Close
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected
Invert selection
Deselect all
Deselect all
Click here to refresh results
Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
A case study comparing measured and simulated acoustical environments: Acoustical improvements of Verle Annis Gallery
(USC Thesis Other)
A case study comparing measured and simulated acoustical environments: Acoustical improvements of Verle Annis Gallery
PDF
Download
Share
Open document
Flip pages
Contact Us
Contact Us
Copy asset link
Request this asset
Transcript (if available)
Content
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct pnnt, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthonzed copyright matenal had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. ProQuest Information and Learning 300 North Zeeb PxOad, Ann Arbor, Mi 48106-1346 USA 800-521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. A CASE STUDY COMPARING MEASURED AND SIMULATED ACOUSTICAL ENVIROMENTS: ACOUSTICAL IMPROVEMENTS OF VERLE ANNIS GALLERY by Rebeka Vital A Thesis Presented to the FACULTY OF THE GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In Partial Fulfillment of the Requirements for the Degree MASTER OF BUILDING SCIENCE August 2000 Copyright 2000 Rebeka Vital Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 1411044 UMI UMI M icroform 1411044 Copyright 2003 by ProQ uest Inform ation and Learning Com pany. All rights reserved. This m icroform edition is protected against unauthorized copying under Title 17. United States Code. P roQ uest Inform ation and Learning Com pany 300 North Zeeb Road P.O. Box 1346 Ann Arbor. Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UNIVERSITY OF SOUTHERN CALIFORNIA T H E G R A D U A T E S C H O O L U N IV E R S IT Y RANK L O S A N G E L E S . C A L IF O R N IA 1 0 0 0 7 This thesis, w ritten by 'J j j i g J L ____________________ under the direction of h£4?— Thesis Committee, and approved by a ll its members, has been pre sented to and accepted by the D ean of The Graduate School, in p a rtial fulfillm ent of the requirements fo r the degree of Master o f B uild in g Science / «y-— ■ " ___ _ ________ D ate 2 .Q U J1_ T H E S IS C O M M IT T E E 2 n ,.. ____ Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGEMENTS I take this opportunity to express my heartfelt thanks to: Prof. Marc Schiler, the chairperson of my committee for his guidance and support with my thesis and also through out my whole studies in the University of Southern California. Jerry Christoff, President of Veneklasen Associates, for his constant guidance, encouragement and patience, and for being there on every step with me on this thesis from the preliminary stages of its conception to its present form. I would also like to thank the Paul S. Veneklasen Research Foundation, for buying the CATT - Acoustics software. Prof. Doug Nobble and Prof. Karen Kensek, Members of my committee for their continuous enthusiasm and constructive suggestions. My parents Victor and Anna Vital, for their continued support and encouragement in my endeavor for higher education. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS ACKNOWLEDGEMENTS............................................................................................... ii LIST OF FIGURES ..................................................................................................... v LIST OF TABLES ......................................................................................................... ix ABSTRACT................................................................................................................... x CHAPTER 1. INTRODUCTION ................................................................................... 1 1.1 ACOUSTICAL PARAMETERS....................................................................... 1 CHAPTER 2. VERLE ANNIS GALLERY.................................................................. 6 2.1. INTRODUCTION ...................................................................................... 6 2.2. ARCHITECTURE ..................................................................................... 7 2.3. SURVEY ON QUALITY OF THE ACOUSTICS OF THE ROOM..........8 2.4. FIELD MESSURMENTS WITH MLLSA SOFTWARE ...................... 11 2.5. MEASUREMENTS RESULTS .............................................................. 18 2.6. MANUAL CALCULATIONS OF THE EXISTING R T 6 0 ................... 22 CHAPTER 3. CATT ACOUSTICS.............................................................................24 3.1. INTRODUCTION ......................................................................................24 3.2. ABOUT THE SOFTWARE ......................................................................25 3.3. MODELING OF EXISTING SPACE & RESULTS ................................26 CHAPTER 4. COMPARISON OF RESULTS FOR EXISTING SITUATION...... 34 4.1. INTRODUCTION ..................................................................................... 34 4.2. MANUAL CALCULATION - CATT ACOUSTICS - M LS S A .............. 34 4.3. DISCUSSION OF COMPARED RESULTS .......................................... 37 CHAPTER 5. ESTIMATING AMOUNT OF ABSORPTION THAT NEEDS TO BE AD DED............................................................................................................................38 iii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CHAPTER 6. ACOUSTICAL SOLUTION O PTIO N S............................................. 40 6.1. INTRODUCTION .......................................................................................40 6.2. CASE#1 ..................................................................................................... 44 6.3. CASE#2..................................................................................................... 48 6.4. CASE#3.................................................................................................... 52 6.5. CASE#4.................................................................................................... 56 6.6. CASE#5..................................................................................................... 60 CHAPTER 7. COMPARISON OF SOLUTIONS & CHOICE ............................... 64 CHAPTER 8. DESIGN OF REFLECTORS .............................................................. 66 8.1. SOUND RAYS & ARCHITECTURAL DETAILS............................... 66 8.2. PICTURES OF PHYSICAL M O D EL..................................................69 8.3. 3D RENDERINGS................................................................................ 70 9.1. CHAPTER 9. CONCLUSIONS ......................................................... 72 9.2. SUMMARY OF MODEL SYSTEMS ................................................. 72 9.3. EVALUATION OF PROCESS ........................................................... 72 9.4. EVALUATION OF SUGGESTED SOLUTION ................................ 73 9.5. SUGGESTIONS FOR FUTURE WORK ........................................ 73 CHAPTER 10. REFERENCES .................................................................................. 74 APPENDIX.....................................................................................................................75 IV Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. LIST OF FIGURES Fig. 1.1 - Decibel S cale................................................................................................ 1 Fig.1.2 - Concept sketch of a double-sloped decay in a ro o m ................................ 2 Fig.1.3 - Concept sketch of masking sounds by reverberation in a room measured by early decay tim e ..................................................................................... 4 Fig-2.1 - The Verle Annis Gallery .................................................................................6 Fig-2.2 - Section and Plan of the Verle Annis G allery............................................. 7 Fig-2.3 - Questionnaire Form with summery of results.............................................9 Fig-2.4 - 'Black Diagram'’ of setting of MLLSA Equipm ent................................... 11 Fig-2.5 - Positions of the Loudspeaker (source) and Microphone (receiver) indicated on the p la n .................................................................................................. 12 Fig.2.6.a - The MLSSA C om puter............................................................................ 13 Fig.2.6.b - The Bruel & Kjaer OmniPower Loudspeaker...................................... 13 Fig.2.6.c - The Bruel & Kjaer Sound Level Meter & the Microphone................... 13 Fig.2.6.d - Jerry Christoff & Garry Mange from Veneklasen Associates supervising the measurements................................................................................. 13 Fig-2.7 - Robert Timmy, the dean of the U.S.C. School of Architecture. Marc Schiler. the director of the Building Science Program, and Jerry Chistoff from Veneklasen Associates discussing the procedure of the measurements, while Garry Mange is setting the equipment in the Verle Annis Gallery....................... 14 Fig.2.8 - Early Decay Time (EDT), Reverberation Time (RT). Clarity Index (C80). Deutlichkeit Factor (D50) for the different frequencies for Sourcel and Receiverl computed by MLSSA................................................................................................... 15 V Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Fig. 2.9 - The Impulse Response in Volts over the first 25 msec and over the 1 sec computed by M LSSA.......................................................................................... 16 Fig. 2.10 - Schroeder Reverberant decay curve computed by M LSSA 17 Fig.2.11 - Early Decay Time Chart showing results from MLSSA computations 18 Fig.2.12 - Reverberation Time Chart showing results from MLSSA computations................................................................................................................... 19 Fig.2.13 - Early Decay Time and Reverberation Time Charts showing results from MLSSA computations........................................................................................ 20 Fig.2.14. - Average Reverberation Time Chart showing results from MLSSA computations................................................................................................................. 21 Fig.2.15 - Absorption Coefficients for the various surfaces in the Verle Annis G allery......................................................................................................................... 22 Fig.3.1 - Model of the Verle Annis Gallery in AutoCAD with AutoLISP Commands...................................................................................................................... 27 F ig .3 .2 -Shaded V ie w .................................................................................................28 Fig-3.3 - Section. Plan and Isometric V ie w ............................................................ 28 Fig.3.4 - Deutlichkeit factor (D-50) . Clarity Index (C-80). Sound Pressure Level (SPL): The clearest you can hear is 3 5 % ................................................................ 29 Fig.3.5 - Background Noise. Deutlichkeit Factor (D-50), Sound Pressure Level (SPL) at the different receiver position.......................................................................29 Fig.3.6 - Echogram plot-files.......................................................................................30 Fig-3.6 - Backwards integrated decays for all octaves marking Reverberation Time for the first 15 sec (T-15). for the first 30 sec (T-30) and regression lines ..31 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Fig.3.7 - A plot frame line moved marking the receivers showing Early Decay Time (EDT), Reverberation Time (T-15. T-30, T s )................................................. 32 Fig.3.8 - A plot frame line moved marking the receivers showing Deutlichkeit Factor (D-50), Clarity Index (C-80), Lateral Fraction (LEF1), Sound Pressure Level (S P L).....................................................................................................................33 Fig-3.9 - Results for an overall Reverberation Time Absorption and other acoustical parameters in the space for the different frequencies............................33 Fig.3.10 - Early Decay Time (EDT), Reverberation Time (T-15), Deutlichkeit (D- 50) and Clarity Index (C-80) for the different receiver positions.............................33 Fig-4.1 - Reverberation T im e .......................................................................................34 Fig.4.2 - Clarity Index................................................................................................. 35 Fig.4.3 - Deutlichkeit F actor........................................................................................ 