Close
The page header's logo
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
DNA methylation markers for blood-based detection of small cell lung cancer in mouse models
(USC Thesis Other) 

DNA methylation markers for blood-based detection of small cell lung cancer in mouse models

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Copy asset link
Request this asset
Transcript (if available)
Content
  1
 
DNA
 Methylation
 Markers
 for
 Blood-­‐Based
 
Detection
 of
 Small
 Cell
 Lung
 Cancer
 in
 
Mouse
 Models
 

 
by
 
Honey
 Alef-­‐Omidy
 
________________________________________________
 
A
 Thesis
 Presented
 to
 the
 
 
FACULTY
 OF
 THE
 USC
 GRADUATE
 SCHOOL
 
UNIVERSITY
 OF
 SOUTHERN
 CALIFORNIA
 
In
 Partial
 Fulfillment
 of
 the
 
Requirements
 for
 the
 Degree
 
MASTER
 OF
 SCIENCE
 
(Biochemistry
 and
 Molecular
 Biology)
 
Principal
 Investigator:
 Ite
 A.
 Laird-­‐Offringa,
 Ph.D.
 

 
December
 2014
 

 
Copyright
 2014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Honey
 Alef-­‐Omidy
 

  2
 
Acknowledgement
 

 I
 would
 like
 to
 first
 thank
 my
 Principal
 Investigator,
 Dr.
 Ite
 Laird-­‐Offringa
 for
 her
 help
 and
 
support.
 She
 has
 been
 so
 generous
 with
 her
 time
 and
 knowledge
 since
 the
 first
 day
 I
 started
 
working
 in
 her
 research
 laboratory.
 I
 would
 like
 to
 thank
 her
 for
 giving
 me
 a
 chance
 to
 explore
 
and
 understand
 the
 theories
 and
 practice
 of
 biochemistry
 and
 molecular
 biology.
 She
 has
 given
 
me
 the
 opportunity
 to
 further
 employ
 my
 theoretical
 knowledge
 by
 putting
 it
 in
 practice
 during
 
the
 assignment
 of
 my
 project.
 Through
 her
 classes,
 meetings
 and
 suggestions
 I
 was
 able
 to
 
further
 expand
 my
 knowledge
 and
 love
 for
 cancer
 biology,
 biochemistry
 and
 genetics.
 Dr.
 Ite
 
Laird-­‐Offringa
 is
 a
 great
 mentor,
 professor
 and
 friend
 who
 always
 cares
 about
 the
 well-­‐being
 of
 
her
 students.
 
I
 would
 also
 like
 to
 thank
 Dr.
 Mihaela
 Campan,
 MD.
 Ph.D.,
 Mario
 Pulido
 and
 Evelyn
 Tran,
 for
 all
 
their
 help
 and
 dedication
 in
 the
 Laird-­‐Offringa
 lab.
 They
 were
 always
 there
 to
 teach
 and
 guide
 
me
 with
 my
 project.
 Their
 enthusiasm
 for
 research
 gave
 me
 the
 motivation
 to
 continue
 working
 
on
 my
 project.
 
I
  would
  also
  like
  to
  thank
  my
  committee
  members,
  Dr.
  Zoltan
  Tokes
  and
  Dr.
  Daniel
 
Weisenberger
 for
 their
 time.
 I
 would
 like
 to
 thank
 them
 both
 for
 being
 great
 professors.
 They
 
have
  influenced
  my
  learning
  experience,
  and
  scientific
  knowledge
  and
  for
  that
  I
  am
  very
 
grateful.
 
 
I
 would
 also
 like
 to
 thank
 the
 members
 of
 the
 Laird-­‐Ofrringa
 lab
 for
 making
 the
 lab
 setting
 a
 
pleasant
 experience.
 Their
 help
 and
 support
 made
 the
 course
 of
 my
 project
 an
 easy
 and
 
enjoyable
 time.
 Also,
 I
 would
 like
 to
 thank
 the
 Department
 of
 Biochemistry
 and
 Molecular
 
Biology
 faculty
 and
 staff
 for
 giving
 me
 the
 opportunity
 to
 learn
 and
 discover
 my
 love
 for
 

  3
 
science.
 The
 University
 of
 Southern
 California
 will
 always
 be
 in
 my
 heart
 wherever
 I
 go
 and
 I
 will
 
always
 be
 proud
 to
 say
 that
 the
 Biochemistry
 and
 Molecular
 Biology
 department
 shaped
 my
 
scientific
 knowledge.
 My
 motivation
 to
 attend
 graduate
 school
 was
 my
 curiosity
 to
 learn
 more
 
about
 the
 fields
 of
 cancer
 biology,
 genetics
 and
 biochemistry
 and
 molecular
 biology
 and
 then
 
apply
 the
 knowledge
 to
 make
 significant
 contributions
 through
 my
 research.
 My
 plans
 after
 
graduation
 are
 to
 work
 hard
 for
 my
 future
 goal,
 which
 is
 to
 sign
 up
 to
 a
 Ph.D.
 program.
 This
 will
 
allow
 me
 to
 expand
 my
 knowledge
 in
 science,
 a
 field
 that
 I
 profoundly
 love.
 
Finally,
 I
 would
 also
 like
 to
 thank
 my
 family,
 my
 lovely
 parents
 and
 brothers
 in
 Iran,
 as
 well
 as
 
my
 sweet
 relatives
 in
 the
 U.S.
 for
 their
 love
 and
 support.
 I
 thank
 my
 parents
 for
 all
 the
 love
 and
 
encouragement
 throughout
 my
 scholastic
 experience.
 They
 have
 always
 supported
 me
 in
 
everything
 I
 wanted
 to
 accomplish
 in
 life
 

 

 

 

 

 

 

 

 

 

 

 

  4
 
Table
 of
 Contents
 

 

 
Acknowledgement……………………….……....………..………………………………….…………………………………….2
 

 

 
List
 of
 Figures……………………………………………………………..……………………………….…………………..……....6
 

 

 
List
 of
 Tables………………………………………………………………………………………………..…………………..……....7
 

 

 
Abstract………………………………………………………………………………………………….………………………………...8
 

 

 
Chapter
 One:
 Introduction…………...………..………………………………………….…………………………….…….10
 

 
1-­‐A.
 Epigenetic
 modifications
 leading
 to
 cancer
 developments………………….………….….….……10
 

 
1-­‐B.
 Lung
 Cancer
 and
 its
 most
 aggressive
 subtype
 (SCLC)……………….….…………………….…..……16
 

 
1-­‐C.
 Animal
 models
 as
 tools
 for
 understanding
 the
 SCLC:
 The
 mouse
 as
 a
 popular
 model
 in
 
the
 study
 of
 SCLC
 system…….…………..……….…………………………....……………………….…………..……19
 

 
1-­‐D.
 Using
 DNA
 methylation
 markers
 for
 SCLC
 detection……….……………..……………………….….23
 

 

 

 
Chapter
 Two:
 Materials
 and
 Methods…….……………………….……………………………………..………………27
 

 
2.1.
 Tumor
 induction
 in
 mice,
 mouse
 dissection,
 tissue
 collection……………………………....27
 
2.1-­‐A.
 Tumor
 induction
 in
 the
 SCLC
 mouse
 model………………………………………..………..27
 

 
2.1-­‐B.
 Mouse
 tissue
 collection…………………………………………………...…………………….30
 
2.2.
 DNA
 Extraction
 from
 tissue
 samples………………….………………….…………..………………….31
 
2.2-­‐A.
  DNA
  extraction
  from
  the
  tissues
  preserved
  in
  OCT
  or
  those
  directly
 
frozen…………………….…………………………………………………..…………………………………...…….31
 
2.2-­‐A-­‐I.
 Tissue
 Lysis……………………………………………….………………………………………….31
 

  5
 
2.2-­‐A-­‐II.
 Phenol-­‐
 Chloroform
 extraction……………………….…………………..……...………32
 
2.2-­‐B.
 DNA
 extraction
 from
 paraffin-­‐embedded
 tissues……..……………….………..……….34
 
2.3.
 In
 vitro
 methylation
 of
 normal
 mouse
 DNA......…….……………………….……..………....……35
 
2.4.
 Bisulfite
 Conversion.…………….…………..……………………………………………........................35
 
2.5.
 MethyLight
 analysis……….……………………………………………..……………………………….….….38
 

 
Chapter
 Three:
 Results………………..………….………………………………………………………………………..…....41
 

 
3-­‐A.
 SCLC
 induction
 in
 FVB/N
 mice
 and
 tissue
 specimen
 collection
 from
 induced
 and
 un-­‐
induced
 FVB/N
 mice
 and
 C57
 mice.........................................................................................41
 
3-­‐B.
 In
 vitro
 DNA
 methylation
 (M.SssI
 treatment)
 Results……………………….………….……..…….43
 
3-­‐C.
 MethyLight
 analysis
 Results
 for
 microdissected
 SCLC
 tumors………..…………….…….……....47
 
3-­‐D.
 MethyLight
 analysis
 Results
 for
 SCLC
 tumors
 that
 were
 not
 microdisected...................48
 

 

 
Chapter
 Four:
 Discussion………..…………………………..…………….…………………………………………….….….50
 

 

 
References/Bibliography………………...……………………………………….………………..………………………….53
 

 

 

 

 

 

 

 

 

 

 

 

 

  6
 
List
 of
 Figures
 
Figure
 Number/Name
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 page
 
1.
 DNA
 methylation.……….…………………………………………………………………………..……………………...…..11
 
2.
 How
 DNA
 methylation
 can
 have
 effect
 on
 target
 gene
 expression
 in
 normal
 cells….……….…..12
 
3.
 DNA
 modifications
 in
 cancer.
 
 …………………..…………………………………………………………………….…..14
 
4.
 Hypo
 and
 hyper
 methylation
 at
 CpG
 islands
 leading
 to
 tumorogenesis….……………………..……..15
 
5.
 What
 are
 the
 Types
 of
 Lung
 Cancer?
 .……………………………………………………………..………..…………16
 
6.
 Schematic
 picture
 of
 different
 lung
 cell
 types……………………………………………………………………...18
 
7.
 Illustration
 of
 the
 design
 of
 the
 Dr.
 Anton
 Bern’s
 and
 his
 colleagues
 SCLC
 model……..…..…….22
 
8.
 DNA
 Methylation
 as
 a
 biomarker
 for
 early
 detection
 of
 lung
 cancer.…………………………….……..23
 
9.
 Bisulfite
 Conversion………..……………………………………………………………………………………………………25
 
10.
 Sodium
 bisulfite
 modifies
 the
 sequences
 of
 genomic
 DNA.………………………………….…...……….26
 
11.
 Types
 of
 reactions
 used
 in
 the
 MethyLight
 assay…..……………………………………..………..………….26
 
12.
 Tracheal
 intubation
 and
 injection
 of
 Adeno-­‐Cre
 virus
 in
 the
 mouse.………………………….………29
 
13.
 Two
 SCLC
 tumor
 tissue
 specimens
 from
 FVB/N
 induced
 mouse
 in
 melted
 OCT………………...32
 
14.
 Phase
 separation
 in
 Phenol-­‐chloroform
 extraction….….……………………………………………….……32
 
15.
 Collecting
 DNA
 pellet
 from
 phenol/Chloroform
 DNA
 extract
 with
 centrifuge….…………………33
 
16.
 Paraffin
 embedded
 SCLC
 tissue
 samples………………..……………………………………………………...….34
 
17.
 Conversion
 of
 non-­‐methylated
 cytosine
 by
 DNA
 Bisulfite
 conversion
 …………………………..……37
 
18.
 Schematic
 procedure
 of
 the
 Quantitative
 PCR…………………………………………………………………...48
 
19.
 PMR
 (Percent
 of
 Methylated
 Reference)
 calculation……………………………….…………………….…..39
 
20.
 Evaluation
 DNA
 methylation
 levels
 by
 ΔCt
 determination.…………………………………………………44
 

  7
 
List
 of
 Tables
 
Table
 Number/Name
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Page
 
1.
 
 Summary
 of
 the
 tissue
 samples
 used
 in
 the
 MethyLight
 analysis..……….………………………………43
 
2.
 FVB/N-­‐
 M-­‐SssI
 first
 Treatment
 results……….……………….………………………………..………….……..……46
 
3.
 FVB/N-­‐
 M-­‐SssI
 second
 Treatment
 results.……………………………………..…………….…..……….…………46
 
4.
 C57Bl/6-­‐
 M-­‐SssI
 Treatment,
 First
 determination..……………………………………………………………..…47
 
5.
 C57Bl/6-­‐
 M-­‐SssI
 Treatment,
 second
 determination..……………………….…….…………………….………47
 
6.
 PMR
 values
 from
 paraffin
 embedded
 tissues
 (Micodissected)…………………………………..…………48
 

 
7.
 PMR
 valuess
 from
 MethyLight
 reaction
 on
 7
 SCLC
 tumors
 DNA
 and
 one
 normal
 lung
 DNA….49
 
8.
 DNA
 methylation
 differences
 in
 frozen
 tissues
 and
 fresh
 frozen
 paraffin
 embedded……….….50
 

 

 

 

 

 

 

 

 

 

 

 

  8
 
Abstract
 
Lung
 cancer
 is
 the
 top
 cancer
 killer
 in
 the
 United
 States.
 This
 cancer
 starts
 in
 the
 cells
 lining
 the
 
bronchi
 or
 other
 parts
 of
 the
 lung
 such
 as
 bronchioles
 or
 alveoli.
 It
 can
 be
 classified
 into
 two
 
major
 groups:
 small
 cell
 lung
 cancer
 (SCLC)
 and
 non-­‐small
 cell
 lung
 cancer
 (NSCLC).
 Although
 
SCLC
 is
 less
 common
 than
 NSCLC
 it
 is
 the
 most
 aggressive
 type
 of
 lung
 cancer.
 To
 this
 day,
 there
 
are
 no
 effective
 serum
 biomarkers
 for
 detection,
 prediction
 of
 response
 or
 monitoring
 this
 
disease.
  Such
  markers
  could
  be
  very
  valuable
  because
  currently
  most
  SCLC
  patients
  are
 
diagnosed
 after
 their
 cancer
 has
 metastasized,
 and
 there
 is
 no
 way
 apart
 from
 imaging
 to
 test
 
for
 response
 or
 recurrence.
 

 It
 has
 been
 amply
 demonstrated
 that
 epigenetic
 modifications,
 such
 as
 alterations
 in
 cytosine-­‐5
 
DNA
 methylation,
 occur
 frequently
 in
 all
 types
 of
 cancer.
 DNA
 methylation
 can
 be
 detected
 in
 
the
 serum
 of
 cancer
 patients
 using
 a
 sensitive
 assay
 called
 MethyLight.
 Our
 lab
 has
 developed
 
blood-­‐based
 DNA
 methylation
 markers
 for
 NSCLC
 that
 have
 also
 been
 shown
 to
 be
 present
 in
 
the
 blood
 of
 small
 cell
 lung
 cancer
 patients.
 We
 were
 interested
 to
 determine
 whether
 these
 
markers
 are
 also
 present
 in
 tumors
 derived
 from
 a
 mouse
 model
 of
 SCLC.
 These
 mice
 are
 
important
 tools
 to
 develop
 new
 therapies,
 and
 identify
 molecular
 markers
 that
 could
 be
 used
 to
 
determine
 whether
 the
 mice
 are
 responding
 to
 treatment
 or
 showing
 recurrent
 disease
 would
 
be
 very
 useful.
 
 
We
 extracted
 the
 DNA
 from
 normal
 and
 tumor
 tissue
 from
 mice
 with
 SCLC
 and
 disease-­‐free
 
control
 mice.
 Prior
 to
 DNA
 extraction,
 tissues
 were
 either
 microdissected
 from
 paraffin
 blocks
 
or
 were
 directly
 taken
 from
 a
 frozen
 specimen.
 We
 performed
 MethyLight
 analysis
 on
 these
 
DNAs
 and
 compared
 the
 methylation
 levels
 between
 normal
 lung
 and
 tumors.
 In
 order
 to
 setup
 

  9
 
the
 MethyLight
 assay
 for
 mouse
 DNA,
 we
 required
 a
 (positive
 control)
 fully
 in
 vitro
 methylated
 
DNA
 sample
 to
 serve
 as
 reference
 in
 the
 MethyLight
 assay.
 We
 generated
 large
 amounts
 (3-­‐
5μg)
 of
 in
 vitro
 methylated
 DNA
 for
 two
 different
 strains
 of
 mice.
 This
 DNA
 is
 an
 important
 
resource
 for
 the
 lab
 since
 it
 can
 be
 used
 as
 a
 positive
 control
 MethyLight
 assays
 for
 years
 to
 
come,
 and
 eliminates
 the
 biases
 associated
 with
 using
 different
 batches
 of
 reference
 DNA.
 
