
15, 167.
[29] Cordero, B.; Gómez, V.; Platero-Prats, A.; Revés, M.; Echeverría, J.;
Cremades, E.; Barragán, F.; Alvarez, S.: "Covalent radii revisited", Dalton
Trans., 2008, [DOI: 10.1039/b801115j].
262
CHAPTER 5
To Flip or Not To Flip?
Assessing the Inversion Barrier of the Tetraphenylene Framework with
Enantiopure 2,15-Dideuteriotetraphenylene and 2,7-Dimethyltetraphenylene
Introduction Section 5-1.
Tetraphenylene (1)[1] is a unique molecule with a distinct saddle shape in
which two opposite pairs of benzene rings are oriented above or below the
average plane of the central eight-membered ring (Figure 5-1) [2-9]. This
extraordinary geometry facilitates excellent three dimensional interactions that
are crucial for possible realization of double helical conjugated systems [10,11],
novel molecular clathrates [12], self-assembly building blocks [13-17], and
asymmetric catalysts [18].
Figure 5-1. Saddle-shape structure of 1
1
Because of the structural stability of this saddle shape geometry, it is likely
that there is an energy barrier for inversion via a planar transition state. However,
the magnitude of this inversion barrier remains an unresolved issue with widely
varied estimations for more than three decades (Figure 5-2). The first
263
investigation of this barrier was made by Figeys and Dralants in 1971. On
observing the
1
H-NMR decoalescence of the two diastereotopic methyl groups in
2 at -114
o
C, a value of 5.7 kcal/mol was assigned [19]. One year after this
preliminary report, a CNDO/2 calculation by Allinger on 1 gave an extremely high
barrier of 222 kcal/mol [20]. At the same time, Mislow studied the related
molecule 3 at 98
o
C and set a lower limit of 21 kcal/mol for its inversion barrier
[21]. Later in 1989, our group observed partial racemization of enantiopure 4 at
600
o
C, and an energy barrier of 67 kcal/mol was implicated [22]. More recently,
Rajca investigated the behavior of chiral tetraphenylene derivative 5 and showed
that 5 retained its absolute configuration after being kept at 340
o
C for 12 hrs [23].
Further discordant result was added to the scene when Marsella reported in 2002
that 6, a dimer of cyclotetrathiophene and a close analog of tetraphenylene,
possessed an inversion barrier of 29.4 kcal/mol from a computational study and
23.6 kcal/mol from the
1
H-NMR spectral analysis at 90
o
C [24-26].
264
Figure 5-2. Different inversion barrier estimations.
1
222 kcal/mol, CNDO
2
5.7 kcal/mol, -114
o
C
4
67 kcal/mol, 600
o
C
5
>54 kcal/mol, 340
o
C
3
>21 kcal/mol, 98
o
C
S
S
S
S
6
23.6 kcal/mol, 90
o
C
29.4 kcal/mol, DFT
S
S
S
S
Bu
Bu
Bu
Bu
OH OH
The determination of the inversion barrier of tetraphenylene derivatives is
important because such results are crucial to warrant configurational stability that
is vital to the use of these compounds as chiral non-racemic entities in various
applications. Moreover, the results obtained would also provide clues for the
conditions in achieving planar geometry of tetraphenylenes, which will shed light
on their potential use as optoelectronic materials [27]. Motivated by these
reasons, we commenced a research project with the aim to answer the inversion
barrier question through both experimental and computational techniques. We
herein report our findings on two specially designed tetraphenylenes, 7 and 15.
Experimental Section 5-2.
General. All solvents and reagents were dried and purified by the usual
techniques. Melting points were obtained on a microscope melting point
apparatus and were uncorrected. IR spectra were recorded on a FT-IR
265
spectrometer.
1
H-NMR spectra were recorded at a 300 MHz NMR spectrometer
at ambient temperature unless otherwise indicated.
13
C-NMR spectra were
recorded at 75.3 MHz at ambient temperature and were proton decoupled.
Chemical shifts are reported in ppm from tetramethylsilane on the scale with the
solvent resonance employed as the internal standard. Optical rotation was
measured at 589 nm and at 20 °C, and is reported as [ α] λ (solvent, concentration
in grams/100 mL). Mass spectra were measured at an ionization voltage of 70
eV. Enantiomeric excesses were determined by means of HPLC. CD spectra
were measured at ambient temperature. Single crystal X-ray diffraction data for
compounds were collected at 293 K or 150 K using Mo K α radiation ( λ = 0.71073
Å).
Crystallization of Enantiopure 2,15-Dideuteriotetraphenylene (7). Single
crystal samples were grown inside an NMR tube by slow room-temperature
evaporation from a saturated 5 – 8 mg (S)-7 powder sample dissolved in
dichloromethane (distilled from calcium dihydride), all contained within a Schleck
tube. The crystal samples were transparent and pale yellow in color. The largest
single crystal sample was approximately 10 mm
3
in size.
Synthesis of Enantiopure 2,15-Dideuteriotetraphenylene (7). The primary
goal of our study was to resolve the issue on the inversion barrier of the
tetraphenylene core unit using an enantiopure derivative with as little perturbation
as possible on its outer periphery as a tool. Since there is no other derivative of
tetraphenylene that more closely resembling pristine tetraphenylene itself in
structure than a simple deuterated analog, we set forth to undertake the
synthesis of 2,15-dideuteriotetraphenylene (7) in its enantiopure forms to be used
266
as probes for our investigation on the processes of their racemization. Our quest
for 7 in both racemic and enantiopure forms was a scheme starting from 1,16-
dihydroxytetraphenylene (8) (Figure 5-3) [14]. To introduce the two deuterium
atoms in a regiospecific manner, an ortho-lithiation strategy was employed [27].
The starting dihydroxytetraphenylene 8 was thus first protected as its bisMOM
ether 9, which was then subjected to bis-ortho-lithiation with t-BuLi at low
temperature. Trapping the lithiated species with heavy water led to an
inseparable mixture of ~70% 2,15-bisdeuterated product 10 and ~30%
undeuterated starting material. After carrying out the lithiation-deuteration
procedure twice, a sample with >95% deuterio-enrichment was obtained. With
this bisdeuterio molecule in hand, the MOM protecting groups were dismantled
by acid hydrolysis, and subsequent formation of bis-(S)-camphorsulfonates
utilizing (S)-camphorsulfonyl chloride led to two isolable diastereomers 12 and
13. The establishment of absolute configurations for these diastereomers was
achieved by comparing their
1
H-NMR spectra with those of the known
corresponding 1,16-bis[(S)-camphorsulfonyloxy]tetraphenylenes [14]. Respective
desulfonylation of 12 and 13 followed by column chromatographic purification
generated the optically pure (R)-11 and (S)-11, each with >99% ee. The quest for
7, as a racemate or in its enantiopure forms, was finally accomplished by
transforming 11 (correspondingly in both racemic and enantiopure forms) into the
bistriflates 14 followed by palladium-catalyzed reductive desulfonyloxygenation
[28,29].
267
Figure 5-3. Reaction scheme for the synthesis of 2,15-dideuteriotetraphenylene
(7).
OH
OH
OMOM
OMOM
1. NaH, THF, DMF
0
o
C
2. CH
3
OCH
2
Cl
0
o
C ~ r.t.
83%
8
9
OMOM
OMOM
D
D
10
1. t-BuLi, THF,
-78
o
C ~ 0
o
C.
2. D
2
O
(repeated 3 rounds)
68%, >95%D
OH
OH
D
D
11
HCl, H
2
O, THF
60
o
C
92%
OR*
OR*
D
D
12
Et
3
N, CH
2
Cl
2
R*Cl
O
2
S
O
R*=
OR*
OR*
D
D
13
+
OH
OH
D
D
KOH,
MeOH, H
2
O
60
o
C
97%
(R)-11
OH
OH
D
D
KOH,
MeOH, H
2
O
60
o
C
97%
(S)-11
TfO
TfO
D
D
Tf
2
O, pyridine
CH
2
Cl
2
0
o
C ~ r.t.
99% 14
in racemic or
enantiopure forms
HO
HO
D
D
11
in racemic or
enantiopure forms
Pd(OAc)
2
, dppb, dppp,
Et
3
N, HCO
2
H
DMSO
60
o
C
72%
D
D
7
in racemic or
enantiopure form
(S)-7 from (S)-14,
(R)-7 from (R)-14
Synthesis of 1,16-Bis(methoxymethoxy)tetraphenylene (9). To a
suspension of NaH (60% in oil, 108 mg, 2.72 mmol) in dry THF (10 mL) and dry
DMF (1 mL), 1,16-dihydroxytetraphenylene [14] (8) (100 mg, 0.29 mmol) was
added under Ar atmosphere at 0
o
C. After stirring for 1 hour, chloromethyl methyl
ether (1 mL, 8.1 mmol) was added dropwise. The resulting mixture was stirred for
additional 8 hours and slowly warmed to room temperature. The reaction was
quenched with ice-water (5 mL), and then THF was removed by evaporation. The
residual aqueous layer was extracted with CH
2
Cl
2
(50 mL × 3). The combined
organic phase was washed with brine (20 mL × 4), dried over Na
2
SO
4
, filtered
and concentrated under reduced pressure. The residue was purified by column
268
chromatography on silica gel (ethyl acetate / hexane = 1 : 10) to give 1,16-
bis(methoxymethoxy)tetraphenylene (9) (105 mg, 83%) as a white solid. mp
104.5-105.5
o
C.
1
H NMR (300 MHz, CDCl
3
) δ 7.27-7.18 (m, 8H), 7.13-7.10 (m,
2H), 7.01 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 4.98 (d, J = 6.6 Hz, 2H),
4.87 (d, J = 6.6 Hz, 2H), 3.25 (s, 6H);
13
C NMR (75 MHz, CDCl
3
) δ 154.3, 143.5,
141.6, 141.5, 128.9, 128.2, 128.0, 127.6, 127.4, 127.2, 123.1,114.7, 95.4, 55.7;
IR (KBr) 2824, 1577, 1458, 1245, 1153, 1003, 754 cm
-1
; MS(EI) m/z (relative
intensity) 424(M
+
, 11), 348(70), 320(77); HRMS: calculated for C
28
H
24
O
4
Na
+
447.1568; found 447.1566; Anal. calculated for C
28
H
24
O
4
: C, 79.22, H, 5.70,
found C, 78.86, H, 6.09.
Synthesis of 2,15 – Dideuterio - 1,16 – bis (methoxymethoxy)
tetraphenylene (10). To a solution of 9 (81 mg, 0.20 mmol) in anhydrous THF (8
mL), t-BuLi (1.6M solution in hexane, 1.0 mL, 1.6 mmol) was added dropwise
under Ar atmosphere at -78
o
C. The resulting solution was stirred and slowly
warmed to -25
o
C over a period of 4.5 hours before D
2
O (0.5 mL, 25 mmol,
99.8%D) was injected in. The mixture was then let warm to room temperature
and stirred over night. The reaction was quenched with ice-water (5 mL), and
then THF was evaporated. The residual aqueous layer was extracted with CH
2
Cl
2
(50 mL × 3). The combined organic phase was washed with brine (20 mL × 4),
dried over Na
2
SO
4
, filtered and concentrated under reduced pressure.
The crude product was subjected to the above procedure for two
additional rounds and was finally purified by column chromatography on silica gel
(ethyl acetate / hexane = 1 : 10) to give 2,15-dideuterio-1,16-
bis(methoxymethoxy)tetraphenylene (10) (56 mg, 68%, >95%D) as a white solid.
269
mp 104-105
o
C.
1
H NMR (300 MHz, CDCl
3
) δ 7.26-7.10 (m, 10H), 6.84 (d, J =
7.2Hz, 2H), 4.98 (d, J = 6.6 Hz, 2H), 4.87 (d, J = 6.6 Hz, 2H), 3.25 (s, 6H);
13
C
NMR (75 MHz, CDCl
3
) δ 154.5, 143.4, 141.6, 141.5, 128.9, 128.1, 128.0, 127.5,
127.2, 123.1, 95.3, 55.7; IR (KBr) 3057, 2825, 1565, 1427, 1394, 1379, 1232,
1154, 1000, 756
cm
-1
; MS(EI) m/z(relative intensity) 426(M
+
,9), 322(65); HRMS
calculated for C
28
H
22
D
2
O
4
Na
+
449.1682; found 449.1692.
Synthesis of 2,15-Dideuterio-1,16-dihydroxytetraphenylene (11). A mixture
of 10 (200 mg, 0.47 mmol) and HCl (3 M, 6 mL, 18mmol) in THF (20 mL) was
heated to 60
o
C and stirred overnight. THF was removed from the mixture by
evaporation and the residual aqueous layer was extracted with ethyl acetate (30
mL × 5). The combined organic phase was washed with brine (20 mL × 4), dried
over Na
2
SO
4
, filtered and concentrated under reduced pressure. The resulting
residue was purified by column chromatography on silica gel (ethyl acetate /
hexane = 1 : 3) to give 2,15-dideuterio-1,16-dihydroxytetraphenylene (11) (146
mg, 92%) as a white solid. mp >300 °C.
1
H NMR (300 MHz, CD
3
SOCD
3
) δ 7.30-
7.22 (m, 8H), 7.12-7.10 (m, 2H), 6.85 (d, J = 7.2 Hz, 2H), 4.90 (s, 2H);
13
C NMR
(75 MHz, CD
3
COCD
3
) δ 143.9, 142.1, 141.5, 128.6, 128.2, 128.0, 127.4, 127.2,
127.1, 127.0, 126.5, 120.4; IR (KBr) 3499, 3063, 1566, 1426, 1402, 1323, 1187,
1175, 1094, 757, 749, 676 cm
-1
; MS (EI) m/z (relative intensity) 372(M
+
, 100);
HRMS calculated for C
24
H
14
D
2
O
2
H
+
339.1360; found 339.1349.
Synthesis of (R) - (+) - 2,15 – Dideuterio - 1,16 - bis[(S)-
camphorsulfonyloxy] - tetraphenylene (12) and (S)-(+)- 2,15-Dideuterio-1,16-
bis[(S)-camphorsulfonyloxy]tetraphenylene (13). To a solution of (rac)-11 (150
mg, 0.447 mmol) and (S)-(+)-camphorsulfonyl chloride (0.95 g, 2.30 mmol) in
270
CH
2
Cl
2
(15 mL) was added dropwise triethylamine (1.0 mL, 7.15 mmol) at 0 °C.
The resulting mixture was stirred for 24 hours at room temperature until TLC
indicated complete consumption of (rac)-11. Water (10 mL) was added and the
mixture was extracted with CH
2
Cl
2
(20 mL × 3). The combined extracts were
washed with HCl (1M, 20 mL × 2), brine (30 mL × 4), dried over Na
2
SO
4
, filtered
and concentrated under reduced pressure. The resulting residue was purified by
column chromatography on silica gel (ethyl acetate / hexane 1:6) to give the
diastereomers.
