Close
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected
Invert selection
Deselect all
Deselect all
Click here to refresh results
Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Magma mingling/mixing in a heterogeneous, multi-pulse magmatic system: An example from the Jackass Lakes pluton, central Sierra Nevada batholith
(USC Thesis Other)
Magma mingling/mixing in a heterogeneous, multi-pulse magmatic system: An example from the Jackass Lakes pluton, central Sierra Nevada batholith
PDF
Download
Share
Open document
Flip pages
Contact Us
Contact Us
Copy asset link
Request this asset
Transcript (if available)
Content
NOTE TO USERS This reproduction is the best copy available. ® UMI Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. MAGMA MINGLING/MIXING IN A HETEROGENEOUS, MULTI-PULSE MAGMATIC SYSTEM: AN EXAMPLE FROM THE JACKASS LAKES PLUTON, CENTRAL SIERRA NEVADA BATHOLITH by Claire Marie Coyne A Thesis Presented to the FACULTY OF THE GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE (GEOLOGICAL SCIENCES) May 2005 Copyright 2005 Claire Marie Coyne Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 1427941 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. ® UMI UMI Microform 1427941 Copyright 2005 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UNIVERSITY OF SOUTHERN CALIFORNIA THE GRADUATE SCHOOL UNIVERSITY PARK LOS ANGELES, CALIFORNIA 90089-1695 This thesis, written by Piaift, if}- under the direction o f h i thesis committee, and approved by all its members, has been presen ted to and accepted by the D irector o f Graduate and Professional Program s, in partial fulfillm ent o f the requirements f o r the degree o f I - ; . • • M aster's of Science D irector 5/12/05 Date . Thesis Committee Sai Chair — 1 ^ /> -’n ~ Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. DEDICATION To my families and friends, for your love, encouragement and support. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGEMENTS The completion of thesis would not have been possible without the support and guidance of many individuals. I would like to thank my advisor, Dr. J. Lawford Anderson for his constant support and encouragement during my time at USC and also for your time and guidance throughout the research and writing aspects of this thesis. To my co-advisor, Dr. Scott R. Paterson, for your suggesting the Jackass Lakes pluton as a thesis area, and providing guidance and helpful discussions on many aspects of this project. To Geoffrey Pignotta, for your tremendous support of this project from day one, and for the constant encouragement and advice offered during all aspects of this project. Dr. Jean Morrison, for being a member of my thesis committee and for your time in editing this thesis. Dr. Nelia W. Dunbar and Ms. Lynn Heizler at New Mexico Tech for the use of the electron microprobe laboratory for mineral composition determination for the thermobarometry aspect of this project. Dr. Sergio Rocchi in the Dipartimento di Scienze della Terra at the Universita di Pisa, Italy for his time, advisement and discussions on the interpretation of geochemical data and microstructural features as they relate to mixed magmas. To my field assistant, Ms. Laura Bracciali, also from Universita di Pisa, Italy, without iii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. whom I would probably still be out wandering around in our mapping area. Your breadth of geologic knowledge and constant encouragement were instrumental in my completion of this project. To the fellow graduate students within the structure group for letting a petrologist infiltrate their clique. Your patience, support, constructive comments and suggestions were greatly appreciated. Very special thanks to Ms. Cindy Waite and Ms. Vardui Ter-Simon for your help over the past two and half years with the administrative aspect of completing this thesis. Financial support for this project was provided by research funds of J. Lawford Anderson, EDMAP grant to Scott R. Paterson for field expenses and microprobe analysis and the Departmental Graduate Research Fund. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS DEDICATION ii ACKNOWLEDGEMENTS iii LIST OF TABLES vii LIST OF FIGURES viii ABSTRACT x Chapter 1: Introduction 1 Chapter 2: Study Area Location 6 Chapter 3: Geologic Setting 7 Chapter 4: Methods 9 4.1 Field Study 9 4.2 Petrography 12 4.3 Whole-rock Geochemistry 13 4.4 Electron microprobe 14 Chapter 5: Field Observations 15 Chapter 6: Mesoscopic Description and Petrography 20 6.1 End-member units 21 6.2 Hybrid units 26 Chapter 7: Interpretation of Microstructural Features 28 Chapter 8: Whole Rock Geochemistry 34 8.1 End-member unit results 36 8.2 Hybrid unit results 41 v Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 9: Geochemical Interpretation 42 Chapter 10: Thermobarometry of Igneous Crystallization 48 10.1 Hornblende-plagioclase thermobarometer 48 Limitations on hornblende-plagioclase thermobarometer 49 Chapter 11: Mineral Chemistry 52 11.1 Hornblende 52 11.2 Plagioclase feldspar 55 Chapter 12: Results 58 Chapter 13: Conclusions 63 BIBLIOGRAPHY 67 APPENDIX A: Photomicrographs of Thin-sections used for Electron Microprobe Analysis 72 APPENDIX B: Amphibole Chemistry used in Thermobarometry Calculations 75 APPENDIX C: Feldspar Chemistry used in Thermobarometry Calculations 88 vi Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. LIST OF TABLES TABLE 1: Mineral Abundance Observed in Thin Section 21 TABLE 2: Whole Rock and Trace Element Data 35 TABLE 3: Interelement correlation coefficients for JLP type samples 44 TABLE 4: Interelement correlation coefficients for hybrid and average endmember samples 45 TABLE 5: Hornblende Mineral Formula 49 TABLE 6: Average An content of Plagioclase 57 TABLE 7: Thermobarometry Results 59 vii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. LIST OF FIGURES Figure 1: Geologic Map of Jackass Lakes pluton 8 Figure 2: Sample Location Map of Madera Creek area in Jackass 11 Lakes pluton Figure 3: Thermobarometry Sample Location Map 12 Figure 4: Photograph of Mafic Enclave Swarm within JLP Unit 16 Figure 5: Photographs of Mingling Between Various Units 16 Figure 6: Photograph of Contact Zone between Hybrid Units 18 Figure 7: IUGS Classification of Plutonic Units 22 Figure 8: Photomicrograph of Acicular Apatite 29 Figure 9: Photomicrograph of Blade Biotite 30 Figure 10: Photomicrograph of Boxy Cellular Plagioclase 31 Figure 11: Photomicrograph of Antirapakivi Mantling 32 Figure 12: Photomicrograph of Horblende Conversion to Biotite 33 Figure 13: Classification Diagrams applied to Jackass Lakes Pluton 38 Figure 14: Harker variation diagrams for major elements 39 Figure 15: Harker variation diagrams for trace elements 40 Figure 16: Harker variation diagram for Si versus Ca 43 Figure 17: Calcic Amphibole Classification Plot 53 viii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 18: Back-scattered Electron Image of Subsolidus Alteration of Hornblende Figure 19: Calcic Amphibole Discrimination Diagram Figure 20: Regional Map of Pluton with Thermobarometry Results Figure 21: Results of Hornblende-Plagioclase Thermobarometry plotted on Pressure-Temperature Diagram Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT The Jackass Lakes pluton, central Sierra Nevada batholith, has been the focus of several studies investigating the emplacement and temporal evolution of this heterogenous intrusion. Detailed field m apping in a central domain of the pluton identified eight distinct units (diorite to granite). Extensive mingling features within and between units indicate that magma mingling was an important process throughout the evolution of this magma chamber. A number of microstructures common to mixed magmas were identified during petrographic examination. Furthermore, linear trends observed from whole-rock and trace element geochemistry suggest mixing was involved, at least locally, during chamber construction. The compositional variation suggests that the chamber formed as a result of multiple pulses of magma at uniform shallow levels, as indicated by hornblende-plagioclase thermobarometry pressure-temperature estimates of 2.8 kilobars and 670°C. These findings indicate that mingling and mixing occurred throughout the evolution of the pluton, likely during ascent of magma pulses. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 1: Introduction The evolution and emplacement of plutons are crucial processes in the understanding of an orogenic belts history. Plutons record the physical, chemical and temporal history of magmatic processes. Within the Sierra Nevada batholith exist hundreds of plutons, each with a unique history. The Cretaceous-aged Jackass Lakes pluton, located within the central domain of the batholith, has been the focus of several studies on determining the emplacement and temporal evolution of magmatic systems (Peck, 1980; McNulty, 1996, 2000; Wiebe, 2000; Pignotta et al., 2003). The presence of sub vertical mafic sheets/intrusions within this composite, subvolcanic intrusion has led to the formulation of three competing chamber construction models. The first model was proposed by McNulty et al. (1996) who examined the petrologic phases and structures within the pluton to conclude that the Jackass Lakes pluton is a shallow level magma chamber formed by injection of sheet-like magma pulses with some downward return flow along pluton margins and localized stoping. Observations supporting this conclusion were (1) straight eastern and western contacts of the pluton, (2) north-south striking enclave swarms, (3) magmatic foliation within the pluton, (4) solid- state foliation in the wall rocks, (5) sub-vertical north-striking petrologic 1 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. units, and (6) an east-west fluctuation in enclave density and magmatic fabric intensity. In their model, the pluton formed essentially in its present orientation, the sheet-like bodies are interpreted as dikes, and volcanic bodies in the pluton interpreted as septa of material moved downwards along dike walls. Magmatic fabrics were also interpreted to reflect flow in the dikes and microgranitoid enclave swarms as disaggregated syn-plutonic dikes. A second model, proposed by Wiebe (1999, 2000), stated that the sub vertical sheets represent multiple sub-horizontal floors of an evolving chamber, which have been rotated to their present steep orientation. Wiebe has established a number of criteria to distinguish between a mafic sheet intruded along the interface between a crystal mush chamber floor and crystal poor interior, rather than randomly as sills or dikes. Based on these criteria, he suggested that the rotation occurred by a syn- to post- emplacment ~90° rotation of the entire pluton about a N-S horizontal axis (Wiebe, 2000) or by chamber floor down-dropping with subsequent inward tilting of sheets (Wiebe and Collins, 1998; Cruden, 1998). Pignotta, et al. (2003) suggested a third model, in which the pluton was emplaced by return flow and stoping. They observed that sheets and 2 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. dikes were only found within the eastern margin of the pluton, evidence that they believe does not support the input of magma as sheet-like pulses. Based on field investigations, they believe that magma may have entered the chamber initially as sheets but as pervasive mingling features suggest, much of the magma entered the chamber as irregularly-shaped intrusions. Additionally, they found no field evidence to support the rotation or tilting of sheets. These studies have provided a wealth of structural data as a means to understand the emplacement and evolution of this plutonic system, however, little is known regarding the petrological and geochemical processes that occurred within this system. Petrographic descriptions characterize the Jackass Lakes pluton as a biotite-hornblende granodiorite (Peck, 1980; McNulty et al., 1996), but modal data plots reveal increasingly mafic compositions indicative of tonalites and granites (Bateman, 1992). Based on these plots, the importance of felsic and mafic magma interactions within this pluton were first recognized. On the sub-meter scale, field observations noted compositional variations from diorite to leucogranite (Pignotta, et al., 2003). Recent structural studies noted additional interaction features, such as, the presence of mafic enclaves, synplutonic dikes, and 3 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. flame structures (Coleman, et al., 1997; McNulty, 1996; Wiebe, 2000; Pignotta et alv 2003). The purpose of this research is to address some of the issues discussed surrounding the emplacement and evolution of this plutonic system. The first of these issues surrounds the observations suggesting magma mixing. Through field mapping and sample collection, observations were made regarding compositional variation and level of interaction of the units within the pluton. Compositional determination was made through both petrographic and geochemical analyses. From these analyses, a compositional range of diorite to granite was found within the 1:5000 scale mapping area. Further petrography identified microstructural features common to mingled/mixed magmas and linear trends observed from whole rock and trace element data for all units suggest that magma mixing be a viable process in the formation of the range of compositions seen within the pluton. The second issue addressed tested the validity of proposed chamber construction models using thermobarometry, with particular emphasis on Wiebe's (1999, 2000) interpretation that the sheets within the pluton have been tilted, at least 60° to the east. If this pluton has been tilted a significant 4 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. barometric difference (3-4 kbar) should exist between the western (inferred floor) and eastern (inferred shallower) segments. By utilizing the temperature-corrected calibration of Anderson and Smith (1995) for the Al- in-hornblende igneous barometer in concert with the plagioclase-hornblende thermometer calibration of Holland and Blundy (1994) estimates were determined for the pressure and temperature of emplacement. Use of an earlier empirical barometer by Ague and Brimhall (1988) resulted in an emplacement pressure of 4.2 kbars, or 13-15 km, which is not in agreement with field observations (Fiske and Tobisch, 1978; Peck, 1980; Pignotta, et al., 2003) suggesting that the pluton was intruded at shallower crustal levels. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 2: Study Area Location The Jackass Lakes pluton is located within the central Sierra Nevada batholith, due south of Yosemite National Park within the Ansel Adams Wilderness area. It is approximately 250 miles northeast of Los Angeles, and accessible by hiking/mule trails. Glaciated alpine exposures and significant vertical relief (>1000 m) make this a great area to undergo an investigation of mingling features and compositional variation between plutonic units. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 3: Geologic Setting The Jackass Lakes pluton (JLP) is an -13 by -17 km rectangular body separated into four lobes by slightly older plutonic and metavolcanic pendants (Peck, 1980). The ca. 98 Ma JLP is truncated to the south by the ca. 90 Ma Mount Givens pluton (McNulty et al. 2000), to the north by the 95 ± 2 Ma Red Devil Lake pluton (Tobisch et al., 1995) and the ca. 88 Ma megacrystic facies of the Half Dome granodiorite (Fleck and Kistler, 1994; Coleman et al., 2004). (Figure 1) To the west, Jackass Lakes cuts the ca. 99 Ma Illilouette Creek pluton while to the east it cuts ca. 132 and ca. 144 Ma remnants of a precaldera volcanic field thought to represent the floor of the Minarets Caldera (Tobisch et al., 1995, Fiske and Tobisch, 1994, Peck 1980). Peck (1980) interpreted JLP to be a resurgent magmatic body that intruded roughly coeval volcanic and subvolcanic plutonic rocks of the ca. 98-101 Ma Minarets caldera sequence (Stern et al., 1981; Fiske and Tobisch, 1978,1994). It has been suggested that the Jackass Lakes pluton-volcanic system represents an unusual example where good exposures of both intrusive (Jackass Lakes pluton) and extrusive (Minarets volcanic sequences) rocks of the same magmatic system remain so that each component can be studied in some detail (e.g., Peck 1980; Lipman 1984). Host rock is well exposed on all 7 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. sides of the pluton with eastern and western margins of JLP striking north- south. Additionally, sheets (mafic and felsic) within the pluton predominantly strike NNW-SSE and dip steeply (McNulty et al., 1996). i 98-101 Mi JLP ■I LA Krd -100 M a 98.' kmg| tf Enclave swarms •95-90 Ma plutons 0 1 ___2 -98 Ma Jackass Lakes pluton -107-99 Ma plutons Cretaceous volcanic rocks km • U-Pb age (Stern, et al., 1981) N A Figure 1: Geologic Map of Jackass Lakes pluton. Detailed 1:5000 scale mapped area is outlined. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 4: Methods 4.1 Field Study Fieldwork for this project was a collaborative effort consisting of approximately thirteen days of m apping and sampling of units within the Madera Creek area of the Jackass Lakes pluton (JLP). A 1 km x 1 km section in the southwestern portion of the JLP was m apped at 1:5000 scale, with three teams responsible for a designated area. Dr. Scott Paterson (USC) and Valbone Memeti (USC) mapped the north-northwestern most regions, while Laura Bracciali (Universita di Pisa, Italy) and myself were responsible for the central most region. The southern-most region was mapped by Geoff Pignotta (USC) and Jennifer Chambers (University of Leeds, UK). Mapping consisted of initial compositional determination of units, observations of internal contacts and magmatic fabrics to estimate level of interaction between units and gather data for work conducted by Pignotta on emplacement models for the pluton as well as for the production of a regional map (1:25000) of the pluton. The phases of JLP (Figure 2) identified during mapping reveal a complex history of magma pulsing. These phases vary in shape, size and exhibit considerable internal variability. Major features that were used in 9 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. distinguishing between phases were color, texture, and presence or absence of mafic enclaves. Pulses are distinguished by mingling features, both internally and at contacts, as well as by mixing features. Different phases of JLP were collected for petrography and geochemistry, with special attention taken to avoid significantly weathered rock. The majority of samples collected came from the detailed (1:5000 scale) mapping area whereas thermobarometry samples were collected along an east-west transect of the pluton (with locations marked on the regional map) (Figure 3). Five samples that contained the necessary mineral assemblage (biotite-hornblende-K-feldspar-quartz-plagioclase-sphene-Fe-Ti oxides) were selected for pressure and temperature determination by the hornblende- plagioclase thermobarometer. 10 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. tn cr< 3 e r a S -H 936- Geologic Map of the Madera Creek Area, Jackass Lakes Pluton □ Quaternary (alluvium, talus) m Tertiary basalt JLP (homogeneous) EH Madera Creek quartz dionte | I I JLP (type lithology) JLP hybrid (med. gr. with few enclaves) JLP fmed. gr., more mafic, enclaves) m JLP hybrid (c.-med. gr; enclaves, metavoicanics, swarms) JLP (transition zone; PPP, metavolcanic & various JLP phases) g g H Post Peak pluton | _ _ [ Cretaceous metavoicanics (rhyolite to andesite) Phases of Jackass Lakes pluton | ______ >5-90 M a plutons - 9 8 Ma J a c k a ss Lakes ™ § i piuton j -1 0 7 -9 9 Ma plutons H JH C retaceous volcanic rocks ^ ^ E nclave sw arm s ♦ U-Pb a g e (Stern, et al., 1981) ( + H ornblende-Plagioclase Therm obarom etry Determ ination A Figure 3: Thermobarometry sample location map of Jackass Lakes piuton. 4.2 Petrography Mineralogy from each unit was determined using a NIKON Eclipse E400 POL petrographic microscope. Twenty thin sections were studied to identify mineral proportions, compositions, and mixing features. Slabs of ten samples from various units were stained using hydrofluoric acid-sodium cobaltinitrate to identify potassium feldspar. These slabs were Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. point counted (200 total points) for alkali feldspar, plagioclase, quartz and total mafic phases. Additional point counts were conducted utilizing a simple count graticule for thin section samples. Each mineral that fell on a cross was counted with approximately 200 points counted from each thin section. Results from both methods were compared with modal mineralogy from thin section point counts and plotted on a Streickeisen (1973) classification diagram (Figure 7). 