Close
USC Libraries
University of Southern California
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Folder
Bridging the gap: a tool to support bim data transparency for interoperability with building energy performance software
(USC Thesis Other) 

Bridging the gap: a tool to support bim data transparency for interoperability with building energy performance software

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Copy asset link
Request this asset
Request accessible transcript
Transcript (if available)
Content     i   BRIDGING  THE  GAP:     A  TOOL  TO  SUPPORT  BIM  DATA  TRANSPARENCY   FOR  INTEROPERABILITY  WITH  BUILDING  ENERGY  PERFORMANCE  SOFTWARE         A  Thesis   Presented  to   The  Faculty  of  the  School  of  Architecture   University  of  Southern  California       In  Partial  Fulfillment   of  the  Requirements  for  the  Degree   Master  of  Building  Science   By   Mohammed  Omar  Hijazi   May  2015       ii   Mohammed Omar Hijazi Email: hijazi@usc.edu Tel: 213-610-1001 Prof. Karen Kensek, Committee Chair Email: kensek@usc.edu Prof. Kyle Konis, Committee Member Email: kkonis@usc.edu Prof. Douglas Noble, Committee Member Email: dnoble@usc.edu Mr. Jeffrey W. Ouellette, Assoc. AIA, IES, Advisor Email: jouellette@vectorworks.net Prof. Douglas Noble, Department Director Email: dnoble@usc.edu University of Southern California     iii   TABLE  OF  CONTENTS   Acknowledgements                           1     Abstract                     2     Chapter  1:  BIM,  BEM  and  BIM  Gaps               3   Importance  of  the  research                 4     1.0  Terminology                 4   1.1  Building  Energy  Consumption             6   1.2  Building  Energy  Modeling  (BEM)             7   1.3  Building  Information  Modeling  (BIM)             7     1.3.1  Introduction               7     1.3.2  BIM  Standards                 7     1.3.3  The  Models               8   1.4  BIM  Gaps                     9     1.4.1  The  Survey               9     1.4.2  What  is  causing  the  gaps?           11       1.4.3  Overcoming  the  Gaps             13   1.5  Research  Scope                 19   1.6  Deliverables                 19   1.7  Summary                   19   1.7.1  Chapter  structure  and  outline           19   1.7.2  Research  objectives             20         iv   Chapter  2:  The  GAP  between  BIM  and  BEM           21   2.1  Introduction                 22   2.2  BIM/BEM  workflow                 22   2.2.1  The  Models:  Design  Model  vs.  BEM           22   2.2.2  Data  Transfer:  interoperability  and  round-­‐tripping     22     2.3  Interoperability  and  data  transfer             24   2.3.1  File  Formats:  neutral  versus  vendor-­‐specific       25   2.4  Neutral  file  format:  gbXML               26   2.4.1  Organization  of  information  within  the  gbXML  schema       26   2.5  Neutral  file  format:  IFC               27   2.  5.1  IFC  file  format               27   2.  5.2  Interpreting  the  IFC  file             28   2.  5.3  Information  Delivery  Manual  (IDM)  of  energy  analysis       28   2.5.4  IFC  compliance  and  certification  process         30   2.6  Background  literature  research  contributing  to  the  study       30     2.6.1  HVAC  calculations  from  Revit  MEP  model  utilizing  gbXML   30     2.6.2  “Some  Advice  for  Migrating  to  IFC”  (Delfosse  et  al.  2012)   32   2.6.3  “  Interoperability  between  BIM  and  BEM;  (Sumedha  2008)   33   2.7  Determining  potential  problems  in  data  flow         33     2.7.1  Test  runs  using  gbXML             34     2.7.2  Test  runs  using  IFC             36   2.8  Conclusion                   37   Chapter  3:  Methodology                 38   3.1  Introduction:  overview  of  the  methods  and  processes       39   3.2  Defining  the  required  variables             40   3.3  Defining  the  test  case  model             41     3.3.1  Modeling                   41     3.3.2  Exporting  the  data  models           41     3.3.3  Checking  the  building  form  for  accuracy  and  completeness   42   3.4  Proposed  tool  to  help  resolve  the  problem           43     3.4.1  Data  Transparency  Tool  (DTT)             43   3.5  Creating  the  DTT                 44       v   3.5.1  Matching  variable  set  with  data  model  enumerations       45   3.5.2  Mapping  data  model  scheme  with  new  XML  schemes     46     3.5.3  Presenting  the  scheme  in  Excel           48   3.6  Testing                   49   3.7  Conclusion                   49     Chapter  4:  BIM  to  BEM  Dataflow  testing             50       4.1  Introduction                 51   4.2  Test  case  model                 51   4.2.1  The  model               51   4.2.2  Case  study  building,  subset  of  critical  parameters       52     4.2.3  Choice  of  Building  Elements           56   4.2.4  Revit  Rooms  versus  Spaces           57   4.3  Dataflow  testing                   59   4.3.1  Checking  the  building  geometry  for  accuracy  and  completeness   59   4.3.2  Checking  the  parameters  for  accuracy  and  completeness     59   4.4  The  results                   60   4.4.1  Building  geometry  accuracy  and  completeness       60   4.4.2  Building  data’s  accuracy  and  completeness  (not  geometry)     63   4.5  Comparing  the  data  capacity  of  the  different  data  models       67   4.5.1  Test  runs  using  gbXML             67   4.5.2  Test  runs  using  IFC             67                     4.6  Conclusion                   67     Chapter  5:  Developing  the  Data  Transparency  Tool         69   5.1  Introduction  to  the  chapter             70   5.2  Matching  variable  set  with  data  model  enumerations       70       5.2.1  gbXML                   71   5.3  Mapping  DTT’s  new  XML  schema             75   5.4  Developing  user  interface  functions           76       5.5  Conclusion                     81         vi   Chapter  6:  Presenting  the  Data  Transparency  Tool           82   6.1  Introduction                 83   6.1.1  Presenting  the  relevant  data           83     6.1.2  Analyzing  the  data               83   6.1.3  Reporting                 83   6.1.4  Data  Model  Comparison               83   6.2  A  guide  to  tool  use                 84       6.2.1  Setup,  Startup,  and  the  user  interface         84     6.2.2  Importing  data  models  and  understanding  the  data       88   6.2.3  Analyzing  the  data               89   6.2.4  Reporting               89   6.2.5  Data  Model  comparison             90   6.3  Coupling  DTT  with  geometry  viewers             92   6.4  Conclusion                   94     Chapter  7:  Future  work  and  Conclusion             95   7.1  Introduction                 96   7.2  Future  Work                 96   7.2.1  Pressure  on  Software  Developers         96   7.2.2  Open  source  formats             96   7.2.3  Development  on  the  DTT             97   7.2.4  Developing  further  tools;  A  IFC  to  gbXML  converter       97   7.3  Conclusion                   98   References                     100   Bibliography                     102       vii   Appendices                     105   Appendix  A:    BIM  GAP  Survey               106   Appendix  B:    IDM  for  Precast  Concrete  enlarged  image         113   Appendix  C:    Philip  Cunningham  research  figures           114   Appendix  D:    Window  and  wall  element  exchange  table         116   Appendix  E:    Enlarged  diagram  of  gbXML  original  structure       118   Appendix  F:    DTT  additional  reports             120         viii   LIST  OF  FIGURES     Figure    1.1:  3D  model  to  energy  software  via  gbXML            5   Figure    1.2:  Partial  diagram  of  an  IDM                5   Figure    1.3  (Left):  A  partial  composition  structure  for  defining  an  MVD      6   Figure    1.3  (Right):  MVD  forming  a  subset  of  IFC  for  a  specific  data  exchange.      6   Figure    1.4:  Buildings  share  of  U.S.  primary  energy  consumption.        6   Figure    1.5:  BIM  gaps;  a  number  of  causes  of  data  loss  at  project  exchange  points.    9   Figure    1.6:  Federated  model  versus  a  single  centralized  data  model.       10   Figure    1.7:    Modeling  the  same  wall  with  differing  amounts  of  information.     11   Figure    1.8:  Responses  to  how  the  gap  between  BIM  can  be  bridged.         14   Figure    2.1:  The  process  of  building  modeling.               23   Figure    2.2:  Type  of  data  models  (IFC  or  gbXML)  that  BIM  Authoring  tools  and                    Energy  Simulation  tools  import  and  export.           24   Figure    2.3:  Two  data  transfer  methods  between  BIM  and  BEM.         25   Figure    2.4:  Partial  structure  of  gbXML  file.               26   Figure    2.5:  The  partial  textual  representation  of  project  location  in  gbXML.     27   Figure    2.6:  The  partial  textual  representation  of  project  data  in  IFC.       28   Figure    2.7:  Partial  diagram  of  an  IDM  specifying  different  exchange  files  in  a                      specific  project  phase.               28   Figure      2.8:    Architectural  Precast  Project  process  Map,  IDM  for  Precast  Concrete   29   Figure      2.9:  gbXML  elements  and  highlighted  in  blue  are  the  specific  elements                      supported  by  Revit  MEP.               31   Figure  2.10:  gbXML  elements  and  highlighted  in  green  are  the  specific  elements                      supported  by  Trace700.                     32   Figure  2.11:  ArchiCAD®  trimming  tool  and  its  IFC  export         33   Figure  2.12:  Results  of  exchange  data  of  the  location,  building,  and  space  elements         35   Figure  2.13:  The  results  of  the  exchange  data  of  the  window  element  and  the  wall                        assembly  of  the  material  element.           36   Figure      3.1:  The  textual  representation  of  the  materials  of  a  floor  assembly  from                          Revit  represented  in  gbXML.             39   Figure      3.2:  Building  energy  modeling  variables  categorized  into  Program,  Form,                    Fabric,  and  Equipment.               40       ix   Figure      3.3:  Schedules  customized  to  match  IDF  file  exact  requirements.     41   Figure      3.4:  IFC  export  window;  Revit  IFC  built  in  export  supports  limited                                                    schemes  of  IFC,  IFCXML  is  not  one  of  them.         42     Figure      3.5:    IFC  export  window.               42   Figure      3.6:    gbXML  export  process.               43   Figure      3.7:  Diagram  of  the  Data  Transparency  Tool  (DTT).         44   Figure      3.8:  gbXML  elements.                 45   Figure      3.9:  Diagram  of  methodology;  matching  gbXML  and  IFCXML  enumerations                      with  the  defined  variable  set.             46   Figure  3.10:  Diagram  of  methodology;  Utilizing  gbXML  and  IFCXML  template                      schemes  as  a  source  to  create  new  schemes.         47   Figure  3.11:  Diagram  of  methodology;  Mapping  new  XML  schemes  based  on  the                      defined  variable  set  and  then  presenting  the  scheme  in  an  excel  tool.   48   Figure      4.1:  Image  of  the  reference  office-­‐building  model  from  Revit.       52   Figure      4.2:  A  number  of  parameters  that  were  included  in  the  representative                      sample  test.                 53   Figure      4.3:  The  layers  making  up  the  structure  of  the  wall  were  part  of  the                      representative  sample  test.             53   Figure      4.4:  The  wall  properties.               54   Figure      4.5:  List  of  gbXML  elements.               55   Figure      4.6:  Schedules  customized  to  match  requirements  that  were  in  the  IDF  file.        56   Figure      4.7:  The  room-­‐bounding  property  for  elements  for  walls,  floors,  and  roofs.     57   Figure      4.8:  Rooms  versus  spaces  in  exporting  gbXML  settings.       58   Figure      4.9:  The  export  gbXML  window  within  Revit  (left).  Errors  in  geometry  are                      reported  within  Revit’s  export  mechanism  (right).       58   Figure  4.10:  The  base  case  model  in  Revit  (left).  gbXML  import  was  done  using                        gModeller  extension  to  Sketchup  (Right).                   59   Figure  4.11:  The  textual  representation  of  a  floor  assembly  in  Revit  (left),  the                          representation  in  gbXML  (center),  the  structure  of  the  file  (right)   60   Figure  4.12:  The  created  test  cast  model  in  Revit.           61   Figure  4.13:  Imported  model  in  SketchUp  after  transferring  through  IFC.     62   Figure  4.14:  Imported  model  in  SketchUp  after  transferring  through  gbXML.     62   Figure  4.15:  Imported  model  in  IES  Pro  after  transferring  through  gbXML.     62         x   Figure  4.16:  Results  of  the  exchange  data  of  the  location,  building,  and  space                                      elements.                   64   Figure  4.17:  The  results  of  the  exchange  data  of  the  window  element  and  the                        wall  assembly  of  the  material  element.           65   Figure  4.18:  The  results  of  the  exchange  data  of  the  space  attributes.       66   Figure      5.1:  Diagram  of  the  Data  Transparency  Tool  (DTT).         70   Figure      5.2:  Diagram  of  methodology.               71   Figure      5.3:  Diagram  of  gbXML’s  original  hierarchical  structure.       72   Figure      5.4:  gbXML  elements  mapped  with  DOE’s  defined  group  variables.     74   Figure      5.5:  Importing  the  gbXML  template  file  as  source  to  map  the  DTT.     75   Figure      5.6:  Using  the  gbXML  template  file  as  source  to  map  the  DTT.       75   Figure      5.7:  Mapping  new  XML  schema  based  on  the  defined  variable  and                      presenting  the  schema  in  DTT’s  Excel  interface.             76   Figure      5.8:  Command  buttons  are  inserted  via  the  developer  tab.       77   Figure      5.9:  Visual  Basic  for  Applications.             77   Figure  5.10:  The  five  command  buttons  that  were  created  in  the  DTT.       77   Figure  5.11:  The  complete  code  of  “Import”  command  button.:       78   Figure  5.12:  The  partial  code  of  “Check  Missing  Data”  command  button.  :     78   Figure  5.13:  DTT’s  generated  PDF  report.             79   Figure  5.14:  The  partial  code  of  “Generate  Report”  command  button.       80   Figure  5.15:  The  partial  code  of  “Refresh”  command  button.         80   Figure  5.16:  The  code  of  the  “Compare”  macro.           81   Figure      6.1:  The  reference  DOE  office-­‐building  model  from  Revit  used  for  tutorial.   84   Figure      6.2:  “Program”  sheet  encompasses  building  program  variables.     85   Figure      6.3:  “Form”  sheet  encompasses  only  Building  Story  variables  of  the  Form.         85   Figure      6.4:  “Fabric”  sheet  encompasses  building  fabric  variables.       86   Figure      6.5:  “Equipment”  sheet  list  the  power  usage.           86   Figure      6.6:  “File  Spec”  presents  the  meta  data  of  the  file.         87   Figure      6.7:  “Other  Data”  sheet.               87   Figure      6.8:  File  selection  window  emerges  when  the  user  clicks  the  “import                      gbXML”  button.                 88   Figure      6.9:  DTT  automatically  sorts  the  data  into  their  specified  fields.     88   Figure  6.10:  Missing  data  are  highlighted  in  red  to  alert  the  user.       89         xi   Figure  6.11:  The  generated  (PDF)  completeness  report  of  the  “Modern  Family                        Home”  gbXML  file.               90   Figure  6.12:  The  spreadsheet  Compare  tool  is  launched  once  “Compare”  is  clicked.   91   Figure  6.13:  The  user  is  promoted  to  select  the  desired  files  to  compare.     91   Figure  6.14:  Both  files  are  brought  up  and  presented  side  by  side.       91   Figure  6.15:  The  table  in  the  lower  center  summarizes  the  differences.     92   Figure  6.16:  The  medium  office  model  in  Revit  (left)  and  the  geometrical                        representation  of  the  exported  data  model  in  SketchUp  (right).     93   Figure  6.17:    A  more  complex  geometry  “Modern  Family  Home”  created  in  Revit.   93   Figure  6.18:  The  imported  model  in  SketchUp  after  transferring  through  gbXML.   93   Figure    7.1  :  Type  of  data  models  (IFC  or  gbXML)  that  BIM  Authoring  tools  and                      Energy  Simulation  tools  import  and  export.         98   Figure    F.1  :  Generated  report  from  DTT  reporting  function  of  a  28%  model.     120   Figure    F.2  :  Generated  report  from  DTT  reporting  function  of  a  49%  model.         121   Figure    F.3  :  Generated  report  from  DTT  reporting  function  of  a  96%  model.         122                                           1       ACKNOWLEDGEMENTS       I   am   using   this   opportunity   to   express   my   gratitude   to   everyone   who   supported   me   throughout  the  course  of  this  thesis.     First  off  my  family,  especially  my  lovely  mother  Dr.  Randa  Abu-­‐Zarour  and  amazing  father   Dr.  Omar  Hijazi  for  their  undivided  support  and  interest  who  inspired  me  and  encouraged  me  to   pursue  higher  education,  without  whom  I  would  be  unable  to  complete  my  project.  A  thank  you   to  my  three  wonderful  sisters;  Ayah,  Leen,  and  Shahd  whom  stood  by  my  side  motivating  me   and  to  God  who  made  all  the  things  possible.   This  thesis  will  not  have  been  possible  without  the  continuous  guidance  and  support  of  my   spectacular  committee  chair  Prof.  Karen  Kensek.  I  could  not  have  wished  for  having  a  better   advisor  and  mentor  than  her.     I  would  like  to  express  my  deep  gratitude  to  Prof.  Kyle  Konis  and  Prof.  Douglas  Noble,  my   research  supervisors,  for  their  guidance,  enthusiastic  encouragement  and  valuable  critique  of   the  thesis  work.  I  would  also  like  to  thank  Mr.  Jeffrey  Ouellette,  for  sharing  his  pearls  of  wisdom   with  me  during  the  course  of  this  research.  Thanks  for  Prof.  Mark  Schiler  for  being  an  excellent   thesis  advisor.  In  addition,  a  thank  you  to  Arch.  Tim  Kohut,  who  introduced  me  to  Building   Energy  Modeling,  and  whose  passion  for  Energy  Efficiency  had  a  lasting  effect  on  my  work.    I  want  to  thank  to  the  King  Abdullah  Scholarship  Program  for  their  financial  support.   Thanks   to   Skanska   USA   Building,   Inc.,   especially   Greg   Smith   and   Anthony   Colonna,   and   University   of   Southern   California   graduate   research   program   for   supporting   the   BIM   gap   research.     My  special  thanks  to  our  extended  MBS  family,  especially  Bo,  Chao,  Fahd,  Geoffrey,  Hui  Ling,   Sebanti,  Shang,  Spurthy,  and  Yiyi  whom  made  the  past  two  years  an  exciting  experience.           2       ABSTRACT   Many  gaps  exist  between  (BIM)  authoring  software  and  Building  Energy  Modeling  (BEM)   tools.  One  gap  is  due  to  loss  of  data  in  the  exchange  between  the  design  and  energy  simulation   models.  Energy  efficiency  is  now,  more  than  ever,  a  top  concern  that  should  be  addressed  in  the   earliest   of   the   design   stages.   Explaining,   understanding,   and   enhancing   the   data   transfer   between  software  would  allow  better  design  decisions  through  more  accurate  coordination   between  energy  simulation  and  building  modeling.   The  data  exchange  is  done  mainly  using  either  Green  Building  XML  (gbXML)  or  Industry   Foundation  Classes  (IFC).  Both  offer  geometrical  and  thermal  data  transfers;  however  they  are   structured   and   function   differently.   Their   structure,   ability   to   encode,   and   ability   transfer   relevant  data  from  BIM  authoring  software  to  the  BEM  tools  were  examined.     A  simple  model  was  exported  from  BIM  authoring  software  using  both  file  formats  and  then   imported  to  selected  energy  simulation  tools.  The  export  functionality  of  the  BIM-­‐authoring   software  and  the  import  functionality  of  the  BEM  tools  was  “validated”  by  comparing  the  values   with  the  original  inputted  data  in  the  BIM  authoring  tool.  Special  consideration  was  given  to   understanding  and  testing  the  structure  of  the  data  models  to  encode  both  geometric  data  and   information,  the  ability  of  BIM  authoring  tools  to  export,  and  energy  software  to  import  the   appropriate  data.    In  many  cases,  the  exchange  of  data  was  not  complete  and  in  several  cases   inaccurate  or  not  transparent  to  the  user.       A  major  failing  in  the  data  transfer  was  also  user  expectations.  A  user  might  assume  that  the   data   transfer   is   accurate   and   therefore   base   on   its   export   from   the   building   information   modeling  software;  another  assumption  might  be  that  because  it  is  not,  it  is  useless.    It  would  be   extremely  helpful  to  show  exactly  not  only  what  is  being  transferred,  but  also  what  is  actually   input  as  the  file  is  loaded  into  the  energy  software.    Transparency  is  critical,  especially  for   inexperienced  users.  A  Data  Transparency  Tool  (DTT)  was  developed  to  allow  the  user  to  verify   the   data   in   the   gbXML   files   and   then   correct   inaccuracies.   This   is   done   by   applying   a   transparency  layer  upon  the  gbXML  data  model  so  users  can  easily  understand  what  is  being   transferred.   The   process   of   creating   the   tool   was   divided   into   three   steps:   1)   Matching   gbXML   enumerations  with  a  defined  set  of  critical  building  variables  that  affect  energy  consumption.   These  variables  were  grouped  under  four  main  categories:  program,  form,  fabric  and  equipment.   2)  Utilizing  the  gbXML  XML  schema  to  map  new  XML  schemes  that  match  the  variable  set.  3)   Presenting  the  scheme  in  a  Data  Transparency  Tool  that  would  automatically  populate  and   analyze  the  data.           HYPOTHESIS     One  can  add  a  layer  of  transparency  to  the  data  exchange  between  the  design  and  energy   simulation  models  would  allow  users  to  observe  what  values  are  being  transferred  from  BIM  to   BEM.       3           CHAPTER  1    BIM,  BEM,  AND  BIM  GAPS           4         The   exchange   of   information   between   a   digital   building   model   and   analytical   software   should  be  seamless  so  that  designers  understand  the  implications  of  their  changes  in  designs.   However,  many  gaps  exist  between  Building  Information  Modeling  (BIM)  authoring  software   and  Building  Energy  Modeling  (BEM)  tools.  One  gap  is  the  loss  of  data  in  the  exchange  between   the  design  and  energy  simulation  models.     This  causes  a  major  flaw  in  perceived  software  interoperability  and  failure  to  uphold  user   expectations.  A  user  might  assume  that  the  data  transfer  is  accurate  and  base  design  decisions   on  faulty  values,  or  that  because  not  all  values  are  being  transferred;  a  BIM  to  BEM  data   exchange  process  is  useless.  It  would  be  extremely  helpful  to  show  exactly  not  only  what  is   being  transferred,  but  also  what  is  actually  input  as  the  file  is  loaded  into  the  energy  software   Adding   a   layer   of   transparency   to   the   data   exchange   between   the   design   and   energy   simulation  models  would  allow  for  more  informative  decision  making  process  and  therefore   reduce   the   current   gap   that   exists   between   them   and   better   support   the   building   energy   performance  simulation  and  analysis  workflow.   1.0  TERMINOLOGY:   Below  are  common  terms  in  the  BIM  and  energy  simulation  sectors  and  that  are  used   throughout  the  document.       Building  Information  Modeling  (BIM):  “Building  Information  Modeling  is  the  development   and  use  of  a  multi-­‐faceted  computer  software  data  model  to  not  only  document  a  building   design,  but  to  simulate  the  construction  and  operation  of  a  new  capital  facility  or  a  recapitalized   (modernized)  facility.  The  resulting  Building  Information  Model  is  a  data-­‐rich,  object-­‐based,   intelligent  and  parametric  digital  representation  of  the  facility,  from  which  views  appropriate  to   various  users’  needs  can  be  extracted  and  analyzed  to  generate  feedback  and  improvement  of   the  facility  design”(GSA  2007).     Building  Energy  Modeling  (BEM):  Also  called  Building  Energy  Simulation  (BES)  is  the  use  of   software  tools  to  predict  new  energy  consumption  and  costs.     Data  Model:  A  structure  of  symbols  and  text  set  to  accurately  translate  and  transfer  real  data   (both  geometrical  and  non-­‐geometrical)  between  different  applications.       DOE  Variable  Categories:  Four  categories  that  group  the  different  parameters  that  energy   software  use  for  simulation;  Program,  Form,  Fabric,  and  Equipment  (Deru  et  al.  2011).         gbXML:  gbXML  is  an  open  schema  developed  specifically  to  transfer  building  geometrical  and   thermal  data  enabling  interoperability  between  BIM  authoring  software  and  energy  simulation   tools.         5   Interoperability:  “The  ability  of  two  or  more  systems  or  components  to  exchange  information   and  to  use  the  information  that  has  been  exchanged”  (IEEE  Std  610  1991)  (Fig.  1.1).  Data   exchange  can  be  done  through  different  workflows,  5  of  which  are  explained  in  Chapter  2.       Figure 1.1: 3D  model  to  energy  software  via  gbXML  using  Autodesk  Revit/Vasari  and  Green  Building   Studio  as  an  example  (Autodesk  2014). Industry  Foundation  Classes  (IFC):  Industry  Foundation  Classes  (IFC)  is  an  open  standard   data  specification  that  is  object  based,  vendor  neutral,  open  source,  and  freely  available  to  the   public  and  software  developers.  It  is  intended  for  BIM  interoperability  and  is  used  for  describing   building  components  and  construction  data.  It  is  actively  being  developed  by  the  buildingSMART   International   organization,   (http://www.buildingsmart.com   and   http://www.buildingsmart- tech.org/),  (Kensek  2014).   Information  Delivery  Manual  (IDM):  A  standard  within  IFC  that  specifies  when  and  what   information  is  needed  at  each  exchange  point.  IDM  specifies  specific  details  of  the  exchange   requirements  and  is  created  with  the  input  of  focus  groups  from  the  industry  (Fig.  1.2).     Figure  1.2:  Partial  diagram  of  an  IDM  specifying  different  exchange  files  in  a  specific  project  phase,  for   example  this  diagram  can  resemble  an  IDM  for  concept  design  phase  for  energy  analysis.       Model  View  Definition  (MVD):  The  formal  translation  of  the  IDM  and  the  prerequisites  into   software  language,  which  forms  a  subset  of  the  IFC  for  a  specific  data  exchange  (Fig.  1.3).       6     Figure  1.3:  Left:  A  partial  composition  structure  for  defining  a  Model  View  Definition  (MVD)  (Chuck   Eastman,  Manu  Venugopal,  Rafael  Sacks  2015).  Right:  Example  of  MVD  forming  a  subset  of  the  IFC  for  a   specific  data  exchange.     1.1  BUILDING  ENERGY  CONSUMPTION     Building   design,   construction,   and   operation   consume   a   large   amount   of   energy   and   resources   and   create   substantial   amount   of   waste.   Building   energy   consumption   has   been   steadily   increasing   and   reaches   significant   percentages   in   developed   countries.   