Close
The page header's logo
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Forkhead transcription factors control genome wide dynamics of the S. cerevisiae replication timing program
(USC Thesis Other) 

Forkhead transcription factors control genome wide dynamics of the S. cerevisiae replication timing program

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Contact Us
Contact Us
Copy asset link
Request this asset
Transcript (if available)
Content
 

 

 
Forkhead
 transcription
 factors
 control
 genome
 wide
 
dynamics
 of
 the
 S.
 cerevisiae
 replication
 timing
 program
 

 
by
 

 Jared
 Michael
 Peace
 

 
_________________________________________________________________________________________________
 

 

 

 
A
 Dissertation
 Presented
 to
 the
 
FACULTY
 OF
 THE
 USC
 GRADUATE
 SCHOOL
 
UNIVERSITY
 OF
 SOUTHERN
 CALIFORNIA
 
In
 Partial
 Fulfillment
 of
 the
 
Requirements
 for
 the
 Degree
 
DOCTOR
 OF
 PHILOSOPHY
 
(Molecular
 Biology)
 

 

 
December
 2014
 

 

 

 

  ii
 

 
Table
 of
 Contents
 
LIST
 OF
 FIGURES
  VI
 
LIST
 OF
 TABLES
  VIII
 
ACKNOWLEDGEMENTS
  IX
 
ABSTRACT
  XI
 
INTRODUCTION
  1
 
REPLICATION
 INITIATION
 AND
 TIMING
  1
 
CHROMATIN
 ENVIRONMENT
 AFFECTS
 REPLICATION
 TIMING
  3
 
TRANSCRIPTION
 FACTOR
 BINDING
 AND
 LONG-­‐RANGE
 INTERACTIONS
 
REGULATE
 REPLICATION
 INITIATION
  4
 
NUCLEAR
 LOCALIZATION
 AND
 REPLICATION
 TIMING
  5
 
FORKHEAD
 TRANSCRIPTION
 FACTORS
 AND
 REPLICATION
  6
 

 
CHAPTER
 I:
 FORKHEAD
 TRANSCRIPTION
 FACTORS
 ESTABLISH
 
ORIGIN
 TIMING
 AND
 LONG-­‐RANGE
 CLUSTERING
 IN
 S.
 CEREVISIAE
  8
 
INTRODUCTION
  9
 
RESULTS
  10
 
FKH1
 AND
 FKH2
 CONTROL
 GENOME-­‐WIDE
 INITIATION
 DYNAMICS
 OF
 
REPLICATION
 ORIGINS.
  10
 
FKH-­‐REGULATION
 INVOLVES
 ESTABLISHMENT
 OF
 REPLICATION
 
 
TIMING
 DOMAINS.
  17
 
FKH1/2
 BIND
 AND
 FUNCTION
 IN
 CIS
 TO
 FKH-­‐ACTIVATED
 ORIGINS.
  18
 
FKH-­‐DEPENDENT
 ORIGIN
 REGULATION
 IS
 NOT
 CORRELATED
 WITH
 
TRANSCRIPTION
 LEVELS
 OR
 CHANGES.
  21
 

  iii
 
CDC45
 PREFERENTIALLY
 ASSOCIATES
 WITH
 FKH-­‐ACTIVATED
 
 
ORIGINS
 IN
 G1-­‐PHASE.
  24
 
FKH1/2
 ARE
 REQUIRED
 FOR
 SELECTIVE
 CLUSTERING
 OF
 
 
FKH-­‐ACTIVATED
 ORIGINS
 IN
 G1-­‐PHASE.
  26
 
FKH1
 AND
 FKH2
 INTERACT
 WITH
 ORC.
  30
 
DISCUSSION
  32
 
FKH1/2
 ESTABLISH
 REPLICATION-­‐TIMING
 DOMAINS
 THROUGH
 
 
ORIGIN
 CLUSTERING.
  32
 
MULTIPLE,
 SEPARABLE
 ROLES
 FOR
 FKH1
 AND
 FKH2
 IN
 REGULATION
 
 
OF
 THE
 GENOME.
  35
 
MATERIALS
 AND
 METHODS
  39
 

 
CHAPTER
 II:
 
 FKH1/2
 OVER-­‐EXPRESSION
 ALTERS
 GENOME
 WIDE
 ORIGIN
 
TIMING
 IN
 S.
 CEREVISIAE
  52
 
INTRODUCTION
  53
 
RESULTS
  54
 
THE
 INDUCIBLE
 GAL1/10
 PROMOTER
 EFFECTIVELY
 
 
OVER-­‐EXPRESSES
 FKH1
 AND
 FKH2
  54
 
OVER-­‐EXPRESSION
 OF
 FKH1
 OR
 FKH2
 ALTERS
 REPLICATION
 TIMING
  56
 
GLOBAL
 ANALYSIS
 OF
 FKH1
 AND
 FKH2
 OVER-­‐EXPRESSION
  59
 
FKH
 OE
 REGULATED
 ORIGIN
 CLASSES
 HAVE
 DIFFERENT
 AVERAGE
 
REPLICATION
 TIMES
  62
 
INCREASED
 HU-­‐EFFICIENCY
 OF
 FKH
 OE
 ACTIVATED
 ORIGINS
 IS
 NOT
 
 
A
 RESULT
 OF
 INCREASED
 NUCLEOTIDE
 POOLS
  62
 
ALTERED
 REPLICATION
 AT
 FKH1
 AND
 FKH2
 OE
 REGULATED
 ORIGINS
 
 
IS
 NOT
 THE
 RESULT
 OF
 A
 CHANGE
 IN
 LOCAL
 TRANSCRIPT
 
 
ABUNDANCE
 OR
 REPLICATION
 FACTOR
 LEVELS
  66
 
TABLE
 2.1
 DIFFERENTIALLY
 EXPRESSED
 GENES
 OF
 BOTH
 FKH1
 
 
AND
 FKH2
 OE
 CONDITIONS
 BY
 GENE
 ONTOLOGY
 CLASS
 (GO
 CLASS).
  68
 
FKH1
 BINDING
 IS
 ENRICHED
 AT
 ORIGINS
 WITH
 OVER-­‐EXPRESSION
  69
 

  iv
 
DISCUSSION
  72
 
FKH
 OVER-­‐EXPRESSION
 ALTERS
 ORIGIN
 TIMING
 GENOME
 WIDE.
  72
 
CHANGES
 IN
 TRANSCRIPT
 ABUNDANCE
 DO
 NOT
 PROVIDE
 AN
 
 
OBVIOUS
 MECHANISM
 FOR
 ORIGIN
 TIMING
 DEREGULATION.
  73
 
FKH1
 BINDS
 LOCALLY
 TO
 FKH
 OE
 ACTIVATED
 ORIGINS
 WITH
 OVER-­‐
EXPRESSION.
  74
 
MATERIALS
 AND
 METHODS
  76
 

 
CHAPTER
 III:
 RIF1
 REGULATES
 INITIATION
 TIMING
 OF
 LATE
 
 
REPLICATION
 ORIGINS
 THROUGHOUT
 THE
 S.
 CEREVISIAE
 GENOME
  81
 
INTRODUCTION
  82
 
RESULTS
  84
 
RIF1
 REGULATES
 ORIGIN
 FIRING
 INDEPENDENTLY
 OF
 PFA4
  84
 
RIF1
 REGULATES
 REPLICATION
 ORIGIN
 TIMING
  87
 
RIF1
 AND
 MEC1
 REGULATE
 REPLICATION
 TIMING
 THROUGH
 
 
DISTINCT
 PATHWAYS
  90
 
LANDSCAPE
 OF
 RIF1
 FUNCTION/RIF1
 RECRUITMENT
  93
 
DISCUSSION
  98
 
RIF1
 IS
 A
 GLOBAL
 REGULATOR
 OF
 LATE
 ORIGINS
  98
 
RIF1
 AS
 A
 CHECKPOINT
 REGULATOR
  99
 
HOW
 DOES
 RIF1
 ACT
 AT
 INTERNAL
 CHROMOSOMAL
 LOCI?
  100
 
MATERIALS
 AND
 METHODS
  101
 

 
CHAPTER
 IV:
 THE
 LEVEL
 OF
 ORIGIN
 FIRING
 INVERSELY
 AFFECTS
 
 
THE
 RATE
 OF
 REPLICATION
 FORK
 PROGRESSION
  105
 
INTRODUCTION
  106
 
RESULTS
 AND
 DISCUSSION
  107
 

  v
 
CDC7
 ACTIVITY
 REGULATES
 REPLICATION
 FORK
 PROGRESSION
  107
 
CDC7
 ACTS
 UPSTREAM
 OF
 RAD53
 IN
 FORK
 REGULATION
  116
 
DECREASED
 INITIATION
 FROM
 ORC1-­‐DEPLETION
 ALSO
 
 
DEREGULATES
 FORK
 PROGRESSION
  117
 
CHECKPOINT
 ELIMINATION
 IS
 NOT
 SUFFICIENT
 TO
 DEREGULATE
 
 
FORK
 RATE
  120
 
REPLICATION
 FORK
 AND
 CHECKPOINT
 LEVELS
 REGULATE
 
 
REPLICATION
 FORK
 PROGRESSION
  122
 
MATERIALS
 AND
 METHODS
  126
 

 
REFERENCES
  132
 
INTRODUCTION
 REFERENCES
  132
 
CHAPTER
 I
 REFERENCES
  135
 
CHAPTER
 II
 REFERENCES
  139
 
CHAPTER
 III
 REFERENCES
  142
 
CHAPTER
 IV
 REFERENCES
  146
 
APPENDIX
 REFERENCES
  150
 

 
APPENDIX
  152
 
DOES
 PHOSPHO-­‐REGULATION
 OF
 FKH1/2
 CONTROL
 REPLICATION
 

 TIMING?
  152
 
VISUALIZATION
 OF
 REPLICATION
 FOCI
 FORMATION
 AND
 RELATIVE
 
 
ORIGIN
 POSITIONING
 IN
 FKH1∆
 FKH2∆
 CELLS
 THROUGH
 LIVE
 CELL
 
IMAGING.
  157
 
CARBON
 SOURCE
 AVAILABILITY
 AND
 CHANGES
 TO
 REPLICATION
 
DYNAMICS
  162
 

 

 

  vi
 
LIST
 OF
 FIGURES
 
CHAPTER
 I
   
 

 
Figure
 1.1.
 Suppression
 of
 pseudohyphal
 growth
 of
 fkh1∆
 fkh2∆
 cells
 by
 
 
expression
 of
 Fkh2∆C.
 
 
  11
 

 
Figure
 1.2.
 Analysis
 of
 early
 S-­‐phase
 BrdU
 incorporation.
 
 
  13
 

 
Figure
 1.3.
 Miscellaneous
 Data.
  15
 

 
Figure
 1.4.
 Temporal
 analysis
 of
 DNA
 replication
 by
 BrdU
 pulse-­‐labeling.
  17
 

 
Figure
 1.5.
 Analysis
 of
 Fkh1
 and
 Fkh2
 binding
 sites
 near
 origins.
  19
 

 
Figure
 1.6.
 Transcription
 analysis
 surrounding
 Fkh-­‐regulated
 origins
 in
 
 
unsynchronized
 and
 G1-­‐synchronized
 cells.
  22
 

 
Figure
 1.7.
 Genome-­‐wide
 binding
 of
 replication
 initiation
 factors
 to
 
 
Fkh-­‐regulated
 origins.
  25
 

 
Figure
 1.8.
 Chromosome-­‐conformation
 capture
 analyses
 of
 origin
 interactions.
  28
 

 
Figure
 1.9.
 4C
 analysis
 of
 ARS305
 interactions.
 
 
  29
 

 
Figure
 1.10.
 Co-­‐IP
 of
 Fkh1
 with
 ORC.
  31
 

 
CHAPTER
 II
   
 

 
Figure
 2.1.
 
 Galactose
 induction
 of
 pGal-­‐Fkh1/2.
  55
 

 
Figure
 2.2.
 Analysis
 of
 early
 S-­‐phase
 by
 BrdU-­‐IP-­‐Seq.
 
 
  58
 

 
Figure
 2.3.
 Analysis
 of
 Fkh
 over-­‐expression
 regulated
 origins
 by
 origin
 class.
  60
 

 
Figure
 2.4.
 Time
 of
 Replication
 (Trep)
 for
 Fkh
 over-­‐expression
 origin
 classes.
  63
 

 
Figure
 2.5.
 Early
 S-­‐phase
 analysis
 of
 Fkh
 over-­‐expression
 cells
 with
 increased
 
nucleotide
 pools.
  64
 

 
Figure
 2.6.
 Transcriptional
 changes
 proximal
 to
 origins
 as
 a
 result
 of
 Fkh
 OE.
  69
 

 
Figure
 2.7.
 Enrichment
 of
 Fkh1
 binding
 proximal
 to
 origins
 with
 OE.
  71
 

  vii
 
CHAPTER
 III
   
 

 
Figure
 3.1.
 Analysis
 of
 early
 S-­‐phase
 by
 BrdU-­‐chip.
 
 
  86
 

 
Figure
 3.2.
 DNA
 content
 analysis
 of
 S-­‐phase.
  87
 

 
Figure
 3.3.
 Temporal
 analysis
 of
 replication
 by
 BrdU-­‐IP-­‐chip.
  89
 

 
Figure
 3.4.
 Analysis
 of
 intra-­‐S
 checkpoint
 response.
 
 
  93
 

 
Figure
 3.5.
 Analysis
 of
 early
 S-­‐phase
 by
 BrdU-­‐IP-­‐Seq.
 
 
  94
 

 

 
CHAPTER
 IV
   
 

 
Figure
 4.1.
 
 Cdc7
 function
 regulates
 replication
 fork
 progression.
  109
 

 
Figure
 4.2.
 Cdc7
 function
 regulates
 replication
 fork
 progression
 (part
 2).
 
 
  110
 

 
Figure
 4.3.
 
 Cdc7
 functions
 upstream
 of
 Rad53
 in
 fork
 regulation.
 
 
  113
 

 
Figure
 4.4.
 
 Effective
 depletion
 of
 Cdc7
 function
 with
 the
 cdc7-­‐1
 allele.
  115
 

 
Figure
 4.5.
 
 Orc1
 function
 regulates
 replication
 fork
 progression.
  119
 

 
Figure
 4.6.
 
 Deregulated
 origin
 firing
 in
 mec1-­‐100
 slows
 replication
 forks.
  121
 

 
Figure
 4.7.
 
 Deregulated
 origin
 firing
 in
 rad53∆
 slows
 replication
 forks.
  123
 

 
Figure
 4.8.
 
 Replication
 fork
 and
 checkpoint
 levels
 regulate
 replication
 fork
 
 
progression.
 
 
  125
 

 

 
APPENDIX
   
 

 
Figure
 A.1.
 Multiple
 Sequence
 Alignment
 of
 Forkhead
 family
 transcription
 
 
factor
 DNA
 binding
 domains
 in
 S.
 cerevisiae
 and
 higher
 homologs.
  154
 

 
Figure
 A.2.
 Fkh1
 Coding
 sequence
 with
 various
 highlighted
 features.
 
  155
 

 
Figure
 A.3
 Bulk
 DNA
 content
 analysis
 of
 asynchronously
 growing
 cultures
 by
 
indicated
 strain.
  156
 

  viii
 

 
Figure
 A.4.
 Copy
 Number
 Analysis
 (CNA)
 of
 fluorescently
 tagged
 strains.
  160
 

 
Figure
 A.5.
 Live
 Cell
 Imaging
 of
 fkh1∆
 fkh2∆
 pFkh2∆
 cells.
  161
 

 
Figure
 A.6.
 DNA
 content
 analysis
 through
 S-­‐phase
 by
 FACS
 with
 indicated
 carbon
 
sources.
  164
 

 
Figure
 A.7.
 Analysis
 of
 early
 S-­‐phase
 by
 BrdU-­‐IP-­‐Seq.
  167
 

 

 
SUPPLEMENTAL
 FIGURES
   
 

 
Figure
 S1.1-­‐16.
 Analysis
 of
 early
 S-­‐phase
 by
 BrdU-­‐IP-­‐Seq
 for
 all
 
 
chromosomes
 with
 Fkh
 OE.
 
 
  168-­‐175
 

 
Figure
 S2.1-­‐16.
 Analysis
 of
 
 early
 S-­‐phase
 by
 BrdU-­‐IP-­‐Seq
 for
 all
 
 
chromosomes
 in
 rif1Δ.
  176-­‐183
 

 

 
LIST
 OF
 TABLES
 

 

 
Table
 2.1.
 Differentially
 expressed
 genes
 of
 both
 Fkh1
 and
 Fkh2
 OE
 conditions
 
 
by
 gene
 ontology
 class
 (GO
 class).
  68
 

 
Table
 4.1.
 Strain
 List.
  130
 

 
Table
 A.1.
 List
 of
 base
 strains
 and
 introduced
 mutations
 analyzed.
 
  155
 

 

 

 

 

 

 

 

  ix
 
ACKNOWLEDGEMENTS
 

 
First
 and
 foremost
 I
 would
 like
 to
 thank
 those
 individuals
 who
 were
 
instrumental
 to
 my
 success
 during
 my
 time
 at
 USC.
 Graduate
 school
 is
 a
 long
 and
 
arduous
 process
 and
 wouldn’t
 have
 been
 possible
 with
 out
 the
 help
 and
 support
 of
 
my
 mentors,
 friends,
 and
 colleagues.
 Dr.
 Oscar
 Aparicio
 has
 been
 an
 incredible
 
mentor
 who
 has
 taught
 me
 to
 think
 critically
 and
 independently
 as
 a
 scientist.
 He
 
has
 helped
 me
 to
 become
 a
 well-­‐rounded
 and
 complete
 scientist
 and
 I
 could
 not
 
have
 hoped
 to
 achieve
 the
 success
 that
 I
 have
 had
 without
 his
 guidance.
 
 He
 has
 
created
 an
 environment
 for
 me
 to
 grow
 and
 shine
 as
 a
 graduate
 student
 and
 I
 am
 
forever
 indebted
 to
 him
 for
 his
 investment
 in
 me.
 Next,
 I
 would
 like
 to
 thank
 my
 lab
 
mates
 for
 helpful
 discussions,
 collaborations,
 and
 for
 helping
 to
 keep
 me
 sane
 over
 
the
 years.
 Zac
 Ostrow,
 Tittu
 Nellimoottil,
 Sandra
 Villwock,
 Simon
 Knott,
 Yuan
 Zhong,
 
Yan
 Gan,
 Jeff
 Jancuska,
 Alexandra
 Rex,
 Anna
 Ter-­‐Zakarian,
 and
 John
 Zeytounian
 are
 a
 
caliber
 of
 people
 that
 I
 am
 proud
 to
 have
 had
 the
 opportunity
 to
 call
 my
 lab
 mates
 
and
 friends.
 Additionally,
 I
 thank
 my
 committee,
 Dr.
 Susan
 Forsburg,
 Dr.
 Mathew
 
Michael,
 and
 Dr.
 Lin
 Chen
 for
 helpful
 discussions
 and
 guidance
 throughout
 my
 
graduate
 career.
 I
 would
 also
 like
 to
 thank
 my
 many
 friends
 and
 colleagues
 around
 
Ray
 Irani
 Hall
 for
 their
 support
 both
 personally
 and
 professionally
 throughout
 the
 
years.
 I
 would
 like
 to
 personally
 thank
 Ana
 Carolina
 Dantas
 Machado,
 Michael
 
Philips,
 Daniel
 McCoy,
 Justin
 Dalton,
 Ian
 Slaymaker,
 Aysen
 Erdem,
 Nimna
 
Ranatunga,
 Tara
 Mastro,
 Reza
 Kahlor,
 Melina
 Butuci,
 Jordan
 Eboreime,
 Marc
 Green,
 
Frances
 Tran,
 Brett
 Zirkle
 and
 many
 more
 who
 have
 made
 my
 time
 in
 graduate
 

  x
 
school
 such
 a
 rewarding
 experience.
 
 Lastly,
 I
 would
 like
 to
 thank
 my
 family
 for
 their
 
on
 going
 and
 continuing
 support
 through
 the
 years.
 Mom,
 Dad,
 and
 Chad
 thank
 you
 
for
 being
 there
 for
 me
 and
 always
 believing
 in
 me.
 Without
 you,
 none
 of
 this
 would
 
have
 been
 possible.
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  xi
 
ABSTRACT
 

 
Eukaryotic
 cells
 initiate
 DNA
 replication
 from
 hundreds
 to
 thousands
 of
 
origins
 genome
 wide.
 The
 coordinated
 firing
 of
 these
 origins
 across
 a
 range
 of
 times
 
throughout
 S-­‐phase
 is
 a
 well-­‐conserved
 feature
 of
 replication
 initiation
 and
 is
 
essential
 to
 ensure
 faithful
 duplication
 of
 the
 genome.
 
 Differences
 in
 replication
 
timing
 can
 be
 attributed
 to
 epigenetic
 regulation
 of
 origins
 through
 chromatin
 
environment
 and
 spatial
 localization
 within
 the
 nucleus.
 Here
 we
 address
 several
 
important
 factors
 that
 regulate
 and
 coordinate
 the
 replication
 timing
 program
 of
 the
 
budding
 yeast,
 Saccharomyces
 cerevisiae.
 
 Our
 studies
 reveal
 the
 role
 of
 Forkhead
 
transcription
 factors
 as
 modulators
 of
 DNA
 replication
 timing.
 Here
 we
 find
 that
 
Forkhead
 proteins
 regulate
 origin
 timing
 through
 binding
 proximal
 to
 certain
 
origins
 and
 mediate
 clustering
 of
 these
 origins.
 This
 process
 is
 tightly
 controlled
 at
 
the
 protein
 level.
 Over-­‐expression
 of
 either
 Fkh1
 or
 Fkh2
 causes
 drastic
 changes
 in
 
replication
 timing
 genome
 wide
 and
 these
 changes
 are
 the
 result
 of
 an
 increase
 in
 
protein
 binding
 proximal
 to
 regulated
 origins.
 Many
 origins
 with
 normally
 lower
 
levels
 (or
 an
 absence
 of)
 Forkhead
 binding
 show
 an
 advancement
 in
 timing
 due
 to
 
an
 increase
 in
 Forkhead
 binding
 with
 over-­‐expression.
 The
 advancement
 in
 timing
 
at
 these
 origins
 comes
 at
 the
 expense
 of
 Forkhead
 unregulated
 origins
 and
 those
 
origins
 that
 already
 preferentially
 bind
 Forkhead
 proteins
 under
 WT
 conditions.
 
This
 is
 probably
 due
 to
 increased
 competition
 for
 limiting
 factors.
 While
 Fkh1
 and
 
Fkh2
 over-­‐expression
 can
 advance
 origin
 timing
 through
 proximal
 binding,
 Rif1
 
actively
 represses
 it.
 
 Here
 we
 show
 that
 Rif1
 regulates
 most
 late
 and
 dormant
 

  xii
 
origins
 genome
 wide
 including
 telomere
 proximal
 origins.
 Deletion
 of
 Rif1
 advances
 
the
 timing
 of
 almost
 all
 of
 these
 origins.
 Similar
 to
 the
 effect
 seen
 with
 Forkhead
 
over-­‐expression,
 the
 advanced
 timing
 of
 late
 origins
 in
 rif1∆
 cells
 appears
 to
 be
 at
 
the
 expense
 of
 early
 robust
 firing
 origins
 probably
 because
 of
 increased
 competition
 
for
 limiting
 factors.
 Lastly,
 and
 consistent
 with
 these
 results,
 we
 show
 that
 cells
 
lacking
 Cdc7
 or
 Orc1
 function
 fire
 fewer
 origins
 genome
 wide.
 This
 decrease
 in
 
competition
 for
 limiting
 factors
 leads
 to
 faster
 fork
 rates
 of
 origins
 that
 do
 fire
 and
 a
 
subsequent
 reduction
 in
 response
 to
 DNA
 damage
 as
 evidenced
 by
 a
 reduction
 in
 
Rad53
 checkpoint
 signaling.
 
 This
 evidence,
 combined
 with
 analysis
 of
 checkpoint
 
defective
 cells,
 reveals
 that
 fork
 rate
 is
 sensitive
 to
 the
 level
 of
 origin
 firing.
 The
 
findings
 detailed
 here
 suggest
 a
 tight
 regulation
 of
 origin
 initiation
 timing
 and
 
replication
 fork
 elongation.
 Here
 we
 discuss
 these
 findings,
 the
 roles
 of
 these
 factors,
 
and
 their
 importance
 to
 replication
 timing
 genome
 wide.
 

  1
 
INTRODUCTION
 
Replication
 Initiation
 and
 Timing
 
Faithful
 replication
 of
 the
 genome
 is
 required
 for
 genomic
 stability
 in
 all
 
organisms.
 Each
 chromosome
 must
 be
 completely
 and
 accurately
 copied
 once
 per
 
cell
 cycle
 (S-­‐phase)
 in
 order
 to
 ensure
 proper,
 error-­‐free
 propagation
 of
 genetic
 
material
 to
 daughter
 cells.
 In
 order
 to
 ensure
 that
 this
 process
 is
 undergone
 
efficiently,
 while
 minimizing
 potential
 errors,
 cells
 have
 developed
 a
 highly
 
conserved
 mechanism
 for
 DNA
 replication
 initiation.
 Replication
 is
 initiated
 from
 
discrete
 chromosomal
 loci
 known
 as
 origins
 of
 replication.
 Origin
 numbers
 vary
 
widely
 across
 species
 with
 anywhere
 from
 roughly
 500
 active
 origins
 in
 
Saccharomyces
 cerevisiae
 to
 tens
 of
 thousands
 in
 higher
 eukaryotes
 (Yoshida
 et
 al.,
 
2013).
 
 
Origins
 were
 first
 identified
 as
 ARSs
 or
 autonomously
 replicating
 sequences
 
in
 the
 budding
 yeast,
 S.
 cerevisiae.
 ARS
 elements
 were
 initially
 described
 as
 100-­‐
200bp
 genomic
 fragments
 shown
 to
 confer
 extrachromosomal
 maintenance
 of
 a
 
plasmid
 within
 the
 cell
 (Stinchcomb
 et
 al.,
 1979).
 
 S.
 cerevisiae
 ARSs
 contain
 several
 
DNA
 sequence
 elements
 including
 a
 conserved
 11-­‐17bp
 ACS
 or
 ARS
 consensus
 
sequence
 as
 well
 as
 several
 B
 elements.
 Interestingly,
 the
 sequence
 specificity
 of
 the
 
budding
 yeast
 ACS
 is
 not
 a
 common
 feature
 of
 higher
 eukaryotes
 (Cvetic
 and
 Walter,
 
2005).
 
 
Origin
 firing
 is
 initiated
 through
 a
 series
 of
 events
 beginning
 in
 G1
 phase
 of
 

  2
 
the
 cell
 cycle.
 In
 budding
 yeast,
 the
 ACS
 tightly
 binds
 to
 the
 Origin
 Recognition
 
Complex
 (ORC),
 which
 during
 G1
 is
 responsible
 for
 the
 recruitment
 of
 Cdc6
 and
 
Cdt1.
 Together,
 these
 factors
 leads
 to
 loading
 of
 the
 mini-­‐chromosomal
 maintenance
 
complex
 (MCM),
 in
 it’s
 inactive
 form,
 to
 form
 the
 pre-­‐replicative
 complex
 or
 pre-­‐RC
 
(Bell
 and
 Dutta,
 2002).
 A
 series
 of
 additional
 recruitment
 steps
 occur
 after
 pre-­‐RC
 
formation
 before
 eventual
 DNA
 unwinding
 and
 entry
 into
 S-­‐phase.
 
 A
 key
 step
 to
 this
 
procession
 is
 the
 conversion
 of
 MCM
 to
 the
 active
 helicase
 state.
 Phosphorylation
 of
 
Mcm4
 and
 6
 by
 Dbf4-­‐dependent
 kinase
 (DDK)
 leads
 to
 loading
 of
 Cdc45
 and
 Sld3.
 
Subsequent
 phosphorylation
 of
 Sld2
 and
 Sld3
 by
 Cyclin-­‐dependent
 kinase
 (CDK)
 
leads
 to
 loading
 of
 GINS.
 These
 steps
 together,
 lead
 to
 activation
 of
 the
 helicase,
 
complete
 replisome
 assembly
 and
 DNA
 unwinding
 (Bell
 and
 Dutta,
 2002).
 
Interestingly,
 the
 series
 of
 events
 following
 pre-­‐RC
 assembly
 do
 not
 occur
 
uniformly
 across
 all
 origins
 within
 a
 cell.
 This
 leads
 to
 a
 temporal
 timing
 program
 in
 
which
 origins
 initiate
 replication
 across
 a
 range
 of
 times
 with
 some
 firing
 early
 and
 
some
 firing
 late
 (Aparicio,
 2013).
 Origin
 efficiency
 is
 often
 defined
 as
 the
 likelihood
 
or
 probability
 of
 an
 origin
 to
 fire
 within
 a
 given
 S-­‐phase.
 Timing
 and
 efficiency,
 while
 
different,
 are
 highly
 correlated;
 early
 firing
 origins
 tend
 to
 have
 greater
 efficiencies
 
while
 later
 firing
 origins
 tend
 to
 have
 lower
 efficiencies.
 This,
 however,
 is
 not
 a
 
requirement
 as
 many
 origins
 fire
 with
 high
 efficiency
 but
 with
 late
 timing
 leading
 to
 
passive
 replication
 of
 these
 origins
 before
 they
 have
 the
 ability
 to
 fire.
 
 These
 
findings
 suggest
 the
 possibility
 that
 sequence
 environment
 plays
 a
 strong
 role
 in
 the
 
set
 up
 of
 origin
 timing
 genome
 wide.
 
 

  3
 
Chromatin
 environment
 affects
 replication
 timing
 
The
 coordination
 of
 replication
 alongside
 transcriptional
 machinery
 is
 an
 
important
 topic
 that
 has
 yielded
 sometimes-­‐conflicting
 results.
 Early
 firing
 origins
 
are
 highly
 correlated
 with
 actively
 transcribed
 regions
 of
 the
 genome
 in
 metazoans.
 
Conversely,
 late
 replicating
 origins
 tend
 to
 associate
 with
 heterochromatic
 or
 
transcriptionally
 repressed
 domains
 (Rhind
 and
 Gilbert,
 2013).
 
 In
 contrast
 to
 the
 
correlation
 of
 these
 events
 in
 metazoans,
 yeast
 origins
 fail
 to
 show
 this
 relationship
 
except
 in
 the
 late
 replicating,
 transcriptionally
 repressed
 telomeric
 regions.
 Yeast
 
origins
 are
 enriched
 at
 intergenic
 regions
 and
 transcription
 through
 origin
 
sequences
 has
 been
 shown
 to
 inhibit
 origin
 firing
 by
 interfering
 with
 loading
 of
 both
 
ORC
 and
 MCM
 (Aladjem,
 2007;
 Aparicio,
 2013).
 
 
Several
 factors
 including
 chromosomal
 location,
 chromatin
 structure,
 and
 
epigenetic
 modification
 have
 been
 shown
 to
 play
 important
 roles
 in
 the
 
determination
 of
 an
 individual
 origin’s
 timing
 during
 S-­‐phase.
 Interestingly,
 deletion
 
of
 the
 histone
 deacetylase,
 Rpd3L,
 advances
 the
 timing
 of
 roughly
 one-­‐third
 of
 active
 
origins
 in
 the
 yeast
 genome
 while
 tethering
 of
 the
 histone
 acetylase
 GCN5
 advanced
 
the
 timing
 of
 a
 proximal
 origin
 (Aparicio
 et
 al.,
 2004;
 Knott
 et
 al.,
 2009;
 Vogelauer
 et
 
al.,
 2002).
 
 Similarly,
 deletion
 of
 the
 gene
 encoding
 the
 silencing
 protein
 SIR3
 leads
 
to
 advanced
 timing
 of
 subtelomeric
 origins
 (Stevenson
 and
 Gottschling,
 1999).
 
 
These
 data
 reveal
 that
 removal
 of
 hallmarks
 of
 heterochromatin
 or
 the
 inability
 to
 
remove
 marks
 of
 euchromatin
 both
 yield
 advancement
 of
 origin
 timing
 in
 proximal
 
regions.
 

  4
 
Important,
 seminal
 work
 from
 Ferguson
 and
 Fangman,
 1992
 showed
 the
 
importance
 of
 chromosomal
 location
 and
 environment
 to
 origin
 timing.
 
 The
 early
 
firing
 CEN-­‐proximal
 origin
 ARS1
 exhibited
 delayed
 timing
 when
 relocated
 to
 the
 
heterochromatic,
 subtelomeric
 region
 proximal
 to
 the
 late
 firing
 origin
 ARS501.
 
Conversely,
 when
 ARS501
 was
 relocated
 to
 a
 plasmid
 (lacking
 its
 surrounding
 
chromatin
 environment),
 its
 timing
 was
 advanced.
 Importantly,
 both
 origins
 were
 
shown
 to
 fire
 with
 high
 efficiency
 showing
 the
 importance
 of
 both
 chromosomal
 
location
 and
 environment
 as
 determinants
 of
 origin
 timing.
 These
 data
 highlight
 the
 
importance
 of
 chromatin
 state
 and
 histone
 modification
 in
 the
 assembly
 of
 the
 
timing
 profile
 and
 show
 the
 importance
 of
 euchromatic
 and
 heterochromatic
 
domains
 in
 the
 establishment
 of
 this
 profile.
 
Transcription
 factor
 binding
 and
 long-­‐range
 interactions
 regulate
 replication
 
initiation
 
Additional
 elements
 can
 also
 play
 a
 role
 in
 replication
 initiation.
 
 
Transcription
 factor
 binding
 sites
 and
 promoter
 regions
 have
 been
 shown
 to
 
positively
 stimulate
 origin
 activity
 
 (or
 initiation
 domains)
 sometimes
 at
 great
 
distances
 in
 metazoans
 (>
 10
 kilobases
 away)
 (Aladjem,
 2007).
 
 These
 regions
 are
 
often
 hypersensitive
 to
 DNase1
 digestion
 and
 suggest
 the
 presence
 of
 open
 
chromatin.
 Additionally,
 some
 of
 these
 regions
 have
 been
 implicated
 in
 formation
 of
 
DNA
 loops
 or
 long-­‐range
 interactions
 potentially
 bringing
 these
 regions
 (and
 their
 
chromatin
 remodelers)
 into
 close
 proximity
 to
 the
 origins
 (initiation
 domains)
 that
 
they
 regulate
 (Smith
 and
 Aladjem).
 In
 yeast,
 the
 transcription
 factor
 Abf1
 is
 present
 

  5
 
at
 a
 subset
 of
 origins
 and
 deletion
 of
 its
 binding
 site
 resulted
 in
 reduced
 origin
 firing
 
at
 the
 well
 characterized
 origin,
 ARS1
 (Marahrens
 and
 Stillman,
 1992).
 Additional
 
analysis
 has
 shown
 that
 Abf1
 binding
 positively
 stimulates
 MCM
 loading
 by
 
displacing
 an
 adjacent
 nucleosome
 (Lipford
 and
 Bell,
 2001).
 Positive
 stimulation
 of
 
origin
 activity
 in
 cis
 by
 transcription
 factors
 has
 also
 been
 observed
 in
 higher
 
eukaryotes
 (Aladjem,
 2007).
 
 
Nuclear
 localization
 and
 replication
 timing
 
Particular
 interest,
 as
 of
 late,
 has
 been
 placed
 on
 investigating
 the
 role
 of
 
nuclear
 architecture
 in
 coordination
 of
 genomic
 processes.
 Rather
 than
 occurring
 
throughout
 the
 nucleus,
 it
 is
 plausible
 that
 replication
 might
 initiate
 from
 a
 sub-­‐
nuclear
 region(s)
 preferentially
 giving
 certain
 origins
 access
 to
 limiting
 replication
 
machinery.
 In
 support
 of
 this
 model,
 replication
 foci
 or
 replication
 factories
 form
 
upon
 entry
 into
 S-­‐phase
 as
 seen
 by
 Polymerase1/2-­‐GFP
 fusion
 experiments.
 
(Kitamura
 et
 al.,
 2006).
 
 Additionally,
 early,
 but
 not
 late
 firing,
 origins
 exhibit
 
clustering
 as
 evidenced
 by
 three-­‐dimensional
 genome
 reconstruction
 experiments
 
(Duan
 et
 al.,
 2010).
 The
 formation
 of
 replication
 factories
 and
 the
 preferential
 
clustering
 of
 early
 origins
 suggest
 that
 certain
 sub-­‐nuclear
 environments
 exist
 
where
 replication
 factors
 may
 be
 recruited
 in
 order
 to
 efficiently
 facilitate
 
replication
 initiation
 and
 elongation.
 
 Localization
 of
 origins
 within
 these
 sub-­‐
nuclear
 domains
 would
 give
 them
 preferential
 access
 to
 these
 factors.
 A
 likely
 
candidate
 for
 such
 a
 limiting
 factor
 might
 be
 Cdc45
 and
 or
 its
 loading
 factor
 Sld3.
 
This
 is
 due
 to
 the
 positive
 correlation
 of
 Cdc45-­‐Sld3
 loading
 with
 the
 timing
 of
 

  6
 
initiation
 (early
 origins
 associate
 with
 Cdc45
 sooner
 than
 late
 origins,
 beginning
 in
 
G1)
 (Aparicio
 et
 al.,
 1999).
 
Forkhead
 transcription
 factors
 and
 replication
 
The
 roles
 of
 the
 yeast
 Forkhead
 (Fkh)
 transcription
 factors,
 Fkh1
 and
 Fkh2
 
(Fkh1/2),
 have
 been
 well
 studied
 in
 the
 context
 of
 the
 G2/M
 phase
 transition
 of
 the
 
cell
 cycle
 (as
 reviewed
 in
 Murakami
 et
 al.,
 2010).
 This
 regulatory
 control
 of
 the
 CLB2
 
gene
 cluster
 is
 necessary
 for
 normal
 cell
 cycle
 progression.
 Fkh1/2
 play
 partially
 
overlapping
 roles
 in
 this
 regulation
 as
 complete
 transcriptional
 deregulation
 is
 only
 
observed
 in
 the
 double
 mutant
 (fkh1∆
 fkh2∆).
 This
 may
 be
 due
 to
 the
 high
 level
 of
 
homology
 between
 Fkh1
 and
 Fkh2.
 Both
 Fkh1
 and
 Fkh2
 share
 a
 conserved
 
Forkhead
 Associated
 (FHA)
 domain,
 a
 phosphothreonine-­‐binding
 motif,
 as
 well
 as
 a
 
winged-­‐helix
 Forkhead
 DNA
 binding
 domain
 (Fkh-­‐DBD).
 Fkh2
 differs
 from
 Fkh1
 
with
 the
 addition
 of
 a
 C-­‐terminal
 tail
 shown
 to
 be
 involved
 in
 interactions
 with
 its
 
binding
 partners
 MCM1
 and
 NDD1(Ostrow
 et
 al.,
 2014).
 
 
 
Recently,
 we
 have
 implicated
 Fkh1/2
 as
 global
 determinants
 of
 replication
 
initiation
 timing
 in
 S.
 cerevisiae
 (Knott
 et
 al.,
 2012
 (Chapter
 I)
 &
 Chapter
 II).
 In
 the
 
studies
 detailed
 here,
 we
 investigate
 the
 role
 of
 Forkhead
 proteins
 as
 well
 as
 several
 
additional
 factors
 that
 have
 been
 recently
 implicated
 in
 the
 coordination
 of
 
replication
 timing.
 We
 have
 shown,
 along
 with
 the
 work
 of
 others,
 that
 the
 telomeric
 
silencing
 protein
 Rif1
 plays
 an
 expansive
 role
 in
 replication
 timing
 outside
 of
 
telomeres
 in
 S.
 cerevisiae
 as
 well
 as
 in
 other
 systems
 including
 Schizosaccharomyces
 
pombe
 and
 higher
 metazoans.
 (See
 Chapter
 III)
 (Cornacchia
 et
 al.,
 2012;
 Hayano
 et
 

  7
 
al.,
 2012;
 Lian
 et
 al.,
 2011;
 Peace
 et
 al.,
 2014;
 Yamazaki
 et
 al.,
 2012).
 Lastly,
 we
 
investigate
 the
 consequence
 of
 decreased
 origin
 usage
 due
 to
 defective
 Cdc7
 or
 Orc1
 
function
 (Zhong
 et
 al.,
 2013
 (Chapter
 IV)).
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  8
 

 
Chapter
 I
 

 
Forkhead
 Transcription
 Factors
 Establish
 Origin
 Timing
 and
 Long-­‐Range
 
Clustering
 in
 S.
 cerevisiae
 

 
Adapted
 from:
 
Knott,
 S.R.V.,
 Peace,
 J.M.,
 Ostrow,
 A.Z.,
 Gan,
 Y.,
 Rex,
 A.E.,
 Viggiani,
 C.J.,
 Tavaré,
 S.,
 and
 
Aparicio,
 O.M.
 (2012).
 Forkhead
 Transcription
 Factors
 Establish
 Origin
 Timing
 and
 
Long-­‐Range
 Clustering
 in
 S.
 cerevisiae.
 Cell
 148,
 99–111.
 

 
My
 primary
 contribution
 to
 the
 following
 work
 included
 the
 transcriptional
 
analysis
 of
 genes
 surrounding
 Fkh-­‐regulated
 origin
 classes
 through
 a
 combination
 of
 
Rpb3
 ChIP-­‐Seq
 and
 ssRNA-­‐seq
 techniques
 (Fig.
 1.6).
 Additionally,
 I
 produced
 
experimental
 replicates
 for
 BrdU-­‐IP-­‐Seq
 experiments
 (Fig.
 1.1B
 &
 1.2)
 and
 
contributed
 to
 discussion
 and
 analysis
 of
 data.
 

   
 

  9
 
INTRODUCTION
 

 
Similar
 to
 their
 effects
 on
 transcription,
 local
 histone
 deacetylation
 typically
 
delays
  or
  suppresses
  origin
  firing,
  whereas
  histone
  acetylation
  advances
  or
 
stimulates
 origin
 activity
 (Aggarwal
 and
 Calvi,
 2004;
 Aparicio
 et
 al.,
 2004;
 Goren
 et
 
al.,
 2008;
 Knott
 et
 al.,
 2009c;
 Pappas
 et
 al.,
 2004;
 Stevenson
 and
 Gottschling,
 1999;
 
Vogelauer
 et
 al.,
 2002;
 Weber
 et
 al.,
 2008).
 
 However,
 distinct
 aspects
 of
 chromatin
 
structure
 may
 affect
 origin
 timing
 versus
 efficiency.
 Recent
 studies
 indicate
 that
 
histone
 acetylation
 is
 required
 for
 pre-­‐RC
 assembly
 (Miotto
 and
 Struhl,
 2007),
 and
 
multiple,
 acetylated
 lysines
 in
 histone
 H3
 and
 H4
 N-­‐termini
 are
 required
 for
 efficient
 
origin
 activity
 (Eaton
 et
 al.,
 2011;
 Unnikrishnan
 et
 al.,
 2010).
 
 The
 mechanism
 of
 
temporal
 control
 is
 less
 clear.
 
 Early
 firing
 is
 thought
 to
 represent
 a
 default
 state,
 
with
 deacetylated
 chromatin
 imposing
 a
 delay.
 
Recently,
  we
  reported
  that
  the
  Rpd3L
  histone
  deacetylase
  delays
  the
 
activation
 of
 ~100
 origins
 throughout
 the
 yeast
 genome
 (~1/3
 of
 the
 active
 origins)
 
(Knott
 et
 al.,
 2009c).
 
 With
 this
 dataset
 we
 used
 classification-­‐regression
 trees
 to
 
identify
  annotated
  protein
  binding-­‐sites
  (from
  (Harbison
  et
  al.,
  2004)
  whose
 
presence
 or
 absence
 near
 origins
 was
 predictive
 of
 origin
 regulation
 by
 Rpd3L.
 
 This
 
and
 further
 analysis
 identified
 binding
 sites
 of
 Forkhead
 transcription
 factors,
 Fkh1
 
and
 Fkh2,
 as
 being
 depleted
 near
 Rpd3L-­‐regulated
 origins
 (data
 not
 shown).
 
 Fkh1
 
and
 Fkh2
 have
 been
 well
 characterized
 for
 their
 role
 in
 regulating
 G2/M-­‐phase
 
specific
 transcription
 of
 a
 group
 of
 genes
 known
 as
 the
 CLB2
 cluster
 (reviewed
 in
 
(Murakami
 et
 al.,
 2010)),
 but
 have
 no
 known
 role
 in
 DNA
 replication.
 
 In
 this
 study,
 

  10
 
we
 show
 that
 Fkh1
 and
 Fkh2
 regulate
 the
 initiation
 timing
 of
 most
 of
 the
 earliest
 
origins
 in
 the
 yeast
 genome
 through
 a
 novel
 mechanism
 involving
 origin
 clustering
 
in
 G1-­‐phase.
 
 
 
RESULTS
 
Fkh1
 and
 Fkh2
 control
 genome-­‐wide
 initiation
 dynamics
 of
 replication
 
origins.
 
To
 test
 whether
 Fkh1
 and
 Fkh2
 influence
 replication
 origin
 function,
 we
 
examined
 genome-­‐wide
 origin-­‐firing
 using
 BrdU
 immunoprecipitation
 analyzed
 by
 
DNA
 sequencing
 (BrdU-­‐IP-­‐Seq),
 in
 cells
 arrested
 in
 early
 S-­‐phase
 with
 hydroxyurea
 
(HU).
 
 In
 this
 analysis,
 BrdU
 peak
 size
 is
 proportional
 to
 origin
 efficiency
 in
 HU:
 
early-­‐efficient
 origins
 produce
 large
 peaks
 while
 late
 and/or
 dormant
 origins
 yield
 
smaller
 or
 no
 peaks
 (Knott
 et
 al.,
 2009c).
 
 Because
 Fkh1
 and
 Fkh2
 play
 partially
 
complementary,
 yet
 opposing
 roles
 in
 regulation
 of
 G2/M-­‐phase
 regulated
 genes
 
(Murakami
 et
 al.,
 2010),
 we
 analyzed
 single
 as
 well
 as
 double
 deletion
 mutants
 of
 
FKH1
  and
  FKH2.
   
  Furthermore,
  because
  the
  double
  mutant
  cells
  exhibit
  slow,
 
pseudohyphal
 growth,
 which
 complicates
 their
 analysis,
 we
 also
 examined
 these
 
cells
 with
 over-­‐expression
 of
 C-­‐terminally
 truncated
 FKH2
 (+pfkh2∆C),
 which
 largely
 
restores
 CLB2
 cluster
 gene
 regulation
 (Reynolds
 et
 al.,
 2003).
 
 Consistent
 with
 this,
 
we
  found
  that
  expression
  of
  Fkh2∆C
  in
  fkh1∆
  fkh2∆
  cells
  suppressed
  their
 
pseudohyphal
 growth
 and
 restored
 nearly
 normal
 growth
 rate
 (Fig.
 1.1A
 and
 data
 
not
 shown).
 

  11
 

 

 

 
Figure
 1.1.
 Suppression
 of
 pseudohyphal
 growth
 of
 fkh1∆
 fkh2∆
 cells
 by
 
expression
 of
 Fkh2∆C.
 
 Phase-­‐contrast
 images
 of
 the
 indicated
 strains
 grown
 in
 
liquid
 culture
 and
 sonicated
 mildly
 to
 disrupt
 cell
 aggregates.
 
 B.
 Origins
 
deregulated
 in
 fkh1∆,
 fkh1∆
 fkh2∆,
 and
 fkh1∆
 fkh2∆
 +
 fkh2∆C
 cells.
 
 Venn
 diagrams
 
showing
 overlap
 of
 deregulated
 origins
 identified
 as
 Fkh-­‐activated
 and
 Fkh-­‐
repressed.
 

 

 

  12
 
In
 wild-­‐type
 (WT)
 cells,
 295
 peaks
 of
 BrdU
 incorporation
 were
 detected
 
genome-­‐wide
  (Fig.
  1.2A).
   
  Combined
  deletion
  of
  FKH1
  and
  FKH2
  had
  an
 
unprecedented
 effect
 on
 origin
 activity
 throughout
 the
 genome,
 with
 the
 activities
 of
 
the
 archetypal
 early
 origins
 ARS305
 and
 ARS607
 being
 strongly
 reduced
 (Fig.
 1.2A).
 
 
Genome-­‐wide,
 of
 the
 352
 origins
 that
 were
 detected
 to
 fire
 in
 WT
 and/or
 fkh1∆
 
fkh2∆
  cells,
  106
  (30%)
  origins
  were
  significantly
  decreased
  in
  activity
  (Fkh-­‐
activated)
 and
 82
 (23%)
 were
 significantly
 increased
 (Fkh-­‐repressed).
 Deletion
 of
 
FKH1
 significantly
 (FDR<0.005)
 altered
 the
 activity
 of
 specific
 origins,
 with
 35
 being
 
Fkh-­‐activated
 and
 16
 Fkh-­‐repressed,
 whereas
 deletion
 of
 FKH2
 had
 no
 significant
 
effect
 on
 the
 replication
 pattern
 (Fig.
 1.2A,
 1.1B).
 
 Fortuitously,
 expression
 of
 fkh2∆C,
 
while
  complementing
  the
  pseudohyphal
  growth
  defects
  due
  to
  transcriptional
 
deregulation,
 did
 not
 complement
 the
 origin
 deregulation
 of
 fkh1∆
 fkh2∆
 cells,
 with
 
virtually
  all
  of
  the
  same
  origins
  being
  identified
  as
  Fkh-­‐activated
  (95)
  or
  Fkh-­‐
repressed
 (80)
 (Fig.
 1A,
 S1B,
 C,
 Table
 S1
 and
 Data
 S1).
 
 This
 result
 demonstrates
 that
 
the
 C-­‐terminus
 of
 Fkh2
 is
 required
 for
 origin
 regulation,
 and
 suggests
 that
 the
 
effects
 on
 origins
 are
 independent
 of
 transcriptional
 regulation
 by
 Fkh1
 and
 Fkh2.
 
 
We
  took
  advantage
  of
  the
  ability
  of
  fkh2∆C
  expression
  to
  complement
  the
 
transcriptional
 defects,
 but
 not
 the
 replication
 defects,
 and
 to
 improve
 the
 growth
 of
 
the
 double
 mutant
 cells
 to
 facilitate
 further
 analyses
 of
 fkh1∆
 fkh2∆
 cells.
 
 
 
Two-­‐dimensional
 clustering
 of
 the
 Fkh-­‐regulated
 origins
 based
 on
 their
 peak
 
sizes
 allows
 a
 global
 comparison
 of
 origin
 activities
 in
 the
 WT,
 single
 and
 double
 
mutant
 strains.
 
 This
 analysis
 reveals
 the
 extensive
 deregulation
 of
 fkh1∆
 fkh2∆
 and
 
 

 

  13
 

 

 
Figure
 1.2.
 Analysis
 of
 early
 S-­‐phase
 BrdU
 incorporation.
 
 A.
 BrdU
 incorporation
 
plots
 of
 chromosomes
 III
 and
 VI
 are
 shown;
 plot
 colors
 and
 symbols
 correspond
 to
 
the
 strain
 key
 above.
 
 Origins
 discussed
 in
 the
 text
 are
 boxed.
 
 B.
 Two-­‐dimensional
 
clustering
 of
 peak
 counts
 at
 Fkh-­‐regulated
 origins
 is
 shown;
 columns
 (color-­‐keyed
 
above)
 correspond
 to
 strains
 and
 rows
 to
 origins.
 
 C.
 All
 detected
 origins
 (in
 rows)
 
are
 arranged
 from
 maximum
 to
 minimum
 counts
 in
 WT,
 with
 the
 positions
 of
 Fkh-­‐
regulated
 origins
 indicated.
 
 

 

 

 

  14
 
fkh1∆
 fkh2∆
 +pfkh2∆C
 cells,
 the
 strong
 similarity
 between
 replication
 patterns
 in
 the
 
WT
 and
 fkh2∆
 cells,
 and
 the
 intermediate
 phenotype
 of
 fkh1∆
 cells
 (Fig.
 1B).
 
 These
 
data
 indicate
 that
 Fkh1
 and
 Fkh2
 play
 a
 major
 and
 complementary
 role
 in
 selecting
 
certain
 origins
 for
 early
 activation,
 while
 repressing
 the
 activation
 of
 others.
 
 Fkh1
 is
 
sufficient
  to
  maintain
  normal
  (early)
  origin
  regulation
  in
  the
  absence
  of
  Fkh2,
 
whereas
 Fkh2
 only
 partially
 compensates
 for
 the
 absence
 of
 Fkh1.
 
 
 
To
 appraise
 the
 global
 relationship
 between
 origin
 activities
 and
 regulation
 
by
 Fkh1
 and/or
 Fkh2
 (Fkh1/2),
 we
 arranged
 origins
 according
 to
 their
 WT
 activity
 
levels
 (in
 HU)
 and
 plotted
 the
 positions
 of
 Fkh-­‐activated
 and
 -­‐repressed
 origins
 (Fig.
 
1C).
 
 Fkh-­‐activated
 origins
 were
 strongly
 enriched
 among
 earlier-­‐firing
 origins
 while
 
Fkh-­‐repressed
 origins
 were
 strongly
 enriched
 among
 later-­‐firing
 (or
 inefficient)
 
origins
 (p<0.001,
 hypergeometric
 test).
 
 These
 results
 show
 that
 Fkh1
 and
 Fkh2
 are
 
largely
 responsible
 for
 differential
 origin
 firing
 dynamics
 throughout
 the
 genome.
 
 
To
 examine
 in
 more
 detail
 the
 effect
 of
 Fkh1
 and
 Fkh2
 on
 temporal
 origin-­‐
firing
 dynamics,
 we
 analyzed
 replication
 throughout
 an
 unperturbed,
 synchronous
 
S-­‐phase.
 
 Total
 DNA
 content
 analysis
 showed
 similar
 overall
 replication
 kinetics
 in
 
WT
 and
 fkh1∆
 fkh2∆
 +pfkh2∆C
 cells
 (hereon
 fkh1∆
 fkh2∆C)
 (Fig.
 1.3A).
 
 We
 next
 used
 
BrdU
 pulse
 labeling
 combined
 with
 BrdU-­‐IP
 analyzed
 by
 microarray
 (BrdU-­‐IP-­‐chip)
 
to
 analyze
 origin-­‐firing
 dynamics.
 
 At
 Fkh-­‐activated
 ARS305
 in
 WT
 cells,
 substantial
 
BrdU
 incorporation
 occurred
 during
 the
 12-­‐24min
 through
 30-­‐42min
 pulses,
 and
 
ceased
  by
  the
  36-­‐48min
  pulse,
  consistent
  with
  the
  early
  and
  synchronous
 
replication
  of
  this
  origin
  (Fig.
  1.4A).
   
  In
  fkh1∆
  fkh2∆C
  cells,
  however,
  BrdU
 
incorporation
 at
 ARS305
 was
 delayed
 and
 reduced
 in
 comparison,
 occurring
 mainly
 

  15
 
after
 replication
 had
 ceased
 in
 the
 WT
 (Fig.
 1.4A).
 
 ARS607
 and
 numerous
 other
 
early
 origins
 showed
 similar
 delay
 of
 activity
 in
 fkh1∆
 fkh2∆C
 cells.
 
 These
 data
 
confirm
  the
  results
  of
  the
  analysis
  with
  HU
  and
  demonstrate
  that
  Fkh1/2
  are
 
required
 for
 the
 early
 activation
 of
 many
 origins
 throughout
 the
 yeast
 genome.
 

 

 

 
Figure
 1.3.
 Miscellaneous
 Data.
 A.
 FACScan
 analysis
 of
 DNA
 content
 of
 WT
 and
 
fkh1∆
 fkh2∆C
 cells
 synchronized
 in
 G1-­‐phase
 with
 α–factor
 and
 released
 
synchronously
 into
 S-­‐phase.
 
 B.
 Two-­‐dimensional
 gel
 electrophoresis
 analysis
 of
 
ARS305
 (Fkh-­‐activated)
 and
 ARS1520
 (Fkh-­‐repressed)
 in
 unsynchronized
 WT
 and
 
fkh1∆
 fkh2∆C
 cells.
 
 Genomic
 DNA
 was
 digested
 with
 NcoI
 and
 SalI.
 
 C.
 Non-­‐random
 
distribution
 of
 Fkh-­‐regulated
 origins.
 Chromosomal
 positions
 of
 Fhk-­‐activated
 and
 –
repressed
 origins
 are
 plotted.
 
 D.
 Histogram
 displaying
 the
 frequency
 of
 “Cut”
 counts
 
observed
 in
 the
 10
5

 simulations
 as
 well
 as
 the
 experimentally
 observed
 “Cut”
 count.
 
“Cuts”
 refers
 to
 the
 number
 of
 times
 a
 Fkh-­‐activated
 origin
 is
 followed
 by
 a
 Fkh-­‐
repressed
 origin,
 or
 vice-­‐versa,
 given
 a
 random
 distribution
 (see
 Methods).
 

