Close
The page header's logo
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Biophysical studies of passive transport across synthetic lipid bilayers
(USC Thesis Other) 

Biophysical studies of passive transport across synthetic lipid bilayers

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Copy asset link
Request this asset
Transcript (if available)
Content
 

 
Biophysical
 Studies
 of
 Passive
 
Transport
 Across
 Synthetic
 Lipid
 
Bilayers
 

 
Kristina
 Runas
 

 

 

 

 

 

 

 

 

 
Committee:
 
Dr.
 Noah
 Malmstadt
 (Committee
 Chair)
 
Dr.
 Muhammad
 Sahimi
 
Dr.
 Michelle
 Povinelli
 

 

 

 

 

 

 
Doctoral
 Dissertation
 

 
Mork
 Department
 of
 Chemical
 Engineering
 and
 Materials
 Science
 
University
 of
 Southern
 California,
 Los
 Angeles,
 CA
 
August
 2015
 

   
 

  2
 

 
Table
 of
 Contents
 
1
  Background
 ........................................................................................................................
 4
 
1.1
  The
 biological
 role
 of
 plasma
 membrane
 permeability
 ............................................
 4
 
1.2
  Advantages
 of
 biomimetic
 membranes
 for
 measuring
 transport
 .........................
 5
 
1.3
  Theoretical
 models
 of
 lipid
 bilayer
 transport
 ..............................................................
 6
 
1.3.1
  Overton’s
 Rule
 and
 the
 solution-­‐diffusion
 model
 ..............................................................
 6
 
1.3.2
  Molecular
 dynamics
 simulations:
 complexity
 of
 membrane
 structure
 ....................
 8
 
1.4
  Experimental
 techniques
 for
 measuring
 membrane
 permeability
 ......................
 8
 
1.4.1
  The
 unstirred
 layer:
 artifacts
 and
 effects
 on
 membrane
 transport
 ...........................
 9
 
1.4.2
  Parallel
 Artificial
 Membrane
 Assay
 (PAMPA)
 ...................................................................
 11
 
1.4.3
  Steady
 state
 methods
 for
 measuring
 permeability
 ........................................................
 12
 
1.4.4
  Transient
 methods
 for
 measuring
 permeability
 .............................................................
 13
 
1.5
  Advantages
 and
 disadvantages
 of
 choosing
 a
 measurement
 technique
 ...........
 14
 
2
  Low
 levels
 of
 lipid
 oxidation
 radically
 increase
 the
 passive
 permeability
 of
 
lipid
 bilayers
 ..........................................................................................................................
 15
 
2.1
  Motivation
 ..............................................................................................................................
 15
 
2.1.1
  Importance
 of
 oxidation
 in
 cells
 .............................................................................................
 15
 
2.1.2
  Effects
 of
 lipid
 oxidation
 on
 membrane
 properties
 .......................................................
 16
 
2.2
  Materials
 and
 Methods
 ......................................................................................................
 18
 
2.2.1
  Materials
 ...........................................................................................................................................
 18
 
2.2.2
  GUV
 composition
 and
 formation
 ............................................................................................
 19
 
2.2.3
  Preparation
 of
 test
 molecule
 ....................................................................................................
 20
 
2.2.4
  Microfluidic
 channel
 preparation
 and
 design
 ...................................................................
 22
 
2.2.5
  Transport
 experiment
 protocol
 ..............................................................................................
 23
 
2.2.6
  Examination
 of
 pore
 formation
 ...............................................................................................
 24
 
2.3
  Data
 Analysis
 .........................................................................................................................
 24
 
2.3.1
  Background
 subtraction
 and
 flat-­‐fielding
 ..........................................................................
 24
 
2.3.2
  Removal
 of
 pinhole
 crosstalk
 contributions
 .....................................................................
 25
 
2.3.3
  Finite
 difference
 model
 and
 membrane
 permeability
 ..................................................
 33
 
2.4
  Results
 and
 Discussion
 ......................................................................................................
 37
 
2.4.1
  Comparison
 of
 capture
 methods:
 mechanical
 vs.
 chemical
 trapping
 .....................
 37
 
2.4.2
  Permeability
 of
 vesicles
 with
 low
 levels
 of
 oxidation
 ...................................................
 38
 
2.4.3
  Pore
 formation
 in
 vesicles
 with
 high
 levels
 of
 oxidation
 .............................................
 41
 
2.4.4
  Relationship
 between
 permeability
 and
 vesicle
 diameter
 ..........................................
 43
 
2.4.5
  Impact
 of
 biotin-­‐DPPE
 on
 measured
 permeability
 .........................................................
 45
 
2.4.6
  Discussion
 ........................................................................................................................................
 46
 
2.5
  Conclusion
 ..............................................................................................................................
 49
 
3
  The
 addition
 of
 cleaved
 tail
 fragments
 during
 lipid
 oxidation
 stabilizes
 
membrane
 permeability
 behavior
 .................................................................................
 50
 
3.1
  Motivation
 ..............................................................................................................................
 50
 
3.2
  Methods
 ..................................................................................................................................
 54
 
3.2.1
  Materials
 ...........................................................................................................................................
 54
 
3.2.2
  Vesicle
 composition
 and
 formation
 .......................................................................................
 55
 
3.2.3
  Preparation
 of
 test
 molecule
 ....................................................................................................
 56
 

  3
 
3.2.4
  Microfluidic
 channel
 preparation
 and
 design
 ...................................................................
 56
 
3.2.5
  Transport
 experiment
 protocol
 ..............................................................................................
 57
 
3.2.6
  Pore
 formation
 protocol
 .............................................................................................................
 58
 
3.2.7
  Measurement
 of
 bilayer
 thickness
 .........................................................................................
 58
 
3.3
  Data
 Analysis
 .........................................................................................................................
 59
 
3.3.1
  Filtering
 capacitance
 measurements
 using
 a
 Fourier
 transform
 approach
 ........
 59
 
3.4
  Results
 and
 discussion
 .......................................................................................................
 62
 
3.5
  Conclusion
 ..............................................................................................................................
 72
 
4
  Crossing
 into
 the
 liquid-­‐liquid
 immiscibility
 region
 causes
 a
 drastic
 change
 
in
 the
 permeability
 of
 lipid
 bilayers
 ..............................................................................
 73
 
4.1
  Motivation
 ..............................................................................................................................
 73
 
4.2
  Materials
 and
 methods
 ......................................................................................................
 76
 
4.2.1
  Materials
 ...........................................................................................................................................
 76
 
4.2.2
  GUV
 composition
 and
 formation
 ............................................................................................
 77
 
4.2.3
  Preparation
 of
 test
 molecule
 ....................................................................................................
 79
 
4.2.4
  Microfluidic
 channel
 preparation
 and
 design
 ...................................................................
 80
 
4.2.5
  Transport
 experiment
 protocol
 ..............................................................................................
 80
 
4.3
  Data
 Analysis
 .........................................................................................................................
 81
 
4.3.1
  Using
 map
 projection
 techniques
 to
 measure
 surface
 area
 and
 perimeter
 of
 the
 
liquid
 disordered
 phase
 .............................................................................................................................
 81
 
4.4
  Results
 .....................................................................................................................................
 83
 
4.4.1
  Measured
 permeability
 for
 vesicles
 with
 no
 microscopic
 phase
 separation
 ......
 83
 
4.4.2
  Permeability
 of
 binary
 vesicle
 compositions
 ....................................................................
 85
 
4.4.3
  Permeability
 of
 vesicles
 with
 microscopic
 phase
 separation
 ....................................
 86
 
4.4.4
  Examining
 the
 relationship
 between
 membrane
 permeability
 and
 disordered
 
phase
 surface
 area
 ........................................................................................................................................
 89
 
4.4.5
  Examining
 the
 relationship
 between
 membrane
 permeability
 and
 disordered
 
phase
 perimeter
 ............................................................................................................................................
 91
 
4.5
  Discussion
 ..............................................................................................................................
 93
 
4.6
  Conclusions
 ............................................................................................................................
 95
 
5
  Summary
 and
 Outlook
 .................................................................................................
 96
 
6
  Acknowledgements
 .......................................................................................................
 98
 
7
  References
 ........................................................................................................................
 99
 

 

   
 

  4
 
1 Background
 
While
 there
 are
 numerous
 active
 mechanisms
 controlling
 which
 molecules
 cross
 a
 
cell’s
 plasma
 membrane
 to
 enter
 the
 cytoplasm,
 these
 are
 not
 the
 only
 routes
 by
 
which
 molecules
 can
 enter
 cells.
 In
 fact,
 transport
 by
 passive
 diffusion
 across
 the
 
lipid
 bilayer
 of
 the
 plasma
 membrane
 represents
 a
 nearly
 universal
 mechanism
 of
 
molecular
 entry
 of
 drugs
 and
 environmental
 toxins.
 Understanding
 the
 barrier
 
properties
 of
 the
 lipid
 bilayer
 and
 what
 molecular
 characteristics
 control
 its
 
permeability
 is
 therefore
 of
 fundamental
 interest
 to
 toxicology
 and
 drug
 
development.
 Today,
 sophisticated
 biomimetic
 cell
 membranes,
 coupled
 with
 
advanced
 analytical
 tools
 and
 computer
 modeling,
 allow
 new
 insight
 into
 this
 
important
 biological
 property.
 
1.1 The
 biological
 role
 of
 plasma
 membrane
 permeability
 
For
 an
 orally
 delivered
 drug
 to
 reach
 systemic
 circulation,
 it
 must
 first
 diffuse
 across
 
the
 mucus
 gel
 layer,
 intestinal
 epithelial
 cells,
 the
 lamina
 propria,
 and
 finally,
 the
 
capillary
 endothelium.
1

 The
 route
 that
 orally
 administered
 drugs
 generally
 take
 
from
 the
 gut
 into
 circulation
 involves
 passive
 diffusion
 through
 epithelial
 cell
 
membranes
 rather
 than
 interaction
 with
 proteins
 or
 other
 active
 modes
 of
 
transport.
2

 Environmental
 toxins
 are
 also
 capable
 of
 permeating
 the
 cell
 
membrane.
3

 Species
 capable
 of
 passive
 transport
 across
 the
 plasma
 membrane
 
include
 heavy
 metals,
4

 cyclic
 hydrocarbons,
5

 polymer
 nanoparticles,
6,7

 fullerenes,
8

 
semiconductor
 quantum
 dots,
9

 and
 gold
 nanoparticles.
10

 Understanding
 the
 
characteristics
 and
 mechanisms
 by
 which
 toxins
 bypass
 the
 cell
 membrane
 can
 lead
 

  5
 
to
 a
 more
 complete
 understanding
 of
 environmental
 toxicity
 of
 chemicals
 and
 
materials.
 
1.2 Advantages
 of
 biomimetic
 membranes
 for
 measuring
 transport
 
Despite
 the
 multiple
 interfaces
 that
 drugs
 must
 cross
 during
 adsorption,
 a
 single
 
layer
 of
 intestinal
 epithelial
 presents
 the
 most
 significant
 barrier
 to
 passive
 
diffusion.
11

 As
 such,
 one
 of
 the
 most
 common
 techniques
 for
 assaying
 the
 potential
 
of
 a
 drug
 to
 be
 absorbed
 is
 by
 measuring
 its
 permeability
 though
 a
 monolayer
 of
 
Caco-­‐2
 cells.
 Caco-­‐2
 is
 a
 colorectal
 adenocarcinoma-­‐derived
 cell
 line
 that
 can
 be
 
cultured
 such
 that
 the
 cells
 differentiate
 to
 resemble
 the
 epithelium
 of
 the
 small
 
intestine.
12

 In
 the
 Caco-­‐2
 permeability
 assay,
 a
 cell
 monolayer
 is
 cultured
 between
 a
 
donor
 chamber
 and
 a
 receptor
 chamber,
 with
 the
 solute
 of
 interest
 (i.e.
 the
 drug
 
candidate)
 added
 to
 the
 donor
 chamber.
13

 Samples
 are
 removed
 from
 each
 chamber
 
at
 regular
 intervals
 for
 analysis
 to
 develop
 a
 time
 course
 of
 permeation,
 and
 solute
 
concentration
 is
 measured
 via
 radiolabeling,
14

 UV
 spectrophotometry,
15

 or
 
HPLC.
1,16,17

 

 
Cell
 based
 systems
 such
 as
 the
 Caco-­‐2
 assay
 have
 significant
 shortcomings
 as
 tools
 
to
 understand
 mechanisms
 of
 transmembrane
 permeability.
 Caco-­‐2
 cell
 membranes
 
are
 significantly
 less
 controlled
 than
 biomimetic
 membranes
 formed
 from
 artificial
 
bilayers:
 permeation
 pathways
 can
 include
 active
 and
 paracellular
 transport
 as
 well
 
as
 passive
 transport.
13

 The
 heterogeneity
 of
 Caco-­‐2
 cells
 leads
 to
 variation
 in
 cell
 
shape,
 size,
 and
 multilayer
 formation.
18

 For
 the
 purpose
 of
 rapid
 screening
 drug
 
candidates,
 Caco-­‐2
 and
 other
 such
 cell
 assays
 are
 impractical,
 and
 as
 such,
 it
 is
 

  6
 
necessary
 to
 find
 a
 low
 cost,
 high-­‐throughput
 biomimetic
 cell
 membrane
 system
 to
 
support
 rapid
 solute
 permeation
 analysis.
13

 
1.3 Theoretical
 models
 of
 lipid
 bilayer
 transport
 
Theoretical
 constructs
 describing
 passive
 transport
 are
 important
 both
 in
 analyzing
 
data
 and
 in
 making
 the
 ultimate
 mechanistic
 connections
 between
 molecular
 
structure
 and
 membrane
 permeability.
 Descriptive
 theories
 of
 passive
 transport
 
include
 transport
 modeling
 of
 the
 permeation-­‐diffusion
 process,
 simulations
 of
 
molecular
 interactions
 between
 permeating
 molecules
 and
 the
 bilayer,
 and
 
analytical
 treatments
 of
 the
 permeation
 mechanism.
 
1.3.1 Overton’s
 Rule
 and
 the
 solution-­‐diffusion
 model
 
Early
 theoretical
 exploration
 of
 membrane
 permeation
 was
 driven
 by
 the
 
widespread
 acceptance
 of
 Overton’s
 rule,
 which
 indicates
 that
 the
 membrane
 
permeability
 of
 a
 drug-­‐like
 molecule
 scales
 with
 its
 lipophilicity.
19-­‐21

 The
 
permeability
 coefficient
 (P)
 is
 a
 constant
 of
 proportionality
 between
 the
 flux
 of
 a
 
molecular
 species
 through
 the
 membrane
 and
 the
 concentration
 gradient
 of
 that
 
species
 across
 the
 membrane.
 The
 key
 consequence
 of
 Overton’s
 rule
 is
 that
 more
 
lipophilic
 molecules
 are
 better
 drug
 candidates,
 as
 they
 have
 increased
 oral
 
bioavailability.
 One
 way
 of
 representing
 the
 lipophilicity
 of
 a
 molecule
 is
 through
 the
 
oil/water
 partition
 coefficient
 (K).
 The
 partition
 coefficient
 of
 a
 solute
 is
 expressed
 
as
 the
 ratio
 of
 its
 solubility
 in
 an
 oil
 to
 its
 solubility
 in
 water.
21

 The
 most
 common
 oil
 
used
 to
 estimate
 solubility
 in
 lipid
 systems
 is
 octanol,
 and
 as
 such,
 the
 octanol/water
 
partition
 coefficient
 is
 often
 used
 as
 a
 predictor
 of
 permeability.
 Increased
 octanol
 

  7
 
solubility
 corresponds
 to
 increased
 partitioning
 into
 the
 lipid
 phase.
 Typically,
 
Overton’s
 rule
 is
 interpreted
 as
 a
 relationship
 between
 oil/water
 partition
 
coefficient
 and
 permeability
 coefficient.
 

 
The
 simplest
 theoretical
 interpretation
 of
 the
 observations
 summarized
 by
 
Overton’s
 rule
 is
 the
 solution-­‐diffusion
 model,
 which
 treats
 the
 membrane
 as
 a
 
homogenous
 hydrocarbon
 slab.
22

 The
 solution-­‐diffusion
 model
 assumes
 all
 
transport
 is
 diffusive
 and
 that
 there
 is
 a
 negligible
 concentration
 gradient
 on
 either
 
side
 of
 the
 membrane.
 The
 molar
 flux
 across
 the
 membrane
 can
 then
 be
 expressed
 
using
 Fick’s
 Law.
23

 Molar
 flux
 J
 through
 the
 membrane
 can
 be
 expressed
 in
 terms
 of
 
the
 permeability
 P
 and
 the
 concentration
 gradient,
 where
 co
 is
 the
 concentration
 
outside
 the
 membrane,
 and
 ci
 is
 the
 concentration
 inside
 the
 membrane.
 

 
𝐽=𝑃 𝑐
!
−𝑐
!

  (1)  
 

 
Equilibrium
 partitioning
 of
 the
 species
 between
 solution
 and
 the
 membrane
 is
 
described
 by
 the
 partition
 coefficient
 K:
 the
 equilibrium
 ratio
 of
 concentration
 
dissolved
 in
 solution
 to
 concentration
 dissolved
 in
 the
 membrane.
 Overton’s
 rule
 
then
 expresses
 the
 permeability
 P
 is
 as:
 

 
𝑃=
𝐾𝐷
𝑙

  (2)  
 

 
Since
 K
 tends
 to
 vary
 on
 a
 per-­‐species
 basis
 much
 more
 than
 D,
 and
 l
 is
 roughly
 
constant
 for
 all
 plasma
 membranes,
 the
 partition
 coefficient
 controls
 and
 can
 be
 

  8
 
used
 to
 predict
 membrane
 permeability.
22,24-­‐27

 This
 is
 the
 crux
 of
 Overton’s
 rule:
 
strong
 lipophilic
 partitioning
 leads
 to
 high
 permeability.
 
 
1.3.2 Molecular
 dynamics
 simulations:
 complexity
 of
 membrane
 structure
 
Although
 Overton’s
 rule
 may
 be
 capable
 of
 predicting
 permeability
 of
 many
 small
 
molecules,
 the
 simplification
 of
 the
 cell
 membrane
 into
 a
 single
 solid
 slab
 does
 not
 
accurately
 represent
 the
 membrane’s
 complex
 structure
 and
 heterogeneity.
 In
 
particular,
 treating
 the
 membrane
 as
 a
 uniform
 hydrocarbon
 ignores
 the
 charge
 
state
 of
 the
 lipid
 head
 groups,
 the
 presence
 of
 membrane
 proteins,
 lateral
 phase
 
segregation
 in
 the
 membrane,
 and
 variations
 of
 membrane
 fluidity.
 For
 many
 
molecules
 of
 varying
 charge
 state,
 size,
 or
 hydrogen
 bonding
 capacity,
 the
 solution-­‐
diffusion
 model
 may
 not
 be
 adequate
 to
 accurately
 estimate
 membrane
 
permeability.
 Molecular
 dynamics
 simulations
 have
 been
 used
 to
 model
 the
 bilayer
 
as
 a
 more
 complex
 system
 by
 dividing
 it
 into
 different
 regions
 of
 transport.
28-­‐35

 By
 
treating
 the
 bilayer
 as
 a
 more
 complex
 system
 than
 single
 component
 slab,
 it
 is
 
possible
 to
 more
 accurately
 model
 the
 transport
 process.
30

 
1.4 Experimental
 techniques
 for
 measuring
 membrane
 permeability
 
Isolating
 and
 understanding
 the
 molecular
 processes
 that
 underlie
 passive
 transport
 
require
 well-­‐controlled
 experimental
 systems.
 Precise
 control
 of
 lipid
 bilayer
 
structure
 and
 composition,
 for
 instance,
 allows
 for
 the
 lipid-­‐driven
 processes
 in
 
passive
 transport
 to
 be
 isolated,
 something
 that
 is
 impossible
 in
 more
 complex
 
systems
 such
 as
 the
 Caco-­‐2
 assay
 described
 in
 Section
 1.2.
 Synthetic
 bilayer
 models
 
such
 as
 liposomes
 and
 planar
 lipid
 bilayers
 were
 first
 introduced
 in
 the
 1960s.
36,37

 

  9
 
There
 are
 numerous
 advantages
 to
 measuring
 transport
 in
 biomimetic
 lipid
 bilayer
 
systems,
 such
 as
 the
 availability
 of
 a
 variety
 of
 methods
 for
 measuring
 the
 solute
 
flux.
 These
 techniques
 can
 usually
 be
 divided
 into
 two
 categories:
 steady-­‐state
 
measurements,
 and
 transient
 measurements.
 For
 steady-­‐state
 experiments,
 the
 
donor
 side
 of
 the
 membrane
 is
 treated
 as
 an
 infinite
 source
 of
 solute
 at
 fixed
 
concentration
 and
 the
 receptor
 is
 treated
 as
 an
 infinite
 sink.
 This
 means
 that
 the
 
concentration
 profile
 across
 the
 membrane
 does
 not
 change
 with
 respect
 to
 time,
 
and
 steady-­‐state
 assumptions
 and
 analytical
 equations
 can
 be
 used
 to
 determine
 
permeability.
 In
 a
 transient
 experiment,
 the
 concentration
 profile
 varies
 with
 
respect
 to
 time,
 allowing
 for
 permeability
 analysis
 based
 on
 a
 concentration
 vs.
 time
 
curve.
 Each
 of
 these
 categories
 has
 positive
 and
 negative
 attributes.
 The
 ideal
 
experimental
 technique
 would
 allow
 for
 high-­‐throughput
 data
 collection
 of
 highly
 
controlled
 systems
 without
 artifacts.
 
1.4.1 The
 unstirred
 layer:
 artifacts
 and
 effects
 on
 membrane
 transport
 
Prior
 to
 discussing
 the
 various
 techniques
 for
 measuring
 membrane
 permeability,
 it
 
is
 important
 to
 understand
 a
 major
 feature
 they
 have
 in
 common.
 These
 approaches
 
all
 must
 cope
 with
 the
 existence
 of
 an
 unstirred
 layer
 (USL),
 or
 a
 region
 of
 static
 
fluid
 close
 to
 the
 membrane
 in
 which
 the
 diffusion-­‐driven
 transport
 of
 the
 permeant
 
leads
 to
 a
 non-­‐uniform
 concentration.
 The
 USL,
 indicated
 in
 gray
 in
 Figure
 1,
 is
 
defined
 as
 the
 region
 in
 which
 the
 concentration
 of
 the
 solute
 cannot
 be
 assumed
 
equal
 to
 the
 bulk
 concentration.
 While
 it
 is
 easy
 to
 measure
 the
 bulk
 concentrations
 
on
 either
 side
 of
 the
 membrane
 (co
 and
 ci
 in
 Figure
 1),
 it
 is
 the
 concentrations
 closest
 
to
 the
 membrane
 (c
‘
Mo
 and
 c
‘
Mi
 in
 Figure
 1)
 that
 determine
 the
 driving
 force
 for
 

  10
 
membrane
 transport.
 Thus,
 it
 is
 necessary
 to
 be
 able
 to
 model
 the
 USL
 in
 order
 to
 
accurately
 predict
 membrane
 permeability
 from
 bulk
 concentration
 
measurements.
38

 

 
Figure
 1:
 Concentration
 profile
 across
 a
 membrane,
 with
 the
 unstirred
 layer
 shown
 in
 gray.
 Note
 the
 
solute
 depletion
 in
 this
 region,
 making
 it
 difficult
 to
 measure
 the
 driving
 force
 across
 the
 membrane.
 

 
The
 potential
 problems
 introduced
 by
 the
 USL
 can
 be
 understood
 by
 treating
 the
 
entire
 system
 as
 a
 sum
 of
 resistances.
 If
 the
 USL
 is
 assumed
 to
 be
 symmetric
 on
 
either
 side
 of
 the
 membrane,
 the
 measured
 permeability
 Pmeas
 can
 be
 calculated
 
based
 on
 the
 permeability
 of
 the
 solute
 through
 the
 USL,
 PUSL,
 and
 the
 permeability
 
of
 the
 membrane,
 P.
 
 If
 permeability
 is
 taken
 as
 the
 reciprocal
 of
 resistance,
 the
 
resistance
 through
 the
 total
 system
 can
 be
 defined
 as
 the
 sum
 of
 the
 resistances
 
from
 the
 membrane
 and
 the
 USL:
24

 

 
1
𝑃
!"#$
=
1
𝑃
+
1
𝑃
!"#

  (3)  
 

  11
 

 
If
 the
 permeability
 of
 the
 solute
 in
 the
 USL
 is
 estimated
 as
 DUSL,
 the
 diffusivity
 of
 the
 
solute,
 divided
 by
 δ,
 the
 length
 of
 the
 USL,
 this
 relationship
 gives:
 

 
𝑃
!"#$
=
1
!
!
+
!
!
!"#

 
(4)  
 

 
As
 discussed
 by
 Barry
 and
 Diamond,
 determining
 P
 accurately
 becomes
 difficult
 if
 
the
 USL
 is
 large.
38

 In
 this
 case,
 the
 transport
 through
 the
 system
 is
 dominated
 by
 
diffusion
 through
 the
 USL,
 rather
 than
 permeation
 across
 the
 membrane.
 
1.4.2 Parallel
 Artificial
 Membrane
 Assay
 (PAMPA)
 
The
 current
 dominant
 technique
 for
 high-­‐throughput
 screening
 of
 drug
 
permeability
 is
 the
 parallel
 artificial
 membrane
 permeability
 assay
 (PAMPA).
 
PAMPA
 experiments
 use
 porous
 filter
 membranes
 impregnated
 with
 organic
 
phospholipid
 solutions
 as
 mimics
 of
 the
 plasma
 membrane.
39

 PAMPA
 has
 numerous
 
advantages
 relative
 to
 Caco-­‐2
 assays,
 including
 lower
 cost,
 simpler
 implementation,
 
and
 allowance
 for
 a
 larger
 pH
 range
 to
 better
 mimic
 the
 gastrointestinal
 tract.
39,40

 

 
The
 PAMPA
 method
 is
 based
 on
 multi-­‐well
 microtiter
 plates
 with
 filter
 inserts
 (e.g.
 
Corning
 Transwell
®

 membrane
 filters).
 The
 filters
 are
 impregnated
 with
 a
 lipid
 
solution
 in
 an
 organic
 solvent;
 the
 lipid
 composition
 can
 be
 varied
 to
 simulate
 
membranes
 of
 various
 tissues.
 The
 wells
 are
 filled
 with
 an
 aqueous
 buffer
 solution
 
(the
 acceptor
 solution)
 and
 the
 filters
 are
 inserted.
 The
 solute
 of
 interest
 (in
 the
 
donor
 solution)
 is
 added
 to
 the
 top
 chambers
 of
 the
 filter
 wells
 and
 transport
 rates
 

  12
 
are
 determined
 by
 observing
 the
 change
 in
 concentration
 of
 the
 solute
 of
 interest
 in
 
the
 acceptor
 solution.
41

 PAMPA
 readout
 is
 by
 simultaneous
 UV
 measurements
 of
 the
 
96-­‐well
 plate,
 allowing
 for
 high
 throughput
 drug
 screening.
41

 
 

 
While
 the
 PAMPA
 assay
 is
 capable
 of
 producing
 high-­‐throughput
 results,
42

 the
 filter
 
system
 used
 in
 PAMPA
 is
 far
 from
 a
 perfect
 model
 of
 a
 plasma
 membrane
 lipid
 
bilayer.
 For
 example,
 it
 is
 not
 clear
 that
 impregnation
 of
 filters
 with
 lipid
 solution
 
leads
 to
 the
 reliable
 formation
 of
 bilayers
 in
 the
 filter
 pores.
 The
 formation
 of
 a
 
bilayer
 in
 every
 pore
 in
 the
 filter
 membrane
 is
 not
 guaranteed;
 some
 might
 be
 
empty
 and
 others
 might
 be
 clogged
 with
 lipid
 or
 solvent.
 
1.4.3 Steady
 state
 methods
 for
 measuring
 permeability
 
The
 most
 common
 steady
 state
 method
 for
 measuring
 permeability
 involves
 the
 use
 
of
 planar
 lipid
 membranes.
 In
 this
 method,
 lipids
 dissolved
 in
 a
 hydrophobic
 solvent
 
are
 brushed
 into
 an
 aperture
 positioned
 between
 two
 chambers.
 After
 the
 solvent
 
has
 dried,
 the
 chambers
 are
 filled
 with
 an
 aqueous
 solution,
 and
 the
 aperture
 is
 
painted
 with
 a
 lipid
 solution
 for
 a
 second
 time.
36

 This
 causes
 a
 bilayer
 to
 
spontaneously
 form
 over
 the
 aperture.
 Transport
 of
 various
 solutes
 can
 then
 be
 
measured
 across
 the
 bilayer.
 
 

 
To
 measure
 the
 permeation
 of
 species
 with
 a
 charged
 state,
 microelectrodes
 can
 be
 
used
 for
 detection.
 This
 method
 involves
 positioning
 microelectrodes
 at
 varying
 
positions
 near
 the
 membrane
 to
 accurately
 measure
 the
 pH
 or
 ion
 concentration
 
profile
 through
 the
 USL.
43,44

 At
 steady
 state,
 the
 donor
 side
 of
 the
 membrane
 is
 

  13
 
treated
 as
 an
 infinite
 source
 of
 solute
 at
 fixed
 concentration
 and
 the
 receptor
 is
 
treated
 as
 an
 infinite
 sink.
 Upon
 the
 establishment
 of
 constant-­‐flux
 conditions,
 the
 
system
 will
 take
 on
 a
 steady-­‐state
 concentration
 profile
 that
 can
 be
 characterized
 by
 
the
 microelectrode.
 Steady-­‐state
 transport
 equations
 are
 then
 used
 to
 quantify
 the
 
flux
 across
 and
 permeability
 of
 the
 membrane.
 This
 technique
 has
 been
 used
 to
 
measure
 a
 variety
 of
 properties,
 such
 as
 the
 effect
 of
 membrane
 charge
 on
 
permeability.
45

 Additional
 work
 measured
 the
 permeability
 of
 sodium
 ions,
46

 proton
 
transport,
47-­‐50

 weak
 acid
 transport,
51-­‐53

 and
 even
 water
 and
 ammonia
 transport.
54,55

 
 
1.4.4 Transient
 methods
 for
 measuring
 permeability
 
Although
 there
 are
 numerous
 techniques
 for
 transient
 measurements
 of
 membrane
 
permeability,
 we
 will
 only
 discuss
 a
 few
 notable
 methods.
 Stopped-­‐flow
 techniques
 
are
 one
 of
 the
 most
 popular
 ways
 of
 measuring
 solute
 transport
 into
 or
 out
 of
 
liposomes.
 The
 stopped-­‐flow
 technique
 involves
 adding
 liquids
 to
 a
 mixing
 chamber
 
via
 syringe.
 The
 influx
 of
 liquid
 forces
 the
 old
 contents
 of
 the
 cell
 into
 a
 stop
 syringe.
 
