Close
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected
Invert selection
Deselect all
Deselect all
Click here to refresh results
Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
The influence of dietary fructose on genetic effects of GCK and GCKR in Mexican Americans
(USC Thesis Other)
The influence of dietary fructose on genetic effects of GCK and GCKR in Mexican Americans
PDF
Download
Share
Open document
Flip pages
Contact Us
Contact Us
Copy asset link
Request this asset
Transcript (if available)
Content
The Influence of Dietary Fructose on Genetic Effects of GCK and
GCKR in Mexican Americans
by
Leona Ma
A Thesis Presented to the
FACULTY OF THE USC KECK SCHOOL OF MEDICINE
UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirement of the Degree
MASTER OF SCIENCE
(BIOSTATISTICS)
May 2022
Copyright 2022 Leona Ma
ii
ACKNOWLEDGMENTS
I would like to thank Dr. Richard M. Watanabe for giving me the chance to participate in
this research and mentoring me throughout the process with his patience and support. I would
like to thank Dr. Farzana Choudhury and Dr. Jin Piao, my committee members, for giving me
advice and guidance.
I would like to thank Dr. Trevor Pickering, my advisor, for his instructions on my courses
of obtaining this degree.
Finally, I would like to extend my special thanks to my parents for their support and
understanding in my studies over the years.
This work was supported by National Institutes of Health Grant DK-61628 and an
American Diabetes Association Distinguished Clinical Scientist Award to T.A.B. A portion of
this work was conducted in a facility constructed with support from Research Facilities
Improvement Program Grants C06 (RR10600-01, CA62528-01, and RR14514-01) from the
National Center for Research Resources.
iii
TABLE OF CONTENTS
ACKNOWLEDGMENTS .............................................................................................................. ii
LIST OF TABLES ......................................................................................................................... iv
LIST OF FIGURES ........................................................................................................................ v
ABSTRACT .................................................................................................................................... 6
INTRODUCTION .......................................................................................................................... 7
RESEARCH DESIGN AND METHODS .................................................................................... 11
Subject recruitment ................................................................................................................... 11
Clinical Protocols ...................................................................................................................... 12
Assays ....................................................................................................................................... 13
Phenotype definitions ................................................................................................................ 13
Data analysis ............................................................................................................................. 13
RESULTS ..................................................................................................................................... 15
DISCUSSION ............................................................................................................................... 18
REFERENCES ............................................................................................................................. 21
iv
LIST OF TABLES
Table 1 Subject characteristics ...................................................................................................... 38
Table 2. Association results between GCK rs1799831 and type 2 diabetes-related quantitative
traits. .............................................................................................................................................. 39
Table 3 Association results between GCKR rs780094 and type 2 diabetes-related quantitative
traits. .............................................................................................................................................. 40
v
LIST OF FIGURES
Figure 1 Schematic of our hepatic substrate balance hypothesis. Blue: genes; Green:
environmental factors. See text for details. ................................................................................... 41
Figure 2 Pathways contributing to steatosis. Genetic loci of interest are highlighted in blue and
dietary fructose in green. Regulatory effects are depicted by dashed arrows. GA =
glyceraldehyde; G3P = glycerol 3 phosphate; ACoA = acetylCoA. ............................................ 42
6
ABSTRACT
OBJECTIVES— Genetic variants of glucokinase (GCK), glucokinase regulator (GCKR), patatin-
like phospholipase domain-containing protein 3 (PNPLA3) have been shown to be associated with
type 2 diabetes and diabetes-related traits. According to this, I propose the hepatic substrate
balance hypothesis, which considers that the genetic variation of GCK, GCKR, PNPLA3 results in
an imbalance in substrate flow into and out of the liver. GCK participates in the glucose uptake
process and GCKR regulate the enzyme activity of GCK. As a result, it is possible that genetic
variation affects the separate activities of GCK and GCKR, as well as their interaction, affecting
hepatic glucose absorption and the transformation of glucose to fat. PNPLA3 hydrolyzes fat to
triglycerides, and genetic variations may affect PNPLA3's ability to break down fat in the liver.
The amount of fat in the liver is a result of a balance between these two processes, and an imbalance
leads to the accumulation of liver fat, which leads to hepatic insulin resistance. I further postulate
that dietary fructose, which also add to liver fat, may aggravate the substrate imbalance caused by
genetic variation via regulating GCKR.
RESEARCH DESIGN AND METHODS— In Mexican Americans from the BetaGene Study, I
investigated if these variations were linked to diabetes-related quantitative features. Oral glucose
tolerance test (OGTT), intravenous glucose tolerance test (IVGTT), and dual-energy X-ray
absorptiometry scan were used to obtain phenotypic information on study participants.
RESULTS— In the primary analysis, GCK rs1799831 do not show statistically significant
association with any type 2 diabetes-related quantitative trait when adjusts for age and sex and did
not change after adjusting for percentage of body fat. GCKR rs780094 is statistically significantly
associated with cholesterol level, 30-minute glucose levels (p=0.043), SG (p=0.007), and
7
triglyceride levels (p=0.00001) adjusting for age and sex. The interaction between GCKR and
dietary fructose are found to be significant in some type 2 diabetes-related quantitative traits. In
the test of the GCK associations adjusting for the GCKR´Fructose interaction, statistically
significantly associations also are observed in several type 2 diabetes-related quantitative traits.
CONCLUSIONS— My results show evidence for a statistically significantly interaction between
dietary fructose and GCKR rs780094 on some type 2 diabetes-related quantitative traits to increase
hepatic glucose uptake in Mexican Americans, suggesting a positive contribution to the
accumulation of liver fat. Additionally, after adjusting for GCKR, dietary fructose, and their
interaction term, GCK shows patterns of association that contribute negatively to the accumulation
of liver fat. It is worth mentioning that before the adjustment, univariate analysis of GCK did not
show significant results, indicating the complicated biological relationships among GCK, GCKR,
and dietary fructose.
INTRODUCTION
Diabetes mellitus has quadrupled in global prevalence during the last three decades, and it is now
the ninth leading cause of mortality (1). Approximately one in every eleven persons in the world
now has diabetes, with 90 percent of those suffering from type 2 diabetes (1). In 2020, data showed
that 34.2 million Americans (10.5% of the population) had diabetes, putting a greater financial
strain on the country(2). As a result, effective preventive strategies are required to alleviate this
health and financial burden.
Understanding the physiologic implications of genetic variations that cause variance in
type 2 diabetes related quantitative traits can lead to new biologic insights and better interventions.
Genome-wide association (GWA) studies of type 2 diabetes (3-17) and type 2 diabetes-related
8
quantitative traits (3; 6-8; 11; 13; 18-46) have identified hundreds of loci contributing to type 2
diabetes risk or variation in type 2 diabetes-related quantitative traits. However, it is unclear how
genetic diversity contributes to illness pathogenesis. I chose to investigate the in vivo physiologic
effects of genetic variation in the context of gene × gene (G × G) and gene × environment (G × E)
interactions as a follow-up to GWAS findings.
I start with a trio of loci I hypothesize to be involved in hepatic fat accumulation and
subsequent hepatic insulin resistance. The mechanism(s) underlying hepatic fat accumulation are
unknown, while specific genes such as glucokinase (GCK), glucokinase regulator (GCKR), and
patatin-like phospholipase domain-containing protein 3 (PNPLA3) indicate to metabolic pathways
in the liver that may contribute to hepatic fat accumulation. In human, GCK expresses mainly in
pancreatic β-cells and liver hepatoparenchymal cells. It is an enzyme that catalyzes the first step
in glycolysis, converting glucose to glucose-6-phosphate. GCKR is the earliest discovered, to date
best characterized GCK interaction partner (47). In liver, GCK and GCKR, regulate hepatic
glucose uptake (substrate in). PNPLA3 is a known hepatic steatosis risk loci (27; 48) that is
involved in the process of fat excretion in the liver (substrate out). I propose the hepatic substrate
balance hypothesis which hypothesizes that the combined effect of genetic variation in this trio of
loci changes the balance between substrate provision to and hydrolysis of hepatic fat (Figure 1). I
further hypothesize that the substrate imbalance caused by genetic differences promotes hepatic
fat accumulation. Increased hepatic fat is also thought to contribute to hepatic insulin resistance
and type 2 diabetes etiology. While it's tempting to think that people who have "risk" alleles at all
three loci acquire the most fat and those who don't accumulate the least, given the complicated
pathways and interconnections, this may not be the case. It's possible that changes in one locus
"balance out" the effects of changes in other loci, resulting in little to no change in a highly
9
regulated phenotype like fasting glucose or insulin. Environmental factors, such as dietary fructose,
may also have an impact on the underlying biology of hepatic steatosis. Thus, I further hypothesize
that dietary fructose can affect substrate balance by directly contributing to hepatic fat or by
interacting with genetic variation in a gene by dietary fructose interaction. Hepatic glucose
metabolism dysregulation is most likely caused by fat buildup in specific metabolic pathways,
although it could also be caused by genetic influences on the expression, activity, or regulation of
important enzymes.
In this thesis, I will focus on the uptake process of glucose (variation in GCK and GCKR)
and its potential effect on liver fat. Dietary fructose appears to contribute to hepatic fat through
providing substrate via the dihydroxyacetone phosphate (DHAP) and glyceraldehyde (GA)
pathways, as well as modulating glycolytic flux through GCKR modulation (Figure2). GCKR
regulates GCK by binding to GCK and sequestering it within the nucleus (49; 50). GCKR
sequestration is inhibited by fructose-1-phosphate (F1P) (49; 51), permitting GCK translocation
to the cytoplasm (51-56). Because hepatic glucose transport is via the high Km isoform glucose
transporter (Solute Carrier Family 2 Member 2), the first opportunity to modulate hepatic glucose
uptake is at the first step of glycolysis (glucose to glucose-6-phosphate).
Fructose-6-phosphate (F6P) promotes GCKR binding to GCK, improving sequestration, and
limiting GCK activity and hepatic glucose uptake through a feedback mechanism(13; 51-53).
Evidence suggests that the antagonistic effects of F1P on GCKR are greater than the agonistic
effects of F6P (53), implying that dietary fructose could influence liver substrate flow by supplying
substrate directly via the DHAP and GA pathways and by generating unconstrained hepatic
glucose uptake by overwhelming the inhibitory effect of F6P on GCKR. GCK variation is linked
to glucose levels (7; 57-59), insulin secretion (37; 57-65), and type 2 diabetes (7; 58; 61). This has
10
led to a lot of attention being paid to GCK activity in pancreatic b-cells and b-cell-related
characteristics. GCK expression, however, is controlled by two promoters: one that is active in
most glucose-sensing endocrine cells (including pancreatic b-cells) and neurons, and the other that
controls hepatic GCK expression. It is believed that the liver contains more than 99 percent of all
GCK moieties(66). Similarly, variation in GCKR has been shown to be linked with fasting glucose
(5; 9; 13; 17; 23), triglyceride (5; 13; 23), steatosis(67), and type 2 diabetes (5; 9; 13; 17). In vitro
studies revealing that GCKR variation resulting in defective GCKR regulation of GCK explained
the pattern of associations: increased triglyceride, lower glucose, and lower type 2 diabetes risk
(68). This defective regulation was accompanied by a decrease in the ability of physiologic levels
of F6P to improve GCKR's activities (68). GCKR variants have been shown to be associated with
liver enzymes and hepatic fat (19; 27; 67; 69), suggesting that GCKR variation may play a role in
hepatic fat accumulation. I provide preliminary evidence GCKR variants may be associated with
other type 2 diabetes-related quantitative traits in an interaction with dietary fructose, emphasizing
the significance of taking dietary fructose into account and reinforcing our focus on G×G and G×E
interactions. Increased glycolytic activity is hypothesized to increase substrate flow via increased
hepatic glucose uptake and increase lipogenesis via substrate flow through malonyl-CoA. In this
thesis, I demonstrate that the combined effects of genetic variations in GCK and GCKR indicates
relationships with hepatic glucose uptake, and the effect of dietary fructose on the associations all
support components of the hepatic substrate balancing hypothesis. Detailed examination of the in
vivo mechanisms underlying these associations will provide insights into accumulation of hepatic
fat, their metabolic consequences, and their role in type 2 diabetes pathogenesis. I tested these
hypotheses using data from the BetaGene study, which sampled from Mexican Americans families
that have a proband with/without gestational diabetes mellitus within the previous 5 years [ref].
11
BetaGene aims to test the association between gene variations and type 2 diabetes and related
quantitative traits (70).
RESEARCH DESIGN AND METHODS
Subject recruitment. Participation in BetaGene was restricted to Mexican Americans from families
of a proband with or without gestational diabetes mellitus diagnosed within the previous 5 years.
Patients at the Los Angeles County/USC Medical Center, OB/GYN clinics at local hospitals, and
the Kaiser Permanente health plan membership in Southern California were used to identify
probands. Probands were eligible if they (a) were of Mexican ancestry (defined as both parents
and ³3/4 of grandparents Mexican or of Mexican descent), (b) had a confirmed diagnosis of
gestational diabetes mellitus within the previous 5 years, (c) had glucose levels associated with
poor pancreatic b-cell function and a high risk of diabetes when not pregnant (71), and (d) had no
evidence of b-cell autoimmunity by GAD-65 antibody testing. Recruitment concentrated on two
general family structures using siblings and/or first cousins of GDM probands, all with fasting
glucose levels <126 mg/dl (7 mM): (a) at least 2 siblings and 3 first cousins from a single nuclear
family or (b) at least five siblings available for study. Using information from the probands to
determine preliminary eligibility, siblings and first cousins were invited to participate in screening
and, if eligible, detailed phenotyping and collection of DNA. Available parents and connecting
uncles and aunts were invited to give DNA and undergo a fasting glucose determination. In
addition, women of Mexican ancestry who completed pregnancy without gestational diabetes
mellitus, as evidenced by a plasma or serum glucose level <120 mg/dl after a 50 g oral glucose
screen for gestational diabetes mellitus, were also collected. Control probands were recruited
12
using the similar criteria as gestational diabetic mellitus probands, but additionally chosen to have
age, body mass index, and parity matched to the gestational diabetes mellitus probands.
All protocols for BetaGene were approved by the Institutional Review Boards of the
participating institutions.
Clinical Protocols. All participants required two visits to the University of Southern California
General Clinical Research Center for phenotyping. The first visit consisted of an oral glucose
tolerance test (OGTT) to identify women who match the eligibility requirements for the study,
assess glucose tolerance, and obtain other phenotypes such the insulinogenic index (72). A fasting
blood sample was collected via an indwelling IV catheter after an overnight fast, and the individual
consumed 75 g of dextrose. After dextrose intake, further samples were taken at 5, 30, 60, 90, and
120 minutes. Plasma was isolated, stored at -80 °C, and glucose and insulin levels were measured.
Glucose tolerance and fasting glucose level were interpretated based on American Diabetes
Association criteria (73). This visit also included a basic physical examination and DNA collection.
Probands and their siblings and cousins whose fasting glucose were <126 mg/ml in OGTT were
invited to return for second visit which included an intravenous glucose tolerance test (IVGTT) to
obtain quantitative measures of whole-body insulin sensitivity (SI), acute insulin response (AIR),
glucose effectiveness (SG) and the product of AIR and SI, which is known as disposition index.