  16
 
The
 data
 also
 indicate
 that
 Fkh1/2
 normally
 repress
 the
 earlier
 firing
 of
 
many
  origins.
   
  For
  example,
  examination
  of
  the
  late-­‐replicating
  region
  of
 
chromosome
 XV
 demonstrates
 that
 several
 later-­‐firing
 origins,
 such
 as
 ARS1520,
 
initiated
 replication
 earlier
 in
 the
 mutant
 cells
 (Fig.
 1.4A).
 
 To
 address
 the
 formal
 
possibility
 that
 the
 observed
 differences
 in
 origin
 activation
 timing
 derive
 from
 a
 
change
  in
  origin
  activation
  efficiency,
  we
  performed
  two-­‐dimensional
  gel
 
electrophoresis
 analysis
 of
 replication
 initiation
 structures
 of
 Fkh-­‐activated
 origin
 
ARS305
 and
 Fkh-­‐repressed
 origin
 ARS1520.
 
 Both
 origins
 exhibit
 high
 efficiency
 in
 
both
  WT
  and
  fkh1∆
  fkh2∆C
  cells
  (Fig.
  1.3B).
   
  These
  data
  confirm
  that
  Fkh1/2
 
establish
 the
 temporal
 program
 of
 origin
 activation.
 
For
  a
  global
  view
  of
  the
  impact
  of
  Fkh1/2
  regulation
  on
  the
  temporal
 
program,
  we
  clustered
  the
  Fkh-­‐regulated
  origins
  according
  to
  their
  peak-­‐count
 
differences
 in
 the
 HU
 analysis,
 and
 plotted
 the
 differences
 in
 their
 levels
 of
 BrdU-­‐
incorporation
 between
 WT
 and
 mutant
 for
 each
 interval
 in
 the
 time-­‐course
 (Fig.
 
1.4B).
 
 This
 analysis
 shows
 global
 correspondence
 between
 the
 change
 in
 origin
 
activity
 in
 HU
 and
 the
 change
 in
 origin
 activity
 in
 the
 time
 course
 in
 the
 fkh1∆
 
fkh2∆C
 cells,
 with
 Fkh-­‐activated
 origins
 firing
 earlier
 and
 Fkh-­‐repressed
 origins
 
firing
  later
  in
  WT
  cells.
   
  Thus,
  Fkh1/2
  play
  a
  major
  role
  in
  determining
  the
 
characteristic
  firing
  times
  of
  replication
  origins
  throughout
  much
  of
  the
  yeast
 
genome.
 
 

 

 

 

  17
 

 

 
Figure
 1.4.
 Temporal
 analysis
 of
 DNA
 replication
 by
 BrdU
 pulse-­‐labeling.
 
 A.
 
BrdU
 incorporation
 plots
 of
 chromosome
 III
 and
 a
 region
 of
 XV
 are
 shown.
 
 Origins
 
discussed
 in
 the
 text
 are
 boxed.
 
 B.
 The
 matrix
 shows
 differences
 (WT-­‐fkh1∆
 fkh2∆C)
 
in
 BrdU
 incorporation
 (Δ
 M-­‐value)
 at
 all
 Fkh-­‐regulated
 origins
 (columns)
 across
 
time
 (rows);
 the
 origins
 are
 arranged
 from
 left
 to
 right
 by
 their
 differences
 (WT-­‐
fkh1∆
 fkh2∆C)
 in
 BrdU
 incorporation
 in
 HU
 (Δ
 HU
 Counts).
 
 Specific
 origins
 are
 
indicated
 below.
 
 
 

 
Fkh-­‐regulation
 involves
 establishment
 of
 replication
 timing
 domains.
 

   
 
Comparison
  of
  the
  WT
  and
  mutant
  chromosomal
  replication
  profiles
  reveals
 
additional
  features
  of
  interest,
  including
  even
  earlier
  replication
  of
  centromere
 
(CEN)-­‐proximal
 sequences,
 such
 that
 these
 became
 the
 earliest
 replicating
 region
 of
 

  18
 
each
 chromosome
 (Fig.
 1.4A).
 
 Plotting
 CEN-­‐proximal
 origins
 (ie,
 within
 25kb)
 in
 the
 
time-­‐course
 clustergram
 shows
 that
 many
 of
 these
 origins
 initiated
 earlier
 in
 the
 
mutant
  cells
  and
  were
  among
  the
  most
  strongly
  affected
  of
  the
  Fkh-­‐repressed
 
origins
 (Fig.
 1.4B).
 
 Another
 striking
 feature
 of
 the
 mutant
 replication
 profiles
 is
 the
 
delayed
 replication
 of
 most
 telomere
 (TEL)-­‐proximal
 sequences,
 particularly
 those
 
with
 active
 origins,
 as
 evident
 on
 the
 right
 arm
 of
 chromosome
 III
 (Fig.
 1.4A).
 These
 
results
  further
  demonstrate
  the
  global
  role
  of
  Fkh1/2
  in
  determining
  genome
 
replication
 timing
 and
 suggest
 a
 function
 in
 chromosomal
 organization.
 
 
 
We
  wondered
  whether
  the
  distribution
  of
  Fkh-­‐regulated
  origins
  along
 
chromosomes
 might
 provide
 additional
 clues
 about
 their
 functional
 organization.
 
 
Chromosomal
 plots
 of
 Fkh-­‐regulated
 origins
 (ignoring
 non-­‐regulated
 origins)
 show
 
frequent,
  linearly
  contiguous
  groups
  of
  Fkh-­‐activated
  and
  -­‐repressed
  origins,
 
suggesting
 a
 non-­‐random
 distribution
 (Fig.
 1.3C).
 
 To
 test
 this
 notion
 rigorously,
 we
 
applied
  a
  permutation
  test
  that
  determines
  the
  likelihood
  that
  the
  contiguous
 
groups
 are
 random.
 
 The
 result
 shows
 that
 the
 distribution
 of
 Fkh-­‐activated
 and
 -­‐
repressed
 origins
 is
 non-­‐random
 and
 that
 origins
 of
 each
 class
 frequently
 cluster
 
linearly
 along
 the
 chromosome
 with
 other
 members
 of
 their
 class
 (p<0.01,
 Fig.
 
1.3D).
 
 Together
 with
 the
 CEN-­‐
 and
 TEL-­‐specific
 effects,
 these
 results
 are
 consistent
 
with
 Fkh1/2
 establishing
 domains
 of
 replication
 timing.
 

 

 

 

  19
 

 

 
Figure
 1.5.
 Analysis
 of
 Fkh1
 and
 Fkh2
 binding
 sites
 near
 origins.
 
 A
 and
 B.
 
Frequencies
 of
 expected
 and
 actual
 Fkh1
 (A)
 and
 Fkh2
 (B)
 consensus
 binding
 sites
 
near
 Fkh-­‐activated,
 Fkh-­‐unregulated,
 and
 Fkh-­‐repressed
 origins
 are
 shown.
 
 C.
 
Frequency
 distribution
 plots
 of
 Fkh1
 and
 Fkh2
 consensus
 binding
 sites
 relative
 to
 
ACS
 position
 are
 shown.
 
 D.
 M-­‐values
 for
 BrdU-­‐IP-­‐chip
 and
 for
 ChIP-­‐chip
 of
 Fkh1
 and
 
ORC
 binding
 along
 the
 ARS305
 region
 in
 WT
 cells
 harboring
 ARS305
 or
 ars305∆2BS.
 

 

 

  20
 
Fkh1/2
 bind
 and
 function
 in
 cis
 to
 Fkh-­‐activated
 origins.
 

 
Fkh1
 and
 Fkh2
 exhibit
 similar
 DNA
 sequence
 binding
 specificities
 in
 vitro
 and
 bind
 
extensively
 throughout
 the
 genome,
 with
 significant
 overlap
 of
 binding
 sites
 (data
 
not
 shown
 and
 (Harbison
 et
 al.,
 2004;
 Hollenhorst
 et
 al.,
 2001;
 MacIsaac
 et
 al.,
 
2006).
   
  To
  examine
  the
  relationship
  of
  Fkh1
  and
  Fkh2
  binding
  with
  origin
 
regulation,
 we
 analyzed
 the
 distribution
 of
 putative
 Fkh1
 and
 Fkh2
 binding
 sites
 
within
 500bp
 of
 Fkh-­‐activated,
 -­‐
 repressed,
 and
 -­‐unregulated
 origins
 (see
 Methods).
 
 
This
  analysis
  shows
  that
  Fkh1
  and
  Fkh2
  binding
  sites
  are
  enriched
  near
  Fkh-­‐
activated
  origins
  and
  depleted
  near
  Fkh-­‐repressed
  origins
  (Fig.
  1.5A,
  B,
 
hypergeometric
 test,
 p<0.01),
 as
 expected
 if
 Fkh1/2
 act
 through
 direct
 binding
 near
 
Fkh-­‐activated
 origins.
 
 Fkh1
 was
 most
 enriched,
 being
 ~four-­‐fold
 enriched
 at
 Fkh-­‐
activated
 versus
 -­‐repressed
 origins,
 consistent
 with
 a
 predominant
 role
 for
 Fkh1
 
rather
 than
 Fkh2
 in
 origin
 regulation
 as
 indicated
 by
 the
 single
 mutant
 analysis
 
above.
 
 
 
The
  enrichment
  of
  Fkh1/2
  binding
  sites
  near
  origins
  may
  explain
  the
 
selection
 of
 these
 origins
 for
 early
 activation,
 however,
 Fkh1/2
 bind
 near
 some
 
origins
 that
 are
 not
 Fkh-­‐activated
 suggesting
 that
 Fkh1/2
 binding
 in
 the
 vicinity
 is
 
not
 sufficient
 for
 origin
 activation.
 
 To
 determine
 more
 precisely
 how
 Fkh1
 and
 Fkh2
 
localize
 in
 relation
 to
 Fkh-­‐regulated
 origins,
 we
 calculated
 the
 distance
 from
 each
 
origin’s
 ARS-­‐consensus
 sequence
 (ACS),
 which
 binds
 ORC,
 to
 the
 likeliest
 Fkh1
 and
 
Fkh2
 binding
 site
 within
 500bp
 and
 plotted
 the
 results
 as
 a
 frequency
 distribution
 
(see
 Methods).
 
 The
 distribution
 reveals
 extraordinary
 proximity
 of
 Fkh1
 and
 Fkh2
 

  21
 
consensus
  sites
  to
  ACSs
  of
  Fkh-­‐activated
  origins,
  with
  frequent
  overlap
  of
  the
 
Fkh1/2
 binding
 sites
 and
 ACSs
 (Fig.
 1.5C).
 
 In
 contrast,
 Fkh1
 and
 especially
 Fkh2
 
showed
 poorer
 alignment
 and
 binding
 density
 with
 those
 few
 Fkh-­‐repressed
 origins
 
proximal
 to
 Fkh1/2
 binding
 sites.
 
 These
 results
 suggest
 that
 the
 positioning
 and/or
 
number
 of
 these
 sites
 may
 be
 important
 for
 origin
 regulation
 
To
 test
 directly
 whether
 Fkh1/2
 regulate
 origin
 function
 through
 binding
 in
 
cis
  to
  the
  affected
  origin,
  we
  mutated
  two
  putative
  Fkh1/2
  binding
  sites
  near
 
ARS305
 (ars305∆2BS).
 
 Combined
 mutation
 of
 these
 sites
 significantly
 reduced
 BrdU
 
incorporation
 at
 ARS305,
 but
 not
 at
 more
 distal
 origins,
 indicating
 that
 Fkh1/2
 
regulate
 ARS305
 directly
 through
 binding
 in
 cis
 (Fig.
 1.5D).
 
 Crucially,
 mutation
 of
 
these
  binding
  sites
  eliminated
  Fkh1
  binding
  to
  the
  ARS305
  region
  without
 
eliminating
 ORC
 binding
 (Fig.
 1.5D).
 
 These
 results
 also
 eliminate
 concerns
 that
 
origin
 deregulation
 results
 from
 mis-­‐expression
 of
 a
 replication
 factor(s)
 in
 fkh1∆
 
fkh2∆C
 cells.
 
 Overall,
 these
 results
 demonstrate
 that
 Fkh1/2
 binding
 positively
 
influences
 origin
 activity.
 
 

 
Fkh-­‐dependent
 origin
 regulation
 is
 not
 correlated
 with
 transcription
 levels
 or
 
changes.
 

 
The
  notion
  of
  a
  mechanistic
  link
  between
  replication
  origin
  timing
  and
 
transcriptional
 state,
 together
 with
 the
 well-­‐characterized
 roles
 of
 Fkh1
 and
 Fkh2
 as
 
transcriptional
 regulators,
 suggested
 that
 altered
 transcription,
 particularly
 of
 genes
 

  22
 

 
 
Figure
 1.6.
 Transcription
 analysis
 surrounding
 Fkh-­‐regulated
 origins
 in
 
unsynchronized
 and
 G1-­‐synchronized
 cells.
 
 RNA-­‐Seq
 (A)
 and
 Rpb3
 ChIP-­‐Seq
 (B)
 
read
 counts
 of
 WT,
 fkh1∆
 fkh2∆C,
 and
 WT-­‐fkh1∆
 fkh2∆C
 differences
 (Δ),
 within
 10kb
 
of
 each
 Fkh-­‐regulated
 origin,
 are
 aligned
 by
 each
 origin’s
 predicted
 or
 verified
 ACS.
 
 
Origins
 are
 grouped
 according
 to
 the
 orientation
 of
 the
 flanking
 genes,
 and
 arranged
 
by
 differences
 (WT-­‐fkh1∆
 fkh2∆C)
 in
 BrdU
 incorporation
 in
 HU
 (Δ
 HU
 Counts).
 
 

 

 
proximal
 to
 Fkh-­‐regulated
 origins,
 might
 explain
 the
 altered
 origin
 firing.
 
 Although
 
expression
  of
  Fkh2∆C
  suppressed
  pseudohyphal
  growth,
  indicating
  that
  normal
 
transcriptional
  regulation
  had
  been
  at
  least
  partially
  restored,
  we
  nonetheless
 

  23
 
wished
 to
 determine
 whether
 differences
 in
 transcription
 of
 genes
 proximal
 to
 the
 
affected
 origins
 could
 account
 for
 the
 differences
 in
 origin
 activity.
 
 Accordingly,
 we
 
analyzed
 global
 RNA
 transcript
 levels
 using
 strand-­‐specific
 RNA
 quantification
 by
 
sequencing
 (RNA-­‐Seq)
 and
 RNA
 Polymerase
 II
 (Pol
 II)
 occupancy
 using
 chromatin
 
immunoprecipitation
 analyzed
 by
 sequencing
 (ChIP-­‐Seq)
 of
 the
 Pol
 II
 core
 subunit
 
Rpb3
 in
 WT
 and
 fkh1∆
 fkh2∆C
 cells,
 in
 unsynchronized
 cells
 and
 cells
 synchronized
 
in
 G1-­‐phase,
 when
 replication
 timing
 is
 established
 (Dimitrova
 and
 Gilbert,
 1999;
 
Raghuraman
 et
 al.,
 1997).
 
 Up-­‐regulation
 of
 CLB2
 in
 G1-­‐phase
 fkh1∆
 fkh2∆C
 cells,
 
which
 is
 consistent
 with
 the
 role
 of
 Fkh1
 in
 CLB2
 repression,
 and
 significant
 overlap
 
between
  genes
  identified
  by
  the
  different
  methods
  validated
  both
  analyses.
   
  A
 
permutation
 test
 indicates
 that
 genes
 deregulated
 in
 fkh1∆
 fkh2∆C
 cells
 are
 not
 
significantly
 co-­‐localized
 with
 or
 proximal
 to
 Fkh-­‐regulated
 origins
 (see
 Methods).
 
 
We
  also
  plotted
  RNA
  transcript
  levels
  and
  Rpb3
  occupancy,
  as
  well
  as
  their
 
differences
 in
 fkh1∆
 fkh2∆C
 cells,
 within
 10kb
 of
 Fkh-­‐regulated
 origins
 (Fig.
 1.6).
 
 
Visual
 inspection
 of
 these
 plots
 show
 no
 obvious
 correlation
 with
 the
 effects
 on
 
origin
 activities,
 regardless
 of
 the
 magnitude
 or
 directionality
 (positive
 or
 negative)
 
of
 effect,
 the
 orientation
 of
 the
 immediately
 flanking
 genes,
 or
 the
 cell
 cycle
 stage.
 
 
Linear
 regression
 analysis
 also
 shows
 no
 consistent
 correlation
 between
 the
 effects
 
on
 origin
 activity
 and
 the
 expression
 levels
 of
 the
 immediately
 flanking
 genes
 (see
 
Methods).
 
 These
 findings
 demonstrate
 that
 origin
 regulation
 by
 Fkh1/2
 does
 not
 
involve
 proximal
 changes
 in
 transcription.
 
 

 

  24
 
Cdc45
 preferentially
 associates
 with
 Fkh-­‐activated
 origins
 in
 G1-­‐phase.
 
 

 
We
 wondered
 whether
 Fkh1/2
 regulate
 replication
 timing
 by
 modulating
 the
 
binding
 of
 replication
 factors
 to
 origins.
 
 To
 determine
 whether
 Fkh1/2
 influence
 
ORC
 binding
 or
 MCM
 loading,
 we
 used
 ChIP
 analyzed
 by
 microarray
 (ChIP-­‐chip)
 to
 
examine
  ORC
  binding
  in
  unsynchronized
  cells
  and
  Mcm2+4
  binding
  in
  G1-­‐
synchronized
 cells.
 
 The
 results
 show
 no
 significant,
 global
 difference
 in
 ORC
 or
 
Mcm2+4
 origin-­‐binding
 between
 WT
 and
 fkh1∆
 fkh2∆C
 cells
 (Fig.
 1.7A),
 contrary
 to
 
the
 idea
 that
 Fkh1/2
 affect
 origin-­‐firing
 by
 modulating
 ORC
 or
 MCM
 binding.
 
Origin
 initiation
 requires
 the
 DDK-­‐dependent
 recruitment
 of
 Cdc45
 to
 pre-­‐
RCs.
 
 However,
 Cdc45
 associates
 specifically,
 albeit
 relatively
 weakly,
 with
 several
 
early
  replication
  origins
  in
  G1-­‐phase
  (prior
  to
  DDK
  activation),
  presaging
  their
 
characteristic
 early
 S-­‐phase
 activity
 (Aparicio
 et
 al.,
 1999).
 
 This
 suggests
 that
 these
 
origins
 gain
 an
 early
 advantage
 (by
 G1-­‐phase)
 in
 their
 ability
 to
 recruit
 Cdc45
 to
 
enable
 early
 initiation.
 Examination
 of
 Cdc45
 binding
 by
 ChIP-­‐chip
 shows
 Cdc45
 
association
 with
 many
 early
 origins,
 including
 Fkh-­‐activated
 origins,
 such
 as
 ARS305
 
and
 ARS607,
 and
 a
 number
 of
 CEN-­‐proximal
 origins
 (Fig.
 1.7A,
 B).
 Of
 28
 origins
 that
 
bind
 Cdc45
 in
 WT
 G1-­‐phase
 cells,
 15
 are
 Fkh-­‐activated
 and
 14
 are
 CEN-­‐proximal
 (on
 
11
 CENs),
 while
 only
 one
 is
 Fkh-­‐repressed.
 
 Strikingly,
 in
 the
 fkh1∆
 fkh2∆C
 cells,
 
 
Cdc45
 binding
 is
 lost
 from
 the
 Fkh-­‐activated
 origins,
 which
 become
 significantly
 
later
 firing,
 leaving
 only
 13
 origins
 binding
 Cdc45
 (Fig.
 1.7B).
 
 Of
 these
 13,
 12
 are
 
CEN-­‐proximal,
 which
 as
 shown
 above,
 remain
 early
 firing.
 
 Thus,
 Cdc45
 origin-­‐
binding
 in
 G1-­‐phase
 is
 robustly
 associated
 with
 early
 initiation.
 
 These
 findings
 
 

  25
 

 

 

 
Figure
 1.7.
 Genome-­‐wide
 binding
 of
 replication
 initiation
 factors
 to
 Fkh-­‐
regulated
 origins.
 
 A.
 M-­‐values
 from
 ChIP-­‐chip
 analysis
 of
 ORC,
 Mcm2+4,
 and
 
Cdc45
 at
 Fkh-­‐regulated
 origins
 (in
 rows)
 are
 arranged
 by
 differences
 (WT-­‐fkh1∆
 
fkh2∆C)
 in
 BrdU
 incorporation
 in
 HU
 (Δ
 HU
 Counts).
 
 B.
 Venn
 diagram
 of
 Cdc45
 
binding
 within
 different
 origin
 classes
 is
 shown.
 
 
 

  26
 
support
 the
 idea
 that
 Fkh1/2
 influence
 origin
 function
 by
 regulating
 access
 to
 the
 
pool
 of
 replication
 factors
 such
 as
 Cdc45,
 whereas
 CEN-­‐proximal
 origins
 have
 access
 
to
 Cdc45
 independently
 of
 Fkh1/2.
 
Fkh1/2
 are
 required
 for
 selective
 clustering
 of
 Fkh-­‐activated
 origins
 in
 G1-­‐
phase.
 

 
The
 organization
 of
 selected
 origins
 into
 subnuclear
 domains
 or
 replication
 
foci
 by
 Fkh1/2
 may
 explain
 their
 preferential
 access
 to
 limiting
 or
 sequestered
 
initiation
 factors
 like
 Cdc45.
 
 In
 accord
 with
 this,
 a
 global
 analysis
 of
 intra-­‐
 and
 inter-­‐
chromosomal
 interactions
 of
 the
 yeast
 genome
 using
 a
 variation
 of
 4C
 (Chromosome
 
Conformation
  Capture-­‐on-­‐Chip)
  suggests
  that
  early
  origins
  cluster
  in
  G1-­‐phase
 
(Duan
 et
 al.,
 2010).
 
 We
 analyzed
 this
 origin
 interaction
 data
 to
 determine
 whether
 
origin
 clustering
 was
 associated
 with
 Fkh-­‐regulation
 and/or
 Cdc45
 binding
 in
 G1-­‐
phase.
 
 Two-­‐dimensional
 clustering
 based
 on
 origin
 interaction
 frequencies
 resulted
 
in
 two
 main
 clusters
 of
 interacting
 origins,
 with
 89
 and
 92
 origins,
 respectively
 (Fig.
 
1.8A).
 
 One
 cluster
 contains
 most
 of
 the
 Cdc45-­‐bound
 origins,
 the
 most
 statistically
 
significant
  Fkh-­‐activated
  origins,
  and
  CEN-­‐proximal
  origins.
   
  This
  cluster
  also
 
contains
 earlier-­‐firing
 origins
 on
 average
 than
 the
 other
 main
 cluster
 and
 is
 depleted
 
of
 non-­‐CEN
 proximal,
 Fkh-­‐repressed
 origins
 (hypergeometric
 test,
 p<0.005).
 
 These
 
findings
 suggest
 that
 Fkh-­‐regulation
 involves
 selective
 origin
 clustering.
 
 
To
 test
 whether
 Fkh1/2
 have
 a
 role
 in
 origin
 clustering,
 we
 used
 4C
 to
 
analyze
 the
 trans
 associations
 of
 Fkh-­‐activated
 origin
 ARS305
 with
 other
 genomic
 

  27
 
sequences
 (for
 scheme,
 see
 Fig.
 1.9A).
 
 We
 validated
 this
 analysis
 by
 comparing
 
overlap
 between
 experimental
 replicates
 of
 WT
 and
 mutant
 cells,
 with
 and
 without
 
crosslinking,
  and
  by
  analyzing
  the
  number
  of
  intra-­‐
  versus
  inter-­‐chromosomal
 
interactions
 detected
 (Fig.
 1.9B).
 
 As
 expected,
 and
 consistent
 with
 the
 results
 of
 
(Duan
  et
  al.,
  2010),
  intrachromosomal
  interactions
  were
  enriched
  versus
 
interchromosomal
 interactions
 (p<0.001).
 
 We
 detected
 48
 ARS305-­‐interacting
 loci
 
in
 both
 WT
 replicates
 (of
 71
 and
 72
 in
 the
 replicates),
 and
 41
 ARS305-­‐interacting
 
loci
 in
 both
 fkh1∆
 fkh2∆C
 replicates
 (of
 164
 and
 189
 in
 the
 replicates)
 (Fig.
 1.8B).
 
 
The
 larger
 number
 of
 detected
 interactions
 with
 lower
 overlap
 between
 them
 in
 the
 
fkh1∆
  fkh2∆C
  replicates
  is
  consistent
  with
  a
  decrease
  in
  specificity
  of
  ARS305
 
interactions
 in
 the
 mutant
 cells.
 
 Most
 of
 the
 48
 sites
 in
 WT
 cells
 were
 not
 detected
 
in
  the
  mutant
  cells,
  indicating
  that
  their
  interaction
  with
  ARS305
  is
  Fkh1/2-­‐
dependent.
 
 For
 example,
 ARS305
 interacted
 with
 ARS607
 (as
 shown
 previously
 
(Duan
 et
 al.,
 2010))
 in
 both
 WT
 replicates
 and
 in
 neither
 fkh1∆
 fkh2∆C
 replicate
 (Fig.
 
1.8C),
 indicating
 that
 Fkh1/2
 are
 required
 for
 interaction
 in
 G1-­‐phase
 between
 these
 
early-­‐firing,
 Fkh-­‐activated
 origins.
 
 These
 results
 indicate
 that
 Fkh1/2
 play
 a
 role
 in
 
determining
 the
 long-­‐range
 chromatin
 contacts
 made
 by
 ARS305,
 and
 support
 the
 
idea
 that
 Fkh1/2
 function
 in
 origin
 regulation
 through
 origin
 clustering.
 

 

  28
 

 

 
Figure
 1.8.
 Chromosome-­‐conformation
 capture
 analyses
 of
 origin
 interactions.
 
 
A.
 Two-­‐dimensional
 clustering
 of
 origin-­‐origin
 interaction
 frequencies
 is
 shown,
 
with
 origins
 in
 columns
 and
 rows
 of
 the
 matrix.
 
 Columns
 to
 the
 right
 indicate
 Cdc45
 
ChIP-­‐chip
 binding,
 average
 BrdU
 ∆HU-­‐counts,
 and
 ∆BrdU-­‐pulse
 M-­‐values.
 
 The
 top
 
5%
 (based
 on
 p
 values)
 of
 Fkh-­‐activated
 and
 Fkh-­‐repressed
 origins
 are
 indicated.
 
 B.
 
Venn
 diagram
 of
 overlap
 between
 experimental
 replicates
 is
 shown.
 
 C.
 Plots
 of
 the
 
ARS607
 region
 including
 relevant
 XbaI
 sites
 are
 shown.
 
 See
 also
 Figure
 1.9.
 

 

  29
 

 
Figure
 1.9.
 
 4C
 analysis
 of
 ARS305
 interactions.
 
 A.
 Scheme
 of
 the
 4C
 method
 
showing
 relevant
 XbaI
 (X1-­‐X4)
 and
 MseI
 (M1-­‐M4)
 restriction
 sites
 surrounding
 
ARS305
 (Bait)
 and
 a
 hypothetical
 interacting
 locus
 (Prey),
 and
 primers
 (P1-­‐P4)
 used
 
to
 amplify
 captured
 loci
 for
 identification
 by
 microarray.
 
 The
 tethering
 agent
 
represents
 cross-­‐linked
 protein(s)
 mediating
 interaction
 between
 the
 bait
 and
 prey.
 
 
B.
 Statistical
 analysis
 of
 ARS305
 interacting
 sites
 by
 chromosome
 showing
 the
 
expected
 preference
 for
 intrachromosomal
 interactions
 (i.e.,
 with
 chromosome
 III).
 
The
 p
 value
 is
 based
 on
 the
 number
 of
 observed
 versus
 expected
 interactions
 for
 
each
 chromosome
 (the
 expected
 number
 of
 interactions
 is
 directly
 proportional
 to
 
the
 number
 of
 XbaI
 fragments
 per
 individual
 chromosome).
 

 

  30
 
Fkh1
 and
 Fkh2
 interact
 with
 ORC.
 

 
The
 binding
 of
 Fkh1/2
 adjacent
 to
 many
 Fkh-­‐activated
 origins,
 including
 
ARS305
 and
 ARS607
 (data
 not
 shown
 and
 (Harbison
 et
 al.,
 2004;
 Keich
 et
 al.,
 2008)),
 
led
 us
 to
 hypothesize
 that
 Fkh1/2
 bound
 near
 origins
 might
 stabilize
 origin
 contacts
 
in
  trans
  through
  interaction
  with
  ORC
  bound
  at
  other
  Fkh-­‐activated
  origins.
 
 
Immunoprecipitation
 (IP)
 of
 Myc-­‐tagged
 Fkh1
 or
 Fkh2
 from
 soluble
 cell
 extracts
 
resulted
 in
 co-­‐precipitation
 of
 ORC
 (Fig.
 1.10A,
 lanes
 1
 and
 2,
 data
 not
 shown
 for
 
Fkh2);
 Orc2
 was
 robustly
 detected,
 Orc1
 and
 Orc3
 were
 weakly
 detected,
 and
 Orc4-­‐
Orc6
 were
 obscured
 by
 co-­‐migrating
 immunoglobulin
 heavy
 chain
 (data
 not
 shown).
 
 
Reciprocal
 IP
 of
 ORC
 using
 a
 polyclonal
 antibody
 co-­‐precipitated
 Fkh1
 (Fig.
 1.10B,
 
lanes
 3
 and
 4).
 
 Taken
 together,
 these
 results
 demonstrate
 a
 physical
 interaction
 
(direct
 or
 indirect)
 between
 ORC
 and
 Fkh1.
 
 These
 interactions
 persisted
 in
 the
 
presence
  of
  the
  DNA-­‐intercalating
  agent,
  ethidium
  bromide,
  indicating
  that
  the
 
interactions
 are
 likely
 not
 DNA-­‐mediated
 (Fig.
 1.10C,
 lanes
 5-­‐8).
 
 Together
 with
 the
 
close
 proximity
 of
 Fkh1/2
 binding
 sites
 with
 origin
 ACSs,
 these
 results
 support
 the
 
idea
 that
 Fkh1/2
 interact
 with
 ORC
 to
 bridge
 replication
 origins
 in
 trans.
 

 

  31
 

 

 
Figure
 1.10.
 Co-­‐IP
 of
 Fkh1
 with
 ORC.
 
 Soluble
 extracts
 from
 FKH1-­‐MYC
 (lanes
 1,
 3,
 
5-­‐8)
 and
 untagged
 (lanes
 2,
 4)
 cells
 were
 subjected
 to
 IP
 with
 anti-­‐Myc
 antibody
 (A)
 
and
 anti-­‐ORC
 antibody
 (B
 and
 C).
 
 IPs
 were
 analyzed
 by
 immunoblotting
 with
 anti-­‐
Myc
 and
 anti-­‐ORC
 antibodies.
 
 C.
 Ethidium
 bromide
 (EtBr)
 was
 included
 in
 the
 IPs
 at
 
10,
 40,
 and
 100
 µg/mL
 in
 lanes
 6,
 7,
 and
 8,
 respectively.
 
 ORC
 protein
 was
 included
 
as
 standard.
 

 

 

 

 

 

  32
 
DISCUSSION
 
Fkh1/2
 establish
 replication-­‐timing
 domains
 through
 origin
 clustering.
 

 
Our
 findings
 reveal
 a
 novel,
 global
 mechanism
 for
 the
 regulation
 of
 origin
 
initiation
 timing,
 involving
 the
 spatial
 organization
 of
 replication
 origins
 by
 Fkh1/2.
 
 
Previous
 studies
 have
 concluded
 that
 yeast
 origins
 are
 early
 by
 default,
 and
 that
 late
 
timing
  is
  imposed
  by
  flanking
  sequences
  of
  a
  repressive
  nature
  (Ferguson
  and
 
Fangman,
 1992;
 Friedman
 et
 al.,
 1996).
 
 However,
 our
 findings
 show
 that
 Fkh1/2
 
actively
 program
 the
 timing
 of
 most
 of
 the
 earliest
 origins
 throughout
 the
 genome.
 
 
Thus,
  we
  propose
  that
  Fkh1/2
  establish
  early
  replication
  timing
  at
  Forkhead-­‐
activated
 origins
 by
 recruiting
 these
 origins
 into
 clusters
 where
 Cdc45
 is
 (and
 likely
 
other
 replication
 factors
 are)
 concentrated.
 
 The
 enrichment
 and
 distinct
 positioning
 
relative
 to
 the
 ACS
 of
 Fkh1/2
 binding
 sites
 likely
 explains
 the
 selective
 preference
 
for
  Fkh-­‐activated
  origins.
   
  Clustering
  may
  involve
  interaction
  of
 Fkh1/2
  bound
 
adjacent
 to
 an
 origin
 with
 ORC
 bound
 to
 a
 distal,
 second
 origin.
 
 Likewise,
 Fkh1/2
 
bound
  near
  the
  second
  origin
  might
  interact
  with
  a
  third
  origin,
  and
  so
  forth,
 
providing
 a
 mechanism
 to
 cluster
 several
 origins
 together.
 
 This
 congregation
 of
 
origins
 and
 initiation
 factors
 provides
 a
 kinetic
 advantage
 in
 assembling
 the
 factors
 
needed
 for
 replication
 initiation
 upon
 S-­‐phase
 entry,
 which
 transforms
 these
 origin
 
clusters
 into
 early
 replication
 factories.
 
 The
 ensuing
 dynamics
 of
 the
 replication
 
process,
 involving
 spooling
 of
 DNA
 through
 the
 replication
 factories
 (Kitamura
 et
 al.,
 
2006),
  eventually
  repositions
  more
  distal,
  unfired
  origins,
  bringing
  them
  in
 

  33
 
proximity
 of
 the
 concentration
 of
 the
 replication
 factor(ie)s
 and
 thereby
 allowing
 
them
 to
 gain
 access
 as
 early
 replicons
 terminate
 and
 are
 released.
 
 This
 is
 expected
 
to
 result
 in
 an
 increasingly
 stochastic
 pattern
 of
 replication
 initiation
 as
 S-­‐phase
 
proceeds
 and
 many
 unfired
 origins
 compete
 for
 limited
 access.
 
 However,
 later-­‐
replicating
  regions
  also
  exhibit
  well-­‐defined
  replication
  patterns
  indicating
 
preferred
 origin
 timing
 and
 usage.
 
 Indeed,
 chromosomes
 IV,
 XII,
 XIV,
 and
 XV
 each
 
have
 distinctly
 late-­‐replicating
 regions
 >200kb
 in
 length,
 encompassing
 groups
 of
 
contiguous
 Fkh-­‐repressed
 origins,
 which
 lose
 this
 unique
 character
 in
 the
 absence
 of
 
Fkh1/2
 (Fig.
 1.4A).
 
 
Origin
 clusters
 may
 define
 replication-­‐timing
 domains.
 
 The
 organization
 of
 
mammalian
 chromosomes
 into
 spatial
 domains
 correlates
 strongly
 with
 replication
 
timing
 (Ryba
 et
 al.,
 2010).
 
 Analysis
 of
 global
 4C
 in
 yeast
 shows
 clustering
 of
 early
 
origins
 (in
 G1-­‐phase),
 and
 we
 have
 now
 shown
 that
 the
 early
 origin
 cluster
 contains
 
Fkh-­‐activated
 and
 Cdc45-­‐bound
 origins
 (in
 G1-­‐phase).
 
 We
 have
 confirmed
 that
 Fkh-­‐
activated
 origins
 ARS305
 and
 ARS607
 interact
 in
 trans,
 and
 critically,
 show
 that
 this
 
interaction
  depends
  on
  Fkh1/2.
   
  In
  addition,
  Fkh-­‐activated
  and
  Fkh-­‐repressed
 
origins
 often
 occur
 in
 separate,
 linearly
 contiguous
 groups
 along
 chromosomes,
 
suggesting
 the
 formation
 of
 distinct
 domains.
 
 This
 may
 involve
 the
 anchoring
 of
 
intrachromosomal
 chromatin
 loops
 by
 Fkh1/2
 bound
 near
 origins,
 perhaps
 through
 
interaction
 with
 ORC,
 particularly
 in
 the
 case
 of
 Fkh-­‐activated
 origins,
 which
 are
 
enriched
 for
 Fkh1/2
 binding.
 
 In
 the
 case
 of
 Fkh-­‐repressed
 origins,
 a
 dearth
 of
 
Fkh1/2
 binding
 sites
 presumably
 reduces
 the
 likelihood
 that
 these
 origins
 join
 the
 
Fkh-­‐activated
 clusters,
 which
 may
 permit
 other
 mechanisms,
 such
 as
 deacetylation
 

  34
 
or
 localization
 to
 the
 nuclear
 periphery,
 to
 define
 replication
 timing
 of
 these
 regions.
 
 
Alternatively,
 the
 later
 timing
 may
 be
 a
 consequence
 of
 conformational
 or
 spatial
 
constraints
  imposed
  by
  the
  chromosomal
  architecture
  established
  by
  Fkh1/2
 
clustering
 of
 Fkh-­‐activated
 origins.
 
 
In
 the
 absence
 of
 Fkh1
 and
 Fkh2,
 CEN-­‐proximal
 origins
 dominate
 the
 early
 
replication
 landscape,
 suggesting
 that
 CENs
 confer
 early
 replication
 intrinsically.
 
 
CENs
 normally
 cluster
 and
 occupy
 a
 characteristic
 interior
 position
 in
 the
 nucleus
 
(Jin
 et
 al.,
 1998)
 that
 we
 suggest
 overlaps
 with
 the
 pool
 of
 replication
 factor(ie)s.
 
 
Consequently,
 CEN-­‐proximal
 origins
 have
 favorable
 access
 to
 this
 pool
 and
 initiate
 
early,
 independently
 of
 Fkh1/2.
 
 Thus,
 CEN-­‐proximal
 origins
 may
 act
 as
 organizing
 
sites
 for
 early-­‐replicating
 origin
 clusters
 that
 include
 non-­‐CEN-­‐proximal
 origins.
 
 
More
 distal
 Fkh-­‐activated
 origins
 may
 utilize
 Fkh1/2
 to
 cluster
 with
 CEN-­‐proximal
 
origins,
 thereby
 drawing
 these
 more
 distal
 origins
 into
 the
 pool.
 
 This
 is
 consistent
 
with
 the
 finding
 that
 CEN-­‐proximal
 origins
 localize
 to
 the
 large,
 early-­‐replicating
 
cluster
 in
 the
 global
 4C
 data
 together
 with
 the
 earliest
 Fkh-­‐activated
 origins.
 
 Thus,
 
the
 advanced
 replication
 timing
 of
 CEN-­‐proximal
 origins
 (and
 perhaps
 other
 Fkh-­‐
repressed
 origins)
 in
 cells
 lacking
 Fkh1/2
 may
 result
 from
 reduced
 competition
 
from
 Fkh-­‐activated
 origins
 for
 limiting
 replication
 factor(ie)s,
 rather
 than
 a
 direct
 
repressive
 function
 of
 Fkh1/2.
 
 Incidentally,
 CEN-­‐proximity
 may
 explain
 the
 finding
 
in
 yeast
 that
 plasmid-­‐borne
 origins
 typically
 replicate
 early,
 as
 these
 studies
 were
 
performed
 with
 CEN-­‐harboring
 plasmids
 (Ferguson
 and
 Fangman,
 1992;
 Friedman
 
et
 al.,
 1996).
 

  35
 
In
  contrast
  to
  CENs,
  TELs
  form
  several
  clusters
  that
  occupy
  the
  nuclear
 
periphery
 (Gotta
 et
 al.,
 1996;
 Heun
 et
 al.,
 2001).
 
 The
 normally
 late
 replication
 of
 
TEL-­‐proximal
 regions
 is
 consistent
 with
 the
 notion
 that
 the
 dynamic
 nature
 of
 the
 
replication
 process
 eventually
 relocates
 these
 distal
 regions
 to
 the
 interior
 of
 the
 
nucleus,
 which
 ultimately
 enables
 their
 access
 to
 replication
 factor(ie)s.
 
 In
 the
 
absence
 of
 Fkh1
 and
 Fkh2,
 most
 of
 the
 active
 telomeric
 origins
 are
 further
 delayed.
 
 
We
 imagine
 that
 the
 delayed
 activation
 of
 Fkh-­‐activated
 origins
 located
 along
 distal
 
chromosomal
  arms
  results
  in
  a
  corresponding
  delay
  in
  the
  relocation
  to
  TEL-­‐
proximal
 origins
 to
 the
 vicinity
 of
 replication
 factor(ie)s.
 
 Alternatively,
 Fkh1/2
 may
 
act
 directly
 to
 regulate
 TEL-­‐proximal
 origins.
 
 Further
 study
 will
 be
 required
 to
 
understand
 the
 regulation
 of
 CEN-­‐
 and
 TEL-­‐proximal
 origin
 timing.
 
 
Multiple,
 separable
 roles
 for
 Fkh1
 and
 Fkh2
 in
 regulation
 of
 the
 genome.
 

 
A
 clear
 finding
 of
 this
 study
 is
 the
 mechanistic
 independence
 of
 Fkh-­‐origin
 
regulation
  from
  transcription.
   
  There
  is
  no
  correlation
  between
  the
  observed
 
changes
  in
  replication
  timing
  and
  transcriptional
  levels
  of
  proximal
  genes.
 
 
Importantly,
  expression
  of
  Fkh2
  lacking
  its
  C-­‐terminus
  in
  fkh1∆
  fkh2∆
  cells
 
significantly
 restores
 transcriptional
 regulation
 of
 CLB2
 cluster
 genes
 (only
 CLB2
 
remained
  deregulated
  and
  only
  in
  G1-­‐phase
  cells)
  without
  restoring
  origin
 
regulation,
  directly
  demonstrating
  a
  separation
  of
  these
  Fkh1/2
  functions.
 
 
Nevertheless,
 our
 results
 do
 not
 rule
 out
 the
 possibility
 that
 the
 function
 of
 Fkh1/2
 

  36
 
in
 origin
 clustering
 may
 also
 underlie
 transcriptional
 control
 not
 elicited
 under
 our
 
growth
 conditions.
 
 
 
As
 transcriptional
 regulators,
 Fkh1
 and
 Fkh2
 exhibit
 opposing,
 as
 well
 as
 
partially
 complementary
 functions
 (Murakami
 et
 al.,
 2010).
 
 Fkh1
 and
 Fkh2
 also
 
demonstrate
 distinct
 abilities
 to
 regulate
 origins,
 suggesting
 that
 the
 features
 that
 
distinguish
 Fkh1
 and
 Fkh2
 functions
 in
 transcription
 also
 impinge
 on
 their
 functions
 
as
 origin
 regulators.
 
 Whereas
 Fkh2
 plays
 the
 lead
 role
 in
 transcriptional
 regulation,
 
Fkh1
  plays
  the
  lead
  role
  in
  origin
  regulation.
   
  Fkh1
  differs
  from
  Fkh2
  most
 
significantly
 in
 the
 presence
 of
 a
 C-­‐terminal
 extension
 in
 Fkh2,
 which
 regulates
 its
 
interaction(s)
 with
 transcriptional
 co-­‐activator(s)
 (Darieva
 et
 al.,
 2010;
 Darieva
 et
 
al.,
 2003;
 Koranda
 et
 al.,
 2000;
 Pic-­‐Taylor
 et
 al.,
 2004;
 Reynolds
 et
 al.,
 2003).
 
 This
 
domain
 is
 also
 required
 for
 Fkh2’s
 function
 in
 origin
 regulation,
 suggesting
 that
 
proper
 regulation
 of
 co-­‐activator
 interactions
 is
 critical,
 and
 that
 factors
 interacting
 
with
 Fkh2
 but
 not
 with
 Fkh1
 may
 disrupt
 origin
 regulation.
 
 Mcm1,
 which
 binds
 
cooperatively
 with
 Fkh2,
 but
 not
 Fkh1
 (Boros
 et
 al.,
 2003;
 Koranda
 et
 al.,
 2000;
 
Kumar
 et
 al.,
 2000;
 Pic
 et
 al.,
 2000),
 is
 an
 intriguing
 candidate,
 as
 it
 has
 been
 
reported
 to
 modulate
 origin
 function
 (Chang
 et
 al.,
 2004).
 
 We
 note
 that
 Mcm1
 
binding
 sites
 are
 not
 enriched
 near
 Fkh-­‐activated
 origins
 (data
 not
 shown).
 
 Thus,
 
consistent
 with
 the
 lack
 of
 effect
 on
 origin
 firing
 of
 FKH2
 deletion,
 it
 is
 possible
 that
 
Fkh2
 normally
 plays
 no
 role
 in
 origin
 regulation,
 and
 only
 substitutes
 (partially)
 in
 
Fkh1’s
 absence.
 
 
Fkh1,
 but
 not
 Fkh2,
 also
 regulates
 donor
 preference
 in
 yeast
 mating-­‐type
 
switching
  (Sun
  et
  al.,
  2002).
   
  Mating-­‐type
  switching
  involves
  homologous
 

  37
 
recombination
 between
 the
 MAT
 locus
 (recipient)
 and
 one
 of
 two
 silent
 mating-­‐type
 
loci
 (donor)
 distally
 located
 on
 opposite
 arms
 of
 the
 same
 chromosome,
 HMLα
 and
 
HMRa.
 
 This
 mechanism
 presumably
 necessitates
 chromosomal
 looping
 of
 either
 
arm
 to
 juxtapose
 the
 donor
 and
 recipient
 loci.
 
 Remarkably,
 in
 MATa
 cells,
 HMLα
 is
 
preferentially
 selected
 as
 the
 donor
 in
 over
 90%
 of
 cells,
 which
 ensures
 efficient
 
mating-­‐type
  switching.
   
  This
  preference
  depends
  on
  Fkh1
  binding
  to
  the
 
recombination
 enhancer
 (RE),
 which
 is
 proximal
 to
 HMLα.
 
 Our
 finding
 that
 Fkh1/2
 
mediate
 long-­‐range
 origin
 interactions
 suggest
 that
 Fkh1
 mediates
 a
 stable,
 long-­‐
range
 interaction
 between
 MATa
 and
 the
 RE
 to
 specify
 the
 recombination
 between
 
MATa
 and
 HMLα,
 which
 conspicuously,
 like
 early
 origin
 clustering,
 occurs
 during
 
G1-­‐phase.
   
  The
  role
  of
  Fkh1
  in
  regulating
  recombination
  over
  long
  distances
 
together
 with
 Fkh1/2’s
 role
 in
 regulating
 replication
 initiation
 timing
 through
 long-­‐
range
 origin
 clustering
 suggests
 that
 establishing
 long-­‐range
 chromatin
 contacts
 
may
  be
  a
  common
  mechanism
  of
  Fkh1/2
  function,
  likely
  extending
  to
 
transcriptional
 control.
 
Our
 proposed
 mechanism
 of
 origin
 clustering
 may
 also
 explain
 how
 the
 long-­‐
range
 interaction
 necessary
 for
 recombinational
 donor
 preference
 is
 established.
 
 
Dormant
 origins
 are
 closely
 associated
 with
 the
 RE
 (ARS304)
 and
 with
 MAT
 (ARS313
 
and
 ARS314).
 
 Thus,
 interactions
 between
 Fkh1
 bound
 to
 the
 RE
 and
 ORC
 bound
 to
 
the
 distal
 ARS313
 or
 ARS314
 may
 stabilize
 long-­‐range
 contacts
 between
 these
 loci;
 
similar
 interactions
 between
 ORC
 bound
 to
 ARS304
 and
 Fkh1
 bound
 near
 MAT
 may
 
also
 participate
 (though
 an
 RE-­‐like
 element
 has
 not
 been
 identified
 near
 MAT).
 
 The
 
dormancy
 of
 these
 origins
 is
 consistent
 with
 the
 idea
 that
 these
 loci
 form
 a
 separate
 

  38
 
chromosomal
 domain
 dedicated
 for
 recombination,
 which
 delays
 replication
 (by
 
inhibiting
 initiation
 and
 allowing
 passive
 replication
 from
 distal,
 flanking
 origins).
 
 
Exactly
 how
 such
 domains
 are
 dedicated
 to
 one
 function
 over
 another
 will
 require
 
more
 investigation,
 but
 may
 reflect
 combinatorial
 regulation
 by
 Fkh1/2
 together
 
with
 other
 factors,
 along
 with
 defined
 sub-­‐nuclear
 localization
 of
 these
 activities.
 
 
 
The
  findings
  presented
  here
  provide
  a
  clearer
  understanding
  of
  the
 
epigenetic
 basis
 for
 differential
 origin
 regulation
 and
 its
 connection
 to
 the
 spatial
 
organization
 of
 chromosomes.
 
 Rather
 than
 a
 direct
 connection
 with
 transcription,
 
the
  results
  indicate
  that
  the
  organization
  of
  origins
  into
  functional
  clusters
 
determines
 their
 activation
 kinetics.
 
 Our
 study
 identifies
 Fkh1
 and
 Fkh2
 as
 factors
 
that
 participate
 in
 the
 establishment
 of
 the
 three-­‐dimensional
 structure
 of
 the
 yeast
 
genome
  and
  the
  epigenetic
  regulation
  of
  genome
  replication.
   
  This
  regulation
 
through
 structure
 may
 be
 analogous
 to
 epigenetic
 mechanisms
 of
 transcriptional
 
memory
 wherein
 gene
 looping
 or
 sub-­‐nuclear
 localization
 is
 correlated
 with
 the
 
maintenance
  of
  a
  transcriptional
  state
  or
  a
  potentiated
  state
  primed
  for
  rapid
 
response
  (Misteli,
  2007).
   
  Furthermore,
  this
  organization
  may
  contribute
  to
  a
 
coordination
 of
 replication
 and
 transcription,
 perhaps
 with
 consequence
 for
 genome
 
stability
 (Knott
 et
 al.,
 2009a).
 
 
 Indeed,
 this
 study’s
 findings
 provide
 a
 new
 handle
 to
 
investigate
 the
 consequences
 of
 deregulating
 replication
 timing
 on
 gene
 regulation
 
or
 genome
 stability.
 
 The
 identification
 of
 yeast
 members
 of
 the
 conserved
 Fox
 
transcription
 factor
 family
 as
 physical
 mediators
 of
 chromosomal
 architecture
 and
 
epigenetic
  regulation
  suggest
  conservation
  of
  this
  function,
  which
  may
  link
 
replication
 timing
 control
 and
 the
 role
 of
 Fox
 proteins
 in
 metazoan
 development.
 

  39
 
MATERIALS
 AND
 METHODS
 

 
Yeast
 strain
 and
 plasmid
 constructions.
 W303-­‐derived,
 BrdU-­‐incorporating
 
strains
 CVy43
 (Mata
 ade2-­‐1,
 bar1::hisG,
 can1-­‐100,
 his3-­‐11,15,
 leu2-­‐3,112,
 trp1-­‐1,
 
ura3-­‐1::BrdU-­‐Inc::URA3)
 or
 CVy63
 (Mata
 ade2-­‐1,
 bar1::hisG,
 can1-­‐100,
 his3-­‐11,15,
 
leu2-­‐3,112,
 trp1-­‐1,
 leu2::BrdU-­‐Inc::LEU2)
 were
 the
 WT
 parents
 for
 all
 strain
 
constructions
 (Viggiani
 and
 Aparicio,
 2006).
 
 FKH1
 and
 FKH2
 were
 deleted
 in
 CVy43
 
as
 described
 (Longtine
 et
 al.,
 1998),
 yielding
 strains:
 ZOy1
 (fkh1∆::kanMX6),
 CVy138
 
(fkh2∆::His3MX6),
 and
 CVy139
 (fkh1∆::kanMX6
 fkh2∆::His3MX6);
 only
 differences
 in
 
genotype
 from
 CVy43
 are
 indicated.
 
 Plasmid
 pfkh2∆C
 contains
 a
 C-­‐terminally
 
truncated
 NotI-­‐KpnI
 fragment
 of
 FKH2
 (truncated
 at
 the
 native
 KpnI
 site
 in
 FKH2,
 
deleting
 amino
 acids
 624-­‐862;
 this
 maintains
 the
 entire
 DNA
 binding
 domain
 and
 all
 
homology
 with
 Fkh1)
 into
 pRS424
 digested
 with
 the
 same
 enzymes;
 pfkh2∆C
 was
 
transformed
 into
 CVy139
 yielding
 strain
 SKy1.
 
 CDC45-­‐HA3
 (LEU2)
 was
 introduced
 
into
 strains
 CVy43
 and
 CVy139
 +
 pfkh2∆C
 using
 p405-­‐CDC45-­‐HA/C
 as
 described
 
(Aparicio
 et
 al.,
 1997),
 yielding
 strains
 CVy46
 and
 T2y3,
 respectively.
 
 FKH1-­‐MYC9
 
replaced
 FKH1
 in
 CVy138
 using
 plasmid
 pTOPO-­‐Fkh1-­‐Myc9,
 yielding
 strain
 ZOy22.
 
 
pTOPO-­‐Fkh1-­‐Myc9
 was
 constructed
 using
 Phusion
 High-­‐Fidelity
 PCR
 kit
 (New
 
England
 Biolabs,
 M0530)
 to
 amplify
 FKH1-­‐MYC9-­‐TRP1
 from
 genomic
 DNA
 of
 strain
 
Z1448
 (Harbison
 et
 al.,
 2004),
 and
 inserting
 it
 into
 pCR2.1-­‐TOPO
 vector
 
(Invitrogen).
 
 

 

  40
 
Strain
 ARy23
 containing
 mutations
 of
 two
 Fkh1/2
 binding
 sites
 at
 ARS305
 was
 
constructed
 by
 pop-­‐in/pop-­‐out
 of
 plasmid
 p306-­‐ARS305-­‐∆2BS
 into
 strain
 CVy63
 
and
 confirmed
 by
 sequencing
 of
 PCR-­‐amplified
 genomic
 DNA.
 
 Plasmid
 p306-­‐
ARS305∆2BS
 was
 constructed
 as
 follows:
 Two
 ~1kb
 fragments
 covering
 ARS305
 
with
 overlapping
 ends
 were
 amplified
 from
 genomic
 DNA
 (using
 primers:
 5´-­‐
gtcaagcttggcaatgtcaagagcagagc
 with
 5´-­‐gtcctcgaggaatacataacaaaaatataaaaacc
 for
 one
 
fragment
 and
 5´-­‐tgagaattcaggcatcagtttgatgttgg
 with
 5´-­‐
gtcctcgaggtccctttaattttaggatatgaaaac
 for
 the
 second
 fragment),
 digested
 with
 EcoRI
 
+XhoI
 and
 with
 XhoI
 +
 HindIII,
 respectively,
 and
 three-­‐way
 ligated
 into
 pRS306
 
digested
 with
 EcoRI
 +
 HindIII.
 
 The
 XhoI
 site
 changes
 the
 first
 predicted
 Fkh1/2
 
binding
 site
 (chr
 III
 coordinates
 39,563-­‐39,570)
 without
 deleting
 or
 inserting
 
additional
 sequence.
 
 The
 resulting
 plasmid,
 p306-­‐ARS305∆1BS
 was
 sequenced
 to
 
confirm
 that
 only
 the
 desired
 sequence
 changes
 were
 introduced.
 
 This
 plasmid
 was
 
mutagenized
 using
 QuikChange
 Lightning
 Multi
 Site
 mutagenesis
 kit
 (Agilent#
 
210515-­‐5)
 using
 primer
 (5´-­‐
caaagaaaaaaatcttagctttaagaactacaaagtcctcgaggaataataaatcacaccggacagtacatg)
 to
 
change
 the
 second
 predicted
 Fkh1/2
 binding
 site
 (chr
 III
 coordinates
 39,483-­‐
39,490)
 to
 an
 XhoI
 site
 without
 deleting
 or
 inserting
 additional
 sequence.
 
 The
 
resulting
 plasmid
 p306-­‐ARS305∆2BS
 was
 sequenced
 to
 confirm
 that
 only
 the
 
desired
 sequence
 changes
 were
 introduced.
 

 
Yeast
 methods.
 W303-­‐derived,
 BrdU-­‐incorporating
 strains
 were
 used
 for
 all
 strain
 
constructions
  (Viggiani
  and
  Aparicio,
  2006).
   
  Cell
  cycle
  block-­‐and-­‐release,
  DNA
 

  41
 
content
 analysis,
 and
 two-­‐dimensional
 gel
 analysis
 have
 been
 described
 (Aparicio
 et
 
al.,
 2004).
 
 Co-­‐IP
 was
 performed
 as
 described
 (Hu
 et
 al.,
 2008),
 except
 Dynabeads
 
Protein
  G
  (Invitrogen)
  was
  used.
   
  BrdU-­‐labeled
  DNA
  was
  isolated
  as
  described
 
(Viggiani
 et
 al.,
 2010);
 salmon
 sperm
 DNA
 was
 omitted
 for
 sequencing.
 