MethyLight
 analysis
 of
 normal/tumor
 DNA
 from
 the
 SCLC
 mouse
 model
 showed
 increased
 
methylation
 in
 some
 of
 the
 tumors
 when
 the
 microdissected
 material
 was
 used,
 but
 little
 or
 no
 
methylation
  when
  the
  frozen
  samples
  were
  examined.
  These
  results
  suggest
  that
 
microdissection
 might
 be
 important
 in
 DNA
 methylation
 analysis.
 Because
 modest
 levels
 of
 
methylation
 were
 detected
 but
 no
 marker
 showed
 high
 sensitivity,
 we
 suggest
 that
 a
 genome-­‐
wide
 analysis
 of
 DNA
 methylation
 patterns
 in
 these
 mice
 would
 be
 useful.
 It
 might
 uncover
 DNA
 
methylation
 abnormalities
 that
 are
 specific
 for
 mice
 with
 SCLC.
 
 

 

 
Key
 Words:
 Small
 cell
 Lung
 Cancer,
 DNA
 Methylation,
 Biomarkers,
 Mouse
 models,
 MethyLight,
 Sodium
 bisulfite.
 

 

 

 

 

 

 

 

  10
 
Chapter
 one
 
Introduction
 

 
1-­‐A.
 Epigenetic
 modifications
 leading
 to
 cancer
 development
 
Epigenetics
  has
  been
  defined
  as
  the
  study
  of
  the
  mitotically
  and/or
  meiotically
  heritable
 
information
 that
 is
 layered
 on
 top
 of
 the
 genome,
 affecting
 the
 control
 of
 gene
 expression
 
without
 changing
 the
 DNA
 sequence.
 [1]
 Epigenetic
 modifications
 play
 an
 important
 role
 in
 
normal
 development
 and
 maintenance
 of
 tissue-­‐specific
 gene
 expression
 patterns
 in
 mammals.
 
Abnormal
 epigenetic
 modifications
 have
 been
 also
 shown
 to
 contribute
 to
 common
 human
 
diseases
 such
 as
 cancer.
 

 
The
 ability
 of
 genes
 to
 alter
 their
 expression
 is
 controlled
 by
 epigenetic
 factors
 such
 as
 DNA
 
methylation.
 [2],
 [3]
 DNA
 methylation
 is
 a
 chemical
 modification
 of
 DNA
 in
 which
 a
 methyl
 
group
 (CH3)
 is
 added
 to
 DNA
 nucleotides.
 In
 mammals
 the
 methyl
 group
 largely
 is
 added
 to
 the
 
C5
 position
 of
 the
 cytosine
 pyrimidine
 ring
 [4]
 (Figure
 1).
 DNA
 methylation
 was
 discovered
 
before
 the
 structure
 of
 DNA
 was
 resolved
 [5]
 

 
DNA
 methylation
 occurs
 at
 small
 inverted
 repeats
 called
 CpG
 dinucleotides
 (cytosine
 (C)
 next
 to
 
a
 guanine
 (G)
 nucleotide
 in
 the
 linear
 sequence
 of
 bases
 separated
 by
 a
 phosphate
 link
 (p)).
 The
 
"CpG"
 notation
 is
 used
 to
 distinguish
 this
 linear
 sequence
 from
 the
 CG
 base-­‐pairing
 of
 cytosine
 

  11
 
and
  guanine
  [6].
  Enzymes
  that
  add
  the
  methyl
  group
  are
  called
  DNA
  methyltransferases
 
(DNMTs)
 (Figure
 1)
 

 

 

 
Figure
 1.
 DNA
 methylation:
 Methylation
 of
 cytosines
 at
 their
 5
th

 carbon
 position
 with
 the
 help
 of
 DNMT
 
enzyme
 [7]
 (Zakhari
 S:
 Alcohol
 metabolism
 and
 epigenetics
 changes.
 Alcohol
 Res.
 2013;
 35(1):
 6-­‐16.)
 

 

 

 

 
Normally,
 between
 60%
 and
 90%
 of
 all
 CpGs
 are
 methylated
 in
 mammals.
 [8][9]
 Over
 time
 
methylated
  cytosine
  residues
  can
  spontaneously
  deaminate
  to
  form
  thymine
  (T)
  residues;
 
hence,
 in
 nature
 CpG
 dinucleotides
 that
 are
 normally
 methylated
 have
 been
 steadily
 depleted,
 
which
 is
 evidenced
 by
 the
 under-­‐representation
 of
 CpG
 dinucleotides
 in
 the
 human
 genome
 
except
 in
 those
 regions
 that
 are
 not
 methylated.
 [10]
 

 

 

 

  12
 

 
DNA
 methylation
 fulfills
 the
 following
 functions
 in
 humans
 [11]:
 

 

 
(1.)
 Regulation
 of
 gene
 expression:
 
In
 order
 to
 maintain
 proper
 functioning
 of
 cellular
 processes,
 gene
 expression
 must
 be
 tightly
 
controlled.
 Short
 term
 changes
 in
 expression
 patterns
 are
 usually
 induced
 by
 transcription
 
factors,
 whereas
 long-­‐term
 gene
 expression
 regulation
 is
 achieved
 by
 a
 complex
 interplay
 of
 
chromatin
  remodeling,
  modifications
  of
  DNA-­‐bound
  histones,
  nuclear
  positioning
  of
 
chromosomal
  regions,
  regulatory
  ribonucleic
  acids
  (RNAs)
  and,
  last
  but
  not
  least,
  DNA
 
methylation
 [12-­‐14].
 DNA
 methylation
 of
 gene
 promoters
 is
 usually
 associated
 with
 absence
 of
 
gene
 expression
 (Figure
 2).
 

 

 
Figure
 2.
 How
 DNA
 methylation
 can
 have
 effect
 on
 target
 gene
 expression
 in
 normal
 cells.
 (Image:
 James
 D.Fry,
 
University
 of
 Rochester,
 2011)
 

 

 

  13
 

 
(2.)
 Genomic
 imprinting:
 
Genomic
 imprinting
 refers
 to
 genomic
 regions
 from
 which
 only
 the
 paternal
 or
 the
 maternal
 
allele
 is
 expressed.
 This
 parent-­‐of-­‐origin-­‐specific
 expression
 pattern
 is
 mediated
 by
 epigenetic
 
modifications,
 including
 DNA
 methylation,
 of
 either
 the
 paternal
 or
 maternal
 allele
 [15].
 

 

 (3.)
 X-­‐chromosomal
 inactivation:
 
DNA
 methylation
 is
 involved
 in
 the
 inactivation
 of
 one
 of
 the
 two
 X-­‐chromosome
 copies
 present
 
in
 female
 cells.
 This
 process
 ensures
 that
 similar
 amounts
 of
 X-­‐chromosomal
 gene
 products
 are
 
expressed
 in
 both
 males
 and
 females
 [16].
 

 
(4.)
 Genome
 defense:
 
Parasitic
 genomic
 elements
 like
 retrotransposons
 are
 inactivated
 by
 DNA
 methylation,
 making
 
DNA
 methylation
 a
 key
 player
 in
 the
 maintenance
 of
 genome
 integrity
 [17].
 

 
The
 unmethylated
 CpGs
 are
 often
 grouped
 in
 clusters
 called
 CpG
 islands,
 which
 are
 often
 
present
 in
 the
 5'
 regulatory
 regions
 (promoters)
 of
 genes.
 In
 many
 disease
 processes,
 such
 as
 
cancer,
  promoter
  CpG
  islands
  acquire
  abnormal
  hypermethylation,
  which
  may
  results
  in
 
transcriptional
 silencing
 that
 can
 be
 inherited
 by
 daughter
 cells
 following
 cell
 division.
 (Figure
 3)
 

  14
 

 
Figure
 3.
 DNA
 modifications
 in
 cancer.
 
 [18]
 One
 of
 the
 DNA
 methylation
 Functions
 is
 regulating
 the
 gene
 
expression.
 As
 it
 is
 shown
 in
 this
 figure
 promoter
 CpG
 Islands
 are
 unmethylated
 in
 normal
 cells,
 while
 they
 have
 
acquired
 abberant
 DNA
 methylation
 following
 transcriptional
 silencing
 in
 cancers
 cells.
 Thus
 alteration
 of
 DNA
 
methylation
 has
 been
 known
 as
 an
 important
 component
 for
 cancer
 development.
 (Image
 obtained
 from:
 
Epigenetic
 and
 Cancer
 review,
 Q.W.
 Chen
 et
 al.,
 2013)
 

 

 
Alterations
 of
 DNA
 methylation
 have
 been
 recognized
 as
 an
 important
 component
 of
 cancer
 
development.DNA
 Hypomethylation,
 in
 general,
 arises
 earlier
 and
 is
 linked
 to
 chromosomal
 
instability,
 loss
 of
 imprinting,
 or
 over-­‐expression
 of
 oncogenes
 within
 cancer
 cells
 (Figure
 4
 
[19]).
 Global
 hypomethylation
 has
 also
 been
 implicated
 in
 the
 development
 and
 progression
 of
 
cancer
 through
 different
 mechanisms
 (Figure
 4
 [20]).
 

 
Hypermethylation
 typically
 occurs
 at
 CpG
 islands
 in
 the
 promoter
 region
 and
 is
 associated
 with
 
gene
 inactivation
 (Figure
 3).
 Methylation
 of
 CpG
 sites
 within
 the
 promoters
 of
 genes
 can
 lead
 to
 
their
 silencing,
 for
 example
 of
 tumor
 suppressor
 genes,
 a
 feature
 found
 in
 a
 numerous
 human
 
cancers
 (Figure
 4).
 

  15
 

 
Figure
 4.
 Hypo
 and
 hyper
 methylation
 at
 CpG
 islands
 leading
 to
 tumorogenesis.
 (Image
 obtained
 from:
 DNA
 
methylation
 and
 human
 disease,
 Keith
 D,
 Robertson,
 Nature
 review,2005)
 
The
 diagram
 shows
 a
 representative
 region
 of
 genomic
 DNA
 in
 a
 normal
 cell.
 The
 region
 shown
 contains
 repeat-­‐
rich,
 hypermethylated
 pericentromeric
 heterochromatin
 and
 an
 actively
 transcribed
 tumor
 suppressor
 gene
 (TSG)
 
associated
 with
 a
 hypomethylated
 CpG
 island
 (indicated
 in
 red).
 In
 tumor
 cells,
 repeat-­‐rich
 heterochromatin
 
becomes
 hypomethylated
 and
 this
 contributes
 to
 genomic
 instability,
 a
 hallmark
 of
 tumor
 cells,
 through
 increased
 
mitotic
 recombination
 events.
 De
 novo
 methylation
 of
 CpG
 islands
 also
 occurs
 in
 cancer
 cells,
 and
 can
 result
 in
 the
 
transcriptional
  silencing
  of
  growth-­‐regulatory
  genes.
  These
  changes
  in
  methylation
  can
  be
  early
  events
  in
 
tumorigenesis.
 [21]
 

 

 
DNA
 methylation
 may
 affect
 the
 transcription
 of
 genes
 in
 two
 ways.
 First,
 the
 methylation
 of
 
DNA
 itself
 may
 physically
 impede
 the
 binding
 of
 transcription
 factors
 to
 a
 gene
 or
 regulatory
 
element
 [22].
 Second,
 and
 likely
 more
 important,
 methylated
 DNA
 may
 be
 bound
 by
 proteins
 
known
 as
 methyl-­‐CpG-­‐binding
 domain
 proteins
 (MBDs).
 MBD
 proteins
 then
 recruit
 additional
 
proteins
 to
 the
 locus,
 such
 as
 histone
 deacetylases
 and
 other
 chromatin
 remodeling
 proteins
 
that
  can
  modify
  histones,
  thereby
  forming
  compact,
  inactive
  chromatin,
  termed
 
heterochromatin.
  This
  link
  between
  DNA
  methylation
  and
  chromatin
  structure
  is
  very
 

  16
 
important.
 In
 particular,
 loss
 of
 methyl-­‐CpG-­‐binding
 protein
 2
 (MeCP2)
 has
 been
 implicated
 in
 
Rett
 syndrome;
 and
 methyl-­‐CpG-­‐binding
 domain
 Protein
 2
 (MBD2)
 mediates
 the
 transcriptional
 
silencing
 of
 hyper-­‐methylated
 genes
 in
 cancer.
 [6]
 

 
In
 the
 clinical
 setting,
 DNA
 methylation
 is
 an
 exciting
 therapeutic
 target
 for
 cancer
 treatment;
 
methylation
 inhibiting
 agents
 are
 now
 routinely
 used
 in
 the
 treatment
 of
 several
 malignancies.
 
[24]
 

 
1-­‐B.
 Lung
 Cancer
 and
 its
 most
 aggressive
 subtype
 (SCLC)
 
Lung
 cancer
 is
 the
 top
 cancer
 killer
 in
 both
 men
 and
 women
 around
 the
 world.
 Based
 on
 the
 
American
 Cancer
 Society
 report,
 an
 estimated
 159,260
 Americans
 are
 expected
 to
 die
 from
 lung
 
cancer
 in
 2014
 [56].
 Lung
 cancer
 death
 accounts
 for
 approximately
 27%
 of
 all
 cancer
 deaths
 
There
 are
 two
 main
 types
 of
 lung
 cancer
 (Figure
 5):
 

 
Figure
 5.
 What
 are
 the
 Types
 of
 Lung
 Cancer?
 (By:
 American
 Lung
 Association)[57]
 

  17
 
Non-­‐small
 cell
 lung
 cancer
 (NSCLC)
 
Non-­‐small
 cell
 lung
 cancer
 is
 the
 most
 common
 type
 of
 lung
 cancer.
 It
 makes
 up
 about
 80
 
percent
  of
  all
  lung
  cancer
  cases.
  It
  is
  subdivided
  into
  three
  major
  subtypes:
  lung
 
adenocarcinoma,
 squamous
 cell
 carcinoma,
 and
 large
 cell
 carcinoma.
 In
 addition,
 carcinoids
 
and
 other
 minor
 types
 make
 up
 about
 5%
 of
 NSCLCs.
 

 
Small
 cell
 lung
 cancer
 
 
(SCLC)
 represents
 10%
 to
 15%
 of
 all
 lung
 cancers.
 It’s
 named
 for
 the
 size
 of
 the
 cancer
 cells
 
when
 seen
 under
 a
 microscope.
 Other
 names
 for
 SCLC
 are
 oat
 cell
 cancer,
 oat
 cell
 carcinoma,
 
and
 small
 cell
 undifferentiated
 carcinoma.
 
SCLC
 often
 starts
 in
 the
 bronchi
 near
 the
 center
 of
 the
 chest.
 It
 tends
 to
 grow
 and
 spread
 more
 
quickly
 than
 non-­‐small
 cell
 lung
 cancer.
 It
 has
 been
 shown
 that
 SCLC
 has
 a
 more
 rapid
 doubling
 
time,
 a
 higher
 growth
 fraction,
 and
 earlier
 development
 of
 widespread
 metastases.
 Despite
 of
 a
 
more
 dramatic
 initial
 response
 to
 chemotherapy
 and
 radiation
 therapy,
 most
 patients
 die
 due
 
to
 recurring
 disease
 [23].
 Untreated
 SCLC
 has
 the
 most
 aggressive
 clinical
 course
 of
 any
 lung
 
tumor,
 with
 a
 median
 survival
 of
 only
 2
 to
 4
 months
 after
 diagnosis.
 [24].
 