When
 the
 cell
 volume
 has
 been
 completely
 replaced
 with
 new
 reagents,
 the
 stop
 
syringe
 will
 engage
 a
 trigger
 switch
 to
 stop
 the
 flow
 and
 begin
 acquisition.
 The
 time
 
from
 initial
 insertion
 of
 liquid
 to
 stopping
 the
 flow
 is
 considered
 the
 “dead
 time”
 of
 
the
 setup,
 and
 is
 dependent
 on
 the
 design
 of
 the
 apparatus.
 This
 dead
 time
 
represents
 the
 time
 the
 two
 inlet
 liquids
 have
 been
 in
 contact
 before
 observation.
56

 
Water
 transport
 across
 bilayers
 can
 be
 measured
 by
 stopped-­‐flow
 using
 an
 osmotic
 
gradient
 across
 liposomes;
 as
 liposomes
 shrink
 or
 swell
 in
 response
 to
 osmotically
 
driven
 transport
 of
 water,
 their
 scattering
 properties
 will
 change.
56-­‐58

 USLs
 are
 a
 
significant
 concern
 with
 stopped-­‐flow
 techniques.
59

 Some
 studies
 suggest
 that
 the
 

  14
 
USL
 in
 stopped-­‐flow
 transport
 experiments
 can
 be
 up
 to
 5.5
 μm
 thick
 (many
 times
 
larger
 than
 the
 liposomes
 themselves).
56

 

 
Recent
 advances
 in
 imaging
 techniques
 allow
 for
 spatially
 resolved
 transient
 
measurements
 of
 the
 transport
 process
 in
 through
 the
 membranes
 of
 giant
 
unilamellar
 lipid
 vesicles
 (GUVs).
 In
 2010,
 Li
 et
 al.
 published
 a
 method
 to
 measure
 
the
 transport
 of
 fluorescently
 labeled
 short-­‐chain
 poly(ethylene
 glycol)
 molecules
 
into
 GUVs
 with
 spinning
 disc
 confocal
 microscopy.
60

 Vesicle
 imaging
 can
 also
 be
 
combined
 with
 rapid
 microfluidic
 buffer
 exchange,
 as
 demonstrated
 by
 Li
 et
 al.
 in
 
2011.
61

 This
 technique
 allows
 for
 the
 resolution
 of
 the
 time
 evolution
 of
 the
 USL
 by
 
visualizing
 the
 concentration
 profile
 as
 a
 function
 of
 time.
 One
 potential
 setback
 of
 
this
 technique
 is
 that
 it
 requires
 a
 fluorescent
 species
 for
 analysis.
 
1.5 Advantages
 and
 disadvantages
 of
 choosing
 a
 measurement
 
technique
 
Selecting
 a
 method
 for
 measuring
 passive
 transport
 across
 a
 biomimetic
 bilayer
 is
 a
 
matter
 of
 balancing
 the
 characteristics
 of
 the
 various
 techniques
 described
 above.
 
While
 an
 approach
 that
 can
 directly
 resolve
 the
 USL
 is
 of
 obvious
 benefit,
 such
 
approaches
 are
 generally
 limited
 in
 terms
 of
 the
 types
 of
 permeant
 species
 they
 can
 
analyze
 (e.g.
 fluorophores
 or
 charged
 species).
 Methods
 that
 are
 amenable
 to
 
general
 chemical
 species
 as
 permeants
 are
 inherently
 more
 prone
 to
 USL
 artifacts
 
and
 thus
 are
 less
 accurate.
 Despite
 their
 biological
 relevance,
 fast
 permeating
 
species
 are
 a
 difficult
 class
 of
 solutes,
 as
 many
 techniques
 are
 not
 capable
 of
 
resolving
 relatively
 fast
 transport
 processes.
 High-­‐throughput
 approaches,
 which
 

  15
 
are
 necessary
 for
 realistically
 scaled
 drug
 discovery
 efforts,
 generally
 suffer
 from
 
both
 USL
 artifacts
 and
 a
 lack
 of
 a
 realistic
 biomimetic
 membrane.
 The
 ideal
 
transport
 measurement
 technique
 would
 be
 capable
 of
 forming
 consistent
 bilayers
 
of
 both
 symmetric
 and
 asymmetric
 compositions
 and
 analyzing
 high-­‐throughput
 
data
 without
 suffering
 from
 USL
 artifacts.
 
2 Low
 levels
 of
 lipid
 oxidation
 radically
 increase
 the
 
passive
 permeability
 of
 lipid
 bilayers
 

 
2.1 Motivation
 

 
The
 oxidation
 of
 phospholipids
 has
 become
 a
 recent
 topic
 of
 interest
 within
 the
 field
 
of
 membrane
 biophysics.
 The
 process
 of
 lipid
 oxidation
 has
 been
 associated
 with
 
tubule
 formation
 and
 membrane
 budding,
62

 increases
 in
 membrane
 surface
 
area,
63,64

 decreases
 in
 membrane
 fluidity,
65

 and
 the
 promotion
 of
 phase
 
separation.
66,67

 In
 medical
 research,
 the
 oxidation
 process
 has
 been
 linked
 with
 
physiological
 conditions
 such
 as
 atherosclerosis
68

 and
 aging,
69

 as
 well
 as
 being
 used
 
with
 photodynamic
 therapy
 for
 tumor
 treatment.
67

 
2.1.1 Importance
 of
 oxidation
 in
 cells
 

 
Oxidation
 in
 human
 tissue
 has
 been
 associated
 with
 numerous
 physiological
 
conditions.
 Both
 the
 link
 between
 lipid
 oxidation
 and
 apoptosis,
70-­‐72

 and
 that
 
between
 lipid
 oxidation
 and
 cytotoxicity
73-­‐76

 have
 been
 studied
 extensively.
 
Oxidation
 of
 both
 phospholipids
 and
 lipoproteins
 have
 been
 associated
 with
 the
 
pathogenesis
 of
 atherosclerosis
 calcification
 and
 osteoporosis.
77

 Atherosclerosis
 is
 a
 
disease
 specifically
 linked
 with
 increases
 in
 artery
 wall
 thicknesses
 due
 to
 the
 

  16
 
accumulation
 of
 calcium
 and
 other
 types
 of
 fatty
 material.
78

 The
 presence
 of
 
oxidized
 phospholipids
 has
 been
 studied
 in
 relevance
 to
 not
 only
 prediction
 of
 
atherosclerosis,
 but
 also
 in
 the
 formation
 of
 atherosclerotic
 legions.
79-­‐83

 
2.1.2 Effects
 of
 lipid
 oxidation
 on
 membrane
 properties
 

 
One
 phenomenon
 that
 has
 not
 been
 examined
 in
 detail
 is
 the
 effect
 of
 phospholipid
 
oxidation
 on
 the
 permeability
 of
 the
 membrane.
 Passive
 diffusion,
 while
 not
 the
 only
 
mechanism
 by
 which
 molecules
 can
 cross
 a
 membrane,
 represents
 a
 generic
 
pathway
 by
 which
 drugs
 and
 environmental
 toxins
 can
 enter
 a
 cell.
2,4

 As
 such,
 
understanding
 and
 measuring
 how
 oxidation
 of
 the
 lipid
 bilayer
 affects
 permeability
 
is
 key
 to
 understanding
 how
 oxidation
 alters
 the
 barrier
 properties
 of
 the
 
membrane,
 potentially
 leading
 to
 cell
 damage.
 
 

 
To
 measure
 the
 effect
 of
 lipid
 oxidation
 on
 bilayer
 permeability,
 we
 directly
 
measured
 the
 permeation
 of
 a
 test
 species
 across
 biomimetic
 membranes.
 Our
 test
 
system
 is
 based
 on
 fast
 confocal
 imaging
 combined
 with
 a
 microfluidic
 approach
 to
 
analyze
 transport
 across
 the
 membranes
 of
 giant
 unilamellar
 vesicles
 (GUVs).
61

 By
 
immobilizing
 GUVs
 in
 a
 microfluidic
 channel,
 then
 performing
 a
 buffer
 exchange,
 it
 
is
 possible
 to
 image
 the
 transport
 of
 a
 fluorescent
 solute
 across
 the
 membrane.
 
 

 
GUVs
 were
 formed
 in
 which
 the
 molar
 ratio
 of
 unsaturated
 PLinPC
 (1-­‐palmitoyl-­‐2-­‐
linoleoyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine)
 to
 its
 corresponding
 oxidized
 product—
POxnoPC
 (1-­‐palmitoyl-­‐2-­‐(9'-­‐oxo-­‐nonanoyl)-­‐sn-­‐glycero-­‐3-­‐phosphocholine)—was
 
varied.
84,85

 This
 approach
 was
 designed
 to
 mimic
 different
 compositions
 as
 more
 

  17
 
and
 more
 of
 the
 unsaturated
 lipid
 is
 oxidized.
 We
 considered
 a
 simplified
 version
 of
 
the
 total
 oxidative
 pathway
 that
 would
 be
 expected
 as
 a
 reactive
 oxygen
 species
 
attacks
 the
 double
 bonds
 in
 an
 unsaturated
 lipid
 tail
 group.
 The
 oxidized
 product
 
used
 in
 this
 work
 would
 be
 the
 result
 of
 three
 oxidative
 steps.
85

 First,
 a
 reactive
 
oxygen
 species
 causes
 the
 formation
 of
 a
 phospholipid
 radical
 species
 by
 abstracting
 
a
 hydrogen
 adjacent
 to
 the
 double
 bond.
 Next,
 these
 carbon-­‐centered
 radicals
 
rapidly
 react
 with
 free
 oxygen
 to
 form
 peroxyl
 radicals.
 The
 final
 step
 is
 the
 
termination,
 where
 the
 cleaved
 tail
 group
 is
 no
 longer
 reactive.
 POxnoPC
 is
 a
 major
 
termination
 product
 of
 PLinPC
 oxidation.
 
 

 
In
 synthetic
 bilayer
 systems,
 the
 presence
 of
 reactive
 oxygen
 species
 has
 been
 
linked
 to
 both
 the
 formation
 of
 singlet
 oxygen
 from
 photo-­‐induced
 oxidation
86

 as
 
well
 as
 a
 process
 known
 as
 autoxidation.
 Autoxidation
 occurs
 when
 unsaturated
 
lipids,
 stored
 in
 water
 at
 physiological
 temperature,
 show
 the
 effects
 of
 oxidation
 in
 
as
 little
 as
 72
 hours.
67

 Biological
 systems
 have
 a
 more
 diverse
 set
 of
 pathways
 to
 
introduce
 reactive
 oxygen
 species:
 the
 presence
 of
 oxidants
 has
 been
 linked
 with
 
cell
 respiration
 and
 metabolism;
87

 signaling
 processes;
88

 the
 inhalation
 of
 air
 
pollutants;
85

 and
 exposure
 to
 radiation.
85

 
 

 
High
 levels
 of
 lipid
 oxidation
 lead
 to
 membrane
 degradation.
 The
 amount
 of
 
oxidation
 that
 a
 lipid
 bilayer
 vesicle
 can
 withstand
 before
 collapse
 depends
 on
 the
 
composition
 of
 the
 membrane.
 For
 example,
 membranes
 consisting
 of
 saturated
 
DPPC
 (1,2-­‐dipalmitoyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine)
 and
 oxidized
 linoleoyl-­‐

  18
 
palmitoyl-­‐lecithin
 could
 not
 form
 when
 there
 was
 more
 oxidized
 species
 than
 
saturated
 species.
89

 20%
 POxnoPC
 in
 POPC
 (1-­‐palmitoyl-­‐2-­‐oleoyl-­‐sn-­‐glycero-­‐3-­‐
phosphocholine)
 vesicles
 compromises
 the
 membrane
 via
 sustained
 pore
 
formation.
90

 In
 order
 to
 measure
 passive
 diffusion
 permeability
 rather
 than
 pore
 
transport,
 total
 oxidized
 species
 concentration
 was
 kept
 below
 this
 20%
 limit
 in
 our
 
experiments.
 
 

 
This
 study
 evaluated
 the
 effect
 of
 oxidation
 of
 unsaturated
 lipids
 on
 passive
 
membrane
 permeability
 of
 the
 membrane
 to
 a
 fluorescent
 short
 chain
 poly(ethylene
 
glycol)
 molecule
 (PEG12-­‐NBD).
 The
 permeability
 of
 this
 molecule
 was
 characterized
 
Li
 et
 al.
 in
 2010
 with
 spinning
 disk
 confocal
 microscopy
 (SDCM).
60

 The
 PEG-­‐NBD
 
species
 was
 chosen
 for
 this
 experiment
 because
 it
 is
 hydrophilic,
 but
 not
 a
 charged
 
species.
 As
 charged
 species
 are
 more
 sensitive
 to
 changes
 in
 membrane
 
permeability
 and
 interactions
 with
 charged
 lipid
 headgroups,
91

 choosing
 an
 
uncharged
 species
 simplifies
 the
 transport
 model.
 Additionally,
 the
 fluorescent
 label
 
makes
 imaging
 the
 transport
 process
 simple
 with
 SDCM.
 
2.2 Materials
 and
 Methods
 
2.2.1 Materials
 

 
1-­‐palmitoyl-­‐2-­‐linoleoyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine
 
 (PLinPC),
 1,2-­‐dimyristoyl-­‐sn-­‐
glycero-­‐3-­‐phosphocholine
 (DMPC),
 1-­‐palmitoyl-­‐2-­‐(9'-­‐oxo-­‐nonanoyl)-­‐sn-­‐glycero-­‐3-­‐
phosphocholine
 (POxnoPC),
 cholesterol,
 1,2-­‐dihexadecanoyl-­‐sn-­‐glycero-­‐3-­‐
phosphoethanolamine-­‐N-­‐(cap
 biotinyl)
 (biotin-­‐DPPE),
 and
 1,2-­‐dipalmitoyl-­‐sn-­‐
glycero-­‐3-­‐phosphoethanolamine-­‐N-­‐(lissamine
 rhodamine
 B
 sulfonyl)
 (rhodamine-­‐

  19
 
DPPE)
 were
 purchased
 from
 Avanti
 Polar
 Lipids.
 Avidin
 and
 succinimidyl
 6-­‐(N-­‐(7-­‐
nitrobenz-­‐2-­‐oxa-­‐1,3-­‐diazol-­‐4-­‐yl)amino)Hexanoate
 (NBD
 NHS-­‐ester)
 were
 obtained
 
from
 Invitrogen.
 Amino-­‐dPEG12-­‐alcohol
 was
 purchased
 from
 Quanta
 Biodesign.
 
Poly(dimethylsiloxane)
 (PDMS)
 was
 purchased
 from
 Dow
 Chemical,
 and
 the
 indium-­‐
tin-­‐oxide
 (ITO)
 coated
 glass
 was
 obtained
 from
 Delta
 Technologies.
 α-­‐tocopherol
 
and
 all
 other
 chemicals
 were
 purchased
 from
 Sigma-­‐Aldrich.
 
2.2.2 GUV
 composition
 and
 formation
 

 
GUVs
 were
 prepared
 with
 the
 electroformation
 technique
 introduced
 by
 Angelova
 et
 
al.

 92,93

 Vesicle
 composition
 prior
 to
 oxidation
 was
 chosen
 to
 be
 a
 42.5:42.5:15
 molar
 
ratio
 of
 DMPC:PLinPC:Chol.
 Rhodamine-­‐DPPE
 was
 added
 at
 0.01
 mol%
 to
 visualize
 
the
 membrane.
 PLinPC
 was
 stored
 with
 0.5
 mol%
 α-­‐tocopherol
 to
 act
 as
 an
 oxygen
 
scavenger
 in
 the
 membrane
 and
 prevent
 additional
 oxidation
 during
 
electroformation
 and
 imaging.
94

 6
 mol%
 biotin-­‐DPPE
 was
 used
 to
 attach
 the
 GUVs
 to
 
the
 avidin-­‐treated
 coverslip.
 The
 lipids
 were
 dissolved
 in
 chloroform,
 then
 spread
 
into
 a
 thin
 film
 on
 the
 surface
 of
 the
 ITO
 coated
 glass.
 The
 film
 was
 dried
 in
 a
 
vacuum
 for
 at
 least
 two
 hours
 before
 rehydration
 in
 pH
 7.0
 buffer
 with
 200
 mM
 
sucrose
 and
 4
 mM
 HEPES.
 Electroformation
 was
 performed
 at
 room
 temperature
 
with
 a
 1
 V
 signal
 oscillating
 at
 10
 Hz
 for
 two
 hours.
 
 

 
GUV
 composition
 was
 varied
 to
 simulate
 the
 oxidation
 process.
 The
 total
 
concentration
 of
 oxidized
 species
 was
 varied
 up
 to
 18
 total
 mol%,
 to
 remain
 below
 
the
 previously
 characterized
 poration
 limit.
90

 To
 mimic
 the
 oxidation
 of
 unsaturated
 

  20
 
lipids,
 GUVs
 were
 fabricated
 with
 various
 concentrations
 of
 POxnoPC
 replacing
 
PLinPC
 (shown
 in
 Table
 1).
 

 
Table
 1:
 Vesicle
 compositions
 studied.
 

 
Mol%
 DMPC
  Mol%
 PLinPC
  Mol%
 POxnoPC
  Mol%
 Chol
 
42.5
  42.5
  0
  15
 
42.5
  40
  2.5
  15
 
42.5
  37.5
  5
  15
 
42.5
  32.5
  10
  15
 
42.5
  30
  12.5
  15
 
42.5
  27.5
  15
  15
 
42.5
  24.5
  18
  15
 

 

 
After
 electroformation,
 GUVs
 were
 immediately
 transferred
 to
 the
 microfluidic
 
channel.
 The
 GUVs
 not
 captured
 in
 the
 channel
 were
 gently
 flushed
 from
 the
 system
 
using
 a
 syringe
 pump
 and
 glucose
 buffer.
 
2.2.3 Preparation
 of
 test
 molecule
 

 
To
 prepare
 the
 PEG12-­‐NBD,
 the
 amine-­‐terminated
 poly(ethylene
 glycol)
 alcohol
 was
 
reacted
 with
 the
 NBD
 NHS-­‐ester.
60

 A
 reaction
 schematic
 is
 shown
 in
 Figure
 2.
 A
 1:1
 
molar
 ratio
 of
 poly(ethylene
 glycol)
 to
 NBD
 NHS-­‐ester
 was
 reacted
 in
 chloroform.
 
The
 reaction
 was
 run
 at
 45°C
 for
 two
 hours,
 then
 at
 room
 temperature
 overnight.
 
The
 reaction
 products
 were
 separated
 using
 high
 performance
 liquid
 
chromatography.
 

 

  21
 

 

 
Figure
 2:
 Reaction
 scheme
 for
 the
 preparation
 of
 the
 PEG12-­‐NBD
 test
 molecule.
 The
 amine-­‐group
 of
 
the
 poly(ethylene
 oxide)
 alcohol
 reacted
 with
 the
 NHS-­‐ester
 of
 the
 fluorescent
 NBD
 to
 form
 the
 
fluorescent
 PEG
 species,
 PEG12-­‐NBD.
 

 

 
The
 product,
 PEG12-­‐NBD,
 was
 confirmed
 using
 nuclear
 magnetic
 resonance
 (NMR)
 
spectroscopy.
 Following
 the
 reaction,
 the
 peaks
 corresponding
 to
 the
 amide
 bond
 
were
 apparent
 at
 6.5
 and
 6.9
 ppm.
 The
 NMR
 spectrum
 of
 the
 PEG12-­‐NBD
 molecule
 
is
 shown
 in
 Figure
 3.
 

 

 
Figure
 3:
 NMR
 spectra
 confirming
 the
 product
 PEG12-­‐NBD.
 Peaks
 are
 shown
 with
 indicators
 for
 
significant
  structures
  in
  the
  molecule.
  The
  polymer
  appears
  at
  3.25-­‐3.75
  PPM,
  with
  the
  amide
 
occurring
 at
 6.5
 and
 6.9
 PPM.
 The
 connection
 between
 the
 PEG
 chain
 and
 the
 NBD
 structure
 is
 found
 
at
 1.5-­‐2
 PPM,
 and
 the
 single
 bonds
 of
 the
 NBD
 benzene
 ring
 occur
 at
 6.25
 and
 8.5
 PPM.
 

  22
 
2.2.4 Microfluidic
 channel
 preparation
 and
 design
 

 
Coverslips
 were
 sonicated
 in
 MilliQ
 water
 (Millipore)
 at
 80°C
 for
 30
 minutes,
 then
 
submerged
 in
 sulfuric
 acid
 with
 NoChromix
 (Sigma-­‐Aldrich)
 overnight.
 The
 acid
 was
 
rinsed
 away
 before
 sonicating
 the
 coverslips
 for
 30
 minutes
 in
 water.
 A
 microfluidic
 
channel
 was
 fabricated
 from
 PDMS
 using
 standard
 polymer
 molding
 techniques.
95

 
For
 irreversible
 bonding,
 oxidation
 of
 the
 PDMS
 and
 a
 #1
 coverslip
 was
 performed
 
with
 a
 corona
 treatment
 (BD-­‐20AC,
 Electro-­‐Technic
 Products).
96

 As
 shown
 in
 Figure
 
4,
 two
 types
 of
 device
 were
 used
 for
 vesicle
 capture.
 The
 first
 is
 a
 three
 inlet,
 one
 
outlet
 channel.
97

 The
 three
 inlets
 converge
 in
 a
 widened
 channel
 area
 (3
 mm
 width
 
by
 4
 mm
 length)
 containing
 pairs
 of
 50
 μm
 diameter
 posts.
98

 By
 varying
 the
 distance
 
between
 the
 posts,
 vesicles
 of
 different
 sizes
 could
 be
 trapped
 in
 the
 post
 array.
 This
 
device
 type
 was
 suitable
 for
 capture
 and
 imaging
 of
 vesicles
 larger
 than
 25
 μm
 in
 
diameter.
 To
 prevent
 interaction
 between
 the
 PDMS
 and
 the
 PEG-­‐NBD,
 the
 channel
 
was
 treated
 with
 a
 solution
 of
 1
 mg/mL
 BSA
 by
 flushing
 for
 thirty
 minutes.
 The
 
channel
 was
 then
 flushed
 thoroughly
 with
 200
 mM
 glucose
 buffer
 with
 4
 mM
 HEPES
 
at
 pH
 7.0
 prior
 to
 adding
 vesicles.
 The
 second
 channel
 was
 a
 Y-­‐junction,
 with
 two
 
inlets
 and
 one
 outlet.
 The
 channel
 had
 a
 depth
 of
 100
 μm,
 a
 width
 of
 1
 mm,
 and
 a
 
length
 of
 1
 cm.
 Vesicles
 containing
 6
 mol%
 biotin-­‐DPPE
 were
 captured
 using
 a
 
biotin-­‐avidin
 interaction
 at
 the
 glass
 surface.
 The
 coverslips
 were
 treated
 with
 a
 1
 
mg/mL
 solution
 of
 avidin
 in
 water
 for
 30
 minutes,
 then
 flushed
 with
 200
 mM
 
glucose
 and
 4
 mM
 HEPES
 buffer
 at
 pH
 7.0
 prior
 to
 addition
 of
 GUVs.
 Avidin
 was
 
nonspecifically
 adsorbed
 to
 the
 glass
 surface.
 

 

  23
 

 

 

 

 

 
Figure
 4:
 Schematic
 of
 the
 two
 microfluidic
 devices.
 a)
 Device
 with
 post-­‐based
 traps.
 The
 100
 μm
 
height
 channel
 has
 three
 inlets:
 one
 for
 buffer,
 one
 for
 PEG12-­‐NBD
 solution,
 and
 one
 for
 loading
 the
 
channel
 with
 vesicles.
 The
 main
 chamber
 has
 an
 array
 of
 posts.
 The
 solution
 flow
 pushes
 vesicles
 into
 
the
 posts,
 capturing
 them
 mechanically
 while
 buffer
 flows
 through
 the
 device.
 The
 inset
 panel
 shows
 
a
 GUV
 captured
 in
 between
 a
 pair
 of
 posts,
 with
 a
 scale
 bar
 of
 10
 μm.
 b)
 A
 simple
 Y-­‐channel
 design,
 
with
 two
 inlets
 and
 a
 single
 outlet.
 The
 first
 inlet
 is
 for
 buffer,
 the
 second
 is
 for
 buffer
 with
 PEG12-­‐
NBD.
 The
 glass
 surface
 was
 functionalized
 with
 a
 1
 mg/mL
 avidin
 solution
 prior
 to
 the
 experiment.
 
As
 shown
 in
 the
 inset,
 vesicles
 are
 captured
 in
 this
 device
 using
 a
 biotin-­‐avidin
 interaction.
 

 
2.2.5 Transport
 experiment
 protocol
 

 
After
 flushing
 the
 channel
 of
 all
 unbound
 vesicles,
 a
 single
 unilamellar
 vesicle
 of
 
diameter
 greater
 than
 10
 μm
 was
 selected
 for
 observation.
 A
 syringe
 pump
 was
 
used
 to
 add
 a
 solution
 of
 5
 μM
 PEG12-­‐NBD
 in
 200
 mM
 glucose
 and
 4
 mM
 HEPES
 
a)
 
b)
 

  24
 
buffer
 at
 pH
 7.0.
 A
 flow
 rate
 of
 1.0
 mL/h
 was
 chosen
 as
 the
 fastest
 flow
 that
 
consistently
 did
 not
 damage
 or
 detach
 the
 GUVs.
 Transport
 was
 observed
 using
 
spinning
 disk
 confocal
 microscopy,
 performed
 with
 a
 Yokogawa
 CSUX
 confocal
 head
 
on
 a
 Nikon
 TI-­‐E
 inverted
 microscope.
 50
 mW
 solid-­‐state
 lasers
 at
 491
 or
 561
 nm
 
were
 used
 as
 the
 illumination
 sources.
 Transport
 of
 PEG12-­‐NBD
 was
 imaged
 with
 
excitation
 at
 491
 nm
 and
 emission
 centered
 at
 525
 nm.
 Rhodamine-­‐DPPE
 was
 
excited
 at
 561
 nm
 and
 emission
 at
 centered
 595
 nm.
 Images
 were
 collected
 at
 a
 
regular
 interval
 during
 buffer
 exchange
 as
 the
 fluorescent
 species
 crossed
 the
 GUV
 
membrane.
 
2.2.6 Examination
 of
 pore
 formation
 

 
To
 examine
 the
 formation
 of
 pores
 in
 the
 membrane,
 GUVs
 were
 added
 to
 a
 solution
 
of
 1
 mg/mL
 fluorescein-­‐dextran
 in
 glucose
 buffer.
 To
 estimate
 the
 size
 of
 the
 pores,
 
GUVs
 were
 imaged
 with
 two
 sizes
 of
 fluorescein-­‐dextran:
 40
 kDa
 and
 2000
 kDa.
 
2.3 Data
 Analysis
 
2.3.1 Background
 subtraction
 and
 flat-­‐fielding
 

 
Image
 analysis
 was
 performed
 using
 Matlab
 (The
 MathWorks,
 Inc.).
 First,
 reference
 
images
 with
 no
 fluorophore
 in
 the
 field
 were
 used
 to
 subtract
 the
 background
 from
 
each
 image
 in
 the
 sequence.
 The
 average
 intensity
 value
 for
 each
 pixel
 was
 
calculated
 for
 the
 series
 of
 background
 reference
 images.
 This
 matrix
 of
 background
 
intensities
 was
 then
 subtracted
 from
 each
 of
 the
 series
 of
 transport
 images.
 Next,
 to
 
correct
 for
 illumination
 heterogeneity
 across
 the
 field
 of
 observation,
 a
 flat-­‐fielding
 
technique
 was
 applied
 to
 each
 image.
 A
 reference
 image
 taken
 of
 5
 μM
 PEG12-­‐NBD,
 

  25
 
with
 no
 GUVs
 in
 the
 field,
 was
 used
 to
 determine
 a
 multiplicative
 factor
 for
 each
 
pixel
 to
 make
 it
 equal
 to
 the
 mean
 intensity
 value
 of
 the
 reference
 image.
 This
 was
 
repeated
 for
 five
 reference
 images,
 and
 the
 resulting
 multiplicative
 values
 were
 
averaged
 at
 each
 pixel
 position.
 This
 matrix
 of
 factors
 was
 applied
 to
 each
 image
 in
 
the
 experimental
 sequence
 to
 flat-­‐field
 the
 data
 set.
 
2.3.2 Removal
 of
 pinhole
 crosstalk
 contributions
 

 
One
 concern
 with
 confocal
 microscopy
 is
 its
 imperfect
 exclusion
 of
 light
 from
 
outside
 the
 focal
 plane.
99

 As
 shown
 in
 Figure
 5,
 the
 intensity
 inside
 the
 vesicle
 prior
 
to
 permeation
 is
 not
 flat.
 This
 curved
 profile
 indicates
 the
 presence
 of
 pinhole
 
crosstalk,
 causing
 an
 increase
 in
 measured
 intensity
 inside
 the
 vesicle.
 Analysis
 of
 
the
 out
 of
 plane
 light
 contribution
 for
 a
 vesicle
 with
 varying
 concentrations
 showed
 
that
 the
 relationship
 can
 be
 considered
 to
 be
 linear,
 and
 corrected
 accordingly.
 

 

 

  26
 

 

 
Figure
 5:
 Intensity
 profile
 across
 a
 vesicle
 immersed
 in
 5
 μM
 PEG12-­‐NBD
 prior
 to
 permeation.
 This
 
image
 has
 been
 corrected
 for
 uneven
 illumination
 by
 flat-­‐fielding.
 As
 the
 fluorescein-­‐dextran
 cannot
 
permeate
 the
 membrane,
 the
 intensity
 inside
 of
 the
 vesicle
 should
 be
 0,
 and
 the
 profile
 across
 the
 
vesicle
 should
 be
 flat.
 The
 presence
 of
 a
 non-­‐flat
 profile
 indicates
 that
 there
 is
 pinhole
 crosstalk
 
present
 in
 the
 experiments.
 This
 contribution
 to
 the
 intensity
 inside
 of
 the
 vesicle
 was
 accounted
 for
 
during
 data
 analysis.
 

 

 
Pinhole
 crosstalk
 is
 a
 characteristic
 spinning
 disk
 confocal
 microscopy
 (SDCM)
 that
 
limits
 the
 ability
 of
 the
 spinning
 disk
 apparatus
 from
 regions
 outside
 of
 the
 focal
 
plane.
 Previous
 work
 has
 been
 performed
 to
 establish
 the
 contribution
 of
 out-­‐of-­‐
plane
 fluorescent
 sources
 to
 the
 apparent
 in-­‐plane
 fluorescence.
99

 The
 results
 
showed
 that
 the
 pinhole
 crosstalk
 contribution
 from
 a
 non-­‐focal
 plane
 scales
 with
 
the
 inverse
 of
 the
 distance
 between
 the
 non-­‐focal
 and
 the
 focal
 plane.
 

 

  27
 
During
 a
 permeability
 experiment
 with
 a
 fluorescent
 molecule,
 such
 as
 PEG12-­‐NBD,
 
the
 fluorescence
 inside
 the
 vesicle
 changes
 with
 concentration.
 If
 the
 background
 
fluorescence
 is
 assumed
 to
 be
 constant,
 then
 the
 out
 of
 plane
 contribution
 for
 area
 
outside
 of
 the
 vesicle
 can
 also
 be
 assumed
 to
 be
 constant.
 However,
 the
 significant
 
out-­‐of-­‐plane
 contribution
 is
 from
 the
 fluorophores
 inside
 the
 vesicle.
 This
 means
 
that
 we
 need
 to
 develop
 a
 relationship
 between
 out-­‐of-­‐plane
 light
 contributions
 and
 
fluorophore
 concentration
 inside
 the
 vesicle.
 