The more polar diastereomer was 12(124 mg 36%). mp >300
o
C. [ α]
20
D
: +
13.2 (CH
2
Cl
2
, c = 0.85);
1
H NMR (300 MHz, CDCl
3
) δ 7.34-7.12 (m,12H), 3.52 (d,
J = 15 Hz, 2H), 2.80 (d, J = 15.1 Hz, 2H), 2.37 (d, J = 18 Hz, 2H), 2.40–1.88 (m,
8H), 1.64-1.55 (m, 2H), 1.45-1.36 (m, 2H), 0.97 (s, 6H), 0.79 (s, 6H);
13
C NMR
(75 MHz, CDCl
3
) δ 213.5, 145.9, 145.0, 140.9, 139.8, 129.1, 129.0,128.2, 127.9,
127.8, 127.7, 127.4, 57.9, 48.9, 47.8, 42.9, 42.4, 26.8, 24.8, 19.7, 19.5; IR (KBr)
3387, 2961, 1748, 1529, 1360, 1168, 909, 761 cm
-1
; MS (ESI) m/z 789 (MNa
+
);
HRMS calculated for C
44
H
42
D
2
O
8
S
2
Na
+
789.2459; found 789.2497.
The less polar diastereomer was 13 (127 mg 37%). mp 236.5-238.0
o
C;
[ α]
20
D
: + 16.3 (CH
2
Cl
2
, c = 0.55);
1
H NMR (300 MHz, CDCl
3
) δ 7.38- 7.26 (m, 8H),
7.16-7.11 (m, 4H) 3.18 (d, J = 15.3 Hz, 2H), 2.99 (d, J = 15.0 Hz, 2H), 2.41–2.31
(m, 4H), 2.10–1.90 (m, 4H), 1.61-1.38 (m, 4H), 1.07 (s, 6H), 0.83 (s, 6H);
13
C
NMR (75 MHz, CDCl
3
) δ 213.9, 145.0, 140.9, 139.7, 129.3, 129.1, 128.9, 128.3,
128.2, 127.9, 127.4, 57.9, 48.7, 48.0, 42.7, 42.4, 26.9, 24.9, 19.8, 19.6; IR (KBr)
2963, 2927, 1747, 1618, 1373, 1168, 912, 761 cm
-1
; MS (ESI) m/z 789 (MNa
+
);
HRMS calculated for C
44
H
42
D
2
O
8
S
2
Na
+
789.2495, found 789.2493; Anal.
271
calculated for C
44
H
42
D
2
O
8
S
2
+1/2EtOAc C, 68.12; H, 6.21; found C, 67.66; H,
5.89.
Synthesis of (R)-2,15-Dideuterio-1,16-dihydroxytetraphenylene (R)-11 and
(S)-2,15-Dideuterio-1,16-dihydroxytetraphenylene (S)-11. To a suspension of 12
(112 mg, 0.14 mmol) in methanol (20 mL) was added aqueous solution of KOH
(2M, 5 mL, 10 mmol). The resulting mixture was warmed to 60 °C until a clear
yellow solution was obtained and TLC indicated the completion of reaction. After
the solution was cooled to room temperature, it was acidified with HCl (3M, 10
mL, 30 mmol), and excess methanol was removed from the mixture by
evaporation. The residual aqueous layer was extracted with ethyl acetate (30 mL
× 4). The combined organic phase was washed with sodium bicarbonate (20 mL
× 2) and brine (30 mL × 4), dried over Na
2
SO
4
, filtered and concentrated under
reduced pressure. The resulting residue was purified by column chromatography
on silica gel (ethyl acetate / hexane 1:2), giving (R)-11 (46.7 mg, 97%) as a white
solid, with a purity of 99.1% ee as determined by chiral HPLC. The spectroscopic
data of (R)-11 were identical to those of (rac)-11. [ α]
20
D
: -58.0 (CH
2
Cl
2
, c = 0.315).
(S)-11 was prepared according to the same procedure as that for 13
(97%). [ α]
20
D
: +62.3 (CH
2
Cl
2
, c = 0.315).
Synthesis of 2,15-Dideuterio-1,16-bis(trifluoromethanesulfonyloxy)
tetraphenylene (14). To a suspension of (rac)-11 (28 mg, 0.083 mmol) in dry
CH
2
Cl
2
(5 mL) was added pyridine (0.1 mL, 1.2 mmol) and then
trifluoromethanesulfonic anhydride (0.11 mL, 0.67 mmol) at 0 °C. After the
addition, the reaction mixture was stirred for 24 h at ambient temperature. When
TLC indicated the reaction was completed, water (5 mL) was added carefully.
272
The mixture was extracted with CH
2
Cl
2
(15 mL × 3). The combined organic layer
was washed with HCl (1M, 10 mL) and brine (20 mL × 2), dried over Na
2
SO
4
,
filtered and concentrated under reduced pressure. The resulting residue was
purified by column chromatography on silica gel (ethyl acetate /hexane 1:50) to
give (rac)-14 (59 mg, 99%) as a white solid. mp 235 °C (sublimed).
1
H NMR (300
MHz, CDCl
3
) δ 7.43 (d, J = 8.1 Hz, 2H), 7.36~7.23 (m, 10H);
13
C NMR (75 MHz,
CDCl
3
) δ 145.9, 145.7, 140.7, 138.8, 130.3, 129.8, 129.6, 129.1, 128.3, 127.8,
127.4, 120.3, 116.0; IR (KBr) 1425, 1217, 1142, 1077, 915, 803, 761, 604 cm
-1
;
MS (ESI) m/z 625 (M+Na
+
), 641 (M+K
+
), 657 (M+MeOH+Na
+
); HRMS calculated
for C
26
H
12
D
2
F
6
O
6
S
2
Na
+
625.0156; found 625.0153.
The (R)-14 or (S)-14 was synthesized through a similar method as that for
(R)-11 or (S)-11 respectively, the spectroscopic data of (R)-14 or (S)-14 were
identical to those of (rac)-14. (R)-14 [ α]
20
D
: -87.1(CH
2
Cl
2
, c = 0.92); (S)-14 [ α]
20
D
:
+83.3(CH
2
Cl
2
, c = 0.92).
Synthesis of 2,15-Dideuteriotetraphenylene (7). To a mixture of (rac)-14
(30 mg, 0.05 mmol), Pd(OAc)
2
(8 mg, 0.035 mmol), and dppb (35 mg, 0.08
mmol), dppp (50 mg, 0.12 mmol) were added dry DMSO (10 mL) and Et
3
N (0.2
mL). The mixture was stirred at 0
o
C for 0.5 hour before anhydrous formic acid
was injected in. After being stirred at 100
o
C for 24 hours, the reaction was
quenched with ice-water(350 mL), and the residual aqueous layer was extracted
with CH
2
Cl
2
(50 mL × 3). The combined organic phase was washed with brine (20
mL × 4), dried over Na
2
SO
4
, filtered and concentrated under reduced pressure.
The resulting residue was purified by column chromatography on silica gel
(hexane) to give 2,15-dideuteriotetraphenylene (7) (10.8 mg, 72%) as a white
273
solid. mp 251.5-253
o
C.
1
H NMR (300 MHz, CDCl
3
) δ 7.28 (d, J = 6.3 Hz, 6H),
7.16 (d, J = 7.2 Hz, 8H);
13
C NMR (75 MHz, CDCl
3
) δ 142.2, 129.6, 128.0; IR
(KBr) 3060, 3014, 1485, 1461, 1436, 1214, 1007, 847, 766, 752, 655, 549, 470
cm
-1
; MS (EI) m/z (relative intensity) 306(M
+
,100); HRMS calculated for C
24
H
14
D
2
+
306.1378; found 306.1383.
The (R)-7 or (S)-7 was synthesized through a similar method as that for
(R)-14 or (S)-14 respectively, the spectroscopic data of (R)-7 or (S)-7 were
identical to those of (rac)-7. (R)-7 [ α]
20
D
: -4 (CH
2
Cl
2
, c = 0.255); (S)-7 [ α]
20
D
: -2
(CH
2
Cl
2
, c = 0.275).
Synthesis of 1,16-Dimethoxy-6,11-dimethyltetraphenylene (18). To a
suspension of 2,2'-diiodo-4,4'-dimethylbiphenyl [30,31] (16) (174 mg, 0.40 mmol)
and 2,2’-dimetoxy-6,6’-diiodobipheny [32,33] (17) (186 mg 0.40 mmol) in Et
2
O
(30 mL) was added dropwise n-BuLi (0.8 mL, 2.5 M in hexane, 2 mL), at -78
o
C.
After stirring for 30 min at -78
o
C, CuCl
2
(376 mg, 2.78 mmol) was added. After
stirring for 4 h at -78
o
C, the reaction mixture was allowed to warm to ambient
temperature overnight. The resulting solution with some precipitate was
quenched with NH
3
•H
2
O (2M, 15 mL), and the residual aqueous layer was
extracted with CH
2
Cl
2
(30 mL × 4). The combined organic phase was washed
with NaHSO
3
(2M, 30 mL), brine (20 mL × 4), dried over Na
2
SO
4
, filtered and
concentrated under reduced pressure. The resulting residue was purified by
column chromatography on silica gel (CH
2
Cl
2
/ ethyl acetate / hexane 1:1:6) to
give 1,16-dimethoxy-6,11-dimethyltetraphenylene (18) (17 mg, 11%) as a white
solid, mp 176-177
o
C.
1
H NMR (300 MHz, CDCl
3
) δ 7.22 (t, J = 7.8 Hz, 2H), 7.05-
6.97 (m, 6H), 6.79 (ddd, J =13.5, 8.3, 0.6 Hz, 4H), 3.68 (s, 6H), 2.31 (s, 6H);
13
C
274
NMR (75 MHz, CDCl
3
) δ 156.7, 143.4, 141.5, 138.5, 136.4, 128.9, 128.7, 128.0,
127.8, 126.1, 121.8, 109.8, 56.1, 21.0; IR (KBr) 2930, 2833, 1577, 1461, 1431,
1257, 1097, 1039, 819, 789, 738 cm
-1
; MS (ESI) m/z (relative intensity) 392(M
+
,
56); HRMS calculated for C
28
H
24
O
2
Na
+
415.1668; found 415.1656.
1,16-Dihydroxy-6,11-dimethyltetraphenylene (19). To a suspension of
1,16-dimethoxy-6,11-dimethyltetraphenylene (18) (182 mg, 0.5 mmol) in CH
2
Cl
2
(20 mL) was added dropwise BBr
3
(4 mL, 1M solution in CH
2
Cl
2,
4 mmol) at 0
o
C.
The mixture was stirred overnight at room temperature and a clear brownish red
solution was obtained. The reaction mixture was quenched with ice-water (10
mL), and a white solid precipitated which was dissolved by the addition of ethyl
acetate (25 mL). The organic layer was separated and the residual aqueous layer
was extracted with ethyl acetate (30 mL × 4). The combined organic phase was
washed with NaHCO
3
(2M, 30 mL), brine (20 mL × 4), dried over Na
2
SO
4
, filtered
and concentrated under reduced pressure. The resulting residue was purified by
column chromatography on silica gel (ethyl acetate / hexane 1:3) to give 1,16-
dihydroxy-6,11-dimethyltetraphenylene (19) (164 mg, 97%) as a white solid, mp
222-223
o
C.
1
H NMR (300 MHz, CD
3
COCD
3
) δ 7.24 (dd, J = 4.8, 1.2 Hz, 2H),
7.06-6.95 (m, 4H), 6.85 (dd, J = 15.6, 7.5 Hz, 4H), 4.97 (s, 2H), 2.31 (s, 6H);
13
C
NMR (75 MHz, CD
3
COCD
3
) δ 154.6, 144.6, 142.6, 139.2, 136.8, 129.3, 129.2,
128.5, 128.2, 124.2, 120.9, 114.6, 20.6; IR (KBr) 3499, 3921, 1573, 1442, 1305,
1279, 1208, 1180, 841, 796 cm
-1
; MS (EI) m/z (relative intensity) 364 (M
+
, 100);
HRMS calculated for C
26
H
20
O
2
Na
+
387.1354; found 387.1355; Anal. calculated
for C
26
H
20
O
2
+1/2EtOAc C, 82.33; H, 5.92; found C, 82.39; H, 6.08.
275
(R)-(+)- 6,11 – Dimethyl - 1,16 - bis[(S)-camphorsulfonyloxy] -
tetraphenylene (20) and (S) - (+) - 6,11 – Dimethyl - 1,16 - bis[(S)-
camphorsulfonyloxy]tetraphenylene (21). To a solution of (rac)-1,16-dihydroxy-
6,11-dimethyltetraphenylene (19) (75 mg 0.225 mmol) and (S)-(+)-
camphorsulfonyl chloride (0.6 g, 2.3 mmol) in THF (8 mL) was added dropwise
triethylamine (0.4 mL, 2.86 mmol) at 0
o
C. The resulting mixture was stirred for 24
h at room temperature until TLC indicated complete consumption of the starting
material. The reaction was quenched with ice-water (5 mL), and then THF was
evaporated. The residual aqueous layer was extracted with CH
2
Cl
2
(50 mL × 3).
The combined organic phase was washed with brine (20 mL × 4), dried over
Na
2
SO
4
, filtered and concentrated under reduced pressure. The residue was
purified by column chromatography on silica gel (ethyl acetate / hexane = 1 : 8) to
give the two diastereomers 20 and 21. Single crystal of the more polar
bissulfonate 20 was grown- from ethyl acetate and its absolute configuration was
determined on the basis of an X-ray diffraction analysis.
The more polar diasteromer was 20 (124 mg, 36%), mp 235-235.5
o
C.
[ α]
20
D
: + 7.4 (CH
2
Cl
2
, c = 1.265);
1
H NMR (300 MHz, CDCl
3
) δ 7.43-7.12 (m,
12H), 3.53 (d, J = 15 Hz, 2H), 2.80 (d, J = 15.1 Hz, 2H), 2.42-2.33 (m, 2H), 2.21-
1.89(m, 6H), 1.65-1.55 (m, 8H), 1.45-1.36 (m, 2H), 0.98 (s, 6H), 0.79 (s, 6H);
13
C
NMR (75 MHz, CDCl
3
) δ 213.6, 145.9, 145.1, 139.5, 137.9, 136.6, 129.5, 129.0,
128.9, 128.5, 127.7, 127.6, 119.6, 57.7, 48.7, 47.7, 42.7, 42.2, 29.6, 26.7, 24.6,
21.0, 19.6, 19.4; IR (KBr) 2958, 2924, 1747, 1571, 1438, 1365, 1224, 1166, 945,
837, 502 cm
-1
; MS (ESI) m/z (relative intensity) 793 (MH
+
); HRMS calculated for
276
C
46
H
48
O
8
S
2
Na
+
815.2682; found 815.2682; Anal. calculated for C
46
H
48
O
8
S
2
C,
61.80; H, 5.52; found C, 61.53; H, 5.88.
The less polar diastereomer was 21 (126.7 mg 37%), mp 109-111
o
C.