 80ng
 of
 
BrdU-­‐IPed
  DNA
  was
  prepared
  for
  single-­‐end
  sequencing
  by
  Illumina
  ChIP-­‐Seq
 
protocol
 or
 10ng
 of
 BrdU-­‐IPed
 DNA
 was
 prepared
 for
 hybridization
 to
 microarrays
 
as
 described
 (Viggiani
 et
 al.,
 2010).
 
 ChIP-­‐chip
 was
 performed
 and
 analyzed
 as
 
described
 (Knott
 et
 al.,
 2009b;
 Viggiani
 et
 al.,
 2009).
 
 ChIP-­‐Seq
 was
 performed
 
identically
 except
 that
 culture
 was
 scaled-­‐up
 four-­‐fold
 to
 generate
 5-­‐10ng
 of
 IP
 
material
 for
 single-­‐end
 sequencing
 by
 Illumina
 ChIP-­‐Seq
 protocol.
 
 RNA
 was
 isolated
 
from
 20mL
 cultures
 using
 RiboPure
 Yeast
 Kit
 (Ambion).
 
 rRNA
 was
 depleted
 with
 
Ribominus
 Beads
 (Invitrogen),
 and
 purified
 RNA
 was
 prepared
 for
 strand-­‐specific
 
RNA-­‐Seq
 as
 described
 in
 (Parkhomchuk
 et
 al.,
 2009).
 
 We
 used
 a
 custom
 microarray
 
design
 (Nimblegen)
 that
 tiles
 one
 ~60bp
 oligonucleotide
 for
 every
 ~80bp
 of
 unique
 
genomic
  sequence.
   
  For
  hybridization
  and
  washing
  we
  followed
  Nimblegen
 
protocols,
 and
 for
 image
 capture
 used
 an
 Axon
 4100A
 Scanner.
 
 
 

 
Antibody
 methods.
 For
 BrdU
 and
 chromatin
 IPs
 we
 used:
 anti-­‐BrdU
 at
 1:1000
 (GE
 
Healthcare,
 RPN202),
 anti-­‐Fkh1
 at
 1:200
 (Casey
 et
 al.,
 2008),
 anti-­‐ORC
 at
 1:500
 
(Wyrick
 et
 al.,
 2001),
 anti-­‐Mcm2
 at
 1:50
 (Santa
 Cruz
 Biotech.,
 SC-­‐6680),
 anti-­‐Mcm4
 
at
 1:50
 (Santa
 Cruz
 Biotech.,
 SC-­‐33622),
 anti-­‐Ha
 16B12
 at
 1:200
 (Covance,
 
MMS101R),
 and
 anti-­‐Rpb3
 at
 1:500
 (Neoclone,
 W0012).
 
 We
 used
 anti-­‐Myc
 9E10
 at
 

  42
 
1:100
 and
 1:2000
 (Covance,
 MMS150P),
 and
 anti-­‐ORC
 at
 1:100
 and
 1:1000,
 for
 co-­‐IP
 
and
 immunoblotting,
 respectively.
 
 
 

 
Preprocessing
 of
 sequence
 data.
 Sequencing
 was
 carried
 out
 with
 an
 Illumina
 
GAII.
 
 BrdU-­‐IP-­‐Seq
 and
 ChIP-­‐Seq
 were
 analyzed
 with
 36bp
 single-­‐end
 reads,
 while
 
RNA-­‐Seq
  was
  analyzed
  with
  36bp
  paired-­‐end
  reads.
   
  Reads
  were
  aligned
  to
  S.
 
cerevisiae
 genome
 release
 r.64
 with
 PerM
 (Chen
 et
 al.,
 2009),
 allowing
 only
 unique
 
matches
 with
 a
 maximum
 of
 two
 mismatches
 per
 end.
 
 BrdU-­‐IP-­‐Seq
 and
 Rpb3
 ChIP-­‐
Seq
 reads
 were
 binned
 into
 non-­‐overlapping
 50bp
 bins;
 bin-­‐counts
 were
 median-­‐
smoothed
  (1000bp
  and
  500bp
  windows,
  respectively)
  and
  quantile-­‐normalized
 
across
 all
 experiments.
 
 This
 smoothing
 step
 was
 repeated.
 
 For
 all
 other
 gene
 
expression
 analysis,
 each
 RNA-­‐Seq
 read
 was
 assigned
 to
 a
 gene
 only
 when
 at
 least
 
one
 of
 its
 paired-­‐ends
 was
 fully
 contained
 within
 the
 gene’s
 ORF
 and
 when
 the
 
read’s
 orientation
 corresponded
 to
 the
 gene’s
 orientation.
 
 Reads
 whose
 paired-­‐ends
 
mapped
 to
 two
 or
 more
 genes
 were
 discarded.
 
 Gene
 read-­‐counts
 were
 quantile-­‐
normalized
 prior
 to
 differential
 expression
 analysis.
 
 

 
BrdU-­‐IP-­‐Seq
 analysis.
 To
 identify
 an
 initial
 set
 of
 peaks
 in
 each
 experiment,
 a
 set
 of
 
apices
 (bins
 whose
 count
 was
 higher
 than
 any
 neighboring
 bin
 within
 500bp)
 were
 
detected.
 
 We
 assigned
 a
 magnitude
 to
 these
 peaks
 equal
 to
 the
 number
 of
 reads
 
mapping
 to
 within
 500bp
 of
 the
 apex;
 only
 peaks
 with
 a
 magnitude
 >10
 were
 
considered
 further.
 
 For
 each
 strain
 we
 aligned
 replicate
 apex
 chromosomal
 
locations
 using
 the
 dynamic
 programming
 algorithm
 as
 described
 (Knott
 et
 al.,
 

  43
 
2009),
 with
 a
 gap
 penalty
 of
 1000bp.
 
 Apices
 that
 did
 not
 align
 across
 all
 replicates
 
were
 removed
 from
 consideration.
 
 Next,
 for
 each
 strain
 we
 aligned
 peaks
 (387)
 
with
 the
 set
 of
 previously
 annotated
 origins
 listed
 in
 OriDB
 (Nieduszynski
 et
 al.,
 
2007);
 peaks
 (35)
 that
 did
 not
 align
 to
 an
 annotated
 origin
 were
 not
 considered
 
further.
 
 
 

 
Origins
 that
 were
 not
 detected
 to
 incorporate
 BrdU
 within
 a
 given
 strain
 were
 
assigned
 a
 count
 equal
 to
 the
 number
 of
 reads
 that
 mapped
 to
 within
 500bp
 of
 the
 
average
 of
 its
 corresponding
 detected
 apices.
 
 To
 test
 for
 differential
 BrdU-­‐
incorporation
 across
 strains,
 we
 employed
 DESeq
 (Anders
 and
 Huber,
 2010).
 
 Origin
 
counts
 were
 normalized
 using
 DESeq’s
 internal
 size
 and
 variance
 normalization
 
strategies
 and
 were
 called
 as
 different
 between
 two
 strains
 with
 a
 significance
 cutoff
 
of
 FDR<0.005.
 
 

 
BrdU-­‐IP-­‐chip
 time-­‐course
 data
 analysis.
 Due
 to
 the
 high
 proportion
 of
 enriched
 
probes
 in
 BrdU-­‐IP-­‐chip
 experiments,
 within-­‐array
 normalization
 methods
 designed
 
for
 ChIP-­‐chip
 are
 not
 suitable
 (Knott
 et
 al.,
 2009).
 
 To
 compensate
 for
 this,
 we
 
developed
 a
 procedure
 and
 tested
 it
 on
 BrdU-­‐IP-­‐chip
 experiments
 performed
 in
 the
 
presence
 of
 HU.
 
 This
 method
 requires
 that
 un-­‐enriched
 probes
 form
 a
 dense
 cluster
 
in
 the
 M=log(IP/Total)
 vs.
 A=(log(IP)+log(Total))/2
 plane
 (Knott
 et
 al.,
 2009).
 
 
However,
 in
 BrdU
 incorporation
 experiments
 without
 HU
 (where
 the
 percentage
 of
 
enriched
 probes
 can
 reach
 80%),
 this
 requirement
 is
 sometimes
 not
 met.
 
 To
 
account
 for
 this,
 we
 developed
 a
 technique
 specifically
 for
 such
 experiments.
 
 This
 

  44
 
method
 requires
 a
 mock
 control,
 for
 which
 we
 hybridized
 BrdU-­‐IP
 material
 obtained
 
from
 a
 12min
 BrdU
 pulse
 using
 G1-­‐arrested
 (non-­‐replicating)
 cells
 against
 genomic
 
DNA.
 
 First,
 we
 identified
 the
 best
 axes
 on
 which
 to
 transform
 the
 experimental
 data
 
by
 applying
 our
 previous
 method
 on
 the
 control
 data
 (Knott
 et
 al.,
 2009).
 
 After
 
transforming
 the
 control
 and
 experimental
 data
 onto
 these
 axes,
 the
 median
 
absolute
 deviations
 of
 both
 datasets
 were
 normalized
 to
 1.
 
 Then,
 the
 M
 values
 of
 the
 
experimental
 data
 were
 location-­‐normalized
 such
 that
 mean
 of
 the
 lowest
 20%
 of
 
probes
 were
 equal
 to
 mean
 of
 the
 lowest
 20%
 of
 control
 probes.
 
 Subsequently,
 we
 
followed
 our
 previous
 method
 (Knott
 et
 al.,
 2009).
 

 
Analysis
 of
 linear
 clustering
 of
 Fkh-­‐regulated
 origins.
  We
 performed
 Monte
 
Carlo
 simulations
 to
 determine
 the
 likelihood
 of
 the
 observed
 level
 of
 clustering
 
between
  like-­‐regulated
  origins
  (e.g.
  both
  Fkh-­‐activated)
  along
  the
  chromosome
 
occurring
 by
 chance.
 
 In
 each
 simulation
 we
 randomly
 assigning
 (from
 352
 total
 
origins)
 95
 origins
 as
 Fkh-­‐activated
 and
 80
 as
 Fkh-­‐repressed
 (on
 each
 simulation)
 
and
 determined
 the
 number
 of
 occurrences
 where
 two
 Fkh-­‐repressed
 or
 –activated
 
origins
  neighbored
  each
  other.
  We
  then
  compared
  the
  observed
  level
  of
  such
 
instances
 to
 the
 empirical
 distribution
 obtained
 through
 simulations
 to
 calculate
 a
 
p-­‐value.
 
 

 
To
 test
 whether
 Fkh-­‐activated
 and
 –repressed
 origins
 cluster
 in
 separate
 groups
 
linearly
 along
 chromosomes,
 we
 defined
 a
 clustering
 metric
 equal
 to
 the
 number
 of
 
“cuts”
 required
 to
 separate
 Fkh-­‐repressed
 and
 Fkh-­‐activated
 origins
 (this
 is
 

  45
 
equivalent
 to
 the
 number
 of
 instances
 where
 a
 Fkh-­‐activated
 origin
 neighbors
 a
 Fkh-­‐
repressed
 origin,
 ignoring
 non-­‐Fkh-­‐regulated
 origins).
 
 A
 low
 “cut”
 count
 indicates
 
higher
 clustering
 of
 like-­‐regulated
 origins.
 
 
 We
 obtained
 a
 “cut”
 count
 of
 65
 in
 the
 
experimental
 data.
 
 To
 test
 if
 this
 was
 significantly
 low,
 we
 performed
 10
6

 
simulations
 on
 the
 352
 origins
 that
 were
 detected
 in
 WT
 or
 fkh1∆
 fkh2∆C
 cells.
 
 In
 
each
 simulation
 we
 randomly
 assigned
 95
 origins
 as
 Fkh-­‐activated,
 80
 as
 Fkh-­‐
repressed,
 and
 the
 remaining
 as
 Fkh-­‐unregulated.
 
 Fewer
 than
 1%
 of
 the
 
simulations
 resulted
 in
 a
 “cut”
 count
 <65
 (Fig.
 1.3D).
 
 
 

 
Analysis
 of
 Fkh1
 and
 Fkh2
 binding
 sites.
 To
 determine
 whether
 Fkh1
 and
 Fkh2
 
are
 differentially
 bound
 at
 Fkh-­‐regulated
 versus
 Fkh-­‐unregulated
 origins
 we
 used
 
the
 Position
 Weight
 Matrices
 (PWMs)
 defined
 in
 (Morozov
 and
 Siggia,
 2007))
 to
 
identify
 all
 putative
 Fkh1/2
 binding
 sites
 near
 origins
 (PWM-­‐score
 cutoff
 =5.5).
 
 We
 
defined
 Fkh1/2-­‐bound
 origins
 as
 those
 with
 a
 putative
 site
 within
 500bp
 of
 its
 
BrdU-­‐peak
 apex.
 
 To
 determine
 the
 distribution
 of
 Fkh1/2
 binding
 sites
 relative
 to
 
ACSs,
 for
 each
 Fkh1/2-­‐bound
 origin
 with
 a
 defined
 ACS,
 we
 calculated
 the
 distance
 
from
 the
 ACS
 to
 the
 highest
 scoring
 binding
 site
 (ACS
 locations
 from
 (Eaton
 et
 al.,
 
2010));
  we
  applied
  a
  kernel
  density
  function
  to
  these
  distances
  to
  define
  the
 
probability
 curves.
 

 
Analysis
 of
 Fkh-­‐regulated
 transcription
 versus
 Fkh-­‐regulated
 origin
 function.
 
To
 determine
 whether
 proximal
 genes
 show
 co-­‐regulation
 with
 Fkh-­‐regulated
 
origins,
 we
 performed
 a
 permutation
 test
 on
 the
 distances
 between
 Fkh-­‐regulated
 

  46
 
origins
 and
 the
 nearest
 Fkh-­‐regulated
 genes.
 
 Fkh-­‐regulated
 genes
 were
 identified
 as
 
those
 that
 showed
 differential
 expression
 (DESeq
 FDR<0.01)
 between
 WT
 and
 fkh1∆
 
fkh2∆C
 cells
 in
 the
 same
 condition
 (unsynchronized
 or
 G1-­‐synchronized).
 
 This
 
analysis
 was
 performed
 using
 both
 the
 RNA-­‐Seq
 and
 Rpb3-­‐ChIP-­‐Seq
 datasets,
 
(genes
 detected
 as
 differentially
 expressed
 in
 each
 of
 the
 experiments
 are
 listed
 in
 
Table
 S1).
 
 For
 each
 experiment
 we
 calculated
 the
 distance
 from
 each
 Fkh-­‐regulated
 
origin
 to
 the
 nearest
 Fkh-­‐regulated
 gene’s
 promoter.
 
 Next,
 10
5

 simulated
 origins
 
sets
 were
 identified
 by
 randomly
 selecting
 172
 origins,
 and
 randomly
 assigning
 95
 
as
 Fkh-­‐activated
 and
 82
 as
 Fkh-­‐repressed.
 
 For
 each
 of
 these
 sets,
 the
 minimum
 
distances
 to
 the
 nearest
 Fkh-­‐regulated
 genes
 were
 calculated.
 
 With
 this
 analysis
 we
 
determined
 for
 all
 possible
 pair-­‐wise
 combinations
 (e.g.
 up-­‐regulated
 gene
 and
 Fkh-­‐
activated
 origin,
 down-­‐regulated
 gene
 and
 Fkh-­‐activated
 origin,
 etc.)
 that
 Fkh-­‐
regulated
 origins
 are
 not
 significantly
 clustered
 with
 Fkh-­‐regulated
 genes
 along
 the
 
chromosome.
 

 
To
 test
 for
 correlation
 of
 Fkh-­‐regulated
 origins
 with
 flanking
 gene
 expression,
 we
 
performed
 regression
 analysis
 separately
 on
 Fkh-­‐regulated
 origins
 lying
 within
 
intergenic
 regions
 flanked
 by
 diverging,
 converging,
 and
 tandemly
 oriented
 genes.
 
 
For
 converging
 and
 diverging
 intergenic
 regions,
 we
 used
 two
 covariates
 
representing
 the
 unsynchronized
 and
 G1-­‐phase
 fkh1∆
 fkh2∆C-­‐WT
 RNA-­‐Seq
 read
 
count
 differences
 of
 the
 closest
 transcript
 (as
 measured
 in
 bp
 between
 the
 origin’s
 
ARS-­‐consensus
 sequence
 (ACS)
 and
 the
 gene’s
 nearest
 end)
 and
 two
 covariates
 
representing
 the
 same
 difference
 measure
 in
 the
 farther
 of
 the
 two
 transcripts.
 
 For
 

  47
 
tandem
 intergenic
 regions,
 two
 covariates
 represented
 unsynchronized
 and
 G1-­‐
phase
 fkh1∆
 fkh2∆C-­‐WT
 RNA-­‐Seq
 read
 count
 differences
 for
 the
 converging
 gene
 
and
 another
 two
 covariates
 represented
 the
 differences
 for
 the
 diverging
 gene.
 
 In
 
this
 analysis
 the
 only
 covariate
 that
 showed
 significant
 correlation
 with
 origin
 
regulation
 was
 the
 gene
 farthest
 away
 from
 origins
 within
 converging
 intergenic
 
regions
 in
 unsynchronized
 cells
 (p<0.05).
 
 A
 closer
 inspection
 revealed
 that
 this
 
correlation
 was
 due
 to
 four
 outlying
 data
 points,
 and
 when
 these
 were
 removed,
 the
 
same
 analysis
 found
 no
 covariate
 to
 be
 significantly
 correlated
 with
 origin
 
regulation.
 
 Furthermore,
 the
 application
 of
 this
 same
 analysis
 to
 read
 count
 
differences
 in
 the
 Rpb3
 ChIP-­‐Seq
 data
 showed
 no
 covariate
 to
 be
 significantly
 
predictive
 of
 origin
 regulation.
 

 
Chromosome
 conformation
 capture
 on
 chip
 (4C).
 
 
Chromatin
 isolation:
 50mL
 of
 G1-­‐sychronized
 cells
 were
 crosslinked
 and
 harvested
 
as
 described
 for
 ChIP-­‐chip
 (Viggiani
 et
 al.,
 2009).
 
 Cells
 were
 suspended
 in
 9.5mL
 
Buffer
 Z
 (0.7M
 Sorbitol,
 50mM
 Tris
 (pH
 7.4),
 heat
 sterilized)
 plus
 freshly
 added
 2-­‐
mercaptoethanol
 (20mM
 final)
 and
 protease
 inhibitor
 cocktail
 (Roche,
 Mini
 
Complete).
 
 0.5mL
 Zymolyase
 100T
 (ICN,
 10
 mg/mL
 freshly
 made
 in
 Buffer
 Z)
 was
 
added
 and
 the
 suspension
 was
 incubated
 at
 30°C
 with
 gentle
 agitation,
 35
 min.
 
 The
 
suspension
 was
 split
 into
 six
 2mL
 microcentrifuge
 tubes
 and
 centrifuged
 at
 16,000g,
 
20
 min
 at
 4°C.
 
 The
 supernatants
 were
 discarded,
 each
 pellet
 was
 suspended
 in
 
300µL
 NP
 buffer
 (1M
 Sorbitol,
 100mM
 Tris
 (pH
 7.4),
 50mM
 NaCl,
 5mM
 MgCl2,
 1mM
 
CaCl2,
 heat
 sterilized)
 containing
 0.5mM
 Spermidine
 (freshly
 added
 from
 250mM
 

  48
 
stock)
 by
 gently
 pipetting
 with
 a
 wide-­‐bore
 pipet
 tip,
 and
 the
 samples
 were
 pooled
 
in
 a
 2mL
 microcentrifuge
 tube.
 
 

 
Digestion
 and
 ligation
 I:
 The
 suspension
 was
 centrifuged
 as
 above
 and
 the
 pellet
 was
 
suspended
 in
 500µL
 ice-­‐cold
 1X
 NEB
 (New
 England
 Biolabs)
 digestion
 buffer
 II,
 and
 
centrifuged
 again.
 
 This
 wash
 step
 with
 digestion
 buffer
 was
 repeated
 and
 the
 pellet
 
was
 suspended
 in
 50µL
 1X
 NEB
 digestion
 buffer
 II.
 
 42µL
 1%
 SDS
 was
 added,
 mixed
 
gently,
 incubated
 at
 60°C,
 15
 min.
 
 328µL
 of
 ice-­‐cold
 1X
 NEB
 digestion
 buffer
 II
 was
 
added
 and
 the
 resulting
 suspension
 was
 centrifuged
 at
 600g,
 1
 min
 at
 4°C.
 
 400µL
 of
 
the
 supernatant
 was
 transferred
 to
 a
 fresh
 microcentrifuge
 tube
 (the
 remainder
 was
 
discarded),
 and
 44µL
 10%
 Triton-­‐X100
 was
 added
 and
 mixed
 gently
 by
 pipetting
 
with
 a
 wide-­‐bore
 pipet
 tip.
 
 This
 suspension
 was
 placed
 on
 ice
 for
 15
 min,
 after
 
which
 58.4µL
 of
 H2O,
 16µL
 10X
 NEB
 digestion
 buffer
 II,
 and
 1.6µL
 BSA
 (NEB,
 
10mg/mL)
 were
 added.
 
 

 
4µL
 XbaI
 (NEB,
 100
 U/µL)
 was
 added,
 mixed
 gently,
 and
 incubated
 at
 37°C
 for
 a
 
minimum
 of
 8hr
 while
 shaking
 at
 275
 rpm.
 
 10µL
 H2O,
 50µL
 10%
 SDS,
 and
 9µL
 0.5
 M
 
EDTA
 was
 added,
 mixed,
 and
 incubated
 at
 65°C
 for
 10
 min,
 followed
 by
 60°C
 for
 10
 
min,
 and
 on
 ice
 for
 5
 min.
 
 The
 sample
 was
 transferred
 to
 a
 15mL
 conical
 screw-­‐cap
 
tube
 on
 ice
 and
 3554µL
 H2O,
 250µL
 10X
 T4
 DNA
 ligase
 buffer
 (NEB),
 50µL
 BSA
 
(10mg/mL),
 500µL
 10%
 Triton-­‐X100,
 and
 125µL
 1M
 Tris
 (pH
 7.5)
 were
 added,
 
mixed
 gently,
 and
 incubated
 on
 ice,
 15
 min.
 
 While
 on
 ice,
 2µL
 T4
 DNA
 ligase
 (NEB,
 

  49
 
400U/µL)
 was
 added,
 mixed
 gently,
 and
 incubated
 at
 16°C
 for
 4
 hr,
 after
 which
 60µL
 
0.5
 M
 EDTA
 was
 added.
 

 
To
 the
 ligated
 sample,
 50µL
 5M
 NaCl
 and
 5µL
 RNAase
 A
 (20mg/mL)
 were
 added,
 
mixed,
 and
 incubated
 at
 37°C,
 1
 hr.
 
 25µL
 Proteinase
 K
 (20mg/mL)
 was
 added,
 
mixed,
 and
 incubated
 overnight
 at
 65°C.
 
 The
 sample
 was
 transferred
 to
 a
 15mL
 
phase-­‐lock
 tube
 (5-­‐Prime,
 2302850)
 and
 the
 DNA
 was
 purified
 by
 extraction
 with
 
6mL
 phenol:chloroform:isoamyl
 alcohol
 (25:24:1)
 and
 centrifugation
 according
 to
 
the
 manufacturer’s
 instructions.
 
 To
 the
 4.2mL
 of
 aqueous
 solution
 recovered,
 
225µL
 5M
 NaCl
 and
 6µL
 glycoblue
 were
 added
 and
 mixed,
 and
 11mL
 of
 ice-­‐cold
 
ethanol
 was
 added,
 mixed,
 and
 incubated
 at
 -­‐20°C,
 8
 hr.
 
 The
 sample
 was
 aliquoted
 
into
 eight
 2mL
 microcentrifuge
 tubes
 and
 centrifuged
 at
 ~16,000g,
 30
 min
 at
 4°C.
 
 
After
 discarding
 the
 supernatant,
 each
 pellet
 was
 dissolved
 in
 50µL
 1X
 TE
 and
 the
 
samples
 were
 pooled.
 
 30µL
 3M
 NaOAc
 (pH
 5.2)
 and
 825µL
 of
 ice-­‐cold
 ethanol
 were
 
added,
 mixed,
 and
 incubated
 at
 -­‐80°C,
 2
 hr.
 
 The
 precipitate
 was
 recovered
 by
 
centrifugation
 at
 16,000g,
 30
 min
 at
 4°C,
 and
 after
 discarding
 the
 supernatant,
 the
 
pellet
 was
 dissolved
 in
 50µL
 TE.
 
 

 
Digestion
 and
 ligation
 II:
 To
 25µL
 (~100ng)
 of
 the
 ligated
 sample,
 64µL
 H2O,
 10µL
 
10X
 NEB
 digestion
 buffer
 II,
 1µL
 BSA
 (10mg/mL,
 NEB)
 were
 added
 and
 mixed,
 and
 
2µL
 of
 MseI
 (10
 U/µL,
 NEB)
 was
 added,
 mixed,
 and
 incubated
 at
 37°C,
 2
 hr.
 
 1µL
 20%
 
SDS
 was
 added
 and
 incubated
 at
 65°C,
 20
 min;
 30µL
 10%
 Triton-­‐X100
 was
 added
 
and
 incubated
 on
 ice
 for
 15
 min.
 
 757µL
 H2O,
 100µL
 T4
 DNA
 ligase
 buffer,
 and
 10µL
 

  50
 
BSA
 (10mg/mL)
 were
 added
 and
 incubated
 on
 ice
 for
 15
 min.
 
 While
 still
 on
 ice,
 2µL
 
T4
 DNA
 Ligase
 (400U/µL)
 was
 added,
 mixed
 by
 pipetting
 gently,
 and
 incubated
 
overnight
 at
 16°C.
 The
 sample
 was
 split
 into
 two
 500µL
 aliquots
 (in
 2mL
 
microcentrifuge
 tubes)
 and
 25µL
 5M
 NaCl,
 2µL
 glycoblue,
 and
 1.2mL
 ice-­‐cold
 
ethanol
 was
 added
 to
 each,
 mixed
 and
 incubated
 at
 -­‐20°C,
 2
 hr.
 
 The
 precipitate
 was
 
recovered
 by
 centrifugation
 at
 16,000g,
 30
 min
 at
 4°C;
 the
 supernatant
 was
 
discarded
 and
 each
 pellet
 was
 dissolved
 in
 25µL
 TE
 and
 pooled.
 
 

 
Amplification
  and
  microarray
  analysis:
 5µL
  was
  amplified
  by
  standard
  PCR
  (25
 
cycles)
  with
  the
  following
  primers:
  5'CTAAGTGTCCTGTTTCGGAAC,
  and
 
5'CAGGCCGCTCTTATAAAATGA.
   
  1µg
  amplified
  DNA
  was
  labeled
  with
  Cy5
  and
 
hybridized
  against
  Cy3-­‐labeled
  reference
  DNA
  (G1-­‐synchronized
  total
  genomic
 
DNA)
 as
 described
 for
 BrdU-­‐IP-­‐chip
 (Viggiani
 et
 al.,
 2010).
 
 Analysis
 was
 performed
 
as
 described
 in
 (Knott
 et
 al.,
 2009)
 to
 identify
 enriched
 probes,
 and
 Xba1
 fragments
 
containing
 
 >3
 enriched
 probes
 immediately
 adjacent
 to
 either
 cut
 site
 were
 deemed
 
to
 be
 interacting
 

 
Analysis
 of
 global
 4C.
 226
 origins
 whose
 defined
 regions
 (as
 listed
 in
 OriDB)
 were
 
fully
 contained
 within
 an
 EcoRI
 and
 a
 HindIII
 restriction
 fragment
 were
 analyzed.
 
 
The
 restriction
 fragment
 interaction
 map
 from
 (Duan
 et
 al.,
 2010)
 was
 used
 to
 build
 
two-­‐dimensional
 interaction
 matrices
 for
 each
 restriction
 fragment
 set
 containing
 
the
 226
 origins.
 
 The
 matrix
 value
 (0
 to
 4)
 represents
 the
 interaction
 distance
 
between
 two
 origin-­‐containing
 restriction
 fragments
 defined
 in
 (Duan
 et
 al.,
 2010).
 
 

  51
 
The
  two
  matrices
  were
  summed
  and
  the
  two-­‐dimensional
  clustering
  algorithm
 
defined
 in
 (Duan
 et
 al.,
 2010)
 was
 applied.
 
 17
 clusters
 containing
 fewer
 than
 ten
 
origins
 each
 (45
 total)
 were
 not
 analyzed
 further.
 



 

 

 

 

 

 

 

 

 

 

 

 

 

  52
 

 

 
CHAPTER
 II
 

 
Fkh1/2
 Over-­‐Expression
 alters
 genome
 wide
 origin
 timing
 in
 S.
 cerevisiae
 

 
Adapted
 from:
 
 
Peace
 et
 al.,
 in
 prep
 

 

 

 

 

 

 

 

 

 

 

 

  53
 
INTRODUCTION
 
Several
 studies
 have
 derived
 a
 Fkh
 consensus
 binding
 sequence
 and
 have
 
shown
 that
 Fkh1/2
 bind
 multiple
 sites
 throughout
 the
 S.
 cerevisiae
 genome
 
(Harbison
 et
 al.,
 2004;
 MacIsaac
 et
 al.,
 2006;
 Ostrow
 et
 al.,
 2014;
 Simon
 et
 al.,
 2001).
 
The
 most
 recent
 of
 these
 studies
 has
 revealed
 many
 more
 binding
 sites
 genome
 
wide
 than
 previous
 estimates
 (Ostrow
 et
 al.,
 2014).
 
 This
 study
 has
 further
 revealed
 
that
 Fkh
 binding
 is
 enriched
 at
 multiple
 genomic
 features
 genome
 wide
 and
 appears
 
to
 be
 under
 cell
 cycle
 regulation.
 Importantly,
 Fkh
 binding
 has
 been
 shown
 to
 be
 
enriched
 near
 origins
 (Knott
 et
 al.,
 2012;
 Ostrow
 et
 al.,
 2014)
 and
 strikingly,
 Fkh
 
binding
 near
 origins
 is
 largely
 confined
 to
 either
 G1
 or
 S-­‐phase.
 
 
Fkh1
 has
 also
 been
 implicated
 in
 establishment
 of
 long-­‐range
 DNA
 
interactions
 and
 origin
 clustering.
 Deletion
 of
 the
 RE
 locus
 (Fkh1
 binding
 site)
 in
 a
 
MATa
 strain
 resulted
 in
 the
 loss
 of
 preference
 for
 the
 HMLα
 arm
 during
 matching
 
type
 switching.
 (Sun
 et
 al.,
 2002).
 
 Enrichment
 of
 Fkh
 binding
 near
 origins
 and
 the
 
involvement
 of
 Fkh
 proteins
 in
 establishment
 of
 long-­‐range
 DNA
 interactions
 
creates
 an
 attractive
 hypothesis
 of
 origin
 clustering
 mediating
 by
 Fkh1/2.
 Strong
 
evidence
 provided
 by
 4C
 experiments
 showing
 the
 abolition
 of
 interaction
 between
 
several
 Fkh-­‐activated
 origins
 in
 fkh1∆
 fkh2∆
 cells
 
 (Chapter
 I)
 (Knott
 et
 al.,
 2012)
 
lends
 support
 to
 this
 model.
 
Due
 to
 the
 binding
 of
 Fkh
 proteins
 genome
 wide,
 their
 cell-­‐cycle
 controlled
 
binding
 at
 origins
 and
 their
 role
 in
 long-­‐range
 DNA
 interactions,
 we
 posited
 that
 
cellular
 levels
 of
 Fkh1/2
 may
 be
 in
 some
 way
 limiting
 for
 origin
 firing.
 From
 this,
 we
 

  54
 
posited
 that
 over-­‐expression
 of
 Fkh1
 or
 Fkh2
 would
 cause
 dramatic
 effects
 on
 
replication
 timing
 genome
 wide.
 Here
 we
 test
 this
 effect
 through
 use
 of
 an
 inducible
 
over-­‐expression
 construct.
 
 
RESULTS
 
The
 inducible
 Gal1/10
 promoter
 effectively
 over-­‐expresses
 Fkh1
 and
 Fkh2
 
A
 previous
 study
 characterizing
 Fkh
 over-­‐expression
 focused
 on
 the
 role
 of
 
Fkh1/2
 in
 response
 to
 stress
 and
 lifespan
 regulation
 but
 limited
 their
 analysis
 to
 
such
 topics
 and
 did
 not
 characterize
 a
 replication
 related
 phenotype
 (Postnikoff
 et
 
al.,
 2012).
 
 Interestingly,
 this
 study
 showed
 that
 constitutive
 over-­‐expression
 of
 
either
 Fkh1
 or
 Fkh2
 was
 toxic
 to
 cell
 growth.
 In
 this
 study,
 to
 investigate
 the
 effect
 of
 
Fkh1/2
 over-­‐expression
 on
 replication,
 we
 first
 attempted
 to
 over-­‐express
 either
 
Fkh1
 or
 Fkh2
 under
 its
 native
 promoter
 using
 a
 high
 copy
 expression
 vector.
 The
 
high
 copy
 vector
 resulted
 in
 only
 a
 modest
 increase
 in
 overall
 protein
 levels
 (Fig.
 
2.1C).
 We
 next
 turned
 to
 the
 inducible
 Gal1/10
 promoter.
 
 To
 test
 the
 effect
 of
 
chronic
 over-­‐expression
 of
 Fkh1
 or
 Fkh2
 on
 cell
 growth
 we
 constructed
 a
 CEN-­‐
plasmid
 harboring
 the
 Gal1/10
 promoter
 upstream
 of
 either
 Fkh1
 or
 Fkh2
 and
 
plated
 cells
 to
 synthetic
 media
 lacking
 uracil
 (to
 select
 for
 plasmid
 maintenance)
 
supplemented
 with
 either
 2%
 glucose
 or
 2%
 galactose.
 Consistent
 with
 previously
 
published
 data,
 chronic
 over-­‐expression
 of
 either
 Fkh1
 or
 Fkh2
 lead
 to
 growth
 
arrest
 (Fig.
 2.1A)
 (Postnikoff
 et
 al.,
 2012).
 Visualization
 of
 cells
 plated
 with
 chronic
 
Fkh1
 or
 Fkh2
 over-­‐expression
 revealed
 the
 formation
 of
 microcolonies
 that
 failed
 to
 
 

  55
 

 
Figure
 2.1.
 Galactose
 induction
 of
 pGal-­‐Fkh1/2.
 (A)
 Growth
 of
 cells
 harboring
 
Gal-­‐Fkh1
 or
 Fkh2
 plasmid
 under
 repressed
 or
 chronic
 over-­‐expression
 conditions
 
on
 plates
 containing
 2%
 glucose
 or
 galactose.
 (B)
 Workflow
 for
 G1
 arrest
 and
 release
 
into
 S-­‐phase
 with
 induction
 of
 Gal1/10
 promoter.
 (C)
 Western
 blot
 of
 Fkh1
 protein
 
levels
 under
 asynchronous
 conditions
 (pRS426-­‐Fkh1:
 high
 copy
 vector
 containing
 
the
 native
 Fkh1
 promoter
 and
 gene).
 (D)
 Western
 blot
 of
 Fkh1
 protein
 levels
 
following
 galactose
 induction
 using
 the
 scheme
 in
 2.1B
 in
 WT
 cells
 harboring
 either
 
empty
 vector
 or
 pGal-­‐Fkh1
 (Time
 in
 hours
 indicates
 the
 time
 post
 galactose
 
induction).
 

 

  56
 
continue
 cell
 division
 after
 several
 generations.
 
 Similar
 growth
 inhibition
 was
 seen
 
with
 decreasing
 concentrations
 of
 galactose
 as
 well
 (0.5%,
 0.2%,
 0.1%,
 0.05%
 
galactose)
 (data
 not
 shown)
 leaving
 chronic
 over-­‐expression
 as
 an
 inviable
 option
 
for
 characterizing
 a
 replication
 related
 phenotype.
 Instead
 we
 took
 advantage
 of
 the
 
rapid
 induction
 of
 expression
 by
 the
 Gal1/10
 promoter
 to
 induce
 over-­‐expression
 
during
 a
 G1
 block
 with
 α-­‐factor
 and
 release
 into
 S-­‐phase
 (workflow
 shown
 in
 Fig.
 
2.1B).
 
 As
 expected,
 immunoblot
 of
 Fkh1
 showed
 a
 robust
 increase
 in
 protein
 level
 
by
 two
 hours
 post
 induction
 (switch
 to
 media
 containing
 2%
 galactose)
 (Fig.
 2.1D).
 
This
 was
 in
 agreement
 with
 dramatic
 up-­‐regulation
 of
 Fkh1
 and
 Fkh2
 RNA
 
transcript
 abundance
 as
 seen
 by
 RNA-­‐seq
 (detailed
 in
 more
 depth
 below).
 
 
Over-­‐expression
 of
 Fkh1
 or
 Fkh2
 alters
 replication
 timing
 
 
Previous
 studies
 have
 shown
 that
 the
 amount
 of
 BrdU
 incorporation
 in
 early
 S-­‐
phase
 accurately
 measures
 replication
 timing
 as
 it
 inversely
 correlates
 with
 
replication
 origin
 timing
 (TRep).
 This
 corresponds
 to
 a
 large
 amount
 of
 BrdU
 
incorporation
 at
 the
 earliest
 firing
 origins
 and
 less
 incorporation
 at
 those
 that
 fire
 
later
 in
 early
 S-­‐phase.
 (Knott
 et
 al.,
 2009a,
 2012).
 Additionally,
 S-­‐phase
 release
 can
 
be
 blocked
 early
 on
 by
 the
 addition
 of
 hydroxyurea
 (HU)
 allowing
 only
 the
 earliest
 
origins
 to
 fire
 while
 inhibiting
 late
 or
 dormant
 origins.
 As
 a
 result,
 BrdU
 peak
 size
 is
 
proportional
 to
 origin
 efficiency
 in
 HU;
 hereafter
 referred
 to
 interchangeably
 with
 
timing.
 Early
 origins
 in
 WT
 cells
 fire
 efficiently
 and
 late
 origins
 are
 blocked.
 
Mutations
 or
 conditions
 that
 disrupt
 WT
 replication
 timing
 or
 are
 defective
 in
 
proper
 intra-­‐S
 checkpoint
 signaling
 result
 in
 altered
 replication
 profiles
 in
 HU
 

  57
 
(Aparicio
 et
 al.,
 2004;
 Knott
 et
 al.,
 2009a;
 Santocanale
 and
 Diffley,
 1998).
 
 To
 assess
 
how
 over-­‐expression
 (OE)
 of
 Fkh1
 and
 Fkh2
 impacts
 replication
 timing,
 we
 blocked
 
cells
 in
 α-­‐factor,
 inducing
 over-­‐expression
 2
 hours
 before
 release
 into
 S-­‐phase
 with
 
media
 containing
 bromodeoxyuridine
 (BrdU)
 and
 HU
 (see
 Fig.
 2.1B).
 
 Samples
 were
 
subjected
 to
 BrdU-­‐IP
 and
 sequenced
 by
 next
 generation
 sequencing
 technology
 (see
 
Materials
 and
 Methods).
 Striking
 differences
 can
 be
 seen
 in
 the
 timing
 profiles
 of
 
cells
 over-­‐expressing
 Fkh1
 (Fkh1
 OE)
 or
 Fkh2
 (Fkh2
 OE)
 relative
 to
 the
 empty
 
vector
 control
 (Fig.
 2.2A,
 B,
 S1.1-­‐16).
 Figure
 2.2A
 shows
 a
 minor
 reduction
 in
 HU-­‐
efficiency
 of
 the
 early,
 robust
 firing
 ARS305
 in
 both
 Fkh1
 OE
 and
 Fkh2
 OE
 cells
 (Fig.
 
2.2A
 and
 overlaid
 in
 Fig.
 S1.1.3).
 Conversely,
 the
 later
 firing
 origin
 ARS310
 shows
 a
 
significant
 increase
 in
 HU
 efficiency
 in
 Fkh1
 OE
 cells
 and
 a
 more
 modest
 increase
 in
 
Fkh2
 OE
 cells.
 This
 alteration
 of
 timing
 is
 a
 genome
 wide
 phenomenon
 with
 many
 
origins
 showing
 either
 an
 advancement
 or
 delay
 in
 timing
 as
 a
 result
 of
 Fkh1
 or
 
Fkh2
 over-­‐expression.
 (Fig.
 2.2A,
 B
 and
 S1.1-­‐16).
 
 Notably,
 Fkh1
 OE
 cells
 exhibited
 
indistinguishable
 bulk
 DNA
 synthesis
 relative
 to
 WT
 cells
 when
 analyzed
 by
 FACS
 
under
 OE
 inducing
 conditions.
 Fkh2
 OE
 cells
 did
 show
 a
 minor
 S-­‐phase
 delay
 but
 
this
 is
 most
 likely
 due
 to
 a
 delay
 of
 S-­‐phase
 entry
 caused
 by
 Fkh2
 control
 over
 Clb2
 
(Fig.
 2.2C);
 consistent
 with
 the
 observed
 delay
 in
 budding
 of
 Fkh2
 OE
 cells
 (83%
 
budded
 versus
 98%
 budded
 in
 the
 WT
 control
 at
 100
 minutes
 post
 release).
 Minimal
 
difference
 was
 observed
 in
 budding
 of
 Fkh1
 OE
 cells
 versus
 the
 control
 (94%
 
budded
 to
 98%
 budded,
 respectively).
 

 

  58
 

 
Figure
 2.2.
 Analysis
 of
 early
 S-­‐phase
 by
 BrdU-­‐IP-­‐Seq.
 
 Plot
 colors
 are
 keyed
 
above.
 
 (A,
 B)
 Plots
 show
 average
 BrdU
 incorporation
 from
 duplicate
 experiments.
 
 
(C)
 DNA
 content
 analysis
 through
 S-­‐phase
 by
 FACS.
 

  59
 
Global
 analysis
 of
 Fkh1
 and
 Fkh2
 over-­‐expression
 
To
 further
 characterize
 the
 changes
 in
 replication
 timing
 as
 a
 result
 of
 Fkh1
 
OE
 and
 Fkh2
 OE
 we
 began
 by
 calling
 significant
 peaks
 of
 BrdU
 incorporation
 
genome
 wide
 and
 assigning
 the
 called
 peaks
 to
 known
 origins
 defined
 as
 either
 
likely
 or
 confirmed
 by
 the
 Saccharomyces
 Origin
 Database
 (OriDB)
 (see
 materials
 
and
 methods)
 (Siow
 et
 al.,
 2012;
 Zhang
 et
 al.,
 2008).
 The
 WT/Fkh1
 OE
 data
 set
 
called
 a
 total
 of
 203
 origins
 (Fig.
 2.3A).
 Slightly
 more
 origins
 were
 called
 under
 the
 
WT/Fkh2
 OE
 data
 set
 with
 223
 (Fig.
 2.3B).
 To
 call
 origins
 with
 a
 statistical
 
difference
 in
 BrdU
 incorporation
 between
 strains
 we
 took
 the
 above
 lists
 and
 ran
 
DEseq
 for
 differential
 analysis
 (Anders
 and
 Huber,
 2010).
 Of
 the
 203
 total
 origins
 in
 
the
 WT/
 Fkh1
 OE
 data
 set,
 86
 origins
 showed
 a
 statistically
 significant
 increase
 in
 
HU
 efficiency
 (Fkh1OE-­‐activated)
 while
 83
 showed
 a
 decrease
 (Fkh1
 OE-­‐repressed)
 
(Fig.
 2.3A).
 
 Of
 223
 total
 origins
 in
 the
 WT/Fkh2
 OE
 data
 set,
 97
 showed
 an
 increase
 
in
 HU
 efficiency
 (Fkh2
 OE-­‐activated)
 and
 92
 were
 decreased
 (Fkh2
 OE-­‐repressed)
 
(Fig.
 2.3B).
 Thus,
 ~80%
 of
 origins
 identified
 showed
 a
 change
 in
 HU
 efficiency
 (or
 
timing)
 as
 a
 result
 of
 either
 Fkh1
 or
 Fkh2
 over-­‐expression.
 BrdU
 incorporations
 was
 
next
 averaged
 and
 plotted
 in
 a
 5
 kilobase
 (kb)
 window
 around
 the
 origin
 summit
 for
 
each
 class
 (Fig.
 2.3A,B).
 As
 expected,
 Fkh1
 OE
 and
 Fkh2
 OE
 activated
 origins
 exhibit
 
more
 average
 signal
 than
 the
 corresponding
 signal
 in
 WT
 cells.
 Similarly,
 OE
 
repressed
 origins
 exhibit
 less
 average
 signal
 than
 WT
 cells.
 Interestingly,
 Fkh1
 OE-­‐
activated
 origins
 show
 a
 higher
 average
 signal
 than
 Fkh2
 OE-­‐activated
 origins
 when
 
their
 respective
 classes
 are
 compared.(Fig.
 2.3A,B).
 

  60
 

 
Figure
 2.3.
 Analysis
 of
 Fkh
 over-­‐expression
 regulated
 origins
 by
 origin
 class.
 
(A,B)
 Plots
 show
 average
 BrdU
 incorporation
 signals
 centered
 on
 origins
 in
 each
 
class
 (5kb
 window)
 as
 described
 in
 the
 text.
 (C)
 Venn
 diagrams
 of
 overlap
 between
 
Fkh1
 and
 Fkh2
 OE
 classes
 as
 described
 in
 the
 text.
 
 (D)
 Fkh
 OE
 origin
 classes
 broken
 
down
 by
 Fkh
 origin
 classes
 as
 identified
 under
 WT
 expression
 levels
 (see
 text,
 
Chapter
 I).
 

 

  61
 
To
 address
 whether
 Fkh1
 and
 Fkh2
 over-­‐expression
 affects
 the
 same
 origins,
 
the
 classes
 identified
 above
 were
 intersected
 to
 find
 common
 origins.
 60
 out
 of
 the
 
123
 origins
 identified
 as
 activated
 in
 either
 Fkh1
 OE
 or
 Fkh2
 OE
 were
 common
 to
 
both
 groups
 (Fkh1/2
 OE
 activated).
 Similarly,
 75
 out
 of
 100
 origins
 identified
 as
 
repressed
 were
 common
 to
 both
 groups
 (Fkh1/2
 OE
 repressed)
 (Fig.
 2.3C).
 The
 
significant
 overlap
 between
 categories
 suggests
 a
 similar
 or
 common
 mechanism
 for
 
the
 regulation
 of
 origin
 timing
 by
 both
 Fkh1
 and
 Fkh2.
 
 When
 Fkh1/2
 OE
 activated
 
and
 repressed
 origins
 were
 compared
 with
 Fkh
 origin
 classes
 derived
 under
 WT
 
expression
 levels
 (from
 our
 previous
 study),
 an
 interesting
 relationship
 emerged.
 52
 
 
of
 the
 60
 Fkh1/2
 OE
 activated
 origins
 were
 identified
 in
 both
 studies.
 Of
 these,
 16
 
were
 repressed,
 25
 were
 unregulated,
 and
 11
 were
 activated.
 
 74
 of
 the
 75
 Fkh1/2
 
OE
 repressed
 origins
 were
 identified
 in
 both
 studies.
 Of
 these,
 47
 were
 activated,
 3
 
were
 repressed,
 and
 24
 were
 unregulated
 (Fig.
 2.3D).
 These
 data
 indicate
 that
 
unregulated
 origins
 make
 up
 a
 large
 portion
 of
 the
 newly
 identified
 Fkh1/2
 OE
 
regulated
 origins
 in
 both
 classes.
 
 Fkh1/2OE
 repressed
 origins
 were
 also
 
significantly
 enriched
 for
 Fkh
 activated
 origins;
 meaning
 that
 OE
 of
 Fkh1
 or
 Fkh2
 
actually
 has
 a
 negative
 effect
 on
 origins
 whose
 timing
 is
 normally
 positively
 
controlled
 under
 WT
 conditions
 by
 Fkh1
 and
 Fkh2.
 
 We
 previously
 suggested
 that
 
Fkh
 repressed
 origins
 were
 not
 directly
 controlled
 by
 Fkh
 proteins
 but
 that
 their
 
advancement
 in
 timing
 was
 a
 result
 of
 global
 timing
 deregulation
 in
 fkh1∆
 fkh2∆
 
cells
 and
 that
 Fkh
 activated
 origins
 were
 advanced
 in
 timing
 due
 to
 direct
 binding
 of
 
Fkh1/2
 near
 affected
 origins
 (Knott
 et
 al.,
 2012;
 Ostrow
 et
 al.,
 2014).
 Interestingly,
 

  62
 
41
 out
 of
 the
 52
 Fkh1/2
 OE
 activated
 origins
 identified
 are
 found
 at
 locations
 not
 
regulated
 by
 Fkh
 under
 WT
 conditions.
 
Fkh
 OE
 regulated
 origin
 classes
 have
 different
 average
 replication
 times
 

 
To
 further
 characterize
 the
 differences
 between
 the
 Fkh
 OE
 regulated
 origin
 
classes,
 we
 plotted
 each
 class
 along
 a
 linear
 axis
 by
 each
 origin’s
 WT
 time
 of
 
replication
 (Trep)
 (Fig.
 2.4A).
 Origins
 initiate
 replication
 with
 a
 mean
 Trep
 of
 ~25
 min
 
for
 both
 the
 Fkh1
 OE
 and
 Fkh2
 OE
 data
 sets.
 As
 expected,
 due
 to
 the
 high
 overlap
 
with
 Fkh
 activated
 origins,
 Fkh
 OE
 repressed
 origins
 replicate
 with
 an
 earlier
 mean
 
Trep
 of
 ~22
 min
 in
 both
 Fkh1
 OE
 and
 Fkh2
 OE
 data
 sets
 (Fig.
 2.4B,C).
 
 Conversely,
 
Fkh
 OE
 activated
 origins
 initiate
 replication
 later
 with
 a
 mean
 Trep
 of
 ~27
 and
 ~28
 
min
 for
 Fkh1
 OE
 and
 Fkh2
 OE
 data
 sets,
 respectively.
 Unregulated
 origins
 for
 both
 
classes
 showed
 an
 intermediate
 mean
 Trep
 of
 ~26
 minutes.
 Taken
 as
 a
 whole,
 these
 
data
 suggest
 that
 Fkh
 over-­‐expression
 generally
 stimulates
 the
 firing
 of
 normally
 
later
 origins
 while
 repressing
 normally
 earlier
 firing
 origins.
 
 
Increased
 HU-­‐Efficiency
 of
 Fkh
 OE
 activated
 origins
 is
 not
 a
 result
 of
 increased
 
nucleotide
 pools
 
Recent
 work
 has
 shown
 that
 the
 number
 of
 origins
 fired
 within
 a
 
hydroxyurea
 (HU)
 block
 and
 the
 distance
 of
 fork
 travel
 can
 be
 altered
 by
 changing
 
the
 level
 of
 the
 available
 nucleotide
 pool
 (Poli
 et
 al.,
 2012).
 Mutations
 that
 increase
 
nucleotide
 levels
 or
 decreasing
 concentrations
 of
 HU
 allow
 for
 the
 firing
 of
 

  63
 
additional
 origins.
 We
 posited
 that
 the
 increase
 in
 HU
 efficiency
 of
 Fkh
 OE
 activated
 
origins
 might
 be
 the
 result
 of
 increased
 dNTP
 pools
 present
 in
 Fkh
 OE
 cells
 relative
 
to
 the
 WT
 control
 strain.
 Bulk
 DNA
 synthesis
 comparing
 WT
 to
 Fkh
 OE
 cells
 in
 HU
 
did
 not
 yield
 an
 observable
 difference.
 However,
 the
 sensitivity
 of
 this
 assay
 should
 
be
 questioned
 as
 the
 total
 replication,
 under
 both
 conditions,
 yielded
 an
 increase
 in
 
DNA
 content
 that
 was
 barely
 observable
 above
 that
 of
 the
 G1
 control
 (Fig.
 2.5A).
 

 

 

 
Figure
 2.4.
 Time
 of
 Replication
 (Trep)
 for
 Fkh
 over-­‐expression
 origin
 classes.
 
(A)
 Origins
 are
 plotted
 along
 the
 x-­‐axis
 according
 to
 their
 TRep
 and
 color-­‐coded
 
according
 to
 class.
 (B,
 C)
 Boxplots
 of
 Fkh1
 and
 Fkh2
 OE
 origin
 class
 Trep.
 

 

  64
 

 
Figure
 2.5.
 Early
 S-­‐phase
 analysis
 of
 Fkh
 over-­‐expression
 cells
 with
 increased
 
nucleotide
 pools.
 (A,B)
 DNA
 content
 analysis
 of
 indicated
 strains
 in
 either
 G1
 or
 
after
 a
 60
 min
 hydroxyurea
 (HU)
 block.
 (C)
 Average
 BrdU
 incorporation
 along
 
chromosome
 11
 from
 BrdU-­‐IP_chip
 samples
 for
 indicates
 strains.
 

 

  65
 
If
 nucleotide
 pools
 are
 in
 fact
 different
 between
 WT
 and
 Fkh
 OE
 cells,
 we
 posited
 
that
 increasing
 dNTP
 pools
 under
 both
 conditions
 might
 negate
 the
 observed
 
difference
 in
 HU
 efficiency
 at
 Fkh
 OE
 regulated
 origins
 and
 would
 allow
 for
 a
 
measurable
 difference
 in
 DNA
 synthesis
 by
 FACS.
 To
 address
 this,
 we
 constitutively
 
over-­‐expressed
 ribonucleotide
 reductase
 3
 (RNR3),
 which
 is
 responsible
 for
 the
 rate
 
limiting
 step
 in
 dNTP
 synthesis.
 Indeed,
 over-­‐expression
 of
 RNR3
 dramatically
 up-­‐
regulated
 dNTP
 pools
 as
 evidenced
 by
 the
 substantial
 increase
 in
 bulk
 DNA
 
synthesis
 in
 cells
 harboring
 the
 empty
 vector
 control
 or
 either
 a
 pGal-­‐Fkh1
 OE
 or
 
pGal-­‐Fkh2
 OE
 plasmid
 under
 inducing
 conditions
 (Fig.
 2.5B).
 
 
To
 address
 whether
 RNR3
 OE
 and,
 as
 a
 result,
 increased
 dNTP
 levels
 would
 
negate
 the
 observable
 difference
 in
 HU
 efficiency
 at
 Fkh1
 OE
 activated
 origins,
 cells
 
over-­‐expressing
 RNR3
 containing
 either
 the
 empty
 vector
 control
 or
 pGal-­‐Fkh1
 
were
 treated
 as
 above,
 with
 galactose
 induction,
 and
 released
 into
 an
 HU
 block
 
containing
 BrdU.
 BrdU-­‐IP-­‐chip
 (see
 materials
 and
 methods)
 was
 performed
 to
 
assess
 any
 differences
 in
 HU
 efficiency.
 Consistent
 with
 our
 earlier
 results,
 Fkh1
 OE
 
conferred
 an
 increased
 HU
 efficiency
 onto
 Fkh1
 OE
 activated
 origins.
 (Fig.
 2.5C).
 
 
These
 results
 demonstrate
 that
 the
 difference
 in
 HU
 efficiency
 at
 Fkh1
 OE
 activated
 
origins
 cannot
 be
 simply
 attributed
 to
 an
 increase
 in
 nucleotide
 levels
 due
 to
 Fkh1
 
over-­‐expression.
 These
 results
 are
 consistent
 with
 the
 hypothesis
 that
 increased
 HU
 
efficiency
 at
 Fkh
 OE
 activated
 origins
 is
 at
 the
 expense
 of
 Fkh
 OE
 repressed
 origins.
 

  66
 
Altered
 replication
 at
 Fkh1
 and
 Fkh2
 OE
 regulated
 origins
 is
 not
 the
 result
 of
 a
 
change
 in
 local
 transcript
 abundance
 or
 replication
 factor
 levels
 

 
As
 Fkh1
 and
 Fkh2
 are
 transcription
 factors,
 it
 is
 logical
 to
 assume
 that
 over-­‐
expression
 of
 either
 could
 lead
 to
 changes
 in
 transcript
 abundance
 at
 many
 genes.
 
Up-­‐
 or
 down-­‐regulation
 of
 target
 genes
 proximal
 to
 an
 origin
 could
 result
 in
 changes
 
to
 the
 local
 chromatin
 environment
 and
 could
 positively
 or
 negatively
 influencing
 
that
 origins
 ability
 to
 fire
 as
 a
 result.
 