 
To
 evaluate
 the
 out-­‐of-­‐plane
 contribution
 for
 a
 given
 concentration
 of
 fluorophore
 
inside
 the
 vesicle,
 GUVs
 were
 created
 with
 encapsulated
 40
 kDa
 fluorescein-­‐dextran
 
in
 200
 mM
 sucrose
 buffer
 at
 pH
 7.0.
 40
 kDa
 fluorescein-­‐dextran
 was
 chosen
 as
 it
 will
 
not
 cross
 the
 membrane.
 Encapsulation
 concentrations
 were
 chosen
 between
 0.1
 
μM
 and
 0.5
 μM
 to
 show
 intensities
 in
 the
 same
 range
 as
 the
 permeability
 
experiments.
 GUVs
 were
 created
 with
 a
 1:1:1
 DPPC:PLinPC:Chol
 molar
 ratio,
 with
 
0.01
 mol%
 rhodamine-­‐DPPE.
 
 

 
After
 electroformation,
 GUVs
 were
 transferred
 a
 Sykes-­‐Moore
 chamber
 containing
 
200
 mM
 glucose
 buffer
 at
 pH
 7.0.
 Buffer
 exchange
 was
 performed
 until
 the
 
background
 surrounding
 the
 vesicles
 showed
 no
 fluorescence
 intensity
 due
 to
 
excess
 fluorescein
 dextran.
 Between
 75
 and
 100
 GUVs
 up
 to
 100
 μm
 in
 diameter
 
were
 chosen,
 such
 that
 for
 a
 given
 encapsulation
 concentration,
 the
 relationship
 
between
 vesicle
 intensity
 and
 diameter
 could
 be
 determined.
 

 

  28
 
Prior
 to
 analysis,
 each
 image
 was
 flat-­‐fielded.
 As
 the
 laser
 alignment
 in
 a
 confocal
 
microscope
 causes
 the
 center
 of
 the
 image
 to
 be
 brighter
 than
 the
 edges
 of
 the
 
image,
 flat-­‐fielding
 will
 remove
 the
 dependence
 of
 GUV
 location
 on
 its
 intensity.
 To
 
obtain
 reference
 images,
 a
 Sykes-­‐Moore
 chamber
 was
 filled
 with
 200
 mM
 glucose
 
buffer
 containing
 the
 concentration
 of
 40
 kDa
 fluorescein-­‐dextran.
 Five
 background
 
images
 were
 collected.
 For
 this
 series
 of
 background
 images,
 the
 value
 of
 each
 pixel
 
was
 averaged
 to
 decrease
 the
 effect
 of
 noise.
 A
 factor
 was
 calculated
 that,
 when
 
multiplied,
 made
 each
 pixel
 in
 the
 averaged
 background
 image
 equal
 to
 the
 mean
 
value
 across
 the
 entire
 image.
 For
 each
 GUV
 containing
 the
 reference
 fluorescein-­‐
dextran
 concentration,
 the
 image
 was
 multiplied
 by
 this
 matrix
 of
 factors
 to
 
generate
 a
 flat-­‐fielded
 image.
 

 
After
 performing
 the
 flat-­‐fielding
 technique,
 the
 intensity
 and
 diameter
 of
 each
 GUV
 
was
 measured
 using
 the
 image
 processing
 toolbox
 in
 Matlab
 (MathWorks).
 For
 each
 
concentration
 of
 encapsulated
 fluorescein-­‐dextran,
 the
 relationship
 between
 vesicle
 
intensity
 and
 diameter
 appears
 to
 be
 linear,
 as
 shown
 in
 Figure
 6.
 

 

  29
 

 

 

 
Figure
 6:
 Linear
 relationship
 between
 vesicle
 interior
 intensity
 and
 diameter
 for
 a)
 0.2
 μM
 and
 b)
 0.5
 
μM
 encapsulated
 40
 kDa
 fluorescein-­‐dextran.
 

 

 

 

 

 
a)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
b)
 

  30
 
Assuming
 the
 y-­‐intercept
 of
 the
 line
 is
 the
 “true”
 intensity
 of
 the
 fluorescein-­‐dextran,
 
then
 it
 is
 simple
 to
 show
 that
 for
 a
 given
 diameter,
 the
 pinhole
 crosstalk
 
contribution
 is
 given
 by
 the
 difference
 between
 the
 actual
 intensity
 and
 the
 “true”
 
intensity,
 as
 shown
 in
 Figure
 7.
 

 

 

 
Figure
 7:
 Vesicle
 interior
 intensity
 vs.
 “true”
 intensity
 of
 0.2
 μM
 40
 kDa
 fluorescein-­‐dextran.
 

 

 
Thus,
 the
 amount
 of
 out
 of
 plane
 light
 has
 a
 dependence
 on
 both
 vesicle
 diameter
 
and
 concentration.
 Experiments
 were
 repeated
 for
 concentrations
 of
 0.1,
 0.2,
 0.3,
 
0.4,
 and
 0.5
 μM
 fluorescein-­‐dextran,
 and
 a
 similar
 analysis
 was
 performed.
 The
 
resulting
 linear
 relationships
 are
 shown
 in
 Figure
 8.
 
 

 

  31
 

 

 
Figure
 8:
 Linear
 relationships
 for
 five
 concentrations
 of
 encapsulated
 40
 kDa
 fluorescein-­‐dextran
 

 

 
Next,
 the
 change
 in
 out
 of
 plane
 with
 respect
 to
 concentration
 was
 evaluated
 for
 a
 
given
 diameter
 of
 25
 μm.
 As
 shown
 in
 Figure
 9,
 the
 relationship
 between
 the
 out
 of
 
plane
 contribution
 and
 encapsulated
 concentration
 appears
 to
 be
 linear.
 

 

  32
 

 

 
Figure
 9:
 Linear
 fit
 for
 pinhole
 crosstalk
 contribution
 vs.
 concentration
 for
 25
 μm
 vesicle
 diameter
 

 

 
The
 analysis
 was
 repeated
 for
 diameters
 between
 10
 μm
 and
 50
 μm,
 the
 typical
 
range
 for
 vesicles
 used
 in
 permeability
 experiments.
 For
 each
 diameter,
 the
 
relationship
 between
 out
 of
 plane
 light
 and
 concentration
 is
 linear.
 The
 results
 for
 
this
 diameter
 range
 are
 shown
 in
 Figure
 10.
 

 

  33
 

 

 
Figure
 10:
 Linear
 relationships
 for
 pinhole
 crosstalk
 contribution
 vs.
 concentration
 for
 diameters
 
between
 10
 and
 50
 μm.
 

 

 
From
 this
 analysis,
 it
 is
 clear
 that
 the
 out
 of
 plane
 light
 correction
 is
 dependent
 on
 
both
 the
 diameter
 of
 the
 vesicle
 and
 the
 concentration
 encapsulated.
 However,
 for
 a
 
constant
 diameter,
 the
 relationship
 with
 respect
 to
 concentration
 is
 consistently
 
linear.
 When
 analyzing
 the
 permeability
 data,
 the
 diameter
 of
 the
 GUV
 is
 constant.
 
This
 means
 that
 to
 correct
 for
 out
 of
 plane
 light
 as
 the
 concentration
 inside
 the
 
vesicle
 changes,
 the
 correction
 should
 be
 linear
 with
 respect
 to
 concentration.
 We
 
corrected
 for
 pinhole
 crosstalk
 by
 subtracting
 the
 crosstalk
 contribution
 predicted
 
by
 the
 relationships
 shown
 in
 Figure
 10.
 
2.3.3 Finite
 difference
 model
 and
 membrane
 permeability
 

 
To
 calculate
 the
 permeability
 from
 the
 intensity
 vs.
 time
 images,
 a
 finite
 difference
 
model
 was
 based
 on
 Fick’s
 Second
 Law
 in
 spherical
 coordinates.
 Assuming
 no
 

  34
 
reaction,
 symmetry
 in
 both
 angular
 dimensions,
 a
 spherical
 vesicle,
 and
 that
 
diffusion
 is
 a
 significantly
 higher
 contributor
 than
 convection
 to
 the
 permeation
 
process,
 the
 governing
 equation
 simplifies
 to
 that
 shown
 in
 Equation
 5.
 The
 variable
 
cA
 represents
 the
 concentration
 of
 species
 A,
 t
 is
 time,
 r
 is
 the
 radial
 coordinate
 (0
 at
 
the
 vesicle
 center),
 and
 DA
 is
 the
 diffusivity
 of
 species
 A
 in
 the
 buffer
 solution.
 

 

 
(5)  
 

 
This
 equation
 was
 solved
 in
 space
 and
 time
 using
 a
 finite
 difference
 approach.
 To
 
simplify
 calculations,
 the
 method
 described
 by
 Somersalo
 et
 al.
 was
 used
 to
 
decouple
 the
 time
 and
 space
 dimensions.
100

 This
 technique
 allowed
 for
 a
 simple
 
time
 determination
 of
 concentration
 at
 each
 discretized
 space
 step.
 

 
The
 advantage
 of
 their
 technique
 was
 in
 the
 decoupling
 of
 the
 time
 and
 space
 
dimensions,
 and
 solving
 the
 system
 as
 a
 matrix
 equation.
 This
 allowed
 for
 fast
 
convergence
 of
 the
 model.
 An
 example
 result
 from
 the
 finite
 difference
 model
 is
 
shown
 in
 Figure
 11.
 The
 model
 takes
 the
 background
 intensity
 as
 the
 concentration
 
boundary
 condition
 at
 the
 vesicle
 exterior.
 At
 each
 time
 point,
 the
 model
 then
 
calculates
 the
 concentration
 along
 a
 series
 of
 space
 steps.
 For
 the
 space
 step
 
representing
 the
 membrane,
 a
 flux
 boundary
 condition
 incorporates
 the
 membrane
 
permeability
 into
 the
 model.
 The
 concentration
 is
 then
 calculated
 for
 the
 space
 steps
 
contained
 inside
 the
 vesicle
 membrane;
 at
 the
 vesicle
 center,
 a
 no-­‐flux
 boundary
 
condition
 is
 applied.
 This
 process
 is
 repeated
 for
 each
 time
 step
 until
 equilibrium
 is
 
∂c
A
∂t
= D
A
1
r
2
∂
∂r
r
2
∂c
A
∂r
"
#
$
%
&
'
(
)
*
+
,
-

  35
 
reached
 or
 the
 data
 set
 is
 complete.
 For
 Figure
 11,
 the
 center
 of
 the
 vesicle
 is
 located
 
at
 0
 μm
 along
 the
 x-­‐axis.
 The
 radius
 of
 the
 vesicle
 is
 15
 μm,
 so
 the
 membrane
 is
 
located
 at
 this
 point
 on
 the
 x-­‐axis.
 The
 y-­‐axis
 represents
 the
 intensity
 at
 each
 special
 
location,
 and
 the
 color
 gradient
 shows
 the
 time
 series.
 
 

 

 

 
Figure
 11:
 Results
 from
 a
 finite
 difference
 simulation
 of
 0%
 POxnoPC.
 The
 vesicle
 center
 is
 located
 at
 
0
 along
 the
 x-­‐axis,
 with
 the
 membrane
 location
 at
 15
 μm.
 The
 y-­‐axis
 indicates
 the
 percentage
 of
 the
 
background
  concentration,
  and
  the
  color
  gradient
  indicates
  different
  time
  points
  during
  the
 
permeation
  process.
  In
  this
  manner,
  the
  model
  can
  show
  both
  spatial
  and
  time
  variation
  of
 
concentration.
 The
 insets
 show
 images
 from
 the
 transport
 experiment
 corresponding
 to
 certain
 time
 
points.
 The
 scale
 bar
 is
 10
 μm.
 

 

 
Boundary
 conditions
 for
 the
 model
 were
 set
 at
 three
 points:
 an
 exterior
 point,
 the
 
membrane
 itself,
 and
 the
 vesicle
 center.
 The
 exterior
 boundary
 was
 located
 at
 a
 
point
 from
 the
 membrane
 equal
 to
 the
 vesicle
 radius.
 At
 this
 boundary,
 
concentration
 was
 fixed
 at
 the
 experimentally
 observed
 fluorophore
 concentration.
 
Note
 that
 this
 concentration
 changes
 with
 time
 as
 the
 buffer
 is
 exchanged.
 At
 the
 
membrane,
 flux
 J
 was
 determined
 by
 membrane
 permeability
 such
 that:
 

 

  36
 

  (6)  
 

 
Permeability
 P
 was
 the
 only
 free
 parameter
 in
 the
 model.
 At
 the
 center
 of
 the
 GUV,
 a
 
no-­‐flux
 boundary
 condition
 was
 applied.
 

 
To
 fit
 the
 experimental
 data
 to
 model
 results,
 experimentally
 observed
 average
 
fluorescence
 in
 a
 circular
 region
 around
 the
 center
 of
 the
 vesicle
 was
 compared
 to
 
modeled
 concentration
 in
 the
 analogous
 spatial
 region.
 Permeability
 P
 was
 
determined
 by
 performing
 a
 χ
2

 minimization
 between
 the
 model
 output
 and
 the
 
measured
 intensity
 values.
 The
 resulting
 concentration
 vs.
 time
 curve
 for
 the
 data
 
set
 and
 the
 best
 fit
 model
 results
 is
 shown
 in
 Figure
 14
 (Section
 2.4.2).
 
 

 
To
 determine
 the
 best
 fit,
 the
 χ
2

 value
 for
 model
 vs.
 experimental
 intensity
 curves
 
was
 calculated
 at
 a
 range
 of
 model
 permeabilities.
 χ
2
 
is
 minimized
 using
 the
 
fminsearch
 routine
 in
 Matlab.
 The
 χ
2
 
landscape
 with
 respect
 to
 permeability
 was
 
used
 to
 determine
 the
 uncertainties
 of
 the
 model
 result,
 with
 a
 p-­‐value
 of
 0.05.
 An
 
example
 chi-­‐squared
 landscape
 is
 shown
 in
 Figure
 12.
 These
 results
 correspond
 to
 
the
 data
 set
 shown
 in
 Figure
 11.
 
 

 
J =PΔc

  37
 

 

 
Figure
 12:
 χ
2
 
landscape
 for
 a
 data
 set
 of
 0%
 POxnoPC.
 The
 minimum
 χ
2
 
value
 corresponds
 to
 the
 
permeability
 from
 the
 best
 fit
 of
 the
 model.
 The
 inset
 panel
 shows
 a
 close
 up
 view
 of
 the
 minimum
 χ
2
 
value.
 A
 chosen
 critical
 value
 of
 p
 =
 0.05
 corresponds
 to
 a
 χ
2
 
greater
 than
 this
 minimum;
 at
 this
 χ
2
,
 the
 
uncertainty
  of
  the
  permeability
  can
  be
  calculated.
  The
  critical
  value
  indicates
  the
  +/-­‐
  of
  the
 
permeability
 for
 that
 degree
 of
 certainty
 (shown
 in
 purple
 on
 the
 inset).
 

 
2.4  
 Results
 and
 Discussion
 
2.4.1 Comparison
 of
 capture
 methods:
 mechanical
 vs.
 chemical
 trapping
 

 
Prior
 to
 capturing
 experimental
 data,
 we
 wanted
 to
 compare
 the
 permeability
 
values
 measured
 using
 the
 two
 trapping
 methods
 discussed
 in
 Section
 2.2.4.
 Vesicles
 
with
 a
 molar
 ratio
 of
 42.5:42.5:15
 DMPC:PLinPC:Chol
 were
 examined
 using
 the
 
mechanical
 trapping
 system
 and
 the
 biotin-­‐avidin
 capture.
 Results
 for
 permeability
 
of
 each
 capture
 method
 are
 shown
 in
 Figure
 13.
 
χ
2
 
Value
 

  38
 

 
Figure
 13:
 Comparison
 of
 permeability
 for
 vesicles
 captured
 using
 a
 mechanical
 trap
 vs.
 a
 biotin-­‐
avidin
 chemical
 trap.
 The
 permeability
 for
 vesicles
 captured
 using
 the
 biotin-­‐avidin
 interaction
 is
 
slightly
 higher
 than
 that
 of
 vesicles
 captured
 using
 the
 mechanical
 trap.
 
 

 

 
While
 there
 are
 advantages
 to
 using
 the
 mechanical
 trap,
 such
 as
 larger
 vesicle
 sizes
 
and
 smaller
 uncertainty
 values,
 this
 type
 of
 trapping
 could
 not
 capture
 the
 smaller
 
vesicles
 formed
 at
 higher
 levels
 of
 POxnoPC.
 As
 the
 biotin-­‐avidin
 trapping
 technique
 
was
 capable
 of
 capturing
 all
 vesicle
 sizes,
 it
 was
 the
 preferred
 method
 for
 
permeability
 experiments.
 
2.4.2 Permeability
 of
 vesicles
 with
 low
 levels
 of
 oxidation
 

 
For
 concentrations
 of
 0-­‐10%
 POxnoPC,
 GUVs
 were
 unilamellar
 with
 diameters
 
between
 10-­‐50
 μm.
 Representative
 permeation
 curves
 for
 0
 mol%
 and
 2.5
 mol%
 
POxnoPC
 are
 shown
 in
 Figure
 14.
 The
 data
 shown
 include
 the
 fluorescence
 
intensities
 at
 the
 exterior
 boundary
 point
 and
 the
 vesicle
 center
 as
 functions
 of
 time.
 
The
 finite
 difference
 model
 results
 are
 shown
 in
 red.
 After
 addition
 of
 POxnoPC,
 the
 

  39
 
vesicles
 were
 too
 small
 to
 be
 efficiently
 captured
 by
 the
 mechanical
 trapping
 device.
 
For
 these
 compositions,
 the
 biotin-­‐avidin
 interaction
 was
 used
 to
 capture
 vesicles
 
for
 analysis.
 As
 shown
 in
 Figure
 14a,
 the
 permeability
 of
 the
 0%
 POxnoPC
 vesicle
 is
 
2.80
 x10
-­‐6
 
cm/s.
 This
 is
 one
 order
 of
 magnitude
 less
 than
 the
 permeability
 of
 the
 
2.5%
 POxnoPC
 vesicle
 in
 Figure
 14b
 (2.85x10
-­‐5

 cm/s).
 
 

 
Figure
 15
 shows
 the
 trend
 between
 measured
 permeabilities
 vs.
 percent
 oxidation
 
over
 several
 trials
 for
 each
 composition.
 Two
 permeability
 regimes
 were
 clearly
 
observed.
 The
 first
 regime,
 observed
 for
 membranes
 with
 no
 POxnoPC,
 corresponds
 
to
 slow
 passive
 transport
 across
 the
 membranes,
 with
 permeability
 on
 the
 order
 of
 
1.5x10
-­‐6

 cm/s.
 The
 second
 regime,
 seen
 for
 concentrations
 of
 POxnoPC,
 between
 2.5
 
and
 10%
 of
 the
 total
 composition,
 corresponds
 to
 fast
 transport
 with
 permeability
 
on
 the
 order
 of
 1.5x10
-­‐5

 cm/s.
 Even
 small
 quantities
 of
 oxidation
 cause
 a
 large
 
increase
 in
 the
 permeability
 of
 the
 membrane.
 The
 addition
 of
 the
 POxnoPC
 also
 
caused
 an
 overall
 decrease
 in
 vesicle
 size
 (details
 in
 Section
 2.4.4).
 

 

  40
 

 

 
Figure
 14:
 Intensity
 data
 and
 model
 fit
 for
 a
 data
 set
 with
 a)
 0%
 POxnoPC
 and
 b)
 2.5%
 POxnoPC.
 The
 
green
 data
 points
 indicate
 the
 normalized
 outside
 intensity
 data
 (measured
 at
 one
 vesicle
 radius
 
from
 the
 GUV
 membrane),
 the
 blue
 indicate
 normalized
 vesicle
 interior
 intensity
 data.
 The
 red
 line
 
indicates
 the
 results
 of
 the
 finite
 difference
 model
 for
 the
 best-­‐fit
 permeability.
 Image
 scale
 bars
 are
 
10
 μm.
 The
 permeability
 of
 the
 0%
 POxnoPC
 data
 in
 a)
 shows
 a
 permeability
 of
 2.80x10
-­‐6

 cm/s,
 
which
  is
  almost
  two
  orders
  of
  magnitude
  lower
  than
  the
  permeability
  of
  the
  2.5%
  POxnoPC
 
membrane
 (P
 =
 2.85x10
-­‐5

 cm/s)
 shown
 in
 b).
 
 

 
a)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
b)
 

 

 

  41
 

 
Figure
 15:
 Calculated
 permeability
 vs.
 percent
 oxidized
 species
 for
 four
 vesicle
 compositions.
 Note
 
that
 there
 appear
 to
 be
 two
 regimes
 of
 permeability:
 a
 slow
 regime
 for
 no
 POxnoPC
 present,
 and
 a
 
fast
 regime
 for
 low
 levels
 (2.5-­‐10%)
 POxnoPC
 present.
 The
 difference
 between
 these
 two
 regimes
 is
 
almost
 two
 orders
 of
 magnitude.
 
 

 
2.4.3 Pore
 formation
 in
 vesicles
 with
 high
 levels
 of
 oxidation
 

 
For
 compositions
 of
 12.5-­‐18%
 POxnoPC,
 the
 standard
 electroformation
 protocol
 
produced
 a
 low
 yield
 of
 high-­‐quality
 unilamellar
 vesicles.
 Most
 vesicles
 displayed
 
characteristics
 such
 as
 tubule
 formation,
 irregular
 shape,
 or
 decreased
 overall
 size.
 
Representative
 images
 of
 vesicle
 formation
 for
 each
 composition
 are
 shown
 in
 
Figure
 16.
 
 

 

  42
 

   
   
 

 
Figure
 16:
 SDCM
 images
 showing
 vesicle
 formation
 for
 a)
 12.5%
 POxnoPC,
 b)
 15%
 POxnoPC,
 and
 c)
 
18%
 POxnoPC.
 For
 each
 composition,
 in
 addition
 to
 spherical
 vesicles,
 the
 lipids
 appear
 to
 form
 
tubules
  and
  nonspherical
  structures.
  Spherical
  vesicles
  are
  typically
  quite
  small
  (<10
  μm
  in
 
diameter).
 Scale
 bars
 are
 10
 μm.
 

 

 
These
 vesicles
 all
 displayed
 extremely
 rapid
 transport
 properties
 inconsistent
 with
 
passive
 diffusive
 transport
 across
 the
 bilayer.
 For
 all
 compositions
 in
 this
 range,
 
both
 40
 kDa
 and
 2000
 kDa
 fluorescein-­‐dextran
 molecules
 were
 able
 to
 cross
 the
 
membrane.
 At
 POxnoPC
 compositions
 less
 than
 12%,
 the
 membrane
 was
 
impermeable
 to
 either
 dextran
 species.
 These
 results
 indicate
 that
 macromolecule-­‐
admitting
 pores
 are
 formed
 in
 the
 membrane.
 Since
 the
 2000
 kDa
 fluorescein-­‐
dextran
 was
 able
 to
 travel
 through
 these
 pores,
 we
 can
 estimate
 the
 pore
 size
 from
 
the
 hydrodynamic
 diameter
 of
 the
 fluorescein-­‐dextran.
 Previous
 studies
 have
 
established
 the
 diameter
 of
 2000
 kDa
 fluorescein-­‐dextran
 as
 545
 Å,
101

 so
 we
 can
 
estimate
 that
 pore
 diameter
 must
 be
 greater
 than
 this
 value.
 Figure
 17
 shows
 
images
 of
 GUVs
 in
 fluorescein-­‐dextran
 solution
 at
 various
 compositions.
 Dextran
 
permeability
 is
 apparent
 at
 the
 higher
 concentrations
 of
 oxidized
 species.
 

 

 

 
a)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 b)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 c)
 

  43
 
%POxnoPC
 
561
 
(40
 kDa)
 
491
 
(40
 kDa)
 
561
 
(2000
 kDa)
 
491
 
(2000
 kDa)
 
10%
 

   
   
   
 
12.5%
 

   
   
   
 
15%
 

   
   
   
 
18%
 

   
   
   
 

 
Figure
 17:
 SDCM
 images
 showing
 pore
 formation
 for
 vesicles
 with
 12.5-­‐18%
 POxnoPC.
 The
 10%
 
POxnoPC
 images
 are
 shown
 as
 a
 reference
 for
 vesicles
 without
 pore
 formation,
 as
 neither
 species
 of
 
fluorescein-­‐dextran
 could
 enter
 the
 vesicle.
 For
 higher
 concentrations
 of
 oxidized
 species,
 both
 the
 
40
 kDa
 and
 the
 2000
 kDa
 fluorescein-­‐dextran
 was
 able
 to
 enter
 the
 vesicle.
 As
 both
 species
 are
 too
 
large
 to
 enter
 the
 vesicle
 through
 passive
 transport
 pathways,
 this
 indicates
 that
 nanoscale
 pores
 are
 
present
 in
 the
 membrane
 for
 these
 concentrations
 of
 oxidized
 lipid.
 Scale
 bar
 is
 20
 μm,
 and
 all
 images
 
are
 the
 same
 resolution.
 

 
2.4.4 Relationship
 between
 permeability
 and
 vesicle
 diameter
 

 
The
 addition
 of
 the
 POxnoPC
 caused
 an
 overall
 decrease
 in
 vesicle
 size.
 Figure
 18
 
shows
 the
 average
 diameter
 measured
 for
 each
 of
 the
 compositions
 analyzed
 in
 the
 
main
 text.
 
 From
 the
 analyzed
 data
 points,
 the
 diameter
 is
 shown
 to
 decrease
 with
 
increased
 amounts
 of
 oxidation.
 This
 decrease
 in
 vesicle
 size
 is
 not
 unexpected:
 
previous
 research
 has
 demonstrated
 the
 changes
 in
 membrane
 curvature
 and
 

  44
 
budding
 due
 to
 lipid
 oxidation.
62

 The
 cleaved
 tail
 group
 has
 been
 associated
 with
 
decreased
 lipid
 area
 and
 corresponding
 decreases
 in
 membrane
 area.
64

 
 

 

 
Figure
  18:
  Correlation
  between
  vesicle
  diameter
  and
  percent
  oxidation.
  The
  average
  vesicle
 
diameter
 was
 calculated
 for
 each
 of
 the
 four
 compositions
 measured
 for
 permeability
 (shown
 in
 
Figure
 15).
 As
 oxidation
 increases,
 overall
 vesicle
 size
 decreases.
 Despite
 this
 trend,
 there
 does
 not
 
appear
 to
 be
 a
 correlation
 between
 measured
 permeability
 and
 vesicle
 diameter,
 as
 shown
 in
 Figure
 
19.
 
 

 

 
It
 is
 important
 to
 note,
 however,
 that
 the
 permeability
 does
 not
 appear
 to
 be
 
correlated
 with
 the
 diameter.
 Figure
 19
 plots
 permeability
 for
 all
 vesicles
 observed
 
as
 a
 function
 of
 vesicle
 diameter.
 While
 the
 trend
 shown
 in
 Figure
 18
 clearly
 results
 
in
 clustering—0%
 POxnoPC
 vesicles
 are
 big
 and
 relatively
 impermeable
 in
 
comparison
 to
 other
 compositions—there
 is
 no
 discernable
 dependence
 of
 
permeability
 of
 vesicle
 size
 within
 the
 two
 clusters.
 

 

  45
 

 
Figure
 19:
 Measured
 permeability
 vs.
 vesicle
 diameter
 for
 four
 levels
 of
 lipid
 oxidation.
 There
 does
 
not
  appear
  to
  be
  a
  correlation
  between
  measured
  permeability
  and
  vesicle
  diameter.
  The
 
permeability
 was
 plotted
 vs.
 diameter
 for
 vesicles
 containing
 various
 amounts
 POxnoPC.
 There
 does
 
not
 appear
 to
 be
 a
 trend
 between
 these
 two
 parameters.
 

 
2.4.5 Impact
 of
 biotin-­‐DPPE
 on
 measured
 permeability
 

 
Since
 biotin-­‐DPPE
 was
 used
 to
 immobilize
 the
 vesicles
 to
 the
 surface
 of
 the
 
microfluidic
 channel,
 we
 examined
 the
 effect
 of
 biotin-­‐DPPE
 concentration
 on
 the
 
measured
 permeability.
 To
 test
 if
 the
 presence
 of
 biotin-­‐DPPE
 had
 an
 effect
 on
 
membrane
 permeability,
 we
 varied
 the
 amount
 of
 biotin-­‐DPPE
 present
 in
 the
 
membrane
 then
 measured
 the
 permeability.
 We
 chose
 two
 levels
 of
 oxidation
 (0
 
mol%
 POxnoPC
 and
 10
 mol%
 POxnoPC)
 to
 examine.
 For
 each
 of
 these
 oxidation
 
points,
 we
 decreased
 the
 biotin-­‐DPPE
 concentration
 from
 6
 mol%
 to
 either
 4
 mol%
 
or
 2
 mol%.
 Results
 for
 these
 tests
 are
 shown
 in
 Figure
 20.
 There
 is
 no
 apparent
 
effect
 of
 biotin-­‐DPPE
 on
 the
 membrane
 permeability.
 
 

 

  46
 

 
Figure
 20:
 Measured
 permeability
 vs.
 mol
 %
 biotin-­‐DPPE
 for
 two
 levels
 of
 oxidation:
 0
 mol%
 and
 10
 
mol%
 POxnoPC.
 For
 each
 composition,
 permeability
 does
 not
 appear
 to
 depend
 on
 biotin-­‐DPPE
 
concentration.
 

 
2.4.6 Discussion
 

 
The
 replacement
 of
 an
 unsaturated
 lipid
 in
 a
 bilayer
 with
 its
 oxidization
 product
 
increases
 the
 permeability
 of
 the
 bilayer
 to
 a
 test
 species.
 As
 the
 concentration
 of
 
this
 oxidized
 product
 increases,
 it
 is
 possible
 to
 observe
 three
 distinct
 permeability
 
regimes.
 The
 first
 regime
 consists
 of
 vesicles
 containing
 no
 POxnoPC
 where
 
transport
 is
 slow.
 The
 second
 regime
 is
 for
 low
 to
 mid
 levels
 of
 oxidation
 (2.5-­‐10%
 
POxnoPC),
 where
 transport
 is
 about
 one
 order
 of
 magnitude
 faster
 than
 the
 slow
 
regime.
 In
 this
 regime,
 the
 passive
 transport
 process
 can
 still
 be
 measured
 and
 is
 
consistent
 with
 permeation-­‐diffusion
 across
 the
 membrane.
23

 The
 third
 regime
 
consists
 of
 vesicles
 containing
 high
 amounts
 of
 oxidation
 (12.5-­‐18%
 POxnoPC).
 