In   the   US,   residential   and   commercial   buildings   account   for   almost   39   percent   of   total   U.S.   energy   consumption   and   38   percent   of   U.S.   carbon   dioxide   (CO2)   emissions   (DOE   2008).   The   population  growth  and  increasing  demand  on  building  will  assure  this  upward  trend  unless   dramatic  changes  are  made  (Fig.  1.4).                                                     Figure  1.4:  Buildings  Share  of  U.S.  Primary  Energy  Consumption  (DOE  2008).             This  continuous  increase  in  demand  for  energy  is  a  result  of  industrialized  development  and   population  growth.  This  triggered  research  for  more  efficient  energy  methods.  Europe  faced  the   energy  crisis  earlier  this  century  and  is  now  well  ahead  of  the  US  in  in  energy  conservative   measures  in  most  if  not  all  of  the  sectors.  These  measures  include  stricter  building  regulations   as   well   as   the   industry   reply   of   advanced   technological   systems   and   techniques.   The   International   Energy   Efficiency   Scorecard   ranks   the   countries   with   leading   economies   depending  on  their  energy  efficiency  policies  and  programs,  USA  ranked  #13  behind  most  of  the   EU  countries  (ACEEE  2014).       7   1.2  BUILDING  ENERGY  MODELING  (BEM)   BEM  is  the  use  of  software  to  predict  the  energy  consumption  of  a  building.  BEM  takes  many   attributes   of   the   building   geometry,   location,   internal   loads,   end   user,   and   weather   file   to   generate  the  energy  consumption  charts.  BEM  has  applications  in  building  design,  life-­‐cycle  cost   analysis,  and  energy  retrofit  analysis.   To  become  effective,  energy  efficiency  should  be  a  determining  factor  in  the  design  of   buildings  and  therefore  should  be  carefully  analyzed  at  the  very  first  of  the  design  stages.   However  the  lifecycle  energy  efficiency  and  corresponding  cost  savings  are  not  main  factors  in   building  design  process,  which  makes  unlikely  that  every  building  is  designed  to  maximize  use   of  energy  efficient  design.  Therefore,  incorporation  of  energy  efficient  methods  often  comes  in   late  stages.  (Stanford  2014).  Many  designers  do  however,  realize  the  importance  of  energy   efficient  measures  and  embed  its  concepts  in  the  building  design  but  these  concepts  are  rarely   properly   evaluated.   This   is   sometimes   caused   by   the   inability   of   software   to   assess   these   concepts,  such  as  effect  of  vegetation,  and  in  other  cases  user  related.   1.3  BUILDING  INFORMATION  MODELING  (BIM)     1.3.1  Introduction   The  building  industry  makes  up  a  large  portion  of  the  US  market  share  and  is  an  ever-­‐ growing  industry  that  continues  to  evolve.  It  is  a  complex  process  and  goes  through  many  stages   and  involves  different  firms  and  individuals.  They  are  tasked  with  partial  tasks  that  eventually   unite  to  create  the  project  whole.     BIM  is  an  emerging  technology  that  attempts  to  addresses  this  gap  by  creating  a  workflow   process  that  serves  the  whole  building  life,  starting  from  design  throughout  all  its  phases  until   demolition.  BIM  emphases  on  data  management  and  the  ability  to  access  and  transfer  correct   information  between  project  models  and  phases.  It  utilizes  3D  representation  to  improve  the   input  and  utilization  of  the  data  within  the  model.  BIM  enhances  project  coordination  and   collaboration  between  the  various  professionals  involved  to  support  more  informative  decision-­‐ making.    It  has  proved  to  be  very  successful  in  the  industry  and  most,  if  not  all,  major  firms  have   already  adopted  it.  “Since its inception in 1970s, the industry-wide adoption of BIM has increased from 28% in 2007, 49% in 2009, to 71% in 2012 in the North America” (McGraw-Hill 2012).   1.3.2  BIM  Standards   “A  major  part  of  managing  BIM  is  establishing  standards  against  which  the  organization  can   measure  itself  including  both  its  products  and  processes.  BIM  standards  have  come  from  a   variety  of  sources;  three  common  ones  are  from  the  American  Institute  of  Architects  (AIA),   BIMForum,  and  the  National  Institute  of  Building  Sciences  (NIBS).     The  AIA  is  the  US’s  professional  organization  for  architects,  offering  education,  government   advocacy,   community   redevelopment,   and   public   outreach   to   support   the   architecture   profession.   AIA   collaborates   with   the   other   organizations   in   the   AEC   field   in   an   effort   to   coordinate   the   AEC   industry   and   produces   many   regulatory   documents   and   aims   to   set   standards   to   manage   the   design   and   construction   process   (AIA   2014).   BIMForum   is   a   professional   organization   for   facilitating   and   accelerating   the   adoption   of   BIM   in   the   AEC   industry.  Its  umbrella  covers  ten  sub-­‐forums  that  address  the  different  industry  sectors  and   topics  by  collaborating  with  each  other  and  other  industry  organizations  (AIA,  NIBS,  NIST,  IAI,   C3T,  3xPT,  CURT,  etc.)  (BIMForum  2014).  NIBS  is  a  non-­‐profit  organization  that  aims  to  improve       8   the  performance  of  buildings  by  supporting  advances  in  building  science  and  technologies.  NIBS   recognized  the  importance  of  BIM  and  accordingly  created  the  National  BIM  Standards  Project   Committee  (NBIMS)  with  a  mission  to  "improve  the  performance  of  facilities  over  their  full  life-­‐ cycle  by  fostering  a  common,  standard  and  integrated  life-­‐cycle  information  model  for  the  AEC   and  FM  industry”  (NIBS  2014).” (Kensek, Becker, and Hijazi 2014) 1   1.3.3  The  different  Models   “Different theories and expectations exist as to whether or not it is possible to have a single BIM for the lifecycle of a building. In current professional practice, there rarely exists a single unified project BIM. Instead, there are many BIMs used for diverse purposes that evolve over time: • Design BIM. This is a building project BIM held by the architect that links the design intent model with those of the consultants. • Consultant BIMs. This includes those models created by the consultants: structure, MEP, fire protection, etc. • Constructability BIM. This is a building project BIM developed by the contractor that links the design BIM and those from sub-contractors and fabricators if they exist. Often this includes a range of file types from 2D CAD drawings to fully 3D BIMs. • Facilities Management BIM. This BIM can be used towards using the design and construction information and incorporating it into a computerized maintenance management system.” (KBH 2014) “Partial  BIMs  come  into  existence  for  a  specific  purpose.  For  example,  designers  might  use   part  of  the  design  BIM  for  a  conceptual  energy  model.  This  implies  that  the  users  know  what   they  need  to  run  the  analysis  software  and  employ  the  appropriate  subset  of  data  useful  for   completing  that  task.  This  is  in  contrast  to  “fragmented  BIMs”  where  not  all  the  information  that   is  needed  is  contained  in  the  BIM,  and  it  is  unclear  who  is  responsible  for  including  that  data.   Fragmented  BIMs  have  led  to  gaps  in  the  handoff  of  models  (Fig.  1.5).  Determining  ways  of   bridging  gaps  provides  opportunities  for  future  development  of  building  information  modeling   and  provides  tangible  benefits  for  the  design-­‐construction  industry.”  (KBH  2014)                                                                                                                             1  (Kensek,  Becker,  and  Hijazi  2014):  This  is  a  white  paper  titled  “BIM  Gaps:  major  issues  that  are   preventing  seamless  integration  of  building  information  modeling  in  the  AECO  industry”  that  has   been  developed  by  Kensek,  Becker  and  Hijazi  (The  thesis  author)  in  conjunction  and  at  the  same  time   of  this  thesis.  The  paper  therefore  is  quoted  extensively  in  Chapter  1  as  an  introduction  to  the  BIM   gaps.  It  will  be  referred  to  as  (KBH  2014)  as  a  shorthand.       9   Figure  1.5:    BIM  gaps;  A  number  of  causes  of  data  loss  at  project  exchange  points. 1.4  BIM  GAPS     The  acronym  BIM  might  be  accurately  described  as  building  information  management  as  a   strong  component  of  BIM  is  to  support  the  flow  of  data  and  connect  the  different  disciplines  and   phases  throughout  the  lifecycle  of  a  building.  However,  there  are  still  gaps  in  the  data  transfer   between  the  different  phase-­‐specific  models  of  the  project;  they  interrupt  the  flow  of  data.  In   order  to  understand  the  nature  of  the  gaps,  a  survey  was  taken  targeting  professionals  in  the   design  and  construction  industry  with  specific  question  aiming  to  understand  the  flow  of  data   between   BIM   models.   The   results   were   tabulated,   and   problems   and   potential   solutions   identified.     1.4.1  The  Survey   BIM   increases   the   collaboration   and   makes   data   communication   more   effective   but   it   introduces  new  challenges  on  how  the  data  will  be  shared,  using  which  platform  and  which  team   members  will  have  access  and  to  what  extent.  Through  interviewing  professionals  and  sending  a   survey  about  these  gaps,  it  was  shown  that  many  professionals  believe  that  gaps  exist  and  that   there  is  a  technology  aspect  to  it.  The  survey  was  sent  to  3,300  individuals  in  the  building   industry.  172  people  responded  with  information  about  their  organization,  their  role  in  the  firm,   and  their  organization’s  use  of  BIM.  The  survey  questions  can  be  found  in  the  Appendix  A.  “This   survey  focused  specifically  on  the  problems  that  individuals  were  having  the  models  themselves,   existing  BIM  standards,  and  perceived  BIM  gaps.”  (KBH  2014)   The  results  of  the  survey  led  the  researchers  to  further  examine  a  number  of  topics,  starting   from  the  different  BIM  models,  their  data  structure  and  how  they  are  linked.  Focus  was  then  put   on  the  existing  gaps  between  the  models;  the  causes  behind  the  gap  and  ways  to  overcome  it.   The  Models:       10   “BIM  management  is  an  important  and  growing  part  of  the  AEC  industry”  (Azhar  2011).   Professionals  fully  dedicated  to  this  management  are  becoming  more  common,  demonstrating  a   shift  in  the  industry  and  the  importance  of  data  management  (Deutsch  2011).  Organizations   handle   BIM   in   many   different   ways   with   varying   degrees   of   commitment,   complexity,   and   success.  One  of  the  key  questions  in  determining  (and  eliminating)  the  BIM  gap  stems  from  the   number  of  models  used  for  each  project.  More  than  half  of  the  respondents  (53%)  indicated  that   their  organizations  use  multiple  building  information  models  for  each  project.  The  vast  majority   of  these  (49%)  use  discipline-­‐specific  models,  whereby  the  architect  has  a  model,  separate  from   the  structural  engineer’s  model  and  mechanical  engineer’s  model.   “Although  separate,  these  models  are  often  linked  so  that  each  model  is  not  made  from   scratch  (Fig.  1.6).  Typically,  this  provides  the  needed  functionality  while  keeping  the  file  size   down  (a  concern  due  to  technological  restrictions).  The  benefits  of  this  method  include  a  clear   division  of  responsibility  (or  perhaps  even  more  importantly,  liability).  Separate  models  make  it   easy  to  see  who  did  what,  and  there  is  a  clear  hierarchy  for  decision-­‐making.  The  remaining  4%   used  separate  models,  differentiated  by  design  phase.  This  means  that  all  of  the  project  team   members  work  together  on  a  single  model  during  each  phase  of  design.  A  challenge  with  this   method  is  that  responsibility  and  liability  are  harder  to  determine  when  entities  are  all  working   on  the  same  model  at  the  same  time.  It  raises  questions  of  how  mistakes  and  changes  are   responded  to  and  how  this  changes  the  scope  of  work  for  each  party.  ”  (KBH 2014)   Figure  1.6:    Federated  model  versus  a  single  centralized  data  model.     “One  third  (33%)  of  the  respondents  indicated  usage  of  a  single,  centralized  model.  With   this  method,  one  model  is  worked  on  by  all  members  of  the  project  team  throughout  the  life  of   the  project.  For  this  method  to  be  feasible,  an  adequate  sharing  platform  must  be  selected,  and   the   team   must   have   computers   capable   of   handling   the   very   large   file   size   of   the   model.   Responsibility  and  liability  must  be  clearly  defined  contractually.     The  remaining  respondents  (14%)  selected  “Other.”  Two  primary  reasons  were  given  for   choosing  this  option.  The  first  reason  was  that  their  organization  does  not  use  BIM.  The  second   reason  given  was  that  the  model  type  changed  from  project  to  project.   Knowing  how  an  organization  uses  and  shares  models  makes  the  gaps  between  the  models   more  apparent.  It  is  essential  to  understand  the  purpose  and  composition  of  the  many  types  of   BIMs  used  in  the  industry.  The  intent  of  a  building  information  model  is  a  very  important  factor   when  determining  how  BIM  is  to  be  used.  Project  team  members  must  consider  the  model  at   each  stage  of  development  and  its  purpose.  For  example,  a  design  intent  model  is  used  to   express  the  form  and  defining  characteristics  of  the  project.  If  all  of  the  data  for  execution  of  the   project  (for  example,  including  shop  drawings)  are  included  from  the  beginning,  the  model  is  no   longer  for  design  intent,  but  for  execution.  This  can  cause  unnecessary  confusion.  By  embracing       11   the  intent  of  the  model  in  each  phase,  timing  for  the  expression  of  data  is  clearer.  To  avoid   confusion,  this  might  involve  using  placeholder  data  in  stages  where  the  actual  data  is  not   relevant  to  the  decisions  being  made  (Ouellette  2013).  If  the  intent  of  the  model  is  clear,  the   expectations  of  the  team  creating  it  are  clearer  as  well.”  (KBH 2014)     Does  the  Gap  Exist,  and  Is  It  a  Problem?   “Research  into  the  BIM  gap  and  associated  problems  was  initiated  based  on  two  critical   assumptions.   The   first   was   that   gaps   exist.   Although   experience   and   anecdotal   evidence   reaffirmed  this  conjecture,  it  was  important  that  the  assumption  be  validated  with  information   from  the  industry.  When  asked  if  the  gap  between  BIM  used  for  design  and  BIM  used  for   construction  existed,  more  than  4  out  of  5  respondents  (81%)  said  “yes.”  Only  11%  said  “no,”   and  8%  said  they  did  not  know.  These  findings  were  in  line  with  the  initial  assumption  and   serve  to  support  the  existence  of  the  BIM  gap.   The  second  critical  assumption  was  that  the  gap  was  detrimental  to  projects  in  terms  of  time,   efficiency,  money,  technological  resources,  or  any  combination  of  these  or  any  other  issues.   When  asked  if  the  gap  caused  a  problem,  63%  of  respondents  responded  “yes”,  while  23%  said   “no.”  The  remaining  14%  did  not  know.  While  not  as  definitive  as  the  first  question,  these   responses   also   seem   to   validate   the   assumption   that   the   gap   is   in   some   way   detrimental   (although  having  nearly  a  quarter  say  it  was  not  a  problem,  and  another  15%  not  know  was   somewhat  surprising  and  dismaying).”  (KBH 2014)   1.4.2  What  is  Causing  the  Gap(s)?   “Survey  respondents  were  asked  to  select  from  a  list  the  possible  causes  of  the  gap.  They   were  not  limited  in  the  number  of  selections  they  could  make.  The  top  responses  were  very   close  in  terms  of  total  respondents.  Half  of  all  the  survey  participants  listed  lack  of  knowledge  of   construction  methods  as  a  contributor  to  the  BIM  gap.  When  participants  were  then  asked  to   indicate  which  issues  they  believed  to  be  most  critical  in  causing  the  gap,  lack  of  knowledge  of   construction  methods  was  again  the  most  popular  response,  with  34%  of  all  respondents  citing   it.   According  to  Jeffrey  Ouellette,  the  problems  facing  BIM  are  inter-­‐professional;  rooted  in  a   lack  of  understanding  among  the  architecture,  engineering,  and  construction  disciplines.  There   is  a  clear  knowledge  gap  in  the  BIM  process,  evidenced  by  how  models  are  made  and  the   different  expectations  of  each  party  (Ouellette  2013).  A  simple  example  of  this  is  a  wall.  A   contractor  wants  to  see  every  layer  and  material,  how  the  finishes  begin  and  end,  and  how  the   wall  connects  to  the  rest  of  the  structure.  An  architect  however,  only  needs  to  see  the  form  of  the   wall  and  will  often  make  the  wall  a  single  component  (Ouellette  2013).  The  question  becomes,   how   much   do   AEC   professionals   need   to   know   about   each   other,   and   with   increasing   specialization,  how  to  share  that  knowledge  that  is  needed  at  the  appropriate  detail  level  for  the   stage  of  design/construction  that  is  underway  (Fig.  1.7).  “((KBH 2014)   Figure  1.7:    Two  ways  of  modeling  the  same  wall  with  differing  amounts  of  information.         12   “Unclear  responsibilities  ranked  as  the  second  most  selected  contributor  to  the  gap  (with   49%)  and  the  second  most  critical  contributor  (with  30%).  Clarity  is  important  because  the   current   conventional   workflows   and   BIM   design   and   modeling   processes   differ.   The   conventional   process   is   linear.   It   moves   from   one   team   to   the   next   and   is   easy   to   assign   responsibility  to  members  of  the  project  team  (Larsson  2004).  The  BIM  process  can  be  more   open-­‐ended.  The  model  could  be  influenced  by  a  large  number  of  players,  so  finding  a  way  to   control  its  information  content  is  essential.  Questions  faced  by  project  teams  include:  Who   makes  the  decisions  in  cases  of  value  engineering?  How  are  data  and  the  model(s)  to  be  shared?   How   is   quality   control   maintained?   In   an   environment   with   many   authors/editors,   who   is   responsible?     These  questions  address  the  way  many  people  work  together  more  than  the  actual  work   itself,   but   they   are   essential   to   successful   BIM   (Ouellette   2013).   In   fact,   one   of   the   most   important  elements  of  BIM  is  not  unique  to  BIM  at  all  and  can  be  used  to  define  all  of  the   responsibilities  of  a  project  team:  the  legal  contract.  However,  a  contract  is  not  a  simple  or   guaranteed  solution.       A)  Legal  Issues   The  legal  issues  that  accompany  BIM  are  numerous  and  complicated.  While  there  is  little   doubt  that  BIM  can  enhance  the  design  process  and  assist  in  the  execution  of  a  project,  it  raises   many   issues.   The   multiplayer   nature   of   BIM   begs   questions   about   party   liability   and   who   assumes  which  risks.  Proper  ownership  of  intellectual  property  also  comes  into  question,  if   multiple  parties  have  been  working  on  and  changing  the  same  design.  Unfortunately  as  of  this   writing,  there  is  no  clear  precedent  by  which  to  interpret  matters  of  BIM  and  the  law  (Koenig   2014).     The  current  doctrine  presiding  over  construction  cases  is  United  States  vs.  Spearin,  a  1918   case  finding  that  there  was  “an  implied  warranty  of  design  accuracy”  meaning  that  fault  lies  with   the  contractor  unless  the  problem  can  be  traced  to  the  plans  and  specifications  (Koenig  2014).   This  aligns  nicely  with  the  more  traditional  construction  delivery  method  of  design-­‐bid-­‐build,  in   which  distinct  parties  (for  example  architect  and  contractor)  perform  specific  and  separate   tasks  (design  the  building  and  construct  the  building),  in  a  set  order  (the  design  is  completed   before   construction   begins)   (Sabo   and   Zahn   2005).   However   the   utility   of   this   doctrine   diminishes   as   more   and   more   projects   use   collaborative   media   (such   as   BIM)   in   delivery   systems  which  are  not  so  compartmentalized  (like  design-­‐build),  so  the  law  needs  to  catch  up   with  the  industry  (O’Conner  2007).  The  building  departments  of  most  local  governments  add  to   this  problem,  since  the  documents  of  record  are  the  traditional  two-­‐dimensional  plans.  It  is  the   2D  plans  that  are  legally  binding,  and  until  these  building  departments  can  start  assessing  and   approving   BIMs   (which   will   lead   to   more   wide-­‐spread   right   of   reliance   for   these   models)   bridging  the  gap  will  be  an  uphill  battle  (Koenig  2014).”  (KBH 2014)   B)  Communication  Issues   “Although  BIM’s  goal  is  to  increase  project  collaboration  and  communication  efficiency,  it   introduces  new  challenges  on  how  the  data  will  be  shared,  using  what  hardware  and  software,   and  which  team  members  will  have  access  and  to  what  extent.   The  second-­‐most  selected  (tied  with  unclear  responsibilities  at  49%)  and  third-­‐most  critical   contributor  to  the  BIM  gap  (with  26%)  was  a  lack  of  knowledge  about  standards  and  processes.   A  large  number  of  participants  (65%)  indicated  that  their  organizations  use  standards  of  some       13   kind,   so   this   seems   to   indicate   that   the   standards   are   not   strongly   enforced   within   the   organizations.     BIM  is  a  project  wide  process  that  delivers  through  technology.  Unfortunately  this  process  is   far  from  being  governed  by  a  single  standard.  “BIM  standards  are  as  varied  as  railroad  track   widths  were  in  the  early  1800s”  (Shapiro  2014).  Different  projects  and  firms  have  different   specific  activities  and  properties  that  make  their  case  unique  –  however,  this  does  not  imply  that   everything  associated  with  a  BIM-­‐based  project  is  unique.  The  concept  of  a  BIM  Execution  Plan   (BEP)  arose  to  regulate  BIM  processes.  The  intent  is  that  a  firm  would  have  a  BEP  to  cover   recurring  issues  and  adapt  it  with  project  specific  alterations.”  (KBH 2014)     C)  Interoperability  Issues   “Interoperability   is   defined   as   “the   ability   of   two   or   more   systems   or   components   to   exchange   information   and   to   use   the   information   that   has   been   exchanged”   (IEEE   1990).   Therefore  BIM  software,  ideally,  should  support  the  seamless  flow  of  data  in  all  exchange  points.   However,  software  interoperability  is  an  issue  that  faces  the  industry  in  all  of  its  activities   (Bazjanac  2008).  The  survey  results  support  this  as  a  staggering  (77%)  of  the  respondents   indicated   that   their   organization   faces   software   interoperability   issues   that   may   cause   incompatibility  between  the  different  building  information  models.     Project  losses  caused  by  interoperability  are  apparent;  however  evaluating  and  quantifying   monetary   losses   has   not   been   an   easy   task.   The   US   National   Institute   of   Standards   and   Technology  (NIST)  issued  a  report  in  August  2004  that  estimated  that  $15.8  billion  was  lost   annually  by  the  U.S.  capital  facilities  industry  due  to  inadequate  software  interoperability.  The   research  included  "design,  engineering,  facilities  management  and  business  processes  software   systems,  and  redundant  paper  records  management  across  all  facility  life-­‐cycle  phases."  The  cost   of   inadequate   interoperability   was   reached   by   quantifying   the   efficiency   loss   caused   by   interoperability  issues.  The  value  was  reached  by  comparing  the  actual  costs  with  a  hypothetical   scenario  in  which  the  data  exchange,  management,  and  access  were  seamless  (Gallaher  et  al.   2004).   Finally,  11%  of  the  survey  participants  indicated  that  a  lack  of  knowledge  of  BIM-­‐related   software  was  a  contributor  to  the  gap.  BIM  is  a  process  supported  by  technology;  understanding   the  software  commands  is  not  enough  to  practice  correctly.  “  (KBH 2014)   1.4.3  Overcoming  the  Gaps   Many   organizations   believe   that   the   gap   between   design   and   constructability   building   information  models  is  a  problem,  and  they  have  not  sat  idly  by  waiting  for  a  solution.  Survey   participants  indicated  what  their  organization  currently  does  to  address  the  problem  (Fig.  1.8).   Early  contractor  involvement,  dedicating  more  time  to  early  phases  of  design,  and  employee   training  topped  the  list  of  responses.       14   Figure  1.8:    Participants  responses  to  how  the  gap  between  building  information  models  can  be   bridged.     Drawn  from  the  overall  survey,  but  augmented  by  interviews  and  other  sources,  several   methods  of  overcoming  the  gap  have  been  categorized  into  communication,  technology,  and   legal  methods  in  the  following  sections.     A)  Legal  Methods   Although  only  one  survey  participant  expressly  stated  a  law-­‐related  method  for  bridging  the   gap,  the  authors  believe  that  they  could  be  very  powerful  in  making  the  handoff  of  models  from   designers  to  builders  much  faster  and  smoother.  Although  adopting  various  standards  and   technologies  in  firms  is  optional,  fulfilling  the  contract  is  mandatory.  Two  specific  examples   where  this  might  be  improved  through  contracts  are  the  right  of  reliance  and  the  record  BIM  (or   BIM  to  facilities  management).     1.  Right  of  Reliance:   In  some  cases  the  3D  BIM  might  actually  be  part  of  the  documentation;  there  might  be  a   “right  of  reliance”  on  it.  Right  of  reliance  is  a  term  that  refers  to  whether  or  not  one  can  use  the   3D  model  (in  addition  to  the  drawings  or  specifications)  for  questions  about  what  is  to  be  built”   (Kensek  2014).  Since  the  right  of  reliance  is  not  guaranteed  in  most  contracts,  it  is  difficult  to   fully  use  the  information  in  the  BIM  including  the  3D  geometry  to  its  fullest  advantage  without   re-­‐doing  a  lot  of  work,  a  major  gap  in  the  handoff  between  the  architect  and  contractor.  Until   legal  policy  develops  to  better  accommodate  BIM  and  the  evolving  construction  industry,  the   contract  tying  parties  together  will  be  the  single  most  important  document  of  the  project.  The   contract  should  define  (typically  on  a  case-­‐by-­‐case  basis)  the  scope  of  work  required  of  each   party,  and  the  associated  responsibilities  and  risks.  Other  issues  must  also  be  addressed  in  the   contract,  such  as  who  is  responsible  for  the  cost  of  corrections  in  the  event  of  an  incorrect  model,   who  retains  ownership  of  the  model,  and  how  changes  are  tracked  and  documented  (Guangbin,   Xuru,  and  Wei  2011).     