[ α]
20
D
: + 35.6 (CH
2
Cl
2
, c = 0.675);
1
H NMR (300 MHz, CDCl
3
) δ 7.31-7.26 (m,
4H), 7.16-7.07 (m, 6H), 6.99 (d, J = 8.1 Hz, 2H), 3.22 (d, J = 15.3 Hz, 2H), 2.99
(d, J = 15.0 Hz, 2H), 2.41-2.31 (m, 10H), 2.10-1.90 (m, 6H), 1.61-1.38 (m, 4H),
1.09 (s, 6H), 0.84 (s, 6H);
13
C NMR (75 MHz, CDCl
3
) δ 213.7, 145.8, 145.1,
142.1, 139.4, 137.8, 136.6, 129.8, 128.9, 128.6, 128.4, 128.0, 127.9, 120.3, 57.8,
48.5, 47.7, 42.6, 42.2, 26.7, 24.8, 20.9, 19.6, 19.4; IR (KBr) 2961, 2924, 1750,
1364, 1176, 1162, 946, 859, 839, 741, 577, 521 cm
-1
; MS (ESI) m/z 793 (MH
+
);
HRMS calculated for C
46
H
48
O
8
S
2
Na
+
815.2682; found 815.2673; Anal. calculated
for C
46
H
48
O
8
S
2
+1/2EtOAc C, 68.87; H, 6.26; found C, 68.87; H, 5.86.
(R,S) - 1,16 – Dihydroxy - 6,11 - dimethyltetraphenylene (R,S ) -19 and
(S,R) - 1,16 - Dihydroxy - 6,11 - dimethyltetraphenylene (S,R)-19. To a
suspension of 20 or 21 (160 mg, 0.2 mmol) in methanol (20 mL) was added
aqueous solution of KOH (2M, 5 mL, 10 mmol). The resulting mixture was
warmed to 60 °C until a clear yellow solution was obtained and TLC indicated the
completion of reaction. After the solution was cooled to room temperature, it was
acidified with 3N HCl (10 mL), and excess methanol was removed from the
mixture by evaporation. The residual aqueous layer was extracted with ethyl
acetate (30 mL × 4). The combined organic phase was washed with sodium
bicarbonate (20 mL × 2) and brine (30 mL × 4), dried over Na
2
SO
4
, filtered and
concentrated under reduced pressure. The resulting residue was purified by
column chromatography on silica gel (ethyl acetate / hexane 1:2), giving (R,S)-19
277
or (S,R)-19 (70.6 mg, 97%) as a white solid, with a purity of >99% ee as
determined by chiral HPLC. The spectroscopic data of (R,S)-19 or (S,R)-19 were
identical to those of (rac)-19. (R,S)- 19 [ α]
20
D
: -57.4 (CH
2
Cl
2
, c = 0.50), or (S,R)-
19 [ α]
20
D
: +55.1 (CH
2
Cl
2
, c = 0.50).
6,11-Dimethyl--1,16-bis(trifluoromethanesulfonyloxy)tetraphenylene (22).
To a suspension of (rac)-1,16-dihydroxy-6,11-dimethyltetraphenylene (19) (36
mg, 0.099 mmol) in dry CH
2
Cl
2
(5 mL) was added pyridine (0.1 mL, 1.2 mmol)
and then trifluoromethanesulfonic anhydride (0.11 mL, 0.67 mmol) at 0 °C. After
the addition, the reaction mixture was stirred for 24 h at ambient temperature until
TLC indicated complete consumption of the starting material. The reaction was
quenched with ice-water (5 mL), and the residual aqueous layer was extracted
with CH
2
Cl
2
(15 mL × 3). The combined organic layer was washed with HCl (1M,
10 mL) and brine (20 mL × 2), dried over Na
2
SO
4
, filtered and concentrated under
reduced pressure. The resulting residue was purified by column chromatography
on silica gel (CH
2
Cl
2
/ hexane 1:3) to give 22 as a white solid (61.5 mg, 99%), mp
147-148
o
C.
1
H NMR (300 MHz, CDCl
3
) δ 7.43 (t, J = 7.8 Hz, 2H), 7.26 (t, J =7.8
Hz, 4H), 7.12 (d, J =7.8 Hz, 2H), 7.05-7.01 (m, 4H), 2.34 (s, 6H);
13
C NMR (75
MHz, CDCl
3
) δ 146.0, 138.8, 137.8, 137.0, 130.2, 129.8, 129.0, 127.8, 120.0,
21.0; IR (KBr) 1556, 1459, 1427, 1407, 1212, 1138, 1011, 953, 888, 825, 761,
610, 516 cm
-1
; MS (ESI) m/z 651(M+Na
+
); HRMS calculated for
C
28
H
18
F
6
O
6
S
2
Na
+
651.0347; found 651.0351.
The (S,R)-22 or (R,S)-22 was synthesized through a similar method as
that for (S,R)-19 or (R,S)-19 respectively, the spectroscopic data of (S,R)-22 or
278
(R,S)-22 were identical to those of (rac)-22. (S,R)-22 [ α]
20
D
: +43.3 (CH
2
Cl
2
, c =
0.47); (R,S)-22 [ α]
20
D
: -48.1 (CH
2
Cl
2
, c = 0.42).
2,7-Dimethyltetraphenylene (15). To a mixture of (rac)-22 (189 mg, 0.3
mmol), Pd(OAc)
2
(100 mg, 0.44 mmol), and dppb (70 mg, 0.16 mmol), dppp (100
mg, 0.24 mmol) were added dry DMSO (20 mL) and Et
3
N (0.4 mL). The mixture
was stirred at 0
o
C for 0.5 hour before anhydrous formic acid (0.4 mL) was
injected in. After being stirred at 60
o
C for 24 hours, the reaction was quenched
with ice-water(15 mL), and the residual aqueous layer was extracted with CH
2
Cl
2
(30 mL × 3). The combined organic phase was washed with brine (20 mL × 4),
dried over Na
2
SO
4
, filtered and concentrated under reduced pressure. The
resulting residue was purified by column chromatography on silica gel (hexane)
to give 2,7-dimethyltetraphenylene (15) (10.8 mg, 72%) as a white solid. mp 228
o
C (sublimed).
1
H NMR (300 MHz, CDCl
3
) δ 7.29-7.24 (m, 4H), 7.15 (dd, J = 7.2,
2.4 Hz, 4H), 7.04 (t, J = 7.5 Hz, 4H), 6.97 (s, 2H), 2.31 (s, 6H);
13
C NMR (75 MHz,
CDCl
3
) δ 141.7, 141.6, 141.4, 138.6, 136.6, 129.8, 129.1, 129.0, 128.0, 127.1,
127.0, 21.0; IR (KBr) 3011, 2921, 2851, 1612, 1471, 1435, 1045, 815, 776, 761,
744, 562, 467 cm
-1
; MS (EI) m/z (relative intensity) 332(M
+
,100); Anal. calculated
for C
26
H
20
C, 93.94; H, 6.06; found C, 93.81; H, 6.19.
The (R)-15 or (S)-15 was synthesized through a similar method as that for
(R,S)-22 or (R,S)-22 respectively, the spectroscopic data of (R)-15 or (S)-15 were
identical to those of (rac)-15. (R)-15 [ α]
20
D
: +22 (CH
2
Cl
2
, c = 0.125); (S)-15 [ α]
20
D
:
-23 (CH
2
Cl
2
, c = 0.125).
General Procedure for the Racemization and Decomposition Experiments
on the Tetraphenylenes. Tetraphenylene samples (~50 mg) were placed in short
279
quartz capillaries, which were flame-sealed under argon and then heated for 2 h
at 300, 400, 500 or 550
o
C in preheated ovens, respectively. The black residue at
the bottom of the tube was extracted with CH
2
Cl
2
(10 mL × 3). The combined
extracts were filtered and concentrated under reduced pressure. The resulting
residue was purified by column chromatography on silica gel (CH
2
Cl
2
/ hexane 1:
40) to give the recovered tetraphenylenes
HPLC-spectrum indicated (R)-15 with unchanged ee within experimental
error (±5%, for the near 100% ee samples) was recovered under all these
circumstances. For all tetraphenylene samples, elongation of the
thermalexperimental time at 600
o
C to 12 h resulted in the complete
disappearance of the starting material and the formation of triphenylene (23) as a
white solid, mp 196
o
C.
30
1
H NMR (300 MHz, CDCl
3
) δ 8.67 (dd, J = 6.0, 3.0 Hz,
6H), 7.67 (t, J =6.0, 3.0 Hz, 6H); MS (EI) m/z 228(M
+
).
X-Ray Data Collection, Structure Determination and Refinement for 2,15 -
Dideuteriotetraphenylene (7), 2,7 - Dimethyltetraphenylene (15), and(R) - (+) -
6,11 – Dimethyl - 1,16 - bis[(S)-camphorsulfonyloxy] - tetraphenylene (20). Crystal
structures of 15 and 20 were solved by direct methods (SHELXS-97) (Sheldrick,
G.M. SHELX-97 Programs for Crystal Structure Analysis, University of Göttingen,
Institüt für Anorganische Chemie der Universität, Tammanstrasse 4, D-3400
Göttingen, Germany, 1998.).
Diffraction data for 2,15-Dideuteriotetraphenylene (7) were collected at
150 K on a SMART APEX CCD diffractometer with graphite fine-focused
monochromatic Mo-K
α
radiation ( λ = 0.71073 Ǻ). The cell parameters for (7) were
obtained from the least-squares refinement of the spots (from 60 collected
280
frames) using the SMART program of a pale yellow crystal sample measuring
0.01 x 0.10 x 0.05 mm
3
in size. A hemisphere of data were collected up to a
resolution of 0.82 Ǻ, the intensity data were processed using the Saint Plus
program. All calculations for the structure determination were carried out using
the SHELXTL package (version 6.14) [34]. Initial atomic position were located by
direct methods using XS, and the structure was refined by the least square
methods using SHELX with 5598 independent reflections and within the range of
theta 2.06 to 25.68
o
(completeness 99.8%). Calculated hydrogen position were
input and refined in a riding manner along with the corresponding carbons. A
summary of the refinement details and the resulting factors are given in Table 5-
1.
281
Table 5-1. X-ray crystallographic results for 2,15-Dideuteriotetraphenylene (7) for
data collected at the University of Southern California.
Empirical formula C24 H16
Formula weight 304.37
Temperature 150(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group C2
Unit cell dimensions a = 15.423(2) Å α= 90°.
b = 13.0638(18) Å β= 100.976(2)°.
c = 16.267(2) Å γ= 90°.
Volume 3217.6(8) Å
3
Z 8
Density (calculated) 1.257 Mg/m
3
Absorption coefficient 0.071 mm
-1
F(000) 1280
Crystal size 0.10 x 0.10 x 0.05 mm
3
Theta range for data collection 2.06 to 25.68°.
Index ranges -18<=h<=17, -15<=k<=15, -10<=l<=19
Reflections collected 8910
Independent reflections 5598 [R(int) = 0.0545]
Completeness to theta = 25.68° 99.8 %
Absorption correction None
Max. and min. transmission 0.9965 and 0.9929
Refinement method Full-matrix least-squares on F
2
Data / restraints / parameters 5598 / 1 / 433
Goodness-of-fit on F
2
1.070
Final R indices [I>2sigma(I)] R1 = 0.0451, wR2 = 0.1280
R indices (all data) R1 = 0.0492, wR2 = 0.1333
Absolute structure parameter -10(10)
Largest diff. peak and hole 0.261 and -0.234 e.Å
-3
Neutron Data Collection, Structure Determination and Refinement for 2,15
- Dideuteriotetraphenylene (7). Upon slow evaporation of a saturated
dichloromethane solution of (S)-7, single crystals with suitable size (~10 mm
3
) for
282
the neutron diffraction investigation were obtained and the neutron diffraction
data was collected at both 30 K and 150 K on instrument SXD, the single crystal
diffractometer at the ISIS spallation neutron source [35,36]. The crystal was
mounted between two thin strips of adhesive aluminum tape at the end of an
aluminum pin. The part of the pin close to the crystal was shielded with cadmium
to minimize background scattering from the aluminum. For each data collection
(at two different temperatures), the crystal orientation was exposed to the neutron
beam for 2.5 hours per orientation, at positions of ω = –90, –150, –40, 0, +90 (5
orientations). Then the crystal was tilted by 45 degrees in χ and 4 more
orientations were collected, ω = +90, +150, +130 and 0, yielding a total of 9 sets
of data, with each set consisting of results from 11 detectors. Data reduction,
integration and absorption correction were performed using the SXD2001
software. The intensities are extracted using a least-squares procedure with a
“three-dimensional Gauss-ellipsoid with time-of-flight asymmetry” as a profile
function. For the absorption correction, the following expression was used: µ =
3.1447 + 0.0063 * λ. ( λ = wavelength in Å, µ in cm
-1
). The minimum, maximum
and average transmission were 1.618, 2.262 and 1.715 respectively. Minimum d-
spacing is equal to 0.31 Å, and the wavelength ranged from 0.37 to 8.8 Å. The
minimum and maximum 2 θ values were 12.5 and 165 degrees respectively. As
part of the time-sorted Laue procedure, the wavelength range and 2 θ range are
combined (i.e. at each 2 θ value) and the full wavelength range is recorded. The
self-consistency index R(merge) for the 30K data was 7.5%. The final refinement
of the structural analysis using the best data set, at 30(2) K, gave agreement
283
factors of 7.5% for 9161 unique reflections, R
1
= 7.9%, wR
2
= 20.0%, with all
atoms refined anisotropically. A summary of the refinement details are listed in
and the resulting factors are given in Table 5-2. A complete listing of all
crystallographic information is given in Table 5-3.
As an additional check, a second neutron diffraction data collection of the
title compound (7) at room temperature (300 K) was also carried out on
instrument BIX-3 [37], a single crystal neutron diffractometer with imaging plate at
the reactor JRR-3 in JAEA (Ibaraki, Japan) by using the same crystal measured
at the SXD. The crystal was enveloped with aluminum foil at the end of an
aluminum pin and mounted in BIX-3. The wavelength of incident neutron was
1.41Å. 159 oscillation images with ∆ω=3.0
o
were measured. Exposure time for
one image was 15minutes. The data processing was done by DENZO [38], and
3075 unique reflections with R(int)=8.5% were obtained. However, because of
the larger number of reflections from the 30(2)K data collection from ISIS, the
discussion of the neutron results in this manuscript will largely focus on the ISIS
data.
284
Table 5-2. Neutron crystallographic results for 2,15-
Dideuteriotetraphenylene (7) for data collected at I.S.I.S. on SXD.
Empirical formula C24 H14 D2
Formula weight 306.0
Crystal system Monoclinic
Space group C2
Unit Cell Parameters a = 15.423(2) Å
b = 13.064(3) Å
c = 16.267(2) Å
β = 100.976(2)
O
Volume 3217.6(8) Å
3
Z 8
Temperature 30(2) K
Crystal size 3.0 x 2.5 x 1.5 mm
3
Wavelength range 0.37 – 8.80 Å
Min. d spacing observed 0.31 Å
No. of refl. collected 32,223
No. of refl. with I > 2 σ(1) 9161
No. params. Refined 444
Refinement method Full-matrix,
least –squares on F
2
Results and Discussion Section 5-3.
De-symmetrization of the tetraphenylene skeleton into a chiral entity can
be achieved by mono- or appropriate higher- substitution. When such
tetraphenylenes are brought into a planar geometry, they will revert back to the
saddle-shape ground state through two opposite pathways: one leading to the
unchanged starting material (not to flip), and the other to the enantiomer with the
opposite configuration (to flip). Racemization of an enantiopure tetraphenylene
285
derivative will therefore occur. In the present study, we employed enantiopure
2,15-dideuteriotetraphenylene (7) and 2,7-dimethyltetraphenylene (15) for the
evaluation of their inversion barriers.