These
 membranes
 show
 characteristics
 of
 pore
 formation,
 allowing
 molecules
 as
 
large
 as
 2000
 kDa
 fluorescein-­‐dextran
 to
 cross
 the
 membrane.
 This
 is
 lower
 than
 the
 

  47
 
20%
 limit
 of
 POxnoPC
 in
 a
 POPC
 membrane
 at
 which
 defects
 have
 been
 previously
 
observed
 by
 Volinsky
 and
 coworkers.
90

 The
 discrepancy
 is
 likely
 explained
 by
 
different
 membrane
 compositions:
 the
 same
 study
 confirms
 a
 significantly
 lower
 
poration
 limit
 for
 a
 different
 oxidation
 product
 of
 POPC.
90

 
 A
 second
 study
 
demonstrated
 that
 destabilizing
 pore
 formation
 in
 membranes
 consisting
 of
 DPPC
 
and
 oxidized
 linoleoyl-­‐palmitoyl-­‐lecithin
 did
 not
 occur
 below
 50%
 oxidized
 
species.
89

 Taken
 together,
 these
 results
 indicate
 that
 both
 the
 membrane
 
composition
 and
 the
 identity
 of
 the
 oxidized
 species
 determine
 how
 much
 oxidation
 
causes
 membrane
 destabilization.
 

 
A
 second
 important
 result
 is
 that
 a
 small
 amount
 of
 oxidation
 (2.5%
 POxnoPC)
 can
 
cause
 a
 drastic
 increase
 membrane
 permeability.
 This
 increase,
 corresponding
 to
 
one
 order
 of
 magnitude
 in
 permeability,
 represents
 a
 significant
 compromise
 of
 the
 
barrier
 function
 of
 the
 lipid
 bilayer.
 This
 would
 indicate
 that
 even
 low
 levels
 of
 
oxidation
 can
 have
 significant
 impact
 on
 membrane
 function.
 However,
 notably,
 
there
 was
 no
 discernible
 difference
 between
 the
 measured
 permeability
 between
 
2.5%
 and
 10%
 oxidation,
 indicating
 that
 low
 levels
 of
 oxidation
 are
 as
 damaging
 as
 
significantly
 higher
 levels
 to
 the
 barrier
 properties
 of
 the
 membrane.
 Until
 pore
 
formation
 began
 to
 occur,
 additional
 oxidation
 of
 the
 vesicles
 did
 not
 continue
 to
 
increase
 the
 membrane
 permeability.
 
 

 
This
 result
 is
 surprising,
 especially
 given
 early
 work
 on
 the
 oxidation/permeability
 
relationship.
 In
 1980,
 Mandal
 and
 Chatterjee
 examined
 the
 effect
 of
 ultraviolet
 

  48
 
radiation
 on
 the
 oxidation
 process
 and
 permeability
 of
 liposomes.
102

 Vesicle
 leakage
 
of
 chromate
 anions
 was
 measured
 during
 the
 irradiation
 process,
 demonstrating
 a
 
linear
 increase
 in
 leakage
 with
 the
 amount
 of
 oxidation.
 The
 amount
 of
 oxidation
 per
 
liposome
 was
 measured
 via
 optical
 absorbance
 of
 conjugated
 dienes.
 While
 this
 
technique
 is
 a
 simple
 method
 for
 measuring
 a
 single
 oxidation
 species,
 it
 has
 been
 
suggested
 that
 this
 species
 accounts
 for
 less
 than
 5%
 of
 the
 total
 oxidation
 
products.
103

 Both
 the
 importance
 of
 composition
 on
 oxidation
 effects
 and
 the
 
presence
 of
 other
 potential
 oxidation
 products
 in
 the
 liposomes
 could
 account
 for
 
the
 differences
 in
 the
 reported
 trends
 between
 permeability
 and
 lipid
 oxidation.
 
 
 

 
The
 compositions
 in
 the
 pore-­‐formation
 regime
 are
 also
 notable.
 While
 these
 
membranes
 showed
 pore
 formation,
 the
 membranes
 themselves
 were
 stable
 over
 
several
 hours.
 Previous
 studies
 have
 shown
 that
 oxidation
 can
 cause
 rapidly
 
opening
 and
 closing
 pores
 in
 phospholipid
 membranes.
64

 While
 it
 is
 not
 clear
 if
 the
 
pores
 formed
 in
 the
 third
 regime
 are
 transient
 or
 stable,
 the
 existence
 of
 pores
 is
 
consistent
 with
 previous
 studies.
104

 

 
One
 particular
 concern
 in
 obtaining
 GUVs
 with
 precise
 levels
 of
 oxidation
 is
 the
 
potential
 for
 lipid
 oxidation
 during
 electroformation.
 Although
 electroformation
 is
 
known
 to
 cause
 both
 oxidation
 and
 variations
 in
 concentration,
 the
 presence
 of
 α-­‐
tocopherol
 (as
 used
 in
 this
 study)
 has
 been
 consistently
 shown
 to
 prevent
 
oxidation.
105

 The
 difference
 in
 composition
 between
 vesicles
 formed
 during
 the
 
electroformation
 process
 has
 been
 studied
 previously.
106

 By
 examining
 the
 

  49
 
difference
 in
 fluorescence
 intensity
 of
 the
 membrane,
 it
 was
 shown
 that
 the
 overall
 
composition
 varied
 by
 less
 than
 2
 mol%
 between
 vesicles
 in
 one
 electroformation
 
batch.
 
2.5 Conclusion
 

 
Our
 results
 contribute
 additional
 understanding
 to
 the
 field
 of
 changes
 in
 bilayer
 
properties
 during
 phospholipid
 oxidation.
 Previous
 work
 has
 examined
 the
 effect
 of
 
lipid
 oxidation
 on
 numerous
 membrane
 properties.
 Shape
 changes
 such
 as
 the
 
formation
 of
 membrane
 buds
 and
 tubules
 have
 been
 examined
 extensively.
62

 These
 
shape
 changes
 are
 attributed
 to
 an
 initial
 increase,
 followed
 by
 a
 decrease,
 in
 
membrane
 curvature
 with
 the
 oxidation
 process.
107

 The
 variation
 in
 curvature
 is
 
also
 associated
 with
 an
 increase
 in
 membrane
 surface
 area.
63

 Additional
 work
 has
 
shown
 decreases
 in
 membrane
 tension,
108

 fluidity,
65

 and
 increases
 in
 lipid
 flip-­‐flop
 
rate.
90

 Phase
 separation
 is
 promoted
 by
 lipid
 oxidation
 in
 both
 liquid
 ordered
 –
 
liquid
 disordered
 systems,
66,67,86

 as
 well
 as
 membranes
 containing
 a
 liquid-­‐extended
 
phase.
109

 Some
 studies
 have
 shown
 complete
 membrane
 disintegration
 at
 high
 
levels
 of
 lipid
 oxidation.
108

 Despite
 significant
 research
 into
 the
 impact
 of
 oxidation
 
on
 membrane
 properties,
 the
 effect
 of
 membrane
 damage
 from
 oxidation
 on
 
permeability
 has
 not
 been
 characterized
 in
 detail.
 Previous
 studies
 of
 the
 impact
 of
 
lipid
 oxidation
 on
 membrane
 characteristics
 have
 shown
 in
 general
 that
 decreasing
 
bilayer
 thickness
84

 and
 increasing
 lipid
 mobility
110
—both
 demonstrated
 results
 of
 
oxidation—would
 lead
 to
 increased
 permeability.
 While
 we
 observed
 no
 phase
 
separation
 in
 any
 of
 the
 vesicles
 examined,
 it
 is
 also
 possible
 that
 phase
 separation
 
at
 a
 scale
 below
 the
 resolution
 of
 optical
 microscopy
 could
 lead
 to
 changes
 in
 

  50
 
membrane
 permeability.
 Here
 we
 show
 conclusive
 evidence
 that
 permeability
 does
 
increase
 with
 oxidation,
 leading
 to
 three
 distinct
 regimes
 of
 permeability
 for
 zero,
 
low,
 and
 high
 levels
 of
 lipid
 oxidation.
 The
 low
 levels
 of
 oxidation
 in
 this
 study
 are
 
particularly
 of
 interest,
 as
 concentrations
 as
 low
 as
 1.3x10
-­‐4
 
%
 of
 oxidized
 to
 total
 
phospholipid
 species
 have
 been
 associated
 with
 the
 formation
 of
 atherosclerotic
 
lesions
 in
 humans.
111

 Further
 experimentation
 of
 low
 levels
 of
 phospholipid
 
oxidation
 is
 necessary
 to
 fully
 understand
 the
 role
 of
 phospholipid
 oxidation
 in
 cell
 
degradation
 and
 death.
 
3 The
 addition
 of
 cleaved
 tail
 fragments
 during
 lipid
 
oxidation
 stabilizes
 membrane
 permeability
 behavior
 
3.1 Motivation
 

 
Lipid
 oxidation
 is
 associated
 with
 numerous
 physiological
 conditions
 including
 
atherosclerosis
68

 and
 aging.
69

 A
 key
 set
 of
 lipid
 oxidation
 reactions
 includes
 those
 
involving
 an
 unsaturated
 lipid
 tail
 group
 and
 a
 reactive
 oxygen
 species.
 The
 
presence
 of
 reactive
 oxygen
 species
 in
 biological
 systems
 have
 been
 linked
 to
 
exposure
 to
 radiation;
85

 air
 pollutant
 inhalation;
85

 signaling
 processes;
88

 and
 cell
 
respiration
 and
 metabolism.
87

 Significant
 membrane
 effects
 such
 as
 increases
 in
 
membrane
 surface
 area,
63,64

 the
 formation
 of
 tubules
 and
 membrane
 budding,
62

 the
 
promotion
 of
 phase
 separation,
66,67

 and
 decreased
 membrane
 fluidity
65

 have
 also
 
been
 noted.
 
 However,
 the
 impact
 of
 lipid
 oxidation
 on
 passive
 membrane
 
permeability
 has
 not
 been
 extensively
 studied.
 As
 passive
 transport
 is
 a
 generic
 
pathway
 by
 which
 drugs
 and
 environmental
 toxins
 can
 enter
 a
 cell,
2,4

 the
 impact
 of
 

  51
 
lipid
 oxidation
 on
 passive
 permeability
 is
 significant
 to
 understanding
 how
 this
 
process
 affects
 membrane
 barrier
 function.
 

 
We
 previously
 showed
 that
 by
 mimicking
 lipid
 oxidation
 with
 the
 replacement
 of
 an
 
unsaturated
 lipid
 with
 its
 corresponding
 oxidation
 product,
 a
 radical
 increase
 in
 
membrane
 permeability
 occurs
 with
 only
 a
 2.5%
 change
 in
 oxidation.
112

 The
 
previous
 study
 used
 a
 known
 pair
 of
 unsaturated
 lipid—PLinPC
 (1-­‐palmitoyl-­‐2-­‐
linoleoyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine)—and
 its
 corresponding
 oxidized
 product—
POxnoPC
 (1-­‐palmitoyl-­‐2-­‐(9'-­‐oxo-­‐nonanoyl)-­‐sn-­‐glycero-­‐3-­‐phosphocholine).
84,85

 This
 
technique
 is
 an
 effective
 method
 of
 controlling
 membrane
 composition
 to
 correlate
 
oxidation
 to
 permeability.
 The
 oxidation
 pathway
 of
 PLinPC
 has
 been
 shown
 to
 
result
 in
 lipid
 tail
 scission
 yielding
 POxnoPC
 as
 well
 as
 a
 short
 chain
 aldehyde
 as
 the
 
cleaved
 tail
 group.
113

 The
 aldehyde
 can
 be
 further
 oxidized
 to
 a
 carboxylic
 acid.
 A
 
representative
 example
 schematic
 of
 the
 reaction
 process
 is
 shown
 in
 Figure
 21.
 
 
Both
 of
 the
 cleaved
 tail
 fragments
 are
 expected
 to
 be
 surface-­‐active.
 As
 the
 presence
 
of
 surfactants
 in
 model
 membranes
 has
 been
 associated
 with
 the
 formation
 of
 both
 
transient
 and
 stable
 pores,
114

 phase
 destabilization
115

 or
 transition,
116

 and
 the
 
formation
 of
 micelles,
115

 the
 introduction
 of
 these
 cleaved
 tail
 groups
 are
 integral
 to
 
understanding
 the
 effects
 of
 lipid
 oxidation
 on
 membrane
 permeability.
 In
 our
 
previous
 work
 examining
 the
 effects
 of
 oxidation
 on
 bilayer
 permeability,
 only
 the
 
POxnoPC
 product
 was
 included;
112

 here,
 we
 examine
 the
 effect
 on
 permeability
 of
 
including
 the
 oxidation
 products
 corresponding
 to
 the
 cleaved
 tail
 group.
 

 

  52
 
It
 is
 expected
 that
 bilayer
 permeability
 should
 be
 related
 to
 bilayer
 thickness.
 
Oxidation
 has
 been
 linked
 with
 both
 decreased
 bilayer
 thickness
 and
 increased
 lipid
 
tail
 group
 interdigitation.
110,117,118

 The
 difference
 between
 a
 non-­‐interdigitated
 
bilayer
 and
 an
 interdigitated
 one
 can
 be
 examined
 by
 looking
 at
 the
 amount
 of
 
bilayer
 thickness
 corresponding
 to
 the
 tail
 groups
 of
 each
 leaflet.
119

 For
 a
 non-­‐
interdigitated
 bilayer,
 the
 tails
 of
 each
 leaflet
 are
 half
 of
 the
 bilayer
 thickness,
 with
 
no
 overlap
 between
 leaflets.
 In
 interdigitated
 bilayers,
 the
 tail
 groups
 from
 each
 
leaflet
 overlap,
 where
 the
 amount
 of
 overlap
 corresponds
 to
 the
 amount
 of
 
interdigitation.
 Previous
 studies
 have
 shown
 that
 increasing
 bilayer
 thickness
 yields
 
a
 linear
 decrease
 in
 permeability.
120

 The
 relationship
 between
 level
 of
 
interdigitation
 and
 permeation
 has
 also
 been
 examined,
 and
 demonstrated
 that
 
increasing
 interdigitation
 in
 gel-­‐phase
 membranes
 leads
 to
 increased
 
permeability.
121

 In
 the
 present
 report,
 we
 used
 an
 electrophysiological
 technique
 to
 
observe
 changes
 in
 bilayer
 thickness
 upon
 oxidation.
122-­‐124

 
 

 
Giant
 unilamellar
 vesicles
 (GUVs)
 were
 used
 as
 model
 membranes
 to
 measure
 
passive
 transport.
 The
 test
 system
 is
 based
 on
 the
 use
 of
 spinning
 disk
 confocal
 
microscopy
 (SDCM)
 to
 measure
 permeation
 of
 a
 fluorescent
 test
 solute
 in
 a
 
microfluidic
 channel.
60,61,112

 The
 GUVs
 were
 immobilized
 in
 a
 simple
 microfluidic
 Y-­‐
channel
 using
 a
 biotin-­‐avidin
 interaction,
 and
 the
 test
 species
 was
 added
 to
 the
 
channel
 using
 a
 rapid
 microfluidic
 buffer
 exchange.
 The
 transport
 process
 was
 then
 
imaged
 until
 it
 reached
 equilibrium.
 

 

  53
 
The
 oxidation
 pathway
 was
 mimicked
 by
 varying
 the
 molar
 ratio
 of
 PLinPC
 to
 its
 
oxidation
 products
 (POxnoPC
 and
 one
 of
 the
 two
 tail
 fragments,
 hexanal
 or
 hexanoic
 
acid)
 in
 GUVs.
113

 The
 molecular
 structures
 are
 shown
 in
 Figure
 21.
 POxnoPC
 and
 the
 
tail
 fragment
 were
 added
 in
 equimolar
 amounts.
 By
 varying
 the
 ratio
 of
 the
 
unsaturated
 lipid
 to
 the
 oxidation
 products,
 we
 can
 simulate
 different
 points
 along
 
the
 oxidation
 pathway.
 It
 has
 previously
 been
 demonstrated
 that
 POxnoPC
 is
 a
 
major
 termination
 product
 of
 PLinPC
 after
 three
 oxidative
 steps.
85

 The
 first
 two
 
steps
 involve
 abstracting
 a
 hydrogen
 next
 to
 the
 double
 bond,
 then
 a
 reaction
 
between
 the
 carbon-­‐centered
 radicals
 with
 singlet
 oxygen
 to
 form
 peroxyl
 radicals.
 
The
 third
 and
 final
 step
 results
 in
 termination
 of
 the
 tail
 group,
 releasing
 the
 tail
 
fragment.
 

 

 
Figure
 21:
 Reaction
 schematic
 of
 the
 oxidation
 process
 of
 (1)
 PLinPC
 into
 (2)
 POxnoPC
 and
 (3)
 
hexanal,
 then
 the
 second
 oxidation
 step
 of
 (3)
 hexanal
 into
 (4)
 hexanoic
 acid.
 

  54
 

 
This
 study
 focuses
 on
 evaluating
 the
 effect
 of
 lipid
 oxidation
 on
 passive
 transport
 of
 
a
 fluorescent
 short
 chain
 poly(ethylene
 glycol)
 molecule
 (PEG12-­‐NBD).
 PEG12-­‐NBD
 
is
 an
 uncharged,
 hydrophilic
 molecule
 which
 was
 previously
 characterized
 by
 Li
 et
 
al.
 in
 2010
 using
 SDCM
 to
 measure
 its
 octanol/water
 partition
 coefficient
 (0.20
 ±
 
0.02),
 molecular
 weight
 (821.4
 g/mol),
 and
 diffusivity
 (3.6x10
-­‐6

 cm
2
/s).
60

 Choosing
 
an
 uncharged
 species
 simplifies
 the
 transport
 process,
 as
 a
 charged
 molecule
 can
 
interact
 with
 lipid
 headgroups
 and
 demonstrate
 a
 pH-­‐
 or
 charge-­‐dependent
 
permeability.
91

 
 
3.2 Methods
 
3.2.1 Materials
 

 
1,2-­‐dimyristoyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine
 (DMPC),
 1-­‐palmitoyl-­‐2-­‐linoleoyl-­‐sn-­‐
glycero-­‐3-­‐phosphocholine
 (PLinPC),
 cholesterol
 (Chol),
 1-­‐palmitoyl-­‐2-­‐(9’-­‐oxo-­‐
nonanoyl)-­‐sn-­‐glycero-­‐3-­‐phosphocholine
 (POxnoPC),
 1,2-­‐dihexadecanoyl-­‐sn-­‐glycero-­‐
3-­‐phosphoethanolamine-­‐N-­‐(cap
 biotinyl)
 (biotin-­‐DPPE),
 and
 1,2-­‐dipalmitoyl-­‐sn-­‐
glycero-­‐3-­‐phosphoethanolamine-­‐N-­‐(lissamine
 rhodamine
 B
 sulfonyl)
 (rhodamine-­‐
DPPE)
 were
 purchased
 from
 Avanti
 Polar
 Lipids.
 Amino-­‐dPEG12-­‐alcohol
 was
 
purchased
 from
 Quanta
 Biodesign,
 and
 poly(dimethylsiloxane)
 (PDMS)
 was
 
purchased
 from
 Dow
 Chemical.
 Succinimidyl
 6-­‐(N-­‐(7-­‐nitrobenz-­‐3-­‐oxa-­‐1,3-­‐diazol-­‐4-­‐
yl)amino)hexanoate
 (NBD
 NHS-­‐ester)
 and
 avidin
 were
 obtained
 from
 Invitrogen.
 All
 
other
 chemicals
 were
 purchased
 from
 Sigma-­‐Aldrich.
 

 

  55
 
3.2.2 Vesicle
 composition
 and
 formation
 

 
The
 electroformation
 technique
 introduced
 by
 Angelova
 et
 al.
 was
 used
 to
 prepare
 
GUVs.
92,93

 Prior
 to
 oxidation,
 vesicle
 composition
 was
 chosen
 to
 be
 42.5:42.5:15
 
molar
 ratio
 of
 DMPC:PLinPC:Chol.
 0.5
 mol%
 α-­‐tocopherol
 was
 added
 to
 the
 stock
 
solution
 of
 PLinPC
 to
 act
 as
 an
 oxygen
 scavenger
 and
 prevent
 additional
 oxidation
 
during
 electroformation
 and
 imaging.
 0.01
 mol%
 rhodamine-­‐DPPE
 was
 added
 to
 
visualize
 the
 membrane.
 To
 attach
 the
 vesicles
 to
 the
 coverslip,
 we
 added
 6
 mol%
 
biotin-­‐DPPE.
 The
 lipids
 were
 dissolved
 in
 chloroform,
 then
 a
 thin
 film
 was
 spread
 on
 
the
 ITO-­‐coated
 surface
 of
 the
 glass.
 The
 film
 was
 dried
 in
 a
 vacuum
 for
 at
 least
 two
 
hours
 prior
 to
 rehydration
 in
 200
 mM
 sucrose,
 4
 mM
 HEPES
 buffer
 at
 pH
 7.0.
 
Electroformation
 was
 performed
 with
 an
 oscillating
 signal
 of
 1
 V
 at
 10
 Hz
 for
 two
 
hours
 at
 room
 temperature.
 Vesicle
 compositions
 are
 shown
 in
 Table
 2.
 

 
Table
 2:
 Vesicle
 compositions
 studied,
 in
 a
 molar
 ratio.
 Tail
 group
 is
 either
 hexanal
 or
 hexanoic
 acid.
 
Mol
 
DMPC
 
Mol
 
PLinPC
 
Mol
 
POxnoPC
 
Mol
 
Chol
 
Mol
 
Tail
 
42.5
  42.5
  0
  15
  0
 
42.5
  40
  2.5
  15
  2.5
 
42.5
  37.5
  5
  15
  5
 
42.5
  35
  7.5
  15
  7.5
 
42.5
  32.5
  10
  15
  10
 
42.5
  30
  12.5
  15
  12.5
 
42.5
  27.5
  15
  15
  15
 
42.5
  24.5
  18
  15
  18
 

 
GUVs
 were
 immediately
 transferred
 to
 the
 microfluidic
 channel
 after
 
electroformation.
 Un-­‐captured
 vesicles
 were
 gently
 flushed
 from
 the
 system
 using
 
200
 mM
 glucose,
 4
 mM
 HEPES
 buffer
 at
 pH
 7.0
 using
 a
 syringe
 pump.
 

  56
 
3.2.3 Preparation
 of
 test
 molecule
 

 
PEG12-­‐NBD
 was
 used
 as
 the
 permeating
 species.
 Further
 discussion
 can
 be
 found
 in
 
Section
 2.2.3.
 
3.2.4 Microfluidic
 channel
 preparation
 and
 design
 

 
#1
 coverslips
 were
 sonicated
 in
 three
 solvents,
 MilliQ
 water
 (Millipore),
 isopropyl
 
alcohol,
 and
 methyl
 alcohol,
 each
 for
 30
 minutes
 at
 45°C.
 The
 coverslips
 were
 then
 
dried
 in
 an
 oven
 at
 45°C.
 A
 microfluidic
 Y-­‐channel
 mold
 was
 formed
 using
 3D
 
printing
 of
 acrylonitrile
 butadiene
 styrene.
 
 The
 channel
 had
 a
 depth
 of
 1
 mm,
 a
 
width
 of
 1
 mm,
 and
 a
 length
 of
 1
 cm.
 PDMS
 was
 then
 cast
 using
 the
 3D
 printed
 mold.
 
The
 PDMS
 and
 a
 clean
 coverslip
 were
 oxidized
 with
 corona
 treatment
 (BD-­‐20AC,
 
Electro-­‐Technic
 Products)
 for
 irreversible
 bonding.
96

 Vesicles
 were
 captured
 and
 
immobilized
 in
 a
 Y-­‐junction
 channel,
 with
 two
 inlets
 and
 one
 outlet.
 A
 schematic
 of
 
the
 channel
 can
 be
 found
 in
 Figure
 22.
 
 

 

 
Figure
 22:
 Schematic
 of
 the
 microfluidic
 device,
 a
 simple
 Y-­‐channel
 design
 with
 two
 inlets
 and
 a
 
single
 outlet.
 The
 first
 inlet
 is
 for
 plain
 buffer
 and
 the
 second
 is
 for
 buffer
 containing
 the
 transport
 
solute.
  The
  glass
  surface
  was
  functionalized
  with
  biotinylated-­‐PEG-­‐silane
  solution
  prior
  to
 
experimentation.
 After
 channel
 preparation,
 a
 1
 mg/mL
 avidin
 solution
 was
 added
 to
 the
 channel.
 As
 
shown
 in
 the
 inset,
 vesicles
 are
 captured
 in
 this
 device
 using
 a
 biotin-­‐avidin
 interaction.
 

  57
 
A
 biotin-­‐avidin
 interaction
 was
 used
 to
 capture
 the
 vesicles.
 After
 bonding
 the
 
channel,
 the
 glass
 was
 silanized
 using
 silane-­‐PEG-­‐biotin.
 First,
 the
 silane-­‐PEG-­‐biotin
 
was
 hydrolyzed
 in
 a
 95:5
 (v/v)
 solution
 of
 ethanol
 and
 MilliQ
 water.
 After
 five
 
minutes
 of
 hydrolysis,
 50
 μL
 of
 the
 solution
 was
 added
 to
 the
 channel.
 The
 solution
 
was
 allowed
 to
 rest
 for
 10
 minutes
 in
 the
 channel,
 then
 was
 flushed
 from
 the
 
channel
 with
 5x
 excess
 95:5
 (v/v)
 ethanol:water
 solution.
 The
 silane
 layer
 was
 then
 
cured
 by
 allowing
 the
 device
 to
 sit
 at
 room
 temperature
 for
 24
 hours.
 The
 coverslips
 
were
 treated
 with
 a
 1
 mg/mL
 solution
 of
 avidin
 in
 water
 for
 30
 minutes,
 then
 
flushed
 with
 plain
 buffer
 prior
 to
 addition
 of
 GUVs.
 Vesicles
 containing
 6
 mol%
 
biotin-­‐DPPE
 were
 then
 captured
 at
 the
 glass
 surface.
 
3.2.5 Transport
 experiment
 protocol
 

 
After
 all
 unbound
 vesicles
 were
 flushed
 from
 the
 channel,
 a
 single
 unilamellar
 
vesicle
 of
 diameter
 greater
 than
 10
 μm
 was
 selected
 for
 observation.
 A
 buffer
 
solution
 of
 200
 mM
 glucose,
 4
 mM
 HEPES,
 and
 5
 μM
 PEG12-­‐NBD
 at
 pH
 7.0
 was
 
added
 to
 the
 channel
 using
 a
 syringe
 pump.
 A
 flow
 rate
 of
 5
 mL/h
 was
 chosen
 as
 the
 
maximum
 flow
 rate
 that
 consistently
 did
 not
 detach
 or
 damage
 the
 GUVs.
 Spinning
 
disk
 confocal
 microscopy
 with
 a
 Yokogawa
 CSUX
 confocal
 head
 on
 a
 Nikon
 TI-­‐E
 
inverted
 microscope
 was
 used
 to
 observe
 the
 transport
 process.
 Illumination
 
sources
 were
 50
 mW
 solid-­‐state
 lasers
 at
 either
 491
 or
 561
 nm.
 To
 select
 a
 
unilamellar
 GUV
 for
 observation,
 the
 rhodamine-­‐DPPE
 was
 excited
 at
 561
 nm
 with
 
emission
 centered
 at
 595
 nm.
 PEG12-­‐NBD
 transport
 was
 imaged
 with
 excitation
 at
 
491
 nm
 and
 emission
 centered
 at
 525
 nm.
 While
 imaging
 the
 transport
 process,
 the
 
samples
 were
 only
 illuminated
 with
 the
 491
 nm
 laser.
 Images
 were
 collected
 at
 a
 

  58
 
regular
 interval
 during
 the
 buffer
 exchange
 to
 visualize
 the
 fluorescent
 species
 
crossing
 the
 GUV
 membrane.
 
3.2.6 Pore
 formation
 protocol
 

 
The
 presence
 of
 membrane
 pores
 was
 determined
 using
 the
 protocol
 described
 in
 
Section
 2.2.6.
 
3.2.7 Measurement
 of
 bilayer
 thickness
 

 
Lipid
 bilayer
 membranes
 were
 formed
 on
 clear
 acrylic
 chips
 containing
 three
 
collinear
 wells,
 as
 described
 previously.
125

 The
 outer
 wells
 were
 connected
 to
 each
 
other
 through
 a
 channel
 on
 the
 bottom
 of
 the
 chip,
 and
 the
 center
 well
 was
 
connected
 to
 this
 channel
 through
 a
 150-­‐250
 μm
 circular
 aperture
 in
 a
 75
 μm
 thick
 
sheet
 of
 delrin
 (McMaster-­‐Carr).
 The
 chip
 was
 designed
 such
 that
 the
 aperture
 in
 the
 
delrin
 sheet,
 and
 therefore
 the
 lipid
 bilayer,
 were
 oriented
 horizontally
 and
 easily
 
imaged
 through
 the
 clear
 acrylic
 with
 an
 inverted
 microscope.
 
 

 
All
 lipids
 were
 prepared
 at
 20
 mg/mL
 in
 decane
 and
 allowed
 to
 shake
 vigorously
 for
 
1
 hour
 prior
 to
 use.
 1
 M
 KCl,
 10
 mM
 TRIS-­‐HCl,
 pH
 8.0
 was
 used
 as
 the
 aqueous
 phase
 
in
 all
 experiments.
 Lipid
 bilayer
 formation
 was
 adapted
 from
 Mueller
 et
 al.
36

 Lipid
 in
 
decane
 was
 applied
 to
 the
 aperture
 before
 filling
 the
 chambers
 with
 aqueous
 
solution.
 The
 organic
 solvent
 coating
 is
 then
 physically
 manipulated
 with
 a
 glass
 rod
 
until
 a
 bilayer
 is
 formed,
 as
 observed
 optically
 or
 electrically.
 
 

 

  59
 
Ag/AgCl
 electrodes
 were
 placed
 in
 one
 outer
 well
 and
 the
 center
 well
 and
 connected
 
to
 a
 custom
 current
 to
 voltage
 amplifier,
126

 made
 from
 an
 OPA111
 op-­‐amp
 (Texas
 
Instruments)
 and
 a
 1
 GΩ
 feedback
 resistor.
 The
 output
 of
 this
 circuit
 was
 captured
 
by
 a
 LabVIEW
 (National
 Instruments)
 computer
 data
 acquisition
 system.
 Bilayer
 
capacitance
 was
 determined
 by
 applying
 a
 40
 mV
 8
 Hz
 triangle
 wave
 to
 the
 
electrodes
 while
 measuring
 the
 resultant
 current.
 
 The
 entire
 apparatus
 was
 placed
 
in
 a
 small
 aluminum
 box
 with
 4
 inch
 square
 central
 cutouts
 in
 the
 top
 and
 bottom
 
planes
 and
 mounted
 on
 a
 Leica
 DMIRBE
 inverting
 microscope.
 The
 box
 was
 used
 as
 
a
 Faraday
 cage,
 to
 eliminate
 background
 noise.
 Images
 were
 recorded
 with
 an
 
Optronics
 TEC-­‐470
 CCD
 camera
 and
 bilayer
 area
 was
 quantified
 through
 image
 
analysis
 using
 ImageJ.
 

 
In
 the
 case
 of
 higher
 levels
 of
 oxidation,
 the
 bilayers
 were
 only
 stable
 for
 a
 short
 
period
 of
 time.
 In
 these
 cases,
 the
 Faraday
 cage
 could
 not
 be
 replaced
 prior
 to
 
bilayer
 rupture.
 For
 these
 samples,
 filtering
 the
 background
 noise
 was
 necessary
 to
 
analyze
 membrane
 capacitance.
 Further
 discussion
 of
 the
 filtering
 techniques
 used
 
can
 be
 found
 in
 the
 Section
 3.3.1.
 
