Close
Home
Collections
Login
USC Login
Register
0
Selected
Invert selection
Deselect all
Deselect all
Click here to refresh results
Click here to refresh results
USC
/
Digital Library
/
Computer Science Technical Report Archive
/
USC Computer Science Technical Reports, no. 900 (2008)
(USC DC Other)
USC Computer Science Technical Reports, no. 900 (2008)
PDF
Download
Share
Open document
Flip pages
Contact Us
Contact Us
Copy asset link
Request this asset
Transcript (if available)
Content
Optimal Policy in Discrete Pursuit-Evasion Games
Marcos A. M. Vieira and Ramesh Govindan and Gaurav S. Sukhatme
Abstract
In a discrete Pursuit-Evasion game, we describe an algorithm
to calculate the optimal policy that pursuers should use in order
to capture evaders with the minimum number of steps. We
assume that all players have full knowledge and that evaders
also play an optimal strategy. We illustrate how convergence
time varies by topology. We have implemented this algorithm,
and present results on a physical multi-robot testbed.
I. INTRODUCTION
We are motivated by practical problems in security and
monitoring for large, structured, spaces (e.g., to ensure the
integrity of a large building or complex). The problem we
focus on is pursuit-evasion wherein robots must pursue and
catch evaders.
In Pursuit-Evasion Games (PEGs), multiple robots (the
pursuers) collectively determine the location of one or more
evaders, and try to corral them. The game terminates when
every evader has been corralled by one or more robots.
Several versions of the problem exist. In certain frameworks,
it is acceptable to merely sight an evader for it to be
located, in others, a precise coordinate must be reported.
Other formulations insist on a certain speed of convergence
with fewer constraints on accuracy. Finally, formulations
vary depending on whether the multi-robot control algorithm
is required to have provably correct behavior, whether the
number of evaders is known a priori, and whether they are
malicious or benign. Each variation of the problem brings
with it a different set of challenges, and several of these
variations have been solved to varying degrees.
We focus on PEGs in bounded, spatially complex en-
vironments similar to today's ofce environments. In such
environments, we can assume imperfect geometric regularity
(e.g., the presence of corridors and 90-degree turns, but
possibly a regular placement of doorways or elevator exits).
However, it is increasingly true that such environments are
well provisioned with wireless communication capability,
and that many such environments will likely have dense em-
bedded sensing (for surveillance or environmental control).
This environmental-embedded sensing can provide, for the
players, full knowledge of the game.
We consider the class of PEGs played on a discrete graph.
Specically, we use a topological map of the environment,
whose nodes correspond to coarse-grained regions and whose
links connect neighboring regions [1], [2]. Discrete graph
based games are acceptable for many uses of pursuit-evasion
(e.g., surveillance, nding survivors).
Marcos Vieira and Ramesh Govindan and Gaurav Sukhatme are with
Department of Computer Science, University of Southern California, 941 W.
37th Place, Los Angeles,CA USA fmvieira,ramesh,gauravg@usc.edu
In this paper, we consider a version of the game in
which M pursuers collectively attempt to capture N evaders
(Section II). We are interested in the convergence time of the
game (i.e., the minimum number of steps for the pursuers
to capture the evaders). To the best of our knowledge
(Section VI), the rst provably minimal convergence time
algorithm for multiple pursuers and evaders is presented
(Section III). In our formulation, all players have complete
knowledge of the state of others, and the evaders also
pursue an optimal evasion strategy. Clearly, convergence
time depends on the topology as well as on the number of
pursuers and evaders: we explore these dependencies for a
few canonical topologies (Section IV). Finally, we present
results from running an implementation of our algorithm on a
physical robot testbed (Section V). The experiments conrm
the feasibility of our algorithm, even on a worst-case initial
conguration.
II. GAME DEFINITION AND ASSUMPTIONS
Let G = (V;L) be a nite connected undirected graph with
V vertices and L lines or edges. There are two teams of
players called pursuers P and evaders E. Initially, P and E
occupy some vertices of G. In describing the algorithm, we
assume that time is discrete and increments at steps of 1. At
each time step, all pursuers and evaders are given the poses
of all participants. Both teams play a game on G according
to the following rule. At each step, each pursuer chooses
a neighboring vertex of G to move to, then the evaders do
the same. They then move to the corresponding vertex in G,
as dened in [3], and repeat the previous step. An evader
is captured if at a time t, the pursuer P is on the same
vertex as the evader being captured. The team of pursuers P
wins if it captures all evaders. If an evader can avoid capture
indenitely, then the evader team wins the game.