In our original plan, the inversion barrier of 7 was to be deduced by
checking the chiroptical changes of a single enantiomer of it at different
temperatures. However, to our disappointment, compound 7 exhibited very poor
optical activities: attempts to resolve racemic 7 on chiral HPLC were unfruitful;
samples synthesized from enantiopure precursors 11 of opposite configurations
showed near zero specific rotation values and displayed non-characteristic CD
spectra which assumed the shapes of two wiggled lines near the zero line and
without any discernible antipodal correlation. Such behavior of 7 raised the
question as to whether (a) enantiopure 7 retained its intrinsic chirality which just
could not be determined by optical rotation or CD measurements, or (b) the
inversion barrier was so low that the sample racemized in the course of the
formation of 7 from enantiopure 14.
The inadequacy of the chiroptical methods in solving this problem drove us
to resort to neutron diffraction study for an answer, which eventually confirmed
that the products obtained from the reactions of enantiopure 14 to 7 were indeed
chiral non-racemic substances with their absolute configurations corresponding
to those of the starting materials 14. These results are described below.
Our approach essentially hinges on the different neutron scattering
amplitudes of D and H (+6.50 pm for D and –3.78 pm for H) [39]. If the barrier to
inversion is high [hypothesis (a)], the optically-active molecule (I) (Figure 5-4) will
not racemize. Nevertheless, because of the similar sizes of D and H, the
286
molecule will still be expected to pack in two different orientations, (I) and (II),
leading to a superimposed model (III) in which four of the outer hydrogens are
50% deuterium : 50% hydrogen hybrids (corresponding to an average neutron
scattering amplitude equal to +1.36 pm), while the remaining four outer atoms
would be pure (100%) H (negative peaks in structure analysis; these are labeled
“H” in structure III in Figure 5-4).
On the other hand, if the barrier to inversion is low [hypothesis (b)], a
racemic molecule would result in which total scrambling of deuterium over all
outer positions would occur, and each of these eight positions would consist of
25% D : 75% H hybrids (structure IV in Figure 5-4).
287
Figure 5-4. Schematic drawing of 7. Dideuteriotetraphenylene maintaining its
chirality consistent with a high barrier of inversion [hypothesis (a)]. The title
molecule is shown packed in two orientations (I and II) and superimposed to yield
the disordered structure (III), in which four of the outer hydrogens are 50%
deuterium : 50% hydrogen hybrids. The remaining four outer hydrogens in (III)
are 100% pure hydrogen atoms. In contrast, a low barrier to inversion [hypothesis
(b)] would cause complete hydrogen / deuterium scrambling throughout all eight
outer positions (IV), with each position consisting of 25% deuterium : 75%
hydrogen hybrids.
D
D
D
D/H
H
D/H
H
H
H/D
H/D H
D/H
D/H
D/H
H/D
H/D
H/D
H/D D/H
(I) [D=100%] (II) [D=100%]
(III) [D/H=50% : 50%]
(IV) [D/H=25% : 75%]
D
At this point, we needed to re-do the X-ray analysis of the title compound
because of reasons which will be clear in the following discussion. Our crystal
was found to be C-centered monoclinic, consistent with the non-solvated form of
tetraphenylene originally reported by Reibel [2]. However, that earlier X-ray
crystal structure was solved in the centrosymmetric space group C2/c, a logical
choice since the parent (all-hydrogen) molecule is achiral. Recognizing the fact
288
that specific deuteriation was deliberately introduced to yield a chiral molecule, it
was necessary to re-do the X-ray analysis in a lower-symmetry (chiral) space
group so that the neutron data could be phased correctly.
A small crystal was selected and the X-ray diffraction data was collected
and refined in the lower symmetry space group C2 (with a = 15.42 Å, b = 13.06 Å,
c = 16.26 Å, β = 109.98°), in which the mirror planes originally present in the
original X-ray study [2] (in space group C2/c) vanished. A similar phenomenon (a
change of space group between the X-ray and neutron structure determinations)
had been reported before in the analysis of chiral glycolic acid [40]. A minor
complication is that, in the lower-symmetry space group C2, there are two
independent molecules in the crystallographic unit, in contrast to the centric
space group C2/c in which there is only one molecule in the asymmetric unit. The
net result of the X-ray analysis is that the asymmetric unit contains the carbon
skeletons of two independent molecules (still a centrosymmetric arrangement of
atoms in a non-centric space group).
The neutron analysis was then resumed taking the two carbon frameworks
from the afore-mentioned X-ray refinement in space group C2. In order to break
the symmetry, it was necessary to gradually introduce asymmetry by focusing on
one of the two molecules in the asymmetric unit first, and then to tackle the
second one later. A difference Fourier map at this point gave numerous negative
peaks which corresponded to the many hydrogen positions in the molecule. The
8 “inner” hydrogens of the molecule that had not been deuterated were firstly
refined. Then the outer set of peaks, which could be either D / H hybrids or 100%
hydrogens, were gradually identified. Eventually, four atoms which refined
289
acceptably well as pure hydrogens, while the remaining four outer positions
refined acceptably well as 50% D / 50% H hybrid atoms (Figure 5-5). Thus,
distinguishing the four “pure hydrogens” versus the four 50% D / 50% H “hybrid”
atoms turned out to be unambiguous, and the model shown in Figure 5-4, labeled
III, in the earlier discussion was verified.
The same procedure was applied to the other C
24
H
14
D
2
molecule
(“Molecule Two”) in the asymmetric unit. The final refinement of the entire
structure gave an agreement factor of 7.5% for 9161 unique reflections, R
1
=
7.9%, wR
2
= 20.0%, with all atoms refined anisotropically. Both molecules were
determined to be of the same absolute configuration and are shown side-by-side
in Figure 5-6.
The verified structure (III) for this neutron experiment effectively supports
the maintenance of chirality of our sample and therefore eliminates the possibility
of a low-energy barrier to inversion of this regiospecifically substituted eight-
membered ring.
290
Figure 5-5. ORTEP stereoview of the Molecule One of (S)-7 (neutron results)
corresponding to R
1
= 7.5% with 9,161 unique reflections. The C – H and C – (D /
H) bond lengths are 1.095 ± 0.006 Å and 1.095 ± 0.002 Å respectively. The
average C – C – (D/H) angles between neighboring carbons are 120.0 ± 0.9
o
. The
overall result is consistent with structure III of Figure 3, with atoms that are
labeled D / H being 50% deuterium : 50% hydrogen hybrids. The results are
consistent with a molecule whose chirality has been maintained.
291
Figure 5-6. Three dimensional rendering of the neutron results from the SXD
instrument at ISIS for both Molecule One and Molecule Two in the asymmetric
unit of crystals of 7. Note that the two molecules have retained their intrinsic
chirality. The inner hydrogen atoms have been omitted for clarity. The yellow
colored atoms represent the 50% D / 50% H hybrid atomic positions. Upon close
examination, the reader can be convinced that the two molecules have the same
chirality and are not mirror images of each other.
292
Synthesis, Resolution and Optical Activities of Dimethyltetraphenylene. In
view of the low optical activity of 7 and the elaborate neutron diffraction
procedure required for its investigation; we switched our attention to yet another
type of chiral tetraphenylene as a vehicle to examine its inversion barrier. 2,7-
Dimethyltetraphenylene (15) was chosen as a suitable target for two reasons: the
two methyl groups were expected to enhance the chiroptical properties of the
system and their non-peri locations on the tetraphenylene periphery would not
unduly impede the attainment of a proposed planar transition state in the ring
inversion process. Accordingly, we proceeded to synthesize 15 in the manner as
outlined in Figure 5-7. A copper(II)-mediated intermolecular cross-coupling
approach was adopted in our construction of the central eight-membered ring of
this tetraphenylene skeleton [13, 16, 22, 41, 42]. A mixed solution of diiodides 16
[43, 44] and 17 [45, 46] was treated with n-BuLi at -78
o
C and 3 equivalents of
CuCl
2
was subsequently added to furnish a mixture of inter-, and intramolecular
cross-, and self-coupling products from which the desired tetraphenylene 18 was
isolated in 11% yield under the optimal lithiation time of 30 min at -78
o
C [47-50].
A molecular ion peak of compound 18 in its ESI mass spectrum was observed at
m/z 415.1656 [M+Na
+
], which is in good agreement with the theoretical value of
415.1668 for molecular formula C
28
H
24
O
2
Na
+
. The structure of 18 was also
supported by comparing its
1
H-NMR spectrum with that of the known 1,16-
dimethoxytetraphenylene [14].
293
Figure 5-7. Scheme of the synthesis of 2,7-Dimethyltetraphenylene (15).
OMe
OMe
I
I
I
I OMe
OMe
+
1. n-BuLi, Et
2
O
-78
o
C
2. CuCl
2
-78
o
C ~ r.t.
11%
16 17 18
CH
2
Cl
2
0
o
C
98%
BBr
3
OR*
OR*
20
Et
3
N, CH
2
Cl
2
R*Cl
OH
OH
19
O
2
S
O
R*=
OR*
OR*
21
+
OH
OH
KOH,
MeOH, H
2
O
60
o
C
100%
(R,S)-19
OH
OH
(S,R)-19
KOH,
MeOH, H
2
O
60
o
C
100%
TfO
TfO
Tf
2
O, pyridine
CH
2
Cl
2
0
o
C ~ r.t.
99%
22
in racemic or
enantiopure form
HO
HO
19
in racemic or
enantiopure form
Pd(OAc)
2
dppb, dppp,
Et
3
N, HCO
2
H
DMSO
60
o
C
72%
15
in racemic or
enantiopure form
(S)-15 from (R,S)-22
(R)-15 from (S,R)-22
Demethylation of 24 with BBr
3
gave tetraphenylenediol 25 in quantitative
yield. Resolution of 25 was effected again by (S)-camphorsulfonylation [14, 16,
17]. The diastereomeric bis-(S)-camphorsulfonates of (rac)-19, namely, 20 and
21, were chromatographically separable. With the absolute configuration of the
294
(S)-camphorsulfonyl being defined, an X-ray crystallographic analysis of the more
polar biscamphorsulfonate 20 therefore led us to confirm the absolute structure of
its appended 19 to be of (R,S)-configuration (Figure 5-8). In this manner, the
absolute stereochemistry of 21 with an appended (S,R)-19 was also indirectly
deduced. Subsequent desulfonylation of 20 or 21 respectively generated the
resolved (R,S)-19 or (S,R)-19, each of which having a purity of >99% ee as
determined by chiral HPLC. Then, following a similar procedure in our synthesis
of 7 from 11, 15 was obtained in both racemic and essentially enantiopure forms.
The structure of 15 was unambiguously confirmed by an X-ray diffraction
analysis (Figure 5-9). The originally highly symmetric D
2d
point group of
tetraphenylene is destroyed by the regiospecifically introduced methyl groups.
According to the previous studies on 7, optical activity of the molecule is
expected to be observed on 15 whose central ring inversion barrier should also
be high. This was firstly realized through HPLC on a chiral column (OD column;
Hex / i-PrOH = 99.3 / 0.7; 0.7 ml/min; uv, 220 nm) (Figure 5-10). Compound (R)-
15 exhibited a specific rotation of [ α]
20
D
: -23 (CH
2
Cl
2
, c = 0.125), which is
opposite to that of (S)-15 [ α]
20
D
: +22 (CH
2
Cl
2
, c = 0.125). The CD spectra of (S)-
15 and (R)-15 were recorded in methanol (Figure 5-11). As can be seen, the CD
spectrum of (R)-15 showed strong bands at 258(-) nm with a succession of
weaker absorption bands at around 286(-) nm. On the other hand, the CD
spectrum of (S)-15 showed an antipodal curve, i.e., strong bands at 260(+) nm
and weaker bands at 286(+) nm (Figure 5-11). It is interesting that although the
main UV absorption peak of 15 is at 213 nm, its CD spectrum gives strong
signals at regions with longer wave lengths.
295
Figure 5-8. ORTEP drawing of biscamphorsulfonate (20).
296
Figure 5-9. ORTEP drawing of 2,7-Dimethyltetraphenylene (15).
297
Figure 5-10. Resolution of (rac)- 2,7-Dimethyltetraphenylene (15) through chiral
HPLC (OD column; Hex / i-PrOH = 99.3/0.7; 0.7ml/min; uv, 220nm).
Figure 5-11. CD spectra of (S)- 2,7-Dimethyltetraphenylene (15) and (R)- 2,7-
Dimethyltetraphenylene (15) in methanol.
298
Thermal Study of the Inversion Barrier of the Tetraphenylene Compounds.
In light of the strong optical activities as well as its relatively insignificant steric
and electronic substituent effects, 15 was taken as a suitable substrate for the
inversion barrier investigation. This approach essentially relied on the
enantiopurity changes of 15 under different thermokinetic conditions: if the
sample is heated to an energy level which is high enough for the flipping to take
place, racemization reaction that leads to the loss of ee% would be detected. The
inversion barrier can therefore be obtained through kinetic deduction of the
enantiopurity changes at that temperature.
To our surprise, the (R)-15 sample recovered from heating under argon for
2 h up to 550
o
C showed no signs of flipping. Time elongation of the thermal
experiment (550
o
C, 4 h) or elevation of the temperature (750
o
C, 5 minutes) also
led to no detectable ee% change of the recovered starting material even though
considerable decomposition of 15 was noted at the latter temperature.
In fact, noticeable decomposition of 15 started to take place at 600
o
C
giving triphenylene (23) as an identifiable product together with some intractable
black sheets. To check if this decomposition was caused by the introduction of
the methyl groups onto the tetraphenylene skeleton through a relatively weaker
sp
2
C-sp
3
C bond, control experiments were carried out in which deuteriated (S)-7
and substituent-free (all H) tetraphenylene (1) were heated to the same
temperature. Similar results were observed, and furthermore, upon heating at
600
o
C for 30 minutes, the unscathed (R)-7 exhibited no observable flipping on
examination by diffraction method.
299
It is somewhat astonishing that the inversion barriers of the
tetraphenylenes examined are so high that these molecules choose to
decompose rather than to flip. Nevertheless, the activation energy (E
a
) of their
decomposition reactions can be taken as the lower limits of their inversion
barriers. Kinetic study of the decompositions of 15 and 1 provided the results
shown in Figure 5-12 and Figure 5-13. Therefore, the activation energy were
finally determined to be E
a15
= 62.8 kcal/mol and E
a1
= 58.2 kcal/mol according to
the Arrhenius equation [51] (Figure 5-14).
Figure 5-12. Kinetic of decomposition of 2,7-Dimethyltetraphenylene (15) at 580
o
C and 600
o
C.
0 1020304050
-20
0
20
40
60
80
100
580
o
C (853 K)
Y = 6.85+1.92*X
600
o
C (873 K)
Y = 9.26+4.44*X
Conversion (%)
Time (min)
300
Figure 5-13. Kinetic of decomposition of tetraphenylene (1) at 580
o
C and 600
o
C.
0 1020 3040 50
-10
0
10
20
30
40
50
60
70
80
90
100
580
o
C (853 K)
Y = 4.24+1.922*X
600
o
C (873 K)
Y = 9.86+4.17*X
Conversion (%)
Time (min)
Figure 5-14. Scheme of decomposition reations and corresponding activation
energy (kcal/mol).