 
Survival
 statistics
 of
 lung
 cancer
 are
 grim
 because
 of
 its
 late
 detection
 and
 frequent
 local
 and
 
distal
 metastases.
 Although
 DNA
 sequence
 information
 from
 tumors
 has
 revealed
 a
 number
 of
 
frequently
 occurring
 mutations,
 affecting
 well-­‐known
 tumor
 suppressor
 genes
 (such
 as
 loss
 of
 
function
 in
 Rb1
 and
 P53
 genes)
 and
 proto-­‐oncogenes
 (gain
 of
 function
 or
 over
 expression),
 
many
 of
 the
 driver
 mutations
 remain
 to
 be
 defined.
 This
 is
 likely
 due
 to
 the
 involvement
 of
 

  18
 
numerous
 rather
 infrequently
 occurring
 driver
 mutations
 that
 are
 difficult
 to
 distinguish
 from
 
the
 very
 large
 number
 of
 passenger
 mutations
 detected
 in
 smoking-­‐related
 lung
 cancers
 [25].
 
 
The
 low
 survival
 of
 patients
 with
 SCLC
 (5-­‐year
 survival
 of
 6%)
 points
 to
 the
 necessity
 of
 finding
 
means
 of
 detecting
 these
 cancers
 at
 early
 stages
 at
 which
 point
 in
 time
 the
 surgical
 resection
 of
 
the
 tumor
 could
 extend
 the
 life
 of
 SCLC
 patients.
 

 
Lung
 cancers
 start
 in
 the
 cells
 lining
 the
 alveoli
 and
 the
 bronchioles
 as
 well
 as
 other
 cell
 types
 
located
 in
 the
 lung
 such
 as,
 in
 the
 case
 of
 SCLC,
 pulmonary
 neuroendocrine
 cells
 [26].
 

 
Figure
 6.
 Schematic
 picture
 of
 different
 lung
 cell
 types
 [27].
 Most
 SCLC
 lesions
 are
 found
 in
 the
 bronchioles
 and
 
terminal
 bronchioles,
 majority
 Clara
 cells.
 The
 cell
 of
 origin
 of
 SCLC
 has
 not
 been
 formally
 identified,
 although
 
because
 SCLC
 expresses
 neuroendocrine
 (NE)
 markers,
 it
 is
 thought
 to
 arise
 from
 NECs
 or
 NEP.
 NE
 cells
 are
 located
 
in
 the
 lung
 epithelium.
 (Image:
 Cell
 of
 Origin
 of
 lung
 cancer,
 Kate
 D.
 Sutherland
 et
 al.
 2011)
 

  19
 
The
 cancer
 may
 take
 time
 to
 grow.
 During
 which,
 the
 abnormal
 cells
 may
 acquire
 other
 genetic
 
and
 epigenetic
 changes,
 which
 cause
 them
 to
 progress
 to
 true
 cancer.
 As
 a
 cancer
 develops,
 the
 
cancer
 cells
 may
 make
 chemicals
 that
 cause
 new
 blood
 vessels
 to
 form
 nearby.
 These
 blood
 
vessels
 nourish
 the
 cancer
 cells,
 which
 can
 continue
 to
 grow
 and
 form
 a
 tumor
 large
 enough
 to
 
be
 seen
 on
 imaging
 tests
 such
 as
 x-­‐rays.
 In
 the
 case
 of
 SCLC,
 by
 the
 time
 it
 is
 detectable
 by
 
imaging
 it
 has
 usually
 already
 metastasized
 to
 other
 parts
 of
 the
 body.
 
 
The
 predominant
 mutations
 observed
 in
 human
 SCLC
 include
 loss-­‐of-­‐function
 mutations
 in
 the
 
retinoblastoma
 (RB)
 and
 (Tp53)
 genes.
 Mutation
 clustering
 is
 also
 found
 in
 the
 PI3K
 pathway,
 
the
 mediator
 complex,
 Notch
 and
 Hedgehog,
 glutamate
 receptors,
 SOX
 genes,
 DNA
 repair
 
genes
 and
 several
 receptor
 kinases
 [28],
 [29].
 Gain
 of
 function
 mutations
 or
 overexpression
 of
 
proto-­‐oncogenes
  by
  amplification
  of
  distinct
  chromosomal
  regions
  includes
 L-­‐MYC,
 C-­‐MYC,
 
SOX2
 and
 SOX4
 [29].
 
 

 

 
1-­‐C.
 Animal
 models
 as
 tools
 for
 understanding
 SCLC:
 The
 mouse
 as
 a
 popular
 
model
 in
 the
 study
 of
 SCLC
 
 

 
The
 large
 variety
 of
 lesions
 found
 in
 SCLC
 underscore
 the
 need
 to
 design
 animal
 models
 in
 
which
  the
  importance
  of
  individual
  lesions
  can
  be
  assessed
  in
  the
  context
  of
  various
 
combinations
 of
 concurrent
 oncogenic
 mutations.
 This
 notion
 provides
 a
 strong
 incentive
 to
 
set-­‐up
  fast-­‐track
  mouse
  tumor
  models
  in
  which
  different
  combinations
  of
  lesions
  can
  be
 
evaluated
 swiftly.
 [30][31]
 
 
 

 

  20
 
The
 mouse
 provides
 a
 good
 model
 to
 study
 human
 development
 and
 disease
 because
 we
 share
 
virtually
 all
 of
 our
 genes
 and
 use
 them
 in
 similar
 ways.
 It
 also
 allows
 the
 investigators
 to
 
perform
 many
 analyses
 that
 are
 arduous
 or
 unachievable
 to
 carry
 out
 in
 the
 human
 patients.
 
Using
 mouse
 models
 to
 study
 diseases
 such
 as
 cancer
 has
 numerous
 advantages:
 
 they
 can
 be
 
manipulated
 and
 treated
 with
 experimental
 drugs,
 in
 addition
 they
 are
 ~
 3
 inches
 long,
 which
 
allows
 us
 to
 keep
 many
 mice
 in
 a
 room.
 On
 the
 other
 hand,
 their
 generation
 time
 is
 about
 3
 
months,
 so
 that
 working
 with
 a
 mouse
 model
 can
 be
 quite
 time
 consuming
 depending
 on
 how
 
many
 crosses
 must
 be
 made.
 It
 is
 also
 expensive
 to
 maintain
 a
 mouse
 colony.
 Scientists
 have
 
worked
 with
 mice
 for
 over
 100
 years
 and
 most
 importantly
 such
 mice
 have
 been
 used
 with
 
genetic
 tools
 that
 can
 introduce
 extra
 genes
 or
 remove
 a
 specific
 gene
 allowing
 studies
 of
 the
 
effect
 of
 mutations
 on
 development
 and
 cancer.
 
 

 
The
 (RB)
 and
 (Tp53)
 tumor
 suppressor
 genes
 are
 frequently
 inactivated
 in
 SCLC
 [32].
 This
 
observation
  has
  been
  the
  basis
  for
  modeling
  SCLC
  in
  compound
  conditional
  knockouts
  of
 
retinoblastoma
 (Rb1)
 and
 (Tp53)
 genes
 [33]. Using
 a
 Cre-­‐loxP
 system,
 “
 floxed”
 Rb1
 and
 (Trp53)
 
were
 homozygously
 deleted
 in
 the
 lung
 epithelium
 of
 transgenic
 mice
 through
 intra-­‐tracheal
 
instillation
 of
 Adeno-­‐Cre
 virus.
 All
 treated
 mice
 develop
 multiple
 tumors
 with
 histopathology
 
and
  immune-­‐phenotype
  similar
  to
  human
  SCLC
  beginning
  around
  200
  days
  post
  infection
 
[34,35].
 The
 prolonged
 lag
 time
 allows
 for
 the
 monitoring
 of
 potential
 immune
 responses
 
against
 various
 SCLC-­‐related
 auto-­‐antigens
 prior
 to
 the
 clinical
 detection
 of
 the
 disease.
 It
 can
 
take
 more
 than
 6
 months
 before
 tumors
 become
 evident.
 The
 tumors
 closely
 resemble
 human
 
SCLC
 and
 even
 metastasize
 to
 the
 same
 organs.
 They
 also
 acquire
 additional
 mutations
 that
 are
 

  21
 
reminiscent
 of
 human
 SCLC,
 such
 as
 the
 amplification
 of
 one
 of
 the
 Myc
 genes
 [36].
 In
 addition,
 
amplification
 of
 the
 Nfib
 gene
 is
 frequently
 observed
 in
 mouse
 SCLC
 model.
 This
 gene
 is
 also
 
found
 to
 be
 amplified
 in
 human
 SCLC
 [36].
 The
 prolonged
 lag
 time
 for
 tumor
 development
 
allows
 for
 the
 monitoring
 of
 potential
 immune
 responses
 against
 various
 SCLC-­‐related
 auto
 
antigens
 prior
 to
 the
 clinical
 detection
 of
 the
 disease.
 
 

 
Recently,
 it
 was
 observed
 that
 the
 loss
 of
 p130,
 a
 cell
 cycle
 inhibitor
 related
 to
 Rb1
 
 [37]
 that
 
normally
 suppresses
 SCLC
 development
 [38],
 accelerates
 the
 development
 of
 SCLC
 in
 Rb1
 /
 
Tp53
 -­‐mutant
 mice.
 Rb
 /Tp53
 /p130
 mutant
 mice
 may
 thus
 provide
 an
 alternative
 mouse
 model
 
of
 SCLC
 with
 a
 shortened
 lag
 time
 [39].
 

 

  22
 

 
Figure
 7.
 Illustration
 of
 the
 design
 of
 the
 Dr.
 Anton
 Bern’s
 and
 his
 colleagues
 
 SCLC
 model:
 
A:
 Mice
 that
 carry
 Rb
 and
 p53
 genes
 with
 flanking
 LoxP
 sites
 underwent
 intratracheal
 delivery
 of
 a
 recombinant
 
adenoviral
 vector
 expressing
 the
 Cre
 recombinase
 (Ad-­‐Cre),
 which
 cleaves
 DNA
 specifically
 at
 LoxP
 sites.
 In
 those
 
mice
 that
 experienced
 homozygous
 loss
 of
 both
 Rb1
 and
 p53,
 SCLC
 developed.[60]
 
B:
 SCLC
 metastases
 were
 detected
 in
 the
 mouse
 model
 in
 sites
 commonly
 involved
 in
 SCLC
 patients.
 While
 the
 
frequencies
 of
 metastatic
 involvement
 in
 the
 mouse
 model
 were
 not
 described
 [34][60],
 the
 percentages
 of
 newly
 
diagnosed
 SCLC
 patients
 with
 extra-­‐thoracic
 metastases
 are,
 by
 site,
 19%–38%
 (bone),
 17%–34%
 (liver),
 5%-­‐31%
 
(adrenal
 glands),
 17%–23%
 (bone
 marrow),
 0%–14%
 (brain),
 7%–25%
 (lymph
 nodes),
 and
 3%–11%
 (soft
 tissues)
 
[40]
 (Image:
 Minna
 JD1,
 Kurie
 JM,
 Jacks
 T:
 A
 big
 step
 in
 the
 study
 of
 small
 cell
 lung
 cancer.
 Cancer
 Cell.
 2003
 
Sep;4(3):163-­‐6.
 PMID:
 14522249.)
 

 

 

 

  23
 
1-­‐D.
 Using
 DNA
 methylation
 markers
 for
 SCLC
 detection
 
Early
 detection
 of
 SCLC
 is
 challenging
 because
 of
 the
 lack
 of
 adequate
 biomarkers.
 Therefore,
 
SCLC
 is
 usually
 diagnosed
 due
 to
 symptoms
 associated
 with
 late
 disease,
 such
 as
 bulky
 intra-­‐
thoracic
 malignancy
 or
 metastasis.
 After
 disease
 is
 suspected
 due
 to
 symptoms,
 other
 invasive
 
tests
 are
 required
 to
 confirm
 the
 disease,
 such
 as
 histological
 analysis
 of
 bronchoscopic
 samples
 
and
 cytological
 study
 of
 a
 fine-­‐needle
 aspiration
 (FNA),
 endoscopic
 ultrasound
 (EUS)-­‐guided
 
fine-­‐needle
 aspiration
 (EUS-­‐FNA),
 or
 transbronchoscopic
 needle
 aspiration
 (TBNA)
 
Hence,
 it
 is
 quite
 important
 to
 identify
 molecular
 markers
 that
 might
 help
 with
 the
 detection
 
and
 diagnosis
 of
 the
 disease
 that
 can
 ultimately
 influence
 the
 patients’
 survival.
 

 

 
Figure
 8.
 DNA
 Methylation
 as
 a
 biomarker
 for
 early
 detection
 of
 lung
 cancer.
 This
 model
 proposes
 that
 as
 the
 
number
 of
 genes
 detected
 in
 sputum
 from
 current
 or
 former
 smokers
 increases,
 the
 relative
 risk
 for
 lung
 
cancer
 is
 also
 increased.
 When
 marker
 multiplicity
 reaches
 a
 certain
 level
 (this
 is
 being
 assessed
 through
 case–
control
 studies)
 intervention
 in
 the
 form
 of
 spiral
 computed
 tomography
 and/or
 bronchoscopy
 would
 be
 
recommended
  to
  identify
  early
  lung
  cancer.
  [41]
  (Image:
  Steven
  A.
  Belinsky:
  Gene-­‐promoter
 
hypermethylation
 as
 a
 biomarker
 in
 lung
 cancer.
 Nat
 Rev
 Cancer.
 2004
 Sep;4(9):707-­‐17.)
 

  24
 

 
There
 are
 few
 known
 proteins
 that
 are
 detectable
 as
 tumor
 markers
 in
 serum
 from
 SCLC
 
patients
  that
  are
  useful
  as
  putative
  markers
  of
  the
  disease.
  These
  proteins
  have
  a
 
neuroendocrine
  origin
  and
  are
  ubiquitously
  present
  in
  neuroendocrine
  tissues.
  [42]
  DNA
 
methylation
 markers
 have
 recently
 emerged
 as
 alternatives
 to
 protein
 biomarkers
 for
 the
 early
 
detection
 of
 cancer.
 
The
  analysis
  of
  DNA
  methylation
  patterns
  at
  individual
  gene
  loci
  has
  traditionally
  been
 
technically
  challenging.
  Two
  main
  techniques
  have
  been
  employed:
  methylation-­‐sensitive
 
restriction
 enzyme
 digestion
 and
 sodium
 bisulfite
 conversion
 of
 DNA.
 Methylation-­‐sensitive
 
restriction
 digestion
 is
 still
 widely
 employed
 in
 genome
 wide
 scanning
 techniques
 for
 DNA
 
methylation
 alterations,
 such
 as
 restriction
 landmark
 genomic
 scanning
 (RLGS)
 [43],
 methylated
 
CpG
 island
 amplification
 (MCA)
 [44],
 differential
 methylation
 hybridization
 (DMH)
 [45],
 and
 
methylation-­‐sensitive
 arbitrarily
 primed
 PCR
 (MS-­‐AP-­‐PCR)
 [46].
 Sodium
 bisulfite
 conversion
 of
 
genomic
 DNA
 has
 however
 led
 to
 a
 larger
 number
 of
 new
 methylation
 analysis
 techniques,
 
including
 MethyLight,
 MSP,
 COBRA,
 Q-­‐MSPand
 Ms-­‐SNuPE.[47][50]
MethyLight
 is
 a
 highly
 sensitive
 fluorescent-­‐based
 real-­‐time
 PCR
 assay,
 capable
 of
 detecting
 
methylated
 alleles
 in
 the
 presence
 of
 a
 10,000-­‐fold
 excess
 of
 unmethylated
 alleles.
 The
 assay
 is
 
also
  highly
  quantitative
  and
  can
  very
  accurately
  determine
  the
  methylation
  levels
  at
 
concordantly
  methylated
  CpGs
  in
  a
  locus.
  [47]
  This
  assay
  allows
  for
  quantitative
  DNA
 
methylation
 analysis
 at
 a
 specific
 locus
 by
 using
 DNA
 oligonucleotides
 that
 anneal
 differentially
 
to
 bisulfite
 converted
 DNA
 according
 to
 the
 methylation
 status
 in
 the
 original
 genomic
 DNA.
 