2.  Record  BIM:   The  record  BIM  is  a  deliverable  to  the  client  at  closeout,  specified  in  the  contract,  that  is  used   as  a  virtual  description  of  the  building,  its  systems,  and  associated  data  (either  within  the  model   or  linked  to  it),  which  can  be  used  as  a  source  of  documentation  about  the  building  throughout   its  life  cycle  (Kensek  2014).  Some  owners  require  the  use  of  BIM  and  the  handover  of  the  model   to  them  at  the  end  of  the  project.  This  model  is  typically  used  for  facilities  maintenance,  and  the   owner  may  have  very  specific  instructions  as  to  how  models  are  to  be  built,  naming  conventions,   and  how  the  model/s  are  to  be  shared.  Owners  with  large  portfolios  (like  universities)  set  their   own   requirements   for   BIM.   However,   although   these   standards   may   be   rigorous,   they   are   designed   for   the   owner   and   might   not   have   any   effect   on   how   a   designer   and   contractor       15   exchange  information  during  the  design  and  construction  process.  Establishing  the  terms  of  a   contract  as  an  owner  is  not  difficult.  The  problem  is  that  it  is  very  rare  for  a  contract  to  require  a   BIM  to  be  used  for  execution,  even  though  it  could  easily  be  done  (Koenig  2014).     The  ConsensusDOCS  301  BIM  Addendum  has  been  created  to  begin  to  promote  the  use  of   BIM   through   supportive   legal   documentation   (Lowe   and   Muncey   2009b).   Clearly   defined   contractual  responsibilities  and  expectations  as  they  relate  to  BIM  would  go  far  to  bridge  the   gap  between  design  and  construction  professionals  and  their  models,  but  contracts  do  not   remove  every  barrier.”  (KBH 2014)     B)  Communication  Methods   “Communication  in  one  form  or  another  is  the  most  widely  used  method  for  bridging  the   gap.  Since  the  cause  of  the  gap  was  reported  to  be  due  to,  at  least  in  part,  a  lack  of  understanding   between  the  design  and  construction  disciplines,  greater  and  more  effective  communication   may  help  to  alleviate  problems.  More  than  half  of  the  survey’s  participants  indicated  that  their   organization   holds   regular   coordination   meetings   with   all   members   of   the   project   team   including  those  with  on-­‐site  “big  room”  BIM-­‐based  gatherings.  Additionally,  more  than  half  of   the  participants  also  indicated  engagement  with  the  contractor  at  the  very  earliest  stages  of  the   project  has  helped  to  bridge  the  gap.    Other  communication  methods  include  project  delivery   methods,  standards,  AIA  documents,  level  of  development,  and  The  National  BIM  Standard-­‐ United  States™  (NBIMS-­‐US).   1.  Project  Delivery  Methods   One  of  the  biggest  influences  on  the  BIM  gap  and  its  effects  is  the  way  teams  are  set  up  to   work  together  and  deliver  a  project.  The  traditional  delivery  method  of  design-­‐bid-­‐build  and  the   existing  insurance  tools  and  legal  precedents  that  accompany  it  have  put  considerable  effort  into   clearly   differentiating   the   parties   of   a   construction   project,   explicitly   stating   where   responsibilities   and   liabilities   lie   (Ashcraft   2008).   This   creates   adversarial   roles   among   members  of  the  team  and  can  add  to  costs,  both  in  terms  of  time  and  money.  Because  the  full   benefits  of  BIM  are  only  realized  in  a  more  collaborative  work  environment,  more  flexible  and   supportive  delivery  methods  are  needed  (AIA  /  AIA  CC  2007).     In  some  cases,  the  industry  appears  to  be  moving  this  way  Yunnan  Allen  revealed  in  an   interview  that  all  but  one  of  her  recent  projects  with  HMC  Architects  utilized  the  design-­‐build   delivery  method,  a  method  which  contractually  joins  design  and  construction  entities  from  the   start.  A  single  contract  minimizes  liability  for  the  owner  and  typically  reduces  the  timeline  by   allowing  design  and  construction  services  to  be  performed  simultaneously.  This  necessitates   increased  communication  and,  according  to  Allen,  leads  to  less  of  a  BIM  gap  because  everyone  is   on  board  and  working  on  models  from  the  beginning  and  “guarantees  the  maximum  good  for  the   client”  (Allen  2013).  A  design-­‐build  project  would  make  sharing  information  easier  and  more   effective,  since  it  effectively  joins  the  design  and  construction  entities  into  a  single  unit,  at  least   in  terms  of  the  contract  (Ashcraft  2008).   Integrated  project  delivery  (IPD)  is  another  delivery  method  conducive  to  a  BIM-­‐based   process  that  effectively  reduces  problems  by  encouraging  information  interchange  through  the   project.  According  to  the  AIA  /  AIA  CC  Guide,  “the  full  potential  benefits  of  both  IPD  and  BIM  are   achieved  only  when  they  are  used  together”  (AIA  /  AIACC  2007).     Lean  Construction  is  a  “way  to  design  production  systems  to  minimize  waste  of  materials,   time,  and  effort  in  order  to  generate  the  maximum  possible  amount  of  value,"  (Koskela  et  al.   2002).  It  is  a  specific  process,  meant  to  better  align  team  members  working  toward  mutually       16   beneficial  goals,  and  when  used  in  conjunction  with  IPD  can  reduce  waste  and  increase  the   reliability  of  planning.  This  is  demonstrated  by  Integrate  Project  Delivery  Inc.’s  use  of  IPD  and   Lean  Construction  to  deliver  an  Events  Center  for  the  Orlando  Utilities  Commission  at  a  savings   of  over  $1  million  on  a  $7.5  million  guaranteed  maximum  price  contract  (IND.  Inc.  2014).”  (KBH 2014)   “2.  Standards   Since  the  second-­‐most  selected  and  third-­‐most  critical  contributor  to  the  BIM  gap  was  a  lack   of  knowledge  about  standards  and  processes,  producing  unifying  standards  would  be  one  of  the   most  important  ways  to  bridge  the  gap.  Part  of  the  challenge  that  faces  the  construction  industry   comes  from  the  nature  of  its  projects.  The  AECO  industry  deals  with  distinctive  projects  and   cannot  be  compared  to  other  industries  such  as  the  automotive  where  the  process  is  recurring   repetitive  for  mass  production  (Simmonds  2014).  The  concept  of  a  “One  Unified  Standard”   therefore  is  difficult  if  not  impossible  to  achieve,  but  many  efforts  exist  to  govern  aspects  and   clarify  attributes  of  the  workflow.    These  include  the  AIA  documents,  level  of  development   (LOD)  classifications,  and  The  National  BIM  Standard-­‐United  States™.       AIA  Documents:   The  AIA  produces  documents  that  serve  as  tools  to  support  and  govern  the  use  of  BIM   across  the  project.  These  documents  are  produced  from  collective  input  from  practitioners  from   across  the  industry.  An  example  is  the  E202-­‐2008  BIM  Protocol  document  that  specifies  who  is   responsible  for  creating  each  model  element  and  to  which  detail.  It  also  clarifies  model  intent,   authorized  use,  model  reliance  and  legal  aspects  as  well  as  model  ownership.  Another  important   document  is  the  G202–2013,  Project  Building  Information  Modeling  Protocol  Form.  “Its  purpose   is  to  document  the  agreed  upon  protocols  and  procedures  that  will  govern  the  development,   transmission,  use  and  exchange  of  building  information  models  on  a  project”  (AIA  2013).  Below   is   a   list   of   AIA   digital   practice   documents.   A   document   that   explains   the   purpose   of   each   document   and   guides   their   use   can   be   found   at   following   link.     (http://www.aia.org/groups/aia/documents/pdf/aiab095711.pdf)     Level  of  Development:   Another  issue  that  faces  BIM  and  contributes  to  the  gap  is  the  lack  of  standards  that  manage   model  expectations  (Ouellette  2014).  When  a  BIM  deliverable  is  required  by  the  contract  at  an   exchange  point  or  phase  handover  (at  the  end  of  the  design  development  phase,  for  example),   what   exactly   the   model   should   include   and   how   far   it   should   be   developed   might   be   undetermined.   The   Level   of   Development   Specification   was   created   to   tackle   this   issue   by   establishing   a   standardized   content   requirement   at   various   stages   of   the   design   and   construction  process  (BIMForum  2014).  The  LOD  Specification  was  developed  by  the  BIMForum   expanding  on  AIA  initial  definitions  that  were  set  for  the  AIA  G202-­‐2013  Building  Information   Modeling  Protocol  Form  (AIA  2013).     BIMForum  made  a  clear  distinction  between  the  level  of  development  and  level  of  detail.   The  level  of  detail  is  how  geometrically  complex  the  components  are.  Level  of  development  is   how  much  reliable  data  can  be  interpreted  about  the  element.  The  document  defines  six  levels  of   element  development  that  progress  from  generic  symbols  at  LOD  100  to  reach  field  verified   representations  at  LOD  500.  Assigning  LOD  specifications  at  each  stage  of  the  BIM  process  aids   in  standardizing  the  models  and  therefore  supports  informed  communication  and  expectation   management.     LOD’s  role  in  bridging  the  gap  is  advocated  by  many  professionals.  Brok  Howard  of  HOK   considers   LOD   an   integral   tool   for   successful   communication   in   the   AECO   industry.   He   encourages  the  thoughtful  use  of  LOD  documents  as  an  agreed  upon  dictionary  for  the  industry       17   use.  In  that  sense  it  becomes  the  reliable  reference  for  defining  contractual  terms.  Howard   argues  that  emphasis  should  not  be  on  what  needs  to  be  modeled  and  instead  the  notion  of  what   information  needs  to  be  communicated  and  at  which  stage  of  the  design  process  (Howard  2014).   Elizabeth  Chodosh  of  CannonDesign  expressed  that  the  LOD  definitions  by  themselves  are   not   enough.   Even   though   the   LOD   document   contains   the   level   definitions,   different   interpretations  of  the  same  item  can  be  made.  She  explained  that  CannonDesign  take  a  further   step  by  introducing  BIM  authoring  tools  they  use  to  LOD  definitions  by  identifying  families  and   family  types  as  layers  within  the  LOD.  These  refined  LOD  definitions  are  clearly  articulated  and   set  as  part  of  the  BIM  execution  plan  (Chodosh  2014).”  (KBH 2014)     “The  National  BIM  Standard-­‐United  States™  (NBIMS-­‐US)   The  National  Institute  of  Building  Sciences  buildingSMART  alliance™  developed  the  NBIMS-­‐ US  in  an  effort  to  resolve  the  gap  in  data  exchanges  for  facility  information.  NBIMS-­‐US™  is   consensus  document  that  aims  to  provide  standards  to  facilitate  efficient  life-­‐cycle  management   of   the   buildings   with   the   aid   of   BIM   technology.   Ouellette   explains   that   this   was   done   by   providing  the  standard  elements  and  mechanisms  for  creating  and  transferring  the  BIM  data.   “These  elements  and  mechanisms  include  reference  standards  of  technology  and  classification   systems;   information   exchange   standards   that   describe   the   processes   and   exchange   requirements  for  tasks  during  different  parts  of  a  building’s  life-­‐cycle”  (Ouellette  2014).  These   definitions  will  form  the  foundation  for  effective  communication  in  the  industry.     C)  Technological  Methods   Solutions  for  these  will  be  discussed  in  two  categories:  increasing  people’s  knowledge  of   BIM  technology  and  increasing  software  interoperability.   BIM   has   been   adopted   by   most   of   the   major   firms   in   today’s   AEC   industry.   “Since   its   inception  in  1970s,  the  industry-­‐wide  adoption  of  BIM  has  increased  from  28%  in  2007,  49%  in   2009,   to   71%   in   2012   in   the   North   America”   (McGraw-­‐Hill   2012).   88%   of   the   survey   respondents  stated  that  they  were  proficient  with  BIM,  11%  where  individuals  who  knew  of   BIM  but  didn’t  use  it,  and  only  1%  stated  that  they  are  not  familiar  with  BIM  at  all.       1.  Education   Although   BIM   adoption   levels   are   high   among   the   firms,   it   is   unmatched   with   proper   education  at  schools.  Many  believe  that  BIM  is  not  rooted  properly  in  the  education  system.   Howard  complains  of  the  lack  of  knowledge  of  the  people  that  are  coming  out  of  school  and   argues  that  it  is  one  of  the  main  contributors  of  the  gap.  He  sees  that  the  burden  of  educating   BIM  is  currently  transferred  to  and  put  upon  the  firms  (Howard  2014).  Therefore  the  post-­‐ professional  educational  tactics  including  trainings,  in-­‐firms  meeting,  professional  conferences   and  education  modules  require  graduates  to  be  aware  of  the  concepts  to  work  properly.     Kymmell  identified  the  main  obstacles  in  introducing  BIM  to  the  education  curriculum  and   categorized  them  in  three  groups.  The  first  related  to  understanding  the  BIM  tools,  the  second   related  to  understanding  BIM  concepts  and  processes,  and  the  third  related  to  circumstances  of   the  academic  environment  (Kymmell  2008).  Some  schools  have  overcome  these  obstacles  and   introduced  BIM  in  their  curricula.  BIMForum  conducted  an  academic  survey  on  8  US  and  3   international  universities  in  July,  2007.  Result  show  that  82%  of  them  formally  teach  BIM  in   courses  and  projects.  The  survey  shows  that  these  efforts  are  quite  recent  as  most  responses   (55%)   stated   that   BIM   was   just   introduced   during   or   after   2005.   Today,   schools   such   as   Pennsylvania  State  University,  Georgia  Tech,  University  of  Southern  California,  Montana  State       18   University,  and  University  of  Wyoming  are  acknowledged  as  leaders  in  BIM  education  (Barison   and  Santos  2010).  ”  (KBH 2014)   2.  Software  Interoperability   Industry   neutral   file   formats   are   being   developed   to   support   data   exchange.   Industry   Foundation   Classes   (IFC)   were   created   for   BIM   interoperability   as   “an   object-­‐oriented   file   format  with  a  data  model  developed  to  facilitate  interoperability  in  the  building  industry  and  a   commonly-­‐used  format  for  BIM.”  (buildingSMART  2014).  The  IFC  file  format  was  developed  by   the  International  Alliance  of  Interoperability  (IAI),  now  known  as  buildingSMART.  IFC  provides   an  object-­‐oriented  file-­‐format  solution  that  is  interoperable  with  different  software  functioning   at  different  stages  of  the  project.  By  doing  so  the  flow  of  data  is  continuous  through  one  file   structure  from  the  initial  design  stage  all  the  way  to  project  execution.  In  that  sense  IFC  is  more   practical  than  gbXML  as  the  latter  is  specifically  developed  for  energy  simulation  and  does  not   function  for  other  BIM  interoperability  concerns.  IFC  also  has  a  strict  software  certification   program  that  ensures  reliability  and  interoperability  that  gbXML  lacks  (Ouellette  2014).   As   the   seamless   flow   of   data   through   the   lifecycle   of   a   project   is   essential   for   BIM   effectiveness,  it  has  been  argued  that  the  term  “building  information  management”  is  a  better   description  of  the  role  of  the  technology  and  processes  that  it  changes  in  an  office.  The  correct   data  should  be  successfully  transmitted  between  the  different  participants  in  the  project  at   appropriate  exchange  points.  A  standard  formally  known  as  the  Information  Delivery  Manual   (IDM)  in  IFC  specifies  when  and  what  information  is  needed.  The  IDM  defines  the  different   exchanges  through  the  project/product  lifecycle  and  describes  the  details  requirements  of  each   exchange.  The  IDM  is  created  with  the  input  of  professional  organization  and  focus  groups  from   the  related  industry  (buildingSMART  2014).     The  output  of  the  IDM  is  basically  the  industry’s  description  of  data  flow.  This  is  balanced   with  the  software  capabilities  and  then  transferred  into  IFC-­‐based  language  solutions  (Aram  et   al.  2010).  These  solutions  are  the  Model  View  Definitions  (MVD),  which  become  subsets  of  the   IFC  for  a  specific  data  exchange.  The  MVD  is  the  source  for  software  requirement  specification  to   satisfy  an  exchange  requirement  as  it  defines  all  the  required  definitions  and  implementation   requirements  for  IFC  concepts  (buildingSMART  2014).   One  example  of  a  collaborative  effort  to  address  such  industry-­‐wide  exchanges  is  being  done   as  part  of  the  Precast  Concrete  National  BIM  standard  where  specific  information  exchanges   were   defined.   The   standard   was   formed   by   input   from   the   Precast/Prestressed   Concrete   Institute  and  the  Charles  Pankow  Foundation  with  technical  support  from  a  team  from  Georgia   Tech   and   the   Technion.   Twenty-­‐six   exchanges   were   identified   between   the   different   professionals  acting  on  the  precast  elements  throughout  the  product  lifecycle  (Eastman  et  al.   2011).  By  identifying  where  the  exchanges  occur,  what  information  needs  to  be  passed,  and  how   to  encode  that  information  in  IFC,  many  gaps  in  file  interoperability  can  be  filled.  ”  (KBH 2014)    Survey  Conclusion     “Gaps  exist  between  building  information  models  used  for  design  and  models  used  for   assessing  constructability  and  energy  simulation.  That  these  gaps  are  detrimental  to  industry   efficiency,  collaboration,  and  profits  is  also  a  widely  accepted  notion,  though  the  true  extent  of   the  problem  has  not  been  determined.  ”  (KBH  2014)  The  survey  respondents  grouped  these   gaps  into  various  categories  including  legal,  communication,  technology,  and  discipline  silos.   “Undoubtedly  there  has  been  significant  progress  for  BIM,  both  in  bringing  it  to  prominence  in   the   AECO   industry   and   in   trying   to   minimize   the   gaps   between   project   team   members.   Interoperable  data  formats,  industry  standards,  and  execution  plans  all  seek  to  assist  designers,   builders,  and  owners  in  providing  and  maintaining  the  best  possible  building.  But  more  is   necessary  if  BIM  is  to  be  used  to  its  full  potential  and  transform  the  industry.  ”  (KBH  2014)       19   1.5  RESEARCH  SCOPE   The  survey  identified  many  causes  of  the  BIM  gaps.  These  causes  were  categorized  into  legal   issues,  communication  issues,  and  interoperability  issues.  The  interoperability  gap  between  BIM   and  BEM  will  be  the  focus  Chapter  2.  Energy  is  now  more  than  a  top  concern  that  should  be   addressed  in  building  design.  Research  on  this  gap  was  chosen  to  enhance  the  data  exchange   quality  between  the  BIM  authoring  software  and  the  building  energy  simulation  tools.  This  will   be  by  proposing  and  evaluating  potential  tool  and  methods  to  address  interoperability.     As  there  are  many  geometrical  visualization  tools  such  as  OpenIFC,  RDF,  and  FZKViewer  it   would  be  valuable  to  complete  the  transparency  by  coupling  these  visualization  tools  with  a   Data  Transparency  Tool  (DTT).    The  DTT  would  complete  this  verification  process  working  in   conjunction  with  these  model  viewers  as  it  presents  all  the  variables  essential  for  the  energy   simulation  as  identified  by  DOE.       The  tool  would  address  a  major  flaw  in  perceived  software  interoperability  and  the  failure   to  uphold  user  expectations.  It  would  show  exactly  not  only  what  is  being  transferred,  but  also   what  is  actually  input  as  the  file  is  loaded  into  the  energy  software.  The  tool  would  allow  the   user  to  verify  the  data  in  the  data  models  and  then  correct  inaccuracies.   1.6  DELIVERABLE   The   decision-­‐making   process   will   be   improved   using   building   information   modeling   workflows   and   technologies   through   better   coordination   of   data   between   digital   building   models   and   the   energy   simulation   and   analysis   methodologies   and   technologies.   A   Data   Transparency  Tool  (DTT)  was  developed  to  report  the  completeness  and  accuracy  of  the  data   transfer.  Even  the  inexperienced  user  would  be  able  to  identify  issues  in  the  data  exchange  such   as  missing  or  manipulated  data.   The  tool  would  first  import  the  data  model  and  present  it  to  the  user  under  the  DOE’s   defined   categories   (Form,   Program,   Fabric,   and   Equipment).   Built   in   functions   would   then   analyze  the  file  and  alert  the  user  of  any  missing  or  incorrect  data.  The  DTT  also  incorporates  a   scoring  system  that  generates  an  overall  completeness  report.  The  overall  score  reports  the   overall  percentage  of  variables  that  have  been  provided.  This  function  enables  instant  review  of   content  and  assists  the  user  in  determining  the  relative  validity  of  simulations  if  the  file  was   used.   1.7  SUMMARY   1.7.1  Chapter  Structure  and  Outline   Chapter  1:  BIM,  BEM  and  BIM  Gaps:     An  introductory  chapter  to  BIM,  BEM  and  their  role  in  energy  efficient  designs.  The  main   gaps   between   BIM   models   are   discussed   with   emphasis   on   the   causes   and   potential   solutions.     Chapter  2:  The  GAP  between  BIM  and  BEM   Focus  is  put  on  the  interoperability  gap  particularly  between  the  BIM  and  BEM  workflow.   The  data  flow  is  investigated  and  potential  problems  are  identified.           20   Chapter  3:  Methodology   The  methodology  that  was  undertaken  to  develop  a  tool  that  would  assist  in  enhancing   interoperability  between  BIM  and  BEM  is  discussed.     Chapter  4:  Results   A  series  of  geometrical  and  data  inspections  were  conducted  on  the  data  exchange  between   BIM  and  BEM  using  the  common  data  formats  and  the  results  were  tabulated.     Chapter  5:  Developing  the  Data  Transparency  Tool   The  methodology  of  creating  the  DTT  is  followed  and  test  cases  were  run  on  its  validity.   The  results  were  inspected  and  analyzed,  particular  attention  was  given  to  highlighting  the   capabilities  and  limitations  of  the  data  transfer  and  effect  of  the  DTT.     Chapter  6:  Presenting  the  Data  Transparency  Tool   This  chapter  explains  how  to  use  the  DTT  and  describes  its  different  functions.     Chapter  7:  Future  work  and  Conclusions.     Includes  a  discussion  of  potential  future  work  that  could  support  the  data  flow  but  has  not   been  undertaken  as  well  as  the  concluding  remarks.     Hypothesis:   One  can  add  a  layer  of  transparency  to  the  data  exchange  between  the  design  and  energy   simulation  models  that  would  allow  users  to  observe  what  values  are  being  transferred  from   BIM  to  BEM.     1.7.2  Research  Objectives   • Understand  the  structure  of  the  workflow  between  BIM  and  BEM  and  identify  current   limitations.   • Understand   the   structure,   similarities,   and   differences   between   the   two   exchange   platforms:   Green   Building   Extensible   Markup   Language   (gbXML)   and   Industry   Foundation  Classes  (IFC)   • Test,   prototype,   and   demonstrate   data   exchanges   between   the   BIM-­‐authoring   and   energy  performance  building  information  models  on  various  platforms  using  IFC  and   gbXML.   • Develop  a  Data  Transparency  Tool  that  reveals  the  accuracy  and  completeness  of  the   data  exchange  for  gbXML  files.               21             CHAPTER  2    THE  INTEROPERABILITY  GAP     BETWEEN  BIM  AND  BEM                     22   2.1  INTRODUCTION     BIM  must  be  seen  as  a  complete  process  rather  than  a  set  of  software,  a  process  that  affects   the  workflows  of  the  design  and  construction  profession  (KBH  2014).  Chapter  1  reported  the   perceived  gaps,  their  causes,  types,  and  proposed  solutions.  These  gaps  could  result  in  data  loss,   miscommunications,   and   inaccurate   results,   which   would   inevitably   disturb   design   and   construction  process.  This  chapter  will  focus  on  the  interoperability  gap  particularly  between   the  BIM  and  BEM  workflow.   2.2  BIM  /  BEM  WORKFLOWS    “Energy  is  a  design  topic,  not  a  technology  topic,  but  there  are  few  of  us  who  have  always   believed   this”   (AIA   2012).   Therefore   to   become   effective,   energy   efficiency   should   be   a   determining  factor  in  the  design  of  buildings  and  consequently  should  be  carefully  analyzed  at   the  very  first  of  the  design  stages.  The  BIM/BEM  workflow  should  be  seamless  to  support  this   analysis;  unfortunately  and  as  reported  by  the  survey,  it  is  not.  Design  models  and  building   energy  models  are  built  for  different  purposes  and  contain  different  data.  Moving  data  between   these  models  could  save  the  designer  time,  reduce  redundant  work,  and  lead  to  greater  accuracy   as  the  models  reflect  the  same  data.   2.2.1  Design  Model  versus  BEM     A design BIM is “the building project BIM held by the architect that links the design intent model with those of the consultants” (KBH  2014).    The  architect  uses  it  as  a  tool  of  communication  and   collaboration  between  the  different  parties.  BEM  on  the  other  hand  as  defined  by  AIA  is  “the   predicts  of  a  building’s  anticipated  energy  use  and  corresponding  energy  savings,  as  compared   to  a  standard  baseline.  In  so  doing,  it  demonstrates  project  compliance  with  local,  regional  or   national  energy  codes.”(AIA  2012).      BEM  allows  the  architects  to  explore  the  factors  that   contribute  to  the  performance  of  a  building-­‐  in  doing  so  it  becomes  a  powerful  tool  for  reducing   building  energy  consumption.     The  design  model  is  created  mainly  to  serve  the  architect’s  role.  For  example,  room  labels   and  section  cuts  may  be  important  in  the  architecture  model,  but  not  directly  important  for   energy  analysis.  An  energy  simulation  specialist  must  then  manually  transform  the  architectural   building  information,  and  add  missing  required  information  to  create  the  model  required  for   energy  simulation (Bazjanac and Kiviniemi 2007).     2.2.2  Interoperability  and  Round-­‐tripping   Deru  suggested  a  data  flow  that  occurs  between  the  architectural  and  simulation  software   (Fig.  2.1).  Two  concepts  are  apparent:  the  first  is  the  transfer  of  data  between  the  BIM  software   and  the  BEM  tools  (interoperability)  and  the  second  in  the  round-­‐tripping  back  to  BIM  software.       23     Figure  2.1:  The  process  of  building  modeling  (Deru  et  al.  2011)     Deru  showed  that  the  data  entry  to  simulation  software  could  be  either  entered  completely   manually:  in  the  form  of  text  entry  via  the  simulation  tools  or  partial  data  transfer  in  addition  to   manual  entry.  