(DI). Following an overnight fast and a fasting blood draw, dextrose (300mg/kg) was injected into
an antecubital vein followed by a 5-min infusion of insulin (0.3 U/kg) at 20 minutes post-injection.
A total of 21 arterialized venous blood samples were taken using the heated hand method. Plasma
was isolated immediately, stored at -80°C, and measured for glucose and insulin levels.
Additionally, body composition, including percentage of body fat, was measured by Dual Energy
X-ray Absorptiometry (DXA; Hologic QDR 4500W) at this visit.
13
Assays. DNA was isolated from 20 ml of blood using the Puregene DNA Purification Kit (Gentra
Systems). Yield was typically 450-600 µg and was quantified by spectrophotometry. Plasma
glucose was measured by glucose oxidase and lactate oxidase on an autoanalyzer (YSI 2300,
Yellow Springs, OH). Plasma insulin was measured by two-site immunoenzymometric assay
(Tosoh) with <0.1% cross-reactivity with proinsulin and split products. Genotyping was performed
using the ABI TaqMan system (Foster City, CA) (74; 75). Genotyping assays was selected through
ABI’s “Assays on Demand” database or custom designed using ABI’s “Assay by Design” service.
Phenotype definitions. The difference between the 30 minute and fasting plasma insulin
concentration from OGTT (30-minute Δinsulin) and the incremental area under the insulin curve
for during the first 10 min of the IVGTT (AIR) were used to quantify insulin response to glucose.
The insulinogenic index was derived by dividing the 30-minute Dinsulin by the 30-minute change
in glucose (30-minute glucose – fasting glucose). IVGTT glucose and insulin data were analyzed
using the minimal model (MINMOD Millennium V5.18, Minmod, Los Angeles, CA, USA) to
obtain estimates of SG and SI. The DI was calculated as the product of SI and early insulin response
(DI = SI × AIR from the IVGTT), which was a measure of beta cell compensation for insulin
resistance. An analogous index of beta cell compensation from the OGTT (DI30) using the 30-
minute Δinsulin (DI30 = SI ×30 minutes Δinsulin) from the OGTT was also calculated. (70; 76)
Data analysis. Genotype data were tested for deviation from the Hardy-Weinberg equilibrium and
for non-Mendelian inheritance using PEDSTATS version 0.6.4 (77) and allele frequencies were
estimated using SOLAR version 2.1.4 (78).
To assess that association between SNPs (single nucleotide polymorphisms) and
continuous phenotypes, the measured genotypes approach was utilized in a likelihood ratio
framework with variance components implemented in SOLAR. Covariate-adjusted residuals for
14
quantitative traits of interest were generated by linear modelling using SAS (SAS OnDemand for
Academics: https://www.sas.com/en_us/software/on-demand-for-academics.html). An additive
genetic model was assumed using the minor alleles the reference. The additive model was used
only if the minor allele frequency (MAF) ³ 0.25, which ensures n=15 for the rare homozygous
genotype. Thus, a=0.05 significance level is appropriate. The type 2 diabetes-related quantitative
traits I was interested in included acute insulin response, alanine transaminase (AST), aspartate
aminotransferase (AST), body mass index (BMI), cholesterol level, disposition index (DI), 30-
minute disposition index, fasting glucose, 30-minute glucose, 2-hour glucose, high-density
lipoprotein cholesterol, fasting insulin, 30-minute insulin, 2-hour insulin, insulinogenic index,
percentage body fat, glucose effectiveness (SG), whole-body insulin sensitivity (SI), triglycerides
level. Since I do not have measures of hepatic fat, liver enzyme levels (AST, ALT) were used as
proxies, and we additionally adjusted for alcohol intake for these QTs. Quantitative trait data were
statistically transformed to approximate univariate normality using inverse normal transformation.
Initially, I performed univariate analyses to test the association between GCK and GCKR
and the type 2 diabetes-related quantitative traits mentioned above. In this analysis, my linear
model included age, sex, and, where appropriate, percentage body fat as covariates. Covariate-
adjusted residuals generated from this model were used to test the association between genetic
variants and type 2 diabetes-related quantitative traits using likelihood ratio test under a variance
components framework as implemented in SOLAR.
For G × E interaction analyses, given the known biological interaction between GCKR and
dietary fructose, I performed a 1-df (degree of freedom) likelihood ratio test on the interaction term
between dietary fructose and GCKR to assess the trend for an interaction using a p<0.1 cutoff. If
the interaction term was significant at this cutoff, I subsequently performed a joint 2-df likelihood
15
ratio tests on the main effect and interaction term to assess the overall genetic association. By
stratifying the quantitative traits on different genotype combinations, the nature of any significant
interactions could be investigated. The covariates in linear model contained age, sex, and, where
appropriate, percentage body fat.
Since the hypothesized fructose effect on GCKR may extend to GCK, I performed an
additional analysis in which I added covariates GCKR, dietary fructose, and their interaction to
get a refined estimation of association between GCK and type 2 diabetes-related traits.
Unfortunately, due to the low minor allele frequency for GCK, I did not have sufficient
statistical power to perform the interaction analysis with GCK.
RESULTS
I report results from 2,579 BetaGene individuals in 545 families with available phenotype and
genotype data (Table 1). Characteristics are similar in male and female, except that female tend to
have higher percentage of body fat. Two GCK SNPs, rs1799884 and rs4607517, failed the test of
Hardy-Weinberg equilibrium and were not further analyzed. All analyses are performed using
GCK rs1799831 and GCKR rs780094. GCK rs1799831 (G>A) has minor allele frequency of
14.9%. GCKR rs780094 (G>A) has minor allele frequency of 32.1%.
In the primary analysis, GCK rs1799831 did not show statistically significant association
with any type 2 diabetes-related quantitative trait when adjusts for age and sex (Table 2) and did
the results did not change after adjusting for percentage of body fat. GCKR rs780094 is statistically
significantly associated with cholesterol level (b=0.12± 0.04 per A allele, p= 0.001), 30-minute
glucose levels (b=-0.08± 0.04 per A allele, p= 0.043), SG (b=0.12± 0.04 per A allele, p= 0.007),
and triglycerides level (b=0.16± 0.04 per A allele, p= 0.000012) adjusting for age and sex. Results
16
are similar when percentage of body fat is included in the model, with the additional statistically
significant association with fasting insulin level (b=-0.08± 0.04 per A allele, p= 0.014) (Table 3).
The interaction between GCKR and dietary fructose are found to be significantly associated
with some type 2 diabetes-related quantitative traits (Table 3). Even though the ALT level does
not show to be significantly associated the interaction term in the 1-df likelihood ratio test, GCKR
effect and dietary fructose effect in 2-df test are statistically significantly associated with ALT
(b=-0.002± 0.0007, p=0.0475 and b=-0.002± 0.0007, p=0.0025, respectively), but the GCKR
effect in the 2-df test becomes not statistically significant after additional adjustment for
percentage body fat. Interaction between GCKR and dietary fructose and BMI is statistically
significant in both 1-df likelihood ratio test and two 2-df tests, but the interaction does not remain
in these tests after adding percentage of body fat as covariate. GCKR and dietary fructose have a
significant interaction in 30-minute disposition index (b=-0.002± 0.001, p=0.0119), but the GCKR
effect is not statistically significantly associated with 30-minute disposition index in the 2-df
likelihood ratio test. Additional adjustment for percentage of body fat strengthens the interaction
between GCKR and dietary fructose for 30-minute disposition index (b=-0.002± 0.001, p=0.0002),
and the association stays significant with GCKR effect in the 2-df test (b=-0.002± 0.001, p=0.0017).
The interaction between GCKR and dietary fructose is not statistically significantly associated with
2-hour insulin before adjusting for percentage of body fat, but after the adjustment, marginally
significant interaction appears (b=0.003±0.002, p=0.0949). The interaction between GCKR and
dietary fructose is statistically significantly associated with SG (b=-0.004± 0.002, p=0.0235).
Nevertheless, the GCKR effect in 2-df likelihood ratio test has opposite association with SG
(b=0.143± 0.045, p=0.0009 and b=0.005± 0.002, p=0.0360, respectively). Additional adjustment
of percentage of body fat enhances the interaction between GCKR and dietary fructose and SG
17
slightly (b=-0.005± 0.002, p=0.0072 and b=0.134± 0.045, p=0.0005 and b=0.006± 0.002,
p=0.0162, respectively). The association between the interaction between GCKR and dietary
fructose and SI is not statistically significant before the adjustment of percentage of body fat,
although it is marginally significant in the 1-df test after the adjustment (b=-0.003± 0.002,
p=0.0794).
I did not observe any significant univariate results for GCK, but given the GCKR´Fructose
interaction, I decide to test the GCK associations adjusting for the GCKR´Fructose interaction,
which are summarized in Table 2. Statistically significantly associations are observed in ALT level
(b=0.123± 0.037 per A allele, p= 0.0034), 30-minute insulin level (b=-0.090± 0.037 per A allele,
p= 0.0235), and percentage of body fat (b=-0.089± 0.037 per A allele, p= 0.0186) when adjusting
for the effects of GCKR and fructose. The additional adjustment for body fat percentage reveals
statistically significant relationships between GCK variation and fasting glucose (b=0.098± 0.037
per A allele, p= 0.0116) and SG (b=-0.083± 0.037 per A allele, p= 0.0293). The GCK variation is
statistically significantly associated with AIR (b=-0.121± 0.037 per A allele, p= 0.0019), 2-hour
insulin level (b=-0.116± 0.037 per A allele, p= 0.0028), insulinogenic index (b=-0.092± 0.037 per
A allele, p= 0.01023), SI (b=-0.116± 0.037 per A allele, p= 0.0018), and triglyceride level (b=-
0.137± 0.037 per A allele, p= 0.0009), and additional correction for percentage of body fat
moderately reduces these associations (b=-0.104± 0.037 per A allele, p= 0.0073 and b=-0.098±
0.037 per A allele, p= 0.0126 and b=-0.076± 0.037 per A allele, p= 0.0314 and b=0.091± 0.037
per A allele, p= 0.0186 b=-0.132± 0.037 per A allele, p= 0.0018, respectively).
18
DISCUSSION
In our analysis, adjustments with or without percentage of body fat were similar, but because the
results did not substantially change after additional adjustment of percentage body fat, the
discussion of results will focus on the analyses without additional adjustment of percentage of
body fat. There are two novel findings from this study. First, in my interaction analysis, dietary
fructose has a statistically significant interaction with rs780094 in GCKR on several type 2
diabetes-related quantitative traits. This is first demonstration of the interaction between GCKR
and dietary fructose in vivo that confirms in vitro observations. Vaxillaire et al. (13) showed that
GCKR variation is linked to higher triglycerides levels in a general French population. In vitro
experiment, data obtained using comparable regulatory protein activities revealed the expected
reduction in GKRP-mediated inhibition of GCK activity (68). Our data show that the combined
effect of GCKR rs780094 and interaction term between dietary fructose and GCKR is related to
higher level of triglycerides in Mexican Americans. However, it is worth noting that the beta
direction of ALT and AST, which are liver enzyme shown to be correlated with liver fat levels, is
opposite to that of triglycerides levels. I have not yet come up with a reasonable explanation for
this result, which will require further analysis. Even after adjusting for alcohol consumption, it is
plausible that AST and ALT are easily affected by other factors, such as medication use. In the 2-
df likelihood ratio tests, SG presents to have a positive association with GCKR and dietary fructose.
SG represents glucose disappearance at fasting insulin levels, and it has been shown that
approximately 30% of this parameter is due to hepatic glucose uptake (79). The effect of the
interaction between GCKR and fructose to increase SG provides the first in vivo evidence consistent
with the previous in vitro studies. This is also consistent with our hypothesis that GCKR variants
and elevated dietary fructose stimulate the formation of hepatic fat substrates by increasing hepatic
19
glucose uptake. These findings are comparable to the univariate analysis of GCKR in the primary
analysis.
Second, in the univariate analysis of GCK rs1799831 with type 2 diabetes-related
quantitative traits, no statistically significant relationship is found. Considering of the potential
biological regulation among GCKR, GCK and dietary fructose, I adjust for those components in
our third analysis. Subsequently, the statistically significant relationships between type 2 diabetes-
related quantitative traits and GCK can be found. The results show that the A-allele of GCK
rs1799831 is associated with higher fasting glucose level and lower 2-hour insulin level from the
OGTT, which means that the A-allele of GCK leads to reduced hepatic glucose uptake. This is
also in line with decreased triglycerides levels. Similar in the results appears in the second analysis,
the beta direction of ALT and AST is also in the opposite way of triglycerides levels.
It is noteworthy that the betas of fasting glucose, SG, ALT, and triglycerides in our second
and third analysis are all in completely inverse directions. I can say that the minor alleles in GCK
rs1799831 and GCKR rs780094 have opposite effects on hepatic glucose uptake. This probably
explains that why none of the univariate analysis between GCK and type 2 diabetes-related
quantitative traits are statistically significant. As a result, I believe that further analysis is necessary
to figure out the additive effects of GCK rs1799831, GCKR rs780094, and dietary fructose on the
type 2 diabetes-related quantitative traits, and their relationship with liver fat accumulation.
In conclusion, I observe evidence for a statistically significantly interaction between
dietary fructose and GCKR rs780094 on some type 2 diabetes-related quantitative traits to increase
hepatic glucose uptake in Mexican Americans, suggesting a positive contribution to the
accumulation of liver fat. Additionally, after adjusting for GCKR, dietary fructose, and their
interaction term, GCK shows patterns of association that contribute negatively to the accumulation
20
of liver fat. It is worth mentioning that before the adjustment, univariate analysis of GCK did not
show significant results, indicating the complicated biological relationships among GCK, GCKR,
and dietary fructose. My results are consistent with the substrate balance hypothesis, providing
evidence that these genetic variants may contribute to accumulation of hepatic fat and the
development of subsequent hepatic insulin resistance. Further analysis and exploration are still
needed to identify the combined effect of them on liver fat accumulation.
21
REFERENCES
1. Zheng Y, Ley SH, Hu FB: Global aetiology and epidemiology of type 2 diabetes mellitus and
its complications. Nat Rev Endocrinol 2018;14:88-98
2. National Diabetes Statistics Report, 2020 [article online], 2020. Available from
https://www.cdc.gov/diabetes/data/statistics-
report/index.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fdiabetes%2Fdata
%2Fstatistics%2Fstatistics-report.html.