36 Fig.5.1 - Absorption Coefficient a in the Verle Annis G allery.............................. 38 Fig.5.2 - Optimum Reverberation Time for different types of rooms as a function of room volum e............................................................................................................. 39 Fig-5.3 - Calculation of absorption that needs to be added to achieve a reverberation time of 0.8sec........................................................................................ 40 Fig.6.1 - Armstrong acoustical products................................................................. 41 Fig-6.2 - Decoustics products : Acoustical W a lls.....................................................42 Fig-6.3 - Decoustics products : Tackable Acoustical W a lls................................... 43 Fig.6.4 - Shaded View ................................................................................................44 Fig-6.5 - Section. Plan and Isometric V ie w .............................................................. 44 Fig.6.6 - CATT Results for case 1 ..............................................................................45 Fig.6.7 - CATT Results for case 1 ..............................................................................46 VII Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Fig.6.8 - Shaded V ie w ................................................................................................ 48 Fig-6.9 - Section, Plan and Isometric V ie w .............................................................. 48 Fig.6.10 - CATT Results for case 2 ...........................................................................49 Fig.6.11 - CATT Results for case 2 ......................................................................... 50 Fig.6.12 - Shaded V ie w ............................................................................................ 52 Fig.6.13 - Section, Plan and Isometric V ie w ............................................................ 52 Fig.6.14 - CATT Results for case 3 ...........................................................................53 Fig.6.15 - CATT Results for case 3 ......................................................................... 54 Fig.6.16 - Shaded V ie w .............................................................................................. 56 Fig.6.17 - Section, Plan and Isometric V ie w ......................................................... 56 Fig.6.18 - CATT Results for case 4 ...........................................................................57 Fig.6.19 - CATT Results for case 4 ...........................................................................58 Fig.6.20 - Shaded View ............................................................................................. 60 Fig.6.21 - Section, Plan and Isometric V ie w ............................................................60 Fig.6.22 - CATT Results for case 5 ...........................................................................61 Fig.6.23 - CATT Results for case 5 ...........................................................................62 Fig-8.1 - Direction of acoustical rays for the two positions of the reflector 67 Fig-8.2 -Architectural detail of the movable reflector.............................................68 Fig-8.3 - Model in 1" to 1' scale of the movable reflector....................................... 69 viii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. LIST OF TABLES Table.2.1. - Absorption that needs to be added to the space............................... 21 Table.2.2 - Spreadsheet used at Veneklasen Associates for manual calculation of Reverberation tim e .......................................................................................................23 Table.6.1 - Manual Calculations predicting the acoustical behavior in case#1 ... 47 Table.6.2 - Manual Calculations predicting the acoustical behavior in case#2 ... 51 Table.6.3 - Manual Calculations predicting the acoustical behavior in case#3 ... 55 Table.6.4 - Manual Calculations predicting the acoustical behavior in case#4 ... 59 Table.6.5 - Manual Calculations predicting the acoustical behavior in case#5 ... 63 Table.7.1 - Predicted reverberation time for each case form manual calculations and from C ATT..............................................................................................................64 Table.7.2 - Predicted Deutlichkeit for each case form manual calculations and from C A T T ..................................................................................................................... 64 Table.7.3- Predicted Clarity Index for each case form manual calculations and from C A T T .................................................................................................................... 65 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT This thesis compares measured and simulated acoustical environments through a case study of a lecture room: the Verle Annis Gallery on the University of Southern California campus. Acoustical measurements with MLSSA software, with CATT - Acoustics software and manual calculations indicated that the acoustics were unacceptable. Several solutions were suggested and modeled in CATT-Acoustics and were also manually calculated. Acoustical reflectors were designed to take advantage of the reflected sound and enforce the loudness of the direct sound and thereby make it possible for the room to have either on lecture at a time or two simultaneous lectures at the two different sides of the room. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CHAPTER 1. INTRODUCTION 1.1. ACOUSTICAL PARAMETERS We all know that a concert hall, theatre, lecture room or a church may have good or poor acoustics'. As far as speech in these rooms is concerned, it is relatively simple to make some sort of judgment on their quality by rating the ease with which the spoken word is understood. Judging the acoustics of a concert hall or an opera house is generally more difficult, since it requires considerable experience, the opportunity for comparisons and a critical ear. An everyday experience is that living areas, offices, classrooms, restaurants and other spaces, can be acoustically satisfactory or unsatisfactory 1 Despite the fact that people are subconsciously aware of the acoustics to which they are daily subjected, there are only a few who can explain what they really mean by good’ or poor acoustics and who understand the factors that influence or give rise to certain acoustic properties. V e r y r f H i J . J U . 1 M o atfjte Very 'Jin: S c u n - 3 S c u n e S c D | * C t « V « u 'e s s u r e C - r e v v u 'e o n C V e v e 1 . e H n 3 x ;o * —;a o 1 3 0 3 x 1 0 ' 1 2 0 O c jf e r .n g : :o 3 * :o 4 L IO C 3 x IC ,L L X ;0 3 x 10 90 80 ’Q 60 60 40 30 20 1 0 0 'fpc c f w x jra Pjir •.ire v n o ic ,«t <n[{ n c 41 ! 6 ft ;« t M fcctfi power j ! JO O *t ic c * i^cup jii'Tv.rr’ s P n e u n u tic c n is p e * Popular m ui c K«xp Heavy Irjc X »y AveMftc jlrre t vaflic ConverVJtion.il speeefi Tunr-urr Active B u v n e w cfticc Q u'et iiv r i; room C o n c e rt toil S irtt'e c ? e o .c v fpretfoto a » re a rin g Reference i. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. The acoustics of a room is governed by principles, which are amenable to scientific treatment. Wallace Sabine was the first to imagine that the extremely complex behavior of sound in rooms could be quantified in terms of such simple elements as room volume and the area of sound absorption. Sabine's reverberation time has remained a major acoustic quantity. Developments this century have enabled the accurate prediction of noise levels in buildings. Research into appropriate acoustics for speech and music only began to bear further fruit when attention was given to what our ears require and prefer2. Progress in the last twenty years in particular has been considerable and several factors now exist to complement reverberation time as objective measures.3 This has been accelerated by the development of high speed digital signal processing. A number of indices of acoustic qualities can be calculated from the impulse response of a room. The impulse response is defined to be the output of a sound - D ,re c ; s o v a ti E irf.' .'O ' c .V j.-.,y cn i'W .p .-r < Lii/5’ ie v O \ "j.r i ,i.n - ;v , Fig.1.2 - Concept sketch of a double-sloped decay in a room (Ref. lii) ' Reference iv. Reference ii. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. source system, when the input is an impulse. Several of the more ‘popular” measures are defined below. All of the acoustical measures were derived from p(t), the sound pressure over time recorded by microphones at locations in a room. The t designates time with the origin (t=0) chosen to be arrival of the wide band direct pulse. (Fig. 1.2) The Decibel Scale starts at 0 for some chosen reference value and compares other acoustic pressures to that reference value. For sound pressure level measurements, a reference value of 0.00002 Newton/square meter (2x10-5 N/m2) is chosen. This is the threshold of hearing for a typical healthy young person. The sound pressure level in decibels for any sound for which the pressure is known, is given by the following expression: Lp = 20 log p/po Where: Lp = sound pressure level in decibels (dB) p = measured sound pressure of concern po = preference sound pressure usually taken to be 2x10-5 N/m2 Fortunately, acoustical instruments give the measured decibel values directly. It is important to keep in mind that since this is basically a logarithmic scale, there are a few precautions to be observed when adding sound pressure levels expressed in decibels (Fig. 1.1). Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reverberation time (RT60) is the amount of time it takes for a sound to decay to inaudibibility after the source has stopped. The graph of reverberation time is reflects a line, whose slope is extrapolated to an equivalent 60-dB decay. Reverberation time is usually expressed in seconds. The Sabin equation for Reverberation Time is: Rt60 = 0.049V/S .where V the Volume of the space and S the total absorption A more precise calculation known as the Eyring Equation is: RT60= 0.049V/-2.33 logio(1-a)+4mV Where V the volume of the space, a the absorption of the surfaces and m air absorption. Early decay time (EDT10) is a modified measure of reverberation time. It is the time required for the first 10dB of decay multiplied by 6 to extrapolate the result to a 60-dB decay. (Fig. 1.3) ' r — ■ i.OUONESC icB) 3ounn rcftccUcn . 7 1 rcar.L ro r^ ^ r . c a rt/ a c c jy f m es mas* c r ccvi?r uu s y i^ a c io s . Early-to-late energy ratios (Eh) compare the early energy in an impulse response to the later -o u c n e s s id L ’l / 'IM E ' ' . ' f i n ejr.y cecay r./ro. •Voi-,;,- — encn to be b c v d s a w Fig.1.3 - Concept sketch of masking sounds by reverberation in a room measured by early decay time (Ref lii). Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. or reverberant energy level. They are logarithmic ratios of the early sound energy integrated from t=0 to t=t, relative to the late or reverberant sound energy integrated from t=t to t=x. The most widely used temporal energy ratio uses t=80msec and is called clarity index or clearness index (C or Cao). Ct = 10log (early energy/late energy) Relative loudness (L) or relative strength (G) is the sound energy level at a seat in a room compared to the sound level at 10m from the sound source in an anechoic environment. It effectively measures the contribution to loudness of the early reflections and reverberation in the room and approximates the subjective sense of loudness.4 G = 10log (loudness of sound in room/loudness of sound in anechoic room @i0m) There are also other acoustical parameters that are in use. but they are more concerned with rooms involving music. 1 Reference iii. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CHAPTER 2. THE VERLE ANNIS GALLERRY 2.1. INTRODUCTION Fig.2.1 - The Verle Annis Gallery The Verle Annis Gallery is located in Harris Hall on the University of Southern California Campus. It belongs to the school of Architecture. It is regularly used for presentations of architectural studios and also occasionally for exhibitions. (Fig.C.1) The students who use it judged the acoustics of the space poor’. Therefore, this space was chosen to be the test-case for this study. 