4.3 Whole Rock Geochemistry Twenty-five (twenty from the detailed mapping area and five from the regional map) samples were analyzed for major and trace elements at Geo Analytical Laboratories of Washington State University (Pullman, WA) by using a Rigaku 3370 XRF Spectrometer operating a rhodium (Rh) target at 50kv/50mA with full vacuum. For major and trace element analysis, two parts Li2B407 were mixed with one part rock powder and fused into a homogeneous glass bead (Johnson et al., 1999). Concentrations of the twenty-seven elements measured are determined by comparing the intensity of each element to twenty standard beads. 13 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 4.4 Electron Microprobe Mineral composition determinations and back-scattered electron images for the five samples collected for thermobarometry were obtained by a Cameca SX-100 microprobe at New Mexico Institute of Mining and Technology, equipped with 3 wavelength dispersive (WD) spectrometers, plus secondary electron and high-speed backscattered electron detectors. Accelerating voltage and beam current were 15 kV and 20 nA, respectively. Plagioclase crystals were analyzed by a defocused electron beam (10 pm diameter) to prevent alkali loss; all other minerals were analyzed with a focused beam (1 pm diameter). Selected transects from core to rim points were analyzed within hornblende and plagioclase crystals that were in contact with quartz. Core and interior points were analyzed to determine whether chemical zoning occurred within the crystals. Rim points were analyzed to maximize the probability that crystals are at equilibrium with the full assemblage. 14 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 5: Field Observations Previous work in the Jackass Lakes piuton (JLP) found extensive evidence for the input of mafic magma into a dominantly felsic chamber, now recorded by hybrid and mafic layers, dioritic intrusions, schlieren layers and widespread concentrations of mafic enclaves (McNulty, et al., 1996; Wiebe, 1999; 2000). Observations made while mapping support multiple pulses, which show evidence for mingling, both internally and at contacts, and magma mixing. Internal mingling occurs within most of the units depicted in Figure 2, especially within hybrid units, where mingling between granodiorite and quartz diorite is commonly observed. Although many contacts are sharp (see Figure 4), mingling was observed along contacts of JLP units. 15 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 4: Photograph of mafic enclave swarm within JLP unit. Scale card shown is 9 cm. Figure 5: Examples of mingling (a) JLP unit within quartz diorite unit and (b) JLP unit within JLP hybrid unit. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. In addition to the evidence for mingling of magmas, there is also evidence for contamination by stoping, seen from the blocks and rafts of the surrounding roof pendant (Pignotta et alv 2003). Contact relationships between units vary significantly, from irregular to sharp. Commonly observed are gradational contacts, which are direct field evidence for mixing. An area of particular interest was found within the southwestern part of the mapping area, where an approximately 10 m wide zone contains the four different units identified, JLP-JLPh-Qdh-Qd (samples GP204a-d, Figure 2). Samples of each unit were collected from this zone and are closed symbols in the previous and following tables and figures as to better illustrate the relationship between each unit. The contact between the two hybrid units is extraordinarily sharp (Figure 6). 17 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 6: Photograph of contact zone between JLP hybrid (left) and Quartz diorite hybrid (right). This zone exemplifies numerous relationships exhibited throughout the entirety of the piuton albeit on a much smaller scale. Pignotta et al. (2003), through extensive regional mapping of the piuton, suggests that the relationships exemplified within the detailed mapping area serve as a proxy for the formation of the entire piuton. Crosscutting and mingling relationships, as well as the presence and/or absence of inclusions (stoped blocks and host rock rafts) were used to determine timing relationships between units. Crosscutting relationships are usually well defined and were extremely helpful in placing together the 18 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. history of this piuton. However, a certain level of complexity surrounded these relationships, as dikes of JLP were observed intruding into quartz diorite units and subsequently undergoing hybridization. Furthermore, JLP unit was also observed crosscutting contacts of JLP with quartz diorite (Qd) and JLP hybrid (JLPh) as were dikes of quartz diorite hybrid (Qdh) observed intruding into JLP unit. Mingling relationships are in m any cases unclear and magmatic fabrics, whether weak or strong, are observed crosscutting all contacts, which infers that at some point late in the piuton's formation, the chamber was composed of multiple pulses of magma. 19 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 6: Mesoscopic Description and Petrography Twenty samples (Figure 3) from the Madera Creek area of the Jackass Lakes piuton were collected. Units were classified in the field based on relative amounts of mafic minerals (biotite and/or hornblende), felsic minerals and the presence or absence of mafic enclaves within the unit. Additionally, those samples taken from the contact zone located within the southeastern part of the piuton are identified on all figures as closed symbols as to differentiate them from the other samples collected. Eleven samples were classified as JLP, three as JLP hybrid (JLPh), six as quartz diorite hybrid (Qdh), and four as quartz diorite (Qd). One sample, Long Creek Quartz Diorite (LCqd), has been classified as a separate unit as it is located outside of the Madera Creek mapping area but holds similar textures as the hybrid units. Table 1 presents relative mineral abundances of each sample 20 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CC02 Qdh X + •/ ■ / X X, s s CC03 Qdh + ■ / ■ / X X, s ✓ s s CC11 Qdh ■ / y v ' X X, s X s CC13 Qd s v ' •/ X s X s s CC14 Qdh X / v ' s X X, s ✓ s CC15 JLPh + v ' X / X, s / s CC17 JLP + + + v ' s X X s s CC18 JLP + + / X,S X X s s CC20 JLPh / + v ' X / X, s / s t GP204A JLPh + •/ / A s s GP204B Qd + X ■ / X s ✓ s s GP204C Qdh X + v ' + s / s GP204D JLP ■ / + + X y x,s X s t GP291 Qd ■ / + X ■ / X S, s s s s GP292 Qd + X s / / x,s X s s JL284 JLP ■ / + + / / x,s X s s JL287 JLP + + + / / x,s X X s s JL288A JLP + / X x,s X X X s s t JL289 JLP + + + / / X, s X s s JL288B Qdh + / / s X X s Table 1: Mineral Abundances chart for twenty thin sections. Symbols represent: + abundant (>15%); ^ present (5-15%); x minor (1-4%); t trace; s secondary. 6.1 End member units Jackass Lakes unit (JLP) is found in varying amounts throughout the entire Madera Creek area. This off-white medium- to fine-grained unit contains varying amounts of mafic minerals, mafic enclaves of various compositions, and numerous blocks (rafts) of metavolcanics. 21 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Eleven samples of JLP were collected with rock compositions, based on modal proportions, ranging from quartz monzodiorite/diorite through granodiorite to granite in the Streikheisen diagram (Figure 7). Q LEGEND O JLP □ Hybrid JLP A Hybrid Qtz Diorite d Qtz Diorite X Long Creek Qtz Diorite Solidsymbols represent samples from hybrid zone Figure 7: IUGS classification of plutonic units (after Streikheisen,1973) ©: Granite, ©: Granodiorite, ©: Quartz Monzonite, ©: Quartz Monzodiorite, ©: Monzodiorite This unit is dominated by plagioclase feldspar and biotite with subordinate alkali feldspar, hornblende, sphene, minor iron-titanium oxides and apatite. In thin section, plagioclase typically forms euhedral to subhedral crystals 22 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. that exhibit a variety of textures. Oscillatory and patchy zoning are common, with patchy zoning representing the early replacement of plagioclase feldspar by alkali feldspar (Vance, 1965). Twinning (albite and Carlsbad) is present and, in some cases, is seen to cut through zoning. Compositional range for plagioclase is An29-3i based on measurements of the Michel-Levy method. Typically, cores of plagioclase crystals are observed with inclusions of biotite, sphene, apatite (prismatic and acicular), zircon and/or iron- titanium oxides. Extensive sericitization has also been observed in many plagioclase cores. Presence of mafic minerals is dominated by biotite, which forms subhedral crystals that are pleochroic from pale greenish brown to dark red brown. It is scattered throughout the rocks, but also occurs in clots. In hornblende-containing samples, it is intergrown with hornblende. Alteration of biotite to chlorite is common. Biotite contains inclusions of zircon, epidote, apatite, sphene, magnetite, and rarely plagioclase. Hornblende was absent from several samples, but when present, it forms subhedral crystals that exhibit pleochroism from tan to olive green. Hornblende contains inclusions of biotite, sphene (titanite), plagioclase, magnetite and secondary chlorite. Sphene is primarily subhedral with diamond-shaped morphology, but irregular anhedral grains were also 23 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. observed. From this morphological difference, sphene was categorized as primary/magmatic (subhedral) or secondary (anhedral). Secondary sphene also represents those anhedral grains, which occur and are interpreted as the alteration product of biotite. Sphene is slightly pleochroic from brownish yellow to pale yellow, and contains inclusions of apatite and opaques. Apatite is subhedral with bimodal distribution of prismatic and acicular shaped grains. Prismatic crystals are primarily seen as inclusions within biotite and sphene, but are also scattered throughout the rocks, whereas acicular apatite is included within biotite and plagioclase. Alkali feldspar, primarily as orthoclase but some microcline, is present in moderate amounts as anhedral crystals and sometimes observed as an interstitial phase. Quartz is also anhedral and primarily seen as interstitial phase and as intergrowths into sodic plagioclase (myrmekite). Other minor constituents include anhedral iron-titanium oxides, mostly magnetite, and small euhedral zircon that is primarily included within several minerals, particularly biotite, where radioactive halos are present. Chlorite, which exhibits anomalous purple birefringence, along with epidote and sericite occur as alteration products on grain boundaries, cleavage faces and fractures. 24 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. The quartz diorite (Qd) unit is found primarily within the southwestern zone of the Madera Creek area (see Figure 4). Four samples from this area were collected of this very fined grained, dark grey unit. Rock compositions range from monzodiorite to quartz monzodiorite (Figure 6). This unit is dominated by plagioclase, hornblende and biotite with lesser amounts of accessory minerals (sphene, apatite, iron-titanium oxides), alkali feldspar, and quartz. Plagioclase forms euhedral to subhedral crystals with inclusions of hornblende and biotite. Oscillatory zoning is also observed, however it is not as common or pristine as in the JLP unit. Plagioclase cores exhibit extensive sericitization, like in the JLP unit. Hornblende is abundant and typically forms subhedral crystals, although, some anhedral crystals were also observed that are pleochroic from tan to olive green-green. Inclusions of biotite, apatite, sphene, and magnetite are common. Hornblende tends to be highly fractured along cleavage planes where alteration to biotite and/or chlorite is common. Patchy zoning was also observed. Biotite is subhedral and pleochroic from pale greenish brown to dark red brown. It is commonly intergrown with hornblende but locally replaces it. Alteration of biotite to chlorite is rare. Biotite contains inclusions of zircon, apatite, sphene, opaques, and rarely plagioclase. Sphene primarily 25 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. occurs as irregular anhedral crystals (secondary) but some subhedral prismatic crystals (primary/magmatic) were also observed. Alteration of hornblende and biotite to sphene is assumed to be the cause of the irregular morphology of these crystals. Sphene is slightly pleochroic from brownish yellow to pale yellow, and contains inclusions of apatite and iron-titanium oxides. Apatite is abundant as prismatic crystals but acicular crystals are also observed, primarily included within plagioclase, biotite, quartz, and hornblende. Quartz is slightly more abundant in this unit as opposed to JLP unit and is seen as anhedral crystals. Myrmekitic texture is rare within this unit, unlike the JLP unit where it was relatively abundant. Subgrain development and patchy extinction were observed suggesting that this unit underwent some recrystallization. Alkali feldspar, primarily orthoclase, is observed in lesser amounts than in JLP unit. Other minerals observed in trace amounts are zircon and secondary epidote. 6.2 Hybrid units Hybrid units are found throughout the entire Madera Creek area, exhibiting contact zones that were often very sharp; but also meter wide zones of mingling occur, which grade into a hybrid unit. Nine samples were collected and classified as hybrids. From these samples, two groups were 26 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. separated out based on grain size, mafic mineral content and relative proximity to end-member units. Three samples were classified as a JLP hybrid (JLPh), a medium- to fine-grained off-white/light-grey unit, and six samples were classified as a quartz diorite hybrid (Qdh), a fine-grained light gray-gray unit. In varying proportions, plagioclase, quartz, alkali feldspar, biotite and hornblende are the dominant minerals. Accessory sphene, apatite, zircon, epidote, and magnetite are also present in lesser amounts. Plagioclase crystals are observed with sizes and zoning comparable to JLP and Qd unit, however, inclusions of potassium feldspar and quartz are present. Unlike JLP and Qd units, sericitization is absent from most plagioclase cores. Alkali feldspar is present as both orthoclase and microcline. Xenocrysts of orthoclase were present in Qdh samples. Perthitic texture, which was absent from other units, is observed in both hybrid units. Quartz is present in varying amounts and exhibits recrystallization textures, such as subgrains and patchy extinction. Interstitial quartz and quartz intergrowths with feldspar (myrmekite) also exist. Biotite, the dominant mafic mineral, is observed intergrown with and replacing amphibole, similar to observations made in other units. Accessory minerals occur like in the end-member units but tend to be less abundant. 27 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 7: Interpretation of Microstructures Various microstructural relationships compatible with magma mixing were observed within the twenty thin sections; although these textures are not irrefutable evidence for magma mixing, they have been observed in rocks that have been determined to have formed as a result of magma mixing. Temperature plays an important role when interpreting microstructures related to mixed magmas. Input of mafic magma into a felsic magma chamber causes significant thermal variability within a crystallizing system, which is recorded by the minerals. An undercooling environment alters nucleation rates causing crystal growth rates to increase (or decrease) as the crystal attempts to regain equilibrium (Hibbard, 1995). Thus, observed mixing features within four units of Jackass Lakes piuton are inferred to have formed as a result of rapid growth within an undercooled environment. Apatite, a common accessory mineral within intermediate igneous rocks, typically forms hexagonal prisms during normal crystallization. However it commonly forms acicular crystals within an undercooled, mixing environment (Wyllie, 1962; Hibbard, 1995). The acicular habit of apatite was produced experimentally by Wyllie et al. (1962) from rapid crystallization of 28 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. a melt. Acicular apatite (Figure 8) was a common feature observed within all units. Commonly, it is found as inclusions within potassium feldspar, plagioclase and biotite. Figure 8: Acicular apatite (ap) within matrix of potassium feldspar (kspar) and in close proximity to biotite (bt) from sample CC15. Field of view is 0.49 mm across. A similar morphology is also observed for biotite. Blade biotite (Figure 9), as with acicular apatite, may form within an undercooled environment as a result of rapid crystal growth (Hibbard, 1995). This feature was observed primarily within the Qdh unit, however, one Qd sample (GP292) contained only trace amounts of blade biotite. 29 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 9: Blade biotite within plagioclase (pi) core as observed in sample CC02. Field of view is 0.49mm across. Rectangular or boxy cellular plagioclase (Figure 10) was observed within many of the hybrid samples. The influx of heat from the replenishment of magma into an already crystallizing system has been inferred to be ideal for boxy cellular growth of more calcic plagioclase, zoning to more sodic plagioclase within the cells as crystallization continues (Lofgren, 1974). In such case, a noncellular rim zone is also observed marking the attainment of equilibrium within the crystal (Lofgren, 1974). Additionally, boxy cellular plagioclase is typical during the initial stages of rapakivi mantling (Hibbard, 1981, 1995). 30 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 10: Large boxy cellular plagioclase grain (sample CC20) in cross polars with noncellular rim exhibiting oscillatory zoning. Grains of biotite (bt) and plagioclase (pi) are seen slightly penetrating into the large plagioclase grain. Field of view is 2 mm across. Rapakivi mantling is a typical texture observed within two-feldspar granites of mixing origin. Existing surfaces of potassium feldspar act as substrates for plagioclase nucleation, producing the plagioclase mantle texture (Hibbard, 1981). A similar texture of an inverse nature is anti- rapakivi mantling, where potassium feldspar mantles plagioclase. Anti- rapakivi mantling was also observed and forms when a near-liquidus melt, 31 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. rich in alkali feldspar components, mixes w ith a melt that has already crystallized plagioclase. Alkali feldspar will not begin to crystallize until there is post-mixing loss of heat at which point the plagioclase serves as nucleation sites for alkali feldspar growth (Hibbard, 1995). Rapakivi mantling was observed in most samples from all units, whereas anti-rapakivi mantling was found only within hybrid units. Figure 11, as observed in sample CC02, exhibits anti-rapakivi mantling of a plagioclase (note twinning) with a rim of potassium feldspar (microcline). Figure 11: Antirapakivi mantling with plagioclase core and alkali feldspar (microcline) rim. Field of view is 2mm across. 32 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Biotite, an abundant mafic mineral within all units at Jackass Lakes, can crystallize as a direct result of mixing an aluminosilicate melt rich in Fe and Mg with another melt rich in K (Hibbard, 1995). The interaction of this biotite-forming environment with a melt containing hornblende forms biotite crystals within and rimming the crystallizing hornblende (Hibbard, 1995). As crystallization continues, biotite growth within fractures and on rims also continues, ultimately converting hornblende to biotite (Figure 12). Other processes, such as subsolidus alteration, may cause the conversion of hornblende to biotite but, as with the previous textures discussed, it is characteristic of a mixing environment. As such, this texture was only observed within the Qd and Qdh units. Figure 12: Hornblende replaced by interior and rimming biotite as observed in sample JL288B. Field of view is 2mm across. 