The  import  of  partial  thermal  data  and  simple  mesh  zones  via  data  models   created  in  the  architectural  software  and  then  manual  entry  of  the  missing  data.  Deru  therefore   excludes  the  possibility  of  a  complete  transfer  of  data  (geometry  +  building  data)  via  a  data   model  such  as  IFC  or  gbXML  in  his  scenarios.  Two  explanations  are  possible,  either  Deru  is   unaware  of  the  data  models  (which  is  unlikely)  or  Deru  among  others  believes  that  the  data  transfer   through  data  models  is  incomplete.      Second,  and  in  reference  to  round-­‐tripping;  Deru  states  that   the  direct  data  transfer  back  to  the  architecture  software  from  the  simulation  doesn’t  exist  (Deru   et  al.  2011)    .  Any  changes  made  to  the  data  in  the  simulation  software  need  to  be  entered  back   manually  in  the  architecture  tool.  To  better  understand  the  previous  diagram  and  the  causes  for   the  interoperability  a  survey  of  BIM  and  energy  simulation  software  was  performed.         The  objective  was  to  determine  the  current  compatibility  levels  between  them.  The  type  of   data  models  (IFC  or  gbXML)  that  BIM  authoring  tools  export  and  the  data  models  that  the  BEM   tools  import  and  export  vary  (Fig.  2.2).  A  number  of  issues  can  be  observed:  the  first  is  in  the   direct  data  exchange  between  BIM  and  BEM,  and  the  second  is  in  the  limited  possibility  of   “roundtripping”  of  data  back  to  the  BIM  authoring  software  from  the  BEM  tools.   It  is  observed  that  neither  IFC  nor  gbXML  have  unanimous  software  support  of  to  complete   the  data  exchange  between  the  BIM  authoring  software.  IFC  has  better  support  between  the  BIM   authoring  tools  as  81%  enable  the  export  of  data  through  it  compared  to  44%  enable  export   through  gbXML.  While  gbXML  on  the  other  hand  has  better  support  between  the  BEM  tools  as   88%  support  its  import  vs  only  12%  are  certified  for  IFC  import.  This  means  that  the  user  has   very  limited  options  to  transfer  the  data  between  BIM  and  BEM  making  the  file  transfer  itself  a   challenge.  A  tool  is  proposed  in  Chapter  3  to  support  interoperability  between  the  two  file   formats.               24     Figure  2.2:  Type  of  data  models  (IFC  or  gbXML)  that  BIM  Authoring  tools  and  Energy  Simulation  tools   import  and  export;  data  from  a  web-­‐search  performed  November  2014       2.3  INTEROPERABILITY  AND  DATA  TRANSFER     Interoperability  is  defined  as  “the  ability  of  two  or  more  systems  or  components  to  exchange   information  and  to  use  the  information  that  has  been  exchanged”  (IEEE  1990).  As  per  this   definition,  manual  data  entry  into  the  BEM  tools  doesn’t  qualify  as  an  interoperability  method.     This  exchange  of  information  could  be  done  through  many  electronic  forms,  five  have  been   described;  One  central  model;  two  3D  models,  one  for  conceptual  design  and  another  for  energy   simulations;  3D  model  to  energy  software  via  gbXML  or  IFC;  3D  model  with  a  direct  plugin  to   energy  software;  and  3D  model  to  energy  software  within  a  visual  scripting  environment.:       1. One  model  that  holds  all  the  information  for  BIM  and  BEM   –  no  data  transfer   necessary.  This  is  a  theoretical  method  that  doesn’t  currently  exist.   2. Two  separate  3D  models,  one  created  by  designer  for  conceptual  design  and  another   created  by  energy  consultant  for  energy  simulations.  The  data  exchange  is  minimum,   and  somewhat  disconnected  as  this  would  require  manually  modeling  a  new  model   in  the  energy  simulation  software  interface.     3. Transfer  of  model  from  3D  authoring  software  to  energy  simulation  tool  and  this   can  be  in  3  different  forms:     a. 3D  model  to  energy  software  via  a  common  file  format  that  both  use  (Fig.   2.3  right).  gbXML  and  IFC  are  commonly  used  examples  of  such  data  files.   This  method  is  achieved  through  exporting  and  importing  data  models,     b. 3D  model  with  a  direct  plugin  to  energy  software.  BEM  is  integrated  within   BIM   software   and   the   export/import   stage   is   hidden   (Fig   2.3   left).   For   example,  direct  plug-­‐ins  exist  to  move  data  from  Revit  to  IES  <VE.         25   c. 3D   model   to   energy   software   within   a   visual   scripting   environment.   Software  such  as  Grasshopper,  Python,  and  Ladybug  import  the  model  along   with  other  variables  (such  as  weather  file)  and  run  it  through  a  workflow.     The   energy   simulation   tools   are   “nodes”   within   the   workflow   and   this   enables  the  automation  of  the  simulation  workflow.  This  method  enables   the   user   to   simulate   alternate   designs   in   little   time   and   subsequently   optimizing  the  design.                               Figure  2.3:  Two  data  transfer  methods  between  BIM  and  BEM,  on  the  left  BEM  is  a  plugin  within  the   BIM  software  such  as  (Sefaira)  and  on  the  left  the  transfer  is  done  through  exporting  and  importing   data  models.     Interoperability  through  data  models  will  be  the  focus  for  further  research.  It  has  become   the  industry  standard  and  already  has  the  support  of  leading  3D  BIM  vendors  such  as  Autodesk,   Bentley,  and  Graphisoft  (gbXML  2014).  These  data  models  could  either  be  vendor-­‐neutral  such   as  gbXML  and  IFC  or  vender  specific  such  as  RVT  files.  In  Vendor  specific  each  vendor  defines  its   own   trademarked   data   formats,   analysis   tools   and   viewers.   This   creates   issues   in   interoperability.  Vendor-­‐neutral  files  are  in  a  standard  format,  such  that  they  can  be  accessed  by   other  software.  Allowing  the  user  to  convert  data  directly  to  and  from  other  product  software.   This  holds  many  advantages  such  as  exceptional  flexibility,  efficient  and  more  accurate  data   transfers.       2.3.1  File  formats:  neutral  vs  software  specific     Two  of  the  most  common  neutral  file  formats  for  BIM  to  BEM  are  the  Green  Building  Studio   XML  (gbXML)  format  and  the  Industry  Foundation  Classes  (IFC)  scheme  using  either  the  STEP   (.ifc)  or  XML  (.ifcxml)  formats  .  Both  offer  geometrical  and  thermal  data  transfers  however  they   are   uniquely   semantically   structured   and   have   significant   functional   differences.   These   differences  arise  from  variances  in  development,  structure,  and  organization  of  the  data  models.       26   2.4  NEUTRAL  FILE  FORMATS:  GBXML     gbXML   is   an   open   schema   developed   specifically   to   transfer   building   geometrical   and   thermal  data  enabling  interoperability  between  BIM  authoring  software  and  energy  simulation   tools.  The  development  of  this  scheme  was  initiated  by  Green  Building  Studio,  Inc  in  early  1999.   The  development  was  funded  by  the  California  Energy  Commission  PIER  Program,  Pacific  Gas   and  Electric,  and  Green  Building  Studio.  The  first  version  of  the  schema  was  published  in  2000   and  continued  to  be  developed,  as  of  current  date  the  most  recent  is  version  5.12  (gbXML  2014).   gbXML  is  now  supported  by  the  majority  of  the  software  vendors  including  Autodesk,  Bentley,   and   Vectorworks;   a   complete   list   of   software   can   be   found   on-­‐line     (http://www.gbxml.org/software.php,  last  accessed  May  2014).       2.4.1  Organization  of  information  within  the  gbXML  schema     The  gbXML  file  is  in  textual  data  format  based  on  the  XML  schema  (Fig.  2.4  and  Fig.  2.5).  “It’s   structure  is  a  treelike  hierarchy  of  elements.  Each  element  has  one  or  more  values  and  children   attributes.  Elements  can  repeat,  but  the  structure  is  always  enforced.  The  schema  defines  fixed   values   that   follow   the   elements   and   are   called   enumerations.”   (Cunningham   2009)   These   elements   define   the   document,   the   geometry   and   the   materials   of   the   project.   Software   providers  choose  the  elements  in  which  their  software  supports.  This  is  exceptionally  important   for   interoperability   as   only   mutually   supported   elements   can   be   transferred   between   two   software.         Figure  2.4:  Partial  structure  of  gbXML  file;         27     Figure  2.5:    The  partial  textual  representation  of  project  location  in  gbXML.   2.5  NEUTRAL  FILE  FORMATS:  IFC   The   IFC   file   format   is   derived   from   earlier   efforts   by   the   International   Standards   Organization,  released  in  1984  called  STEP  (STandard  for  the  Exchange  of  Product  Model  Data).     IFC  uses  several  definitions  similar  to  that  of  STEP,  and  is  based  on  the  same  modeling  language,   EXPRESS  (Sumedha  2014).   IFC  file  format  was  developed  by  the  International  Alliance  of  Interoperability  (IAI),  now   known   as   buildingSMART.   IFC   provides   an   object-­‐oriented   file-­‐format   solution   that   is   interoperable   with   different   software   functioning   at   different   stages   of   the   project.   (BuildingSMART  2014).  By  doing  so  the  flow  of  data  is  continuous  through  one  file  structure   from  the  initial  design  stage  all  the  way  to  project  execution.  In  that  sense  IFC  is  more  practical   than  gbXML  as  the  latter  is  specifically  developed  for  energy  simulation  and  does  not  function  at   other  stages.  IFC  also  has  a  strict  software  certification  program  that  ensures  reliability  and   interoperability  that  gbXML  lacks.  There  has  been  several  releases  since  the  initial  version  1.0   IFC  was  launched  in  1997,  today  the  latest  is  IFC  4.  (BuildingSMART  2014)     2.5.1  IFC  file  formats   buildingSMART   develops   and   maintains   IFC   specifications   as   a   “Data   Standard;,   this   standard   is   registered   with   ISO   as   ISO16739.   The   IFC   data   files   are   exchanged   between   applications  using  the  following  formats  (buildingSMART  2014)   1. ifc:  The  IFC  EXPRESS  long  form  schema  which  is  the  default  IFC  exchange  format   used  to  exchange  data  between  applications.     2. ifcXML:  The  ifcXML  XSD  schema:  It  is  IFC’s  data  file  using  the  Extensible  Markup   Language  (XML)  document  structure.      Since  XML  defines  a  set  of  rules  for  encoding   documents  in  a  format  which  is  both  human-­‐readable  and  machine-­‐readable,  this  is   larger   data   file   (normally   300-­‐   400%   larger   than   an   IFC   file).   This   scheme   is   automatically  generated  by  the  application  or  converted  from  the  main  EXPRESS   schema.   3. ifcZIP:   A  compressed  version  of  the  .ifc  file  using   he  PKzip  2.04g  compression   algorithm  (compatible  with  e.g.  Windows  compressed  folders,  winzip,  zlib,  info-­‐zip,   etc.).     A  common  data  structure  between  gbXML  and  IFC  is  ifcXML,  both  are  built  upon  XML   structure  and  it  was  therefore  selected  for  the  development  of  the  DTT.       28   2.5.2  Interpreting  the  IFC  file   The  ifcXML  XSD  schema  was  selected  for  practical  purpose  as  it  is  based  on  the  same  scheme   as  gbXML,  which  is  the  XML  scheme.  This  will  enable  the  use  of  one  tool  to  interpret  both  the   data  models.  Therefore  the  proposed  Data  Transparency  Tool  (DTT)  that  is  proposed  in  the  next   chapter  will  map  out  the  elements  based  on  XML  scheme  structure.     The  latest  generation  of  IFC  is  IFC4  which  was  released  on  12.  March  2013.  However  it  has   not  yet  received  sufficient  software  support;  software  certification  for  the  IFC4  is  an  ongoing   process,  but  at  the  date  this  thesis  was  written  most  of  the  software  were  certified  for  IFC2X3.   For  that  reason  the  DTT  will  structure  based  upon  IFC2X3  (Fig.  2.6).     Figure  2.6:    The  partial  textual  representation  of  project  data  in  IFC.     2.5.3  Information  Delivery  Manual  (IDM)  of  energy  analysis   The  correct  data  about  the  building,  both  geometry  and  other  non-­‐geometric  data,  should  be   successfully  transmitted  between  the  different  participates  in  the  project  at  the  exchange  points.   The  developers  at  buildingSMART  realize  this  and  created  a  standard  formerly  known  as  the   Information  Delivery  Manual  (IDM),  which  specifies  when  and  what  information  is  needed.  The   IDM  defines  the  different  exchanges  through  the  project/product  lifecycle  and  describes  the   details   requirements   of   each   exchange.   The   IDM   is   created   with   the   input   of   professional   organization  and  focus  groups  from  the  related  industry  (Fig.  2.7).     Figure  2.7:  Partial  diagram  of  an  IDM  specifying  different  exchange  files  in  a  specific  project  phase,  for   example  this  diagram  can  resemble  an  IDM  for  concept  design  phase  for  energy  analysis.           29   An  example  collaborative  effort  to  address  such  industry-­‐wide  exchanges  is  the  one  made  to   produce  the  Precast  Concrete  National  BIM  standard  where  these  exchanges  were  defined.  The   standard  was  formed  by  input  from  the  Precast/Prestressed  Concrete  Institute  (PCI)  and  the   Charles  Pankow  Foundation  (CPF)  with  technical  support  from  a  team  from  Georgia  Tech  and   the  Technion.    The  IDM  for  Precast  Concrete  has  twenty-­‐six  exchanges  that  were  identified   between  the  different  professionals  acting  on  the  precast  elements  throughout  the  product   lifecycle.  The  columns  represent  the  phases  of  the  project  and  the  main  rows  represent  the   different  disciplines  acting  upon  the  project;  in  this  case  they  are  the  Architecture,  Engineering,   Manufacturing   and   Contracting.   The   identified   twenty-­‐six   exchanges   are   done   in   the   rows   between  the  discipline  processes  and  are  colored  in  green  and  yellow.  Arrows  define  the  path   the  generated  file  follows  (Fig.  2.8)  (Eastman,  Venugopal,  Manu,  and  Aram,  Shiva,  2011).         Figure  2.8:  Architectural  Precast  Project  process  Map,  IDM  for  Precast  Concrete,  (Eastman,  Sacks  ,  and   Panushev  2009)  A  larger  version  of  this  figure  is  in  Appendix  B.   The  output  of  the  IDM  is  basically  the  industry’s  description  of  data  flow.  This  needs  to  be   balanced  with  the  software  capabilities  and  then  transferred  into  IFC-­‐based  language  solutions.   These  solutions  are  the  Model  View  Definitions  (MVD),  which  becomes  a  subset  of  the  IFC  for  a   specific  data  exchange.  The  MVD  is  the  source  for  software  requirement  specification  to  satisfy   an   exchange   requirement.   This   is   because   it   defines   all   the   required   definitions   and   implementation   requirements   for   IFC   concepts.   For   example,   Autodesk   Revit   followed   the   requirements  specified  in  the  MVD  for  the  BIM  to  BEM  data  exchange  and  was  then  therefore   certified  for  this  particular  exchange.                   30   2.5.4  IFC  compliance  and  certification  process     The  certification  process  is  an  advantage  to  the  IFC  data  model  over  other  data  models.  It   offers  an  additional  layer  of  quality  control  in  all  the  applications  that  use  it.  Each  software  goes   through  the  applicable  certification  procedure  depending  on  the  subset  of  the  IFC  data  schema   its  supports  (AKA  the  MVD).  In  other  words  the  certification  is  linked  to  specific  MVD  that   support  one  or  more  exchange  requirements.  Software  developers  would  run  tests  of  their   implementation;  buildingSMART  stringent  certification  user  organizations  would  then  perform   a  detailed  quality  control.  The  current  procedure  is  the  IFC  Certification  2.0  procedure  as  of   2010  and  is  organized  into  three  parts.  First,  verifying  the  software’s  IFC  export  conforms  to  the   latest   IFC   standard.   Second,   verifying   that   import   mechanism   of   the   software   of   IFC   files   conforms  to  latest  IFC  standards.  Finally  a  general  conformance  assessment  that  inspects  the   used   IFC   terminology,   the   documentation   and   help   files,   the   completion   of   IFC   support   statements,   and   adhering   to   online   publication   requirements   of   the   certification   logo   and   certificate  (Buildingsmart  2014).   IFC  Certification  2.0  is  provided  with  a  conformance  test  suite  containing  :   • “Model   creation   guideline   sets   to   create   comparable   export   test   files   with   test   instructions  for  export  checking   • Automated   export   file   testing   based   on   validation   rules   that   formalize   the   constraints  imposed  by  the  model  view  definition   • Calibration  test  files  for  import  checking  based  on  test  instructions,  i.e.  check-­‐lists   and  templates  with  testing  criteria”  (Buildingsmart  2014).   Although  the  certification  process  is  an  advantage  to  the  IFC  data  model  it  does  not  eliminate   issues  in  interoperability.  It  merely  adds  a  layer  of  quality  control  in  a  sense  that  buildingSMART   along  with  the  software  developers  would  verify  the  export  or  import  of  IFC  files  but  that  does   not  guarantee  compliance  on  all  geometry  and  data  or  overcome  user  related  issues  in  modeling   and  data  input.   2.6  BACKGROUND  RESEARCH  CONTRIBUTING  TO  THE  STUDY   A  close  look  was  taken  at  three  previous  research  projects:  Cunningham  addressed  gbXML   capability  of  data  transfer  and  exploited  it’s  XML  structure;  Delfosse  explored  IFC  as  a  data   transfer  model  and  focused  solely  on  the  geometrical  issues;  Kumar  investigated  the  thermal   data  transfer  using  DXF,  IFC  and  gbXML  and  then  enhanced  the  MEP-­‐IES  interface  by  designing  a   patch  file.   2.6.1  “Heating  and  Cooling  Load  Calculations  and  Energy  Model  Development”   Phillip  Cunningham  researched  gbXML  capability  to  transfer  data  between  Revit  MEP  and   Trace  700.  He  started  by  visualizing  gbXML  structure,  how  it  organizes  and  represents  the  data,   as  well  as  typical  challenges  that  are  encountered  creating  accurate  gbXML  files.     Here   he   investigated   the   Extensible   Markup   Language   (XML)   scheme   of   gbXML   and   highlighted   its   properties.   XML   is   a   treelike   hierarchy   of   elements;   these   elements   have   attributes  and  values  within  an  enforced  structure.  He  reported  that  gbXML  structure  ensures   compatibility  only  if  the  sending  application  and  the  receiving  application  support  the  same  XML   elements.   Only   62%   of   the   elements   supported   by   Revit   MEP   (highlighted   in   blue)   export   mechanism   were   mutually   supported   by   Trace   700   (highlighted   in   green)   (Fig   2.9)   (Cunningham  2009).  Only  mutually  information  is  transferred  and  that  could  explain  part  of  the       31   data  loss.  Attributes  defined  in  Revit  such  as  the  Design  Cooling  Temperature  would  therefore   not  be  transferred,  as  this  element  is  not  supported  by  Trace  700  import  mechanism  (Fig  2.10).             Figure  2.9:    gbXML  elements  and  highlighted  in  blue  are  the  specific  elements  supported  by  Revit  MEP   (Cunningham  2009).  A  larger  version  of  this  figure  is  in  Appendix  C.         32     Figure  2.10:    gbXML  elements  and  highlighted  in  green  are  the  specific  elements  supported  by   Trace700(Cunningham  2009).  A  larger  version  of  this  figure  is  in  Appendix  C.     2.6.2  “Some  Advice  for  Migrating  to  IFC”  (Delfosse  et  al.  2012)   This  study  investigated  the  use  of  IFC  as  a  data  transfer  model  and  focused  solely  on  the   geometrical  issues.  Some  geometrical  issues  were  discovered  in  ArchiCAD’s  export  mechanism       and  the  authors  offered  advices  to  navigate  away.   Particular   issues   when   using   dynamic   tools   in   ArchiCAD   were   highlighted   such   as   the   "trim/join  wall  to  roof".  This  tool  specifies  a  relationship  between  a  wall  and  the  adjoining  roof   and  conveys  the  model  as  a  result  of  the  trim  operation.  The  IFC  did  not  encode  this  relationship   and  interpreted  the  wall  and  roof  in  their  original  shape  without  the  trim  (Fig.  2.11).  When   modeling  using  the  standard  conventional  tools  of  wall  and  roof  the  IFC  export  was  correctly   encoded  (Delfosse  et  al.  2012).  For  an  accurate  simulation  the  model  should  be  complete  and   correct  with  no  errors  in  geometry  -­‐  spaces  and  space  boundaries.  Inconsistent  geometry  in   some  cases  creates  gaps  in  the  model,  which  shouldn't  be  there,  affecting  the  results.   The  authors  highlighted  some  issue  that  may  occur  and  noted  precautions  that  should  be   taken  and  stressed  that  the  model  should  be  verified  before  attempting  any  analysis.  They  also   encouraged  the  use  of  IFC  as  open-­‐source  vendor  free  data  model.       33   Figure  2.11:    ArchiCAD®  trimming  tool  and  its  IFC  export,  (Delfosse  et  al.  2012)     2.6.3  “Interoperability  between  BIM  and  Energy  Analysis  Programs”  by  Kumar.   Kumar  investigated  the  interoperability  gap  between  BIM  and  BEM  for  her  master  thesis  at   the  University  of  Southern  California.  The  intent  of  her  study  was  to  “test  whether  BIM  software,   specifically  Revit,  was  robust  enough  to  allow  seamless  interoperability  with  analysis  programs   such  as  Ecotect  and  IES<VE>.”  (Kumar  2008)  Her  research  tested  the  data  transfer,  apart  from   geometry,  using  three  neutral  file  formats:  DXF,  gbXML  and  IFC.  Kumar’s  research  showed   varying   data   loss   between   the   properties   of   the   selected   families   in   Revit   and   their   representation  in  IES<VE>.   She  then  enhanced  the  Revit-­‐IES  interface  by  designing  a  “patch”  file.  This  patch  file  was  a   Revit   template   that   defined   a   set   of   Revit   families   that   derived   their   values   from   the   IES   construction  database  and  could  be  imported  into  a  Revit  project.  Kumar  identified  a  particular   issue  in  the  BIM  to  BEM  and  decided  to  develop  a  solution  for  a  specific  software.  By  using  the   families  identified  in  her  patch  file  the  user  would  be  guaranteed  an  accurate  precise  data   transfer  between  Revit  and  IES<VE>..  The  disadvantage  of  this  approach  is  again  in  its  particular   nature.  It  would  only  support  a  part  of  the  data  transfer  and  only  when  using  those  specific  tools.   The  DTT  defers  in  direction  in  its  wholeness  approach  as  it  targets  the  neutral  data  formats,  the   known  standards  and  therefore  holds  potential  in  effecting  the  dataflow  as  a  whole.   2.7  DETERMINING  POTENTIAL  PROBLEMS  IN  DATA  FLOW   The  results  of  a  previous  research  conducted  in  the  BIM  to  BEM  data  exchange  are  reported.   Numerous  tests  on  the  file  exchange  between  BIM  and  BEM  using  gbMXL  were  conducted.  The   objective   of   this   step   was   to   determine   potential   problems   in   the   data   transfer   to   better   understand  the  gap(s)  and  the  causes  and  then  propose  potential  tools  to  resolve  the  problems   in  the  next  chapter  (section  3.5).  Further  detailed  tests  with  a  defined  base  model  and  fixed   variable  set  are  reported  in  Chapter  4.     2.7.1  Test  runs  using  gbXML       34   The  scope  investigates  gbXML’s  capability  to  transfer  the  building  thermal  data  and  not  the   geometry;   therefore   the   model   created   in   Revit   had   a   simple   geometry   to   simplify   the   translation  of  the  gbXML  file.  The  model  is  of  a  180  sq.ft  single-­‐family  one  story  house  with  one   interior  space.  The  gbXML  generated  form  the  Revit  model  was  utilized  for  the  test.  The  data   flow  was  inspected  at  each  step  to  determine  the  effect  (if  any)  of  the  following  three  on  the  data   exchange.     • The  export  mechanism  of  the  BIM  authoring  tool     • The  structure  of  the  data  model  and  the  way  it  represents  the  data  as  well  as  the   elements/  properties  of  the  building  it  supports.   • The  import  mechanisms  in  the  energy  simulation  tools.   The  data  inspection  was  conducted  by  comparing  the  values  of  the  parameters  at  each  step   and  logging  them  in  a  compatibility  assessment  chart;  the  original  values  taken  from  the  Revit   model  were  listed  in  a  chart  and  compared  with  the  exported  gbXML  file,  and  the  energy  tools   interpretation   of   these   file.   The   results   are   described   in   two   groupings;   the   first   includes   location,  building,  and  space  elements  and  the  second  the  window  and  door  elements:   1   Location,  building,  and  space  elements   2   Window  and  door  elements      1.  Location,  building,  and  space  elements   Green  Building  Studio,  EnergyPro,  and  IES  Pro  generally  worked  well  in  importing  the   location,  building,  and  space  elements  of  the  gbXML  file.  The  weather  file  is  was  not  included  in   the  gbXML  data,  and  users  are  required  to  input  it  manually  (Fig.  2.12).   •   Export  Functionality:  The  data  was  exported  correctly  from  Revit  to  the  gbXML  file   except  the  weather  file  which  was  not  included  in  the  gbXML  data  therefore  users  are   required  to  input  it  manually.   •   Import   Functionality:   EnergyPro   and   IES   Pro   translated   the   address   of   the   project   however  GBS  and  DesignBuilder  required  manual  input  of  the  address  before  even   attempting  to  import  the  gbXML       35     Figure  2.12:    Results  of  the  exchange  data  of  the  location,  building,  and  space  elements     2.  Window  and  door  elements   There  was  sporadic  success  with  transferring  the  attributes  of  window  and  wall  elements   with  Green  Building  Studio  and  IES  Pro  performing  much  better  than  EnergyPro  (Fig.  2.13).   •   Export.  The  thermal  data  inputted  in  Revit  was  exported  correctly  into  the  gbXML  file.   As  a  trial,  fire-­‐rating  info  was  inputted  manually  into  the  door  properties  however  this   was  not  exported,  as  it  does  not  relate  to  thermal  properties.  In  other  words  gbXML   does  not  attempt  to  export  any  data  that  is  not  related  specifically  to  geometry  or   thermal  properties.   •   Import.  GBS  and  Energy  imported  the  main  thermal  data  correctly,  DesignBuilder  and   IES   didn’t.   The   assemblies   themselves   were   changed   to   the   default   values   of   the   software  as  if  no  data  has  been  inputted.       36     Figure  2.13:    The  results  of  the  exchange  data  of  the  window  element  and  the  wall  assembly  of  the   material  element     A  few  findings  could  be  concluded  from  the  results.  First,  there  are  gaps  in  the  transfer   between  the  BIM  authoring  software  and  the  energy  simulation  tools.  The  gaps  are  both  of   inaccurate  and  incomplete  transfer  of  data.  