3.3 Data
 Analysis
 

 
A
 discussion
 of
 data
 analysis
 techniques
 can
 be
 found
 in
 Section
 2.3.
 

 
3.3.1 Filtering
 capacitance
 measurements
 using
 a
 Fourier
 transform
 
approach
 

 
When
 analyzing
 bilayer
 capacitance,
 a
 Faraday
 cage
 was
 placed
 over
 the
 samples
 to
 
eliminate
 background
 noise.
 As
 the
 bilayer
 can
 be
 modeled
 as
 a
 capacitor,
 applying
 a
 

  60
 
triangle
 wave
 voltage
 across
 the
 membrane
 should
 yield
 a
 square
 wave
 current
 
response.
 Bilayers
 containing
 higher
 percentages
 of
 the
 oxidized
 products
 
(POxnoPC,
 hexanal,
 and
 hexanoic
 acid)
 were
 significantly
 less
 stable
 than
 less
 
oxidized
 bilayers.
 Between
 5-­‐7.5%
 oxidation,
 some
 bilayers
 were
 only
 stable
 on
 the
 
order
 of
 seconds,
 making
 collection
 of
 electrical
 measurements
 difficult.
 In
 these
 
cases,
 the
 bilayers
 would
 fuse
 before
 the
 Faraday
 cage
 could
 be
 replaced
 over
 the
 
sample.
 For
 these
 compositions,
 the
 measured
 voltages
 had
 contributions
 from
 both
 
the
 membrane
 and
 the
 background
 noise.
 

 
To
 eliminate
 the
 background
 noise,
 we
 took
 a
 Fourier
 transform
 of
 the
 voltage
 vs.
 
time
 signal,
 to
 convert
 the
 data
 from
 the
 time
 domain
 to
 the
 frequency
 domain.
 Once
 
in
 the
 frequency
 domain,
 the
 extra
 peak
 corresponding
 to
 the
 60
 Hz
 background
 
noise
 is
 evident.
 The
 time-­‐domain
 and
 frequency-­‐domain
 data
 for
 a
 signal
 with
 
background
 noise
 is
 shown
 in
 Figure
 23.
 The
 triangle
 wave,
 shown
 in
 blue,
 was
 the
 
voltage
 across
 the
 membrane,
 and
 the
 membrane
 response
 is
 shown
 in
 red.
 

 

  61
 

 
Figure
 23:
 Raw
 voltage
 data
 collected
 without
 a
 Faraday
 cage.
 For
 bilayers
 of
 higher
 oxidation
 levels
 
(5-­‐7.5%
 oxidation),
 the
 bilayers
 were
 not
 stable
 for
 long
 enough
 to
 replace
 the
 cage,
 leading
 to
 
background
 noise.
 The
 raw
 data
 in
 the
 time-­‐domain
 does
 not
 show
 the
 typical
 square
 wave
 response
 
expected
  of
  a
  capacitor.
  The
  inset
  panel
  shows
  the
  data
  in
  the
  frequency-­‐domain,
  with
  the
 
background
 noise
 peak
 located
 at
 ~60
 Hz.
 

 
The
 background
 noise
 peak
 in
 the
 frequency-­‐domain
 is
 located
 at
 approximately
 60
 
Hz.
 If
 we
 filter
 the
 data
 by
 eliminating
 the
 noise
 peak,
 we
 achieve
 the
 frequency-­‐
domain
 spectra
 shown
 in
 Figure
 24
 (inset).
 With
 an
 inverse
 Fourier
 transform,
 we
 
can
 regain
 our
 original
 signal
 (Figure
 24).
 The
 applied
 voltage
 triangle
 wave
 is
 
shown
 in
 blue,
 and
 the
 membrane
 response
 is
 shown
 in
 green.
 

 

  62
 

 
Figure
 24:
 The
 raw
 data
 from
 Figure
 23
 after
 filtering.
 The
 filter
 was
 applied
 in
 the
 frequency
 
domain
 (shown
 in
 the
 inset
 panel)
 by
 eliminating
 the
 noise
 peak
 at
 ~60
 Hz.
 An
 inverse
 Fourier
 
transform
 was
 then
 used
 to
 convert
 the
 filtered
 data
 from
 the
 frequency-­‐domain
 to
 the
 time-­‐domain.
 
After
 filtering,
 the
 membrane
 response
 is
 the
 expected
 square
 wave
 shape.
 

 
3.4 Results
 and
 discussion
 

 
As
 established
 in
 Runas
 and
 Malmstadt,
 vesicle
 composition
 was
 chosen
 to
 prevent
 
phase
 separation
 prior
 to
 and
 after
 the
 addition
 of
 the
 oxidized
 species.
112

 PLinPC
 
and
 POxnoPC
 were
 chosen
 as
 a
 commercially
 available
 unsaturated
 and
 oxidized
 
pair.
 DMPC
 was
 added
 to
 provide
 a
 non-­‐oxidizing
 background,
 and
 cholesterol
 was
 
added
 to
 decrease
 membrane
 permeability
 such
 that
 the
 transport
 process
 was
 
sufficiently
 slow
 to
 measure
 precisely.
 The
 cholesterol
 content
 was
 tailored
 such
 
that
 vesicles
 did
 not
 show
 phase
 separation
 after
 addition
 of
 POxnoPC.
 Membrane
 

  63
 
structure
 and
 lack
 of
 phase
 separation
 for
 each
 GUV
 was
 confirmed
 prior
 to
 each
 
transport
 experiment.
 

 
GUV
 composition
 was
 varied
 to
 simulate
 the
 oxidation
 process
 between
 0
 and
 18
 
mol%
 total
 oxidation,
 to
 remain
 below
 the
 previously
 established
 poration
 limit.
90

 
To
 simulate
 lipid
 oxidation,
 portions
 of
 the
 PLinPC
 was
 replaced
 with
 its
 
corresponding
 oxidized
 product
 (POxnoPC),
 and
 one
 of
 the
 cleaved
 tail
 groups
 
(hexanal
 or
 hexanoic
 acid)
 in
 equimolar
 amounts.
 
 

 
There
 were
 two
 distinct
 regimes
 of
 permeability
 for
 0-­‐18
 mol%
 oxidation.
 The
 first
 
region
 consists
 of
 vesicles
 between
 0-­‐10
 mol%
 oxidation,
 where
 passive
 
permeability
 could
 be
 explicitly
 measured.
 The
 second
 region
 is
 vesicles
 with
 12.5-­‐
18
 mol%
 oxidation,
 in
 which
 there
 is
 pore
 formation
 in
 the
 membrane.
 Our
 previous
 
work
 on
 vesicles
 containing
 PLinPC
 with
 POxnoPC
 as
 the
 sole
 oxidation
 product
 
showed
 three
 distinct
 regimes.
 First,
 vesicles
 containing
 0%
 POxnoPC
 had
 a
 
permeability
 on
 the
 order
 of
 1.5
 x
 10
-­‐6

 cm/s,
 and
 vesicles
 with
 2.5-­‐10
 mol%
 
POxnoPC
 had
 a
 permeability
 on
 the
 order
 of
 1.5
 x
 10
-­‐5

 cm/s.
112

 Vesicles
 with
 12.5-­‐18
 
mol%
 POxnoPC
 demonstrated
 pore
 formation.
112

 Here,
 we
 demonstrate
 that
 the
 
addition
 of
 the
 cleaved
 tail
 groups
 caused
 a
 significant
 decrease
 in
 measured
 
permeability
 for
 2.5-­‐10
 mol%
 oxidation.
 

 
Figure
 25a
 shows
 the
 trend
 between
 measured
 permeabilities
 vs.
 percent
 oxidation
 
with
 POxnoPC
 and
 hexanal.
 There
 are
 three
 main
 conclusions
 to
 be
 drawn
 from
 the
 

  64
 
addition
 of
 the
 tail
 fragments:
 (1)
 the
 cleaved
 tail
 fragments
 drastically
 change
 the
 
membrane
 response
 to
 small
 amounts
 of
 oxidation,
 (2)
 membrane
 permeability
 
varies
 with
 amount
 of
 oxidation
 when
 tail
 fragments
 are
 present,
 and
 (3)
 membrane
 
permeability
 is
 not
 dependent
 on
 which
 tail
 fragment
 is
 present.
 First,
 with
 the
 tail
 
fragments
 incorporated
 into
 the
 membrane,
 there
 was
 no
 measurable
 difference
 in
 
permeability
 between
 0
 and
 2.5
 mol%
 oxidation.
 Without
 these
 fragments,
 there
 
was
 an
 order
 of
 magnitude
 increase
 with
 that
 slight
 change
 in
 oxidation.
112

 By
 
adding
 the
 tail
 fragments
 to
 the
 membrane,
 we
 can
 negate
 the
 effects
 of
 small
 
amounts
 of
 lipid
 oxidation.
 Second,
 when
 oxidation
 was
 mimicked
 by
 replacing
 
PLinPC
 with
 only
 POxnoPC,
 membrane
 permeability
 was
 characterized
 by
 two
 
distinct
 regimes:
 there
 was
 no
 measurable
 difference
 between
 permeability
 at
 2.5%
 
oxidation
 vs.
 10%
 oxidation.
112

 With
 the
 addition
 of
 the
 tail
 fragments,
 however,
 we
 
see
 that
 the
 permeability
 varies
 with
 percent
 oxidation,
 increasing
 between
 2.5-­‐7.5
 
mol%
 oxidation,
 then
 decreasing
 slightly
 at
 10
 mol%
 oxidation
 for
 either
 tail
 
fragment.
 The
 tail
 fragment
 also
 decreases
 the
 membrane
 permeability
 when
 
compared
 to
 the
 data
 without
 the
 tail
 fragment.
 Similar
 trends
 are
 demonstrated
 for
 
the
 measured
 permeability
 vs.
 percent
 oxidation
 for
 products
 POxnoPC
 and
 
hexanoic
 acid,
 as
 shown
 in
 Figure
 25b.
 
 

 

  65
 

 

 
Figure
 25:
 Permeability
 vs.
 percent
 oxidation
 for
 (a)
 POxnoPC
 and
 hexanal
 and
 (b)
 POxnoPC
 and
 
hexanoic
 acid
 as
 the
 two
 oxidation
 products
 of
 PLinPC.
 For
 both
 cleaved
 tail
 products,
 there
 is
 no
 
difference
 between
 0
 and
 2.5
 mol%
 oxidation.
 However,
 there
 is
 an
 increase
 in
 permeability
 between
 
2.5-­‐7.5
 mol%
 oxidation,
 with
 a
 slight
 decrease
 in
 permeability
 at
 10
 mol%
 oxidation
 for
 both
 cleaved
 
tail
 species.
 

 
a)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
b)
 

  66
 
These
 three
 trends
 in
 comparison
 to
 membranes
 containing
 only
 POxnoPC
 as
 the
 
oxidized
 product
 are
 shown
 in
 Figure
 26.
 Each
 data
 point
 was
 calculated
 by
 taking
 
the
 weighted
 average
 and
 weighted
 uncertainty
 of
 the
 data
 presented
 in
 Figure
 4.
 
None
 of
 the
 compositions
 examined
 had
 a
 permeability
 close
 to
 the
 1.5
 x
 10
-­‐5

 cm/s
 
value
 reported
 for
 vesicles
 with
 2.5-­‐10%
 POxnoPC.
112

 Data
 with
 POxnoPC
 as
 the
 
only
 oxidation
 product
 are
 reproduced
 from
 Runas
 and
 Malmstadt.
112

 

 

 
Figure
  26:
  Average
  permeability
  for
  vesicles
  that
  are
  oxidized
  using
  POxnoPC
  only
  (squares),
 
POxnoPC
 with
 hexanal
 (circles),
 and
 POxnoPC
 with
 hexanoic
 acid
 (triangles)
 

 
One
 possible
 explanation
 for
 this
 behavior
 is
 that
 the
 presence
 of
 the
 cleaved
 tail
 
alters
 the
 bilayer
 structure
 and
 thickness.
 While
 there
 are
 other
 techniques
 for
 
measuring
 bilayer
 thickness,
 electrical
 measurements
 have
 the
 unique
 characteristic
 
in
 that
 they
 are
 relatively
 simple
 to
 set
 up
 and
 analyze.
 A
 simple
 brightfield
 
microscope
 is
 necessary
 for
 measuring
 lipid
 area.
 Then,
 a
 triangle
 wave
 voltage
 is
 

  67
 
applied
 to
 the
 membrane,
 which
 can
 be
 modeled
 as
 a
 capacitor.
 The
 capacitive
 
current
 should
 then
 be
 a
 square
 wave.
 By
 finding
 the
 capacitance
 from
 the
 
measured
 current
 and
 combining
 this
 with
 the
 microscopically
 measured
 area,
 it
 is
 
simple
 to
 determine
 specific
 capacitance
 (capacitance/area),
 which
 is
 inversely
 
proportional
 to
 bilayer
 thickness.
 Results
 of
 specific
 capacitance
 vs.
 percent
 
oxidation
 are
 shown
 in
 Figure
 27.
 Compositions
 containing
 hexanal,
 and
 those
 with
 
10
 mol%
 oxidation
 products
 did
 not
 form
 stable
 planar
 bilayers
 in
 our
 apparatus.
 
 

 

 
Figure
 27:
 Specific
 capacitance
 vs.
 percent
 oxidation
 for
 bilayers
 containing
 POxnoPC
 (squares)
 or
 
POxnoPC
 and
 hexanoic
 acid
 (triangles)
 as
 the
 oxidation
 product.
 
 

 
Our
 data
 demonstrate
 that
 the
 presence
 of
 the
 cleaved
 tail
 as
 an
 oxidation
 product
 
leads
 to
 a
 decrease
 in
 bilayer
 thickness,
 while
 bilayers
 that
 have
 only
 POxnoPC
 as
 

  68
 
the
 oxidation
 product
 have
 a
 thicker
 bilayer
 than
 unoxidized
 membranes.
 While
 the
 
behavior
 of
 oxidized
 membranes
 containing
 only
 POxnoPC
 is
 inconsistent
 with
 
previous
 studies
 demonstrating
 a
 decrease
 in
 thickness
 with
 oxidation,
 the
 
discrepancy
 can
 likely
 be
 explained
 by
 membrane
 composition.
 Membranes
 
containing
 POxnoPC
 have
 been
 demonstrated
 to
 show
 an
 increased
 area
 per
 lipid,
 as
 
the
 POxnoPC
 is
 capable
 of
 reorienting
 itself
 inside
 the
 membrane.
127

 With
 the
 
inclusion
 of
 cholesterol,
 a
 bulky
 species,
 and
 the
 cylindrical
 saturated
 DMPC,
 it
 is
 not
 
unreasonable
 to
 expect
 that
 the
 reorientation
 of
 POxnoPC
 will
 cause
 an
 increase
 in
 
bilayer
 thickness.
 Similarly,
 this
 reorientation
 could
 cause
 the
 increase
 in
 
permeability
 demonstrated
 in
 bilayers
 containing
 POxnoPC
 as
 the
 oxidation
 
product.
 
 

 
Conversely,
 the
 addition
 of
 the
 cleaved
 tail
 product
 hexanoic
 acid
 caused
 a
 small
 
decrease
 in
 bilayer
 thickness
 for
 2.5-­‐5%
 oxidation,
 and
 a
 slight
 increase
 in
 thickness
 
for
 7.5%
 oxidation.
 This
 behavior
 is
 consistent
 with
 previous
 studies
 suggesting
 that
 
bilayer
 thickness
 decreases
 with
 oxidation,
 confirming
 that
 the
 inclusion
 of
 the
 
cleaved
 tail
 species
 is
 integral
 to
 mimicking
 the
 oxidation
 pathway
 in
 a
 bilayer.
 It
 is
 
worth
 noting
 that
 bilayer
 thickness
 alone
 is
 not
 an
 adequate
 predictor
 of
 
permeability:
 a
 plot
 of
 permeability
 vs.
 capacitance
 per
 area
 did
 not
 yield
 any
 
obvious
 trends
 (Figure
 28).
 
 

 

  69
 

 
Figure
 28:
 Permeability
 vs.
 specific
 capacitance
 for
 vesicles
 with
 0-­‐7.5%
 oxidation.
 Neither
 type
 of
 
oxidation
 product
 shows
 a
 linear
 trend
 between
 permeability
 and
 capacitance
 per
 area.
 

 
It
 is
 worth
 noting
 that
 decane
 has
 been
 demonstrated
 to
 incorporate
 into
 optically
 
black
 lipid
 membranes.
 Decane
 incorporates
 in
 these
 membranes,
 increasing
 their
 
thickness.
128

 For
 these
 experiments,
 we
 have
 assumed
 that
 the
 effect
 of
 decane
 on
 
bilayer
 thickness
 is
 consistent
 regardless
 of
 varying
 membrane
 composition.
 While
 
this
 means
 that
 we
 cannot
 determine
 the
 thickness
 of
 the
 membranes
 used
 to
 
measure
 permeability
 (which
 contained
 no
 decane),
 we
 can
 examine
 the
 
relationships
 between
 trends
 in
 specific
 capacitance
 and
 permeability.
 
 

 
At
 higher
 levels
 of
 oxidation,
 both
 oxidation
 products
 cause
 pore
 formation.
 As
 
shown
 in
 Figure
 29,
 at
 compositions
 with
 12.5-­‐18
 mol%
 oxidation,
 the
 standard
 

  70
 
electroformation
 techniques
 produce
 a
 low
 yield
 of
 high
 quality
 vesicles.
 Instead
 
most
 vesicles
 display
 characteristics
 such
 as
 small
 vesicle
 size,
 tubule
 formation,
 or
 
irregular
 shape.
 

 
Oxidation
 
Product
 
12.5%
  15%
  18%
 
Hexanal
 

   
   
 
Hexanoic
 Acid
 

   
   
 

 
Figure
 29:
 SDCM
 images
 showing
 vesicle
 formation
 for
 12.5-­‐18%
 oxidation.
 In
 addition
 to
 small
 
spherical
 vesicles
 (<10
 μm
 in
 diameter),
 electroformation
 yields
 tubules
 or
 non-­‐spherical
 structures.
 
Scale
 bar
 is
 20
 μm,
 and
 all
 images
 are
 the
 same
 resolution.
 

 
For
 oxidation
 amounts
 less
 than
 12.5%,
 the
 two
 fluorescein-­‐dextran
 species
 could
 
not
 permeate
 the
 membrane.
 The
 results
 in
 Figure
 30
 demonstrate
 that
 
macromolecule-­‐admitting
 pores
 are
 formed
 in
 the
 membrane
 for
 higher
 levels
 of
 
lipid
 oxidation.
 Since
 the
 2000
 kDa
 fluorescein-­‐dextran
 is
 able
 to
 cross
 the
 
membrane,
 we
 can
 estimate
 the
 pore
 size
 from
 the
 hydrodynamic
 radius
 of
 the
 
molecule.
 It
 has
 previously
 been
 established
 that
 2000
 kDa
 fluorescein-­‐dextran
 has
 
a
 radius
 of
 545
 Å,
 so
 the
 pore
 radius
 must
 be
 greater
 than
 this
 value.
101

 
 

 

 

  71
 

 
%
 
Hexanal
 
561
 
(40
 kDa)
 
491
 
(40
 kDa)
 
561
 
(2000
 kDa)
 
491
 
(2000
 kDa)
 
10%
 

   
   
   
 
12.5%
 

   
   
   
 
15%
 

   
   
   
 
18%
 

   
   
   
 

 

   
 
a)
 

 

 

 

 

 

 

 

 

 

 

 

 

  72
 

 
%
 
Hexanoic
 
Acid
 
561
 
(40
 kDa)
 
491
 
(40
 kDa)
 
561
 
(2000
 kDa)
 
491
 
(2000
 kDa)
 
10%
 

   
   
   
 
12.5%
 

   
   
   
 
15%
 

   
   
   
 
18%
 

   
   
   
 

 
Figure
 30:
 SDCM
 images
 showing
 pore
 formation
 for
 vesicles
 with
 12.5-­‐18%
 (a)
 hexanal
 and
 (b)
 
hexanoic
  acid.
  The
  10%
  oxidation
  images
  are
  shown
  as
  a
  reference
  for
  vesicles
  without
  pore
 
formation,
 where
 neither
 species
 of
 fluorescein-­‐dextran
 could
 enter
 the
 vesicle.
 For
 higher
 amounts
 
of
 oxidation,
 both
 the
 40
 kDa
 and
 the
 2000
 kDa
 fluorescein-­‐dextran
 were
 able
 to
 enter
 the
 vesicle.
 
Given
 the
 size
 of
 the
 2000
 fluorescein-­‐dextran,
 this
 would
 indicate
 that
 nanoscale
 pores
 are
 present
 
in
 the
 membrane.
 Scale
 bar
 is
 20
 μm,
 and
 all
 images
 are
 the
 same
 resolution.
 

 
3.5 Conclusion
 

 
Our
 results
 demonstrate
 the
 significance
 of
 the
 cleaved
 tail
 product
 when
 mimicking
 
the
 oxidation
 process
 in
 synthetic
 lipid
 bilayers.
 While
 this
 work
 and
 the
 work
 
published
 by
 Runas
 and
 Malmstadt
 in
 2015
 are
 unique
 for
 mimicking
 the
 oxidation
 
pathway
 by
 varying
 the
 ratio
 of
 unsaturated
 to
 oxidized
 product
 during
 vesicle
 
b)
 

  73
 
formation,
 we
 demonstrate
 here
 that
 the
 choice
 of
 oxidation
 product
 is
 critical
 for
 a
 
true
 model
 of
 the
 oxidative
 path.
112

 The
 tail
 fragments
 have
 both
 a
 drastic
 impact
 on
 
permeability
 and
 bilayer
 thickness,
 as
 demonstrated
 here
 by
 measurements
 of
 
specific
 capacitance.
 Both
 results
 were
 surprising,
 as
 the
 tail
 fragments
 are
 
surfactants,
 which
 are
 commonly
 known
 for
 their
 membrane
 destabilizing
 
properties.
114

 When
 added
 to
 membranes
 also
 containing
 the
 oxidized
 POxnoPC,
 
however,
 we
 see
 an
 initial
 decrease
 in
 permeability.
 The
 specific
 capacitance
 data
 
suggest
 that
 the
 inclusion
 of
 these
 tail
 fragments
 decreases
 membrane
 thickness.
 
The
 increase
 in
 permeability
 is
 therefore
 likely
 the
 result
 of
 altering
 the
 membrane
 
properties
 in
 some
 other
 way,
 possibly
 via
 tighter
 lipid
 packing
 in
 the
 bilayer.
 As
 
with
 oxidized
 membranes
 without
 tail
 groups,
 the
 tail
 group-­‐inclusive
 membranes
 
formed
 pores
 at
 12.5
 mol%
 oxidation
 and
 above,
 suggesting
 that
 the
 inclusion
 of
 the
 
tail
 fragments
 has
 no
 impact
 on
 pore
 formation.
 These
 considerations
 are
 integral
 
when
 choosing
 a
 composition
 to
 accurately
 model
 the
 oxidation
 pathway
 in
 a
 lipid
 
bilayer.
 
4 Crossing
 into
 the
 liquid-­‐liquid
 immiscibility
 region
 
causes
 a
 drastic
 change
 in
 the
 permeability
 of
 lipid
 
bilayers
 

 
4.1 Motivation
 

 
Since
 it
 was
 first
 hypothesized
 in
 the
 late
 1990s,
129

 the
 topic
 of
 physically
 relevant
 
lateral
 lipid
 segregation
 in
 biological
 systems
 has
 been
 a
 source
 of
 controversy.
130,131

 
This
 “lipid
 raft
 hypothesis”
 holds
 that
 the
 separation
 of
 lipids
 in
 the
 plasma
 

  74
 
membrane
 into
 liquid
 ordered
 (lo)
 and
 liquid
 disordered
 (ld)
 phases
 corresponds
 to
 
biologically
 relevant
 phenomena.
129

 The
 ordered
 phase
 is
 concentrated
 in
 saturated
 
lipids
 and
 cholesterol,
 while
 the
 disordered
 phase
 contains
 primarily
 unsaturated
 
lipids.
132

 Liquid
 ordered
 rafts
 are
 thought
 to
 associate
 proteins
 such
 as
 GPI-­‐
anchored
 proteins
 and
 certain
 transmembrane
 proteins.
133-­‐137

 Signal
 transduction
 is
 
hypothesized
 to
 be
 linked
 to
 rafts,
 as
 several
 signaling
 molecules
 are
 believed
 to
 
partition
 into
 the
 lo
 phase.
137-­‐139

 While
 the
 topic
 of
 lipid
 liquid-­‐liquid
 phase
 
separation
 was
 sporadically
 examined
 throughout
 the
 1980s,
 direct
 observation
 of
 
lipid
 rafts
 wasn’t
 demonstrated
 in
 model
 membranes
 with
 three
 or
 more
 
components
 until
 the
 early
 2000s.
140,141

 This
 type
 of
 direct
 demonstration
 of
 lipid
 
rafts
 is
 difficult
 to
 apply
 in
 biological
 systems,
142

 making
 model
 membranes
 the
 
optimal
 platform
 for
 studying
 lipid
 rafts.
 
 In
 biomimetic
 membranes,
 preferential
 
partitioning
 of
 commonly
 used
 fluorescent
 probes
 into
 one
 of
 the
 phases
 is
 a
 simple
 
method
 for
 identifying
 phase
 separation;
143

 as
 such,
 the
 presence
 of
 lo
 /
 ld
 
macroscopic
 phase
 separation
 in
 ternary
 systems
 of
 synthetic
 or
 purified
 lipids
 has
 
been
 examined
 in
 great
 detail
 using
 fluorescence
 microscopy.
140,141,144

 An
 example
 
of
 a
 vesicle,
 with
 rhodamine-­‐DPPE
 partitioned
 into
 the
 disordered
 phase,
 is
 shown
 
in
 Figure
 31.
 Förster
 resonance
 energy
 transfer
 (FRET)
 measurements
 have
 been
 
used
 to
 determine
 the
 presence
 of
 nanoscopic
 domain
 segregation
 in
 
liposomes.
145,146

 By
 tagging
 both
 the
 lo
 and
 the
 ld
 
 phases
 with
 a
 FRET
 pair
 of
 dyes,
 a
 
change
 in
 the
 ratio
 of
 donor
 to
 acceptor
 fluorescent
 signals
 can
 indicate
 domain
 
formation
 that
 cannot
 be
 resolved
 by
 traditional
 microscopy
 techniques.
145,147

 

 

  75
 

 

 
Figure
 31:
 SDCM
 image
 showing
 hemispherical
 phase
 separation
 in
 a
 GUV.
 The
 dye,
 rhodamine-­‐
DPPE,
 partitions
 into
 the
 disordered
 phase.
 Note
 that
 the
 ordered
 phase
 is
 difficult
 to
 see,
 as
 no
 dye
 
has
 partitioned
 into
 it.
 The
 scale
 bar
 is
 10
 μm.
 

 
Nuclear
 magnetic
 resonance
 spectroscopy
 is
 another
 frequently
 used
 technique
 for
 
examining
 phase
 separation
 in
 model
 membranes.
106,132,145,148

 For
 example,
 the
 
biological
 role
 of
 liquid-­‐liquid
 phase
 separation
 has
 also
 been
 approached
 through
 
examination
 of
 critical
 fluctuations
 using
 NMR.
149

 At
 a
 critical
 point
 composition,
 
when
 temperature
 is
 varied
 a
 transition
 occurs
 and
 the
 mixture
 transitions
 from
 a
 
co-­‐existing
 liquid
 phases
 to
 a
 single
 liquid
 phase.
150

 These
 critical
 points
 typically
 
exist
 on
 the
 edge
 of
 the
 miscibility
 boundary.
151,152

 It
 has
 been
 suggested
 that
 
biological
 systems
 have
 been
 evolutionarily
 tuned
 to
 exist
 at
 a
 critical
 composition,
 
as
 membrane
 organization
 at
 a
 critical
 point
 requires
 the
 minimal
 amount
 of
 energy
 
to
 maintain.
153

 The
 impact
 of
 this
 phase
 separation
 could
 be
 relevant
 for
 all
 
biological
 systems
 tuned
 to
 the
 critical
 point.
 

 

  76
 
Little
 is
 known
 about
 the
 nature
 and
 properties
 of
 the
 physical
 boundary
 between
 
phase-­‐separated
 domains.
 At
 this
 location,
 there
 is
 a
 hydrophobic
 mismatch
 
between
 the
 two
 phases.
154

 The
 lipids
 at
 this
 boundary
 will
 likely
 deform,
 possibly
 
by
 changing
 their
 tilt
 and
 splay,
 in
 order
 to
 minimize
 the
 line
 tension.
155

 The
 
deformation
 of
 lipids
 at
 the
 boundary
 could
 potentially
 lead
 to
 defects.
 If
 this
 is
 the
 
case,
 domain
 boundaries
 could
 represent
 regions
 of
 increased
 permeability.
 Here,
 
we
 measure
 the
 permeability
 of
 phase-­‐separated
 synthetic
 lipid
 bilayers
 to
 
determine
 what
 impact
 the
 presence
 of
 phase
 boundaries
 might
 have
 on
 membrane
 
permeability.
 

 
We
 evaluate
 the
 impact
 of
 phase
 separation
 on
 the
 permeability
 of
 two
 small
 
molecule
 species:
 a
 fluorescent
 short
 chain
 poly(ethylene
 glycol)
 molecule
 (PEG12-­‐
NBD),
 and
 sodium
 fluorescein
 (Na-­‐Fl).
 Both
 molecules
 have
 been
 previously
 used
 as
 
test
 solutes
 in
 lipid
 bilayer
 permeation
 experiments.
156-­‐159

 They
 were
 chosen
 
because
 they
 are
 small,
 hydrophilic,
 but
 uncharged.
159

 Choosing
 an
 uncharged
 
species
 simplifies
 the
 transport
 model,
 as
 charged
 species
 can
 interact
 with
 the
 lipid
 
headgroups,
 and
 have
 ionic
 strength-­‐
 or
 pH-­‐dependent
 permeability.
91

 The
 
fluorescent
 nature
 of
 these
 two
 solutes
 makes
 imaging
 the
 transport
 process
 simple
 
with
 spinning
 disk
 confocal
 microscopy,
 as
 we
 have
 demonstrated
 previously.
60,61,112

 
4.2 Materials
 and
 methods
 
4.2.1 Materials
 

 
1,2-­‐dipalmitoyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine
 (DPPC),
 1,2-­‐dioleoyl-­‐sn-­‐glycero-­‐3-­‐
phosphocholine
 (DOPC),
 cholesterol,
 1,2-­‐dihexadecanoyl-­‐sn-­‐glycero-­‐3-­‐

  77
 
phosphoethanolamine-­‐N-­‐(cap
 biotinyl)
 (biotin-­‐DPPE),
 and
 1,2-­‐dipalmitoyl-­‐sn-­‐
glycero-­‐3-­‐phosphoethanolamine-­‐N-­‐(lissamine
 rhodamine
 B
 sulfonyl)
 (rhodamine-­‐
DPPE)
 were
 purchased
 from
 Avanti
 Polar
 Lipids.
 Avidin
 and
 succinimidyl
 6-­‐(N-­‐(7-­‐
nitrobenz-­‐2-­‐oxa-­‐1,3-­‐diazol-­‐4-­‐yl)amino)Hexanoate
 (NBD
 NHS-­‐ester)
 were
 obtained
 
from
 Invitrogen.
 Amino-­‐dPEG12-­‐alcohol
 was
 purchased
 from
 Quanta
 Biodesign.
 