3. Bouatia-Naji N, Bonnefond A, Cavalcanti-Proenca C, Sparso T, Holmkvist J, Marchand M,
Delplanque J, Lobbens S, Rocheleau G, Durand E, De Graeve F, Chevre JC, Borch-Johnsen K,
Hartikainen AL, Ruokonen A, Tichet J, Marre M, Weill J, Heude B, Tauber M, Lemaire K,
Schuit F, Elliott P, Jorgensen T, Charpentier G, Hadjadj S, Cauchi S, Vaxillaire M, Sladek R,
Visvikis-Siest S, Balkau B, Levy-Marchal C, Pattou F, Meyre D, Blakemore AI, Jarvelin MR,
Walley AJ, Hansen T, Dina C, Pedersen O, Froguel P: A variant near MTNR1B is associated
with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet 2009;41:89-94
4. Cho YS, Chen CH, Hu C, Long J, Ong RT, Sim X, Takeuchi F, Wu Y, Go MJ, Yamauchi T,
Chang YC, Kwak SH, Ma RC, Yamamoto K, Adair LS, Aung T, Cai Q, Chang LC, Chen YT,
Gao Y, Hu FB, Kim HL, Kim S, Kim YJ, Lee JJ, Lee NR, Li Y, Liu JJ, Lu W, Nakamura J,
Nakashima E, Ng DP, Tay WT, Tsai FJ, Wong TY, Yokota M, Zheng W, Zhang R, Wang C,
So WY, Ohnaka K, Ikegami H, Hara K, Cho YM, Cho NH, Chang TJ, Bao Y, Hedman AK,
Morris AP, McCarthy MI, Consortium D, Mu TC, Takayanagi R, Park KS, Jia W, Chuang LM,
Chan JC, Maeda S, Kadowaki T, Lee JY, Wu JY, Teo YY, Tai ES, Shu XO, Mohlke KL, Kato
N, Han BG, Seielstad M: Meta-analysis of genome-wide association studies identifies eight new
loci for type 2 diabetes in east Asians. Nat Genet 2011;44:67-72
5. Diabetes Genetics Initiative of Broad Institute of H, Mit LU, Novartis Institutes of BioMedical
R, Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, Roix JJ, Kathiresan S,
Hirschhorn JN, Daly MJ, Hughes TE, Groop L, Altshuler D, Almgren P, Florez JC, Meyer J,
Ardlie K, Bengtsson Bostrom K, Isomaa B, Lettre G, Lindblad U, Lyon HN, Melander O,
Newton-Cheh C, Nilsson P, Orho-Melander M, Rastam L, Speliotes EK, Taskinen MR, Tuomi
T, Guiducci C, Berglund A, Carlson J, Gianniny L, Hackett R, Hall L, Holmkvist J, Laurila E,
Sjogren M, Sterner M, Surti A, Svensson M, Svensson M, Tewhey R, Blumenstiel B, Parkin M,
Defelice M, Barry R, Brodeur W, Camarata J, Chia N, Fava M, Gibbons J, Handsaker B, Healy
C, Nguyen K, Gates C, Sougnez C, Gage D, Nizzari M, Gabriel SB, Chirn GW, Ma Q, Parikh
H, Richardson D, Ricke D, Purcell S: Genome-wide association analysis identifies loci for type
2 diabetes and triglyceride levels. Science 2007;316:1331-1336
6. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, Wheeler E, Glazer
NL, Bouatia-Naji N, Gloyn AL, Lindgren CM, Magi R, Morris AP, Randall J, Johnson T, Elliott
P, Rybin D, Thorleifsson G, Steinthorsdottir V, Henneman P, Grallert H, Dehghan A, Hottenga
JJ, Franklin CS, Navarro P, Song K, Goel A, Perry JR, Egan JM, Lajunen T, Grarup N, Sparso
T, Doney A, Voight BF, Stringham HM, Li M, Kanoni S, Shrader P, Cavalcanti-Proenca C,
Kumari M, Qi L, Timpson NJ, Gieger C, Zabena C, Rocheleau G, Ingelsson E, An P, O'Connell
22
J, Luan J, Elliott A, McCarroll SA, Payne F, Roccasecca RM, Pattou F, Sethupathy P, Ardlie
K, Ariyurek Y, Balkau B, Barter P, Beilby JP, Ben-Shlomo Y, Benediktsson R, Bennett AJ,
Bergmann S, Bochud M, Boerwinkle E, Bonnefond A, Bonnycastle LL, Borch-Johnsen K,
Bottcher Y, Brunner E, Bumpstead SJ, Charpentier G, Chen YD, Chines P, Clarke R, Coin LJ,
Cooper MN, Cornelis M, Crawford G, Crisponi L, Day IN, de Geus EJ, Delplanque J, Dina C,
Erdos MR, Fedson AC, Fischer-Rosinsky A, Forouhi NG, Fox CS, Frants R, Franzosi MG,
Galan P, Goodarzi MO, Graessler J, Groves CJ, Grundy S, Gwilliam R, Gyllensten U, Hadjadj
S, Hallmans G, Hammond N, Han X, Hartikainen AL, Hassanali N, Hayward C, Heath SC,
Hercberg S, Herder C, Hicks AA, Hillman DR, Hingorani AD, Hofman A, Hui J, Hung J,
Isomaa B, Johnson PR, Jorgensen T, Jula A, Kaakinen M, Kaprio J, Kesaniemi YA, Kivimaki
M, Knight B, Koskinen S, Kovacs P, Kyvik KO, Lathrop GM, Lawlor DA, Le Bacquer O,
Lecoeur C, Li Y, Lyssenko V, Mahley R, Mangino M, Manning AK, Martinez-Larrad MT,
McAteer JB, McCulloch LJ, McPherson R, Meisinger C, Melzer D, Meyre D, Mitchell BD,
Morken MA, Mukherjee S, Naitza S, Narisu N, Neville MJ, Oostra BA, Orru M, Pakyz R,
Palmer CN, Paolisso G, Pattaro C, Pearson D, Peden JF, Pedersen NL, Perola M, Pfeiffer AF,
Pichler I, Polasek O, Posthuma D, Potter SC, Pouta A, Province MA, Psaty BM, Rathmann W,
Rayner NW, Rice K, Ripatti S, Rivadeneira F, Roden M, Rolandsson O, Sandbaek A, Sandhu
M, Sanna S, Sayer AA, Scheet P, Scott LJ, Seedorf U, Sharp SJ, Shields B, Sigurethsson G,
Sijbrands EJ, Silveira A, Simpson L, Singleton A, Smith NL, Sovio U, Swift A, Syddall H,
Syvanen AC, Tanaka T, Thorand B, Tichet J, Tonjes A, Tuomi T, Uitterlinden AG, van Dijk
KW, van Hoek M, Varma D, Visvikis-Siest S, Vitart V, Vogelzangs N, Waeber G, Wagner PJ,
Walley A, Walters GB, Ward KL, Watkins H, Weedon MN, Wild SH, Willemsen G, Witteman
JC, Yarnell JW, Zeggini E, Zelenika D, Zethelius B, Zhai G, Zhao JH, Zillikens MC,
Consortium D, Consortium G, Global BC, Borecki IB, Loos RJ, Meneton P, Magnusson PK,
Nathan DM, Williams GH, Hattersley AT, Silander K, Salomaa V, Smith GD, Bornstein SR,
Schwarz P, Spranger J, Karpe F, Shuldiner AR, Cooper C, Dedoussis GV, Serrano-Rios M,
Morris AD, Lind L, Palmer LJ, Hu FB, Franks PW, Ebrahim S, Marmot M, Kao WH, Pankow
JS, Sampson MJ, Kuusisto J, Laakso M, Hansen T, Pedersen O, Pramstaller PP, Wichmann HE,
Illig T, Rudan I, Wright AF, Stumvoll M, Campbell H, Wilson JF, Anders Hamsten on behalf
of Procardis C, investigators M, Bergman RN, Buchanan TA, Collins FS, Mohlke KL,
Tuomilehto J, Valle TT, Altshuler D, Rotter JI, Siscovick DS, Penninx BW, Boomsma DI,
Deloukas P, Spector TD, Frayling TM, Ferrucci L, Kong A, Thorsteinsdottir U, Stefansson K,
van Duijn CM, Aulchenko YS, Cao A, Scuteri A, Schlessinger D, Uda M, Ruokonen A, Jarvelin
MR, Waterworth DM, Vollenweider P, Peltonen L, Mooser V, Abecasis GR, Wareham NJ,
Sladek R, Froguel P, Watanabe RM, Meigs JB, Groop L, Boehnke M, McCarthy MI, Florez JC,
Barroso I: New genetic loci implicated in fasting glucose homeostasis and their impact on type
2 diabetes risk. Nat Genet 2010;42:105-116
7. Prokopenko I, Langenberg C, Florez JC, Saxena R, Soranzo N, Thorleifsson G, Loos RJ,
Manning AK, Jackson AU, Aulchenko Y, Potter SC, Erdos MR, Sanna S, Hottenga JJ, Wheeler
E, Kaakinen M, Lyssenko V, Chen WM, Ahmadi K, Beckmann JS, Bergman RN, Bochud M,
Bonnycastle LL, Buchanan TA, Cao A, Cervino A, Coin L, Collins FS, Crisponi L, de Geus EJ,
Dehghan A, Deloukas P, Doney AS, Elliott P, Freimer N, Gateva V, Herder C, Hofman A,
Hughes TE, Hunt S, Illig T, Inouye M, Isomaa B, Johnson T, Kong A, Krestyaninova M,
Kuusisto J, Laakso M, Lim N, Lindblad U, Lindgren CM, McCann OT, Mohlke KL, Morris
AD, Naitza S, Orru M, Palmer CN, Pouta A, Randall J, Rathmann W, Saramies J, Scheet P,
23
Scott LJ, Scuteri A, Sharp S, Sijbrands E, Smit JH, Song K, Steinthorsdottir V, Stringham HM,
Tuomi T, Tuomilehto J, Uitterlinden AG, Voight BF, Waterworth D, Wichmann HE,
Willemsen G, Witteman JC, Yuan X, Zhao JH, Zeggini E, Schlessinger D, Sandhu M,
Boomsma DI, Uda M, Spector TD, Penninx BW, Altshuler D, Vollenweider P, Jarvelin MR,
Lakatta E, Waeber G, Fox CS, Peltonen L, Groop LC, Mooser V, Cupples LA, Thorsteinsdottir
U, Boehnke M, Barroso I, Van Duijn C, Dupuis J, Watanabe RM, Stefansson K, McCarthy MI,
Wareham NJ, Meigs JB, Abecasis GR: Variants in MTNR1B influence fasting glucose levels.
Nat Genet 2009;41:77-81
8. Rung J, Cauchi S, Albrechtsen A, Shen L, Rocheleau G, Cavalcanti-Proenca C, Bacot F, Balkau
B, Belisle A, Borch-Johnsen K, Charpentier G, Dina C, Durand E, Elliott P, Hadjadj S, Jarvelin
MR, Laitinen J, Lauritzen T, Marre M, Mazur A, Meyre D, Montpetit A, Pisinger C, Posner B,
Poulsen P, Pouta A, Prentki M, Ribel-Madsen R, Ruokonen A, Sandbaek A, Serre D, Tichet J,
Vaxillaire M, Wojtaszewski JF, Vaag A, Hansen T, Polychronakos C, Pedersen O, Froguel P,
Sladek R: Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and
hyperinsulinemia. Nat Genet 2009;41:1110-1115
9. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM,
Chines PS, Jackson AU, Prokunina-Olsson L, Ding CJ, Swift AJ, Narisu N, Hu T, Pruim R,
Xiao R, Li XY, Conneely KN, Riebow NL, Sprau AG, Tong M, White PP, Hetrick KN,
Barnhart MW, Bark CW, Goldstein JL, Watkins L, Xiang F, Saramies J, Buchanan TA,
Watanabe RM, Valle TT, Kinnunen L, Abecasis GR, Pugh EW, Doheny KF, Bergman RN,
Tuomilehto J, Collins FS, Boehnke M: A genome-wide association study of type 2 diabetes in
Finns detects multiple susceptibility variants. Science 2007;316:1341-1345
10. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A,
Hadjadj S, Balkau B, Heude B, Charpentier G, Hudson TJ, Montpetit A, Pshezhetsky AV,
Prentki M, Posner BI, Balding DJ, Meyre D, Polychronakos C, Froguel P: A genome-wide
association study identifies novel risk loci for type 2 diabetes. Nature 2007;445:881-885
11. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB,
Styrkarsdottir U, Gretarsdottir S, Emilsson V, Ghosh S, Baker A, Snorradottir S, Bjarnason H,
Ng MC, Hansen T, Bagger Y, Wilensky RL, Reilly MP, Adeyemo A, Chen Y, Zhou J,
Gudnason V, Chen G, Huang H, Lashley K, Doumatey A, So WY, Ma RC, Andersen G, Borch-
Johnsen K, Jorgensen T, van Vliet-Ostaptchouk JV, Hofker MH, Wijmenga C, Christiansen C,
Rader DJ, Rotimi C, Gurney M, Chan JC, Pedersen O, Sigurdsson G, Gulcher JR,
Thorsteinsdottir U, Kong A, Stefansson K: A variant in CDKAL1 influences insulin response
and risk of type 2 diabetes. Nat Genet 2007;39:770-775
12. Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M, Andersen G, Ng DP, Holmkvist
J, Borch-Johnsen K, Jorgensen T, Sandbaek A, Lauritzen T, Hansen T, Nurbaya S, Tsunoda T,
Kubo M, Babazono T, Hirose H, Hayashi M, Iwamoto Y, Kashiwagi A, Kaku K, Kawamori R,
Tai ES, Pedersen O, Kamatani N, Kadowaki T, Kikkawa R, Nakamura Y, Maeda S: SNPs in
KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European
populations. Nat Genet 2008;40:1098-1102
24
13. Vaxillaire M, Cavalcanti-Proenca C, Dechaume A, Tichet J, Marre M, Balkau B, Froguel P,
Group DS: The common P446L polymorphism in GCKR inversely modulates fasting glucose
and triglyceride levels and reduces type 2 diabetes risk in the DESIR prospective general French
population. Diabetes 2008;57:2253-2257
14. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C,
Aulchenko YS, Thorleifsson G, McCulloch LJ, Ferreira T, Grallert H, Amin N, Wu G, Willer
CJ, Raychaudhuri S, McCarroll SA, Langenberg C, Hofmann OM, Dupuis J, Qi L, Segre AV,
van Hoek M, Navarro P, Ardlie K, Balkau B, Benediktsson R, Bennett AJ, Blagieva R,
Boerwinkle E, Bonnycastle LL, Bengtsson Bostrom K, Bravenboer B, Bumpstead S, Burtt NP,
Charpentier G, Chines PS, Cornelis M, Couper DJ, Crawford G, Doney AS, Elliott KS, Elliott
AL, Erdos MR, Fox CS, Franklin CS, Ganser M, Gieger C, Grarup N, Green T, Griffin S,
Groves CJ, Guiducci C, Hadjadj S, Hassanali N, Herder C, Isomaa B, Jackson AU, Johnson PR,
Jorgensen T, Kao WH, Klopp N, Kong A, Kraft P, Kuusisto J, Lauritzen T, Li M, Lieverse A,
Lindgren CM, Lyssenko V, Marre M, Meitinger T, Midthjell K, Morken MA, Narisu N, Nilsson
P, Owen KR, Payne F, Perry JR, Petersen AK, Platou C, Proenca C, Prokopenko I, Rathmann
W, Rayner NW, Robertson NR, Rocheleau G, Roden M, Sampson MJ, Saxena R, Shields BM,
Shrader P, Sigurdsson G, Sparso T, Strassburger K, Stringham HM, Sun Q, Swift AJ, Thorand
B, Tichet J, Tuomi T, van Dam RM, van Haeften TW, van Herpt T, van Vliet-Ostaptchouk JV,
Walters GB, Weedon MN, Wijmenga C, Witteman J, Bergman RN, Cauchi S, Collins FS,