33 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 8: Whole Rock Geochemistry Major and trace element values for the twenty-five samples collected are shown in Table X. Major elements are reported as weight percent oxides and trace elements are reported as parts per million (ppm). 34 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. Table 2: Chemical Compositions of magmatic rocks from select areas within Jackass Lakes piuton, central Sierra Nevada batholith Major elements (weight percent oxide) Sample GP204b GP291 GP292 CC13 JL288B CC14 GP204a CC03 CC11 GP204c CC02 SP128 CC15 CC20 JL287 SP142 JL288A GP204D GP60 GP117 CC18 JL289 JL284 CC17 Unit Qd Qd Qd Qd Qdh Qdh JLPh Qdh Qdh Qdh Qdh LCQd* JLPh JLPh JLP JLP JLP Qd JLP JLP JLP JLP JLP JLP S iC X j 55.68 56.28 56.64 56.78 57.35 58.76 59.25 59.38 59.39 59.40 59.95 61.37 62.45 65.52 65.94 66.43 66.63 66.68 66.73 66.78 67.12 69.67 72.06 72.81 TiOz 1.05 1.15 1.10 1.08 1.15 1.07 0.78 0.96 0.88 0.85 0.96 0.93 0.62 0.70 0.45 0.63 0.41 0.44 0.58 0.62 0.61 0.39 0.28 0.33 A 1A 18.46 17.94 17.82 17.20 17.94 16.78 19.48 17.12 17.26 19.16 17.43 17.66 19.12 16.49 16.92 16.53 17.23 17.44 16.37 16.18 16.29 15.99 14.83 14.49 FeO* 8.31 8.17 7.92 8.46 7.05 7.76 5.30 6.88 6.79 5.60 6.89 5.73 4.63 4.20 2.51 3.64 2.85 2.66 3.42 3.70 3.88 2.24 1.64 2.03 MnO 0.14 0.14 0.14 0.14 0.24 0.17 0.11 0.12 0.13 0.11 0.12 0.11 0.09 0.10 0.09 0.09 0.07 0.08 0.10 0.10 0.09 0.08 0.06 0.08 MgO 4.01 3.52 3.31 3.96 2.49 3.37 1.88 2.80 3.23 2.04 3.01 1.95 1.32 1.28 0.55 0.96 0.72 1.18 0.92 1.18 0.79 0.48 0.38 0.72 CaO 7.45 7.12 6.87 6.70 5.80 6.28 5.89 5.91 5.94 6.08 5.94 5.53 4.82 4.02 2.38 3.38 2.77 2.88 2.53 3.76 3.28 2.20 1.79 1.96 N a,0 3.16 3.37 3.42 3.10 5.49 3.63 4.65 3.54 5.02 4.46 3.59 4.20 5.25 4.14 5.18 4.98 4.78 4.80 4.35 3.96 4.14 4.58 3.67 3.93 K2 0 1.64 1.91 2.00 2.24 1.74 1.78 2.11 2.24 1.42 2.10 2.19 1.85 1.60 2.98 4.12 3.10 4.28 3.93 4.63 3.17 3.35 3.96 5.00 4.05 m 0.22 0.24 0.26 0.23 0.34 0.17 0.24 0.24 0.25 0.25 0.24 0.25 0.18 0.20 0.12 0.18 0.15 0.15 0.17 0.17 0.16 0.10 0.07 0.09 LOI 1.36 1.06 0.72 1.13 0.65 0.80 0.91 0.82 0.80 0.66 0.79 0.55 0.92 0.54 0.33 0.35 0.34 0.50 0.49 0.74 0.36 0.44 0.56 0.42 Total 101.48 100.89 100.20 101.00 100.24 100.57 100.59 100.00 101.13 100.70 101.13 100.13 101.01 100.16 98.58 100.26 100.23 100.72 100.28 100.35 100.06 100.12 100.34 100.89 A/CNK 0.90 0.87 0.88 0.95 1.00 0.93 0.91 0.84 0.87 0.87 0.90 0.93 0.94 0.84 0.98 0.93 0.98 1.00 0.98 0.96 0.99 1.01 1.01 1.01 Trace elements (parts per million) Ni 10.0 9.3 6.5 6.5 5.9 5.7 8.6 9.3 7.7 13.2 7.9 7.0 6.1 5.2 4.3 5.0 5.3 5.6 3.9 7.0 4.4 4.7 6.0 6.0 Cr 9.9 5.7 5.1 7.3 8.0 8.7 6.9 6.7 6.5 11.3 6.1 10.9 7.3 4.3 2.2 4.4 3.2 4.0 3.7 5.7 5.5 3.4 3.3 4.5 Sc 18.7 17.5 17.0 11.0 7.7 14.2 14.4 17.4 22.4 17.9 15.1 13.0 13.3 16.1 8.5 10.2 6.4 7.6 9.3 9.6 10.0 7.4 5.9 6.4 V 190.2 188.7 171.5 61.4 52.5 105.6 134.2 149.5 171.7 198.9 135.8 102.5 100.7 138.1 20.8 49.0 28.7 29.6 39.6 61.0 62.5 21.5 22.6 27.2 Ba 623.8 750.5 782.7 1065.1 826.4 953.8 771.5 858.1 484.5 662.3 790.0 659.4 995.0 227.4 1898.2 1329.9 1663.1 1944.5 1403.2 1002.5 1127.1 1257.7 787.4 641.1 Rb 60.2 78.3 66.1 113.0 77.7 71.9 87.6 48.1 79.4 80.8 87.0 66.5 72.7 91.5 127.2 101.0 130.6 115.2 162.1 118.0 109.4 130.4 173.9 172.8 Sr 563.6 568.5 573.5 462.3 638.2 627.4 521.8 448.9 469.1 496.0 533.6 635.2 646.7 352.9 366.4 447.2 387.1 402.1 357.4 412.0 427.3 354.1 214.4 228.0 Zr 118.5 159.1 155.1 261.4 335.7 226.6 164.4 177.2 71.0 136.7 176.4 269.5 221.7 186.4 287.2 264.5 243.5 220.2 259.6 216.2 232.5 271.5 153.0 158.4 Y 19.2 23.1 22.5 31.8 13.1 25.8 21.5 24.4 26.4 22.5 22.0 25.4 21.5 51.0 25.8 27.6 18.1 15.6 19.9 25.5 24.9 15.0 29.5 27.5 Nb 5.5 5.9 6.6 12.5 5.2 9.6 8.4 8.2 8.4 7.0 7.9 10.5 8.2 20.6 10.8 11.1 6.3 6.1 11.2 10.7 10.5 11.4 14.3 14.3 Ga 17.7 22.2 21.6 19.4 21.3 21.9 20.7 19.6 18.8 17.7 20.8 22.6 22.1 24.4 21.4 20.0 22.4 20.9 21.4 18.6 19.4 20.9 17.2 18.2 Cu 18.0 23.6 18.5 13.9 11.9 17.0 15.8 8.8 20.9 21.7 17.7 18.2 20.5 17.1 10.1 7.1 8.1 5.1 6.7 7.2 3.7 9.3 11.8 3.7 Zn 102.8 110.2 108.5 91.6 102.2 95.9 99.2 94.9 118.3 106.0 99.9 96.9 94.7 154.5 81.8 76.8 71.8 77.1 82.2 77.5 50.6 65.0 49.1 59.6 Pb 10.3 12.2 11.0 16.8 15.4 13.0 11.4 12.9 13.1 13.3 13.4 13.8 14.9 17.2 23.1 18.2 21.6 20.7 23.9 17.7 17.6 26.9 26.5 23.2 La 15.0 19.9 21.9 31.7 30.9 27.5 20.2 24.1 13.3 11.8 22.1 16.2 24.5 42.0 24.0 27.0 24.4 20.9 38.8 38.6 34.5 33.9 26.6 24.1 Ce 41.6 36.9 46.1 69.5 53.2 53.3 49.5 49.6 35.3 34.9 48.5 45.3 48.4 93.4 36.9 54.1 37.6 43.0 76.0 62.0 70.3 68.9 56.1 47.5 Th 4.3 5.4 6.7 13.0 ‘denotes sample taken from outside mapping; 8.3 area 7.9 9.1 6.5 3.9 3.2 8.1 5.2 7.3 11.6 10.9 10.2 10.0 6.1 14.3 16.6 14.9 17.5 34.1 20.6 W O r 8.1 End-member unit results Jackass Lakes Piuton (JLP) unit exhibits the largest compositional range amongst all samples collected. Silica exhibits the greatest variability overall (65.94 to 74.15 %), however, the majority of samples range between 65.94-67.12 wt% (Figure 13). Variability lessens amongst the other major elements, CaO (0.57 to 3.77 wt. %), TiCh (0.216-0.630 wt. %), AI2O3 (13.94- 17.44 wt. %), NazO (3.67-5.18 wt. %), FeO (1.45-3.88 wt. %), and MgO (0.22- 1.18 wt. %). Scattered trends are exhibited in both K2O vs. SiCh and TAS diagrams (Figure 13a-b). The unit as a whole plots within the high-K calc- alkaline field. On a TAS diagram, two groups are identified, the first, having similar Si02 content and increasing alkali content. The second group exhibits a slightly linear trend with increasing Si02 and alkalis. JLP is primarily metaluminous with some crossover into the peraluminous field (A/CNK= 0.93-1.01; Figure 13c), the unit also shows tholeiitic affinity (Figure 13d). Positive linear trends with calcium are observed for iron, magnesium and titanium. Aluminum and sodium also exhibit positive correlations with calcium, however, a slightly curvilinear trend is observed (Figure 14). Linear trends can likewise be observed in trace elements vs. CaO, including Cr, Rb 36 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. and Sr (Figure 15). Scattering of points on Zr and Ba vs. CaO are observed, although the trend is roughly decreasing with increasing CaO. The quartz diorite (Qd) unit is relatively homogenous and defines distinct fields from the samples of JLP and the hybrid units. Unlike JLP unit, this unit displays little variation in chemical composition. Calcium ranges from 6.70 to 7.44 w t %, with other major elements also exhibiting little variability, SiOz (55.62 to 56.94 w t %), TiOz (1.05 to 1.15 w t %), AlzOa (17.22 to 18.44 w t %), MgO (3.33 to 4.00 w t %), and FeO (7.92-8.46 w t %). Compositions fall within the metaluminous field (A/CNK < 0.90, Figure 13c), but still show high-K affinity like the JLP unit. Linear trends are defined for all major elements with iron, magnesium and titanium show positive correlations with calcium (Figure 14). Linear trends are also observed for most trace elements, however significant scattering was observed for Cr vs. CaO. 37 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 6 .00 ' 5.00- 4.00' 3.00' Medium-K 1.00 Low-K o .o o 50 60 70 80 55 65 75 16.00' 14.00- 12.00- Q tz. M onzonite 10.00- o o G ranite 8 .0 0 - M onzonite 6 .0 0 - Granodionte Diorite G abbro 2 .00 - 0.00 36 40 44 48 52 56 60 64 68 72 76 80 84 Si02 (wt%) Si02 (wt%) 1.20 Peraluminous 1.10 = £ i.o o — o ^ 0.90- Metaluminous 0.80 0.70 50 55 60 65 70 75 S i0 2 (wt%) 8 0 10.00 8.00 - Tholeiitic Series x ' 6.00 ■ O ) 4.00 ■ Li. --- Calc-alkaline Series 2.00 ■ 0 .0 0 5 6 S I 0 2 (w t% ) LEGEND O JLP □ Hybrid JLP A Hybrid Q tz Diorite O Qtz Diorite X Long C reek Q tz Diorite Solid sym bols represent samples from hybrid contact zone (GP204a-d) Figure 13: Classification diagrams applied to Jackass Lakes pluton including (a) potassium with subdivisions of Le Maitre et al. (1989); (b) TAS diagram with subdivisions of Le Bas et al. (1986); (c) A/CNK diagram after Shand (1951), (d FeO*/MgO vs Si02 diagram with the tholeiitic-calc-alkaline dividing line from Miyashiro (1974). Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 5 .00' 4.00' 3.00' o> 2.00 1.00 . 0 .00- 1 0 .0 0 - 8 .00 - 6 .00 - o'* I. O 4.00' LL 2.00 - 0 .00 ' 6.00 5.00- C p 4.00- o- 1 o 3 0 0 ‘ 2.0 0- 1.00- 0.00 80.00- 75.00- 70.00- o t» % o ~ 65.00- O 55 60.00- 55.00- 50.00- 8.00 6.0 0 - O 4.00 2.0 0 - 0.00 0.40 0.30 0 “ 0.20 0.10 0.00 1.60 1.20 - % ~ 0.80 O F 0.40- 0.00 2 6 0 4 8 22.00 20.00 ■ 18.00- < 16.00 14.00 12.00 4 6 8 0 2 CaO (wt%) CaO (wt%) Figure 14a-h: Harker variation diagrams for major elements versus CaO. Symbols are same as those in Figure 13. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 700.00 600.00- E * 500.00 400.00 o O 300.00' 200.00 - 100.00' 12.00 10.0 0 - I .0 0 I. 6.00 ■ Q. o 4.00- 2.00 0.00 200.00 160.00 - S 1 20.00- ■O 80.00 40.00 35.00 30.00 25.00 20.0 0 - Q. Q. 15.00 10.00 5.00- 0.00 2500.00- 2000.00- I . 1500.00- Q. < 0 “ 1000.00- 500.00- 0.00 8 2 4 6 0 30.00 25.00 E 20.00- S. 15.00 © 10.00 - 5.00 2 4 0 6 8 CaO (wt%) CaO (wt%) Figure 15a-f: Harker variation diagrams for trace elements versus CaO. Symbols are same as those in Figure 13. 40 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 8.2 Hybrid unit results Two distinctive units were classified as hybrids, JLP hybrid (JLPh) and quartz diorite hybrid (Qdh), they exhibit intermediate compositions between QD and JLP units. The units are metaluminous with JLPh exhibiting a slightly higher A/CNK ratio (Figure 13c) which straddles the border between calk-alkalic and tholeiitic affinities (Figure 13d). JLPh exhibits higher K (with the exception of one sample) than Qdh, which falls within both m edium and high-K fields (Figure 13a). Compositional trends are linear for most major elements from the most primitive Qdh sample to the most evolved JLPh sample and, as such, they fill the compositional gap between the endmember units. Stepped trends were observed on FeO and MgO vs. CaO plots indicating the possibility of a missing unit as well as probable mineral fractionation during the evolution of these units. Curvilinear trends were observed for P2O5 and Ti02 with the inflection occurring within the hybrid units. The inflection present in P20s-Ca0 plot is probably caused by fractionation of apatite whereas the fractionation of sphene may be the cause of the inflection in Ti02 plot (D'Lemos, 1996). Linear trends can also be observed in trace elements vs. CaO for Rb, Zn, and V (Figure 15). 41 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 9: Geochemical Interpretation The small chemical variation exhibited by the linear trend of the Qd unit (Figure 13-14) suggests that this unit crystallized from a relatively homogeneous magma and underwent minimal fractional crystallization during magma ascent. However, the scattered trends (see Figure 14-15) exhibited by the JLP unit indicates that significant fractional crystallization played a role during the formation of this unit. Through a series of calculations based on initial and final compositions (initial and final compositions were determined to be those samples which contained the least/most silica) of the JLP unit, coupled with compositions of mineral phases within this unit, an estimate of mineral fractionation or assimilation can be produced for each mineral phase within the unit. 42 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 80.00' 75.00- 5- 70.00- 65.00- 60.00- 55.00- 50.00- 0 2 4 6 8 C aO (wt%) Figure 16: Variation diagram for silica versus calcium. Symbols: O - JLP; □ - Hybrid JLP (JLPh); A - Hybrid Qtz diorite (Qdh); O - Qtz diorite (Qd) Using this method, it was determined that fractionation of plagioclase, biotite, hornblende, to a lesser degree, apatite, and ilmenite along with the assimilation (addition) of potassium feldspar, are responsible for the scattered trends exhibited by JLP unit. To achieve fractionation from composition X to composition Y (Figure 16), several minerals (plagioclase, biotite, hornblende, apatite and ilmenite) would have to be fractionated or removed from the melt while potassium feldspar would have to be assimilated or added to the melt. 43 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Correlation coefficients (r) (Table 3) were calculated for geochemical data of JLP unit (N=ll) to measure the linear relationship between CaO to the other oxides. Perfect linear correlations would produce values of +1 or -1, the closer the results are to these values, the stronger the linear relationship and the more likely perfect mixing has occurred (D'Lemos, 1996). CaO S i0 2 -0.84 T i0 2 0.90 AI2O3 0.73 FeO 0.90 MgO 0.84 MnO 0.84 N a2 0 -0.07 K2O -0.76 P2O5 0.93 Table 3: Inter-element correlation coefficients calculated for 11 JLP samples These results indicate that T i02 , FeO, and P 2 O 5 exhibit a strong linear relationship when plotted against CaO. The remaining major elements, with the exception of Na20, exhibit slightly poorer correlations with CaO, which is in accordance with trends observed on variation diagrams (Figures 13-15) and results of fractionation modeling. As for Na20, high mobility exhibited 44 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. by this oxide may be responsible for the lack of correlation with CaO (Watson and Jurewicz, 1984). As for the hybrid units, the intermediate and linear trends (Figu. Ores 13-15) exhibited by the majority of elements strongly supports field observations suggesting that these units formed through the interaction between at least two magmas. Stepped trends were observed for both Fe and Mg variation diagrams (Figure 14a, b). Results from fractionation calculations suggest that the assimilation of potassium feldspar to the hybrid quartz diorite unit (Qdh) will form compositions similar to that of hybrid Jackass Lakes unit (JLPh), therefore forming a more linear trend between end-member units. Correlation coefficients (r) (Table 4) were calculated for the nine hybrid samples and the averages of both end-members (N=ll). CaO Si02 -0.97 TiOa 0.83 AI2O3 0.47 FeO 0.90 M gO 0.84 MnO 0.51 N a2 0 -0.13 K2O -0.85 P2O5 0.64 Table 4: Correlation coefficients for hybrid and average end-member samples. 45 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plotted against CaO, linear variation is exhibited well by Si02, FeO, and K2O, with correlation coefficients in excess of 0.85. MgO and TiCh exhibit slightly poorer correlations with CaO, while P2O5, MnO, and AI2O3 exhibit the least correlation with CaO. As with JLP unit, Na20 exhibits no correlation to CaO with the relatively high mobility of the oxide as the reasoning for lack of correlation. Although these statistical results do not support perfect mixing between end-member units, they do not eliminate magma mixing as a viable process that occurred between these magmas. Correlation coefficients were also calculated for select trace elements against CaO. Rb, Pb, and Th against CaO result in correlation coefficients greater than 0.80 while Cr, Ni, Sr, Zr and Ba do not exhibit significant correlation. These findings seem to argue against mixing, however, geological and analytical considerations may account for the lack of linear correlation for trace elements. Low abundances of certain trace elements (Cr and Ni < 10 ppm) may yield large analytical uncertainties as results for these elements are only semiquantitative below 30 ppm (Johnson et al., 1999). Some trace elements, such as Zr, are strongly partitioned into accessory phases, which if formed early in end-member units may cause an uneven distribution of trace elements in hybrid units resulting in non-linear (non- 46 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. mixing) trends (D'Lemos, 1996). Similarly, late stage mobility of certain trace elements, like Ba, may adversely affect mixing trends (Hanson, 1978). From these considerations, the difficulty in using trace element data to test the validity of mixing processes amongst magmas is apparent. The inconclusiveness of the trace element data does not negate the argument for magma mixing; rather, it suggests that if mixing has occurred it has not been adequately recorded within the trace element distribution. Futhermore, although these statistical results do not support perfect mixing between end- member units, they do not eliminate magma mixing as a viable process that occurred between these magmas, only suggest that processes other than perfect mixing occurred. 47 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 10: Thermobarometry of Igneous Crystallization 10.1 Hornblende-plagioclase Thermobarometer The total Al content of hornblende is a function of both pressure and temperature (Spear, 1981; Hammarstrom and Zen, 1986; Hollister et al., 1987; Johnson and Rutherford, 1989; Schmidt, 1992,1993; Holland and Blundy, 1994; Anderson and Smith, 1995); however, intial empirical calibrations of the Al-in-homblende barometer did not account for this temperature dependence. This barometer potentially can record pressures at or near the time of magma solidification, at the temperature of barometer equilibration near the solidus if hornblende is in equilibrium with quartz, potassium feldspar, and other phases (Anderson, 1996). However, the minimum temperature for equilibration is presumed to be not less than 650°C due to the thermal limit of Al exchange reactions. From experimental data of Johnson and Rutherford (1989) and Schmidt (1992), Anderson and Smith (1995) derived an equation for the barometer that incorporates temperature. P(kbar) = 4.76A1 - 3.01 - [(T(°C) - 675)/85] % [0.530A1 + 0.005294(T(°C) - 675)] where Al is the total of A1I V + A1V I per 13 cations. 48 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Temperature determination for this calibration is based on the Holland and Blundy (1994) calibration for the equilibrium Edenite + albite = richterite + anorthite of the hornblende-plagioclase thermometer. This calibration is based on a normalization scheme for hornblende which estimates proportions of Fe2 + and Fe3 + . Limitations on Hornblende-plagioclase thermobarometer The limitations placed on the hornblende-plagioclase thermobarometer result primarily from complexities surrounding amphibole chemistry (see Table 5). A - N a,K Hornblende B M4 Ca, Na, Mg, Fe2 + , Mn, Li A0 .1 B2 C5 T8 O2 2 (OH,F,Cl)2 C M3 M22 M l, M g,Fe2 + , Al(IV), Fe3 + , Mn, Cr, Ti T T l4 T24 Si, Al(VI) Table 5: Horblende mineral formula (Hawthorne, 1981) Within selective sites, several cation substitutions can affect the total Al content of hornblende. The tschermak substitution, which is favored by increases in pressure, decreases Si while subsequently increasing Al (IV & 49 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VI) cation substitutions in T- and C-sites, thereby increasing pressure estimates. Additionally, increases in temperature favor the edenite substitution, whereby Na enters the A-site while Al (VI) substitutes for Si in the T-site increasing total Al values (Deer et al., 1992; Hawthorne, 1981; Hammastrom and Zen, 1986; Anderson and Smith, 1995). Another temperature-sensitive substitution involves Ti entering the C-site for Mg. The incorporation of Ti into the C-site is coupled with an increase in total Al (Hammarstrom and Zen, 1986; Anderson and Smith, 1995). To account for these changes in hornblende chemistry, all compositions were normalized to 13 cations, and all Fe was calculated by charge balance following the procedure of Holland and Blundy (1994). Granitic magma mineral compositions are affected by changes in pressure, temperature, and to a larger extent, by oxygen fugacity. Arc- related granitoids crystallize within a limited range of fo2 (Anderson, 1996). Changes in fo2 affect valence states of iron, which in turn affect cation ratios and site vacancies within the hornblende mineral chemistry. These changes can directly affect calculated pressures. Crystallization under low fo2 conditions decreases Mg/Fe and Fe3 + /Fe2 + ratios, thereby increasing Al 50 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. substitution within the C (M2) site of hornblende. These increased Al values result in falsely high pressures (Anderson and Smith, 1995). Based on these results, Anderson and Smith (1995) recommend that the barometer be used for hornblende with Fe/(Fe + Mg)<0.65, because no oxygen fugacity correction has yet been applied to this barometer. 51 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 11: Mineral Chemistry Five samples from within JLP were analyzed by electron microprobe. Minerals analyzed from these samples include hornblende and plagioclase feldspar. 