Poly(dimethylsiloxane)
 (PDMS)
 was
 purchased
 from
 Dow
 Chemical,
 and
 the
 indium-­‐
tin-­‐oxide
 (ITO)
 coated
 glass
 was
 obtained
 from
 Delta
 Technologies.
 α-­‐tocopherol
 
and
 all
 other
 chemicals
 were
 purchased
 from
 Sigma-­‐Aldrich.
 

 
4.2.2 GUV
 composition
 and
 formation
 

 
GUVs
 were
 prepared
 with
 the
 electroformation
 technique
 introduced
 by
 Angelova
 et
 
al.

 92,93

 Vesicle
 composition
 was
 chosen
 for
 hemispherical
 phase
 separation,
 liquid
 
ordered,
 and
 liquid
 disordered
 phase
 compositions
 based
 on
 the
 ternary
 phase
 
diagram
 at
 25°C
 (reproduced
 from
 Veatch
 et
 al.,
 2004,
 shown
 in
 Figure
 32).
106

 
 

  78
 

 
Figure
 32:
 Phase
 diagram
 replicated
 from
 Veatch
 et
 al.
 in
 2004.
106

 The
 gray
 area
 is
 the
 two-­‐phase
 
region,
 with
 the
 thick
 black
 dashed
 indicating
 a
 tie
 line.
 The
 thinner
 dashed
 lines
 indicate
 the
 
uncertainty
 on
 the
 tie
 line.
 The
 colored
 points
 represent
 the
 percent
 distance
 along
 the
 tie
 line,
 with
 
the
 pure
 disordered
 phase
 composition
 located
 at
 0,
 and
 pure
 ordered
 phase
 located
 at
 100.
 The
 
membrane
 composition
 at
 each
 point
 is
 discussed
 further
 in
 Table
 3.
 

 

 
Rhodamine-­‐DPPE
 was
 added
 at
 0.01
 mol%
 to
 visualize
 the
 membrane.
 PLinPC
 was
 
stored
 with
 0.5
 mol%
 α-­‐tocopherol
 to
 act
 as
 an
 oxygen
 scavenger
 and
 prevent
 
additional
 oxidation
 during
 electroformation
 and
 imaging.
94

 6
 mol%
 biotin-­‐DPPE
 
was
 used
 to
 attach
 the
 GUVs
 to
 the
 avidin-­‐treated
 coverslip.
 The
 lipids
 were
 
dissolved
 in
 chloroform,
 then
 spread
 into
 a
 thin
 film
 on
 the
 surface
 of
 the
 ITO
 coated
 

  79
 
glass.
 The
 film
 was
 dried
 in
 a
 vacuum
 for
 at
 least
 two
 hours
 before
 rehydration
 in
 
pH
 7.0
 buffer
 with
 200
 mM
 sucrose
 and
 4
 mM
 HEPES.
 Electroformation
 was
 
performed
 at
 room
 temperature
 with
 a
 1
 V
 signal
 at
 10
 Hz
 for
 two
 hours.
 
 

 
Table
 3:
 Vesicle
 compositions
 studied.
 

 
%
 Along
 
Tie
 Line
 
Mol%
 
DPPC
 
Mol%
 
DOPC
 
Mol%
 
Chol
 
0
  15
  65
  20
 
5
  17
  62
  21
 
15
  21
  56
  23
 
25
  25
  50
  25
 
50
  35
  35
  30
 
75
  43
  20
  37
 
95
  51
  8
  41
 
100
  53
  5
  42
 

 

 
After
 electroformation,
 GUVs
 were
 immediately
 transferred
 to
 the
 microfluidic
 
channel.
 The
 GUVs
 not
 captured
 in
 the
 channel
 were
 gently
 flushed
 from
 the
 system
 
using
 a
 syringe
 pump
 and
 glucose
 buffer.
 

 
4.2.3 Preparation
 of
 test
 molecule
 

 
The
 technique
 for
 forming
 the
 test
 molecule,
 PEG12-­‐NBD,
 can
 be
 found
 in
 Section
 
2.2.4.
 Sodium
 fluorescein
 (Na-­‐Fl)
 is
 available
 in
 powder
 form
 from
 Sigma-­‐Aldrich.
 A
 
stock
 solution
 of
 8
 μM
 Na-­‐Fl
 in
 4
 mM
 HEPES,
 pH
 7.4
 buffer
 was
 used
 to
 measure
 
transport
 across
 the
 membrane.
 The
 diffusivity
 of
 Na-­‐Fl
 in
 water
 at
 300K
 has
 been
 
experimentally
 measured
 as
 3.9x10
-­‐6

 cm
2
/s,
160

 while
 molecular
 dynamics
 
simulations
 predict
 a
 diffusivity
 of
 4.2x10
-­‐6

 cm
2
/s.
161

 For
 the
 purpose
 of
 these
 
experiments,
 the
 experimental
 value
 of
 3.9x10
-­‐6

 cm
2
/s
 was
 the
 estimated
 diffusivity
 
of
 Na-­‐Fl
 at
 25°C.
 
 

  80
 
4.2.4 Microfluidic
 channel
 preparation
 and
 design
 

 
Details
 on
 the
 Y-­‐channel
 design
 with
 a
 silanized
 glass
 surface
 for
 vesicle
 capture
 can
 
be
 found
 in
 Section
 3.2.4.
 
4.2.5 Transport
 experiment
 protocol
 

 
After
 all
 unbound
 vesicles
 have
 been
 removed,
 a
 single
 GUV
 was
 chosen
 for
 
observation.
 The
 selected
 vesicle
 was
 greater
 than
 10
 μm
 in
 diameter,
 and
 for
 some
 
compositions,
 displayed
 phase
 separation.
 For
 each
 of
 the
 solutes,
 two
 buffers
 were
 
exchanged
 for
 the
 transport
 process.
 The
 compositions
 of
 these
 buffers
 can
 be
 found
 
in
 Table
 4.
 The
 plain
 buffer
 (a
 buffer
 not
 containing
 the
 transport
 solute
 PEG12-­‐NBD
 
or
 Na-­‐Fl)
 was
 used
 to
 flush
 the
 system
 prior
 to
 measuring
 permeation.
 Next,
 the
 
buffer
 containing
 the
 small
 molecule
 of
 interest
 was
 added
 at
 a
 flow
 rate
 of
 5
 mL/h.
 
This
 flow
 rate
 was
 chosen
 as
 the
 highest
 flow
 rate
 that
 would
 not
 damage
 or
 detach
 
the
 GUVs
 from
 the
 coverslip.
 
 As
 discussed
 previously,
 as
 the
 Na-­‐Fl
 formed
 a
 
complex
 with
 the
 sugars
 present
 in
 the
 buffer,
 experiments
 to
 measure
 Na-­‐Fl
 
transport
 used
 buffers
 with
 no
 glucose
 or
 sucrose.
 

 
Table
 4:
 Buffer
 compositions
 used
 for
 transport
 experiments.
 Each
 test
 solute
 (PEG12-­‐NBD
 and
 Na-­‐
Fl)
 had
 a
 “plain”
 buffer
 solution,
 and
 a
 transport
 buffer
 solution
 that
 contained
 the
 solute
 of
 interest.
 

 
Buffer
  mM
 
Glucose
 
mM
 
HEPES
 
μM
 
PEG12-­‐NBD
 
μM
 
Na-­‐Fl
 
pH
 
Plain
 
(PEG12-­‐NBD)
 
200
  4
  0
  0
  7.0
 
PEG12-­‐NBD
  200
  4
  5
  0
  7.0
 
Plain
 
(Na-­‐Fl)
 
0
  4
  0
  0
  7.4
 
Na-­‐Fl
  0
  4
  0
  8
  7.4
 

 

  81
 
A
 Nikon
 TI-­‐E
 inverted
 microscope
 with
 a
 Yokogawa
 CSUX
 confocal
 head
 was
 used
 to
 
perform
 spinning
 disk
 confocal
 microscopy
 to
 observe
 the
 transport
 process.
 50
 
mW
 solid-­‐state
 lasers
 of
 either
 491
 or
 561
 nm
 were
 used
 to
 illuminate
 the
 samples.
 
The
 561
 nm
 laser
 with
 emission
 centered
 at
 595
 nm
 was
 used
 to
 excite
 the
 
rhodamine-­‐DPPE.
 This
 channel
 was
 exclusively
 used
 to
 select
 a
 GUV
 for
 analysis.
 For
 
vesicles
 showing
 phase
 separation,
 the
 561
 nm
 channel
 was
 used
 to
 create
 a
 3D
 map
 
of
 the
 phase
 structure.
 After
 choosing
 a
 vesicle,
 solute
 permeation
 was
 imaged
 with
 
excitation
 at
 491
 nm
 and
 emission
 centered
 at
 525
 nm.
 Only
 the
 491
 nm
 laser
 was
 
used
 to
 illuminate
 the
 sample
 during
 the
 course
 of
 the
 permeation
 experiment.
 
Images
 were
 collected
 at
 regular
 intervals
 as
 the
 fluorescent
 species
 permeated
 the
 
membrane.
 
4.3 Data
 Analysis
 

 
A
 discussion
 of
 data
 analysis
 techniques
 can
 be
 found
 in
 Section
 2.3.
 
4.3.1 Using
 map
 projection
 techniques
 to
 measure
 surface
 area
 and
 
perimeter
 of
 the
 liquid
 disordered
 phase
 

 
A
 3D
 z-­‐stack
 series
 of
 images
 was
 acquired
 for
 each
 vesicle
 prior
 to
 measuring
 
membrane
 permeability.
 These
 z-­‐stacks
 of
 images
 (shown
 in
 Figure
 33
 as
 mean
 
value
 projections)
 were
 then
 used
 to
 identify
 two
 relevant
 parameters
 for
 phase-­‐
separated
 vesicles:
 percent
 disordered
 phase
 surface
 area,
 and
 normalized
 
perimeter
 of
 the
 disordered
 phase.
 In
 order
 to
 measure
 these
 parameters
 from
 the
 
z-­‐stack,
 a
 map
 projection
 technique
 was
 implemented
 to
 turn
 the
 three-­‐dimensional
 
sphere
 surface
 into
 a
 two-­‐dimensional
 map
 of
 the
 two
 phases.
 

 

  82
 

 

 
Figure
 33:
 Ternary
 phase
 diagram
 with
 two
 phase
 region
 indicated
 in
 gray.
 Tie
 line
 is
 indicated
 by
 
the
 thick
 dashed
 line,
 with
 uncertainty
 of
 the
 tie
 line
 in
 the
 thinner
 dashed
 line.
 Phase
 diagram
 
reproduced
 from
 Veatch
 et
 al.
 2004.
106

 Three
 inset
 images
 show
 representative
 z-­‐stacks
 of
 (a)
 25%,
 
(b)
 50%,
 and
 (c)
 95%
 distance
 along
 the
 tie
 line.
 At
 these
 three
 compositions,
 vesicles
 demonstrated
 
clear
 phase
 separation.
 Scale
 bars
 are
 10
 μm.
 

 

 
Gall-­‐Peters
 equal-­‐area
 projection
 equations
 were
 used
 to
 maintain
 the
 area
 
measurements
 for
 each
 phase.
 An
 array
 of
 pixel
 values
 corresponding
 to
 the
 z-­‐stack
 
was
 analyzed
 using
 Matlab.
 The
 globe
 surface
 was
 defined
 using
 the
 measured
 
radius
 (r)
 of
 the
 vesicle.
 Each
 set
 of
 xyz
 coordinates
 was
 converted
 to
 longitude
 (λ)
 
and
 latitude
 (φ)
 in
 radians.
 Each
 coordinate
 set
 was
 then
 analyzed
 using
 the
 Gall-­‐
Peters
 equations,
 shown
 as
 Equation
 7
 and
 Equation
 8.
 The
 surface
 was
 projected
 
onto
 a
 2D
 map
 surface.
 From
 this
 map,
 a
 built-­‐in
 Matlab
 edge
 detection
 algorithm
 
was
 then
 used
 to
 identify
 the
 liquid
 disordered
 and
 liquid
 ordered
 phases.
 

 
𝑥= 𝑟𝜆
 

 
(7)
 

   
 

  83
 
𝑦= 2𝑟𝑠𝑖𝑛 𝜑  
  (8)
 

   
 

 
Next,
 the
 percent
 surface
 area
 of
 the
 liquid
 disordered
 phase
 could
 be
 calculated
 
based
 on
 the
 number
 of
 bright
 pixels
 to
 the
 total
 number
 of
 pixels
 on
 the
 vesicle
 
surface.
 Finally,
 the
 number
 of
 edge
 pixels
 was
 used
 to
 identify
 the
 perimeter
 value
 
of
 the
 disordered
 phase.
 This
 perimeter
 was
 normalized
 to
 the
 vesicle
 diameter,
 to
 
make
 the
 value
 dimensionless.
 
4.4 Results
 

 
Phase
 separation
 in
 a
 ternary
 system
 has
 two
 notable
 consequences
 for
 membrane
 
permeability.
 First,
 compositions
 near
 the
 border
 of
 the
 two-­‐phase
 region
 without
 
visible
 phase
 separation
 show
 drastic
 changes
 in
 permeability
 for
 small
 
compositional
 variance.
 Second,
 vesicles
 showing
 phase
 separation
 have
 a
 large
 
variation
 in
 permeability,
 potentially
 indicating
 the
 presence
 of
 bilayer
 disruption
 
along
 the
 phase
 boundary.
 
4.4.1 Measured
 permeability
 for
 vesicles
 with
 no
 microscopic
 phase
 
separation
 

 
The
 first
 significant
 result
 focuses
 on
 membrane
 behavior
 when
 crossing
 the
 phase
 
boundary.
 Vesicles
 at
 these
 compositions
 (0,
 5,
 and
 100%
 distance
 along
 the
 tie-­‐
line)
 did
 not
 show
 microscopically
 observable
 phase
 separation.
 As
 shown
 in
 Figure
 
34,
 a
 5%
 change
 in
 tie-­‐line
 position
 across
 the
 two-­‐phase
 boundary
 from
 0-­‐5%
 
results
 in
 a
 drastic
 change
 in
 permeability.
 For
 the
 solute
 PEG12-­‐NBD
 (Figure
 34a),
 
the
 variation
 in
 permeability
 across
 the
 boundary
 is
 over
 one
 order
 of
 magnitude.
 
For
 the
 solute
 Na-­‐Fl
 (Figure
 34b)
 the
 permeability
 variation
 is
 approximately
 4x.
 

  84
 

 

 
Figure
 34:
 Permeability
 vs.
 distance
 along
 tie
 line
 for
 (a)
 PEG12-­‐NBD
 and
 (b)
 Na-­‐Fl
 as
 the
 solute
 of
 
interest.
 Inset
 panel
 shows
 the
 location
 of
 the
 four
 points
 on
 the
 phase
 diagram.
 The
 5%
 change
 in
 
(a)
 

 

 
(b)
 

 

 

  85
 
distance
 along
 the
 tie-­‐line
 shows
 a
 drastic
 change
 in
 permeability
 across
 the
 phase
 boundary
 for
 both
 
solutes.
 
 

 
It
 has
 been
 commonly
 recognized
 that
 increased
 cholesterol
 concentration
 
decreases
 membrane
 permeability;
162

 
 however,
 it
 is
 important
 to
 note
 that
 the
 
sharp
 change
 in
 permeability
 at
 the
 edge
 of
 the
 two-­‐phase
 region
 is
 too
 drastic
 to
 be
 
caused
 by
 the
 change
 in
 cholesterol
 concentration.
 As
 shown
 in
 Table
 3,
 a
 5%
 
change
 in
 tie-­‐line
 position
 corresponds
 to
 a
 1
 mol%
 change
 in
 cholesterol.
 
4.4.2 Permeability
 of
 binary
 vesicle
 compositions
 

 
To
 test
 the
 impact
 of
 a
 slight
 change
 in
 cholesterol,
 we
 measured
 the
 permeability
 of
 
a
 binary
 system
 containing
 DOPC
 and
 cholesterol.
 By
 examining
 a
 binary
 system,
 we
 
were
 able
 to
 avoid
 any
 effects
 of
 phase
 separation
 on
 measured
 transport
 rates.
 All
 
vesicles
 contained
 6
 mol%
 biotin-­‐DPPE,
 and
 0.01
 mol%
 rhodamine-­‐DPPE.
 
 The
 
compositions
 for
 these
 experiments
 are
 shown
 in
 Table
 5.
 

 
Table
 5:
 Binary
 vesicle
 compositions
 studied.
 
Mol%
 DOPC
  Mol%
 Chol
 
100
  0
 
90
  10
 
80
  20
 
70
  30
 

 
The
 total
 amount
 of
 cholesterol
 was
 kept
 below
 the
 solubility
 limit
 to
 prevent
 
crystallization
 of
 cholesterol.
163

 Permeability
 of
 these
 membranes
 was
 measured
 
using
 PEG12-­‐NBD,
 as
 discussed
 previously.
 The
 results
 of
 permeability
 vs.
 percent
 
cholesterol
 are
 shown
 in
 Figure
 35.
 By
 comparing
 the
 results
 in
 Figure
 35
 with
 
Figure
 34a,
 we
 can
 see
 that
 a
 30%
 change
 in
 cholesterol
 is
 necessary
 for
 the
 order
 of
 
magnitude
 change
 demonstrated
 across
 the
 phase
 boundary
 for
 PEG12-­‐NBD.
 
 

  86
 

 

 
 

 
Figure
  35:
  Permeability
  vs.
  percent
  cholesterol
  for
  binary
  mixtures
  of
  DOPC
  and
  cholesterol.
 
Permeation
 was
 measured
 using
 PEG12-­‐NBD.
 These
 results
 can
 be
 compared
 to
 the
 permeability
 
measured
 in
 Figure
 34a,
 where
 a
 1%
 change
 in
 cholesterol
 between
 0-­‐5%
 distance
 along
 the
 tie-­‐line
 
yields
 an
 order
 of
 magnitude
 change
 in
 measured
 permeability.
 To
 achieve
 an
 order
 of
 magnitude
 
decrease
 in
 permeability
 of
 the
 binary
 system,
 a
 30%
 change
 in
 cholesterol
 content
 is
 necessary.
 

 
4.4.3 Permeability
 of
 vesicles
 with
 microscopic
 phase
 separation
 

 
The
 second
 significant
 result
 is
 the
 impact
 of
 visible
 phase
 separation
 on
 measured
 
membrane
 permeability.
 For
 the
 compositions
 measured,
 positions
 between
 25-­‐
95%
 position
 along
 the
 tie-­‐line
 showed
 microscopically
 observable
 domain
 
formation.
 For
 these
 compositions,
 the
 measured
 permeability
 varied
 by
 as
 much
 as
 
an
 order
 of
 magnitude.
 This
 variation
 was
 consistent
 regardless
 of
 transport
 solute:
 
as
 shown
 in
 Figure
 36,
 both
 PEG12-­‐NBD
 and
 Na-­‐Fl
 had
 widely
 variable
 permeability
 
measurements
 for
 vesicles
 demonstrating
 phase
 separation.
 

  87
 

 
While
 this
 inconsistency
 appears
 to
 be
 connected
 to
 the
 appearance
 of
 phase
 
separated
 domains,
 it
 is
 important
 to
 note
 that
 there
 were
 no
 observable
 trends
 
between
 permeability
 and
 surface
 area
 of
 the
 domains,
 or
 between
 permeability
 and
 
perimeter
 between
 the
 domains
 (further
 discussion
 in
 Section
 4.4.4
 and
 4.4.5).
 This
 
would
 indicate
 that,
 while
 the
 existence
 of
 phase
 separation
 causes
 some
 sort
 of
 
membrane
 disruption
 leading
 to
 inconsistent
 permeability
 measurements,
 the
 
relationship
 between
 permeability
 and
 amount
 of
 phase
 separation
 is
 more
 complex
 
than
 simply
 surface
 area
 or
 perimeter.
 

   
 

  88
 

 

 
Figure
 36:
 Permeability
 vs.
 distance
 along
 tie
 line
 for
 (a)
 PEG12-­‐NBD
 and
 (b)
 Na-­‐Fl
 as
 the
 solute
 of
 
interest.
  Inset
  panel
  shows
  the
  location
  of
  the
  four
  points
  on
  the
  phase
  diagram.
  For
  vesicle
 
compositions
 showing
 visible
 phase
 separation,
 there
 was
 significant
 variation
 in
 the
 measured
 
(a)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(b)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  89
 
permeability
 values.
 This
 would
 indicate
 that
 the
 presence
 of
 phase
 separation
 causes
 some
 sort
 of
 
disruption
 along
 the
 phase
 boundary.
 

 
4.4.4 Examining
 the
 relationship
 between
 membrane
 permeability
 and
 
disordered
 phase
 surface
 area
 

 
For
 each
 of
 the
 two
 test
 solutes,
 PEG12-­‐NBD
 and
 Na-­‐Fl,
 the
 percent
 disordered
 
phase
 surface
 area
 was
 calculated
 for
 each
 vesicle
 demonstrating
 phase
 separation.
 
The
 compositions
 with
 visible
 phase
 segregation
 were
 25%,
 50%,
 and
 95%
 distance
 
along
 the
 tie
 line,
 as
 shown
 in
 Figure
 36.
 After
 calculating
 the
 percent
 disordered
 
phase,
 we
 could
 examine
 the
 relationship
 with
 permeability.
 Figure
 37
 shows
 
permeability
 vs.
 percent
 disordered
 phase
 surface
 area
 for
 25%,
 50%,
 and
 95%
 
distance
 along
 the
 tie
 line
 for
 (a)
 PEG12-­‐NBD
 and
 (b)
 Na-­‐Fl.
 
 

 

  90
 

 
Figure
 37:
 Permeability
 of
 (a)
 PEG12-­‐NBD
 and
 (b)
 Na-­‐Fl
 vs.
 percent
 disordered
 phase
 surface
 area.
 
The
 compositions
 shown
 had
 visible
 phase
 separation:
 25%
 distance
 along
 the
 tie-­‐line
 (squares),
 
50%
 (triangles),
 and
 95%
 (circles).
 Note
 that
 25%
 distance
 data
 was
 not
 collected
 for
 Na-­‐Fl.
 There
 is
 
no
 apparent
 trend
 for
 either
 solute.
 
(a)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(b)
 

  91
 
No
 trends
 were
 apparent
 for
 either
 solute
 in
 any
 individual
 composition,
 or
 for
 all
 
three
 compositions.
 While
 it
 is
 likely
 that
 there
 is
 some
 relationship
 between
 
permeability
 and
 phase
 behavior,
 given
 the
 variation
 in
 measured
 permeabilities
 for
 
vesicles
 showing
 visible
 phase
 separation,
 the
 correlation
 is
 not
 as
 straightforward
 
as
 permeability
 and
 disordered
 phase
 surface
 area.
 
 
4.4.5 Examining
 the
 relationship
 between
 membrane
 permeability
 and
 
disordered
 phase
 perimeter
 

 
A
 second
 possibility
 is
 that
 the
 permeability
 variation
 is
 dependent
 on
 the
 perimeter
 
of
 the
 phase
 boundary.
 After
 calculating
 the
 perimeter
 of
 the
 disordered
 phase
 for
 
each
 vesicle,
 then
 normalizing
 it
 to
 the
 vesicle
 diameter,
 we
 plotted
 permeability
 vs.
 
normalized
 perimeter
 for
 the
 same
 three
 compositions
 shown
 in
 Figure
 36.
 Figure
 
38
 shows
 the
 permeability
 vs.
 normalized
 perimeter
 for
 25%,
 50%,
 and
 95%
 
distance
 along
 the
 tie
 line
 for
 (a)
 PEG12-­‐NBD
 and
 (b)
 Na-­‐Fl.
 

 

  92
 

 

 
Figure
  38:
 Permeability
 of
 (a)
 PEG12-­‐NBD
 and
 (b)
 Na-­‐Fl
 vs.
 normalized
 phase
 perimeter.
 The
 
compositions
 shown
 had
 visible
 phase
 separation:
 25%
 distance
 along
 the
 tie-­‐line
 (squares),
 50%
 
(a)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(b)
 

  93
 
(triangles),
 and
 95%
 (circles).
 Note
 that
 25%
 distance
 data
 was
 not
 collected
 for
 Na-­‐Fl.
 There
 is
 no
 
apparent
 trend
 for
 either
 solute.
 

 
Again,
 there
 is
 no
 apparent
 trend
 between
 permeability
 and
 normalized
 perimeter.
 
While
 it
 is
 likely
 that
 the
 permeability
 does
 vary
 with
 phase
 boundary,
 given
 the
 
existence
 of
 hydrophobic
 mismatch
154

 and
 lipid
 deformation
 to
 minimize
 line
 
tension
155
,
 the
 correlation
 was
 not
 a
 simple
 one.
 It
 is
 possible
 that
 permeability
 
varies
 with
 both
 surface
 area
 and
 perimeter
 of
 the
 phase
 boundary.
 
 
4.5 Discussion
 

 
The
 first
 result
 demonstrates
 the
 importance
 of
 compositional
 changes
 at
 the
 edge
 
of
 the
 miscibility
 region.
 Near
 these
 boundaries,
 a
 minor
 change
 in
 composition
 
causes
 a
 change
 in
 permeability
 by
 a
 factor
 of
 ten
 (PEG12-­‐NBD)
 or
 a
 factor
 of
 four
 
(Na-­‐Fl)
 without
 visible
 phase
 separation.
 The
 variance
 between
 the
 compositions
 of
 
0
 and
 5
 mol%
 ordered
 phase
 is
 minimal,
 and
 could
 not
 account
 for
 the
 drastic
 
change
 in
 permeability.
 One
 possible
 explanation
 for
 this
 dramatic
 variation
 is
 the
 
presence
 of
 nanodomains
 too
 small
 to
 resolve
 using
 microscopy
 techniques.
 While
 
these
 nanodomains
 could
 not
 be
 directly
 imaged,
 it
 is
 possible
 that
 their
 presence
 
could
 cause
 a
 shift
 in
 permeability
 different
 than
 that
 caused
 by
 macroscopic
 
domain
 formation.
 

 
The
 second
 result
 indicates
 some
 degree
 of
 bilayer
 destabilization
 caused
 by
 phase
 
separation,
 as
 the
 presence
 of
 visible
 domain
 segregation
 leads
 to
 unpredictably
 
varying
 permeability.
 One
 possible
 explanation
 is
 the
 idea
 of
 critical
 behavior
 at
 the
 
two-­‐phase
 region
 boundary.
 Critical
 points
 in
 lipid
 mixtures
 have
 been
 associated
 

  94
 
with
 decreased
 line
 tension,
150

 reduced
 interfacial
 energy,
164

 and
 decreased
 lateral
 
lipid
 diffusivity.
153

 It
 has
 been
 previously
 demonstrated
 that
 the
 hydrophobic
 
mismatch
 at
 the
 phase
 boundary
154

 could
 cause
 lipid
 deformation
 in
 order
 to
 
minimize
 line
 tension.
155

 This
 deformation
 instead
 appears
 to
 cause
 varying
 degrees
 
of
 bilayer
 disruption,
 which
 in
 turn
 cause
 a
 variable
 permeability
 measurement
 for
 a
 
given
 composition
 for
 vesicles
 presenting
 with
 phase
 separation.
 However,
 our
 
results
 indicate
 that
 there
 is
 not
 a
 simple
 relationship
 between
 permeability
 and
 
domain
 surface
 area,
 or
 permeability
 and
 perimeter
 of
 the
 domain
 (see
 Supporting
 
Information).
 While
 it
 is
 evident
 that
 the
 presence
 of
 micrometer-­‐sized
 domains
 
leads
 to
 widely
 varying
 permeability
 measurements
 for
 a
 single
 composition,
 it
 is
 
not
 what
 the
 source
 of
 this
 variation
 is.
 

 
Figure
 39
 summarizes
 the
 results
 for
 each
 of
 the
 seven
 compositions
 evaluated
 for
 
PEG12-­‐NBD
 permeation.
 The
 largest
 change
 in
 permeability
 occurs
 between
 the
 0-­‐
5%
 distance
 along
 the
 tie-­‐line,
 when
 moving
 from
 left
 to
 right.
 For
 vesicles
 with
 
visible
 phase
 separation,
 the
 measured
 permeability
 values
 were
 significantly
 more
 
variable
 than
 for
 the
 non-­‐phase
 separated
 points.
 Identical
 trends
 were
 
demonstrated
 for
 a
 second
 test
 solute,
 Na-­‐Fl.
 

 
 

  95
 

 
Figure
 39:
 Permeability
 of
 PEG12-­‐NBD
 at
 seven
 points
 along
 the
 tie
 line
 (0,
 5,
 25,
 50,
 75,
 95,
 100%
 
distance
 along
 the
 tie-­‐line).
 Square
 points
 show
 compositions
 without
 phase
 separation,
 triangle
 
points
  show
  points
  with
  visible
  phase
  separation.
  The
  color
  scale
  bar
  indicates
  the
  range
  of
 
permeability
 for
 each
 measured
 composition.
 For
 compositions
 with
 visible
 phase
 separation,
 the
 
variation
 in
 permeability
 is
 much
 greater
 than
 for
 compositions
 without
 phase
 separation.
 

 
4.6 Conclusions
 
 

 
Our
 results
 contribute
 additional
 understanding
 of
 how
 phase
 coexistence
 could
 
alter
 cell
 membrane
 properties.
 Most
 notably,
 a
 small
 compositional
 change
 near
 the
 
phase
 boundary
 resulted
 in
 a
 drastic
 change
 in
 permeability
 without
 visible
 phase
 
separation,
 far
 beyond
 what
 could
 be
 explained
 by
 the
 change
 in
 cholesterol
 
concentration.
 A
 similar
 transition
 from
 single
 phase
 to
 two
 immiscible
 phases
 can
 
be
 reached
 through
 either
 temperature
152,153

 or
 composition
 fluctuation
106

 at
 the
 
critical
 point.
 As
 it
 has
 been
 suggested
 that
 biological
 membranes
 have
 been
 
evolutionarily
 tuned
 to
 critical
 compositions,
153

 the
 relationship
 between
 this
 

  96
 
transition
 and
 permeability
 could
 have
 significant
 impact
 on
 transport
 in
 biological
 
systems.
 Additionally,
 our
 results
 support
 the
 idea
 that
 lipid
 deformation
 at
 the
 
phase
 boundary
 causes
 bilayer
 disruption,
 which
 results
 in
 irregular
 permeability
 
measurements
 for
 vesicles
 demonstrating
 phase
 segregation.
 However,
 the
 
relationship
 between
 lipid
 raft
 area,
 perimeter,
 and
 permeability
 is
 not
 simple.
 
Further
 studies
 of
 phase
 separated
 systems
 are
 necessary
 to
 fully
 understand
 the
 
role
 of
 lipid
 rafts
 on
 membrane
 permeability.
 