  25
 
[47][50]
  Following
  bisulfite
  conversion,
  methylated
  cytosines
  remain
  unchanged,
  while
 
unmethylated
 cytosines
 are
 deaminated
 to
 uracils.
 [48].
 Changes
 due
 to
 DNA
 methylation
 can
 
be
 thus
 converted
 into
 a
 genetic
 change
 that
 can
 be
 amplified
 by
 PCR
 using
 methylation-­‐
specific
 primers.
 (Figure
 9)
 

 

 

 
Figure
  9.
 Bisulfite
 Conversion:
 Scheme
 illustrating
 sodium
 bisulfite-­‐PCR
 technique
 for
 identification
 of
 5-­‐
 
methylcytosine
 in
 a
 DNA
 sequence.
 5-­‐mC,
 C,
 T,
 A,
 G,
 U
 indicate
 5-­‐methylcytosine,
 cytosine,
 thymine,
 adenine,
 
guanine
 and
 uracil
 respectively,
 arrows
 show
 the
 position
 of
 nitrogen
 bases
 on
 the
 DNA
 strands
 or
 the
 
direction
 of
 the
 reactions
 [49]
 (Image:
 Mohammed
 A.
 Ibrahim:
 
 Advances
 in
 Genomic
 DNA
 Methylation
 
Analysis.
  Biotechnology
  2010,
 
9:459468.DOI:10.3923/biotech.2010.459.468,URL:http://scialert.net/abstract/?doi=biotech.2010.459.468.)
 

 

 

 
The
 high
 sensitivity
 and
 specificity
 of
 MethyLight
 make
 it
 uniquely
 well
 suited
 for
 detection
 of
 
low-­‐frequency
 DNA
 methylation
 biomarkers
 as
 evidence
 of
 disease.
 At
 the
 same
 time,
 the
 
quantitative
  accuracy
  of
  real-­‐time
  PCR
  and
  the
  flexibility
  to
  design
  bisulfite-­‐dependent,
 
methylation-­‐independent
 control
 reactions
 allows
 for
 a
 quantitative
 assessment
 of
 these
 low-­‐
frequency
 methylation
 events.
 [48]
 

  26
 

 
Figure
 10.
 Sodium
 bisulfite
 modifies
 the
 sequences
 of
 genomic
 DNA
 by
 converting
 unmethylated
 Cs
 (open
 circles)
 
to
 uracils
 while
 leaving
 methylated
 Cs
 (solid
 circles)
 unmodified.
 PCR
 amplification
 results
 in
 the
 replacement
 of
 
uracil
 residues
 by
 thymines.
 Note
 that
 bisulfite
 conversion
 destroys
 the
 self-­‐complementarity
 of
 the
 original
 
genomic
 DNA,
 so
 that
 two
 different
 PCR
 products
 can
 be
 generated:
 one
 derived
 from
 the
 top
 strand,
 and
 one
 
derived
 from
 the
 bottom
 strand.
 [50][40[[51]
 (Image:
 Trinh
 BN1,
 Long
 TI,
 Laird
 PW:
 DNA
 methylation
 analysis
 by
 
MethyLight
 technology.
 Methods.
 2001
 Dec;25(4):456-­‐62.)
 

 

 
Figure
  11.Types
  of
  reactions
  used
  in
  the
  MethyLight
  assay.
  A)
  Schematic
  representation
  of
  a
  Methylation
 
dependent
 reaction
 with
 primers
 that
 cover
 CpG
 dinucleotides.
 B)
 Schematic
 representation
 of
 a
 Methylation
 
independent
 reaction
 with
 avoiding
 covering
 the
 CpG
 dinucleotides.
 [50][51](
 (Image:
 Trinh
 BN1,
 Long
 TI,
 Laird
 PW:
 
DNA
 methylation
 analysis
 by
 MethyLight
 technology.
 Methods.
 2001
 Dec;25(4):456-­‐62.)
 

  27
 
Chapter
 Two
 
Material
 and
 Methods
 
Our
 experiments
 can
 were
 carried
 out
 in
 5
 major
 steps,
 which
 are
 presented
 below:
 
v 2.1:
 Tumor
 induction
 in
 mice,
 mouse
 dissection,
 tissue
 collection
 
v 2.2:
 DNA
 Extraction
 from
 tissue
 samples
 
v 2.3:
 In
 vitro
 methylation
 of
 normal
 mouse
 DNA
 
v 2.4:
 Bisulfite
 Conversion
 and
 recovery
 
v 2.5:
 MethyLight
 PCR
 (TaqMan
 PCR
 Reaction
 setup)
 

 

 
 
2.1.
 Tumor
 induction
 in
 mice,
 mouse
 dissection,
 tissue
 collection:
 
2.1-­‐A.
 Tumor
 induction
 in
 the
 SCLC
 mouse
 model
 
We
 have
 previously
 used
 a
 SCLC
 mouse
 model
 (received
 from
 Dr.
 Anton
 Berns,
 Netherland
 
Cancer
 Institute)
 in
 which
 the
 Cre/lox-­‐based
 somatic
 conditional
 deletion
 of
 both
 alleles
 for
 Rb1
 
[55]
 and
 TP53
 [51]
 is
 achieved
 by
 intratracheal
 Adeno-­‐Cre
 instillation
 [53],
 resulting
 in
 the
 
induction
 of
 murine
 SCLC.
 (Intratracheal
 injection
 of
 Adeno-­‐Cre
 vector
 in
 the
 mice
 was
 carried
 
out
 in
 our
 lab
 by
 Mario
 Pulido)
 

  28
 
Procedure:
 
1.
 FVB/N
 mice
 homozygously
 floxed
 for
 Tp53
 and
 RB,
 between
 the
 ages
 of
 6-­‐12
 weeks
 are
 used.
 
These
 mice
 are
 old
 enough
 to
 recover
 from
 the
 anesthesia,
 and
 to
 be
 intubated
 in
 the
 trachea
 
with
 the
 catheter
 [53].
 Before
 starting
 the
 procedure,
 the
 mice
 are
 weighed
 to
 determine
 the
 
proper
 dose
 of
 anesthesia.
 

 
2-­‐
 Mice
 were
 anesthetized
 by
 intraperitoneal
 injection
 with
 a
 mix
 of
 Xylazine
 and
 Ketamine
 as
 
follows:
 
 we
 mixed
 150
 μL
 Xylazine
 (100
 mg/mL)
 with
 1mL
 Ketamine
 (100
 mg/mL)
 in
 8.85mL
 of
 
0.9%
 sterile
 phosphate
 buffered
 saline
 (PBS)
 to
 obtain
 a
 final
 concentration
 of
 100
 mg/Kg
 
Ketamine
 and
 10
 mg/Kg
 Xylazine.
 We
 used
 0.075-­‐ml/10
 g
 of
 mouse
 weight.
 We
 performed
 a
 
toe
 pinch
 to
 confirm
 that
 each
 animal
 was
 fully
 anaesthetized.
 
 

 
3-­‐
 We
 set
 the
 mouse
 on
 a
 specially
 designed
 sloped
 support
 located
 under
 a
 magnifying
 glass
 
and
 close
 to
 a
 light
 source.
 In
 order
 to
 assure
 that
 the
 mouth
 stays
 open
 during
 the
 procedure
 
we
 tied
 a
 thin
 thread
 to
 the
 front
 teeth
 that
 was
 anchored
 firmly
 at
 the
 other
 end.
 This
 way
 the
 
mouth
 was
 always
 open
 and
 we
 could
 reach
 the
 trachea
 easily.
 We
 pulled
 the
 mouse
 tongue
 
out
 in
 order
 to
 open
 its
 trachea.
 This
 procedure
 was
 accomplished
 under
 a
 class
 II-­‐B2
 biosafety
 
cabinet
 in
 a
 designated
 procedure
 room.
 

 
4-­‐
 Virus
 infection
 procedure:
 mice
 were
 infected
 with
 15
 μl
 containing
 2x10
10

 viral
 particles
 per
 
mouse
 based
 on
 the
 age
 of
 the
 mouse.
 [53]
 The
 Ad-­‐Cre
 was
 prepared
 fresh
 each
 time
 and
 used
 
within
 one
 hour
 of
 preparation.
 For
 extended
 storage
 times,
 Adeno-­‐Cre
 was
 stored
 at
 −
 80
 °C
 or
 

  29
 
alternatively,
 at
 4
 °C
 for
 periods
 of
 a
 few
 days.
 Viruses
 were
 kept
 on
 ice
 prior
 to
 infection.
 [53]
 
We
 positioned
 the
 needle
 of
 the
 syringe
 into
 a
 catheter
 (dimensions),
 and
 then
 cut
 (about
 3.5
 -­‐
4
 cm
 depends
 to
 the
 length
 of
 the
 syringe
 needle)
 the
 catheter
 with
 a
 blade.
 We
 then
 filled
 the
 
syringe
 with
 100ul
 of
 air,
 then
 we
 aspirated
 the
 virus
 solution
 into
 the
 catheter,
 and
 then
 we
 
added
 another
 50ul
 of
 air.
 We
 wet
 the
 catheter
 is
 with
 PBS
 in
 order
 to
 ease
 its
 passage
 through
 
the
 trachea.
 
 We
 next
 inserted
 the
 catheter
 in
 the
 trachea
 through
 the
 open
 mouth.
 Once
 the
 
catheter
 was
 inside
 the
 trachea
 we
 injected
 the
 virus
 (Figure
 11).
 We
 gently
 removed
 the
 
catheter
 then
 untied
 the
 thread
 and
 returned
 the
 mouse
 to
 its
 cage
 to
 recover.
 The
 mouse
 
began
 to
 recover
 from
 anesthesia
 after
 several
 minutes.
 

 

 
Figure
 12.
 Tracheal
 intubation
 and
 injection
 of
 Adeno-­‐Cre
 virus
 in
 the
 mouse.
 

  30
 
2.1-­‐B.
 Mouse
 tissue
 collection
 
AdenoCre-­‐induced
 mice
 were
 euthanized
 after
 they
 showed
 serious
 symptoms
 of
 disease
 as
 
determined
 by
 piloerection,
 hunched
 posture,
 and
 reduced
 motility
 and/or
 weight
 loss.
 By
 that
 
time
 most
 mice
 had
 SCLC
 in
 their
 lungs
 and
 other
 parts
 of
 their
 bodies.
 This
 process
 was
 done
 
as
 follows:
 We
 placed
 the
 mouse
 in
 a
 chamber
 linked
 to
 a
 CO2
 tank.
 We
 gradually
 increased
 the
 
CO2
 flow
 until
 the
 mouse
 was
 dead.
 The
 mouse
 was
 left
 in
 the
 chamber
 until
 clinical
 death
 was
 
determined
 (60
 seconds
 without
 seeing
 the
 mouse
 breathing,
 and
 feeling
 the
 mouse’s
 chest
 in
 
order
  to
  determine
  that
  there
  was
  no
  longer
  a
  heartbeat).
  This
  was
  followed
  by
  cervical
 
dislocation
 to
 ensure
 death.
 [54].
 We
 received
 remnant
 euthanized
 FVB/N
 and
 C57/Bl
 strains
 
for
 the
 control
 DNA
 isolation.
 
We
 dissected
 the
 euthanized
 mice
 in
 order
 to
 collect
 the
 needed
 organs.
 
 
We
 collected
 liver
 and
 lung
 tissues
 from
 uninduced
 mice,
 which
 we
 used
 as
 controls.
 
Freezing
 directly
 at
 -­‐80°C
 preserved
 the
 collected
 tissues
 or
 they
 were
 placed
 into
 a
 plastic
 
cryomold,
 which
 was
 filled
 with
 tissue
 freezing
 compound
 (OCT).
 We
 also
 treated
 some
 of
 our
 
tissue
  specimens
  with
  formaldehyde.
  This
  method
  was
  used
  to
  ensure
  the
  best
  possible
 
preservation
 of
 our
 tissue
 samples.
 The
 fixed
 tissue
 were
 next
 embedded
 in
 paraffin.
 

 
Carcasses
 were
 disposed
 of
 by
 placing
 them
 in
 a
 paper
 bag.
 We
 wrote
 date
 and
 mouse
 ID
 on
 
the
 bag
 and
 placed
 the
 bagged
 mice
 in
 freezer
 until
 disposal.
 

 

 

  31
 
2.2.
 DNA
 Extraction
 from
 tissue
 samples
 

 
2.2-­‐A.
  DNA
  extraction
  from
  the
  tissues
  preserved
  in
  OCT
  or
  those
  directly
 
frozen.
 

 
2.2-­‐A-­‐I.
 Tissue
 Lysis
 
We
 first
 prepared
 a
 lysis
 buffer
 solution
 containing:
 Tris-­‐HCl
 pH
 8-­‐8.5(100mM),
 EDTA
 (5mM),
 
SDS
 (0.2%),
 NaCl
 (200mM),
 Proteinase
 K
 100ug/ml.
 The
 components
 of
 the
 lysis
 buffer
 will
 
break
 the
 cell
 membrane
 to
 release
 the
 cytoplasmic
 contents
 and
 will
 help
 in
 the
 degradation
 
of
 the
 contaminating
 proteins.
 
 

 
After
  this,
  the
  SCLC
  tissue
  pieces
  were
  removed
  from
  the
  OCT
  or
  were
  thawed
  at
  room
 
temperature
 (RT).
 Small
 amounts
 
 (2-­‐3
 mm
3
)
 were
 and
 placed
 in
 1.5
 ml
 micro-­‐centrifuge
 tubes.
 
 
We
 added
 0.5
 ml
 of
 the
 lysis
 buffer,
 mixed
 the
 tubes
 gently,
 and
 incubated
 the
 tubes
 at
 55°C
 
overnight.
 
 Next
 day,
 we
 added
 more
 Proteinase
 K
 (the
 same
 amount
 as
 in
 the
 previous
 day)
 
thus
 doubling
 the
 final
 concentration
 of
 Proteinase
 K.
 We
 left
 the
 tubes
 at
 55°C
 for
 3-­‐4
 more
 
hours.
 

 

  32
 

 
Figure
 13.
 Two
 SCLC
 tumor
 tissue
 specimens
 from
 FVB/N
 induced
 mouse
 in
 melted
 OCT.
 (Mouse#505)
 

 

 
2.2-­‐A-­‐II.
 Phenol-­‐
 Chloroform
 extraction
 
We
  next
  performed
  a
  two-­‐step
  purification
  using
  first
  Phenol:
  Chloroform,
  followed
  by
 
Chloroform.
 Phenol-­‐
 Chloroform
 extraction
 is
 used
 to
 purify
 the
 nucleic
 acids
 and
 to
 remove
 
the
 proteins
 contaminants
 from
 the
 extract.
 In
 this
 technique
 the
 organic
 solvent
 solutions
 
are
 mixed
 with
 equal
 volumes
 (1:1)
 of
 the
 DNA
 solution.
 
 The
 proteins
 will
 partition
 into
 
the
 lower
 organic
 phase
 while
 the
 nucleic
 acids
 (as
 well
 as
 other
 water-­‐soluble
 compounds
 
such
 as
 salts,
 sugars,
 etc.)
 remain
 in
 the
 upper
 aqueous
 phase
 (Figure
 14)
 

 

 
Figure
  14.
   
  Phase
  separation
  in
  Phenol-­‐chloroform
  extraction[58].
  (Chomczynski,
  P.
  &
  Sacchi,
  N:
  Single-­‐step
 
method
 of
 RNA
 isolation
 by
 acid
 guanidinium
 thiocyanate-­‐phenol-­‐chloroform
 extraction.
 Anal.
 Biochem.
 (1987).
 
 
162:
 156–159.
 doi:10.1016/0003-­‐2697(87)90021-­‐2.
 PMID
 2440339)
 

  33
 
We
  return
  the
  tubes
  to
  room
  temperature
  and
  added
  an
  equal
  volume
  of
  the
 
Phenol/Chloroform/Isoamyl
 alcohol
 (25:24:1),
 solution
 to
 each
 tube,
 vortexing
 the
 samples
 for
 
30
  seconds
  in
  order
  to
  make
  sure
  that
  the
  samples
  were
  mixed
  completely
  with
  the
 
phenol:chloroform
  solution.
  We
  spun
  the
  tubes
  for
  10
  min
  at
  15
  000xg
  on
  a
  tabletop
 
microcentrifuge.
 We
 next
 removed
 the
 upper
 phase
 making
 sure
 not
 to
 touch
 the
 interphase
 
and
  transferred
  it
  into
  a
  new
  empty
  tube.
  We
  next
  added
  an
  equal
  volume
  of
 
Choloroform:Isoamyl
 Alcohol
 (24:1)
 into
 each
 tube,
 vortexed
 the
 samples
 for
 30
 seconds
 and
 
repeated
 the
 centrifugation
 process
 as
 described
 above.
 After
 this
 we
 remove
 the
 aqueous
 
upper
 phase
 and
 transferred
 it
 to
 a
 new
 empty
 tube.
 