Gloyn AL, Gyllensten U, Hansen T, Hide WA, Hitman GA, Hofman A, Hunter DJ, Hveem K,
Laakso M, Mohlke KL, Morris AD, Palmer CN, Pramstaller PP, Rudan I, Sijbrands E, Stein
LD, Tuomilehto J, Uitterlinden A, Walker M, Wareham NJ, Watanabe RM, Abecasis GR,
Boehm BO, Campbell H, Daly MJ, Hattersley AT, Hu FB, Meigs JB, Pankow JS, Pedersen O,
Wichmann HE, Barroso I, Florez JC, Frayling TM, Groop L, Sladek R, Thorsteinsdottir U,
Wilson JF, Illig T, Froguel P, van Duijn CM, Stefansson K, Altshuler D, Boehnke M, McCarthy
MI, investigators M, Consortium G: Twelve type 2 diabetes susceptibility loci identified
through large-scale association analysis. Nat Genet 2010;42:579-589
15. Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H, Hirota Y, Mori H, Jonsson
A, Sato Y, Yamagata K, Hinokio Y, Wang HY, Tanahashi T, Nakamura N, Oka Y, Iwasaki N,
Iwamoto Y, Yamada Y, Seino Y, Maegawa H, Kashiwagi A, Takeda J, Maeda E, Shin HD,
Cho YM, Park KS, Lee HK, Ng MC, Ma RC, So WY, Chan JC, Lyssenko V, Tuomi T, Nilsson
P, Groop L, Kamatani N, Sekine A, Nakamura Y, Yamamoto K, Yoshida T, Tokunaga K,
Itakura M, Makino H, Nanjo K, Kadowaki T, Kasuga M: Variants in KCNQ1 are associated
with susceptibility to type 2 diabetes mellitus. Nat Genet 2008;40:1092-1097
16. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, de Bakker PI, Abecasis GR,
Almgren P, Andersen G, Ardlie K, Bostrom KB, Bergman RN, Bonnycastle LL, Borch-Johnsen
K, Burtt NP, Chen H, Chines PS, Daly MJ, Deodhar P, Ding CJ, Doney AS, Duren WL, Elliott
KS, Erdos MR, Frayling TM, Freathy RM, Gianniny L, Grallert H, Grarup N, Groves CJ,
Guiducci C, Hansen T, Herder C, Hitman GA, Hughes TE, Isomaa B, Jackson AU, Jorgensen
T, Kong A, Kubalanza K, Kuruvilla FG, Kuusisto J, Langenberg C, Lango H, Lauritzen T, Li
Y, Lindgren CM, Lyssenko V, Marvelle AF, Meisinger C, Midthjell K, Mohlke KL, Morken
MA, Morris AD, Narisu N, Nilsson P, Owen KR, Palmer CN, Payne F, Perry JR, Pettersen E,
Platou C, Prokopenko I, Qi L, Qin L, Rayner NW, Rees M, Roix JJ, Sandbaek A, Shields B,
25
Sjogren M, Steinthorsdottir V, Stringham HM, Swift AJ, Thorleifsson G, Thorsteinsdottir U,
Timpson NJ, Tuomi T, Tuomilehto J, Walker M, Watanabe RM, Weedon MN, Willer CJ,
Wellcome Trust Case Control C, Illig T, Hveem K, Hu FB, Laakso M, Stefansson K, Pedersen
O, Wareham NJ, Barroso I, Hattersley AT, Collins FS, Groop L, McCarthy MI, Boehnke M,
Altshuler D: Meta-analysis of genome-wide association data and large-scale replication
identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008;40:638-645
17. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ, Perry
JR, Rayner NW, Freathy RM, Barrett JC, Shields B, Morris AP, Ellard S, Groves CJ, Harries
LW, Marchini JL, Owen KR, Knight B, Cardon LR, Walker M, Hitman GA, Morris AD, Doney
AS, Wellcome Trust Case Control C, McCarthy MI, Hattersley AT: Replication of genome-
wide association signals in UK samples reveals risk loci for type 2 diabetes. Science
2007;316:1336-1341
18. Bouatia-Naji N, Rocheleau G, Van Lommel L, Lemaire K, Schuit F, Cavalcanti-Proenca C,
Marchand M, Hartikainen AL, Sovio U, De Graeve F, Rung J, Vaxillaire M, Tichet J, Marre M,
Balkau B, Weill J, Elliott P, Jarvelin MR, Meyre D, Polychronakos C, Dina C, Sladek R,
Froguel P: A polymorphism within the G6PC2 gene is associated with fasting plasma glucose
levels. Science 2008;320:1085-1088
19. Chambers JC, Zhang W, Sehmi J, Li X, Wass MN, Van der Harst P, Holm H, Sanna S, Kavousi
M, Baumeister SE, Coin LJ, Deng G, Gieger C, Heard-Costa NL, Hottenga JJ, Kuhnel B, Kumar
V, Lagou V, Liang L, Luan J, Vidal PM, Mateo Leach I, O'Reilly PF, Peden JF, Rahmioglu N,
Soininen P, Speliotes EK, Yuan X, Thorleifsson G, Alizadeh BZ, Atwood LD, Borecki IB,
Brown MJ, Charoen P, Cucca F, Das D, de Geus EJ, Dixon AL, Doring A, Ehret G, Eyjolfsson
GI, Farrall M, Forouhi NG, Friedrich N, Goessling W, Gudbjartsson DF, Harris TB, Hartikainen
AL, Heath S, Hirschfield GM, Hofman A, Homuth G, Hypponen E, Janssen HL, Johnson T,
Kangas AJ, Kema IP, Kuhn JP, Lai S, Lathrop M, Lerch MM, Li Y, Liang TJ, Lin JP, Loos RJ,
Martin NG, Moffatt MF, Montgomery GW, Munroe PB, Musunuru K, Nakamura Y, O'Donnell
CJ, Olafsson I, Penninx BW, Pouta A, Prins BP, Prokopenko I, Puls R, Ruokonen A, Savolainen
MJ, Schlessinger D, Schouten JN, Seedorf U, Sen-Chowdhry S, Siminovitch KA, Smit JH,
Spector TD, Tan W, Teslovich TM, Tukiainen T, Uitterlinden AG, Van der Klauw MM, Vasan
RS, Wallace C, Wallaschofski H, Wichmann HE, Willemsen G, Wurtz P, Xu C, Yerges-
Armstrong LM, Alcohol Genome-wide Association C, Diabetes Genetics R, Meta-analyses S,
Genetic Investigation of Anthropometric Traits C, Global Lipids Genetics C, Genetics of Liver
Disease C, International Consortium for Blood P, Meta-analyses of G, Insulin-Related Traits C,
Abecasis GR, Ahmadi KR, Boomsma DI, Caulfield M, Cookson WO, van Duijn CM, Froguel
P, Matsuda K, McCarthy MI, Meisinger C, Mooser V, Pietilainen KH, Schumann G, Snieder
H, Sternberg MJ, Stolk RP, Thomas HC, Thorsteinsdottir U, Uda M, Waeber G, Wareham NJ,
Waterworth DM, Watkins H, Whitfield JB, Witteman JC, Wolffenbuttel BH, Fox CS, Ala-
Korpela M, Stefansson K, Vollenweider P, Volzke H, Schadt EE, Scott J, Jarvelin MR, Elliott
P, Kooner JS: Genome-wide association study identifies loci influencing concentrations of liver
enzymes in plasma. Nat Genet 2011;43:1131-1138
20. Chen WM, Erdos MR, Jackson AU, Saxena R, Sanna S, Silver KD, Timpson NJ, Hansen T,
Orru M, Grazia Piras M, Bonnycastle LL, Willer CJ, Lyssenko V, Shen H, Kuusisto J, Ebrahim
26
S, Sestu N, Duren WL, Spada MC, Stringham HM, Scott LJ, Olla N, Swift AJ, Najjar S,
Mitchell BD, Lawlor DA, Smith GD, Ben-Shlomo Y, Andersen G, Borch-Johnsen K, Jorgensen
T, Saramies J, Valle TT, Buchanan TA, Shuldiner AR, Lakatta E, Bergman RN, Uda M,
Tuomilehto J, Pedersen O, Cao A, Groop L, Mohlke KL, Laakso M, Schlessinger D, Collins
FS, Altshuler D, Abecasis GR, Boehnke M, Scuteri A, Watanabe RM: Variations in the
G6PC2/ABCB11 genomic region are associated with fasting glucose levels. J Clin Invest
2008;118:2620-2628
21. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR,
Elliott KS, Lango H, Rayner NW, Shields B, Harries LW, Barrett JC, Ellard S, Groves CJ,
Knight B, Patch AM, Ness AR, Ebrahim S, Lawlor DA, Ring SM, Ben-Shlomo Y, Jarvelin MR,
Sovio U, Bennett AJ, Melzer D, Ferrucci L, Loos RJ, Barroso I, Wareham NJ, Karpe F, Owen
KR, Cardon LR, Walker M, Hitman GA, Palmer CN, Doney AS, Morris AD, Smith GD,
Hattersley AT, McCarthy MI: A common variant in the FTO gene is associated with body mass
index and predisposes to childhood and adult obesity. Science 2007;316:889-894
22. Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I, Inouye M, Freathy RM,
Attwood AP, Beckmann JS, Berndt SI, Prostate LC, Ovarian Cancer Screening T, Jacobs KB,
Chanock SJ, Hayes RB, Bergmann S, Bennett AJ, Bingham SA, Bochud M, Brown M, Cauchi
S, Connell JM, Cooper C, Smith GD, Day I, Dina C, De S, Dermitzakis ET, Doney AS, Elliott
KS, Elliott P, Evans DM, Sadaf Farooqi I, Froguel P, Ghori J, Groves CJ, Gwilliam R, Hadley
D, Hall AS, Hattersley AT, Hebebrand J, Heid IM, Kora, Lamina C, Gieger C, Illig T, Meitinger
T, Wichmann HE, Herrera B, Hinney A, Hunt SE, Jarvelin MR, Johnson T, Jolley JD, Karpe F,
Keniry A, Khaw KT, Luben RN, Mangino M, Marchini J, McArdle WL, McGinnis R, Meyre
D, Munroe PB, Morris AD, Ness AR, Neville MJ, Nica AC, Ong KK, O'Rahilly S, Owen KR,
Palmer CN, Papadakis K, Potter S, Pouta A, Qi L, Nurses' Health S, Randall JC, Rayner NW,
Ring SM, Sandhu MS, Scherag A, Sims MA, Song K, Soranzo N, Speliotes EK, Diabetes
Genetics I, Syddall HE, Teichmann SA, Timpson NJ, Tobias JH, Uda M, Sardi NIAS, Vogel
CI, Wallace C, Waterworth DM, Weedon MN, Wellcome Trust Case Control C, Willer CJ,
Fusion, Wraight, Yuan X, Zeggini E, Hirschhorn JN, Strachan DP, Ouwehand WH, Caulfield
MJ, Samani NJ, Frayling TM, Vollenweider P, Waeber G, Mooser V, Deloukas P, McCarthy
MI, Wareham NJ, Barroso I, Jacobs KB, Chanock SJ, Hayes RB, Lamina C, Gieger C, Illig T,
Meitinger T, Wichmann HE, Kraft P, Hankinson SE, Hunter DJ, Hu FB, Lyon HN, Voight BF,
Ridderstrale M, Groop L, Scheet P, Sanna S, Abecasis GR, Albai G, Nagaraja R, Schlessinger
D, Jackson AU, Tuomilehto J, Collins FS, Boehnke M, Mohlke KL: Common variants near
MC4R are associated with fat mass, weight and risk of obesity. Nat Genet 2008;40:768-775
23. Orho-Melander M, Melander O, Guiducci C, Perez-Martinez P, Corella D, Roos C, Tewhey
R, Rieder MJ, Hall J, Abecasis G, Tai ES, Welch C, Arnett DK, Lyssenko V, Lindholm E,
Saxena R, de Bakker PI, Burtt N, Voight BF, Hirschhorn JN, Tucker KL, Hedner T, Tuomi T,
Isomaa B, Eriksson KF, Taskinen MR, Wahlstrand B, Hughes TE, Parnell LD, Lai CQ,
Berglund G, Peltonen L, Vartiainen E, Jousilahti P, Havulinna AS, Salomaa V, Nilsson P,
Groop L, Altshuler D, Ordovas JM, Kathiresan S: Common missense variant in the glucokinase
regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein
but lower fasting glucose concentrations. Diabetes 2008;57:3112-3121
27
24. Pare G, Chasman DI, Parker AN, Nathan DM, Miletich JP, Zee RY, Ridker PM: Novel
association of HK1 with glycated hemoglobin in a non-diabetic population: a genome-wide
evaluation of 14,618 participants in the Women's Genome Health Study. PLoS Genet
2008;4:e1000312
25. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orru M, Usala
G, Dei M, Lai S, Maschio A, Busonero F, Mulas A, Ehret GB, Fink AA, Weder AB, Cooper
RS, Galan P, Chakravarti A, Schlessinger D, Cao A, Lakatta E, Abecasis GR: Genome-wide
association scan shows genetic variants in the FTO gene are associated with obesity-related
traits. PLoS Genet 2007;3:e115
26. Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R, Heath SC, Timpson
NJ, Najjar SS, Stringham HM, Strait J, Duren WL, Maschio A, Busonero F, Mulas A, Albai G,
Swift AJ, Morken MA, Narisu N, Bennett D, Parish S, Shen H, Galan P, Meneton P, Hercberg
S, Zelenika D, Chen WM, Li Y, Scott LJ, Scheet PA, Sundvall J, Watanabe RM, Nagaraja R,
Ebrahim S, Lawlor DA, Ben-Shlomo Y, Davey-Smith G, Shuldiner AR, Collins R, Bergman
RN, Uda M, Tuomilehto J, Cao A, Collins FS, Lakatta E, Lathrop GM, Boehnke M,
Schlessinger D, Mohlke KL, Abecasis GR: Newly identified loci that influence lipid
concentrations and risk of coronary artery disease. Nat Genet 2008;40:161-169
27. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, Boerwinkle E, Cohen
JC, Hobbs HH: Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver
disease. Nat Genet 2008;40:1461-1465
28. Lyssenko V, Nagorny CL, Erdos MR, Wierup N, Jonsson A, Spegel P, Bugliani M, Saxena R,
Fex M, Pulizzi N, Isomaa B, Tuomi T, Nilsson P, Kuusisto J, Tuomilehto J, Boehnke M,
Altshuler D, Sundler F, Eriksson JG, Jackson AU, Laakso M, Marchetti P, Watanabe RM,
Mulder H, Groop L: Common variant in MTNR1B associated with increased risk of type 2
diabetes and impaired early insulin secretion. Nat Genet 2009;41:82-88
29. Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM, Berndt SI, Elliott AL, Jackson
AU, Lamina C, Lettre G, Lim N, Lyon HN, McCarroll SA, Papadakis K, Qi L, Randall JC,
Roccasecca RM, Sanna S, Scheet P, Weedon MN, Wheeler E, Zhao JH, Jacobs LC, Prokopenko
I, Soranzo N, Tanaka T, Timpson NJ, Almgren P, Bennett A, Bergman RN, Bingham SA,
Bonnycastle LL, Brown M, Burtt NP, Chines P, Coin L, Collins FS, Connell JM, Cooper C,
Smith GD, Dennison EM, Deodhar P, Elliott P, Erdos MR, Estrada K, Evans DM, Gianniny L,