 Alternatively,
 up-­‐
 or
 down-­‐regulation
 of
 key
 
replication
 factor
 components
 could
 have
 an
 affect
 on
 origin
 firing.
 Our
 previous
 
study
 addressed
 both
 changes
 in
 replication
 factor
 abundance
 as
 well
 as
 changes
 to
 
local
 transcript
 abundance
 around
 Fkh
 regulated
 origins
 in
 fkh1∆
 fkh2∆
 cells
 but
 
failed
 to
 identify
 a
 correlation
 to
 changes
 in
 origin
 activity
 with
 either
 (see
 Chapter
 
I).
 To
 address
 whether
 changes
 in
 replication
 timing
 due
 to
 Fkh
 over-­‐expression
 are
 
a
 result
 of
 changes
 in
 transcript
 levels
 (either
 locally
 or
 at
 specific
 replication
 factor
 
genes),
 cells
 were
 arrested
 and
 released
 into
 S-­‐phase
 as
 described
 above
 with
 
galactose
 induction.
 Samples
 were
 taken
 both
 at
 the
 end
 of
 the
 G1
 block
 and
 after
 60
 
min
 post
 S-­‐phase
 release
 into
 HU.
 RNA
 was
 extracted
 and
 libraries
 were
 generated
 
for
 high-­‐throughput
 sequencing
 (see
 materials
 and
 methods).
 Differential
 
expression
 analysis
 was
 performed
 with
 the
 Tophat
 and
 Cufflinks
 packages
 (see
 
materials
 and
 methods).
 
 Importantly,
 and
 as
 expected,
 differential
 expression
 
analysis
 showed
 a
 ~70
 fold
 increase
 in
 Fkh1
 and
 a
 ~150
 fold
 increase
 in
 Fkh2
 
mRNA
 transcript
 abundance
 in
 Fkh1
 OE
 and
 Fkh2
 OE
 cells,
 respectively.
 
 Consistent
 
with
 their
 roles
 as
 transcription
 factors,
 Fkh1
 OE
 yielded
 differential
 expression
 of
 

  67
 
682
 genes
 in
 G1
 and
 521
 genes
 in
 S-­‐phase
 (HU
 block)
 while
 Fkh2
 OE
 yielded
 
differential
 expression
 of
 1908
 genes
 in
 G1
 and
 1676
 genes
 in
 S-­‐phase
 when
 
compared
 to
 the
 empty
 vector
 control
 (q-­‐value
 ≤
 0.01).
 
 Due
 to
 the
 high
 origin
 
overlap
 observed
 between
 Fkh1
 OE
 and
 Fkh2
 OE
 activated
 and
 repressed
 origins
 
and
 the
 ability
 for
 Fkh1
 and
 Fkh2
 to
 complement
 one
 another
 transcriptionally
 
(Murakami
 et
 al.,
 2010);
 a
 mechanism
 of
 regulation
 resulting
 from
 altered
 transcript
 
abundance
 of
 one
 or
 more
 genes
 might
 be
 expected
 to
 be
 shared
 between
 both
 
conditions.
 Accordingly,
 we
 refined
 our
 search
 for
 particular
 candidate
 genes
 by
 
determining
 the
 intersection
 of
 genes
 differentially
 expressed
 in
 both
 Fkh1
 OE
 and
 
Fkh2
 OE
 conditions.
 
 From
 this,
 we
 obtained
 246
 genes
 up-­‐regulated
 and
 289
 genes
 
down-­‐regulated
 in
 G1
 in
 both
 Fkh1
 and
 Fkh2
 OE
 conditions.
 
 In
 S-­‐phase,
 71
 genes
 
were
 up-­‐regulated
 while
 256
 were
 down
 regulated.
 With
 this
 refined
 list,
 a
 Gene
 
Ontology
 (GO)
 search
 was
 performed.
 Particular
 interest
 was
 placed
 on
 genes
 
classified
 as
 differentially
 expressed
 (DE)
 in
 the
 GO
 classes
 of
 DNA
 Replication
 and
 
DNA
 Replication
 Initiation
 as
 up-­‐
 or
 down-­‐regulation
 of
 key
 replication
 factor(s)
 
might
 explain
 the
 Fkh1
 and
 Fkh2
 OE
 phenotype.
 
 Surprisingly,
 few
 genes
 were
 found
 
to
 be
 DE
 in
 either
 of
 these
 GO
 categories
 (see
 Table
 2.1)
 and
 none
 of
 them,
 alone,
 
provides
 an
 obvious
 mechanism
 for
 changes
 in
 replication
 timing
 (see
 discussion).
 
 
To
 address
 local
 transcriptional
 changes
 as
 a
 possible
 mechanism
 for
 Fkh1
 and
 Fkh2
 
OE
 regulation
 of
 replication
 timing,
 the
 log2
 fold
 change
 in
 transcript
 abundance
 
between
 Fkh1
 OE
 or
 Fkh2
 OE
 and
 the
 empty
 vector
 control
 conditions
 were
 plotted
 
in
 a
 4kb
 window
 around
 the
 203
 (Fkh1
 OE)
 and
 223
 (Fkh2
 OE)
 origins
 called
 in
 the
 
two
 experiments
 in
 G1;
 when
 replication
 timing
 is
 thought
 to
 be
 established
 

  68
 
(Dimitrova
 and
 Gilbert,
 1999;
 Raghuraman
 et
 al.,
 1997).
 
 Origins
 were
 ordered
 by
 
their
 maximum
 peak
 (summit)
 change
 in
 BrdU
 incorporation
 (Fig.
 2.6A,B).
 
 
Consistent
 with
 our
 previous
 knockout
 studies,
 a
 correlation
 was
 not
 evident
 
between
 changes
 in
 transcript
 abundance
 and
 changes
 in
 maximum
 BrdU
 peak
 
height
 in
 either
 Fkh1
 OE
 or
 Fkh2
 OE
 conditions.
 A
 correlation
 was
 also
 not
 evident
 
when
 comparing
 Fkh1
 or
 Fkh2
 OE
 activated
 or
 repressed
 classes
 separately
 (data
 
not
 shown).
 
 

 

 
Table
 2.1
 Differentially
 expressed
 genes
 of
 both
 Fkh1
 and
 Fkh2
 OE
 conditions
 
by
 gene
 ontology
 class
 (GO
 class).
 

 

  69
 
Fkh1
 binding
 is
 enriched
 at
 origins
 with
 over-­‐expression
 
Previously,
 we
 have
 shown
 that
 Fkh
 binding
 is
 enriched
 at
 Fkh
 activated
 origins
 (ie
 
a
 subset
 of
 origins
 that
 fire
 earlier
 on
 average
 in
 WT)
 and
 that
 there
 is
 a
 lack
 of
 
enrichment
 at
 Fkh
 repressed
 origins
 (Knott
 et
 al.,
 2012;
 Ostrow
 et
 al.,
 2014).
 Our
 
hypothesis,
 based
 on
 this
 result,
 is
 that
 Fkh
 OE
 leads
 to
 Fkh
 binding
 at
 Fkh
 OE
 
activated
 origins
 that
 doesn’t
 occur
 under
 WT
 conditions.
 To
 test
 this,
 we
 preformed
 
Chromatin
 Immunoprecipitation
 analyzed
 by
 tiling
 DNA
 microarrays
 (ChIP-­‐chip)
 of
 

 

 
Figure
 2.6.
 Transcriptional
 changes
 proximal
 to
 origins
 as
 a
 result
 of
 Fkh
 OE.
 
(A,
 B)
 Log2
 fold
 change
 in
 gene
 expression
 plotted
 in
 a
 4kb
 window
 around
 origins
 
identified
 in
 this
 study.
 Origins
 are
 ordered
 by
 their
 maximum
 change
 in
 peak
 height
 
(summit)
 between
 WT
 and
 Fkh1/2
 OE.
 

 

  70
 
C-­‐terminally
 Myc
 tagged
 Fkh1
 with
 and
 without
 Fkh1
 OE.
 
 An
 over-­‐expression
 
plasmid
 containing
 a
 Myc
 tagged
 Fkh1
 under
 control
 of
 the
 Gal1/10
 promoter
 was
 
constructed
 as
 for
 other
 experiments
 and
 transformed
 into
 cells
 expressing
 Fkh1-­‐
myc
 at
 its
 endogenous
 locus.
 Cells
 were
 arrested
 and
 released
 (with
 galactose
 
induction)
 as
 described
 above
 and
 samples
 were
 taken
 for
 analysis
 at
 the
 end
 of
 the
 
G1
 block
 as
 well
 as
 at
 the
 end
 of
 a
 S-­‐phase
 block
 (HU).
 
 The
 average
 ChIP
 signal
 at
 a
 
250bp
 window
 around
 each
 origin
 was
 taken
 for
 further
 analysis.
 All
 203
 origins
 
identified
 above
 were
 subjected
 to
 a
 two-­‐sided
 T-­‐test
 to
 test
 for
 a
 statistical
 
difference
 in
 binding
 with
 and
 with
 out
 OE
 of
 Fkh1.
 Comparison
 of
 the
 amount
 of
 
Fkh1
 binding
 in
 G1
 shows
 a
 strong
 statistical
 enrichment
 of
 Fkh1
 binding
 with
 OE
 
relative
 to
 WT
 (p-­‐value
 =
 1.01x10
-­‐05
)
 (Fig.
 2.7A).
 However,
 the
 difference
 in
 binding
 
during
 HU
 was
 not
 statistically
 significant.
 Importantly,
 as
 previously
 published,
 
binding
 of
 Fkh1
 (in
 WT
 cells)
 is
 enriched
 at
 origins
 in
 S-­‐phase
 (HU
 block)
 relative
 to
 
G1
 with
 strong
 statistical
 significance
 (Ostrow
 et
 al.,
 2014).
 
 Next,
 we
 compared
 
binding
 at
 Fkh1
 OE
 activated
 and
 repressed
 origins
 (Fig.
 2.7B,C).
 When
 comparing
 
WT
 versus
 Fkh1
 OE
 at
 Fkh1
 OE
 activated
 origins,
 binding
 is
 enriched
 with
 OE
 with
 
significance
 (p-­‐value
 <
 0.01).
 Binding
 is
 also
 enriched
 at
 Fkh1
 OE
 repressed
 origins
 
although
 with
 less
 significance
 (p-­‐value
 <
 0.05).
 
 During
 S-­‐phase,
 Fkh1
 OE
 activated
 
origins
 exhibit
 statistically
 more
 binding
 with
 OE
 than
 under
 WT
 conditions
 (p-­‐
value
 <
 0.05).
 Fkh1
 OE
 repressed
 origins
 however,
 do
 not
 show
 a
 statistical
 
difference
 in
 binding.
 An
 important
 finding
 is
 that
 under
 both
 WT
 and
 OE
 
conditions,
 Fkh1
 binding
 is
 higher
 in
 the
 OE
 repressed
 class
 than
 in
 the
 OE
 activated
 
class.
 The
 Fkh1
 OE
 repressed
 class,
 as
 described
 above,
 is
 largely
 comprised
 of
 Fkh
 
 

  71
 

 

 
Figure
 2.7.
 Enrichment
 of
 Fkh1
 binding
 proximal
 to
 origins
 with
 OE.
 (A,
 B,
 C)
 
Average
 Fkh1
 ChIP
 signal
 (average
 log2
 enrichment)
 of
 the
 250
 bp
 region
 
surrounding
 origins
 from
 origin
 classes
 as
 described
 in
 the
 text.
 Horizontal
 lines
 
represent
 population
 means.
 (D)
 Plots
 show
 average
 Fkh1
 ChIP
 signal
 centered
 on
 
origins
 in
 each
 class
 (5kb
 window)
 as
 described
 in
 the
 text.
 

  72
 

 
activated
 origins,
 which
 are
 enriched
 for
 Fkh
 binding.
 Conversely,
 the
 Fkh1
 OE
 
activated
 class
 is
 largely
 devoid
 of
 Fkh1
 binding
 under
 WT
 conditions.
 To
 determine
 
the
 robustness
 of
 the
 statistical
 tests
 performed
 above,
 the
 statistical
 analysis
 was
 
repeated
 with
 the
 nonparametric
 Wilcoxon
 Rank
 Sum
 Test
 in
 place
 of
 the
 two-­‐sided
 
T-­‐test.
 Nearly
 identical
 statistical
 significance
 cutoffs
 were
 found
 within
 each
 group
 
(data
 not
 shown).
 Interestingly,
 Linear
 regression
 analysis
 of
 maximum
 BrdU
 peak
 
height
 versus
 local
 Fkh1
 binding
 
 (250bp
 window)
 did
 not
 show
 a
 strong
 
correlation.
 This
 finding
 suggests
 that
 an
 increasing
 amount
 of
 Fkh1
 binding
 does
 
not
 lead
 to
 earlier
 origin
 timing
 but
 rather
 that
 a
 minimum
 threshold
 of
 binding
 is
 
most
 likely.
 Lastly,
 the
 average
 ChIP
 signal
 was
 plotted
 in
 a
 5
 kb
 window
 
surrounding
 each
 origin
 class
 (Fig.
 2.7D).
 Figure
 2.7D
 accurately
 recapitulates
 the
 
findings
 above
 (Fig.
 2.7A,B,C)
 showing
 enrichment
 of
 Fkh1
 binding
 at
 all
 origins
 in
 
G1
 as
 well
 as
 in
 HU
 at
 Fkh1
 OE
 activated
 origins.
 

 
DISCUSSION
 
Fkh
 over-­‐expression
 alters
 origin
 timing
 genome
 wide.
 
The
 above
 studies
 further
 elucidate
 the
 role
 of
 Fkh
 proteins
 as
 important
 
coordinators
 of
 the
 S.
 cerevisiae
 timing
 program.
 Over-­‐expression
 of
 either
 Fkh1
 or
 
Fkh2
 dramatically
 alters
 the
 timing
 of
 greater
 than
 80%
 of
 the
 origins
 analyzed
 in
 

  73
 
this
 study.
 Our
 previous
 study
 showed
 that
 fkh2∆
 alone,
 had
 a
 negligible
 effect
 on
 
origin
 timing
 but
 enhanced
 the
 effect
 of
 fkh1∆
 in
 the
 double
 mutant
 (Knott
 et
 al.,
 
2012).
 Rather
 surprisingly,
 Fkh2
 OE
 had
 a
 similar
 effect
 on
 origin
 timing
 when
 
compared
 to
 Fkh1
 OE.
 Indeed,
 when
 comparing
 activated
 and
 repressed
 classes
 of
 
Fkh1
 OE
 and
 Fkh2
 OE
 regulated
 origins,
 ~50%
 of
 activated
 origins
 were
 common
 
between
 both
 conditions
 while
 ~75%
 of
 repressed
 origins
 were
 common
 to
 both.
 
This
 data
 taken
 with
 the
 known
 ability
 of
 Fkh1
 and
 Fkh2
 to
 compliment
 each
 other
 
transcriptionally
 and
 binding
 of
 both
 proteins
 to
 many
 of
 the
 same
 sites
 genome
 
wide,
 suggests
 a
 common
 mechanism
 for
 origin
 timing
 deregulation
 under
 over-­‐
expressed
 conditions
 (Murakami
 et
 al.,
 2010;
 Ostrow
 et
 al.,
 2014).
 
 

 
Changes
 in
 transcript
 abundance
 do
 not
 provide
 an
 obvious
 mechanism
 for
 
origin
 timing
 deregulation.
 
Consistent
 with
 our
 previous
 knock
 out
 studies,
 local
 changes
 in
 gene
 
regulation
 around
 Fkh1
 OE
 and
 Fkh2
 OE
 regulated
 origins
 did
 not
 show
 an
 obvious
 
correlation
 to
 changes
 in
 origin
 timing
 in
 G1
 (Fig.
 2.6).
 
 Several
 genes
 annotated
 in
 
the
 gene
 ontology
 classes
 of
 DNA
 replication
 and
 DNA
 replication
 initiation
 were
 
found
 to
 be
 differentially
 expressed
 in
 both
 Fkh1
 OE
 and
 Fkh2
 OE
 conditions
 (Table
 
2.1).
 While
 none
 of
 these
 genes
 provided
 an
 obvious
 mechanism
 for
 the
 changes
 in
 
timing
 due
 to
 OE
 of
 Fkh1/2
 they
 still
 cannot
 be
 completely
 ruled
 out.
 One
 
particularly
 interesting
 candidate
 is
 Noc3
 (up
 regulated
 by
 Fkh1/2
 OE
 in
 G1).
 Noc3
 
was
 shown
 to
 be
 an
 important
 initiation
 factor
 and
 interacts
 with
 both
 MCM
 and
 

  74
 
ORC
 (Zhang
 et
 al.,
 2002).
 More
 recent
 work
 from
 the
 same
 group
 has
 expanded
 
upon
 this
 finding
 and
 identified
 the
 Rix1
 complex
 (Ipi1p,
 Ipi2p,
 and
 Ipi3p)
 as
 
another
 component
 of
 replication
 initiation.
 The
 Rix1
 complex
 member(s)
 bind
 
other
 pre-­‐RC
 components
 in
 a
 cell
 cycle
 and
 ORC,
 NOC3
 dependent
 manner
 (Huo
 et
 
al.,
 2012).
 Interestingly,
 further
 investigation
 of
 our
 RNA-­‐seq
 data
 revealed
 up
 
regulation
 of
 two
 of
 the
 three
 members
 of
 this
 complex
 in
 G1
 (IPI2
 and
 IPI3).
 While
 
these
 results
 are
 particularly
 intriguing,
 it
 is
 important
 to
 note
 the
 role
 of
 these
 
genes
 in
 ribosomal
 biogenesis.
 DE
 analysis
 in
 this
 study
 revealed
 a
 significantly
 high
 
number
 of
 genes
 related
 to
 ribosomal
 function.
 At
 this
 point,
 it
 is
 unclear
 whether
 
the
 up
 regulation
 of
 these
 genes
 has
 a
 direct
 consequence
 on
 the
 observed
 changes
 
in
 replication
 timing
 and
 will
 require
 further
 investigation.
 

 
Fkh1
 binds
 locally
 to
 Fkh
 OE
 activated
 origins
 with
 over-­‐expression.
 
ChIP-­‐chip
 of
 Fkh1
 revealed
 a
 statistical
 enrichment
 in
 binding
 at
 origins
 
genome
 wide
 (Fig.
 2.7A).
 Interestingly,
 this
 enrichment
 extended
 only
 to
 Fkh1
 OE
 
activated
 origins
 in
 S-­‐phase
 (Fig.
 2.7B).
 Previous
 studies
 have
 implicated
 that
 origin
 
timing
 is
 set
 up
 during
 G1
 phase
 (Dimitrova
 and
 Gilbert,
 1999;
 Raghuraman
 et
 al.,
 
1997).
 As
 a
 result,
 Fkh1
 OE
 activated
 origins,
 which
 fire
 later,
 on
 average
 under
 WT
 
conditions
 (Fig.
 2.4),
 and
 have
 lower
 Fkh1
 binding
 levels
 (on
 average)
 than
 their
 
Fkh1
 OE
 repressed
 counterparts
 (Fig.
 2.7
 B,C),
 may
 now
 receive
 a
 required
 
threshold
 level
 of
 Fkh1
 binding
 to
 increase
 their
 HU
 efficiency.
 This
 increased
 HU
 
efficiency
 may
 be
 due
 to
 the
 ability
 of
 Fkh1
 to
 recruit
 replication
 factor(s)
 that
 these
 

  75
 
origins,
 under
 WT
 conditions,
 would
 not
 have
 preferential
 access
 to.
 Our
 previous
 
work
 has
 also
 implicated
 Fkh
 proteins
 as
 important
 determinants
 of
 3-­‐dimensional
 
nuclear
 architecture
 (Knott
 et
 al.,
 2012).
 Fkh
 binding
 proximal
 to
 Fkh
 OE
 activated
 
 
origins
 may
 relocate
 them
 into
 new
 nuclear
 domains
 providing
 them
 with
 access
 to
 
key
 replication
 factors
 under
 over-­‐expressed
 conditions.
 
 A
 seemingly
 contradictory
 
result
 is
 that
 Fkh1
 repressed
 origins
 are
 largely
 comprised
 of
 Fkh
 activated
 origins
 
and
 that
 ChIP-­‐chip
 data
 from
 this
 study
 shows
 higher
 levels
 of
 binding
 on
 average
 
than
 the
 Fkh
 OE
 activated
 group.
 An
 obvious
 explanation
 for
 this
 is
 that
 Fkh
 OE
 
repressed
 origins,
 even
 with
 over-­‐expression,
 largely
 remain
 early
 and
 that
 
additional
 Fkh
 binding
 provides
 no
 additional
 advantage
 as
 they
 already
 
preferentially
 bind
 Fkh.
 The
 finding
 that
 bulk
 DNA
 synthesis
 shows
 identical
 
kinetics
 with
 and
 without
 Fkh
 OE
 (Fig.
 2.2C)
 suggests
 that
 at
 least
 one
 replication
 
factor
 is
 limiting
 and
 that
 the
 advancement
 of
 origin
 timing
 at
 Fkh
 OE
 activated
 
origins
 is
 at
 the
 expense
 of
 Fkh
 OE
 repressed
 origins
 probably
 due
 to
 a
 dilution
 of
 
said
 limiting
 factor(s)
 across
 more
 origins.
 These
 findings
 further
 establish
 Fkh1
 
and
 Fkh2
 as
 important
 components
 of
 the
 DNA
 replication
 timing
 program.
 Further
 
studies
 will
 be
 needed
 to
 elucidate
 the
 full
 mechanism
 of
 how
 Fkh1/2
 actively
 
regulate
 origin
 timing.
 

 

 

 

  76
 
MATERIALS
 AND
 METHODS
 

 
Yeast
 strains
 and
 methods.
 All
 strains
 are
 W303
 derived.
 Strains
 for
 BrdU-­‐
Incorporation
 experiments
 are
 related
 to
 CVy63,
 MATa
 ade2-­‐1,
 ura3-­‐1,
 his3-­‐11,15
 
trp1-­‐1,
 can1-­‐100,
 bar1∆::hisG,
 LEU2::BrdU-­‐Inc
 
 or
 CVy61
 (TRP1::BrdU-­‐Inc).
 Strains
 
include:
 JPy88
 (CVy63
 pCD43),
 JPy89
 (CVy63
 pCD43-­‐Fkh1),
 JPy90
 (CVy63
 pCD43-­‐
Fkh2),
 and
 JPy103
 (CVy61
 LEU2::RNR3)
 transformed
 with
 either
 pCD43
 or
 pCD43-­‐
Fkh1
 (Viggiani
 et
 al.,
 2010).
 
 Strains
 for
 Fkh1-­‐MYC
 ChIP
 are
 related
 to
 ZOy14
 (MATa,
 
ade2-­‐1,
 ura3,
 his3-­‐11,15,
 can1-­‐100,
 bar1Δ::LEU2,
 GAL+,
 psi+,
 Fkh1-­‐Myc(TRP1))
 which
 
was
 derived
 from
 Z1448
 (Harbison
 et
 al.,
 2004).
 Strains
 include
 JPy105
 (ZOy14
 
pCD43)
 and
 JPy106
 (ZOy14
 pCD43-­‐Fkh1-­‐Myc).
 Plasmids
 were
 introduced
 by
 
lithium
 acetate
 transformation
 and
 selection
 on
 synthetic
 media
 lacking
 uracil.
 

 
For
 G1-­‐phase
 block-­‐and-­‐release,
 cells
 were
 inoculated
 into
 pre-­‐cultures
 containing
 
synthetic
 media
 lacking
 uracil
 (-­‐URA)
 with
 2%
 glucose
 and
 grown
 to
 mid
 log
 phase.
 
Mid
 log
 phase
 pre-­‐cultures
 were
 used
 to
 inoculate
 cultures
 overnight
 in
 YEP
 
containing
 2%
 raffinose
 at
 25°C.
 Overnight
 cultures
 (mid
 log
 phase)
 were
 re-­‐
suspended
 in
 fresh
 YEP+2%
 raffinose
 at
 O.D.
 0.5,
 and
 incubated
 with
 7.5
 nM
 α-­‐factor
 
at
 25°C
 for
 3
 hrs.
 After
 3
 hours,
 cells
 were
 spun
 down
 and
 re-­‐suspended
 in
 YEP+2%
 
galactose
 with
 7.5
 nM
 α-­‐factor
 at
 25°C
 for
 an
 additional
 2
 hrs
 to
 induce
 over-­‐
expression
 of
 Fkh1
 or
 Fkh2.
 
 Arrested
 cultures
 were
 released
 from
 α-­‐factor
 arrest
 by
 
re-­‐suspension
 in
 fresh
 YEP+2%
 galactose
 at
 O.D.
 1.0
 with
 200
 µg/mL
 Pronase
 E
 
(Sigma-­‐Aldrich,
 P5147)
 and
 gentle
 sonication
 to
 disperse
 cells.
 Early
 S-­‐phase
 

  77
 
analysis
 of
 replication
 was
 performed
 by
 releasing
 cells
 into
 media
 containing
 0.2M
 
HU
 (Sigma-­‐Aldrich,
 H8627)
 and
 BrdU
 at
 400
 µg/mL
 (Sigma-­‐Aldrich,
 B5002)
 for
 60
 
min
 at
 25°C.
 
 Bulk
 DNA
 content
 analysis
 was
 performed
 with
 SYTOX
 Green
 
(Molecular
 Probes,
 S7020)
 as
 described
 previously
 (Zhong
 et
 al.,
 2013).
 
 Analysis
 of
 
Fkh1
 by
 immunoblotting
 was
 performed
 with
 anti-­‐Fkh1/2
 antibody
 (Casey
 et
 al.,
 
2008)
 at
 1:1000.
 

 
BrdU-­‐IP-­‐chip.
 
 Genomic
 DNA
 was
 isolated
 from
 25mL
 BrdU-­‐labeled
 cultures,
 1
 µg
 
total
 genomic
 DNA
 was
 immunoprecipitated,
 and
 half
 of
 the
 immunoprecipitated
 
DNA
 was
 subjected
 to
 whole
 genome
 amplification
 (Sigma-­‐Aldrich,
 WGA2),
 labeling,
 
and
 hybridization
 as
 previously
 described
 (Viggiani
 et
 al.,
 2010).
 
 Samples
 were
 
hybridized
 to
 custom-­‐designed
 DNA
 oligonucleotide
 tiling
 arrays
 (Roche-­‐
Nimblegen)
 containing
 135,000
 probes,
 with
 one
 ~60mer
 probe
 for
 every
 ~80
 bp
 of
 
unique
 genomic
 sequence.
 
 Array
 data
 from
 two
 experimental
 replicates
 were
 
processed
 as
 previously
 described
 (Knott
 et
 al.,
 2009b,
 2012).
 
 
 

 
BrdU-­‐IP-­‐Seq.
 
 Genomic
 DNA
 was
 isolated
 from
 50mL
 BrdU-­‐labeled
 cultures,
 5
 µg
 
total
 genomic
 DNA
 was
 immunoprecipitated
 as
 described
 (Knott
 et
 al.,
 2012),
 and
 
the
 entire
 immunoprecipitate
 was
 amplified
 by
 Illumina
 protocols
 with
 inclusion
 of
 
barcodes
 and
 indexes
 to
 allow
 pooling
 of
 samples
 (Dunham
 and
 Friesen,
 2013).
 
 
Sequencing
 (50
 bp
 paired-­‐end)
 was
 carried
 out
 on
 the
 Illumina
 Hi-­‐Seq
 platform
 by
 
the
 USC
 Epigenome
 Center.
 
 
 

 

  78
 
Analysis
 of
 BrdU-­‐IP-­‐sequencing
 data.
 
 Barcodes
 were
 split
 using
 the
 barcode
 
splitter
 from
 the
 FAST-­‐X
 toolkit
 (unknown).
 Sequence
 libraries
 were
 aligned
 to
 S.
 
cerevisiae
 genome
 release
 r.64
 using
 Bowtie2
 (Langmead
 and
 Salzberg,
 2012).
 The
 
first
 10bp
 were
 trimmed
 from
 the
 5ʹ′
 end
 to
 account
 for
 the
 barcode
 and
 allow
 for
 
proper
 alignment.
 
 Aligned
 sequences
 were
 sorted
 and
 binned
 into
 50
 bp
 non-­‐
overlapping
 bins
 (Li
 et
 al.,
 2009;
 Quinlan
 and
 Hall,
 2010),
 median-­‐smoothed
 over
 a
 
1kb
 window
 and
 normalized
 to
 one
 another
 by
 total
 read
 count.
 
 Two
 experimental
 
replicates
 were
 averaged
 and
 smoothed
 again.
 
 BrdU
 peaks
 were
 called
 using
 MACS
 
(p
 <
 0.01)
 (Zhang
 et
 al.,
 2008).
 
 Called
 peaks
 were
 then
 cross-­‐referenced
 against
 
origins
 defined
 in
 OriDB
 (Siow
 et
 al.,
 2012)
 as
 “confirmed”
 or
 “likely”
 to
 eliminate
 
any
 peaks
 not
 aligning
 with
 an
 origin.
 
 Origin
 peaks
 were
 subjected
 to
 DESeq
 
analysis
 (adjusted
 p
 
 <
 0.1)
 for
 calling
 of
 differential
 peak
 sizes
 (Anders
 and
 Huber,
 
2010).
 
 

 
RNA-­‐Seq
 library
 preparation.
 
 1.5
 ml
 of
 culture
 was
 harvested
 from
 galactose
 
induced
 culture
 at
 the
 appropriate
 time
 points
 (G1
 and
 60
 min
 post
 release
 
(hydroxyurea
 block)),
 washed
 with
 TBS,
 pelleted,
 flash
 frozen
 in
 a
 dry
 ice/
 ethanol
 
bath,
 and
 stored
 at
 -­‐80°C.
 
 Total
 RNA
 was
 isolated
 using
 the
 MasterPure
 Yeast
 RNA
 
Purification
 Kit
 (Cat.
 #MPY03010).
 Poly(A)
 transcripts
 were
 isolated
 from
 5µg
 of
 
total
 RNA
 using
 the
 NEB
 Poly(A)
 mRNA
 magnetic
 isolation
 kit
 (Cat.
 #
 E7490S).
 First
 
and
 second
 strand
 cDNA
 synthesis
 were
 carried
 out
 using
 the
 NEB
 Next
 FSS
 and
 SSS
 
kits
 (Cat.
 #
 E7525S
 and
 E6111S).
 cDNA
 was
 amplified
 by
 the
 standard
 Illumina
 
protocol
 with
 inclusion
 of
 indexes
 for
 multiplexing.
 Sequencing
 (50
 bp
 paired-­‐end)
 

  79
 
was
 carried
 out
 on
 an
 Illumina
 Hi-­‐Seq
 platform
 by
 the
 FSU
 College
 of
 Medicine
 
Translational
 Science
 Laboratory.
 

 
Analysis
 of
 RNA-­‐Sequencing
 data.
 To
 align
 reads
 and
 call
 differential
 expression
 of
 
RNA
 transcripts,
 reads
 from
 two
 independent
 replicates,
 per
 condition,
 were
 first
 
aligned
 using
 the
 Tophat2
 sequence
 aligner
 (Kim
 et
 al.,
 2013)
 to
 S.
 cerevisiae
 
genome
 release
 r.64
 along
 with
 a
 known
 transcript
 file
 (.gtf
 format).
 Aligned
 reads
 
were
 next
 subjected
 to
 the
 Cufflinks
 transcript
 assembly
 and
 differential
 expression
 
pipeline
 including
 Cuffdiff
 to
 call
 differentially
 expressed
 transcripts
 (FDR
 ≤
 0.01)
 
(Trapnell
 et
 al.,
 2010).
 Gene
 ontology
 analysis
 was
 performed
 with
 the
 GO
 term
 
finder
 and
 GO
 slim
 mapper
 available
 at
 yeastgenome.org
 

 
Fkh1-­‐Myc
 ChIP-­‐chip.
 ChIP-chip experiments were performed as described previously
with three independent replicates (Ostrow et al., 2014). Briefly, immunoprecipitation was
performed on 50ml of 1% formaldehyde cross-linked cells with anti-Myc 9E10 antibody
(Covance, MMS150) at 1:100 and followed by pull-down with Protein G Dynabeads
(Invitrogen, 10004D). Immunoprecipitated DNA
 was
 subjected
 to
 whole
 genome
 
amplification
 (Sigma-­‐Aldrich,
 WGA2),
 labeling,
 and
 hybridization
 as
 previously
 
described
 (Viggiani
 et
 al.,
 2010).
 
 Samples
 were
 hybridized
 to
 custom-­‐designed
 DNA
 
oligonucleotide
 tiling
 arrays
 (Roche-­‐Nimblegen)
 containing
 135,000
 probes,
 with
 
one
 ~60mer
 probe
 for
 every
 ~80
 bp
 of
 unique
 genomic
 sequence.

 

  80
 
Analysis
 of
 Fkh1
 ChIP-­‐chip
 data.
 
 Array
 normalization
 and
 detection
 of
 enriched
 
regions
 was
 performed
 using
 the
 model
 based
 analysis
 of
 two
 color
 arrays
 method
 
(MA2C)
 (Song
 et
 al.,
 2007).
 
 The
 data
 was
 next
 binned
 into
 each
 probes
 closest
 50bp
 
non-­‐overlapping
 bin(s)
 (max
 distance
 from
 bin
 <
 50bp)
 (Quinlan
 and
 Hall,
 2010)
 
and
 median
 smoothed
 over
 a
 1kb
 window.
 Next,
 samples
 were
 quantile-­‐normalized
 
among
 each
 other
 and
 triplicate
 experimental
 replicates
 were
 averaged
 and
 
smoothed
 a
 second
 time
 to
 yield
 final
 comparable
 experimental
 conditions.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  81
 

 

 
CHAPTER
 III
 
Rif1
 regulates
 initiation
 timing
 of
 late
 replication
 origins
 throughout
 the
 S.
 
cerevisiae
 genome
 

 
Adapted
 from:
 

 
Peace,
 J.M.,
 Ter-­‐Zakarian,
 A.,
 and
 Aparicio,
 O.M.
 (2014).
 Rif1
 Regulates
 Initiation
 
Timing
 of
 Late
 Replication
 Origins
 throughout
 the
 S.
 cerevisiae
 Genome.
 PLoS
 ONE
 
9,
 e98501.
 

 

 

 

 

 

 

 

 

 

 

 

  82
 
INTRODUCTION
 

 
In
 S.
 cerevisiae,
 DNA
 sequences
 near
 the
 ends
 of
 chromosomes,
 including
 the
 
telomeres
 themselves,
 the
 adjacent
 “subtelomeric”
 regions,
 and
 the
 subtelomere-­‐
proximal
 silent
 mating-­‐type
 loci
 exhibit
 hallmarks
 of
 heterochromatin,
 including
 
characteristic
 chromatin
 modifications,
 transcriptional
 silencing
 and
 late
 replication
 
(reviewed
 in
 Rusche
 et
 al.,
 2003).
 
 Replication
 origins
 in
 these
 regions
 either
 initiate
 
replication
 late
 during
 S-­‐phase,
 or
 fail
 to
 initiate
 before
 being
 replicated
 passively
 by
 
replication
 forks
 from
 earlier
 origins,
 (reviewed
 in
 Aparicio,
 2013).
 
 
 
Rif1
 (Rap1-­‐interacting
 factor
 1)
 has
 recently
 been
 implicated
 in
 the
 
regulation
 of
 replication
 origin
 timing
 in
 yeast
 and
 mammalian
 genomes
 
(Cornacchia
 et
 al.,
 2012;
 Hayano
 et
 al.,
 2012;
 Lian
 et
 al.,
 2011;
 Yamazaki
 et
 al.,
 2012).
 
 
Rif1
 binds
 telomeres
 and
 subtelomeres
 through
 direct
 interaction
 with
 the
 telomere
 
sequence
 binding
 protein
 Rap1
 in
 S.
 cerevisiae
 or
 Taz1
 in
 S.
 pombe
 (Hardy
 et
 al.,
 
1992;
 Kanoh
 and
 Ishikawa,
 2001).
 In
 mammalian
 cells,
 however,
 Rif1
 is
 recruited
 to
 
telomeres
 and
 other
 chromosomal
 loci
 upon
 DNA
 damage,
 where
 it
 functions
 in
 
signaling
 and
 repair
 of
 DNA
 damage
 (reviewed
 in
 Kumar
 and
 Cheok,
 2014).
 
 In
 the
 
fission
 yeast
 S.
 pombe,
 rif1
+

 deletion
 advances
 the
 timing
 of
 many
 late/dormant
 
origins
 in
 subtelomeric
 as
 well
 as
 internal
 chromosomal
 loci,
 while
 also
 delaying
 or
 
repressing
 the
 activation
 of
 normally
 early
 origins,
 including
 pericentric
 origins
 
(Hayano
 et
 al.,
 2012).
 
 The
 effects
 of
 Rif1
 deletion
 in
 mouse
 cells
 or
 depletion
 in
 
human
 cells
 appear
 to
 be
 similar
 to
 those
 in
 fission
 yeast,
 with
 advanced
 timing
 of
 
late
 domains
 together
 with
 delayed
 replication
 of
 early
 domains
 resulting
 in
 an
 

  83
 
overall
 compression
 of
 the
 temporal
 replication
 program
 (Cornacchia
 et
 al.,
 2012;
 
Yamazaki
 et
 al.,
 2012).
 
 Analysis
 of
 budding
 yeast
 rif1∆
 cells
 showed
 advanced
 
replication
 timing
 of
 subtelomeric
 regions,
 relative
 to
 an
 internal
 early
 and
 an
 
internal
 late
 origin,
 suggesting
 that
 origin
 regulation
 by
 Rif1
 in
 budding
 yeast
 might
 
be
 limited
 to
 subtelomeric
 domains
 (Lian
 et
 al.,
 2011).
 
 However,
 these
 data
 also
 
appear
 to
 indicate
 that
 the
 internal
 early
 origin
 used
 as
 a
 standard
 (ARS1)
 was
 
delayed,
 and
 happens
 to
 reside
 near
 a
 centromere,
 consistent
 with
 the
 possibility
 
that
 early
 origin
 timing,
 particularly
 of
 pericentric
 regions,
 is
 regulated
 by
 Rif1
 in
 
budding
 yeast
 as
 in
 fission
 yeast.
 
 This
 might
 also
 explain
 how
 pericentric
 origins
 
remain
 early-­‐firing
 in
 the
 absence
 of
 transcription
 factors
 Fkh1
 and
 Fkh2,
 which
 are
 
required
 for
 early-­‐firing
 of
 most
 non-­‐pericentric
 early
 origins
 in
 budding
 yeast
 
(Knott
 et
 al.,
 2012).
 
 
The
 mechanism
 of
 Rif1
 function
 in
 origin
 regulation
 also
 requires
 further
 
elucidation.
 
 Rif1
 regulates
 telomere
 length,
 which
 has
 been
 implicated
 in
 the
 
control
 of
 telomere
 replication
 timing
 in
 S.
 cerevisiae
 (reviewed
 in
 Bianchi
 and
 
Shore,
 2007).
 
 Thus,
 Rif1’s
 effect
 on
 subtelomeric
 replication
 timing
 has
 been
 
attributed
 to
 its
 function
 in
 controlling
 telomere
 length.
 
 However,
 this
 mechanism
 
does
 not
 easily
 account
 for
 effects
 of
 Rif1
 at
 internal
 chromosomal
 loci
 as
 observed
 
in
 S.
 pombe
 (Hayano
 et
 al.,
 2012).
 
 In
 both
 yeasts,
 Rif1
 binds
 internal
 chromosomal
 
loci
 independently
 of
 its
 telomere-­‐binding
 partner
 Rap1
 or
 Taz1,
 although
 the
 
significance
 of
 this
 binding
 has
 not
 been
 carefully
 examined
 (Hayano
 et
 al.,
 2012;
 
Smith
 et
 al.,
 2003).
 
 Rif1
 may
 perform
 a
 scaffolding
 function
 to
 organize
 or
 localize
 
chromatin
 domains.
 
 In
 mammalian
 cells,
 Rif1
 fractionates
 with
 the
 insoluble
 

  84
 
nuclear
 scaffold,
 and
 the
 structure
 of
 Rif1
 (in
 yeast
 and
 mammals)
 contains
 motifs
 
that
 mediated
 protein-­‐protein
 interaction,
 consistent
 with
 a
 scaffolding
 function
 
(Cornacchia
 et
 al.,
 2012;
 Xu
 et
 al.,
 2010;
 Yamazaki
 et
 al.,
 2012).
 
 In
 S.
 cerevisiae,
 
palmitoylation
 of
 Rif1
 is
 required
 for
 localization
 of
 telomeres
 to
 the
 nuclear
 
periphery,
 which
 is
 typically
 associated
 with
 late
 replication
 (Park
 et
 al.,
 2011).
 
 
Thus,
 Rif1’s
 function
 in
 telomere
 localization
 may
 contribute
 to
 its
 role
 in
 origin
 
timing,
 at
 least
 in
 yeast.
 
 Whether
 Rif1
 plays
 a
 similar
 function
 to
 localize
 internal
 
chromosomal
 loci
 to
 the
 nuclear
 periphery
 remains
 to
 be
 determined.
 
Here,
 we
 investigate
 the
 role
 of
 Rif1
 in
 regulation
 of
 replication
 origin
 timing
 
in
 budding
 yeast
 by
 analyzing
 replication
 genome-­‐wide
 in
 cells
 lacking
 Rif1
 function.
 
 
We
 have
 also
 addressed
 the
 importance
 of
 palmitoylation
 of
 Rif1
 in
 replication
 
timing
 control
 by
 analyzing
 replication
 in
 cells
 lacking
 Pfa4,
 which
 is
 required
 for
 
Rif1
 palmitoylation
 and
 its
 localization
 to
 the
 nuclear
 periphery
 (Park
 et
 al.,
 2011).
 
 
 

 
RESULTS
 
Rif1
 regulates
 origin
 firing
 independently
 of
 Pfa4
 
To
 examine
 the
 role
 of
 Rif1
 in
 controlling
 replication
 timing
 of
 the
 yeast
 
genome,
 we
 began
 by
 analyzing
 origin
 firing
 in
 in
 the
 presence
 of
 hydroxyurea
 (HU),
 
which
 arrests
 cells
 in
 early
 S-­‐phase
 after
 early
 origin
 firing
 while
 inhibiting
 unfired
 
(late
 or
 dormant)
 origins
 through
 intra-­‐S
 checkpoint
 signaling
 (Santocanale
 and
 
Diffley,
 1998).
 
 Thus
 in
 WT
 cells,
 early
 origins
 fire
 efficiently
 in
 HU
 while
 later
 
origins
 fire
 inefficiently,
 whereas
 conditions
 or
 mutations
 that
 alter
 replication
 

  85
 
timing
 or
 intra-­‐S
 checkpoint
 signaling
 result
 in
 changes
 to
 the
 HU
 replication
 profile
 
(Aparicio
 et
 al.,
 2004;
 Knott
 et
 al.,
 2009a;
 Santocanale
 and
 Diffley,
 1998).
 
 Our
 
previous
 studies
 show
 that
 bromodeoxyuridine
 (BrdU)
 incorporation
 levels
 at
 
origins
 in
 HU-­‐arrested
 cells
 are
 inversely
 related
 to
 those
 origins’
 replication
 
timings
 (TRep)
 in
 untreated
 cells
 (Knott
 et
 al.,
 2009a,
 2012).
 
 We
 released
 G1-­‐
synchronized
 WT
 and
 rif1∆
 cells
 into
 S-­‐phase
 in
 the
 presence
 of
 BrdU
 and
 HU,
 and
 
detected
 BrdU
 incorporation
 into
 nascent
 DNA
 using
 BrdU-­‐immunoprecipitation
 
(IP)
 analyzed
 with
 tiling
 DNA
 microarrays
 (BrdU-­‐IP-­‐chip).
 
 Budding
 morphology
 
and
 DNA
 content
 analyses
 show
 that
 WT
 and
 rif1∆
 cells
 entered
 S-­‐phase
 with
 
indistinguishable
 kinetics
 and
 arrested
 DNA
 synthesis
 with
 indistinguishable
 DNA
 
contents
 (data
 not
 shown).
 
 In
 WT
 cells,
 BrdU
 was
 robustly
 detected
 at
 early
 origins,
 
while
 its
 incorporation
 at
 later-­‐firing
 origins
 was
 substantially
 reduced,
 as
 expected
 
(Fig.
 3.1).
 
 For
 example,
 plots
 of
 data
 for
 chromosome
 VI
 show
 a
 strong
 BrdU
 signal
 
at
 early
 origins
 (e.g.:
 ARS606,
 ARS607)
 in
 comparison
 to
 weak
 BrdU
 signal
 at
 later
 
origins
 (e.g.:
 ARS600.3/4,
 ARS603,
 and
 ARS609).
 
 In
 rif1∆
 cells,
 strong
 BrdU
 signals,
 
comparable
 to
 those
 in
 WT
 cells,
 are
 observed
 at
 early
 and
 late/dormant
 origins,
 
including
 subtelomeric
 and
 internal
 origins,
 on
 chromosome
 VI
 and
 throughout
 the
 
genome
 (Fig.
 3.1
 and
 data
 not
 shown).
 
 Thus,
 Rif1
 regulates
 the
 activation
 of
 
late/dormant
 origins
 in
 response
 to
 HU
 throughout
 the
 budding
 yeast
 genome.
 
To
 ascertain
 whether
 the
 function
 of
 Rif1
 in
 regulating
 origin
 firing
 in
 HU
 
depends
 on
 the
 putative
 role
 of
 Rif1
 in
 anchoring
 DNA
 sequences
 to
 the
 nuclear
 
envelope,
 we
 analyzed
 origin
 firing
 in
 pfa4∆
 cells
 that
 are
 defective
 in
 palmitoylation
 
of
 Rif1,
 which
 is
 required
 for
 its
 localization,
 and
 that
 of
 telomeres,
 to
 the
 nuclear
 

  86
 
periphery,
 presumably
 through
 anchoring
 of
 palmitoylated
 Rif1
 to
 the
 inner
 nuclear
 
membrane
 (Park
 et
 al.,
 2011).
 
 G1-­‐synchronized
 pfa4∆
 cells
 were
 released
 
synchronously
 into
 S-­‐phase
 in
 the
 presence
 of
 HU
 and
 analyzed
 using
 BrdU-­‐IP-­‐chip.
 
 
Budding
 morphology
 and
 DNA
 content
 analyses
 show
 that
 pfa4∆
 cells
 entered
 S-­‐
phase
 with
 similar
 timing
 and
 arrested
 DNA
 synthesis
 with
 similar
 DNA
 content
 as
 
WT
 cells
 (data
 not
 shown).
 
 In
 the
 BrdU-­‐IP-­‐chip
 analysis,
 cells
 lacking
 PFA4
 
exhibited
 a
 replication
 profile
 indistinguishable
 from
 that
 of
 WT
 cells
 (Fig.
 3.1).
 
 
Thus,
 palmitoylation
 of
 Rif1
 by
 Pfa4
 is
 not
 required
 for
 Rif1’s
 function
 in
 regulating
 
replication
 origin
 firing.
 
 

 
Figure
 3.1.
 Analysis
 of
 early
 S-­‐phase
 by
 BrdU-­‐chip.
 
 Plots
 show
 BrdU
 
incorporation
 in
 HU-­‐arrested
 cells.
 
 Plot
 colors
 are
 keyed
 above.
 
 Boxed
 origins
 are
 
labeled
 and
 discussed
 in
 the
 text.
 

 

 

 

  87
 

 

 

 
Figure
 3.2.
 DNA
 content
 analysis
 of
 S-­‐phase.
 DNA
 content
 analysis
 of
 cells
 
released
 into
 S-­‐phase
 for
 the
 temporal
 analysis
 of
 replication
 in
 Fig.
 3.3.
 

 
Rif1
 regulates
 replication
 origin
 timing
 
 
Previous
 studies
 have
 shown
 that
 earlier
 firing
 of
 late/dormant
 origins
 can
 
enable
 their
 activation
 in
 HU
 in
 otherwise
 checkpoint-­‐proficient
 cells
 (Aparicio
 et
 al.,
 

  88
 
2004).
 
 However,
 the
 global
 firing
 in
 rif1∆
 cells
 of
 late/dormant
 origins
 in
 HU
 is
 also
 
consistent
 with
 deregulation
 of
 the
 intra-­‐S
 checkpoint’s
 function
 in
 origin
 inhibition.
 
 
To
 determine
 whether
 Rif1
 regulates
 replication
 origin
 timing
 in
 the
 absence
 of
 
checkpoint
 activation
 by
 HU,
 we
 analyzed
 replication
 timing
 in
 WT
 and
 rif1∆
 cells
 
progressing
 synchronously
 through
 S-­‐phase
 using
 BrdU-­‐IP-­‐chip.
 
 G1-­‐synchronized
 
cells
 were
 released
 into
 S-­‐phase
 in
 the
 presence
 of
 BrdU
 and
 cells
 were
 harvested
 at
 
25
 min
 and
 35
 min
 after
 release
 to
 examine
 temporal
 replication
 profiles.
 
 Bulk
 DNA
 
content
 analysis
 shows
 that
 WT
 and
 rif1∆
 cells
 progressed
 through
 S-­‐phase
 with
 
indistinguishable
 kinetics
 (Fig.
 3.2).
 
 At
 25
 min,
 both
 WT
 and
 rif1∆
 cells
 showed
 low
 
 
levels
 of
 BrdU
 incorporation
 at
 representative
 very
 early
 origins
 ARS806,
 ARS815,
 
ARS820
 consistent
 with
 cells
 of
 both
 strains
 having
 entered
 S-­‐phase
 simultaneously
 
(Fig.
 3.3A).
 
 In
 WT
 cells,
 as
 expected
 at
 this
 early
 S-­‐phase
 time
 point,
 BrdU
 
incorporation
 signals
 were
 low
 or
 undetectable
 at
 most
 other
 origins
 on
 this
 
chromosome,
 consistent
 with
 their
 later
 activation.
 
 However,
 rif1∆
 cells
 showed
 
substantial
 BrdU
 incorporation
 at
 many
 additional
 origin
 loci
 at
 25
 min,
 indicating
 
that
 these
 loci
 initiate
 replication
 earlier,
 relative
 to
 the
 earliest
 origins,
 than
 in
 WT
 
cells
 (Fig.
 3.3A
 and
 data
 not
 shown).
 
 By
 35
 min,
 robust
 BrdU
 incorporation
 was
 
detected
 at
 (and
 surrounding)
 early
 and
 late
 origins
 in
 both
 WT
 and
 rif1∆
 cells,
 
while
 the
 convergence
 (or
 greater
 convergence)
 at
 termination
 (TER)
 sites
 of
 some
 
BrdU-­‐labeled
 replicons
 from
 later
 origins
 reflects
 the
 earlier
 firing
 of
 these
 origins
 in
 
 

  89
 

 
Figure
 3.3.
 Temporal
 analysis
 of
 replication
 by
 BrdU-­‐IP-­‐chip.
 
 Plot
 colors
 are
 
keyed
 above.
 
 (A,
 B)
 Plots
 show
 average
 BrdU
 incorporation
 from
 duplicate
 
experiments.
 
 Boxed
 origins
 and
 termination
 sites
 (TER)
 are
 labeled
 and
 discussed
 
in
 the
 text.
 
 (C,
 D)
 Plots
 show
 average
 BrdU
 incorporation
 signals
 centered
 on
 
origins
 in
 each
 TRep
 quartile.
 

  90
 
rif1∆
 cells
 (Fig.
 3.3A).
 
 We
 examined
 these
 data
 genome-­‐wide
 by
 dividing
 origins
 
into
 replication
 timing
 quartiles
 according
 to
 their
 published
 TRep
 and
 plotting
 the
 
average
 BrdU-­‐IP
 signal,
 centered
 on
 the
 ARSs,
 for
 both
 time
 points
 (Fig.
 3.3C).
 
 This
 
analysis
 shows
 that
 RIF1
 deletion
 affected
 the
 level
 of
 BrdU
 incorporation
 at
 origins
 
at
 25
 min
 in
 the
 two
 later
 timing
 quartiles,
 while
 earlier
 origins
 were
 unaffected.
 
 By
 
35
 min,
 incorporation
 at
 the
 later
 origins
 was
 observed
 in
 WT
 cells,
 but
 still
 trailed
 
the
 levels
 in
 rif1∆
 cells.
 
 Levels
 at
 the
 earlier
 origins
 showed
 no
 effect
 of
 RIF1
 
deletion
 at
 25
 or
 35
 min.
 
 These
 finding
 demonstrate
 that
 Rif1
 specifically
 regulates
 
the
 activation
 timing
 of
 subtelomeric
 and
 internal
 late
 origins
 during
 normal
 S-­‐
phase
 progression.
 
Rif1
 and
 Mec1
 regulate
 replication
 timing
 through
 distinct
 pathways
 
Mutation
 of
 intra-­‐S
 checkpoint
 regulator
 RAD53
 has
 been
 reported
 to
 
advance
 activation
 timing
 of
 a
 late
 origin
 in
 untreated
 cells,
 raising
 the
 possibility
 
that
 Rif1
 regulates
 replication
 timing
 as
 a
 mediator
 of
 the
 intra-­‐S
 checkpoint.
 
 To
 
determine
 whether
 elimination
 of
 intra-­‐S
 checkpoint
 signaling
 might
 explain
 the
 
altered
 replication
 timing
 in
 rif1∆
 cells,
 we
 examined
 replication
 timing
 in
 mec1-­‐100
 
mutant
 cells,
 which
 are
 defective
 in
 late
 origin
 regulation
 through
 the
 intra-­‐S
 
checkpoint
 (Tercero
 et
 al.,
 2003).
 
 This
 analysis
 was
 conducted
 identically
 to
 and
 in
 
parallel
 with
 the
 WT
 and
 rif1∆
 analyses
 presented
 in
 the
 previous
 section.
 
 Analysis
 
of
 bulk
 DNA
 content
 shows
 that
 mec1-­‐100
 cells
 progressed
 through
 an
 unperturbed
 
S-­‐phase
 with
 similar
 overall
 kinetics
 as
 WT
 and
 rif1∆
 cells
 (Fig.
 3.2).
 
 BrdU
 
incorporation
 analysis
 of
 mec1-­‐100
 cells
 shows
 replication
 timing
 profiles
 similar
 to
 

  91
 
WT
 cells,
 with
 only
 the
 earliest
 origins
 showing
 clear
 BrdU
 peaks
 at
 25
 min
 and
 
relative
 BrdU
 peak
 sizes
 at
 35
 min
 reflecting
 normal
 timing
 differences
 as
 well
 (Fig.
 
3.3A,C).
 
 Interestingly,
 the
 average
 signal
 at
 the
 latest
 origin
 quartile
 was
 slightly
 
higher
 in
 mec1-­‐100
 than
 in
 WT
 cells,
 consistent
 with
 the
 previous
 report
 of
 a
 partial
 
advancement
 of
 late
 origin
 timing
 in
 rad53-­‐1
 cells
 (Shirahige
 et
 al.,
 1998).
 
 Overall,
 
however,
 the
 results
 indicate
 that
 the
 intra-­‐S
 checkpoint
 plays
 a
 minor
 role
 in
 
maintaining
 the
 temporal
 program
 of
 replication
 origin
 firing
 in
 budding
 yeast.
 
 
 
To
 address
 the
 possibility
 that
 potential
 residual
 function
 of
 mec1-­‐100
 
maintains
 normal
 replication
 timing,
 we
 examined
 replication
 timing
 in
 mec1∆
 cells.
 
 
Viability
 of
 mec1∆
 cells
 depends
 on
 an
 alternative
 means
 of
 upregulating
 
ribonucleotide
 reductase
 activity,
 which
 can
 be
 accomplished
 by
 deletion
 of
 SML1,
 
which
 inhibits
 ribonucleotide
 reductase.
 
 Thus,
 we
 compared
 sml1∆,
 sml1∆
 rif1∆,
 
and
 sml1∆
 mec1∆
 cells
 in
 an
 experiment
 carried
 out
 identically
 to
 the
 previous.
 
 The
 
results
 show
 qualitatively
 similar
 results
 with
 advanced
 timing
 of
 many
 later
 origins
 
in
 sml1∆
 ri1∆
 cells,
 while
 sml1∆
 mec1∆
 are
 similar
 to
 sml1∆
 (Fig.
 3.3B,
 D).
 
 Compared
 
with
 the
 WT
 cells
 in
 the
 previous
 analysis
 (Fig.
 3.3A,
 C),
 deletion
 of
 SML1
 resulted
 in
 
a
 lower
 BrdU
 signal
 at
 25
 min
 (Fig.
 3.3B,
 D),
 which
 was
 likely
 due
 to
 higher
 
endogenous
 pools
 of
 deoxyribonucleotides
 reducing
 the
 effective,
 initial
 BrdU
 
concentration.
 
 The
 sml1∆
 strains
 also
 showed
 slightly
 reduced
 synchrony
 than
 the
 
SML1
 strains,
 which
 may
 also
 have
 contributed
 to
 the
 slightly
 reduced
 signals
 at
 25
 
min
 (Fig.
 3.2).
 
 These
 results
 clearly
 allow
 us
 to
 conclude
 that
 the
 function
 of
 Rif1
 in
 
replication
 origin
 timing
 control
 does
 not
 reflect
 a
 role
 in
 intra-­‐S
 checkpoint
 
signaling.
 
 

  92
 
To
 test
 the
 integrity
 of
 the
 intra-­‐S
 checkpoint
 in
 rif1∆
 cells,
 we
 examined
 two
 
indicators
 of
 a
 functional
 checkpoint
 response:
 Rad53
 phosphorylation
 in
 response
 
to
 HU
 treatment,
 and
 slowing
 of
 bulk
 DNA
 synthesis
 in
 the
 presence
 of
 the
 DNA
 
damaging
 agent
 methyl-­‐methansulfonate
 (MMS)
 (Paulovich
 and
 Hartwell,
 1995;
 
Sanchez
 et
 al.,
 1996;
 Sun
 et
 al.,
 1996).
 