11.1 Hornblende All hornblende compositions were normalized on a 13 cation basis and proportions of Fe2 + and Fe3 + were calculated to a total charge of 46.00 (Cosca et al., 1991). Hornblende is present within all units and is primarily euhedral having well-defined contacts with quartz and plagioclase with little textural variation observable in thin sections. Textural relationships revealed primary formation of hornblende during crystallization. For each sample, with the exception of GP117, approximately 40 analyses, consisting of rim and core points, were completed on 3-4 grains. For sample GP117, ten analyses of one grain were conducted for the sample as this was the only unaltered hornblende grain that was in contact with quartz. Appendix A contains photomicrographs of thin sections used during microprobe analysis, with the corresponding amphibole grains labeled. Compositions of amphibole are displayed in Figure 17 and were found to be gradational in composition, with increasing Fe, Na, and K towards the edenite endmember. 52 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Single crystals of edenite are the most common. Mg/(Mg+Fe) ratio for these hornblendes ranged from 0.50 to 0.58 and total Al content ranged from 0.9 to 1.8. Back-scattered imagery (high gain) revealed patchy zoning within several grains. 1.00 0 .7 5 - 0.50 2 0.25 - 0.00 0.00 0.50 1.00 1.50 2.00 All v Figure 17: Modified version of Leake (1975) plot for naming calcic- amphiboles. Range of compositions for core (solid symbols) and rim (open symbols) analyses of the 5 samples collected are well constrained within the magnesio-hbl/edenite and ferro-edenite fields. SYMBOLS: O-JL05, °-GP117,n-GP60, --SP142, and +-SP128 53 T rem olite A ctinolite T scherm akite (P a rg a site) M agnesio-hbl E denite Ferroan p aragsitic hbl - * y - Silicic ferro -ed en ite F erro-ed en ite F erro-p argasite Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 18: Back-scattered electron (BSE) images of subsolidus alteration of hornblende, sample SP128. Scale: lin = lOOum Points analyzed in the patchy zones exhibit little chemical variation and plot within the same hornblende-type field (see Figure 17) indicating that slight compositional variations within the grain will not influence barometric calculations. Selection of homogenous zones within crystals was performed during microprobe analysis as to minimize any effects of alteration on the data set. Futhermore, plotting C-site (Aliv) versus T-site (Alvi) distinguishes between primary and secondary formation of hornblende crystals. The majority of data for JLP hornblendes plots (Figure 19) within the igneous field with some outliers falling within the high-pressure metamorphic field; 54 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. the latter samples were not used in thermobarometric calculations as to negate the effects of metamorphism on these pressure-temperature estimates. 2 .00 - Igneous / / / High-P / / Metamporphic/ / ' Low-P M etam orphic to 1.50 0.50- 0.00 0.50 1.00 Al" per 13 cations 1.50 Figure 19: Calcic amphibole discrimination diagram showing nominally igneous compositions (modified from Fleet and Barnett, 1978) 11.2 Plagioclase Feldspar Plagioclase grains selected for analysis were in contact with quartz and hornblende and exhibited little to no compositional zoning. Most points analyzed were from the rims of grains as to assure equilibrium with the near solidus phase assemblage. Plagioclase compositions from Jackass Lakes unit are relatively consistent with average of Ani9 on the rims and Arm in the cores, however, compositions for plagioclase taken from Long Creek Quartz 55 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Diorite (LCqd) unit are slightly higher with average of An3i on the rims and An34.5 in the cores. Table 5 lists average An content for samples analyzed by electron microprobe and are those values that were used for thermometry calculations. Appendix C contains all data for rim, interior and core points of grains analyzed. 56 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. S a m p le ID A v g . A n content Grain # Location Unit n m int nm int core GP60-02 JLP nm nm int core GP117 JLP rim nm int core nm JLP JL05 int rim int core nm core rim core LCQD SP128 core nm int nm int nm int core JLP SP142 rim core nm int Table 6: Average An content used in thermobarometry calculations. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 12: Results Pressure-tempearture (P-T) estimates show little variation from northwest to southeast of JLP as shown on Figure 20, with pressure estimates ranging from 2.8 to 3.2 kbars and temperature estimates ranging from 677 to 708 °C. Thermobarometry results for the five samples collected are displayed in Table 7. ■ £4*h)^2.83 ±1.00 kb ar I* * V 640 6 1 21.3 £ J k K jg R • i t . qn.ini - 3 /-3 0 ' 119-301 I__ .Jig “ 95-90 Ma plutons m m -98 Ma Jackass Lakes ■■■ pluton m -107-99 Ma plutons ^ 0 Cretaceous volcanic rocks ♦l *| Enclave swarms • U-Pbage (Stern, et al., 1981) 0 _ ^ ^ ♦ Hornblende-Plagiodase km Thermobarometry Determination N A Figure 20: Sample location map of JLP with pressure-temperature estimates (+ lo ) 58 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. Table 7: H o m b len d e -P la g io cla se th erm ob arom etry resu lts SAM PLE GP60-02-3 H o rn b len d e (p er 13 cations) 7rim 8rim 9rim lOrim 15rim 16rim 20rim AVG ST DEV A l iv 1.10 1.10 1.14 1.46 1.14 1.05 1.18 1.17 0.13 Al vi 0.09 0.17 0.15 0.28 0.10 0.17 0.08 0.15 0.07 P lagioclase 23rim 23rim 23rim 24rim 24rim 24rim 24rim AVG ST DEV A n content 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.00 T ("Q (Holland & Blundy, 1994) 699.1 668.5 683.9 706.0 697.6 666.3 714.2 690.8 18.4 P (kbars)(Anderson & Smith, 1995) 2.43 3.07 3.04 4.88 2.68 2.89 2.58 3.08 0.83 SAM PLE GP60-02-4 H o rn b len d e (p er 13 cations) l r i m 2 rim 3 rim 4 rim 5 rim 6 rim 7 rim 8 rim 9 rim lO rim 11 rim 1 2 rim 1 3 rim 1 4 rim 1 5 rim 1 6 rim 1 7 rim 1 8 rim AVG ST DEV A l iv 1.19 1.20 1.06 1.07 1.12 1.13 1.14 1.16 1.16 1.17 1.14 1.12 0.96 1.23 1.18 1.23 1.34 1.16 1.15 0.08 A l vi 0.10 0.07 0.12 0.09 0.07 0.08 0.11 0.12 0.17 0.12 0.16 0.17 0.08 0.17 0.12 0.21 0.12 0.09 0.12 0.04 Plagioclase 2 8 rim 2 8 rim 28 rim 28 rim 2 8 rim 36 rim 3 6 rim 3 6 rim 3 6 rim 36 rim 3 6 rim 38 rim 3 8 rim 3 8 rim 38r im 2 6 rim 2 6 rim 2 6 rim AVG ST DEV A n content 0.17 0.17 0.17 0.17 0.17 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0 .18 0.18 0.18 0.16 0 .16 0.16 0.18 0.01 T (°C) (Holland & Blundy, 1994) 690.8 690.2 663.1 665.5 674.7 690.7 690.5 683.4 662.7 682.1 661.1 658.3 665.2 677.2 681.7 656.1 692.9 681.7 676.0 12.8 P (kbars)(Anderson & Smith, 1995) 2.99 2.90 2.67 2.56 2.63 2.62 2.80 3.01 3.41 3.09 3.30 3.25 2.02 3.64 3.10 4.00 3.74 2.87 3.03 0.48 SAM PLE GP60-02-5 H o rn b len d e (p er 13 cations) l r i m 2 rim 3 rim 4 rim 5 rim 1 5 rim 1 6 rim AVG ST DEV Al iv 0.966 0.997 1.042 1.165 1.124 1.137 0.978 1.06 0.08 Al vi 0.109 0.099 0.082 0.101 0.136 0.127 0.294 0.14 0.07 Plagioclase 19rim 19rim 19rim 19rim 19rim 19rim 20rim AVG ST DEV A n content 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.00 T (°C) (Holland & Blundy, 1994) 643.8 666.2 671.5 688.5 676.6 681.3 637.2 666.4 19.2 P (kbars)(Anderson & Smith, 1995) 2.3 2.3 2.4 2.9 3.0 3.0 3.3 2.71 0.41 SAM PLE GP60-02-8 H o rn b len d e (p er 13 cations) l r i m 2 rim 3 rim 4 rim 5 rim AVG ST DEV Al iv 1.185 1.165 1.202 1.144 1.099 1.16 0.04 Al vi 0.091 0.122 0.107 0.269 0.182 0.15 0.07 Plagioclase lO rim lOrim lOrim lOrim lO rim AVG ST DEV A n content 0.19 0.19 0.19 0.19 0.19 0.19 0.00 T (°C) (Holland & Blundy, 1994) 698.6 689.3 699.5 662.6 662.9 682.6 18.5 P (kbars)(Anderson & Smith, 1995) 2.8 3.0 3.0 3.8 3.2 3.16 0.39 SAM PLE JL05-1 H o rn b len d e (per 13 cations) lrim 2rim 3rim 4rim 5rim 6rim 9rim lOrim 11 rim 12rim 15rim 16rim 17rim 26rim 27rim 34rim 35rim AVG ST DEV A! iv 1.045 1.108 0.950 1.167 1.014 0.998 1.012 0.934 1.218 1.301 1.080 1.035 1.188 1.107 1.053 1.286 1.296 1.11 0.04 Al vi 0.146 0.160 0.379 0.193 0.203 0.168 0.129 0.281 0.247 0.258 0.163 0.188 0.204 0.132 0.227 0.169 0.217 0.20 0.07 Plagioclase 51 rim 51rim 51rim 51 rim 51rim 51rim 51 rim 51 rim 51 rim 51rim 51 rim 51 rim 51 rim 37rim 37rim 37rim 36rim AVG ST DEV A n content 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.26 0.26 0.25 0.26 0.23 0.00 T (°C) (Holland & Blundy, 1994) 663.7 670.4 614.4 667.9 642.1 640.6 659.6 610.7 661.2 667.6 647.3 647.2 670.5 683.7 657.2 699.5 692.6 658.6 18.5 P (kbars)(Anderson & Smith, 1995) 2.7 3.1 3.6 3.5 3.0 2.7 2.5 3.0 4.1 4.5 3.1 3.0 3.7 2.8 3.2 3.7 4.0 3.30 0.55 SAM PLE JL05-2 H o rn b len d e (p er 13 cations) 5rim 6rim 7rim 8rim 9rim lOrim 11 rim 12rim 13rim AVG ST DEV Al iv 0.944 0.884 1.148 0.985 1.221 1.210 1.159 1.103 1.152 1.09 0.122 Al vi 0.259 0.237 0.165 0.221 0.159 0.168 0.204 0.172 0.151 0.19 0.039 Plagioclase 15rim 15rim 15rim 15rim 15rim 15rim 15rim 15rim 15rim AVG ST DEV A n content 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.00 T (°Q (Holland & Blundy, 1994) 640.3 624.9 691.4 613.6 710.0 708.3 703.7 690.7 700.5 675.9 38.4 P (kbars)(Anderson & Smith, 1995) 2.9 2.5 3.1 3.0 3.2 3.2 3.2 2.9 2.9 2.99 0.21 O l V O Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. SAM PLE JL05-3 H o rn b len d e (p er 13 cations) 7rim 8rim 9rim lOrim ll r im 12rim 13rim 15rim 16rim AVG ST DEV Al iv 1.32 1.09 0.91 1.20 1.09 1.00 1.18 0.82 0.77 1.04 0.18 A l vi 0.22 0.21 0.15 0.20 0.19 0.21 0.18 0.25 0.33 0.22 0.05 P lagioclase 29rim 29rim 29rim 29rim 29rim 18rim 18rim 18rim 18rim AVG ST DEV A n content 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0-0 T (°C) (Holland & Blundy, 1994) 693.6 663.3 648.5 686.1 676.4 636.1 687.4 622.6 599.2 657.0 32.7 P (kbars)(Anderson & Smith, 3995) 4.13 3.27 2.16 3.53 3.09 2.99 3.36 2.27 2.42 3.02 0.65 SAM PLE SP128-1 H o rn b len d e (p er 13 cations) lrim 2rim 3rim 4rim lO rim ll r im 12rim 14rim 15rim 16rim 17rim AVG ST DEV A l iv 1.16 1.15 1.12 1.14 1.06 1.24 1.26 1.09 1.42 1.11 1.09 1.17 0.11 A l vi 0.12 0.11 0.13 0.12 0.12 0.15 0.10 0.14 0.27 0.15 0.13 0.14 0.05 P lagioclase 20rim 20rim 20rim 20rim 20rim 20rim 20rim 20rim 20rim 20rim 20rim AVG ST DEV A n content 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.00 T (°C) (Holland & Blundy, 1994) 720.8 733.3 723.3 730.1 710.4 720.1 737.8 704.2 697.3 701.8 699.5 716.23 14.3 P (kbars)(Anderson & Smith, 1995) 2.60 2.33 2.41 2.37 2.28 3.10 2.69 2.58 4.79 2.73 2.55 2.77 0.71 SAM PLE SP128-3 H o rn b len d e (p er 13 cations) 7rim 8rim 9rim 16rim 17rim 18rim 19rim 20rim 24rim 25rim 26rim 27rim AVG ST DEV Al iv 1.14 1.11 1.14 1.17 1.11 1.10 1.11 1.14 1.17 1.16 1.48 1.11 1.16 0.10 A l vi 0.15 0.12 0.12 0.11 0.22 0.32 0.17 0.16 0.26 0.27 0.32 0.21 0.20 0.08 Plagioclase 32rim 32rim 32rim 32rim 32rim 32rim 32rim 32rim 30rim 30 rim 29rim 28rim AVG ST DEV A n content 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.36 0.36 0.37 0.35 0.35 0.01 T (°Q (Holland & Blundy, 1994) 728.8 731.9 737.9 742.2 710.9 667.3 716.1 724.0 689.0 692.8 720.1 694.8 712.97 22.7 P (kbars)(Anderson & Smith, 1995) 2.5 2.2 2.3 2.3 3.0 3.8 2.6 2.6 3.7 3.6 4.9 3.1 3.04 0.82 SAM PLE SP128-4 H o rn b len d e (p er 13 cations) lOrim ll r im 12rim 13rim 14rim 15rim 16rim AVG ST DEV Al iv 1.13 1.17 1.20 1.12 1.15 1.20 1.18 1.17 0.03 A l vi 0.18 0.13 0.10 0.20 0.17 0.11 0.24 0.16 0.05 Plagioclase 20rim 20rim 20rim 20rim 19rim 18rim 17rim AVG ST DEV A n co n ten t 0.28 0.28 0.28 0.28 0.34 0.31 0.31 0.30 0.02 T (°C) (Holland & Blundy, 1994) 688.4 716.3 728.1 680.5 720.9 727.6 682.9 706.4 21.5 P (kbars)(Anderson & Smith, 1995) 3.11 2.73 2.58 3.22 2.73 2.66 3.65 2.95 0.39 SAM PLE SP128-5 H o rn b len d e (p er 13 cations) 5 rim 7 rim 8 rim 9 rim lO rim l l r i m 12rim 1 3 rim 14 rim 15rim 16rim 17rim 18rim 21 rim 22rim AVG ST DEV Al iv 1.22 0.99 1.20 1.21 1.13 1.13 1.21 1.22 1.19 1.02 1.06 1.19 1.25 1.23 1.20 1.16 0.08 Al vi 0.15 0.42 0.18 0.16 0.13 0.13 0.18 0.14 0.10 0.14 0.14 0.34 0.15 0.11 0.15 0.17 0.09 Plagioclase 31rim 31 rim 31 rim 31 rim 31 rim 31rim 31rim 3 lrim 31 rim 31rim 31 rim 31rim 32rim 35rim 35rim AVG ST DEV A n content 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.28 0.28 0.28 0.30 0.01 T (°C) (Holland & Blundy, 1994) 705.6 645.3 692.4 712.5 711.0 707.4 707.5 717.1 730.8 697.2 695.9 656.8 702.3 712.9 697.1 699.4 22.0 P (kbars)(Anderson & Smith, 1995) 3.18 3.90 3.38 3.12 2.64 2.66 3.25 2.99 2.48 2.34 2.52 4.41 3.40 2.96 3.20 3.10 0.56 SAM PLE GP117-1 H o rn b len d e (p er 13 cations) 7rim 8rim 9rim lO rim llr im 12rim 14rim 15rim 16rim AVG ST DEV A l iv 0.73 0.85 1.01 0.93 1.22 1.30 0.89 1.08 1.04 1.00 0.18 Al vi 0.16 0.15 0.13 0.28 0.25 0.26 0.17 0.16 0.19 0.19 0.05 P lagioclase 17int 17int 17int 17int 17int 20rim 19int 18int 18int AVG ST DEV A n content 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.00 T CQ (Holland & Blundy, 1994) 612.7 632.7 660.0 611.0 661.6 668.0 624.6 647.6 647.5 640.6 21.3 P (kbars)(Anderson & Smith, 1995) 1.31 1.90 2.51 3.01 4.08 4.48 2.19 3.07 2.98 2.83 1.00 O N O Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. SAMPLE SP142-1 Hornblende (per 13 cations) 7rim 8rim 9rim lOrim llrim 12rim 13rim 14rim 15rim AVG ST DEV A liv 1.05 1.13 1.11 1.20 1.12 1.00 1.05 1.13 1.01 1.09 0.07 Al vi 0.12 0.07 0.10 0.11 0.12 0.11 0.08 0.10 0.14 0.11 0.02 Plagioclase 26rim 26rim 26rim 29rim 29rim 29rim 29rim 26rim 26rim AVG ST DEV An content 0.21 0.21 0.21 0.20 0.20 0.20 0.20 0.21 0.21 0.20 0.00 T (“ C) (Holland & Blundy, 1994) 656.2 669.2 670.3 677.9 657.2 665.0 672.9 674.1 653.1 666.2 8.8 P (kbars) (Anderson & Smith, 1995) 2.67 2.75 2.78 3.21 3.00 2.34 2.39 2.83 2.60 2.73 0.27 SAMPLE SP142-2 Hornblende (per 13 cations) lrim 2rim 3rim 4rim 5rim 6rim 9rim lOrim llr im 12rim 13rim AVG ST DEV A liv 1.05 1.07 1.03 1.08 1.09 1.14 1.16 1.17 1.15 1.08 1.14 1.11 0.05 Al vi 0.11 0.14 0.15 0.14 0.14 0.10 0.08 0.09 0.08 0.19 0.13 0.12 0.04 Plagioclase 8-rim 8-rim 8-rim 8-rim 8-rim 8-rim 8-rim 8-rim 8-rim 8-rim 8-rim AVG ST DEV An content 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.00 T (°C) (Holland & Blundy, 1994) 676.0 660.7 654.0 685.0 682.8 702.1 703.3 708.5 703.9 656.4 686.7 683.6 19.9 P (kbars) (Anderson & Smith, 1995) 2.50 2.84 2.69 2.73 2.79 2.65 2.61 2.66 2.57 3.20 2.93 2.74 0.20 SAMPLE SP142-3 Hornblende (per 13 cations) 13rim 14rim 15rim 16rim 17rim 18rim 19rim 20rim 21rim 22rim 36rim 37rim 38rim AVG ST DEV A liv 1.13 1.060 1.030 1.154 1.193 1.138 1.060 1.038 1.101 1.199 1.062 1.075 1.139 1.11 0.06 Al vi 0.10 0.091 0.088 0.127 0.198 0.150 0.089 0.177 0.160 0.139 0.134 0.088 0.069 0.12 0.04 Plagioclase 33rim 33rim 33rim 24rim 24rim 23rim 24rim 24rim 24rim 23rim 35rim 34rim 33rim AVG ST DEV An content 0.21 0.21 0.21 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.21 0.21 0.21 0.20 0.01 T (°Q (Holland & Blundy, 1994) 702.8 696.3 694.1 683.7 667.7 670.8 675.4 648.3 660.4 676.1 679.9 696.8 693.1 680.4 16.1 P (kbars) (Anderson & Smith, 1995) 2.59 2.29 2.16 3.11 3.75 3.23 2.45 2.93 3.10 3.35 2.64 2.34 2.58 2.81 0.48 C T \ Most of the pressure and temperature estimates plot above the granodiorite wet solidus with the noted exception of sample GPU 7. Possible causes for this could be the small data set used in the thermobarometric calculations. Also, sample GP117 contained only one hornblende grain which met the requirements necessary for implementation of thermobarometry. to c u 3 3 ¥ 1 a 2 C L h- ■ \ ----- ^ i — — i 1 -------< ------J H \ ■ ii ^> — i Gd Wet Solidus 600 700 800 Tem perature fC ) Figure 21: P-T diagram with average rim values with lsigm a error bars. Dashed line represents granodiorite wet solidus (cite?). SYMBOLS: O-JL05, °-GP117,p-GP60, ^-SP142, and +-SP128. Excluding sample GPU 7, average pressure of emplacement for Jackass Lakes is 3.0 + 0.5 kbars, with an average temperature of 678 + 17°C. 62 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 13: Conclusions The Jackass Lakes pluton (JLP) has been the focus of many studies on determining the emplacement and evolution of a magmatic system. Through initial mapping and structural studies within JLP three models have been proposed explaining the evolution and emplacement of this pluton. It was from these initial studies that the two-fold purpose for this study was determined. The first aspect of this research investigated the likelihood that this pluton was formed and emplaced from multiple stages of replenishment leading to magma mingling and possibly magma mixing. Field observations identified numerous mingling features, such as, load casts, flame structures, and mafic enclaves, as well as, significant compositional variation. Four units (JLP, JLPh, Qdh, Qd) were classified in the field, based on relative amounts of mafic minerals (biotite and/or hornblende), felsic minerals and the presence or absence of mafic enclaves within the unit. Similar mineralogies, with differing proportions, were observed between the four units. All units contain plagioclase, alkali feldspar, quartz, biotite, sphene, apatite, and magnetite. Hornblende was found in all samples, except for some JLP samples. Compositions of the four units range from granite to quartz diorite with most major element data producing linear trends, 63 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. suggesting that mixing can be modeled between JLP and Qd end-member units. Statistical correlations of data support processes other than perfect mixing between end-members. Further petrography identified microstructural features, such as, acicular apatite, blade biotite, anti-rapakivi and rapakivi mantled feldspars, which are commonly observed in rocks that have been formed through magma mixing. From these geochemical and petrographic findings, coupled with field observations identifying magma mingling structures, ample evidence has been presented to conclude that multiple pulses of magma as well as some degree of magma mixing occurred during the evolution of Jackass Lakes pluton. The second aspect of this research related to the three emplacement models proposed for Jackass Lakes pluton. A model proposed by Wiebe (1999, 2000) states that the pluton was formed via sheet-like pulses which, based on their current sub-vertical orientation, have been rotated or tilted at least 60° to the east. Work conducted by McNulty et al. (1996) and Pignotta et al. (2003) found no field evidence to support Wiebe's model. To test the validity of these models, Al-in-hornblende barometry (Anderson and Smith, 1995) coupled with plagioclase-hornblende thermometry (Holland and Blundy, 1994) was utilized to estimate pressure and temperature of 64 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. emplacement. Pressure and temperature estimates for samples taken along an east-west transect of the pluton ranged from 2.8-3.2 kilobars and 677- 708°C. Based on these estimates, depth of emplacement is approximately 9 km which is in accordance with field observations describing JLP as being intruded at shallower crustal levels (Fiske and Tobisch, 1978; Peck, 1980; Pignotta et al., 2003) and lower than the previously estimated 13-15km (4.2 kilobars) by Ague and Brimhall (1988). Futhermore, these pressure estimates exhibited no significant variation along the northwest-southeast transect of the pluton. This suggests that tilting of the pluton did not occur, therefore raising uncertainty surrounding the validity of the emplacement model proposed by Wiebe (1999, 2000). This research has provided a foundation for further investigations into the complexities surrouding the evolution and emplacement of the Jackass Lakes pluton. These findings, from within a small portion of the pluton, support field observations for the formation of the pluton by multiple pulses of magma as well as for some degree of magma mixing. Further geochemical investigations that would span the entire pluton could focus on the level of mixing and whether other end-member or hybrid phases exist. 65 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. An issue that was not within the scope of this project related to the source region for the magma pulses, additional trace element analyses coupled with radioisotopes would provide a wealth of information regarding whether these pulses originated from one or multiple sources. In addition to gaining further insight into the formation of this pluton, this additional information would aid in the overall understanding of many aspects of pluton evolution and emplacement, as well as, rheology of magma and ultimately plutonic rock formation. 