Second,  the  different  energy  simulation  varied  in   their  capability  to  translate  the  thermal  data  embedded  in  the  gbXML  file,  GBS  was  the  most   compatible  and  IES  the  least.  It  appears  that  the  BIM  authoring  software  export  is  functioning   correctly   to   gbXML   in   most   cases.   However,   the   building   energy   software   is   not   always   translating  the  complete  information  in  the  gbXML  file  and  importing  it  correctly.     3.4.2  Test  runs  using  IFC     Similar  tests  were  attempted  using  the  same  reference  building  of  DOE  and  utilizing  IFC  as   the  data  transfer  model.  A  few  findings  were  concluded  from  the  results.  First,  IFC  is  still  in       37   developing  stage  when  it  comes  to  the  BIM  to  BEM  data  flow.  This  is  not  caused  by  the  export   mechanism  of  the  BIM  authoring  tools  to  IFC,  nor  IFC  ability  to  transfer  data  but  rather  the   software  import  support  it  has.  IFC  has  very  limited  support  between  the  BEM  tools,  at  the  time   of  this  report  only  three  tools  (Riuska,  IES,  and  IDA  ICE)  were  certified  to  import  IFC.  Complete   list  could  be  found  here:  http://www.buildingsmart-­‐tech.org/implementation/implementations.   This  makes  the  data  transfer  between  BIM  and  BEM  using  IFC  unlikely  to  happen  as  the  options   open  to  the  user  are  very  limited.  Second,  IFC  is  as  gbXML  is  an  adequate  file  format  for   geometry  transfer  but  occasionally  has  problems  with  more  confusing  geometry  (for  example,  it   might  not  be  able  to  tell  the  difference  between  a  window  shade  and  a  small  roof).     2.8  CONCLUSION   BIM  software  should  be  able  to  export  necessary  information,  and  energy  programs  should   be  able  to  import  it.  This  allows  for  efficiencies  and  time  savings  that  could  be  used  for  the   simulations   themselves.   However   and   as   observed   in   this   chapter   many   gaps   exist   in   this   transition.   To  help  alleviate  some  of  these  interoperability  issues,  it  was  decided  to  develop  a  tool  that   clearly  showed  what  values  were  in  a  gbXML  file.  Unlike  other  gbXML  readers,  it  would  not   show  all  the  data  in  the  data  model  original  hierarchy,  but  instead  isolate  the  parameters  that   energy  simulation  software  use  and  group  them  into  the  four  DOE  categories:  program,  form,   fabric,  equipment  -­‐-­‐  program  (location,  total  area,  internal  loads,  operating  schedules,  hot  water   demand,  and  ventilation  requirements),  form  (geometry  and  orientation),  fabric  (construction   types  and  thermal  properties  of  the  building  elements),  and  equipment  (the  types,  specification,   and  efficiency  of  the  lighting,  HVAC,  and  SWH  systems)  (Deru  et  al.  2011).  This  should  make  it   easier  for  designers  to  understand  how  their  models  are  being  imported  into  energy  programs.                     38               CHAPTER  3:   METHODOLOGY       39   Chapter  1  and  2  highlighted  the  gap  between  BIM  and  BEM,  the  implications  of  the  loss  of   data,  and  the  critical  need  for  tools  and  methods  to  bridge  the  gap.  This  chapter  discusses  the   methodology   that   was   undertaken   to   develop   a   tool   that   would   assist   in   enhancing   interoperability.   3.1  OVERVIEW  OF  THE  METHODS  AND  PROCESSES   The  data  of  the  model  including  the  geometry  and  the  variable  set  should  be  accurately   represented  in  the  data  models  to  produce  an  accurate  simulation.  However  this  data  doesn’t   essentially  transfer  the  way  the  user  would  expect  it  to  (KKH 2014)   2 ..  Verifying  the  accuracy   and  completeness  of  a  data  model  is  challenging  due  to  the  structure  and  representation  of  the   data  models.  The  data  models  are  extremely  long  and  complex  files;  An  example  is  shown  of   Revit  representation  of  a  wall  assembly  compared  with  gbXML  representation  of  the  same  data   (Fig  3.1).     Figure  3.1:    The  textual  representation  of  the  materials  of  a  floor  assembly  from  Revit  represented  in   gbXML.      There  are  a  number  of  factors  that  could  affect  the  data  exchange  between  BIM  and  BEM;   the  following  three  filters  were  investigated.     • The  export  mechanism  of  the  BIM  authoring  tool     • The  structure  of  the  data  model  including  the  way  it  represents  the  data  as  well  as   the  elements/  properties  of  the  building  it  supports.   • The  import  mechanisms  in  the  energy  simulation  tools.   The  main  objective  is  to  guarantee  the  accuracy  and  completeness  of  data  that  is  exported   from  the  BIM  authoring  software  to  the  energy  simulation.  To  address  the  goals  and  objectives   of  the  study  the  following  steps  were  done:   1. Defining  the  required  variables  for  energy  simulation  and  categorizing  them.                                                                                                                             2  (Kensek,   Konis,   and   Hijazi   2014):   This   is   a   white   paper   titled   “Assessment   of   File   Interoperability  between  BIM  and  Energy  Analysis  Software  Using  gbXML”  under  a  grant  from  SoCal   Gas   Company   that   has   been   developed   by   Kensek,   Konis,   and   Hijazi   (The   thesis   author)   in   conjunction  and  at  the  same  time  of  this  thesis.  The  paper  therefore  is  quoted  extensively  in  Chapter   2  to  report  the  results  of  the  tests.  It  will  be  referred  to  as  (KKH  2014).       40   2. Defining  a  test  case  model.   3. Modeling  using  a  BIM  authoring  tool  and  exporting  both  IFC  and  gbXML  files.   4. Determining  potential  issues  in  the  data  flow.  IFC  and  gbXML  files  were  exported  and   imported  and  compared  for  accuracy  and  completeness  versus  the  data  in  the  BIM  using   the  test  case  building.   5. Developing  a  tool  that  could  reveal  the  transferred  data  mapped  by  the  categories   defined  in  step  2.   3.2  DEFINING  THE  REQUIRED  VARIABLES   In  order  to  test  the  data  exchange  for  purpose  of  energy  modeling  the  required  variables   that  affect  the  BEM  should  be  identified.    There  are  a  broad  number  of  parameters  that  relate  to   different  aspects  of  the  building  and  program.  Unfortunately  these  variables  are  not  clearly   identified  in  standard  data  sources  (Deru  et  al.  2011).  The  U.S.  Department  of  Energy  made  an   effort  to  populate  these  variables  and  categorize  them  in  their  document  titled  “Commercial   Reference  Building  Models  of  the  National  Building  Stock”.     DOE  groups  these  variables  into  four  categories:  Program,  Form,  Fabric,  Equipment    (Fig   3.2)  (Deru  et  al.  2011).  “Program”  includes  variables  of  location,  total  area,  internal  loads,   operating  schedules,  hot  water  demand,  and  ventilation  requirements.  The  second  category   “Form”  includes  variables  reflecting  the  geometry  and  orientation.  Third  category  “Fabric”   includes  the  construction  types  and  thermal  properties  of  the  building  elements.  The  final   category  “Equipment”  contains  the  types,  specification,  and  efficiency  of  the  lighting,  HVAC,  and   SWH  systems.  DOE’s  list  of  “variables”  are  at  a  high  level  and  each  can  contain  multiple  variables   to  be  correctly  defined  in  the  energy  software  (Fig  3.2).    For  example,  “Location”  can  include:   The  project’s  longitude,  latitude,  altitude,  the  address,  the  closest  weather  Station  ID...etc.       Figure  3.2:  Building  energy  modeling  variables  categorized  into  Program,  Form,  Fabric,  and   Equipment    (Deru  et  al.  2011)   This  list  has  been  utilized  as  a  standard  in  this  research.  Three  of  the  four  categories   (Program,  Fabric,  Equipment)  will  be  used  were  used  to  organize  the  data  in  the  reference   model  in  the  next  step,  then  to  map  the  new  XML  scheme,  and  finally  to  present  the  data  for  the       41   user  in  the  proposed  Data  Transparency  Tool  (DTT).  The  scope  of  the  research  doesn’t  include   geometry;  therefore  a  number  of  the  variables  under  the  “Form”  category  will  not  be  addressed.     3.3  DEFINING  THE  TEST  CASE  MODEL   For  this  section  the  test  model  of  a  previous  research  will  be  utilized.  That  research  was   performed  by  Kensek,  Konis  and  Hijazi  titled  “Assessment  of  File  Interoperability  between  BIM   and  Energy  Analysis  Software  Using  gbXML”  (KKH  2014).    The  medium  office  building  was   chosen  as  the  reference  building.    It  was  obtained  from  the  U.S.  Department  of  Energy  (DOE)   reference   buildings   database     (http://energy.gov/eere/buildings/new-­‐construction-­‐ commercial-­‐reference-­‐buildings).     3.3.1  Modeling     The  data  from  DOE  was  used  to  make  a  model  using  Autodesk  Revit.  “The  Revit  model   slightly  defers  from  the  original  (the  area  of  the  Revit  model  is  4924  square  feet  versus  4982   square  feet  in  the  original  IDf  file).  This  difference,  however,  will  not  affect  the  results  as  this   deliverable  is  concerned  with  data  transition,  and  not  the  total  energy  consumption.”  (KKH 2014)   The  values  of  the  variables  set  defined  in  section  3.2  were  obtained  from  the  DOE  reference   and  replicated  in  the  Revit  model.  These  variables  will  later  be  crosschecked  to  determine  if   their  values  were  affected  during  the  exporting/  importing  process  between  the  BIM  authoring   tool  and  the  BEM.  Some  of  the  values  were  changed  from  the  original  IDF  file  to  facilitate  the   data  transfer  (Fig.  3.3).    An  example  is  the  number  of  zones,  which  was  decreased  from  three  to   one  zone  per  floor.  The  main  concern  is  validity  of  the  different  data  in  the  model  exchange  in   terms  of  accuracy  and  completeness;  verifying  one  zone  per  floor  that  encompasses  the  different   variables  instead  of  three  zones  would  make  the  verification  process  quicker.     Figure  3.3:  Schedules  customized  to  match  exact  requirements  that  were  in  the  IDF  file     3.3.2  Exporting  the  data  models   After   the   model   was   completed   it   was   exported   in   two   formats;   IFCXML   and   gbXML.   Autodesk  Revit  has  a  built  in  capability  to  export  gbXML  and  IFC  files.  The  exporting  process  is   straightforward  and  is  accessed  via  the  File  tab.  The  IFC  export  built  in  Revit  however  supports       42   limited  options  and  schemes  (Fig.  3.4);  The  XML  scheme  (which  is  required  for  the  following   steps)  is  not  one  of  the  supported  schemes.  It  was  essential  therefore  to  download  and  install  a   plugin   called   (IFC   2015)   from   Autodesk   Exchange   that   allows   additional   options.   “This   application  seamlessly  replaces  the  built-­‐in  IFC  import  and  export  mechanisms,  so  users  do  not   have  to  perform  any  additional  steps  while  opening,  linking  or  exporting  their  models  to  the  IFC   format  using  the  Autodesk  Revit  UI.”  (Autodesk,  Inc.  2014)  (Fig.  3.5)  shows  the  additional  export   options  supported  by  the  (IFC  2015)  plugin.  The  plugin  can  be  found  on  the  following  link:   https://apps.exchange.autodesk.com/ALIAS/en/Detail/HelpDoc?id=appstore.exchange.autodesk.c om:ifc2015_windows32and64:en&mode=live#inunininfo     Figure  3.4:    IFC  export  window;  Revit  IFC  built  in  export  supports  limited  schemes  of  IFC,  IFCXML  is  not   one  of  them.     Figure  3.5:    IFC  export  window;  additional  export  options  supported  by  the  (IFC  2015)  plugin     3.3.3  Checking  the  Building  Form  for  Accuracy  and  Completeness   Accuracy  of  the  geometry  is  essential  for  an  effective  data  exchange  and  a  valid  simulation.   Energy  simulation  tools  require  a  model  of  closed  volumes  for  the  spaces.  Any  error  in  the   geometry  export  will  essentially  mean  invalid  simulation  results.  Although  the  scope  of  this   research  doesn’t  incorporate  geometry,  it  does  include  other  variables  related  to  it  under  the   Form  and  Program  categories  such  as  number  of  floors,  areas,  and  volume.  Revit’s  gbXML  export   incorporates  a  geometry  review  that  allows  the  user  to  evaluate  the  geometry  that  will  be   considered  for  the  simulation  before  attempting  to  export  it.  The  geometry  check  for  gbXML  was       43   done  through  software’s  built  in  review  as  well  as  manual  numeric  and  visual  inspections.   However  Revit’s  IFC  export  does  not  encompass  such  review  neither  in  the  built-­‐in  nor  the   extended  (IFC)  plug-­‐in  and  the  form  review  was  done  after  the  export  using  Solibri  and  manual   inspection  of  the  file.   Revit’s  gbXML  export  mechanism  highlights  the  spaces  that  will  be  considered  for  energy   simulation  (Fig.  3.6).  If  Revit  finds  any  inconsistencies  in  the  spaces  then  it  will  highlight  the   room  and  note  the  error.  It  is  important  to  resolve  the  issue  and  recheck  the  export  window   before   attempting   to   create   the   gbXML   file,   or   else   any   error   will   remain   in   the   energy   simulation  software.     Figure  3.6:    gbXML  export  process;  Revit  highlights  the  spaces  that  will  be  considered  for  energy   simulation.       3.4  PROPOSED  TOOL  TO  HELP  RESOLVE  THE  PROBLEM     In   Chapter   1   different   aspects   and   causes   of   the   BIM   Gap   were   discussed.   Chapter   2   highlighted  compatibility  issues  in  the  transfer.  In  this  section  a  tool  was  proposed  to  assist  in   resolving  the  gap  caused  by  technological  and  compatibility  issues.  The  data  transparency  tool   would  assist  in  overcoming  the  compatibility  gap  by  revealing  the  actual  information  that  is   transferred  and  comparing  it  with  the  users  initial  input.     3.4.1  Data  Transparency  Tool    (DTT)   Another  solution  to  the  program  was  the  development  of  the  data  transparency  tool.  The   test  runs  in  section  3.4.1  revealed  that  the  values  inputted  in  the  BIM  authoring  software  do  not   always  transfer  correctly  to  the  BEM  tool.  Some  data  is  transferred  correctly,  some  values  are   left  out,  and  some  values  get  changed.    This  could  be  fatal  depending  on  users’  expectations.  The   user  may  assume  that  the  exchange  is  complete  and  accurately  presenting  the  data  from  the  BIM   authoring  tool.  “Another  assumption  might  be  that  because  it  is  not,  it  is  useless.    It  would  be   extremely  helpful  to  show  exactly  not  only  what  is  being  transferred,  but  what  is  actually  input   as   the   file   is   loaded   into   an   energy   software.     Transparency   is   critical,   especially   for   inexperienced   users.   A   goal   should   be   to   have   the   user   understand   the   applicability   and   appropriateness  of  the  file  transfer.”  (  KKH  2014)       44   3.5  CREATING  THE  DTT   IFC  and  gbXML  are  text  files.  However,  they  are  complicated  and  extremely  long  files,  and   the  reality  is  that  they  are  seldom  opened  (Oullette  2014).  The  DTT’s  goal  is  to  allow  the  user  to   verify  the  data  in  the  data  models  and  then  correct  inaccuracies.  This  is  done  by  applying  a   transparency  layer  upon  the  IFC  and  gbXML  files  so  that  even  the  inexperienced  user  could   understand  them  (Fig.  3.7).   This  process  was  divided  into  three  steps:     1. Matching  IFC  and  gbXML  enumerations  with  the  selected  variable  set  (variables   defined  in  section  3.2),     2. Utilizing  the  IFC  and  gbXML  XML  schemes  to  map  new  XML  schemes  that  match  the   variable  set     3. Creating  the  Excel  tool  that  would  automatically  populate  the  data.           Figure  3.7:  Diagram  of  the  Data  Transparency  Tool  (DTT)  (Credited  to  author)   BIM  authoring  software  and  the  export  mechansim   The  diagram  of  the  BIM  authoring  software  encompasses  the  user  interface,  import,  and   export  mechanisms.  The  import  and  export  mechanism  include  “data  filters”  that  “select”  partial   data  for  export.  When  exporting  from  BIM  to  BEM  not  all  the  data  in  the  model  is  exported   because  some  of  it  is  irrelevant.  As  an  example  of  the  filtering  is  the  exclusion  of  elements  such   as  furniture  and  attributes  such  as  costs  which  are  irrelevant  for  energy  analysis  and  therefore   the  software  does  not  attempt  to  export  them.  However  and  as  observed  in  section  3.4.1  some   essential  data  is  left  out.   BEM  tool  and  the  import  mechanism   The  diagram  of  the  energy  simulation  software  encompasses  theses  import  and  export   mechanisms  as  well.  In  addition  to  the  filters  there  are  a  set  of  assumption  (defaults)  that  the   BEM  tool  would  use  to  fill  out  missing  data  in  the  data  model  and  in  some  cases  even  override   existing  data  in  the  data  model.  (KKH  2014)    With  a  tool  that  shows  the  user  in  a  simple  manner  exactly  what  is  being  exported  from  the   building  information  modeling  software  and  imported  into  the  energy  software,  a  designer   could  have  more  confidence  about  the  values  of  parameters.       45   3.5.1  Matching  data  model  enumerations  with  selected  variable  set.     gbXML  is  based  on  the  XML  scheme  while  IFC  could  be  represented  in  three  different   schemes:  the  STEP  ,  IFCXML,  and  IFC  ZIP.    The  DTT  is  based  on  XML,  therefore  the  IFCXML   scheme  was  selected.     Both  data  models,  IFCXML  and  gbXML  structures  were  studied.  As  they  are  both  based  on   the  XML  scheme  they  both  have  a  hierarchal  structure  that  encompasses  a  number  of  elements   and  attributes.  These  elements  and  attributes  however  differ  completely  between  the  two  data   models.  Therefore  all  the  steps  are  explained  for  both.     Figure  3.8:    gbXML  elements  obtained  from  http://www.gbxml.org/currentschema.php     This  step  involves  matching  of  gbXML  and  IFCXML  enumerations  with  the  defined  variable   set  in  (section  3.2).     gbXML  encompasses  a  large  number  of  elements  that  represent  the  geometry  and  data  of  a   building  (Fig.  3.8).  These  elements  were  then  “matched”  with  their  corresponding  variable  in  the   defined  variable  set.  An  example  is  buildingstorey,  which  is  gbXML  representation  of  the  number       46   of  floors  in  the  building  (Fig.  3.9).  This  step  is  necessary  to  pull  out  the  information  in  the  data   model  and  present  it  in  the  tool.       Figure  3.9:  Diagram  of  methodology;  Matching  gbXML  and  IFCXML  enumerations  with  the  defined   variable  set  in  (section  3.2)  (Credited  to  author)     3.5.2  Mapping  data  model  scheme  with  new  XML  schemes   Two  new  XML  schemes  were  created,  one  for  gbXML  and  another  for  IFC  using  the  original   data  model  schemes  as  a  source  for  new  scheme  mapping.    The  original  XML  was  accessed  by   opening  a  template  gbXML  and  IFC  file  in  Microsoft  Excel  and  following  this  procedure:     • Through  the  Developer  tab,  in  the  XML  group,  Source  tab  was  used  to  open  the  XML   Source  task  pane.     • This  pane  contains  XML  Maps  where  excel  enabled  the  selection  of  the  IFC  and   gbXML  files  and  mapped  their  structure  as  shown  below  (Fig  3.10)       47   The  new  XML  schemes  where  then  created  by  dragging  the  element  nodes  from  the  XML   Source  pane  to  the  workspace  cells  adhering  to  the  defined  variable  set  as  basis  for  hierarchy.   Program,  Form,  Fabric  and   Equipment   therefore   create   the   top   levels   of   the   hierarchy   and   encompass  under  them  the  related  variables  (Fig  3.10).  The  schemes  elements  build  upon  the   previous  section  that  matched  the  data  models  enumerations  and  attributes  with  the  variable   set.         Figure  3.10:  Diagram  of  methodology;  Utilizing  gbXML  and  IFCXML  template  schemes  as  a  source  to   create  new  schemes  that  adhere  to  the  defined  variable  set  in  (section  3.2)  (Credited  to  author)           48   Only   the   information   relevant   to   energy   simulation   and   precisely   the   variables   of   the   defined  set  were  extracted.  This  excludes  the  variables  under  the  Form  category,  as  the  DTT  will   not  include  geometrical  representation  at  this  stage.  It  is  proposed  that  the  DTT  work  with  and   complete  the  readily  available  geometrical  viewers  such  as  Solibri,  Simple  BIM.  The  DTT  would   complete   this   verification   process   working   in   conjunction   with   these   model   viewers   as   it   presents  all  the  variables  essential  for  the  energy  simulation  as  identified  by  DOE.   3.5.3  Presenting  the  scheme  in  Excel   The  two  new  schemes  where  then  used  as  source  schemes  to  present  the  data  model  values   in  Excel.  The  Excel  interface  of  the  tool  contains  4  tabs  each  of  which  correspond  to  the  variable   set  and  its  underlying  elements  (Fig  3.11).    The  user  would  simply  import  the  gbXML  file  or   IFCXML  file  to  their  corresponding  DTT  and  the  tool  would  automatically  populate  the  values.       Figure  3.11:  Diagram  of  methodology;  Mapping  new  XML  schemes  based  on  the  defined  variable  set  in   (section  3.2)  and  then  presenting  the  scheme  in  an  excel  tool,  (Credited  to  author).     Unlike  other  gbXML  readers,  DTT  excel  interface  would  not  show  all  the  data  in  a  hierarchy,   but  instead  isolate  the  parameters  that  energy  simulation  software  use  and  group  them  into  the   four  DOE  categories:  program,  form,  fabric,  equipment  -­‐-­‐  program  (location,  total  area,  internal   loads,  operating  schedules,  hot  water  demand,  and  ventilation  requirements),  form  (geometry   and  orientation),  fabric  (construction  types  and  thermal  properties  of  the  building  elements),       49   and  equipment  (the  types,  specification,  and  efficiency  of  the  lighting,  HVAC,  and  SWH  systems)   (Deru  et  al.  2011).   3.6  TESTING   The  DTT  in  both  its  versions  (IFC,  gbXML)  was  extensively  tested  using  different  data   models.  There  were  a  set  of  tests  performed;  the  first  is  the  data  representation  test,  the  second   the  scoring  tests.   • Data  representation  tests:     The  values  of  the  variables  was  properly  populated  and  mapped  into  the  specified  field   under  one  of  the  categories  (Program,  Form,  Fabric  and  Equipment).  Transparency  is   the  main  goal;  hence  the  tool  was  developed  to  enable  even  the  inexperienced  user  to   view  and  understand  the  data  model  content.   • Scoring  tests:     The  scoring  system  rates  the  data  models  depending  on  their  accuracy  and  completes.  It   is  not  meant  to  show  an  accurate  score  but  more  as  an  estimate  of  data  completeness   and  correctness.  This  would  give  the  user  a  sense  of  the  level  of  development  of  the  data   model.   Completeness  of  data:  The  tool  examines  the  inputted  file  and  verifies  that  all   the   variables   essential   for   the   energy   simulation   as   identified   by   DOE   are   identified.   Appropriateness   of   data:   The   tool   verified   that   the   values   of   data   of   the   imported   files   fall   within   their   accepted   range.   Solar   Heat   Gain   Coefficient   (SHGC)  is  an  example  of  a  variables  that  have  specific  data  range.   3.7  SUMMARY  OR  CONCLUSION    The  development  of  a  data  transparency  tool  could  help  solve  some  of  the  data  transfer   problems  by  showing  the  user  in  a  simple  manner  exactly  what  is  being  exported  from  the  BIM   software  and  imported  into  the  energy  tools.  Then  designers  could  have  more  confidence  about   the  values  of  parameters  that  are  being  transferred  from  BIM  to  BEM.                   50           CHAPTER  4     BIM  TO  BEM     DATAFLOW  TESTING       51   4.1  INTRODUCTION   The   exchange   of   information   between   a   digital   building   model   and   analytical   software   should  be  seamless  so  that  designers  can  easily  use  their  3D  models  for  simulation.  However,   many  gaps  exist  between  Building  Information  Modeling  (BIM)  authoring  software  and  Building   Energy  Modeling  (BEM)  tools.  An  initial  step  was  to  check  that  the  data  was  actually  being   transferred  correctly  and  completely  between  the  BIM  and  energy  analysis  software  before   simulation.  To  test  this,  a  reference  model  was  exported  from  the  BIM  authoring  software  using   gbXML  and  IFC  and  then  imported  into  the  selected  energy  simulation  tools.  In  some  cases,  the   exchange  of  data  was  not  complete  or  was  inaccurate,  and  it  was  not  transparent  to  the  user   what  was  being  exported  or  imported.  Generally,  the  biggest  problem  was  the  inability  of  the   simulation  software  to  import  the  necessary  parameters.  This  is  a  major  flaw  in  perceived   software  interoperability  and  a  failure  to  uphold  user  expectations.  Users  might  assume  that  the   data  transfer  is  accurate  and  base  design  decisions  on  faulty  values,  or  users  might  decide  that   because  not  all  parameters  are  being  transferred,  a  BIM  to  BEM  data  exchange  process  is  useless   (Hijazi,  Kensek,  Konis  2015).   4.2  TEST  CASE  MODEL   The  medium  office  building  was  chosen  as  the  reference  building.  It  was  obtained  from  the   U.S.  Department  of  Energy  (DOE)  reference  buildings  website  that  contained  IDF  (EnergyPlus)   descriptions  for  whole  building  energy  analysis  (DOE  2015).  The  IDF  files  from  the  DOE  website   specified  all  the  relevant  data  relevant  to  energy  simulation.     Tests   were   run   using   gbXML   and   IFC   with   both   data   models   test   followed   the   same   methodology.  Since  the  workflows  are  identical,  only  one  (gbXML)  was  documented  in  detailed   steps  hereafter;  however  both  the  IFC  and  gbXML  test  results  are  shown  and  discussed.   4.2.1  The  model   The  medium  office  building  is  3-­‐storey,  rectangular  shaped  with  a  steel  frame  structure,  and   has  continues  strip  windows  with  a  0.33  window  to  wall  ratio.  The  IDF  files  from  the  DOE   website  were  opened  in  EnergyPlus  and  DXF  files  were  exported  with  the  geometry.  The  DXF   files  were  imported  into  Autodesk  Revit,  both  as  a  conceptual  mass  and  detailed  building  model.   The   model   was   then   completed   by   entering   the   data   provided   in   DOE’s   spreadsheet.   This   spreadsheet  accompanied  the  reference  model  and  contained  all  the  data  relevant  to  energy   modeling.  This  was  done  in  the  detailed  building  mode  of  Revit  (Fig.  4.1).   Revit   has   two   ways   that   building   models   can   be   analyzed   in:   detailed   building,   and   conceptual  design.  Conceptual  design,  as  the  name  suggests,  is  commonly  used  in  early  design   stages   to   give   rough   feedback   on   energy   performance   when   little   details   are   known.   The   detailed   building   mode   allows   comprehensive   data   entry   and   is   therefore   more   accurate   simulation.  