 First
 we
 analyzed
 Rad53
 phosphorylation
 in
 
WT
 and
 rif1∆
 cells
 released
 into
 S-­‐phase
 in
 the
 presence
 of
 HU.
 
 Rad53
 
phosphorylation
 retards
 its
 mobility
 in
 SDS-­‐PAGE,
 which
 can
 be
 detected
 by
 
immunoblotting
 (Pellicioli
 et
 al.,
 1999).
 
 In
 WT
 cells,
 phosphorylation
 of
 Rad53
 was
 
apparent
 as
 a
 slower
 migrating
 form
 that
 began
 to
 appear
 at
 30
 min
 and
 became
 the
 
predominant
 form
 by
 45
 min
 after
 release
 (Fig.
 3.4A).
 
 In
 rif1∆
 cells,
 the
 timing
 and
 
degree
 of
 phosphorylation
 of
 Rad53
 were
 indistinguishable
 from
 WT
 under
 these
 
conditions
 (Fig.
 3.4A).
 
 Thus,
 intra-­‐S
 checkpoint
 signaling
 to
 activate
 Rad53
 in
 
response
 to
 HU
 is
 intact
 in
 rif1∆
 cells.
 
 
Next,
 we
 analyzed
 replication
 slowing
 in
 response
 to
 MMS
 treatment.
 
 We
 released
 
G1-­‐synchronized
 WT,
 rif1∆,
 and
 mec1-­‐100
 cells
 into
 S-­‐phase
 in
 the
 presence
 of
 MMS
 
and
 analyzed
 bulk
 DNA
 content
 by
 flow
 cytometry.
 
 WT
 and
 rif1∆
 cells
 exhibited
 
slow
 progression
 of
 bulk
 DNA
 replication,
 with
 most
 cells
 requiring
 over
 2
 hrs
 to
 
reach
 fully
 replicated
 (2C)
 DNA
 content
 (Fig.
 3.4B).
 
 In
 contrast,
 mec1-­‐100
 cells
 
attained
 ~2C
 DNA
 content
 by
 1
 hr,
 reflecting
 their
 intra-­‐S
 checkpoint
 defect
 
(Paulovich
 and
 Hartwell,
 1995;
 Tercero
 et
 al.,
 2003).
 
 These
 results
 indicate
 that
 
replication
 slowing
 dependent
 on
 intra-­‐S
 checkpoint
 signaling
 is
 functional
 in
 rif1∆
 
cells.
 
 Taken
 together,
 our
 results
 demonstrate
 that
 Rif1
 regulates
 origin
 initiation
 
 

 

  93
 

 
Figure
 3.4.
 Analysis
 of
 intra-­‐S
 checkpoint
 response.
 
 (A)
 Immunoblot
 analysis
 of
 
Rad53
 phosphorylation
 in
 cells
 released
 into
 HU.
 
 (B)
 DNA
 content
 analysis
 of
 cells
 
released
 into
 MMS.
 

 
timing
 throughout
 the
 genome,
 through
 a
 mechanism
 independent
 of
 intra-­‐S
 
checkpoint
 signaling.
 

 
Landscape
 of
 Rif1
 function/Rif1
 recruitment
 
To
 gain
 a
 better
 understanding
 of
 how
 Rif1
 regulates
 replication
 timing,
 we
 
wished
 to
 define
 its
 target
 origins
 for
 further
 examination.
 
 To
 facilitate
 comparison
 
of
 replication
 origin
 activities
 in
 WT
 versus
 rif1∆
 cells,
 we
 repeated
 the
 analysis
 of
 
BrdU
 incorporation
 in
 HU-­‐arrested
 cells,
 this
 time
 using
 BrdU-­‐IP
 analyzed
 by
 
massively
 parallel
 DNA
 sequencing
 (BrdU-­‐IP-­‐Seq),
 which
 permits
 more
 reliable
 
quantification
 of
 the
 immunoprecipitated
 material
 and
 better
 genome
 coverage,
 
 

  94
 

 
Figure
 3.5.
 Analysis
 of
 early
 S-­‐phase
 by
 BrdU-­‐IP-­‐Seq.
 
 Plot
 colors
 are
 keyed
 
above.
 
 (A)
 Plots
 show
 average
 BrdU
 incorporation
 from
 duplicate
 experiments.
 
 
Origin
 classes
 are
 color-­‐coded
 below
 each
 plot.
 
 (B)
 Plots
 show
 average
 BrdU
 
incorporation
 signals
 centered
 on
 origins
 in
 each
 TRep
 quartile.
 
 (C)
 Plots
 show
 
average
 BrdU
 incorporation
 signals
 centered
 on
 origins
 in
 each
 class
 as
 described
 in
 
the
 text.
 
 (D)
 Origins
 are
 plotted
 along
 the
 x-­‐axis
 according
 to
 TRep
 rank
 and
 color-­‐
coded
 according
 to
 class
 and
 genomic
 location.
 

 

  95
 
particularly
 of
 pseudo-­‐repetitive
 sequences,
 such
 as
 subtelomeric
 regions.
 
 The
 
resulting
 replication
 profiles
 recapitulate
 the
 previous
 BrdU-­‐IP-­‐chip
 results,
 
showing
 widespread
 deregulation
 of
 normally
 HU-­‐dormant
 origins
 throughout
 
internal
 and
 subtelomeric
 regions
 in
 rif1∆
 cells
 (Fig.
 3.5A
 and
 S2.1-­‐16).
 
 Genome-­‐
wide
 analysis
 using
 MACS
 shows
 significant
 (p<0.01)
 BrdU
 incorporation
 at
 241
 
known
 origins
 in
 HU
 in
 WT
 cells
 versus
 373
 in
 rif1∆
 cells,
 together
 accounting
 for
 
392
 total
 origins.
 
 We
 directly
 examined
 the
 relationship
 of
 Rif1
 regulation
 to
 origin
 
timing
 by
 dividing
 the
 identified
 origins
 into
 TRep
 quartiles
 and
 plotting
 the
 averaged
 
BrdU
 signal
 at
 each
 group
 of
 origins,
 centered
 on
 the
 origin
 sequences
 (Fig.
 3.5B).
 
 
The
 results
 show
 similar
 levels
 of
 BrdU
 incorporation
 at
 origins
 in
 the
 earliest
 two
 
timing
 quartiles
 in
 WT
 and
 rif1∆
 cells,
 while
 rif1∆
 cells
 show
 markedly
 higher
 levels
 
at
 origins
 in
 the
 later-­‐firing
 quartiles.
 
 These
 data
 confirm
 that
 Rif1
 specifically
 
regulates
 later-­‐firing
 origins.
 
 
We
 further
 examined
 these
 data
 to
 classify
 origins
 according
 to
 their
 changes
 
in
 signal
 between
 WT
 and
 rif1∆
 cells.
 
 Analysis
 of
 392
 total
 origins
 using
 DiffBind
 
(q<0.05)
 determined
 that
 174
 (44%)
 showed
 higher
 signals
 in
 rif1∆
 cells,
 137
 (35%)
 
showed
 no
 change,
 and
 81
 (21%)
 showed
 lower
 signals
 in
 rif1∆
 cells;
 these
 origins
 
are
 termed,
 Rif1-­‐repressed,
 Rif1-­‐unregulated,
 and
 Rif1-­‐activated,
 respectively
 (Fig.
 
3.5A,C).
 
 Rif1-­‐activated
 origins
 showed
 a
 relatively
 small
 change
 in
 signal
 
magnitude,
 whereas
 Rif1-­‐repressed
 origins
 showed
 several-­‐fold
 greater
 average
 
signal
 magnitude
 in
 rif1∆
 cells
 (Fig.
 3.5C).
 
 To
 reveal
 the
 distribution
 of
 these
 origin
 
classes
 in
 relation
 to
 replication
 timing,
 we
 arranged
 origins
 according
 to
 their
 
replication
 timings
 and
 annotated
 the
 origins
 by
 class
 (Fig.
 3.5D).
 
 Consistent
 with
 

  96
 
Rif1
 regulating
 later-­‐firing
 origins
 genome-­‐wide,
 the
 data
 show
 that
 virtually
 all
 
later-­‐firing
 origins
 are
 in
 the
 Rif1-­‐repressed
 class.
 
 Interestingly,
 Rif1-­‐activated
 and
 
Rif1-­‐unregulated
 origins
 are
 similarly
 distributed
 across
 the
 earlier
 half
 of
 origins.
 
 
These
 data
 also
 show
 the
 greater
 relative
 effect
 of
 Rif1
 on
 later-­‐firing
 versus
 earlier-­‐
firing
 origins.
 
To
 examine
 the
 genomic
 distribution
 of
 Rif1-­‐regulated
 origins
 more
 
precisely,
 we
 determined
 the
 numbers
 of
 origins
 in
 each
 Rif1-­‐regulation
 class
 with
 
respect
 to
 major
 chromosomal
 landmarks
 like
 centromeres
 (CENs)
 and
 telomeres
 
(TELs).
 
 Among
 392
 origins
 identified
 in
 this
 study,
 41
 are
 within
 20kb
 of
 CENs.
 
 15
 
of
 these
 41
 (37%)
 are
 classified
 as
 Rif1-­‐unregulated,
 26
 (63%)
 are
 Rif1-­‐activated,
 
and
 zero
 (0%)
 are
 Rif1-­‐repressed
 (Fig.
 3.5D).
 
 Thus,
 pericentric
 regions
 contain
 an
 
over-­‐representation
 of
 Rif1-­‐unregulated
 and
 -­‐activated
 origins
 and
 are
 devoid
 of
 
Rif1-­‐repressed
 origins.
 
 Similar
 analysis
 finds
 39
 origins
 within
 20kb
 of
 TELs,
 of
 
which
 six
 (15%)
 are
 Rif1-­‐unregulated,
 zero
 (0%)
 are
 Rif1-­‐activated,
 and
 33
 (85%)
 
are
 Rif1-­‐repressed
 (Fig.
 3.5D).
 
 Thus,
 subtelomeric
 regions
 contain
 a
 predominance
 
of
 Rif1-­‐repressed
 origins
 and
 are
 devoid
 of
 Rif1-­‐activated
 origins.
 
 Although
 the
 
effect
 of
 CENs
 and
 TELs
 on
 replication
 origins
 appear
 to
 be
 limited
 to
 a
 distance
 of
 
~20kb
 (Knott
 et
 al.,
 2012;
 Natsume
 et
 al.,
 2013;
 Pohl
 et
 al.,
 2012;
 Raghuraman
 et
 al.,
 
2001;
 Stevenson
 and
 Gottschling,
 1999),
 we
 wondered
 whether
 there
 might
 be
 a
 
distance
 effect
 along
 chromosome
 arms
 relative
 the
 centromeres.
 
 To
 address
 this
 
question
 we
 determined
 the
 average
 distance
 of
 origins
 in
 each
 of
 the
 Rif1
 
regulation
 classes
 after
 excluding
 pericentric
 and
 subtelomeric
 origins,
 which
 would
 
skew
 these
 results.
 
 Interestingly,
 the
 results
 show
 that
 on
 average,
 Rif1-­‐repressed
 

  97
 
origins
 (349kb,
 n=141)
 lie
 significantly
 (p<0.001,
 two-­‐sided
 t-­‐tests)
 more
 distal
 
from
 CENs
 than
 Rif1-­‐activated
 (230kb,
 n=55)
 and
 Rif1-­‐unregulated
 origins
 (212
 kb,
 
n=116).
 
 This
 finding
 suggests
 that
 linear
 chromosomal
 distance
 from
 CENs
 favors
 
origin
 repression
 by
 Rif1.
 
We
 wished
 to
 determine
 how
 chromatin
 binding
 of
 Rif1
 relates
 to
 its
 function
 
in
 origin
 regulation
 throughout
 the
 genome,
 particularly
 at
 internal
 chromosomal
 
loci.
 
 Rif1
 binds
 telomeric
 and
 subtelomeric
 chromatin
 through
 interaction
 with
 the
 
DNA
 binding
 protein
 Rap1
 (Smith
 et
 al.,
 2003).
 
 However,
 Rif1
 also
 binds
 internal
 
chromosomal
 loci,
 most
 of
 which
 do
 not
 appear
 to
 bind
 Rap1,
 suggesting
 a
 novel
 
mode
 of
 Rif1
 recruitment
 to
 these
 loci(Smith
 et
 al.,
 2003).
 
 We
 used
 the
 available
 
Rif1
 genome-­‐wide
 binding
 data
 (ChIP-­‐chip)
 to
 compare
 against
 the
 Rif1-­‐regulated
 
origin
 loci
 identified
 here
 (Smith
 et
 al.,
 2003).
 
 We
 used
 the
 top
 10%
 of
 Rif1
 binding
 
sites
 (the
 least
 stringent
 cutoff
 used
 in
 the
 previous
 study),
 comprising
 543
 non-­‐
telomeric
 binding
 loci,
 and
 tested
 for
 proximity
 (<~1kb)
 to
 Rif1-­‐regulated
 origins.
 
 
We
 excluded
 subtelomeric
 origins
 to
 focus
 the
 analysis
 on
 the
 possibility
 of
 Rif1
 
recruitment
 to
 internal
 origin
 loci.
 
 The
 results
 show
 35
 origins
 (n=
 353)
 proximal
 to
 
Rif1
 binding
 sites,
 which
 includes
 14
 Rif1-­‐repressed
 (n=141),
 12
 Rif1-­‐unregulated
 
(n=
 131),
 and
 nine
 Rif1-­‐activated
 (n=
 81).
 
 Thus,
 there
 appears
 to
 be
 no
 specific
 
enrichment
 of
 Rif1
 binding
 near
 internal
 Rif1-­‐regulated
 origins.
 
 Similar
 analysis
 
with
 601
 non-­‐telomeric
 Rap1
 binding
 sites
 shows
 20
 proximal
 origins,
 of
 which
 14
 
are
 Rif1-­‐repressed,
 one
 is
 Rif1-­‐unregulated,
 and
 five
 are
 Rif1-­‐activated,
 yet
 none
 of
 
these
 loci
 show
 Rif1
 binding.
 

  98
 
DISCUSSION
 
Rif1
 is
 a
 global
 regulator
 of
 late
 origins
 
We
 set
 out
 to
 determine
 the
 genomic
 landscape
 of
 Rif1’s
 function
 in
 
regulation
 of
 replication
 origin
 timing
 in
 S.
 cerevisiae,
 whether
 palmitoylation
 of
 
Rif1,
 and
 by
 implication
 peripheral
 nuclear
 localization
 of
 origins,
 is
 required
 for
 
this
 regulation,
 and
 whether
 Rif1’s
 reported
 checkpoint
 functions
 are
 involved
 in
 
origin
 control.
 
 Our
 results
 clearly
 reveal
 that
 Rif1
 regulates
 the
 initiation
 timing
 of
 
later-­‐firing
 origins
 in
 subtelomeric
 as
 well
 as
 internal
 chromosomal
 loci.
 
 The
 
regulation
 of
 internal
 origins
 suggests
 that
 Rif1
 delays
 origin
 firing
 through
 a
 
mechanism
 independent
 of
 telomere
 proximity,
 although
 the
 results
 are
 fully
 
consistent
 with
 the
 idea
 that
 telomere
 length
 can
 modulate
 the
 amount
 of
 Rif1
 
binding
 and
 hence,
 the
 replication
 timing
 of
 subtelomeric
 origins
 (Marcand
 et
 al.,
 
1997).
 
 The
 independence
 of
 replication
 timing
 control
 from
 PFA4
 function
 is
 
further
 consistent
 with
 the
 telomere-­‐independence
 of
 Rif1’s
 mechanism,
 and
 
suggests
 strongly
 that
 Rif1’s
 function
 in
 timing
 regulation
 does
 not
 require
 Rif1
 
anchoring
 to
 the
 nuclear
 envelope.
 
 
 
Whereas
 the
 major
 effect
 of
 RIF1
 deletion
 is
 to
 advance
 timing
 of
 later-­‐firing
 
origins,
 deletion
 of
 RIF1
 also
 results
 in
 slightly
 lower
 HU
 efficiency
 of
 some
 early
 
origins
 (Rif1-­‐activated),
 suggesting
 a
 slight
 delay
 in
 their
 initiation
 timing.
 
 For
 
example,
 the
 majority
 of
 pericentric
 origins
 fall
 into
 this
 group.
 
 The
 much
 greater
 
relative
 magnitude
 of
 change
 in
 Rif1-­‐repressed
 origins
 than
 Rif1-­‐activated
 origins
 as
 
a
 result
 of
 RIF1
 deletion
 suggests
 that
 Rif1
 plays
 a
 direct
 role
 to
 delay
 origin
 

  99
 
activation
 while
 the
 effect
 on
 early
 origins
 is
 likely
 an
 indirect
 consequence
 of
 more
 
origins
 competing
 in
 G1
 or
 early
 S-­‐phase
 for
 limiting
 factors.
 
 In
 S.
 pombe,
 deletion
 of
 
rif1
+

 strongly
 reduced
 the
 HU
 efficiency
 of
 pericentric
 origins,
 consistent
 with
 an
 
indirect
 effect
 due
 to
 titration
 of
 replication
 factors
 (Hayano
 et
 al.,
 2012).
 
 The
 
relatively
 minor
 effect
 on
 pericentric
 origin
 firing
 in
 S.
 cerevisiae
 likely
 reflects
 the
 
efficiency
 of
 the
 dedicated
 mechanism
 of
 DDK
 recruitment
 by
 the
 kinetochore
 
complex
 to
 promote
 early
 CEN
 replication
 (Natsume
 et
 al.,
 2013),
 whereas
 S.
 pombe
 
uses
 a
 different
 mechanism
 to
 recruit
 DDK
 and
 promote
 early
 firing
 of
 pericentric
 
origins
 (Hayashi
 et
 al.,
 2009;
 Li
 et
 al.,
 2011),
 which
 is
 insufficient
 in
 the
 absence
 of
 
rif1
+
.
 
 
Rif1
 as
 a
 checkpoint
 regulator
 
Our
 results
 show
 that
 loss
 of
 Rif1
 deregulates
 replication
 timing
 but
 
maintains
 intra-­‐S
 checkpoint
 signaling
 to
 Rad53
 and
 inhibits
 replication
 rate
 in
 
response
 to
 MMS.
 
 In
 contrast,
 checkpoint-­‐defective
 mec1-­‐100
 and
 mec1∆
 cells
 
maintain
 replication
 timing
 similar
 to
 WT
 cells,
 while
 they
 are
 defective
 in
 
replication
 inhibition
 in
 response
 to
 DNA
 damage.
 
 These
 findings
 strongly
 suggest
 
that
 Rif1
 regulates
 origin
 timing
 independently
 of
 the
 intra-­‐S
 checkpoint
 pathway.
 
 
Similar
 conclusions
 were
 drawn
 regarding
 Rif1
 in
 S.
 pombe
 (Hayano
 et
 al.,
 2012).
 
 In
 
addition,
 recent
 reports
 that
 Rif1
 regulates
 origin
 timing
 by
 recruiting
 a
 
phosphatase
 that
 opposes
 DDK-­‐dependent
 phosphorylation
 of
 Mcm4
 are
 also
 
consistent
 with
 our
 conclusion
 (Davé
 et
 al.,
 2014;
 Hiraga
 et
 al.,
 2014;
 Mattarocci
 et
 
al.,
 2014).
 
 Rif1
 has
 been
 characterized
 as
 an
 anti-­‐checkpoint
 factor
 in
 the
 DNA
 

  100
 
damage
 response
 to
 uncapped
 telomeres
 in
 S.
 cerevisiae,
 which
 appears
 to
 involve
 
suppression
 of
 checkpoint
 signaling
 from
 single-­‐stranded
 DNA
 (ssDNA)
 (Hirano
 et
 
al.,
 2009;
 Xue
 et
 al.,
 2011).
 
 It
 is
 unclear
 whether
 origin
 regulation
 by
 Rif1
 has
 any
 
connection
 to
 its
 role
 in
 the
 uncapped
 telomere
 response;
 however,
 it
 is
 feasible
 that
 
Rif1’s
 function
 in
 temporally
 distributing
 initiation
 events
 might
 reduce
 the
 total
 
amount
 of
 ssDNA
 contributing
 to
 a
 checkpoint-­‐signal
 threshold.
 
 Consistent
 with
 a
 
primordial
 role
 of
 Rif1
 in
 DNA
 damage
 sensing
 in
 yeast,
 mammalian
 Rif1
 has
 clearly
 
evolved
 a
 critical
 function
 in
 DNA
 damage
 signaling
 and
 processing
 in
 addition
 to
 its
 
role
 in
 replication
 timing
 control
 (Zimmermann
 and
 de
 Lange,
 2014).
 
 
 
How
 does
 Rif1
 act
 at
 internal
 chromosomal
 loci?
 
An
 important
 question
 that
 remains
 is
 whether
 and
 how
 Rif1
 is
 recruited
 
independently
 of
 Rap1
 or
 Taz1
 to
 chromatin
 to
 regulate
 internal
 origin
 firing.
 
 In
 S.
 
pombe,
 origins
 delayed
 by
 Rif1
 are
 found
 more
 proximal
 to
 Rif1
 binding
 sites
 than
 
other
 origins
 suggesting
 a
 direct,
 or
 at
 least
 localized,
 effect
 (Hayano
 et
 al.,
 2012).
 
 
We
 did
 not
 detect
 a
 similar
 relationship
 in
 budding
 yeast;
 however,
 this
 may
 reflect
 
limitations
 of
 the
 data
 due
 to
 experimental
 differences.
 
 The
 available
 budding
 yeast
 
Rif1
 ChIP-­‐chip
 data
 are
 from
 unsynchronized
 cells,
 whereas
 the
 S.
 pombe
 data
 show
 
peak
 binding
 of
 Rif1
 to
 internal
 chromosomal
 loci
 in
 cells
 at
 G1/S
 (Hayano
 et
 al.,
 
2012).
 
 Rif1
 has
 also
 been
 suggested
 to
 act
 in
 higher-­‐level
 chromosome
 
organization,
 potentially
 drawing
 distal
 DNA
 sequences
 together
 (Cornacchia
 et
 al.,
 
2012;
 Hayano
 et
 al.,
 2012;
 Yamazaki
 et
 al.,
 2012).
 
 Thus,
 the
 role
 of
 Rif1
 in
 origin
 
regulation
 may
 not
 require
 direct
 binding
 to
 an
 origin
 in
 cis
 to
 regulate
 its
 function.
 
 

  101
 
Future
 studies
 should
 examine
 the
 cell
 cycle
 binding
 of
 Rif1
 throughout
 the
 genome,
 
as
 well
 as
 its
 role
 in
 three-­‐dimensional
 genome
 organization.
 
 
 
MATERIALS
 AND
 METHODS
 
Yeast
 strains
 and
 methods.
 
 All
 strains
 are
 related
 to
 CVy63,
 which
 is
 W303-­‐
derived,
 MATa
 ade2-­‐1
 ura3-­‐1
 his3-­‐11,15
 trp1-­‐1
 can1-­‐100
 bar1∆::hisG
 LEU2::BrdU-­‐Inc
 
(Viggiani
 et
 al.,
 2010).
 
 TRy1
 (rif1∆)
 and
 TRy3
 (pfa4∆)
 were
 constructed
 by
 deletion
 
of
 RIF1
 and
 PFA4,
 respectively,
 in
 CVy63
 by
 long
 oligonucleotide-­‐based
 replacement
 
and
 selection
 for
 KanMx.
 
 YZy52
 (mec1-­‐100)
 is
 congenic
 with
 the
 above
 strains
 and
 
has
 been
 described
 previously
 (Zhong
 et
 al.,
 2013).
 
 OAy1050
 (sml1∆
 rif1∆)
 is
 a
 
haploid
 segregant
 derived
 from
 a
 cross
 of
 TRy1
 and
 SSy164
 (Matα
 sml1∆::HIS3),
 and
 
OAy1056
 (sml1∆)
 and
 OAy1059
 (sml1∆
 mec1∆)
 are
 haploid
 segregants
 derived
 from
 
a
 cross
 of
 DGy159
 (Gibson
 et
 al.,
 2004)
 and
 CVy70
 (Matα
 URA3::BrdU-­‐Inc),
 
respectively.
 
 For
 G1-­‐phase
 block-­‐and-­‐release,
 log-­‐phase
 cell
 cultures
 were
 
resuspended
 in
 fresh
 YEPD
 at
 O.D.
 0.5,
 and
 incubated
 with
 7.5
 nM
 α-­‐factor
 at
 23°C
 
for
 4
 hrs.
 
 Arrested
 cultures
 were
 released
 from
 α-­‐factor
 arrest
 by
 resuspension
 in
 
fresh
 YEPD
 at
 O.D.
 1.0
 with
 200
 µg/mL
 Pronase
 E
 (Sigma-­‐Aldrich,
 P5147)
 and
 gentle
 
sonication
 to
 disperse
 cells.
 
 BrdU
 (Sigma-­‐Aldrich,
 B5002)
 was
 used
 at
 400
 µg/mL.
 
 
For
 early
 S-­‐phase
 analysis
 of
 replication,
 cells
 were
 released
 into
 the
 presence
 of
 
0.2M
 HU
 (Sigma-­‐Aldrich,
 H8627)
 45
 min
 at
 23°C.
 
 MMS
 (Sigma-­‐Aldrich,
 129925)
 
was
 added
 to
 0.033%
 to
 cells
 released
 from
 α-­‐factor
 arrest
 at
 30°C.
 
 DNA
 content
 
analysis
 was
 perfomed
 with
 SYTOX
 Green
 (Molecular
 Probes,
 S7020)
 as
 described
 
previously
 (Zhong
 et
 al.,
 2013).
 
 Analysis
 of
 Rad53
 by
 immunoblotting
 was
 

  102
 
performed
 with
 anti-­‐Rad53
 antibody
 (SC6749;
 Santa
 Cruz
 Biotech.)
 at
 1:1000
 using
 
previously
 described
 conditions
 (Gibson
 et
 al.,
 2004).
 
 
 

 
BrdU-­‐IP-­‐chip.
 
 Genomic
 DNA
 was
 isolated
 from
 25mL
 BrdU-­‐labeled
 cultures,
 1
 µg
 
total
 genomic
 DNA
 was
 immunoprecipitated,
 and
 half
 of
 the
 immunoprecipitated
 
DNA
 was
 subjected
 to
 whole
 genome
 amplification
 (Sigma-­‐Aldrich,
 WGA2),
 labeling,
 
and
 hybridization
 as
 previously
 described
 (Viggiani
 et
 al.,
 2010).
 
 Samples
 were
 
hybridized
 to
 custom-­‐designed
 DNA
 oligonucleotide
 tiling
 arrays
 (Roche-­‐
Nimblegen)
 containing
 135,000
 probes,
 with
 one
 ~60mer
 probe
 for
 every
 ~80
 bp
 of
 
unique
 genomic
 sequence.
 
 Array
 data
 from
 two
 experimental
 replicates
 were
 
processed
 as
 previously
 described
 (Knott
 et
 al.,
 2009b,
 2012).
 
 A
 final
 .txt
 file
 
containing
 averaged
 data
 from
 the
 two
 experimental
 replicates
 was
 used
 for
 
generating
 plots
 and
 TRep
 quartile
 analysis.
 

 
BrdU-­‐IP-­‐Seq.
 
 Genomic
 DNA
 was
 isolated
 from
 50mL
 BrdU-­‐labeled
 cultures,
 5
 µg
 
total
 genomic
 DNA
 was
 immunoprecipitated
 as
 described
 (Knott
 et
 al.,
 2012),
 and
 
the
 entire
 immunoprecipitate
 was
 amplified
 by
 Illumina
 protocols
 with
 inclusion
 of
 
barcodes
 and
 indexes
 to
 allow
 pooling
 of
 samples
 (Dunham
 and
 Friesen,
 2013).
 
 
Sequencing
 (50
 bp
 paired-­‐end)
 was
 carried
 out
 on
 the
 Illumina
 Hi-­‐Seq
 platform
 by
 
the
 USC
 Epigenome
 Center.
 
 
 

 
Analysis
 of
 sequencing
 data.
 
 Barcodes
 were
 split
 using
 the
 barcode
 splitter
 from
 
the
 FAST-­‐X
 toolkit
 (unknown).
 Sequence
 libraries
 were
 aligned
 to
 S.
 cerevisiae
 

  103
 
genome
 release
 r.64
 using
 Bowtie2
 (Langmead
 and
 Salzberg,
 2012).
 The
 first
 10bp
 
were
 trimmed
 from
 the
 5ʹ′
 end
 to
 account
 for
 the
 barcode
 and
 allow
 for
 proper
 
alignment.
 
 Aligned
 sequences
 were
 sorted
 and
 binned
 into
 50
 bp
 non-­‐overlapping
 
bins
 (Li
 et
 al.,
 2009;
 Quinlan
 and
 Hall,
 2010),
 median-­‐smoothed
 over
 a
 1kb
 window
 
and
 quantile-­‐normalized
 between
 replicates.
 
 Two
 experimental
 replicates
 were
 
averaged
 and
 smoothed
 again.
 
 BrdU
 peaks
 were
 called
 using
 MACS
 (p
 <
 0.01)
 
(Zhang
 et
 al.,
 2008).
 
 Called
 peaks
 were
 then
 cross-­‐referenced
 against
 origins
 
defined
 in
 OriDB
 (Siow
 et
 al.,
 2012)
 as
 “confirmed”
 or
 “likely”
 to
 eliminate
 any
 peaks
 
not
 aligning
 with
 an
 origin.
 
 Origin
 peaks
 were
 subjected
 to
 DiffBind
 analysis
 (FDR
 <
 
0.05)
 for
 calling
 of
 differential
 peak
 sizes
 (Stark
 and
 Brown,
 2013).
 
 A
 final
 .txt
 file
 
containing
 averaged
 data
 from
 the
 two
 experimental
 replicates
 was
 used
 for
 
generating
 plots
 and
 for
 further
 analysis.
 

 
Analysis
 of
 origins
 in
 relation
 to
 genomic
 features
 and
 other
 datasets.
 
 Origin
 
Trep
 was
 taken
 from
 OriDB;
 Trep
 data
 for
 the
 392
 origins
 called
 in
 this
 study
 were
 
divided
 into
 four
 quartiles
 based
 on
 their
 Trep
 rank,
 and
 the
 average
 signal
 from
 the
 
.bed
 file
 was
 aligned
 on
 the
 midpoint
 of
 the
 origin
 (ARS)
 sequence
 as
 defined
 in
 
OriDB.
 
 Data
 were
 plotted
 for
 a
 40kb
 (Fig.
 3.3C,D)
 or
 5kb
 (Fig.
 3.5B)
 window
 around
 
the
 origins
 for
 each
 quartile.
 
 For
 analysis
 of
 intersection
 of
 origins
 with
 other
 
features,
 a
 1kb
 window
 was
 centered
 on
 the
 midpoint
 of
 the
 origin
 sequences
 as
 
defined
 in
 OriDB.
 
 For
 analysis
 of
 overlap
 with
 origins,
 Rif1
 binding
 sites
 were
 
assigned
 coordinates
 corresponding
 to
 the
 feature
 they
 were
 associated
 with
 in
 the
 
published
 dataset
 (Smith
 et
 al.,
 2003),
 as
 follows:
 for
 ORFs,
 the
 whole
 ORF
 

  104
 
coordinates
 were
 used;
 for
 intergenics,
 1kb
 of
 the
 intergenic
 sequence
 nearest
 to
 the
 
gene
 for
 which
 the
 intergenic
 is
 named
 was
 used.
 
 Any
 overlap
 (≥1bp)
 between
 
these
 defined
 windows
 was
 determined
 using
 Bedtools
 intersect
 (Quinlan
 and
 Hall,
 
2010).
 
 The
 average
 distance
 from
 CENs
 of
 all
 non-­‐telomeric
 and
 non-­‐pericentric
 
origins
 was
 determined
 by
 using
 Bedtools
 closest
 function
 (Quinlan
 and
 Hall,
 2010).
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  105
 

 
Chapter
 IV
 
The
 level
 of
 origin
 firing
 inversely
 affects
 the
 rate
 of
 replication
 fork
 
progression
 

 
Adapted
 from:
 
Zhong,
 Y.,
 Nellimoottil,
 T.,
 Peace,
 J.M.,
 Knott,
 S.R.V.,
 Villwock,
 S.K.,
 Yee,
 J.M.,
 Jancuska,
 
J.M.,
 Rege,
 S.,
 Tecklenburg,
 M.,
 Sclafani,
 R.A.,
 et
 al.
 (2013).
 The
 level
 of
 origin
 firing
 
inversely
 affects
 the
 rate
 of
 replication
 fork
 progression.
 J.
 Cell
 Biol.
 201,
 373–383.
 

 
My
 primary
 contributions
 to
 this
 project
 included
 cumulative
 BrdU
 time
 
course
 experiments
 in
 cdc7-­‐as3
 cells
 (Fig.
 4.2),
 strain
 construction,
 and
 additional
 
experiments
 for
 peer
 reviews.
 Additionally,
 I
 contributed
 to
 discussion
 and
 analysis
 
of
 data.
 

 

 

 

  106
 
Introduction
 
The
 replication
 of
 eukaryotic
 chromosomes
 requires
 the
 cell
 cycle-­‐regulated
 
initiation
 of
 numerous
 replication
 origins
 on
 each
 chromosome.
 
 Coordinating
 much
 
of
 this
 process
 are
 two
 highly
 conserved
 kinases,
 S-­‐phase
 Cdk
 and
 Dbf4-­‐dependent
 
kinase
  (DDK),
  which
  become
  active
  at
  the
  G1-­‐S
  transition
  (reviewed
  in
  (Labib,
 
2010)).
 
 During
 early
 G1-­‐phase,
 prior
 to
 S-­‐phase
 Cdk
 and
 DDK
 activation,
 ORC,
 Cdc6,
 
and
 Cdt1
 load
 MCM
 helicase
 complexes,
 in
 an
 inactive
 state,
 onto
 DNA
 at
 potential
 
origin
 loci.
 
 A
 key
 step
 in
 replication
 initiation
 is
 the
 conversion
 of
 MCM
 into
 the
 
active
 helicase,
 resulting
 in
 DNA
 unwinding,
 replisome
 assembly
 and
 DNA
 synthesis.
 
 
DDK
 plays
 an
 essential
 role
 in
 MCM
 activation
 by
 phosphorylating
 MCM,
 particularly
 
the
 Mcm4
 (and
 Mcm6)
 subunit.
 
 In
 fact,
 this
 is
 the
 only
 essential
 function
 of
 DDK
 in
 
yeast,
 as
 mutations
 in
 MCM
 subunits
 that
 mimic
 the
 DDK-­‐phosphorylated
 state
 or
 
cause
  conformational
  changes
  that
  activate
  the
  helicase,
  obviate
  the
  normal
 
requirement
 for
 DDK
 function
 for
 DNA
 replication
 and
 cell
 viability
 (Fletcher
 et
 al.,
 
2003;
 Hardy
 et
 al.,
 1997;
 Sheu
 and
 Stillman,
 2010).
 
As
 the
 name
 implies,
 DDK
 is
 composed
 of
 a
 catalytic
 kinase
 subunit,
 Cdc7,
 
whose
 activity
 depends
 on
 Dbf4
 (reviewed
 in
 (Masai
 and
 Arai,
 2002)).
 
 Dbf4
 binds
 
Cdc7,
 activating
 the
 kinase
 and
 targeting
 it
 to
 specific
 substrates,
 such
 as
 Mcm4.
 
 
Dbf4
 also
 negatively
 regulates
 DDK
 function
 as
 a
 target
 of
 the
 intra-­‐S
 checkpoint
 
pathway
 in
 response
 to
 replication
 stress
 or
 DNA
 damage
 (reviewed
 in
 (Duncker
 
and
  Brown,
  2003)).
   
  Activated
  checkpoint
  kinase
  Rad53
  phosphorylates
  Dbf4,
 
inhibiting
  DDK-­‐dependent
  activation
  of
  unfired
  origins
  (Lopez-­‐Mosqueda
  et
  al.,
 

  107
 
2010;
 Zegerman
 and
 Diffley,
 2010).
 
 There
 are
 conflicting
 reports
 as
 to
 whether
 this
 
regulation
 directly
 inhibits
 DDK
 activity
 or
 affects
 its
 targeting
 to
 substrate,
 or
 both
 
(Oshiro
 et
 al.,
 1999;
 Sheu
 and
 Stillman,
 2006;
 Weinreich
 and
 Stillman,
 1999).
 
 Rad53
 
activity
 also
 regulates
 the
 rate
 of
 replication
 fork
 progression
 through
 damaged
 
DNA,
  suggesting
  that
  Rad53
  might
  modulate
  replication
  fork
  progression
  by
 
regulating
 DDK
 activity
 (Szyjka
 et
 al.,
 2008).
 
 In
 this
 study,
 we
 have
 examined
 
replication
 fork
 dynamics
 in
 cells
 depleted
 of
 Cdc7
 function
 and
 find
 that
 replication
 
forks
 progress
 more
 rapidly
 than
 in
 wild-­‐type
 (WT)
 cells.
 
 Together
 with
 analysis
 of
 
Orc1-­‐
 and
 checkpoint-­‐defective
 cells
 we
 show
 that
 replication
 fork
 rate
 is
 sensitive
 
to
 the
 level
 of
 origin
 firing.
 
 
 

 
Results
 and
 Discussion
 
Cdc7
 activity
 regulates
 replication
 fork
 progression
 
To
 address
 the
 potential
 function
 of
 DDK
 at
 replication
 forks,
 we
 analyzed
 the
 rate
 
of
  DNA
  synthesis
  across
  two
  long
  replicons
  using
  BrdU
  immunoprecipitation
 
analyzed
 by
 microarray
 (BrdU-­‐IP-­‐chip)
 in
 cells
 depleted
 of
 Cdc7
 function.
 To
 deplete
 
Cdc7
 function,
 we
 used
 two
 well-­‐characterized
 alleles:
 cdc7-­‐as3
 (L120A,
 V181A),
 the
 
catalytic
 activity
 of
 which
 is
 directly
 inhibited
 by
 binding
 of
 ATP
 analog
 PP1
 within
 
the
 ATP
 binding
 site
 (Wan
 et
 al.,
 2006),
 and
 cdc7-­‐1,
 a
 temperature-­‐sensitive
 kinase
 
hypomorph,
 in
 the
 presence
 of
 the
 bob1
 allele
 of
 MCM5,
 which
 enables
 reduced
 but
 
sufficient
 origin
 firing
 for
 viability
 in
 the
 absence
 of
 Cdc7
 kinase
 function
 (Hardy
 et
 

  108
 
al.,
 1997;
 Hoang
 et
 al.,
 2007).
 WT
 and
 cdc7-­‐as3
 cells
 were
 synchronized
 in
 late
 G1-­‐
phase
 with
 α-­‐factor
 and
 treated
 with
 PP1
 25
 min
 before
 release
 into
 S-­‐phase;
 upon
 
release
 into
 S-­‐phase,
 aliquots
 of
 each
 culture
 were
 pulse-­‐labeled
 with
 BrdU
 for
 
discrete
  intervals
  (Fig.
  4.1A).
   
  Analysis
  of
  bulk
  DNA
  content
  by
  fluorescence-­‐
activated
 cell
 scanning
 (FACScan)
 showed
 rapid
 progression
 of
 WT
 cells
 through
 S-­‐
phase,
 unaffected
 by
 the
 presence
 of
 PP1,
 whereas
 cdc7-­‐as3
 cells
 were
 delayed
 in
 
bulk
 DNA
 synthesis,
 in
 a
 PP1-­‐dependent
 manner
 (Fig.
 4.1B).
 
 Analysis
 of
 BrdU
 
incorporation
 showed
 depletion
 of
 origin
 firing
 in
 PP1-­‐treated
 cdc7-­‐as3
 cells,
 both
 in
 
the
  number
  of
  origins
  that
  fired
  genome-­‐wide
  and
  in
  their
  levels
  of
  BrdU
 
incorporation
 (see
 Methods).
 
 We
 estimated
 that
 234
 origins
 fired
 in
 WT
 cells
 and
 
157
 in
 cdc7-­‐as3
 cells;
 these
 represent
 mainly
 earlier-­‐firing
 origins
 as
 determination
 
of
 later
 origins
 was
 precluded
 by
 possible
 BrdU
 signal
 from
 converging
 replication
 
forks.
 
 In
 addition
 to
 fewer
 origins
 detected
 to
 fire,
 the
 level
 of
 BrdU
 incorporation
 
was
 lower
 at
 these
 origins
 in
 cdc7-­‐as3
 cells,
 consistent
 with
 less
 efficient
 activation
 
(Fig.
 4.1C).
 
 Arrangement
 of
 the
 origins’
 BrdU
 incorporation
 levels
 according
 to
 their
 
replication
 timing
 (see
 Methods)
 showed
 that
 later
 origins
 were
 more
 diminished
 
than
 earlier
 origins
 in
 cdc7-­‐as3
 cells
 (Fig.
 4.1C).
 This
 pattern
 of
 origin
 firing
 was
 
observed
 along
 the
 chromosome
 III
 and
 VI
 regions
 that
 we
 analyzed
 in
 detail.
 
 In
 
PP1-­‐treated
 WT
 and
 cdc7-­‐as3
 cells,
 BrdU-­‐IP-­‐chip
 at
 10-­‐30
 min
 showed
 similar
 levels
 
of
 DNA
 synthesis
 occurring
 at
 the
 early
 origins,
 ARS306
 and
 ARS607
 (Fig.
 4.1D).
 

 

  109
 

 

 
Figure
 4.1.
 
 Cdc7
 function
 regulates
 replication
 fork
 progression.
 
 A.
 WT
 and
 
cdc7-­‐as3
 cells
 were
 synchronized
 with
 α-­‐factor
 for
 3
 hours
 35
 min,
 treated
 with
 PP1
 
for
 25
 min,
 and
 released
 from
 α-­‐factor
 with
 PP1
 and
 with
 or
 without
 0.033%
 MMS.
 
 
B.
 DNA
 content
 analysis
 by
 FACScan.
 
 Analysis
 of
 PP1-­‐untreated
 cells
 is
 also
 shown.
 
 
C.
 Heat
 maps
 of
 BrdU
 incorporation
 levels
 at
 origins
 are
 arranged
 according
 to
 each
 
origin’s
 published
 replication
 timing
 from
 early
 to
 late
 (left
 to
 right).
 
 D.
 Aliquots
 
were
 pulsed
 with
 BrdU
 for
 the
 indicated
 intervals
 and
 analyzed
 by
 BrdU-­‐IP-­‐chip.
 
 
Results
 for
 segments
 of
 chromosomes
 III
 and
 VI
 are
 plotted,
 with
 origin
 locations
 
indicated
 above.
 
 Data
 shown
 are
 from
 a
 single
 representative
 experiment
 out
 of
 two
 
replicates,
 except
 data
 in
 (C)
 were
 calculated
 from
 both
 replicates.
 

  110
 

 

 
Figure
 4.2.
 Cdc7
 function
 regulates
 replication
 fork
 progression
 (part
 2).
 
 A.
 
Experimental
 scheme:
 WT
 and
 cdc7-­‐as3
 cells
 were
 synchronized
 in
 G1-­‐phase
 with
 
α-­‐factor
 for
 4
 hours,
 treated
 with
 PP1
 25
 min
 before
 release,
 and
 released
 from
 α-­‐
factor
 into
 the
 presence
 of
 PP1
 and
 400
 µg/mL
 BrdU.
 
 B.
 Aliquots
 of
 the
 cultures
 
were
 harvested
 for
 analysis
 by
 BrdU-­‐IP-­‐chip
 at
 the
 indicated
 times.
 
 C.
 Experimental
 
scheme:
 cdc7-­‐as3
 cells
 were
 synchronized
 in
 G1-­‐phase
 with
 α-­‐factor
 for
 4
 hours,
 
treated
 or
 not
 with
 PP1
 25
 min
 before
 release,
 and
 released
 from
 α-­‐factor
 into
 the
 
presence
 or
 absence
 of
 PP1
 and
 presence
 of
 0.033%
 MMS.
 
 D.
 Samples
 were
 
withdrawn
 at
 the
 indicated
 times
 for
 DNA
 content
 analysis
 by
 FACScan.
 
 E.
 Aliquots
 
of
 the
 cultures
 were
 pulsed
 with
 BrdU
 for
 the
 indicated
 intervals
 and
 harvested
 for
 
analysis
 by
 BrdU-­‐IP-­‐chip.
 
 Data
 shown
 are
 from
 a
 single
 representative
 experiment
 
out
 of
 two
 replicates,
 except
 the
 -­‐PP1
 sample
 in
 (E),
 which
 was
 done
 once.
 

  111
 
However
  at
  10-­‐30
  and
  25-­‐45
  min,
  BrdU
  incorporation
  at
  slightly
  later
  origins,
 
ARS603.5
 and
 ARS605,
 was
 diminished
 in
 cdc7-­‐as3
 cells,
 consistent
 with
 depletion
 
of
 Cdc7
 function.
 
 The
 activity
 of
 the
 earliest
 origins
 may
 reflect
 residual
 activity
 of
 
Cdc7-­‐as3
  resistant
  to
  PP1
  (perhaps
  bound
  to
  ATP)
  or
  instead
  may
  reflect
  the
 
execution
 of
 Cdc7
 function
 at
 these
 origins
 prior
 to
 Cdc7-­‐depletion
 in
 late
 G1.
 
 We
 
exploited
 this
 early
 origin
 firing
 to
 examine
 the
 consequences
 of
 Cdc7
 inactivation
 
on
 fork
 progression.
 
 During
 the
 25-­‐45
 and
 40-­‐60
 min
 intervals,
 the
 extent
 of
 BrdU
 
incorporation
 along
 the
 ARS306
 and
 ARS607
 replicons
 was
 greater
 in
 cdc7-­‐as3
 than
 
WT
 cells,
 suggesting
 a
 faster
 rate
 of
 replication
 fork
 progression
 in
 Cdc7-­‐depleted
 
cells.
 
 The
 distal
 BrdU
 incorporation
 apparent
 in
 WT
 cells
 during
 the
 55-­‐75
 min
 
pulse
  likely
  reflects
  subtelomeric
  origin
  activity.
   
  We
  also
  compared
  fork
 
progression
 in
 WT
 and
 cdc7-­‐as3
 cells
 by
 analyzing
 the
 cumulative
 incorporation
 of
 
BrdU
 over
 time
 (Fig.
 4.2B).
 
 This
 method
 yielded
 similar
 results
 as
 the
 pulse-­‐labeling
 
approach,
 showing
 more
 rapid
 progression
 of
 replication
 forks
 through
 the
 ARS306
 
and
 ARS607
 replicons
 in
 cdc7-­‐as3
 than
 in
 WT
 cells.
 
 Together,
 these
 results
 indicate
 
that
 Cdc7
 is
 dispensable
 for
 replication
 fork
 progression,
 and
 suggest
 that
 Cdc7
 
regulates
  the
  rate
  of
  replication
  fork
  progression
  along
  an
  undamaged
  DNA
 
template.
 
 
 
Next,
  we
  analyzed
  whether
  Cdc7
  function
  regulates
  the
  progression
  of
 
replication
 forks
 traversing
 a
 damaged
 DNA
 template.
 
 G1-­‐synchronized
 WT
 and
 
cdc7-­‐as3
 cells
 were
 treated
 with
 PP1
 and
 released
 into
 S-­‐phase
 in
 the
 presence
 of
 
the
 DNA
 alkylating
 agent
 methyl-­‐methane-­‐sulfonate
 (MMS);
 aliquots
 of
 each
 culture
 
were
 pulsed
 with
 BrdU
 at
 defined
 intervals
 (Fig.
 4.1A).
 
 FACScan
 analysis
 showed
 

  112
 
slower
 progression
 of
 WT
 and
 cdc7-­‐as3
 cells
 through
 S-­‐phase
 as
 expected
 due
 to
 the
 
presence
 of
 MMS,
 with
 somewhat
 slower
 bulk
 DNA
 replication
 in
 the
 cdc7-­‐as3
 cells,
 
consistent
 with
 their
 reduced
 efficacy
 of
 origin
 firing
 (Fig.
 4.1B).
 
 We
 estimated
 that
 
219
  origins
  fired
  in
  WT
  and
  134
  in
  cdc7-­‐as3
  cells
  treated
  with
  MMS,
  and
  the
 
efficiency
 of
 origin
 firing
 based
 on
 the
 level
 of
 BrdU
 incorporation
 was
 lower
 at
 most
 
origins
 in
 cdc7-­‐as3
 cells
 (Fig.
 4.1C).
 
 The
 number
 of
 origins
 detected
 in
 MMS-­‐treated
 
versus
 -­‐untreated
 cells
 was
 only
 modestly
 decreased
 because
 the
 measurement
 in
 
cells
  without
  MMS
  did
  not
  effectively
  detect
  later-­‐firing
  origins.
  However,
 
comparison
 of
 WT
 and
 checkpoint-­‐defective
 (mec1-­‐100)
 cells
 indicates
 that
 >90
 
origins
 are
 detected
 as
 checkpoint-­‐inhibited
 by
 MMS
 treatment
 by
 our
 analysis
 (see
 
below).
 
In
 WT
 and
 cdc7-­‐as3
 cells,
 BrdU-­‐incorporation
 was
 similar
 for
 ARS306
 and
 
ARS607
 at
 10-­‐30
 min,
 while
 BrdU
 incorporation
 at
 the
 slightly
 later
 ARS603.5
 and
 
ARS605
 was
 reduced
 in
 cdc7-­‐as3
 cells
 (Fig.
 4.1D).
 
 As
 in
 the
 absence
 of
 MMS,
 the
 rate
 
of
 BrdU
 incorporation
 along
 the
 ARS306
 and
 ARS607
 replicons
 was
 greater
 in
 cdc7-­‐
as3
 than
 in
 WT
 cells.
 
 We
 estimated
 replication
 fork
 rates
 in
 MMS
 using
 regression
 
analysis
 based
 on
 the
 leading
 edge
 of
 BrdU
 incorporation
 across
 the
 ARS607
 to
 VI-­‐R
 
region
 (see
 Methods).
 
 The
 firing
 of
 subtelomeric
 origins
 in
 WT
 cells
 precluded
 
unambiguous
  determination
  of
  fork
  rate
  in
  the
  absence
  of
  MMS;
  however,
  the
 
presence
 of
 MMS
 facilitated
 this
 analysis
 by
 inhibiting
 firing
 of
 subtelomeric
 origins
 
through
 the
 intra-­‐S
 checkpoint
 (Tercero
 et
 al.,
 2003).
 
 This
 analysis
 yielded
 an
 
average
 rate
 of
 446
 bp/min
 in
 MMS-­‐treated
 WT
 cells
 and
 1031
 bp/min
 in
 MMS-­‐
treated
 cdc7-­‐as3
 cells.
 The
 more
 rapid
 progression
 of
 BrdU
 incorporation
 in
 cdc7-­‐
 
 

  113
 

 
Figure
 4.3.
 
 Cdc7
 functions
 upstream
 of
 Rad53
 in
 fork
 regulation.
 
 A.
 WT,
 cdc7-­‐1
 
mcm5-­‐bob1
 and
 cdc7-­‐1
 mcm5-­‐bob1
 pph3∆
 cells
 were
 synchronized
 with
 α-­‐factor
 for
 
3
 hours
 at
 23°C,
 shifted
 to
 32°C
 for
 1
 hour,
 and
 released
 from
 α-­‐factor
 at
 32°C
 with
 
0.033%
 MMS.
 
 B.
 DNA
 content
 analysis
 by
 FACScan.
 
 C.
 Heat
 maps
 of
 BrdU
 
incorporation
 levels
 at
 origins
 are
 arranged
 according
 to
 each
 origin’s
 published
 
replication
 timing
 from
 early
 to
 late
 (left
 to
 right).
 
 D.
 Aliquots
 were
 pulsed
 with
 
BrdU
 for
 the
 indicated
 intervals
 and
 analyzed
 by
 BrdU-­‐IP-­‐chip.
 
 Results
 for
 segments
 
of
 chromosomes
 III
 and
 VI
 are
 plotted,
 with
 origin
 locations
 indicated
 above.
 
 E.
 WT
 
and
 cdc7-­‐1
 mcm5-­‐bob1
 cells
 expressing
 Rfa1-­‐Myc18
 were
 treated
 as
 in
 (A)
 and
 
analyzed
 by
 ChIP-­‐chip
 35
 min
 after
 release;
 plots
 are
 color-­‐coded
 as
 in
 (D).
 
 F.
 
Immunoblot
 analysis
 of
 unphosphorylated
 (*)
 and
 phosphorylated
 Rad53
 (**);
 
molecular
 weight
 markers
 were
 visualized
 with
 Ponceau
 S.
 
 Data
 shown
 are
 from
 a
 
single
 representative
 experiment
 out
 of
 two
 replicates,
 except
 data
 in
 (C)
 were
 
calculated
 from
 both
 replicates.
 

  114
 
as3
 cells
 was
 dependent
 on
 PP1
 (Fig.
 4.2E).
 
 Thus,
 Cdc7
 is
 required
 for
 the
 normal
 
rate
 of
 replication
 fork
 progression
 along
 undamaged
 and
 MMS-­‐damaged
 templates.
 
To
 corroborate
 these
 unexpected
 findings,
 we
 used
 the
 cdc7-­‐1
 allele
 in
 a
 
similar
 analysis.
 
 G1-­‐synchronized
 WT
 and
 cdc7-­‐1
 mcm5-­‐bob1
 cells
 were
 shifted
 to
 
32˚C
 for
 1
 hr
 before
 release
 into
 S-­‐phase
 in
 the
 presence
 of
 MMS,
 and
 pulsed
 with
 
BrdU
 (Fig.
 4.3A).
 
 Total
 DNA
 content
 analysis
 showed
 similar
 slow
 rates
 of
 DNA
 
 
synthesis
 in
 WT
 and
 cdc7-­‐1
 mcm5-­‐bob1
 cells
 in
 the
 presence
 of
 MMS
 (Fig.
 4.3B),
 
while
 cdc7-­‐1
 cells
 lacking
 the
 mcm5-­‐bob1
 suppressor
 allele
 showed
 tight
 arrest
 of
 
DNA
 synthesis
 (Fig.
 4.4B),
 demonstrating
 the
 effective
 inhibition
 of
 Cdc7-­‐1
 function
 
under
 these
 conditions,
 and
 at
 least
 partial
 restoration
 of
 origin
 firing
 by
 mcm5-­‐
bob1,
 as
 reported
 previously
 (Hoang
 et
 al.,
 2007).
 
 BrdU
 incorporation
 showed
 
similar
 effects
 on
 origin
 firing
 of
 Cdc7
 inhibition
 by
 cdc7-­‐1
 mcm5-­‐bob1
 as
 by
 cdc7-­‐
as3;
 we
 estimated
 that
 221
 origins
 fired
 in
 WT
 and
 175
 in
 cdc7-­‐1
 mcm5-­‐bob1
 cells.
 
 
As
 in
 cdc7-­‐as3
 cells,
 the
 level
 of
 BrdU
 incorporation
 at
 most
 origins
 was
 decreased;
 
however,
 the
 earliest
 origins
 were
 least
 affected
 (Fig.
 4.3C).
 
 This
 result
 is
 consistent
 
with
 the
 previous
 demonstration
 that
 the
 earliest
 origins
 are
 partially
 resistant
 to
 
elimination
 of
 Cdc7
 function
 in
 the
 presence
 of
 the
 mcm5-­‐bob1
 allele;
 the
 mcm5-­‐
bob1
 allele
 alone
 does
 not
 affect
 origin
 firing
 (Hoang
 et
 al.,
 2007).
 
BrdU
 incorporation
 at
 ARS306
 and
 ARS607
 was
 similar
 between
 WT
 and
 
cdc7-­‐1
  mcm5-­‐bob1
  cells,
  while
  the
  firing
  of
  the
  slightly
  later
  origins
  was
 
compromised
  specifically
  in
  the
  cdc7-­‐1
  mcm5-­‐bob1
  cells
  (Fig.
  4.3D).
   
  The
 
incorporation
 of
 BrdU
 along
 the
 chromosome
 III
 and
 VI
 replicons
 progressed
 more
 
rapidly
 in
 cdc7-­‐1
 mcm5-­‐bob1
 than
 WT
 cells,
 with
 rates
 of
 1364
 and
 541
 bp/min,
 

  115
 
respectively
 (Fig.
 4.3D).
 
 The
 more
 rapid
 BrdU
 incorporation
 in
 the
 cdc7-­‐1
 mcm5-­‐
bob1
  strain
  was
  accompanied
  by
  association
  of
  RPA,
  which
  binds
  ssDNA
  at
 
replication
 forks,
 consistent
 with
 more
 rapid
 progression
 of
 bona
 fide
 replication
 
forks
 (Fig.
 4.3E).
 