Gieger C, Gillson CJ, Guiducci C, Hackett R, Hadley D, Hall AS, Havulinna AS, Hebebrand J,
Hofman A, Isomaa B, Jacobs KB, Johnson T, Jousilahti P, Jovanovic Z, Khaw KT, Kraft P,
Kuokkanen M, Kuusisto J, Laitinen J, Lakatta EG, Luan J, Luben RN, Mangino M, McArdle
WL, Meitinger T, Mulas A, Munroe PB, Narisu N, Ness AR, Northstone K, O'Rahilly S,
Purmann C, Rees MG, Ridderstrale M, Ring SM, Rivadeneira F, Ruokonen A, Sandhu MS,
Saramies J, Scott LJ, Scuteri A, Silander K, Sims MA, Song K, Stephens J, Stevens S,
Stringham HM, Tung YC, Valle TT, Van Duijn CM, Vimaleswaran KS, Vollenweider P,
Waeber G, Wallace C, Watanabe RM, Waterworth DM, Watkins N, Wellcome Trust Case
Control C, Witteman JC, Zeggini E, Zhai G, Zillikens MC, Altshuler D, Caulfield MJ, Chanock
SJ, Farooqi IS, Ferrucci L, Guralnik JM, Hattersley AT, Hu FB, Jarvelin MR, Laakso M,
28
Mooser V, Ong KK, Ouwehand WH, Salomaa V, Samani NJ, Spector TD, Tuomi T,
Tuomilehto J, Uda M, Uitterlinden AG, Wareham NJ, Deloukas P, Frayling TM, Groop LC,
Hayes RB, Hunter DJ, Mohlke KL, Peltonen L, Schlessinger D, Strachan DP, Wichmann HE,
McCarthy MI, Boehnke M, Barroso I, Abecasis GR, Hirschhorn JN, Genetic Investigation of
ATC: Six new loci associated with body mass index highlight a neuronal influence on body
weight regulation. Nat Genet 2009;41:25-34
30. Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A,
Styrkarsdottir U, Gretarsdottir S, Thorlacius S, Jonsdottir I, Jonsdottir T, Olafsdottir EJ,
Olafsdottir GH, Jonsson T, Jonsson F, Borch-Johnsen K, Hansen T, Andersen G, Jorgensen T,
Lauritzen T, Aben KK, Verbeek AL, Roeleveld N, Kampman E, Yanek LR, Becker LC,
Tryggvadottir L, Rafnar T, Becker DM, Gulcher J, Kiemeney LA, Pedersen O, Kong A,
Thorsteinsdottir U, Stefansson K: Genome-wide association yields new sequence variants at
seven loci that associate with measures of obesity. Nat Genet 2009;41:18-24
31. Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE, Kaplan L, Bennett
D, Li Y, Tanaka T, Voight BF, Bonnycastle LL, Jackson AU, Crawford G, Surti A, Guiducci
C, Burtt NP, Parish S, Clarke R, Zelenika D, Kubalanza KA, Morken MA, Scott LJ, Stringham
HM, Galan P, Swift AJ, Kuusisto J, Bergman RN, Sundvall J, Laakso M, Ferrucci L, Scheet P,
Sanna S, Uda M, Yang Q, Lunetta KL, Dupuis J, de Bakker PI, O'Donnell CJ, Chambers JC,
Kooner JS, Hercberg S, Meneton P, Lakatta EG, Scuteri A, Schlessinger D, Tuomilehto J,
Collins FS, Groop L, Altshuler D, Collins R, Lathrop GM, Melander O, Salomaa V, Peltonen
L, Orho-Melander M, Ordovas JM, Boehnke M, Abecasis GR, Mohlke KL, Cupples LA:
Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 2009;41:56-65
32. Saxena R HM-F, Dupuis J, Langenberg C, Kao WL, Tanaka T, Jackson AU, Pankow JS,
Vollenweider P, Watanabe RM: Meta-analysis of genome-wide association studies for 2-hour
glucose levels during an oral glucose tolerance test identify novel genetic loci. Diabetes 2009;58
33. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, Glazer NL, Morrison AC,
Johnson AD, Aspelund T, Aulchenko Y, Lumley T, Kottgen A, Vasan RS, Rivadeneira F,
Eiriksdottir G, Guo X, Arking DE, Mitchell GF, Mattace-Raso FU, Smith AV, Taylor K,
Scharpf RB, Hwang SJ, Sijbrands EJ, Bis J, Harris TB, Ganesh SK, O'Donnell CJ, Hofman A,
Rotter JI, Coresh J, Benjamin EJ, Uitterlinden AG, Heiss G, Fox CS, Witteman JC, Boerwinkle
E, Wang TJ, Gudnason V, Larson MG, Chakravarti A, Psaty BM, van Duijn CM: Genome-
wide association study of blood pressure and hypertension. Nat Genet 2009;41:677-687
34. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, Najjar SS, Zhao JH,
Heath SC, Eyheramendy S, Papadakis K, Voight BF, Scott LJ, Zhang F, Farrall M, Tanaka T,
Wallace C, Chambers JC, Khaw KT, Nilsson P, van der Harst P, Polidoro S, Grobbee DE,
Onland-Moret NC, Bots ML, Wain LV, Elliott KS, Teumer A, Luan J, Lucas G, Kuusisto J,
Burton PR, Hadley D, McArdle WL, Wellcome Trust Case Control C, Brown M, Dominiczak
A, Newhouse SJ, Samani NJ, Webster J, Zeggini E, Beckmann JS, Bergmann S, Lim N, Song
K, Vollenweider P, Waeber G, Waterworth DM, Yuan X, Groop L, Orho-Melander M, Allione
A, Di Gregorio A, Guarrera S, Panico S, Ricceri F, Romanazzi V, Sacerdote C, Vineis P,
Barroso I, Sandhu MS, Luben RN, Crawford GJ, Jousilahti P, Perola M, Boehnke M,
29
Bonnycastle LL, Collins FS, Jackson AU, Mohlke KL, Stringham HM, Valle TT, Willer CJ,
Bergman RN, Morken MA, Doring A, Gieger C, Illig T, Meitinger T, Org E, Pfeufer A,
Wichmann HE, Kathiresan S, Marrugat J, O'Donnell CJ, Schwartz SM, Siscovick DS, Subirana
I, Freimer NB, Hartikainen AL, McCarthy MI, O'Reilly PF, Peltonen L, Pouta A, de Jong PE,
Snieder H, van Gilst WH, Clarke R, Goel A, Hamsten A, Peden JF, Seedorf U, Syvanen AC,
Tognoni G, Lakatta EG, Sanna S, Scheet P, Schlessinger D, Scuteri A, Dorr M, Ernst F, Felix
SB, Homuth G, Lorbeer R, Reffelmann T, Rettig R, Volker U, Galan P, Gut IG, Hercberg S,
Lathrop GM, Zelenika D, Deloukas P, Soranzo N, Williams FM, Zhai G, Salomaa V, Laakso
M, Elosua R, Forouhi NG, Volzke H, Uiterwaal CS, van der Schouw YT, Numans ME, Matullo
G, Navis G, Berglund G, Bingham SA, Kooner JS, Connell JM, Bandinelli S, Ferrucci L,
Watkins H, Spector TD, Tuomilehto J, Altshuler D, Strachan DP, Laan M, Meneton P,
Wareham NJ, Uda M, Jarvelin MR, Mooser V, Melander O, Loos RJ, Elliott P, Abecasis GR,
Caulfield M, Munroe PB: Genome-wide association study identifies eight loci associated with
blood pressure. Nat Genet 2009;41:666-676
35. Lindgren CM, Heid IM, Randall JC, Lamina C, Steinthorsdottir V, Qi L, Speliotes EK,
Thorleifsson G, Willer CJ, Herrera BM, Jackson AU, Lim N, Scheet P, Soranzo N, Amin N,
Aulchenko YS, Chambers JC, Drong A, Luan J, Lyon HN, Rivadeneira F, Sanna S, Timpson
NJ, Zillikens MC, Zhao JH, Almgren P, Bandinelli S, Bennett AJ, Bergman RN, Bonnycastle
LL, Bumpstead SJ, Chanock SJ, Cherkas L, Chines P, Coin L, Cooper C, Crawford G, Doering
A, Dominiczak A, Doney AS, Ebrahim S, Elliott P, Erdos MR, Estrada K, Ferrucci L, Fischer
G, Forouhi NG, Gieger C, Grallert H, Groves CJ, Grundy S, Guiducci C, Hadley D, Hamsten
A, Havulinna AS, Hofman A, Holle R, Holloway JW, Illig T, Isomaa B, Jacobs LC, Jameson
K, Jousilahti P, Karpe F, Kuusisto J, Laitinen J, Lathrop GM, Lawlor DA, Mangino M, McArdle
WL, Meitinger T, Morken MA, Morris AP, Munroe P, Narisu N, Nordstrom A, Nordstrom P,
Oostra BA, Palmer CN, Payne F, Peden JF, Prokopenko I, Renstrom F, Ruokonen A, Salomaa
V, Sandhu MS, Scott LJ, Scuteri A, Silander K, Song K, Yuan X, Stringham HM, Swift AJ,
Tuomi T, Uda M, Vollenweider P, Waeber G, Wallace C, Walters GB, Weedon MN, Wellcome
Trust Case Control C, Witteman JC, Zhang C, Zhang W, Caulfield MJ, Collins FS, Davey Smith
G, Day IN, Franks PW, Hattersley AT, Hu FB, Jarvelin MR, Kong A, Kooner JS, Laakso M,
Lakatta E, Mooser V, Morris AD, Peltonen L, Samani NJ, Spector TD, Strachan DP, Tanaka T,
Tuomilehto J, Uitterlinden AG, van Duijn CM, Wareham NJ, Hugh W, Procardis C,
Waterworth DM, Boehnke M, Deloukas P, Groop L, Hunter DJ, Thorsteinsdottir U,
Schlessinger D, Wichmann HE, Frayling TM, Abecasis GR, Hirschhorn JN, Loos RJ,
Stefansson K, Mohlke KL, Barroso I, McCarthy MI, Giant C: Genome-wide association scan
meta-analysis identifies three Loci influencing adiposity and fat distribution. PLoS Genet
2009;5:e1000508
36. Heid IM, Henneman P, Hicks A, Coassin S, Winkler T, Aulchenko YS, Fuchsberger C, Song
K, Hivert MF, Waterworth DM, Timpson NJ, Richards JB, Perry JR, Tanaka T, Amin N,
Kollerits B, Pichler I, Oostra BA, Thorand B, Frants RR, Illig T, Dupuis J, Glaser B, Spector T,
Guralnik J, Egan JM, Florez JC, Evans DM, Soranzo N, Bandinelli S, Carlson OD, Frayling
TM, Burling K, Smith GD, Mooser V, Ferrucci L, Meigs JB, Vollenweider P, Dijk KW,
Pramstaller P, Kronenberg F, van Duijn CM: Clear detection of ADIPOQ locus as the major
gene for plasma adiponectin: results of genome-wide association analyses including 4659
European individuals. Atherosclerosis 2010;208:412-420
30
37. Saxena R, Hivert MF, Langenberg C, Tanaka T, Pankow JS, Vollenweider P, Lyssenko V,
Bouatia-Naji N, Dupuis J, Jackson AU, Kao WH, Li M, Glazer NL, Manning AK, Luan J,
Stringham HM, Prokopenko I, Johnson T, Grarup N, Boesgaard TW, Lecoeur C, Shrader P,
O'Connell J, Ingelsson E, Couper DJ, Rice K, Song K, Andreasen CH, Dina C, Kottgen A, Le
Bacquer O, Pattou F, Taneera J, Steinthorsdottir V, Rybin D, Ardlie K, Sampson M, Qi L, van
Hoek M, Weedon MN, Aulchenko YS, Voight BF, Grallert H, Balkau B, Bergman RN,
Bielinski SJ, Bonnefond A, Bonnycastle LL, Borch-Johnsen K, Bottcher Y, Brunner E,
Buchanan TA, Bumpstead SJ, Cavalcanti-Proenca C, Charpentier G, Chen YD, Chines PS,
Collins FS, Cornelis M, G JC, Delplanque J, Doney A, Egan JM, Erdos MR, Firmann M,
Forouhi NG, Fox CS, Goodarzi MO, Graessler J, Hingorani A, Isomaa B, Jorgensen T,
Kivimaki M, Kovacs P, Krohn K, Kumari M, Lauritzen T, Levy-Marchal C, Mayor V, McAteer
JB, Meyre D, Mitchell BD, Mohlke KL, Morken MA, Narisu N, Palmer CN, Pakyz R, Pascoe
L, Payne F, Pearson D, Rathmann W, Sandbaek A, Sayer AA, Scott LJ, Sharp SJ, Sijbrands E,
Singleton A, Siscovick DS, Smith NL, Sparso T, Swift AJ, Syddall H, Thorleifsson G, Tonjes
A, Tuomi T, Tuomilehto J, Valle TT, Waeber G, Walley A, Waterworth DM, Zeggini E, Zhao
JH, consortium G, investigators M, Illig T, Wichmann HE, Wilson JF, van Duijn C, Hu FB,
Morris AD, Frayling TM, Hattersley AT, Thorsteinsdottir U, Stefansson K, Nilsson P, Syvanen
AC, Shuldiner AR, Walker M, Bornstein SR, Schwarz P, Williams GH, Nathan DM, Kuusisto
J, Laakso M, Cooper C, Marmot M, Ferrucci L, Mooser V, Stumvoll M, Loos RJ, Altshuler D,
Psaty BM, Rotter JI, Boerwinkle E, Hansen T, Pedersen O, Florez JC, McCarthy MI, Boehnke
M, Barroso I, Sladek R, Froguel P, Meigs JB, Groop L, Wareham NJ, Watanabe RM: Genetic
variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat
Genet 2010;42:142-148
38. Zhao J, Li M, Bradfield JP, Wang K, Zhang H, Sleiman P, Kim CE, Annaiah K, Glaberson W,
Glessner JT, Otieno FG, Thomas KA, Garris M, Hou C, Frackelton EC, Chiavacci RM,
Berkowitz RI, Hakonarson H, Grant SF: Examination of type 2 diabetes loci implicates
CDKAL1 as a birth weight gene. Diabetes 2009;58:2414-2418
39. Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, Steinthorsdottir V, Thorleifsson G,
Zillikens MC, Speliotes EK, Magi R, Workalemahu T, White CC, Bouatia-Naji N, Harris TB,
Berndt SI, Ingelsson E, Willer CJ, Weedon MN, Luan J, Vedantam S, Esko T, Kilpelainen TO,
Kutalik Z, Li S, Monda KL, Dixon AL, Holmes CC, Kaplan LM, Liang L, Min JL, Moffatt MF,
Molony C, Nicholson G, Schadt EE, Zondervan KT, Feitosa MF, Ferreira T, Lango Allen H,
Weyant RJ, Wheeler E, Wood AR, Magic, Estrada K, Goddard ME, Lettre G, Mangino M,
Nyholt DR, Purcell S, Smith AV, Visscher PM, Yang J, McCarroll SA, Nemesh J, Voight BF,
Absher D, Amin N, Aspelund T, Coin L, Glazer NL, Hayward C, Heard-Costa NL, Hottenga
JJ, Johansson A, Johnson T, Kaakinen M, Kapur K, Ketkar S, Knowles JW, Kraft P, Kraja AT,
Lamina C, Leitzmann MF, McKnight B, Morris AP, Ong KK, Perry JR, Peters MJ, Polasek O,
Prokopenko I, Rayner NW, Ripatti S, Rivadeneira F, Robertson NR, Sanna S, Sovio U, Surakka
I, Teumer A, van Wingerden S, Vitart V, Zhao JH, Cavalcanti-Proenca C, Chines PS, Fisher E,
Kulzer JR, Lecoeur C, Narisu N, Sandholt C, Scott LJ, Silander K, Stark K, Tammesoo ML,
Teslovich TM, Timpson NJ, Watanabe RM, Welch R, Chasman DI, Cooper MN, Jansson JO,
Kettunen J, Lawrence RW, Pellikka N, Perola M, Vandenput L, Alavere H, Almgren P, Atwood