Since  the  purpose  of  this  exercise  is  inspecting  the  data  exchange  between  BIM  and   BEM  it  was  necessary  to  inspect  all  relevant  data  and  therefore  utilize  the  detailed  building   mode.               52     Figure  4.1:  Image  of  the  reference  office-­‐building  model  from  Revit.   The  Revit  model  has  slight  differences  compared  to  from  the  original  IDF  file  (the  area  of  the   Revit  model  is  4924  square  feet  versus  4982  square  feet  in  the  original  IDF  file).    This  difference,   however,  will  not  affect  the  results  as  this  deliverable  is  concerned  with  data  transition  and  not   the  total  energy  consumption.  A  subset  of  critical  parameters  was  chosen  for  testing  the  data   transfer.         4.2.2.  Case  study  building,  subset  of  critical  parameters.   Some  critical  parameters  were  selected  to  form  a  representative  sample;  not  all  parameters   were  tested.  These  were  used  to  determine  whether  or  not  the  data  was  being  transferred   properly.  The  selected  parameters  are  gbXML  and  IFC  elements  including  campus  (location,   building  elements  –  areas,  building  story),  space  (ID,  areas,  volume),  layer  (R-­‐value,  thickness,   conductivity,  specific  heat),  window  (overall  conductance  –  U-­‐Value,  solar  heat  gain  coefficient  -­‐   SHGC,  transmittance),  Zone  (occupancy  density,  lighting  and  power  occupancy)  and  Schedules     (Fig.  4.2  and  4.3).         53     Figure  4.2:    A  number  of  parameters  (highlighted  in  yellow)  that  were  included  in  the  representative   sample  test.         Figure  4.3:    The  layers  making  up  the  structure  of  the  wall  were  part  of  the  representative  sample  test.       54     Figure  4.4:    The  wall  properties;  highlighted  in  yellow  the  parameters  part  of  the  representative  sample   test.     The   selected   elements   (in   dark   red)   are   a   subset   of   the   elements   Revit   export   mechanism  supports  (in  all  shades  of  red)  (Fig.  4.5).    These  specific  parameters  were  chosen  as   the  most  likely  to  be  impactful  and  form  a  representative  sample  of  each  of  the  four  categories   that  effect  energy  analysis;  Form,  Program,  Fabric  and  Equipment.               55   Figure  4.5:  List  of  gbXML  elements;  highlighted  in  light  red  are  the  elements  supported  by  Revit  export   mechanism,  highlighted  in  dark  red  are  the  elements  supported  by  Revit  and  tested  for  interoperability.     The  values  were  identified  in  the  IDF  file  provided  and  then  were  replicated  in  the  Revit   model.  These  values  were  then  compared  in  the  following  steps  with  the  energy  simulation   software  imported  values.  Some  values  were  simplified  from  the  original  IDF  file  to  facilitate  the   data  transfer.  An  example  is  the  number  of  zones,  which  was  decreased  to  one  zone  per  floor.     Other  items  had  to  be  customized  to  match  the  values  in  the  IDF  file.    Autodesk  Revit  is  one  of       56   the  software  programs  that  allows  the  user  to  create  custom  settings  for  variables.  This  is   necessary  when  the  software  provided  options  do  not  match  the  specified  values  for  the  project.   An  example  of  customizable  variables  in  Revit  is  Occupancy  Schedules    that  was  utilized  in  the   medium  office  case  study  by  specifying  the  working  hours,  days  of  operation,  and  the  holidays   that  match  DOE  values  (Fig.  4.6).       Figure  4.6:  Schedules  customized  to  match  exact  requirements  that  were  in  the  IDF  file.   In  order  to  choose  the  relevant  parameters,  the  IDF,  gbXML,  and  IFC  files  structures  were   studied  to  link  the  parameters  with  the  enumerations  in  the  data  model.  However,  not  all  BIM   software  exports  all  the  same  parameters.  In  order  for  the  transfer  to  be  successful,  the  BIM   authoring  software  and  the  BEM  tools  should  support  the  same  elements.  The  results  show  that   Revit  successfully  exports  some  elements;  however  the  BEM  tools  don’t  support  all  of  these   elements,  which  means  the  some  of  the  data  is  not  transferred  (KKH  2014).       4.2.3  Choice  of  Building  Elements   As  Revit  was  selected  as  the  BIM  authoring  software,  the  following  were  the  selected  data   elements.  As  previously  mentioned  the  choice  of  elements  was  dependent  on  the  software:   • gbXML  element  specifies  the  default  attributes  for  the  entire  gbXML  document  and  the   units  used.   • Campus  element  incorporates  the  following  children  and  acts  as  the  base  for  all   physical  exports:   o Location  element  is  the  value  specified  for  the  project  address.  The  location  is   defined  in  the  IDF  by  the  latitude  and  longitude,  and  this  can  also  be  defined  in   Revit.  One  thing  to  note  is  that  it  doesn't  load  in  the  weather  information.  so  that   will  have  to  be  manually  selected  in  the  software  tool  itself  by  use  of  a  weather   file.   o Building  elements   ! Area,  total  floor  area   ! Building  storey,  which  is  specified  for  each  level  element  in  the  project  that   has  spaces.   • Space  elements  that  will  be  included  in  the  simulation.   o ID       57   o Area   o Volume   • Layer  element  defines  the  layer  which  encompasses  the  Material  Element.  Material   elements  are  defined  as  a  function  for  the  complete  assembly  and  not  as  individual   material  layers.   o R-­‐value   o Thickness   o Conductivity   o Specific  heat     • Window  elements   o Overall  conductance  (U-­‐Value)   o Solar  heat  gain  coefficient  (SHGC)   o Transmittance     • Schedule  Element(s):  Defines  the  different  schedules.     4.2.4  Revit  Rooms  versus  Spaces   The  concept  of  rooms  and  spaces  needs  further  elaboration,  as  they  are  critical  for  the   establishment  of  zones  for  energy  calculations.  Rooms  are  the  main  space  definition  label  in   Revit  Architecture  while  Revit  MEP  uses  spaces  instead.  Rooms  and  spaces  are  defined  by  the   architectural  enclosure  elements  such  as  walls,  floors  and  ceilings.  When  selected  as  room-­‐ bounding  elements  then  Revit  computes  the  room  perimeter,  area,  and  volume  referring  to  the   face  of  these  elements.  This  property  can  be  found  within  the  property  window  and  under  the   constraints  ribbon  (Fig.  4.7).     Figure  4.7:  The  room-­‐bounding  property  for  elements  for  walls,  floors,  and  roofs.       When  exporting  from  Revit  to  gbXML  the  user  is  prompted  to  select  either  spaces  or  rooms.   Room  exports  the  basic  architectural  data  inputted  in  the  model.  This  export  has  the  option  to   include  the  thermal  properties  when  “Include  thermal  properties”  is  checked  in  the  gbXML   setting  window  (Fig.  4.8).       58   Figure  4.8:  Rooms  versus  spaces  in  exporting  gbXML  settings. Spaces  was  used  to  generate  the  gbXML  file.  This  is  because  Spaces  exports  additional  data   relevant  to  energy  consumption  and  analysis  such  as  internal  loads,  project  schedules,  and  MEP   equipment.  The  space-­‐type  settings  tool  in  Revit  is  powerful  and  allows  the  user  to  link  each   zone  with  its  specific  use.  This  determines  the  density  of  people,  the  activity,  sensible  and  latent   heat  loads,  lighting  and  power  loads  density.  Moreover  the  different  schedules  are  also  classified   such  as  the  occupancy,  lighting  and  power  schedules.  “Office-­‐  Open  Plan”  space  setting  was   selected.   In  both  cases  an  effective  energy  analysis  can  only  be  performed  if  the  entire  volume  of  the   building  model  is  included  in  exported  data.  All  the  rooms  or  spaces  in  the  model  should  be   highlighted  when  attempting  the  export  functionality  (Fig.  4.9,  left).  Any  errors  in  geometry  and   definition  of  space  will  be  reported  within  the  details  tab  of  Revit’s  gbXML  export  mechanism   (Fig.  4.9,  right).   Figure   4.9:   The   export   gbXML   window   within   Revit   enables   the   verification   of   the   geometry   by   highlighting  the  spaces  that  will  be  considered  in  the  gbXML  file  (left).  Errors  in  geometry  are  reported   within  Revit’s  export  mechanism  (right).     If   the   “Export   Defaults”   box   in   Revit   is   unchecked   in   the   gbXML   export   settings   then   elements  such  as  the  Material  Element,  Layer  Element,  Construction  Element  and  the  Schedule   Element(s)  will  not  be  exported.           59   4.3  DATAFLOW  TESTING     4.3.1  Checking  the  building  geometry  for  accuracy  and  completeness.   Energy  simulation  tools  require  a  model  of  closed  volumes  for  the  spaces.  Any  error  in  the   geometry  export  will  likely  result  in  invalid  simulation  results.  A  series  of  geometrical  and  data   inspections  were  conducted.  For  geometry,  numeric  and  visual  inspections  were  conducted;   “The  numeric  inspection  means  manually  verifying  that  the  area  and  volume  of  the  model   created  in  Revit  remains  the  same  in  the  gbXML  and  IFC  export  file  and  the  BEM  software   interpretation  of  that  gbXML  file.  The  visual  inspection  would  compare  the  3D  model  from  the   Revit  file  with  the  BEM  software.”  (KKH  2014).   The  Revit  gbXML  export  process  verifies  that  the  model  is  proper  and  ready  for  energy   simulation.  If  Revit  finds  any  inconsistencies,  then  it  will  highlight  the  room  and  note  the  error.   It  is  important  to  resolve  the  issue  and  recheck  the  export  window  before  attempting  to  create   the  gbXML  file,  otherwise  any  error  will  remain  in  the  energy  simulation  software.   The  numeric  inspection  means  manually  verifying  that  the  area  and  volume  of  the  model   created  in  Revit  remains  the  same  in  the  gbXML  export  file  and  the  BEM  software  interpretation   of  that  gbXML  file.  The  visual  inspection  compared  the  3D  model  of  both  the  IFC  and  the  gbXML   files  using  third  party  viewers  such  as  SketchUp  Pro.   This  visual  inspection  was  made  to  compare  the  geometrical  representations  of  the  gbXML   and  IFC  files  that  are  exported  from  the  same  model.  To  complete  this,  it  was  necessary  to   simplify  the  case  study  model  and  clear  all  the  non-­‐geometry  data.  First,  a  room  made  up  of  only   walls  with  no  floor  or  roof  was  modeled  in  Revit  and  then  immediately  exported  into  both   gbXML  and  IFC  formats.  The  IFC  was  directly  imported  into  SketchUp  Pro.  To  enable  the  import   of  gbXML  file,  gModeller  was  installed  as  an  extension  to  Sketch-­‐up.  gModeller  enabled  the   import  of  the  gbXML  file  on  the  same  project.  The  two  models  were  then  compared  and  found  to   be  identical  simulation  (Fig.  4.10).   Figure  4.10:    The  base  case  model  in  Revit  (Left).  The  DWG  geometry  and  the  gbXML  geometry  were   identical  and  perfectly  overlap.  gbXML  import  was  done  using  gModeller  extension  to  Sketchup,  (Right).   4.3.2  Checking  the  parameters  for  accuracy  and  completeness  (data).   The  data  inspection  was  conducted  by  comparing  the  values  of  the  parameters  at  each  step   and  logging  them  into  a  compatibility  assessment  chart.  This  chart  compared  the  original  values       60   taken  from  the  DOE  reference  file  with  the  Revit  data  that  was  inputted,  the  exported  gbXML  file   and  IFC  files,  and  the  energy  tools  interpretation  of  these  file.     The  gbXML  and  IFCXML  files  are  text  based  file,  which  enabled  the  manual  verification  of   their  content.  They  are  divided  into  elements  that  define  the  document,  the  geometry,  and  the   materials  of  the  project  in  a  hierarchical  structure  (Fig.  4.11,  right).   The  DOE  data  was  taken  from  their  reference  file  and  was  logged  in  the  1 st  row;  the  2 nd  row   contained  the  data  inputted  in  the  Revit  model;  the  values  listed  in  IFC  and  gbXML  were  logged   in  the  3 rd  and  4 th  row  respectively;  the  following  rows  contained  the  different  energy  tools   interpretation  of  the  parameters  values  (Fig.  4.16).       The  compatibility  assessment  chart  proved  to  be  effective  in  determining  the  flow  of  data   and  the  effects  (if  any)  of  the  exporting  mechanism  of  Revit  and  the  importing  mechanism  of  the   energy  tools  on  the  data.     Figure  4.11:    The  textual  representation  of  a  floor  assembly  from  Revit  (left),  the  representation  in   gbXML  (center),  the  structure  of  the  gbXML  file  (right).   The  results  are  highlighted  in  the  following  divisions:   1   Location,  building,  and  space  elements   2   Window  and  wall  elements   3   Space  attributes,  density,  load  intensities,  and  schedules     4.4  THE  RESULTS   The  building  geometry  and  a  subset  of  data  parameters  were  checked  for  completeness  and   accuracy.   4.4.1  Building  geometry  accuracy  and  completeness.   Using  gbXML  the  geometry  visually  imports  correctly,  but  there  has  been  reports  in  some   cases  of  missing  surfaces,  incorrect  surface  orientations,  and  other  problems.  These  issues  are   sometimes  due  to  a  modeling  or  configuration  error  by  the  user;  and  in  other  cases  it  may  be  an   error  in  the  exporting  application.  McCallum  of  IES  gave  one  example  of  a  particular  limitation   with  data  models  that  did  not  work  well  with  energy  modeling  requirements:  “The  geometry   intended  for  energy  modeling  analysis  –spaces  and  space  boundaries-­‐  is  drawn  at  the  inside   surfaces  of  walls  and  floors.”  When  that  geometry  is  imported  to  the  energy  simulation  tools  the   spaces  are  separated  by  air  gaps  (McCallum  2014).  Having  gaps  which  should  not  be  there  affect   the  simulation  and  produce  eventually  inaccurate  results.  Other  issues  have  occurred  where   window  shades  were  being  misinterpreted  as  roofing  elements.       61   Though  the  base  case  building  works  correctly,  a  more  complex  geometry  was  created  in   Revit  to  check  for  geometric  errors;  the  model  contained  a  variety  of  elements,  custom  shapes   and  families  (Fig.  4.12).  It  was  then  exported  to  both  IFC  and  gbXML  data  models  and  then   imported  to  SketchUp  to  examine  the  transferred  geometry.  The  gbXML  model  was  further   imported  and  examined  in  BEM  tool  (IES  Pro).    IFC  is  aimed  to  serve  the  complete  building  lifecycle  and  therefore  attempts  to  export  all  of   the  model  data.  The  IFC  data  model  contained  all  the  geometry  even  the  objects  unrelated  to   energy   simulation   such   as   trees   and   furniture.   The   transfer   of   geometry   appeared   to   be   complete  and  accurate  (Fig.  4.13).  There  was,  however,  an  issue  in  the  pool  as  it  was  interpreted   as  a  space.  This  was  a  repeated  issue  in  both  gbXML  and  IFC  exports.  This  wasn’t  an  issue  in  the   data  model  export  but  rather  a  result  of  an  improper  definition  by  the  user  in  Revit;  the  pool   was  defined  as  a  space,  and  IFC  therefore  exported  it  a  part  of  the  spaces  considered  for  energy   simulation.  When  the  user  error  was  corrected  by  correctly  defining  the  pool  (changed  from  a   space  into  an  element),  then  it  was  transferred  correctly.   Unlike  IFC,  gbXML  is  selective  in  its  export  process  as  it  only  exports  defined  spaces  and  the   properties  of  the  fabric  enclosing  those  spaces.  This  simplifies  the  geometry  and  therefore   translates  well  to  the  energy  simulation  modeling-­‐interface.  However,  a  number  of  issues  were   observed  in  that  approach.  Objects  that  act  as  shading  devices  in  many  cases  were  not  exported   because  they  don’t  directly  relate  with  the  space.  The  cylinder  shaped  shading  on  the  skylights  is   disregarded  in  gbXML  export  (Fig.  4.14  and  4.14).  Another  issue  was  noted  when  using  dynamic   tools  in  Revit  such  as  the  "  Window  placement  ".  This  tool  specifies  a  relationship  between  a  wall   and  a  window  placed  within  it  and  conveys  the  model  as  a  result  of  the  join  operation.  The   gbXML  did  not  encode  this  relationship  and  interpreted  the  window  incorrectly  (Fig.  4.14  and   4.14).  These  issues  were  observed  in  both  Sketchup’s  and  IES  Pro  interpretation  of  the  gbXML   file.     Figure  4.12:    The  created  test  case  model  in  Revit.       62       Figure  4.13:    Imported  model  in  SketchUp  after  transferring  through  IFC;  the  transfer  of  geometry   appeared  to  be  complete  and  accurate.  The  pool  was  imported  as  a  space  because  it  was  improperly   defined  in  Revit.     Figure  4.14:    Imported  model  in  SketchUp  after  transferring  through  gbXML;  gbXML  attempts  to   transfer  only  the  defined  spaces  and  the  space-­‐bounding  surfaces.  Also  in  this  case  the  pool  was   imported  as  a  space  because  it  was  improperly  defined  in  Revit.     Figure  4.15:    Imported  model  in  IES  Pro  after  transferring  through  gbXML;  Similar  observations  were   made  of  geometry  flaws  as  noted  in  the  Sketchup  import  above.     For  an  accurate  simulation  the  model  should  be  complete  and  correct  with  no  errors  in   geometry  -­‐  spaces  and  space  boundaries.  Users  should  take  necessary  precautions  and  verify  the   model  before  attempting  any  analysis.         63   4.4.2  Building  data’s  accuracy  and  completeness  (not  geometry)   For  the  representative  sample  of  parameters,  the  data  models  were  compared  against  the   original  data  input  in  Revit  and  the  results  are  highlighted  in  the  following  divisions:    1)  location,   building,  and  space  elements;  2)  window  and  wall  elements;  and  3)  space  attributes,  density,   load  intensities,  and  schedules.        1.  Location,  building,  and  space  elements   Green  Building  Studio,  EnergyPro,  and  IES  Pro  generally  worked  well  in  importing  the   location,  building,  and  space  elements  of  the  gbXML  file  (Fig.  4.16).  The  weather  file  was  not   included  in  the  gbXML  data,  and  users  are  required  to  input  it  manually.   •   Export.  The  data  was  exported  correctly  from  Revit  to  the  gbXML  and  IFC  files.       •   Import.  Upon  importing  the  gbXML  file  EnergyPro  and  IES  Pro  translated  the  address  of   the  project.  However  GBS  required  manual  input  of  the  address  before  even  attempting   to  import  the  gbXML.  eQuest  does  not  have  the  capability  to  import  a  gbXML  file.         64     Figure  4.16:    Results  of  the  exchange  data  of  the  location,  building,  and  space  elements     2.  Window  and  wall  elements   There  was  sporadic  success  with  transferring  the  attributes  of  window  and  wall  elements   with  Green  Building  Studio  and  IES  Pro  performing  much  better  than  EnergyPro  (Fig.  4.17).       65   •   Export.  The  thermal  data  in  Revit  was  exported  correctly  into  the  gbXML  and  IFC  files.   Roughness  and  function  of  layer  data  however  were  not  exported,  as  it  does  not  relate  to   thermal  properties.  The  gbXML  file  does  not  attempt  to  export  any  data  that  is  not  related   specifically  to  geometry  or  thermal  properties.   •   Import.  GBS  and  IES  Pro  imported  the  main  thermal  data  correctly,  but  EnergyPro  did  not.   The  attributes  of  the  assemblies  were  changed  to  the  default  values  of  the  software  as  if   no  data  has  been  inputted  in  the  building  information  model.     Figure  4.17:    The  results  of  the  exchange  data  of  the  window  element  and  the  wall  assembly  of  the   material  element  (larger  image  placed  in  Appendix  D)       3.  Space  attributes,  density,  load  intensities,  and  schedules   Revit  exported  the  data  into  the  gbXML  and  IFC  files,  but  for  the  most  part,  these  parameters   were  not  imported  into  any  of  the  energy  simulation  programs  (Fig.  4.18).       66     Figure  4.18:  The  results  of  the  exchange  data  of  the  space  attributes;  people  density,  lighting  and   power  load  intensities  and  building  schedules         67   4.5  COMPARING  THE  DATA  CAPACITY  OF  THE  DIFFERENT  DATA  MODELS   4.5.1  Test  runs  using  gbXML   Looking  at  this  subset  of  parameters  has  led  to  a  few  conclusions.  First,  gbXML  is  adequate   file   format   for   geometry   transfer,   but   occasionally   has   problems   with   more   complex   or   confusing   geometry   (for   example,   they   might   not   be   able   to   tell   the   difference   between   a   window  shade  and  a  small  roof).  For  data  transfer,  the  results  were  worse.  The  gaps  are  both  of   inaccurate  and  incomplete  transfer  of  data.    It  appears  that  the  BIM  authoring  software  export  is   functioning  correctly  to  gbXM.  However,  the  building  energy  software  is  not  always  taking  full   advantage  of  the  information  in  the  gbXML  file  to  import  it  correctly.  This  is  effected  by  the  data   filters  and  default  values  that  act  upon  the  file  during  import.  In  some  cases  the  data  is  not   imported  at  all  and  requires  manual  re-­‐entering  such  as  the  location  and  schedules  in  Green   Building  Studio.  In  other  cases  when  the  data  is  not  being  imported  from  the  BIM,  a  default  value   for   that   variable   is   substituted   instead.   An   example   is   IES   behavior   towards   the   project   schedules;   the   originals   defined   in   the   data   model   are   disregarded   and   replaced   with   the   software  default  schedule  of  “On  continuously.”         4.5.2  Test  runs  using  IFC   Similar  tests  were  attempted  using  the  same  reference  building  of  DOE  and  using  IFC  as  the   data  transfer  model.  IFC  is  still  in  development  stage  when  it  comes  to  the  BIM  to  BEM  data  flow.   This  is  not  caused  by  the  export  mechanism  of  the  BIM  authoring  tools  to  IFC,  nor  IFC’s  ability  to   transfer  data  but  rather  the  support  that  IFC  currently  has  in  the  BEM  software  industry.  IFC  has   very  limited  support  between  the  BEM  tools;  at  the  time  of  this  report  only  three  tools  (Riuska,   IES,  and  IDA  ICE)  were  certified  to  import  IFC.  A  complete  list  could  be  found  here:   http://www.buildingsmart-­‐tech.org/implementation/implementations  .  This  makes  the  data   transfer  between  BIM  and  BEM  using  IFC  unlikely  to  happen,  as  the  options  open  to  the  user  are   very  limited.  Second,  IFC  encodes  the  complete  geometry  as  represented  in  the  BIM  software,   and  has  proved  to  be  an  adequate  data  model  for  geometry  transfer.       4.6  CONCLUSIONS   From  looking  at  the  results,  a  few  conclusions  can  be  drawn  about  both  the  transfer  of   geometry  and  energy  data.  gbXML  is  an  adequate  file  format  for  this  purpose,  but  occasionally   has  problems  with  more  complex  or  confusing  geometry  (for  example,  it  might  not  be  able  to  tell   the  difference  between  a  window  shade  and  a  small  roof).  For  data  transfer,  the  results  were   worse.  The  gaps  are  both  of  inaccurate  and  incomplete  transfer  of  data.  In  the  case  study   conducted,  it  appears  that  the  BIM  authoring  software  export  is  functioning  correctly  to  gbXML.   However,  the  building  energy  software  is  not  always  taking  full  advantage  of  the  information  in   the  gbXML  file  to  import  it  correctly.  This  is  due  to  ineffective  import  mechanisms  and  with  how   the  energy  program  is  handling  each  specific  piece  of  datum  as  it  is  input.   To  help  alleviate  some  of  these  interoperability  issues,  it  was  decided  to  develop  a  tool  that   clearly  showed  what  values  were  in  a  gbXML  file.  Unlike  other  gbXML  readers,  it  would  not   show  all  the  data  in  a  hierarchy,  but  instead  isolate  the  parameters  that  energy  simulation   software  use  and  group  them  into  the  four  DOE  categories  (Deru  et  al.  2011)..    These  are   program,   form,   fabric,   equipment   -­‐-­‐   program   (location,   total   area,   internal   loads,   operating   schedules,  hot  water  demand,  and  ventilation  requirements),  form  (geometry  and  orientation),       68   fabric  (construction  types  and  thermal  properties  of  the  building  elements),  and  equipment  (the   types,  specification,  and  efficiency  of  the  lighting,  HVAC,  and  SWH  systems).             69             CHAPTER  5:     DEVELOPING  THE  DATA     TRANSPARENCY  TOOL     (DTT)         70   5.1  INTRODUCTION   The  Data  Transparency  Tool’s  (DTT)  job  is  to  present  the  data  in  the  data  models  allowing   the  user  to  verify  it  and  correct  inaccuracies.  This  is  done  by  applying  a  transparency  layer  upon   the  IFC  and  gbXML  files  so  that  even  the  inexperienced  user  could  understand  them  (Fig.  5.1).   Four  steps  were  needed  to  create  the  tool:  matching  data  model  elements  with  the  selected   variable  set;  creating  a  new  XML  schema  that  matches  the  variable  set;  presenting  the  schema  in   a  Microsoft  Excel  tool  that  would  automatically  populate  the  data;  and  finally  programming  the   different  features.           Figure  5.1:  Diagram  of  the  Data  Transparency  Tool  (DTT)   5.2  MATCHING  DATA  MODEL  ELEMENTS  WITH  VARIABLE  SET   Matching   of   gbXML   and   IFCXML   elements   with   DOE’s   defined   variable   set   is   done   by   connecting  the  data  model  enumeration  (element)  with  its  corresponding  variable  name  in   DOE’s  set.  An  example  is  “DesignHeatT”  which  is  gbMXL’s  element  code  for  the  heating  design   temperature  (outdoor  dry  bulb  temperature  that  is  exceeded  during  at  least  99%  of  the  hours  in   a  typical  weather  year)  (Fig  5.2).     IFCXML  and  gbXML  each  structure  the  data  in  a  particular  proprietary  hierarchy.  This   hierarchy  encompasses  a  number  of  elements  and  attributes  that  make  up  the  complete  project   data.  Both  structures  were  examined  and  presented,  however,  since  gbXML  is  the  commonly   accepted  format  for  simulation  tools  it  was  chosen  as  a  base  to  develop  the  DTT  (Fig.  2.2).       71     Figure  5.2:  Diagram  of  methodology;  matching  data  model  enumerations  with  DOE’s  defined  variable   set.   5.2.1  gbXML.     gbXML’s  original  hierarchical  structure  is  comprised  of  a  large  number  of  elements  that   represent  the  geometry  and  data  of  a  building.  The  hierarchy  starts  with  “gbXML”  on  the  top   level   and   under   it   the   elements   representing   the   building   are   grouped   as   “Children”   and   “Attributes”   (Fig.   5.3).   These   elements   were   examined   and   then   “matched”   with   their   corresponding  variable  in  DOE’s  defined  variable  set.  An  example  is  buildingstorey,  which  is   gbXML  representation  of  the  number  of  floors  in  the  building  (Fig.  5.4).  Matching  of  gbXML  and   IFCXML  elements  with  DOE’s  defined  variable  set  is  necessary  to  pull  out  the  information  in  the   data  model  and  present  it  in  the  tool.           72     Figure  5.3:  Diagram  of  gbXML’s  original  hierarchical  structure.     