66 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. BIBLIOGRAPHY Ague, J. J., and Brimhall, G. H., 1988. Magmatic arc asymmetry and distribution of anomalous plutonic belts in the batholiths of California; effects of assimilation, crustal thickness, and depth of crystallization. Geological Society of America Bulletin, 100: 912-927. Anderson, J.L., 1996. Status of thermobarometry in granitic batholiths. Transactions of the Royal Society of Edinburgh, 87: 125-138. Anderson, J. L., and Smith, D. R., 1995. The effects of temperature and fo2 on the Al-in-hornblende barometer. American Mineralogist, 80: 549-559. Bateman, P.C., 1992. Plutonism in the central part of the Sierra Nevada batholith, California. U.S. Geological Survey Professional Paper 1483,138- 140. Coleman, D.S., Gray, W., and Glazner, A.F., 2004. Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolmne Intrusive Suite, California. Geology, 32:433-436. Cosca, M.A., Essene, E.S., and Bowman, J.R., 1991. Complete chemical analyses of metamorphic hornblendes: implications for normalizations, calculated H 2O activities, and thermobarometry. Contributions to Mineralogy and Petrology, 108:472-484. Deer, W.A., Howie, R.A., and Zussman, J., 1978. An introduction to rock- forming minerals. Wiley and Sons, Inc., New York. D'Lemos, R.S., 1996. Mixing between granitic and dioritic crystal mushes, Guernsey, Channel Islands, UK. Lithos, 38: 233-257. Fiske, R. S., and Tobisch, O. T., 1994. Middle Cretaceous ash-flow tuff and caldera-collapse deposit in the Minarets Caldera, east-central Sierra Nevada, California. Geological Society of America Bulletin, 106:582-593. 67 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Fiske, R. S., and Tobisch, O. T., 1978. Paleogeographic significance of volcanic rocks of the Ritter Range pendant, central Sierra Nevada, California. In D.G. Howell and K. McDougall (Editors), Mesozoic Paleogeography of the Western United States, 209-221. Fleck, R. J., and Kistler, R. W. S., 1994. Chronology of multiple intrusions in the Tuolumne intrusive suite, Yosemite National Park, Sierra Nevada, California: Abstracts of the eighth international conference on geochronology, cosmochronology, and isotope geology. U. S. Geological Survey Circular, p. 101. Gill, J.B., 1978. Role of trace element partition coefficients in models of andesite genesis. Geochimica e Cosmochimica Acta, 42: 709-724. Hammarstrom, J.M. and Zen, E., 1986. Al in hornblende, an empirical igneous barometer. American Mineralogist, 71:1297-1313. Hanson, G.N., 1978. The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth Planetary Science Letters, 38: 26-43. Hawthorne, F.C., 1981. Amphibole spectroscopy. In: D.R. Veblen, (Editor), Amphiboles and other hydrous pyriboles - Mineralogy, Rev. Mineral 9A, 103-139. Hibbard, M.J., 1981. The magma mixing origin of manted feldspars. Contributions to Mineralogy and Petrology, 76:158-170. Hibbard, M.J., 1995. Petrography to petrogenesis. Prentice Hall, Englewood, Cliffs, NJ. Holland, T., and Blundy, J., 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116: 433-437 68 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Hollister, L.S., Grissom, G.C., Peters, E. K., Stowell, H. H., and Sission, V.B., 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Amerian Mineralogist, 72: 231-239. Johnson, D.M., Hooper, P.R., and Conrey, R.M., 1999. XRF Analysis of rocks and minerals for major and trace elements on a single low dilution Li- tetraborate fused bead. Advances in X-ray Analysis, 41: 843-867. Johnson, M.C. and Rutherford, M.J., 1989. Experimental calibration of aluminum-in-hornblende geobarometer applicable to calc-alkaline rocks. EOS, 69:1511. Le Bas M.J., Le Maitre R.W., Streckheisen, A., Zenettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27: 745-750. LeMaitre, R.W., 1989. A classification of igneous rocks and glossary of terms. Blackwell Scientific Publications, Oxford. Lofgren, G., 1974. Experimental study of plagioclase crystal morphology. American Journal of Science, 274: 243-273. Lipman, P.W., 1984. The roots of ash flow calderas in western North America: windows into the tops of granitic batholiths. Journal of Geophysical Research, B89:8801-8841 McNulty, B. A., Tobisch, O. T., Cruden, A. R., and Gilder, S., 2000. Multistage emplacement of the Mount Givens Pluton, central Sierra Nevada Batholith, California. Geological Society of America Bulletin, 112:119-135. McNulty, B. A., Tong, W., and Tobisch, O. T., 1996. Assembly of a dike-fed magma chamber; the Jackass Lakes Pluton, central Sierra Nevada, California. Geological Society of America Bulletin, 108: 926-940. Middlemost, E.A.K., 1994. Naming materials in the magma/igneous rock system. Earth Science Review, 37: 215-224. 69 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Miyashiro, A., 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274: 321-355. Peck, D. L., 1980. Geologic map of the Merced Peak Quadrangle, Central Sierra Nevada, California. USGS, GQ-1531, scale 1:62500. Pignotta, G.S. and Paterson, S.R., 2003. Magma chamber construction and evolution: constraints from the Jackass Lakes pluton, central Sierra Nevada. GSA Abstracts with Programs, 35: 6. Schmidt, M.W., 1992. Amphibole compositions in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110: 304-310. Shand, S.J., 1951. Eruptive rocks. Murby and Co., London. Spear, F.S., 1981. Amphibole-plagioclase equilibrium between plagioclase and amphibole, an empirical model, Contributions to Mineralogy and Petrology, 72: 33-41. Stern, T. W., Bateman, P. C., Morgan, B. A., Newell, M. F., and Peck, D. L., 1981. Isotopic U-Pb ages of zircon from the granitoids of the central Sierra Nevada, California. U.S.G.S. Professional Paper 1185:17. Streckeisen, A.L., 1976. To each plutonic rock its proper name. Earth Science Reviews, 13:1-33. Tobisch, O. T., Saleeby, J. B., Renne, P. R., McNulty, B. A., and Tong, W., 1995. Variations in deformation fields during development of a large- volume magmatic arc, central Sierra Nevada, California. Geological Society of America Bulletin, 107:148-166. Vance, J.A., 1965. Zoning in igneous plagioclase: patchy zoning. Journal of Geology, 73: 637-651. 70 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Watson, E.B. and Jurewicz, S.R., 1984. Behavior of alkalies during diffusive interaction of granitic xenoliths with basaltic magma. Journal of Geology, 92: 121-131. Wiebe, R. A., 1999. Mafic input, depositional features, stratigraphic sections and tilted floors in the Pyramid Peak and Jackass Lakes plutons, Sierra Nevada, California. GSA Abstracts with Programs, 31: 7. Wiebe, R. A., 2000. Pluton construction by sequential deposition from a multiply replenished chamber. GSA Abstracts with Programs, 32:171. 71 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. tb § 0 ) •8 O h O t-H 0 o is u a j r— H 0 ) M o MH h 3 < u ( A 0 tn 0 o • • £ u o » c f i .s 5 J-l o £ tN C u t / c / i X O h rt ?-H bp O 0 ) • • > v > . ^ '"v > ■r. - ' m - & ?''■ --* ■ . A ' ^ A * * ' * * * * < ' . ' \ z r n ; 1 < D !S C D I „ a <H 0) x ^ S 3 6 1 1 g - l < & •; - ^ giMKsSJf 72 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. A p p e n d ix B: A m p h ib o le C h em istry for T h erm o b a ro m etry C a lcu la tio n s S am p le SP128 ID L ocation 01-001 rim 01-002 rim 01-003 rim 01-004 rim 01-005 core 01-006 core 01-007 core 01-008 core 01-009 core 01-010 rim 01-011 rim 01-012 rim 01-014 rim 01-015 rim 01-016 rim 01-017 rim 03-001 core 03-002 in t 03-003 in t 03-004 in t 03-005 in t 03-006 in t S i0 2 45.49 45.74 46.20 46.05 43.80 43.82 44.08 46.42 45.82 46.34 44.97 44.80 46.24 43.31 45.94 46.52 45.91 46.19 46.22 45.51 45.49 44.87 T i0 2 1.26 1.30 1.35 1.39 1.98 1.95 1.96 1.25 1.18 1.18 1.48 1.40 1.19 0.59 1.20 1.08 1.57 1.43 1.33 1.11 1.53 1.56 a i 2 o 3 7.24 7.15 7.11 7.19 8.85 8.93 8.92 7.23 7.38 6.70 7.86 7.67 7.00 9.46 7.13 6.93 7.23 6.99 7.12 7.64 7.87 7.85 FeO* 18.12 17.76 17.71 17.61 18.38 18.21 18.25 17.66 18.23 17.47 18.22 18.42 17.45 20.31 17.63 17.23 17.53 17.59 17.81 17.79 18.00 18.66 M gO 10.78 11.08 11.11 11.20 10.18 10.08 10.26 11.21 10.62 11.29 10.43 10.57 11.15 8.83 10.96 11.52 11.11 11.25 11.00 10.96 10.78 10.47 M nO 0.69 0.72 0.69 0.70 0.71 0.70 0.67 0.68 0.72 0.71 0.63 0.63 0.64 0.65 0.68 0.58 0.71 0.70 0.65 0.58 0.61 0.69 C aO 11.24 11.21 11.30 11.20 11.03 10.95 11.15 11.55 11.59 11.29 11.40 11.40 11.51 11.62 11.41 11.70 11.30 11.30 11.48 11.82 11.28 11.14 N a 20 0.99 1.13 1.14 1.15 1.46 1.50 1.41 0.93 0.92 0.97 0.99 1.05 0.96 0.95 0.92 0.86 1.05 1.13 1.00 0.81 1.14 1.26 k 2 o 0.70 0.62 0.55 0.60 0.70 0.70 0.72 0.65 0.68 0.62 0.77 0.70 0.66 0.87 0.70 0.66 0.62 0.58 0.60 0.65 0.69 0.62 F 0.20 0.17 0.05 0.00 0.10 0.23 0.12 0.18 0.07 0.29 0.20 0.09 0.09 0.17 0.00 0.00 0.22 0.26 0.37 0.18 0.29 0.18 C l 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S um 96.71 96.10 97.21 97.09 97.17 97.05 97.56 97.76 97.20 96.86 96.95 96.73 96.88 96.74 96.56 97.07 97.25 96.10 97.58 97.05 97.68 97.29 F o rm u la p e r 23 O xygens T -sites Si 6.84 6.85 6.88 6.86 6.58 6.60 6.59 6.88 6.85 6.94 6.76 6.74 6.91 6.58 6.89 6.91 6.85 6.88 6.88 6.79 6.78 6.72 A liv 1.16 1.15 1.12 1.14 1.42 1.40 1.41 1.12 1.15 1.06 1.24 1.26 1.09 1.42 1.11 1.09 1.15 1.12 1.12 1.21 1.22 1.28 A l(total) 1.28 1.26 1.25 1.26 1.57 1.59 1.57 1.26 1.30 1.18 1.39 1.36 1.23 1.69 1.26 1.21 1.27 1.23 1.25 1.34 1.38 1.39 M l/2/3 sites A lvi 0.12 0.11 0.13 0.12 0.15 0.19 0.17 0.14 0.15 0.12 0.15 0.10 0.14 0.27 0.15 0.13 0.12 0.10 0.13 0.14 0.16 0.11 Ti 0.14 0.15 0.15 0.16 0.22 0.22 0.22 0.14 0.13 0.13 0.17 0.16 0.13 0.07 0.13 0.12 0.18 0.16 0.15 0.12 0.17 0.18 Fe3+ 0.62 0.63 0.57 0.59 0.61 0.55 0.58 0.57 0.61 0.56 0.60 0.69 0.55 0.80 0.55 0.59 0.56 0.58 0.57 0.68 0.58 0.67 M g 2.42 2.47 2.47 2.49 2.28 2.26 2.29 2.48 2.36 2.52 2.34 2.37 2.48 2.00 2.45 2.55 2.47 2.50 2.44 2.44 2.39 2.34 M n 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.09 0.09 0.08 0.08 0.08 0.08 0.09 0.07 0.09 0.09 0.08 0.07 0.08 0.09 Fe2+ 1.62 1.56 1.60 1.56 1.65 1.69 1.65 1.58 1.66 1.58 1.66 1.61 1.61 1.78 1.63 1.54 1.59 1.57 1.63 1.54 1.62 1.62 C a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S u m M l,2 ,3 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 M 4 site Fe 0.05 0.04 0.04 0.05 0.05 0.06 0.05 0.03 0.01 0.05 0.02 0.02 0.02 0.00 0.03 0.01 0.04 0.04 0.02 0.00 0.04 0.05 C a 1.81 1.80 1.80 1.79 1.78 1.77 1.79 1.83 1.86 1.81 1.83 1.84 1.84 1.89 1.83 1.86 1.81 1.80 1.83 1.89 1.80 1.79 N a 0.14 0.16 0.16 0.16 0.17 0.18 0.17 0.13 0.13 0.14 0.14 0.14 0.14 0.11 0.13 0.12 0.15 0.16 0.14 0.11 0.16 0.17 S u m M 4 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 A site C a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 N a 0.14 0.17 0.17 0.17 0.25 0.26 0.24 0.13 0.13 0.14 0.15 0.17 0.14 0.17 0.14 0.13 0.15 0.17 0.15 0.12 0.17 0.20 K 0.13 0.12 0.10 0.11 0.13 0.13 0.14 0.12 0.13 0.12 0.15 0.13 0.12 0.17 0.13 0.13 0.12 0.11 0.11 0.12 0.13 0.12 S um A O H site 0.28 0.29 0.28 0.28 0.39 0.40 0.38 0.26 0.26 0.26 0.29 0.30 0.27 0.33 0.27 0.25 0.27 0.28 0.26 0.25 0.30 0.32 O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O H 1.90 1.92 1.97 2.00 1.95 1.89 1.94 1.91 1.97 1.86 1.90 1.96 1.96 1.92 2.00 2.00 1.89 1.88 1.82 1.91 1.86 1.91 F 0.10 0.08 0.03 0.00 0.05 0.11 0.06 0.09 0.03 0.14 0.10 0.04 0.04 0.08 0.00 0.00 0.11 0.12 0.18 0.09 0.14 0.09 C l 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S u m O H 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 cn S um ca tio n s 15.28 15.29 15.28 15.28 15.39 15.40 15.38 15.26 15.26 15.26 15.29 15.30 15.27 15.33 15.27 15.25 15.27 15.28 15.26 15.25 15.30 15.32 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. S am ple SF128 ID L ocation 03-007 rim 03-008 rim 03-009 rim 03-010 in t 03-011 int 03-012 in t 03-013 in t 03-014 in t 03-015 in t 03-016 rim 03-017 rim 03-018 rim 03-019 rim 03-020 rim 03-021 rim 03-022 rim 03-023 rim 03-024 rim 03-025 rim 03-026 rim 03-027 rim 04-001 core S i0 2 45.78 45.82 45.77 46.80 46.88 47.20 47.33 46.41 45.78 45.58 46.90 48.46 46.14 46.00 44.15 42.56 44.24 46.45 46.19 42.98 46.30 45.82 T iO z 1.23 1.20 1.20 1.43 1.42 1.36 1.24 1.24 1.27 1.22 1.14 1.10 1.20 1.21 0.29 0.33 0.48 0.67 0.87 0.55 0.33 1.22 a i 2 o 3 7.32 6.94 7.16 6.24 6.24 6.24 6.20 6.91 7.36 7.23 7.73 8.47 7.25 7.35 10.78 11.05 9.13 8.26 8.17 10.03 7.50 7.09 FeO* 18.22 18.06 18.15 17.25 17.16 17.44 17.65 17.78 18.11 17.97 17.77 17.39 17.75 17.81 20.34 20.53 19.83 18.99 18.59 19.89 18.77 17.34 M gO 10.69 10.77 10.82 11.49 11.52 11.49 11.53 11.13 10.89 10.91 11.21 12.09 10.91 10.92 9.05 8.57 9.49 10.47 10.33 8.95 10.61 11.46 M nO 0.68 0.65 0.63 0.76 0.71 0.82 0.72 0.66 0.69 0.65 0.62 0.53 0.64 0.63 0.52 0.56 0.56 0.55 0.54 0.53 0.55 0.62 C aO 11.27 11.49 11.35 10.96 11.15 11.02 11.04 11.28 11.34 11.47 11.36 11.44 11.45 11.51 11.58 11.67 11.80 11.81 11.69 11.65 11.79 11.23 N a 2 0 1.00 1.04 1.03 1.07 0.95 1.02 1.04 1.00 1.07 1.10 1.08 0.85 0.96 1.00 1.17 1.18 0.94 0.79 0.89 1.04 0.87 1.21 k 2 o 0.73 0.66 0.71 0.56 0.55 0.49 0.50 0.59 0.71 0.72 0.71 0.69 0.65 0.70 0.86 0.90 0.77 0.69 0.72 0.85 0.51 0.64 F 0.00 0.18 0.20 0.32 0.20 0.19 0.24 0.20 0.24 0.01 0.18 0.18 0.20 0.24 0.27 0.18 0.15 0.30 0.25 0.18 0.22 0.01 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S um 96.91 96.82 97.01 96.89 96.77 97.26 97.48 97.19 97.45 96.85 98.71 101.19 97.14 97.37 99.00 97.51 97.40 98.98 98.23 96.66 97.43 96.62 F o rm u la p er 23 O xygens T-sites Si 6.86 6.89 6.86 7.00 7.01 7.03 7.03 6.92 6.83 6.83 6.89 6.90 6.89 6.86 6.53 6.42 6.64 6.83 6.84 6.52 6.89 6.85 A liv 1.14 1.11 1.14 1.00 0.99 0.97 0.97 1.08 1.17 1.17 1.11 1.10 1.11 1.14 1.47 1.58 1.36 1.17 1.16 1.48 1.11 1.15 A l(total) 1.29 1.23 1.26 1.10 1.10 1.09 1.09 1.22 1.29 1.28 1.34 1.42 1.28 1.29 1.88 1.96 1.62 1.43 1.43 1.79 1.32 1.25 M l,2 ,3 sites A lvi 0.15 0.12 0.12 0.11 0.11 0.12 0.12 0.14 0.12 0.11 0.22 0.32 0.17 0.16 0.41 0.38 0.26 0.26 0.27 0.32 0.21 0.10 Ti 0.14 0.14 0.14 0.16 0.16 0.15 0.14 0.14 0.14 0.14 0.13 0.12 0.13 0.14 0.03 0.04 0.05 0.07 0.10 0.06 0.04 0.14 Fe3+ 0.57 0.56 0.61 0.46 0.45 0.45 0.47 0.54 0.62 0.60 0.50 0.42 0.54 0.56 0.77 0.84 0.79 0.64 0.56 0.79 0.71 0.62 M g 2.39 2.41 2.42 2.56 2.57 2.55 2.55 2.47 2.42 2.44 2.45 2.57 2.43 2.43 2.00 1.93 2.12 2.29 2.28 2.02 2.35 2.55 M n 0.09 0.08 0.08 0.10 0.09 0.10 0.09 0.08 0.09 0.08 0.08 0.06 0.08 0.08 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.08 Fe2+ 1.66 1.69 1.64 1.61 1.62 1.62 1.63 1.62 1.60 1.63 1.62 1.51 1.64 1.64 1.72 1.75 1.70 1.67 1.73 1.74 1.62 1.51 C a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 S um M l,2 ,3 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 M 4 site Fe 0.05 0.02 0.03 0.09 0.08 0.10 0.09 0.06 0.03 0.02 0.06 0.14 0.03 0.02 0.02 0.00 0.00 0.03 0.02 0.00 0.00 0.04 C a 1.81 1.85 1.82 1.76 1.79 1.76 1.76 1.80 1.81 1.84 1.79 1.75 1.83 1.84 1.84 1.89 1.89 1.86 1.86 1.89 1.88 1.80 N a 0.14 0.13 0.15 0.16 0.14 0.15 0.15 0.14 0.15 0.14 0.15 0.12 0.14 0.14 0.14 0.11 0.11 0.11 0.13 0.11 0.12 0.16 S um M 4 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 A site C a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 N a 0.15 0.17 0.15 0.15 0.14 0.15 0.15 0.15 0.16 0.18 0.15 0.12 0.14 0.15 0.19 0.23 0.17 0.11 0.13 0.20 0.13 0.19 K 0.14 0.13 0.14 0.11 0.10 0.09 0.10 0.11 0.14 0.14 0.13 0.12 0.12 0.13 0.16 0.17 0.15 0.13 0.14 0.16 0.10 0.12 S um A 0.29 0.30 0.29 0.26 0.24 0.24 0.25 0.26 0.29 0.32 0.29 0.24 0.26 0.28 0.36 0.40 0.31 0.24 0.26 0.36 0.23 0.31 O H site O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O H 2.00 1.91 1.90 1.85 1.91 1.91 1.89 1.91 1.88 1.99 1.91 1.92 1.91 1.88 1.87 1.91 1.93 1.86 1.88 1.91 1.89 2.00 F 0.00 0.09 0.10 0.15 0.09 0.09 0.11 0.09 0.12 0.01 0.09 0.08 0.09 0.12 0.13 0.09 0.07 0.14 0.12 0.09 0.11 0.00 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 V J S um ca tio n s 15.29 15.30 15.29 15.26 15.24 15.24 15.25 15.26 15.29 15.32 15.29 15.24 15.26 15.28 15.36 15.40 15.31 15.24 15.26 15.36 15.23 15.31 O N o o u S o - 4 .§ 3 C N K X < > C N X © © 00 If) Es 00 O' d o © o d d T f rH rH O' If) © O O Tf X X o q q q X q X rH ts X o O' o If) X ts s o P O o o § V O X Tf Tf X Tf X v D o o C N C N C s C O Tf q ts q ts C N q C N 3 ts X o o s o O o o C s O' _ C s IN C N Tf X X O Tf o O' X Tf q q q q o ts o q if) Tf ts 00 d o S o o o N O' s if) if) C N q X If) 3 $ C N q ts q R O' o q 3 if) Tf ts oo o d S o o o ts O' Tf S ts \o O' X X Tf X 'O 'O q q fc ts o o s tf) rr ts X o o rH < -< o o o ts T f r" rH O' x X 3 o X X ts q £ q 'O q X o o 3 If) Tf ts oo o o 5 o o o o ts O' C s S O ts fS X v O SO X X Tf o ts C O q o (N X x q X ts C N q ts 3 © X od o o P o o o o ts O' c o Tf in )£ ts C N C s ts r* O' o ts C N q X q q ts o ts If) Tf ts oo o d 1 = 1 d o o d d O' O' o ts o ts ' I O X < £ X o O' C N L f) o q q q q o o ’I C s N S o o o o o C s O' c o O C N if) 3 C N ts X X X ' © X R O' o o ts C N 9 ts ts P o o d o d ts O' $ L f) C N 'O co O q o s X 8 O' q O' 8 o X If) Tf ts ts d o o O 'O O' If) IN 3 X X s q ts q C N X O o K o C N 8 o C N t? ts ts rH o O o O ts O' O ' C O ts 05 N X o X X O 'O q q q q q q q o X 5 rH N ts o o J U O o o o ts O' ts X N O q © q X O' q C N C N C N o X X d | 'O T f 'O 3 o P X o o C N C N X q Tf E s q C N N X X O' O o $ ts ts S o o o o o C N C N X C N O © X R T ^ 4 Es C N \Q o o i Es oo S o o o o X T f X $ Es Tf K o C N C N o X X o X o o d T f r-i d ts o o o o o X X 'O X X ts sO 11.23 o ® X X a o o 3 d IN o o o o X X X v O X 3 X t s S O s 0 ! vD 8 $ rH d Es F o F o d o X C N X C N X O q 3 X q C N C N X r« O' X C N rH o o F o o O O O ts o X o C N X X X X - > o C N X © X C s o o o © © 1.89 r . © © o © X Tf N C N © © © © o © O © © © d d d o C N o d X o o C N o o © o © C N d © C N o O' O' n © X X ts O 8 8 C N X q o C N 8 o © X Tf C N 8 v O 8 8 ts © rH d d d C N © d X o o C N © o © © © © o C N X ts a N X X X C N V O S X © X q o © © o 8 O' X - © © 8 'O Tf 8 8 © 8 8 d o d d C N d o X © o C N © d d © o d o C N E s ts X C N X O' o ts ' t q '0 X X © X X © © o o C N © Tf 00 Tf © © © © ts X © X o o X O' ts o o o © © d o o o C N o rH d X © © C N © © © © © © © C N R X C N X X 8 Es N O s X o ts © o 8 © Es X C N 8 8 O' Tf X X 8 q $ 8 8 d o o o C N © r H © X © © C N © © © © o t- H d © C N R C N X X C N X O' X X X 8 K 8 8 © 'O X X 8 O © 'O X X 8 C N q X © 8 8 d d d © C N o rx © X d d C N o © d d o rH d d C N ts C N C N X s 'O ts \0 X o X 8 8 © s X 8 8 X X N C N 8 q 8 8 8 d © © © C N d o X o r“ o C N o o o o © rH o © C N C N X X C N rn X X X X ts © X X o o o © C N © 'O X C N O o o © C N X ts C N © © X X C N © © O © d o o o C N o © X d © C N o © © d © © © C N o X o C N C N X 5 X X X X xt X o ts X © o 8 C N O Tf 8 8 X Tf O' C N 8 q 8 8 8 d o o o C N d ,“ o X © © C N © © © © © © © C N S 3 X X Es X X X 8 X o X X 8 8 C N O Tf 8 8 Tf X ts C N 8 * 3 8 8 d rn d o o C N o o L f) o o C N © o o o © o © C N X X C N C N X o C N X C N X N o X o © © © Tf © C N © © © © X X v O C N © © O' O' © © © © © d o o © C N o © If) o o C N d o o o o o © C N © X © C N o O' v © X © X 8 8 3 Tf 8 8 X X X C N 8 q 8 8 8 d © © d C N © rn © X o o C N o o o o o o © C N 8 N X $ N ■ x j * X o X X © © o o X © o o Tf 8 8 X Tf o o C N 8 * o 8 8 d rH o © © C N © o X © o C N o © © © © rn © o C N Es X X X X X ts X X x* X o 1 9 'I © © o © C N © X X X © © © © X C N X C N © © Tf O' S O © © © o © d o o d C N © © X d rn o C N d o o o o d d C N X q N o C N X ts X a O' © X X © © © o X © Tf 8 8 X © 8 ? © 8 8 d © © © C N © © X © * ■ " o C N © d d d d rn o © C N X X X X C N X X X 'O ts X * 8 X X 8 8 8 N N 8 O © ts - X C N 8 q 8 8 8 d ** o o o C N o © X © © C N © © © o © r"1 © © C N X N O Es C N rn "t C N 'O N O xf O' © X X © © o © X © X X O © o © X C N o X O © X O' X © © © o © d d o o C N d o If) © © C N © © o © © © © C N X X C N C N C N © X 8 X X 8 ts 8 o © N O N X 8 o © X © X C N 8 s Tf 8 8 d o o o C N © © X © 1 - 1 © C N © © © d © rn © © C N C N O' X © O C N C N X O' X ts X X o X 8 8 C s © R Tf 8 8 X - < Q 8 O' X 8 8 d rn © o o C N o © X © © C N © © © © © rH © d C N o O' o O C N © X C N 'O v O X X o X 8 8 8 C N X X 8 8 X C N C s C N 8 X q C s o 8 8 d rn © © © C N © rH o X o o C N o o o o © o o C N N o o X X C N r- X X X X O' o X o o o o X © X ts so O © © © N rn X C N O © © © © § d © © © C N © o If) © © C N © o © © o © d C N oo O' O' C N © X ts N ) © X O' o 8 o © X © S ts 8 © © X 5 O' C N 8 q 8 8 s d © o o C N o o X o p H © C N © © © © © © d C N Vi X 2 C N 2 '« X 2 0 ) 1 < 2 A liv 0 5 cJ § A lv i P F e3 + M g M n C N < u t- C a £ 3 X '5 5 2 F e ( 0 U 2 1 < 0 c n < U C C z £ 3 X 5 0 HO tt. I D 77 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. SP128 05-009 05-010 05-011 05-012 05-013 05-014 05-015 05-016 05-017 05-018 05-019 05-020 05-021 05-022 05-023 05-024 05-025 05-026 05-027 05-028 05-029 05-030 ft