62.8 kcal/mol 58.2 kcal/mol
15 23 1
Computational Study on the Inversion Barriers of the Tetraphenylene and
Related Compounds. To have a better understanding of such a prohibitively high
inversion barrier, DFT studies have been performed with b3lyp/6-31g(d,p) basis
set on a Gaussian 98 program [52-56]. After full structural optimization, the
energy difference between the saddle shape ground state of 1 and its planar
conformation as the most possible flipping transition state reached to a
301
prohibitively high barrier of 135 kcal/mol. This result is in accordance with the
experimental outcome and leads to the conclusion that this planar structure is of
extremely high energy.
It is believed that the non-planarity of 1 was contributed mainly by three
factors: a pseudo Jahn-Teller effect originates from unfavorable open-shell triplet
arrangement of electrons of the central eight membered ring [57, 58]; increased
bond angle strained of the benzene rings in the planar structure and four pairs of
H-H nonbonded peri effect from the neighboring benzene rings.
The contribution of the pseudo Jahn-Taller effect to the cyclooctatetraene
ring has been reported to be at a ~10 kcal/mol magnitude [59]. However, the
latter two factors which are perhaps more important, to the best of our
knowledge, have not yet been studied in a quantitative way. Therefore, in order to
investigate how severe such H-H interactions are, a peri hydrogen free
tetra[pyridinzo]cyclooctatetraene (24) model was designed and its energy gap
was examined in the same manner. This time the energy difference dramatically
drops to 63 kcal/mol, less than half of the original tetraphenylene case. A similar
result was also obtained on the tetra[pyrazine]cyclooctatetraene (25) structure
which was designed as a control to eliminate the C-H - nitrogen lone pair non-
bonded interaction (Figure 5-15). These experiments brought a reasonable
explanation for the relatively low energy level discovery for
cyclooctatetrathiophene (6) whose hydrogen repulsions were diminished by
smaller thiophene ring size and sulfur substitutions.
302
Figure 5-15. Computational energy gaps between the saddle shape ground state
and the planar conformation of 1, 24 and 25.
1
∆E = 135.8 kcal/mol
∆E = 62.0 kcal/mol
∆E = 63.7 kcal/mol
N
N
N
N
24
N
N N
N
N
N N
N
25
Conclusion Section 5-4.
In this article, two chiral tetraphenylenes 2,15-bisdeuteriotetraphenylene
(7) and 2,7-dimethyltetraphenylene (15) were synthesized and resolved to
address the inversion barrier question. Single crystal neutron diffraction study of
7 essentially eliminates the possibility of a low-energy barrier to inversion of this
tetraphenylene molecule.
Thermal studies on 15 and 1 showed that the energy level for the planar
transition state structure is too high to be achieved. When the energy supply
exceeds a lower limit of 62.8 kcal/mol for 15 or 58.2 kcal/mol for 1, ring-
303
contraction to triphenylene (25) as well as decomposition will take place rather
than the flattening of the saddle-shape structure into a planar conformation.
A prohibitively high 135.8 kcal/mol for the planar structure was obtained
from computational exercises. This high inversion barrier can be attributed mainly
to the peri-H repulsions as well as the severe bond angle strain in the planar
conformation.
These results also imply that our previously observed racemization of 4 at
an energy level of 67 kcal/mol at 600
o
C [21], might be due to some unknown
bond cleavage-formation processes instead of flipping through the expected
coplanar transition state.
Future Direction Section 5-5.
With single-crystal neutron diffraction we have unambiguously shown that
a sample of TBCOT does not invert at room temperature (and at the temperature
used during the chemical synthesis of the title compound). The next step is to
explore the upper limit of this inversion barrier. In the near future our group and
collaborators intend to carry out a single-crystal neutron diffraction study of a
sample of stereospecifically-labeled bisdeuterio tetrabenzocyclooctatetraene
which has been subjected to prior heating. The result of this study is designed to
elucidate how high is the barrier to inversion (“ring flipping”) of TBCOT.
Acknowledgment Section 5-6.
This chapter has been published in the Journal of Organic Chemistry,
(2009), 74(1), 359-369. Only slight modifications were made to the chapter for
purpose of this Ph.D. dissertation. The synthesis and NMR, CD, and MS work
described in this chapter were conducted by Professor Henry N. C. Wong’s group
304
at Shanghai Institute of Organic Chemistry, China. The computational studies
were conducted by Yu-Xue, Ph.D. of the Chemistry Department, at The Chinese
University of Hong Kong, China. The X-ray and neutron work described were
conducted by our group at the University of Southern California.
This work was supported by grants from the Research Grants Council of
the Hong Kong Special Administrative Region, China (Project CUHK 4264/00P),
the Croucher Foundation (Hong Kong), the American Chemical Society (Grant
PRF-40715-AC3) and the Area of Excellence Scheme established under the
University Grants Committee of the Hong Kong Special Administrative Region,
China (Project No. AoE/P-10/01).H.H. and J.F.W. thanks the Croucher
Foundation (Hong Kong) for Croucher Shanghai Studentships. H.H. also
acknowledge with thanks a Croucher Shanghai Postdoctoral Fellowship. The
authors would like to thank Professors Tze-Lock Chan, Li-Xin Dai, Xue-Long Hou
and Thomas Chung Wai Mak for helpful discussion. This paper is dedicated to
Professor Xi-Yan Lu on the occasion of his 80
th
birthday.
305
Table 5-3. Full 2,15-Dideuteriotetraphenylene (7) crystallographic information
including ORTEP generated numbering scheme with thermal ellipsoids drawn at
50% level from neutron data at 30(2) K collected at ISIS on SXD.
Empirical formula C24 H12 D4
Formula weight 308.4148
Temperature 30(2) K
Wavelength 0.33-8.8 Å
Crystal system Monoclinic
Space group C2
Unit cell dimensions a = 15.423(2) Å α= 90°.
b = 13.0638(18) Å β= 100.976(2)°.
c = 16.267(2) Å γ = 90°.
Volume 3217.6(8) Å
3
Z 8
Density (calculated) 1.263 Mg/m
3
Absorption coefficient µ = 3.1447 + 0.0063 * λ(Å)
F(000) 964
Crystal size 3.0 x 2.5 x 1.5 mm
3
Theta range for data collection 7.83 to 84.66°.
Index ranges -45<=h<=44, -39<=k<=36, -48<=l<=37
Reflections collected 32220
Independent reflections 9161 [R(int) = 0.0750]
Completeness to theta = 84.66° 24.1 %
Absorption correction Sphere
Max. and min. transmission 2.2617 and 1.6175
Refinement method Full-matrix least-squares on F
2
Data / restraints / parameters 32220 / 25 / 312
Goodness-of-fit on F
2
1.023
Final R indices [I>2sigma(I)] R1 = 0.0790, wR2 = 0.1991
R indices (all data) R1 = 0.0790, wR2 = 0.1991
Absolute structure parameter 0(1)
Extinction coefficient 0.00285(4)
Largest diff. peak and hole 7.800 and -3.590 e.Å
-3
306
Atomic coordinates ( x 10
4
) and equivalent isotropic displacement parameters
(Å
2
x 10
3
). U(eq) is defined as one third of the trace of the orthogonalized U
ij
tensor.
_________________________________________________________________
x y z U(eq)
_________________________________________________________________
C(1) 3214(2) 7588(2) 3965(2) 5(1)
C(2) 3413(2) 8647(2) 4051(2) 5(1)
C(3) 4212(2) 9027(2) 4021(2) 5(1)
C(4) 4895(2) 8372(2) 3893(2) 5(1)
Dh(4) 5555(5) 8685(6) 3842(8) 5(1)
C(5) 4728(2) 7324(2) 3805(2) 5(1)
C(6) 3891(2) 6915(2) 3836(2) 5(1)
C(7) 3702(2) 5812(2) 3621(2) 5(1)
C(8) 3810(2) 5469(2) 2838(2) 5(1)
C(9) 3716(2) 4415(2) 2620(2) 5(1)
Dh(9) 3757(8) 4214(6) 1962(5) 5(1)
C(10) 3455(2) 3738(2) 3164(2) 5(1)
C(11) 3366(2) 4064(2) 3961(2) 5(1)
C(12) 3480(2) 5099(2) 4204(2) 5(1)
C(13) 3392(2) 5411(2) 5070(2) 5(1)
C(14) 3963(2) 4961(2) 5774(2) 5(1)
307
C(15) 3898(2) 5160(2) 6569(2) 5(1)
C(16) 3224(2) 5830(2) 6723(2) 5(1)
Dh(16) 3162(7) 6048(7) 7370(4) 5(1)
C(17) 2663(2) 6324(2) 6037(2) 5(1)
C(18) 2722(2) 6090(2) 5208(2) 5(1)
C(19) 2047(2) 6541(2) 4520(2) 5(1)
C(20) 1159(2) 6294(2) 4491(2) 5(1)
C(21) 490(2) 6775(2) 3945(2) 5(1)
Dh(21) -222(4) 6580(7) 3915(7) 5(1)
C(22) 703(2) 7469(2) 3352(2) 5(1)
C(23) 1599(2) 7692(2) 3347(2) 5(1)
C(24) 2277(2) 7244(2) 3940(2) 5(1)
C(25) 2949(2) 2476(2) 479(2) 6(1)
C(26) 3867(2) 2673(2) 507(2) 6(1)
C(27) 4535(2) 2216(2) 1129(2) 6(1)
C(28) 4289(2) 1514(2) 1686(2) 6(1)
Dh(28) 4810(5) 1151(8) 2169(6) 6(1)
C(29) 3398(2) 1309(2) 1651(2) 6(1)
C(30) 2719(2) 1773(2) 1061(2) 6(1)
C(31) 1792(2) 1431(2) 1035(2) 5(1)
C(32) 1622(2) 382(2) 945(2) 5(1)
C(33) 739(2) 5(2) 989(2) 5(1)
Dh(33) 618(6) -835(5) 923(8) 5(1)
C(34) 67(2) 692(2) 1084(2) 5(1)
C(35) 258(2) 1731(2) 1192(2) 5(1)
C(36) 1115(2) 2109(2) 1174(2) 5(1)
C(37) 1290(2) 3215(2) 1374(2) 5(1)
C(38) 1189(2) 3569(2) 2174(2) 5(1)
C(39) 1323(2) 4573(2) 2407(2) 5(1)
C(40) 1486(2) 5299(2) 1788(2) 5(1)
Dh(40) 1622(9) 6105(5) 1991(6) 5(1)
C(41) 1605(2) 4957(2) 1005(2) 5(1)
C(42) 1518(2) 3919(2) 796(2) 5(1)
C(43) 1610(2) 3617(2) -64(2) 5(1)
C(44) 1050(2) 4070(2) -736(2) 5(1)
C(45) 1141(2) 3811(2) -1587(2) 5(1)
308
Dh(45) 655(6) 4166(8) -2101(5) 5(1)
C(46) 1775(2) 3125(2) -1727(2) 5(1)
C(47) 2364(2) 2736(2) -1052(2) 5(1)
C(48) 2276(2) 2932(2) -219(2) 5(1)
_________________________________________________________________
Bond lengths [Å] and angles [°].