temperatureUnit lengthUnit areaUnit volumeUnit useSIUnitsForResults xmlns version Attributes Id Name Latitude Longitude Id buildingtype Area InfiltrationFlow BuildingStorey spaceType ZoneIdRef lightScheduleIdRef equipmentScheduleIdRef peopleScheduleIdRef conditionType buildingStoreyIdRef Name Id lightingSystemIdRef CoefficientOfUtilization PhotometryOrientation Area Volume PlanarGeometry id unit Children ClosedShell CADObjectId Attributes surfaceRef PlanarGeometry PolyLoop PeopleNumber PeopleHeatGain LightPowerPerArea EquipPowerPerArea id surfaceType constructionIdRef Name AdjacentSpaceId RectangularGeometry PlanarGeometry id Name openingType constructionIdRef RectangularGeometry PlanarGeometry CADObjectId CADObjectId Id Manufacturer NumberOfLamps LumensPerLamp Dimensions InputWatts Lamp Luminaire Photometry Attributes Id Children LayerId Attributes Id Children MaterialId Attributes Id RKvalue Thickness Conductivity Density SpecificOHeat Attributes Id UKValue SolarHeatGainCoeff Transmittance Attributes Id Name YearSchedule Id type Children Day Id typw Children ScheduleValue Attributes Id Name AirChangesPerHour OAFlowPerArea OAFlowPerPerson DesignHeatT CoolingHeatT CADObjectId TypeCode ProgramInfo CompanyName ProductName Version Platform PersonInfo LastName CreatedBy Opening Attributes Children Space Attributes Children Lighting Attributes Children ShellGeometry Attributes SpaceBoundary Children gbXML Children Location Children Building Attributes Children Surface DaySchedule Attributes Zone Children Children DocumentHisto ry Attributes Children WindowType Children Schedule Children Attributes WeekSchedule Children Material Attributes Campus LightingSystem Construction Layer Children Children     73         The  Design  BIM  model  is  created  primarily  to  serve  the  architect’s  role.  In  many  cases   critical  energy  data  is  left  out;  an  energy  simulation  specialist  must  then  manually  add  missing   required   information   to   create   the   model   required   for   energy   simulation   (Bazjanac   and   Kiviniemi  2007).  This  is  partially  due  to  missing  data  input  from  the  user  side  and  partially  to   the  BIM  software’s  themselves  as  some  do  not  offer  all  energy  simulation  variables  entry.  To   become  accurate  the  simulation  tools  must  contain  complete  and  correct  data.  DTT  would   streamline  this  process  by  warning  of  any  missing  data.     DOE’s  list  contains  broad  variables  and  each  can  contain  multiple  variables  to  be  defined  in   the  energy  software  (Fig.  3.2).    For  example,  “Location”  can  include:  The  project’s  longitude,   latitude,  altitude,  the  address,  the  closest  weather  Station  ID…  etc.  gbXML  representing  elements   were  grouped  under  DOE’s  variables  (Fig.  5.4).               74     Figure   5.4:  gbXML  elements  mapped  with  DOE’s  defined  group  variables  (Deru  et  al.  2011).  This   structure  will  be  the  basis  of  DTT  new  XML  scheme.       75   5.3  MAPPING  DTT’S  NEW  XML  SCHEMA     A  new  schema  was  created  that  follows  the  hierarchy  of  variables  defined  by  DOE.  Using  the   new  schema,  the  data  is  presented  to  the  user  in  a  Microsoft  Excel  interface.   The  original  XML  was  accessed  by  opening  a  template  gbXML  file  in  Excel  and  accessing  the   source  panel  through  the  developer  tab.  When  opening  the  gbXML  template  file  the  user  is   prompted  to  select  how  the  file  will  be  opened.  Selecting  “Use  the  XML  Source  task  pane”  enables   the  use  of  the  template  gbXML  as  a  source  to  map  a  new  schema  for  the  DTT  (Fig.  5.5).     Figure  5.5:  Importing  the  gbXML  template  file  as  source  to  map  the  DTT.     The  new  XML  schema  was  then  created  by  dragging  the  element  nodes  from  the  XML  Source   pane  to  the  workspace  cells  adhering  to  the  defined  variable  set  as  basis  for  hierarchy  (Fig.  5.6).       Figure  5.6:  Using  the  gbXML  template  file  as  source  to  map  the  DTT.      Program,  Form,  Fabric  and  Equipment  therefore  create  the  top  levels  of  the  hierarchy  and   encompass  under  them  the  related  variables.  This  schema  was  then  used  to  present  the  data   model  values.  The  Excel  template  contains  four  main  tabs  each  of  which  corresponds  with  the   variable  set  and  its  underlying  elements  (Fig.  5.7).       76     Figure  5.7:  Mapping  new  XML  schema  based  on  the  defined  variable  (left  and  upper  right)  and   presenting  the  schema  in  the  DTT  Excel  interface  –  partial  screenshot  (lower  right  corner).    Five  tabs   along  the  bottom  for  the  program  itself  and  the  four  categories.   At  this  stage,  the  DTT  is  capable  of  importing  the  gbXML  data  model  and  presenting  the   data;  however,  the  import  functionality  requires  familiarity  with  Excel’s  XML  tools.  Steps  were   taken  to  automate  DTT’s  import  functionality  and  add  additional  functions  enabling  the  analysis,   scoring  and  reporting  of  data.  Refer  to  Chapter  6  for  more  detailed  information  on  using  the   software.           5.4  DEVELOPING  DTT’S  USER  FUNCTIONS   DTT  functions  are  made  possible  via  the  use  of  Visual  Basic  for  Applications  (VBA).  Excel   VBA  allows  the  automation  of  tasks  by  writing  macros.  This  is  accomplished  by  using  the  tools  in   Excel’s  developer  tab.  This  tab  arguably  contains  the  most  powerful  tools  in  Excel.  It  provides  an   interface  for  running  and  recording  macros.  It  also  contains  Excel’s  form  controls  that  enable   designing  and  inserting  command  buttons.     The  first  step  was  inserting  command  buttons  of  the  functions  that  DTT  would  execute  (Fig.   5.8).  Then  these  buttons  were  programed  by  assigning  codes  that  would  be  executed  once  these   buttons  are  clicked  (Fig.  5.9).       77     Figure  5.8:  Command  buttons  are  inserted  via  the  developer  tab.       Figure  5.9:  Visual  Basic  for  Applications,  code  is  written  in  this  interface  and  assigned  to  the  command   buttons.     Five  command  buttons  were  created  that  correspond  to  the  main  functions  of  DTT:  “Import   gbXML,”  “Check  Missing  Data,”  “Refresh,”    “Generate  Report”,  and  “Compare”(Fig.  5.10).       Figure  5.10:  The  five  command  buttons  that  were  created  in  the  DTT:  “Import  gbXML,”  “Check  Missing   Data,”  “Refresh,”  “Generate  Report,,  and  “Compare.”         78   Import  File   The  first  step  is  to  import  a  gbXML  file;  this  function  allows  the  user  to  browse,  select,  and   import  a  gbXML  file.  Once  this  code  is  executed  a  pop-­‐up  window  appears  allowing  the  user  to   select   the   specified   file.   Once   the   user   confirms   and   clicks   “import”   DTT   would   then   automatically   map   the   gbXML   file   and   place   the   data   under   the   corresponding   predefined   categories  (Fig.  5.11).       Figure  5.11:  The  complete  code  of  “Import”  command  button;  this  function  allows  the  user  to  browse,   select,  and  import  a  specific  gbXML  file.       Check  Missing  Data   DTT  analyzes  the  completeness  of  data  and  alert  the  user  of  any  missing  data  necessary  for   energy  simulation  by  checking  for  blank  cells.  This  is  accomplished  via  the  “Check  Missing  Data”   command.  This  command  applies  a  conditional  formatting  rule  on  the  whole  range  of  cells.  If  the   cell  contains  a  value  then  it  is  accepted;  if  the  cell  is  empty  or  out  of  the  accepted  range  of  values   then  the  cell  is  highlighted  in  red  (Fig.  5.12).     Figure  5.12:  The  partial  code  of  “Check  Missing  Data”  command  button;  this  function  alerts  the  user  of   missing  data.  The  complete  code  is  in  Appendix  B.       79     Reporting  the  Data  Model  completeness     The  DTT  reports  the  completeness  of  data  required  for  energy  simulation.  The  “Report”   function  generates  a  PDF  file  that  illustrates  individual  completeness  scores  for  the  variable   categories  (Program,  Fabric,  Form,  and  Equipment)  as  well  as  an  overall  score.    The  overall   score  reports  the  overall  percentage  of  variables  that  have  been  provided.  This  function  enables   instant  review  of  content  and  assists  the  user  in  determining  the  relative  validity  of  simulations   if  the  file  was  used.  A  simulation  run  using  a  90%  complete  data  model  would  be  much  more   reliable  than  a  20%  one    (Fig.  5.13).     Figure  5.13:  DTT’s  generated  PDF  report  illustrates  individual  completeness  scores  for  the  variable   categories  (Program,  Fabric,  Form,  and  Equipment)  as  well  as  an  overall  score.       To  achieve  this  report,  conditional  codes  and  a  macro  were  used.  Conditional  formatting  is   applied  to  specified  cells,  when  the  data  in  these  cells  meet  the  conditions  specified,  then  the   selected  formats  are  applied.  In  the  DTT  case  red  highlight  is  applied  when  data  is  missing  and   green  highlight  is  applied  when  there  is  a  defined  value.     Some  conditional  codes:   =IF(Program!M4=0,  "No  Value",    "Has  Value")   =IF(Fabric!A4=0,    0,  1)   The  macro  assigned  to  the  reporting  command  prints  a  PDF  file  of  the  Report  sheet  (Fig.   5.14).       80     Figure  5.14:  The  partial  code  of  “Generate  Report”  command  button,  this  function  generates  a  report   that  summarizes  the  completeness  of  the  file  and  produces  a  “completeness”  score.     Refresh   This  command  button  clears  the  data  and  must  be  performed  prior  to  any  import  (Fig.  5.15).     Figure  5.15:  The  partial  code  of  “Refresh”  command  button,  this  command  clears  the  data  and  must  be   performed  prior  to  any  import.  Complete  code  found  in  Appendix  B.     Compare                  The  compare  command  compares  two  data  models  and  reports  any  differences.  It  is  used  to   determine  the  effects  of  the  energy  simulation  tools’  import  mechanisms.  As  observed  in  chapter   4,  it  is  common  for  some  data  to  be  left  out  or  even  altered  in  some  cases  (Fig.  4.17).  When   exporting  from  BIM  to  BEM  not  all  the  data  in  the  model  is  exported  because  some  of  it  is   irrelevant.  As  an  example  of  the  filtering  is  the  exclusion  of  elements  such  as  furniture  and   attributes  such  as  costs  which  are  irrelevant  for  energy  analysis  and  therefore  the  software  does       81   not  attempt  to  export  them.  However  and  as  observed  in  section  3.4.1  some  essential  data  is  left   out.   This  tool  would  enable  the  user  to  observe  these  changes  and  update  the  model  in  the  BEM   tool  for  accurate  results.  The  macro  programmed  to  the  “compare”  button  executes  a  tool   “SpreadSheetCompare”   that   allows   the   user   to   select   the   two   files   and   then   performs   the   comparison  (Fig.  5.16).    Figure  5.16:  The  code  of  the  “Compare”  macro;  this  codes  executes  the  “SpreadSheetCompare”  tool.   5.5  CONCLUSION     One  of  the  main  issues  in  data  transfer  is  lack  of  transparency.  The  DTT  tackled  this  by  the   following  methods:  communicating  what  is  actually  being  transferred  to  the  user  in  a  simple   clear  format;  analyzing  the  data  and  alerting  user  of  missing  information;  generating  reports   and   developing   a   file   scoring   system;   and   revealing   the   effect   of   the   BEM   tools’   import   functionality  by  comparing  the  original  gbXML  with  the  one  that  is  actually  used  for  simulation.   The  import  and  export  mechanism  include  “data  filters”  that  “select”  partial  data  for  export.         82           CHAPTER  6     PRESENTING  THE     DATA  TRANSPERANCY  TOOL     (DTT)           83   6.1  INTRODUCTION   The  Data  Transparency  Tool’s  (DTT)  job  is  to  present  the  data  in  the  data  models  allowing   the  user  to  verify  it  and  correct  inaccuracies.  The  tool  has  four  main  functions;  data  presentation,   data  analysis,  and  generating  data  reports.   6.1.1  Presenting  the  relevant  data   The  tool  shows  the  user  in  a  simple  manner  exactly  what  is  being  exported  from  the  building   information  modeling  software  and  imported  into  the  energy  software.  Then  designers  could   have  more  confidence  about  the  values  of  parameters  that  are  being  transferred  from  BIM  to   BEM.   Unlike  other  data  model  readers  that  show  all  the  data  in  a  hierarchy,  the  DTT  isolates  the   parameters  that  energy  simulation  software  use  and  group  them  into  the  four  DOE  categories.   Program,  Form,  Fabric  and   Equipment   therefore   create   the   top   levels   of   the   hierarchy   and   present  under  them  the  related  variables  in  an  Excel  interface.     6.1.2  Analyzing  Data     DTT  analyzes  the  completeness  of  data  and  alert  the  user  of  any  missing  data  necessary  for   energy  simulation.  It  then  reviews  and  validates  the  range  of  data.  This  is  done  by  confirming   that  the  variables  are  within  accepted  variable  range.  An  example  is  Solar  Heat  Gain  Coefficient   (SHGC)  that  must  have  a  value  between  0  and  1;  if  the  entered  value  is  out  of  the  range  the  tool   will  highlight  the  cell  alerting  the  user.     6.1.3  Reporting     The  tool  has  the  capability  of  generating  a  report  that  summarizes  the  data  highlighting  any   issues.  It  also  generates  a  score  (percentage)  for  the  imported  gbXML  file  depending  on  the   completeness  and  validity  of  data.   6.1.4  Data  Model  Comparison   DTT  reveals  the  effects  of  the  “filters”  imposed  by  the  energy-­‐modeling  tools.  These  filters   are  part  of  the  import  mechanism  of  these  tools  and  act  upon  the  imported  file.  In  some  case,   and  as  observed  in  Chapter  4,  the  original  data  is  altered  (Fig  4.17).  DTT  reveals  any  change  by   comparing  the  data  model  exported  from  the  BIM  software  and  the  actual  data  that  is  used  in   the  tool.           84   6.2  A  GUIDE  TO  USING  THE  DTT   DTT  imports,  inspects,  analyzes  and  reports  on  the  gbXML  data  model.  gbXML  is  now   supported   by   the   majority   of   the   software   vendors   including   Autodesk,   Bentley,   and   Vectorworks;   a   complete   list   of   software   can   be   found   on-­‐line     (http://www.gbxml.org/software.php,  last  accessed  May  2014).    The  gbXML  export  of  the  case   study  building  of  DOE  medium  office  building  (developed  in  Chapter  4)  was  used  as  a  reference   building  (Fig  .6.1).         Figure  6.1:  The  reference  DOE  office-­‐building  model  from  Revit  used  for  tutorial.     6.2.1  Setup,  Startup,  and  the  user  interface     The  tool  is  bundled  together  in  one  macro-­‐enabled  Excel  file.  No  installation  is  required,   simply  copy  from  source  and  paste  into  desired  location.  However,  DTT  must  be  run  on  a   Microsoft®  Windows®  compatible  computer  with  Excel  already  installed.  The  Microsoft®  suite   on  Macintosh  does  not  currently  support  some  of  the  macros  required  for  tool  functionality.     Once  the  tool  is  opened,  an  empty  Excel  template  is  displayed.  The  variables  are  represented   under   the   four   categories   defined   by   DOE   (Program,   Form,   Fabric   and   Equipment).   The   categories  are  each  on  a  separate  sheet  (Fig  6.2,  6.3,  6.4  and  6.5).             85     Figure  6.2:  “Program”  sheet  encompasses  building  program  variables    (location,  total  area,  internal   loads,  operating  schedules,  hot  water  demand,  and  ventilation  requirements).     Figure  6.3:  “Form”  sheet  encompasses  only  Building  Story  variables  of  the  Form.       86     Figure  6.4:  “Fabric”  sheet  encompasses  building  fabric  variables  (construction  types  and  thermal   properties  of  the  building  elements).     Figure  6.5:  “Equipment”  sheet  list  the  power  usage.       87     Figure  6.6:  “File  Spec”  presents  the  meta  data  of  the  file  which  includes  data  such  as  originated   software,  user  name,  date  exported   The  DTT  does  not  discard  any  data  from  the  data  model,  data  of  the  geometry  as  well  as  data   that  isn’t  directly  related  to  energy  simulation  and  doesn’t  fall  within  the  defined  variables  (such   as  geometry)  is  presented  in  the  “other  data”  sheet  (Fig.  6.7).       Figure  6.7:  “Other  Data”  sheet   The  opening  page  of  the  tool  is  the  Program  sheet  that  contains  the  different  function   buttons  that  allow  the  importing,  analysis,  and  reporting  of  the  data.       88   6.2.2  Importing  data  models  and  understanding  the  data   It  is  essential  to  refresh  always  prior  to  importing.  The  “Refresh”  button  clears  all  cells  and   prepares  the  tool  for  import  of  a  new  file.     Next  import  a  gbXML  data  model;  this  is  done  by  clicking  on  the  “import  gbXML”  button.  A   pop-­‐up  window  then  emerges  that  allows  the  user  to  browse,  locate  ,and  then  open  the  specified   file.    DTT  would  then  import  the  file  and  map  the  data  under  their  corresponding  categories.   The  case  study  file  of  DOE  office  building  was  imported,  and  the  variables  were  correctly   mapped  (Fig.  6.8  and  6.9).  Further  trials  were  made  using  other  gbXML  files  and  were  all   successfully  represented  (generated  reports  can  be  found  in  Appendix  F).   Figure  6.8:  File  selection  window  emerges  when  the  user  clicks  the  “import  gbXML”  button.     Figure  6.9:  DTT  automatically  sorts  the  data  into  their  specified  fields.       89   6.2.3  Analyzing  the  data   DTT  analyzes  the  completeness  of  data  and  alerts  the  user  of  any  missing  data  necessary  for   energy  simulation.  This  is  done  via  the  “Check  Missing  Data”  function  that  highlights  the  cells   with  absent  data  in  red  (Fig.  6.10).  It  also  reviews  and  validates  the  data  by  confirming  that  the   variables  are  within  accepted  variable  range;  for  instance  the  value  of  the  Solar  Heat  Gain   Coefficient  (SHGC)  should  be  with  the  range  (0-­‐1).       Figure  6.10:  Missing  data  are  highlighted  in  red  to  alert  the  user.   6.2.4  Reporting   DTT  generates  a  file  completeness  report  through  clicking  on  the  “Generate  Report.”  This   function  creates  a  PDF  file  that  reports  the  missing  data  and  produces  completeness  scores  for   the  variable  categories  individually  and  for  the  file  as  a  whole  (Fig.  6.11).    This  function  enables   instant  review  of  content  and  assists  the  user  in  determining  the  relative  validity  of  simulations   if  the  file  was  used.  A  simulation  run  using  a  90%  complete  data  model  would  be  much  more   reliable  than  a  20%  one.       90     Figure  6.11:  The  generated  (PDF)  completeness  report  of  the  “Modern  Family  Home”  gbXML  file.     It  is  essential  to  refresh  always  prior  to  importing.  The  “Refresh”  button  clears  all  cells  and   prepares  the  tool  for  import  of  a  new  file.     6.2.5  Data  Model  comparison   This  function  reveals  the  effects  of  the  energy  tools  import  mechanism  “filters.”  These  filters   are  part  of  the  import  mechanism  and  act  upon  the  imported  data  model.  This  function  can  be   utilized  to  check  a  file  that  was  exported  from  BIM  to  one  that  was  exported  from  BIM,  imported   to  BEM,  and  exported  from  BEM.    This  would  check  if  the  BEM  has  the  same  values  that  BIM   exported.   DTT  launches  a  file  comparison  tool  (Spreadsheet  Compare)  once  the  “Compare”  button  is   clicked.   The  user  would  then  select  “Compare  Files”  on  the  upper  left  hand  corner  of  the   launched  window  (Fig.  6.12),  which  would  then  promote  the  user  to  select  the  desired  data   models  (Fig.  6.13).           91     Figure  6.12:  The  spreadsheet  Compare  tool  is  launched  once  “Compare”  is  clicked.     Figure  6.13:  The  user  is  promoted  to  select  the  desired  files  to  compare.     Once  the  user  select  the  files  and  clicks  compare  the  tool  would  then  proceed  with  the   comparison  and  presents  the  results.    Both  files  are  brought  up  and  presented  side  by  side,  one   sheet  at  a  time;  “Program”,  “Form”,  “Fabric”,    “Equipment”,  and  “File  Specs”.  Any  differences  are   highlighted  to  alert  the  user  (Fig.  4.14).     Figure  6.14:  Both  files  are  brought  up  and  presented  side  by  side.       92     A  table  in  the  lower  center  summarizes  the  differences  (Fig.  6.15).     Figure  6.15:  The  table  in  the  lower  center  summarizes  the  differences.   6.3  COUPLING  TOOL  WITH  GEOMETRY  VIEWERS.   DTT  displays  and  analyzes  non-­‐geometrical  data;  the  geometric  data  is  made  available  only   in  textual  format  in  the  “Other  Data”  sheet.  In  order  to  optimize  transparency  it  is  recommended   to  use  it  along  with  geometry  visualization  tools  that  translate  the  textual  geometry.  Tools  such   as  Solibri,  FZKViewer,  and  DDS-­‐CAD  and  plug-­‐ins  such  as  gModeller  for  Google  SketchUp,  can  be   used  along  the  DTT  for  geometrical  visualization  of  data  models  and  would  enhance  the  data   transfer  transparency.  Coupling  DTT  with  geometry  viewers  is  especially  required  with  complex   geometry  and  would  allow  the  user  to  examine  the  transferred  geometry  and  fix  any  issues.       Reference  is  made  to  the  previous  exercise  in  section  4.4.1  where  two  case  studies  were   used  to  examine  gbXML’s  capability  of  geometrical  representation.  The  first  was  the  medium   office  building,  and  the  second  was  the  “Modern  Family  Home”  (Fig  6.16  and  Fig  6.17).  The  latter   comprises   of   a   more   complex   geometry   where   issues   where   found   and   therefore   better   establishes  the  necessity  of  geometry  visualization.  Both  projects  were  exported  into  gbXML   from  Revit  and  then  imported  to  SketchUp  via  the  gModeller  plug-­‐in.     The  medium  office  building,  being  simple  in  its  form,  had  no  issues  in  the  data  model   representation  of  geometry.  That  said,  examining  the  geometry  is  essential  even  in  the  simplest   of  models.  On  the  other  hand  the  “Modern  family  home”  had  a  number  of  issues.  Objects  that  act   as   shading   devices   in   many   cases   were   not   exported;   the   cylinder   shaped   shading   on   the   skylights  is  disregarded  in  gbXML  export  (Fig.  6.18).  Another  issue  was  noted  when  using   dynamic  tools  in  Revit  such  as  the  "  Window  placement."  This  tool  specifies  a  relationship   between  a  wall  and  a  window  placed  within  it  and  conveys  the  model  as  a  result  of  the  join   operation.  The  gbXML  did  not  encode  this  relationship  and  interpreted  the  window  incorrectly   (Fig.  6.18).       93     Figure  6.16:    The  medium  office  model  in  Revit  (left)  and  the  geometrical  representation  of  the   exported  data  model  in  SketchUp  (right).       Figure  6.17:    A  more  complex  geometry  “Modern  Family  Home”  created  in  Revit.       Figure  6.18:    The  imported  model  in  SketchUp  after  transferring  through  gbXML;  gbXML  attempts  to   transfer  only  the  defined  spaces  and  the  space-­‐bounding  surfaces.  Also  in  this  case  the  pool  was   imported  as  a  space  because  it  was  improperly  defined  in  Revit.   The  above  cases  examine  and  report  the  geometrical  representation  capabilities  of  gbXML   through  visual  matching.  It  would  be  extremely  useful  to  have  tools  that  examine  the  actual       94   geometry   and   report   mismatches.   This   is   discussed   further   in   Chapter   7   as   part   of   future   proposed  work  to  enhance  the  BIM  to  BEM  data  exchange.   At  this  stage  DTT  isn’t  capable  of  detecting  any  geometrical  issues  in  the  transfer  such  as  the   ones  highlighted  in  above  cases,  it  is  proposed  as  future  work  to  have  a  built  in  geometrical   viewer  that  would  eliminate  the  need  for  other  tools.     Accurate  geometry  and  data  are  required  for  accurate  simulation;  the  model  should  be   complete  and  correct  with  no  errors  in  geometry  -­‐  spaces  and  space  boundaries.  Therefore  users   should   take   necessary   precautions   and   verify   not   only   the   data   through   DTT   but   also   the   geometry  before  attempting  any  analysis.   6.4  CONCLUSION   The  DTT  attempts  to  address  the  interoperability  gap  between  BIM  and  BEM  by  showing  the   user  in  a  simple  manner  exactly  what  is  being  exported  from  the  building  information  modeling   software  and  imported  into  the  energy  software.  DTT  imports,  inspects,  analyzes  and  reports  on   the  gbXML  data  model  allowing  users  to  have  more  confidence  in  their  simulations.                       95             CHAPTER  7   FUTURE  WORK  AND  CONCLUSION         96   7.1  INTRODUCTION     BIM   has   proved   to   be   a   valuable   tool,   yet   there   still   are   issues   in   its   execution.   The   interoperability  gap  between  BIM  and  building  energy  simulation  tools  is  one  of  these  issues   that  needs  further  research.   BIM  software  should  be  able  to  export  necessary  information,  and  energy  programs  should   be  able  to  import  it.    This  allows  for  efficiencies  and  time-­‐savings  that  could  be  used  for  the   simulations  themselves.  Steps  were  taken  to  understand  the  current  limitations  of  file  transfer   and  how  transparency  of  data  interoperability  and  “open”  structured  BIM  data  can  be  used  to   help  bridge  many  of  the  BIM  gaps  that  exist  in  the  handover  of  information.   7.2  FUTURE  WORK   Future  work  could  be  in  several  directions  including  BIM  interoperability,  open  source   formats,  development  on  the  DTT,  and  interoperable  file  formats.       7.2.1  Pressure  on  Software  Developers   The  interoperability  tests  concluded  that  major  issue  lie  in  the  import  mechanism  of  the   energy  simulation  tools.  In  many  cases  the  data  was  incomplete  and  in  some  cases  even  altered.   More  pressure  needs  to  be  put  on  software  developers  to  improve  this  capability  of  their   software.  The  DTT’s  comparison  tool  could  be  used  to  aid  software  developers  in  pinpointing   issues  in  their  data  import  mechanisms  as  a  first  step  in  resolving  them.     7.2.2  Open  Source  Formats   The  industry  is  moving  towards  open  source  formats.  Numerous  options  of  open  source   formats  for  the  same  data  transfer  could  be  found.  IFC  is  one  of  these  formats  that  provides  an   object-­‐oriented  file-­‐format  solution  that  is  interoperable  with  different  software  functioning  at   different  stages  of  the  project  (BuildingSMART  2014).  By  doing  so  the  flow  of  data  is  continuous   through  one  file  structure  from  the  initial  design  stage  all  the  way  to  project  execution.  In  that   sense   IFC   is   more   practical   than   gbXML   as   the   latter   is   specifically   developed   for   energy   simulation  and  does  not  function  at  other  stages.  IFC  also  has  a  strict  software  certification   program  that  ensures  reliability  and  interoperability  that  gbXML  lacks.     