 

 

 Step
 3:
 DNA
 precipitation:
 In
 this
 step,
 we
 added
 1/10
 volume
 3M
 sodium
 acetate
 in
 each
 tube,
 
mixed
 and
 then
 added
 2.5-­‐3X
 volumes
 of
 100%
 ethanol.
 Tubes
 were
 stored
 at
 
 -­‐20°C
 overnight
 
for
 DNA
 precipitation.
 The
 next
 day
 we
 centrifuged
 the
 DNA
 at
 16,000xg
 for
 5
 minutes
 and
 
consequently
 we
 collected
 a
 DNA
 palette
 that
 collected
 at
 the
 bottom
 of
 each
 tube.
 (Figure
 15)
 

 

 
Figure
 15.
 Collecting
 DNA
 pellet
 from
 phenol/Chloroform
 DNA
 extract
 with
 centrifuge
 [58].
 (Chomczynski,
 P.
 &
 
Sacchi,
 N:
 Single-­‐step
 method
 of
 RNA
 isolation
 by
 acid
 guanidinium
 thiocyanate-­‐phenol-­‐chloroform
 extraction.
 
Anal.
 Biochem.
 (1987).
 
 162:
 156–159.
 doi:10.1016/0003-­‐2697(87)90021-­‐2.
 PMID
 2440339)
 

 

  34
 
We
 rinsed
 the
 pellets
 with
 300µl
 70%
 Ethanol
 to
 eliminate
 contaminating
 salts.
 We
 centrifuged
 
the
 tubes
 again
 as
 described
 above
 (5min-­‐16000xg),
 carefully
 removed
 the
 70%
 ethanol.
 We
 
left
 the
 tubes
 open
 in
 a
 chemical
 hood
 for
 about
 10
 minutes
 to
 air-­‐dry
 the
 pellets.
 We
 dissolved
 
the
 DNA
 into
 100ul
 TE-­‐4
 (Tris
 100Mm,
 EDTA
 5mM).
 We
 determined
 the
 DNA
 concentration
 
using
 a
 Nano
 drop
 spectrophotometer.
 

 
2.2-­‐B.
 DNA
 extraction
 from
 paraffin-­‐embedded
 tissues
 
All
 tissue
 samples
 that
 were
 paraffin
 embedded
 were
 sent
 to
 USC
 Pathology
 Core
 for
 sectioning
 
and
 slide
 preparation.
 They
 provided
 us
 with
 10
 slides
 for
 each
 10µ
 thickness,
 Hematoxylin
 and
 
Eosin
 (H&E)
 stained
 and
 a
 coverslipped
 H&E-­‐stained
 slide
 for
 pathology
 review.
 Using
 the
 
marked
  coverslipped
  slide
  as
  a
  giide,
  we
  located
  tumor
  tissue
  under
  the
  microscope
  and
 
manually
 microdissected
 the
 sections
 to
 obtain
 cancerous
 cells
 for
 DNA
 extraction.
 This
 was
 
done
 by
 another
 student
 in
 our
 lab,
 Evelyn
 Tran.
 

 

 
Figure
 16.
 Tissues
 (samples
 from
 SCLC
 mouse
 or
 human
 patients)
 and
 paraffin
 were
 attached
 to
 the
 cassette
 
formed
 a
 block,
 which
 is
 ready
 for
 sectioning.
 

 

  35
 
2.3.
 In
 vitro
 methylation
 of
 normal
 mouse
 DNA
 
M.SssI
 is
 a
 bacterial
 CpG
 methylase
 that
 methylates
 all
 CpG
 dinucleotides
 using
 S-­‐adenosyl
 
methionine
 (SAM)
 as
 a
 methyl
 donor.
 M.SssI-­‐treated
 DNA
 is
 used
 as
 a
 universally
 methylated
 
reference
 sample
 in
 the
 MethyLight
 assay.
 
 
The
 M.SssI
 treatment
 was
 performed
 overnight
 at
 37
o
C
 in
 a
 solution
 containing
 0.05μg/μL
 
genomic
 DNA,
 0.16mM
 of
 SAM,
 1
 x
 reaction
 buffer
 (50mM
 NaCl,
 
 10mM
 Tris-­‐HCl,
 
 10mM
 MgCl
2,

 

 1mM
 DTT,
 
 pH
 7.9
 at
 25°C),
 and
 0.05
 units/μL
 of
 M.SssI
 enzyme.
 The
 next
 day
 we
 added
 a
 
boost
 of
 M.SssI
 enzyme
 and
 S-­‐adenosyl
 methionine
 or
 SAM
 (1/3
 of
 the
 original
 volume)
 used
 
for
 both
 components
 together
 with
 more
 water
 in
 a
 total
 volume
 representing
 1/50
 of
 the
 
initial
 treatment
 volume.
 We
 stored
 the
 M.SssI-­‐treated
 DNA
 at
 +4°C.
 
We
 performed
 multiple
 treatments.
 In
 between
 treatments,
 the
 DNA
 was
 purified
 by
 Phenol-­‐
Chloroform
 extraction
 followed
 by
 DNA
 precipitation
 as
 described
 above.
 

 
2.4.
 Bisulfite
 Conversion
 
 
We
 performed
 bisulfite
 conversion
 of
 the
 genomic
 DNA
 as
 a
 first
 step
 of
 the
 DNA
 methylation
 
analysis.
 In
 order
 to
 accomplish
 this
 step
 we
 used
 a
 commercially
 available
 kit,
 the
 EZ
 DNA
 
Methylation
 Kit
 (ZYMO
 Research,
 Orange,
 CA)
 and
 followed
 the
 manufacture’s
 instructions
 as
 
follows:
 
1.
 We
 first
 prepared
 the
 CT
 conversion
 reagent
 by
 adding
 750μL
 of
 water
 and
 210μL
 of
 M-­‐
Dilution
 Buffer
 to
 one
 tube
 containing
 the
 CT
 conversion
 reagent
 and
 vortexing
 every
 1–2min
 

  36
 
for
 a
 total
 of
 10
 min.
 
 

 
2.
 We
 next
 added
 5μL
 of
 the
 M-­‐Dilution
 Buffer
 to
 each
 of
 the
 DNA
 samples
 and
 adjusted
 the
 
total
 volume
 to
 50μL
 with
 sterile
 water.
 We
 mixed
 the
 sample
 by
 flicking
 the
 tubes
 or
 by
 
pipetting
 up
 and
 down.
 We
 then
 incubated
 the
 sample
 at
 37°C
 for
 15
 min.
 [48]
 

 

 3.
 After
 this
 incubation,
 we
 added
 100μL
 of
 the
 prepared
 CT
 Conversion
 Reagent
 to
 each
 
sample
 and
 vortexed
 for
 complete
 mixing.
 

 
4.
 We
 incubated
 the
 samples
 in
 a
 thermo
 cycler
 machine
 using
 the
 following
 conditions:
 95
 °C
 
for
 30
 s,
 50
 °C
 for
 60min,
 repeated
 for
 16
 cycles.
 At
 the
 end
 we
 incubated
 the
 sample
 on
 ice
 for
 
10min.
 
 

 
5.
  Next
  day
  we
  cleaned
  up
  the
  DNA
  by
  passing
  it
  through
  a
  column
  provided
  by
  the
 
manufacturer.
 We
 first
 added
 400μL
 of
 M-­‐Binding
 buffer
 to
 the
 sample
 and
 mixed
 by
 pipetting
 
up
 and
 down.
 Then
 we
 loaded
 the
 sample
 onto
 a
 Zymo-­‐Spin
 I
 column
 and
 placed
 the
 column
 
into
 a
 2-­‐mL
 collection
 tube.
 [48].
 The
 loaded
 columns
 were
 centrifuged
 at
 full
 speed
 (>10,000g)
 
or
 (15000xg)
 for
 30
 s.
 The
 flow
 through
 was
 discarded.
 

 
6.
 We
 added
 200μL
 of
 M-­‐Wash
 Buffer
 to
 the
 column
 and
 centrifuged
 the
 columns
 at
 full
 speed
 
(15000xg
 for
 30
 s).
 
 
7.
 We
 added
 next
 200μL
 of
 M-­‐Desulphonation
 Buffer
 to
 the
 column
 and
 kept
 the
 column
 at
 

  37
 
room
 temperature
 for
 15
 min,
 then
 spun
 it
 down
 at
 15000xg
 for
 30
 s.
 

 
8.
  We
  did
  another
  wash
  by
  adding
  200μL
  of
  M-­‐Wash
  Buffer
  to
  the
  columns
  and
  then
 
centrifugation
 at
 15000xg
 for
 30
 s
 We
 did
 another
 final
 wash
 by
 adding
 200μL
 of
 M-­‐Wash
 
Buffer
 and
 centrifugation
 at15000xg
 for
 2
 min.
 
 

 
9.
 We
 eluted
 the
 samples
 by
 adding
 10μL
 of
 M-­‐Elution
 Buffer
 directly
 to
 the
 column
 matrix,
 [48]
 
then
 spun
 the
 samples
 into
 1.5ml
 microcentrifuge
 tubes
 
 at
 15k
 rcf
 ,
 for
 1
 min.
 The
 bisulfite-­‐
converted
 DNA
 was
 stored
 at
 −20
o
C
 until
 it
 was
 used
 for
 MethyLight
 reactions.
 [48]
 (Figure
 13)
 

 

 
Figure
 17.
 Conversion
 of
 non-­‐methylated
 cytosine
 by
 DNA
 Bisulfite
 conversion
 (Figure
 by:
 ZYMO
 research)
 

 

 

 

 

  38
 
2.5.
 MethyLight
 Analysis
 
The
 MethyLight
 assay
 makes
 use
 of
 the
 TaqMan
 PCR
 principle,
 which
 requires
 forward
 and
 
reverse
 primers
 as
 well
 as
 a
 non-­‐extendable
 oligomeric
 probe,
 which
 emits
 fluorescence
 only
 
after
 it
 is
 degraded
 by
 the
 5→3
 exonuclease
 activity
 of
 the
 Taq
 polymerase.
 [48]
 

 

 
Figure
 18.
 Schematic
 procedure
 of
 the
 Quantitative
 PCR
 (Image:
 EpiQuik™)
 

 

 
For
 each
 PCR
 reaction,
 we
 used
 the
 same
 basic
 reaction
 setup
 with
 different
 primers/probe
 
sets.
 Each
 individual
 PCR
 reaction
 contained
 10μL
 DNA,
 15.4μL
 PreMix
 Solution,
 4.5μL
 OligoMix
 
Solution
 (1.5μL
 of
 each
 primer
 and
 probe),
 and
 0.1μL
 Taq
 polymerase
 in
 a
 total
 of
 30μL
 PCR
 
volume.
 [48]
 The
 premix
 solution
 contains:
 MgCl2
 (3.5
 mM),
 1
 x
 Taq-­‐
 Man
 Buffer,
 1
 x
 TaqMan
 

  39
 
stabilizer
 (enables
 to
 maintain
 the
 activity
 of
 pre
 mixture
 for
 over
 a
 month
 even
 when
 stored
 at
 
room
 temperature,
 or
 over
 two
 years
 in
 the
 freezer)
 and
 0.2mM
 of
 each
 dNTP.
 The
 OligoMix
 is
 
the
 mixture
 of
 the
 two
 primers
 and
 probes
 that
 have
 been
 diluted
 such
 that
 every
 reaction
 
4.5ul
 contains
 (1.5ul
 of
 each
 of
 the
 primer
 and
 the
 probe
 at
 a
 concentration
 of
 2µM
 for
 each
 
primer
 and
 0.67µM
 for
 the
 probe.
 The
 combined
 PreMix
 Solution,
 OligoMix
 Solution,
 and
 Taq
 
Gold
 polymerase
 for
 each
 reaction
 is
 referred
 to
 as
 the
 MasterMix
 Solution.
 [48]
 We
 loaded
 
10μL
 of
 bisulfite
 converted
 DNA
 plus
 20μL
 of
 the
 MasterMix
 Solution
 in
 each
 PCR
 well.
 

 
Individual
 OligoMix
 Solutions
 were
 prepared
 for
 the
 gene
 investigated
 by
 MethyLight
 or
 any
 
other
 quality
 control
 reactions
 used
 in
 the
 analysis.
 MethyLight
 assays
 used
 were
 previously
 
developed
 in
 the
 Laird
 and
 Laird-­‐
 Offringa
 labs
 based
 on
 data
 obtained
 from
 other
 studies.
 
These
 assays
 were
 specific
 for
 mice
 loci
 overlapping
 the
 same
 genomic
 regions
 as
 in
 humans.
 

 
Each
 MethyLight-­‐based
 data
 point
 is
 the
 result
 of
 the
 combined
 analysis
 of
 a
 methylation-­‐
dependent
  PCR
  reaction
  and
  methylation-­‐independent
  PCR
  reaction
  on
  reference
  (M.SssI-­‐
treated
 DNA)
 and
 experimental
 DNA
 samples.
 [48]
 
The
 results
 are
 expressed
 as
 PMR.
 The
 figure
 bellow
 shows
 how
 to
 calculate
 PMR.
 

 
Figure
 19.
 PMR
 (Percent
 of
 Methylated
 Reference)
 calculation.
 

  40
 

 
All
 PCR
 reactions
 were
 carried
 out
 as
 follows:
 one
 cycle
 at
 95
o
C
 for
 10min
 followed
 by
 50
 cycles
 
at
 95
o
C
 for
 15
 s,
 and
 60
o
C
 for
 1
 min.
 [48]
 The
 MethyLight
 results
 are
 expressed
 in
 the
 following
 
chapter.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  41
 
Chapter
 Three
 
Results
 
3-­‐A.
 
 SCLC
 induction
 in
 FVB/N
 mice
 and
 tissue
 specimen
 collection
 from
 induced
 
and
 un-­‐induced
 FVB/N
 mice
 and
 C57
 mice
 
We
 collected
 seven
 tumors
 from
 5
 FVB/N
 induced
 mice
 and
 normal
 lung
 tissue
 from
 an
 un-­‐
induced
 FVB/N
 mouse.
 We
 also
 obtained
 two
 liver
 tissues
 (one
 male
 one
 female)
 from
 un-­‐
induced
 FVB/N
 mice
 and
 two
 liver
 tissues
 
 (one
 male
 one
 female)
 from
 remnant
 euthanized
 
C57Bl/6
 mice.
 Tumors
 were
 stored
 in
 OCT.
 Tumors
 (24)
 from
 FVB/N
 mice
 that
 were
 fixed
 in
 
formalin
 and
 then
 embedded
 in
 paraffin
 were
 also
 analyzed.
 The
 normal
 tissues
 were
 all
 fresh
 
frozen
 and
 stored
 at
 -­‐80°C.
 (Table
 1)
 

  42
 

 
Table
 1.
 Summary
 of
 the
 tissue
 samples
 used
 in
 the
 MethyLight
 analysis.
 