6 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 2.2. ARCHITECTURE J L T n U Ef Ij L i I S S ' - I O ' Fig.2.2 - Section and Plan of the Verle Annis Gallery Volume V = 28’2” x 37'4” x 19’ = 19973 eft Surface Area: Ceiling: 28’2" x 37'4" = 1051 sft Floor: 28'2" x 37'4" = 1051 sft Window: 22'x 19' = 264 sft Walls: (28’2" x 19' x 2) + (37'4” x 19' x 2) - 264sft = 2224.5sft Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 2.3. SURVEY A survey was made to determine how individuals reacted to the acoustical conditions within the Verle Annis Gallery in Harris Hall on the U.S.C. campus. Around 25 students that use the hall regularly, having their architectural studio presentations there filled out the following questionnaire. The students were asked to give their judgment about the following definitions: Clarity refers to the ability to perceive speech detail. Reverberance refers to the degree of perceived reverberation in a temporal sense: the degree to which sounds are heard relative to the background of preceding events. This means that they can judge whether the room is live ( a lot of reverberation) or dead (not reverberant at all). ntimacy refers to one’s degree of identification with the event, whether one feels surrounded by the sound. Loudness should be assessed relative to what one considers acceptable for such a space. In other words, the receiver will comment onwhether or not the room is too noisy. Background noise refers to ventilation and intrusive noise from outside. Overall impression refers to the overall impression of the acoustics of the space for presentations and lectures. The questionnaire form with a summary of the results is shown in Fig.2.3. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Q u e s t io n n a ir e for a c o u s t ic a l a s s e s s m e n t o f V erle A n n is H a ll in H a r r is H all Class. Year o f studies. Comments on the acoustical properties of the Hall: C L A R IT Y OF S O U N D M uddv Clear R E V E R B E R A N C E Dead Live 1 , 1 . . V I IN T IM A C Y Remote Intim ate 1 N/ 1 . . . . . . 1 LO U D N E S S Loud Q uiet 1 ___ \ L - .!_ ________ 1 B A C K R O U N D N O ISE Intolerable Tolerable Acceptable U nnoticed n/ O V E R A L L IM P R E S S IO N V erv Poor Po S 2L M ediocre Reasonable Good V erv uood Excellent F ig.2 .3 - Questionnaire Form with summary of results Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Summary of Results: The clarity of sound in the room was judged muddy. The reverberance is big so the acoustics seems very live. As far as intimacy of the event is concerned, people feel very remote from what’s going on in the space. The room was judged overall noisy with a lot of background noise, which for some people seemed tolerable and for some even intolerable. The overall impression of the acoustics of the hall was mediocre to poor. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 2.4. MEASUREMENTS WITH MLLSA SOFTWARE An analytical tool has recently been developed for the measurement of the impulse response in a room. This product is called the Maximum - Length Sequence System Analyzer, or MLSSA for short. The Acoustical Measurements in the Verle Anis Gallery were done with the MLSSA Software. MLSSA measures reverberation by first measuring the loudspeaker/room impulse response and then reverse integrating the square of the impulse response to form a Schroeder reverberant decay curve, which represents the reverberation time curve. O UT PUT M L S S A C OMP LITER A m p l if ie r LOUDS PEAKER MICROPHONE S o u n d Le v e l METER Fig.2.4. - 'Black Diagram" of setting of MLLSA Equipment The test equipment included the Bruel & Kjaer OmniPower 4296 loudspeaker (Fig.2.6.b). The Bruel & Kjaer 2260 Analyzer was used as the noise generator with the generator output level set at -3dB. The Bruel & Kjaer 2716 Lab Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 300 amplifier was used to amplify the noise signal and power the loudspeaker. The loudspeaker was set up on its tripod at a height of 5ft. The Sound Level Meter Bruel & Kjaer 2230 was used to measure the sound level received by the Bruel & Kjaer 4155 Microphone (Fig.2.6.d). Measurements were taken for 2 different positions of the source combined with 4 different positions of the receiver (Fig.2 5). Fig.2.5 - Positions of the Loudspeaker (source) and Microphone (receiver) indicated on the plan Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Fig.2.6.a - The MLSSA Computer Fig.2.6.b - TheBruel & Kjaer OmniPower Loudspeaker Fig.2.6.c - The Bruel & Kjaer Sound Level Meter & the Microphone ■ ■ ■ I £ » « Fig.2.6.d - Jerry ChristoffS Garry Mange from Veneklasen Associates supervising the measurements Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Fig.2.7 - Robert Timme, the dean of the U.S.C School of Architecture, Marc Schiler, the director of the 8uilding Science Program, and Jerry Christoff from Veneklasen Associates discussing the procedure of the measurements, while Garry Mange is setting the equipment in the Verle Anms Gallery. 14 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. The following images show what kind of results appear on the MLSSA software screen. MTF Matrix .(Uncalibrated) ESC to exit, FI to print, Shift-Fl to dunp. MLSSA: SII IEC 1/1-Octavo Band Acoustical Paraneters |g t ile: L:\MLS\Sl-Ml.TIM 11-4-99 9 :HA AM SC ESC to exit, FI to print, Shift-Fl to dunp.___________________ MLSSA: Acoustics Fig.2.8. - Early Decay Time (EDT), Reverberation Time (RT). Clarity Index (C80), Deutlichkeit Factor (D50) for the different frequencies for Sourcel and Receiverl computed by MLSSA. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Kilt.*: L :xMLS\Sl-Ml. 11M 11-4-99 9:08 fiM Asyn Inpulse Response - v o l t s ____________ 0.040 0.000 0.040 CURSOR: y = -0.000387078 x = 28.30S0 (1020) TIME DOMfilN MENU: Co Uieu FFT Uaterfall Ocquis it ion.Setup Transfer Hacro Uverlay Calculate Printer DOS Units Library Info Uuit 1 for Help MLSSfi: Tine Dona in Tine a x is u n its : 1000 nsec/sec IIM E DOMAIN MENU: Go Uieu FFT U a te r fa ll A c q u is itio n Setup T ran sfer Macro O verlay C a lc u la te P rin te r DOS U n its L ib ra ry In fo Q uit F I fo r Help ' _ _ MLSSA: T ine Dona in Fig. 2.9. - The Impulse Response in Volts over the first 25 msec and over the 1 sec computed by MLSSA. 16 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. F ile : L:\MLS\Sl-Ml.riM 11-4-99 9:98 AM Schroeder P lo t - dD ( c o n p ) __________ -o.i- - 0 . 2 - -0.3 -0.4- -0.5- - 0.6 - -0.7- -O.B - -0.9 - AU t O t 1 ---1 ---r- 10.0 i j 1 ---1 --- r- 15.0 20 .O Tine - nsec CURSOR: y = -0.792071 x = 28.3605 (1022) TIME DOM0IN MENU: Co Uieu FFT W a te rfa ll A c q u is itio n Setup Transfer Macro O verlay C a lcu late P rin te r DOS U n its L ib ra ry In fo O uit F I fo r Help ______ MLSSfl: Tine Dona in Fig. 2.10. - Schroeder Reverberant decay curve computed by MLSSA Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. a : -j i/ > t/i < r 2.5. MEASUREMENT RESULTS FROM MLLSA SOFTWARE E a r l y D e c a y Tii- e C h a r t (D e c a y f o r th e f i r s t 10 dB) POSITION FREQUENCY SOURCE RECEIVER 125 250 500 1000 2000 4000 8000 S1 M1 4.01 2.69 3.25 3 8 3.2 2.36 1.46 S1 M2 3.75 3.24 3.25 3 78 3.36 2.39 1.45 S1 M3 3.52 2.9 3.33 3.75 3.27 2.48 1.52 S1 M4 3.23 2.7 3.03 3.47 3 04 2.2 1.35 S2 M1 4.01 2.63 3.11 3.77 3 27 2.38 1.46 S2 M2 3.53 3.17 3.2 3 8 3 2 2.44 1.4 S2 M3 3.85 3.22 3.37 3.7 3.21 2.47 1.58 S2 M4 4.06 3.53 3.13 3 74 3 18 2.29 1 37 AVERAGE 3.74 3.01 3 20 3 72 3.21 2.37 1.44 EDT 4.5 O U J w 3.5 Z U J o S 3 h — Z 2.5 O 0.5 S1-M1 S1-M2 S1-M3 51-M4 52-M1 S2-M2 S2-M3 S2-M4 AVERAGE 125 250 500 1000 2000 4000 8000 FREQUENCY Fig.2.11. - Early Decay Time Chart showing results from MLSSA computations 18 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. R e v e rb e ra tio n Time C h a r t (D e c a y fro m 5dB t o 35dB) j POSITION FREQUENCY SOURCE RECEIVER 125 250 500 1000 2000 4000 8000 S1 M1 3.35 2.97 3.13 3 29 3.06 2.55 1.83 S1 M2 3.37 3.1 3.1 3.22 3.09 2.58 1.95 S1 M3 3 3 3 3.06 3.22 3.03 2.52 1 97 S1 M4 3.51 2.94 3.13 3.56 3.1 2.53 1 78 S2 M1 3 5 3.3 3.07 3.3 3 08 2.54 1.73 S2 M2 3.76 3 3 3 21 3.05 2.56 18 S2 M3 3 67 3.08 2.93 3.22 3.04 2.55 1 83 S2 M4 3.44 2.97 3.08 3.27 3 06 2.57 1 79 AVERAGE 3.48 3.04 3.06 3.28 3 06 2.55 1 83 R T -3 0 d B Z £ F s 4 5 3 5 2 5 5 0 2 000 1 2 5 2 50 500 1000 4 000 8000 FRE QU E N CY S 1 -M 1 S 1 -M 2 51-M3 S 1 -M 4 52-M 1 S 2 -M 2 S 1 -M 3 S 1 -M 4 Fig.2.12. - Reverberation Time Chart showing results from MLSSA computations I9 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. A v a r e g e Re v e r b a r a t io n T ime : 125 250 500 1000 2000 4000 8000 ; ETD 3.74 3.01 3.21 3.73 3.22 3 38 1 45 RT-20dB 3.85 3.2 3.25 3.55 3.55 3 24 2.5 ! RT-30dB 3.49 3 04 3.06 3.29 3.06 2 25 1 83 RT-USER 3.7 3.26 3.28 3.46 3.23 2.53 1.64 AVERAGE 3.695 3.12 3.20 3 50 3.26 2 85 1.85 AVERAGE RT60 ED T RT-20dB RT-30dB RT-USER AV ER A G E 125 250 500 1000 2000 4000 8000 FREQUENCY P 4 5 3 5 2 5 1 5 RT60 for the different freq uencies o in w z S 5 4 5 3 5 2 5 1 5 0 .125 .250 500 1000 .2000 .4000 .8000 ETD R T-20dB R T-30dB RT-USER A V E R A G E Fig.2.13. - Early Decay Time and Reverberation Time Charts showing results from MLSSA computations 20 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. AVAREGE RT60 4 3.5 3 AVAREGE RT60 2.5 .855 1.5 0.5 0 125 250 500 1000 2000 4000 8000 Fig.2.14. - Average Reverberation Time Chart showing results from MLSSA computations As shown in Fig.2.11. to 2.14. the reverberation time is high for a space that is used for lectures and presentations. The optimum reverberation time for this space (that has a volume of 19973cft) is between 0.7sec and0.8sec at 500Hz. ’Therefore to achieve a reverberation time close to the optimum, there must be added absorption on the surfaces of the space (Table.2.1.). FREQUENCY 125 250 500 1000 2000 4000 8000 RT60 aS desired RT60 sabins added 3.7 3.13 3.2 3.51 3.27 2.85 1.85 265 313 306 279 299 343 529 0.7 0.7 0.7 0.7 0.7 0.7 0.7 1133 1085 1092 1119 1099 1055 869 Table.2.1. - Absorption that needs to be added to the space Reference vi. 2 1 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 2.6. MANUAL CALCULATIONS OF THE EXISTING RT60 Fig.2.15. - Absorption Coefficients for the various surfaces in the Verle Annis Gallery Ceiling: a = 1051 sft x 0.00 = 0 sabins Floor: a = 1051 sft x 0.05 = 53 sabins Walls: a = 2224.5sft x 0.05 = 111 sabins Window: a = 264sft x 0.15 = 40 sabins Total Absorption a = 53 + 111 + 40 = 204sabins Reverberation RT60 = 0.05 V / a = 0.05 19973 I 204 = 4.9 sec Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Volum e(fty= 20271.3 Tem p.(°F) = 68 H um idity(% ) = 50 A bsorption in Sabins Linoleum of Concrete 21 21 "32 32 32 '32 32 21 Poured Concrete 42 42 ’ '42 42 42 42 42 42 1" Gypboard 226 *169 *113 * '68 45 45 45 " 45 1" Plaster 176 *140 *88 '53 ' 35 '35 *35 ~ 35 1/8" Glass 92 *61* 45 *29 13 *11 '" " " i T ' " " *11 1-3/4" S C Door 9 9 7 '6 *4 A *4 *4 0.0005 4 M VO *0 0 *0 0 ‘59 150 *527 Alpha Bar 0.13 "0.10 0.07 0.05 '0.04 0 04 o ' o *0 04 ' Total Absorption [sabins] '566 *443 '326 '229 171 168 169 *158 Room Constant 566i" 443 " 326 229 171 " 168 2 169'" 158 Reverberation Time *164 '2.13 '2.94 '4.22 "5.69 '4.32 '3.09 '1 44 T H X Requirements Does RT60 @500 Hz Meet Yes C riteria7 Frequency Reverberation time upper limit lower limit 63 125 250 500 1k 2k 4k 8k 1.64'"2.13' 2 94' 4.22' 5.69’ 4.32" 3.09* 1.44' 6 33' 5 48' 4 64" 4.22" 4 22’ 4.22" 4 22’ 4 22 4 22" 4.22" 4 22* 4 22' 3 80* 2.95*2.53’ 2 11 Reverberation Needed 2.58 2.09 1 28 0 -1 47 -0.099 0 0 67 Upper Limit @ 500 Hz Design Center @ 500 Hz Lower Limit @ 500 Hz 0.47 0 38 0 27' Table.2.2. - Spreadsheet used at Veneklasen Associates for manual calculation of Reverberation time. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CHAPTER 3. CATT-ACOUSTICS 3.1. INTRODUCTION In the previous chapters it was proven that the Verle Annis Gallery has poor’ acoustics, by the survey of the people that use the space and also by acoustical measurements that took place in the space. To improve the acoustics, absorption needs to be added to the surfaces of the space, so that the reverberation time becomes shorter. To predict how the acoustical behavior of the room will be, one can either manually calculate how much the reverberation time will be or there is acoustical software, in which the space can be modeled and its acoustical behavior can be predicted. For this case study the software CATT-Acoustics was chosen. To validate the outcome of this software, before using it for predicting the acoustical behavior of the improved space, the existing situation is modeled and the results are compared to the measured and manually calculated ones. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 3.2. ABOUT THE SOFTWARE 3.2.1. Room Acoustics Prediction Room acoustics prediction, in general, is the process where, using geometrical acoustics, octave-band echograms are predicted based on a 3D CAD model of a room. Frequency dependent material properties (absorption, diffusion) are assigned to room surfaces and frequency dependent source directivities are assigned to sound sources. From these echograms a great number of numerical measures of e.g. speech intelligibility, and reverberation time can be estimated. 