gbXML  on  the  other  hand  is  developed  specifically  to  transfer  building  geometrical  and   thermal  data.  Neither  IFC  nor  gbXML  have  unanimous  software  support  of  to  complete  the  data   exchange  between  the  BIM  authoring  software,  but  gbXML  does  have  better  support  between   the  BEM  tools  as  88%  support  its  import  versus  only  12%  are  certified  for  IFC  import  (Fig  7.1).   Future  work  could  help  determine  whether  IFC  or  gbXML  are  better  choices  for  building  energy   modeling.  Another  approach  is  to  advocate  a  range  of  open  source  formats  that  are  applicable  to   the  specific  set  of  data  that  needs  to  be  transferred.           97   7.2.3  Development  on  the  DTT:   The  following  are  a  few  functions  that  could  improve  the  tool.   1.  Incorporating  geometry     The  current  technique  is  using  DTT  along  one  of  the  commercially  available  graphic   viewers.  The  next  step  would  be  to  provide  a  built-­‐in  graphic  representation  of  the   model  within  DTT  interface.  That  would  increase  DTT  ‘s  functionality  in  presenting  the   model.         2.  Visualization     Create  a  color-­‐coded  visualization  corresponding  to  the  defined  energy  categories.   3.  Adding  and  editing  data   DTT  does  not  currently  have  the  capability  of  editing  the  data  model.  It  merely  informs   the  user  of  any  issues  and  the  user  would  have  to  go  back  to  the  original  source  of  the   data  model  to  edit  or  add  any  data.  To  become  a  comprehensive  tool,  it  is  suggested  as   part  of  future  work  to  enable  the  user  directly  to  correct  and  append  data  to  the  data   models.   4.  DTT  as  a  plug-­‐in  to  BIM  software   Currently  DTT  is  an  external  tool  that  requires  the  import  of  a  gbXML  file  to  present  and   analyze  the  data.  It  would  be  easier  if  the  tool  was  incorporated  directly  in  the  BIM   software,  presenting  the  data,  highlighting  issues  and  reporting  completeness.   5.  Developing  an  IFC  based  DTT   The  DTT  was  based  on  gbXML  as  it  has  extremely  higher  support  between  the  energy   simulation  tools.  However,  it  is  important  to  develop  an  IFC  based  version  of  DTT  as   neither  IFC  nor  gbXML  have  unanimous  software  support  to  complete  the  data  exchange   (Fig  2.2).     6.  Transferring  to  an  executable  stand  alone  software   DTT  is  currently  nested  in  Mircosoft  Excel,  that  inherits  it  with  some  limitations.  It  must   be  run  on  a  Microsoft®  Windows®  compatible  computer  with  Excel  already  installed.   Moreover,  the  Microsoft®  suite  on  Macintosh  does  not  currently  support  some  of  the   macros  required  for  tool  functionality.    It  is  proposed  as  future  work  to  convert  the  DTT   into  a  free  standing  software.     7.2.4  Developing  other  tools:  a  gbXML  to  IFC  converter     Reference   is   made   to   the   discussion   on   data   model   formats   (gbXML   and   IFC)   interoperability  between  BIM  and  BEM  in  Chapter  2  (Fig.  7.1).       98     Figure  7.1:  Type  of  data  models  (IFC  or  gbXML)  that  BIM  Authoring  tools  and  Energy  Simulation  tools   import  and  export;  developed  according  to  a  web-­‐search  performed  November,  2014.           A  valuable  tool  to  assist  in  this  issue  is  a  format  converter  between  IFC  and  gbXML,  making   the   two   standards   themselves   interoperable.   This   tool   would   increase   the   data   transfer   possibility  tremendously  and  would  reduce  the  restriction  of  choices  for  both  the  designer  and   the  energy  analyst.  It  would  also  reduce  or  completely  eliminate  manual  data  entry  making  the   data  flow  seamless  with  a  great  reduction  on  the  possibility  of  human  error.   7.3  CONCLUSION   Although  there  has  been  significant  progress  for  BIM,  both  in  bringing  it  to  prominence  in   the  AECO  industry  and  in  trying  to  minimize  the  gaps  between  team  members  and  project   phases,  more  is  necessary  if  BIM  is  to  be  used  to  its  full  potential  and  transform  the  industry.   Many  gaps  still  exist  in  the  data  exchange  between  BIM  models  that  could  result  in  data  loss,   miscommunications,  and  inaccurate  results,  which  would  inevitably  disturb  the   design  and   construction  process   Energy  efficiency  is  now,  more  than  ever,  a  top  concern  that  should  be  addressed  in  the   earliest   of   the   design   stages.   Explaining,   understanding,   and   enhancing   the   data   transfer   between  software  would  allow  better  design  decisions  through  more  accurate  coordination   between   energy   simulation   and   building   modeling.   To   become   effective,   energy   efficiency   should  be  a  determining  factor  in  the  design  of  buildings  and  consequently  should  be  carefully   analyzed  at  the  very  earliest  of  the  design  stages.  The  BIM/BEM  workflow  should  be  seamless  to   support  this  analysis,  which  is  not  the  case  at  present.   A  prominent  one  of  these  BIM  gaps  is  the  loss  of  data  due  to  interoperability.  Tools  need  to   be  introduced  to  manage  the  data  flow  and  the  user  expectations.  Many  designer  lost  faith  in  this   workflow  and  opt  for  re-­‐modeling  adding  work  and  introducing  additional  human  input  that  is   far  from  being  immune  to  error.  Others  consider  this  workflow  accurate  and  complete  basing   their  simulation  on  the  BIM  export.         99   DTT  is  a  patch  tool  addressing  a  fault  in  the  current  system  and  answering  an  issue  in  the   data  transfer.  It  was  developed  to  tackle  the  issue  of  data  loss  by  allowing  the  user  to  make  more   informative  decisions.  It  added  a  layer  of  transparency  to  the  data  exchange  allowing  users  to   observe   what   values   are   being   transferred,   to   analyze   their   validity,   and   to   report   their   completeness.  With  more  confidence  in  knowing  exactly  what  is  being  transferred,  it  is  hoped   that  designers  will  better  utilize  BIM  to  BEM  for  evidence-­‐based  design.             100   REFERENCES     ACEEE.  2014  “The  2014  International  Energy  Efficiency  Scorecard”  Accessed  November  29.   http://aceee.org/files/pdf/summary/e1402-­‐summary.pdf     AIA.  2012.  “An  Architect’s  Guide  to  INTEGRATING  ENERGY  MODELING  IN  THE  DESIGN   PROCESS.”   Autodesk,  Inc.  2014.  IFC  2015.  Accessed  November  8.   https://apps.exchange.autodesk.com/ALIAS/en/Detail/HelpDoc?id=appstore.exchange. autodesk.com:ifc2015_windows32and64:en&mode=live#inunininfo.   Buildingsmart.  2014.  Accessed  September  29.  http://www.buildingsmart-­‐tech.org/news/ifc4-­‐ officially-­‐released.   Cunningham,  Philip.  2009.  “HEATING  AND  COOLING  LOAD  CALCULATIONS  AND  ENERGY"  Last   accessed  September  27.  http://forums.augi.com/showthread.php?159634-­‐MP308-­‐3-­‐ Heating-­‐and-­‐Cooling-­‐Load-­‐Calculations-­‐and-­‐Energy-­‐Model-­‐Development-­‐From-­‐an-­‐ Autodesk-­‐Revit-­‐MEP-­‐Model-­‐Utilizing-­‐gb   Delfosse,  Vincent,  John  Schrayen,  Roland  Juchmes,  and  Pierre  Leclercq.  2012.  “Some  Advice  for   Migrating  to  IFC.”  In  .  http://orbi.ulg.ac.be/handle/2268/121709.   Deru,  Michael,  Kristin  Field,  Daniel  Studer,  Kyle  Benne,  Brent  Griffith,  Paul  Torcellini,  Bing  Liu,  et   al.  2011.  “US  Department  of  Energy  Commercial  Reference  Building  Models  of  the   National  Building  Stock.”   http://digitalscholarship.unlv.edu/renew_pubs/44/?utm_source=digitalscholarship.unl v.edu%2Frenew_pubs%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages.   DOE.  2008.  Buildings  Share  of  U.S.  Primary  Energy  Consumption  Source:    U.S.  Department  of   Energy  (DOE),  2008  Buildings  Energy  Data  Book,  Section  1.1.1,  200.   http://www.c2es.org/technology/overview/buildings.   Eastman,  Chuck,  Sacks,  Rafael,  and  Panushev,  Ivan.  2009.  “Information  Delivery  Manual  for   Precast  Concrete.”   http://dcom.arch.gatech.edu/pcibim/documents/IDM_for_Precast.pdf.   Eastman,  Chuck,  Manu  Venugopal,  Sacks,  Rfael.  2015.  “SEMANTIC  EXCHANGE  MODULES.”   Accessed  January  29.  http://www.dbl.gatech.edu/sem.   Eastman,  Chuck,  (first),  Venugopal,  Manu,  and  Aram,  Shiva.  “Industry-­‐Wide  National  BIM   Standard:  A  Progress  Report.”  AECbytes  “Building  the  Future”  Article,  no.  November  30,   2011.  http://www.aecbytes.com/buildingthefuture/2011/NBIM-­‐ProgressReport.html.   gbXML.  2014.  "Green  Building  XML  Schema"  Accessed  November  20.  http://www.gbXML.org.     gbXML.  2015.  "History  of  gbXML".    Accessed  February  20    http://www.gbxml.org/history.php       GSA.  2007.  “GSA  Building  Information  Modeling  Guide  Series  01  -­‐  Overview  DRAFT.”   http://www.gsa.gov/graphics/pbs/GSA_BIM_Guide_v0_60_Series01_Overview_05_14_0 7.pdf.   Hijazi,  Mohammed,  Kensek,  Karen,  Konis,  Kyle.  2015.  “Bridging  the  Gap:  Supporting  Data   Transparency  from  BIM  to  BEM.”  In  .  White  Paper.   IEEE  Std  610.  1991.  “IEEE  Standard  Computer  Dictionary:  A  Compilation  of  IEEE  Standard   Computer  Glossaries,”  January,  1–217.  doi:10.1109/IEEESTD.1991.106963.   IFC.  2014.  “Industry  Foundation  Classes:  IFC  2x  Edition  2  addendum  1”  Last  accessed  September   20.    http://www.iai-­‐  international.org/Model/R2x2_add1/index.html     Karen  Kensek,  Kyle  Konis,  and  Mohammed  Hijazi.  2014.  “Assessment  of  File  Interoperability   between  BIM  and  Energy  Analysis  Software  Using  gbXML.”  White  Paper,  Not  yet   Published.       101   Kensek,  Karen,  Becker  Geoffrey,  and  Hijazi,  Mohammed.  2014.  “BIM  Gaps:  Major  Issues  That  Are   Preventing  Seamless  Integration  of  Building  Information  Modeling  in  the  AECO   Industry.”  White  Paper.   Kensek,  Karen  M.  2014.  Building  Information  Modeling.  1  edition.  London ;  New  York:   Routledge.   Oullette,  Jeffrey.  2014.  Interview  with  Jeffrey  Oullette.   Sefiera.  2014.  Why  Sefaira?.  Accessed  November  14.  http://sefaira.com/why-­‐sefaira/.   Sumedha,  Kumar.  2014.  “Interoperability  between  Building  Information  Models  (BIM)  and   Energy  Analysis  Programs ::  University  of  Southern  California  Dissertations  and   Theses.”  Accessed  September  4.   http://digitallibrary.usc.edu/cdm/ref/collection/p15799coll127/id/64743.             102   BIBLIOGRAPHY     The  references  in  the  section  above  include  only  the  sources  that  have  been  directly  used  and   cited.  The  bibliography  however,  consists  of  all  resources  (books,  journals,  online  resources)   examined  during  the  course  of  the  project  and  includes  even  those  sources  that  have  not  been   cited.     ACEEE,  2014  “The  2014  International  Energy  Efficiency  Scorecard”  Accessed  November  29.   http://aceee.org/files/pdf/summary/e1402-­‐summary.pdf     AIA.  2012.  “An  Architect’s  Guide  to  INTEGRATING  ENERGY  MODELING  IN  THE  DESIGN   PROCESS.”   Autodesk,  Inc.  2014.  IFC  2015.  Accessed  November  8.   https://apps.exchange.autodesk.com/ALIAS/en/Detail/HelpDoc?id=appstore.exchange. autodesk.com:ifc2015_windows32and64:en&mode=live#inunininfo.   Autodesk  2014.  “Building  Solutions,  Building  Performance  Analysis  Using  Revit,  Autodesk,   accessed  August  23.   <http://images.autodesk.com/adsk/files/building_performance_analysis_usin   g_revit.pdf   Autodesk  Revit.  2014.  “Revit  Help  Wiki”.  Accessed  November  20.   08/11/2014http://help.autodesk.com/view/RVT/2014/ENU/?guid=GUID-­‐418D5435-­‐ B95E-­‐4C84-­‐8EF5-­‐C2962E313D79   Bazjanac,  V.  2001.  Acquisition  of  Building  Geometry  in  the  Simulation  of  Energy  Performance“.   Building  Simulation  2001,  Proc.  intern.  conf.,  Rio  de  Janeiro,  Vol.  1:  305-­‐311.  ISBN  85-­‐ 901939-­‐2-­‐6.     Bazjanac,  V.  2002.  “Early  Lessons  From  Deployment  of  IFC  Compatible  Software.”  eWork  and   eBusiness  in  Architecture,  Engineering  and  Construction,  Proc.  fourth  Euro.  conf.   product  process  modelling,  Portoroz,  SLO:  9-­‐  16.  Balkema.  ISBN  90  5809  507  X.     Bazjanac,  V,  2003.  “Improving  Building  Energy  Performance  simulation  with  Software   interoperability”  Eighth  International  IBPSA  Conference,  Netherlands.   Bazjanac,  V.,  and  D.B.  Crawley.  1999.  “Industry  Foundation  Classes  and  Interoperable   Commercial  Software  in  Support  of  Design  of  Energy-­‐Efficient  Buildings”  In  Proceedings   of  Building  Simulation  ’99,  Kyoto.   Buildingsmart.  2014.  Accessed  September  29.  http://www.buildingsmart-­‐tech.org/news/ifc4-­‐ officially-­‐released.   BLIS.  2000.  “Building  Lifecycle  Interoperable  Software  .”  Accessed  November  29.   http://www.blis-­‐project.org.     Cunningham,  Philip.  2009.  “HEATING  AND  COOLING  LOAD  CALCULATIONS  AND  ENERGY"     Delfosse,  Vincent,  John  Schrayen,  Roland  Juchmes,  and  Pierre  Leclercq.  2012.  “Some  Advice  for   Migrating  to  IFC.”  In  .  http://orbi.ulg.ac.be/handle/2268/121709.   Deru,  Michael,  Kristin  Field,  Daniel  Studer,  Kyle  Benne,  Brent  Griffith,  Paul  Torcellini,  Bing  Liu,  et   al.  2011.  “US  Department  of  Energy  Commercial  Reference  Building  Models  of  the   National  Building  Stock.”   http://digitalscholarship.unlv.edu/renew_pubs/44/?utm_source=digitalscholarship.unl v.edu%2Frenew_pubs%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages.   DOE.  2008.  Buildings  Share  of  U.S.  Primary  Energy  Consumption  Source:    U.S.  Department  of   Energy  (DOE),  2008  Buildings  Energy  Data  Book,  Section  1.1.1,  200.   http://www.c2es.org/technology/overview/buildings.   Eastman,  Chuck,  Sacks,  Rafael,  and  Panushev,  Ivan.  2009.  “Information  Delivery  Manual  for   Precast  Concrete.”   http://dcom.arch.gatech.edu/pcibim/documents/IDM_for_Precast.pdf.       103   Eastman,  Chuck,  Venugopal,  Manu,  and  Aram,  Shiva.  “Industry-­‐Wide  National  BIM  Standard:  A   Progress  Report.”  AECbytes  “Building  the  Future”  Article,  no.  November  30,  2011.   http://www.aecbytes.com/buildingthefuture/2011/NBIM-­‐ProgressReport.html.   Eastman,  2011,  BIM  Handbook,  A  Guide  to  Building  Information  Modeling,  2 nd  edition,  Chapter   1&    3   Eastman,  Chuck,  Manu,  Venugopal,  Sacks,  Rafael.  2015.  “SEMANTIC  EXCHANGE  MODULES.”   Accessed  January  29.  http://www.dbl.gatech.edu/sem.   gbXML.  2014.  "Green  Building  XML  Schema"  Accessed  November  20.   http://www.gbXML.org   gbXML.  2015.  "History  of  gbXML".    Accessed  February  20    http://www.gbxml.org/history.php       Goldstein,  H  2001,  'FOUNDATION  CLASSES  BRIDGING  DIGITAL  GAP',.  ENR:  Engineering  News-­‐ Record,  246,  13,  p.  23,  Business  Source  Complete,  EBSCOhost.   GSA.  2007.  “GSA  Building  Information  Modeling  Guide  Series  01  -­‐  Overview  DRAFT.”   http://www.gsa.gov/graphics/pbs/GSA_BIM_Guide_v0_60_Series01_Overview_05_14_0 7.pdf.   Hyunjoo,  Kim  and  Anderson,  Kyle.  2013.  ”Energy  Modeling  System  Using  Building  Information   Modeling  Open  Standards.”  J.  Comput.  Civ.  Eng.,  27(3),  203–211.   IEEE  Std  610.  1991.  “IEEE  Standard  Computer  Dictionary:  A  Compilation  of  IEEE  Standard   Computer  Glossaries,”  January,  1–217.  doi:10.1109/IEEESTD.1991.106963.   IFC,  2014.  “Industry  Foundation  Classes:  IFC  2x  Edition  2  addendum  1”  Last  accessed  September   20.    http://www.iai-­‐  international.org/Model/R2x2_add1/index.html     Jeffrey  Oullette.  2014.  Interview  with  Jeffrey  Oullette.   Karola,  A.,  H.  Lahtela,  R.  Hänninen,  R.J.  Hitchcock,  Q.  Chen,  S.  Dajka  and  K.  Hagström.  2002.  BSPro   COM-­‐Server  -­‐  Interoperability  between  software  tools  using  industry  foundation  classes.   In  Energy  and  Buildings,  No.  34:  901-­‐907.     Kensek,  Karen.  Konis,  Kyle.  and  Hijazi,  Mohammed  2014.  “Assessment  of  File  Interoperability   between  BIM  and  Energy  Analysis  Software  Using  gbXML.”  White  Paper,  Not  yet   Published.   Kensek,  Karen,  Becker  Geoffrey,  and  Hijazi,  Mohammed.  2014.  “BIM  Gaps:  Major  Issues  That  Are   Preventing  Seamless  Integration  of  Building  Information  Modeling  in  the  AECO   Industry.”  White  Paper.   Krygiel,  E.,  &  Nies,  B.,  2008.  “Green  BIM:  successful  sustainable  design  with  building  information   modeling,  Wiley  Pub,  Indianapolis,  Ind.   Kensek,  Karen  M.  2014.  Building  Information  Modeling.  1  edition.  London;  New  York:    Routledge.   Lappalainen,  V.,  S.  Karjalainen,  T.  Salsbury  and  D.  Sucic.  2000.  “HVAC  Performance  Validation:   Process  definitions,  Information  requirements  Analysis  and  Object  Type  Definition  IFC   R3.0  Domain  Project  Documentation,  VTT.”   Mohammed  Hijazi,  Karen  Kensek,  Kyle  Konis.  2015.  “Bridging  the  Gap:  Supporting  Data   Transparency  from  BIM  to  BEM.”  In  .  White  Paper.   MODEL  DEVELOPMENT  FROM  AN  AUTODESK®  REVIT®  MEP  MODEL  UTILIZING  GBXML.”   Autodesk  University.   Onuma,  K.  2014,  “IFC  Train  Wreck”.  E-­‐mail  note  about  the  appropriate  use  of  IFC  versus  other   standards,  8/24/2014.  In  response  to  a  presentation  by  Kurt  Komraus  (Buro  Happold),   Eric  Queen  (Clark  Construction),  and  Becher    (NEME  Design  Solutions),  ARTIC:  The   Evolution  of  a  BIM  Model  Through  Design,  Construction,  and  Fabrication,  USC  BIM   Symposium  BIM  GAP  +  BIM  EDGE,  August  2014.   Paola  C.  Ferrari,  Neander  F.  Silva,  Ecilamar  M.  Lima,  2009  “Building  Information  Modeling  and   Interoperability  with  Environmental  Simulation  Systems”  Innovations  and  Advances  in   Computer  Sciences  and  Engineering     Sefiera.  2014.  Why  Sefaira?.  Accessed  November  14.  http://sefaira.com/why-­‐sefaira/.       104   Sumedha,  Kumar.  2014.  “Interoperability  between  Building  Information  Models  (BIM)  and   Energy  Analysis  Programs ::  University  of  Southern  California  Dissertations  and   Theses.”  Accessed  September  4.   http://digitallibrary.usc.edu/cdm/ref/collection/p15799coll127/id/64743.   Teicholz,  P,  2013.  "Labor-­‐Productivity  Declines  in  the  Construction  Industry:  Causes  and   Remedies"               105                   APPENDENCIES       106   APPENDIX  A:  BIM  GAP  SURVEY     The  survey  was  sent  to  3,300  individuals  in  the  building  industry.  172  people  responded   with  information  about  their  organization,  their  role  in  the  firm,  and  their  organization’s  use  of   BIM.  The  survey  questions  can  be  found  in  the  Appendix  A.  “This  survey  focused  specifically  on   the  problems  that  individuals  were  having  the  models  themselves,  existing  BIM  standards,  and   perceived  BIM  gaps.”  (KBH  2014)           107             108         109         110         111               112         113   APPENDIX  B:  IDM  FOR  PRECAST  CONCRETE   Figure  2.6:  Architectural  Precast  Project  process  Map,  IDM  for  Precast  Concrete,  (Eastman  2009).         114   APPENDIX  C:  PHILLIP  CUNNINGHAM  RESEARCH  FIGURES                   Figure  2.7:    gbXML  elements  and  highlighted  in  blue  are  the  specific  elements  supported  by  Revit  MEP   (Cunningham  2009).       115                                                   Figure  2.8:    gbXML  elements  and  highlighted  in  green  are  the  specific  elements  supported  by   Trace700(Cunningham  2009)  A  larger  version  of  this  figure  is  in  Appendix  B.       116   APPENDIX  D:  WINDOW  AND  WALL  ELEMENT  EXCHANGE  TABLE       Figure  4.17A:    The  results  of  the  exchange  data  of  the  window  element  and  the  wall  assembly  of  the   material  element       117                                                                         Figure  4.17B:    The  results  of  the  exchange  data  of  the  window  element  and  the  wall  assembly  of  the   material  element             118   APPENDIX  E:  DIAGRAM  OF  GBXML  ORIGINAL  STRUCTURE     Figure  5.3A:  Diagram  of  gbXML’s  original  hierarchical  structure,       119     Figure  5.3B:  Diagram  of  gbXML’s  original  hierarchical  structure   surfaceType constructionIdRef Name AdjacentSpaceId RectangularGeometry PlanarGeometry id Name openingType constructionIdRef RectangularGeometry PlanarGeometry CADObjectId CADObjectId Id Manufacturer NumberOfLamps LumensPerLamp Dimensions InputWatts Lamp Luminaire Photometry Attributes Id ChildrenLayerId Attributes Id ChildrenMaterialId Attributes Id RBvalue Thickness Conductivity Density SpecificFHeat Attributes Id UBValue SolarHeatGainCoeff Transmittance Attributes Id Name YearSchedule Id type ChildrenDay Id typw ChildrenScheduleValue Attributes Id Name AirChangesPerHour OAFlowPerArea OAFlowPerPerson DesignHeatT CoolingHeatT CADObjectId TypeCode ProgramInfo CompanyName ProductName Version Platform PersonInfo LastName CreatedBy DaySchedule Attributes Zone Children DocumentHisto ry Children Children WindowType Children Schedule Children WeekSchedule Attributes Attributes Children Opening Attributes Children LightingSystem Children gbXML Children Campus Children Surface Construction Layer Material     120   APPENDIX  F:  DTT  ADDITIONAL  REPORTS   This  reporting  function  of  DTT  enables  instant  review  of  content  and  assists  the  user  in   determining  the  relative  validity  of  simulations  if  the  file  was  used.  A  simulation  run  using  a   90%  complete  data  model  would  be  much  more  reliable  than  a  20%  one.   3  gbXML  sample  data  models  were  analyzed  in  DTT.  The  first  generated  report  is  of  only   28%  completeness  (Fig.  F.1).  It  is  easily  inferred  from  the  report  that  only  the  basic  data  such  as   location,  areas  and  basic  form  are  defined.  This  report  could  represent  an  early  conceptual   phase  model.  The  2 nd  and  3 rd  report  are  of  more  developed  stages  as  they  more  complete  (Fig.   F.2  and  F.3).  The  higher  the  completeness  percentage  the  more  reliable  the  model  is  for  energy   simulation.         Figure  F.1:  Generated  report  from  DTT  reporting  function  of  a  28%  model.     Data Transperancy Tool - Data Completness Report 3/18/2015 Has Value No Value Has Value id No Value Has Value U-value No Value Longitude Has Value SHGC No Value Latitude Has Value solarIncidentAngle No Value Elevation Has Value Transmittance No Value Has Value Type No Value Total Area Has Value U-value No Value Level Area Has Value Absorptance No Value Level Volume Has Value type No Value spaceType No Value Name No Value lightScheduleIdRef No Value Description No Value equipmentScheduleIdRef No Value Name No Value peopleScheduleIdRef No Value R-value No Value conditionType No Value Thickness No Value No Value Conductivity No Value No Value Density No Value BeginDate No Value SpecificHeat No Value EndDate No Value Description No Value weekScheduleIdRef No Value LightPowerPerArea No Value Name No Value EquipPowerPerArea No Value DesignHeatT No Value Has Value DesignCoolT No Value Has Value Has Value 43% 0% 0% 100% Total 28% Program id Name Level Form Zone Schedule Space campus Location Station ID Area & Volume People Number People Heat Gain buildingType Infiltration Window Construction Equip. Material Fabric Completeness score Program Fabric Equipment Form 1     121     Figure  F.2:  Generated  report  from  DTT  reporting  function  of  a  49%  model.     Data Transperancy Tool - Data Completness Report 3/18/2015 Has Value No Value Has Value id Has Value Has Value U-value No Value Longitude Has Value SHGC No Value Latitude Has Value solarIncidentAngle No Value Elevation Has Value Transmittance No Value Has Value Type No Value Total Area Has Value U-value No Value Level Area Has Value Absorptance No Value Level Volume Has Value type Has Value spaceType Has Value Name Has Value lightScheduleIdRef No Value Description No Value equipmentScheduleIdRef No Value Name Has Value peopleScheduleIdRef No Value R-value Has Value conditionType Has Value Thickness Has Value No Value Conductivity No Value No Value Density No Value BeginDate No Value SpecificHeat No Value EndDate No Value Description No Value weekScheduleIdRef No Value LightPowerPerArea No Value Name No Value EquipPowerPerArea No Value DesignHeatT Has Value Has Value DesignCoolT Has Value Has Value Has Value 61% 32% 0% 100% Total 49% Program id Name Level Form Zone Schedule Space campus Location Station ID Area & Volume People Number People Heat Gain buildingType Infiltration Window Construction Equip. Material Fabric Completeness score Program Fabric Equipment Form 1     122     Figure  F.3:  Generated  report  from  DTT  reporting  function  of  a  96%  model.     Data Transperancy Tool - Data Completness Report 3/18/2015 Has Value Has Value Has Value id Has Value Has Value U-value Has Value Longitude Has Value SHGC Has Value Latitude Has Value solarIncidentAngle Has Value Elevation Has Value Transmittance Has Value Has Value Type Has Value Total Area Has Value U-value Has Value Level Area Has Value Absorptance Has Value Level Volume Has Value type Has Value spaceType Has Value Name Has Value lightScheduleIdRef Has Value Description No Value equipmentScheduleIdRef Has Value Name Has Value peopleScheduleIdRef Has Value R-value Has Value conditionType Has Value Thickness Has Value Has Value Conductivity Has Value Has Value Density Has Value BeginDate Has Value SpecificHeat Has Value EndDate Has Value Description No Value weekScheduleIdRef Has Value LightPowerPerArea Has Value Name Has Value EquipPowerPerArea Has Value DesignHeatT Has Value Has Value DesignCoolT Has Value Has Value Has Value 100% 89% 100% 100% Total 96% Program id Name Level Form Zone Schedule Space campus Location Station ID Area & Volume People Number People Heat Gain buildingType Infiltration Window Construction Equip. Material Fabric Completeness score Program Fabric Equipment Form 1 
Asset Metadata
Creator Hijazi, Mohammed Omar (author) 
Core Title Bridging the gap: a tool to support bim data transparency for interoperability with building energy performance software 
Contributor Electronically uploaded by the author (provenance) 
School School of Architecture 
Degree Master of Building Science 
Degree Program Building Science 
Publication Date 04/17/2015 
Defense Date 03/23/2015 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag BEM,BIM,building energy modeling,building information modeling,data exchange,gbXML,IFC,interoperability,OAI-PMH Harvest 
Format application/pdf (imt) 
Language English
Advisor Kensek, Karen M. (committee chair), Konis, Kyle (committee member), Noble, Douglas (committee member) 
Creator Email hijazi@usc.edu,mohammad.o.hijazi@gmail.com 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c3-551289 
Unique identifier UC11297702 
Identifier etd-HijaziMoha-3319.pdf (filename),usctheses-c3-551289 (legacy record id) 
Legacy Identifier etd-HijaziMoha-3319.pdf 
Dmrecord 551289 
Document Type Thesis 
Format application/pdf (imt) 
Rights Hijazi, Mohammed Omar 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law.  Electronic access is being provided by the USC Libraries in agreement with the a... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Abstract (if available)
Abstract Many gaps exist between (BIM) authoring software and Building Energy Modeling (BEM) tools. One gap is due to loss of data in the exchange between the design and energy simulation models. Energy efficiency is now, more than ever, a top concern that should be addressed in the earliest of the design stages. Explaining, understanding, and enhancing the data transfer between software would allow better design decisions through more accurate coordination between energy simulation and building modeling. ❧ The data exchange is done mainly using either Green Building XML (gbXML) or Industry Foundation Classes (IFC). Both offer geometrical and thermal data transfers 
Tags
BEM
BIM
building energy modeling
building information modeling
data exchange
gbXML
IFC
interoperability
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button