We can now dene our game more formally as follows:
Input Coarse estimated poses of N robots and M evaders in
a bounded environment E.
Output Motion commands for N robots.
Goal Minimize the capture time of the evaders.
Restriction No motion model of the evaders is available to
pursuers.
Before describing the optimal strategy for this game, we
discuss some assumptions and describe our notation. We
assume the pursuers and the evaders have full knowledge.
This is possible in an indoor scenario with an environment-
embedded wireless communication network that also pro-
vides a sensing capability. The communication network
provides a backbone for sharing game state, and the sensing
capability detects evader positions, thereby giving full visi-
bility to the pursuers. We assume that the evaders also play
an optimal strategy: they too have, at each time instant, the
locations of all the pursuers, and decide their moves with
a view to avoiding capture for the longest possible time.
Finally, we also assume that pursuers and evaders move at
the same speed (more precisely, we assume that they move
exactly one hop in the topology at each time step).
Let p=jPj, e=jEj, v=jVj. Let P
i
be the position of the i
th
pursuer and E
i
be the position of the i
th
evader.
The tuple a =< P
0
;:::;P
p
;E
0
;:::;E
e
> represents the cur-
rent position of all participants. We dene a boolean variable
T(turn) to denote if it is the pursuers' turn to move or not
(recall that, in our algorithm, pursuers and evaders alternate
at each time step
1
We say that the tuple < a;T > encodes
the state s of a game.
In general, a game can have 2 v
p+e
states, because each
pursuer and evader can be at one of v positions, and for
each conguration of pursuers and evaders, there are 2 turns
(evader and pursuer moves). Each game can be represented
by a sequence of transitions through this state space. Each
pursuer and evader executes a deterministic algorithm (called
its policy) for determining, given the current state, what the
next move should be. We call r the pursuer policy and e
the evader policy. Since we consider deterministic policies,
if in a particular game, a state is repeated, the game will not
terminate and the evaders win.
The game terminates when a capture state is reached. In
a capture state, at least one pursuer occupies each vertex in
which an evader resides. There exists a different denition of
termination. If, during the evolution of the game, a pursuer
reaches an evader's position, the evader exits the game. It is
easy to see that our denition results in a game that is strictly
harder than this variant. When evaders exit the game, the
remaining pursuers can always, and more quickly, capture
the remaining set of evaders. Indeed, there exist cases where
our game might not terminate (a 2-pursuer 2-evader game,
in some topologies) but this variant will.
III. THE OPTIMAL POLICIES FOR PURSUIT-EVASION
Pursuit-Evasion is a zero-sum game since pursuer's gain or
loss is exactly balanced by the losses or gains of the evader.
The evader's goal is to escape as long as possible whereas
the pursuers have to capture the evaders as fast as possible.
Zero-sum games have been extensively studied in the
game theory literature, and our solution models a PEG as
a zero-sum game that uses the minimax algorithm [4]. This
algorithm minimizes the maximum possible loss for each
player in the game.
To describe this algorithm, consider rst that the evolution
of any PEG can be represented by a game graph, a directed
graph with possible cycles. The start state (as dened by
the starting conguration of the pursuers and evaders) has
a directed edge from itself to all possible next states that
1
This assumption enables us to analyze our algorithm. Of course, in real
world experiments, it is difcult to ensure this synchrony.
the pursuers can make from the start state. (In our game,
we assume that pursuers and evaders move alternatively). In
turn, from each of these states, there is a directed edge to all
possible next states resulting from evaders moves from that
state. The graph can thus be recursively dened. In general,
a game is a traversal on this graph. If this traversal ends in a
capture state, the pursuers win the game. However, it is also
possible for the traversal to repeat states: such a traversal
will result in a non-terminating game and the evaders win.
Suppose now, that in the game graph, we assign to each
state S, a cost function C.
When an evader moves, C(s) denotes the maximum
distance from state s to a capture state, and
When a pursuer moves, C(s) represents the minimum
distance from state s to a capture state.