C(30)-C(31) 1.491(4)
C(31)-C(32) 1.398(4)
C(31)-C(36) 1.420(4)
C(32)-C(33) 1.463(3)
C(32)-H(32) 1.096(6)
C(33)-Dh(33) 1.114(6)
C(33)-C(34) 1.401(3)
C(34)-C(35) 1.393(3)
C(34)-H(34) 1.103(6)
C(35)-C(36) 1.416(4)
C(35)-H(35) 1.088(6)
C(36)-C(37) 1.494(4)
C(37)-C(42) 1.407(4)
C(37)-C(38) 1.417(4)
C(38)-C(39) 1.369(4)
C(38)-H(38) 1.094(6)
C(39)-C(40) 1.439(3)
C(39)-Dh(40) 2.189(7)
C(39)-H(39) 1.085(6)
C(40)-Dh(40) 1.111(6)
C(40)-C(41) 1.394(3)
Dh(40)-C(41) 2.191(7)
C(41)-C(42) 1.398(4)
C(41)-H(41) 1.079(6)
C(42)-C(43) 1.487(4)
C(43)-C(44) 1.389(5)
C(43)-C(48) 1.421(4)
C(44)-C(45) 1.458(4)
C(8)-C(7)-C(12) 119.2(3)
C(44)-Dh(45) 2.191(7)
C(44)-H(44) 1.094(6)
C(45)-Dh(45) 1.113(6)
C(45)-C(46) 1.376(3)
Dh(45)-C(46) 2.192(7)
C(46)-C(47) 1.381(4)
C(46)-H(46) 1.086(7)
C(47)-C(48) 1.411(4)
C(47)-H(47) 1.100(6)
C(6)-C(1)-C(2) 118.1(3)
C(6)-C(1)-C(24) 122.9(3)
C(2)-C(1)-C(24) 118.8(2)
C(3)-C(2)-C(1) 122.8(2)
C(3)-C(2)-H(2) 122.8(4)
C(1)-C(2)-H(2) 114.3(4)
C(2)-C(3)-C(4) 120.1(2)
C(2)-C(3)-Dh(4) 146.0(3)
C(4)-C(3)-Dh(4) 25.9(2)
C(2)-C(3)-H(3) 123.7(4)
C(4)-C(3)-H(3) 116.2(4)
Dh(4)-C(3)-H(3) 90.2(4)
Dh(4)-C(4)-C(5) 120.3(4)
Dh(4)-C(4)-C(3) 120.6(4)
C(5)-C(4)-C(3) 119.0(2)
C(4)-Dh(4)-C(5) 33.5(3)
C(4)-Dh(4)-C(3) 33.4(3)
C(5)-Dh(4)-C(3) 66.93(19)
C(4)-C(5)-C(6) 121.4(2)
C(4)-C(5)-Dh(4) 26.2(2)
309
C(8)-C(7)-C(6) 118.2(2)
C(12)-C(7)-C(6) 122.5(3)
C(7)-C(8)-C(9) 121.0(2)
C(7)-C(8)-Dh(9) 148.4(3)
C(9)-C(8)-Dh(9) 27.5(2)
C(7)-C(8)-H(8) 118.2(4)
C(9)-C(8)-H(8) 120.6(4)
Dh(9)-C(8)-H(8) 93.1(4)
Dh(9)-C(9)-C(10) 123.2(5)
Dh(9)-C(9)-C(8) 116.4(5)
C(10)-C(9)-C(8) 119.7(2)
C(9)-Dh(9)-C(8) 36.1(3)
C(9)-Dh(9)-C(10) 31.5(3)
C(8)-Dh(9)-C(10) 67.30(19)
C(9)-C(10)-C(11) 119.8(2)
C(9)-C(10)-Dh(9) 25.3(2)
C(11)-C(10)-Dh(9) 145.0(3)
C(9)-C(10)-H(10) 121.2(4)
C(11)-C(10)-H(10) 118.6(4)
Dh(9)-C(10)-H(10) 96.3(4)
C(10)-C(11)-C(12) 121.6(2)
C(10)-C(11)-H(11) 119.8(4)
C(12)-C(11)-H(11) 118.2(4)
C(11)-C(12)-C(7) 118.3(3)
C(11)-C(12)-C(13) 119.8(2)
C(7)-C(12)-C(13) 121.9(2)
C(18)-C(13)-C(14) 119.2(3)
C(18)-C(13)-C(12) 121.4(3)
C(14)-C(13)-C(12) 119.3(2)
C(15)-C(14)-C(13) 122.9(2)
C(15)-C(14)-H(14) 118.5(4)
C(13)-C(14)-H(14) 118.3(4)
C(14)-C(15)-C(16) 118.9(3)
C(14)-C(15)-H(15) 122.9(4)
C(16)-C(15)-H(15) 118.1(4)
C(6)-C(5)-Dh(4) 147.5(3)
C(4)-C(5)-H(5) 120.5(4)
C(6)-C(5)-H(5) 117.9(4)
Dh(4)-C(5)-H(5) 94.4(4)
C(5)-C(6)-C(1) 118.6(2)
C(5)-C(6)-C(7) 119.7(2)
C(1)-C(6)-C(7) 121.2(3)
C(16)-Dh(16)-C(17) 35.1(3)
C(18)-C(17)-C(16) 120.8(2)
C(18)-C(17)-Dh(16) 147.4(3)
C(16)-C(17)-Dh(16) 26.6(2)
C(18)-C(17)-H(17) 119.5(4)
C(16)-C(17)-H(17) 119.7(4)
Dh(16)-C(17)-H(17) 93.1(4)
C(17)-C(18)-C(13) 118.2(3)
C(17)-C(18)-C(19) 118.1(2)
C(13)-C(18)-C(19) 123.6(3)
C(20)-C(19)-C(24) 119.9(3)
C(20)-C(19)-C(18) 118.1(3)
C(24)-C(19)-C(18) 121.9(3)
C(21)-C(20)-C(19) 121.6(2)
C(21)-C(20)-Dh(21) 25.6(2)
C(19)-C(20)-Dh(21) 147.2(3)
C(21)-C(20)-H(20) 118.8(4)
C(19)-C(20)-H(20) 119.6(4)
Dh(21)-C(20)-H(20) 93.1(4)
Dh(21)-C(21)-C(20) 122.1(5)
Dh(21)-C(21)-C(22) 118.1(5)
C(20)-C(21)-C(22) 119.5(2)
C(21)-Dh(21)-C(22) 34.9(3)
C(21)-Dh(21)-C(20) 32.2(3)
C(22)-Dh(21)-C(20) 67.0(2)
C(21)-C(22)-C(23) 119.5(3)
C(21)-C(22)-Dh(21) 27.0(2)
C(23)-C(22)-Dh(21) 146.4(3)
310
Dh(16)-C(16)-C(15) 121.7(5)
Dh(16)-C(16)-C(17) 118.3(5)
C(15)-C(16)-C(17) 119.7(2)
C(24)-C(23)-C(22) 120.7(3)
C(24)-C(23)-H(23) 116.0(4)
C(22)-C(23)-H(23) 123.4(5)
C(23)-C(24)-C(19) 118.7(3)
C(23)-C(24)-C(1) 118.6(3)
C(19)-C(24)-C(1) 122.6(3)
C(30)-C(25)-C(26) 117.9(3)
C(30)-C(25)-C(48) 122.5(3)
C(26)-C(25)-C(48) 119.2(2)
C(27)-C(26)-C(25) 121.5(2)
C(27)-C(26)-H(26) 120.7(4)
C(25)-C(26)-H(26) 117.8(4)
C(28)-C(27)-C(26) 119.2(2)
C(28)-C(27)-Dh(28) 26.7(2)
C(26)-C(27)-Dh(28) 145.8(3)
C(28)-C(27)-H(27) 125.4(4)
C(26)-C(27)-H(27) 115.3(4)
Dh(28)-C(27)-H(27) 98.8(4)
Dh(28)-C(28)-C(29) 121.3(5)
Dh(28)-C(28)-C(27) 119.3(5)
C(29)-C(28)-C(27) 119.3(3)
C(28)-Dh(28)-C(27) 34.0(3)
C(28)-Dh(28)-C(29) 32.9(3)
C(27)-Dh(28)-C(29) 66.9(2)
C(28)-C(29)-C(30) 123.0(3)
C(28)-C(29)-Dh(28) 25.8(2)
C(30)-C(29)-Dh(28) 148.8(3)
C(28)-C(29)-H(29) 115.5(4)
C(30)-C(29)-H(29) 121.4(4)
Dh(28)-C(29)-H(29) 89.8(5)
C(25)-C(30)-C(29) 119.0(3)
C(25)-C(30)-C(31) 122.5(3)
C(21)-C(22)-H(22) 123.8(4)
C(23)-C(22)-H(22) 116.7(4)
Dh(21)-C(22)-H(22) 96.8(4)
C(40)-Dh(40)-C(39) 35.6(3)
C(40)-Dh(40)-C(41) 32.8(3)
C(39)-Dh(40)-C(41) 68.10(19)
C(40)-C(41)-C(42) 120.6(2)
C(40)-C(41)-Dh(40) 25.6(2)
C(42)-C(41)-Dh(40) 145.9(3)
C(40)-C(41)-H(41) 120.7(4)
C(42)-C(41)-H(41) 118.1(4)
Dh(40)-C(41)-H(41) 95.1(4)
C(41)-C(42)-C(37) 119.8(3)
C(41)-C(42)-C(43) 117.6(2)
C(37)-C(42)-C(43) 122.4(2)
C(44)-C(43)-C(48) 119.4(3)
C(44)-C(43)-C(42) 118.1(3)
C(48)-C(43)-C(42) 122.4(3)
C(43)-C(44)-C(45) 119.3(2)
C(43)-C(44)-Dh(45) 146.4(3)
C(45)-C(44)-Dh(45) 27.1(2)
C(43)-C(44)-H(44) 119.9(4)
C(45)-C(44)-H(44) 120.4(5)
Dh(45)-C(44)-H(44) 93.4(5)
Dh(45)-C(45)-C(46) 123.1(5)
Dh(45)-C(45)-C(44) 116.3(5)
C(46)-C(45)-C(44) 120.6(3)
C(45)-Dh(45)-C(46) 31.7(3)
C(45)-Dh(45)-C(44) 36.6(3)
C(46)-Dh(45)-C(44) 68.3(2)
C(45)-C(46)-C(47) 119.2(2)
C(45)-C(46)-Dh(45) 25.2(2)
C(47)-C(46)-Dh(45) 144.4(3)
C(45)-C(46)-H(46) 118.8(4)
C(47)-C(46)-H(46) 121.6(4)
311
C(29)-C(30)-C(31) 118.3(3)
C(32)-C(31)-C(36) 120.0(3)
C(32)-C(31)-C(30) 117.2(2)
C(36)-C(31)-C(30) 122.6(3)
C(31)-C(32)-C(33) 118.9(2)
C(31)-C(32)-H(32) 122.8(4)
C(33)-C(32)-H(32) 118.0(4)
Dh(33)-C(33)-C(34) 121.9(5)
Dh(33)-C(33)-C(32) 117.8(5)
C(34)-C(33)-C(32) 120.3(2)
C(35)-C(34)-C(33) 119.7(2)
C(35)-C(34)-H(34) 124.1(4)
C(33)-C(34)-H(34) 115.9(4)
C(34)-C(35)-C(36) 120.9(2)
C(34)-C(35)-H(35) 118.5(4)
C(36)-C(35)-H(35) 120.4(4)
C(35)-C(36)-C(31) 120.2(2)
C(35)-C(36)-C(37) 117.6(2)
C(31)-C(36)-C(37) 122.0(3)
C(42)-C(37)-C(38) 119.0(2)
C(42)-C(37)-C(36) 123.0(3)
Dh(45)-C(46)-H(46) 93.7(4)
C(46)-C(47)-C(48) 121.8(2)
C(46)-C(47)-H(47) 120.3(4)
C(48)-C(47)-H(47) 117.8(5)
C(47)-C(48)-C(43) 119.3(3)
C(47)-C(48)-C(25) 118.3(3)
C(43)-C(48)-C(25) 122.2(3)
C(38)-C(39)-C(40) 118.4(3)
C(38)-C(39)-Dh(40) 145.0(3)
C(40)-C(39)-Dh(40) 26.7(2)
C(38)-C(39)-H(39) 119.3(4)
C(40)-C(39)-H(39) 122.0(4)
Dh(40)-C(39)-H(39) 95.6(4)
Dh(40)-C(40)-C(41) 121.6(5)
Dh(40)-C(40)-C(39) 117.7(5)
C(41)-C(40)-C(39) 119.9(2)
C(38)-C(37)-C(36) 118.0(2)
C(39)-C(38)-C(37) 121.9(3)
C(39)-C(38)-H(38) 119.2(4)
C(37)-C(38)-H(38) 118.7(4)
Anisotropic displacement parameters (Å
2
x 10
3
). The anisotropic displacement
factor exponent takes the form: -2
2
[ h
2
a*
2
U
11
+ ... + 2 h k a* b* U
12
]
_________________________________________________________________
U
11
U
22
U
33
U
23
U
13
U
12
_________________________________________________________________
C(1)5(1) 3(1) 6(1) 1(1) 3(1) 1(1)
C(2)5(1) 3(1) 6(1) 1(1) 3(1) 1(1)
C(3)5(1) 3(1) 6(1) 1(1) 3(1) 1(1)
C(4)5(1) 3(1) 6(1) 1(1) 3(1) 1(1)
Dh(4) 5(1) 3(1) 6(1) 1(1) 3(1) 1(1)
C(5)5(1) 3(1) 6(1) 1(1) 3(1) 1(1)
312
C(6)5(1) 3(1) 6(1) 1(1) 3(1) 1(1)
C(7)6(1) 4(1) 5(1) -1(1) 2(1) 0(1)
C(8)6(1) 4(1) 5(1) -1(1) 2(1) 0(1)
C(9)6(1) 4(1) 5(1) -1(1) 2(1) 0(1)
Dh(9)6(1) 4(1) 5(1) -1(1) 2(1) 0(1)
C(10)6(1) 4(1) 5(1) -1(1) 2(1) 0(1)
C(11)6(1) 4(1) 5(1) -1(1) 2(1) 0(1)
C(12)6(1) 4(1) 5(1) -1(1) 2(1) 0(1)
C(13)6(1) 5(1) 3(1) -1(1) 1(1) 1(1)
C(14)6(1) 5(1) 3(1) -1(1) 1(1) 1(1)
C(15)6(1) 5(1) 3(1) -1(1) 1(1) 1(1)
C(16)6(1) 5(1) 3(1) -1(1) 1(1) 1(1)
Dh(16)6(1) 5(1) 3(1) -1(1) 1(1) 1(1)
C(17)6(1) 5(1) 3(1) -1(1) 1(1) 1(1)
C(18)6(1) 5(1) 3(1) -1(1) 1(1) 1(1)
C(19)5(1) 5(1) 6(1) 1(1) 2(1) 0(1)
C(20)5(1) 5(1) 6(1) 1(1) 2(1) 0(1)
C(21)5(1) 5(1) 6(1) 1(1) 2(1) 0(1)
Dh(21)5(1) 5(1) 6(1) 1(1) 2(1) 0(1)
C(22)5(1) 5(1) 6(1) 1(1) 2(1) 0(1)
C(23)5(1) 5(1) 6(1) 1(1) 2(1) 0(1)
C(24)5(1) 5(1) 6(1) 1(1) 2(1) 0(1)
H(2)18(1) 14(1) 21(1) 3(1) 7(1) 3(1)
H(3)18(1) 14(1) 21(1) 3(1) 7(1) 3(1)
H(5)18(1) 14(1) 21(1) 3(1) 7(1) 3(1)
H(8)18(1) 14(1) 21(1) 3(1) 7(1) 3(1)
H(10)18(1) 14(1) 21(1) 3(1) 7(1) 3(1)
H(11)18(1) 14(1) 21(1) 3(1) 7(1) 3(1)
H(14)18(1) 14(1) 21(1) 3(1) 7(1) 3(1)
H(15)18(1) 14(1) 21(1) 3(1) 7(1) 3(1)
H(17)18(1) 14(1) 21(1) 3(1) 7(1) 3(1)
H(20)18(1) 14(1) 21(1) 3(1) 7(1) 3(1)
H(22)18(1) 14(1) 21(1) 3(1) 7(1) 3(1)
H(23)18(1) 14(1) 21(1) 3(1) 7(1) 3(1)
C(25)4(1) 7(1) 5(1) 2(1) 0(1) 1(1)
C(26)4(1) 7(1) 5(1) 2(1) 0(1) 1(1)
313
C(27)4(1) 7(1) 5(1) 2(1) 0(1) 1(1)
C(28)4(1) 7(1) 5(1) 2(1) 0(1) 1(1)
Dh(28)4(1) 7(1) 5(1) 2(1) 0(1) 1(1)
C(29)4(1) 7(1) 5(1) 2(1) 0(1) 1(1)
C(30)4(1) 7(1) 5(1) 2(1) 0(1) 1(1)
C(31)4(1) 4(1) 7(1) -1(1) 2(1) -1(1)
C(32)4(1) 4(1) 7(1) -1(1) 2(1) -1(1)
C(33)4(1) 4(1) 7(1) -1(1) 2(1) -1(1)
Dh(33)4(1) 4(1) 7(1) -1(1) 2(1) -1(1)
C(34)4(1) 4(1) 7(1) -1(1) 2(1) -1(1)
C(35)4(1) 4(1) 7(1) -1(1) 2(1) -1(1)
C(36)4(1) 4(1) 7(1) -1(1) 2(1) -1(1)
C(37)8(1) 3(1) 4(1) -1(1) 1(1) 0(1)
C(38)8(1) 3(1) 4(1) -1(1) 1(1) 0(1)
C(39)8(1) 3(1) 4(1) -1(1) 1(1) 0(1)
C(40)8(1) 3(1) 4(1) -1(1) 1(1) 0(1)
Dh(40)8(1) 3(1) 4(1) -1(1) 1(1) 0(1)
C(41)8(1) 3(1) 4(1) -1(1) 1(1) 0(1)
C(42)8(1) 3(1) 4(1) -1(1) 1(1) 0(1)
C(43)6(1) 5(1) 4(1) 1(1) 1(1) 0(1)
C(44)6(1) 5(1) 4(1) 1(1) 1(1) 0(1)
C(45)6(1) 5(1) 4(1) 1(1) 1(1) 0(1)
Dh(45)6(1) 5(1) 4(1) 1(1) 1(1) 0(1)
C(46)6(1) 5(1) 4(1) 1(1) 1(1) 0(1)
C(47)6(1) 5(1) 4(1) 1(1) 1(1) 0(1)
C(48)6(1) 5(1) 4(1) 1(1) 1(1) 0(1)
H(26)18(1) 17(1) 19(1) 2(1) 7(1) 2(1)
H(27)18(1) 17(1) 19(1) 2(1) 7(1) 2(1)
H(29)18(1) 17(1) 19(1) 2(1) 7(1) 2(1)
H(32)18(1) 17(1) 19(1) 2(1) 7(1) 2(1)
H(34)18(1) 17(1) 19(1) 2(1) 7(1) 2(1)
H(35)18(1) 17(1) 19(1) 2(1) 7(1) 2(1)
H(38)18(1) 17(1) 19(1) 2(1) 7(1) 2(1)
H(39)18(1) 17(1) 19(1) 2(1) 7(1) 2(1)
H(41)18(1) 17(1) 19(1) 2(1) 7(1) 2(1)
H(44)18(1) 17(1) 19(1) 2(1) 7(1) 2(1)
314
H(46)18(1) 17(1) 19(1) 2(1) 7(1) 2(1)
H(47)18(1) 17(1) 19(1) 2(1) 7(1) 2(1)
_________________________________________________________________
Hydrogen coordinates ( x 10
4
) and isotropic displacement parameters (Å
2
x 10
3
).