I e V O C N O' m $ co in v O R oo O' co t s T f © o in Tf IN oo d © £ © o © o C N vq O' v O © x O' cq v O O' O' m co 00 00 O' v O 00 in © o C O T f d O' 2 oo © 2 d © o d © 00 2 C O 2 © 8 © 8 2 00 00 d o 2 r4 o d o N O' 8 s $ Jq 00 O' tN a © © v © O tN oo © © £ © o o © oo O' rH V O C N 31 tN v O 00 V O © C N m o © 2 tN 00 o © © © d 00 O' N o 8 tN o 00 v O tN in 8 O' in Tf o o £ N 00 o rH o o o tN rH rn O' ' O r t P i i f l S r t O N r t i f t o o ' M { N T f O \ « ( S O ' O r ' 0 'l N X © © O O O N tN C N 0 0 C O i n C O i n oo $ 0 0 C O 3 15 C N C N o o r_ t tN oo d © a r"1 © © © 0 0 o m m 8 co i n tN v O vq 8 0 0 m o C O o © vo tN rn o d © o d C O O' 10 v © o co oo O' in O' o o n in © © vo K N M O If) © d © d n in in w o oo O' tN C N S Tf d d d d r j ' 0 © 0\ 0 0r-i\ 0 OQr-H o o o i o c o c o t N ' t o r o O ' c o f l ' d d d o d d ' f o C N C O q * X q X vq K Tf q C N X in 8 vq N oo O' © © © © © o C N v O ft a X X vo In C O X 3 C N C N s Tf C N o 00 O' O' d E © © © © oo O' C N vo oo O' 00 C N 3 ? tN X v O V O 3 © o C N V O r n vd tN £ o 2 o © © © & s 3 00 in o cq $ O in C N O' tN V O V O m o o f! V O C n 2 d 2 d d d d tN O' tN C N s x T f X 8 C O in 8 C N ts. T f C N o o tN X tN oo © o o o o IN O' 3 O' vq 25 cq N Tf s X in © © tN T f © © X tN X © © 2 © © © t s O' T f C N q m T f N Tf s X q X tN C N o © oo tN X © © 2 © © © © C n O' tN T f 2 N O fe tN X V O v O 5 2 © o K tN C n © © © © © tN O' C N O' tN T f q vo 3 cq q q vq tN 1 97.24 £ c /5 H © o in vo vo S vo O' O' N © © O © C O S s S S s 0 . < B. « ■ Q, 0 Z t4 s © c O C O T f C O X o C N 8 R V O o o © C N o v O tN T f C N C O cq O' © v O X v O v© X X © X vq v6 1 - 1 d o o C N o rH vo X T f Tf C N o m C N v O X X o C N v O v O d o o C N d X X C N Tf C N C N Tf O' m X T f X © C N vq vd d © o c v i © 8 tN tN C N o Tf v O V O X T f X © X in vd d © © C N © co X tN O' C N C O T f v O O X o 3 vd r-J o o o c n o v O O' 3 2 o C N 8 3 8 X vd © o o c n o tn X in 1.58 C O T f © X C O X t s o §8 vd o o d c n o o X o C N in co in 2 C N v O X C N X o R vo o o © C N d In tN C O C N T f cq - 2 X v O X X X o V O V O vd ** rH o o o C N d ts in C O T f O' v o v O C N X o tN tN © X © © X vd rH T _ l d d d c n d E; R R C N T f T f tN X X © X © q vd ** o © o C N o 2 R in T f C N v O «f C N 8 R vd d o o C N o 00 O' C O in 3 C n © O' X X X o vd r"1 rH o o o C N o 2 O' 3 o C N Tf X 3 V O T f X © X vq vd rH d d o C N © X O' C N o v O Tf C N C N X X 8 Q vd d o o c v i © 00 O' O' C N © Tf $ 2 8 vq vd © © o C N o R C N C N v O cq Tf Tf rH V O 3 8 q vq vd © o o c v i o K C N O' cO X T f O' X C N X 8 O' V D v O © © d C N o 6.87 1.13 1.26 0.13 0.13 0.61 2.46 0.08 1.58 C O ^ O' ts O' C O © h h in it o ift o o o o c n o I ^ 0 C N — + ! is ir- * - J ' ± < 3 « > c ' c /5<<S<Hp -SS § S 5 1 2 X d r» o 8 8S5 in o « o 8 8SC 8 0 C O 8 8S22 irS o © 8 3 $ 5 e g < 8 u z 8 2 2 o d d © x T f O ri rn o d d © vO CN © rn rn o d d © V O © rn o d d g vO fS o ' o d o in vt o rH rn o d d 8 2 3 o d d 8 2 2 o d d O N Tf O rH rn O O © © CO VO O rn rn o d d 8 2 2 d o © © vc v O O rH rH d o © 8 2 2 d o © 8 2 2 o d d 8 2 2 o d d © VO Tf O rn rn d © © © V O Tf © rn rH o d d © in in © rH rn d o © © C O C O © rn rn o d d S „ c .ts H w C O « 5 < u z a 8 8 8 o cn o 8 8 S © r-i d S m m N C N d rH d 8 S 8 O rH o 8 C O tN O' o © r ! © ■ 8 8 2 © rH O 8S2 O rH o ■ 8 8 8 d rH O 8 8 5 : 3 in 8 8 2 8 : © rH o o ■ 8 O 8 © rn O 8 2 8 8 : 8 8 8 8' < | I o o o b . 0 8 in a 78 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. S am ple S P 1 4 2 I D 01-001 01-002 01-003 01-004 01-005 01-006 01-007 01-008 01-009 01-010 01-011 01-012 01-013 01-014 01-015 01-016 01-017 02-001 02-002 02-003 0 2 -0 0 4 N 0 0 0 0 0 0 0 0 0 0 x X X 3 O cs R X T f 8 S in T t * s O 0 0 o o r O o O C s O s 3 C s O s cs v O c s O ' T p c s O s O s in o O ' C S ts o o o © m X v d o s O 0 0 o d o o o o v d t * , _ l , _ l O s 8 8 s tn v q c s c q o C s c n in o q R C s T f o o v o in v O t * s O 0 0 o o o O o o C s O s N m v O rH c s in S' O s o o in c n o in in v o q x q v q T p o v O t P v O 0 0 o o o o o o C s O ' ts C s 0 0 s o C s t p o o s O m o o © o > 0 ts t p q C S C s q q s O T p s O X o O o o o C s O ' C S cs cs o * c n in m R V O X X o O ' R rH C S o © 'O © s o d v o 0 0 o d r H d o o d C s T f * rH O s c n C S c n o v o t * K in m O s 8 in R K o o O ' V O T f * rH v d 0 0 o o rH H H o o o C s O s O O © ts O f O ' f l v O O ' H H ' O H ' C O O d d r i r l d OOCsNXOvvOOON vo q q X n o n o d o d co o o © © O N « O N n to N 1 O' ^ h 00 to » N d to o o h o o O ' N 't 'fl O N (0 N O' O N O' O' O pi (0 C O O IA C s v O O Tf o d o vo x vo x C O N rf d co o ^ N co C O in o 2 so O' o Os X vo q m o d oo o o n rn o O O N cs o O v O o X X T f os T f * v o o C s v d o o d o 2 T H o s o x in C s v O T f o O ' 3 C S o F t v d 0 0 o d 5 o cs ts os v o v o X cs O ' cs X X q £ d o o o d 2 o C s cs o o o t p O ' X O ' V O X q N C s C s O ' O s d o in o T f rn R X X X o s O ' o o rn $ rn v d 0 0 o d £ rn o X o C s in X X C s X O ' v © C s o X C s r H v d 0 0 o o rH o m q o I D O' Tf 8 o Os O' q X O ' v O v o sO X o o 5 O o S 8 'i- 0 . „ e Z S t n U in £ J O ' X o a T p X cs X x X 2 R 8 8 vd r H o d o cs d r H o X C s O ' X o C s X S X X X cs C s C s . o o o © vd ,_ l o o d es o o X X O ' C s o q T f * rH v O X X 2 R o o o o vd o o o cs o o X X O ' X o V O r H r cs C s X C s X cs R o o © o vd rn rn o d o es o r" d X cs O' X o X o cs O' X s cs ts o o © © vd rH o o o cs d r" d X X O s C s o 'O O' o o X v O 5 r V O V O o o 8 vd d d o cs o d X O' O s o X 2 cs o X O' cs cs X 0 0 o o 8 vd o o d cs o o X C s X X X q o X O' X N C S X N o o © © vd o o o cs d o X X O' X © X X © cs C s X O' X cs R o © o o vd o o o cs d o in 8 8 rH s s T f cs a 8 © o ts T H o o o c v i d o X X X cs T f C S cs o $ o X rH R 8 8 vd 2 o d o cs o o X o X o cs X 5 X O' v O cs cs cs R 8 8 d o o o cs o o X O' X q o X O' X X X cs a o o © © vd rn o o d es o o X ts X X o q C s o cs cs V O a - a o o © © vd o o o cs o o X X O s X o C s cs r vo X a C S vo ts. 8 8 vo rH d o d cs o o X X os C s o X X o cs o v O X X 5 a 8 8 so d o o cs o o X cs O' X © O' rH X X X cs X cs ts C s o © o © d O o d cs d rH o X O' X J H X q T p X X T f cs cs X c q o o © © vd rH o o o cs o o X H O' O ' O' N CO VO M © O' © O n IT) fO H N O r-J o o o n o R 8 rH © © © © es © o o o cs o > cn < < 2 < H u- oo c 2 2 £ u H \£i to o co h o h o in o o n O N r H O r i o in O' 'O O N rH O r-i © rj to U 2 o o o ■ o to ^ O rH r n odd o m cn O rH rH o d d o 'O in O rH rH o d d § 2 2 o d d 8 £ 2 odd o o in o cs o d d g o n cn o d d o n cn O r n rH o d d 8 2 2 o d d O C s T f O rn r H o d d O 00 T# O rH rH o d d 8 2 2 o d d 8 8 n VO Tf* o o 8 a 8 o o o o o o o o o cs o o 8 r a O rH o § r n OS 00 rn O r i o 8 S3 ^ : O rH o 882: O r o 8 in in so cn o o 8 ^ v o so cn © r-i o 8 R R d rH O 8 R R O rH o 8 cs o o 00 r n . O ri o ■ S n cn ■ q 1 d r-i d § cs o o 00 rH . O r i O 8 8 8 O rH O O rH O O 8 8 2 2 8 o in in o 88 o o 8 8 8 8 8 o o r-i o o 8 8 8 8 8 o o c s o o i* I k x _ c n 0 0 0 ft U 8 in 79 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. S am p le ID L ocation SP142 02-005 rim 02-006 rim 02-009 rim 02-010 rim 02-011 rim 02-012 rim 02-013 rim 03-001 core 03-002 core 03-003 core 03-004 in t 03-005 in t 03-006 in t 03-007 in t 03-008 in t 03-009 in t 03-010 in t 03-011 in t 03-012 in t 03-013 rim 03-014 rim S i02 45.71 45.25 45.00 44.94 45.13 46.14 45.00 44.76 44.82 45.70 45.98 45.30 46.14 45.87 45.92 46.00 45.72 47.01 46.45 45.59 46.06 TiQ , 1.21 1.28 1.16 1.20 1.13 0.78 1.10 1.29 1.30 1.22 1.05 1.20 1.07 1.32 1.36 1.18 1.24 1.11 1.07 1.09 0.93 Al2 0 , 6.91 6.96 6.90 7.04 6.87 7.23 7.06 7.68 7.66 7.35 6.75 6.99 6.59 6.92 6.73 6.97 6.68 5.78 6.36 6.93 6.48 FeO* 18.36 18.57 18.86 18.91 18.85 18.72 19.05 19.48 19.32 19.05 18.90 19.29 18.77 18.81 18.41 18.51 18.79 18.06 18.70 18.78 18.47 M g O 10.36 10.32 10.30 10.12 10.26 10.22 9.81 9.91 9.91 10.26 10.18 10.16 10.58 10.38 10.52 10.44 10.46 11.24 10.70 10.45 10.79 M n O 0.93 0.92 0.94 0.91 0.93 0.88 0.91 0.83 0.86 0.84 0.87 0.89 0.87 0.93 0.91 0.84 0.88 0.91 0.93 0.91 0.88 C aO 11.00 10.95 11.05 11.06 11.11 11.44 11.16 11.43 11.25 11.10 11.28 11.22 11.09 11.07 11.06 11.46 11.22 11.15 10.93 10.95 10.99 N % 0 1.14 1.21 1.25 1.37 1.29 1.03 1.18 1.07 1.24 1.21 1.04 1.12 1.11 1.26 1.18 1.06 1.21 1.12 1.17 1.21 1.17 k 2 o 0.77 0.76 0.76 0.80 0.80 0.71 0.78 0.89 0.90 0.85 0.74 0.77 0.71 0.75 0.72 0.75 0.76 0.61 0.72 0.79 0.69 F 0.42 0.47 0.47 0.45 0.43 0.38 0.33 0.00 0.43 0.28 0.25 0.41 0.45 0.50 0.40 0.40 0.42 0.45 0.40 0.48 0.43 C l 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S u m 96.81 96.69 96.69 96.79 96.80 97.53 96.39 97.33 97.70 97.85 97.04 97.34 97.38 97.81 97.20 97.61 97.36 97.43 97.43 97.19 96.87 F o rm u la p e r 23 O xygens T -sites Si 6.91 6.86 6.84 6.83 6.85 6.92 6.86 6.73 6.75 6.84 6.93 6.83 6.93 6.88 6.91 6.90 6.89 7.05 6.97 6.87 6.94 A liv 1.09 1.14 1.16 1.17 1.15 1.08 1.14 1.27 1.25 1.16 1.07 1.17 1.07 1.12 1.09 1.10 1.11 0.95 1.03 1.13 1.06 A l(total) 1.23 1.24 1.24 1.26 1.23 1.28 1.27 1.36 1.36 1.30 1.20 1.24 1.17 1.22 1.19 1.23 1.19 1.02 1.12 1.23 1.15 M l,2,3 sites A lvi 0.14 0.10 0.08 0.09 0.08 0.19 0.13 0.10 0.12 0.13 0.13 0.08 0.10 0.10 0.10 0.13 0.08 0.07 0.10 0.10 0.09 Ti 0.14 0.15 0.13 0.14 0.13 0.09 0.13 0.15 0.15 0.14 0.12 0.14 0.12 0.15 0.15 0.13 0.14 0.12 0.12 0.12 0.11 Fe3+ 0.52 0.59 0.58 0.56 0.57 0.56 0.55 0.67 0.60 0.58 0.55 0.62 0.59 0.55 0.53 0.54 0.54 0.44 0.55 0.62 0.62 M g 2.33 2.33 2.33 2.29 2.32 2.28 2.23 2.22 2.23 2.29 2.29 2.28 2.37 2.32 2.36 2.33 2.35 2.51 2.39 2.35 2.42 M n 0.12 0.12 0.12 0.12 0.12 0.11 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.12 0.12 0.11 0.11 0.12 0.12 0.12 0.11 Fe2+ 1.75 1.71 1.76 1.80 1.78 1.77 1.85 1.76 1.80 1.75 1.80 1.76 1.71 1.76 1.73 1.76 1.78 1.74 1.72 1.69 1.65 C a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S u m M l,2 ,3 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 M 4 site Fe 0.05 0.05 0.06 0.04 0.04 0.02 0.03 0.02 0.03 0.05 0.03 0.04 0.06 0.05 0.05 0.02 0.05 0.08 0.07 0.06 0.06 C a 1.78 1.78 1.80 1.80 1.81 1.84 1.82 1.84 1.82 1.78 1.82 1.81 1.78 1.78 1.78 1.84 1.81 1.79 1.76 1.77 1.77 N a 0.17 0.17 0.14 0.16 0.15 0.14 0.15 0.14 0.15 0.17 0.15 0.14 0.16 0.17 0.17 0.14 0.14 0.13 0.17 0.17 0.17 S u m M 4 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 A site C a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 N a 0.17 0.18 0.23 0.24 0.23 0.16 0.20 0.17 0.21 0.18 0.16 0.19 0.16 0.20 0.17 0.17 0.21 0.20 0.17 0.18 0.17 K 0.15 0.15 0.15 0.16 0.16 0.14 0.15 0.17 0.17 0.16 0.14 0.15 0.14 0.14 0.14 0.14 0.15 0.12 0.14 0.15 0.13 S u m A 0.32 0.33 0.38 0.40 0.39 0.30 0.35 0.34 0.39 0.34 0.30 0.33 0.30 0.34 0.31 0.31 0.36 0.32 0.31 0.33 0.31 O H site O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O H 1.80 1.77 1.77 1.78 1.79 1.82 1.84 2.00 1.79 1.87 1.88 1.80 1.78 1.76 1.81 1.81 1.80 1.78 1.81 1.77 1.79 F 0.20 0.23 0.23 0.22 0.21 0.18 0.16 0.00 0.21 0.13 0.12 0.20 0.22 0.24 0.19 0.19 0.20 0.22 0.19 0.23 0.21 ci 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 OO S u m ca tio n s 15.32 15.33 15.38 15.40 15.39 15.30 15.35 15.34 15.39 15.34 15.30 15.33 15.30 15.34 15.31 15.31 15.36 15.32 15.31 15.33 15.31 O Sam ple SP142 G P 6 0 -0 2 ^ E 8 'c • 6 8 -c o ‘C ts O © r- c o o o o i f t ^ o o i f t ’st* m ts O v cs cs o cs o 00 V D o in in o vd O v o F o ,_ l o 00 O V o V O rn C O ts O O 00 oo m q oo q s 8 8 00 cs s o o d cs ov rH 2 2 rr o d o o\ o Fs cn cn V O C S cn cn s ts C S o 8 $ 8 in « o ts O v o rH - T " o o d 00 O V oo in o vo in C N O m in V O o in cn s cs 00 in cs o o in s o ts O v o rH rH d d d o 00 O v s O v K ts V O 5 H o q C N 00 ts 00 q o o R 4 rH vd 00 o 2 o o o ts O v oo cn R ts "tf cn cs "tf 00 v O m "tf © © O v m vd r-t vd oo d r-‘ - d o o ts O v cs o in V O O v oo cn cs V O o oo 2 in o 8 o O v in ts 00 o £ o o ts O v N O v cn 00 vo m v O cs O v oo "tf ts 8 ts 00 in "tf 1 -1 vd O v d F d d o ts O v ts O V O v 00 m vo © cn cs O v q s ov v O 5 8 vo "tf in "tf d d O v d d o d ts O v 3 vo o cn ts O v 00 cn cn 3 V O o R © V O o o O v cn 4 rH vd 00 d o 2 r" o o d vd O v C N O ) ts 3 m 00 vo "tf cs O v vo O v cn R 3 8 r 2 r- vd 00 d o o rH o d © ts O v V © V O o R vo oo cn o O v ts ts o 2 m vq 8 $ vd "tf r " vd oo d d £ d o 00 O v cn C N cn o in in ts in 5) ts 00 v O cs cn o "tf oo © cn © © O v © 2 ts oo o d H rn o d © ts O v O v 00 in O v c s c s O v O v o O v oo q o 2 ov cs 8 C S cn 2 o ts 00 o o d d o ts O v C S o in ov 8 8 00 O V O' O v o in O v o 00 "tf cs o © 00 vd "tf o vd O v O V o £ o o o o vd ov vo O v o m s $ vo O V s ov O V ts o c n © o O V c n « d vd 0 0 d d F d o © © ts O v ts "tf £ O v "tf C S vo in R O v c n c s 0 0 R ts c n © o O v c n in "tf o ts O v O v o F rn o o o ts O v s s R s C S c n vo O v C S "tf c s R © o © o c s 0 0 s o ts £ O v o £ r" o o © vd O v N C S c n o O v o m 0 0 ts o o s "tf q 3 o "tf o o O v c s in "tf ts O v O v 2 o o d ts O v O v in q 3 0 0 c n c n O v m O v H c n q $ 8 8 in V O "tf r" vd 0 0 d o H d o d ts O v s * O C O C N © "tf v o o r< O N fO r< \fi O o o o n o h o O O O C N © ■ 3 co cn o o o cs © > "tf ts i in cn d d d cs d o o o cs o ■ oo cs vo cn "t ts © © rH so cn r-> vo o o o o cs 6 i-! o o o o cs © o o o cs o 8 m o c s cm o d d 8 jn cn o d d O C S ts o 8 8 8 8 8 8 8 2 8 o r-> o o oo cs o ts cs o r-i O O 8 S 2 8 in cn cs in ^ E o -E © r C S C S © r e h O E C S 9 c o 'c o cs © r- r h Si o E u r ' 6 cn .5 o E o ^ \o cn rn o o o d o R 8 m cs cn © 00 rH O O O C S O rH cn cs "tf pi cs oo rH rH in cn rH ts o o o d o r< vo "*> ■ vo cn ■ o o o cs o vo r - > ts vo cs x o rt n in C S ri ts ~ o o o cs o 2 o o o cs o © © © cs o o o o cs o o n in o cs CS O V O r-i 1 -t o o o d o cn cs o i-t cn cs n r - vq CN r - 00 o o o cs o 2 8 2 2 o d d 8 2 2 o d d o m vo O r-. rn o d d 8 2 2 o d d o ^ m O ' rn o d d o m cn O rr rr o d d 8 2 2 o d d 8 8 n "tf 0v V O O t s rn o d d o o O C N o d d m "tf c n ov © in 4 r >o o d C N d rr Z m - W jS cn •S . w rH > CnOOCCN- I ” * J S S < U Z M O rH O N o O ts CS © o d o o 8 2 2 8 8 N ^ o d d ' o m m 1 O 00 rn i o d d ' 8 8 8 2 8 o o rn o o 2 8 8 2 8 o o ^ o o oo o cn ts o C N O 00 rH O o o rd o o 3 8 3 2 8 o o ^ o o 8 8 8 8 8 o o c n o o 8 8 2 8 cn in 81 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Sam ple G P 60-02 I D 03-016 03-017 03-018 03-019 03-020 03-021 04-001 04-002 04-003 04-004 04-005 04-006 04-007 04-008 04-009 04-010 04-011 04-012 04-013 04-014 04-015 s a N O cn R - O' C s O' O N ** n o ts m 00 R O' Tf C N O' o o ts o5 O' s 5 o> oo cn N O N O C s C N cn C N o in — d — - in C s Tf C N a N O O' C N cn o C s 00 O' — 2! oo 00 cn N O N O C s C N s Tf o C s 00 o — 2 © O © ts O © O ts O Cs O O ts o in ^ o ^ — © o o n o o ^ so o oo © O © ts 5 2 c n Tf s Tf — in ts R C s 8 o IN O' O' s o o c n N O ts N O in N O N O oo C N O' © o C s . o © o © o ts O' O' o o o o in 8 00 N O N O C N 00 C N N O 00 8 o o C s o 5 O' o o o C N o C s C N C s O' ts 8 O' C N o 00 oo T f 8 - C s O' O' o d o s 8 O' o C N o s 2 c n m 8 d O' o 2 o o o O' C N N O N O oo O' nt 8 N O C N N 2 c n c n o o o N O oo o o o o in oo - N O C s o o C s c n s N O N O o T f o © o N O 00 o o o o N O N O N O 00 O' $ o O' s N O N O C N o o d N O 00 d 2 d — o N C s 00 N N O 00 © in c n C N 00 C N C N o © C s d o o d C N Tf C N 2 $ - § £ ts C N 8 r H IS O' O N 5 o o o 00 N O C N oo oo oo oo o o N O 00 C s in C N N O 8 o in C s - d o o o ° oo o ts c n ts O 8 cn o a 8 8 r" ts O N o — — d o o q 8 5 a C N in o a C N 00 O' 8 r" C s O' d d C N o 8 NO cn cn in 5 - o s 00 N O O in o o N O oo — - 2 r o o o in os o o O' m os c n o so oo d no O' O' co O' m co cs in o n o o' : $ S Cs O IN O o o o o o o o IN S S | 6 | 9 o | o __e Tf N O Tf O O' O ts O H 2 a 3 c n £ £ O O © C N O ts 00 M Tf Tf ^ O 1 - 1 O ts — — ts o o o d c n d — d O O N O Tf rn o o o n o ts O' r- Tf Tf m o — O N © C N — tS © d d d c n d rn d o o o C N o rn o 2 S 2 8 S 2 K S o o d c n o rn © ts in cn ts in co o — O Cs — — ts O o o o ci o r o c n c n ts O' m m rr rr If) rn rn 00 o o o n o r rH C N O Tf in co o — — N O C N — Cs O d o © c v i © — © O O O C N o tS rH oo cn ^ C s O r if) CO H N o o o ni o h s o o o c n o rn o C N ts ts Tf ^ ts © rH o S O cn rH N O O © © © c n © — d ts cn ts cn in in o O rH in cn rH Cs © d d d cn d — o o cn r- ts Tf L n rH rH N O rH rH 00 o d d c n d — i O' O' L n in in N O O O Tf in rH N O d d o c n d r-J i O O O C N O 2 2 S a 2 2 8 d o d N d n d O O O CN o T f s o t s rn rn ts O' in 00 o O' O rH rn rH in C N rH Cs o n o h h d o o c n © — o oo Tf cn o d* m 13 cn 2 c n ' — < % < cn oo ! h fc 2 * A & u 8S12 d rH o 8 3 8 8 8 8 S R 2 £ E w 3 2 V *2 in 2 u, U Z 8 R 2 o d d O O' no O rn rr o d d 8 2 2 o d d 8 2 2 o d d 8 2 2 o d d o ts cn O rn rn o d d 8 a 2 o d d o o m © CN — o d d 8 8 8 2 2 o d d o no cn o rH rH o d d o no cn O rn rH o d d o Cs no O C N rH o d d 8 2 2 o d d 8 8 2 2 cn o d d 8 8 2 2 cn o d d o no cn O rH rH o d d O Cs Tf O rH rH o d d 8 K n 8 o rn o o O NO Tf o O t s CN © o i-5 o o 8 5 2 8 o rn o o 8 A 2 8 o I- o o 8 8 8 8 o h o o 8 2 S 3 8 0 1 - 0 0 8 8 8 8 o ri o o 8 2 8 8 0 — 0 0 8 2 K 8 0 — 0 0 8 2 2 8 0 — 0 0 8 8 2 8 0 — 0 0 8 5 2 8 0 — 0 0 8 8 8 8 0 — 0 0 8 5 8 8 0 — 0 0 8 oo 2 8 0 — 0 0 8 0 0 0 cs cn o 0 — 0 0 5 8 8 8 8 o o cn o o 8 8 8 8 8 o d d — o 8 2 8 8 0 — 0 0 S en cs © no cn o 0 — 0 0 . 8 8 £ * 5 < 30 X _ O O t t - U 8 in 3 o o C N cn i n 82 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. S am p le ID L ocatio n 04-016 rim 04-017 rim 04-018 in t 04-019 core 04-020 core 04-021 core 04-022 core 04-023 int 04-024 in t 04-025 in t 05-001 rim 05-002 rim 05-003 rim 05-004 rim 05-005 rim 05-006 in t 05-007 in t 05-008 in t 05-009 in t 05-010 in t 05-011 in t S i0 2 44.61 43.60 45.32 45.78 46.82 46.65 45.74 46.04 45.69 44.85 46.63 46.49 46.21 45.23 45.15 46.02 46.70 45.16 45.83 45.53 45.47 T i0 2 0.52 1.34 1.16 0.87 0.57 0.68 0.88 0.92 1.17 1.25 0.99 1.12 1.10 1.27 1.14 1.18 1.03 1.13 0.91 1.25 1.09 A I2 0 3 8.06 8.08 7.01 6.69 6.23 6.24 6.73 6.77 6.82 7.21 6.04 6.17 6.33 7.11 7.02 6.63 6.15 7.03 7.01 6.73 6.72 FeO* 19.95 20.06 19.28 18.75 18.69 18.66 19.05 19.15 18.95 19.35 18.53 18.73 18.76 19.39 19.38 18.90 18.49 19.57 19.36 19.26 18.96 M g O 9.21 9.04 9.99 10.50 10.76 10.68 10.38 10.30 10.17 9.86 10.70 10.30 10.40 9.81 9.56 10.27 10.86 9.89 10.02 10.10 10.43 M n O 1.18 1.11 1.09 1.10 1.15 1.12 1.20 1.15 1.12 1.22 1.20 1.15 1.19 1.17 1.15 1.11 1.13 1.15 1.15 1.12 1.17 C aO 11.15 11.00 11.16 11.03 11.31 11.14 11.23 11.08 11.12 11.09 10.87 11.10 11.12 10.92 10.85 10.99 10.88 11.01 11.26 11.07 11.07 N a 2 0 1.21 1.27 1.23 1.09 0.88 1.06 1.09 1.23 1.18 1.32 0.86 1.15 1.14 1.27 1.33 1.27 1.11 1.28 1.00 1.25 1.31 K 2 0 0.80 0.95 0.77 0.71 0.62 0.64 0.71 0.74 0.73 0.76 0.64 0.70 0.74 0.83 0.81 0.74 0.70 0.77 0.72 0.78 0.72 F 0.34 1.68 0.47 0.55 0.37 0.30 0.32 0.42 0.47 0.73 0.53 0.72 0.00 0.47 0.42 0.79 0.25 0.33 0.42 0.48 0.40 a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S u m 97.01 98.13 97.49 97.07 97.40 97.17 97.32 97.78 97.42 97.63 96.99 97.64 96.99 97.47 96.79 97.89 97.30 97.32 97.67 97.56 97.34 F o rm u la p e r 23 O xygens T -sites Si 6.77 6.66 6.84 6.91 7.01 7.00 6.88 6.90 6.88 6.79 7.03 7.00 6.96 6.84 6.88 6.92 7.00 6.83 6.88 6.88 6.87 AHv 1.23 1.34 1.16 1.09 0.99 1.00 1.12 1.10 1.12 1.21 0.97 1.00 1.04 1.16 1.12 1.08 1.00 1.17 1.12 1.12 1.13 A l(total) 1.44 1.46 1.25 1.19 1.10 1.10 1.19 1.20 1.21 1.29 1.07 1.10 1.12 1.27 1.26 1.18 1.09 1.25 1.24 1.20 1.20 M l,2,3 site s A lv i 0.21 0.12 0.09 0.10 0.11 0.11 0.08 0.10 0.10 0.08 0.11 0.10 0.08 0.10 0.14 0.10 0.09 0.08 0.12 0.08 0.07 Ti 0.06 0.15 0.13 0.10 0.06 0.08 0.10 0.10 0.13 0.14 0.11 0.13 0.12 0.14 0.13 0.13 0.12 0.13 0.10 0.14 0.12 Fe3+ 0.70 0.66 0.62 0.66 0.63 0.61 0.67 0.64 0.59 0.60 0.51 0.50 0.54 0.60 0.53 0.55 0.54 0.61 0.65 0.53 0.54 M g 2.08 2.06 2.25 2.36 2.40 2.39 2.33 2.30 2.28 2.23 2.40 2.31 2.33 2.21 2.17 2.30 2.43 2.23 2.24 2.27 2.35 M n 0.15 0.14 0.14 0.14 0.15 0.14 0.15 0.15 0.14 0.16 0.15 0.15 0.15 0.15 0.15 0.14 0.14 0.15 0.15 0.14 0.15 Fe2+ 1.80 1.86 1.78 1.65 1.65 1.67 1.68 1.71 1.75 1.79 1.71 1.81 1.77 1.80 1.88 1.77 1.69 1.80 1.74 1.84 1.77 C a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S u m M l,2 ,3 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 M 4 site Fe 0.03 0.04 0.04 0.06 0.06 0.06 0.05 0.05 0.04 0.05 0.12 0.04 0.05 0.06 0.05 0.05 0.09 0.06 0.04 0.07 0.08 C a 1.81 1.80 1.80 1.78 1.81 1.79 1.81 1.78 1.80 1.80 1.76 1.79 1.79 1.77 1.77 1.77 1.75 1.78 1.81 1.79 1.79 N a 0.15 0.16 0.16 0.16 0.13 0.15 0.14 0.17 0.16 0.15 0.13 0.16 0.15 0.18 0.18 0.17 0.16 0.15 0.14 0.14 0.12 S u m M 4 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 A site C a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 N a 0.20 0.22 0.20 0.16 0.13 0.16 0.18 0.19 0.18 0.24 0.13 