 
Mouse&ID
Adeno,Cre&
Induction Mouse&type Sample&type
Microdisection&
status
3525 No C57Bl/6 Normal/Liver/Tissue No
3527 No C57Bl/6 Normal/Liver/Tissue No
NA No FVB/N Normal/Liver/Tissue No
NA No FVB/N Normal/Liver/Tissue No
506 yes FVB/N SCLC//Lung/Tumor No
505 yes FVB/N SCLC//Lung/Tumor No
505 yes FVB/N SCLC//Lung/Tumor No
499 yes FVB/N SCLC//Lung/Tumor No
486 yes FVB/N SCLC//Lung/Tumor No
483 yes FVB/N SCLC//Lung/Tumor No
483 yes FVB/N SCLC//Lung/Tumor No
887 No FVB/N Normal/Lung/Tissue No
299B300NI No FVB/N Normal/Lung/Tissue yes
302NI No FVB/N Normal/Lung/Tissue yes
304LNI No FVB/N Normal/Lung/Tissue yes
247LNI No FVB/N Normal/Lung/Tissue yes
148N yes FVB/N Normal/Lung/Tissue yes
165N yes FVB/N Normal/Lung/Tissue yes
176LN yes FVB/N Normal/Lung/Tissue yes
214AN yes FVB/N Normal/Lung/Tissue yes
219N yes FVB/N Normal/Lung/Tissue yes
348LN yes FVB/N Normal/Lung/Tissue yes
369LN yes FVB/N Normal/Lung/Tissue yes
281BN yes FVB/N Normal/Lung/Tissue yes
150LN yes FVB/N Normal/Lung/Tissue yes
214BN yes FVB/N Normal/Lung/Tissue yes
369LT yes FVB/N SCLC//Lung/Tumor yes
281BT yes FVB/N SCLC//Lung/Tumor yes
148T yes FVB/N SCLC//Lung/Tumor yes
150LT yes FVB/N SCLC//Lung/Tumor yes
165T yes FVB/N SCLC//Lung/Tumor yes
176LT yes FVB/N SCLC//Lung/Tumor yes
214AT yes FVB/N SCLC//Lung/Tumor yes
214BT yes FVB/N SCLC//Lung/Tumor yes
219T yes FVB/N SCLC//Lung/Tumor yes
348LT yes FVB/N SCLC//Lung/Tumor yes

  43
 
3-­‐B.
 In
 vitro
 DNA
 methylation
 (M.SssI
 treatment)
 Results:
 
We
 used
 DNA
 extracted
 from
 normal
 liver
 tissues
 from
 FVB/M
 un-­‐induced
 mice
 and
 C57Bl/6
 
mice
 to
 perform
 in
 vitro
 DNA
 methylation
 using
 the
 M.SssI
 methyltransferase.
 (Table
 1)
 
Since
 we
 intended
 to
 treat
 a
 large
 amount
 of
 DNA
 we
 decided
 to
 perform
 this
 treatment
 
multiple
  times
  using
  lower
  amounts
  of
  enzyme
  (see
  Materials
  and
  Methods).
  After
  each
 
treatment,
 we
 set
 aside
 small
 aliquots
 for
 future
 testing.
 Between
 treatments
 we
 cleaned
 up
 
the
 DNA
 by
 standard
 phenol/chloroform
 extraction
 followed
 by
 DNA
 precipitation.
 
After
 3
 (FVB/N
 mice)
 and
 4
 (C57/Bl6)
 consecutive
 M.SssI
 treatments,
 we
 compared
 the
 DNA
 
methylation
 levels
 in
 samples
 collected
 after
 each
 treatment
 with
 a
 sample
 that
 was
 previously
 
treated
 using
 large
 amounts
 of
 M.SssI
 enzyme
 and
 which
 
 was
 assumed
 to
 be
 a
 fully
 methylated
 
sample
 (this
 sample
 was
 provided
 by
 Dr.
 Daniel
 Weisenberger).
 We
 bisulfite
 converted
 about
 
0.5ug
 of
 DNA
 collected
 after
 each
 treatment
 and
 performed
 MethyLight
 assays
 using
 primers
 
for
 a
 control
 reaction
 (methylation
 independent
 reaction
 that
 is
 targeted
 to
 a
 mouse
 repeat
 
regions
 does
 not
 cover
 any
 CpGs
 ,MB-­‐111
 (gene
 ID)
 ,
 and
 reactions
 for
 three
 gene
 IDs
 (MB-­‐113,
 
MB-­‐115,
 MB-­‐123)
 single
 copy
 gene
 promoters
 (methylation
 dependent
 reactions
 since
 these
 
reactions
 cover
 CpGs).
 

  44
 

 
Figure
 20.
 Evaluation
 DNA
 methylation
 levels
 by
 ΔCt
 determination.
 (Reaction
 Image:
 Image:
 Trinh
 BN1,
 Long
 TI,
 
Laird
 PW:
 DNA
 methylation
 analysis
 by
 MethyLight
 technology.
 Methods.
 2001
 Dec;25(4):456-­‐62.)
 

 
For
 the
 evaluation
 of
 the
 methylation
 levelS
 of
 sample
 DNA,
 unlike
 the
 classic
 MethyLight,
 we
 
only
  determined
  the
  Cts
  (cycle
  threshold)
  for
  each
  of
  these
  reactions.
  We
  compared
  the
 
difference
 (ΔCt)
 between
 the
 Ct
 for
 the
 single
 copy
 gene
 and
 the
 Ct
 of
 the
 control
 reaction.
 
There
 was
 a
 decrease
 in
 the
 delta
 Ct
 with
 each
 treatment
 suggesting
 that
 the
 DNA
 became
 
more
 methylated
 with
 each
 treatment.
 However,
 after
 three
 treatments
 the
 ΔCts
 for
 FVB/N
 
were
 still
 higher
 than
 those
 calculated
 for
 the
 positive
 control
 sample
 we
 assumed
 to
 be
 fully
 
methylated
 
 (Table
 2).
 We
 decided
 to
 do
 another
 round
 of
 treatment
 for
 these
 DNAs
 using
 a
 
larger
 amount
 of
 M.SssI
 enzyme.
 The
 delta
 Ct
 of
 the
 sample
 treated
 four
 times
 (FVB/N)
 was
 
lower
 than
 that
 of
 the
 sample
 that
 was
 assumed
 to
 be
 fully
 methylated
 (positive
 control)
 for
 

  45
 
the
 MB-­‐115
 and
 MB-­‐123
 reactions
 
 (Table
 3).
 These
 last
 treated
 samples
 were
 used
 further
 in
 
the
 MethyLight
 analysis
 as
 methylated
 references.
 We
 treated
 the
 C57/Bl6-­‐derived
 DNA
 four
 
times
 with
 M.SssI
 enzyme
 before
 checking
 the
 ΔCts.
 For
 comparison
 we
 used
 the
 last
 treated
 
sample
 of
 the
 male
 FVB/N
 mouse.
 Unfortunately,
 the
 DNA
 methylation
 levels
 for
 the
 same
 
reactions
 (MB-­‐115
 and
 MB-­‐123)
 were
 still
 low
 compared
 with
 sample
 and
 they
 did
 not
 change
 
even
 after
 an
 additional
 treatment
 with
 higher
 levels
 of
 M.SssI
 enzyme.
 (Table3)
 

 

 
Table
 2.
 FVB/N-­‐
 M-­‐SssI
 first
 Treatment
 results.
 First
 group
 of
 our
 treatments
 delta
 C
 (t)
 results
 (Positive
 control:
 
assumed
 Fully
 Methylated
 Sample)
 

 

 
Table
 3.
 FVB/N-­‐
 M-­‐SssI
 
 second
 Treatment
 results.
 Adding
 the
 fourth
 treatment
 (Tr-­‐4)
 to
 our
 previous
 group
 
with
 more
 enzyme
 (FVB/N)
 

 

 

 
Probe   Tr-1 Tr-2 Tr-3 Positive Control
MB-113
Male 12.3 11.5 11  
Female 14 12 12  
Positive Control       10
   Tr-1 Tr-2 Tr-3 Tr-4
Positive
Control
MB-115
Male 12 12 12 11  
Female 14 13 12 11  
Positive
Control         11
MB-123
Male 12 11 11 10  
Female 13.5 12 11 10  
Positive
Control         10.5

  46
 

 

 

 

 

 
Table
 4.
 C57Bl/6-­‐
 M-­‐SssI
 Treatment,
 First
 determination
 (Calculated
 delta
 C(t)s
 between
 MB-­‐111
 gene
 ID
 the
 group
 
of
 genes
 IDs
 of
 interest
 MB-­‐113
 and
 MB-­‐123)
 

 

 

 
Table
 5.
 C57BL/6-­‐
 M-­‐SssI
 Treatment
 results,
 Second
 determination.
 

 

 
Probe   Tr-1 Tr-2 Tr-3 Tr-4 Tr-5 FVB/N
MB-113
Male 13.5 12 11 12 13 11
Female 14 12 12 11 12.5 11
MB-123
Male 14.5 11 10 9.5 9.5 9.5
Female 15 12 10 9 10 9

  47
 

 
3-­‐C.
 MethyLight
 analysis
 Results
 for
 microdissected
 SCLC
 tumors:
 

 

 
After
 obtaining
 the
 delta
 C(t)s
 from
 our
 fresh
 and
 frozen
 SCLC
 mouse
 samples
 we
 did
 our
 
experiment
 on
 SCLC
 paraffin
 embedded
 tissues,
 from
 which
 tumor
 tissue
 had
 been
 obtained
 by
 
micro-­‐dissection.
 

 

 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table
 6:
 PMR
 values
 from
 paraffin
 embedded
 tissues
 (Micodissected)
 

 
Mouse&ID
Adeno,Cre&
Induction Sample&type
MB,111&
C(t)
MB,124&
PMR
MB,123&
PMR
MB,41&
PMR
MB,114&
PMR
MB,115&
PMR
MB,121&
PMR
MB,125&
PMR
MB,117&
PMR
299#300NI no Normal.Lung.Tissue 17.2 0 0 8 0 3 6 0 105
302NI no Normal.Lung.Tissue 17.1 0 0 5 1 1 6 1 113
304LNI no Normal.Lung.Tissue 17.2 0 0 9 2 6 7 NA 111
247LNI no Normal.Lung.Tissue 17.1 0 0 8 3 11 16 0 173
148N yes Normal.Lung.Tissue 16.2 0 0 5 0 3 9 NA 105
165N yes Normal.Lung.Tissue 16.7 0 0 1 0 7 6 0 66.4
176LN yes Normal.Lung.Tissue 17.6 0 0 4 0 5 15 NA 111
214AN yes Normal.Lung.Tissue 18.7 0 0 17 0 3 13 0 183
219N yes Normal.Lung.Tissue 18.1 0 0 9 0 0 23 NA 186
348LN yes Normal.Lung.Tissue 18.1 0 0 4 0 1 8 0 162
369LN yes Normal.Lung.Tissue 17.1 0 0 8 4 2 10 NA 171
281BN yes Normal.Lung.Tissue 17.1 0 0 3 4 0 10 NA 183
150LN yes Normal.Lung.Tissue 17.1 0 0 5 0 4 10 NA 104
214BN yes Normal.Lung.Tissue 18.1 0 0 6 0 12 28 NA 133
369LT yes SCLC..Lung.Tumor 17.2 0 0 13 0 4 12 NA 108
281BT yes SCLC..Lung.Tumor 18.1 0 0 14 0 37 12 NA 188
148T yes SCLC..Lung.Tumor 15.7 6 5 2 31 13 193 NA 67.1
150LT yes SCLC..Lung.Tumor 17.1 4 7 13 0 15 16 NA 148
165T yes SCLC..Lung.Tumor 16.1 12 8 28 13 21 4 NA 181
176LT yes SCLC..Lung.Tumor 16.6 0 0 11 0 10 19 0 114
214AT yes SCLC..Lung.Tumor 16.1 5 3 39 0 4 6 NA 106
214BT yes SCLC..Lung.Tumor 15.2 6 5 10 14 16 5 0 107
219T yes SCLC..Lung.Tumor 17.2 0 0 12 2 10 14 NA 188
348LT yes SCLC..Lung.Tumor 15.2 6 2 3 1 5 2 NA 108

  48
 
3-­‐D.
 MethyLight
 analysis
 Results
 for
 SCLC
 tumors
 that
 were
 not
 microdisected:
 

 

 
We
 performed
 ML
 analysis
 on
 seven
 tumors
 DNA
 and
 one
 normal
 lung
 tissue
 DNA
 that
 were
 
not
 microdissected.
 The
 results
 are
 expressed
 as
 PMRs
 and
 shown
 in
 Table
 7.
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 

 

 
Table
 7.
 
 PMR
 valuess
 from
 MethyLight
 reaction
 on
 7
 SCLC
 tumors
 DNA
 and
 one
 normal
 lung
 DNA.
 

 

 

 

 

 
Mouse&ID
Adeno,Cre&
Induction Sample&type
MB,111&
C(t)
MB,114&
PMR
MB,53&
PMR
MB,125&
PMR
MB,124&
PMR
MB,115&
PMR
MB,123&
PMR
MB,121&
PMR
MB,41&
PMR
MB,117&
PMR
506 yes SCLC**Lung*Tumor 18.3 0 0 0 0 0 0 1 1 115
505 yes SCLC**Lung*Tumor 16.3 0 0 0 0 0 0 0 0 108
505 yes SCLC**Lung*Tumor 15.0 0 0 0 0 0 1 1 1 70
499 yes SCLC**Lung*Tumor 15.2 0 0 0 0 0 0 1 0 42
486 yes SCLC**Lung*Tumor 15.1 0 0 0 0 1 0 35 1 26
483 yes SCLC**Lung*Tumor 16.3 0 0 0 0 0 0 0 1 14
483 yes SCLC**Lung*Tumor 15.1 0 0 0 0 0 0 1 0 31
887 no Normal*Lung*Tissue 16.1 0 0 0 0 0 0 1 1 43

  49
 

 

 

 

 

 

 
Table
 8.
 DNA
 methylation
 differences
 in
 frozen
 tissues
 and
 fresh
 frozen
 paraffin
 embedded.
 
In
 this
 figure
 we
 compared
 the
 MethyLighht
 PMR
 values
 between
 different
 gene
 IDs
 from
 tissues
 that
 were
 either
 
microdissected
 from
 paraffin
 blocks
 or
 not
 microdissected
 from
 frozen.
 

  50
 
Chapter
 Four
 
Discussion
 

   
 
We
 took
 advantage
 of
 the
 SCLC
 mouse
 model
 to
 test
 whether
 DNA
 methylation
 markers
 that
 
were
 detected
 in
 the
 blood
 of
 human
 patients
 with
 SCLC
 are
 also
 methylated
 in
 the
 SCLC
 
tumors
 that
 developed
 in
 these
 mice.
 
 For
 this,
 I
 assisted
 Mario
 Pulido
 in
 inducing
 SCLC
 tumors
 
in
 mice
 with
 floxed
 Tp53
 and
 Rb
 alleles.
 I
 extracted
 DNA
 from
 fresh
 frozen
 normal
 and
 tumor
 
lung
 tissues
 obtained
 from
 these
 mice.
 DNA
 was
 also
 extracted
 from
 normal
 and
 tumor
 tissues
 
microdissected
 from
 paraffin-­‐embedded
 tissue
 sections
 by
 Evelyn
 Tran.
 
 These
 DNAs
 were
 
analyzed
 by
 MethyLight
 using
 mouse
 probes
 for
 methylated
 DNA
 regions
 detected
 in
 the
 blood
 
of
 SCLC
 patients.
 Since
 MethyLight
 analysis
 requires
 a
 fully
 methylated
 reference
 sample,
 I
 
generated
 large
 amounts
 (3-­‐5μg)
 of
 such
 reference
 DNA
 by
 in
 vitro
 methylating
 normal
 mouse
 
DNA
 from
 the
 two
 mouse
 strains
 most
 commonly
 used
 for
 lung
 cancer
 studies.
 It
 is
 important
 
to
 have
 control
 DNA
 matched
 to
 each
 strain
 to
 avoid
 biases
 due
 to
 genetic
 differences
 between
 
these
 inbred
 strains,
 which
 might
 affect
 probe
 and
 primer
 hybridization.
 

 

 Having
 a
 fully
 methylated
 reference
 DNA
 (>10ug)
 is
 very
 important
 when
 doing
 a
 MethyLight
 
assay
 since
 an
 incomplete
 methylated
 reference
 DNA
 could
 result
 in
 erroneous
 PMRs.
 It
 is
 
preferable
 to
 produce
 large
 amounts
 of
 this
 reference
 sample
 since
 generating
 such
 reference
 
DNA
 is
 a
 laborious
 procedure
 and
 because
 the
 level
 of
 DNA
 methylation
 could
 vary
 from
 one
 

  51
 
treatment
 to
 another.
 This
 way,
 the
 reference
 can
 be
 used
 for
 many
 MethyLight
 assays
 and
 
variability
 in
 the
 PMR
 results
 due
 to
 batch
 differences
 can
 be
 avoided.
 