LD, Bennett AJ, Biffar R, Bonnycastle LL, Bornstein SR, Buchanan TA, Campbell H, Day IN,
31
Dei M, Dorr M, Elliott P, Erdos MR, Eriksson JG, Freimer NB, Fu M, Gaget S, Geus EJ,
Gjesing AP, Grallert H, Grassler J, Groves CJ, Guiducci C, Hartikainen AL, Hassanali N,
Havulinna AS, Herzig KH, Hicks AA, Hui J, Igl W, Jousilahti P, Jula A, Kajantie E, Kinnunen
L, Kolcic I, Koskinen S, Kovacs P, Kroemer HK, Krzelj V, Kuusisto J, Kvaloy K, Laitinen J,
Lantieri O, Lathrop GM, Lokki ML, Luben RN, Ludwig B, McArdle WL, McCarthy A, Morken
MA, Nelis M, Neville MJ, Pare G, Parker AN, Peden JF, Pichler I, Pietilainen KH, Platou CG,
Pouta A, Ridderstrale M, Samani NJ, Saramies J, Sinisalo J, Smit JH, Strawbridge RJ,
Stringham HM, Swift AJ, Teder-Laving M, Thomson B, Usala G, van Meurs JB, van Ommen
GJ, Vatin V, Volpato CB, Wallaschofski H, Walters GB, Widen E, Wild SH, Willemsen G,
Witte DR, Zgaga L, Zitting P, Beilby JP, James AL, Kahonen M, Lehtimaki T, Nieminen MS,
Ohlsson C, Palmer LJ, Raitakari O, Ridker PM, Stumvoll M, Tonjes A, Viikari J, Balkau B,
Ben-Shlomo Y, Bergman RN, Boeing H, Smith GD, Ebrahim S, Froguel P, Hansen T,
Hengstenberg C, Hveem K, Isomaa B, Jorgensen T, Karpe F, Khaw KT, Laakso M, Lawlor DA,
Marre M, Meitinger T, Metspalu A, Midthjell K, Pedersen O, Salomaa V, Schwarz PE, Tuomi
T, Tuomilehto J, Valle TT, Wareham NJ, Arnold AM, Beckmann JS, Bergmann S, Boerwinkle
E, Boomsma DI, Caulfield MJ, Collins FS, Eiriksdottir G, Gudnason V, Gyllensten U, Hamsten
A, Hattersley AT, Hofman A, Hu FB, Illig T, Iribarren C, Jarvelin MR, Kao WH, Kaprio J,
Launer LJ, Munroe PB, Oostra B, Penninx BW, Pramstaller PP, Psaty BM, Quertermous T,
Rissanen A, Rudan I, Shuldiner AR, Soranzo N, Spector TD, Syvanen AC, Uda M, Uitterlinden
A, Volzke H, Vollenweider P, Wilson JF, Witteman JC, Wright AF, Abecasis GR, Boehnke M,
Borecki IB, Deloukas P, Frayling TM, Groop LC, Haritunians T, Hunter DJ, Kaplan RC, North
KE, O'Connell JR, Peltonen L, Schlessinger D, Strachan DP, Hirschhorn JN, Assimes TL,
Wichmann HE, Thorsteinsdottir U, van Duijn CM, Stefansson K, Cupples LA, Loos RJ,
Barroso I, McCarthy MI, Fox CS, Mohlke KL, Lindgren CM: Meta-analysis identifies 13 new
loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat
distribution. Nat Genet 2010;42:949-960
40. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, Lango Allen H,
Lindgren CM, Luan J, Magi R, Randall JC, Vedantam S, Winkler TW, Qi L, Workalemahu T,
Heid IM, Steinthorsdottir V, Stringham HM, Weedon MN, Wheeler E, Wood AR, Ferreira T,
Weyant RJ, Segre AV, Estrada K, Liang L, Nemesh J, Park JH, Gustafsson S, Kilpelainen TO,
Yang J, Bouatia-Naji N, Esko T, Feitosa MF, Kutalik Z, Mangino M, Raychaudhuri S, Scherag
A, Smith AV, Welch R, Zhao JH, Aben KK, Absher DM, Amin N, Dixon AL, Fisher E, Glazer
NL, Goddard ME, Heard-Costa NL, Hoesel V, Hottenga JJ, Johansson A, Johnson T, Ketkar S,
Lamina C, Li S, Moffatt MF, Myers RH, Narisu N, Perry JR, Peters MJ, Preuss M, Ripatti S,
Rivadeneira F, Sandholt C, Scott LJ, Timpson NJ, Tyrer JP, van Wingerden S, Watanabe RM,
White CC, Wiklund F, Barlassina C, Chasman DI, Cooper MN, Jansson JO, Lawrence RW,
Pellikka N, Prokopenko I, Shi J, Thiering E, Alavere H, Alibrandi MT, Almgren P, Arnold AM,
Aspelund T, Atwood LD, Balkau B, Balmforth AJ, Bennett AJ, Ben-Shlomo Y, Bergman RN,
Bergmann S, Biebermann H, Blakemore AI, Boes T, Bonnycastle LL, Bornstein SR, Brown
MJ, Buchanan TA, Busonero F, Campbell H, Cappuccio FP, Cavalcanti-Proenca C, Chen YD,
Chen CM, Chines PS, Clarke R, Coin L, Connell J, Day IN, den Heijer M, Duan J, Ebrahim S,
Elliott P, Elosua R, Eiriksdottir G, Erdos MR, Eriksson JG, Facheris MF, Felix SB, Fischer-
Posovszky P, Folsom AR, Friedrich N, Freimer NB, Fu M, Gaget S, Gejman PV, Geus EJ,
Gieger C, Gjesing AP, Goel A, Goyette P, Grallert H, Grassler J, Greenawalt DM, Groves CJ,
Gudnason V, Guiducci C, Hartikainen AL, Hassanali N, Hall AS, Havulinna AS, Hayward C,
32
Heath AC, Hengstenberg C, Hicks AA, Hinney A, Hofman A, Homuth G, Hui J, Igl W,
Iribarren C, Isomaa B, Jacobs KB, Jarick I, Jewell E, John U, Jorgensen T, Jousilahti P, Jula A,
Kaakinen M, Kajantie E, Kaplan LM, Kathiresan S, Kettunen J, Kinnunen L, Knowles JW,
Kolcic I, Konig IR, Koskinen S, Kovacs P, Kuusisto J, Kraft P, Kvaloy K, Laitinen J, Lantieri
O, Lanzani C, Launer LJ, Lecoeur C, Lehtimaki T, Lettre G, Liu J, Lokki ML, Lorentzon M,
Luben RN, Ludwig B, Magic, Manunta P, Marek D, Marre M, Martin NG, McArdle WL,
McCarthy A, McKnight B, Meitinger T, Melander O, Meyre D, Midthjell K, Montgomery GW,
Morken MA, Morris AP, Mulic R, Ngwa JS, Nelis M, Neville MJ, Nyholt DR, O'Donnell CJ,
O'Rahilly S, Ong KK, Oostra B, Pare G, Parker AN, Perola M, Pichler I, Pietilainen KH, Platou
CG, Polasek O, Pouta A, Rafelt S, Raitakari O, Rayner NW, Ridderstrale M, Rief W, Ruokonen
A, Robertson NR, Rzehak P, Salomaa V, Sanders AR, Sandhu MS, Sanna S, Saramies J,
Savolainen MJ, Scherag S, Schipf S, Schreiber S, Schunkert H, Silander K, Sinisalo J, Siscovick
DS, Smit JH, Soranzo N, Sovio U, Stephens J, Surakka I, Swift AJ, Tammesoo ML, Tardif JC,
Teder-Laving M, Teslovich TM, Thompson JR, Thomson B, Tonjes A, Tuomi T, van Meurs
JB, van Ommen GJ, Vatin V, Viikari J, Visvikis-Siest S, Vitart V, Vogel CI, Voight BF, Waite
LL, Wallaschofski H, Walters GB, Widen E, Wiegand S, Wild SH, Willemsen G, Witte DR,
Witteman JC, Xu J, Zhang Q, Zgaga L, Ziegler A, Zitting P, Beilby JP, Farooqi IS, Hebebrand
J, Huikuri HV, James AL, Kahonen M, Levinson DF, Macciardi F, Nieminen MS, Ohlsson C,
Palmer LJ, Ridker PM, Stumvoll M, Beckmann JS, Boeing H, Boerwinkle E, Boomsma DI,
Caulfield MJ, Chanock SJ, Collins FS, Cupples LA, Smith GD, Erdmann J, Froguel P, Gronberg
H, Gyllensten U, Hall P, Hansen T, Harris TB, Hattersley AT, Hayes RB, Heinrich J, Hu FB,
Hveem K, Illig T, Jarvelin MR, Kaprio J, Karpe F, Khaw KT, Kiemeney LA, Krude H, Laakso
M, Lawlor DA, Metspalu A, Munroe PB, Ouwehand WH, Pedersen O, Penninx BW, Peters A,
Pramstaller PP, Quertermous T, Reinehr T, Rissanen A, Rudan I, Samani NJ, Schwarz PE,
Shuldiner AR, Spector TD, Tuomilehto J, Uda M, Uitterlinden A, Valle TT, Wabitsch M,
Waeber G, Wareham NJ, Watkins H, Procardis C, Wilson JF, Wright AF, Zillikens MC,
Chatterjee N, McCarroll SA, Purcell S, Schadt EE, Visscher PM, Assimes TL, Borecki IB,
Deloukas P, Fox CS, Groop LC, Haritunians T, Hunter DJ, Kaplan RC, Mohlke KL, O'Connell
JR, Peltonen L, Schlessinger D, Strachan DP, van Duijn CM, Wichmann HE, Frayling TM,
Thorsteinsdottir U, Abecasis GR, Barroso I, Boehnke M, Stefansson K, North KE, McCarthy
MI, Hirschhorn JN, Ingelsson E, Loos RJ: Association analyses of 249,796 individuals reveal
18 new loci associated with body mass index. Nat Genet 2010;42:937-948
41. Waterworth DM, Ricketts SL, Song K, Chen L, Zhao JH, Ripatti S, Aulchenko YS, Zhang W,
Yuan X, Lim N, Luan J, Ashford S, Wheeler E, Young EH, Hadley D, Thompson JR, Braund
PS, Johnson T, Struchalin M, Surakka I, Luben R, Khaw KT, Rodwell SA, Loos RJ, Boekholdt
SM, Inouye M, Deloukas P, Elliott P, Schlessinger D, Sanna S, Scuteri A, Jackson A, Mohlke
KL, Tuomilehto J, Roberts R, Stewart A, Kesaniemi YA, Mahley RW, Grundy SM, Wellcome
Trust Case Control C, McArdle W, Cardon L, Waeber G, Vollenweider P, Chambers JC,
Boehnke M, Abecasis GR, Salomaa V, Jarvelin MR, Ruokonen A, Barroso I, Epstein SE,
Hakonarson HH, Rader DJ, Reilly MP, Witteman JC, Hall AS, Samani NJ, Strachan DP, Barter
P, van Duijn CM, Kooner JS, Peltonen L, Wareham NJ, McPherson R, Mooser V, Sandhu MS:
Genetic variants influencing circulating lipid levels and risk of coronary artery disease.
Arterioscler Thromb Vasc Biol 2010;30:2264-2276
33
42. Pare G, Ridker PM, Rose L, Barbalic M, Dupuis J, Dehghan A, Bis JC, Benjamin EJ, Shiffman
D, Parker AN, Chasman DI: Genome-wide association analysis of soluble ICAM-1
concentration reveals novel associations at the NFKBIK, PNPLA3, RELA, and SH2B3 loci.
PLoS Genet 2011;7:e1001374
43. Soranzo N, Sanna S, Wheeler E, Gieger C, Radke D, Dupuis J, Bouatia-Naji N, Langenberg
C, Prokopenko I, Stolerman E, Sandhu MS, Heeney MM, Devaney JM, Reilly MP, Ricketts SL,
Stewart AF, Voight BF, Willenborg C, Wright B, Altshuler D, Arking D, Balkau B, Barnes D,
Boerwinkle E, Bohm B, Bonnefond A, Bonnycastle LL, Boomsma DI, Bornstein SR, Bottcher
Y, Bumpstead S, Burnett-Miller MS, Campbell H, Cao A, Chambers J, Clark R, Collins FS,
Coresh J, de Geus EJ, Dei M, Deloukas P, Doring A, Egan JM, Elosua R, Ferrucci L, Forouhi
N, Fox CS, Franklin C, Franzosi MG, Gallina S, Goel A, Graessler J, Grallert H, Greinacher A,
Hadley D, Hall A, Hamsten A, Hayward C, Heath S, Herder C, Homuth G, Hottenga JJ, Hunter-
Merrill R, Illig T, Jackson AU, Jula A, Kleber M, Knouff CW, Kong A, Kooner J, Kottgen A,
Kovacs P, Krohn K, Kuhnel B, Kuusisto J, Laakso M, Lathrop M, Lecoeur C, Li M, Li M, Loos
RJ, Luan J, Lyssenko V, Magi R, Magnusson PK, Malarstig A, Mangino M, Martinez-Larrad
MT, Marz W, McArdle WL, McPherson R, Meisinger C, Meitinger T, Melander O, Mohlke
KL, Mooser VE, Morken MA, Narisu N, Nathan DM, Nauck M, O'Donnell C, Oexle K, Olla
N, Pankow JS, Payne F, Peden JF, Pedersen NL, Peltonen L, Perola M, Polasek O, Porcu E,
Rader DJ, Rathmann W, Ripatti S, Rocheleau G, Roden M, Rudan I, Salomaa V, Saxena R,
Schlessinger D, Schunkert H, Schwarz P, Seedorf U, Selvin E, Serrano-Rios M, Shrader P,
Silveira A, Siscovick D, Song K, Spector TD, Stefansson K, Steinthorsdottir V, Strachan DP,
Strawbridge R, Stumvoll M, Surakka I, Swift AJ, Tanaka T, Teumer A, Thorleifsson G,
Thorsteinsdottir U, Tonjes A, Usala G, Vitart V, Volzke H, Wallaschofski H, Waterworth DM,
Watkins H, Wichmann HE, Wild SH, Willemsen G, Williams GH, Wilson JF, Winkelmann J,
Wright AF, Wtccc, Zabena C, Zhao JH, Epstein SE, Erdmann J, Hakonarson HH, Kathiresan
S, Khaw KT, Roberts R, Samani NJ, Fleming MD, Sladek R, Abecasis G, Boehnke M, Froguel
P, Groop L, McCarthy MI, Kao WH, Florez JC, Uda M, Wareham NJ, Barroso I, Meigs JB:
Common variants at 10 genomic loci influence hemoglobin A(1)(C) levels via glycemic and
nonglycemic pathways. Diabetes 2010;59:3229-3239
44. Strawbridge RJ, Dupuis J, Prokopenko I, Barker A, Ahlqvist E, Rybin D, Petrie JR, Travers
ME, Bouatia-Naji N, Dimas AS, Nica A, Wheeler E, Chen H, Voight BF, Taneera J, Kanoni S,
Peden JF, Turrini F, Gustafsson S, Zabena C, Almgren P, Barker DJ, Barnes D, Dennison EM,
Eriksson JG, Eriksson P, Eury E, Folkersen L, Fox CS, Frayling TM, Goel A, Gu HF, Horikoshi
M, Isomaa B, Jackson AU, Jameson KA, Kajantie E, Kerr-Conte J, Kuulasmaa T, Kuusisto J,
Loos RJ, Luan J, Makrilakis K, Manning AK, Martinez-Larrad MT, Narisu N, Nastase Mannila
M, Ohrvik J, Osmond C, Pascoe L, Payne F, Sayer AA, Sennblad B, Silveira A, Stancakova A,
Stirrups K, Swift AJ, Syvanen AC, Tuomi T, van 't Hooft FM, Walker M, Weedon MN, Xie W,
Zethelius B, Consortium D, Consortium G, Mu TC, Consortium CA, Consortium CD, Ongen
H, Malarstig A, Hopewell JC, Saleheen D, Chambers J, Parish S, Danesh J, Kooner J, Ostenson
CG, Lind L, Cooper CC, Serrano-Rios M, Ferrannini E, Forsen TJ, Clarke R, Franzosi MG,
Seedorf U, Watkins H, Froguel P, Johnson P, Deloukas P, Collins FS, Laakso M, Dermitzakis
ET, Boehnke M, McCarthy MI, Wareham NJ, Groop L, Pattou F, Gloyn AL, Dedoussis GV,
Lyssenko V, Meigs JB, Barroso I, Watanabe RM, Ingelsson E, Langenberg C, Hamsten A,
Florez JC: Genome-wide association identifies nine common variants associated with fasting
34
proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.