3.2.2. Auralization Auralization (auralisation, Eng.), in general, is the process where predicted octave-band echograms are converted to binaural impulse responses that can be convolved with anechoically recorded music or speech giving an impression of how the music or the speech would sound if replayed in the modeled hall. The process involves digital signal processing and Head-Related Transfer Functions (HRTFs). In addition to binaural responses directive microphone, stereo. 5- channel and B-format responses are possible. Convolution with anechoic material is made either directly in software or via special hardware.1 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 3.3 MODELING OF VERLE ANNIS GALLERY IN CATT-ACOUSTICS CATT-Acoustics has an AutoCAD interface, which consists of a set of AutoLISP procedures that create commands to be used within AutoCAD for creating the geometric model of a space. These procedures then translate and write a specific layer of an AutoCAD drawing to the CATT format. The AutoCAD interface handles 3D elements of the types 3D FACE and 3D MESH. By the provided command CONV , plane and absorption names must be set. Difficulties: Generally, to model a space in Auto CAD. one uses the AuoLISP commands as any other AutoCAD commands. The problem that was confronted was the direction of the planes: the absorption of the material that you set is applied only on the one side of the plane. To check what direction the plane is facing, you use the command SHDIRECT and an R appears on the plane Depending on whether you see the R correctly or backwards you can know what direction the plane faces. This procedure becomes very hard in the 3D wire frame, when you have more then 2 planes, some in the front and others in the back, because you can't tell which R belongs to which plane. This issue was resolved by simplifying the space and substituting the beams in the ceiling with a plane ceiling (Fig.3.1.). Reference viii. 2 6 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. A possible solution to this problem is that the designation of the orientation can be highlighted by picking a surface and make it possible for the user to see which designation belongs to which plane. UW UPPER WALL _.V LOWER L E '.E l. UW, SRC ■ L W j ,RC2 CO OR LA Fig.3.1. - Model of the Verle Annls Gallery in AutoCAD with AutoLISP Commands Then the geometry was exported into a Master.geo file (which contains the coordinates of the different planes, their absorption and their names), a source file (which contains the geometry and nature of the sound source) and a receiver file (which contains the positions of the receivers). For these Files see Appendix. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. A shaded 3D projection of the space. Source and receivers are marked. (Fig.3.2) Plan, side, and top views plus a parellel 3D projection. Sources and Receivers are marked. (Fig.3.3) Fig.3.2 - Shaded View Fig-3.3 - Section. Plan and Isometric View Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Fig.3.4. - Deutlichkeit factor (D-50) . Clarity Index (C-80). Sound Pressure Level (SPL) The clearest you can hear is 35% Fig.3.5. - Background Noise. Deutlichkeit Factor (D-50). Sound Pressure Level (SPL) at the different receiver position 2 9 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. :) n -2 i r . ij .. m Fig.3.6. - Echogram plot-files Echogram plot-files for each octave with extensive information: - Full echogram (black curve) with backward integrated decay (red curve), reverberation time regression lines and coefficients - Early part discrete reflections: direct sound (blue bar with a ring), first and second order specular reflections (blue Bars), first order diffuse reflections (red bars), all other reflections (black bars) - Early part smoothed echogram (lower red curve, filter can be selected) - Early part backward (upper red curve) and forward integrated (upper black curve) - Early part cos-square weighted X (front-back, blue curve). Y (left-right, black curve) and Z ( up-down, red curve)smoothed echograms - A small hall plan with source- and receiver locations, a scale and source data - All estimated major parameters 30 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Fig.3.6. - Backwards integrated decays for all octaves marking Reverberation Time for the first 15 sec (T-15). for the first 30 sec (T-30) and regression lines. 31 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Fig.3.7. - A plot frame line moved marking the receivers showing Early Decay Time (EDT). Reverberation Time (T-15. T-30. Ts) Fiiz.3.8 - A plot frame iine moved marking the receivers showing Deutlichkeit Factor (D-50). Clanty Index (C-80), Lateral Fraction (LEF1). Sound Pressure Level (SPL) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Fig-3.9. - Results for an o verall R everberation T im e A bsorption and other acoustical param eters in the space for the d ifferen t frequencies. F ig .3 .1 0 . - Early D ecay T im e ( E D T ). R everberation T im e ( T -1 5>. D eu tlich keit (D -5 0 ) and C larity Ind ex (C -8 0 ) for the d ifferen t receiver positions. 33 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CHAPTER 4. COMPARISON OF RESULTS 4.1. INTRODUCTION To validate the results of CATT - Acoustics software, they are compared to the results of the measurements done with the MLLSA software and to the manually calculated results. 4.2. MANUAL CALCULATIONS (SPREADSHEET) - CATT ACOUSTICS - MLSSA SOFTWARE FREQUENCY RT60 125 250 500 1000 2000 4000 MLSSA 3.7 3.13 3.2 3.51 3.27 2.85 CATT 1.75 2.44 3.51 4.48 4.11 3.13 Spreadsheet 2.13 2.94 4.22 5.69 4.32 3.09 O ( O RESULTS 6 5 4 3 2 0 125 250 500 1000 2000 4000 fre q u e n c y .MLSSA .CATT Spreadsheat Fig.4.1. - Reverberation Time 34 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. FREQUENCY C-80 125 250 500 1000 2000 4000 S1-M1 CATT 0.5 -1.7 -4.2 -6 -5.6 -3.5 MLSSA -6.12 -4.05 -2.57 -2.73 -3.02 -2.61 S1-M2 CATT -1 -3 -5.6 -7 3 -6.6 -5 MLSSA -9 08 -3.91 -4.28 -5 59 -4 29 -3 26 S1-M3 CATT -0.7 -3.3 -3.6 -7.6 -6 8 -4 8 MLSSA -5.1 -5.38 -4.35 -4.32 -4.31 -2.88 S1-M4 CATT 3 3 0.7 -1.6 -3.7 -3 -1.2 MLSSA -0.38 2.15 -0.91 -1 46 -2.25 -1 66 1K Hz 0 1 2 3 CD-4 5 ■ 6 7 8 Reciever .CATT . MLSSA Fig.4.2. - Clarity Index Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. FREQUENCY D-50 125 250 500 1000 2000 4000 S1-M1 CATT 40 27 17 13 13 27 MLSSA 16 19 23 24 20 23 S1-M2 CATT 30 23 14 10 10 23 MLSSA 7 19 19 13 16 20 S1-M3 CATT 34 21 14 10 12 21 MLSSA 15 18 20 18 16 22 S1-M4 CATT 58 45 32 23 26 45 MLSSA 40 41 39 34 28 30 CATT MLSSA Fig.4.3. - Deutlichkeit Factor 1kHz 40 35 30 25 20 15 10 5 0 2 3 1 4 R eciever Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 4.3. DISCUSSION OF COMPARED RESULTS Results for Reverberation Time are compared among the MLSSA software, the CATT software and the manual calculations. The MLSSA results show the measured situation. The CATT software gives results for a higher Reverberation time and the manual calculations show an even higher one. The peak RT60 is in all results at the same frequency at 1000 Hz. At low frequencies the three modeling systems behave totally different (Fig.4.1). The discrepancies are 10% to 20%. Results for Clarity Index and Deutlichkeit Factor are compared between the MLLSA software and the CATT software. The CATT software gives higher values for the clarity and the deutlichkeit than they were measured in the space. The reasons for these discrepancies could be several: the person who took the measurements added absorption in the space, the materials might not have exactly the listed absorption coefficients, or inaccuracies of the software. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CHAPTER 5. ESTIMATING AMOUNT OF SOUND ABSORPTION THAT NEEDS TO BE ADDED Through the Eyring Equation one can calculate how much the absorption coefficient is for every frequency in the existing space.(Fig.5.1) ---------------o .° * n--v „----------- ^ s j l o a V ' « ■ e g - ’ * * " M 4 I S fh , „ : o ~ - ^ r ^ " ~ C.04>02 =& 5 =o,ozs> A t 2 SO , yfTft, - 3, ^3 , (I'*)-' *>*2 r O'O^S -=?o.= 0,04,52 . — _________________ At S O O ,Al7i o - ‘ S,t , > w ~o. oooo? - 2 ,3 ( 4 - 5 ) r - ^ 5 - - -0,0 0 0 0? * O .M U 2 6 =s> o. = Q 0 6 £ 1 A t 4 k (h , S,S4 f *A*o.oczw '2 ,3 lexi.o (4-*) - _ ,% 246?■o,oaw*o,oS6'f?6 = ^ > a -o^5S. O '5,5‘i 2.A fh - t A i t o - 3 , 5 . ? m r 0.0008 ' 2 ,3 lo%,o ( 4 - + ) » - . Jt,Z ? 6 ? 0 ,cao8 = 0,052,2 * ? = * * » O.OS2 S 7 0 5, 5.? /4k Ihr f A7& o -- 2 ,tS , m= o.oo2 '' - > * , & & 0 ,0 0 1 =0,042 -=* * - - 0 , 0 * 4 J-S Fig.5.1. - Absorption Coefficient a in the Verle Anms Gallery 38 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Fig.S.2. - Optimum Reverberation Time for different types of rooms as a function of room volume From the absorption coefficient and the surface area of each material in the room, one can calculate the existing absorption. Then, through the Eynng Equation again, knowing what the desired reverberation time is (Fig.5.2), on e can calculate how much absorption needs to be added. (Fig.5.3) h o / L Soo f ar r 40B 0 - Fig.5.3. — Calculation of absorption that needs to be added to achieve a reverberation time of 0.8sec Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CHAPTER 6. ACOUSTICAL SOLUTION OPTIONS 6.1. INTRODUCTION There are several ways to reduce the reverberation time of a live' space and therefore improve its acoustical behavior. Acoustical ceilings are often the first line of defense against overall noise. But since noise travels horizontally as well as vertically, acoustical walls play an important additive role in creating quieter, more effective spaces. Walls make up a significant portion of a room's surface area. If not treated acoustically, a hard surface like drywall will bounce most of the noise back into the room. While acoustical performance is primary criterion for selecting acoustical wall products, other criteria should influence the final selection: - Product substrate, which affects both acoustical performance and surface tackability - Aesthetics, like style of fabric or vinyl finish and color - Design considerations such as near seamless appearance versus dramatic modular or horizontal themes - Durability and cleambility The products chosen in this thesis are just an example from the big variety of products that exists in the market. For the ceiling "Nubby ceiling Panels' are used, available in the Armstrong line (Fig.6.1). For the upper part of the wall "high impact resilient Panels’’ of Decoustics are used in thickness of 1" or 2” (Fig.6.2). For the lower part of the wall "high impact resilient tackable Panels’ of Decoustics are used in thickness of 1-1/8" or 2-1/8" (Fig.6.3). For the lower part of the wall the acoustical panels need to be tackable so that students can pin up their drawings to present them. 40 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Five different combinations of these materials are studied and compared to reach the optimum solution. In the first case all the acoustical treatment is put on the ceiling, in the second case all the treatment is put on the walls and the last three cases combine both and test different thickness of the same material. Fig.6.1. - Armstrong acoustical products a c o u s v c a l pcdcrrranc^ refe'enc* 0 m 5* B.r*Lrt'j 0 7 2 - 5 (A rm s tro n g M C D O C T /O n iW u w r tiic i s c u h O A » s o ftrr . : » jk m w jw ^ 'n c ^x r* 3 ta itr w w £ U M 3 _ A S S 3 K H » J H M iC ' 1 3 H P H f t W S > H S X C > i ZJ.Z «C* W IN 1M U U ' GENERAL APPLICATION CBUMOS *urrt-i i-'tirs ?4‘ i A!’ > •_ * !• -T i j r •: r 1 .‘? 1 1 . * i w riv ** ■ x i* ! r r : : : t SPECIAL PERFORMANCE CEUNGS Crut t * » » • 1 » r ’ r » t nuijii: * - r < r r ; ’ u V •> ' J t i. or* • r t h v i.- o ; kIj- • * 1 . u y . i-r ; v -.’j • vi J '> : r : *: *: l:flry > v*’' P.* 1 4 1 A*J : m : ■ > .-<ru r ^ to > .'••«■ i ” •■ * Z'S. J4t • H •i . 1{«i^ P im lt> ft ■ C - .. 'C i aj- t * r .i: •: 3. 3^: ;,.if r: Ricci .> • « .« ;V »' ■ : •:= **. »ir x w •: ; : y • r • :i: -U w ffw J "bUty 3pc* P ta * •re mi r r . i r * - ' :•*! C ? 7 C 7 9 ls 6 1 3 • 0 * AJt. 1 U C • n M; •i*. ;*-«•• »: C t.’ * - • v " • '7 tr: • ;» i’V •**» •*« » '* C prfl *tjn<*r»li 1 1 : ': : t . . 1 IV -15 r . . V J ■ r > ; t- ‘i i'ttOM Pi*- ti.’i • : ■ > • i . ;■; A * : • 1 ■ * ! j < ; ' V ■ ' # • < . 1 »M n*» It.t'tFar ‘u» i : i * • . . T . • • - j - V • 0 i't” t r« i - I CtrnctioiW' •i "i j r i t : ' " ’U '.ft* 1 'U'HUOtili ’f t i‘-1 * . 1 ‘ ' » t Ftdwr»c' ,j-. , a - .ri.rf*iV i ;r 3 ! ■ :r. 1 ‘A Ciiiirxi ;(V'« w.i-'ir M* i ?r . •* i . - i . * • * ■ » . ■ *lt trin Ui/fc; V < 1( 1*1 if, . n CM * ! 4 4 4 *1 :- -»-i ;> > . - ' ) ' 1 ' J toM. ■ •6 r ; . r : '* . .3 *: ; • • riM -’. n C t M ir./ ‘ ,n - * rt • v .4 1.» r •« a, . ;i» • » « ? »;*t :t ::v • - r * * . tit. .i* j / ‘.rf • - ■ r . r t y .t u -t"V • « » - r fc v g n rr > 1 ,'q/kii.' » l* ~ . v # rr::. ::k" . ► « . • v : r— • i , '<r ;.