 
Treatment
 of
 large
 amounts
 of
 DNA
 required
 the
 use
 of
 large
 amounts
 of
 enzyme
 as
 suggested
 
by
 the
 manufacturer
 of
 the
 enzyme.
 In
 order
 to
 reduce
 the
 cost
 of
 the
 treatment
 we
 decided
 to
 
treat
 the
 DNA
 multiple
 times
 with
 reduced
 amounts
 of
 enzyme.
 The
 effects
 of
 the
 treatments
 
were
  evaluated
  by
  calculating
  delta
  Cts
  between
  methylation-­‐dependent
  reactions
  and
 
methylation
 independent
 reactions.
 Because
 three
 successive
 treatments
 did
 not
 bring
 the
 
methylation
 levels
 to
 the
 levels
 of
 a
 positive
 control
 we
 performed
 another
 treatment
 with
 
higher
  levels
  of
  enzymes.
  For
  one
  of
  the
  C57/Bl6
  strains
  we
  needed
  to
  perform
  the
  5
th

 
treatment.
 For
 this
 strain
 the
 levels
 of
 methylation
 did
 not
 decreased
 even
 after
 an
 extra
 
treatment
 with
 higher
 levels
 of
 enzyme
 and
 the
 Cts
 remained
 lower
 that
 the
 positive
 control.
 
This
 could
 be
 due
 to
 differences
 in
 DNA
 sequences
 between
 the
 two
 strains
 (polymorphisms)
 
that
 can
 result
 in
 differences
 in
 the
 efficiency
 of
 the
 MethyLigt
 assays.
 
 
During
 the
 course
 of
 the
 successive
 treatments
 with
 M.SssI
 enzyme
 we
 determined
 that
 there
 
was
 no
 need
 to
 purify
 the
 DNA
 between
 each
 treatments
 but
 simply
 add
 more
 enzyme
 and
 
SAM
 substrate
 (data
 not
 shown).
 This
 way
 we
 prevented
 DNA
 from
 being
 lost
 during
 the
 clean
 
up
 steps.
 
The
 results
 from
 testing
 DNA
 methylation
 markers
 in
 DNA
 isolated
 from
 microdissected
 tissue
 
and
 from
 fresh
 frozen
 tissues
 not
 subjected
 to
 microdissection
 showed
 differences
 in
 DNA
 
methylation
 levels
 for
 these
 markers.
 This
 could
 be
 due
 to
 the
 reduced
 amount
 of
 tumor
 tissue
 
in
 the
 fresh
 frozen
 specimens
 and
 contamination
 with
 normal
 tissue.
 Data
 from
 microdissected
 
tissue
 will
 of
 course
 be
 more
 reliable.
 Alternatively,
 it
 is
 possible
 that
 the
 frozen
 tissue
 was
 not
 

  52
 
well
 preserved
 during
 DNA
 isolation,
 possibly
 causing
 DNA
 degradation.
 These
 tissues
 will
 need
 
to
 be
 further
 studied.
 
 
We
 did
 not
 detect
 an
 increase
 in
 the
 DNA
 methylation
 levels
 in
 the
 mouse
 tumors
 for
 all
 the
 
MethyLight
 assays
 we
 have
 tested,
 nor
 for
 all
 the
 tumor
 samples.
 This
 can
 be
 due
 to
 differences
 
between
 the
 mouse
 and
 human
 genomes.
 Also,
 human
 cancers
 take
 20-­‐40
 years
 to
 develop
 
while
 the
 tumors
 in
 the
 mouse
 model
 are
 driven
 by
 specifically
 activated
 genetic
 events
 
(AdenoCre
 induction)
 and
 might
 develop
 too
 quickly
 to
 acquire
 the
 same
 methylation
 changes.
 
A
 genome-­‐wide
 DNA
 methylation
 analysis
 of
 mouse
 SCLC
 tumors
 would
 be
 very
 useful
 to
 
determine
 the
 presence
 of
 DNA
 methylation
 in
 the
 tumors,
 since
 our
 current
 choices
 of
 probes
 
were
 based
 on
 human
 lung
 cancer
 data.
 If
 regions
 are
 found
 to
 be
 consistently
 methylated
 in
 
tumors,
 new
 MethyLight
 probes
 could
 be
 developed.
 One
 problem
 is
 that
 the
 cell
 of
 origin
 of
 
SCLC
 is
 the
 pulmonary
 neuroendocrine
 cell,
 which
 is
 very
 difficult
 to
 purify
 and
 analyze.
 Thus,
 it
 
is
 difficult
 to
 exclude
 that
 any
 DNA
 methylation
 see
 in
 tumors
 is
 new
 methylation
 not
 present
 in
 
the
 cell
 of
 origin.
 Nevertheless,
 regions
 that
 are
 consistently
 methylated
 in
 tumors
 (even
 if
 
methylated
 in
 cell
 of
 origin)
 would
 likely
 be
 of
 use
 for
 detection,
 since
 SCLC
 tumors
 are
 necrotic
 
and
 shed
 much
 DNA
 into
 the
 blood
 stream.
 

 

 

 

 

  53
 
References
 /
 Bibliography
 

 
1. Wu
 Ct,
 Morris
 JR.
 Genes,
 genetics,
 and
 epigenetics:
 a
 correspondence.
 Science.
 2001
 
Aug
 10;293(5532):1103-­‐5.
 
2. Dolinoy
 DC,
 Jirtle
 RL:
 Environmental
 epigenomics
 in
 human
 health
 and
 disease.
 Environ
 
Mol
 Mutagen
 2008;
 49:4–8.
 
3. Dolinoy
 DC,
 Jirtle
 RL:
 Environmental
 epigenomics
 in
 human
 health
 and
 disease.
 Environ
 
Mol
 Mutagen
 2008;
 49:4–8.
 
4. Thomas
 von
 Känel,
 Andreas
 R.
 Huber
 Centre
 of
 Laboratory
 Medicine,
 Kantonsspital
 
Aarau
  AG:
  DNA
  methylation
  analysis
  Review
  article.
  Current
  opinion
  2013,
 
doi:10.4414/smw.2013.13799
 ,.
 Swiss
 Med
 Wkly.
 2013;143:w13799.
 
5. Wyatt
 GR:
 The
 purine
 and
 pyrimidine
 composition
 of
 deoxypentose
 nucleic
 acids.
 
Biochem
 J.
 1951;48(5):584–90.
 
6. Daura-­‐Oller
  E,
  Cabre
  M,
  Montero
  MA,
  Paternain
  JL,
  Romeu
  A:
  Specific
  gene
 
hypomethylation
  and
  cancer:
  New
  insights
  into
  coding
  region
  feature
  trends.
 
Bioinformation
  2009;
  3
  (8):
  340–343.
  doi:10.6026/97320630003340.
  PMC
 2720671.
 
PMID
 19707296.
 
7.  
 Zakhari
 S:
 Alcohol
 metabolism
 and
 epigenetics
 changes.
 Alcohol
 Res.
 2013;35(1):6-­‐16.
 
8. Cheng
 MK,
 Disteche
 CM:
 Silence
 of
 the
 fathers:
 early
 X
 inactivation.
 
 BioEssays
 2004;
 26
 
(8):
 821–4.
 doi:10.1002/bies.20082.
 PMID
 15273983.
 
9. Okamoto
 I,
 Otte
 A,
 Allis
 C,
 Reinberg
 D,
 Heard
 E:
 Epigenetic
 dynamics
 of
 imprinted
 X
 
inactivation
  during
  early
  mouse
  development.
  Science
  2004;
  303
  (5658):
  644–9.
 
doi:10.1126/science.1092727.
 PMID
 14671313.
 
10. Jabbari
 K,
 Bernardi
 G:
 Cytosine
 methylation
 and
 CpG,
 TpG
 (CpA)
 and
 TpA
 frequencies.
 
Gene
 2004;
 333:
 143–9.
 doi:10.1016/j.gene.2004.02.043.
 PMID
 15177689.
 
11. Smith
 ZD,
 Meissner
 A:
 DNA
 methylation:
 roles
 in
 mammalian
 development.
 Nat
 Rev
 
Genet.
 2013;14(3):204–20.
 
12. Meister
 P,
 Mango
 SE,
 Gasser
 SM.
 Locking
 the
 genome:
 nuclear
 organization
 and
 cell
 

  54
 
fate.
 Curr
 Opin
 Genet
 Dev.
 2011;21(2):167–74.
 PMID:
 21345665.
 PMCID:
 PMC4041333.
 
13. Baylin
 SB,
 Jones
 PA:
 A
 decade
 of
 exploring
 the
 cancer
 epigenome
 –
 biological
 and
 
translational
 implications.
 Nat
 Rev
 Cancer
 2011;11(10):726–34.
 
14. Füllgrabe
  J,
  Kavanagh
  E,
  Joseph
  B.
  Histone
  onco-­‐modifications.
  Oncogene.
 
2011;30(31):3391–403.
 
15. Ferguson-­‐Smith
 AC:
 Genomic
 imprinting:
 the
 emergence
 of
 an
 epigenetic
 paradigm.
 
Nat
 Rev
 Genet
 2011;12(8):565–75.
 
16. Chow
 JC,
 Yen
 Z,
 Ziesche
 SM,
 Brown
 CJ:
 Silencing
 of
 the
 mammalian
 X
 chromosome.
 
Annu
 Rev
 Genomics
 Hum
 Genet
 2005;6:69–92.
 
17. Maksakova
 IA,
 Mager
 DL,
 Reiss
 D:
 Keeping
 active
 endogenous
 retroviral-­‐like
 elements
 
in
 check:
 the
 epigenetic
 perspective.
 Cell
 Mol
 Life
 Sci.
 2008;65(21):3329–47.
 
18. Chen
 QW,
 Zhu
 XY1,
 Li
 YY2,
 Meng
 ZQ1:
 Epigenetic
 regulation
 and
 cancer
 (review).
 Oncol
 
Rep.
  2014
  Feb;31(2):523-­‐32.
  doi:
  10.3892/or.2013.2913.
  Epub
  2013
  Dec
  11.
  PMID:
 
24337819.
 
19. Jones
 PA,
 Laird
 PW:
 Cancer
 epigenetics
 comes
 of
 age.
 Nature
 Genetics
 1999;
 21
 (2):
 
163–7.
 doi:10.1038/5947.
 PMID
 9988266.
 
20. Craig,
 JM;
 Wong,
 NC:
 A
 Reference
 Manual.
 Caister
 Academic
 Press.
 Epigenetics
 2011;
 
ISBN
 978-­‐1-­‐904455-­‐88-­‐2.
 
21. Keith
  D.
  Robertson:
  DNA
  methylation
  and
  human
  disease.
  Nat
  Rev
  Genet.
  2005
 
Aug;6(8):597-­‐610.
 PMID:
 16136652.
 
22. Choy
 MK,
 Movassagh
 M,
 Goh
 HG,
 Bennett
 M,
 Down
 T,
 Foo
 R:
 Genome-­‐wide
 conserved
 
consensus
 transcription
 factor
 binding
 motifs
 are
 hyper-­‐methylated.
 BMC
 Genomics
 
2010;11:519.
 doi:10.1186/1471-­‐2164-­‐11-­‐519.
 PMC
 2997012.
 PMID
 20875111.
 
23. Wang
 L,
 Aakre
 JA,
 Jiang
 R,
 Marks
 RS,
 Wu
 Y,
 Chen
 J,
 Thibodeau
 SN,
 Pankratz
 VS,
 Yang
 P:
 
Methylation
 markers
 for
 small
 cell
 lung
 cancer
 in
 peripheral
 blood
 leukocyte
 DNA.
 J
 
Thorac
  Oncol
  2010
  Jun;
  5(6):778-­‐85.
  doi:
  10.1097/JTO.0b013e3181d6e0b3.
  PMID:
 
20421821,PMCID:
 PMC300012.
 
24. Stupp
 R,
 Monnerate
 C,
 Turrisi
 AT:
 Small
 cell
 lung
 cancer:
 state
 of
 the
 art
 and
 future
 
perspectives.
 Lung
 Cancer
 2004;
 45:105–117.
 

  55
 
25. Min-­‐chul
  Kwon,
  Anton
  Berns:
  Mouse
  models
  for
  lung
  cancer.
  Mol
  Oncol
  2013;
 
Apr;7(2):165-­‐77.
  doi:
  10.1016/j.molonc.2013.02.010.
  Epub
  2013
  Feb
  19.
  PMID:
 
23481268.
 
26. American
 Cancer
 Society.
 2014.
 Start
 and
 spread
 of
 lung
 cancer.
 [ONLINE]
 Available
 
at:http://www.cancer.org/cancer/lungcancer-­‐smallcell/detailedguide/small-­‐cell-­‐lung-­‐
cancer-­‐what-­‐is-­‐small-­‐cell-­‐lung-­‐cancer.
 [Accessed
 01
 October
 14].
 
27. Sutherland
 KD,
 Proost
 N,
 Brouns
 I,
 Adriaensen
 D,
 Song
 JY,
 Berns
 A:
 Cell
 of
 origin
 of
 small
 
cell
 lung
 cancer:
 inactivation
 of
 Trp53
 and
 Rb1
 in
 distinct
 cell
 types
 of
 adult
 mouse
 
lung.
 Cancer
 Cell.
 2011
 Jun
 14;19(6):754-­‐64.
 doi:
 10.1016/j.ccr.2011.04.019.
 
28. Peifer
  M,
  Fernández-­‐Cuesta
  L,
  Sos
  ML,
  George
  J,
  Seidel
  D,
  Kasper
  LH,
  Plenker
  D,
 
Leenders
 F,
 Sun
 R,
 Zander
 T,
 Menon
 R,
 Koker
 M,
 Dahmen
 I,
 Müller
 C,
 Di
 Cerbo
 V,
 
Schildhaus
 HU,
 Altmüller
 J,
 Baessmann
 I,
 Becker
 C,
 de
 Wilde
 B,
 Vandesompele
 J,
 Böhm
 
D,
 Ansén
 S,
 Gabler
 F,
 Wilkening
 I,
 Heynck
 S,
 Heuckmann
 JM,
 Lu
 X,
 Carter
 SL,
 Cibulskis
 K,
 
Banerji
 S,
 Getz
 G,
 Park
 KS,
 Rauh
 D,
 Grütter
 C,
 Fischer
 M,
 Pasqualucci
 L,
 Wright
 G,
 Wainer
 
Z,
 Russell
 P,
 Petersen
 I,
 Chen
 Y,
 Stoelben
 E,
 Ludwig
 C,
 Schnabel
 P,
 Hoffmann
 H,
 Muley
 T,
 
Brockmann
 M,
 Engel-­‐Riedel
 W,
 Muscarella
 LA,
 Fazio
 VM,
 Groen
 H,
 Timens
 W,
 Sietsma
 H,
 
Thunnissen
 E,
 Smit
 E,
 Heideman
 DA,
 Snijders
 PJ,
 Cappuzzo
 F,
 Ligorio
 C,
 Damiani
 S,
 Field
 J,
 
Solberg
 S,
 Brustugun
 OT,
 Lund-­‐Iversen
 M,
 Sänger
 J,
 Clement
 JH,
 Soltermann
 A,
 Moch
 H,
 
Weder
 W,
 Solomon
 B,
 Soria
 JC,
 Validire
 P,
 Besse
 B,
 Brambilla
 E,
 Brambilla
 C,
 Lantuejoul
 
S,
  Lorimier
  P,
  Schneider
  PM,
  Hallek
  M,
  Pao
  W,
  Meyerson
  M,
  Sage
  J,
  Shendure
  J,
 
Schneider
 R,
 Büttner
 R,
 Wolf
 J,
 Nürnberg
 P,
 Perner
 S,
 Heukamp
 LC,
 Brindle
 PK,
 Haas
 S,
 
Thomas
 RK:
 Integrative
 genome
 analyses
 identify
 key
 somatic
 driver
 mutations
 of
 
small-­‐cell
 lung
 cancer.
 Nat
 Genet.
 2012
 Oct;44(10):1104-­‐10.
 doi:
 10.1038/ng.2396.
 Epub
 
2012
 Sep
 2.
 
29. Rudin
 CM,
 Durinck
 S,
 Stawiski
 EW,
 Poirier
 JT,
 Modrusan
 Z,
 Shames
 DS,
 Bergbower
 EA,
 
Guan
 Y,
 Shin
 J,
 Guillory
 J,
 Rivers
 CS,
 Foo
 CK,
 Bhatt
 D,
 Stinson
 J,
 Gnad
 F,
 Haverty
 PM,
 
Gentleman
 R,
 Chaudhuri
 S,
 Janakiraman
 V,
 Jaiswal
 BS,
 Parikh
 C,
 Yuan
 W,
 Zhang
 Z,
 
Koeppen
 H,
 Wu
 TD,
 Stern
 HM,
 Yauch
 RL,
 Huffman
 KE,
 Paskulin
 DD,
 Illei
 PB,
 Varella-­‐
Garcia
 M,
 Gazdar
 AF,
 de
 Sauvage
 FJ,
 Bourgon
 R,
 Minna
 JD,
 Brock
 MV,
 Seshagiri
 S:
 

  56
 
Comprehensive
 genomic
 analysis
 identifies
 SOX2
 as
 a
 frequently
 amplified
 gene
 in
 
small-­‐cell
 lung
 cancer.
 Nat
 Genet.
 2012
 Oct;44(10):1111-­‐6.
 doi:
 10.1038/ng.2405.
 Epub
 
2012
 Sep
 2.
 
30. Huijbers
 IJ,
 Krimpenfort
 P,
 Berns
 A,
 Jonkers
 J:
 Rapid
  validation
  of
  cancer
  genes
  in
 
chimeras
 derived
 from
 established
 genetically
 engineered
 mouse
 models.
 Bioessays.
 