5 Summary
 and
 Outlook
 

 
The
 significance
 of
 plasma
 membrane
 permeability
 cannot
 be
 understated,
 as
 
passive
 diffusion
 represents
 a
 universal
 pathway
 for
 small
 molecules
 such
 as
 drugs
 
and
 toxins.
 The
 primary
 contribution
 of
 this
 work
 is
 a
 furthered
 understanding
 of
 
how
 membrane
 characteristics
 impact
 the
 transport
 of
 small
 molecule
 species
 
through
 the
 development
 of
 an
 assay
 combining
 spinning
 disk
 confocal
 microscopy
 
and
 microfluidics.
 Development
 of
 a
 high-­‐throughput
 passive
 transport
 assay
 of
 
highly
 controllable
 cellular
 membranes
 has
 been
 a
 primary
 goal
 of
 the
 
pharmaceutical
 industry,
 as
 it
 is
 the
 key
 to
 rapid
 screening
 potential
 drug
 
candidates.
 Here,
 we
 present
 a
 novel
 technique
 capable
 of
 high-­‐throughput
 
screening
 while
 achieving
 carefully
 controlled
 compositions
 with
 minimal
 
assumptions.
 

 
We
 demonstrated
 the
 significant
 impact
 that
 membrane
 composition
 can
 have
 on
 
permeability.
 By
 creating
 vesicles
 with
 varying
 levels
 of
 oxidation
 for
 two
 different
 

  97
 
types
 of
 oxidation
 pathway
 models,
 we
 can
 identify
 the
 significance
 of
 the
 pathway
 
when
 measuring
 permeability
 and
 other
 characteristics.
 These
 results
 give
 new
 
insight
 into
 the
 importance
 of
 oxidative
 stress
 on
 membrane
 function
 and
 barrier
 
behavior.
 Additional
 research
 demonstrated
 that
 phase
 separation
 has
 a
 measurable
 
impact
 on
 the
 transport
 properties
 of
 bilayers.
 This
 is
 particularly
 significant,
 as
 it
 
has
 been
 suggested
 that
 biological
 membranes
 have
 been
 evolutionarily
 tuned
 to
 
compositions
 displaying
 phase
 segregation.
 Understanding
 the
 relationship
 
between
 biologically
 relevant
 characteristics
 and
 permeability
 has
 implications
 for
 
both
 the
 membrane
 biophysics
 and
 the
 drug
 delivery
 communities.
 

 
While
 this
 work
 contributes
 to
 our
 understanding
 of
 how
 membrane
 composition
 
and
 behavior
 affect
 passive
 transport,
 it
 is
 also
 the
 potential
 foundation
 for
 two
 
fields
 of
 study:
 the
 creation
 of
 a
 physiologically
 relevant
 synthetic
 cell
 structure,
 and
 
the
 mechanism
 of
 passive
 transport.
 First,
 while
 the
 lipid
 bilayers
 presented
 here
 
are
 reasonable
 mimics
 of
 the
 plasma
 membrane,
 future
 research
 can
 further
 the
 
model
 to
 incorporate
 other
 complexities,
 such
 as
 proteins.
 The
 inclusion
 of
 such
 
molecules
 can
 provide
 more
 insight
 to
 cellular
 transport.
 For
 a
 new
 technique
 to
 
overtake
 the
 traditional
 PAMPA
 method,
 the
 cells
 used
 must
 be
 able
 to
 reliably
 
model
 the
 complexity
 of
 an
 actual
 cellular
 structure.
 Second,
 while
 we
 have
 made
 
strides
 in
 the
 development
 of
 a
 new
 high-­‐throughput
 screening
 technology
 for
 
permeability,
 the
 assay
 is
 not
 complete.
 Future
 studies
 could
 focus
 on
 adapting
 this
 
method
 for
 use
 with
 non-­‐fluorescent
 species,
 or
 analyzing
 assays
 of
 vesicles
 
simultaneously.
 Additionally,
 this
 research
 has
 focused
 primarily
 on
 how
 membrane
 

  98
 
characteristics
 impact
 permeability.
 Future
 work
 could
 examine
 the
 role
 of
 the
 
solute
 in
 transport
 by
 examining
 properties
 such
 as
 hydrogen
 bond
 potential.
 With
 
the
 goal
 of
 furthering
 the
 knowledge
 of
 how
 both
 small
 molecules
 and
 bilayer
 
characteristics
 alter
 passive
 transport,
 this
 work
 is
 the
 backbone
 for
 a
 breadth
 of
 
study
 in
 the
 fields
 of
 lipid
 biophysics,
 drug
 delivery,
 and
 biomedical
 research.
 
6 Acknowledgements
 

 
The
 author
 would
 like
 to
 thank
 Dr.
 Su
 Li
 for
 her
 help
 establishing
 the
 transport
 
experiment
 protocol,
 and
 Dr.
 Carson
 Riche
 for
 his
 help
 with
 the
 design
 and
 
fabrication
 of
 the
 microfluidic
 devices.
 We
 would
 also
 like
 to
 thank
 Dr.
 Rich
 Roberts,
 
Dr.
 Terry
 Takahashi,
 and
 Farzad
 Jalali-­‐Yazdi
 for
 their
 assistance
 with
 HPLC.
 This
 
work
 was
 supported
 by
 the
 Office
 of
 Naval
 Research
 (Young
 Investigator
 Award
 
N00014-­‐12-­‐1-­‐0620),
 the
 National
 Science
 Foundation
 (Award
 CBET-­‐1067021),
 the
 
National
 Institutes
 of
 Health
 (Award
 1R01GM093279),
 and
 a
 Mork
 Family
 Doctoral
 
Fellowship
 award.
 

   
 

  99
 
7 References
 

 
1.
 
 Artursson,
 P.,
 J.
 Karlsson.
 Correlation
 between
 oral
 drug
 absorption
 in
 humans
 and
 apparent
 drug
 
permeability
 coefficients
 in
 human
 intestinal
 epithelial
 (Caco-­‐2)
 cells.
 Biochemical
 and
 
Biophysical
 Research
 Communications.
 175
 (3):
 880-­‐885,
 1991.
 
2.
 
 Veber,
 D.F.,
 S.R.
 Johnson,
 H.-­‐Y.
 Cheng,
 et
 al.
 Molecular
 properties
 that
 influence
 the
 oral
 
bioavailability
 of
 drug
 candidates.
 Journal
 of
 Medicinal
 Chemistry.
 45
 (12):
 2615-­‐2623,
 2002.
 
3.
 
 Lipnick,
 R.L.
 Base-­‐line
 toxicity
 predicted
 by
 quantitative
 structure-­‐activity
 relationships
 as
 a
 probe
 
for
 molecular
 mechanism
 of
 toxicity.
 Probing
 Bioactive
 Mechanisms.
 413:
 366-­‐389,
 1989.
 
4.
 
 Foulkes,
 E.
 Transport
 of
 toxic
 heavy
 metals
 across
 cell
 membranes.
 Proceedings
 of
 the
 Society
 for
 
Experimental
 Biology
 and
 Medicine.
 223
 (3):
 234-­‐240,
 2000.
 
5.
 
 Sikkema,
 J.,
 J.
 De
 Bont,
 B.
 Poolman.
 Mechanisms
 of
 membrane
 toxicity
 of
 hydrocarbons.
 
Microbiological
 Reviews.
 59
 (2):
 201-­‐222,
 1995.
 
6.
 
 Li,
 S.,
 N.
 Malmstadt.
 Deformation
 and
 poration
 of
 lipid
 bilayer
 membranes
 by
 cationic
 
nanoparticles.
 Soft
 Matter.
 9
 (20):
 4969-­‐4976,
 2013.
 
7.
 
 Yacobi,
 N.R.,
 N.
 Malmstadt,
 F.
 Fazolallahi,
 et
 al.
 Mechanisms
 of
 alveolar
 epithelial
 translocation
 of
 a
 
defined
 population
 of
 nanoparticles.
 American
 Journal
 of
 Respiratory
 Cell
 and
 Molecular
 Biology.
 
42
 (5):
 604-­‐614,
 2010.
 
8.
 
 Bedrov,
 D.,
 G.D.
 Smith,
 H.
 Davande,
 et
 al.
 Passive
 transport
 of
 C-­‐60
 fullerenes
 through
 a
 lipid
 
membrane:
 A
 molecular
 dynamics
 simulation
 study.
 Journal
 of
 Physical
 Chemistry
 B.
 112
 (7):
 
2078-­‐2084,
 2008.
 
9.
 
 Wang,
 T.,
 J.
 Bai,
 X.
 Jiang,
 et
 al.
 Cellular
 uptake
 of
 nanoparticles
 by
 membrane
 penetration:
 a
 study
 
combining
 confocal
 microscopy
 with
 FTIR
 spectroelectrochemistry.
 ACS
 Nano.
 6
 (2):
 1251-­‐
1259,
 2012.
 
10.
 
 Verma,
 A.,
 O.
 Uzun,
 Y.H.
 Hu,
 et
 al.
 Surface-­‐structure-­‐regulated
 cell-­‐membrane
 penetration
 by
 
monolayer-­‐protected
 nanoparticles.
 Nature
 Materials.
 7
 (7):
 588-­‐595,
 2008.
 
11.
 
 Jackson,
 M.
 Drug
 transport
 across
 gastrointestinal
 epithelia.
 Physiology
 of
 the
 Gastrointestinal
 
Tract.
 2:
 1597,
 1987.
 
12.
 
 Yee,
 S.
 In
 vitro
 permeability
 across
 Caco-­‐2
 cells
 (colonic)
 can
 predict
 in
 vivo
 (small
 intestinal)
 
absorption
 in
 man—fact
 or
 myth.
 Pharmaceutical
 Research.
 14
 (6):
 763-­‐766,
 1997.
 
13.
 
 Kerns,
 E.H.,
 L.
 Di,
 S.
 Petusky,
 et
 al.
 Combined
 application
 of
 parallel
 artificial
 membrane
 
permeability
 assay
 and
 Caco-­‐2
 permeability
 assays
 in
 drug
 discovery.
 Journal
 of
 Pharmaceutical
 
Sciences.
 93
 (6):
 1440-­‐1453,
 2004.
 
14.
 
 Wilson,
 G.,
 I.
 Hassan,
 C.
 Dix,
 et
 al.
 Transport
 and
 permeability
 properties
 of
 human
 Caco-­‐2
 cells:
 
an
 in
 vitro
 model
 of
 the
 intestinal
 epithelial
 cell
 barrier.
 Journal
 of
 Controlled
 Release.
 11
 (1):
 25-­‐
40,
 1990.
 
15.
 
 Pade,
 V.,
 S.
 Stavchansky.
 Link
 between
 drug
 absorption
 solubility
 and
 permeability
 
measurements
 in
 Caco ‐2
 cells.
 Journal
 of
 Pharmaceutical
 Sciences.
 87
 (12):
 1604-­‐1607,
 1998.
 
16.
 
 Karlsson,
 J.,
 P.
 Artursson.
 A
 method
 for
 the
 determination
 of
 cellular
 permeability
 coefficients
 
and
 aqueous
 boundary
 layer
 thickness
 in
 monolayers
 of
 intestinal
 epithelial
 (Caco-­‐2)
 cells
 
grown
 in
 permeable
 filter
 chambers.
 International
 Journal
 of
 Pharmaceutics.
 71:
 55-­‐64,
 1991.
 
17.
 
 Karlsson,
 J.,
 P.
 Artursson.
 A
 new
 diffusion
 chamber
 system
 for
 the
 determination
 of
 drug
 
permeability
 coefficients
 across
 the
 human
 intestinal
 epithelium
 that
 are
 independent
 of
 the
 
unstirred
 water
 layer.
 Biochimica
 et
 Biophysica
 Acta.
 1111:
 204-­‐210,
 1992.
 
18.
 
 Behrens,
 I.,
 W.
 Kamm,
 A.H.
 Dantzig,
 et
 al.
 Variation
 of
 peptide
 transporter
 (PepT1
 and
 HPT1)
 
expression
 in
 Caco ‐2
 cells
 as
 a
 function
 of
 cell
 origin.
 Journal
 of
 Pharmaceutical
 Sciences.
 93
 
(7):
 1743-­‐1754,
 2004.
 
19.
 
 Kleinzeller,
 A.
 Ernest
 Overton's
 contribution
 to
 the
 cell
 membrane
 concept:
 a
 centennial
 
appreciation.
 Physiology.
 12:
 4,
 1997.
 
20.
 
 Missner,
 A.,
 P.
 Pohl.
 110
 years
 of
 the
 Meyer-­‐Overton
 rule:
 predicting
 membrane
 permeability
 of
 
gases
 and
 other
 small
 compounds.
 ChemPhysChem.
 10
 (9-­‐10):
 1405-­‐1414,
 2009.
 
21.
 
 Overton,
 C.E.
 Studies
 of
 Narcosis,
 (ed.
 and
 trans.
 by
 R.
 L.
 Lipnick).
 New
 York:
 Chapman
 and
 Hall
 
Ltd.
 and
 The
 Wood
 Library-­‐Museum
 of
 Anesthesiology,
 1991.
 (Original
 Published
 in
 1901).
 

  100
 
22.
 
 Finkelstein,
 A.
 Water
 and
 nonelectrolyte
 permeability
 of
 lipid
 bilayer
 membranes.
 Journal
 of
 
General
 Physiology.
 68
 (2):
 127-­‐135,
 1976.
 
23.
 
 Seader,
 J.D.,
 E.J.
 Henley,
 D.K.
 Roper.
 Separation
 Process
 Principles
 (3
 ed.).
 New
 York:
 Wiley,
 2010
 
24.
 
 Wolosin,
 J.M.,
 H.
 Ginsburg.
 Permeation
 of
 organic-­‐acids
 through
 lecithin
 bilayers
 resemblance
 to
 
diffusion
 in
 polymers.
 Biochimica
 et
 Biophysica
 Acta.
 389
 (1):
 20-­‐33,
 1975.
 
25.
 
 Walter,
 A.,
 J.
 Gutknecht.
 Permeability
 of
 small
 nonelectrolyes
 through
 lipid
 bilayer
 membranes.
 
Journal
 of
 Membrane
 Biology.
 90:
 207-­‐217,
 1986.
 
26.
 
 Lipinsky,
 C.A.,
 F.
 Lobardo,
 B.W.
 Dominy,
 et
 al.
 Experimental
 and
 computational
 approaches
 to
 
estimate
 solubility
 and
 permeability
 in
 drug
 discovery
 and
 development
 settings.
 Advanced
 
Drug
 Delivery
 Reviews.
 46:
 3-­‐26,
 2001.
 
27.
 
 Wohnsland,
 F.,
 B.
 Faller.
 High-­‐throughput
 permeability
 pH
 profile
 and
 high-­‐throughput
 
alkane/water
 log
 P
 with
 artificial
 membranes.
 Journal
 of
 Medicinal
 Chemistry.
 44:
 923-­‐930,
 
2001.
 
28.
 
 Bassolino-­‐Klimas,
 D.,
 H.E.
 Alper,
 T.R.
 Stouch.
 Solute
 diffusion
 in
 lipid
 bilayer
 membranes:
 an
 
atomic
 level
 study
 by
 molecular
 dynamics
 simulation.
 Biochemistry.
 32
 (12624-­‐12637),
 1993.
 
29.
 
 Marrink,
 S.J.,
 H.J.C.
 Berendsen.
 Simulation
 of
 water
 transport
 through
 a
 lipid
 membrane.
 Journal
 
of
 Physical
 Chemistry.
 98:
 4155-­‐4186,
 1994.
 
30.
 
 Marrink,
 S.J.,
 H.J.C.
 Berendsen.
 Permeation
 process
 of
 small
 molecules
 across
 lipid
 membranes
 
studied
 by
 molecular
 dyanmics
 simulations.
 Journal
 of
 Physical
 Chemistry.
 100:
 16729-­‐16738,
 
1996.
 
31.
 
 Bemporad,
 D.,
 C.
 Luttmann,
 J.W.
 Essex.
 Computer
 simulation
 of
 small
 molecule
 permeation
 across
 
a
 lipid
 bilayer:
 dependence
 on
 bilayer
 properties
 and
 solute
 volume,
 size,
 and
 cross-­‐sectional
 
area.
 Biophysical
 Journal.
 87
 (1):
 1-­‐13,
 2004.
 
32.
 
 Bemporad,
 D.,
 J.W.
 Essex,
 C.
 Luttmann.
 Permeation
 of
 small
 molecules
 through
 a
 lipid
 bilayer:
 a
 
computer
 simulation
 study.
 Journal
 of
 Physical
 Chemistry
 B.
 108:
 4975-­‐4884,
 2004.
 
33.
 
 Orsi,
 M.,
 W.E.
 Sanderson,
 J.W.
 Essex.
 Permeability
 of
 small
 molecules
 through
 a
 lipid
 bilayer:
 a
 
multiscale
 simulation
 study.
 Journal
 of
 Physical
 Chemistry
 B.
 113:
 12019-­‐12029,
 2009.
 
34.
 
 Orsi,
 M.,
 J.W.
 Essex.
 Permeability
 of
 drugs
 and
 hormones
 through
 a
 lipid
 bilayer:
 insights
 from
 
dual-­‐resolution
 molecular
 dynamics.
 Soft
 Matter.
 6
 (16):
 3797,
 2010.
 
35.
 
 Vacha,
 R.,
 M.L.
 Berkowitz,
 P.
 Jungwirth.
 Molecular
 model
 of
 a
 cell
 plasma
 membrane
 with
 an
 
asymmetric
 multicomponent
 composition:
 water
 permeation
 and
 ion
 effects.
 Biophysical
 
Journal.
 96
 (11):
 4493-­‐4501,
 2009.
 
36.
 
 Mueller,
 P.,
 D.O.
 Rudin,
 H.
 Ti
 Tien,
 et
 al.
 Reconstitution
 of
 cell
 membrane
 structure
 in
 vitro
 and
 its
 
transformation
 into
 an
 excitable
 system.
 Nature.
 194:
 979-­‐980,
 1962.
 
37.
 
 Bangham,
 A.,
 M.
 Standish,
 J.
 Watkins.
 Diffusion
 of
 univalent
 ions
 across
 the
 lamellae
 of
 swollen
 
phospholipids.
 Journal
 of
 Molecular
 Biology.
 13
 (1):
 238-­‐IN227,
 1965.
 
38.
 
 Barry,
 P.H.,
 J.M.
 Diamond.
 Effects
 of
 unstirred
 layers
 on
 membrane
 phenomena.
 The
 American
 
Physiological
 Society.
 64
 (3):
 763-­‐872,
 1984.
 
39.
 
 Escuder-­‐Gilabert,
 L.,
 J.J.
 Martı́nez-­‐Pla,
 S.
 Sagrado,
 et
 al.
 Biopartitioning
 micellar
 separation
 
methods:
 modelling
 drug
 absorption.
 Journal
 of
 Chromatography
 B.
 797
 (1-­‐2):
 21-­‐35,
 2003.
 
40.
 
 Zhu,
 C.,
 L.
 Jiang,
 T.-­‐M.
 Chen,
 et
 al.
 A
 comparative
 study
 of
 artificial
 membrane
 permeability
 assay
 
for
 high
 throughput
 profiling
 of
 drug
 absorption
 potential.
 European
 Journal
 of
 Medicinal
 
Chemistry.
 37
 (5):
 399-­‐407,
 2002.
 
41.
 
 Kansy,
 M.,
 F.
 Senner,
 K.
 Gubernator.
 Physicochemical
 high
 throughput
 screening:
 parallel
 
artificial
 membrane
 permeation
 assay
 in
 the
 description
 of
 passive
 absorption
 processes.
 
Journal
 of
 Medicinal
 Chemistry.
 41
 (7):
 1007-­‐1010,
 1998.
 
42.
 
 Leung,
 S.S.,
 J.
 Mijalkovic,
 K.
 Borrelli,
 et
 al.
 Testing
 physical
 models
 of
 passive
 membrane
 
permeation.
 Journal
 of
 Chemical
 Information
 and
 Modeling.
 52
 (6):
 1621-­‐1636,
 2012.
 
43.
 
 Antonenko,
 Y.N.,
 A.A.
 Bulychev.
 Measurements
 of
 local
 pH
 changes
 near
 bilayer
 lipid
 membrane
 
by
 means
 of
 a
 pH
 microelectrode
 and
 a
 protonophore-­‐dependent
 membrane
 potential.
 
Comparison
 of
 the
 methods.
 Biochimica
 et
 Biophysica
 Acta
 -­‐
 Biomembranes.
 1070
 (1):
 279-­‐282,
 
1991.
 
44.
 
 Dzekunov,
 S.M.,
 Y.N.
 Antonenko.
 Dynamics
 of
 formation
 and
 dissipation
 of
 local
 pH
 gradients
 in
 
the
 unstirred
 layers
 near
 bilayer
 lipid
 membranes.
 Bioelectrochemistry
 and
 Bioenergetics.
 41:
 
187-­‐190,
 1996.
 

  101
 
45.
 
 Ohki,
 S.
 Membrane
 Potential
 and
 ion
 permeability
 of
 lipid
 bilayer
 membranes.
 
Bioelectrochemistry
 and
 Bioenergetics.
 7:
 487-­‐501,
 1980.
 
46.
 
 Sandeaux,
 R.,
 J.
 Sandeaux,
 C.
 Gavach,
 et
 al.
 Transport
 of
 Na+
 by
 monensin
 across
 biomolecular
 
lipid
 membranes.
 Biochimica
 et
 Biophysica
 Acta.
 684:
 127-­‐132,
 1982.
 
47.
 
 Gutknecht,
 J.,
 A.
 Walter.
 Transport
 of
 protons
 and
 hydrochloric
 acid
 through
 lipid
 bilayer
 
membranes.
 Biochimica
 et
 Biophysica
 Acta.
 641:
 183-­‐188,
 1981.
 
48.
 
 Gutknecht,
 J.,
 A.
 Walter.
 Hydroxyl
 ion
 permeability
 of
 lipid
 bilayer
 membranes.
 Biochimica
 et
 
Biophysica
 Acta.
 645:
 161-­‐162,
 1981.
 
49.
 
 Gutknecht,
 J.,
 A.
 Walter.
 Hydrofluoric
 and
 nitric
 acid
 transport
 through
 lipid
 bilayer
 membranes.
 
Biochimica
 et
 Biophysica
 Acta
 -­‐
 Biomembranes.
 644
 (1):
 153-­‐156,
 1981.
 
50.
 
 Walter,
 A.,
 J.
 Gutknecht.
 Monocarboxylic
 acid
 permeation
 through
 lipid
 bilayer
 membranes.
 
Journal
 of
 Membrane
 Biology.
 77
 (3):
 255-­‐264,
 1984.
 
51.
 
 Antonenko,
 Y.N.,
 G.A.
 Denisov,
 P.
 Pohl.
 Weak
 acid
 transport
 across
 bilayer
 lipid
 membrane
 in
 the
 
presence
 of
 buffers.
 Biophysical
 Journal.
 64:
 1701-­‐1710,
 1993.
 
52.
 
 Pohl,
 P.,
 E.
 Rosenfelt,
 R.
 Millner.
 Effects
 of
 ultrasound
 on
 the
 steady
 state
 transmembrane
 pH
 
gradient
 and
 permeability
 of
 acetic
 acid
 through
 bilayer
 lipid
 membranes.
 Biochimica
 et
 
Biophysica
 Acta.
 1145:
 279-­‐283,
 1993.
 
53.
 
 Antonenko,
 Y.N.,
 P.
 Pohl.
 Steady-­‐state
 nonmonotonic
 concentration
 profiles
 in
 the
 unstirred
 
layers
 of
 bilayer
 lipid
 membranes.
 Biochimica
 et
 Biophysica
 Acta
 -­‐
 Biomembranes.
 1235
 (1):
 57-­‐
61,
 1995.
 
54.
 
 Krylov,
 A.V.,
 P.
 Pohl,
 M.L.
 Zeidel,
 et
 al.
 Water
 permeability
 of
 asymmetric
 planar
 lipid
 bilayers:
 
leaflets
 of
 different
 composition
 offer
 independent
 and
 additive
 resistances
 to
 permeation.
 
Journal
 of
 General
 Physiology.
 118:
 333-­‐339,
 2001.
 
55.
 
 Antonenko,
 Y.N.,
 P.
 Pohl,
 G.A.
 Denisov.
 Permeation
 of
 ammonia
 across
 bilayer
 lipid
 membranes
 
studied
 by
 ammonium
 ion
 selective
 microelectrodes.
 Biophysical
 Journal.
 72:
 2187-­‐2195,
 1997.
 
56.
 
 Sha'Afi,
 R.,
 G.
 Rich,
 V.W.
 Sidel,
 et
 al.
 The
 effect
 of
 the
 unstirred
 layer
 on
 human
 red
 cell
 water
 
permeability.
 Journal
 of
 General
 Physiology.
 50
 (5):
 1377-­‐1399,
 1967.
 
57.
 
 Lawaczeck,
 R.
 Water
 permeability
 through
 biological
 membranes
 by
 isotopic
 effects
 of
 
fluorescence
 and
 light
 scattering.
 Biophysical
 Journal.
 45
 (3):
 491-­‐494,
 1984.
 
58.
 
 Mlekoday,
 H.J.,
 R.
 Moore,
 D.G.
 Levitt.
 Osmotic
 water
 permeability
 of
 the
 human
 red
 cell.
 
Dependence
 on
 direction
 of
 water
 flow
 and
 cell
 volume.
 Journal
 of
 General
 Physiology.
 81
 (2):
 
213-­‐220,
 1983.
 
59.
 
 Holland,
 R.,
 H.
 Shibata,
 P.
 Scheid,
 et
 al.
 Kinetics
 of
 O2
 uptake
 and
 release
 by
 red
 cells
 in
 stopped-­‐
flow
 apparatus:
 effects
 of
 unstirred
 layer.
 Respiration
 Physiology.
 59
 (1):
 71-­‐91,
 1985.
 
60.
 
 Li,
 S.,
 P.
 Hu,
 N.
 Malmstadt.
 Confocal
 imaging
 to
 quantify
 passive
 transport
 across
 biomimetic
 lipid
 
membranes.
 Analytical
 Chemistry.
 82
 (18):
 7766-­‐7771,
 2010.
 
61.
 
 Li,
 S.,
 P.C.
 Hu,
 N.
 Malmstadt.
 Imaging
 Molecular
 Transport
 across
 Lipid
 Bilayers.
 Biophysical
 
Journal.
 101
 (3):
 700-­‐708,
 2011.
 
62.
 
 Heuvingh,
 J.,
 S.
 Bonneau.
 Asymmetric
 oxidation
 of
 giant
 vesicles
 triggers
 curvature-­‐associated
 
shape
 transition
 and
 permeabilization.
 Biophysical
 Journal.
 97
 (11):
 2904-­‐2912,
 2009.
 
63.
 
 Riske,
 K.A.,
 T.P.
 Sudbrack,
 N.L.
 Archilha,
 et
 al.
 Giant
 vesicles
 under
 oxidative
 stress
 induced
 by
 a
 
membrane-­‐anchored
 photosensitizer.
 Biophysical
 Journal.
 97
 (5):
 1362-­‐1370,
 2009.
 
64.
 
 Sankhagowit,
 S.,
 R.
 Biswas,
 S.-­‐H.
 Wu,
 et
 al.
 The
 dynamics
 of
 giant
 unilamellar
 vesicle
 oxidation
 
probed
 by
 morphological
 transitions.
 Biochimica
 et
 Biophysica
 Acta.
 1828
 (10):
 2615-­‐2624,
 
2014.
 
65.
 
 Borst,
 J.W.,
 N.V.
 Visser,
 O.
 Kouptsova,
 et
 al.
 Oxidation
 of
 unsaturated
 phospholipids
 in
 membrane
 
bilayer
 mixtures
 is
 accompanied
 by
 membrane
 fluidity
 changes.
 Biochimica
 et
 Biophysica
 Acta
 -­‐
 
Molecular
 and
 Cell
 Biology
 of
 Lipids.
 1487
 (1):
 61-­‐73,
 2000.
 
66.
 
 Volinsky,
 R.,
 R.
 Paananen,
 P.K.
 Kinnunen.
 Oxidized
 phosphatidylcholines
 promote
 phase
 
separation
 of
 cholesterol-­‐sphingomyelin
 domains.
 Biophysical
 Journal.
 103
 (2):
 247-­‐254,
 2012.
 
67.
 
 Jacob,
 R.F.,
 R.P.
 Mason.
 Lipid
 peroxidation
 induces
 cholesterol
 domain
 formation
 in
 model
 
membranes.
 Journal
 of
 Biological
 Chemistry.
 280
 (47):
 39380-­‐39387,
 2005.
 
68.
 
 Ross,
 R.
 The
 pathogenesis
 of
 atherosclerosis:
 a
 perspective
 for
 the
 1990s.
 Nature.
 362:
 801-­‐809,
 
1993.
 

  102
 
69.
 
 Cadenas,
 E.,
 K.J.
 Davies.
 Mitochondrial
 free
 radical
 generation,
 oxidative
 stress,
 and
 aging.
 Free
 
Radical
 Biology
 and
 Medicine.
 29
 (3):
 222-­‐230,
 2000.
 
70.
 
 Tyurina,
 Y.,
 A.
 Shvedova,
 K.
 Kawai,
 et
 al.
 Phospholipid
 signaling
 in
 apoptosis:
 peroxidation
 and
 
externalization
 of
 phosphatidylserine.
 Toxicology.
 148
 (2):
 93-­‐101,
 2000.
 
71.
 
 Kagan,
 V.E.,
 B.
 Gleiss,
 Y.Y.
 Tyurina,
 et
 al.
 A
 role
 for
 oxidative
 stress
 in
 apoptosis:
 oxidation
 and
 
externalization
 of
 phosphatidylserine
 is
 required
 for
 macrophage
 clearance
 of
 cells
 undergoing
 
Fas-­‐mediated
 apoptosis.
 The
 Journal
 of
 Immunology.
 169
 (1):
 487-­‐499,
 2002.
 
72.
 
 Fabisiak,
 J.P.,
 Y.Y.
 Tyurina,
 V.A.
 Tyurin,
 et
 al.
 Random
 versus
 selective
 membrane
 phospholipid
 
oxidation
 in
 apoptosis:
 role
 of
 phosphatidylserine.
 Biochemistry.
 37
 (39):
 13781-­‐13790,
 1998.
 
73.
 
 Radi,
 R.,
 J.S.
 Beckman,
 K.M.
 Bush,
 et
 al.
 Peroxynitrite-­‐induced
 membrane
 lipid
 peroxidation:
 the
 
cytotoxic
 potential
 of
 superoxide
 and
 nitric
 oxide.
 Archives
 of
 Biochemistry
 and
 Biophysics.
 288
 
(2):
 481-­‐487,
 1991.
 
74.
 
 Esterbauer,
 H.
 Cytotoxicity
 and
 genotoxicity
 of
 lipid-­‐oxidation
 products.
 The
 American
 Journal
 of
 
Clinical
 Nutrition.
 57
 (5):
 779S-­‐785S,
 1993.
 
75.
 
 Chen,
 R.,
 L.
 Yang,
 T.M.
 McIntyre.
 Cytotoxic
 phospholipid
 oxidation
 products
 cell
 death
 from
 
mitochondrial
 damage
 and
 the
 intrinsic
 caspase
 cascade.
 Journal
 of
 Biological
 Chemistry.
 282
 
(34):
 24842-­‐24850,
 2007.
 
76.
 