*rcr-: • *- '.U rv»‘ 41 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Substrate WALLS P a n e l < S ? fie sm H ardened e d g a i & i p o f i H ig h Im p a c t Rfilient C o n tro l c o m p o o e s t Fobnc finish Wail dip Panel core U vcinq < 1 < p Resin Hardened edges STANDARDS, TESTS AND APPROVAIS S u r t j c c B u r n i n g I ' h i n c t c r i M i o t v S T M K -S -4 r M l 't i t . - v .n u . m - li. .. v [*r.al * m ;ix : * 1 r » i : ,ir " > \t; V h .1 1 :.n s ,n.v n ‘. II,. I J V . t' • • « • « . * - . » , » l ^ J < - ifir W lm:• » • « • . ; •r ' [ x * v !"•." .\ ' j ih - ; X \ • Kar..: jJ « f I ; o . L * • . . r n i . u ; i I*. '■ < »-s ' ' " ‘i . «•'.' »ri i • | . *i» J .. . > » « ;• |-. » . t » * a.* i tin ■ » il r ( .1 • . ' *i. m rv T iiM -! 1 . . Ms 1 . 't}v« !.-r, > ' !» • r u n if ': r ,»t . , i'u>« si'.- ;».»r c ■ v \» . > 1 ’ t • V S IM ( -i:\ 1 > | M - X M ..« » n lin - IV r S . 's I M I 7 ^ 5 ): iX r.-l > • » r s i - i l v. •') ' , ' 1 * ' ‘ ;r. J o r ..' i r t iP . i High Impact Resilient H.I.R. ‘ 2 D E S C R IP T IO N Dkh.s’v , ifich Impart Ee; ieit? ocojsIkci eitll sand : r a ; i oi c n * i jn cenufy cc-e. rx c r rmlisnl *(i.nt *c:er ’ .x rfc ii ta n t c c < tx fi~ r 'T.ri It* unm *arsr aron-iei a.perioi impact rn-.tcnia ari oilers r-* fcorn f n n lo retjrr. ta h or^rai pooicr ohe' nac::. He xnei 0 locoblc oi % tlta.*rerg high imcc<* t ’ frarturmg Poaah re scared w n csncesee fecicry > n ,t u k-i • n o u n lir w j Tcrdvtrc PANELS JI 2«ojs*m t- i.J ponek are <utfin fa fc rated -jrd c’fe'id -n a *:rwf. ai , » r» ^ rx rtit 'i xes, v i thwkrecu* DESIGN CONSIDERATIONS A ccxealtc oHiTtnint edge n rcaurr; Kt t r w ; - ? a rr-tk a n d u titn in -$ * iflirr* Conte:! 'eiooitici*/ xio H.m eh 3'e rs<;iiab*e n tab't iirmh r r , ( n o .t < FINISH P A H U THICKN ESS 125 :so FRfQUEHCY (Hz) S00 1000 c'O O O 4000 H R C fsbnc T* 125 mmj 0.0J 0.3/ 0 ^9 1.10 1.09 I.C5 0.15 febru l ’ l/ 2 * (33 mm) 3 IS 0.SJ KOI KI3 M 0 1.03 0.9S Fabrk V 150 mm) 0.23 0.31 1.19 1.19 M I 1.12 1.05 MOUNTING METHODS ; II |V. !' ^ T' ■ • ' > it!i 1 . . -i • -i 1 1 -■ .< .• r. t « * 1 • • if 1 .. - I • .i:p r mi. 1 I 300 3fl7 3SC? e-mail: sclcs •» ieio^vlics.toffi Fig.6.2. - Decoustics products Acoustical Walls decoustics 4 2 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. WALLS S u birrote R e tie a o r d t u d spots High Im pact C ontrol co fflpanta! Fa b ric/ v in y l fin ish Wail dip PoneL co re STANDARDS, TESTS AND APPROVALS S u rfa c e l l u n i i n y (.'h a r y c tc r iM ic * - \ S T M A l l , S p iv i ~ 1 1 r ’v I I » 'i » n ' \ * ’ir H u . i j i . l r 4-.‘ «• j ' \r*r. t l ’Cu fir :'l> ' '. ‘ I . I le v e fin g clip R e tie hardened cd q a t . . M l >)t .-lit-* !l~ c * * .: it.- . j i r r .iru t r - t i n t : i i.* V I Ijr. v - cl J4 . ' . ■ . 1 1 > l : . .In - . fi, I r . r % . ! . | .. . : u . . .«. i | ■ . M r •••■».■' " V i'lU V / 'h r ' ‘ . ■ s - \ rr.j a r c - - . n : J c m h ' t i . \ » , . n n - le i..F j.- m t i ' *;r »•! ;n p .:*.i:c p « r< l h lc X c tu i'lii'- .il D u fa : S .S T M i 4 2 \ T v | «• \ M i u i i t t i n ^ p e r A v T N I F 7 ‘J 5 ): h i . r ; . -v * rr - n . ; ? i . - i . ,• rv_ FINISH PAHIL FREQUENCY {H i j NRC THICKNESS ■25 : s o 500 1000 2000 1000 'ebt** 5 / 8 " (16 mm) ■3.01 0.2S 0.67 0.98 l.C I a.96 O ./S F«brk 1 - 1 / 8 ' (38 n m ) 0 .1 / 0 .6 0 1.0 1.08 0.93 0.82 0 .9 0 'abric l- S / 3 " (41 tun) 0 \2 0 7? 1.10 i l l 0.9S 0.92 1 00 'a b rk 3 - 1 / 8 ' (54 mm) 0.S4 0 .8 7 1.03 1.14 0.94 0.91 1.00 MOUNTING METHODS M . " I I p j . T - ' t a . . . ' , . . rill • M - . 1 • : ; • 1 U . . I I ; . . 1 . 1 1 • • l i t ” . . . i' ' BOO 3 37 3 8 0 9 -j-neci: vales"-*-^ ;:u s fic s .tc m H igh Im pact Resistant /Tackable H.I.R. *1 DESCRIPTION impact *«niani c ra jtfi: ponai tanw". of o u’ctjium oe twf> « e «^tih c **:F cem l. fcrer. parel “c. impctr (p*VCM crd 3 imoolt Irtsli ; t n idee kc : v oapicctar jf T5.V »eighi. thin a 4a *» fcA'ics «nch ‘tod lionaiS toniioi U •Jrelch tcpiiei P>K pent rohprurnoti .1 c*c idea 3 S a :odt u rlo n Fnne t er* vjjpied cstr j y - t vith ;3dcf7 iruiall?< fa r: Ifereri types at ncunfiitj t j mcilcnccL aiJhesi^. na^ictu end *cok t c I x j Ir-'s v ' PANELS •'li H ./ <1 x r tfs ( i . a * > i t33ntt»cc e x c F * r * * i! r 1 •.•«!*% cl v/es. remnc! k <hnpir*. curw.. ’t iiin r i'n . e x f v . v . , DESIGN CONSIDERATIONS (a m w in d iiu im m iin e x t * '* < > •<i ' i r «v< *.1:1 p a rc h end ?r*3 i jp p k a t - x * . f jfiiiu 1 O e ta u ilir. ? y 1 s ' ^ n i f c n r c v r decoustics Fig.6.3. - Decoustics products Tackable Acoustical Walls 4 3 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 6.2. CASE#1 All acoustical treatment is placed on the ceiling in between the beams. The material that is used is painted nubby AMSTRONG Panels 1" thick. The Upper and Lower part of the Wall and floor are left as they were. Fig-6.5 - Section. Plan and Isometric View For the geometric-, receiver- and source files see Appendix. 44 . .....vA$r£ Fig.6.4 - Shaded View Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Fig-6.6 - CATT Results for case 1 For Receiver 1.3 and 4 see Appendix 45 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. m e Fig.6 7 - CATT Results fo r case 1 46 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Location flo o r ______ ceiling lower wall upper wall_ _ glazing door clg treatment Material Linoleum of Concrete Poured Concrete 1" Gypboard i" Plaster 1/8" Glass 1-3/4" S C Door Code Area 1052 63 3 "2 22 27 47 '51 226 _1129 878' '264 63" 0.02 0.04' 125 250 0.02 0703 0.04 0.04 0.20 0.15 0.10 0.20 0.35 0.16 0.10 0.23 0.17 0.15 0.15 0.11 Armstrong painted nubby 168 826 0.78 0.78 JD.97 Total Surface Area(ft ) 4437 ~ 500 1 K"2K 0.03 0.03 003 0 04 ' 0.04 " 0 04 0 06 ' 0 04 ' 0.04 0.06 0.04 0.04 0.11 ^ 0 05 ' 0 04 0 10 0 0 7 '0 06 0.79 0.98 ' 1.03 4 K 0.03 0.04 0.04 0.04 0.04 0.07 1 01 8 K " 0.02 0.04 0704 0.04 0.04 "0.07 101 Volume(ft3) = 20271.25 Temp.(°F) = 68 Humidity(%) = 50 Absorption in Sabins Linoleum of Concrete 21 21 32 32 32 32 32 "21 Poured Concrete '9 "9 9 9 9 '9 9 9 1" Gypboard 226 '169 '113 68 45" '45 45 45 1" Plaster 176 140 *88 53 35 '35 35 35 1/8" Glass '92 61 "45 29 13 *11 11 11 1-3/4" S C Door '9 "9 '7 6 4 '4 4 4 Armstrong painted nubby 644 644 '801 653 809 851 834 834 ^ Alpha Bar 0.27 ;o.24 '0.25 0 19 0.21 0 22 0 22 0 22 ' Total Absorption [sabins] '1178 J0 5 4 1094 849 948 986 970 960 Room Constant ^ 11772 1054 o CD 848 947 985 969 959' Reverberation Time ---------- - - 0.73 0.83 0 79 J .05 0.93 0.85 0.80 0.62 ; T H X Requirements Does RT60 @500 Hz Meet Criteria? Frequency Reverberation time upper limit lower limit Yes Reverberation Needed 63 125 250 500 1k 2k 4k 8k 0.73 0.83 0.79 1 05 0.93 0 85 0 80 0 62 1 58 1.37 1.15 1.05 1.05 1 05 1.05 1.05 1 05 1 05 1.05 1 05^ 0.95 0 74 0 63 0.53 0 32 0.22 0.26 0 0.01 6 0 0 0 Table.6.1 - Manual Calculations predicting the acoustical behavior in case#1 4 7 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 6.3 CASE#2 All acoustical treatment is placed on the lower walls. The material that is used is Decoustics high Impact Resistant tackable Panels. The upper part of the walls, the floor and the ceiling are left as they were. Fig-6-9 - Section. Plan and Isometric View For geometric-, receiver- and source-file see Appendix. 48 Fig.6.8 - Shaded View Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Fig.6.10 - CATT Results for case 2 For Receiver 1.3 and 4 see Appendix 49 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. F ig .6.11 - CATT Results for case 2 50 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Location floor ceiling lower wall upper wall glazing door lower wall treatment Material Linoleum of Concrete Poured Concrete 1" Gypboard 1" Plaster 1/8” Glass 1-3/4" SC Door ' Decoustics 1" Fabr C ode Area 63 125 250 500 1 K 2 K 4 K 8 K '3 2 22 27 47 '51 1052 0.02 1052 ^ 0 04 '64.5 0 20 878 0 20 '264 '0.35 '63 0 15 0.02 0.04 0.15' 0 16 023 0.15 0.03 0.04 0.10 0.1'0" 0.17 O'. 1 1 ' 0.03 0.04 0.06 0.06' 0.11 0.10 0.03 0.04 004 0 04 0.05 0.07 0 03 0.04 0.04 0.04 0 04 0.06 0.03 J3.02 0 04 0 04 0 04 0 04 0 04 ' 0 04 0.04 ' 0 .04 0.07 0.07 116 1064 0.08 0 16 0.57 0 94 1 03 1.02 0.95 0.90 Total Surface A rea(ft2) = 4437 Volum e(ft3) = 20271.25 Tem p.(°F) = 68 Hum idity(% ) = 50 A bsorption in Sabins Linoleum of Concrete 21 21 32 32 32 32 32 21 Poured Concrete '42 '42 42 42 42 42 42 42 1" Gypboard "13 '10 6 4 3 3 ‘3 3 1" Plaster '176 '140 88 53 35 35 '35 35 1/8" Glass '92 '61 45 29 13 1 1 '11 1 1 '1-3/4" S C Door '9 '9 7 6 4 4 '4 4 Decoustics 1" Fabr '85 "170 606 1000 1096 1085 '1011 958 Alpha Bar >10 0 10 0.19 0 26 0.28 0.27 >26 0 24 Total Absorption [sabins] 439 '454 826 1166 1225 1211 '1137 1073' Room Constant * 438^ 453 0 0 ro c n 1165 1224 1210 1136 1073 Reverberation Time ■ ■ ■ 2.15 2.08 "1 09 0.73" 069 '0.68 0.68 0.57 ; T H X Requirements Does RT60 @500 Hz Meet Criteria? Frequency Reverberation time upper limit lower limit Yes Reverberation Needed 63 125 250 500 1k 2k 4k 8k 2 15" 2.08" 1 09" 0.73' 0.69 068 0.68 0 57 11' 0.95' 0 8' 0.73' 0.73 0.73 0.73 0 73 ! 0 73' 0 73^ 0.73^ 0.73 0 66 0 51 0.44 0 37 - - -0 28 0 0 0 0 0 1.05 112 2 3 Table.6.2 - Manual Calculations predicting the acoustical behavior in case#2 5 I Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 6.4. CASE#3 The acoustical treatment is spread in the surfaces in the space. 3 bays of the ceiling are covered with painted nubby Armstrong 1" thick. At the lower walls there are 18 (4’ x 7') Decoustics high impact resistant tackable panels 1 1/8” thick. Fig.6.12 - Shaded View Fig.6.13 - Section. Plan and Isometnc View For geometric-, receiver- and source-file see Appendix. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. -t a A k n : \ ___ ; \ \ . \ ------------ i N .. \ . .. \ \ 1 - - V — : \ , \ " \ )* i V - \ I I > \ :_ ; ; ; .; . =: j : :■: *n w =:: :: o : •« a ‘ -• a - zr. 4 < • V \ " ‘ ■ \ - • • \ v i . n r-S u) - i • V ■ / • / 1 / . . . \ ■ \ i \ \ A x z . \ - ■ T.J ; 5 : : : ; . ; Fig.6.14 - CATT Results for case 3 For Receiver 1.3 and 4 see Appendix 53 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Fig.6.15 - CATT Results for case 3 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Location floor ceiling lower wall upper wall glazing door lower wall treatment ceiling treatment Material Code Area 63 125 250 500 IK 2 K" 4 K 8 K Linoleum of Concrete 3 556 0.02 '0.0 2 '0.0 3 0.03 0.03 0.03 "0.03 0 02 ' Poured Concrete 2 1052 0.04 0.04 0.04 "0.04 0.04' 0.04 0.04 0.04 1" Gypboard 22 624.5 0.20 '0.15 '0 10 0.06 "0.04 0.04' 0.04 0.04 1" Plaster 27 ' 378 "'0 .2 0 '0 .1 6 ''0.10 ' 0 06 '0.04 '0.0 4 0.04 "0.04 ' 1/8" Glass 47 264 ' 0.35' 0'23 ' 0.17 "0.11 '0.0 5 0:04 "0 04' 0.04' J -3/4" S.C. Door 51' '63 0.15 '0.1 5 0 11 0 10 0.07 '0.0 6 'o:o'7 '0.0 7 ' Decoustics 1" Fabr '116 '504 ' 0 08 0.16 0.57 0.94 "1.03 "1.02 0 95 0 90 Armstrong painted nubby 1 6 8 ' '504 ' 0.78 '0.78 0 97 "0.79 '0 98 ‘ 1.03 ' 1.01 " 1.01 ' Total Surface Area(ft2) = 4445.5 - - -------- - ■ Volume(ft3 ) = 20271.25 Temp.(°F) = 68 Humidity(%) = 50 Absorption in Sabins Linoleum of Concrete 11 11 17 '17 '17 '17 17 11 Poured Concrete '42 '42 '42 '42 42 '42 42 42 1" Gypboard '125 '94 62 '37 25 '25 25 25 1" Plaster '176 '140 '88 '53 35 '35 35 35 1/8" Glass '92 '61 '45 '29 13 '11 11 11 '1-3/4" S C Door 9 '9 '7 '6 4 '4 4 4 Decoustics 1" Fabr '40 '81 '287 '474 519 '514 479 454 Armstrong painted nubby '393 [393 489 398 494 519 509 509 Alpha Bar 0 20 '0.19 '0.23 '0 24 0 26 [0 26 0.25 0 25 Total Absorption [sabins] [889 831 1037 1056 1150 ‘ 1166 1122 1091 ' Room Constant 888 ’ 831 '1036 ' 1055 1149 '1166 1121 1090 Reverberation Time ----- • - - '1.00 1.08 0.84 '0.82 0.75 '0.70 0.69 0.56 - ----- T H X Requirements Does RT60 @500 Hz Meet Criteria? Frequency Reverberation time upper limit lower limit Reverberation Needed Yes 63 125' 250 500 1k 2k 4k 8k 1 00 1 08 0.84 0 82 0 75 0 70 0.69 0 56 1 23 1.07 0.90 0 82 0.82 0.82 0.82 0.82 082 0 82 0.82_ 0 82 0.74 0.58 0.49 0 41 0 -0.01 0 0 0 0 0 0 Upper Limit @ 500 Hz Design Center @ 500 Hz Lower Limit @ 500 Hz 0.47 0.38' 0 27' Table.6.3 - Manual Calculations predicting the acoustical behavior in case#3 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 6.5 CASE#4 The acoustical treatment is spread in the surfaces in the space. 3 bays of the ceiling are covered with painted nubby Armstrong 2 1/8" thick. At the lower walls there are 18 (4' x 7’) Decoustics high impact 1/8" thick. At the upper wall there are 3 Decoustics high impact resilient panels 5.5' high and 1” thick. Fig.6.16 - Shaded View Fig.6.17 - Section. Plan and Isometnc View For geometric-, receiver- and source-file see Appendix. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. . -me-.* •i'rr.^rarr. : :oc 5 0 s do : : : .M .'i: iZ ■ v ; 4 Lariv nr~' \ IK \ i \ .... 