In our game, we consider the following policies:
The pursuers' policy r is: choose that neighboring
state in the game graph which has the smallest C(s).
Intuitively, this moves the game at each step as close as
possible to a capture state.
The evaders' policy e is: choose that neighboring state
in the game graph which has the largest C(s). Intuitively,
this moves the game at each step as far away as
possible from a capture state. Thus, the evader is truly
adversarial.
In what follows, we rst show how to compute the
game graph efciently. Then, we prove that these policies
are optimal from the pursuer's perspective: if the game
terminates, they reach a capture state in the shortest possible
number of moves.
First, we construct the game graph by generating all states
and all possible transitions between states. Initially, all states
have cost innity, except the initial set of capture states which
have cost 0 (Algorithm 1).
Let us dene F
0
as a set of capture states, in other words,
the states where at least one pursuer occupies each vertex
in which an evader resides. These states have cost value 0
since no move is necessary for the termination of the game.
Now dene F
1
as the set of states which can reach one of the
capture states in one pursuer move. F
1
consists of both states
where it is the pursuer's turn to move, and states where it is
the evader's turn to move. A state where it is the evader's turn
to move belongs to F
1
where irrespective of the next move
made by the evader, the pursuer can still reach the capture
state in a single step. Similarly, we can dene inductively the
F
i+1
set of states as the states from which the pursuers only
needs i+1 steps to terminate the game, irrespect of evader's
movements. For any state s = (a;1), when it is the pursuer's
turn to move, the cost C(s) = minimum (C(s
0
))+1 where s
0
is any state that the pursuer can transition to from s. For any
state s = (a;0), when it is the evader's turn to move, the cost
C(s)= maximum C(s
0
), where s
0
is any state that the evader
can transition to from s.
For a pursuer, the goal is to reach capture state, i.e.
minimize C. For a evader, if C(s) is nite, where s is the
current state, then irrespectively of what the evader does,
it will be captured within C(s) pursuer's move. The evader
should then choose a transition a to a
0
which maximizes the
time of capture. If any state has a cost function value innity,
it means the number of pursuers is not sufcient to capture
the evaders. It is necessary to add more pursuers to the game.
Algorithm 1 Algorithm for computing the game graph.
fInitializationg
Generate all states
Generate all possible transitions
for all state s do
if s is a capture state then
add s to F
0
C(s) 0fcost functiong
else
C(s) ¥
end if
end for
i 0
repeat
i i+ 1
change f alse
U set of all unmarked states that have a transition
to a marked state.
for all s in U do
if s is a pursuer move then
if s has at least one transition to a marked state
then
add s to F
i
fmark sg
C(s) min (over all marked neighbors)+1
fcount this moveg
add transition to r
change true
end if
else
fevader moveg
if all transition from s reach a marked state then
add s to F
i
fmark sg
C(s) max (over all marked neighbors)
add transition to e
change true
end if
end if
end for
until not change
Algorithm 1 presents the optimal policy for evaders and
pursuers that we describe above. The algorithm loops while
we add more states to F
i
. Eventually, when there are no more
states to be added, the algorithm terminates. Since each state
can only be added once, the algorithm terminates.
Theorem 3.1: Algorithm 1 provides the optimal policy r
for pursuers to play the game in a graph G.
Proof: We prove this by induction. The induction
hypothesis is if state s belongs to F
i
, then the game will
terminate in at most C(s) = i steps independent of evader
movements. If i = 0, by denition of F
i
, it is a capture
state, and the game is over. Suppose the claims holds for
i and let us prove it for i+ 1. Let state s = (a;1)2 F
i+1
.
By denition of F
i+1
, there exists transition (s;(a
0
;0)) with
(a
0
;0)2 F
i
. Let the pursuer move. The cost will be minimum
of C(a
0
)+1. Suppose the evader can escape on arrangement
a
0
. But then, the evader would have chosen a transition
with cost innity, and (a
0
;0) would not have been in F
i
.
By denition of F
i
,there exists transition ((a
0
;0);(a
00
;1)) and
(a
00
;1) is a captured stated with C(a
00
) = i. Hence, if a
state s belongs to F
i+1
, the cost C(s) will be 1 to get to
(a
00
;1)+C(a
00
), which terminates in i steps by the induction
hypothesis.