 These
 observations
 support
 the
 results
 with
 the
 cdc7-­‐as3
 allele
 
and
 indicate
 a
 role
 for
 DDK
 in
 regulating
 the
 rate
 of
 fork
 progression.
 

 

 

 
Figure
 4.4.
 
 Effective
 depletion
 of
 Cdc7
 function
 with
 the
 cdc7-­‐1
 allele.
 A.
 
Experimental
 scheme:
 WT,
 cdc7-­‐1,
 and
 cdc7-­‐1
 mcm5-­‐bob1
 cells
 were
 synchronized
 
in
 G1-­‐phase
 with
 α-­‐factor
 for
 3
 hours
 at
 23°C,
 shifted
 to
 32°C
 for
 1
 hour,
 and
 
released
 from
 α-­‐factor
 at
 32°C
 into
 the
 presence
 of
 0.033%
 MMS.
 
 B.
 Samples
 were
 
withdrawn
 at
 the
 indicated
 times
 for
 DNA
 content
 analysis
 by
 FACScan.
 
 Data
 shown
 
are
 from
 a
 single
 representative
 experiment
 out
 of
 two
 replicates.
 

 

 

  116
 
Cdc7
 acts
 upstream
 of
 Rad53
 in
 fork
 regulation
 
 

 
The
 results
 above
 show
 that
 Cdc7
 function
 controls
 the
 rate
 of
 replication
 
fork
 progression
 on
 undamaged
 and
 MMS-­‐damaged
 DNA.
 
 We
 showed
 previously
 
that
 deactivation
 of
 Rad53
 promotes
 progression
 of
 forks
 slowed
 in
 response
 to
 
MMS
 (Szyjka
 et
 al.,
 2008),
 and
 previous
 reports
 have
 shown
 differences
 in
 Rad53
 
activation
 in
 cells
 lacking
 Cdc7
 activity
 (Dohrmann
 and
 Sclafani,
 2006;
 Ogi
 et
 al.,
 
2008;
 Sheu
 and
 Stillman,
 2010;
 Tercero
 et
 al.,
 2003).
 
 Thus,
 reduced
 Cdc7
 activity
 
might
  permit
  rapid
  replication
  fork
  progression
  through
  damaged
  DNA
  by
 
diminishing
  checkpoint
  signaling
  leading
  to
  Rad53
  activation.
   
  To
  investigate
 
whether
 Cdc7
 depletion
 affects
 the
 level
 of
 checkpoint
 activation,
 we
 examined
 
Rad53
  activation
  as
  reflected
  in
  its
  altered
  electrophoretic
  mobility
  due
  to
  its
 
phosphorylation
  (Pellicioli
  et
  al.,
  1999).
   
  Under
  the
  conditions
  of
  the
  above
 
experiment(s),
 Rad53
 activation
 was
 reduced
 in
 cdc7-­‐1
 mcm5-­‐bob1
 compared
 with
 
WT
 cells
 based
 on
 the
 smaller
 proportion
 of
 slower-­‐
 to
 faster-­‐migrating
 Rad53
 (Fig.
 
4.3F).
 
 This
 result
 is
 consistent
 with
 previous
 findings
 that
 Cdc7
 is
 required
 for
 the
 
normal
 level
 of
 checkpoint
 activity
 in
 cells
 undergoing
 replication
 stress,
 and
 is
 
consistent
 with
 the
 idea
 that
 reduced
 checkpoint
 activation
 resulting
 from
 reduced
 
Cdc7
 activity
 affects
 the
 rate
 of
 fork
 progression.
 
A
 previous
 study
 concluded
 that
 the
 requirement
 of
 Cdc7
 for
 checkpoint
 
activation
 in
 response
 to
 DNA
 damage
 reflects
 its
 function
 in
 initiation
 and
 the
 
establishment
  of
  replication
  forks
  (Tercero
  et
  al.,
  2003).
   
  Cdc7
  activity
  also
  is
 
regulated
 as
 a
 direct
 target
 of
 the
 checkpoint
 via
 Rad53-­‐dependent
 phosphorylation
 

  117
 
of
 Dbf4,
 which
 inhibits
 DDK
 function
 in
 origin
 firing.
 
 If
 Cdc7
 is
 upstream
 of
 Rad53
 in
 
activation
  of
  the
  checkpoint,
  then
  fork
  slowing
  should
  occur
  in
  response
  to
 
increased
 Rad53
 activity,
 even
 in
 the
 absence
 of
 Cdc7
 function.
 
 Conversely,
 if
 Cdc7
 
activity
 is
 a
 downstream
 target
 or
 effector
 of
 the
 checkpoint
 required
 for
 regulation
 
of
 fork
 rate
 then
 increased
 Rad53
 activity
 should
 fail
 to
 slow
 forks
 in
 the
 absence
 of
 
Cdc7
 function.
 
 To
 increase
 Rad53
 activity,
 we
 exploited
 our
 previous
 finding
 that
 
deletion
 of
 the
 Rad53
 phosphatase
 PPH3
 results
 in
 Rad53
 hyperactivity
 and
 slower
 
replication
 fork
 progression
 in
 MMS
 (O'Neill
 et
 al.,
 2007;
 Szyjka
 et
 al.,
 2008).
 
 As
 
predicted,
 pph3∆
 resulted
 in
 increased
 Rad53
 activity
 in
 WT
 and
 Cdc7-­‐deficient,
 
MMS-­‐treated
 cells,
 although
 the
 level
 of
 Rad53
 activity
 was
 lower
 in
 cells
 lacking
 
Cdc7
 function,
 consistent
 with
 reduced
 origin
 activation
 
 (Fig.
 4.3F).
 
 The
 increased
 
Rad53
  activity
  correlated
  with
  slower
  bulk
  DNA
  replication
  and
  slower
  fork
 
progression
 (Fig.
 4.3B,
 D).
 
 Thus,
 enhanced
 Rad53
 activity
 slows
 forks
 in
 the
 absence
 
of
 Cdc7
 activity,
 which
 is
 consistent
 with
 Cdc7
 acting
 upstream
 of
 Rad53
 in
 fork
 
slowing
 in
 response
 to
 replication
 stress.
 

 
Decreased
 initiation
 from
 Orc1-­‐depletion
 also
 deregulates
 fork
 progression
 

 
Our
 results
 suggest
 that
 the
 deregulated
 fork
 progression
 of
 Cdc7-­‐depleted
 
cells
 derives
 from
 Cdc7’s
 function
 in
 replication
 initiation.
 
 To
 address
 whether
 a
 
decreased
 level
 of
 replication
 initiation
 is
 sufficient
 to
 deregulate
 fork
 progression,
 
we
 examined
 fork
 progression
 in
 cells
 harboring
 orc1-­‐161,
 a
 temperature-­‐sensitive
 

  118
 
allele
 of
 ORC1,
 which
 is
 required
 for
 replication
 initiation;
 incubation
 of
 G1-­‐arrested
 
orc1-­‐161
  cells
  at
  the
  non-­‐permissive
  temperature
  reduces
  MCM
  occupancy
  at
 
origins
  (Aparicio
  et
  al.,
  1997;
  Gibson
  et
  al.,
  2006).
   
  We
  performed
  the
  same
 
temperature-­‐shift
 regimen
 and
 release
 into
 MMS
 as
 we
 did
 for
 the
 cdc7-­‐1
 cells
 (Fig.
 
4.5A).
 
 Total
 DNA
 content
 analysis
 showed
 diminished
 progression
 through
 S-­‐phase
 
of
 orc1-­‐161
 cells
 compared
 with
 WT,
 consistent
 with
 reduced
 origin
 firing
 in
 the
 
mutant
 cells
 (Fig.
 4.5B).
 
 Rad53
 activation
 also
 was
 reduced
 in
 orc1-­‐161
 cells,
 only
 
reaching
  levels
  comparable
  to
  those
  of
  WT
  cells
  at
  ~90
  min
  (Fig.
  4.5C).
 
 
Interestingly,
  these
  higher
  levels
  of
  Rad53
  activation
  coincided
  with
  reduced
 
progression
 of
 total
 DNA
 content
 in
 orc1-­‐161
 cells
 at
 these
 later
 times
 (Fig.
 4.5B),
 
consistent
 with
 checkpoint
 regulation
 of
 fork
 rates
 (analysis
 of
 fork
 rates
 by
 BrdU-­‐IP
 
is
 not
 feasible
 at
 these
 later
 times).
 
 Analysis
 of
 BrdU
 incorporation
 showed
 a
 global
 
reduction
 in
 the
 number
 of
 origins
 that
 fired
 and
 their
 BrdU
 incorporation
 levels
 in
 
orc1-­‐161
 cells,
 consistent
 with
 depletion
 of
 Orc1
 function.
 
 We
 estimated
 that
 230
 
origins
 fired
 in
 WT
 and
 192
 in
 orc1-­‐161
 cells.
 
 BrdU
 incorporation
 levels
 were
 also
 
lower
  at
  most
  origins,
  including
  very
  early
  origins,
  which
  were
  only
  modestly
 
affected
 in
 Cdc7-­‐depleted
 cells
 (Fig.
 4.5D).
 
Cells
  with
  diminished
  Orc1
  activity
  exhibited
  initiation
  of
  ARS306
  and
 
ARS607
 along
 with
 reduced
 initiation
 of
 the
 slightly
 later
 origins
 (ARS603.5
 and
 
ARS605)
 (Fig.
 4.5E).
 
 Inactivation
 of
 Orc1
 also
 affected
 the
 rate
 of
 fork
 progression
 
like
 Cdc7
 inactivation,
 with
 an
 average
 rate
 of
 1202
 bp/min
 compared
 with
 732
 
bp/min
 in
 WT
 cells
 (Fig.
 4.5E).
 
 Given
 the
 distinct
 roles
 of
 Cdc7
 and
 Orc1
 in
 
 

 

  119
 

 

 
Figure
 4.5.
 
 Orc1
 function
 regulates
 replication
 fork
 progression.
 
 A.
 WT
 and
 
orc1-­‐161
 cells
 were
 synchronized
 with
 α-­‐factor
 for
 3
 hours
 at
 23°C,
 shifted
 to
 32°C
 
for
 1
 hour,
 and
 released
 from
 α-­‐factor
 at
 32°C
 with
 0.033%
 MMS.
 
 B.
 DNA
 content
 
analysis
 by
 FACScan.
 
 C.
 Immunoblot
 analysis
 of
 phosphorylated
 Rad53
 (Rad53-­‐P);
 
both
 panels
 are
 from
 the
 same
 blot
 and
 exposure.
 
 Molecular
 weight
 markers
 were
 
not
 run
 on
 this
 gel;
 for
 the
 migration
 of
 size
 markers
 relative
 to
 the
 bands
 detected
 
by
 this
 antibody,
 see
 Figure
 2F.
 
 D.
 Heat
 maps
 of
 BrdU
 incorporation
 levels
 at
 origins
 
are
 arranged
 according
 to
 each
 origin’s
 published
 replication
 timing
 from
 early
 to
 
late
 (left
 to
 right).
 
 E.
 Aliquots
 were
 pulsed
 with
 BrdU
 for
 the
 indicated
 intervals
 and
 
analyzed
 by
 BrdU-­‐IP-­‐chip.
 
 Results
 for
 segments
 of
 chromosomes
 III
 and
 VI
 are
 
plotted,
 with
 origin
 locations
 indicated
 above.
 
 Data
 shown
 are
 from
 a
 single
 
representative
 experiment
 out
 of
 two
 replicates,
 except
 data
 in
 (D)
 were
 calculated
 
from
 both
 replicates.
 

 

  120
 
replication
 initiation,
 we
 conclude
 that
 the
 common
 deficiency
 in
 origin
 activation
 
best
 explains
 the
 diminished
 Rad53
 activation
 and
 rapid
 fork
 rate.
 
 
Checkpoint
 elimination
 is
 not
 sufficient
 to
 deregulate
 fork
 rate
 
 

 
We
 have
 shown
 that
 decreased
 levels
 of
 initiation
 result
 in
 decreased
 Rad53
 
activation
 levels
 and
 faster
 fork
 rates.
 
 However,
 another
 feature
 of
 reduced
 Cdc7
 
and
 Orc1
 activity
 that
 we
 hypothesized
 might
 contribute
 to
 faster
 fork
 rates
 is
 the
 
reduced
 overall
 number
 of
 active
 forks,
 which
 might
 increase
 the
 availability
 of
 
normally
 rate-­‐limiting
 factors
 to
 the
 fewer
 active
 forks.
 
 To
 evaluate
 the
 effect
 of
 the
 
number
 of
 active
 forks,
 we
 examined
 mec1-­‐100
 cells,
 which
 only
 weakly
 activate
 
Rad53
  in
  response
  to
  MMS
  (but
  sufficiently
  to
  maintain
  fork
  stability)
  while
 
activating
 a
 larger
 than
 normal
 complement
 of
 origins
 including
 late
 and
 normally
 
dormant
 origins
 (Paciotti
 et
 al.,
 2001;
 Tercero
 et
 al.,
 2003).
 
 Therefore,
 these
 cells
 
allow
 us
 to
 test
 the
 effect
 of
 higher
 numbers
 of
 active
 forks
 in
 combination
 with
 low
 
levels
  of
  active
  Rad53.
   
  As
  shown
  previously,
  G1-­‐synchronized
  mec1-­‐100
  cells
 
released
 into
 MMS
 (Fig.
 4.6A)
 exhibit
 more
 rapid
 progression
 through
 S-­‐phase
 as
 
measured
 by
 total
 DNA
 content
 (Fig.
 4.6B),
 and
 decreased
 Rad53
 activation
 (Fig.
 
4.6C)
 (Paciotti
 et
 al.,
 2001).
 
 BrdU
 incorporation
 analysis
 showed
 increased
 numbers
 
of
 active
 origins
 genome-­‐wide
 in
 mec1-­‐100
 cells,
 with
 219
 firing
 in
 WT
 and
 310
 in
 
mec1-­‐100
 cells,
 the
 latter
 including
 many
 later
 origins
 (Fig.
 4.6D).
 
 Analysis
 of
 the
 
chromosome
 III
 and
 VI
 regions
 showed
 similar
 levels
 of
 BrdU
 incorporation
 at
 
 

  121
 

 

 
Figure
 4.6.
 
 Deregulated
 origin
 firing
 in
 mec1-­‐100
 slows
 replication
 forks.
 
 A.
 
WT
 and
 mec1-­‐100
 cells
 were
 synchronized
 with
 α-­‐factor
 for
 4
 hours
 at
 23°C
 and
 
released
 from
 α-­‐factor
 at
 23°C
 with
 0.033%
 MMS.
 
 B.
 DNA
 content
 analysis
 by
 
FACScan.
 
 C.
 Immunoblot
 analysis
 of
 phosphorylated
 Rad53
 (Rad53-­‐P);
 both
 panels
 
are
 from
 the
 same
 blot
 and
 exposure.
 
 Molecular
 weight
 markers
 were
 not
 run
 on
 
this
 gel;
 for
 the
 migration
 of
 size
 markers
 relative
 to
 the
 bands
 detected
 by
 this
 
antibody,
 see
 Figure
 2F.
 
 D.
 Heat
 maps
 of
 BrdU
 incorporation
 levels
 at
 origins
 are
 
arranged
 according
 to
 each
 origin’s
 published
 replication
 timing
 from
 early
 to
 late
 
(left
 to
 right).
 
 E.
 Aliquots
 were
 pulsed
 with
 BrdU
 for
 the
 indicated
 intervals
 and
 
analyzed
 by
 BrdU-­‐IP-­‐chip.
 
 Results
 for
 entire
 chromosome
 VI
 are
 plotted,
 with
 origin
 
locations
 indicated
 above.
 
 Data
 shown
 are
 from
 a
 single
 representative
 experiment
 
out
 of
 two
 replicates,
 except
 data
 in
 (D)
 were
 calculated
 from
 both
 replicates.
 

  122
 
earlier
 origins
 and
 higher
 levels
 at
 late
 origins
 like
 ARS603
 in
 mec1-­‐100
 cells
 (Fig.
 
4.6E).
 
 Replication
 forks
 progressed
 more
 slowly
 in
 mec1-­‐100
 cells
 than
 in
 WT
 cells
 
(Fig.
 4.6E),
 with
 rates
 of
 242
 and
 517
 bp/min,
 respectively,
 despite
 lower
 levels
 of
 
Rad53
 activation
 in
 mec1-­‐100
 cells.
 
 We
 have
 observed
 similar
 BrdU
 incorporation
 
profiles
 as
 in
 mec1-­‐100
 cells,
 including
 more
 origins
 firing
 and
 slower
 forks,
 in
 other
 
intra-­‐S
  checkpoint
  mutant
  strains,
  including
  rad53∆
  and
  rad53∆
  exo1∆
  (EXO1
 
deletion
  suppresses
  the
  MMS
  sensitivity
  of
  rad53∆
  cells
  (Segurado
  and
  Diffley,
 
2008))
 (Fig.
 4.7).
 
 A
 recent
 study
 in
 human
 cells
 reported
 slower
 fork
 progression
 in
 
Ckh1-­‐depleted
 cells,
 which
 was
 suppressed
 by
 additional
 depletion
 of
 Cdc7
 activity
 
(Petermann
  et
  al.,
  2010).
   
  These
  findings
  suggest
  that
  increased
  numbers
  of
 
replication
  forks
  suppress
  more
  rapid
  fork
  progression,
  perhaps
  by
  depleting
 
essential
 factors.
 
 
Replication
 fork
 and
 checkpoint
 levels
 regulate
 replication
 fork
 progression
 

 
Comparison
  of
  origin
  firing
  rates
  and
  replication
  fork
  rates
  across
  the
 
experiments
  in
  MMS
  supports
  a
  model
  in
  which
  the
  rate
  of
  replication
  fork
 
progression
 is
 inversely
 related
 to
 the
 number
 of
 active
 replication
 forks,
 which
 is
 
determined
 by
 the
 level
 of
 origin
 firing
 (Fig.
 4.8).
 
 We
 propose
 that
 the
 number
 of
 
active
 forks
 influences
 overall
 fork
 rate
 in
 checkpoint-­‐dependent
 and
 -­‐independent
 
ways.
 
 Robust
 checkpoint
 activation
 associated
 with
 substantial
 numbers
 of
 
 

  123
 

 
Figure
 4.7.
 
 Deregulated
 origin
 firing
 in
 rad53∆
 slows
 replication
 forks.
 
 A.
 
Experimental
 scheme:
 WT,
 rad53,
 exo1∆,
 and
 rad53∆
 exo1∆
 cells
 (all
 strains
 are
 
sml1∆)
 were
 synchronized
 in
 G1-­‐phase
 with
 α-­‐factor
 for
 4
 hours
 at
 23°C
 and
 
released
 from
 α-­‐factor
 at
 23°C
 into
 the
 presence
 of
 0.033%
 MMS.
 
 B.
 Samples
 were
 
withdrawn
 at
 the
 indicated
 times
 for
 DNA
 content
 analysis
 by
 FACScan.
 
 C.
 Aliquots
 
of
 the
 cultures
 were
 pulsed
 with
 BrdU
 for
 the
 indicated
 intervals
 and
 harvested
 for
 
analysis
 by
 BrdU-­‐IP-­‐chip.
 
 Data
 shown
 are
 from
 a
 single
 experiment.
 

  124
 

 
replication
 forks
 encountering
 DNA
 damage
 slows
 fork
 progression.
 
 Additionally,
 
large
 numbers
 of
 forks
 deplete
 available
 replication
 factors
 or
 dNTPs,
 which
 limits
 
fork
 rate
 even
 with
 a
 reduced
 or
 absent
 checkpoint.
 
 However,
 when
 fork
 numbers
 
are
 reduced,
 as
 in
 cdc7
 and
 orc1
 mutant
 cells,
 reduced
 checkpoint
 activation
 and
 
reduced
 competition
 from
 other
 forks
 for
 limiting
 factors
 allows
 more
 avid
 fork
 
progression.
 
 In
 mec1-­‐100
 cells,
 where
 deficiency
 of
 Rad53
 activation
 is
 associated
 
with
 an
 excess
 of
 replication
 forks,
 replication
 factor
 depletion
 results
 in
 slower
 fork
 
progression
 despite
 the
 lack
 of
 checkpoint
 activation.
 
 This
 model
 is
 based
 in
 part
 on
 
our
 previous
 demonstration
 that
 suppression
 of
 Rad53
 activity
 restores
 robust
 fork
 
progression
 through
 MMS-­‐damaged
 DNA
 (Szyjka
 et
 al.,
 2008).
 
 Further
 supporting
 
the
 idea
 that
 fork
 rate
 is
 under
 checkpoint
 regulation,
 a
 recent
 study
 has
 shown
 that
 
Ckh2
 kinase
 (the
 metazoan
 equivalent
 of
 Rad53)
 inhibits
 the
 replicative
 helicase
 
complex
 (Cdc45-­‐MCM-­‐GINS)
 (Ilves
 et
 al.,
 2012).
 
 In
 addition,
 recent
 studies
 have
 
shown
 that
 DDK
 and
 several
 other
 replication
 proteins,
 as
 well
 as
 dNTPs,
 are
 rate
 
limiting
 for
 chromosomal
 DNA
 replication
 in
 yeast
 (Mantiero
 et
 al.,
 2011;
 Patel
 et
 al.,
 
2008;
 Poli
 et
 al.,
 2012;
 Tanaka
 et
 al.,
 2011).
 
 Taken
 together,
 we
 conclude
 that
 
replication
 fork
 rate
 is
 sensitive
 to
 levels
 of
 origin
 firing
 and
 checkpoint
 activity.
 

 

  125
 

 

 
Figure
 4.8.
 
 Replication
 fork
 and
 checkpoint
 levels
 regulate
 replication
 fork
 
progression.
 
 A.
 Genome-­‐wide
 origin
 firing
 and
 local
 fork
 rate
 for
 the
 experiments
 
in
 MMS
 are
 plotted;
 average
 and
 standard
 deviation
 are
 shown
 (n=2).
 
 Data
 points
 
are
 color-­‐coded
 for
 the
 experimental
 group
 represented.
 
 B.
 The
 model
 depicts
 fork
 
rate
 regulation
 in
 wild-­‐type
 and
 mutant
 strains
 with
 different
 levels
 of
 origin
 firing
 
and
 checkpoint
 functions.
 
 The
 font
 intensities
 and
 line/arrow
 thicknesses
 represent
 
the
 relative
 strength
 of
 the
 corresponding
 pathway
 or
 signal.
 
 For
 example,
 
translucent
 fonts
 indicate
 a
 weak
 or
 defective
 function
 or
 pathway
 and
 bold
 fonts
 
indicate
 a
 hyperactive
 function
 or
 pathway.
 
 The
 chromosome
 graphic
 below
 each
 
model
 depicts
 the
 levels
 of
 origin
 firing
 and
 fork
 rate
 in
 each
 condition.
 
 Open
 circles
 
represent
 fired
 origins
 and
 filled
 circles
 represent
 unfired
 origins;
 E,
 M,
 and
 L
 
indicate
 early-­‐,
 middle-­‐
 and
 late-­‐firing
 origins,
 respectively.
 

  126
 
Materials
 and
 methods
 

 
Plasmid
 and
 strain
 constructions:
 All
 strains
 are
 derived
 from
 W303
 and
 are
 
described
 in
 Table
 4.1.
 
 Gene
 disruptions
 were
 constructed
 by
 PCR-­‐based
 methods
 
(Guldener
 et
 al.,
 1996;
 Longtine
 et
 al.,
 1998).
 
 Plasmid
 p306-­‐ars305∆-­‐BrdU-­‐Inc
 was
 
constructed
 by
 three-­‐way
 ligation
 of
 620bp
 NotI-­‐BglII
 PCR-­‐amplified
 fragment
 5ʹ′-­‐
flanking
 ARS305
 and
 560bp
 BglII-­‐SacI
 PCR-­‐amplified
 fragment
 3ʹ′-­‐flanking
 ARS305
 
into
  NotI-­‐SacI-­‐digested
  p306-­‐BrdU-­‐Inc
  (Viggiani
  and
  Aparicio,
  2006).
   
  Plasmid
 
p306-­‐ars305∆-­‐BrdU-­‐Inc
  digested
  with
  BglII
  was
  used
  to
  simultaneously
  delete
 
ARS305
  and
  integrate
  the
  10.3kb
  plasmid
  with
  BrdU-­‐Inc
  cassette
  by
  gene
 
replacement.
 
 Correct
 replacement
 was
 confirmed
 by
 PCR.
 
 The
 1.6kb
 HindIII-­‐EcoRI
 
fragment
  of
  cdc7-­‐as3
  containing
  the
  kinase-­‐inactivating
  mutations
  L120A
  and
 
V181A
 was
 isolated
 from
 pRS551-­‐cdc7-­‐as3
 (L120A,
 V181A)
 (Wan
 et
 al.,
 2006)
 and
 
subcloned
  into
  EcoRI-­‐HindIII-­‐digested
  pRS306.
   
  The
  resulting
  plasmid,
  pRS306-­‐
cdc7-­‐as3,
 was
 linearized
 with
 EcoRI
 and
 used
 to
 exchange
 CDC7
 with
 cdc7-­‐as3
 by
 
pop-­‐in/pop-­‐out
 replacement.
 
 pPP117,
 which
 contains
 a
 3.6kb
 EcoRI-­‐SalI
 cdc7-­‐1
 
fragment
  from
  pRH301
  (Hollingsworth
  et
  al.,
  1992)
  in
  URA3
  integrating
  vector
 
pRS306,
 was
 linearized
 with
 ClaI
 and
 used
 to
 exchange
 CDC7
 with
 cdc7-­‐1
 by
 pop-­‐
in/pop-­‐out
 replacement
 followed
 by
 screening
 for
 temperature-­‐sensitivity
 at
 37°C.
 
The
  resultant
  cdc7-­‐1
  strain
  was
  then
  transformed
  with
  MluI-­‐digested
  pRAS490
 
(Dohrmann
 and
 Sclafani,
 2006),
 which
 contains
 mcm5-­‐bob1-­‐2
 (CT
 to
 TC
 change
 at
 
codon
 83
 to
 create
 DdeI
 site
 and
 P83L
 mutation)
 in
 pRS306,
 to
 exchange
 MCM5
 with
 
mcm5-­‐bob1-­‐2
  by
  pop-­‐in/pop-­‐out
  replacement
  followed
  by
  screening
  for
 

  127
 
suppression
  of
  temperature-­‐sensitivity
  at
  37°C.
 
  The
  7.5kb
  SacI-­‐SpeI
  fragment
 
containing
 the
 mec1-­‐100
 allele
 was
 isolated
 from
 plasmid
 pML258.51
 (Paciotti
 et
 al.,
 
2001)
  and
  subcloned
  into
  SacI-­‐SpeI-­‐digested
  pRS406.
   
  The
  resulting
  plasmid,
 
pRS406-­‐mec1-­‐100,
 was
 linearized
 with
 BstEII
 and
 used
 to
 exchange
 MEC1
 with
 
mec1-­‐100
 by
 pop-­‐in/pop-­‐out
 replacement.
 
 All
 allele
 replacements
 were
 confirmed
 
by
 DNA
 sequencing.
 
 Primer
 sequences
 are
 available
 upon
 request.
 
 
 

 
Yeast
  methods:
  Cells
  were
  grown
  in
  YEPD
  for
  all
  experiments.
   
  Cell
  were
 
synchronized
 in
 G1-­‐phase
 by
 incubation
 with
 5
 nM
 α-­‐factor
 (Sigma,
 T6901)
 for
 4
 
hours
 at
 23°C
 and
 released
 by
 resuspension
 and
 gentle
 sonication
 in
 fresh
 YEPD
 
lacking
 α-­‐factor
 and
 containing
 200
 µg/mL
 Pronase
 E
 (Sigma,
 P5147).
 
 For
 DNA
 
content
  analysis,
  cells
  were
  fixed
  with
  70%
  ethanol
  overnight,
  washed
  and
 
resuspended
 in
 50
 mM
 sodium
 citrate
 (pH
 7.4),
 and
 RNAseA
 was
 added
 to
 0.2
 
mg/mL
 and
 incubated
 for
 3
 hours
 at
 50°C.
 
 Proteinase
 K
 was
 added
 to
 0.5
 mg/mL
 
and
 incubated
 50°C
 for
 2
 hours,
 after
 which
 Sytox
 Green
 (Mol
 Probes)
 was
 added
 to
 
1
 µM
 for
 at
 least
 30
 min
 before
 analysis
 on
 a
 Becton-­‐Dickinson
 FACScan
 instrument.
 
 
PP1
  (Tocris
  Biosciences)
  was
  used
  at
  25
 µM.
   
  For
  BrdU-­‐IP-­‐chip,
  20mL
  culture
 
(OD~1)
 was
 pulse-­‐labeled
 with
 800
 µg/mL
 BrdU
 (Sigma,
 B5002),
 harvested
 with
 
addition
 of
 NaN3
 to
 0.1%,
 and
 genomic
 DNA
 was
 prepared
 by
 disruption
 with
 glass
 
beads.
   
  1
  µg
  genomic
  DNA
  was
  sonicated
  to
  ~500bp,
  denatured,
  and
 
immunoprecipitated
 with
 anti-­‐BrdU
 antibody
 (GE
 Healthcare,
 RPN202)
 at
 1:1000.
 
 
For
  chromatin
  immunoprecipitation
  analyzed
  by
  microarray
  (ChIP-­‐chip),
  50mL
 
culture
 (OD~1)
 was
 fixed
 with
 formaldehyde,
 chromatin
 was
 isolated
 by
 disruption
 

  128
 
with
 glass
 beads
 and
 sonicated
 to
 ~500bp.
 
 Chromatin
 was
 immunoprecipitated
 
with
 anti-­‐MYC
 9E10
 antibody
 (Covance,
 MMS150)
 at
 1:100.
 
 Immunoprecipitated
 
and
 total
 DNA
 samples
 (from
 BrdU-­‐IP-­‐chip
 and
 ChIP-­‐chip)
 were
 amplified
 using
 
WGA2
 (Sigma),
 labeled
 with
 Cy5
 and
 Cy3,
 respectively,
 and
 hybridized
 to
 custom-­‐
designed
  oligonucleotide-­‐based
  tiling
  microarrays
  (Roche-­‐Nimblegen)
  using
  the
 
Maui
 hybridization
 system
 according
 to
 the
 manufacturer’s
 instructions;
 further
 
details
 are
 provided
 in
 (Knott
 et
 al.,
 2012;
 Viggiani
 et
 al.,
 2009;
 Viggiani
 et
 al.,
 2010).
 
 
Rad53
 immunoblot
 analysis
 was
 performed
 with
 anti-­‐Rad53
 at
 1:1000
 (Santa
 Cruz
 
Biotechnology,
 SC6749)
 as
 described
 previously
 (Gibson
 et
 al.,
 2004).
 
 

 
Microarray
 normalization:
 BrdU-­‐IP-­‐chip
 normalization
 from
 the
 Nimblegen
 arrays
 
was
 performed
 as
 described
 (Knott
 et
 al.,
 2009).
 
 Briefly,
 probes
 from
 the
 most
 
dense
 regions
 of
 the
 corresponding
 MA
 plot
 were
 isolated
 and
 principle
 component
 
analysis
  was
  performed
  on
  their
  corresponding
  M
  (=
  log(IP/Total))
  and
  A
  (=
 
log(IP*Total))
 values.
 
 The
 resultant
 first
 and
 second
 principle
 components
 were
 
then
 taken
 to
 represent
 each
 probe's
 normalized
 A
 and
 M
 values,
 respectively.
 
 
Following
 this,
 loess
 normalization
 was
 performed
 to
 remove
 any
 residual
 array
 
artifacts
 (Smyth
 and
 Speed,
 2003).
 
 Analysis
 of
 Rfa1
 ChIP
 was
 performed
 using
 
MA2C
 (Song
 et
 al.,
 2007).
 

 
 
Data
 filtering:
 We
 used
 the
 values
 of
 ϕ
 =
 exp(M)
 obtained
 from
 the
 previous
 step
 in
 
the
  subsequent
  analysis.
   
  An
  enriched
  probe
  was
  defined
  as
  one
  with
  ϕ-­‐value
 
greater
 than
 one.
 
 An
 enriched
 region
 was
 defined
 as
 a
 sequence
 of
 consecutive
 

  129
 
enriched
 probes.
 
 Each
 enriched
 region
 was
 given
 an
 enrichment
 score
 (E-­‐score),
 
which
 was
 the
 sum
 of
 the
 ϕ-­‐values
 of
 the
 probes
 within
 the
 region.
 
 In
 most
 cases,
 
there
 was
 a
 single,
 clearly
 enriched
 region
 of
 BrdU
 signal
 to
 the
 right
 of
 ARS607.
 
 In
 
cases
 with
 more
 than
 one
 enriched
 region,
 for
 the
 purpose
 of
 estimating
 the
 fork
 
speed
 we
 chose
 the
 region
 with
 the
 maximum
 E-­‐score.
 
 Column
 F
 of
 Table
 S1
 
indicates
 which
 time
 intervals
 were
 included
 in
 the
 analysis.
 

 
Fork
 rate
 analysis:
 For
 each
 experiment,
 we
 examined
 the
 ϕ-­‐values
 in
 the
 single
 
enriched
 region
 identified
 above.
 
 We
 assumed
 that
 the
 probability
 of
 having
 a
 fork
 
in
 the
 interval
 defined
 by
 the
 position
 of
 a
 single
 probe
 is
 proportional
 to
 the
 ϕ-­‐
value
 of
 that
 probe.
 
 To
 estimate
 the
 leading
 edge
 of
 the
 replication
 fork,
 we
 used
 P,
 
the
 90
th

 percentile
 of
 the
 resulting
 probability
 distribution.
 
 For
 each
 experiment,
 we
 
write
 T
 for
 the
 mean
 time
 of
 the
 BrdU
 pulse
 (if
 the
 pulse
 occurred
 between
 time
 
points
 𝑎
 and  𝑏,
 then
 𝑇  =
!
!
(𝑎+𝑏)).
 
 For
 each
 strain
 and
 experimental
 condition,
 we
 
calculate
 the
 values
 of
 𝑃
 and
 𝑇,
 and
 fit
 a
 linear
 regression
 of
 the
 form
 
𝑃=𝑢+𝑣𝑇
 
to
 the
 data.
 
 We
 obtained
 estimated
 values
 of
 𝑢
 and
 𝑣.
 The
 estimate
 of
 the
 fork
 rate
 is
 
given
 by
 𝑣.
 
 We
 note
 that
 an
 analysis
 along
 the
 same
 lines,
 but
 using
 the
 values
 of
 M
 
in
 place
 of
 ϕ,
 gives
 essentially
 the
 same
 results.
 

 
Origin
 firing
 analysis:
 Using
 the
 Piecewise
 Cubic
 Hermite
 Interpolating
 Polynomial
 
(PCHIP),
 we
 interpolated
 the
 normalized
 and
 smoothed
 M-­‐value
 of
 the
 probes
 for
 
every
 10
 bp
 of
 the
 genome.
 
 Under
 the
 null
 hypothesis
 of
 no
 enrichment
 around
 an
 

  130
 
origin,
 the
 sum
 of
 the
 N
 interpolated
 M-­‐values
 of
 the
 probes
 in
 this
 region
 will
 have
 
approximately
 a
 Normal
 distribution
 with
 mean
 𝜇
 and
 variance
 𝜎
!
,
 where
 𝜇
 and
 𝜎
!
,
 
are
 the
 mean
 and
 variance
 of
 a
 typical
 interpolated
 M-­‐value.
 
 Using
 all
 the
 observed
 
M-­‐values,
 we
 can
 estimate
 the
 𝜇
 and
 𝜎
!
.
 
For
 each
 origin,
 the
 sum
 S
 of
 signal
 from
 the
 N
 interpolated
 probes
 within
 a
 distance
 
of
 1500
 bp
 was
 calculated.
 
 An
 origin
 is
 determined
 to
 have
 significantly
 enriched
 
signal
 if
 S
 lies
 in
 the
 tails
 of
 the
 null
 distribution,
 using
 a
 significance
 cutoff
 of
 0.05.
 
 
We
 use
 a
 Bonferroni
 correction
 for
 multiple
 testing.
 In
 all
 cases
 we
 either
 used
 the
 
earliest
 time
 point,
 or
 the
 sum
 of
 two
 earliest
 time
 points
 as
 a
 representative
 early
 
signal
 for
 determining
 if
 the
 origin
 fired.
 Column
 C
 of
 Table
 S1
 indicates
 which
 time
 
intervals
  were
  included
  in
  this
  analysis.
   
  The
  color
  of
  individual
  cells
  in
  the
 
heatmaps
 in
 Figures
 1-­‐4
 represent
 this
 sum
 S
 assigned
 to
 each
 origin.
 Column
 D
 of
 
Table
  S1
  indicates
  which
  time
  intervals
  were
  included
  in
  calculating
  S
  for
  the
 
heatmap
 visualizations.
 We
 used
 the
 origin
 dataset
 from
 (Knott
 et
 al.,
 2012)
 and
 
timing
 data
 from
 (Raghuraman
 et
 al.,
 2001).
 
Table
 4.1.
 Strain
 List.
 
Strain
  Genotype
 

 
All
 strains
 share
 the
 W303a
 RAD5
 genotype:
 MATa
 ade2-­‐1
 ura3-­‐1
 his3-­‐11,15
 trp1-­‐1
 leu2-­‐
3,112
 can1-­‐100
 bar1::hisG
 
 
 

  Except
 as
 noted
 below
 
JPy8
  ars608Δ::HIS3
 ars609Δ::TRP1
 ars305Δ::BrdU-­‐Inc
 (TRP1)
 RFA1-­‐18Myc
 (KanMX)
 
JPy9
  ars608Δ::HIS3
  ars609Δ::TRP1
  ars305Δ::BrdU-­‐Inc
  (TRP1)
  RFA1-­‐18Myc
  (KanMX)
  cdc7-­‐1
 

  131
 
mcm5-­‐bob1
 
JYy3
  ars608Δ::HIS3
 ars609Δ::TRP1
 ars305Δ::BrdU-­‐Inc
 (TRP1)
 sml1Δ::HIS3
 
JYy4
  ars608Δ::HIS3
 ars609Δ::TRP1
 ars305Δ::BrdU-­‐Inc
 (TRP1)
 sml1Δ::HIS3
 exo1Δ::TRP1
 
RSy1298
  ars608Δ::HIS3
 ars609Δ::TRP1
 ars305Δ::BrdU-­‐Inc
 (TRP1)
 cdc7-­‐1
 
 
RSy1307
  ars608Δ::HIS3
 ars609Δ::TRP1
 ars305Δ::BrdU-­‐Inc
 (TRP1)
 cdc7-­‐1
 mcm5-­‐bob1
 
T2y41
  ars608Δ::HIS3
 ars305Δ::BrdU-­‐Inc
 (KanMX)
 orc1Δ::hisG
 leu2::ORC1
 (LEU2)
 
T2y42
 
ars608Δ::HIS3
  ars609Δ::TRP1
  ars305Δ::BrdU-­‐Inc
  (KanMX)
  orc1Δ::hisG
  leu2::orc1-­‐161
 
(LEU2)
 
YZy2
  lys2Δ::hisG
 trp1::BrdU-­‐Inc
 (TRP1)
 orc1Δ::hisG
 leu2::ORC1
 (LEU2)
 
YZy3
  lys2Δ::hisG
 trp1::BrdU-­‐Inc
 (TRP1)
 orc1Δ::hisG
 leu2::orc1-­‐161
 (LEU2)
 
YZy8
  ars608Δ::HIS3
 ars609Δ::TRP1
 leu2::BrdU-­‐Inc
 (LEU2)
 
YZy10
  ars608Δ::HIS3
 ars609Δ::TRP1
 leu2::BrdU-­‐Inc
 (LEU2)
 cdc7-­‐as3
 
 
YZy18
  ars608Δ::HIS3
 ars609Δ::TRP1
 ars305Δ::BrdU-­‐Inc
 (URA3)
 leu2::BrdU-­‐Inc
 (LEU2)
 
 
YZy19
  ars608Δ::HIS3
 ars609Δ::TRP1
 ars305Δ::BrdU-­‐Inc
 (URA3)
 leu2::BrdU-­‐Inc
 (LEU2)
 cdc7-­‐as3
 
 
YZy34
  ars608Δ::HIS3
 ars609Δ::TRP1
 ars305Δ::BrdU-­‐Inc
 (TRP1)
 pph3Δ::KanMX
 
YZy35
  ars608Δ::HIS3
 ars609Δ::TRP1
 ars305Δ::BrdU-­‐Inc
 (TRP1)
 cdc7-­‐1
 mcm5-­‐bob1
 pph3Δ::KanMX
 
YZy50
  ars608Δ::HIS3
 ars609Δ::TRP1
 ars305Δ::BrdU-­‐Inc
 (TRP1)
 
YZy52
  ars608Δ::HIS3
 ars609Δ::TRP1
 ars305Δ::BrdU-­‐Inc
 (TRP1)
 mec1-­‐100
 
YZy60
 
ars608Δ::HIS3
  ars609Δ::TRP1
  ars305Δ::BrdU-­‐Inc
  (TRP1)
 bar1Δ::LEU2
  sml1Δ::HIS3
 
rad53Δ::KanMX
 exo1Δ::TRP1
 
YZy61
 
ars608Δ::HIS3
  ars609Δ::TRP1
  ars305Δ::BrdU-­‐Inc
  (TRP1)
  bar1Δ::LEU2
 
sml1Δ::HIS3
 rad53Δ::KanMX
 
 

 

  132
 
REFERENCES
 
INTRODUCTION
 REFERENCES
 

 
Aladjem,
 M.I.
 (2007).
 Replication
 in
 context:
 dynamic
 regulation
 of
 DNA
 replication
 
patterns
 in
 metazoans.
 Nat.
 Rev.
 Genet.
 8,
 588–600.
 

 
Aparicio,
 O.M.
 (2013).
 Location,
 location,
 location:
 it’s
 all
 in
 the
 timing
 for
 replication
 
origins.
 Genes
 Dev.
 27,
 117–128.
 

 
Aparicio,
 J.G.,
 Viggiani,
 C.J.,
 Gibson,
 D.G.,
 and
 Aparicio,
 O.M.
 (2004).
 The
 Rpd3-­‐Sin3
 
Histone
 Deacetylase
 Regulates
 Replication
 Timing
 and
 Enables
 Intra-­‐S
 Origin
 
Control
 in
 Saccharomyces
 cerevisiae.
 Mol.
 Cell.
 Biol.
 24,
 4769–4780.
 

 
Aparicio,
 O.M.,
 Stout,
 A.M.,
 and
 Bell,
 S.P.
 (1999).
 Differential
 assembly
 of
 Cdc45p
 and
 
DNA
 polymerases
 at
 early
 and
 late
 origins
 of
 DNA
 replication.
 Proc.
 Natl.
 Acad.
 Sci.
 
96,
 9130–9135.
 

 
Bell,
 S.P.,
 and
 Dutta,
 A.
 (2002).
 Dna
 Replication
 in
 Eukaryotic
 Cells.
 Annu.
 Rev.
 
Biochem.
 71,
 333–374.
 

 
Bianchi,
 A.,
 and
 Shore,
 D.
 (2007).
 Early
 Replication
 of
 Short
 Telomeres
 in
 Budding
 
 
Yeast.
 Cell
 128,
 1051–1062.
 

 
Cornacchia,
 D.,
 Dileep,
 V.,
 Quivy,
 J.-­‐P.,
 Foti,
 R.,
 Tili,
 F.,
 Santarella-­‐Mellwig,
 R.,
 Antony,
 
C.,
 Almouzni,
 G.,
 Gilbert,
 D.M.,
 and
 Buonomo,
 S.B.C.
 (2012).
 Mouse
 Rif1
 is
 a
 key
 
regulator
 of
 the
 replication-­‐timing
 programme
 in
 mammalian
 cells.
 EMBO
 J.
 31,
 
3678–3690.
 

 
Cvetic,
 C.,
 and
 Walter,
 J.C.
 (2005).
 Eukaryotic
 origins
 of
 DNA
 replication:
 could
 you
 
please
 be
 more
 specific?
 Semin.
 Cell
 Dev.
 Biol.
 16,
 343–353.
 
Duan,
 Z.,
 Andronescu,
 M.,
 Schutz,
 K.,
 McIlwain,
 S.,
 Kim,
 Y.J.,
 Lee,
 C.,
 Shendure,
 J.,
 
Fields,
 S.,
 Blau,
 C.A.,
 and
 Noble,
 W.S.
 (2010).
 A
 three-­‐dimensional
 model
 of
 the
 yeast
 
genome.
 Nature
 465,
 363–367.
 

 
Ferguson,
 B.M.,
 and
 Fangman,
 W.L.
 (1992).
 A
 position
 effect
 on
 the
 time
 of
 
replication
 origin
 activation
 in
 yeast.
 Cell
 68,
 333–339.
 

 
Harbison,
 C.T.,
 Gordon,
 D.B.,
 Lee,
 T.I.,
 Rinaldi,
 N.J.,
 Macisaac,
 K.D.,
 Danford,
 T.W.,
 
Hannett,
 N.M.,
 Tagne,
 J.-­‐B.,
 Reynolds,
 D.B.,
 Yoo,
 J.,
 et
 al.
 (2004).
 Transcriptional
 
regulatory
 code
 of
 a
 eukaryotic
 genome.
 Nature
 431,
 99–104.
 

 
Hardy,
 C.F.,
 Sussel,
 L.,
 and
 Shore,
 D.
 (1992).
 A
 RAP1-­‐interacting
 protein
 involved
 in
 
transcriptional
 silencing
 and
 telomere
 length
 regulation.
 Genes
 Dev.
 6,
 801–814.
 

  133
 

 
Hayano,
 M.,
 Kanoh,
 Y.,
 Matsumoto,
 S.,
 Renard-­‐Guillet,
 C.,
 Shirahige,
 K.,
 and
 Masai,
 H.
 
(2012).
 Rif1
 is
 a
 global
 regulator
 of
 timing
 of
 replication
 origin
 firing
 in
 fission
 yeast.
 
Genes
 Dev.
 26,
 137–150.
 

 
Kanoh,
 J.,
 and
 Ishikawa,
 F.
 (2001).
 spRap1
 and
 spRif1,
 recruited
 to
 telomeres
 by
 
Taz1,
 are
 essential
 for
 telomere
 function
 in
 fission
 yeast.
 Curr.
 Biol.
 11,
 1624–1630.
 

 
Kitamura,
 E.,
 Blow,
 J.,
 and
 Tanaka,
 T.
 (2006).
 Live-­‐Cell
 Imaging
 Reveals
 Replication
 
of
 Individual
 Replicons
 in
 Eukaryotic
 Replication
 Factories.
 Cell
 125,
 1297–1308.
 

 
Knott,
 S.R.V.,
 Viggiani,
 C.J.,
 Tavaré,
 S.,
 and
 Aparicio,
 O.M.
 (2009).
 Genome-­‐wide
 
replication
 profiles
 indicate
 an
 expansive
 role
 for
 Rpd3L
 in
 regulating
 replication
 
initiation
 timing
 or
 efficiency,
 and
 reveal
 genomic
 loci
 of
 Rpd3
 function
 in
 
Saccharomyces
 cerevisiae.
 Genes
 Dev.
 23,
 1077–1090.
 

 

 
Knott,
 S.R.V.,
 Peace,
 J.M.,
 Ostrow,
 A.Z.,
 Gan,
 Y.,
 Rex,
 A.E.,
 Viggiani,
 C.J.,
 Tavaré,
 S.,
 and
 
Aparicio,
 O.M.
 (2012).
 Forkhead
 Transcription
 Factors
 Establish
 Origin
 Timing
 and
 
Long-­‐Range
 Clustering
 in
 S.
 cerevisiae.
 Cell
 148,
 99–111.
 

 
Kumar,
 R.,
 and
 Cheok,
 C.F.
 (2014).
 RIF1:
 A
 novel
 regulatory
 factor
 for
 DNA
 
replication
 and
 DNA
 damage
 response
 signaling.
 DNA
 Repair
 15,
 54–59.
 

 
Lian,
 H.-­‐Y.,
 Robertson,
 E.D.,
 Hiraga,
 S.,
 Alvino,
 G.M.,
 Collingwood,
 D.,
 McCune,
 H.J.,
 
Sridhar,
 A.,
 Brewer,
 B.J.,
 Raghuraman,
 M.K.,
 and
 Donaldson,
 A.D.
 (2011).
 The
 effect
 of
 
Ku
 on
 telomere
 replication
 time
 is
 mediated
 by
 telomere
 length
 but
 is
 independent
 
of
 histone
 tail
 acetylation.
 Mol.
 Biol.
 Cell
 22,
 1753–1765.
 

 
Lipford,
 J.R.,
 and
 Bell,
 S.P.
 (2001).
 Nucleosomes
 Positioned
 by
 ORC
 Facilitate
 the
 
Initiation
 of
 DNA
 Replication.
 Mol.
 Cell
 7,
 21–30.
 

 
MacIsaac,
 K.D.,
 Wang,
 T.,
 Gordon,
 D.B.,
 Gifford,
 D.K.,
 Stormo,
 G.D.,
 and
 Fraenkel,
 E.
 
(2006).
 An
 improved
 map
 of
 conserved
 regulatory
 sites
 for
 Saccharomyces
 
cerevisiae.
 BMC
 Bioinformatics
 7,
 113.
 

 
Marahrens,
 Y.,
 and
 Stillman,
 B.
 (1992).
 A
 yeast
 chromosomal
 origin
 of
 DNA
 
replication
 defined
 by
 multiple
 functional
 elements.
 Science
 255,
 817–823.
 
Murakami,
 H.,
 Aiba,
 H.,
 Nakanishi,
 M.,
 and
 Murakami-­‐Tonami,
 Y.
 (2010).
 Regulation
 
of
 yeast
 forkhead
 transcription
 factors
 and
 FoxM1
 by
 cyclin-­‐dependent
 and
 polo-­‐
like
 kinases.
 Cell
 Cycle
 9,
 3253–3262.
 

 
Ostrow,
 A.Z.,
 Nellimoottil,
 T.,
 Knott,
 S.R.V.,
 Fox,
 C.A.,
 Tavaré,
 S.,
 and
 Aparicio,
 O.M.
 
(2014).
 Fkh1
 and
 Fkh2
 Bind
 Multiple
 Chromosomal
 Elements
 in
 the
 S.
 cerevisiae
 
Genome
 with
 Distinct
 Specificities
 and
 Cell
 Cycle
 Dynamics.
 PLoS
 ONE
 9,
 e87647.
 

 

  134
 
Park,
 S.,
 Patterson,
 E.E.,
 Cobb,
 J.,
 Audhya,
 A.,
 Gartenberg,
 M.R.,
 and
 Fox,
 C.A.
 (2011).
 
Palmitoylation
 controls
 the
 dynamics
 of
 budding-­‐yeast
 heterochromatin
 via
 the
 
telomere-­‐binding
 protein
 Rif1.
 Proc.
 Natl.
 Acad.
 Sci.
 108,
 14572–14577.
 

 
Peace,
 J.M.,
 Ter-­‐Zakarian,
 A.,
 and
 Aparicio,
 O.M.
 (2014).
 Rif1
 Regulates
 Initiation
 
Timing
 of
 Late
 Replication
 Origins
 throughout
 the
 S.
 cerevisiae
 Genome.
 PLoS
 ONE
 
9,
 e98501.
 

 
Rhind,
 N.,
 and
 Gilbert,
 D.M.
 (2013).
 DNA
 Replication
 Timing.
 Cold
 Spring
 Harb.
 
Perspect.
 Biol.
 5,
 a010132.
 

 
Rusche,
 L.N.,
 Kirchmaier,
 A.L.,
 and
 Rine,
 J.
 (2003).
 The
 establishment,
 inheritance,
 
and
 function
 of
 silenced
 chromatin
 in
 Saccharomyces
 cerevisiae.
 Annu.
 Rev.
 
Biochem.
 72,
 481–516.
 

 
Simon,
 I.,
 Barnett,
 J.,
 Hannett,
 N.,
 Harbison,
 C.T.,
 Rinaldi,
 N.J.,
 Volkert,
 T.L.,
 Wyrick,
 J.J.,
 
Zeitlinger,
 J.,
 Gifford,
 D.K.,
 Jaakkola,
 T.S.,
 et
 al.
 (2001).
 Serial
 regulation
 of
 
transcriptional
 regulators
 in
 the
 yeast
 cell
 cycle.
 Cell
 106,
 697–708.
 

 
Smith,
 O.K.,
 and
 Aladjem,
 M.I.
 Chromatin
 Structure
 and
 Replication
 Origins:
 
Determinants
 of
 Chromosome
 Replication
 and
 Nuclear
 Organization.
 J.
 Mol.
 Biol.
 

 
Smith,
 C.D.,
 Smith,
 D.L.,
 DeRisi,
 J.L.,
 and
 Blackburn,
 E.H.
 (2003).
 Telomeric
 Protein
 
Distributions
 and
 Remodeling
 Through
 the
 Cell
 Cycle
 in
 Saccharomyces
 cerevisiae.
 
Mol.
 Biol.
 Cell
 14,
 556–570.
 

 
Stevenson,
 J.B.,
 and
 Gottschling,
 D.E.
 (1999).
 Telomeric
 chromatin
 modulates
 
replication
 timing
 near
 chromosome
 ends.
 Genes
 Dev.
 13,
 146–151.
 

 
Stinchcomb,
 D.T.,
 Struhl,
 K.,
 and
 Davis,
 R.W.
 (1979).
 Isolation
 and
 characterisation
 of
 
a
 yeast
 chromosomal
 replicator.
 Nature
 282,
 39–43.
 

 
Sun,
 K.,
 Coïc,
 E.,
 Zhou,
 Z.,
 Durrens,
 P.,
 and
 Haber,
 J.E.
 (2002).
 Saccharomyces
 
forkhead
 protein
 Fkh1
 regulates
 donor
 preference
 during
 mating-­‐type
 switching
 
through
 the
 recombination
 enhancer.
 Genes
 Dev.
 16,
 2085–2096.
 

 
Vogelauer,
 M.,
 Rubbi,
 L.,
 Lucas,
 I.,
 Brewer,
 B.J.,
 and
 Grunstein,
 M.
 (2002).
 Histone
 
Acetylation
 Regulates
 the
 Time
 of
 Replication
 Origin
 Firing.
 Mol.
 Cell
 10,
 1223–1233.
 

 
Xu,
 D.,
 Muniandy,
 P.,
 Leo,
 E.,
 Yin,
 J.,
 Thangavel,
 S.,
 Shen,
 X.,
 Ii,
 M.,
 Agama,
 K.,
 Guo,
 R.,
 Iii,
 
D.F.,
 et
 al.
 (2010).
 Rif1
 provides
 a
 new
 DNA-­‐binding
 interface
 for
 the
 Bloom
 
syndrome
 complex
 to
 maintain
 normal
 replication.
 EMBO
 J.
 29,
 3140–3155.
 

 
Yamazaki,
 S.,
 Ishii,
 A.,
 Kanoh,
 Y.,
 Oda,
 M.,
 Nishito,
 Y.,
 and
 Masai,
 H.
 (2012).
 Rif1
 
regulates
 the
 replication
 timing
 domains
 on
 the
 human
 genome.
 EMBO
 J.
 31,
 3667–
3677.
 

  135
 

 
Yoshida,
 K.,
 Poveda,
 A.,
 and
 Pasero,
 P.
 (2013).
 Time
 to
 Be
 Versatile:
 Regulation
 of
 the
 
Replication
 Timing
 Program
 in
 Budding
 Yeast.
 J.
 Mol.
 Biol.
 425,
 4696–4705.
 

 
Zhong,
 Y.,
 Nellimoottil,
 T.,
 Peace,
 J.M.,
 Knott,
 S.R.V.,
 Villwock,
 S.K.,
 Yee,
 J.M.,
 Jancuska,
 
J.M.,
 Rege,
 S.,
 Tecklenburg,
 M.,
 Sclafani,
 R.A.,
 et
 al.
 (2013).
 The
 level
 of
 origin
 firing
 
inversely
 affects
 the
 rate
 of
 replication
 fork
 progression.
 J.
 Cell
 Biol.
 201,
 373–383.
 

 
CHAPTER
 I
 REFERENCES
 

 
Anders,
 S.,
 and
 Huber,
 W.
 (2010).
 Differential
 expression
 analysis
 for
 sequence
 
count
 data.
 Genome
 Biol
 11,
 R106.
 

 
Aggarwal,
  B.D.,
  and
  Calvi,
  B.R.
  (2004).
  Chromatin
  regulates
  origin
  activity
  in
 
Drosophila
 follicle
 cells.
 Nature
 430,
 372-­‐376.
 

 
Aparicio,
 O.M.,
 Weinstein,
 D.M.,
 and
 Bell,
 S.P.
 (1997).
 Components
 and
 dynamics
 of
 
DNA
 replication
 complexes
 in
 S.
 cerevisiae:
 redistribution
 of
 MCM
 proteins
 and
 
Cdc45p
 during
 S
 phase.
 Cell
 91,
 59-­‐69.
 