1 v j \ Fig.6.18 - CATT Results for case 4 For Receiver 1.3 and 4 see Appendix Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Fig.6.19 - CATT Results for case 4 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Location Material Code Area 63 125 250 500 IK 2 K 4 K 8 K floor Linoleum of Concrete 3 556 0 02 0 02 0 03 0.03 0.03 0.03 "0 03 0 02 ceiling Poured Concrete 2 ‘ 1052 0.04 0.04 "0.04 0.04 0.04 0 04 "6.04 0.04 ' lower wall 1" Gypboard 22 364 0.20 0.1~5 0 10 0.06 0 04 '0 .0 4 ‘"0 04 0 0 4 ' upper wall 1" Plaster 27 878 0.20 0.16 0.10 0.06 0 04 0 04 '0 04 "0 04 ' glazing 1/8" Glass 47 264 0.35 0.23 ' 0.17 0.11" '0 .0 5 ’ 0 04 '0.04 ' 0.0 4 ' door 1-3/4" S. C Door 51 63" 0.15 ‘ o 15 0 11 "0.10 0 07 "0 06 0 07 '0 .0 7 ' lower wall Decoustics 2" F.V 118 '504 0.12 0.23 '0.81 1.19 "1.17 1 09 ' 1.10 1.10 ' treatment ceiiing Armstrong painted nubby 168 504 0.78 '0.7 8 " 0797 ' 0.79 '0 .9 8 1 03 101 101 treatment upper wall Decoustics 1” Fabr '116 515 ' 0 08 "0.16 0.57 0.94 1 03 1 02 '0 95 'o 9 0 ' treatment Total Surface Area(ft3 ) = 4700 Volume(ft3 ) = 20271.25 Temp.(°F) = 68 Humidity(%) = 50 Absorption in Sabins Linoleum of Concrete 11 11 17 17 17 17 17 11 Poured Concrete 42 42 42 42 42 42 42 42 1" Gypboard >3 ■55 36 '22 15 15 15 15 1" Plaster 176 140 88 53 35 35 35 35 1/8" Glass 92 61 45 29 13 11 11 11 > 3 /4 " S C Door 9 9 7 6 4 4 4 4 Decoustics 2" F.V 60 116 408 600 590 549 554 554 Armstrong painted nubby >93 >93 489 > 98 494 519 509 509 ' Alpha Bar 0.19 0 19 0 30 > 3 5 0 37 0 37 0 36 0 35 ' Total Absorption [sabins] 898 910 1425 >651 1740 1717 1676 1645' Room Constant ’ 898 ^ 909 * 1425 ‘ 1650 1739 1716 1675 1644’ Reverberation Time '1.00 0.98 0.59 0.49 0.46 0.45 0.45 0.39 ' • T H X Requirements Does RT60 @500 Hz Meet Criteria7 Yes Frequency 63 125 250 500 1k 2k 4k 8k Reverberation time 1 00 0 98 0 59 0.49 0 46 0 45 0 45 0.39 upper limit 0.73 0 63 0.53 0.49 0.49 0 49 0 49 0.49 lower limit ___ 0 49 0 49_ 0 49 0.49 0.44 0 34 0 29 0 24 Reverberation Needed -0.26 -0.34 -0.04 0 0 0 0 0 Upper Limit @ 500 Hz - • —- -----------—- - - 0 47' - - - Design Center @ 500 Hz 0.38 Lower Limit @ 500 Hz 0.27 Table.6.4 - Manual Calculations predicting the acoustical behavior in case#4 59 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 6.6. CASE#5 The acoustical treatment is spread in the surfaces in the space. 3 bays of the ceiling are covered with painted nubby Armstrong 1 1/8’’ thick. At the lower walls there are 18 (4' x 7’) Decoustics high impact resistant tackable panels 1 1/8" thick. At the upper wall Fig.6.20 - Shaded View there are 3 Decoustics high impact resilient panels 5.5’ high and 1” thick. Fig.6.21 - Section. Plan and Isometnc View For geometric-, receiver- and source-file see Appendix. 6 0 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Fig.6.22 - CATT Results for case 5 61 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. For Receiver 1.3 and 4 see Appendix Fig.6.23 - CATT Results for case 5 6 2 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Absorption Coefficients Location floor ceiling lower wall upper wall glazing door lower wall treatment ceiling treatment upper wall treatment M a t e r i a l___ Linoleum of Concrete Poured Concrete_ _ _ 1" Gypboard ___ 1" Plaster 1/8" Glass 1-3/4” S C Door Decoustics 1" Fabr Armstrong painted nubby Decoustics 1" Fabr Code Area 63 125 250 500 1 K 2 K 4 K 8 K 3 2 22 27 47 51 556 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.02 Total Surface Area(ft ) Volum e(ft3) Temp.(°F) Humidity(% ) 1052 364 878 '264 63 0.04 020 0.20 0.35 0.15 0 04 0 15 0.16 0 23 0.15 0 04 0.10 0.10 0.17 0 . 11" 0.04 0 06 0 06 0.11 0.10 0.04 0.04 0.04 0 05 0.07 0.04 0.04 0 04 0 04 "0.06 0.04 0.04 0.04 0.04" 0.07 0.04 0.04 0.04 0.04 0.07 16 504 0.08 0.16 0.57 0.94 1.03 1.02 0.95 0.90 168 504 0.78 0.78 0.97 0.79 0"98 1.03 1.01 1.01 116 '515 "0 08 "0 .1 6 " 0.57 ' 0.94"" 1.03 ' 1.02 " 0.95" 0.90 4700 20271.25 68 50 Absorption in Sabins Linoleum of Concrete 1 1 1 1 17 17 '17 17 17 1 1 Poured Concrete '42 '"' 42 42 42 '42 42 42 42 1" Gypboard '73 55 '36 22 "15 '15 '15 15 1" Plaster '176 140 ‘88 53 "35 '35 35 35 1/8" Glass "92 61 '45 29 ‘ 13 '11 1 1 1 1 1-3/4" S.C Door ^ '9 9 7 '6 4 ‘4 4 4 Decoustics 1" Fabr '40 81 '287 474 '519 '514 ‘479 454 Armstrong painted nubby '393 393 "489 398 '494 '519 ‘509 509 Decoustics 1" Fabr 41 82 294 '484 530 525 489 464 Alpha Bar '0 19 0.19 '0.28 ‘0 32 j 0 36 '0 36 '0 34 0 33 Total Absorption [sabins] '878 875 1304 "1525 1670 '1681 1601 1544 Room Constant ‘ 877 874 " 1304 ^ 1524 " 1669 ^ 1680 ^ 1600 154C Reverberation Time '1.02 1.03 0.65 '0.54" 0.48 0.46 *0.47 0.41 - - - T H X Requirements Does RT60 @500 Hz Meet Yes Criteria7 Frequency 63" 125 250" 500 1k '2k 4k 8k Reverberation time 1.02' 1 '03* 0 65' 0.54 0.48 0.46 0.47 0.41' upper limit 0 80' 0.70' 0 59' 0.54 " 0.54' 0.54 0:54 0.54' lower limit - " 0 54' 0.54^ 0 54' 0.54 0 49' 0.38 0.32 027 Reverberation Needed -0.21 -0.32 -0.05 0 0.002 0 0 0 Upper Limit @ 500 Hz ------- - ----- - 0 4 7 " -------- - Design Center @ 500 Hz 0.38" Lower Limit @ 500 Hz 0.27" Table.6.5 - Manual Calculations predicting the acoustical behavior in case#5 6 3 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CHAPTER 7. COMPARISON OF SOLUTIONS & CHOICE RT60 in sec FREQUENCY 125 250 500 1k 2k 4k case#1 manual CATT 0.83 0.98 0.79 0.58 1.05 0.64 0.93 1.08 0.85 1.04 0.8 0.69 case#2 manual CATT 2.08 1.78 1.09 1.32 0.73 1.24 0.69 1.35 0.68 1.09 0.68 1.04 case#3 manual CATT 1.08 1.06 0.84 1.02 0.82 1.01 0.75 1.2 0.7 1.03 0.69 1.02 case#4 manual CATT 0.98 0.9 0.59 0.72 0.49 0.72 0.46 0.7 0.45 0.88 0.45 0.64 case#5 manual CATT 1.03 0.92 0.65 0.69 0.54 0.78 0.48 0.7 0.46 0.65 0.47 0.65 Table.7.1 - Predicted reverberation time for each case form manual calculations and from CATT The different cases of acoustical treatment were compared to see in what levels they result for Reverberation Time (Table.7.1). Deutlichkeit (Table.7.2), and Clarity Index (Table.7.3), which show how clearly speech is heard in the space. The best results were cases #4 and #5. Case #4 gives the lowest Reverberation Time and best Deutlichkeit and Clarity Index, by using 1" thicker material for the upper walls, compared to case#5. In case #5 using the thinner material on the walls, the results are good enough and it is not worth to spend the extra expense for the thicker material. Therefore it would appear that case #5 as the best acoustical treatment for the space. D-50 in % POSITION 1 2 3 4 case#1 59 66 60 81 case#2 28 35 28 53 case#3 51 58 51 71 case#4 57 66 56 77 case#5 58 64 56 72 Table.7.2 - Predicted Deutlichkeit for each case form manual calculations and from CATT 64 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. C-80 in dB POSITION 1 2 3 4 case#1 4.2 6 4.3 9.5 case#2 -1.9 -0.5 -1.8 2.3 case#3 2.6 4.5 2.8 6.8 case#4 4.3 5.9 4 8.3 case#5 3.8 5.4 3.8 7.2 Table.7.3- Predicted Clarity Index for each case form manual calculations and from CATT Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CHAPTER 8. DESIGN OF ACOUSTICAL REFLECTORS 8.1. SOUND RAYS AND ARCHITECTURAL DETAILS To achieve better acoustics in the space, besides from reducing the Reverberation Time, I have designed sound reflectors that concentrate sound in the audience area. At high frequencies sound behaves like rays and by designing these rays you can send them towards the direction you want. In the Verle Anms, Gallery presentations of student work are to take place in two ways: 1) Students pin up their work on the lower part of the wall and present one at a time. 2) Two simultaneous presentations take place in the two sides of the room. Therefore the reflectors are designed in a way that gives the room the flexibility to change its acoustical behavior according to the use. A set of reflectors is placed over the speaker's positions and is designed to reflect sound back to the audience and enforce the sound the sound already received. Another set of reflectors is placed along the middle of the space. These reflectors alternate between two positions: In the first position they are shaped to reflect the sound all the way to the other side of the room and thereby make the sound louder for the audience in the back. In the second position they reflect the sound back to the sources' side of the room and they cut off the sound to the other side of the space. This gives the space the possibility for two simultaneous presentations. 66 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Positionl 3 -1 V T-O ' i IS ’ Position2 5—IB T L — I----- Fig.8.1 - Direction of acoustical rays for the two positions of the reflector Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. The movable reflector is supported on three bars that span along the space. The transition from the one position to the other happens, by a mechanism that is pulling the middle bar up and down. Fig.8.2 - Architectural detail of the movable reflector Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 8.2. PICTURES OF THE PHYSICAL MODEL OF THE REFLECTOR Fig.8.3 - Model in 1' to 1 ’ scale of the movable reflector Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 8.3. 3D RENDERINGS OF THE SPACE AFTER ACOUSTICAL TREATMENT 70 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission 71 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CHAPTER 9. CONCLUSIONS 9.1. SUMMARY OF MODEL SYSTEMS The model systems tested during the Verle Anis Gallery case study are the following: - Manual calculations of acoustical behavior of the space - existing and predicted. - Field measurements of acoustical behavior of space through the MLSSA Software. - Computer Simulation of acoustical behavior of the space - existing and predicted. 9.2. EVALUATION OF PROCESS For the existing acoustical behavior of the space: Discrepancies of 10 to 20 % occurred between the results of the three different model systems. Because the Reverberation time is high, the discrepancies are 1 to 2 seconds. For the predicted acoustical behavior of the space: The discrepancies are still at the same percentage. But now we are dealing with a Reverberation Time of 0.8 seconds, so the differences are around 0.1 and 0.2 seconds. So even if we know that we might have differences from the actual results, we can assume that the differences are small enough to make it worthwhile to use the CATT Acoustics software and the manual calculation method for predicting the acoustical behavior of the space. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 9.3. EVALUATION OF THE SUGGESTED SOLUTION The suggested solution is focussing on improving the acoustics of the space in two ways: 1) By reducing the overall reverberation time to a level ideal for speech. 2) By taking advantage of the reflected sound to reinforce the loudness of the speaker towards specific areas of the audience, and giving the flexibility to the space for two different type of usage: one lecture happening in the space or two simultaneous lectures happening in the space. 9.4. SUGGESTIONS FOR FUTURE WORK 9.4.1. The results of this thesis showed that the two model systems show discrepancies with each other and with reality. So there may be a model system which can come closer to reality. 9.4.2. The acoustical software CATT Acoustics has space for improvement: In a level of acoustical results and also in a level of being user- friendly, in the way the information of the geometry of a space is inputted. 9.4.3. The suggested solution can be built and measurements can be taken in it to see if they match the results of what was predicted. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. REFERENCES Yoichi Ando. Architectural Acoustics: Blending Sound Sources, Sound Fields, and Listeners. New York: AIP Press/Springer. c1998 . CATT - Acoustics Manual. Manual .1998. William J. Cavanaugh & Joseph A. Wilkes. Architectural Acoustics: Principles And Practice. New York: John Wiley, c1999. V.O. Knudsen . Architectural Acoustics . New York: J.Wiley & Sons, Inc, 1932. Richard J. Kos. The Use of a Maximum - Length Sequence to Aquire a System Impulse Response. Manual, 1991. Heinrich Kuttruff. Room Acoustics. New York: Elsevier Applied Science, 1991. Peter Lord & Ducan Templeton. The Architecture of Sound. New York: Nostrand Reinbold,1986 Gary W. Siebein & Bertram Y. Kinzy, Jr. Recent Innovations in Acoustical Design and Research New York: John Wiley, c1999. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. APPENDIX CATT - files for the existing situation , case#1. case#2, case#3, case#4. case#5. For existing situation of the Verle Annis Gallery: Geometric File: Master.geo: G L O B A L SCA = I SCALE SCA SCA SCA ABS CONCRETE = <44 444 4> ABS PLASTER = < 1 6 1 0 6 4 4 4 > ABS G Y P S U M B O A R D = < 25 15 8 4 4 4 > ABS GLASS = <23 17 II 544> ABS WOOD = < 16 10 6 4 4 4 > ABS Knoleum = < 2 3 3 333> CORNERS 1 0 1 1.36 5."5 2 8.56 1 1.36 5."5 3 8.56 0 5.” 