For a graph with v vertices, the time complexity and space
complexity is O(v
p+e
).
IV. RESULTS
Table I shows some instances of games and their proper-
ties. The rst and second column are the topology name and
its graphical representation respectively. The third column is
the necessary number of pursuers to guarantee the termina-
tion of the game. The fourth and fth columns represent the
maximum number of steps to terminate the game, given the
number of pursuers. It is interesting to see that even though
the torus topology needs at least 3 pursuers, if we play the
game with 3 pursuers, the game will be shorter than in a
4x4 grid. Another interesting fact is increasing the number
of edges from grid 2d 4x4 to cylinder 4x4 does not increase
the necessary number of pursuers but it decreases the number
of steps to terminate the game. Increasing the edges again
(from cylinder to torus), increases the necessary number of
pursuers.
2
3 4
2
1
0
1
2
1
Fig. 1. Ring Topology
Figure 1 shows a ring topology with 5 nodes. A game with
2 pursuers and 2 evaders will not terminate in this topology,
since we dened the game to end only when all the evaders
are captured. To illustrate this, suppose pursuer 1 stayed on
the same location as evader 1. Pursuer 2 needs to capture
evader 2, but evader 2 just needs to stay away from pursuer
2.
Topology Name Graphical C(G) 2 pursuers 3 pursuers
Grid 2D 4x4
2
3
5
1
4
2
3
4
2
5
3 4
5
6
1
1
6
2 6 6
Cylinder Grid 4x4
1
2
3 4
1
2
3
4
5
1
2
3
4
5 5
2 5 5
Torus Grid 4x4
1
2
2
3 3
1
1 2 3
3
4
4
2
2
3
4
1
2 3
4
3 ¥ 4
TABLE I
INSTANCES OF GAMES AND THEIR PROPERTIES
V. EVALUATION
In this section, we describe the results on a physical robot
testbed. To validate that our scheme is implementable, we
played a 4 pursuer, 2 evader game. We analyzed all possible
such games and chose a worst-case initial conguration
(there can be more than one initial conguration with the
same convergence time).
Our robot platform consists of an iRobot Create and a
small embedded computer mounted on top of it (Figure 2).
The Create, a differential drive robot, has a round chassis of
33 cm diameter. The embedded computer, the Ebox 3854,
is an 800MHz embedded PC with 256MB shared DDR
memory, and supports compact ash sockets. The embedded
computer runs Linux Fedora Core 6 as the operating system.
For sensing and control, we developed a Create driver for
Player [5]. The nominal speed is 0.2 m/s.
The robots use the network shown in Figure 3. This
network is deployed above the false ceiling on one oor of a
large ofce building and consists of two tiers: an upper tier
containing 9 Stargates (embedded computers running Linux),
and a lower-tier containing 56 tmoteSky motes (tiny commer-
cial sensor nodes). The sensor nodes run an 8MHz Texas
Instruments MSP430 microcontroller, have 10KB RAM and
a 2.4 GHz IEEE 802.15.4 Chipcon Wireless Transceiver with
a nominal bit rate of 250 Kbps.
The sensor nodes provide the capability of a virtual
Fig. 2. The robot platform - an iRobot Create with an Ebox
Fig. 3. Layout of the network testbed
position sensor, and can sense the position of pursuers and
evaders using radio signal strength indicator (RSSI).
We executed the algorithm discussed in this paper on a
computer and generate a policy le for pursuers and evaders.
This le (available to all robots) contains the next state to
go given the current state. We code a state as a number in
base v. For example, suppose in a 3 pursuer, 1 evader game
with 3 topological nodes, the evader is at location 1 and
pursuers are located at 2,2 and 0 respectively. The sequence
1220 in base 3 is 51. Thus, the current state is represented by
number 51. For a 4 pursuer, 2 evader game on 9 nodes, the
le size is about 240 Kb. Each robot has an id, which gives
a priority. Robots with high priority have their position code
rst. In this way, robots can coordinate among themselves
without the need to communicate directly with each other.
Robots receive position estimation from the network, check
their policy le and get the next state number to go. With
the id and the next state number information, each robot
determines what is the next position to go by decoding it.
To decode, each robot considers the next state number as a
number in base v, and extracts the i
th
digit, where i represents
its priority.