0.17 0.18 0.20 0.21 0.20 0.16 0.22 0.15 0.23 0.26 K 0.15 0.19 0.15 0.14 0.12 0.12 0.14 0.14 0.14 0.15 0.12 0.14 0.14 0.16 0.16 0.14 0.13 0.15 0.14 0.15 0.14 S u m A 0.36 0.40 0.35 0.30 0.25 0.28 0.32 0.33 0.32 0.39 0.25 0.31 0.32 0.36 0.37 0.34 0.30 0.37 0.28 0.37 0.40 O H site O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O H 1.83 1.18 1.77 1.73 1.82 1.86 1.84 1.80 1.77 1.65 1.74 1.65 2.00 1.77 1.80 1.62 1.88 1.84 1.80 1.77 1.81 F 0.17 0.82 0.23 0.27 0.18 0.14 0.16 0.20 0.23 0.35 0.26 0.35 0.00 0.23 0.20 0.38 0.12 0.16 0.20 0.23 0.19 a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 S u m ca tio n s 15.36 15.40 15.35 15.30 15.25 15.28 15.32 15.33 15.32 15.39 15.25 15.31 15.32 15.36 15.37 15.34 15.30 15.37 15.28 15.37 15.40 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. S am p le ID 05-012 05-013 05-014 05-015 05-016 08-001 08-002 08-003 08-004 08-005 JL05 01-001 01-002 01-003 01-004 01-005 01-006 01-007 01-008 01-009 01-010 01-011 L o c atio n in t in t in t rim rim rim rim rim rim rim rim rim rim rim rim rim rim rim rim rim rim S i0 2 45.78 46.52 46.50 45.42 49.08 45.13 45.27 45.07 46.96 45.72 46.34 45.92 50.08 45.24 46.79 46.71 49.15 48.76 46.72 48.06 45.06 T i0 2 1.01 0.90 1.03 1.14 1.12 0.94 1.02 1.18 0.67 0.57 0.79 0.92 0.63 0.79 0.78 0.60 0.38 0.39 0.53 0.64 0.63 A 1203 6.42 6.30 6.78 7.10 7.54 7.17 7.23 7.36 8.21 7.20 6.73 7.17 8.00 7.64 6.91 6.60 5.07 5.78 6.47 7.01 8.26 FeO * 18.61 18.58 19.21 19.35 18.26 19.51 19.35 19.43 19.49 19.40 18.22 18.55 17.41 18.66 18.29 17.95 17.34 17.01 18.50 17.19 18.74 M g O 10.77 10.68 10.26 9.79 11.03 9.93 9.86 9.84 10.17 9.78 10.97 10.61 12.37 10.45 10.89 11.34 12.03 12.39 11.18 11.66 10.15 M n O 1.18 1.07 1.14 1.20 1.14 1.17 1.13 1.15 1.07 1.19 0.44 0.47 0.48 0.48 0.54 0.50 0.54 0.49 0.54 0.51 0.50 C aO 10.75 11.16 11.00 10.87 10.65 11.05 11.10 11.00 11.03 11.06 11.46 11.44 11.13 11.21 11.35 11.29 11.59 11.71 11.37 11.43 11.45 N a 2 0 1.28 1.11 1.07 1.33 1.52 1.20 1.28 1.28 1.46 1.13 0.88 0.93 1.09 0.91 0.83 0.71 0.67 0.77 0.80 0.81 0.96 K 2 0 0.69 0.71 0.71 0.80 0.81 0.76 0.82 0.83 0.78 0.72 0.61 0.67 0.62 0.67 0.60 0.53 0.36 0.40 0.54 0.56 0.76 F 0.00 0.41 1.14 0.35 1.23 1.42 0.37 0.56 0.72 0.28 0.20 0.08 0.20 1.37 0.17 0.23 0.60 0.28 0.50 1.84 0.25 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S u m 96.48 97.44 98.85 97.35 102.38 98.26 97.41 97.69 100.56 97.05 96.62 96.76 102.02 97.41 97.15 96.47 97.74 97.98 97.13 99.72 96.75 F o rm u la p e r 23 O xy g en s T -sites Si 6.93 6.98 6.95 6.86 7.02 6.82 6.84 6.80 6.86 6.90 6.96 6.89 7.05 6.83 6.99 7.00 7.27 7.15 6.99 7.07 6.78 A liv 1.07 1.02 1.05 1.14 0.98 1.18 1.16 1.20 1.14 1.10 1.04 1.11 0.95 1.17 1.01 1.00 0.73 0.85 1.01 0.93 1.22 A l(to tal) 1.14 1.11 1.19 1.26 1.27 1.28 1.29 1.31 1.41 1.28 1.19 1.27 1.33 1.36 1.22 1.17 0.89 1.00 1.14 1.22 1.47 M l,2,3 sites A lv i 0.07 0.09 0.14 0.13 0.29 0.09 0.12 0.11 0.27 0.18 0.15 0.16 0.38 0.19 0.20 0.17 0.16 0.15 0.13 0.28 0.25 Ti 0.12 0.10 0.12 0.13 0.12 0.11 0.12 0.13 0.07 0.06 0.09 0.10 0.07 0.09 0.09 0.07 0.04 0.04 0.06 0.07 0.07 Fe3+ 0.53 0.59 0.54 0.57 0.43 0.72 0.60 0.64 0.58 0.65 0.60 0.61 0.38 0.66 0.52 0.59 0.42 0.53 0.66 0.40 0.67 M g 2.43 2.39 2.28 2.20 2.35 2.24 2.22 2.21 2.21 2.20 2.45 2.37 2.60 2.35 2.42 2.53 2.65 2.71 2.49 2.56 2.28 M n 0.15 0.14 0.14 0.15 0.14 0.15 0.14 0.15 0.13 0.15 0.06 0.06 0.06 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.06 Fe2+ 1.70 1.70 1.77 1.82 1.66 1.70 1.80 1.76 1.73 1.76 1.65 1.69 1.53 1.64 1.70 1.58 1.66 1.50 1.59 1.63 1.67 C a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S u m M l,2 ,3 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 M 4 site Fe 0.12 0.05 0.09 0.06 0.09 0.05 0.04 0.05 0.07 0.05 0.03 0.03 0.15 0.05 0.06 0.08 0.07 0.05 0.06 0.08 0.02 C a 1.74 1.79 1.76 1.76 1.63 1.79 1.80 1.78 1.72 1.79 1.84 1.84 1.68 1.81 1.82 1.81 1.84 1.84 1.82 1.80 1.85 N a 0.13 0.16 0.15 0.18 0.28 0.17 0.16 0.17 0.21 0.16 0.13 0.13 0.17 0.13 0.12 0.10 0.10 0.11 0.12 0.11 0.14 S u m M 4 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 A site C a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 N a 0.24 0.16 0.16 0.21 0.14 0.18 0.21 0.20 0.21 0.17 0.13 0.14 0.12 0.13 0.12 0.10 0.10 0.11 0.12 0.12 0.14 K 0.13 0.14 0.14 0.15 0.15 0.15 0.16 0.16 0.14 0.14 0.12 0.13 0.11 0.13 0.11 0.10 0.07 0.07 0.10 0.11 0.15 S u m A 0.37 0.30 0.29 0.36 0.29 0.33 0.37 0.36 0.35 0.31 0.25 0.27 0.24 0.26 0.24 0.21 0.17 0.18 0.22 0.22 0.29 O H site O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O H 2.00 1.80 1.46 1.83 1.44 1.31 1.82 1.73 1.66 1.86 1.90 1.96 1.91 1.34 1.92 1.89 1.72 1.87 1.76 1.14 1.88 F 0.00 0.20 0.54 0.17 0.56 0.69 0.18 0.27 0.34 0.14 0.10 0.04 0.09 0.66 0.08 0.11 0.28 0.13 0.24 0.86 0.12 C l 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 S u m c a tio n s 15.37 15.30 15.29 15.36 15.29 15.33 15.37 15.36 15.35 15.31 15.25 15.27 15.24 15.26 15.24 15.21 15.17 15.18 15.22 15.22 15.29 01-012 01-013 01-014 01-015 01-016 01-017 01-019 01-020 01-021 01-022 01-023 01-024 01-025 01-026 01-027 01-028 01-029 01-030 01-031 01-032 01-033 0 1 -0 3 4 5 Q 3 in O N $ as ts S s N O ts C N © © 8 ts O N C N N O Tf N C s © 00 C s C N C N N © 00 N O © © o © © 1.86 cn o © o © N in C N cn © © © ts, o m o © 8 3 o 00 O' O' d ri d o d ts O s N O d d d C N © o iri © © C N © © © © © o © C N tS co C N rt C s o in O' N O o Tf rH O' N O 00 N O m O N ts in © © C N m 2 © Tf cn N Q oo < N © © Tf tn ts C O C N in in O' N O T f © 00 cn © ts C N o S O © © © oq © o C N © ts C N © © 9 o C s O' o o o o o © C s O' N O © © © C N © © in O © C N © © © © © © © C N O' cs m Tf in © in O' n O oo O s Tf n S N O O' C s oo © q 3 R C N C N Q j © C N m o R © C N N O o R 8 8 o s cn 8 8 in Tf rH O s C N 8 C N q oo o 8 8 9 d 00 O' O' o 5 d d d d C s O s N O rn d d d C N d d iri d d C N © o © d d d d C N O s © O N C O 00 N O O N s o m Tf a N O N O in N O © © N O © ts oo cn s a 3 g C N cn N O o in N O o o o o m o C N 00 cn § O o cn cn N O C N § O s N O cn 8 8 o C s O' o o o o o d oo N O © © © C N © © iri © © IN o d © © © © © C N tF r * » rn O N C N in 2> O s C s C N C N C O o O' © oo cn C s in 00 in C s C s ts N O o © oo C N © © C N cn 2 O' © © Tf Tf o N O N O in C s 00 N O C O © co O ) © C N © so cn © N O © © © oo ’ n o q C N q < x > ** q q $ o C s O O o d n d d d d C s O N N O © d d C N d d iri o o C N o o © © © © d C N $ co m N O in O s K in in O' s a C s C N 8 % 00 O n C N Q C N O N cn O N cn N O 00 N O O C s cn o © o Q rH © N O 00 cn O © o © in B © cn o Q s N O o 8 8 C N Tf o o o C N oo o r i o d © © N O O s N O rH © o d C N d rH o in O rH © C N o d o © d rH d d C N S 9 Tf oo in Tf C N 8 oo C N C N 8 O 00 O © 3 N O © O N O N O cn On cn 00 On N O © 00 C N o o o o rH O N O 00 cn rH O © o o m rH cn rH N C N 8 rH O s 8 s 8 Q i o o C N oo o s r' o d 00 O' C s © rH o o d C N d rH d iri © rH © C N © © © © © rH © d C N Tf C O rH « - < C s N O 00 00 00 © © rH O N C N cn cn ts in N O N O o o C N in cn O o in cn ts © ts cn o © m C N O s oo m C N oo N O o o H H © O N rH rH rH Tf O' o C N o o O 00 rH o o rH rH C N O O s o © © s o C s C s o d £ o d o © N O O N C s © rH o O d C N d o tri o rH © C N o d O © d rH d o C N Tf O n 5 © o N in ts N O O' $ Tf o © Tf C O 3 N O O s rH rH in C N 00 O N N O © Tf C N o o o © cn o cn 00 Tf rH 8 8 Tf rH C N rH N O C N 8 © O s o rH 8 8 in Tf o C s 00 o o S o © © © N O O s C s * © rH o o © C N © rH o iri o rH © C N o d © © d * O d C N C s in P ts C s o C O 2 o ts o N O C s rH Tf cn in O N O cn o o Tf C N Tf O © in C N C s © O O Q © rH C N C s C N T f N O in © C s rH © oo © O' rH rH Tf © © C N © © © 00 rH © o rH C N © © o © © L r i Tf ts O' o o S d o o o N O O N C s © rH o o o cri d rH o iri o rH © C N © © d © © C N d d C N K C l C O O C N s 3 © o C s In 8 Tf 00 © o © o rH rH X C N rH © in Cs O s C s © Tf C N © o 8 rH O ts 00 C N rH 8 8 Tf rH cn rH Cs C N 8 rH O s O N o 8 8 iri Tf r'1 ts O' o o s r"t © © © oo O N C s rH rH o d o C N d rH © iri o rH d C N o d d d d rH o o C N C N O' T f 00 O o 3 R C s 00 C N O' N O co N O co o O o O n o N O rH Tf C N 5 O N N O o 00 o © o © C N © m 00 Tf O © © © m C N C s C N o rH O n O' o o o © © 9 o ts 00 o o © © © © N O O s C s o rH o o o C N d 2 © iri © rH © C N © © © © © © © C N O' T f in O' N O in N o O' co C N in N O C O C N O n C s © o 9 © O' © N O C N N O rH Tf rH C s Tf 8 C s © Tf o o 8 rH © C s 00 C N 8 8 Cs Tf rH cn 8 q 8 8 8 9 o C s O s o o £ o o d o C s O' N O r H * rH o O o C N d £ o tri d d C N o d © d d rH o © C N T f 00 N C N oo N O co 00 o C s O N in N O Tf ts ts tn o o rH ts C N O © N O © © N O © © O' o N O in C O C N o o Tf N O o o O' © C N rH rH Tf 00 © cn o o © 00 rH © © rH rH cn © q © © © iri C O C O Tf C N o o d d O N o o N O O N N O rH rH © © © C N © © iri O © C N o © © © © rH © © C N 8 ft s Tf C N C N n $ O' 00 K a o © Tf C N o O N O N O C N N O Tf rH 00 Tf R ts © tn cn o © 8 C N © m 00 Tf rH 8 8 N O rH Tf rH 8 8 N O q 3 8 8 C s O' o d s © d d © ts O' N O rH ' rH o © © C N © o iri o rH © C N © © © © © rH © © C N o m O' C s o C N C O Tf T f © Tf C N 00 C N Tf cn cn Cs ts C s o o N O cn © © m cn O N © 00 C N O O o O' N O o in in Tf O N N rH o O n O N © C N rH in Cs © cn o o © 00 rH © O rH rH C N © q © O O iri Tf o C s O' o d o o o o N O O N N O rH rH o o © C N © o iri o rH O C N o d © d © rH o o C N in 00 O' O' oo 3 o C N in C s 3 O' 8 C N N O o o cn O' °9 O N O' co © C N £ so oo C N s 8 8 ts © 8 Tf 8 8 Tf m O n C N 8 ?! R 8 8 iri Tf d C s O' o rn d rH rH d d d oo O s N O © © © C N © © m O o C N O o © © © o o C N co O' N O O' 00 in Tf a Sf C N 00 C N N O 8 8 oo N O N O O' s ?! O N G O © ts m 3 ts © ts O © o © 3 in 00 C N © O 8 C N C N Tf C N 8 8 8 8 8 9 o N O oo o d £ o o o o * N O rH d d © C N © o iri o o C N o © o o o C N o o C N m C N s s Tf s in in 5 ! O' N O $ R 8 R CN O) 00 © N O 00 © N O cn N © oo q o o 8 ts o cn 00 © 8 8 © £ C N 8 3 8 8 8 o C s O' d o F © © © © C s O N N O © © © C N © © m © o C N © © © o O O O C N 3 N co N O O' ts Tf J5 O' C N in m in ts N O O o £ cn - O' 00 s C s 3 in m 9 N © R 8 8 3 s © 8 8 © 8 O' 8 m q in o 8 8 ts o iri oo d o , - 4o d d © N O C s ' © rH o o © CN © rH © iri o rn o C N o o o o o t - H o o C N Tf rn O N is f c ts ts N O 3 N L n © o o o in T f © o N O q ON O ) o C N o C N 8 cn in 5 N © ts 8 8 C N 00 00 8 © o 8 8 £ 8 cn q ts o 8 8 $ d N O 00 o d d d d d iri O N C 0 s NO © © © CN © O m O O CN © © © © © © © C N 51 s F; C O S' o o a in C O co O N 00 X 8 N O in 60 S T R 8 8 N O C N & a 8 8 8 s $ cn 8 8 T f N O O' C N 8 q s 8 8 3 o 00 O ' rH O ' o F © © d © N O O' 0 cn CN NO rH o © © C N d o iri o © C N d © © © © © © C N b 0 1 c n cn O h £ C N C O 3 (A Is •tfi cn 2 & A site C a < £ § in C N 0 H a 9 U h M g O M n O C aO N a2C § u- D S u m 0 £ " 3 5 £ in A liv 0 C N 2 A lv i £ + cn a > M g M n CN u. a U £ 3 cn * 5 3 T f 2 Fe C a N a £ 3 cn N a £ x tn 0 0 H O vu a in O ' a in a iri ts CM iri C N in ts CN in 85 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. S am p le JL05 ID 01-035 02-001 02-002 02-003 02-004 02-005 02-006 02-007 02-008 02-009 02-010 02-011 02-012 03-001 03-002 03-003 03-004 03-005 03-006 03-007 03-008 03-009 L ocation rim core co re co re core rim rim rim rim rim rim rim rim core core co re co re core core rim rim rim Si Qz 44.53 46.55 45.75 47.12 47.08 46.62 47.31 45.58 47.04 45.07 45.11 45.68 45.99 45.44 45.65 45.70 45.72 46.05 45.55 44.09 46.00 47.75 TiO j 0.51 1.12 1.30 0.89 0.82 0.85 0.42 1.07 0.64 1.25 1.19 1.25 0.45 1.25 1.19 0.91 1.05 1.08 1.20 0.58 0.58 0.43 AI2Q3 8.52 6.84 7.49 6.16 6.72 6.75 6.32 7.41 6.86 7.79 7.77 7.72 7.21 7.56 7.53 7.17 7.52 7.20 7.63 8.64 7.35 6.05 FeO* 20.08 18.03 18.68 17.56 17.99 18.14 17.64 18.74 17.86 18.29 18.53 18.03 18.59 18.23 18.25 18.32 18.14 18.29 18.26 20.11 18.90 17.80 M g O 9.56 11.00 10.45 11.55 11.14 10.36 10.93 10.44 11.43 10.63 10.37 10.91 10.86 10.75 10.70 11.04 10.92 10.77 10.70 9.38 10.45 11.66 M nO 0.55 0.57 0.57 0.52 0.51 0.56 0.53 0.56 0.55 0.52 0.56 0.52 0.54 0.52 0.57 0.58 0.52 0.62 0.57 0.52 0.56 0.53 C aO 11.45 11.49 11.23 11.15 11.52 11.20 11.65 11.30 11.30 11.18 11.26 10.76 11.26 10.99 11.11 11.10 11.36 11.07 11.03 11.38 11.27 11.61 N % 0 0.98 0.95 1.01 0.80 0.80 0.84 0.70 0.90 0.45 1.03 1.09 1.18 0.98 1.18 1.09 1.10 1.05 1.05 1.10 0.98 0.85 0.71 k 2 o 0.81 0.55 0.59 0.48 0.56 0.62 0.46 0.72 0.63 0.71 0.70 0.67 0.64 0.75 0.78 0.56 0.68 0.65 0.75 0.83 0.67 0.48 F 0.23 1.04 0.00 0.70 0.20 0.11 0.00 0.18 0.00 0.00 0.00 0.01 0.21 1.35 0.31 0.28 0.30 0.20 0.11 0.70 2.81 0.08 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S um 97.23 98.13 97.07 96.94 97.34 96.03 95.96 96.89 96.76 96.44 96.58 96.73 96.73 98.01 97.18 96.74 97.25 96.99 96.88 97.21 99.43 97.10 F o rm u la p e r 23 O xygens T-sites Si 6.70 6.94 6.85 7.06 7.00 7.06 7.12 6.85 7.01 6.78 6.79 6.84 6.90 6.82 6.84 6.85 6.83 6.90 6.83 6.68 6.91 7.09 A liv 1.30 1.06 1.15 0.94 1.00 0.94 0.88 1.15 0.99 1.22 1.21 1.16 1.10 1.18 1.16 1.15 1.17 1.10 1.17 1.32 1.09 0.91 A l(total) 1.51 1.20 1.32 1.09 1.18 1.20 1.12 1.31 1.21 1.38 1.38 1.36 1.28 1.34 1 3 3 1.27 1 3 2 1.27 1.35 1.54 1.30 1.06 M l,2 ,3 sites A lvi 0.22 0.14 0.17 0.15 0.18 0.26 0.24 0.16 0.22 0.16 0.17 0.20 0.17 0.16 0.18 0.12 0.15 0.17 0.18 0.22 0.21 0.15 Ti 0.06 0.13 0.15 0.10 0.09 0.10 0.05 0.12 0.07 0.14 0.13 0.14 0.05 0.14 0.13 0.10 0.12 0.12 0.14 0.07 0.07 0.05 Fe3+ 0.79 0.56 0.58 0.50 0.52 0.37 0.46 0.60 0.50 0.64 0.62 0.54 0.71 0.59 0.56 0.71 0.65 0.55 0.57 0.79 0.62 0.57 M g 2.14 2.44 2.33 2.58 2.47 2.34 2.45 2.34 2.54 2.38 2.33 2.44 2.43 2.41 2.39 2.47 2.43 2.41 2.39 2.12 2.34 2.58 M n 0.07 0.07 0.07 0.07 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.07 Fe2+ 1.72 1.66 1.70 1.61 1.67 1.86 1.74 1.70 1.60 1.61 1.68 1.61 1.58 1.64 1.67 1.52 1.58 1.67 1.65 1.74 1.69 1.58 C a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S u m M l,2,3 M 4 site 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 Fe 0.02 0.03 0.05 0.10 0.05 0.06 0.02 0.05 0.13 0.05 0.03 0.10 0.05 0.06 0.06 0.06 0.03 0.07 0.07 0.02 0.06 0.05 C a 1.85 1.84 1.80 1.79 1.84 1.82 1.88 1.82 1.81 1.80 1.82 1.73 1.81 1.77 1.78 1.78 1.82 1.78 1.77 1.85 1.81 1.85 N a 0.13 0.14 0.15 0.11 0.11 0.12 0.10 0.13 0.07 0.15 0.15 0.17 0.14 0.17 0.16 0.16 0.15 0.15 0.16 0.13 0.12 0.10 S u m M 4 A site 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 C a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 N a 0.15 0.14 0.15 0.12 0.12 0.12 0.10 0.13 0.07 0.15 0.17 0.17 0.14 0.17 0.16 0.16 0.15 0.15 0.16 0.15 0.12 0.10 K 0.16 0.10 0.11 0.09 0.11 0.12 0.09 0.14 0.12 0.14 0.14 0.13 0.12 0.14 0.15 0.11 0.13 0.12 0.14 0.16 0.13 0.09 S u m A O H site 0.31 0.24 0.26 0.21 0.22 0.24 0.19 0.27 0.18 0.29 0.30 0.30 0.27 0.32 0.31 0.27 0.28 0.28 0.30 0.31 0.25 0.19 O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O H 1.89 1.50 2.00 1.67 1.90 1.95 2.00 1.91 2.00 2.00 2.00 2.00 1.90 1.35 1.85 1.87 1.86 1.91 1.95 1.66 0.65 1.96 F 0.11 0.50 0.00 0.33 0.10 0.05 0.00 0.09 0.00 0.00 0.00 0.00 0.10 0.65 0.15 0.13 0.14 0.09 0.05 0.34 1.35 0.04 C l 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 OO CN S u m O H 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 S u m ca tio n s 15.31 15.24 15.26 15.21 15.22 15.24 15.19 15.27 15.18 15.29 15.30 15.30 15.27 15.32 15.31 15.27 15.28 15.28 15.30 15.31 15.25 15.19 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. Sam ple GP117 ID 03-010 03-011 03-012 03-013 03-014 03-015 03-016 03-017 01-001 01-002 01-003 01-004 01-005 01-006 01-007 01-008 01-009 01-010 01-011 01-012 01-013 01-014 01-015 Location rim rim rim rim rim rim rim rim core core core core core core rim rim rim rim rim rim rim rim rim SiOz 45.16 45.84 46.90 45.45 48.78 49.90 49.55 45.19 45.74 48.39 47.96 47.69 46.70 46.48 48.29 48.82 49.10 47.77 47.72 42.21 43.47 48.82 46.83 TiCfe 0.89 0.95 0.54 1.19 0.53 0.63 0.55 0.85 1.22 0.85 0.85 0.94 1.05 1.07 0.55 0.76 0.79 0.84 0.82 0.21 0.29 0.28 0.29 AkQ} 7.86 7.22 6.92 7.70 5.47 6.32 6.43 9.82 7.13 5.26 5.70 6.14 6.45 6.57 5.74 6.03 6.28 5.97 5.93 7.34 7.15 5.26 6.86 FeO* 19.12 18.52 17.86 18.56 16.81 17.18 17.09 17.43 16.03 14.91 15.10 15.47 15.74 15.91 15.22 15.66 15.48 15.31 15.77 17.64 16.86 15.45 16.76 M gO 10.00 10.43 11.28 10.39 12.25 12.56 11.79 9.36 11.71 13.27 13.05 12.67 12.31 12.18 12.93 12.54 13.01 12.70 12.50 9.19 10.05 12.86 11.26 M nO 0.54 0.52 0.49 0.53 0.56 0.46 0.52 0.48 0.89 0.94 0.96 0.93 0.92 0.92 0.98 0.93 1.00 0.90 0.94 0.90 0.89 1.00 0.93 C aO 11.48 11.31 11.49 11.37 11.72 11.41 11.29 10.66 11.20 11.54 11.46 11.26 11.43 11.36 11.52 11.51 11.56 11.52 11.54 11.28 11.46 11.74 11.94 N % 0 1.03 0.94 0.65 0.95 0.72 0.81 0.78 0.93 1.10 0.85 0.94 1.20 1.04 1.01 0.83 0.81 0.93 0.84 0.79 0.92 0.88 0.75 0.73 k 2 o 0.71 0.67 0.58 0.77 0.45 0.50 0.47 0.75 0.68 0.49 0.54 0.61 0.61 0.64 0.45 0.48 0.57 0.55 0.59 0.53 0.57 0.34 0.52 F 0.57 0.75 0.31 0.25 0.66 0.64 0.10 1.16 0.18 0.31 0.78 0.25 0.21 0.37 0.21 0.18 0.20 0.30 0.35 0.31 0.19 0.16 0.17 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S um 97.35 97.16 97.02 97.14 97.95 100.41 98.58 96.62 95.87 96.80 97.33 97.17 96.47 96.51 96.71 97.70 98.90 96.70 96.94 90.53 91.81 96.67 96.28 F o rm u la p er 23 O xygens T-sites Si 6.80 6.91 7.00 6.82 7.20 7.18 7.23 6.85 6.88 7.16 7.10 7.05 6.96 6.94 7.14 7.17 7.11 7.09 7.08 6.82 6.88 7.22 7.01 A liv 1.20 1.09 1.00 1.18 0.80 0.82 0.77 1.15 1.12 0.84 0.90 0.95 1.04 1.06 0.86 0.83 0.89 0.91 0.92 1.18 1.12 0.78 0.99 A l(total) 1.40 1.28 1.22 1.36 0.95 1.07 1.11 1.76 1.26 0.92 0.99 1.07 1.13 1.16 1.00 1.04 1.07 1.04 1.04 1.40 1.34 0.92 1.21 M l,2,3 sites A lvi 0.20 0.19 0.21 0.18 0.15 0.25 0.33 0.61 0.15 0.07 0.09 0.12 0.10 0.10 0.14 0.21 0.18 0.13 0.12 0.22 0.22 0.13 0.22 Ti 0.10 0.11 0.06 0.13 0.06 0.07 0.06 0.10 0.14 0.09 0.09 0.10 0.12 0.12 0.06 0.08 0.09 0.09 0.09 0.02 0.03 0.03 0.03 Fe3+ 0.63 0.56 0.56 0.58 0.45 0.35 0.27 0.29 0.56 0.49 0.52 0.51 0.58 0.59 0.51 0.36 0.42 0.49 0.50 0.66 0.61 0.52 0.58 M g 2.24 2.34 2.51 2.32 2.69 2.69 2.56 2.11 2.62 2.92 2.88 2.79 2.74 2.71 2.85 2.74 2.81 2.81 2.76 2.21 2.37 2.83 2.51 M n 0.07 0.07 0.06 0.07 0.07 0.06 0.06 0.06 0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.12 0.12 0.12 0.13 0.12 Fe2+ 1.76 1.74 1.60 1.72 1.58 1.59 1.71 1.83 1.42 1.30 1.30 1.36 1.35 1.36 1.32 1.48 1.37 1.37 1.40 1.72 1.62 1.36 1.52 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.01 S um M l,2,3 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 M 4 site Fe 0.02 0.04 0.07 0.04 0.05 0.13 0.10 0.09 0.04 0.05 0.05 0.05 0.03 0.04 0.06 0.08 0.08 0.05 0.05 0.00 0.00 0.03 0.00 Ca 1.85 1.83 1.84 1.83 1.85 1.76 1.76 1.73 1.81 1.83 1.82 1.78 1.83 1.82 1.83 1.81 1.79 1.83 1.83 1.92 1.92 1.86 1.90 N a 0.13 0.14 0.09 0.14 0.10 0.11 0.13 0.18 0.16 0.12 0.13 0.17 0.15 0.14 0.12 0.11 0.13 0.12 0.11 0.08 0.08 0.11 0.10 S um M4 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 A site Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 N a 0.17 0.14 0.10 0.14 0.10 0.11 0.09 0.09 0.16 0.12 0.14 0.17 0.15 0.15 0.12 0.12 0.13 0.12 0.11 0.21 0.19 0.11 0.11 K 0.14 0.13 0.11 0.15 0.08 0.09 0.09 0.15 0.13 0.09 0.10 0.11 0.12 0.12 0.09 0.09 0.10 0.10 0.11 0.11 0.12 0.06 0.10 S um A 0.31 0.27 0.21 0.29 0.19 0.21 0.18 0.24 0.29 0.21 0.24 0.29 0.27 0.27 0.20 0.21 0.24 0.22 0.23 0.32 0.30 0.17 0.21 O H site O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O H 1.72 1.64 1.85 1.88 1.69 1.71 1.95 1.44 1.92 1.85 1.63 1.88 1.90 1.82 1.90 1.91 1.91 1.86 1.84 1.84 1.90 1.93 1.92 F 0.28 0.36 0.15 0.12 0.31 0.29 0.05 0.56 0.08 0.15 0.37 0.12 0.10 0.18 0.10 0.09 0.09 0.14 0.16 0.16 0.10 0.07 0.08 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S um O H 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 S um cations 15.31 15.27 15.21 15.29 15.19 15.21 15.18 15.24 15.29 15.21 15.24 15.29 15.27 15.27 15.20 15.21 15.24 15.22 15.23 15.32 15.30 15.17 15.21 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. Appendix C : Feldspar Chemistry for Thermobarometry Determination Sample SP128 ID Location 01-020 rim 01-021 core 01-022 core 03-028 rim 03-029 rim 03-030 rim 03-031 rim 03-032 rim 03-033 core 03-034 core 03-035 core 03-036 core 03-037 core 04-017 rim 04-018 rim 04-019 rim C M o 60.20 58.72 58.87 58.76 58.30 58.48 58.89 58.92 58.65 59.30 59.08 59.09 59.09 59.83 59.91 59.15 ai2 o3 25.31 26.20 26.28 26.19 26.40 26.38 26.03 26.03 25.89 25.89 26.07 25.96 26.18 25.78 25.58 26.36 CaO 6.07 7.25 7.16 7.03 7.61 7.31 6.88 7.05 6.91 6.80 7.16 7.09 7.06 6.40 6.34 7.08 FeO 0.15 0.14 0.10 0.27 0.17 0.24 0.18 0.26 0.16 0.13 0.13 0.14 0.16 0.22 0.20 0.24 SrO 0.16 0.22 0.17 0.10 0.05 0.06 0.12 0.18 0.07 0.10 0.12 0.06 0.18 0.12 0.11 0.14 BaO 0.00 0.00 0.05 0.05 0.07 0.00 0.03 0.01 0.05 0.08 0.05 0.08 0.09 0.08 0.03 0.00 Na2 0 7.96 7.35 7.36 7.34 7.06 7.29 7.59 7.47 7.40 7.50 7.47 7.34 7.22 7.91 7.91 7.58 K 2 0 0.13 0.15 0.19 0.15 0.19 0.14 0.10 