5 4 0 0 5.75 5 0 1 1.36 3.17 6 8.56 1 1.36 3.17 " 8.56 1 I 36 -0.03 8 0 I 1.36 -0.03 9 8.56 I 1.36 4.23 10 8.56 0 4.23 I 1 8.56 9.03 3.17 12 8.56 9.03 4.23 13 8.56 2.33 0.58 14 8.56 2.33 4.23 15 8.56 9.03 0.58 16 8.56 2.33 3.17 17 8.56 0 3.17 18 8.56 0 -0.03 19 8.56 2.33 -0.03 20 8.56 9.03 -0.03 210 0 3.17 22 0 0 -0.03 23 0 4 . " -0.03 24 0 4.7" 3.17 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 25 0 6.59 3 .T 26 0 6.59 -0.03 PLANES [1 CEILING ! 2 3 4 ' CONCRETE ] [2 LPPERW ALL6 5 6 2 1 ' PLASTER ] [3 L O W E R W A L L7 7 6 5 8 G Y PSU M B O A R D ] [4 UPPERWALL4 2 9 10 3 ' PLASTER ] [5 UPPERWALL5 9 6 11 12 . PLASTER ] [6 W IN D O W 13 14 12 15 GLASS ] [7 UPPERWALL3 14 16 17 10 ' PLASTER ] [8 L O W E R W A L L4 18 17 16 19 ! G Y PSU M BO A R D ] [9 LO W E R W A L L5 19 13 15 20 / G Y PS U M BO A R D j [10 L O W E R W A L L 6 6 7 20 1 1 G YPSU M BO A R D ] [1 1 UPPF.RWALL2 214 3 17 PLASTER ] [12 LO W ER W A LL3 22 21 17 18 G Y P S U M B O A R D ] [13 U P P E R W A L L 1 5 1 421 PLASTER ] [14 LOW ER W A LL2 23 24 21 22 G Y P S U M B O A R D [ [ 15 DOOR 25 24 23 26 W O O D ] [16 LO W E R W ALL1 8 5 25 26 G Y P S U M B O A R D ] [17 floor 22 18 7 8 lynoleum ] Source File: SCALE SCA SCA SCA SOURCES AI 1.62 9.03 1.57 O M N I 2.74 7.89 1.6 0.000 <90 90 90 90 90 90 : 90 90> 0.000 A0 4.26 10.14 1.57 O M N I 4.26 8.95 1.6 0.000 <90 90 90 90 90 90 : 90 90> 0.000 Receiver File: SCALE SCA SCA SCA RECEIVERS 1 5.9 9.81 1.3" 2 2.26 2.56 1.3" 3 5.8" 3.5 1.37 4 3.35 6.8 1.3" Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Results for source AO and receiver 02: 77 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Results for source AO and receiver 03: 7 8 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Results for source AO and receiver 04: Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. For case#1 of the Verle Annis Gallery: Geometric File: Master.geo: G L O B A L SCA = I SCALE SCA SCA SCA ABS nubby = < 78 97 79 98 99 99 > ABS CONCRETE = <4 4 44 44 > ABS PLASTER = < 16 10 6 4 4 4 > ABS G Y PSU M BO A R D = < I 7 60 99 99 93 82 > ABS GLASS = < 23 I 7 ! 1 5 4 4 > ABS WO OD = < 16 106444> ABS Knoleum = < 2 3 3 3 3 3 > CORNERS 1 0 2.16 4.82 2 8.56 2.16 4.82 3 8.56 0.41 4.82 4 0 0.41 4.82 5 0 4.36 4.82 6 8.56 4.36 4.82 7 8.56 2.61 4.82 8 0 2.61 4.82 9 0 6.56 4.82 10 8.56 6.56 4.82 1 1 8.56 4.81 4.82 12 0 4.81 4.82 13 0 8.76 4.82 14 8.56 8.76 4.82 15 8.56 ".01 4 82 16 0 -.01 4.S2 I ' 0 10.96 4.82 18 8.56 10.96 4.82 19 8.56 9.21 4.82 20 0 9.21 4.82 21 0 1 1.36 5T5 22 8.56 1 1.36 5T5 23 8.56 0 5.75 24 0 0 5.75 25 0 1 1.36 3.17 26 8.56 1 1.36 3.17 27 8.56 1 1.36 -0.03 8 0 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 28 0 I 1.36 -0.03 29 8.56 1 1.36 4.23 30 8.56 0 4.23 31 8.56 9.03 3.17 32 8.56 9.03 4.23 33 8.56 2.33 0.58 34 8.56 2.33 4.23 35 8.56 9.03 0.58 36 8.56 2.33 3.17 37 8.56 0 3.17 38 8.56 0 -0.03 39 8.56 2.33 -0.03 40 8.56 9.03 -0.03 41 0 0 3.17 42 0 0 -0.03 43 0 4.7"'-0.03 44 0 4.77 3.17 45 0 6.59 3.1" 46 0 6.59 -0.03 PLANES [ 1 clg panels 12 3 4 nubby ) [2 clg panels 5 6 7 8 nubby ] [3 clg panels 9 10 11 12 nubb\ ] [4 clg panels 13 14 15 16 nubby ] [5 clu panels 1" 18 19 20 nubby] [6 CEILING 21 22 23 24 CONCRETE j [7 UPPERW ALL6 25 26 22 21 PLASTER ] [8 L O W E R W A L L7 27 26 25 28 G Y P S U M B O A R D 1 [9 UPPERW ALL4 22 29 30 23 PLASTER | [10 UPPERWALL5 29 26 3 1 32 PI.ASTER | [ I 1 W IN D O W 33 34 32 35 GLASS ] [12 UPPERWALL3 34 36 37 30 PLASTER ] [13 L O W E R W A L L4 38 37 36 39 G Y P S U M B O A R D | [14 L O W E R W A LL5 39 33 35 40 G Y P S U M B O A R D ] [15 L O W E R W A L L6 26 27 40 31 G Y P S U M B O A R D j [16 UPPERWALL2 41 24 23 3" PLASTER ] [17 LOWERWAL.L3 42 41 3" 38 G Y PSU M B O A R D ] [ 18 U P P E R W A L L 1 25 2124 41 PLASTER ] [19 LO W E R W A L L2 43 44 41 42 G Y PSU M B O A R D ] [20 DOOR 45 44 43 46 W O OD j [21 LO W ERW ALL1 28 25 45 46 G Y P S U M B O A R D ] [22 floor 42 38 2" 28 lynoleum ] Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Source File: SCALE SCA SCA SCA SOURCES A l l .62 9.03 1.57 O M NI 2.74 '.89 1.6 0.000 <90 90 90 90 90 90 : A0 4.26 10.14 1.57 O M NI 4.26 8.95 1.6 0.000 <90 9 0 9 0 9 0 9 0 90 90 90> 0.000 : 90 90> 0.000 Receiver File: SCALE SCA SCA SCA RECEIVERS 1 5.9 9.81 1.37 2 2.26 2.56 1.37 3 5.87 3.5 1.37 4 3.35 6.8 1.37 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Results for source AO and receiver 01 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Results for source AO and receiver 03: Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Results for source AO and receiver 04: S 5 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. For case#2 of the Verle Annis Gallery: Geometric File: Master.geo: G LO BAL SCA = 1 SCALE SCA SCA SCA ABS CONCRETE = < 4 4 4 4 4 4 > ABS PLASTER = < 16 I06444> ABS G Y P S l'M B O A R D = < 1 7 60 99 99 93 82 > ABS GLASS = < 23 1 7 1 | 5 4 4 > ABS WOOD = < 16 ! () 6 4 4 4 > ABS Knoleum = -- 2 3 3 3 3 3 > CORNERS 1 0 I 1.36 5."5 2 8.56 1 1.36 5."5 3 8.56 0 5.“ 5 4 0 0 5."5 5 0 11.36 3.17 6 8.56 1 1.36 3.1" "8.56 II .36 -0.03 8 0 11.36 -0.03 9 8.56 I 1.36 4.23 10 8.56 0 4.23 1 1 8.56 9.03 3.1" 12 8.56 9.03 4.23 13 8.56 2.33 0.58 14 8.56 2.33 4.23 15 8.56 9.03 0.58 16 8.56 2.33 3.1" 17 8.56 0 3.1" 18 8.56 0 -0.03 19 8.56 2.33 -0.03 20 8.56 9.03 -0.03 21 0 0 3.1" 22 0 0 -0.03 23 0 4.” -0.03 24 o 4.~~ 3.1" 25 0 6.59 3.1" 26 0 6.59 -0.03 PLANES [1 CEILING 12 3 4 CONCRETE ] 8 6 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. [2 U P P E R W A L L 6 5 6 2 1 P L A S T E R ] [3 L O W E R W A L L 7 7 6 5 8 G Y P S U M B O A R D ] [4 U P P E R W A L L 4 2 9 10 3 P L A S T E R ] [5 L 'P P E R W A L L S 9 6 11 12 ' P L A S T E R ] [6 W IN D O W 13 14 12 15 G LASS j [7 L P P E R W A L L 3 14 16 17 10 PLASTER ] [8 L O W E R W A L L 4 18 17 16 19 G Y P S U M B O A R D ] [9 L O W E R W A L L 5 19 13 15 20 G Y P S U M B O A R D j [10 L O W E R W A L L 6 6 7 20 11 G Y P S U M B O A R D ] [11 U P P E R W A L L 2 2 1 4 3 17 P L A S T E R 1 [12 L O W E R W A L L 3 22 21 17 18, G Y P S U M B O A R D ] [13 UPPER W A L L 1 ' 51421 P L A S T E R ] [14 L O W E R W A L L 2 23 24 21 22 G Y P S U M B O A R D [ [15 D O O R 25 24 23 26 W O O D ] [16 L O W E R W A L L 1 8 5 25 26 G Y P S U M B O A R D ] [17 floor 22 18 ' 8 lynoleum ] Source File: S C A LE SCA SCA SCA SO URC ES A 1 1.62 9.03 1 57 O M N I 2.74 '.89 1.6 0.000 •■90 90 90 90 90 90 : 90 90 - 0.000 A0 4.26 10.14 1.57 O M N I 4.26 8.95 1.6 0.000 - 90 90 90 90 90 90 . 90 90 -0.000 Receiver File: S C A LE SCA SCA SCA R E C E IV E R S 1 5.9 9.81 1.37 2 2.26 2.56 l.3~ 3 5.8' 3.5 1.3' 4 3.35 6.8 1.3" Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Results for source AO and receiver 01: Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Results for source AO and receiver 03: Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Results for source AO and receiver 04: Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. For case#3 of the Verle Annis Gallery: Geometric File: Master.geo: G L O B A L SCA = 1 SC ALE SCA SCA SCA ABS deeoustics = < 17 60 99 99 93 82 > ABS nubb> = < 78 97 79 98 99 99 > ABS C O NCRETE = < 4 4 44 44 > ABS PLASTER = < 16106444> ABS G Y P S U M B O A R D = < 25 15 8 4 4 4 > ABS G LASS = < 23 17 1 1 5 4 4 > ABS W O O D = < 16 10 6 4 4 4 > ABS Knoleum = < 23 3 3 3 3 > CORNERS 1 7.13 0 2.69 2 8.33 0 2.69 3 8.33 0 0.5" 4 7.13 0 0.5" 5 5."5 0.02 2.69 6 6.95 0.02 2.69 " 6.95 0.02 0.5" 8 5."5 0.02 0 .5 7 9 4.3" 0.02 2.69 10 5.5" 0.02 2.69 1 1 5.5" 0.02 0.5“ 12 4.3" 0.02 0.5" 13 0.23 0.02 2.69 14 i .43 0.02 2.69 15 1.43 0.02 0.57 16 0.23 0.02 0.5" 1" 1.61 0.02 2.69 18 2.81 0.02 2.69 19 2.81 0.02 0.5" 20 1.61 0.02 0.5" 21 2.99 0.02 2.69 22 4.19 0.02 2.69 23 4.19 0.02 0.5" 24 2.99 0.02 0.5" 25 8.54 I.7" 0.5" 26 8.54 0.57 0.57 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 127 8.54 0.57 2.69 :28 8.54 1.77 2.69 |29 0.02 0.75 2.69 30 0.02 0.75 0.57 31 0.02 1.95 0.5 “J 32 0.02 1.95 2.69 33 0.02 2.78 2.69 34 0.02 2.78 0.5 *7 35 0.02 3.98 0.5 7 36 0.02 3.98 2.69 37 0.02 7.34 2.69 38 0.02 7.34 0.5 7* 39 0.02 8.54 0.5 40 0.02 8.54 2.69 41 0.02 9.38 2.69 42 0.02 9.38 0.5 43 0.02 10.58 0. > 7 44 0.02 10.58 2. 69 45 8.54 10."9 0. 46 8.54 9.59 0.5 4 - 8.54 9.59 2.69 48 8.54 10.79 2. 69 49 7.13 1 1 34 0. • > 7 50 8.33 1 1.34 0. 5 7 51 8.33 1 1.34 2. 69 52 “ 13 i 1.34 2. 69 53 5.“ 5 1 1.34 0. 5 7 54 6.95 1 1.34 0. 5 7 55 6.95 1 1.34 2. 69 56 5."5 1 1.34 2. 69 5“ 4.3“ 1 1.34 0.. 5 7 58 5.57 1 1.34 0..57 59 5.57 11.34 2..69 60 4.3“ 1 1.34 2 69 61 2.99 1 1.34 0 5 7 62 4.19 1 1.34 0 ^ 7 63 4.19 11.34 2.69 64 2.99 1 1.34 2.69 65 1.61 1 1.34 0 .5 * !* 66 2.81 1 1.34 0 .57 6 “ 2.81 1 1.34 2.69 68 1.61 1 1.34 2.69 69 0.23 1 1.34 0 .5? 70 1.43 1 1.34 0 .57 "1 1.43 1 1.34 2.69 "2 0.23 1 1.34 2.69 "3 0 4.36 4.82 92 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 74 8.56 4.36 4.82 75 8.56 2.61 4.82 '16 0 2.61 4.82 77 0 6.56 4.82 78 8.56 6.56 4.82 79 8.56 4.81 4.82 80 0 4.81 4.82 81 0 8.76 4.82 82 8.56 8.76 4.82 83 8.56 7.01 4.82 84 0 ".01 4.82 85 0 1 1.36 5.-5 86 8.56 1 1.36 5."5 87 8.56 0 5.-5 88 0 0 5.-5 89 0 1 1.36 3.17 90 8.56 1 1.36 3.1- 91 8.56 1 1.36 -0.03 92 0 1 1.36 -0.03 93 8.56 1 1.36 4.23 94 8.56 0 4.23 95 8.56 9.03 3.1 7 96 8.56 9.03 4.23 97 8.56 2.33 0.58 98 8.56 2.33 4.23 99 8.56 9.03 0.58 100 8.56 2.33 3.1" 101 8.56 0 3.1- 102 8.56 0 -0.03 103 8.56 2.33 -0.03 104 8.56 9.03 -0.03 105 0 0 3.17 106 0 0 -0.03 107 0 4.7- -0.03 108 0 4 . " 3.1- 109 0 6.59 3.17 110 0 6.59 -0.03 P L A N E S [1 tackablepanel 12 3 4 decoustics ] [2 tackable_panel 5 6 ~ 8 decoustics ] [3 tackable_panel 9 10 11 12 decoustics [4 tackable_panel 13 14 15 16 decoustics j [5 tackable_panel 17 18 19 20 decoustics ] [6 tackable_panel 21 22 23 24 decoustics ] [7 tackable_panel 25 26 27 28 decoustics ] [8 tackable_panel 29 30 31 32 decoustics ] [9 tackable_panel 33 34 35 36 decoustics ] 9 3 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. [10 tackable_panel 37 38 39 40 decoustics ] [ 1 1 tackable_panel 41 42 43 44 ' decoustics ] [12 tackable_panel 45 46 47 48 decoustics ] [13 tackable_panel 49 50 51 52 ' decoustics ] [14 tackable panel 53 54 55 56 ' decoustics ] [ 1 5 tackable_panel 57 58 59 60 decoustics ] [16 tackable panel 61 62 63 64 decoustics ] [ 1 7 tackable panel 65 66 67 68 decoustics ] [ 18 tackable panel 69 70 71 72 decoustics ] [ 19 clg panels 73 74 75 76 nubby ] [20 clg panels 77 78 79 80 nubby ] [21 clg panels 81 82 S3 84 nubb’ v [ [22 C E IL IN G 85 86 87 88 CO NCRETE ] [23 U P P E R W A L L 6 89 90 86 85 PLASTER ] [24 LOW ERW A L L ? 91 90 89 92 G Y P S U M B O A R D ] [25 U P P E R W A L L 4 86 93 94 87 P L A S T E R ] [26 U P P E R W A LL 5 93 90 95 96 PLASTER [ [27 W IN D O W ' 97 98 96 99 GLASS ] [28 L'PPERW ALL.3 98 100 101 94 P L A S T E R ] [29 LOW E R W A L L 4 102 101 100 103 G Y P S U M B O A R D ] [30 LOW E R W A L L 5 103 97 99 104 G Y P S U M B O A R D ] [31 L O W E R W A L L 6 90 91104 95 G Y P S U M B O A R D ] [32 U P P E R W A L L 2 105 88 87 101 PLASTER | [33 LOW ERW AL.L3 106 105 101 102 G Y P S U M B O A R D ] [34 UPPER W A L L 1 89 85 88 105 P L A S T E R ] [35 LO W E R W A L .L 2 107 108 105 106 G Y P S U M B O A R D ] [36 D O O R 109 108 107 1 10 W O O D ] [37 LOW E R W A L L I 92 89 109 1 10 G Y P S U M B O A R D ] [38 floor 106 102 91 92 Knoleum ] Source File: S C A L E SCA SCA SCA S O U R C E S A 1 1.62 9 03 1.57 O M N I 2 .'4 '.80 1 6 0.000 ' 90 90 90 90 90 90 : 90 90 • 0.000 A0 4.26 10.14 1.57 O M N I 4.26 8.95 1.6 0.000 ■ 90 90 90 90 90 90 : 90 90--0.000 Receiver File: S C A L E SCA SCA SCA R E C E IV E R S 1 5.9 9 81 1.3" 2 2.26 2.5o 1.37 3 5.87 3.5 1.57 4 5.35 6.8 1.37 94 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Results for source AO and receiver 01: Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Results for source AO and receiver 03: Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Results for source AO and receiver 04: Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. For case#4 of the Verle Annis Gallery: Geometric File: Master.geo: G L O B A L SCA = 1 SC ALE SCA SCA SCA ABS decoustics = < 54 87 99 99 94 91 > ABS decoustics: = <3 37 89 99 99 99 > ABS nubby = < 78 9 - 79 98 99 99 > ABS C O N C RETE = < 4 4 4 4 4 4 > ABS PLASTER = < 1 6 i 0 6 4 4 4 > ABS G Y P S U M B O A R D = < 2 5 I 5 8 4 4 4 > ABS G LASS = < 23 1" I 1 5 4 4 > ABS W O O D = < 16 10 6 4 4 4 > ABS Knoleum = < 2 3 3 3 3 3 > CORNERS 1 0 0 3.17 2 8.56 0 3.17 3 8.56 0 4.82 4 0 0 4.82 5 8.56 1 1.36 3.1" 6 8.56 I 1.36 4.82 7 0 1 1.36 4.82 8 0 1 1.36 3.1" 9 7.13 0.02 2.69 10 8.33 0.02 2.69 11 8.33 0.02 0.5" 12 7.13 0.02 0.5" 13 5T 5 0.02 2.69 14 6.95 0.02 2.69 15 6.95 0.02 0.57 16 5.75 0.02 0.57 17 4.37 0.02 2.69 18 5.57 0.02 2.69 19 5.5" 0.02 0.5" 20 4.37 0.02 0.57 21 0.23 0.02 2.69 22 1.43 0.02 2.69 23 1.43 0.02 0.57 24 0.23 0.02 0.57 25 1.61 0.02 2.69 26 2.81 0.02 2.69 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 27 2.81 0.02 0.57 28 1.61 0.02 0.57 129 2.99 0.02 2.69 130 4.19 0.02 2.69 31 4.19 0.02 0.5" .32 2.99 0.02 0.57 33 8.54 1.77 0.57 34 8.54 0.57 0.57 35 8.54 0.57 2.69 36 8.54 1.77 2.69 37 0.02 0.75 2.69 38 0.02 0.75 0.57 39 0.02 1.95 0.57 40 0.02 1.95 2.69 41 0.02 2.78 2.69 42 0.02 2.78 0.57 43 0.02 3.98 0 .57 44 0.02 3.98 2.69 45 0.02 7.34 2.69 46 0.02 7.34 0.57 47 0.02 8.54 0.57 48 0.02 8.54 2.69 49 0.02 9.38 2.69 50 0.02 9.38 0.57 51 0.02 10.58 0.5" 52 0.02 10.58 2.69 53 8.54 10.79 0.5" 54 8.54 9.59 0.5" 55 8.54 9.59 2.69 56 8.54 10.79 2.69 57 7.13 1 1.34 0.57 58 8.33 1 1.34 0.5" 59 8.33 1 1.34 2.69 60 7.13 1 1.34 2.69 61 5.75 1 1.34 0.5" 62 6.95 1 1.34 0.57 63 6.95 1 1.34 2.69 64 5.75 1 1.34 2.69 65 4.37 1 1.34 0.57 66 5.57 1 1.34 0.5" 6 " 5.57 1 1.34 2.69 68 4.37 1 1.34 2.69 69 2.99 1 1.34 0.5" "0 4.19 1 1.34 0.5" 7 1 4.19 1 1.34 2.69 72 2.99 1 1.34 2.69 ' 73 1.61 1 1.34 0.57 74 2.81 1 1.34 0.57 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 76 1.61 11.34 2.69 77 0.23 11.34 0.57 78 1.43 1 1.34 0.57 79 1.43 11.34 2.69 80 0.23 11.34 2.69 ! 