We play the games on the oor plan shown in Figure 3,
using the network whose nodes are shown in that gure.
We use a topological map of the environment consisting of
9 nodes, whose nodes correspond to coarse-grained regions
and whose links connect neighboring regions, as shown in
Figure 4.
Figure 4 shows the trajectory of each pursuer during
one instance of a game. The nodes and solid undirected
edges connecting them represent the topological map. The
solid directed lines (lines with arrows) show the pursuer
path as determined by the localization system. The dashed
lines illustrate the evader path. The edge labels represent the
time sequence of the robot. The pursuer and evader's initial
positions are indicated by the corresponding icons.
Our robots can only follow walls in one direction (and
must cross the corridor to reverse direction) and therefore
must correct their orientation a posteriori. For example, it is
not possible for the robots to go from position 2 to position
1 directly because the robots follow the walls to their right.
To make it clear, we give a narrative of the game. All
pursuers start at position 4 and all evaders start at position
0. Pursuer 3 is the rst to move (it tries to corral by going
around). The other pursuer do not move because they know
pursuer 3 has to go around so they can corral the evaders. At
time 1, pursuer 3 is at location 3. At time 2, pursuer 1 tries to
capture evaders by moving towards them. Pursuer 3 moves
to location 2. At time 3, pursuer 2 tries to capture evaders
by moving towards them and move to location 3. Pursuer 1
and 3 keep moving and are at location 2 and 5 respectivelly.
At time 4, pursuer 4 just once moves closer to evaders, it
is not really necessary in the game. Pursuers are at 5,2,6,3.
At location 5, pursuers 1 and 2 switch their orientation (turn
around to another wall). At time 5, pursuers are at 2,5,6,3.
At time step 6, pursuers are at 1,5,6,3 and evaders at location
0. If no evader moves, pursuer 1 would captured them. So,
at time step 7, evader 2 tries to escape by going to location
1. Evader 2 knew evader 1 was not captured, thus it tried
to escaped even though it went to same location as pursuer
1. Evader 1 did not move to location 8 because it would be
captured by pursuer 3 anyways. Finally, at time 8, pursuer 1
captured evader 1 at location 0 and pursuer 2 captured evader
2 at location 1. Pursuer 2 is at location 8 to guarantee evaders
are corral.
In a simulation analysis, the convergence time for the
game to end is 6 steps. Our results took 8 steps because
our robots can only follow walls in one direction and we
did not take this constraint into our analysis. Indeed, if you
take into account that to move from node 2 to node 1, you
need to go to node 5 and node 2 again, our results match
our analysis. Hence, the experiments conrm the feasibility
of our algorithm.
VI. RELATED WORK
To situate our work in the existing literature, we classify
the type of PEGs using seven criteria: the ratio of the number
of pursuers to the number of evaders; whether pursuers and
evaders have full and/or global visibility, or whether they
can only see within a threshold distance or until occluded
by an obstacle (usually modelled by the edge of a polygon
in 2D); what additional information robots have with respect
to the opponents' strategy or planning algorithm; whether the
environment is modelled as a graph (discrete) or a polygon
(continuous half-space with lines in 2D as boundaries); how
the evader is captured, whether by being surrounded, seen
or sensed by the pursuer, or approached within a certain
distance, or physically contacted; the relative speed between
1
3
4
1 3 4
6 7 8
7
2
4
2
3
7
8
1 2
0
1
3
3
6
7
5,6
4
5
4
4
5
6
7
8
2
5
2
Fig. 4. A 4 pursuer, 2 evader game
the pursuer and evader; and, how much uncertainty in
sensing, actuation and communication is injected into the
game.
Our work assumes the pursuers and evaders have full visi-
bility; they can know about others' strategy; the environment
is modeled as a graph; the evaders are captured only if all of
them share a vertex with some pursuers; the evader speed is
the same as the pursuer; and we did not consider uncertainty.
Other work has explored theoretical bounds on eventual
capture [6], [7], or pursuit-evasion under constrained geome-
tries [8], [9], [10], [11], or has examined sophisticated control
strategies [12], [13].
In [14], an algorithm to determine if K pursuers are
sufcient to capture an evader is presented. The minimum
necessary pursuers to capture an evader is called the the
cop number c(G). They also shown that every graph is
topologically equivalent to a graph with pursuer number at
most two. Pursuit-Evasion Games are also called Cops and
Robbers by mathematicians.