 Morel,
 D.W.,
 J.R.
 Hessler,
 G.M.
 Chisolm.
 Low
 density
 lipoprotein
 cytotoxicity
 induced
 by
 free
 
radical
 peroxidation
 of
 lipid.
 Journal
 of
 Lipid
 Research.
 24
 (8):
 1070-­‐1076,
 1983.
 
77.
 
 Parhami,
 F.,
 A.D.
 Morrow,
 J.
 Balucan,
 et
 al.
 Lipid
 oxidation
 products
 have
 opposite
 effects
 on
 
calcifying
 vascular
 cell
 and
 bone
 cell
 differentiation
 A
 possible
 explanation
 for
 the
 paradox
 of
 
arterial
 calcification
 in
 osteoporotic
 patients.
 Arteriosclerosis,
 Thrombosis,
 and
 Vascular
 Biology.
 
17
 (4):
 680-­‐687,
 1997.
 
78.
 
 Epstein,
 F.H.,
 R.
 Ross.
 Atherosclerosis—an
 inflammatory
 disease.
 New
 England
 Journal
 of
 
Medicine.
 340
 (2):
 115-­‐126,
 1999.
 
79.
 
 Witztum,
 J.L.
 The
 oxidation
 hypothesis
 of
 atherosclerosis.
 The
 Lancet.
 344
 (8925):
 793-­‐795,
 
1994.
 
80.
 
 Stocker,
 R.,
 J.F.
 Keaney.
 Role
 of
 oxidative
 modifications
 in
 atherosclerosis.
 Physiological
 Reviews.
 
84
 (4):
 1381-­‐1478,
 2004.
 
81.
 
 Berliner,
 J.A.,
 J.W.
 Heinecke.
 The
 role
 of
 oxidized
 lipoproteins
 in
 atherogenesis.
 Free
 Radical
 
Biology
 and
 Medicine.
 20
 (5):
 707-­‐727,
 1996.
 
82.
 
 Harrison,
 D.,
 K.K.
 Griendling,
 U.
 Landmesser,
 et
 al.
 Role
 of
 oxidative
 stress
 in
 atherosclerosis.
 The
 
American
 Journal
 of
 Cardiology.
 91
 (3):
 7-­‐11,
 2003.
 
83.
 
 Witztum,
 J.L.,
 D.
 Steinberg.
 Role
 of
 oxidized
 low
 density
 lipoprotein
 in
 atherogenesis.
 Journal
 of
 
Clinical
 Investigation.
 88
 (6):
 1785,
 1991.
 
84.
 
 Wong-­‐Ekkabut,
 J.,
 Z.
 Xu,
 W.
 Triampo,
 et
 al.
 Effect
 of
 lipid
 peroxidation
 on
 the
 properties
 of
 lipid
 
bilayers:
 a
 molecular
 dynamics
 study.
 Biophysical
 Journal.
 93
 (12):
 4225-­‐4236,
 2007.
 
85.
 
 Reis,
 A.,
 C.M.
 Spickett.
 Chemistry
 of
 phospholipid
 oxidation.
 Biochimica
 et
 Biophysica
 Acta
 -­‐
 
Biomembranes.
 1818
 (10):
 2374-­‐2387,
 2012.
 
86.
 
 Haluska,
 C.K.,
 M.S.
 Baptista,
 A.U.
 Fernandes,
 et
 al.
 Photo-­‐activated
 phase
 separation
 in
 giant
 
vesicles
 made
 from
 different
 lipid
 mixtures.
 Biochimica
 et
 Biophysica
 Acta
 -­‐
 Biomembranes.
 
1818
 (3):
 666-­‐672,
 2012.
 
87.
 
 Dröge,
 W.
 Free
 radicals
 in
 the
 physiological
 control
 of
 cell
 function.
 Physiological
 Reviews.
 82
 (1):
 
47-­‐95,
 2002.
 
88.
 
 Lambeth,
 J.D.
 Nox/Duox
 family
 of
 nicotinamide
 adenine
 dinucleotide
 (phosphate)
 oxidases.
 
Current
 Opinion
 in
 Hematology.
 9
 (1):
 11-­‐17,
 2002.
 
89.
 
 Megli,
 F.M.,
 L.
 Russo,
 K.
 Sabatini.
 Oxidized
 phospholipids
 induce
 phase
 separation
 in
 lipid
 
vesicles.
 FEBS
 Letters.
 579
 (21):
 4577-­‐4584,
 2005.
 
90.
 
 Volinsky,
 R.,
 L.
 Cwiklik,
 P.
 Jurkiewicz,
 et
 al.
 Oxidized
 phosphatidylcholines
 facilitate
 phospholipid
 
flip-­‐flop
 in
 liposomes.
 Biophysical
 Journal.
 101
 (6):
 1376-­‐1384,
 2011.
 
91.
 
 Seo,
 P.R.,
 Z.S.
 Teksin,
 J.P.
 Kao,
 et
 al.
 Lipid
 composition
 effect
 on
 permeability
 across
 PAMPA.
 
European
 Journal
 of
 Pharmaceutical
 Sciences.
 29
 (3-­‐4):
 259-­‐268,
 2006.
 
92.
 
 Angelova,
 M.I.,
 D.S.
 Dimitrov.
 Liposome
 electroformation.
 Faraday
 Discussions
 of
 the
 Chemical
 
Society.
 81:
 303-­‐311,
 1986.
 

  103
 
93.
 
 Angelova,
 M.,
 S.
 Soleau,
 P.
 Méléard,
 et
 al.
 Preparation
 of
 giant
 vesicles
 by
 external
 AC
 electric
 
fields.
 Kinetics
 and
 applications.
 Progress
 in
 Colloid
 and
 Polymer
 Science.
 89:
 127-­‐131,
 1992.
 
94.
 
 Buettner,
 G.R.
 The
 pecking
 order
 of
 free
 radicals
 and
 antioxidants:
 lipid
 peroxidation,
 α-­‐
tocopherol,
 and
 ascorbate.
 Archives
 of
 Biochemistry
 and
 Biophysics.
 300
 (2):
 535-­‐543,
 1993.
 
95.
 
 Kersten,
 G.F.,
 D.J.
 Crommelin.
 Liposomes
 and
 ISCOMS
 as
 vaccine
 formulations.
 Biochimica
 et
 
Biophysica
 Acta
 -­‐
 Biomembranes.
 1241
 (2):
 117-­‐138,
 1995.
 
96.
 
 Gregoriadis,
 G.,
 P.
 Leathwood,
 B.E.
 Ryman.
 Enzyme
 entrapment
 in
 liposomes.
 FEBS
 Letters.
 14
 
(2):
 95-­‐99,
 1971.
 
97.
 
 Anderson,
 J.R.,
 D.T.
 Chiu,
 H.
 Wu,
 et
 al.
 Fabrication
 of
 microfluidic
 systems
 in
 poly
 
(dimethylsiloxane).
 Electrophoresis.
 21:
 27-­‐40,
 2000.
 
98.
 
 Robinson,
 T.,
 P.
 Kuhn,
 K.
 Eyer,
 et
 al.
 Microfluidic
 trapping
 of
 giant
 unilamellar
 vesicles
 to
 study
 
transport
 through
 a
 membrane
 pore.
 Biomicrofluidics.
 7
 (4):
 044105,
 2013.
 
99.
 
 Sandison,
 D.R.,
 W.W.
 Webb.
 Background
 rejection
 and
 signal-­‐to-­‐noise
 optimization
 in
 confocal
 
and
 alternative
 fluorescence
 microscopes.
 Applied
 Optics.
 33
 (4):
 603-­‐615,
 1994.
 
100.
 
 Somersalo,
 E.,
 R.
 Occhipinti,
 W.F.
 Boron,
 et
 al.
 A
 reaction–diffusion
 model
 of
 CO
 2
 influx
 into
 an
 
oocyte.
 Journal
 of
 Theoretical
 Biology.
 309:
 185-­‐203,
 2012.
 
101.
 
 Venturoli,
 D.,
 B.
 Rippe.
 Ficoll
 and
 dextran
 vs.
 globular
 proteins
 as
 probes
 for
 testing
 glomerular
 
permselectivity:
 effects
 of
 molecular
 size,
 shape,
 charge,
 and
 deformability.
 American
 Journal
 of
 
Physiology
 -­‐
 Renal
 Physiology.
 288
 (4):
 F605-­‐F613,
 2005.
 
102.
 
 Mandal,
 T.,
 S.
 Chatterjee.
 Ultraviolet-­‐and
 sunlight-­‐induced
 lipid
 peroxidation
 in
 liposomal
 
membrane.
 Radiation
 Research.
 83
 (2):
 290-­‐302,
 1980.
 
103.
 
 Janero,
 D.R.
 Malondialdehyde
 and
 thiobarbituric
 acid-­‐reactivity
 as
 diagnostic
 indices
 of
 lipid
 
peroxidation
 and
 peroxidative
 tissue
 injury.
 Free
 Radical
 Biology
 and
 Medicine.
 9
 (6):
 515-­‐540,
 
1990.
 
104.
 
 Mertins,
 O.,
 I.O.
 Bacellar,
 F.
 Thalmann,
 et
 al.
 Physical
 damage
 on
 giant
 vesicles
 membrane
 as
 a
 
result
 of
 methylene
 blue
 photoirradiation.
 Biophys
 J.
 106
 (1):
 162-­‐171,
 2014.
 
105.
 
 Chatterjee,
 S.,
 S.
 Agarwal.
 Liposomes
 as
 membrane
 model
 for
 study
 of
 lipid
 peroxidation.
 Free
 
Radical
 Biol
 Med.
 4
 (1):
 51-­‐72,
 1988.
 
106.
 
 Veatch,
 S.,
 I.
 Polozov,
 K.
 Gawrisch,
 et
 al.
 Liquid
 domains
 in
 vesicles
 investigated
 by
 NMR
 and
 
fluorescence
 microscopy.
 Biophysical
 Journal.
 86
 (5):
 2910-­‐2922,
 2004.
 
107.
 
 Kerdous,
 R.,
 J.
 Heuvingh,
 S.
 Bonneau.
 Photo-­‐dynamic
 induction
 of
 oxidative
 stress
 within
 
cholesterol-­‐containing
 membranes:
 shape
 transitions
 and
 permeabilization.
 Biochimica
 et
 
Biophysica
 Acta
 -­‐
 Biomembranes.
 1808
 (12):
 2965-­‐2972,
 2011.
 
108.
 
 Caetano,
 W.,
 P.S.
 Haddad,
 R.
 Itri,
 et
 al.
 Photo-­‐induced
 destruction
 of
 giant
 vesicles
 in
 methylene
 
blue
 solutions.
 Langmuir.
 23
 (3):
 1307-­‐1314,
 2007.
 
109.
 
 Sabatini,
 K.,
 J.-­‐P.
 Mattila,
 F.M.
 Megli,
 et
 al.
 Characterization
 of
 two
 oxidatively
 modified
 
phospholipids
 in
 mixed
 monolayers
 with
 DPPC.
 Biophysical
 Journal.
 90
 (12):
 4488-­‐4499,
 2006.
 
110.
 
 Beranova,
 L.,
 L.
 Cwiklik,
 P.
 Jurkiewicz,
 et
 al.
 Oxidation
 changes
 physical
 properties
 of
 
phospholipid
 bilayers:
 fluorescence
 spectroscopy
 and
 molecular
 simulations.
 Langmuir.
 26
 (9):
 
6140-­‐6144,
 2010.
 
111.
 
 Praticò,
 D.,
 L.
 Iuliano,
 A.
 Mauriello,
 et
 al.
 Localization
 of
 distinct
 F2-­‐isoprostanes
 in
 human
 
atherosclerotic
 lesions.
 Journal
 of
 Clinical
 Investigation.
 100
 (8):
 2028,
 1997.
 
112.
 
 Runas,
 K.A.,
 N.
 Malmstadt.
 Low
 levels
 of
 lipid
 oxidation
 radically
 increase
 the
 passive
 
permeability
 of
 lipid
 bilayers.
 Soft
 Matter.
 11
 (3):
 499-­‐505,
 2015.
 
113.
 
 Gardner,
 H.,
 R.
 Plattner.
 Linoleate
 hydroperoxides
 are
 cleaved
 heterolytically
 into
 aldehydes
 by
 
a
 Lewis
 acid
 in
 aprotic
 solvent.
 Lipids.
 19
 (4):
 294-­‐299,
 1984.
 
114.
 
 Groot,
 R.,
 K.
 Rabone.
 Mesoscopic
 simulation
 of
 cell
 membrane
 damage,
 morphology
 change
 and
 
rupture
 by
 nonionic
 surfactants.
 Biophysical
 Journal.
 81
 (2):
 725-­‐736,
 2001.
 
115.
 
 Almgren,
 M.
 Mixed
 micelles
 and
 other
 structures
 in
 the
 solubilization
 of
 bilayer
 lipid
 
membranes
 by
 surfactants.
 Biochimica
 et
 Biophysica
 Acta
 -­‐
 Biomembranes.
 1508
 (1):
 146-­‐163,
 
2000.
 
116.
 
 Inoue,
 T.,
 K.
 Miyakawa,
 R.
 Shimozawa.
 Interaction
 of
 surfactants
 with
 vesicle
 membrane
 of
 
dipalmitoylphosphatidylcholine.
 Effect
 on
 gel-­‐to-­‐liquid-­‐crystalline
 phase
 transition
 of
 lipid
 
bilayer.
 Chemistry
 and
 Physics
 of
 Lipids.
 42
 (4):
 261-­‐270,
 1986.
 

  104
 
117.
 
 Mason,
 R.P.,
 M.F.
 Walter,
 P.E.
 Mason.
 Effect
 of
 oxidative
 stress
 on
 membrane
 structure:
 small-­‐
angle
 X-­‐ray
 diffraction
 analysis.
 Free
 Radical
 Biology
 and
 Medicine.
 23
 (3):
 419-­‐425,
 1997.
 
118.
 
 Wong-­‐Ekkabut,
 J.,
 Z.
 Xu,
 W.
 Triampo,
 et
 al.
 Effect
 of
 lipid
 peroxidation
 on
 the
 properties
 of
 lipid
 
bilayers:
 a
 molecular
 dynamics
 study.
 Biophysical
 Journal.
 93
 (12):
 4225-­‐4236,
 2007.
 
119.
 
 Slater,
 J.L.,
 C.-­‐H.
 Huang.
 Interdigitated
 bilayer
 membranes.
 Progress
 in
 Lipid
 Research.
 27
 (4):
 
325-­‐359,
 1988.
 
120.
 
 Paula,
 S.,
 A.
 Volkov,
 A.
 Van
 Hoek,
 et
 al.
 Permeation
 of
 protons,
 potassium
 ions,
 and
 small
 polar
 
molecules
 through
 phospholipid
 bilayers
 as
 a
 function
 of
 membrane
 thickness.
 Biophysical
 
Journal.
 70
 (1):
 339,
 1996.
 
121.
 
 Zeng,
 J.,
 K.E.
 Smith,
 P.
 Chong.
 Effects
 of
 alcohol-­‐induced
 lipid
 interdigitation
 on
 proton
 
permeability
 in
 L-­‐alpha-­‐dipalmitoylphosphatidylcholine
 vesicles.
 Biophysical
 Journal.
 65
 (4):
 
1404,
 1993.
 
122.
 
 White,
 S.H.
 A
 study
 of
 lipid
 bilayer
 membrane
 stability
 using
 precise
 measurements
 of
 specific
 
capacitance.
 Biophysical
 Journal.
 10
 (12):
 1127,
 1970.
 
123.
 
 White,
 S.H.,
 T.
 Thompson.
 Capacitance,
 area,
 and
 thickness
 variations
 in
 thin
 lipid
 films.
 
Biochimica
 et
 Biophysica
 Acta
 -­‐
 Biomembranes.
 323
 (1):
 7-­‐22,
 1973.
 
124.
 
 Fettiplace,
 R.,
 D.
 Andrews,
 D.
 Haydon.
 The
 thickness,
 composition
 and
 structure
 of
 some
 lipid
 
bilayers
 and
 natural
 membranes.
 Journal
 of
 Membrane
 Biology.
 5
 (3):
 277-­‐296,
 1971.
 
125.
 
 Lu,
 B.,
 G.
 Kocharyan,
 J.J.
 Schmidt.
 Lipid
 bilayer
 arrays:
 Cyclically
 formed
 and
 measured.
 
Biotechnology
 Journal.
 9
 (3):
 446-­‐451,
 2014.
 
126.
 
 Miller,
 C.
 Ion
 channel
 reconstitution:
 Springer
 Science
 &
 Business
 Media,
 1986
 
127.
 
 Khandelia,
 H.,
 O.G.
 Mouritsen.
 Lipid
 gymnastics:
 evidence
 of
 complete
 acyl
 chain
 reversal
 in
 
oxidized
 phospholipids
 from
 molecular
 simulations.
 Biophysical
 Journal.
 96
 (7):
 2734-­‐2743,
 
2009.
 
128.
 
 Hladky,
 S.,
 D.
 Gruen.
 Thickness
 fluctuations
 in
 black
 lipid
 membranes.
 Biophysical
 Journal.
 38
 
(3):
 251,
 1982.
 
129.
 
 Simons,
 K.,
 E.
 Ikonen.
 Functional
 rafts
 in
 cell
 membranes.
 Nature.
 387
 (6633):
 569-­‐572,
 1997.
 
130.
 
 Munro,
 S.
 Lipid
 rafts:
 elusive
 or
 illusive?
 Cell.
 115
 (4):
 377-­‐388,
 2003.
 
131.
 
 Simons,
 K.,
 M.J.
 Gerl.
 Revitalizing
 membrane
 rafts:
 new
 tools
 and
 insights.
 Nature
 Reviews
 -­‐
 
Molecular
 Cell
 Biology.
 11
 (10):
 688-­‐699,
 2010.
 
132.
 
 Veatch,
 S.L.,
 S.L.
 Keller.
 Separation
 of
 liquid
 phases
 in
 giant
 vesicles
 of
 ternary
 mixtures
 of
 
phospholipids
 and
 cholesterol.
 Biophysical
 Journal.
 85
 (5):
 3074-­‐3083,
 2003.
 
133.
 
 Danielsen,
 E.M.,
 B.
 Van
 Deurs.
 A
 transferrin-­‐like
 GPI-­‐linked
 iron-­‐binding
 protein
 in
 detergent-­‐
insoluble
 noncaveolar
 microdomains
 at
 the
 apical
 surface
 of
 fetal
 intestinal
 epithelial
 cells.
 The
 
Journal
 of
 Cell
 Biology.
 131
 (4):
 939-­‐950,
 1995.
 
134.
 
 Danielsen,
 E.M.
 Involvement
 of
 detergent-­‐insoluble
 complexes
 in
 the
 intracellular
 transport
 of
 
intestinal
 brush
 border
 enzymes.
 Biochemistry.
 34
 (5):
 1596-­‐1605,
 1995.
 
135.
 
 Brown,
 D.A.,
 J.K.
 Rose.
 Sorting
 of
 GPI-­‐anchored
 proteins
 to
 glycolipid-­‐enriched
 membrane
 
subdomains
 during
 transport
 to
 the
 apical
 cell
 surface.
 Cell.
 68
 (3):
 533-­‐544,
 1992.
 
136.
 
 Skibbens,
 J.E.,
 M.G.
 Roth,
 K.S.
 Matlin.
 Differential
 extractability
 of
 influenza
 virus
 hemagglutinin
 
during
 intracellular
 transport
 in
 polarized
 epithelial
 cells
 and
 nonpolar
 fibroblasts.
 The
 Journal
 
of
 Cell
 Biology.
 108
 (3):
 821-­‐832,
 1989.
 
137.
 
 Sargiacomo,
 M.,
 M.
 Sudol,
 Z.
 Tang,
 et
 al.
 Signal
 transducing
 molecules
 and
 glycosyl-­‐
phosphatidylinositol-­‐linked
 proteins
 form
 a
 caveolin-­‐rich
 insoluble
 complex
 in
 MDCK
 cells.
 The
 
Journal
 of
 Cell
 Biology.
 122
 (4):
 789-­‐807,
 1993.
 
138.
 
 Simons,
 K.,
 D.
 Toomre.
 Lipid
 rafts
 and
 signal
 transduction.
 Nature
 Reviews
 -­‐
 Molecular
 Cell
 
Biology.
 1
 (1):
 31-­‐39,
 2000.
 
139.
 
 Anderson,
 R.
 Caveolae:
 where
 incoming
 and
 outgoing
 messengers
 meet.
 Proceedings
 of
 the
 
National
 Academy
 of
 Sciences.
 90
 (23):
 10909-­‐10913,
 1993.
 
140.
 
 Dietrich,
 C.,
 L.
 Bagatolli,
 Z.
 Volovyk,
 et
 al.
 Lipid
 rafts
 reconstituted
 in
 model
 membranes.
 
Biophysical
 Journal.
 80
 (3):
 1417-­‐1428,
 2001.
 
141.
 
 Samsonov,
 A.V.,
 I.
 Mihalyov,
 F.S.
 Cohen.
 Characterization
 of
 cholesterol-­‐sphingomyelin
 domains
 
and
 their
 dynamics
 in
 bilayer
 membranes.
 Biophysical
 Journal.
 81
 (3):
 1486-­‐1500,
 2001.
 
142.
 
 London,
 E.,
 D.A.
 Brown,
 X.
 Xu.
 Fluorescence
 quenching
 assay
 of
 sphingolipid/phospholipid
 
phase
 separation
 in
 model
 membranes.
 Methods
 in
 Enzymology.
 312:
 272-­‐290,
 1999.
 

  105
 
143.
 
 Baumgart,
 T.,
 G.
 Hunt,
 E.R.
 Farkas,
 et
 al.
 Fluorescence
 probe
 partitioning
 between
 Lo/Ld
 phases
 
in
 lipid
 membranes.
 Biochimica
 et
 Biophysica
 Acta
 -­‐
 Biomembranes.
 1768
 (9):
 2182-­‐2194,
 2007.
 
144.
 
 Baumgart,
 T.,
 S.T.
 Hess,
 W.W.
 Webb.
 Imaging
 coexisting
 fluid
 domains
 in
 biomembrane
 models
 
coupling
 curvature
 and
 line
 tension.
 Nature.
 425
 (6960):
 821-­‐824,
 2003.
 
145.
 
 Feigenson,
 G.W.,
 J.T.
 Buboltz.
 Ternary
 phase
 diagram
 of
 dipalmitoyl-­‐PC/dilauroyl-­‐
PC/cholesterol:
 nanoscopic
 domain
 formation
 driven
 by
 cholesterol.
 Biophysical
 Journal.
 80
 (6):
 
2775-­‐2788,
 2001.
 
146.
 
 Feigenson,
 G.W.
 Phase
 diagrams
 and
 lipid
 domains
 in
 multicomponent
 lipid
 bilayer
 mixtures.
 
Biochimica
 et
 Biophysica
 Acta
 -­‐
 Biomembranes.
 1788
 (1):
 47-­‐52,
 2009.
 
147.
 
 Heberle,
 F.A.,
 J.
 Wu,
 S.L.
 Goh,
 et
 al.
 Comparison
 of
 three
 ternary
 lipid
 bilayer
 mixtures:
 FRET
 and
 
ESR
 reveal
 nanodomains.
 Biophysical
 Journal.
 99
 (10):
 3309-­‐3318,
 2010.
 
148.
 
 de
 Almeida,
 R.F.,
 A.
 Fedorov,
 M.
 Prieto.
 Sphingomyelin/phosphatidylcholine/cholesterol
 phase
 
diagram:
 boundaries
 and
 composition
 of
 lipid
 rafts.
 Biophysical
 Journal.
 85
 (4):
 2406-­‐2416,
 
2003.
 
149.
 
 Veatch,
 S.L.,
 S.L.
 Keller.
 Seeing
 spots:
 complex
 phase
 behavior
 in
 simple
 membranes.
 Biochimica
 
et
 Biophysica
 Acta
 -­‐
 Molecular
 Cell
 Research.
 1746
 (3):
 172-­‐185,
 2005.
 
150.
 
 Honerkamp-­‐Smith,
 A.R.,
 P.
 Cicuta,
 M.D.
 Collins,
 et
 al.
 Line
 tensions,
 correlation
 lengths,
 and
 
critical
 exponents
 in
 lipid
 membranes
 near
 critical
 points.
 Biophysical
 Journal.
 95
 (1):
 236-­‐246,
 
2008.
 
151.
 
 Davis,
 J.H.,
 J.J.
 Clair,
 J.
 Juhasz.
 Phase
 equilibria
 in
 DOPC/DPPC-­‐d
 62/cholesterol
 mixtures.
 
Biophysical
 Journal.
 96
 (2):
 521-­‐539,
 2009.
 
152.
 
 Veatch,
 S.L.,
 O.
 Soubias,
 S.L.
 Keller,
 et
 al.
 Critical
 fluctuations
 in
 domain-­‐forming
 lipid
 mixtures.
 
Proceedings
 of
 the
 National
 Academy
 of
 Sciences.
 104
 (45):
 17650-­‐17655,
 2007.
 
153.
 
 Veatch,
 S.L.,
 P.
 Cicuta,
 P.
 Sengupta,
 et
 al.
 Critical
 fluctuations
 in
 plasma
 membrane
 vesicles.
 ACS
 
Chemical
 Biology.
 3
 (5):
 287-­‐293,
 2008.
 
154.
 
 García-­‐Sáez,
 A.J.,
 S.
 Chiantia,
 P.
 Schwille.
 Effect
 of
 line
 tension
 on
 the
 lateral
 organization
 of
 lipid
 
membranes.
 Journal
 of
 Biological
 Chemistry.
 282
 (46):
 33537-­‐33544,
 2007.
 
155.
 
 Kuzmin,
 P.I.,
 S.A.
 Akimov,
 Y.A.
 Chizmadzhev,
 et
 al.
 Line
 tension
 and
 interaction
 energies
 of
 
membrane
 rafts
 calculated
 from
 lipid
 splay
 and
 tilt.
 Biophysical
 Journal.
 88
 (2):
 1120-­‐1133,
 
2005.
 
156.
 
 Ambati,
 J.,
 C.S.
 Canakis,
 J.W.
 Miller,
 et
 al.
 Diffusion
 of
 high
 molecular
 weight
 compounds
 through
 
sclera.
 Investigative
 Ophthalmology
 and
 Visual
 Science.
 41
 (5):
 1181-­‐1185,
 2000.
 
157.
 
 Tsuboi,
 S.,
 T.
 Fujimoto,
 Y.
 Uchihori,
 et
 al.
 Measurement
 of
 retinal
 permeability
 to
 sodium
 
fluorescein
 in
 vitro.
 Investigative
 ophthalmology
 &
 visual
 science.
 25
 (10):
 1146-­‐1150,
 1984.
 
158.
 
 Nugent,
 L.J.,
 R.K.
 Jain.
 Extravascular
 diffusion
 in
 normal
 and
 neoplastic
 tissues.
 Cancer
 Research.
 
44
 (1):
 238-­‐244,
 1984.
 
159.
 
 Flaten,
 G.E.,
 A.B.
 Dhanikula,
 K.
 Luthman,
 et
 al.
 Drug
 permeability
 across
 a
 phospholipid
 vesicle
 
based
 barrier:
 A
 novel
 approach
 for
 studying
 passive
 diffusion.
 European
 Journal
 of
 
Pharmaceutical
 Sciences.
 27
 (1):
 80-­‐90,
 2006.
 
160.
 
 Perale,
 G.,
 F.
 Rossi,
 M.
 Santoro,
 et
 al.
 Drug
 release
 from
 hydrogel:
 A
 new
 understanding
 of
 
transport
 phenomena.
 Journal
 of
 Biomedical
 Nanotechnology.
 7
 (3):
 476-­‐481,
 2011.
 
161.
 
 Casalini,
 T.,
 M.
 Salvalaglio,
 G.
 Perale,
 et
 al.
 Diffusion
 and
 aggregation
 of
 sodium
 fluorescein
 in
 
aqueous
 solutions.
 The
 Journal
 of
 Physical
 Chemistry
 B.
 115
 (44):
 12896-­‐12904,
 2011.
 
162.
 
 Zocher,
 F.,
 D.
 van
 der
 Spoel,
 P.
 Pohl,
 et
 al.
 Local
 Partition
 Coefficients
 Govern
 Solute
 Permeability
 
of
 Cholesterol-­‐Containing
 Membranes.
 Biophysical
 Journal.
 105
 (12):
 2760-­‐2770,
 2013.
 
163.
 
 Huang,
 J.,
 J.T.
 Buboltz,
 G.W.
 Feigenson.
 Maximum
 solubility
 of
 cholesterol
 in
 phosphatidylcholine
 
and
 phosphatidylethanolamine
 bilayers.
 Biochimica
 et
 Biophysica
 Acta
 -­‐
 Biomembranes.
 1417
 
(1):
 89-­‐100,
 1999.
 
164.
 
 Widom,
 B.
 Surface
 tension
 and
 molecular
 correlations
 near
 the
 critical
 point.
 The
 Journal
 of
 
Chemical
 Physics.
 43
 (11):
 3892-­‐3897,
 1965. 
Asset Metadata
Creator Runas, Kristina A. (author) 
Core Title Biophysical studies of passive transport across synthetic lipid bilayers 
Contributor Electronically uploaded by the author (provenance) 
School Andrew and Erna Viterbi School of Engineering 
Degree Doctor of Philosophy 
Degree Program Chemical Engineering 
Publication Date 01/21/2016 
Defense Date 06/19/2015 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag biomimetic membranes,giant unilamellar vesicles,lipid bilayer,lipid oxidation,membrane phase separation,microfluidics,OAI-PMH Harvest,passive diffusion,passive transport,permeability,plasma membrane,spinning disk confocal microscopy 
Format application/pdf (imt) 
Language English
Advisor Malmstadt, Noah (committee chair), Povinelli, Michelle L. (committee member), Sahimi, Muhammad (committee member) 
Creator Email kristina.runas@gmail.com,runas@usc.edu 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c3-601663 
Unique identifier UC11299452 
Identifier etd-RunasKrist-3659.pdf (filename),usctheses-c3-601663 (legacy record id) 
Legacy Identifier etd-RunasKrist-3659.pdf 
Dmrecord 601663 
Document Type Dissertation 
Format application/pdf (imt) 
Rights Runas, Kristina A. 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law.  Electronic access is being provided by the USC Libraries in agreement with the a... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Abstract (if available)
Abstract Transport by passive diffusion acro ss the lipid bilayer of the plasma membrane represents a nearly universal mechanism of molecular entry of drugs and environmental toxins into the cell. Understanding the barrier properties of the lipid bilayer and what molecular characteristics control its permeability is therefore of fundamental interest to toxicology and drug development. Biomimetic membranes formed from commercially available synthetic lipids have been studied extensively as a method for mimicking the plasma membrane. Development of assays to rapidly measure bilayer permeability has been focused on optimization of three areas: maximizing high-throughput capabilities, minimizing analysis assumptions and artifacts, and maintaining a highly controllable membrane composition. This work presents a novel technique capable of all three areas of interest. The technique involves combining spinning disk confocal microscopy with a microfluidic platform to examine the permeability of synthetic lipid bilayers, which was then used to examine how varying membrane composition to reflect disease states can impact passive diffusion. 
Tags
biomimetic membranes
giant unilamellar vesicles
lipid bilayer
lipid oxidation
membrane phase separation
microfluidics
passive diffusion
passive transport
permeability
plasma membrane
spinning disk confocal microscopy
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button