Diabetes 2011;60:2624-2634
45. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, Pirruccello
JP, Ripatti S, Chasman DI, Willer CJ, Johansen CT, Fouchier SW, Isaacs A, Peloso GM,
Barbalic M, Ricketts SL, Bis JC, Aulchenko YS, Thorleifsson G, Feitosa MF, Chambers J,
Orho-Melander M, Melander O, Johnson T, Li X, Guo X, Li M, Shin Cho Y, Jin Go M, Jin
Kim Y, Lee JY, Park T, Kim K, Sim X, Twee-Hee Ong R, Croteau-Chonka DC, Lange LA,
Smith JD, Song K, Hua Zhao J, Yuan X, Luan J, Lamina C, Ziegler A, Zhang W, Zee RY,
Wright AF, Witteman JC, Wilson JF, Willemsen G, Wichmann HE, Whitfield JB, Waterworth
DM, Wareham NJ, Waeber G, Vollenweider P, Voight BF, Vitart V, Uitterlinden AG, Uda M,
Tuomilehto J, Thompson JR, Tanaka T, Surakka I, Stringham HM, Spector TD, Soranzo N,
Smit JH, Sinisalo J, Silander K, Sijbrands EJ, Scuteri A, Scott J, Schlessinger D, Sanna S,
Salomaa V, Saharinen J, Sabatti C, Ruokonen A, Rudan I, Rose LM, Roberts R, Rieder M,
Psaty BM, Pramstaller PP, Pichler I, Perola M, Penninx BW, Pedersen NL, Pattaro C, Parker
AN, Pare G, Oostra BA, O'Donnell CJ, Nieminen MS, Nickerson DA, Montgomery GW,
Meitinger T, McPherson R, McCarthy MI, McArdle W, Masson D, Martin NG, Marroni F,
Mangino M, Magnusson PK, Lucas G, Luben R, Loos RJ, Lokki ML, Lettre G, Langenberg C,
Launer LJ, Lakatta EG, Laaksonen R, Kyvik KO, Kronenberg F, Konig IR, Khaw KT, Kaprio
J, Kaplan LM, Johansson A, Jarvelin MR, Janssens AC, Ingelsson E, Igl W, Kees Hovingh G,
Hottenga JJ, Hofman A, Hicks AA, Hengstenberg C, Heid IM, Hayward C, Havulinna AS,
Hastie ND, Harris TB, Haritunians T, Hall AS, Gyllensten U, Guiducci C, Groop LC, Gonzalez
E, Gieger C, Freimer NB, Ferrucci L, Erdmann J, Elliott P, Ejebe KG, Doring A, Dominiczak
AF, Demissie S, Deloukas P, de Geus EJ, de Faire U, Crawford G, Collins FS, Chen YD,
Caulfield MJ, Campbell H, Burtt NP, Bonnycastle LL, Boomsma DI, Boekholdt SM, Bergman
RN, Barroso I, Bandinelli S, Ballantyne CM, Assimes TL, Quertermous T, Altshuler D,
Seielstad M, Wong TY, Tai ES, Feranil AB, Kuzawa CW, Adair LS, Taylor HA, Jr., Borecki
IB, Gabriel SB, Wilson JG, Holm H, Thorsteinsdottir U, Gudnason V, Krauss RM, Mohlke KL,
Ordovas JM, Munroe PB, Kooner JS, Tall AR, Hegele RA, Kastelein JJ, Schadt EE, Rotter JI,
Boerwinkle E, Strachan DP, Mooser V, Stefansson K, Reilly MP, Samani NJ, Schunkert H,
Cupples LA, Sandhu MS, Ridker PM, Rader DJ, van Duijn CM, Peltonen L, Abecasis GR,
Boehnke M, Kathiresan S: Biological, clinical and population relevance of 95 loci for blood
lipids. Nature 2010;466:707-713
46. Chambers JC, Elliott P, Zabaneh D, Zhang W, Li Y, Froguel P, Balding D, Scott J, Kooner JS:
Common genetic variation near MC4R is associated with waist circumference and insulin
resistance. Nat Genet 2008;40:716-718
47. Sternisha SM, Miller BG: Molecular and cellular regulation of human glucokinase. Arch
Biochem Biophys 2019;663:199-213
48. Santoro N, Kursawe R, D'Adamo E, Dykas DJ, Zhang CK, Bale AE, Cali AM, Narayan D,
Shaw MM, Pierpont B, Savoye M, Lartaud D, Eldrich S, Cushman SW, Zhao H, Shulman GI,
Caprio S: A common variant in the patatin-like phospholipase 3 gene (PNPLA3) is associated
with fatty liver disease in obese children and adolescents. Hepatology 2010;52:1281-1290
35
49. Farrelly D, Brown KS, Tieman A, Ren J, Lira SA, Hagan D, Gregg R, Mookhtiar KA,
Hariharan N: Mice mutant for glucokinase regulatory protein exhibit decreased liver
glucokinase: a sequestration mechanism in metabolic regulation. Proc Natl Acad Sci U S A
1999;96:14511-14516
50. Iynedjian PB: Molecular physiology of mammalian glucokinase. Cell Mol Life Sci
2009;66:27-42
51. Van Schaftingen E, Detheux M, Veiga da Cunha M: Short-term control of glucokinase activity:
role of a regulatory protein. FASEB J 1994;8:414-419
52. Doiron B, Cuif MH, Kahn A, Diaz-Guerra MJ: Respective roles of glucose, fructose, and
insulin in the regulation of the liver-specific pyruvate kinase gene promoter. J Biol Chem
1994;269:10213-10216
53. Van Schaftingen E: A protein from rat liver confers to glucokinase the property of being
antagonistically regulated by fructose 6-phosphate and fructose 1-phosphate. Eur J Biochem
1989;179:179-184
54. Van Schaftingen E, Vandercammen A: Stimulation of glucose phosphorylation by fructose in
isolated rat hepatocytes. Eur J Biochem 1989;179:173-177
55. Vandercammen A VS: The mechanism by which rat liver glucokinase is inhibited by the
regulatory protein. Eur J Biochem 1990;191:483-489
56. Van Schaftingen E, Davies DR: Fructose administration stimulates glucose phosphorylation in
the livers of anesthetized rats. FASEB J 1991;5:326-330
57. Ingelsson E, Langenberg C, Hivert MF, Prokopenko I, Lyssenko V, Dupuis J, Magi R, Sharp
S, Jackson AU, Assimes TL, Shrader P, Knowles JW, Zethelius B, Abbasi FA, Bergman RN,
Bergmann A, Berne C, Boehnke M, Bonnycastle LL, Bornstein SR, Buchanan TA, Bumpstead
SJ, Bottcher Y, Chines P, Collins FS, Cooper CC, Dennison EM, Erdos MR, Ferrannini E, Fox
CS, Graessler J, Hao K, Isomaa B, Jameson KA, Kovacs P, Kuusisto J, Laakso M, Ladenvall
C, Mohlke KL, Morken MA, Narisu N, Nathan DM, Pascoe L, Payne F, Petrie JR, Sayer AA,
Schwarz PE, Scott LJ, Stringham HM, Stumvoll M, Swift AJ, Syvanen AC, Tuomi T,
Tuomilehto J, Tonjes A, Valle TT, Williams GH, Lind L, Barroso I, Quertermous T, Walker M,
Wareham NJ, Meigs JB, McCarthy MI, Groop L, Watanabe RM, Florez JC, investigators M:
Detailed physiologic characterization reveals diverse mechanisms for novel genetic Loci
regulating glucose and insulin metabolism in humans. Diabetes 2010;59:1266-1275
58. Hu C, Zhang R, Wang C, Yu W, Lu J, Ma X, Wang J, Jiang F, Tang S, Bao Y, Xiang K, Jia
W: Effects of GCK, GCKR, G6PC2 and MTNR1B variants on glucose metabolism and insulin
secretion. PLoS One 2010;5:e11761
59. Tam CH, Ho JS, Wang Y, Lee HM, Lam VK, Germer S, Martin M, So WY, Ma RC, Chan JC,
Ng MC: Common polymorphisms in MTNR1B, G6PC2 and GCK are associated with increased
36
fasting plasma glucose and impaired beta-cell function in Chinese subjects. PLoS One
2010;5:e11428
60. Byrne MM, Sturis J, Clement K, Vionnet N, Pueyo ME, Stoffel M, Takeda J, Passa P, Cohen
D, Bell GI, et al.: Insulin secretory abnormalities in subjects with hyperglycemia due to
glucokinase mutations. J Clin Invest 1994;93:1120-1130
61. Dimas AS, Lagou V, Barker A, Knowles JW, Magi R, Hivert MF, Benazzo A, Rybin D,
Jackson AU, Stringham HM, Song C, Fischer-Rosinsky A, Boesgaard TW, Grarup N, Abbasi
FA, Assimes TL, Hao K, Yang X, Lecoeur C, Barroso I, Bonnycastle LL, Bottcher Y,
Bumpstead S, Chines PS, Erdos MR, Graessler J, Kovacs P, Morken MA, Narisu N, Payne F,
Stancakova A, Swift AJ, Tonjes A, Bornstein SR, Cauchi S, Froguel P, Meyre D, Schwarz PE,
Haring HU, Smith U, Boehnke M, Bergman RN, Collins FS, Mohlke KL, Tuomilehto J,
Quertemous T, Lind L, Hansen T, Pedersen O, Walker M, Pfeiffer AF, Spranger J, Stumvoll M,
Meigs JB, Wareham NJ, Kuusisto J, Laakso M, Langenberg C, Dupuis J, Watanabe RM, Florez
JC, Ingelsson E, McCarthy MI, Prokopenko I, Investigators M: Impact of type 2 diabetes
susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity.
Diabetes 2014;63:2158-2171
62. Stoffel M, Froguel P, Takeda J, Zouali H, Vionnet N, Nishi S, Weber IT, Harrison RW, Pilkis
SJ, Lesage S, et al.: Human glucokinase gene: isolation, characterization, and identification of
two missense mutations linked to early-onset non-insulin-dependent (type 2) diabetes mellitus.