In the survey presented by Alspach [15], a number of
references on the necessary number of pursuers for a given
graph class can be found. Aigner and Fromme [6] proved
that in a planar graph G, 3 pursuers are sufcient for the
pursuers to win the game. Quilliot [16] extended this result,
giving an upper bound to the number of pursuers depending
on the genus of the graph G. In [17], the necessary number
of pursuers is studied under three graph product operations.
To the best of our knowledge, we are the rst to present
an algorithm to minimize the time to capture of all evaders.
VII. CONCLUSIONS
We presented an optimal algorithm (causing pursuers to
take the minimum number of steps to win a Pursuit-Evasion
game in a discrete graph). We illustrate how convergence
time varies with different topologies. We have validated the
feasibility of our algorithm by experimentally playing mobile
robot-based pursuit evasion games on a physical testbed.
REFERENCES
[1] B. Kuipers and Y .-T. Byun, A robot exploration and
mapping strategy based on a semantic hierarchy of spatial
representations, Tech. Rep. AI90-120, 1, 1990. [Online]. Available:
citeseer.ist.psu.edu/kuipers91robot.html
[2] M. J. Matari´ c, Integration of representation into goal-driven behavior-
based robots, IEEE Transactions on Robotics and Automation, vol. 8,
no. 3, pp. 304312, 1992.
[3] R. J. Nowakowski and P. Winkler, Vertex-to-vertex pursuit in a
graph, Discrete Mathematics, vol. 43, no. 2-3, pp. 235239, 1983.
[4] S. J. Russell and P. Norvig, Articial Intelligence: A
Modern Approach. Pearson Education, 2003. [Online]. Available:
http://portal.acm.org/citation.cfm?id=773294
[5] B. Gerkey, R. Vaughan, and A. Howard, The player/stage
project: Tools for multi-robot and distributed sensor systems, in
11th Int. Conf. on Advanced Robotics (ICAR 2003), June 2003,
http://playerstage.sourceforge.net.
[6] F. M. Aigner. M, A game of cops and robber, Tech. Rep., 1984.
[7] J. Sgall, Solution of David Gale's lion and man problem, Theor.
Comput. Sci., vol. 259, no. 1-2, pp. 663670, 2001.
[8] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Mot-
wani, Visibility-based pursuit-evasion in a polygonal environment,
in WADS '97: Proceedings of the 5th International Workshop on
Algorithms and Data Structures. London, UK: Springer-Verlag, 1997,
pp. 1730.
[9] R. Murrieta-Cid, T. Muppirala, A. Sarmiento, S. Bhattacharya, and
S. Hutchinson, Surveillance strategies for a pursuer with nite sensor
range, Int. J. Rob. Res., vol. 26, no. 3, pp. 233253, 2007.
[10] S. Bhattacharya, S. Candido, and S. Hutchinson, Motion strategies
for surveillance, in Robotics: Science and Systems, 2007.
[11] W. Cheung, Constrained pursuit-evasion problems in the plane,
Master Thesis, U.British Columbia, 2005.
[12] R. Vidal, O. Shakernia, H. J. Kim, D. H. Shim, and S. Sastry,
Probabilistic pursuit-evasion games: theory, implementation, and ex-
perimental evaluation, Robotics and Automation, IEEE Transactions
on, vol. 18, no. 5, pp. 662669, 2002.
[13] S. Oh, L. Schenato, P. Chen, and S. Sastry, Tracking and
coordination of multiple agents using sensor networks: system
design, algorithms and experiments, Proceedings of the IEEE,
vol. 95, no. 1, pp. 234254, January 2007. [Online]. Available:
http://www.truststc.org/pubs/244.html
[14] A. Berarducci and B. Intrigila, On the cop number of a graph, Adv.
Appl. Math., vol. 14, no. 4, pp. 389403, 1993.
[15] B. Alspach, Searching and sweeping graphs: a brief survey, Le
Matematiche (Catania), vol. 59, pp. 537, 2004.
[16] A. Quilliot, A short note about pursuit games played on a graph with
a given genus, J. Comb. Theory, Ser. B, vol. 38, no. 1, pp. 8992,
1985.