8 I 0 4.36 4.82 82 8.56 4.36 4.82 83 8.56 2.61 4.82 84 0 2.61 4.82 '85 0 6.56 4.82 86 8.56 6.56 4.82 87 8.56 4.81 4.82 88 0 4.81 4.82 89 0 8.76 4.82 90 8.56 8.76 4.82 91 8.56 7.01 4.82 92 0 7.01 4.82 93 0 1 1.36 5.75 94 8.56 1 1.36 5.75 95 8.56 0 5.75 96 0 0 5.75 97 8.56 1 1.36 -0.03 98 0 1 1.36 -0.03 99 8.56 11.36 4.23 100 8.56 0 4.23 101 8.56 9.03 3.1" i 02 8.56 9.03 4.23 103 8.56 2.33 0.58 104 8.56 2.33 4 23 105 8.56 9.03 0.58 106 8.56 2.33 3.1" 107 8.56 0 -0.03 108 8.56 2.33 -0.03 109 8.56 9.03 -0.03 110 0 0 -0.03 1110 4.77 -0.03 112 0 4.77 3.1" 113 0 6.59 3.17 114 0 6.59 -0.03 P L A N E S [1 resilient_pannel 12 3 4 decoustics2 ] [2 resilient_pannel 5 6 7 8 decoustics2 ] [3 resilient _pannel 8 7 4 1 decoustics2 ] [4 tackable_panel 9 10 11 12 decoustics ] [5 tackable_panel 13 14 15 16 decoustics ] [6 tackable_panel 17 18 19 210 decoustics ] 10 0 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. [7 tackable_panel ' 21 22 23 24 / decoustics ] i [8 tackable_panel 25 26 27 28 / decoustics ] [9 tackable_panel 29 30 3 1 32 / decoustics ] '[10 tackable_panel ' 33 34 35 36 ' decoustics ] [11 tackable_panel ' 37 38 39 40 ' decoustics ] [12 tackable_panel ' 4 i 42 43 44 ' decoustics ] [13 tackable_panel ' 45 46 47 48 decoustics ] [14 tackable_panel 49 50 51 52 decoustics ] [15 tackable_panel 53 54 55 56 decoustics ] [16 tackable_panel 57 58 59 60 decoustics ] [17 tackab!e_panel 61 62 63 64 ' decoustics ] [18 tackable_panel ' 65 66 67 68 decoustics ] [19 ta c k a b le _ p a n e i69 70 7 1 72 decoustics ] [20 tackable_panel 73 74 75 76 decoustics ] [21 tackable_panel 77 78 79 80 decoustics ] [22 clg panels 81 82 83 84 nubby ] [23 clg panels 85 86 87 88 nubby j [24 clg panels 89 90 91 92 nubby ] [25 C E IL IN G 93 94 95 96 C O N C R E TE ] [26 C P P E R W A LL6 8 5 94 93 PLASTER 1 [27 L O W E R W A L L 7 97 5 8 98 G Y P S U M B O A R D [ [28 U P P E R W A LL4 94 99 100 95 PLASTER ] [29 U PP E R W A LL5 99 5 101 102 ' PLASTER ] [30 W IN D O W 103 104 102 105 G LASS ] [31 U PP ER W A LL3 104 106 2 100 ' PLASTER | [32 L O W E R W A L L 4 107 2 106 108 G Y P S U M B O A R D ] [33 L O W E R W A L L 5 108 103 105 109 'G Y P S U M B O A R D [ [34 L O W E R W A L L 6 5 97 109 101 G Y P S U M B O A R D ] [35 U P P E R W A LL2 1 96 9 f 2 PLASTER ] [36 L O W E R W A L L 3 1 10 1 2 107 G Y P S U M B O A R D [ [37 UPPER W A LL1 8 93 96 1 PLAS TER ] [38 L O W E R W A L L 2 111 1121 110 G Y P S U M B O A R D ] [39 DO O R 113 112 111 114 W O O D ] [40 LO W E R W A L L 1 98 8 1 13 114 G Y P S U M B O A R D ] [41 Boor 110 107 97 98 K noleum ] Source File: SC A LE SCA SCA SCA SO URC ES A 1 1.62 9.03 1.57 O M N I 2.74 7.89 1.6 0.000 - 90 90 90 90 90 90 : 90 90> 0.000 A0 4.26 10.14 1.57 O M N I 4.26 8.95 1.6 0.000 - 90 90 90 90 90 90 : 90 90> 0.000 101 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Receiver File: S C A L E SCA SCA SCA R E C E IV E R S 1 5.9 9.81 1.37 2 2.26 2.56 1.37 3 5.87 3.5 1.37 4 3.35 6.8 1.37 102 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Results for source AO and receiver 01 103 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Results for source AO and receiver 03: 1 0 4 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Results for source AO and receiver 04: 105 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. For case#5 of the Verle Annis Gallery: Geometric File: Master.geo: G L O B A L SCA = 1 S C A L E SCA SCA SC A AB S decoustics = ■ 17 60 99 99 93 82 -■ ABS decousticsZ = - 3 37 89 99 99 00 . ABS nubb\ = • 78 97 79 98 99 99 • ABS C O N C R E T E = - 4 4 4 4 4 4 ■ ABS P L A S T E R • 16 10 6 4 4 4 - ABS G Y P S U M B O A R D = • 25 15 8 4 4 4 • ABS G LA S S = - 23 17 115 4 4 ■ ABS W O O D = • 16 10 6 4 4 4 • ABS Knoleum = - 2 3 3 3 3 3 • C O R N E R S 1 0 0.02 3.17 2 8.56 0.02 3.17 3 8.56 0.02 4.82 4 0 0.02 4.82 5 8.56 I 1.54 3.l~ 6 8.56 1 1.34 4.82 ' 0 1 1.34 4.S2 8 0 1 1.34 3.17 9 0.02 1 1.36 3.17 10 0.02 I 1 36 4 82 1 1 0.02 0 4.82 12 0.02 0 3.17 13 7.13 0.02 2.69 14 8.53 0.02 2.69 15 8.3 3 0.02 0.57 16 '.13 0.02 0.57 1' 5.~5 0.02 2.69 18 6.95 0.02 2.69 19 6.95 0.02 0.57 20 5.'5 0.02 0.57 21 4.37 0.02 2.69 22 5.57 0.02 2.69 23 5.57 0.02 0.57 24 4 .3 ' 0.02 0.5" 25 0.23 0.02 2.69 26 1.43 0.02 2.69 27 1.43 0.02 0 .5 ' 28 0.23 0.02 0 .5 ' 29 1.61 0.02 2.69 30 2.SI 0.02 2.69 3 1 2.81 0.02 0.57 32 1.61 0.02 0 .5 ' Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 33 2.99 0.02 2.69 '34 4.19 0.02 2.69 : 35 4.19 0.02 0.57 36 2.99 0.02 0.57 37 8.54 1.77 0.57 J 38 8.54 0.57 0.57 ■39 8.54 0.57 2.69 . 40 8.54 1.77 2.69 41 0.02 0.75 2.69 42 0.02 0.75 0.5" 43 0.02 1.95 0.57 44 0.02 1.95 2.69 45 0.02 2.78 2.69 46 0.02 2.78 0.57 47 0.02 3.98 0.57 48 0.02 3.98 2.69 49 0.02 7.34 2.69 50 0.02 7.34 0.57 51 0.02 8.54 0.57 52 0.02 8.54 2.69 53 0.02 9.38 2.69 54 0.02 9.38 0.57 55 0.02 10.58 0.57 56 0.02 10.58 2.69 57 8.54 10.79 0.57 58 8.54 9.59 0.57 59 8.54 9 59 2.69 60 8.54 10.79 2.69 61 7.13 1 1.34 0.5" 62 8.33 1 1.34 0.57 63 8.33 1 1.34 2.69 64 7.13 1 1.34 2.69 65 5.75 1 1.34 0.5" 66 6.95 1 1 34 0.57 67 6.95 I 1.34 2.69 68 5.75 11.34 2.69 69 4.37 1 1.34 0.57 70 5.57 1 1.34 0.57 71 5.57 1 1.34 2.69 72 4.37 1 1.34 2.69 73 2.99 11.34 0.57 74 4.19 1 1 34 0.57 75 4.19 1 1 34 2.69 76 2.99 1 1.34 2.69 77 1.61 1 1.34 0.5" 78 2.81 1 1.34 0.57 79 2.81 11.34 2.69 80 1.61 11.34 2.69 81 0.23 11.34 0.57 82 1.43 1 1.34 0.57 83 1.43 11 34 2.69 84 0.23 11.34 2.69 85 0 4.36 4.82 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 186 8.56 4.36 4.82 I 87 8.56 2.61 4.82 | 88 0 2.61 4.82 | 89 0 6.56 4.82 190 8.56 6.56 4.82 91 8.56 4.81 4.82 92 0 4.81 4.82 '93 0 8.76 4.82 94 8.56 8.76 4.82 ; 95 8.56 7.01 4.82 : 96 0 7.01 4.82 97 0 11.36 5.75 98 8.56 11 36 5.75 99 8.56 0 5.75 100 0 0 5.75 101 0 I 1.36 3 1" 102 8.56 1 1.36 3.17 103 8.56 1 1.36 -0 03 104 0 1 1.36 -0.03 105 8.56 1 1.36 4 23 106 8.56 0 4.23 107 8.56 9.03 3 .P 108 8.56 9.03 4 23 109 8.56 2.33 0.58 1 10 8.56 2.33 4 23 1 1 1 8.56 9.03 0.58 I 12 8.56 2.33 3 17 113 8.56 0 3.17 1 14 8.56 0 -0.03 1 15 8.56 2.33 -0.03 1 16 8.56 9.03 -0.03 1 17 0 0 3. r 1 IS 0 0 -0.03 119 0 4.77 -0.03 120 0 4.77 3.17 1210 6.59 3.17 122 0 6.59 -0.03 PLANES [1 resilientpannel [2 resilientpannel [3 resilient pannel [4 tackable _panel [5 tackable_panel [6 tackable panel [7 tackable panel [8 tackable_panel [9 tackable_panel [ 10 tackable panel [ 1 1 tackable_panel [12 tackable_panei [ 13 tackable jDanel [14 tackable panel 12 3 4 decoustics2 | 5 6 7 8 decoustics2 ) 9 10 11 12 decoustics2 j 13 14 15 16 decoustics ] 17 18 19 20 decoustics ] 2 1 2 2 23 24 decoustics] 25 26 2~ 28 decoustics [ 29 30 3 1 32 decoustics ] 33 34 35 36 decoustics ] 37 38 39 40 decoustics ] 41 42 43 44 decoustics ] 45 46 47 48 decoustics j 49 50 51 52 decoustics ] 53 54 55 56 decoustics ] 1 0 8 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ; [15 tackable_pane! 57 58 59 60 decoustics ] [16 tackable panel 61 62 63 64 decoustics ] [17 tackable panel 65 66 67 68 decoustics ] [ 18 tackable panel 69 70 71 72 decoustics ] [19 tackable jia n e l 73 74 75 76 decoustics ] [20 tackable jia n e l 77 78 79 80 decoustics ] [21 tackablepanel 81 82 83 84 decoustics ] [22 clg panels 85 86 87 88 nubby ] [23 clg panels 89 90 9 1 9 2 nubby) [24 clg panels 93 94 95 96 nubby ] [25 C E IL IN G 97 98 99 100 C O N C R E T E ] [26 U P P E R W A L L 6 101102 98 97 P L A S T E R ) [27 L O W E R W A L L " 7 103 102 101104 G Y P S U M B O A R D ) [28 U P P E R W A L L 4 98 105 106 99 P L A S T E R ] [29 U P P E R W A L L 5 105 102 107 108 P L A S T E R ] [30 W I N D O W 109 110 108 111 G L A S S ) [31 U P P E R W A L L 3 110 112 113 106 P L A S T E R ] [32 L O W E R W A L L 4 114 113 112 115 G Y P S U M B O A R D 1 [33 L O W E R W A L L 5 I 15 109 11 1 116 G Y P S U M B O A R D ] [34 L O W E R W A L L 6 102 103 1 16 107 G Y P S U M B O A R D j [35 U P P E R W A L L 2 I 17 100 99 113 P L A S T E R | [36 L O W E R W A L L 3 118 117 113 114 G Y P S U M B O A R D 1 [37 U P P E R W A L L 1 10197 100 117 P L A S T E R | [38 L O W E R W A L I.2 119 120 117 118 G Y P S U M B O A R D ) [39 D O O R 121120 119 122 W O O D 1 [40 L O W E R W A L .L I 104 101 121 122 G Y P S U M B O A R D ] [41 floor 118 114 103 104 Knoleum ] Source Fiie: S C A L E SCA SCA SCA SO URC ES A 1 1.62 9.03 1.57 O M N I 2.74 " 89 1.6 0.000 - 90 90 90 90 90 90 : 90 90 • 0.000 A0 4.26 10.14 1.5" O M N I 4.26 8.95 1.6 0.000 - 90 90 90 90 90 90 : 90 90 • 0.000 Receiver File: S C A L E SCA SCA SCA R E C E IV E R S 1 5.9 9.81 1.3" 2 2.26 2.56 1.3" 3 5.87 3.5 1.37 4 3.35 6.8 1.37 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Results for source AO and receiver 01 1 1 0 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Results for source AO and receiver 03: Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Results for source AO and receiver 04: : E - r 1 j 2 ■. .■ s . . . V . K - - - • I \ \ - ■ - .i \ ” ! ^ \ \ ■ ■ \ \ i i \ ■ \ ■ .1 \ . \ . .. . . \ z'. -'j I j j - j r . j 2'J'. : . . '. w - r. 1 r. - 1 H i ■ '• \ • l . ‘ / - i V . ,A \ \ - % ’ H - - y - V •- \ V \ ' ’ *.. \ 112 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Linked assets
University of Southern California Dissertations and Theses
Conceptually similar
PDF
Acoustics of the Bing Theater, USC: Computer simulation for acoustical improvements
PDF
Catalyst: A computer-aided teaching tool for stayed and suspended systems
PDF
A method for glare analysis
PDF
Color and daylighting: Towards a theory of bounced color and dynamic daylighting
PDF
A visual and digital method for predicting discomfort glare
PDF
Interactive C++ program to generate plank system lines for timber rib shell structures
PDF
Head injury biomechanics: Quantification of head injury measures in rear-end motor vehicle collisions
PDF
Determine the optimum block type for use in Saudi Arabia
PDF
WAHHN: Web based design: Wind and human comfort for Thailand
PDF
Bayesian estimation using Markov chain Monte Carlo methods in pharmacokinetic system analysis
PDF
Eccentric braced frames: A new approach in steel and concrete
PDF
Application of a two-stage case-control sampling design based on a surrogate measure of exposure
PDF
Initial stability of stainless steel and titanium alloy total hip arthroplasty femoral components
PDF
Computer aided design and manufacture of membrane structures Fab-CAD
PDF
Comparison of lateral performance: Residential light wood framing versus cold-formed steel framing
PDF
Effects of prenatal cocaine exposure in quantitative sleep measures in infants
PDF
Contact pressures in the distal radioulnar joint as a function of radial malunion
PDF
Variable reverberation in performance spaces: Passive and active acoustic systems
PDF
Guidelines for building bamboo-reinforced masonry in earthquake-prone areas in India
PDF
Bracing systems for tall buildings: A comparative study
Asset Metadata
Creator
Vital, Rebeka
(author)
Core Title
A case study comparing measured and simulated acoustical environments: Acoustical improvements of Verle Annis Gallery
School
Graduate School
Degree
Master of Building Science / Master in Biomedical Sciences
Degree Program
Building Science
Publisher
University of Southern California
(original),
University of Southern California. Libraries
(digital)
Tag
Architecture,OAI-PMH Harvest,Physics, Acoustics
Language
English
Contributor
Digitized by ProQuest
(provenance)
Advisor
[illegible] (
committee chair
), Kensek, Karen (
committee member
), Noble, Douglas (
committee member
)
Permanent Link (DOI)
https://doi.org/10.25549/usctheses-c16-293048
Unique identifier
UC11341439
Identifier
1411044.pdf (filename),usctheses-c16-293048 (legacy record id)
Legacy Identifier
1411044.pdf
Dmrecord
293048
Document Type
Thesis
Rights
Vital, Rebeka
Type
texts
Source
University of Southern California
(contributing entity),
University of Southern California Dissertations and Theses
(collection)
Access Conditions
The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law. Electronic access is being provided by the USC Libraries in agreement with the au...
Repository Name
University of Southern California Digital Library
Repository Location
USC Digital Library, University of Southern California, University Park Campus, Los Angeles, California 90089, USA
Tags
Physics, Acoustics