Proc Natl Acad Sci U S A 1992;89:7698-7702
63. Vionnet N, Stoffel M, Takeda J, Yasuda K, Bell GI, Zouali H, Lesage S, Velho G, Iris F, Passa
P, et al.: Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent
diabetes mellitus. Nature 1992;356:721-722
64. Li X, Shu YH, Xiang AH, Trigo E, Kuusisto J, Hartiala J, Swift AJ, Kawakubo M, Stringham
HM, Bonnycastle LL, Lawrence JM, Laakso M, Allayee H, Buchanan TA, Watanabe RM:
Additive effects of genetic variation in GCK and G6PC2 on insulin secretion and fasting
glucose. Diabetes 2009;58:2946-2953
65. Stone LM KS, Fujimoto WY, Deeb SS, Porte D, Jr.: A variation at position -30 of the beta-
cell glucokinase gene promoter is associated with reduced beta-cell function in middle-aged
Japanese-American men. Diabetes 1996;45:428
66. Matschinsky FM, Porte D: Glucokinase activators (GKAs) promise a new pharmacotherapy
for diabetics. F1000 Med Rep 2010;2
67. Tan HL, Zain SM, Mohamed R, Rampal S, Chin KF, Basu RC, Cheah PL, Mahadeva S,
Mohamed Z: Association of glucokinase regulatory gene polymorphisms with risk and severity
of non-alcoholic fatty liver disease: an interaction study with adiponutrin gene. J Gastroenterol
2014;49:1056-1064
37
68. Beer NL, Tribble ND, McCulloch LJ, Roos C, Johnson PR, Orho-Melander M, Gloyn AL: The
P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts
its effect through increased glucokinase activity in liver. Hum Mol Genet 2009;18:4081-4088
69. Kitamoto T, Kitamoto A, Yoneda M, Hyogo H, Ochi H, Nakamura T, Teranishi H, Mizusawa
S, Ueno T, Chayama K, Nakajima A, Nakao K, Sekine A, Hotta K: Genome-wide scan revealed
that polymorphisms in the PNPLA3, SAMM50, and PARVB genes are associated with
development and progression of nonalcoholic fatty liver disease in Japan. Hum Genet
2013;132:783-792
70. Watanabe RM, Allayee H, Xiang AH, Trigo E, Hartiala J, Lawrence JM, Buchanan TA:
Transcription factor 7-like 2 (TCF7L2) is associated with gestational diabetes mellitus and
interacts with adiposity to alter insulin secretion in Mexican Americans. Diabetes
2007;56:1481-1485
71. Buchanan TA, Xiang AH, Kjos SL, Trigo E, Lee WP, Peters RK: Antepartum predictors of
the development of type 2 diabetes in Latino women 11-26 months after pregnancies
complicated by gestational diabetes. Diabetes 1999;48:2430-2436
72. Wareham NJ, Phillips DI, Byrne CD, Hales CN: The 30 minute insulin incremental response
in an oral glucose tolerance test as a measure of insulin secretion. Diabet Med 1995;12:931
73. Expert Committee on the D, Classification of Diabetes M: Report of the expert committee on
the diagnosis and classification of diabetes mellitus. Diabetes Care 2003;26 Suppl 1:S5-20
74. Livak KJ: Allelic discrimination using fluorogenic probes and the 5' nuclease assay. Genet
Anal 1999;14:143- 149
75. Livak KJ: SNP genotyping by the 5'-nuclease reaction. Methods Mol Biol 2003;212:129-147
76. Ren J, Xiang AH, Trigo E, Takayanagi M, Beale E, Lawrence JM, Hartiala J, Richey JM,
Allayee H, Buchanan TA, Watanabe RM: Genetic variation in MTNR1B is associated with
gestational diabetes mellitus and contributes only to the absolute level of beta cell compensation
in Mexican Americans. Diabetologia 2014;57:1391-1399
77. Wigginton JE, Abecasis GR: PEDSTATS: descriptive statistics, graphics and quality
assessment for gene mapping data. Bioinformatics 2005;21:3445-3447
78. Almasy L, Blangero J: Multipoint quantitative-trait linkage analysis in general pedigrees. Am
J Hum Genet 1998;62:1198-1211
79. Ader M, Ni TC, Bergman RN: Glucose effectiveness assessed under dynamic and steady state
conditions. Comparability of uptake versus production components. J Clin Invest
1997;99:1187-1199
38
Table 1 Subject characteristics
*
Male Female Male/female
†
Age (years) 32.90 (17.30) 34.40 (13.9) 1058/1521
BMI (kg/m
2
) 27.60 (6.80) 28.15 (8.70) 1031/1490
Body fat (%) 25.2 (6.70) 38.80 (7.80) 799/1235
Fasting glucose (mM) 5.10 (0.80) 4.90 (0.80) 884/1344
30' glucose (mM) 8.40 (2.10) 7.80 (2.00) 690/1073
2-h glucose (mM) 6.80 (2.40) 7.30 (2.70) 687/1072
Fasting insulin (pM) 42 (47) 42 (42) 884/1343
30' insulin (pM) 396 (366) 360 (312) 690/1071
2-h insulin (pM) 312 (360) 378 (378) 687/1071
Insulinogenic Index 19.15 (17.4) 19.0 (16.8) 690/1070
30' Disposition index 1485 (1271) 1421 (1170.50) 322/840
Cholesterol (mmol/L) 4.76 (1.26) 4.42 (1.16) 790/1242
HDL cholesterol (mmol/L) 1.06 (0.31) 1.24 (0.36) 791/1242
Triglycerides (mmol/L) 1.32 (1.06) 1.04 (0.81) 789/1242
ALT (U/L) 41 (24) 29 (19) 783/1223
AST (U/L) 24 (11) 20 (8) 781/1227
SG (×10
-2
min
-1
) 1.74 (0.85) 1.66 (0.81) 347/903
SI (×10
-3
min
-1
per pM) 4.45 (3.40) 4.63 (3.16) 347/903
AIR (pM × 10
-3
min) 2782 (3360) 2510 (2760) 347/903
Disposition index 12563 (12501) 11710 (11428) 347/903
*
Data are unadjusted median (interquartile range) unless otherwise indicated.
†
Sample size of male/female
39
Table 2. Association results between GCK rs1799831 and type 2 diabetes-related quantitative
traits.
Additional adjustment for
GCRK rs780094, fructose and
their interaction term
p value
0.807
0.019
0.105
0.215
0.817
0.059
0.023
2.83× 10
-3
0.01
0.655
1.87 × 10
-3
0.723
9.46× 10
-4
3.35 × 10
-3
0.72
0.138
1.80× 10
-3
0.349
0.236
SE
0.0374
0.0373
0.0374
0.0372
0.0372
0.0374
0.0372
0.0372
0.0372
0.0341
0.0374
0.0374
0.0374
0.0373
0.0373
0.0374
0.0374
0.0377
0.0375
b
0.0158
-0.0809
0.0653
0.0431
-0.012
-0.0687
-0.0904
-0.1157
-0.0919
0.0123
-0.1211
0.0197
-0.1372
0.1234
0.0078
-0.0582
0.1161
-0.0349
-0.0458
Adjusted for age and sex
p value
0.724
0.073
0.357
0.606
0.628
0.204
0.209
0.247
0.143
0.913
0.169
0.455
0.766
0.758
0.714
0.637
0.271
0.654
0.484
SE
0.0537
0.0533
0.0511
0.0559
0.0553
0.0509
0.0557
0.0554
0.0556
0.0346
0.0648
0.054
0.0535
0.0254
0.0254
0.0648
0.0647
0.0503
0.065
b
0.0406
-0.0614
0.0525
0.0298
0.0309
-0.0559
-0.087
-0.0812
-0.0902
0.0003
-0.1133
-0.0181
-0.0257
-0.0022
0.0026
-0.0459
0.0859
-0.0194
-0.047
Traits
BMI (kg/m
2
)
Body fat (%)
Fasting glucose (mM)
30' glucose (mM)
2-h glucose (mM)
Fasting insulin (pM)
30' insulin (pM)
2-h insulin (pM)
Insulinogenic Index
30' Disposition index
Cholesterol (mmol/L)
HDL cholesterol (mmol/L)
Triglycerides (mmol/L)
ALT (U/L)
AST (U/L)
SG (×10
-2
min
-1
)
SI (×10
-3
min
-1
per pM)
AIR (pM × 10
-3
min)
Disposition index
40
Table 3 Association results between GCKR rs780094 and type 2 diabetes-related quantitative
traits.
2df GCKR rs780094
p value
0.024
0.289
0.707
0.691
0.533
0.564
0.923
0.214
0.396
0.296
0.434
0.61
0.284
2.46 × 10
-3
0.092
0.036
0.849
0.58
0.324
SE
0.0019
0.0021
0.0019
0.0019
0.0019
0.0019
0.0019
0.0019
0.0019
0.0006
0.0018
0.0019
0.0018
0.0007
0.0007
0.002
0.002
0.002
0.002
b
0.0026
1.62 × 10-6
-3.15× 10-5
-0.0013
-0.0018
2.98 × 10
-6
0.0004
-0.0036
0.0016
0.001
-0.001
4.40 × 10-5
-0.0013
-0.0022
-0.0015
0.0047
0.0013
0.0025
0.0038
1df interaction
p
value
0.007
0.158
0.41
0.923
0.922
0.328
0.768
0.287
0.973
0.012
0.51
0.427
0.582
0.316
0.295
0.024
0.782
0.342
0.31
SE
0.0017
0.0019
0.0018
0.0017
0.0018
0.0017
0.0017
0.0018
0.0018
0.0006
0.0017
0.0018
0.0016
0.0007
0.0007
0.0018
0.0018
0.0018
0.0018
b
-0.0061
-0.0031
-0.0005
0.0002
0.0002
-0.0023
-0.0008
0.0017
-0.0007
-0.0016
-0.0005
0.0004
0.0001
-0.0006
-0.0007
-0.0042
0.0001
-0.0023
-0.0021
univariate
p value
0.791
0.839
0.113
0.043
0.977
0.058
0.68
0.104
0.572
0.996
0.001
0.644
1.20 × 10
-5
0.827
0.326
0.007
0.149
0.699
0.169
SE
0.0339
0.0363
0.0337
0.037
0.0369
0.0342
0.037
0.0371
0.037
0.023
0.036
0.0362
0.0358
0.0127
0.0127
0.0441
0.0438
0.0438
0.0439
b
-0.0271
-0.0244
-0.0526
-0.0826
-0.0198
-0.0777
-0.0207
-0.0781
0.0281
5.42 × 10
-5
0.1183
0.0042
0.1622
-0.0026
-0.0123
0.1245
0.063
0.0132
0.0573
Traits
BMI (kg/m
2
)
Body fat (%)
Fasting glucose (mM)
30' glucose (mM)
2-h glucose (mM)
Fasting insulin (pM)
30' insulin (pM)
2-h insulin (pM)
Insulinogenic Index
30' Disposition index
Cholesterol (mmol/L)
HDL cholesterol
(mmol/L)
Triglycerides (mmol/L)
ALT (U/L)
AST (U/L)
SG (×10
-2
min
-1
)
SI (×10
-3
min
-1
per pM)
AIR (pM × 10
-3
min)
Disposition index
41
Figure 1 Schematic of our hepatic substrate balance hypothesis. Blue: genes; Green:
environmental factors. See text for details.
42
Figure 2 Pathways contributing to steatosis. Genetic loci of interest are highlighted in blue and
dietary fructose in green. Regulatory effects are depicted by dashed arrows. GA =
glyceraldehyde; G3P = glycerol 3 phosphate; ACoA = acetylCoA.
Abstract (if available)
Abstract
OBJECTIVES— Genetic variants of glucokinase (GCK), glucokinase regulator (GCKR), patatin- like phospholipase domain-containing protein 3 (PNPLA3) have been shown to be associated with type 2 diabetes and diabetes-related traits. According to this, I propose the hepatic substrate balance hypothesis, which considers that the genetic variation of GCK, GCKR, PNPLA3 results in an imbalance in substrate flow into and out of the liver. GCK participates in the glucose uptake process and GCKR regulate the enzyme activity of GCK. As a result, it is possible that genetic variation affects the separate activities of GCK and GCKR, as well as their interaction, affecting hepatic glucose absorption and the transformation of glucose to fat. PNPLA3 hydrolyzes fat to triglycerides, and genetic variations may affect PNPLA3's ability to break down fat in the liver. The amount of fat in the liver is a result of a balance between these two processes, and an imbalance leads to the accumulation of liver fat, which leads to hepatic insulin resistance. I further postulate that dietary fructose, which also add to liver fat, may aggravate the substrate imbalance caused by genetic variation via regulating GCKR.
RESEARCH DESIGN AND METHODS— In Mexican Americans from the BetaGene Study, I investigated if these variations were linked to diabetes-related quantitative features. Oral glucose tolerance test (OGTT), intravenous glucose tolerance test (IVGTT), and dual-energy X-ray absorptiometry scan were used to obtain phenotypic information on study participants.
RESULTS— In the primary analysis, GCK rs1799831 do not show statistically significant association with any type 2 diabetes-related quantitative trait when adjusts for age and sex and did not change after adjusting for percentage of body fat. GCKR rs780094 is statistically significantly associated with cholesterol level, 30-minute glucose levels (p=0.043), SG (p=0.007), and triglyceride levels (p=0.00001) adjusting for age and sex. The interaction between GCKR and dietary fructose are found to be significant in some type 2 diabetes-related quantitative traits. In the test of the GCK associations adjusting for the GCKR ́Fructose interaction, statistically significantly associations also are observed in several type 2 diabetes-related quantitative traits.
CONCLUSIONS— My results show evidence for a statistically significantly interaction between dietary fructose and GCKR rs780094 on some type 2 diabetes-related quantitative traits to increase hepatic glucose uptake in Mexican Americans, suggesting a positive contribution to the accumulation of liver fat. Additionally, after adjusting for GCKR, dietary fructose, and their interaction term, GCK shows patterns of association that contribute negatively to the accumulation of liver fat. It is worth mentioning that before the adjustment, univariate analysis of GCK did not show significant results, indicating the complicated biological relationships among GCK, GCKR, and dietary fructose.
Linked assets
University of Southern California Dissertations and Theses
Conceptually similar
PDF
Association of single nucleotide polymorphisms in GCK, GCKR and PNPLA3 with type 2 diabetes related quantitative traits in Mexican-American population
PDF
The association between the PNPLA3 rs738409 variant and hepatic fat in Mexican Americans
PDF
Genetic and dietary determinants of nonalcoholic fatty liver disease in Hispanic children
PDF
Variation in CRY2 and MTNR1B have independent effects on insulin secretion in Mexican Americans
PDF
Shortcomings of the genetic risk score in the analysis of disease-related quantitative traits
PDF
Adipokines do not account for the association between osteocalcin and insulin sensitivity in Mexican Americans
PDF
The risk estimates of pneumoconiosis and its relevant complications: a systematic review and meta-analysis
PDF
Variation in insulin-like growth factor-2 binding protein 2 interacts with adiposity to alter insulin sensitivity in Mexican Americans
PDF
No evidence for a direct effect of osteocalcin on pancreatic beta-cells in Mexican Americans
PDF
Ocular axial length and prevalence of myopic macular degeneration among Chinese Americans
PDF
The interplay between tobacco exposure and polygenic risk score for growth on birthweight and childhood acute lymphoblastic leukemia
PDF
The impact of global and local Polynesian genetic ancestry on complex traits in Native Hawaiians
PDF
Association of traffic-related air pollution and lens opacities in the Los Angeles Latino Eye Study
PDF
Association of traffic-related air pollution and age-related macular degeneration in the Los Angeles Latino Eye Study
PDF
Altered emotion perception linked to structural brain differences in youth with congenital adrenal hyperplasia
PDF
Presbyopia and quality of life among the Latino population
PDF
Variants in MTNR1B and CDKAL1 contributes independent additive effects to GDM-related traits in Mexican Americans
PDF
Elevated fasting free fatty acids in overweight Latino children and adolescents
PDF
Targeted metabolic signatures and diet in associations with obesity and insulin resistance in young adults
PDF
Associations between perfluoroalkyl substances exposure and metabolic pathways in youth
Asset Metadata
Creator
Ma, Leona
(author)
Core Title
The influence of dietary fructose on genetic effects of GCK and GCKR in Mexican Americans
School
Keck School of Medicine
Degree
Master of Science
Degree Program
Biostatistics
Degree Conferral Date
2022-05
Publication Date
04/11/2022
Defense Date
04/09/2022
Publisher
University of Southern California
(original),
University of Southern California. Libraries
(digital)
Tag
Diabetes,dietary fructose,GCK,GCKR,OAI-PMH Harvest
Format
application/pdf
(imt)
Language
English
Contributor
Electronically uploaded by the author
(provenance)
Advisor
Choudhury, Farzana (
committee chair
), Watanabe, Richard (
committee chair
), Piao, Jin (
committee member
)
Creator Email
leona.ma.0812@qq.com,yunyunma@usc.edu
Permanent Link (DOI)
https://doi.org/10.25549/usctheses-oUC110920247
Unique identifier
UC110920247
Document Type
Thesis
Format
application/pdf (imt)
Rights
Ma, Leona
Type
texts
Source
20220411-usctheses-batch-921
(batch),
University of Southern California
(contributing entity),
University of Southern California Dissertations and Theses
(collection)
Access Conditions
The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law. Electronic access is being provided by the USC Libraries in agreement with the author, as the original true and official version of the work, but does not grant the reader permission to use the work if the desired use is covered by copyright. It is the author, as rights holder, who must provide use permission if such use is covered by copyright. The original signature page accompanying the original submission of the work to the USC Libraries is retained by the USC Libraries and a copy of it may be obtained by authorized requesters contacting the repository e-mail address given.
Repository Name
University of Southern California Digital Library
Repository Location
USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Repository Email
cisadmin@lib.usc.edu
Tags
dietary fructose
GCK
GCKR