_________________________________________________________________
x y z U(eq)
_________________________________________________________________
H(2) 2860(4) 9128(4) 4179(4) 17(1)
H(3) 4377(5) 9851(4) 4083(5) 17(1)
H(5) 5241(5) 6795(4) 3652(4) 17(1)
H(8) 3923(4) 6039(4) 2376(4) 17(1)
H(10) 3386(5) 2916(4) 3015(5) 17(1)
H(11) 3282(4) 3485(4) 4449(4) 17(1)
H(14) 4437(4) 4374(4) 5657(4) 17(1)
H(15) 4350(4) 4844(5) 7105(4) 17(1)
H(17) 2174(4) 6887(4) 6159(4) 17(1)
H(20) 989(4) 5711(3) 4901(4) 17(1)
H(22) 188(4) 7860(5) 2849(4) 17(1)
H(23) 1814(4) 8211(4) 2888(4) 17(1)
H(26) 4044(4) 3173(4) 30(4) 18(1)
H(27) 5226(4) 2429(5) 1096(5) 18(1)
H(29) 3254(4) 710(4) 2075(4) 18(1)
H(32) 2137(4) -183(4) 905(4) 18(1)
H(34) -573(4) 346(4) 1135(5) 18(1)
H(35) -277(5) 2255(4) 1241(4) 18(1)
H(38) 953(4) 3034(4) 2599(4) 18(1)
H(39) 1239(5) 4809(5) 3026(4) 18(1)
H(41) 1856(4) 5466(4) 582(4) 18(1)
H(44) 497(4) 4542(4) -626(4) 18(1)
H(46) 1843(5) 2970(5) -2367(4) 18(1)
H(47) 2912(4) 2243(4) -1153(4) 18(1)
_________________________________________________________________
315
References Section 5-7.
[1] Rapson, W.; Schuttleworth, P.; Niekark, J.: J. Chem. Soc., 1943, 326-327.
[2] Irngartinger, H.; Reibel, W.: Acta Crystallogr., B 1981, 37, 1724-1728.
[3] Mak, T.; Wong, H.: In Comprehensive Supramolecular Chemistry; MacNicol,
D.; Toda, F.; Bishop, P.: Eds. Pergamon Press: Oxford, 1996; Vol. 6, pp 351-369.
[4] Mac, ; Wong, H.: Top. Curr. Chem. 1987, 140, 141-164.
[5] Hou, X.; Huang, H.; Wong, H.: Synlett, 2005, 1073-1089.
[6] Rajca, A.; Rajca, S.; Pink, M.; Miyasaka, M.: Synlett, 2007, 1799-1822.
[7] Hisaki, I.; Sonoda, M.; Tobe, Y.: Eur. J. Org. Chem., 2006, 833-847.
[8] Wang, C.; Xi, Z.: Chem. Commun., 2007, 5119-5133.
[9] Marsella, M.; Rahbarnia, S.; Wilmot, N.: Org. Biomol. Chem., 2007, 5, 391-
400.
[10] Rajca, A; Safronov, A.; Rajca, S.; Shoemaker, R.: Angew. Chem. Int. Ed.
Engl., 1997, 36, 488-491.
[11] Marsella, M.; Kim, I.; Tham, F.: J. Am. Chem. Soc., 2000, 122, 974-975.
[12] Man, Y. –M.; Mak, T.; Wong, H.: J. Org. Chem., 1990, 55, 3214-3221.
[13] Lai, C.; Lam, C.; Lee, H.; Mak, T.; Wong, H.: Org. Lett., 2003, 5, 823-826.
[14] Wen, J.; Hong, W.; Yuan, K.; Mak, T.; Wong, H.: J. Org. Chem., 2003, 68,
8918-8931.
[15] Hui, C.; Mak, T.; Wong, H.:Tetrahedron, 2004, 60, 3523-3532.
[16] Peng, H.; Lam, C.; Mak, T.; Cai, Z.; Ma, W.; Li, Y.; Wong, H.: J. Am. Chem.
Soc., 2005, 127, 9603-9611.
[17] Wu, A.; Hau, C.; Wong, H.: Adv. Synth. Catal., 2007, 349, 601-608.
[18] Figeys, H.; Dralants, A.: Tetrahedron Lett., 1971, 42, 3901-3904.
[19] Finder, C.; Chung, D.; Allinger, N.: Tetrahedron Lett., 1972, 13, 4677-4679.
[20] Senkler, G.; Gust, D.; Riccobono, P.; Mislow, K.: J. Am. Chem. Soc., 1972,
94, 8626-8627.
316
[21] Rashi-Ranjbar, P.; Man, Y.; Sandström, J.; Wong, H.: J. Org. Chem., 1989,
54, 4888-4892.
[22] Rajca, A.; Safronov, A.; Rajca, S.; Wongsriratanakul, J.: J. Am. Chem. Soc.,
2000, 122, 3351-3357.
[23] Marsella,M.; Reid, R.; Estassi, S.; Wang, L.: J. Am. Chem. Soc.: 2002, 124,
12507-12510.
[24] Rajca, A.; Safronov, A.; Rajca, S.; Ross, C.; Stezowsk J.: J. Am. Chem. Soc.,
1996. 118, 7272-7279.
[25] Rathore, R.; Abdelwahed, S.: Tetrahedron, 2004, 60, 5267-5270.
[26] Rajendra, R.; Magueres, P.; Lindeman, S.; Kochi, J.: Angew. Chem. Int. Ed.
Engl., 2000, 39, 809-812.
[27] Gschwend, H.; Rodriguez, H.: Org. React., 1979, 26, 1-360.
[28] Kurz, L.; Lee, G.; Morgans, D.; Waldyke, M.; Ward, T.: Tetrahedron Lett.,
1990, 31, 6321-6324.
[29] Zhang, A; Csutoras, C; Zong, R; Neumeyer, J.: Org. Lett., 2005, 7, 3239-
3242.
[30] An, B.; Kwon, S.; Jung, S.; Park, S.: J. Am. Chem. Soc., 2002, 124, 14410-
14415.
[31] Whitesides, G.; Eisenhut, M.; Bunting, W.: J. Am. Chem. Soc., 1974, 96,
5398-5407.
[32] Baker, W.; Barton, J.; McOmie, J.: J. Chem. Soc. 1958, 2658-2663.
[33] Cereghetli, M.; Schmid, R.; Schonhner, P.; Rageot, A.: Tetrahedron Lett.,
1996, 37, 5343-5346.
[34] Sheldrick, G.: SHELXTL, version 6.14; Bruker Analytical X-ray System, Inc.:
Madison, WI, 1997.
[35] Keen, D.; Gutmann, M.; Wilson, C.: J. Applied Crystallogr., 2006, 39, 714–
722.
[36] Gutmann, M. J.: In SXD2001, ISIS Facility, Rutherford Appleton Laboratory,
Oxfordshire, England, 2005.
[37] Tanaka, I.; Kurihara, K.; Chatake, T.; Niimura, N.: J. Appl. Crystallogr., 2002,
35, 34-40.
317
[38] Otwinowski, Z.; Minor, W. Processing of X-ray Diffraction Data Collected in
Oscillation Mode, Methods in Enzymology, ed. by Carter, C. W.; Wseet, R.:
Academic Press, 1997, Col. 276, Part A, pp. 307-326.
[39] Bacon, G.: In Neutron Diffraction; Oxford University Press: London, England,
1962.
[40] Johnson, C.; Gabe, E.; Taylor, M.; Rose, I.: J. Am. Chem. Soc., 1965, 87,
1802–1804.
[41] Rapson, W.; Schuttleworth, P.; Niekark, J.: J. Chem. Soc., 1943, 326-327.
[42] Rajca, A.; Safronov, A.; Rajca, S.; Schoemaker, R. Angew. Chem. Int. Ed.,
1997, 36, 488-491.
[43] An, B.-K.; Kwon, S.-K.; Jung, S.D.; Park, S.-Y. J. Am. Chem. Soc. 2002, 124,
14410-14415.
[44] Whitesides, G.-M.; Eisenhut, M.; Bunting, W. M. J. Am. Chem. Soc. 1974,
96, 5398-5407.
[45] Baker, W.; Barton, J. W.; McOmie, J. F. W. J. Chem. Soc. 1958, 2658-2663.
[46] Cereghetli, M.; Schmid, R.; Schonhner, P.; Rageot, A. Tetrahedron Lett.
1996, 37, 5343-5346.
[47] Maercker, A.; Theis, M.: Top. Curr. Chem., 1987, 138, 1-61.
[48] Bergander, K.; He, R.; Chandrakumar, N.; Eppers, O.; Guenther, H.:
Tetrahedron, 1994, 50, 5861-5868.
[49] Kabir, S.; Hasegawa, M.; Kuwatani, Y.; Yoshida, M.; Matsuyama, H.; Iyoda,
M.: J. Chem. Soc., Perkin Trans., 2001, 1, 159-165.
[50] Kabir, S.; Iyoda, M.: Synthesis, 2000, 1839-1842.
[51] Smith, I.: Chem. Soc. Rev., 2008, 37, 812-826.
[52] Frisch, M.; et al. Gaussian 98, Revision A.11; Gaussian, Inc.: Pittsburgh, PA,
2001.
[53] Wadt, W.; Hay, P.: J. Chem. Phys., 1985, 82, 284-298.
[54] Becke, A.: Phys. Rev., 1988, A38, 3098-3100.
[55] Becke, A.: J. Chem. Phys., 1993, 98, 1372-1377, 5648-5652.
318
[56] Lee, C.; Yang, W.; Parr, R.: Phys. Rev., 1988, B37, 785-789.
[57] Salem, L.:The Molecular Orbital Theory of Conjugated Systems; Benjamin:
New York, 1966, pp 486–491.
[58] Englman, R.: The Jahn–Teller Effect in Molecules and Crystals; Wiley–
Interscience: London, 1966, pp 243–245.
[59] Anet, F.; Bourn, A.; Lin, Y.: J. Am. Chem. Soc., 1964, 86, 3576–3577.
319
BIBIOGRAPHY
An, B.-K.; Kwon, S.-K.; Jung, S.D.; Park, S.-Y. J. Am. Chem. Soc. 2002,
124, 14410-14415.
Anet, F.; Bourn, A.; Lin, Y.: J. Am. Chem. Soc., 1964, 86, 3576–3577.
Bacon, G.: In Neutron Diffraction; Oxford University Press: London,
England, 1962.
Bacon, G.: Neutron Diffraction, third edition, Clarendon Press, 1975.
Baker, W.; Barton, J. W.; McOmie, J. F. W. J. Chem. Soc. 1958, 2658-
2663.
Barbalace, K.; Periodic Table of Elements - Dysprosium – Dy.
EnvironmentalChemistry.com. 1995 - 2008. Accessed on-
line: 10/8/2008 http://EnvironmentalChemistry.com/yogi/periodic/Dy.html
Bau, R.; Drabnis, M. H.; Garlaschelli, L.; Klooster, T.; Xie, Z.; Koetzle, T.
F.; Martinengo, S.: Science, 1997, 275, 1099.
Becke, A.: J. Chem. Phys., 1993, 98, 1372-1377, 5648-5652.
Becke, A.: Phys. Rev., 1988, A38, 3098-3100.
Bergander, K.; He, R.; Chandrakumar, N.; Eppers, O.; Guenther, H.:
Tetrahedron, 1994, 50, 5861-5868.
Bernstein, E.R.; Keiderling, T.A.; Lippard, S.J.; Mayerle, J.J., J. Am.
Chem. Soc., 1972, 94, 2552.
Blessing, R.H.: Acta Crystallogr., 1995, A51, 33.
Bragg, W.: Nature, 1912, 90, 410.
Broach, R.W.; Schultz, A.J.; Williams, J.M.; Brown, G.M.; Manriquez,
J.M.; Fagan, P.J.; Marks, T.J.: Science, 1979, 203, 172.
Brown, R. K.; Williams, J. M.; Sivak, A. J.; Muetterties, E. L.; Inorg.
Chem. 1980, 19, 370.
Campbell, J. W.; Habash, J.; Helliwell, J. R.; Moffat, K.: Information
Quarterly for Protein Crystallography, 1986, No. 18. SERC Daresbury
Laboratory, Warrington, England.
320
Campbell, J.W.: J. Appl. Crystallogr., 1995, 28, 228 – 236.
Campbell, J.W.; Habash, J.; Helliwell, J. R.; Moffat, K.: 1986 Information
Quarterly for Protein Crystallography, No. 18. SERC Daresbury
Laboratory, Warrington, England.
Campbell, J.W.; Hao, Q.; Harding, M.M.; Nguti, N.D.; Wilkinson, C.J.: J.
Appl. Crystallogr., 1998, 31, 23.
Capriani, F.; Castsgna, J.C.; Lehmann, M.S.; Wilkinson, C.: Physica B,
1995, 213, 975.
Castro-Rodriquez, I.; Meyer, K.: Chem. Commun., 2006, 1353.
Cereghetli, M.; Schmid, R.; Schonhner, P.; Rageot, A. Tetrahedron Lett.
1996, 37, 5343-5346.
Cordero, B.; Gómez, V.; Platero-Prats, A.; Revés, M.; Echeverría, J.;
Cremades, E.; Barragán, F.; Alvarez, S.: "Covalent radii revisited",
Dalton Trans., 2008, [DOI: 10.1039/b801115j].
Cui, D.; Nishiura, M.; Hou, Z.: Macromolecules, 2005, 38, 4089-4095.
Cui, D.; Tardif, O.; and Hou, Z.: J. Am. Chem. Soc. Comm., 2004,
126(5), 1312-1313.
Cui, D.; Tardif, O.; Hou, Z.: J. Am. Chem. Soc., 2008, 126, 5, 1312-
1313.
Englman, R.: The Jahn–Teller Effect in Molecules and Crystals; Wiley–
Interscience: London, 1966, pp 243–245.
Ephritikhine, M.; Dalton Trans., 2006, 2501.
Evans, W.J.: Coord. Chem. Rev., 2000, 206-207, 263.
Evans, W.J.; Forrestal, K.J.; Ziller, J.W.: Angew. Chem. Int. Ed., 1997,
36, 774.
Evans, W.J.; Kozimor, S.A.: Coord. Chem. Rev., 2006, 250, 911.
Evans, W.J.; Kozimor, S.A.; Ziller, J.W.: Chem. Commun., 2005, 4681.
Evans, W.J.; Miller, K.A.; Kozimor, S.A.; Ziller, J.W.; DiPasquale, A.g.;
Rheingold, A.L.: Organometallics, 2007, 26, 3568.
321
Evans, W.J.; Nyce, G.W., Ziller, J.W.: Angew. Chem. Int. Ed., 2000, 39,
240.