0.17 0.20 0.20 0.19 0.19 0.19 0.21 0.19 0.16 Total 99.98 100.01 100.19 99.89 99.84 99.90 99.82 100.09 99.32 100.00 100.27 99.94 100.17 100.55 100.28 100.71 Atom Prop 2.99 2.98 2.98 2.98 2.97 2.98 2.97 2.98 2.96 2.98 2.99 2.98 2.98 3.00 2.99 3.00 Formula per 8 Oxygens Si 2.68 2.63 2.63 2.63 2.61 2.62 2.64 2.63 2.64 2.65 2.63 2.64 2.64 2.66 2.66 2.63 A 1 1.33 1.38 1.38 1.38 1.39 1.39 1.37 1.37 1.37 1.36 1.37 1.37 1.38 1.35 1.34 1.38 Ca 0.29 0.35 0.34 0.34 0.37 0.35 0.33 0.34 0.33 0.33 0.34 0.34 0.34 0.31 0.30 0.34 Fe 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Sr 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.69 0.64 0.64 0.64 0.61 0.63 0.66 0.65 0.65 0.65 0.65 0.64 0.62 0.68 0.68 0.65 K 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.02 0.01 0.00 0.02 0.01 0.01 0.01 0.01 An 0.30 0.35 0.35 0.35 0.37 0.36 0.33 0.34 0.34 0.33 0.35 0.35 0.35 0.31 0.31 0.34 Ab 0.70 0.65 0.65 0.65 0.63 0.64 0.67 0.66 0.66 0.67 0.65 0.65 0.65 0.69 0.69 0.66 Sum Cations 5.00 5.00 5.01 5.01 5.00 5.00 5.01 5.01 5.01 5.01 5.00 5.01 5.00 5.00 5.02 5.01 ON CO o 00 CO o> i n CO o no CO o .5 ( £ > CO < = ? s § CO CO o CN CO < 9 LO o CN co o I LO o LO CN 9 o s = p s CN s < 4 * o CN o s s i Oh 4< CD O s vO T “H tN 0 0 CN rH LO o o CN LO In t -h LO ON OO ON ON LO v d CN v d O d d i n d ON ON CN IN CN CO T “H ON vO T-H 8 s vO LO vO 0 0 CN ON ON ON LO v d CN v d c d d d i n d d o CN o o GO ON o LO T -H CN r-H CN O LO v o T “H CN o o IN ON 0 0 LO i d CN i n c d d d IN d ON ON CN 0 0 CN o ON CO IN T — * t -h CO t - h CN O o t*> T-H 0 0 O n OO ON ON LO LO CN v d c d d d CN d ON O n CN VO CN ON LO ON CN o CN CO o VO CO CO R CD t - h vO LO CN LO c d d d c d d T “H o t - h CO OO CO CN CN v o T -H CO o o LO LO T-H C n ON CN O vO i d CN i d c d d d o d d 8 rH CO vO v o o CO o o vO T -H o o T -H o o CN CN o o o O O s LO CN LO d d d o o d d CO T -H CO CN LO LO CO ON OO o o r-H ON o CO o LO CN CO t - h o o d vO LO CN LO O d d o d d d o CO ON OO LO CO N ON tN LO LO o o o CN T -H CN v o O CN o s LO CN i d c d d d 0 0 d O CO 8 c o cO ON CN o CN OO o T -H o s ON ON O n 8 LO CN v d c d d d o d d d o CN 5 T -H s T -H vO t -h o 3 ON CO LO O o ON LO v d CN v d c d d d IN d d o t - h CO CN ON o CN LO T -H CO LO o LO LO o CN CN C n o o ON LO v d CN IN d d d tN d d o CO R r-H o o o CO t -h CN vO o ON o CN LO T -H i n ON lt5 IN CN 0 0 c d d d v d d d o CN R CO O CN ON LO LO c o o IN CN ON CN CO LO 8 8 i d CN i d c d d d 0 0 d d o CO K O n O ON v o r-H ON o o o t -h CN LO CN O n o o O vO LO CN i d c d d d o d d d o CO OO IN ON LO o o 8 rN 8 o CN CN s O n O n d vO CN i d d d d o o d d o T -H CN o u 6 ^ ttJ Q CO Ph g '■s o" 9 o o Q •55 ^ <U (S _ S t/5 <; U u. u5 m o *- Ph a o < vO 00 C O C O C O o o o O o L O vO o co V O V O C N t -h d d d d d d d d 35 In cq C O co rH O o o o o L O vO C N O 3 8 C N rH d d d d d d d d S IN C O s T -H o o o o o VO vo o o s vo V O C N T -H d d d d d d d d LO vO V O C O C N C O o o o o o o tN vO o co C O tN V O C N T -H d d d d d d d d vo C N cq 00 C N rH O o o o rH IN o o 00 C N K C N d d d d d d d d R o cq vo C N T -H o o o o o R o vo C N R CN t -h d d d d d d d d ON vo C N cq o o C N T -H o o o o IN o o o C N C N IN CN ,"H d d d d d d d d O O vq C O cq o o C N o 8 8 IN o O O C N K C N T -H d d d d d d d d ON VO C N cq o o C N o o o o o In o o o C N C N tN C N d d d d d d d d IN vq C O cq o C O T -H o o o 8 ON vO o o C O in C N rH d d d d d d d d s IN cq C O co o o o o 8 vO vo o co C O I n vO C N rH d d d d d d d d C O V O tN cq co T -h O o o o o L O vO T -H o C O vo v o C N d d d d d d d d O O LO C N o o C O T -H o o o 8 8 rH o On C O rH v o C N rH d d d d d d d d ON vo cq O O C N T -h O o o o o rH O 00 CN R C N d d d d d d d d ON vq cq o o CN T -h O o o o o r-H IN rH O 00 C N £ C N d d d d d d d d On vo C O 00 C N rH O 8 8 T -H IN T -H O 00 CN R o o o o o o C L ) D h C O O qj ™ f c c / 5 < U u N c n c o Z ^ o LO o LO o LO CN o LO o LO o LO o LO o LO o LO o LO CN o id o i d o i d CN O LO 89 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. Sample SP142 ID location 01-018 core 01-019 core 01-020 core 01-021 core 01-022 core 01-023 int 01-024 int 01-025 int 01-026 rim 01-027 int 01-028 int 01-029 rim 02-007 rim 02-008 rim 02-014 core 02-015 core 03-023 rim 03-024 rim Si02 62.81 61.45 63.93 63.54 63.63 63.58 63.74 62.78 62.17 62.20 63.01 62.89 62.99 62.69 62.13 61.31 63.31 63.82 ai2 o3 23.92 24.48 23.25 22.93 23.06 22.93 23.02 23.63 23.77 23.82 23.34 23.70 23.01 23.74 23.98 23.91 23.38 23.55 CaO 4.31 5.20 3.46 3.53 3.45 3.42 3.43 4.17 4.27 4.50 3.90 4.19 3.47 4.31 4.70 4.62 3.87 3.79 FeO 0.30 0.28 0.16 0.19 0.26 0.16 0.11 0.05 0.16 0.17 0.08 0.09 0.25 0.18 0.13 0.10 0.16 0.12 SrO 0.11 0.09 0.06 0.13 0.10 0.02 0.12 0.11 0.05 0.09 0.09 0.04 0.08 0.05 0.08 0.10 0.04 0.11 BaO 0.00 0.06 0.00 0.01 0.06 0.04 0.05 0.00 0.05 0.00 0.00 0.01 0.03 0.00 0.07 0.00 0.01 0.00 Na2 0 9.10 8.57 9.83 9.60 9.74 9.56 9.64 9.21 9.04 8.88 9.25 9.12 9.63 9.09 8.73 9.14 9.33 8.76 K 2 0 0.12 0.13 0.16 0.17 0.19 0.21 0.23 0.12 0.13 0.18 0.12 0.09 0.15 0.13 0.19 0.15 0.16 0.15 Total 100.67 100.26 100.86 100.10 100.47 99.92 100.34 100.06 99.65 99.84 99.78 100.12 99.61 100.19 100.01 99.33 100.26 100.29 Atom Prop 3.02 3.00 3.04 3.01 3.02 3.01 3.02 3.01 2.99 3.00 3.01 3.01 3.00 3.01 3.00 2.98 3.02 3.03 Formula per 8 Oxygens Si 2.77 2.72 2.80 2.81 2.80 2.81 2.81 2.78 2.76 2.76 2.79 2.78 2.80 2.77 2.75 2.74 2.79 2.80 A 1 1.24 1.28 1.20 1.19 1.20 1.20 1.20 1.23 1.25 1.25 1.22 1.23 1.21 1.24 1.25 1.26 1.22 1.22 Ca 0.20 0.25 0.16 0.17 0.16 0.16 0.16 0.20 0.20 0.21 0.19 0.20 0.17 0.20 0.22 0.22 0.18 0.18 Fe 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.00 Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.78 0.74 0.84 0.82 0.83 0.82 0.82 0.79 0.78 0.76 0.79 0.78 0.83 0.78 0.75 0.79 0.80 0.75 K 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 An 0.21 0.25 0.16 0.17 0.16 0.16 0.16 0.20 0.21 0.22 0.19 0.20 0.17 0.21 0.23 0.22 0.19 0.19 Ab 0.79 0.75 0.84 0.83 0.84 0.84 0.84 0.80 0.79 0.78 0.81 0.80 0.83 0.79 0.77 0.78 0.81 0.81 Sum Cations 5.01 5.01 5.02 5.01 5.02 5.01 5.01 5.01 5.01 5.00 5.00 5.00 5.02 5.00 5.00 5.03 5.00 4.96 vo o Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. Sample ID location SP142 03-025 int 03-026 int 03-027 int 03-028 int 03-029 int 03-030 int 03-031 int 03-032 rim 03-033 rim 03-034 rim 03-035 rim GP60-02 03-023 rim 03-024 int 03-025 rim 03-026 rim 03-027 rim 04-026 rim 04-027 int Si02 62.36 62.22 63.62 62.35 62.83 62.49 61.57 62.19 62.41 62.16 62.16 62.31 62.53 63.03 61.91 61.84 62.76 62.51 A1A 23.65 23.76 22.84 23.56 23.43 23.46 24.01 23.71 23.60 23.64 23.58 23.78 24.06 23.60 24.29 24.24 23.12 23.88 CaO 4.32 4.42 3.37 4.31 4.00 4.15 4.68 4.37 4.42 4.39 4.36 4.33 4.57 4.11 4.86 4.83 3.55 4.27 FeO 0.16 0.08 0.18 0.15 0.11 0.17 0.18 0.11 0.21 0.15 0.12 0.20 0.14 0.09 0.17 0.17 0.19 0.12 SrO 0.09 0.13 0.09 0.14 0.13 0.07 0.05 0.07 0.10 0.03 0.00 0.07 0.10 0.08 0.12 0.08 0.07 0.03 BaO 0.00 0.05 0.08 0.02 0.02 0.04 0.00 0.05 0.06 0.00 0.08 0.00 0.00 0.05 0.03 0.04 0.00 0.04 Na2 0 9.08 8.91 9.63 8.89 9.16 8.95 8.64 8.92 9.17 9.07 8.80 8.91 9.09 9.13 8.77 8.65 9.35 9.01 K 2 0 0.22 0.21 0.16 0.23 0.37 0.39 0.30 0.14 0.13 0.19 0.23 0.22 0.18 0.19 0.26 0.17 0.18 0.22 Total 99.88 99.77 99.96 99.64 100.05 99.71 99.42 99.55 100.10 99.63 99.33 99.82 100.67 100.29 100.40 100.03 99.21 100.08 Atom Prop 3.00 3.00 3.01 2.99 3.01 3.00 2.98 2.99 3.00 2.99 2.99 3.00 3.02 3.02 3.01 3.00 2.99 3.01 Formula per 8 Oxygens Si 2.77 2.76 2.81 2.77 2.78 2.78 2.75 2.77 2.77 2.77 2.77 2.77 2.76 2.78 2.74 2.74 2.80 2.77 A 1 1.24 1.24 1.19 1.23 1.22 1.23 1.26 1.24 1.23 1.24 1.24 1.24 1.25 1.23 1.27 1.27 1.21 1.25 Ca 0.21 0.21 0.16 0.21 0.19 0.20 0.22 0.21 0.21 0.21 0.21 0.21 0.22 0.19 0.23 0.23 0.17 0.20 Fe 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.00 Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.78 0.77 0.83 0.77 0.79 0.77 0.75 0.77 0.79 0.78 0.76 0.77 0.78 0.78 0.75 0.74 0.81 0.77 K 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 An 0.21 0.21 0.16 0.21 0.19 0.20 0.23 0.21 0.21 0.21 0.21 0.21 0.22 0.20 0.23 0.24 0.16 0.22 Ab 0.79 0.79 0.84 0.79 0.81 0.80 0.77 0.79 0.79 0.79 0.79 0.79 0.78 0.80 0.77 0.76 0.84 0.78 Sum Cations 5.01 5.00 5.01 5.00 5.01 5.01 5.01 5.00 5.02 5.01 5.00 5.00 5.01 5.00 5.01 5.00 5.01 5.00 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. Sample GP60-02 ID location 04-028 rim 04-029 int 04-030 int 04-031 int 04-032 int 04-033 int 04-034 core 04-035 core 04-037 rim 04-036 rim 04-038 rim 04-039 rim 04-040 rim 05-019 rim 05-020 rim 08-007 rim 08-008 rim 08-009 rim Si02 62.71 63.02 62.86 63.03 62.48 62.81 62.77 63.00 63.32 63.27 63.42 63.42 63.44 62.31 62.53 63.03 61.91 61.84 ai2 o3 23.53 23.53 23.55 23.32 23.63 23.63 23.67 23.64 22.96 23.34 23.29 23.53 23.23 23.78 24.06 23.60 24.29 24.24 CaO 3.92 4.06 4.10 3.67 4.30 4.05 4.14 4.03 3.58 3.79 3.78 3.94 3.61 4.33 4.57 4.11 4.86 4.83 FeO 0.12 0.09 0.12 0.11 0.11 0.10 0.07 0.06 0.10 0.12 0.20 0.18 0.20 0.20 0.14 0.09 0.17 0.17 SrO 0.05 0.01 0.12 0.06 0.07 0.12 0.01 0.10 0.07 0.04 0.06 0.13 0.00 0.07 0.10 0.08 0.12 0.08 BaO 0.07 0.07 0.04 0.00 0.09 0.06 0.00 0.03 0.07 0.00 0.05 0.00 0.00 0.00 0.00 0.05 0.03 0.04 Na2 0 9.43 9.39 9.14 10.29 9.09 9.72 9.21 9.34 9.49 9.30 9.45 9.40 9.94 8.91 9.09 9.13 8.77 8.65 K 2 0 0.09 0.10 0.17 0.23 0.18 0.18 0.12 0.10 0.26 0.13 0.16 0.19 0.13 0.22 0.18 0.19 0.26 0.17 Total 99.91 100.26 100.10 100.69 99.93 100.66 99.99 100.29 99.83 99.98 100.40 100.79 100.55 99.82 100.67 100.29 100.40 100.03 Atom Prop 3.00 3.02 3.01 3.02 3.00 3.02 3.01 3.02 3.00 3.01 3.02 3.03 3.02 3.00 3.02 3.02 3.01 3.00 Formula per 8 Oxygens Si 2.78 2.78 2.78 2.78 2.77 2.77 2.78 2.78 2.81 2.80 2.80 2.79 2.79 2.77 2.76 2.78 2.74 2.74 A 1 1.23 1.22 1.23 1.21 1.24 1.23 1.23 1.23 1.20 1.22 1.21 1.22 1.21 1.24 1.25 1.23 1.27 1.27 Ca 0.19 0.19 0.19 0.17 0.20 0.19 0.20 0.19 0.17 0.18 0.18 0.19 0.17 0.21 0.22 0.19 0.23 0.23 Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.81 0.80 0.78 0.88 0.78 0.83 0.79 0.80 0.82 0.80 0.81 0.80 0.85 0.77 0.78 0.78 0.75 0.74 K 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 An 0.17 0.19 0.20 0.16 0.24 0.19 0.20 0.19 0.17 0.18 0.18 0.19 0.17 0.17 0.17 0.19 0.18 0.19 Ab 0.83 0.81 0.80 0.84 0.76 0.81 0.80 0.81 0.83 0.82 0.82 0.81 0.83 0.83 0.83 0.81 0.82 0.81 Sum Cations 5.01 5.01 5.00 5.06 5.01 5.04 5.01 5.01 5.01 5.00 5.01 5.01 5.03 5.00 5.01 5.00 5.01 5.00 N > Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. Sample ID location GP60-02 08-010 08-011 rim int 08-012 int 08-013 int 08-014 core 08-015 core 08-016 core JL 05 01-036 rim 01-037 rim 01-038 core 01-039 core 01-040 core 01-041 core 01-042 int 01-043 int 01-044 rim 01-045 core 01-046 core Si02 62.93 63.03 63.21 63.61 63.12 63.26 62.74 61.41 61.60 60.27 57.17 57.60 56.44 59.94 60.55 60.67 55.42 59.79 A 12 0 3 23.40 23.30 23.54 23.53 23.62 23.45 23.82 24.95 24.83 25.57 27.71 27.27 27.69 25.62 25.21 24.31 28.40 26.07 CaO 3.77 3.58 3.92 3.72 3.96 3.97 4.26 5.42 5.32 6.17 8.21 8.02 8.82 6.04 5.63 4.97 9.39 6.42 FeO 0.09 0.11 0.13 0.11 0.15 0.13 0.07 0.11 0.14 0.14 0.14 0.20 0.13 0.06 0.07 0.10 0.14 0.10 SrO 0.06 0.12 0.05 0.04 0.07 0.09 0.01 0.12 0.08 0.09 0.12 0.07 0.13 0.07 0.08 0.05 0.03 0.12 BaO 0.00 0.04 0.04 0.00 0.08 0.00 0.02 0.04 0.03 0.07 0.04 0.04 0.01 0.05 0.01 0.02 0.09 0.05 Na2 0 10.17 9.51 9.33 9.40 9.57 9.37 9.09 8.50 8.61 8.11 8.12 6.70 6.24 8.27 8.27 8.64 5.99 7.66 K2 0 0.13 0.12 0.18 0.13 0.14 0.17 0.18 0.09 0.10 0.20 0.18 0.19 0.18 0.14 0.16 0.17 0.14 0.19 Total 100.54 99.82 100.40 100.54 100.70 100.43 100.18 100.64 100.71 100.63 101.69 100.09 99.64 100.19 99.99 98.93 99.59 100.38 Atom Prop 3.02 3.00 3.02 3.03 3.02 3.02 3.01 3.01 3.02 3.00 3.00 2.98 2.96 2.99 2.99 2.97 2.95 3.00 Formula per 8 Oxygens Si 2.78 2.79 2.79 2.79 2.78 2.79 2.77 2.71 2.72 2.67 2.54 2.58 2.54 2.67 2.69 2.72 2.50 2.65 A 1 1.22 1.22 1.22 1.22 1.23 1.22 1.24 1.30 1.29 1.34 1.45 1.44 1.47 1.34 1.32 1.29 1.51 1.36 Ca 0.18 0.17 0.18 0.18 0.19 0.19 0.20 0.26 0.25 0.29 0.39 0.38 0.43 0.29 0.27 0.24 0.45 0.31 Fe 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00 Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.87 0.82 0.80 0.80 0.82 0.80 0.78 0.73 0.74 0.70 0.70 0.58 0.55 0.71 0.71 0.75 0.52 0.66 K 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 An 0.19 0.21 0.21 0.21 0.19 0.20 0.20 0.26 0.25 0.30 0.36 0.40 0.44 0.29 0.27 0.24 0.46 0.32 Ab 0.81 0.79 0.79 0.79 0.81 0.80 0.80 0.74 0.75 0.70 0.64 0.60 0.56 0.71 0.73 0.76 0.54 0.68 Sum Cations 5.05 5.01 5.01 5.00 5.02 5.01 5.00 5.01 5.01 5.02 5.09 5.00 5.00 5.02 5.01 5.02 5.01 5.00 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. Sample JL 05 ID location 01-047 rim 01-048 core 01-049 core 01-050 core 01-051 rim 01-052 int 01-053 core 01-054 core 01-055 core 01-056 core 01-057 rim 02-014 rim 02-015 rim 02-016 int 03-018 rim 03-019 rim 03-020 rim 03-021 int Si02 61.61 57.08 56.38 56.12 62.33 60.86 55.66 57.62 57.89 55.40 61.97 61.79 61.10 61.00 61.00 61.90 63.20 61.66 A 1 2 0 3 24.67 27.65 28.05 27.72 24.21 25.07 28.31 27.03 26.93 28.63 24.18 25.01 25.06 25.15 24.53 24.03 23.43 24.23 CaO 5.12 8.49 9.11 8.69 4.70 5.51 9.44 7.92 7.83 9.72 4.62 5.39 5.57 5.59 5.27 4.38 3.92 4.93 FeO 0.07 0.14 0.11 0.12 0.13 0.06 0.13 0.07 0.09 0.11 0.10 0.12 0.10 0.04 0.15 0.07 0.08 0.09 SrO 0.15 0.10 0.17 0.00 0.06 0.09 0.15 0.10 0.12 0.09 0.03 0.01 0.09 0.06 0.09 0.08 0.07 0.09 BaO 0.03 0.09 0.02 0.00 0.00 0.00 0.00 0.00 0.07 0.02 0.08 0.00 0.05 0.04 0.00 0.03 0.00 0.03 Na2 0 8.63 6.52 6.20 6.59 9.02 8.15 6.03 7.36 6.90 5.77 8.83 8.57 8.32 8.34 8.40 9.13 9.32 8.67 K 2 0 0.15 0.17 0.15 0.15 0.12 0.19 0.13 0.12 0.14 0.12 0.15 0.10 0.13 0.07 0.16 0.14 0.18 0.22 Total 100.42 100.24 100.20 99.38 100.57 99.93 99.84 100.22 99.97 99.86 99.95 101.00 100.43 100.28 99.61 99.75 100.20 99.92 Atom Prop 3.01 2.97 2.97 2.95 3.02 3.00 2.95 2.98 2.97 2.96 3.00 3.03 3.01 3.01 2.99 3.00 3.02 3.00 Formula per 8 Oxygens Si 2.73 2.56 2.53 2.53 2.75 2.70 2.51 2.58 2.59 2.50 2.75 2.72 2.70 2.70 2.72 2.75 2.79 2.74 A 1 1.29 1.46 1.48 1.48 1.26 1.31 1.50 1.43 1.42 1.52 1.26 1.30 1.31 1.31 1.29 1.26 1.22 1.27 C a 0.24 0.41 0.44 0.42 0.22 0.26 0.46 0.38 0.38 0.47 0.22 0.25 0.26 0.27 0.25 0.21 0.19 0.23 Fe 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.74 0.57 0.54 0.58 0.77 0.70 0.53 0.64 0.60 0.50 0.76 0.73 0.71 0.72 0.73 0.79 0.80 0.75 K 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 An 0.25 0.42 0.45 0.42 0.22 0.27 0.46 0.37 0.39 0.48 0.22 0.26 0.27 0.27 0.26 0.21 0.19 0.24 Ab 0.75 0.58 0.55 0.58 0.78 0.73 0.54 0.63 0.61 0.52 0.78 0.74 0.73 0.73 0.74 0.79 0.81 0.76 Sum Cations 5.01 5.00 5.00 5.02 5.01 5.00 5.01 5.03 5.00 5.00 5.00 5.01 5.00 5.00 5.00 5.02 5.01 5.01 vo Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. Sample ID Location JL05 03-022 int 03-023 core 03-024 core 03-025 core 03-026 core 03-027 core 03-028 rim 03-029 rim 03-030 rim 03-031 rim 03-032 rim 03-033 rim 03-034 rim GP117 01-017 rim 01-018 int 01-019 core 01-020 core Si02 60.94 59.47 58.74 58.05 54.65 54.38 61.14 61.56 61.53 61.74 63.25 62.82 62.41 62.53 62.20 62.55 61.97 > N 3 O w 25.02 25.70 26.46 26.98 29.06 29.43 24.27 24.78 24.82 24.51 23.89 24.20 24.21 24.06 23.82 24.01 24.18 CaO 5.49 6.45 7.12 7.68 9.98 10.30 4.77 5.37 5.22 4.68 3.94 4.39 4.51 4.57 4.50 4.55 4.62 FeO 0.18 0.12 0.10 0.09 0.10 0.11 0.09 0.13 0.16 0.18 0.20 0.20 0.12 0.14 0.17 0.12 0.10 SrO 0.09 0.07 0.12 0.16 0.14 0.08 0.08 0.04 0.10 0.06 0.08 0.05 0.05 0.10 0.09 0.10 0.03 BaO 0.11 0.03 0.03 0.07 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.08 Na2 0 8.18 7.60 7.34 6.92 5.61 5.50 9.30 8.57 8.89 8.91 9.40 9.11 8.97 9.09 8.88 9.00 8.83 k2 o 0.21 0.21 0.18 0.14 0.13 0.11 0.13 0.13 0.13 0.14 0.13 0.14 0.14 0.18 0.18 0.16 0.15 Total 100.21 99.66 100.09 100.09 99.68 99.90 99.77 100.58 100.87 100.22 100.89 100.97 100.40 100.67 99.84 100.49 99.95 Atom Prop 3.00 2.98 2.98 2.98 2.95 2.95 2.99 3.02 3.02 3.01 3.03 3.03 3.02 3.02 3.00 3.02 3.00 Formula per 8 Oxygens Si 2.71 2.66 2.62 2.60 2.47 2.45 2.73 2.72 2.71 2.73 2.78 2.76 2.75 2.76 2.76 2.76 2.75 A1 1.31 1.35 1.39 1.42 1.55 1.57 1.28 1.29 1.29 1.28 1.24 1.25 1.26 1.25 1.25 1.25 1.26 Ca 0.26 0.31 0.34 0.37 0.48 0.50 0.23 0.25 0.25 0.22 0.19 0.21 0.21 0.22 0.21 0.22 0.22 Fe 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00 Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.70 0.66 0.64 0.60 0.49 0.48 0.80 0.73 0.76 0.76 0.80 0.78 0.77 0.78 0.76 0.77 0.76 K 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 An 0.27 0.32 0.35 0.38 0.50 0.51 0.22 0.26 0.24 0.23 0.19 0.21 0.22 0.22 0.22 0.22 0.22 Ab 0.73 0.68 0.65 0.62 0.50 0.49 0.78 0.74 0.76 0.77 0.81 0.79 0.78 0.78 0.78 0.78 0.78 Sum Cations 5.00 5.00 5.01 5.00 5.01 5.01 5.04 5.01 5.03 5.01 5.01 5.01 5.01 5.01 5.00 5.01 5.00 cn
Linked assets
University of Southern California Dissertations and Theses
Conceptually similar
PDF
Silicic and germanic acids: Laboratory determination of their molecular diffusivities and field study of their benthic fluxes along the California margin
PDF
Modeling of continuous tiltmeter data from the 1984 rifting event at Krafla Volcano, Iceland
PDF
Reinterpreting the tectono-metamorphic evolution of the Tonga Formation, North Cascades: A new perspective from multiple episodes of folding and metamorphism
PDF
Multi-proxy studies of climate variability in central China: Subdecadal to centennial records in stalagmite from Budda Cave
PDF
Biotic recovery from the end-Permian mass extinction: Analysis of biofabric trends in the Lower Triassic Virgin Limestone, southern Nevada
PDF
Three-dimensional reconstructions of fold growth using growth strata: An example from the Catalan Coastal Ranges, northeast Spain
PDF
Management of large earthquake data using the Antelope Relational Database and seismicity analysis of the 1999 Turkey earthquake sequences
PDF
Paleoecology and paleoenvironments of early Triassic mass extinction biotic recovery faunas, Sinbad Limestone Member, Moenkopi Formation, south-central Utah
PDF
Large epifaunal bivalves from Mesozoic buildups of western North America
PDF
Oxygen isotopic evidence for fluid infiltration in the Mount Stuart batholith, Washington
PDF
Fourier grain-shape analysis of quartz sand from the Santa Monica Bay Littoral Cell, Southern California
PDF
Geology and structural evolution of the southern Shadow Mountains, San Bernardino County, California
PDF
Petrologic and geochronologic study of Grenville-Age granulites and post-Granulite plutons from the La Mixtequita area, state of Oaxaca in southern Mexico, and their tectonic significance
PDF
Magmatic foliations and layering: Implications for process in magma chambers
PDF
A tectonic model for the formation of the gridded plains on Guinevere Planitia, Venus: Implications for the thickness of the elastic lithosphere
PDF
The origin of enigmatic sedimentary structures in the Neoproterozoic Noonday dolomite, Death Valley, California: A paleoenvironmental, petrographic, and geochemical investigation
PDF
Lower Cambrian trace fossils of the White-Inyo Mountains, eastern California: Engineering an ecological revolution
PDF
Seafloor precipitates and carbon-isotope stratigraphy from the neoproterozoic Scout Mountain member of the Pocatello Formation, Southeast Idaho: Implications for neoproterozoic Earth history
PDF
Helicoplacoid echinoderms: Paleoecology of Cambrian soft substrate immobile suspension feeders
PDF
Clast-contact conglomerates in submarine canyons: Possible subaqueous sieve deposits
Asset Metadata
Creator
Coyne, Claire Marie
(author)
Core Title
Magma mingling/mixing in a heterogeneous, multi-pulse magmatic system: An example from the Jackass Lakes pluton, central Sierra Nevada batholith
Degree
Master of Science
Degree Program
Geological Sciences
Publisher
University of Southern California
(original),
University of Southern California. Libraries
(digital)
Tag
Geology,OAI-PMH Harvest
Language
English
Contributor
Digitized by ProQuest
(provenance)
Permanent Link (DOI)
https://doi.org/10.25549/usctheses-c16-323313
Unique identifier
UC11328833
Identifier
1427941.pdf (filename),usctheses-c16-323313 (legacy record id)
Legacy Identifier
1427941.pdf
Dmrecord
323313
Document Type
Thesis
Rights
Coyne, Claire Marie
Type
texts
Source
University of Southern California
(contributing entity),
University of Southern California Dissertations and Theses
(collection)
Access Conditions
The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law. Electronic access is being provided by the USC Libraries in agreement with the au...
Repository Name
University of Southern California Digital Library
Repository Location
USC Digital Library, University of Southern California, University Park Campus, Los Angeles, California 90089, USA