2011
 Sep;33(9):701-­‐10.
 doi:
 10.1002/bies.201100018.
 Epub
 2011
 Jul
 7.
 
31. Dow
 LE,
 Premsrirut
 PK,
 Zuber
 J,
 Fellmann
 C,
 McJunkin
 K,
 Miething
 C,
 Park
 Y,
 Dickins
 RA,
 
Hannon
 GJ,
 Lowe
 SW:
 A
 pipeline
 for
 the
 generation
 of
 shRNA
 transgenic
 mice.
 Nat
 
Protoc.
 2012
 Feb
 2;7(2):374-­‐93.
 doi:
 10.1038/nprot.2011.446.
 
32. Min-­‐chul
  Kwon,
  Anton
  Berns:
  Mouse
  models
  for
  lung
  cancer.
  Mol
  Oncol
  2013;
 
Apr;7(2):165-­‐77.
  doi:
  10.1016/j.molonc.2013.02.010.
  Epub
  2013
  Feb
  19.
  PMID:
 
23481268.
 
33. Meuwissen
 R1,
 Berns
 A:
 Mouse
 models
 for
 human
 lung
 cancer.
 Genes
 Dev.
 2005
 Mar
 
15;19(6):643-­‐64.
 
34. Meuwissen
 R,
 Linn
 SC,
 Linnoila
 RI,
 Zevenhoven
 J,
 Mooi
 WJ,
 Berns
 A:
 Induction
 of
 small
 
cell
 lung
 cancer
 by
 somatic
 inactivation
 of
 both
 Trp53
 and
 Rb1
 in
 a
 conditional
 mouse
 
model.
 Cancer
 Cell
 2003;
 4:181-­‐189.
 
35. Calbo
 J,
 Meuwissen
 R,
 van
 Montfort
 E,
 van
 Tellingen
 O,
 Berns
 A:
 Genotypephenotype
 
relationships
 in
 a
 mouse
 model
 for
 human
 small-­‐cell
 lung
 cancer.
 Cold
 Spring
 Harb
 
Symp
 Quant
 Biol
 2005,
 70:225-­‐232.
 
36. Dooley
 MA,
 Jayne
 D,
 Ginzler
 EM,
 Isenberg
 D,
 Olsen
 NJ,
 Wofsy
 D,
 Eitner
 F,
 Appel
 GB,
 
Contreras
 G,
 Lisk
 L,
 Solomons
 N;
 ALMS
 Group:
 Mycophenolate
 versus
 azathioprine
 as
 
maintenance
 therapy
 for
 lupus
 nephritis.
 N
 Engl
 J
 Med.
 2011
 Nov
 17;365(20):1886-­‐95.
 
doi:
 10.1056/NEJMoa1014460.
 
37. Claudio
 PP,
 Tonini
 T,
 Giordano
 A:
 The
 retinoblastoma
 family:
 twins
 or
 distant
 cousins?
 
Genome
 Biol
 2002;
 3:reviews3012.
 
38. Helin
 K,
 Holm
 K,
 Niebuhr
 A,
 Eiberg
 H,
 Tommerup
 N,
 Hougaard
 S,
 Poulsen
 HS,
 Spang-­‐
Thomsen
 M,
 Norgaard
 P:
 Loss
 of
 the
 retinoblastoma
 protein-­‐related
 p130
 protein
 in
 
small
 cell
 lung
 carcinoma.
 Proc
 Natl
 Acad,
 Sci
 USA
 1997;
 94:6933-­‐6938.
 

  57
 
39. Schaffer
 BE,
 Park
 KS,
 Yiu
 G,
 Conklin
 JF,
 Lin
 C,
 Burkhart
 DL,
 Karnezis
 AN,
 Sweet-­‐Cordero
 
EA,
 Sage
 J:
 Loss
 of
 p130
 accelerates
 tumor
 development
 in
 a
 mouse
 model
 for
 human
 
small-­‐cell
 lung
 carcinoma.
 Cancer
 Res
 2010;
 70:3877-­‐3883.
 
40. Minna
 JD,
 Kurie
 JM,
 Jacks
 T:
 A
 big
 step
 in
 the
 study
 of
 small
 cell
 lung
 cancer.
 Cancer
 
Cell.
 2003
 Sep;4(3):163-­‐6.
 PMID:
 14522249.
 
41. Steven
 A.
 Belinsky:
 Gene-­‐promoter
 hypermethylation
 as
 a
 biomarker
 in
 lung
 cancer.
 
Nat
 Rev
 Cancer.
 2004
 Sep;4(9):707-­‐17.
 
42. Taneja
 TK,
 Sharma
 SK:
 Markers
 of
 small
 cell
 lung
 cancer.
 World
 J
 Surg
 Oncol.
 2004
 May
 
5;2:10.
 
43. Hayashizaki,
 Y.,
 Hirotsune,
 S.,
 Okazaki,
 Y.,
 Hatada,
 I.,
 Shibata
 Hayashizaki,
 Y.,
 Hirotsune,
 
S.,
 Okazaki,
 Y.,
 Hatada,
 I.,
 Shibata
 et
 al.
 Restriction
 landmark
 genomic
 scanning
 method
 
and
 its
 various
 applications.
 Electrophoresis
 1993;
 14,
 251–258.
 PMID:
 8388788.
 
44. Toyota,
 M.,
 Ho,
 C.,
 Ahuja,
 N.,
 Jair,
 K.
 W.,
 Li,
 Q.,
 Ohe-­‐Toyota,
 M.,
 Baylin,
 S.
 B.,
 and
 Issa,
 J.
 
P:
  Identification
  of
  differentially
  methylated
  sequences
  in
  colorectal
  cancer
  by
 
methylated
  CpG
  island
  amplification.
  Cancer
  Res
  1999;
  59,
  2307–2312.
  PMID:
 
10344734.
 
45. Huang,
 T.
 H.,
 Perry,
 M.
 R.,
 and
 Laux,
 D.
 E:
 Methylation
 profiling
 of
 CpG
 islands
 in
 human
 
breast
 cancer
 cells.
 Hum.
 Mol.
 Genet.
 1999;
 8,
 459–470.
 PMID:
 9949205.
 
46. Gonzalgo,
 M.
 L.,
 Liang,
 G.,
 Spruck,
 C.
 H.,
 3rd,
 Zingg,
 J.
 M.,
 Rideout,
 W.
 M.,
 3rd,
 and
 Jones,
 
P.
 A:
 dentification
 and
 characterization
 of
 differentially
 methylated
 regions
 of
 genomic
 
DNA
 by
 methylation-­‐sensitive
 arbitrarily
 primed
 PCR.
 Cancer
 Res
 1997;
 57,
 594–599.
 
PMID:
 9044832.
 
47. Eads
 CA,
 Danenberg
 KD,
 Kawakami
 K,
 Saltz
 LB,
 Blake
 C,
 Shibata
 D,
 Danenberg
 PV,
 Laird
 
PW:
 MethyLight:
 a
 high-­‐throughput
 assay
 to
 measure
 DNA
 methylation.
 Nucleic
 Acids
 
Res.
 2000;
 Apr
 15;28(8):E32.
 PMID:
 10734209.
 PMCID:
 PMC102836.
 
48. Mihaela
 Campan,
 Daniel
 J.
 Weisenberger,
 Binh
 Trinh,
 and
 Peter
 W.
 Laird:
 MethyLight.
 
Methods
 Mol
 Biol
 2009;507:325-­‐37.
 doi:
 10.1007/978-­‐1-­‐59745-­‐522-­‐0_23.
 
49. Mohammed
  A.
  Ibrahim:
   
  Advances
  in
  Genomic
  DNA
  Methylation
  Analysis.
 
Biotechnology
  2010,
  9:
  459-­‐468.DOI:
  10.3923/biotech.2010.459.468,
 

  58
 
URL:http://scialert.net/abstract/?doi=biotech.2010.459.468.
 
50. Trinh
 BN1,
 Long
 TI,
 Laird
 PW:
 DNA
 methylation
 analysis
 by
 MethyLight
 technology.
 
Methods.
 2001
 Dec;25(4):456-­‐62.
 
51. Jonkers
  J,
  Meuwissen
  R,
  van
  der
  Gulden
  H,
  Peterse
  H,
  van
  der
  Valk
  M,
  Berns
  A:
 
Synergistic
 tumor
 suppressor
 activity
 of
 BRCA2
 and
 p53
 in
 a
 conditional
 mouse
 model
 
for
 breast
 cancer.
 Nat
 Genet.
 2001
 Dec;29(4):418-­‐25.
 
52. Meuwissen
  TH1,
  Hayes
  BJ,
  Goddard
  ME:
  Prediction
  of
  total
  genetic
  value
  using
 
genome-­‐wide
 dense
 marker
 maps.
 Genetics.
 2001
 Apr;157(4):1819-­‐29.
 
53. .
 Park
 KS,
 Liang
 MC,
 Raiser
 DM,
 Zamponi
 R,
 Roach
 RR,
 Curtis
 SJ,
 Walton
 Z,
 Schaffer
 BE,
 
Roake
 CM,
 Zmoos
 AF,
 Kriegel
 C,
 Wong
 KK,
 Sage
 J,
 Kim
 CF:
 Characterization
 of
 the
 cell
 of
 
origin
 for
 small
 cell
 lung
 cancer.
 Cell
 Cycle.
 2011
 Aug
 15;10(16):2806-­‐15.
 Epub
 2011
 Aug
 
15.
 
54. Research
 Animal
 Resources
 Center,
 396
 Enzyme
 Institute,
 1710,.
 University
 Avenue,
 
Madison,
 WI
 ©1996-­‐2014
 Board
 of
 Regents
 of
 the
 University
 of
 Wisconsin
 System,URL:
 
or_rats_and_mice.html,.Lastupdate:
 2014-­‐08-­‐07
 19:29:05
 UTC
 [1106].
 
55. .
 Vooijs
 M,
 van
 der
 Valk
 M,
 te
 Riele
 H,
 Berns
 A:
 Flp-­‐mediated
 tissue-­‐specific
 inactivation
 
of
  the
  retinoblastoma
  tumor
  suppressor
  gene
  in
  the
  mouse.
  Oncogene.
  1998
  Jul
 
9;17(1):1-­‐12.
 
56. American
  society
  of
  cancer.
  2014.
 Cancer
  Facts
  &
  Figures.
  [ONLINE]
  Available
 
at:http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2014/[Acces
sed
 01
 August
 14].
 
57. American
 Lung
 Association,
 2014.
 What
 are
 the
 Types
 of
 Lung
 Cancer?.
 [Online]
 
 
Available
 at:
 http://www.lung.org/lung-­‐disease/lung-­‐cancer/learning-­‐more-­‐about-­‐lung-­‐
cancer/understanding-­‐lung-­‐cancer/knowing-­‐the-­‐basics.html
 
[Accessed
 1
 september
 2014].  
58.  
 Chomczynski,
 P.
 &
 Sacchi,
 N:
 Single-­‐step
 method
 of
 RNA
 isolation
 by
 acid
 guanidinium
 
thiocyanate-­‐phenol-­‐chloroform
  extraction.
  Anal.
  Biochem.
  (1987).
 
  162:
  156–159.
 
doi:10.1016/0003-­‐2697(87)90021-­‐2.
 PMID
 2440339.
 

 

  59
 
59. Minna
 JD1,
 Kurie
 JM,
 Jacks
 T:
 A
 big
 step
 in
 the
 study
 of
 small
 cell
 lung
 cancer.
 Cancer
 
Cell.
 2003
 Sep;4(3):163-­‐6.
 PMID:
 14522249. 
Asset Metadata
Creator Alef-Omidy, Honey (author) 
Core Title DNA methylation markers for blood-based detection of small cell lung cancer in mouse models 
Contributor Electronically uploaded by the author (provenance) 
School Keck School of Medicine 
Degree Master of Science 
Degree Program Biochemistry and Molecular Biology 
Publication Date 11/05/2014 
Defense Date 10/23/2014 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag biomarkers,DNA methylation,MethyLight,mouse models,OAI-PMH Harvest,small cell lung cancer,sodium bisulfite 
Format application/pdf (imt) 
Language English
Advisor Laird-Offringa, Ite A. (committee chair), Tokes, Zoltan A. (committee member), Weisenberger, Daniel (committee member) 
Creator Email alefomid@usc.edu,honey_alefomidi@yahoo.com 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c3-514619 
Unique identifier UC11298588 
Identifier etd-AlefOmidyH-3066.pdf (filename),usctheses-c3-514619 (legacy record id) 
Legacy Identifier etd-AlefOmidyH-3066.pdf 
Dmrecord 514619 
Document Type Thesis 
Format application/pdf (imt) 
Rights Alef-Omidy, Honey 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law.  Electronic access is being provided by the USC Libraries in agreement with the a... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Abstract (if available)
Abstract Lung cancer is the top cancer killer in the United States. This cancer starts in the cells lining the bronchi or other parts of the lung such as bronchioles or alveoli. It can be classified into two major groups: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Although SCLC is less common than NSCLC it is the most aggressive type of lung cancer. To this day, there are no effective serum biomarkers for detection, prediction of response or monitoring this disease. Such markers could be very valuable because currently most SCLC patients are diagnosed after their cancer has metastasized, and there is no way apart from imaging to test for response or recurrence. ❧ It has been amply demonstrated that epigenetic modifications, such as alterations in cytosine-5 DNA methylation, occur frequently in all types of cancer. DNA methylation can be detected in the serum of cancer patients using a sensitive assay called MethyLight. Our lab has developed blood-based DNA methylation markers for NSCLC that have also been shown to be present in the blood of small cell lung cancer patients. We were interested to determine whether these markers are also present in tumors derived from a mouse model of SCLC. These mice are important tools to develop new therapies, and identify molecular markers that could be used to determine whether the mice are responding to treatment or showing recurrent disease would be very useful. ❧ We extracted the DNA from normal and tumor tissue from mice with SCLC and disease-free control mice. Prior to DNA extraction, tissues were either microdissected from paraffin blocks or were directly taken from a frozen specimen. We performed MethyLight analysis on these DNAs and compared the methylation levels between normal lung and tumors. In order to setup the MethyLight assay for mouse DNA, we required a (positive control) fully in vitro methylated DNA sample to serve as reference in the MethyLight assay. We generated large amounts (3-5μg) of in vitro methylated DNA for two different strains of mice. This DNA is an important resource for the lab since it can be used as a positive control MethyLight assays for years to come, and eliminates the biases associated with using different batches of reference DNA. ❧ MethyLight analysis of normal/tumor DNA from the SCLC mouse model showed increased methylation in some of the tumors when the microdissected material was used, but little or no methylation when the frozen samples were examined. These results suggest that microdissection might be important in DNA methylation analysis. Because modest levels of methylation were detected but no marker showed high sensitivity, we suggest that a genome-wide analysis of DNA methylation patterns in these mice would be useful. It might uncover DNA methylation abnormalities that are specific for mice with SCLC. 
Tags
biomarkers
DNA methylation
MethyLight
mouse models
small cell lung cancer
sodium bisulfite
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button