 
Aparicio,
 J.G.,
 Viggiani,
 C.J.,
 Gibson,
 D.G.,
 and
 Aparicio,
 O.M.
 (2004).
 The
 Rpd3-­‐Sin3
 
histone
 deacetylase
 regulates
 replication
 timing
 and
 enables
 intra-­‐S
 origin
 control
 in
 
Saccharomyces
 cerevisiae.
 Mol
 Cell
 Biol
 24,
 4769-­‐4780.
 

 
Aparicio,
 O.M.,
 Stout,
 A.M.,
 and
 Bell,
 S.P.
 (1999).
 Differential
 assembly
 of
 Cdc45p
 and
 
DNA
 polymerases
 at
 early
 and
 late
 origins
 of
 DNA
 replication.
 Proc
 Natl
 Acad
 Sci
 U
 S
 
A
 96,
 9130-­‐9135.
 

 
Boros,
  J.,
  Lim,
  F.L.,
  Darieva,
  Z.,
  Pic-­‐Taylor,
  A.,
  Harman,
  R.,
  Morgan,
  B.A.,
  and
 
Sharrocks,
 A.D.
 (2003).
 Molecular
 determinants
 of
 the
 cell-­‐cycle
 regulated
 Mcm1p-­‐
Fkh2p
 transcription
 factor
 complex.
 Nucleic
 Acids
 Res
 31,
 2279-­‐2288.
 

 
Casey,
 L.,
 Patterson,
 E.E.,
 Muller,
 U.,
 and
 Fox,
 C.A.
 (2008).
 Conversion
 of
 a
 replication
 
origin
 to
 a
 silencer
 through
 a
 pathway
 shared
 by
 a
 Forkhead
 transcription
 factor
 
and
 an
 S
 phase
 cyclin.
 Mol
 Biol
 Cell
 19,
 608-­‐622.
 

 
Chang,
 V.K.,
 Donato,
 J.J.,
 Chan,
 C.S.,
 and
 Tye,
 B.K.
 (2004).
 Mcm1
 promotes
 replication
 
initiation
 by
 binding
 specific
 elements
 at
 replication
 origins.
 Mol
 Cell
 Biol
 24,
 6514-­‐
6524.
 

 
Chen,
  Y.,
  Souaiaia,
  T.,
  and
  Chen,
  T.
  (2009).
  PerM:
  efficient
  mapping
  of
  short
 
sequencing
 reads
 with
 periodic
 full
 sensitive
 spaced
 seeds.
 Bioinformatics
 25,
 2514-­‐
2521.
 

  136
 

 
Darieva,
 Z.,
 Clancy,
 A.,
 Bulmer,
 R.,
 Williams,
 E.,
 Pic-­‐Taylor,
 A.,
 Morgan,
 B.A.,
 and
 
Sharrocks,
  A.D.
  (2010).
  A
  competitive
  transcription
  factor
  binding
  mechanism
 
determines
 the
 timing
 of
 late
 cell
 cycle-­‐dependent
 gene
 expression.
 Mol
 Cell
 38,
 29-­‐
40.
 

 
Darieva,
 Z.,
 Pic-­‐Taylor,
 A.,
 Boros,
 J.,
 Spanos,
 A.,
 Geymonat,
 M.,
 Reece,
 R.J.,
 Sedgwick,
 
S.G.,
 Sharrocks,
 A.D.,
 and
 Morgan,
 B.A.
 (2003).
 Cell
 cycle-­‐regulated
 transcription
 
through
 the
 FHA
 domain
 of
 Fkh2p
 and
 the
 coactivator
 Ndd1p.
 Curr
 Biol
 13,
 1740-­‐
1745.
 

 
Duan,
 Z.,
 Andronescu,
 M.,
 Schutz,
 K.,
 McIlwain,
 S.,
 Kim,
 Y.J.,
 Lee,
 C.,
 Shendure,
 J.,
 
Fields,
 S.,
 Blau,
 C.A.,
 and
 Noble,
 W.S.
 (2010).
 A
 three-­‐dimensional
 model
 of
 the
 yeast
 
genome.
 Nature
 465,
 363-­‐367.
 

 
Eaton,
 M.L.,
 Galani,
 K.,
 Kang,
 S.,
 Bell,
 S.P.,
 and
 MacAlpine,
 D.M.
 (2010).
 Conserved
 
nucleosome
 positioning
 defines
 replication
 origins.
 Genes
 Dev
 24,
 748-­‐753.
 

 
Eaton,
  M.L.,
  Prinz,
  J.A.,
  MacAlpine,
  H.K.,
  Tretyakov,
  G.,
  Kharchenko,
  P.V.,
  and
 
MacAlpine,
  D.M.
  (2011).
  Chromatin
  signatures
  of
  the
  Drosophila
  replication
 
program.
 Genome
 Res
 21,
 164-­‐174.
 
Ferguson,
  B.M.,
  and
  Fangman,
  W.L.
  (1992).
  A
  position
  effect
  on
  the
  time
  of
 
replication
 origin
 activation
 in
 yeast.
 Cell
 68,
 333-­‐339.
 

 
Friedman,
 K.L.,
 Diller,
 J.D.,
 Ferguson,
 B.M.,
 Nyland,
 S.V.,
 Brewer,
 B.J.,
 and
 Fangman,
 
W.L.
  (1996).
  Multiple
  determinants
  controlling
  activation
  of
  yeast
  replication
 
origins
 late
 in
 S
 phase.
 Genes
 Dev
 10,
 1595-­‐1607.
 

 
Goren,
 A.,
 Tabib,
 A.,
 Hecht,
 M.,
 and
 Cedar,
 H.
 (2008).
 DNA
 replication
 timing
 of
 the
 
human
 beta-­‐globin
 domain
 is
 controlled
 by
 histone
 modification
 at
 the
 origin.
 Genes
 
Dev
 22,
 1319-­‐1324.
 

 
Gotta,
 M.,
 Laroche,
 T.,
 Formenton,
 A.,
 Maillet,
 L.,
 Scherthan,
 H.,
 and
 Gasser,
 S.M.
 
(1996).
 The
 clustering
 of
 telomeres
 and
 colocalization
 with
 Rap1,
 Sir3,
 and
 Sir4
 
proteins
 in
 wild-­‐type
 Saccharomyces
 cerevisiae.
 J
 Cell
 Biol
 134,
 1349-­‐1363.
 

 
Harbison,
 C.T.,
 Gordon,
 D.B.,
 Lee,
 T.I.,
 Rinaldi,
 N.J.,
 Macisaac,
 K.D.,
 Danford,
 T.W.,
 
Hannett,
  N.M.,
  Tagne,
  J.B.,
  Reynolds,
  D.B.,
  Yoo,
  J.,
  et
  al.
  (2004).
  Transcriptional
 
regulatory
 code
 of
 a
 eukaryotic
 genome.
 Nature
 431,
 99-­‐104.
 

 
Heun,
 P.,
 Laroche,
 T.,
 Raghuraman,
 M.K.,
 and
 Gasser,
 S.M.
 (2001).
 The
 positioning
 
and
 dynamics
 of
 origins
 of
 replication
 in
 the
 budding
 yeast
 nucleus.
 J
 Cell
 Biol
 152,
 
385-­‐400.
 

 

  137
 
Hollenhorst,
 P.C.,
 Pietz,
 G.,
 and
 Fox,
 C.A.
 (2001).
 Mechanisms
 controlling
 differential
 
promoter-­‐occupancy
 by
 the
 yeast
 forkhead
 proteins
 Fkh1p
 and
 Fkh2p:
 implications
 
for
 regulating
 the
 cell
 cycle
 and
 differentiation.
 Genes
 Dev
 15,
 2445-­‐2456.
 

 
Hu,
 F.,
 Gan,
 Y.,
 and
 Aparicio,
 O.M.
 (2008).
 Identification
 of
 Clb2
 residues
 required
 for
 
Swe1
 regulation
 of
 Clb2-­‐Cdc28
 in
 Saccharomyces
 cerevisiae.
 Genetics
 179,
 863-­‐874.
 

 
Jin,
 Q.,
 Trelles-­‐Sticken,
 E.,
 Scherthan,
 H.,
 and
 Loidl,
 J.
 (1998).
 Yeast
 nuclei
 display
 
prominent
 centromere
 clustering
 that
 is
 reduced
 in
 nondividing
 cells
 and
 in
 meiotic
 
prophase.
 J
 Cell
 Biol
 141,
 21-­‐29.
 

 
Keich,
 U.,
 Gao,
 H.,
 Garretson,
 J.S.,
 Bhaskar,
 A.,
 Liachko,
 I.,
 Donato,
 J.,
 and
 Tye,
 B.K.
 
(2008).
 Computational
 detection
 of
 significant
 variation
 in
 binding
 affinity
 across
 
two
 sets
 of
 sequences
 with
 application
 to
 the
 analysis
 of
 replication
 origins
 in
 yeast.
 
BMC
 Bioinformatics
 9,
 372.
 

 
Kitamura,
 E.,
 Blow,
 J.J.,
 and
 Tanaka,
 T.U.
 (2006).
 Live-­‐cell
 imaging
 reveals
 replication
 
of
 individual
 replicons
 in
 eukaryotic
 replication
 factories.
 Cell
 125,
 1297-­‐1308.
 

 
Knott,
  S.R.,
  Viggiani,
  C.J.,
  and
  Aparicio,
  O.M.
  (2009a).
  To
  promote
  and
  protect:
 
coordinating
 DNA
 replication
 and
 transcription
 for
 genome
 stability.
 Epigenetics
 4,
 
362-­‐365.
 

 
Knott,
  S.R.,
  Viggiani,
  C.J.,
  Aparicio,
  O.M.,
  and
  Tavaré,
  S.
  (2009b).
  Strategies
  for
 
analyzing
 highly
 enriched
 IP-­‐chip
 datasets.
 BMC
 Bioinformatics
 10,
 305.
 

 
Knott,
  S.R.,
  Viggiani,
  C.J.,
  Tavaré,
  S.,
  and
  Aparicio,
  O.M.
  (2009c).
  Genome-­‐wide
 
replication
 profiles
 indicate
 an
 expansive
 role
 for
 Rpd3L
 in
 regulating
 replication
 
initiation
  timing
  or
  efficiency,
  and
  reveal
  genomic
  loci
  of
  Rpd3
  function
  in
 
Saccharomyces
 cerevisiae.
 Genes
 Dev
 23,
 1077-­‐1090.
 

 
Knott,
 S.R.V.,
 Peace,
 J.M.,
 Ostrow,
 A.Z.,
 Gan,
 Y.,
 Rex,
 A.E.,
 Viggiani,
 C.J.,
 Tavaré,
 S.,
 and
 
Aparicio,
 O.M.
 (2012).
 Forkhead
 Transcription
 Factors
 Establish
 Origin
 Timing
 and
 
Long-­‐Range
 Clustering
 in
 S.
 cerevisiae.
 Cell
 148,
 99–111.
 

 
Koranda,
  M.,
  Schleiffer,
  A.,
  Endler,
  L.,
  and
  Ammerer,
  G.
  (2000).
  Forkhead-­‐like
 
transcription
 factors
 recruit
 Ndd1
 to
 the
 chromatin
 of
 G2/M-­‐specific
 promoters.
 
Nature
 406,
 94-­‐98.
 

 
Kumar,
 R.,
 Reynolds,
 D.M.,
 Shevchenko,
 A.,
 Goldstone,
 S.D.,
 and
 Dalton,
 S.
 (2000).
 
Forkhead
  transcription
  factors,
  Fkh1p
  and
  Fkh2p,
  collaborate
  with
  Mcm1p
  to
 
control
 transcription
 required
 for
 M-­‐phase.
 Curr
 Biol
 10,
 896-­‐906.
 

 
Longtine,
 M.S.,
 McKenzie,
 A.,
 3rd,
 Demarini,
 D.J.,
 Shah,
 N.G.,
 Wach,
 A.,
 Brachat,
 A.,
 
Philippsen,
 P.,
 and
 Pringle,
 J.R.
 (1998).
 Additional
 modules
 for
 versatile
 and
 

  138
 
economical
 PCR-­‐based
 gene
 deletion
 and
 modification
 in
 Saccharomyces
 cerevisiae.
 
Yeast
 14,
 953-­‐961.
 

 
MacIsaac,
 K.D.,
 Wang,
 T.,
 Gordon,
 D.B.,
 Gifford,
 D.K.,
 Stormo,
 G.D.,
 and
 Fraenkel,
 E.
 
(2006).
  An
  improved
  map
  of
  conserved
  regulatory
  sites
  for
  Saccharomyces
 
cerevisiae.
 BMC
 Bioinformatics
 7,
 113.
 

 
Miotto,
 B.,
 and
 Struhl,
 K.
 (2007).
 [Histone
 H4
 lysine
 16
 acetylation:
 from
 genome
 
regulation
 to
 tumoral
 progression].
 Med
 Sci
 (Paris)
 23,
 735-­‐740.
 
Misteli,
 T.
 (2007).
 Beyond
 the
 sequence:
 cellular
 organization
 of
 genome
 function.
 
Cell
 128,
 787-­‐800.
 

 
Morozov,
 A.V.,
 and
 Siggia,
 E.D.
 (2007).
 Connecting
 protein
 structure
 with
 predictions
 
of
 regulatory
 sites.
 Proc
 Natl
 Acad
 Sci
 U
 S
 A
 104,
 7068-­‐7073.
 

 
Murakami,
 H.,
 Aiba,
 H.,
 Nakanishi,
 M.,
 and
 Murakami-­‐Tonami,
 Y.
 (2010).
 Regulation
 
of
 yeast
 forkhead
 transcription
 factors
 and
 FoxM1
 by
 cyclin-­‐dependent
 and
 polo-­‐
like
 kinases.
 Cell
 Cycle
 9,
 3233-­‐3242.
 

 
Nieduszynski,
 C.A.,
 Hiraga,
 S.,
 Ak,
 P.,
 Benham,
 C.J.,
 and
 Donaldson,
 A.D.
 (2007).
 
OriDB:
 a
 DNA
 replication
 origin
 database.
 Nucleic
 Acids
 Res
 35,
 D40-­‐46.
 

 
Pappas,
 D.L.,
 Jr.,
 Frisch,
 R.,
 and
 Weinreich,
 M.
 (2004).
 The
 NAD(+)-­‐dependent
 Sir2p
 
histone
 deacetylase
 is
 a
 negative
 regulator
 of
 chromosomal
 DNA
 replication.
 Genes
 
Dev
 18,
 769-­‐781.
 

 
Parkhomchuk,
 D.,
 Borodina,
 T.,
 Amstislavskiy,
 V.,
 Banaru,
 M.,
 Hallen,
 L.,
 Krobitsch,
 S.,
 
Lehrach,
  H.,
  and
  Soldatov,
  A.
  (2009).
  Transcriptome
  analysis
  by
  strand-­‐specific
 
sequencing
 of
 complementary
 DNA.
 Nucleic
 Acids
 Res
 37,
 e123.
 

 
Pic,
 A.,
 Lim,
 F.L.,
 Ross,
 S.J.,
 Veal,
 E.A.,
 Johnson,
 A.L.,
 Sultan,
 M.R.,
 West,
 A.G.,
 Johnston,
 
L.H.,
  Sharrocks,
  A.D.,
  and
  Morgan,
  B.A.
  (2000).
  The
  forkhead
  protein
  Fkh2
  is
  a
 
component
 of
 the
 yeast
 cell
 cycle
 transcription
 factor
 SFF.
 EMBO
 J
 19,
 3750-­‐3761.
 

 
Pic-­‐Taylor,
 A.,
 Darieva,
 Z.,
 Morgan,
 B.A.,
 and
 Sharrocks,
 A.D.
 (2004).
 Regulation
 of
 
cell
  cycle-­‐specific
  gene
  expression
  through
  cyclin-­‐dependent
  kinase-­‐mediated
 
phosphorylation
 of
 the
 forkhead
 transcription
 factor
 Fkh2p.
 Mol
 Cell
 Biol
 24,
 10036-­‐
10046.
 

 
Raghuraman,
 M.K.,
 Brewer,
 B.J.,
 and
 Fangman,
 W.L.
 (1997).
 Cell
 cycle-­‐dependent
 
establishment
 of
 a
 late
 replication
 program.
 Science
 276,
 806-­‐809.
 

 
Reynolds,
  D.,
  Shi,
  B.J.,
  McLean,
  C.,
  Katsis,
  F.,
  Kemp,
  B.,
  and
  Dalton,
  S.
  (2003).
 
Recruitment
  of
  Thr
  319-­‐phosphorylated
  Ndd1p
  to
  the
  FHA
  domain
  of
  Fkh2p
 
requires
 Clb
 kinase
 activity:
 a
 mechanism
 for
 CLB
 cluster
 gene
 activation.
 Genes
 Dev
 
17,
 1789-­‐1802.
 

  139
 

 
Ryba,
 T.,
 Hiratani,
 I.,
 Lu,
 J.,
 Itoh,
 M.,
 Kulik,
 M.,
 Zhang,
 J.,
 Schulz,
 T.C.,
 Robins,
 A.J.,
 
Dalton,
  S.,
  and
  Gilbert,
  D.M.
  (2010).
  Evolutionarily
  conserved
  replication
  timing
 
profiles
 predict
 long-­‐range
 chromatin
 interactions
 and
 distinguish
 closely
 related
 
cell
 types.
 Genome
 Res
 20,
 761-­‐770.
 

 
Stevenson,
  J.B.,
  and
  Gottschling,
  D.E.
  (1999).
  Telomeric
  chromatin
  modulates
 
replication
 timing
 near
 chromosome
 ends.
 Genes
 Dev
 13,
 146-­‐151.
 

 
Sun,
  K.,
  Coic,
  E.,
  Zhou,
  Z.,
  Durrens,
  P.,
  and
  Haber,
  J.E.
  (2002).
  Saccharomyces
 
forkhead
 protein
 Fkh1
 regulates
 donor
 preference
 during
 mating-­‐type
 switching
 
through
 the
 recombination
 enhancer.
 Genes
 Dev
 16,
 2085-­‐2096.
 

 
Unnikrishnan,
  A.,
  Gafken,
  P.R.,
  and
  Tsukiyama,
  T.
  (2010).
  Dynamic
  changes
  in
 
histone
 acetylation
 regulate
 origins
 of
 DNA
 replication.
 Nat
 Struct
 Mol
 Biol
 17,
 430-­‐
437.
 

 
Viggiani,
  C.J.,
  Aparicio,
  J.G.,
  and
  Aparicio,
  O.M.
  (2009).
  ChIP-­‐chip
  to
  analyze
  the
 
binding
 of
 replication
 proteins
 to
 chromatin
 using
 oligonucleotide
 DNA
 microarrays.
 
Methods
 Mol
 Biol
 521,
 255-­‐278.
 

 
Viggiani,
 C.J.,
 and
 Aparicio,
 O.M.
 (2006).
 New
 vectors
 for
 simplified
 construction
 of
 
BrdU-­‐Incorporating
 strains
 of
 Saccharomyces
 cerevisiae.
 Yeast
 23,
 1045-­‐1051.
 

 
Viggiani,
 C.J.,
 Knott,
 S.R.,
 and
 Aparicio,
 O.M.
 (2010).
 Genome-­‐wide
 analysis
 of
 DNA
 
synthesis
  by
  BrdU
  immunoprecipitation
  on
  tiling
  microarrays
  (BrdU-­‐IP-­‐chip)
  in
 
Saccharomyces
 cerevisiae.
 Cold
 Spring
 Harb
 Protoc
 2010,
 pdb
 prot5385.
 

 
Vogelauer,
 M.,
 Rubbi,
 L.,
 Lucas,
 I.,
 Brewer,
 B.J.,
 and
 Grunstein,
 M.
 (2002).
 Histone
 
acetylation
 regulates
 the
 time
 of
 replication
 origin
 firing.
 Mol
 Cell
 10,
 1223-­‐1233.
 

 
Weber,
 J.M.,
 Irlbacher,
 H.,
 and
 Ehrenhofer-­‐Murray,
 A.E.
 (2008).
 Control
 of
 replication
 
initiation
 by
 the
 Sum1/Rfm1/Hst1
 histone
 deacetylase.
 BMC
 Mol
 Biol
 9,
 100.
 

 
Wyrick,
 J.J.,
 Aparicio,
 J.G.,
 Chen,
 T.,
 Barnett,
 J.D.,
 Jennings,
 E.G.,
 Young,
 R.A.,
 Bell,
 S.P.,
 
and
 Aparicio,
 O.M.
 (2001).
 Genome-­‐wide
 distribution
 of
 ORC
 and
 MCM
 proteins
 in
 S.
 
cerevisiae:
 high-­‐
 resolution
 mapping
 of
 replication
 origins.
 Science
 294,
 2357-­‐2360.
 

 

 

 CHAPTER
 II
 REFERENCES
 

 
Anders,
 S.,
 and
 Huber,
 W.
 (2010).
 Differential
 expression
 analysis
 for
 sequence
 
count
 data.
 Genome
 Biol.
 11,
 R106.
 

 

  140
 
Aparicio,
 J.G.,
 Viggiani,
 C.J.,
 Gibson,
 D.G.,
 and
 Aparicio,
 O.M.
 (2004).
 The
 Rpd3-­‐Sin3
 
Histone
 Deacetylase
 Regulates
 Replication
 Timing
 and
 Enables
 Intra-­‐S
 Origin
 
Control
 in
 Saccharomyces
 cerevisiae.
 Mol.
 Cell.
 Biol.
 24,
 4769–4780.
 

 
Casey,
 L.,
 Patterson,
 E.E.,
 Müller,
 U.,
 and
 Fox,
 C.A.
 (2008).
 Conversion
 of
 a
 replication
 
origin
 to
 a
 silencer
 through
 a
 pathway
 shared
 by
 a
 Forkhead
 transcription
 factor
 
and
 an
 S
 phase
 cyclin.
 Mol.
 Biol.
 Cell
 19,
 608–622.
 

 
Dimitrova,
 D.S.,
 and
 Gilbert,
 D.M.
 (1999).
 The
 spatial
 position
 and
 replication
 timing
 
of
 chromosomal
 domains
 are
 both
 established
 in
 early
 G1
 phase.
 Mol.
 Cell
 4,
 983–
993.
 

 
Dunham,
 J.P.,
 and
 Friesen,
 M.L.
 (2013).
 A
 Cost-­‐Effective
 Method
 for
 High-­‐
Throughput
 Construction
 of
 Illumina
 Sequencing
 Libraries.
 Cold
 Spring
 Harb.
 
Protoc.
 2013,
 pdb.prot074187.
 

 
Harbison,
 C.T.,
 Gordon,
 D.B.,
 Lee,
 T.I.,
 Rinaldi,
 N.J.,
 Macisaac,
 K.D.,
 Danford,
 T.W.,
 
Hannett,
 N.M.,
 Tagne,
 J.-­‐B.,
 Reynolds,
 D.B.,
 Yoo,
 J.,
 et
 al.
 (2004).
 Transcriptional
 
regulatory
 code
 of
 a
 eukaryotic
 genome.
 Nature
 431,
 99–104.
 

 
Huo,
 L.,
 Wu,
 R.,
 Yu,
 Z.,
 Zhai,
 Y.,
 Yang,
 X.,
 Chan,
 T.,
 Yeung,
 J.T.F.,
 Kan,
 J.,
 and
 Liang,
 C.
 
(2012).
 The
 Rix1
 (Ipi1p-­‐2p-­‐3p)
 complex
 is
 a
 critical
 determinant
 of
 DNA
 replication
 
licensing
 independent
 of
 their
 roles
 in
 ribosome
 biogenesis.
 Cell
 Cycle
 Georget.
 Tex
 
11,
 1325–1339.
 

 
Kim,
 D.,
 Pertea,
 G.,
 Trapnell,
 C.,
 Pimentel,
 H.,
 Kelley,
 R.,
 and
 Salzberg,
 S.L.
 (2013).
 
TopHat2:
 accurate
 alignment
 of
 transcriptomes
 in
 the
 presence
 of
 insertions,
 
deletions
 and
 gene
 fusions.
 Genome
 Biol.
 14,
 R36.
 

 
Knott,
 S.R.V.,
 Viggiani,
 C.J.,
 Tavaré,
 S.,
 and
 Aparicio,
 O.M.
 (2009a).
 Genome-­‐wide
 
replication
 profiles
 indicate
 an
 expansive
 role
 for
 Rpd3L
 in
 regulating
 replication
 
initiation
 timing
 or
 efficiency,
 and
 reveal
 genomic
 loci
 of
 Rpd3
 function
 in
 
Saccharomyces
 cerevisiae.
 Genes
 Dev.
 23,
 1077–1090.
 

 
Knott,
 S.R.V.,
 Viggiani,
 C.J.,
 Aparicio,
 O.M.,
 and
 Tavaré,
 S.
 (2009b).
 Strategies
 for
 
analyzing
 highly
 enriched
 IP-­‐chip
 datasets.
 BMC
 Bioinformatics
 10,
 305.
 

 
Knott,
 S.R.V.,
 Peace,
 J.M.,
 Ostrow,
 A.Z.,
 Gan,
 Y.,
 Rex,
 A.E.,
 Viggiani,
 C.J.,
 Tavaré,
 S.,
 and
 
Aparicio,
 O.M.
 (2012).
 Forkhead
 Transcription
 Factors
 Establish
 Origin
 Timing
 and
 
Long-­‐Range
 Clustering
 in
 S.
 cerevisiae.
 Cell
 148,
 99–111.
 

 
Langmead,
 B.,
 and
 Salzberg,
 S.L.
 (2012).
 Fast
 gapped-­‐read
 alignment
 with
 Bowtie
 2.
 
Nat.
 Methods
 9,
 357–359.
 

 

  141
 
Li,
 H.,
 Handsaker,
 B.,
 Wysoker,
 A.,
 Fennell,
 T.,
 Ruan,
 J.,
 Homer,
 N.,
 Marth,
 G.,
 Abecasis,
 
G.,
 and
 Durbin,
 R.
 (2009).
 The
 Sequence
 Alignment/Map
 format
 and
 SAMtools.
 
Bioinformatics
 25,
 2078–2079.
 

 
MacIsaac,
 K.D.,
 Wang,
 T.,
 Gordon,
 D.B.,
 Gifford,
 D.K.,
 Stormo,
 G.D.,
 and
 Fraenkel,
 E.
 
(2006).
 An
 improved
 map
 of
 conserved
 regulatory
 sites
 for
 Saccharomyces
 
cerevisiae.
 BMC
 Bioinformatics
 7,
 113.
 

 
Murakami,
 H.,
 Aiba,
 H.,
 Nakanishi,
 M.,
 and
 Murakami-­‐Tonami,
 Y.
 (2010).
 Regulation
 
of
 yeast
 forkhead
 transcription
 factors
 and
 FoxM1
 by
 cyclin-­‐dependent
 and
 polo-­‐
like
 kinases.
 Cell
 Cycle
 9,
 3253–3262.
 

 
Ostrow,
 A.Z.,
 Nellimoottil,
 T.,
 Knott,
 S.R.V.,
 Fox,
 C.A.,
 Tavaré,
 S.,
 and
 Aparicio,
 O.M.
 
(2014).
 Fkh1
 and
 Fkh2
 Bind
 Multiple
 Chromosomal
 Elements
 in
 the
 S.
 cerevisiae
 
Genome
 with
 Distinct
 Specificities
 and
 Cell
 Cycle
 Dynamics.
 PLoS
 ONE
 9,
 e87647.
 

 
Poli,
 J.,
 Tsaponina,
 O.,
 Crabbé,
 L.,
 Keszthelyi,
 A.,
 Pantesco,
 V.,
 Chabes,
 A.,
 Lengronne,
 
A.,
 and
 Pasero,
 P.
 (2012).
 dNTP
 pools
 determine
 fork
 progression
 and
 origin
 usage
 
under
 replication
 stress.
 EMBO
 J.
 31,
 883–894.
 

 
Postnikoff,
 S.D.L.,
 Malo,
 M.E.,
 Wong,
 B.,
 and
 Harkness,
 T.A.A.
 (2012).
 The
 Yeast
 
Forkhead
 Transcription
 Factors
 Fkh1
 and
 Fkh2
 Regulate
 Lifespan
 and
 Stress
 
Response
 Together
 with
 the
 Anaphase-­‐Promoting
 Complex.
 PLoS
 Genet
 8,
 
e1002583.
 

 
Quinlan,
 A.R.,
 and
 Hall,
 I.M.
 (2010).
 BEDTools:
 a
 flexible
 suite
 of
 utilities
 for
 
comparing
 genomic
 features.
 Bioinformatics
 26,
 841–842.
 

 
Raghuraman,
 M.K.,
 Brewer,
 B.J.,
 and
 Fangman,
 W.L.
 (1997).
 Cell
 cycle-­‐dependent
 
establishment
 of
 a
 late
 replication
 program.
 Science
 276,
 806–809.
 

 
Santocanale,
 C.,
 and
 Diffley,
 J.F.
 (1998).
 A
 Mec1-­‐
 and
 Rad53-­‐dependent
 checkpoint
 
controls
 late-­‐firing
 origins
 of
 DNA
 replication.
 Nature
 395,
 615–618.
 

 
Simon,
 I.,
 Barnett,
 J.,
 Hannett,
 N.,
 Harbison,
 C.T.,
 Rinaldi,
 N.J.,
 Volkert,
 T.L.,
 Wyrick,
 J.J.,
 
Zeitlinger,
 J.,
 Gifford,
 D.K.,
 Jaakkola,
 T.S.,
 et
 al.
 (2001).
 Serial
 regulation
 of
 
transcriptional
 regulators
 in
 the
 yeast
 cell
 cycle.
 Cell
 106,
 697–708.
 

 
Siow,
 C.C.,
 Nieduszynska,
 S.R.,
 Müller,
 C.A.,
 and
 Nieduszynski,
 C.A.
 (2012).
 OriDB,
 the
 
DNA
 replication
 origin
 database
 updated
 and
 extended.
 Nucleic
 Acids
 Res.
 40,
 
D682–D686.
 

 
Song,
 J.S.,
 Johnson,
 W.E.,
 Zhu,
 X.,
 Zhang,
 X.,
 Li,
 W.,
 Manrai,
 A.K.,
 Liu,
 J.S.,
 Chen,
 R.,
 and
 
Liu,
 X.S.
 (2007).
 Model-­‐based
 analysis
 of
 two-­‐color
 arrays
 (MA2C).
 Genome
 Biol.
 8,
 
R178.
 

 

  142
 
Sun,
 K.,
 Coïc,
 E.,
 Zhou,
 Z.,
 Durrens,
 P.,
 and
 Haber,
 J.E.
 (2002).
 Saccharomyces
 
forkhead
 protein
 Fkh1
 regulates
 donor
 preference
 during
 mating-­‐type
 switching
 
through
 the
 recombination
 enhancer.
 Genes
 Dev.
 16,
 2085–2096.
 

 
Trapnell,
 C.,
 Williams,
 B.A.,
 Pertea,
 G.,
 Mortazavi,
 A.,
 Kwan,
 G.,
 van
 Baren,
 M.J.,
 
Salzberg,
 S.L.,
 Wold,
 B.J.,
 and
 Pachter,
 L.
 (2010).
 Transcript
 assembly
 and
 
quantification
 by
 RNA-­‐Seq
 reveals
 unannotated
 transcripts
 and
 isoform
 switching
 
during
 cell
 differentiation.
 Nat.
 Biotechnol.
 28,
 511–515.
 

 
unknown
 Hannon
 Lab
 CSH
 Barcode
 Splitter.
 http://hannonlab.cshl.edu/
 
fastx_toolkit/index.html
 

 

 
Viggiani,
 C.J.,
 Knott,
 S.R.V.,
 and
 Aparicio,
 O.M.
 (2010).
 Genome-­‐wide
 analysis
 of
 DNA
 
synthesis
 by
 BrdU
 immunoprecipitation
 on
 tiling
 microarrays
 (BrdU-­‐IP-­‐chip)
 in
 
Saccharomyces
 cerevisiae.
 Cold
 Spring
 Harb.
 Protoc.
 2010,
 pdb.prot5385.
 

 
Zhang,
 Y.,
 Yu,
 Z.,
 Fu,
 X.,
 and
 Liang,
 C.
 (2002).
 Noc3p,
 a
 bHLH
 protein,
 plays
 an
 integral
 
role
 in
 the
 initiation
 of
 DNA
 replication
 in
 budding
 yeast.
 Cell
 109,
 849–860.
 

 
Zhang,
 Y.,
 Liu,
 T.,
 Meyer,
 C.A.,
 Eeckhoute,
 J.,
 Johnson,
 D.S.,
 Bernstein,
 B.E.,
 Nusbaum,
 
C.,
 Myers,
 R.M.,
 Brown,
 M.,
 Li,
 W.,
 et
 al.
 (2008).
 Model-­‐based
 Analysis
 of
 ChIP-­‐Seq
 
(MACS).
 Genome
 Biol.
 9,
 R137.
 

 
Zhong,
 Y.,
 Nellimoottil,
 T.,
 Peace,
 J.M.,
 Knott,
 S.R.V.,
 Villwock,
 S.K.,
 Yee,
 J.M.,
 Jancuska,
 
J.M.,
 Rege,
 S.,
 Tecklenburg,
 M.,
 Sclafani,
 R.A.,
 et
 al.
 (2013).
 The
 level
 of
 origin
 firing
 
inversely
 affects
 the
 rate
 of
 replication
 fork
 progression.
 J.
 Cell
 Biol.
 201,
 373–383.
 

 
CHAPTER
 III
 REFERENCES
 

 
Aparicio,
 O.M.
 (2013).
 Location,
 location,
 location:
 it’s
 all
 in
 the
 timing
 for
 replication
 
origins.
 Genes
 Dev.
 27,
 117–128.
 

 
Aparicio,
 J.G.,
 Viggiani,
 C.J.,
 Gibson,
 D.G.,
 and
 Aparicio,
 O.M.
 (2004).
 The
 Rpd3-­‐Sin3
 
Histone
 Deacetylase
 Regulates
 Replication
 Timing
 and
 Enables
 Intra-­‐S
 Origin
 
Control
 in
 Saccharomyces
 cerevisiae.
 Mol.
 Cell.
 Biol.
 24,
 4769–4780.
 

 
Bianchi,
 A.,
 and
 Shore,
 D.
 (2007).
 Early
 Replication
 of
 Short
 Telomeres
 in
 Budding
 
Yeast.
 Cell
 128,
 1051–1062.
 

 
Cornacchia,
 D.,
 Dileep,
 V.,
 Quivy,
 J.-­‐P.,
 Foti,
 R.,
 Tili,
 F.,
 Santarella-­‐Mellwig,
 R.,
 Antony,
 
C.,
 Almouzni,
 G.,
 Gilbert,
 D.M.,
 and
 Buonomo,
 S.B.C.
 (2012).
 Mouse
 Rif1
 is
 a
 key
 
regulator
 of
 the
 replication-­‐timing
 programme
 in
 mammalian
 cells.
 EMBO
 J.
 31,
 
3678–3690.
 

  143
 

 
Davé,
 A.,
 Cooley,
 C.,
 Garg,
 M.,
 and
 Bianchi,
 A.
 (2014).
 Protein
 phosphatase
 1
 
recruitment
 by
 Rif1
 regulates
 DNA
 replication
 origin
 firing
 by
 counteracting
 DDK
 
activity.
 Cell
 Rep.
 7,
 53–61.
 

 
Dunham,
 J.P.,
 and
 Friesen,
 M.L.
 (2013).
 A
 Cost-­‐Effective
 Method
 for
 High-­‐
Throughput
 Construction
 of
 Illumina
 Sequencing
 Libraries.
 Cold
 Spring
 Harb.
 
Protoc.
 2013,
 pdb.prot074187.
 

 
Gibson,
 D.G.,
 Aparicio,
 J.G.,
 Hu,
 F.,
 and
 Aparicio,
 O.M.
 (2004).
 Diminished
 S-­‐Phase
 
Cyclin-­‐Dependent
 Kinase
 Function
 Elicits
 Vital
 Rad53-­‐Dependent
 Checkpoint
 
Responses
 in
 Saccharomyces
 cerevisiae.
 Mol.
 Cell.
 Biol.
 24,
 10208–10222.
 

 
Hardy,
 C.F.,
 Sussel,
 L.,
 and
 Shore,
 D.
 (1992).
 A
 RAP1-­‐interacting
 protein
 involved
 in
 
transcriptional
 silencing
 and
 telomere
 length
 regulation.
 Genes
 Dev.
 6,
 801–814.
 

 
Hayano,
 M.,
 Kanoh,
 Y.,
 Matsumoto,
 S.,
 Renard-­‐Guillet,
 C.,
 Shirahige,
 K.,
 and
 Masai,
 H.
 
(2012).
 Rif1
 is
 a
 global
 regulator
 of
 timing
 of
 replication
 origin
 firing
 in
 fission
 yeast.
 
Genes
 Dev.
 26,
 137–150.
 

 
Hayashi,
 M.T.,
 Takahashi,
 T.S.,
 Nakagawa,
 T.,
 Nakayama,
 J.,
 and
 Masukata,
 H.
 (2009).
 
The
 heterochromatin
 protein
 Swi6/HP1
 activates
 replication
 origins
 at
 the
 
pericentromeric
 region
 and
 silent
 mating-­‐type
 locus.
 Nat.
 Cell
 Biol.
 11,
 357–362.
 

 
Hiraga,
 S.-­‐I.,
 Alvino,
 G.M.,
 Chang,
 F.,
 Lian,
 H.-­‐Y.,
 Sridhar,
 A.,
 Kubota,
 T.,
 Brewer,
 B.J.,
 
Weinreich,
 M.,
 Raghuraman,
 M.K.,
 and
 Donaldson,
 A.D.
 (2014).
 Rif1
 controls
 DNA
 
replication
 by
 directing
 Protein
 Phosphatase
 1
 to
 reverse
 Cdc7-­‐mediated
 
phosphorylation
 of
 the
 MCM
 complex.
 Genes
 Dev.
 28,
 372–383.
 

 
Hirano,
 Y.,
 Fukunaga,
 K.,
 and
 Sugimoto,
 K.
 (2009).
 Rif1
 and
 rif2
 inhibit
 localization
 of
 
tel1
 to
 DNA
 ends.
 Mol.
 Cell
 33,
 312–322.
 

 
Kanoh,
 J.,
 and
 Ishikawa,
 F.
 (2001).
 spRap1
 and
 spRif1,
 recruited
 to
 telomeres
 by
 
Taz1,
 are
 essential
 for
 telomere
 function
 in
 fission
 yeast.
 Curr.
 Biol.
 11,
 1624–1630.
 

 
Knott,
 S.R.V.,
 Viggiani,
 C.J.,
 Tavaré,
 S.,
 and
 Aparicio,
 O.M.
 (2009a).
 Genome-­‐wide
 
replication
 profiles
 indicate
 an
 expansive
 role
 for
 Rpd3L
 in
 regulating
 replication
 
initiation
 timing
 or
 efficiency,
 and
 reveal
 genomic
 loci
 of
 Rpd3
 function
 in
 
Saccharomyces
 cerevisiae.
 Genes
 Dev.
 23,
 1077–1090.
 

 
Knott,
 S.R.V.,
 Viggiani,
 C.J.,
 Aparicio,
 O.M.,
 and
 Tavaré,
 S.
 (2009b).
 Strategies
 for
 
analyzing
 highly
 enriched
 IP-­‐chip
 datasets.
 BMC
 Bioinformatics
 10,
 305.
 

 
Knott,
 S.R.V.,
 Peace,
 J.M.,
 Ostrow,
 A.Z.,
 Gan,
 Y.,
 Rex,
 A.E.,
 Viggiani,
 C.J.,
 Tavaré,
 S.,
 and
 
Aparicio,
 O.M.
 (2012).
 Forkhead
 Transcription
 Factors
 Establish
 Origin
 Timing
 and
 
Long-­‐Range
 Clustering
 in
 S.
 cerevisiae.
 Cell
 148,
 99–111.
 

  144
 

 
Kumar,
 R.,
 and
 Cheok,
 C.F.
 (2014).
 RIF1:
 A
 novel
 regulatory
 factor
 for
 DNA
 
replication
 and
 DNA
 damage
 response
 signaling.
 DNA
 Repair
 15,
 54–59.
 

 
Langmead,
 B.,
 and
 Salzberg,
 S.L.
 (2012).
 Fast
 gapped-­‐read
 alignment
 with
 Bowtie
 2.
 
Nat.
 Methods
 9,
 357–359.
 

 
Li,
 H.,
 Handsaker,
 B.,
 Wysoker,
 A.,
 Fennell,
 T.,
 Ruan,
 J.,
 Homer,
 N.,
 Marth,
 G.,
 Abecasis,
 
G.,
 and
 Durbin,
 R.
 (2009).
 The
 Sequence
 Alignment/Map
 format
 and
 SAMtools.
 
Bioinformatics
 25,
 2078–2079.
 

 
Li,
 P.-­‐C.,
 Chretien,
 L.,
 Côté,
 J.,
 Kelly,
 T.J.,
 and
 Forsburg,
 S.L.
 (2011).
 S.
 pombe
 
replication
 protein
 Cdc18
 (Cdc6)
 interacts
 with
 Swi6
 (HP1)
 heterochromatin
 
protein:
 region
 specific
 effects
 and
 replication
 timing
 in
 the
 centromere.
 Cell
 Cycle
 
Georget.
 Tex
 10,
 323–336.
 

 
Lian,
 H.-­‐Y.,
 Robertson,
 E.D.,
 Hiraga,
 S.,
 Alvino,
 G.M.,
 Collingwood,
 D.,
 McCune,
 H.J.,
 
Sridhar,
 A.,
 Brewer,
 B.J.,
 Raghuraman,
 M.K.,
 and
 Donaldson,
 A.D.
 (2011).
 The
 effect
 of
 
Ku
 on
 telomere
 replication
 time
 is
 mediated
 by
 telomere
 length
 but
 is
 independent
 
of
 histone
 tail
 acetylation.
 Mol.
 Biol.
 Cell
 22,
 1753–1765.
 

 
Marcand,
 S.,
 Wotton,
 D.,
 Gilson,
 E.,
 and
 Shore,
 D.
 (1997).
 Rap1p
 and
 telomere
 length
 
regulation
 in
 yeast.
 Ciba
 Found.
 Symp.
 211,
 76–93;
 discussion
 93–103.
 

 
Mattarocci,
 S.,
 Shyian,
 M.,
 Lemmens,
 L.,
 Damay,
 P.,
 Altintas,
 D.M.,
 Shi,
 T.,
 
Bartholomew,
 C.R.,
 Thomä,
 N.H.,
 Hardy,
 C.F.J.,
 and
 Shore,
 D.
 (2014).
 Rif1
 controls
 
DNA
 replication
 timing
 in
 yeast
 through
 the
 PP1
 phosphatase
 Glc7.
 Cell
 Rep.
 7,
 62–
69.
 

 
Natsume,
 T.,
 Müller,
 C.A.,
 Katou,
 Y.,
 Retkute,
 R.,
 Gierliński,
 M.,
 Araki,
 H.,
 Blow,
 J.J.,
 
Shirahige,
 K.,
 Nieduszynski,
 C.A.,
 and
 Tanaka,
 T.U.
 (2013).
 Kinetochores
 Coordinate
 
Pericentromeric
 Cohesion
 and
 Early
 DNA
 Replication
 by
 Cdc7-­‐Dbf4
 Kinase
 
Recruitment.
 Mol.
 Cell
 50,
 661–674.
 

 
Park,
 S.,
 Patterson,
 E.E.,
 Cobb,
 J.,
 Audhya,
 A.,
 Gartenberg,
 M.R.,
 and
 Fox,
 C.A.
 (2011).
 
Palmitoylation
 controls
 the
 dynamics
 of
 budding-­‐yeast
 heterochromatin
 via
 the
 
telomere-­‐binding
 protein
 Rif1.
 Proc.
 Natl.
 Acad.
 Sci.
 108,
 14572–14577.
 

 
Paulovich,
 A.G.,
 and
 Hartwell,
 L.H.
 (1995).
 A
 checkpoint
 regulates
 the
 rate
 of
 
progression
 through
 S
 phase
 in
 S.
 cerevisiae
 in
 response
 to
 DNA
 damage.
 Cell
 82,
 
841–847.
 

 
Peace,
 J.M.,
 Ter-­‐Zakarian,
 A.,
 and
 Aparicio,
 O.M.
 (2014).
 Rif1
 Regulates
 Initiation
 
Timing
 of
 Late
 Replication
 Origins
 throughout
 the
 S.
 cerevisiae
 Genome.
 PLoS
 ONE
 
9,
 e98501.
 

 

  145
 

 
Pellicioli,
 A.,
 Lucca,
 C.,
 Liberi,
 G.,
 Marini,
 F.,
 Lopes,
 M.,
 Plevani,
 P.,
 Romano,
 A.,
 Di
 
Fiore,
 P.P.,
 and
 Foiani,
 M.
 (1999).
 Activation
 of
 Rad53
 kinase
 in
 response
 to
 DNA
 
damage
 and
 its
 effect
 in
 modulating
 phosphorylation
 of
 the
 lagging
 strand
 DNA
 
polymerase.
 EMBO
 J.
 18,
 6561–6572.
 

 
Pohl,
 T.J.,
 Brewer,
 B.J.,
 and
 Raghuraman,
 M.K.
 (2012).
 Functional
 centromeres
 
determine
 the
 activation
 time
 of
 pericentric
 origins
 of
 DNA
 replication
 in
 
Saccharomyces
 cerevisiae.
 PLoS
 Genet.
 8,
 e1002677.
 

 
Quinlan,
 A.R.,
 and
 Hall,
 I.M.
 (2010).
 BEDTools:
 a
 flexible
 suite
 of
 utilities
 for
 
comparing
 genomic
 features.
 Bioinformatics
 26,
 841–842.
 

 
Raghuraman,
 M.K.,
 Winzeler,
 E.A.,
 Collingwood,
 D.,
 Hunt,
 S.,
 Wodicka,
 L.,
 Conway,
 A.,
 
Lockhart,
 D.J.,
 Davis,
 R.W.,
 Brewer,
 B.J.,
 and
 Fangman,
 W.L.
 (2001).
 Replication
 
Dynamics
 of
 the
 Yeast
 Genome.
 Science
 294,
 115–121.
 

 
Rusche,
 L.N.,
 Kirchmaier,
 A.L.,
 and
 Rine,
 J.
 (2003).
 The
 establishment,
 inheritance,
 
and
 function
 of
 silenced
 chromatin
 in
 Saccharomyces
 cerevisiae.
 Annu.
 Rev.
 
Biochem.
 72,
 481–516.
 

 
Sanchez,
 Y.,
 Desany,
 B.A.,
 Jones,
 W.J.,
 Liu,
 Q.,
 Wang,
 B.,
 and
 Elledge,
 S.J.
 (1996).
 
Regulation
 of
 RAD53
 by
 the
 ATM-­‐like
 kinases
 MEC1
 and
 TEL1
 in
 yeast
 cell
 cycle
 
checkpoint
 pathways.
 Science
 271,
 357–360.
 

 
Santocanale,
 C.,
 and
 Diffley,
 J.F.
 (1998).
 A
 Mec1-­‐
 and
 Rad53-­‐dependent
 checkpoint
 
controls
 late-­‐firing
 origins
 of
 DNA
 replication.
 Nature
 395,
 615–618.
 

 
Shirahige,
 K.,
 Hori,
 Y.,
 Shiraishi,
 K.,
 Yamashita,
 M.,
 Takahashi,
 K.,
 Obuse,
 C.,
 
Tsurimoto,
 T.,
 and
 Yoshikawa,
 H.
 (1998).
 Regulation
 of
 DNA-­‐replication
 origins
 
during
 cell-­‐cycle
 progression.
 Nature
 395,
 618–621.
 

 
Siow,
 C.C.,
 Nieduszynska,
 S.R.,
 Müller,
 C.A.,
 and
 Nieduszynski,
 C.A.
 (2012).
 OriDB,
 the
 
DNA
 replication
 origin
 database
 updated
 and
 extended.
 Nucleic
 Acids
 Res.
 40,
 
D682–D686.
 

 
Smith,
 C.D.,
 Smith,
 D.L.,
 DeRisi,
 J.L.,
 and
 Blackburn,
 E.H.
 (2003).
 Telomeric
 Protein
 
Distributions
 and
 Remodeling
 Through
 the
 Cell
 Cycle
 in
 Saccharomyces
 cerevisiae.
 
Mol.
 Biol.
 Cell
 14,
 556–570.
 

 
Stark,
 R.,
 and
 Brown,
 R.
 (2013).
 DiffBind:
 differential
 binding
 analysis
 of
 ChIP-­‐Seq
 
peak
 data.
 

 
Stevenson,
 J.B.,
 and
 Gottschling,
 D.E.
 (1999).
 Telomeric
 chromatin
 modulates
 
replication
 timing
 near
 chromosome
 ends.
 Genes
 Dev.
 13,
 146–151.
 

 

  146
 
Sun,
 Z.,
 Fay,
 D.S.,
 Marini,
 F.,
 Foiani,
 M.,
 and
 Stern,
 D.F.
 (1996).
 Spk1/Rad53
 is
 
regulated
 by
 Mec1-­‐dependent
 protein
 phosphorylation
 in
 DNA
 replication
 and
 
damage
 checkpoint
 pathways.
 Genes
 Dev.
 10,
 395–406.
 

 
Tercero,
 J.A.,
 Longhese,
 M.P.,
 and
 Diffley,
 J.F.X.
 (2003).
 A
 central
 role
 for
 DNA
 
replication
 forks
 in
 checkpoint
 activation
 and
 response.
 Mol.
 Cell
 11,
 1323–1336.
 

 
unknown
 Hannon
 Lab
 CSH
 Barcode
 Splitter.
 http://hannonlab.cshl.edu/
 
fastx_toolkit/index.html
 

 
Viggiani,
 C.J.,
 Knott,
 S.R.V.,
 and
 Aparicio,
 O.M.
 (2010).
 Genome-­‐wide
 analysis
 of
 DNA
 
synthesis
 by
 BrdU
 immunoprecipitation
 on
 tiling
 microarrays
 (BrdU-­‐IP-­‐chip)
 in
 
Saccharomyces
 cerevisiae.
 Cold
 Spring
 Harb.
 Protoc.
 2010,
 pdb.prot5385.
 

 
Xu,
 D.,
 Muniandy,
 P.,
 Leo,
 E.,
 Yin,
 J.,
 Thangavel,
 S.,
 Shen,
 X.,
 Ii,
 M.,
 Agama,
 K.,
 Guo,
 R.,
 Iii,
 
D.F.,
 et
 al.
 (2010).
 Rif1
 provides
 a
 new
 DNA-­‐binding
 interface
 for
 the
 Bloom
 
syndrome
 complex
 to
 maintain
 normal
 replication.
 EMBO
 J.
 29,
 3140–3155.
 

 
Xue,
 Y.,
 Rushton,
 M.D.,
 and
 Maringele,
 L.
 (2011).
 A
 novel
 checkpoint
 and
 RPA
 
inhibitory
 pathway
 regulated
 by
 Rif1.
 PLoS
 Genet.
 7,
 e1002417.
 

 
Yamazaki,
 S.,
 Ishii,
 A.,
 Kanoh,
 Y.,
 Oda,
 M.,
 Nishito,
 Y.,
 and
 Masai,
 H.
 (2012).
 Rif1
 
regulates
 the
 replication
 timing
 domains
 on
 the
 human
 genome.
 EMBO
 J.
 31,
 3667–
3677.
 

 
Zhang,
 Y.,
 Liu,
 T.,
 Meyer,
 C.A.,
 Eeckhoute,
 J.,
 Johnson,
 D.S.,
 Bernstein,
 B.E.,
 Nusbaum,
 
C.,
 Myers,
 R.M.,
 Brown,
 M.,
 Li,
 W.,
 et
 al.
 (2008).
 Model-­‐based
 Analysis
 of
 ChIP-­‐Seq
 
(MACS).
 Genome
 Biol.
 9,
 R137.
 

 
Zhong,
 Y.,
 Nellimoottil,
 T.,
 Peace,
 J.M.,
 Knott,
 S.R.V.,
 Villwock,
 S.K.,
 Yee,
 J.M.,
 Jancuska,
 
J.M.,
 Rege,
 S.,
 Tecklenburg,
 M.,
 Sclafani,
 R.A.,
 et
 al.
 (2013).
 The
 level
 of
 origin
 firing
 
inversely
 affects
 the
 rate
 of
 replication
 fork
 progression.
 J.
 Cell
 Biol.
 201,
 373–383.
 

 
Zimmermann,
 M.,
 and
 de
 Lange,
 T.
 (2014).
 53BP1:
 pro
 choice
 in
 DNA
 repair.
 Trends
 
Cell
 Biol.
 24,
 108–117.
 

 
CHAPTER
 IV
 REFERENCES
 

 
Aparicio,
 O.M.,
 D.M.
 Weinstein,
 and
 S.P.
 Bell.
 1997.
 Components
 and
 dynamics
 of
 
DNA
 replication
 complexes
 in
 S.
 cerevisiae:
 redistribution
 of
 MCM
 proteins
 and
 
Cdc45p
 during
 S
 phase.
 Cell.
 91:59-­‐69.
 

 

  147
 
Dohrmann,
 P.R.,
 and
 R.A.
 Sclafani.
 2006.
 Novel
 role
 for
 checkpoint
 Rad53
 protein
 
kinase
  in
  the
  initiation
  of
  chromosomal
  DNA
  replication
  in
  Saccharomyces
 
cerevisiae.
 Genetics.
 174:87-­‐99.
 

 
Duncker,
  B.P.,
  and
  G.W.
  Brown.
  2003.
  Cdc7
  kinases
  (DDKs)
  and
  checkpoint
 
responses:
 lessons
 from
 two
 yeasts.
 Mutat
 Res.
 532:21-­‐7.
 

 
Fletcher,
 R.J.,
 B.E.
 Bishop,
 R.P.
 Leon,
 R.A.
 Sclafani,
 C.M.
 Ogata,
 and
 X.S.
 Chen.
 2003.
 
The
 structure
 and
 function
 of
 MCM
 from
 archaeal
 M.
 Thermoautotrophicum.
 Nat
 
Struct
 Biol.
 10:160-­‐7.
 

 
Gibson,
 D.G.,
 J.G.
 Aparicio,
 F.
 Hu,
 and
 O.M.
 Aparicio.
 2004.
 Diminished
 S-­‐phase
 cyclin-­‐
dependent
 kinase
 function
 elicits
 vital
 Rad53-­‐dependent
 checkpoint
 responses
 in
 
Saccharomyces
 cerevisiae.
 Mol
 Cell
 Biol.
 24:10208-­‐22.
 

 
Gibson,
 D.G.,
 S.P.
 Bell,
 and
 O.M.
 Aparicio.
 2006.
 Cell
 cycle
 execution
 point
 analysis
 of
 
ORC
 function
 and
 characterization
 of
 the
 checkpoint
 response
 to
 ORC
 inactivation
 in
 
Saccharomyces
 cerevisiae.
 Genes
 Cells.
 11:557-­‐73.
 

 
Guldener,
 U.,
 S.
 Heck,
 T.
 Fielder,
 J.
 Beinhauer,
 and
 J.H.
 Hegemann.
 1996.
 A
 new
 
efficient
 gene
 disruption
 cassette
 for
 repeated
 use
 in
 budding
 yeast.
 Nucleic
 Acids
 
Res.
 24:2519-­‐24.
 

 
Hardy,
 C.F.,
 O.
 Dryga,
 S.
 Seematter,
 P.M.
 Pahl,
 and
 R.A.
 Sclafani.
 1997.
 mcm5/cdc46-­‐
bob1
 bypasses
 the
 requirement
 for
 the
 S
 phase
 activator
 Cdc7p.
 Proc
 Natl
 Acad
 Sci
 U
 
S
 A.
 94:3151-­‐5.
 

 
Hoang,
 M.L.,
 R.P.
 Leon,
 L.
 Pessoa-­‐Brandão,
 S.
 Hunt,
 M.K.
 Raghuraman,
 W.L.
 Fangman,
 
B.J.
 Brewer,
 and
 R.A.
 Sclafani.
 2007.
 Structural
 changes
 in
 Mcm5
 protein
 bypass
 
Cdc7-­‐Dbf4
  function
  and
  reduce
  replication
  origin
  efficiency
  in
  Saccharomyces
 
cerevisiae.
 Mol
 Cell
 Biol.
 27:7594-­‐602.
 

 
Hollingsworth,
 R.J.,
 R.M.
 Ostroff,
 M.B.
 Klein,
 L.A.
 Niswander,
 and
 R.A.
 Sclafani.
 1992.
 
Molecular
 genetic
 studies
 of
 the
 Cdc7
 protein
 kinase
 and
 induced
 mutagenesis
 in
 
yeast.
 Genetics.
 132:53-­‐62.
 