[17] S. Neufeld and R. Nowakowski, A game of cops and robbers played
on products of graphs, Discrete Math., vol. 186, no. 1-3, pp. 253268,
1998.
Abstract (if available)
Linked assets
Computer Science Technical Report Archive
Conceptually similar
PDF
USC Computer Science Technical Reports, no. 902 (2009)
PDF
USC Computer Science Technical Reports, no. 796 (2003)
PDF
USC Computer Science Technical Reports, no. 677 (1998)
PDF
USC Computer Science Technical Reports, no. 848 (2005)
PDF
USC Computer Science Technical Reports, no. 822 (2004)
PDF
USC Computer Science Technical Reports, no. 631 (1996)
PDF
USC Computer Science Technical Reports, no. 852 (2005)
PDF
USC Computer Science Technical Reports, no. 777 (2002)
PDF
USC Computer Science Technical Reports, no. 642 (1996)
PDF
USC Computer Science Technical Reports, no. 930 (2012)
PDF
USC Computer Science Technical Reports, no. 938 (2013)
PDF
USC Computer Science Technical Reports, no. 825 (2004)
PDF
USC Computer Science Technical Reports, no. 683 (1998)
PDF
USC Computer Science Technical Reports, no. 773 (2002)
PDF
USC Computer Science Technical Reports, no. 937 (2013)
PDF
USC Computer Science Technical Reports, no. 923 (2012)
PDF
USC Computer Science Technical Reports, no. 774 (2002)
PDF
USC Computer Science Technical Reports, no. 669 (1998)
PDF
USC Computer Science Technical Reports, no. 782 (2003)
PDF
USC Computer Science Technical Reports, no. 907 (2009)
Description
Marcos A M Vieira, Ramesh Govindan, Gaurav S. Sukhatme. "Optimal policy in discrete pursuit-evasion games." Computer Science Technical Reports (Los Angeles, California, USA: University of Southern California. Department of Computer Science) no. 900 (2008).
Asset Metadata
Creator
Govindan, Ramesh
(author),
Sukhatme, Gaurav S.
(author),
Vieira, Marcos A M
(author)
Core Title
USC Computer Science Technical Reports, no. 900 (2008)
Alternative Title
Optimal policy in discrete pursuit-evasion games (
title
)
Publisher
Department of Computer Science,USC Viterbi School of Engineering, University of Southern California, 3650 McClintock Avenue, Los Angeles, California, 90089, USA
(publisher)
Tag
OAI-PMH Harvest
Format
6 pages
(extent),
technical reports
(aat)
Language
English
Unique identifier
UC16269940
Identifier
08-900 Optimal Policy in Discrete Pursuit-Evasion Games (filename)
Legacy Identifier
usc-cstr-08-900
Format
6 pages (extent),technical reports (aat)
Rights
Department of Computer Science (University of Southern California) and the author(s).
Internet Media Type
application/pdf
Copyright
In copyright - Non-commercial use permitted (https://rightsstatements.org/vocab/InC-NC/1.0/
Source
20180426-rozan-cstechreports-shoaf
(batch),
Computer Science Technical Report Archive
(collection),
University of Southern California. Department of Computer Science. Technical Reports
(series)
Access Conditions
The author(s) retain rights to their work according to U.S. copyright law. Electronic access is being provided by the USC Libraries, but does not grant the reader permission to use the work if the desired use is covered by copyright. It is the author, as rights holder, who must provide use permission if such use is covered by copyright.
Repository Name
USC Viterbi School of Engineering Department of Computer Science
Repository Location
Department of Computer Science. USC Viterbi School of Engineering. Los Angeles\, CA\, 90089
Repository Email
csdept@usc.edu
Inherited Values
Title
Computer Science Technical Report Archive
Coverage Temporal
1991/2017
Repository Email
csdept@usc.edu
Repository Name
USC Viterbi School of Engineering Department of Computer Science
Repository Location
Department of Computer Science. USC Viterbi School of Engineering. Los Angeles\, CA\, 90089
Publisher
Department of Computer Science,USC Viterbi School of Engineering, University of Southern California, 3650 McClintock Avenue, Los Angeles, California, 90089, USA
(publisher)
Copyright
In copyright - Non-commercial use permitted (https://rightsstatements.org/vocab/InC-NC/1.0/