Figeys, H.; Dralants, A.: Tetrahedron Lett., 1971, 42, 3901-3904.
Finder, C.; Chung, D.; Allinger, N.: Tetrahedron Lett., 1972, 13, 4677-
4679.
Frisch, M.; et al. Gaussian 98, Revision A.11; Gaussian, Inc.: Pittsburgh,
PA, 2001.
Gschwend, H.; Rodriguez, H.: Org. React., 1979, 26, 1-360.
Gutmann, M.J.: SXD2001, ISIS Facility, Rutherford Appleton Laboratory,
Oxfordshire, England, 2005.
Haga, Y.; Kumazawa, S.; Niimura, N.: J. Appl. Crystallogr. 1999, 32,
878.
Hanke D.; Wieghardt, K.; Nuber B.; Lu, R. S.; McMullan, R. K.; Koetzle,
T. F.; Bau. R.: Inorg Chem. 1993, 32, 4300.
Hart, D. W.; Teller, R. G.; Wei, C. Y.; Bau, R.; Longoni, G.; Campanella,
S.; Chini, P.; Koetzle, T. F.: Angew. Chem. Int. Ed. Engl., 1978, 18, 80.
Hart, D. W.; Teller, R. G.; Wei, C. Y.; Bau, R.; Longoni, G.; Campanella,
S.; Chini, P.; Koetzle, T. F.: J. Am. Chem. Soc., 1981, 103, 1458.
Hisaki, I.; Sonoda, M.; Tobe, Y.: Eur. J. Org. Chem., 2006, 833-847.
Hou, X.; Huang, H.; Wong, H.: Synlett, 2005, 1073-1089.
Hui, C.; Mak, T.; Wong, H.:Tetrahedron, 2004, 60, 3523-3532.
International Tables for X-Ray Crystallography 1992, Vol. C., Dordrecht:
Kluwer Academic Publishers.
Irngartinger, H.; Reibel, W.: Acta Crystallogr., B 1981, 37, 1724-1728.
Jackson, P. F.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R; McPartlin,
M.; Nelson, W. J. H.; Rouse, K. D.; Allibon, J., Mason, S. A.: J. Chem.
Soc. Chem. Commun., 1980, 7, 295-297.
Johnson, C.; Gabe, E.; Taylor, M.; Rose, I.: J. Am. Chem. Soc., 1965,
87, 1802–1804.
322
Kabir, S.; Hasegawa, M.; Kuwatani, Y.; Yoshida, M.; Matsuyama, H.;
Iyoda, M.: J. Chem. Soc., Perkin Trans., 1, 2001, 159-165.
Kabir, S.; Iyoda, M.: Synthesis, 2000, 1839-1842.
Keen, D.; Gutmann, M.; Wilson, C.: J. Appl. Cryst., 2006, 39, 714-722.
Keen, D.A.; Gutmann, M.J.; Wilson, C.C.: SXD – The Single Crystal
Diffractometer at the ISIS Spallation Neutron Source. J. Appl.
Crystallogr. Vol. 39, pg. 714 – 722, 2006.
Kurz, L.; Lee, G.; Morgans, D.; Waldyke, M.; Ward, T.: Tetrahedron
Lett., 1990, 31, 6321-6324.
Lai, C.; Lam, C.; Lee, H.; Mak, T.; Wong, H.: Org. Lett., 2003, 5, 823-
826.
Lee, C.; Yang, W.; Parr, R.: Phys. Rev., 1988, B37, 785-789.
Luo, Y.; Baldamus, J.; Tardif, O.; Hou, Z.: Organometallics, 2005,
24(18), 4362-4366.
Lutz, F.; Bau, R.; Wu, P.; Koetzle, T. F.; Krueger, C.; Schneider, J. J.:
Inorg. Chem., 1996, 35, 2698.
Mac, ; Wong, H.: Top. Curr. Chem. 1987, 140, 141-164.
Maercker, A.; Theis, M.: Top. Curr. Chem., 1987, 138, 1-61.
Mak, T.; Wong, H.: In Comprehensive Supramolecular Chemistry;
MacNicol, D.; Toda, F.; Bishop, P.: Eds. Pergamon Press: Oxford, 1996;
Vol. 6, pp 351-369.
Man, Y. –M.; Mak, T.; Wong, H.: J. Org. Chem., 1990, 55, 3214-3221.
Marks, T.J.; Fagan, P.J.; Manriquez, J.M.; Maatta, E.A.; Seyam, A.M.: J.
Am. Chem. Soc., 1981, 103, 6650.
Marsella, M.; Kim, I.; Tham, F.: J. Am. Chem. Soc., 2000, 122, 974-975.
Marsella, M.; Rahbarnia, S.; Wilmot, N.: Org. Biomol. Chem., 2007, 5,
391-400.
Marsella,M.; Reid, R.; Estassi, S.; Wang, L.: J. Am. Chem. Soc.: 2002,
124, 12507-12510.
323
Matthewman, J.C.; Thompson, P.; Brown, P.J.: J. Appl. Crystallogr.,
1982, 15, 167.
McIntyre, G. J.; Lemée-Cailleau, M. H.; Wilkinson, C: Physica B, 2006,
385-386, 1055.
Niimura, N.; Karasawa, Y.; Tanaka, I.; Miyahara, J.; Takahashi, K.;
Saito, H.; Koizumi, S.; Hidaka, M.: Nucl. Instrum. Methods Phys. Res.,
Sect. A. 1994, 349, 521.
Okuda, J.; Murray, R.; Dewan, J.; Schrock, R.: Organometallics, 1986,
5, 1681-1690.
Otwinowski, Z.; Minor, W.: Processing of X-ray Diffraction Data
Collected in Oscillation Mode, Methods in Enzymology, ed. by C. W.
Carter, Jr.: R. M. Sweet Academic Press, 1997, Col. 276, Part A, pp.
307-326.
Peng, H.; Lam, C.; Mak, T.; Cai, Z.; Ma, W.; Li, Y.; Wong, H.: J. Am.
Chem. Soc., 2005, 127, 9603-9611.
Rajca, A.; Rajca, S.; Pink, M.; Miyasaka, M.: Synlett, 2007, 1799-1822.
Rajca, A.; Safronov, A.; Rajca, S.; Ross, C.; Stezowsk J.: J. Am. Chem.
Soc., 1996. 118, 7272-7279.
Rajca, A.; Safronov, A.; Rajca, S.; Schoemaker, R. Angew. Chem. Int.
Ed., 1997, 36, 488-491.
Rajca, A.; Safronov, A.; Rajca, S.; Wongsriratanakul, J.: J. Am. Chem.
Soc., 2000, 122, 3351-3357.
Rajca, A; Safronov, A.; Rajca, S.; Shoemaker, R.: Angew. Chem. Int.
Ed. Engl., 1997, 36, 488-491.
Rajendra, R.; Magueres, P.; Lindeman, S.; Kochi, J.: Angew. Chem. Int.
Ed. Engl., 2000, 39, 809-812.
Rapson, W.; Schuttleworth, P.; Niekark, J.: J. Chem. Soc., 1943, 326-
327.
Rashi-Ranjbar, P.; Man, Y.; Sandström, J.; Wong, H.: J. Org. Chem.,
1989, 54, 4888-4892.
Rathore, R.; Abdelwahed, S.: Tetrahedron, 2004, 60, 5267-5270.
324
Ricci, J.S.; Koetzle, T.F.; Goodfellow, R.J.; Espinet, P.; Maitlis, P.M.:
ibid, 1984, 23, 1828.
Rundle, R.E. J. Am. Chem. Soc., 1951, 73, 4172.
SAINT Software Users Guide, Version 6.0, Bruker Analytical X-Ray
Systems, Inc.; Madison, WI, 1999.
Salem, L.:The Molecular Orbital Theory of Conjugated Systems;
Benjamin: New York, 1966, pp 486–491.
Schultz, A.; De Lurgio, P.; Hammonds, J.; Mikkelson, D.; Mikkelson, R.;
Miller, M.; Naday, I.; Peterson, R.; Worlton, T.: Physica B., 2006, 385-
386, 1059-1062.
Senkler, G.; Gust, D.; Riccobono, P.; Mislow, K.: J. Am. Chem. Soc.,
1972, 94, 8626-8627.
Sheldrick, G.: SHELXTL, version 6.14; Bruker Analytical X-ray System,
Inc.: Madison, WI, 1997.
Sheldrick, G.M.: SADABS, Version 2.10, Bruker Analytical X-Ray
Systems, Inc.; Madison, WI, 2002.
Sheldrick, G.M.: SHELXTL, Version 6.12, Bruker Analytical X-Ray
Systems, Inc. Madison, WI, 2001.
Sheldrick, G.M.; SHELX-97, A Computer Program for the Refinement of
Crystal Structures; University of Göttingen: Göttingen Germany, 1997.
Sheldrick, G.M.; SHELXTL, version 6.14; Bruker Analytical X-ray
System, Inc., Madison, WI, 1997.
Shin, J.; Parkin, G.: Polyhedron, 1994, 13, 1489-1493.
SMART Software Users Guide, Version 5.1, Bruker Analytical X-Ray
Systems, Inc.; Madison, WI, 1999.
Smith, I.: Chem. Soc. Rev., 2008, 37, 812-826.
Tanaka, I.; Kurihara, K.; Chatake, T.; Niimura, N.: J. Appl. Crystallogr.,
2002, 35, 34-40.
Tanaka, I.; Kurihara, K.; Chatake, T.; Niimura, N.: J. Phys. Soc. Jpn.,
Suppl. A., 2001, 70, 459.
325
Tardif, O.; Nishiura, M.; Hou, Z.: Organometallics, 2003, 22(6), 1171 –
1173.
Teller, R. G.; Wilson, R. D.; McMullan, R. K.; Koetzle, T. F.; Bau, R: J.
Am Chem. Soc., 1978, 100, 3071.
Turberfield, K.: Thermal Neutron Diffraction, edited by BTM Willis, 1970,
page 34, Oxford Press.
Von Laue, M.: Concerning the detection of X-ray interferences, Nobel
Lecture, 1915.
Wadt, W.; Hay, P.: J. Chem. Phys., 1985, 82, 284-298.
Wang, C.; Xi, Z.: Chem. Commun., 2007, 5119-5133.
Wen, J.; Hong, W.; Yuan, K.; Mak, T.; Wong, H.: J. Org. Chem., 2003,
68, 8918-8931.
Whitesides, G.; Eisenhut, M.; Bunting, W.: J. Am. Chem. Soc., 1974, 96,
5398-5407.
Wilkinson, C.; Cowan, J.A.; Myles, D.A.A.; Cipriani, F.; McIntyre, G.J.:
Neutron News, 2002, 13, 37- 41.
Wilkinson, C.; Khamis, H. W.; Stansfield, R. F. D.; McIntyre, G.J.: J.
Appl. Crystallogr., 1998, 21, 471.
Wilkinson, C.; Khamis, H.W.; Stansfield, R.F.D.; McIntyre, G.J.: J. Appl
Crystallogr., 1988, 21, 471 – 478.
Wilson, C.: IOP Conf. Ser., 1990, 107, 145-163.
Wu, A.; Hau, C.; Wong, H.: Adv. Synth. Catal., 2007, 349, 601-608.
Yousufuddin, M.; Baldamus, J.; Tardif, O.; Hou, Z.; Mason, S.A.;
McIntyre, G.J.; and Bau, R.: J. Am Chem. Soc., 2008, 130, 3888-3891.
Zhang, A; Csutoras, C; Zong, R; Neumeyer, J.: Org. Lett., 2005, 7,
3239-3242.
Abstract (if available)
Abstract
Chapter 1 gives a brief description about neutron diffraction and how neutrons are used to locate hydrogen atoms, an importance over X-rays, especially in the case of metal hydride complexes. Listed individually are 5 different neutron diffraction instruments that have made my research possible.
Linked assets
University of Southern California Dissertations and Theses
Conceptually similar
PDF
Neutron diffraction studies of metal hydride complexes
PDF
Association of perfluorocarbon containing water soluble polymers
PDF
Studies of yamamoto and suzuki polymerizations of dibromofluorenes: synthesis and spectroscopy of fluorene macrocycles and copolymers
PDF
New organic transformations based on electrophilic and superelectrophilic activation in strong acids
PDF
Synthesis of novel nucleotide analogues based on the traditional and nontraditional bioisosteres
PDF
Activation and functionalization of C-H bonds catalyzed by oxygen and nitrogen ligated late transition metal complexes
PDF
Carbocations and superelectrophilic intermediates
PDF
Novel fluoroalkylation reactions and microwave-assisted methodologies
PDF
Studies on direct methanol, formic acid and related fuel cells in conjunction with the electrochemical reduction of carbon dioxide
PDF
Design and synthesis of helicene-based macromolecules
PDF
Stereoselective nucleophilic fluoromethylations: from methodology to mechanistic studies
PDF
Blends of polystyrene sulfonic acid copolymers and polyvinylidene fluoride as polyelectrolyte membranes
PDF
Studies on direct oxidation formic acid fuel cells: advantages, limitations and potential
PDF
New bifunctional catalysts for ammonia-borane dehydrogenation, nitrile reduction, formic acid dehydrogenation, lactic acid synthesis, and carbon dioxide reduction
PDF
Development of polystyrene sulfonic acid-polyvinylidene fluoride (PSSA-PVDF) blends for direct methanol fuel cells (DMFCS)
PDF
Understanding the mechanism of oxygen reduction and oxygen evolution on transition metal oxide electrocatalysts and applications in iron-air rechargeable battery
PDF
Design and modification of electrocatalysts for use in fuel cells and CO₂ reduction
PDF
Investigation of mechanisms of complex catalytic reactions from obtaining and analyzing experimental data to mechanistic modeling
Asset Metadata
Creator
Stewart, Timothy James (author)
Core Title
Neutron and x-ray crystallographic studies on metal hydride compelxes and organic ring inversion
School
College of Letters, Arts and Sciences
Degree
Doctor of Pharmacy / Doctor of Philosophy
Degree Program
Chemistry
Publication Date
08/06/2009
Defense Date
06/24/2009
Publisher
University of Southern California
(original),
University of Southern California. Libraries
(digital)
Tag
diffraction,neutron,OAI-PMH Harvest,single crystal,X‐ray
Language
English
Contributor
Electronically uploaded by the author
(provenance)
Advisor
Prakash, G.K. Surya (
committee chair
), Hogen-Esch, Thieo E. (
committee member
), Petruska, John A. (
committee member
)
Creator Email
gon41st@gmail.com,tim.stewart@usc.edu
Permanent Link (DOI)
https://doi.org/10.25549/usctheses-m2488
Unique identifier
UC1157190
Identifier
etd-Stewart-3087 (filename),usctheses-m40 (legacy collection record id),usctheses-c127-190473 (legacy record id),usctheses-m2488 (legacy record id)
Legacy Identifier
etd-Stewart-3087.pdf
Dmrecord
190473
Document Type
Dissertation
Rights
Stewart, Timothy James
Type
texts
Source
University of Southern California
(contributing entity),
University of Southern California Dissertations and Theses
(collection)
Repository Name
Libraries, University of Southern California
Repository Location
Los Angeles, California
Repository Email
cisadmin@lib.usc.edu
Tags
diffraction
neutron
single crystal
X‐ray