 
Ilves,
 I.,
 N.
 Tamberg,
 and
 M.R.
 Botchan.
 2012.
 Checkpoint
 kinase
 2
 (Chk2)
 inhibits
 
the
 activity
 of
 the
 Cdc45/MCM2-­‐7/GINS
 (CMG)
 replicative
 helicase
 complex.
 Proc
 
Natl
 Acad
 Sci
 U
 S
 A.
 109:13163-­‐70.
 

 
Knott,
 S.R.,
 J.M.
 Peace,
 A.Z.
 Ostrow,
 Y.
 Gan,
 A.E.
 Rex,
 C.J.
 Viggiani,
 S.
 Tavare,
 and
 O.M.
 
Aparicio.
 2012.
 Forkhead
 transcription
 factors
 establish
 origin
 timing
 and
 long-­‐
range
 clustering
 in
 S.
 cerevisiae.
 Cell.
 148:99-­‐111.
 

 
Knott,
 S.R.,
 C.J.
 Viggiani,
 O.M.
 Aparicio,
 and
 S.
 Tavaré.
 2009.
 Strategies
 for
 analyzing
 
highly
 enriched
 IP-­‐chip
 datasets.
 BMC
 Bioinformatics.
 10:305.
 

  148
 

 
Labib,
 K.
 2010.
 How
 do
 Cdc7
 and
 cyclin-­‐dependent
 kinases
 trigger
 the
 initiation
 of
 
chromosome
 replication
 in
 eukaryotic
 cells?
 Genes
 Dev.
 24:1208-­‐19.
 

 
Longtine,
 M.S.,
 A.
 McKenzie,
 3rd,
 D.J.
 Demarini,
 N.G.
 Shah,
 A.
 Wach,
 A.
 Brachat,
 P.
 
Philippsen,
 and
 J.R.
 Pringle.
 1998.
 Additional
 modules
 for
 versatile
 and
 economical
 
PCR-­‐based
  gene
  deletion
  and
  modification
  in
  Saccharomyces
  cerevisiae.
  Yeast.
 
14:953-­‐61.
 

 
Lopez-­‐Mosqueda,
 J.,
 N.L.
 Maas,
 Z.O.
 Jonsson,
 L.G.
 Defazio-­‐Eli,
 J.
 Wohlschlegel,
 and
 D.P.
 
Toczyski.
 2010.
 Damage-­‐induced
 phosphorylation
 of
 Sld3
 is
 important
 to
 block
 late
 
origin
 firing.
 Nature.
 467:479-­‐83.
 

 
Mantiero,
  D.,
  A.
  Mackenzie,
  A.
  Donaldson,
  and
  P.
  Zegerman.
  2011.
  Limiting
 
replication
 initiation
 factors
 execute
 the
 temporal
 programme
 of
 origin
 firing
 in
 
budding
 yeast.
 EMBO
 J.
 30:4805-­‐14.
 

 
Masai,
 H.,
 and
 K.
 Arai.
 2002.
 Cdc7
 kinase
 complex:
 a
 key
 regulator
 in
 the
 initiation
 of
 
DNA
 replication.
 J
 Cell
 Physiol.
 190:287-­‐96.
 

 
O'Neill,
 B.M.,
 S.J.
 Szyjka,
 E.T.
 Lis,
 A.O.
 Bailey,
 J.R.
 Yates,
 3rd,
 O.M.
 Aparicio,
 and
 F.E.
 
Romesberg.
  2007.
  Pph3-­‐Psy2
  is
  a
  phosphatase
  complex
  required
  for
  Rad53
 
dephosphorylation
 and
 replication
 fork
 restart
 during
 recovery
 from
 DNA
 damage.
 
Proc
 Natl
 Acad
 Sci
 U
 S
 A.
 104:9290-­‐5.
 

 
Ogi,
 H.,
 C.Z.
 Wang,
 W.
 Nakai,
 Y.
 Kawasaki,
 and
 H.
 Masumoto.
 2008.
 The
 role
 of
 the
 
Saccharomyces
 cerevisiae
 Cdc7-­‐Dbf4
 complex
 in
 the
 replication
 checkpoint.
 Gene.
 
414:32-­‐40.
 

 
Oshiro,
 G.,
 J.C.
 Owens,
 Y.
 Shellman,
 R.A.
 Sclafani,
 and
 J.J.
 Li.
 1999.
 Cell
 cycle
 control
 of
 
Cdc7p
 kinase
 activity
 through
 regulation
 of
 Dbf4p
 stability.
 Mol
 Cell
 Biol.
 19:4888-­‐
96.
 

 
Paciotti,
  V.,
  M.
  Clerici,
  M.
  Scotti,
  G.
  Lucchini,
  and
  M.P.
  Longhese.
  2001.
 
Characterization
 of
 mec1
 kinase-­‐deficient
 mutants
 and
 of
 new
 hypomorphic
 mec1
 
alleles
  impairing
  subsets
  of
  the
  DNA
  damage
  response
  pathway.
  Mol
  Cell
  Biol.
 
21:3913-­‐25.
 

 
Patel,
  P.K.,
  N.
  Kommajosyula,
  A.
  Rosebrock,
  A.
  Bensimon,
  J.
  Leatherwood,
  J.
 
Bechhoefer,
 and
 N.
 Rhind.
 2008.
 The
 Hsk1(Cdc7)
 replication
 kinase
 regulates
 origin
 
efficiency.
 Mol
 Biol
 Cell.
 19:5550-­‐8.
 

 
Pellicioli,
 A.,
 C.
 Lucca,
 G.
 Liberi,
 F.
 Marini,
 M.
 Lopes,
 P.
 Plevani,
 A.
 Romano,
 P.P.
 Di
 
Fiore,
 and
 M.
 Foiani.
 1999.
 Activation
 of
 Rad53
 kinase
 in
 response
 to
 DNA
 damage
 
and
 its
 effect
 in
 modulating
 phosphorylation
 of
 the
 lagging
 strand
 DNA
 polymerase.
 
Embo
 J.
 18:6561-­‐72.
 

  149
 

 
Petermann,
 E.,
 M.
 Woodcock,
 and
 T.
 Helleday.
 2010.
 Chk1
 promotes
 replication
 fork
 
progression
  by
  controlling
  replication
  initiation.
  Proc
  Natl
  Acad
  Sci
  U
  S
  A.
 
107:16090-­‐5.
 

 
Poli,
 J.,
 O.
 Tsaponina,
 L.
 Crabbe,
 A.
 Keszthelyi,
 V.
 Pantesco,
 A.
 Chabes,
 A.
 Lengronne,
 
and
 P.
 Pasero.
 2012.
 dNTP
 pools
 determine
 fork
 progression
 and
 origin
 usage
 under
 
replication
 stress.
 EMBO
 J.
 31:883-­‐94.
 

 
Raghuraman,
 M.K.,
 E.A.
 Winzeler,
 D.
 Collingwood,
 S.
 Hunt,
 L.
 Wodicka,
 A.
 Conway,
 
D.J.
  Lockhart,
  R.W.
  Davis,
  B.J.
  Brewer,
  and
  W.L.
  Fangman.
  2001.
  Replication
 
dynamics
 of
 the
 yeast
 genome.
 Science.
 294:115-­‐21.
 

 
Segurado,
 M.,
 and
 J.F.
 Diffley.
 2008.
 Separate
 roles
 for
 the
 DNA
 damage
 checkpoint
 
protein
 kinases
 in
 stabilizing
 DNA
 replication
 forks.
 Genes
 Dev.
 22:1816-­‐27.
 

 
Sheu,
 Y.J.,
 and
 B.
 Stillman.
 2006.
 Cdc7-­‐Dbf4
 phosphorylates
 MCM
 proteins
 via
 a
 
docking
 site-­‐mediated
 mechanism
 to
 promote
 S
 phase
 progression.
 Mol
 Cell.
 24:101-­‐
13.
 

 
Sheu,
  Y.J.,
  and
  B.
  Stillman.
  2010.
  The
  Dbf4-­‐Cdc7
  kinase
  promotes
  S
  phase
  by
 
alleviating
 an
 inhibitory
 activity
 in
 Mcm4.
 Nature.
 463:113-­‐7.
 

 
Smyth,
 G.K.,
 and
 T.
 Speed.
 2003.
 Normalization
 of
 cDNA
 microarray
 data.
 Methods.
 
31:265-­‐73.
 

 
Song,
 J.S.,
 W.E.
 Johnson,
 X.
 Zhu,
 X.
 Zhang,
 W.
 Li,
 A.K.
 Manrai,
 J.S.
 Liu,
 R.
 Chen,
 and
 X.S.
 
Liu.
 2007.
 Model-­‐based
 analysis
 of
 two-­‐color
 arrays
 (MA2C).
 Genome
 Biol.
 8:R178.
 

 
Szyjka,
 S.J.,
 J.G.
 Aparicio,
 C.J.
 Viggiani,
 S.
 Knott,
 W.
 Xu,
 S.
 Tavaré,
 and
 O.M.
 Aparicio.
 
2008.
 Rad53
 regulates
 replication
 fork
 restart
 after
 DNA
 damage
 in
 Saccharomyces
 
cerevisiae.
 Genes
 Dev.
 22:1906-­‐20.
 

 

 
Tanaka,
 S.,
 R.
 Nakato,
 Y.
 Katou,
 K.
 Shirahige,
 and
 H.
 Araki.
 2011.
 Origin
 association
 of
 
Sld3,
 Sld7,
 and
 Cdc45
 proteins
 is
 a
 key
 step
 for
 determination
 of
 origin-­‐firing
 timing.
 
Curr
 Biol.
 21:2055-­‐63.
 

 
Tercero,
 J.A.,
 M.P.
 Longhese,
 and
 J.F.
 Diffley.
 2003.
 A
 central
 role
 for
 DNA
 replication
 
forks
 in
 checkpoint
 activation
 and
 response.
 Mol
 Cell.
 11:1323-­‐36.
 

 
Viggiani,
 C.J.,
 J.G.
 Aparicio,
 and
 O.M.
 Aparicio.
 2009.
 ChIP-­‐chip
 to
 analyze
 the
 binding
 
of
  replication
  proteins
  to
  chromatin
  using
  oligonucleotide
  DNA
  microarrays.
 
Methods
 Mol
 Biol.
 521:255-­‐78.
 

 

  150
 
Viggiani,
 C.J.,
 and
 O.M.
 Aparicio.
 2006.
 New
 vectors
 for
 simplified
 construction
 of
 
BrdU-­‐Incorporating
 strains
 of
 Saccharomyces
 cerevisiae.
 Yeast.
 23:1045-­‐51.
 

 
Viggiani,
 C.J.,
 S.R.
 Knott,
 and
 O.M.
 Aparicio.
 2010.
 Genome-­‐wide
 analysis
 of
 DNA
 
synthesis
  by
  BrdU
  immunoprecipitation
  on
  tiling
  microarrays
  (BrdU-­‐IP-­‐chip)
  in
 
Saccharomyces
 cerevisiae.
 Cold
 Spring
 Harb
 Protoc.
 2010:pdb
 prot5385.
 

 
Wan,
 L.,
 C.
 Zhang,
 K.M.
 Shokat,
 and
 N.M.
 Hollingsworth.
 2006.
 Chemical
 inactivation
 
of
 cdc7
 kinase
 in
 budding
 yeast
 results
 in
 a
 reversible
 arrest
 that
 allows
 efficient
 cell
 
synchronization
 prior
 to
 meiotic
 recombination.
 Genetics.
 174:1767-­‐74.
 

 
Weinreich,
 M.,
 and
 B.
 Stillman.
 1999.
 Cdc7p-­‐Dbf4p
 kinase
 binds
 to
 chromatin
 during
 
S
 phase
 and
 is
 regulated
 by
 both
 the
 APC
 and
 the
 RAD53
 checkpoint
 pathway.
 Embo
 
J.
 18:5334-­‐46.
 

 
Zegerman,
  P.,
  and
  J.F.
  Diffley.
  2010.
  Checkpoint-­‐dependent
  inhibition
  of
  DNA
 
replication
 initiation
 by
 Sld3
 and
 Dbf4
 phosphorylation.
 Nature.
 467:474-­‐8.
 

 

 
Zhong,
 Y.,
 Nellimoottil,
 T.,
 Peace,
 J.M.,
 Knott,
 S.R.V.,
 Villwock,
 S.K.,
 Yee,
 J.M.,
 Jancuska,
 
J.M.,
 Rege,
 S.,
 Tecklenburg,
 M.,
 Sclafani,
 R.A.,
 et
 al.
 2013.
 The
 level
 of
 origin
 firing
 
inversely
 affects
 the
 rate
 of
 replication
 fork
 progression.
 J.
 Cell
 Biol.
 201:373–383.
 

 

 
APPENDIX
 REFERENCES
 

 
Bachant,
 J.,
 Alcasabas,
 A.,
 Blat,
 Y.,
 Kleckner,
 N.,
 and
 Elledge,
 S.J.
 (2002).
 The
 SUMO-­‐1
 
Isopeptidase
 Smt4
 Is
 Linked
 to
 Centromeric
 Cohesion
 through
 SUMO-­‐1
 Modification
 
of
 DNA
 Topoisomerase
 II.
 Mol.
 Cell
 9,
 1169–1182.
 

 
Bodenmiller,
 B.,
 Malmstrom,
 J.,
 Gerrits,
 B.,
 Campbell,
 D.,
 Lam,
 H.,
 Schmidt,
 A.,
 Rinner,
 
O.,
 Mueller,
 L.N.,
 Shannon,
 P.T.,
 Pedrioli,
 P.G.,
 et
 al.
 (2007).
 PhosphoPep—a
 
phosphoproteome
 resource
 for
 systems
 biology
 research
 in
 Drosophila
 Kc167
 cells.
 
Mol.
 Syst.
 Biol.
 3,
 139.
 

 
Kitamura,
 E.,
 Blow,
 J.,
 and
 Tanaka,
 T.
 (2006).
 Live-­‐Cell
 Imaging
 Reveals
 Replication
 
of
 Individual
 Replicons
 in
 Eukaryotic
 Replication
 Factories.
 Cell
 125,
 1297–1308.
 

 
Knott,
 S.R.V.,
 Peace,
 J.M.,
 Ostrow,
 A.Z.,
 Gan,
 Y.,
 Rex,
 A.E.,
 Viggiani,
 C.J.,
 Tavaré,
 S.,
 and
 
Aparicio,
 O.M.
 (2012).
 Forkhead
 Transcription
 Factors
 Establish
 Origin
 Timing
 and
 
Long-­‐Range
 Clustering
 in
 S.
 cerevisiae.
 Cell
 148,
 99–111.
 

 

  151
 
Li,
 J.,
 Coïc,
 E.,
 Lee,
 K.,
 Lee,
 C.-­‐S.,
 Kim,
 J.-­‐A.,
 Wu,
 Q.,
 and
 Haber,
 J.E.
 (2012).
 Regulation
 of
 
Budding
 Yeast
 Mating-­‐Type
 Switching
 Donor
 Preference
 by
 the
 FHA
 Domain
 of
 
Fkh1.
 PLoS
 Genet
 8,
 e1002630.
 

 
Ostrow,
 A.Z.,
 Nellimoottil,
 T.,
 Knott,
 S.R.V.,
 Fox,
 C.A.,
 Tavaré,
 S.,
 and
 Aparicio,
 O.M.
 
(2014).
 Fkh1
 and
 Fkh2
 Bind
 Multiple
 Chromosomal
 Elements
 in
 the
 S.
 cerevisiae
 
Genome
 with
 Distinct
 Specificities
 and
 Cell
 Cycle
 Dynamics.
 PLoS
 ONE
 9,
 e87647.
 

 
Pic,
 A.,
 Lim,
 F.L.,
 Ross,
 S.J.,
 Veal,
 E.A.,
 Johnson,
 A.L.,
 Sultan,
 M.R.,
 West,
 A.G.,
 Johnston,
 
L.H.,
 Sharrocks,
 A.D.,
 and
 Morgan,
 B.A.
 (2000).
 The
 forkhead
 protein
 Fkh2
 is
 a
 
component
 of
 the
 yeast
 cell
 cycle
 transcription
 factor
 SFF.
 EMBO
 J.
 19,
 3750–3761.
 

 
Pic-­‐Taylor,
 A.,
 Darieva,
 Z.,
 Morgan,
 B.A.,
 and
 Sharrocks,
 A.D.
 (2004).
 Regulation
 of
 
cell
 cycle-­‐specific
 gene
 expression
 through
 cyclin-­‐dependent
 kinase-­‐mediated
 
phosphorylation
 of
 the
 forkhead
 transcription
 factor
 Fkh2p.
 Mol.
 Cell.
 Biol.
 24,
 
10036–10046.
 

 
Poli,
 J.,
 Tsaponina,
 O.,
 Crabbé,
 L.,
 Keszthelyi,
 A.,
 Pantesco,
 V.,
 Chabes,
 A.,
 Lengronne,
 
A.,
 and
 Pasero,
 P.
 (2012).
 dNTP
 pools
 determine
 fork
 progression
 and
 origin
 usage
 
under
 replication
 stress.
 EMBO
 J.
 31,
 883–894.
 

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  152
 
APPENDIX
 
Does
 phospho-­‐regulation
 of
 Fkh1/2
 control
 replication
 timing?
 
We
 have
 recently
 shown
 cell
 cycle
 regulation
 of
 Forkhead
 binding
 genome
 
wide
 (Ostrow
 et
 al.,
 2014).
 Previous
 findings
 have
 also
 indicated
 transcriptional
 
regulation
 of
 Fkh2
 by
 phosphorylation
 (Pic
 et
 al.,
 2000;
 Pic-­‐Taylor
 et
 al.,
 2004).
 
Additionally,
 the
 phosphoPep
 database
 identifies
 multiple
 Fkh2
 phosphorylation
 
sites
 and
 a
 single
 Fkh1
 site
 (Bodenmiller
 et
 al.,
 2007).
 
 Based
 on
 these
 findings,
 it
 is
 
plausible
 that
 replication
 control
 by
 Fkh
 proteins
 may
 be
 under
 similar
 regulation.
 
In
 order
 to
 address
 whether
 the
 role
 of
 Fkh1/2
 in
 replication
 timing
 is
 regulated
 by
 
phosphorylation,
 we
 created
 phosphomutants
 of
 multiple
 residues
 on
 Fkh1
 and
 
Fkh2
 in
 an
 attempt
 to
 deregulate
 replication
 timing.
 Mutations
 were
 created
 
through
 site-­‐directed
 mutagenesis
 of
 a
 plasmid
 containing
 either
 full
 length
 Fkh1
 or
 
Fkh2.
 Either
 the
 predicted
 residue
 for
 phosphorylation
 was
 targeted
 for
 mutation
 or
 
an
 adjacent
 residue
 necessary
 for
 the
 consensus
 motif
 of
 the
 particular
 kinase
 was
 
mutated.
 Particular
 interest
 was
 placed
 on
 the
 DNA
 binding
 Domain
 (DBD)
 or
 Fkh
 
Domain
 of
 Fkh1
 and
 Fkh2.
 Recent
 work
 from
 our
 group
 (Ostrow
 et
 al.,
 unpublished)
 
has
 shown
 that
 dimerization
 of
 Forkhead
 proteins,
 through
 the
 domain
 swapping
 of
 
the
 alpha
 helix
 encoded
 in
 the
 DBD,
 is
 important
 for
 Forkhead
 regulated
 replication
 
timing
 control.
 Interestingly,
 the
 DBD
 of
 Fkh1/2
 is
 highly
 conserved
 among
 higher
 
eukaryotes
 (Fig.
 A.1).
 This
 suggests
 evolutionary
 importance
 in
 the
 maintenance
 of
 
residues
 in
 this
 region.
 Here
 we
 posited
 that
 regulation
 of
 dimerization
 might
 be
 
controlled
 through
 phosphorylation
 of
 adjacent
 residues
 in
 this
 region.
 
 

  153
 
The
 majority
 of
 our
 efforts
 were
 primarily
 focused
 on
 identifying
 key
 
residues
 in
 Fkh1,
 as
 it’s
 phenotypic
 effect
 on
 replication
 timing
 is
 more
 dramatic.
 We
 
identified
 consensus
 phosphorylation
 sites
 for
 CDK,
 DDK
 (Cdc7),
 and
 CKII
 kinases
 
(Fig.
 A.2)
 and
 used
 these
 to
 guide
 our
 selection
 of
 residues
 to
 mutate
 (Table
 A.1).
 
 As
 
mentioned,
 we
 created
 phospho-­‐knock
 outs
 (S/T
 to
 A
 mutations)
 of
 all
 consensus
 
phosphorylation
 sites
 in
 the
 DBD
 (Fig.
 A.1,
 A.2,
 Table
 A.1).
 
 We
 also
 attempted
 to
 
create
 phosphomimics
 of
 several
 residues
 in
 this
 region
 (S/T
 to
 D
 mutations)
 (Table
 
A.1).
 Additionally,
 we
 attempted
 to
 mimic
 the
 conserved
 DBD
 residues
 in
 higher
 
eukaryotic
 Forkhead
 homologs
 by
 creating
 a
 S318E
 mutation
 (Fig.
 A.1,
 Table
 A.1).
 
To
 address
 the
 role
 of
 the
 C-­‐terminal
 consensus
 sites
 we
 created
 a
 C-­‐terminal
 
truncation
 at
 reside
 A421
 by
 introducing
 a
 premature
 stop
 codon.
 Lastly,
 we
 created
 
the
 R80A
 mutation
 shown
 to
 be
 defective
 in
 proper
 mating-­‐type
 switching
 donor
 
preference
 (Li
 et
 al.,
 2012).
 We
 limited
 our
 analysis
 of
 Fkh2
 to
 S356
 (found
 in
 the
 
DBD
 domain)
 as
 well
 as
 S683
 and
 T697,
 which
 were
 shown
 to
 be
 transcriptionally
 
important
 targets
 of
 CDK
 
 (Fig.
 A.1,
 Table
 A.1)(Pic-­‐Taylor
 et
 al.,
 2004).
 
Mutagenized
 plasmids
 were
 integrated
 by
 pop
 in,
 pop
 out
 at
 the
 endogenous
 
locus
 or
 expressed
 on
 a
 high
 copy
 plasmid
 in
 the
 fkh1∆
 fkh2∆
 background.
 Strikingly,
 
all
 constructs
 complemented
 transcriptional
 deregulation
 of
 the
 double
 mutant
 as
 
evidenced
 by
 a
 loss
 of
 pseudohyphal
 growth.
 Bulk
 DNA
 synthesis
 by
 FACS
 of
 
asynchronously
 growing
 culture
 did
 not
 reveal
 any
 obvious
 differences
 in
 total
 DNA
 
content
 when
 compared
 to
 control
 strains
 as
 evidenced
 by
 the
 majority
 of
 cells
 
exhibiting
 a
 typical
 2C
 peak.
 The
 one
 exception
 to
 this
 was
 the
 Fkh2
 S683D
 T697D
 
mutation
 that
 revealed
 a
 more
 dramatic
 1C
 peak
 when
 compared
 to
 fkh2∆
 cells,
 

  154
 
consistent
 with
 these
 residues
 playing
 an
 important
 role
 in
 control
 of
 the
 Clb2
 gene
 
cluster
 and
 the
 G2/M
 cell
 cycle
 transition
 
 (Fig.
 A.3)
 (Pic-­‐Taylor
 et
 al.,
 2004).
 To
 
address
 the
 effect
 on
 replication
 timing,
 strains
 were
 subjected
 to
 G1
 block
 and
 
release
 into
 media
 containing
 BrdU
 and
 hydroxyurea.
 Samples
 were
 taken
 and
 
 
analyzed
 by
 BrdU-­‐IP-­‐chip.
 Introduction
 of
 WT
 Fkh1
 or
 Fkh2
 back
 into
 the
 fkh1∆
 
fkh2∆
 background
 advanced
 the
 timing
 of
 the
 Fkh
 activated
 origins
 ars305
 and
 
ars607
 to
 approximate
 WT
 levels
 (data
 not
 shown).
 Interestingly,
 all
 of
 the
 
phosphomutants
 constructed
 had
 a
 similar
 effect
 by
 rescuing
 the
 activity
 of
 these
 
origins.
 In
 total,
 no
 obvious
 differences
 were
 seen
 between
 the
 reintroduction
 of
 WT
 
Fkh1
 or
 Fkh2
 versus
 any
 of
 the
 phosphomutant
 constructs.
 Further
 analysis,
 
including
 a
 more
 thorough
 genome
 wide
 analysis
 into
 changes
 to
 replication
 timing,
 
as
 well
 as
 replication
 of
 the
 above
 results
 are
 needed.
 
 Additionally,
 phosphorylation
 
sites
 may
 need
 to
 be
 knocked
 out
 in
 combination
 with
 one
 another
 in
 order
 to
 see
 a
 
replication
 related
 effect.
 

 

 
Figure
 A.1.
 Multiple
 Sequence
 Alignment
 of
 Forkhead
 family
 transcription
 
factor
 DNA
 binding
 domains
 in
 S.
 cerevisiae
 and
 higher
 homologs.
 Boxes
 
indicate
 conservation
 or
 divergence
 of
 key
 amino
 acids
 for
 dimerization.
 Divergence
 
of
 blue
 and
 yellow
 (E
 and
 S)
 boxed
 residues
 are
 of
 potential
 interest
 in
 relation
 to
 
phosphorylation
 of
 adjacent
 residues.
 

 

  155
 

 

 
Figure
 A.2.
 Fkh1
 Coding
 sequence
 with
 various
 highlighted
 features.
 

 

 

 
Table
 A.1.
 List
 of
 base
 strains
 and
 introduced
 mutations
 analyzed.
 

  156
 

 
Figure
 A.3
 Bulk
 DNA
 content
 analysis
 of
 asynchronously
 growing
 cultures
 by
 
indicated
 strain.
 

 

  157
 
Visualization
 of
 replication
 foci
 formation
 and
 relative
 origin
 positioning
 in
 
fkh1∆
 fkh2∆
 cells
 through
 live
 cell
 imaging.
 

 
A
 recent
 study
 has
 shown
 the
 formation
 of
 replication
 foci
 in
 live
 cells
 during
 
S-­‐phase
 (Kitamura
 et
 al.,
 2006).
 These
 studies,
 using
 fluorescently
 tagged
 
constructs,
 revealed
 that
 in
 early
 S-­‐Phase,
 Pol1
 and
 several
 other
 components
 of
 the
 
replication
 fork
 complex
 aggregate
 into
 distinct
 globular
 domains
 through
 out
 the
 
nucleus.
 These
 domains
 are
 transient
 and
 resolve;
 returning
 to
 background
 signal
 
levels
 by
 the
 end
 of
 S-­‐phase.
 
 The
 interpretation
 of
 these
 findings
 is
 that
 replication
 
factories
 form
 early
 in
 S-­‐phase
 to
 facilitate
 DNA
 replication.
 This
 system
 provides
 a
 
method
 for
 examining
 potential
 mutants
 defective
 in
 proper
 replication
 foci
 
(factory)
 formation.
 
 
With
 the
 evidence
 that
 Fkh
 proteins
 are
 involved
 in
 coordination
 of
 proper
 
nuclear
 architecture,
 we
 hypothesized
 that
 visible
 differences
 in
 replication
 foci
 
formation
 might
 be
 seen
 when
 the
 above
 experiment
 was
 performed
 on
 cells
 lacking
 
Fkh1
 and
 Fkh2
 (fkh1∆
 fkh2∆)
 (Knott
 et
 al.,
 2012).
 Haploid
 segregants
 of
 T3030
 
(Kitamura
 et
 al.,
 2006)
 were
 crossed
 with
 SKy1
 (fkh1∆
 fkh2∆
 pFkh2∆C)
 and
 
sporulated,
 generating
 isogenic
 WT
 and
 fkh1∆
 fkh2∆
 pFkh2∆
 MATa
 cells
 containing
 
DNA
 Pol1
 C-­‐terminally
 tagged
 with
 four
 tandem
 copies
 of
 green
 fluorescent
 protein
 
(Pol1-­‐4GFP).
 Cells
 were
 blocked
 and
 released
 into
 S-­‐phase
 and
 time-­‐lapse
 images
 
were
 taken
 (at
 5
 min
 intervals
 throughout
 S-­‐phase)
 using
 a
 Deltavision
 microscope
 
with
 z-­‐sections
 through
 the
 nucleus.
 Images
 were
 deconvoluted
 and
 projected
 as
 2-­‐
dimensional
 images
 for
 comparison
 (Fig.
 A.5A).
 
 Figure
 A.5.A
 shows
 a
 diffuse
 

  158
 
background
 signal
 in
 both
 WT
 as
 well
 as
 fkh1∆
 fkh2∆
 pFkh2∆C
 cells
 at
 18
 minutes.
 
By
 43
 minutes
 obvious
 globular
 foci
 are
 visible
 in
 both
 strains.
 Visual
 analysis
 of
 the
 
two
 strains
 revealed
 no
 obvious
 difference
 in
 the
 timing
 (start
 or
 end)
 of
 foci
 
appearance
 or
 in
 the
 approximate
 number
 or
 size
 of
 replication
 foci
 formed.
 This
 
indicates
 that
 replication
 foci,
 although
 potentially
 containing
 different
 
chromosomal
 regions
 (origins),
 still
 form
 in
 the
 absence
 of
 Fkh1/2.
 Similar
 
experiments
 comparing
 WT
 cells
 and
 cells
 over-­‐expressing
 Fkh1
 were
 also
 
performed.
 As
 in
 the
 knockout
 studies,
 these
 experiments
 did
 not
 yield
 an
 obvious
 
difference
 in
 phenotype
 between
 strains.
 Similar
 conclusions
 were
 also
 obtained
 
with
 immunohistochemistry
 (data
 not
 shown).
 
To
 further
 investigate
 the
 dependency
 of
 origin
 clustering
 on
 Fkh1/2,
 we
 
implemented
 a
 system
 to
 fluorescently
 tag
 individual
 origins
 for
 the
 purpose
 of
 
determining
 their
 relative
 spatial
 location
 to
 one
 another
 within
 the
 nucleus.
 
 WT
 
and
 fkh1∆
 fkh2∆
 pFkh2∆
 cells
 were
 transformed
 with
 integrating
 vectors
 pRS404-­‐
LacI-­‐GFP
 (subcloned
 from
 pAFS135
 into
 pRS404)
 and
 pRS402-­‐TetR-­‐tomato.
 Both
 
constructs
 are
 under
 control
 of
 the
 His3
 promoter.
 We
 next
 tagged
 two
 Fkh
 
activated
 origins
 in
 each
 strain,
 one
 with
 a
 10
 kb
 LacO
 repeat
 (ars305)
 and
 another
 
with
 an
 8
 kb
 TetO
 repeat
 (ars607
 or
 ars306)
 ~1kb
 from
 the
 ARS.
 LacO
 and
 TetO
 
arrays
 were
 subcloned
 from
 pJBN164
 and
 pGS004
 (Bachant
 et
 al.,
 2002),
 
respectively.
 LacI-­‐GFP
 binds
 tightly
 to
 the
 LacO
 array
 and
 TetR-­‐tomato
 to
 the
 TetO
 
array
 allowing
 for
 visualization
 of
 the
 two
 loci
 within
 the
 nucleus
 and
 determination
 
of
 the
 distance
 between
 them.
 Importantly,
 introduction
 of
 the
 LacO
 and
 TetO
 arrays
 
proximal
 to
 ars305,
 ars306,
 and
 ars607
 did
 alter
 the
 early,
 robust
 firing
 of
 these
 

  159
 
origins
 in
 WT
 cells
 (Fig.
 A.4)
 or
 the
 observed
 decrease
 in
 HU-­‐efficiency
 of
 these
 
origins
 in
 fkh1∆
 fkh2∆
 pFkh2∆C
 cells
 (data
 not
 shown).
 Cells
 were
 arrested
 in
 G1
 
phase
 and
 imaged,
 as
 above,
 under
 the
 appropriate
 wavelengths
 (Fig,
 A.5B).
 The
 
distance
 between
 the
 brightest
 focal
 point
 of
 each
 channel
 was
 calculated
 through
 
the
 z-­‐sections
 (excluding
 cells
 with
 multiple
 foci
 of
 a
 single
 wavelength).
 We
 
compared
 the
 intrachromosomal
 (ars305
 and
 ars306)
 and
 interchromosomal
 
(ars305
 and
 ars607)
 origin
 distances
 between
 WT
 and
 fkh1∆
 fkh2∆
 pFkh2∆
 cells
 
using
 a
 two-­‐sided
 student’s
 T-­‐test
 (n=~60).
 A
 statistically
 significant
 difference
 was
 
not
 observed;
 however,
 the
 above
 experiments
 require
 repetition
 with
 more
 cells
 
for
 higher
 statistical
 power.
 
 
While
 the
 above
 experiments
 did
 not
 yield
 an
 obvious
 difference
 in
 
replication
 foci
 formation
 or
 of
 replication
 origin
 distance,
 additional
 experiments
 
are
 necessary
 to
 fully
 characterize
 the
 relationship
 of
 Fkh
 activated
 origins
 with
 
each
 other
 within
 the
 nucleus.
 Release
 of
 the
 LacO/TetO
 harboring
 strains
 into
 S-­‐
phase
 and
 calculation
 of
 origin
 distances
 with
 time-­‐lapse
 microscopy
 may
 provide
 
more
 insight
 than
 G1
 block
 alone.
 Additionally,
 more
 origins
 need
 to
 be
 tagged
 and
 
analyzed
 in
 order
 to
 draw
 proper
 conclusions.
 TetO
 arrays
 could
 also
 be
 integrated
 
near
 Fkh
 activated/repressed
 origins
 in
 combination
 with
 the
 Pol1-­‐4GFP
 construct
 
detailed
 above
 to
 look
 for
 changes
 in
 the
 time
 of
 origin
 association
 with
 replication
 
foci.
 

 

 

 

  160
 

 

 

 
Figure
 A.4.
 Copy
 Number
 Analysis
 (CNA)
 of
 fluorescently
 tagged
 strains.
 
CNA
 of
 WT
 and
 ars305-­‐LacO
 ars306-­‐TetO
 strains
 (top
 panels)
 or
 WT
 and
 ars305-­‐
LacO
 ars607-­‐TetO
 strains
 (bottom
 panels)
 by
 indicated
 chromosome
 after
 G1
 block
 
and
 release
 into
 media
 containing
 0.2M
 HU.
 Strains
 are
 hybridized
 against
 a
 WT
 G1
 
sample
 to
 identify
 replicated
 regions.
 

  161
 

 
Figure
 A.5.
 Live
 Cell
 Imaging
 of
 fkh1∆
 fkh2∆
 pFkh2∆
 cells.
 All
 images
 shown
 are
 
deconvoluted
 and
 projected
 two-­‐dimensional
 images
 (A)
 Pol1-­‐4GFP
 nuclear
 
localization
 at
 indicated
 time
 points
 post
 G1
 block
 and
 release.
 (B)
 Spatial
 
localization
 of
 ars305
 (LacO
 array
 bound
 by
 LacI-­‐GFP)
 in
 green
 and
 ars607
 (TetO
 
array
 bound
 by
 TetR-­‐tomato)
 in
 red
 during
 G1
 block.
 

  162
 
Carbon
 source
 availability
 and
 changes
 to
 replication
 dynamics
 

 
During
 analysis
 of
 control
 strains
 for
 the
 galactose
 induction
 experiments
 
detailed
 in
 chapter
 one,
 an
 interesting
 and
 unexpected
 result
 emerged.
 When
 WT
 
cells
 for
 BrdU-­‐IP-­‐chip
 experiments
 were
 grown
 in
 raffinose
 and
 switched
 to
 
galactose,
 prior
 to
 S-­‐phase
 release,
 were
 compared
 to
 cells
 grown
 exclusively
 in
 
glucose,
 a
 noticeable
 decrease
 in
 HU
 efficiency
 was
 apparent
 at
 many
 origins
 
genome
 wide.
 To
 further
 investigate
 this
 phenomenon,
 we
 grew
 WT
 cells
 under
 
varying
 carbon
 sources
 for
 analysis
 by
 FACS
 and
 BrdU-­‐IP-­‐Seq.
 Cultures
 were
 grown
 
exclusively
 in
 media
 containing
 glucose,
 raffinose,
 or
 galactose
 overnight,
 to
 mid-­‐log
 
phase,
 and
 through
 G1
 block
 and
 release.
 For
 comparison,
 we
 also
 switched
 cells
 
from
 raffinose
 to
 galactose
 or
 glucose
 during
 the
 G1
 block.
 For
 these
 cultures,
 cells
 
were
 grown
 to
 mid-­‐log
 phase
 in
 media
 containing
 raffinose,
 followed
 by
 arrest
 with
 
α-­‐factor
 for
 three
 hours
 with
 raffinose.
 At
 three
 hours,
 cells
 were
 spun
 down
 and
 
resuspended
 in
 media
 containing
 either
 galactose
 or
 glucose
 and
 the
 α-­‐factor
 block
 
was
 continued
 for
 an
 additional
 two
 hours
 before
 release
 into
 media
 containing
 the
 
same
 sugar.
 These
 conditions
 will
 be
 termed
 Raffinose
 to
 Galactose
 (RGal)
 and
 
Raffinose
 to
 Glucose
 (RGlu),
 respectively.
 
 
 
Analysis
 by
 FACS
 revealed
 noticeable
 differences
 in
 the
 time
 of
 S-­‐phase
 entry
 
between
 carbon
 sources.
 
 (Fig
 A.6).
 
 Cells
 grown
 exclusively
 in
 glucose
 initiated
 bulk
 
DNA
 synthesis
 (measurable
 by
 FACS)
 earlier
 than
 either
 raffinose
 or
 galactose
 
containing
 cultures.
 Raffinose
 cultures
 were
 by
 far
 the
 most
 delayed
 in
 S-­‐phase
 
entry
 (~10
 minutes
 slower
 than
 glucose)
 with
 galactose
 cultures
 exhibiting
 an
 

  163
 
intermediate
 delay.
 
 Analysis
 of
 RGlu
 compared
 to
 raffinose
 revealed
 a
 slight
 
advancement
 in
 S-­‐phase
 entry,
 however
 the
 change
 in
 carbon
 source
 two
 hours
 
prior
 to
 release
 was
 not
 sufficient
 to
 fully
 restore
 earlier
 S-­‐phase
 kinetics
 as
 
observed
 in
 cultures
 grown
 exclusively
 in
 glucose.
 RGal
 exhibited
 similar
 kinetics
 to
 
those
 observed
 in
 raffinose
 (Fig
 A.6).
 Interestingly,
 all
 carbon
 sources
 completed
 
replication
 (as
 evidenced
 by
 a
 full
 2C
 peak)
 with
 roughly
 the
 same
 kinetics
 (~30
 
minutes)
 after
 their
 entry
 into
 S-­‐phase
 despite
 their
 differences
 in
 entry
 time.
 
 
To
 understand
 replication
 differences
 between
 carbon
 sources
 at
 the
 origin
 
level,
 we
 next
 used
 BrdU-­‐IP-­‐Seq
 to
 analyze
 replication
 genome
 wide.
 Samples
 were
 
prepared
 as
 detailed
 in
 Chapter
 One
 Materials
 and
 Methods
 except
 for
 the
 
differences
 in
 carbon
 source
 utilized.
 All
 sugars
 were
 added
 at
 a
 final
 concentration
 
of
 2%.
 Additionally,
 for
 BrdU-­‐IP-­‐Seq
 samples,
 a
 deviation
 in
 the
 normalization
 
method
 was
 used.
 Samples
 were
 normalized
 using
 a
 maximum-­‐minimum
 
normalization
 where
 count
 reads
 were
 normalized
 with
 the
 following
 equation:
 
Normalized(xi)=
 (xi-­‐Xmin)/
 (Xmax-­‐
 Xmin).
 The
 normalized
 value
 of
 xi
 is
 for
 the
 variable
 
X
 in
 the
 i
th

 row
 where
 Xmin
 is
 the
 minimum
 value
 in
 variable
 X
 and
 Xmax
 is
 the
 
maximum.
 Consistent
 with
 bulk
 DNA
 synthesis
 by
 FACS,
 cells
 grown
 exclusively
 in
 
glucose
 exhibited
 broader
 peaks
 when
 compared
 to
 galactose
 and
 raffinose
 cultures
 
(Fig
 A.7A).
 In
 addition
 to
 broader
 peaks,
 glucose
 cultures
 widely
 exhibited
 either
 an
 
increased
 number
 of
 detectable
 origin
 peaks
 or
 higher
 peaks
 when
 compared
 to
 
galactose
 and
 raffinose
 cultures
 (Fig
 A.7A).
 In
 contrast,
 raffinose
 cultures
 exhibited
 
very
 narrow
 peaks
 and
 fewer
 detectable
 peaks
 genome
 wide
 while
 galactose
 
cultures
 exhibited
 an
 intermediate
 phenotype
 (Fig
 A.7A)
 

  164
 

 

 
Figure
 A.6.
 DNA
 content
 analysis
 through
 S-­‐phase
 by
 FACS
 with
 indicated
 
carbon
 sources.
 

 
Next
 we
 compared
 the
 change
 in
 carbon
 source
 during
 G1
 arrest.
 Consistent
 
with
 FACS,
 RGlu
 exhibits
 higher
 peak
 amplitude
 at
 many
 origins
 relative
 to
 raffinose,
 
while
 RGal,
 which
 did
 not
 show
 an
 obvious
 difference
 by
 FACS,
 exhibited
 a
 slight
 
increase
 in
 peak
 height
 at
 many
 origins
 although
 at
 an
 intermediate
 level
 between
 
raffinose
 and
 RGlu
 (Fig
 A.7B)
 Peaks
 widths
 remained
 largely
 comparable
 between
 
all
 samples.
 These
 results
 suggest
 that
 changing
 the
 carbon
 source
 from
 raffinose
 to
 
galactose
 or
 glucose
 has
 a
 positive
 effect
 on
 origin
 HU
 efficiency
 with
 glucose
 being
 
the
 preferential
 sugar.
 However,
 this
 change,
 two
 hours
 prior
 to
 S-­‐phase
 release,
 
was
 not
 sufficient
 to
 restore
 S-­‐phase
 entry
 to
 the
 level
 observed
 in
 cells
 grown
 
exclusively
 in
 glucose.
 

  165
 
The
 above
 results
 suggest
 that
 the
 differences
 observed
 between
 carbon
 
sources
 may
 be
 a
 result
 of
 S-­‐phase
 entry
 time
 and
 not
 an
 inherent
 difference
 in
 
origin
 usage
 or
 in
 the
 total
 number
 of
 origins
 utilized.
 For
 comparison
 we
 plotted
 
the
 60-­‐minute
 HU
 glucose
 and
 RGlu
 samples
 alongside
 a
 45-­‐minute
 HU
 sample
 
grown
 exclusively
 in
 glucose
 from
 another
 experiment.
 As
 expected,
 the
 peak
 widths
 
in
 the
 45-­‐minute
 glucose
 sample
 relative
 to
 the
 60
 min
 glucose
 sample
 are
 
narrower,
 most
 likely
 due
 to
 decreased
 replication
 time
 post
 release
 in
 HU.
 Also
 
consistent
 with
 reduced
 replication
 time
 was
 the
 decreased
 amplitude
 at
 many
 
origins,
 particularly
 those
 with
 lower
 HU-­‐
 efficiency
 (Fig
 A.7C)
 suggesting
 that
 these
 
origins
 were
 not
 given
 ample
 time
 to
 fire
 in
 all
 cells.
 Interestingly,
 the
 45-­‐minute
 
glucose
 sample
 exhibits
 somewhat
 of
 an
 intermediate
 phenotype
 between
 the
 60-­‐
minute
 glucose
 and
 RGlu
 conditions
 in
 both
 peak
 width
 and
 peak
 height
 especially
 
at
 lower
 HU-­‐efficiency
 origins.
 These
 results
 are
 consistent
 with
 RGlu
 cells
 being
 
delayed
 in
 S-­‐phase
 entry
 (behind
 even
 the
 45
 minute
 glucose
 condition)
 and
 
therefore
 having
 less
 time
 to
 replicate
 during
 the
 HU
 block.
 
 
The
 available
 carbon
 source,
 as
 shown
 here,
 has
 a
 clear
 effect
 on
 DNA
 
replication.
 Less
 optimal
 sources
 create
 the
 previously
 known
 delay
 in
 cell
 cycle
 
progression,
 but
 here
 we
 extend
 that
 delay
 to
 be
 partially
 due
 to
 a
 delayed
 entry
 
into
 S-­‐phase.
 
 From
 our
 studies,
 it
 is
 unclear
 whether
 the
 delay
 in
 S-­‐phase
 entry
 in
 
raffinose
 or
 the
 more
 modest
 delay
 in
 galactose
 can
 fully
 explain
 the
 differences
 
observed
 in
 an
 HU
 block.
 The
 distance
 traveled
 by
 replication
 forks
 in
 HU
 has
 been
 
shown
 to
 correlate
 with
 mean
 replication
 time.
 Early
 replication
 time
 yields
 longer
 
replication
 tracks
 while
 late
 replication
 time
 yields
 shorter
 tracks
 (Poli
 et
 al.,
 2012).
 

  166
 
This
 is
 due
 to
 the
 transition
 from
 normal
 replication
 kinetics
 to
 slowed
 replication
 
as
 a
 result
 of
 the
 depletion
 of
 available
 nucleotides.
 Consequently,
 a
 defined
 time
 in
 
hydroxyurea
 could
 potentially
 create
 differences
 in
 observed
 HU-­‐efficiencies
 in
 
situations
 where
 S-­‐phase
 entry
 is
 delayed.
 Consistent
 with
 the
 observed
 differences
 
being
 a
 result
 of
 changes
 in
 S-­‐phase
 entry
 time,
 all
 conditions
 finished
 replication
 
with
 similar
 kinetics
 (~30
 min)
 after
 S-­‐phase
 entry
 as
 measured
 by
 FACS.
 
Alternatively,
 sub
 optimal
 carbon
 sources
 could
 specifically
 alter
 origin
 selection
 
and
 or
 the
 total
 number
 of
 origins
 used.
 The
 number
 of
 origins
 utilized
 by
 cells
 can
 
be
 quite
 dynamic
 without
 changing
 the
 total
 time
 of
 replication
 as
 evidenced
 by
 
experiments
 on
 Rif1
 (see
 Chapter
 III).
 
To
 fully
 elucidate
 the
 changes
 in
 replication
 dynamics
 under
 varying
 carbon
 
sources,
 additional
 experiments
 will
 be
 required.
 A
 time
 course
 throughout
 S-­‐phase
 
lacking
 hydroxyurea
 would
 allow
 for
 the
 determination
 of
 origin
 usage
 post
 S-­‐phase
 
entry
 and
 would
 allow
 for
 normalization
 of
 the
 data
 to
 the
 S-­‐phase
 entry
 time
 point
 
across
 multiple
 conditions
 with
 varying
 S-­‐phase
 entry
 times.
 2-­‐D
 gels
 could
 also
 
confirm
 whether
 a
 difference
 in
 origin
 efficiency
 existed
 between
 conditions
 at
 
specific
 origins.
 

 

  167
 

 

 
Figure
 A.7.
 Analysis
 of
 early
 S-­‐phase
 by
 BrdU-­‐IP-­‐Seq.
 
 (A,B,C,D)
 Plots
 show
 
average
 BrdU
 incorporation
 from
 replicate
 experiments
 for
 comparison
 of
 strains
 
grown
 with
 the
 indicated
 sugar(s)
 

  168
 
SUPPLEMENTAL
 FIGURES
 

 
Figure
 S1.1-­‐16.
 Analysis
 of
 early
 S-­‐phase
 by
 BrdU-­‐IP-­‐Seq
 for
 all
 chromosomes
 
with
 Fkh
 OE.
 
 Plots
 show
 average
 BrdU
 incorporation
 from
 duplicate
 HU
 
experiments.
 
 Strains
 and
 origin
 classes
 are
 keyed
 above.
 

  169
 
Figure
 S1:
 Continued
 

 

  170
 
Figure
 S1:
 Continued
 

 

  171
 
Figure
 S1:
 Continued
 

 

  172
 
Figure
 S1:
 Continued
 

 

  173
 
Figure
 S1:
 Continued
 

 

  174
 
Figure
 S1:
 Continued
 

 

  175
 
Figure
 S1:
 Continued
 

 

  176
 

 
Figure
 S2.1-­‐16.
 Analysis
 of
 
 early
 S-­‐phase
 by
 BrdU-­‐IP-­‐Seq
 for
 all
 chromosomes
 
in
 rif1Δ.
 
 Plots
 show
 average
 BrdU
 incorporation
 from
 duplicate
 HU
 experiments.
 
 
Strains
 and
 origin
 classes
 are
 keyed
 above.
 

 

 

 

 

  177
 
Figure
 S2:
 Continued
 

 

 
 

 

 

  178
 
Figure
 S2:
 Continued
 

 

 
 

 

 

  179
 
Figure
 S2:
 Continued
 

 

 
 

 

 

  180
 
Figure
 S2:
 Continued
 

 

 
 

 

 

 

  181
 
Figure
 S2:
 Continued
 

 

 
*
 signal
 from
 rDNA
 origins
 (at
 ~4.6x10
5

 bp
 on
 Chromosome
 12)
 removed
 to
 allow
 for
 
comparison
 of
 signal
 along
 the
 remainder
 of
 the
 chromosome
 

 

  182
 
Figure
 S2:
 Continued
 

 

 
 

 

 

 

  183
 
Figure
 S2:
 Continued 
Abstract (if available)
Abstract Eukaryotic cells initiate DNA replication from hundreds to thousands of origins genome wide. The coordinated firing of these origins across a range of times throughout S-phase is a well-conserved feature of replication initiation and is essential to ensure faithful duplication of the genome. Differences in replication timing can be attributed to epigenetic regulation of origins through chromatin environment and spatial localization within the nucleus. Here we address several important factors that regulate and coordinate the replication timing program of the budding yeast, Saccharomyces cerevisiae. Our studies reveal the role of Forkhead transcription factors as modulators of DNA replication timing. Here we find that Forkhead proteins regulate origin timing through binding proximal to certain origins and mediate clustering of these origins. This process is tightly controlled at the protein level. Over-expression of either Fkh1 or Fkh2 causes drastic changes in replication timing genome wide and these changes are the result of an increase in protein binding proximal to regulated origins. Many origins with normally lower levels (or an absence of) Forkhead binding show an advancement in timing due to an increase in Forkhead binding with over-expression. The advancement in timing at these origins comes at the expense of Forkhead unregulated origins and those origins that already preferentially bind Forkhead proteins under WT conditions. This is probably due to increased competition for limiting factors. While Fkh1 and Fkh2 over-expression can advance origin timing through proximal binding, Rif1 actively represses it. Here we show that Rif1 regulates most late and dormant origins genome wide including telomere proximal origins. Deletion of Rif1 advances the timing of almost all of these origins. Similar to the effect seen with Forkhead over-expression, the advanced timing of late origins in rif1∆ cells appears to be at the expense of early robust firing origins probably because of increased competition for limiting factors. Lastly, and consistent with these results, we show that cells lacking Cdc7 or Orc1 function fire fewer origins genome wide. This decrease in competition for limiting factors leads to faster fork rates of origins that do fire and a subsequent reduction in response to DNA damage as evidenced by a reduction in Rad53 checkpoint signaling. This evidence, combined with analysis of checkpoint defective cells, reveals that fork rate is sensitive to the level of origin firing. The findings detailed here suggest a tight regulation of origin initiation timing and replication fork elongation. Here we discuss these findings, the roles of these factors, and their importance to replication timing genome wide. 
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button
Conceptually similar
Forkhead transcription factors regulate replication origin firing through dimerization and cell cycle-dependent chromatin binding in S. cerevisiae
PDF
Forkhead transcription factors regulate replication origin firing through dimerization and cell cycle-dependent chromatin binding in S. cerevisiae 
Subnuclear localization of replication origins is controlled by Fkh1-dependent recruitment of DDK to origins in S. cerevisiae
PDF
Subnuclear localization of replication origins is controlled by Fkh1-dependent recruitment of DDK to origins in S. cerevisiae 
The intra-S phase checkpoint and its effect on replication fork dynamics in saccharomyces cerevisiae
PDF
The intra-S phase checkpoint and its effect on replication fork dynamics in saccharomyces cerevisiae 
Computational analysis of DNA replication timing and fork dynamics in S. cerevisiae
PDF
Computational analysis of DNA replication timing and fork dynamics in S. cerevisiae 
New tools for whole-genome analysis of DNA replication timing and fork elongation in saccharomyces cerevisiae
PDF
New tools for whole-genome analysis of DNA replication timing and fork elongation in saccharomyces cerevisiae 
Distinct mechanisms of DDK recruitment to Fkh-activated and CEN-proximal origins control replication timing program in S. cerevisiae
PDF
Distinct mechanisms of DDK recruitment to Fkh-activated and CEN-proximal origins control replication timing program in S. cerevisiae 
Measuring, modeling and identifying factors that influence eukaryotic DNA replication
PDF
Measuring, modeling and identifying factors that influence eukaryotic DNA replication 
The function of Rpd3 in balancing the replicaton initiation of different genomic regions
PDF
The function of Rpd3 in balancing the replicaton initiation of different genomic regions 
Essential and non-essential helicases maintain genome stability in Schizosaccharomyces pombe
PDF
Essential and non-essential helicases maintain genome stability in Schizosaccharomyces pombe 
Exploring three-dimensional organization of the genome by mapping chromatin contacts and population modeling
PDF
Exploring three-dimensional organization of the genome by mapping chromatin contacts and population modeling 
C. elegans topoisomerase II regulates chromatin architecture and DNA damage for germline genome activation
PDF
C. elegans topoisomerase II regulates chromatin architecture and DNA damage for germline genome activation 
Biochemical mechanism of TopBP1 recruitment to sites of DNA damage
PDF
Biochemical mechanism of TopBP1 recruitment to sites of DNA damage 
Quantitative modeling of in vivo transcription factor–DNA binding and beyond
PDF
Quantitative modeling of in vivo transcription factor–DNA binding and beyond 
Maintenance of genome stability at fragile sites in Schizosaccharomyces pombe
PDF
Maintenance of genome stability at fragile sites in Schizosaccharomyces pombe 
Destabilization of the replication fork protection complex is associated with meiotic defects in fission yeast
PDF
Destabilization of the replication fork protection complex is associated with meiotic defects in fission yeast 
Using novel small molecule modulators as a tool to elucidate the role of the Myocyte Enhancer Factor 2 (MEF2) family of transcription factors in leukemia
PDF
Using novel small molecule modulators as a tool to elucidate the role of the Myocyte Enhancer Factor 2 (MEF2) family of transcription factors in leukemia 
Identification of factors that underly genome-wide transcriptional repression during the development of the Caenorhabditis elegans germline.
PDF
Identification of factors that underly genome-wide transcriptional repression during the development of the Caenorhabditis elegans germline. 
The role of Hic-5 in glucocorticoid receptor binding to chromatin
PDF
The role of Hic-5 in glucocorticoid receptor binding to chromatin 
Data-driven approaches to studying protein-DNA interactions from a structural point of view
PDF
Data-driven approaches to studying protein-DNA interactions from a structural point of view 
Improved methods for the quantification of transcription factor binding using SELEX-seq
PDF
Improved methods for the quantification of transcription factor binding using SELEX-seq 
Action button
Asset Metadata
Creator Peace, Jared Michael (author) 
Core Title Forkhead transcription factors control genome wide dynamics of the S. cerevisiae replication timing program 
Contributor Electronically uploaded by the author (provenance) 
School College of Letters, Arts and Sciences 
Degree Doctor of Philosophy 
Degree Program Molecular Biology 
Publication Date 11/04/2014 
Defense Date 10/08/2014 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag Cdc45,Cdc7,centromere,chromatin,Dbf4,Dbf4 Dependent Kinase (DDK),epigenetics,Fkh1,Fkh2,forkhead,Mec1,nuclear architecture,OAI-PMH Harvest,Orc1,Pfa4,Rap1,replication fork rate,replication origin timing,Rif1,S. cerevisiae,telomere,Transcription 
Format application/pdf (imt) 
Language English
Advisor Aparicio, Oscar M. (committee chair), Chen, Lin (committee member), Forsburg, Susan (committee member), Michael, Matthew (committee member) 
Creator Email jaredpea@usc.edu,jmpeace22@gmail.com 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c3-514469 
Unique identifier UC11297256 
Identifier etd-PeaceJared-3063.pdf (filename),usctheses-c3-514469 (legacy record id) 
Legacy Identifier etd-PeaceJared-3063.pdf 
Dmrecord 514469 
Document Type Dissertation 
Format application/pdf (imt) 
Rights Peace, Jared Michael 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law.  Electronic access is being provided by the USC Libraries in agreement with the a... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Tags
Cdc45
Cdc7
centromere
chromatin
Dbf4
Dbf4 Dependent Kinase (DDK)
epigenetics
Fkh1
Fkh2
forkhead
Mec1
nuclear architecture
Orc1
Pfa4
Rap1
replication fork rate
replication origin timing
Rif1
S. cerevisiae
telomere