Close
The page header's logo
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Community integration of individuals with serious mental illness: a network perspective from India and United States
(USC Thesis Other) 

Community integration of individuals with serious mental illness: a network perspective from India and United States

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Contact Us
Contact Us
Copy asset link
Request this asset
Transcript (if available)
Content
  i
 

 

 
COMMUNITY
 INTEGRATION
 OF
 INDIVIDUALS
 WITH
 
 
SERIOUS
 MENTAL
 ILLNESS:
 A
 NETWORK
 PERSPECTIVE
 
 
FROM
 INDIA
 AND
 UNITED
 STATES
 

 
by
 

 
Rohini
 Pahwa
 

 

 

 

 

 
A
 Dissertation
 Presented
 to
 the
 
FACULTY
 OF
 THE
 USC
 GRADUATE
 SCHOOL
 
UNIVERSITY
 OF
 SOUTHERN
 CALIFORNIA
 
In
 Partial
 Fulfillment
 of
 the
 
Requirements
 for
 the
 Degree
 
DOCTOR
 OF
 PHILOSOPHY
 
(SOCIAL
 WORK)
 

 

 

 
December
 2013
 

 
Copyright
 2013
   
   
   
   
   
 
   
   
  Rohini
 Pahwa

  ii
 
DEDICATION
 
The
 following
 dissertation
 is
 dedicated
 to
 my
 parents,
 Saroj
 and
 Ashok
 Pahwa,
 
without
 whom
 this
 dissertation
 would
 not
 have
 been
 possible.
 Thank
 you
 for
 providing
 me
 
with
 roots
 to
 ground
 myself
 in
 while
 also
 giving
 me
 wings
 to
 fly
 and
 explore
 who
 I
 could
 be
 
and
 what
 I
 could
 achieve.
 Your
 unconditional
 love,
 support,
 and
 faith
 have
 kept
 me
 going.
 
 

 

 

 

 

 

 

  iii
 
ACKNOWLEDGEMENTS
 

  I
 would
 like
 to
 thank
 everyone
 instrumental
 in
 the
 successful
 completion
 of
 this
 
endeavor.
 First
 and
 foremost,
 I
 would
 like
 to
 thank
 my
 dissertation
 chair
 and
 academic
 
mentor,
 Dr.
 John
 Brekke,
 for
 his
 support,
 guidance,
 and
 encouragement.
 I
 appreciate
 all
 the
 
learning
 opportunities
 that
 equipped
 me
 with
 the
 tools
 to
 conceptualize
 and
 complete
 my
 
own
 study.
 Thank
 you,
 John,
 for
 your
 faith
 in
 me,
 which
 has
 kept
 me
 going
 even
 when
 I
 
wanted
 to
 give
 up.
 You
 have
 helped
 me
 be
 a
 better
 researcher
 and,
 more
 importantly,
 a
 
better
 human
 being.
 

  I
 would
 also
 like
 to
 express
 my
 heart-­‐felt
 gratitude
 to
 Dr.
 Eric
 Rice
 for
 guiding
 me
 
through
 the
 world
 of
 social
 networks,
 for
 being
 my
 sounding
 board,
 reading
 my
 drafts,
 
keeping
 me
 on
 track,
 and
 giving
 me
 invaluable
 feedback.
 Eric,
 I
 appreciate
 your
 efforts
 in
 
finding
 coherence
 in
 my
 occasional
 incoherent
 thoughts
 and
 ideas.
 

  I
 would
 also
 like
 to
 thank
 Dr.
 B.S.
 Chavan
 for
 being
 my
 guide
 and
 collaborator
 in
 
India.
 I
 am
 deeply
 grateful
 to
 you
 for
 your
 help
 in
 navigating
 through
 the
 mental
 health
 
service
 delivery
 systems
 in
 India
 and
 all
 your
 support
 through
 the
 process
 of
 collecting
 my
 
dissertation
 data.
 
 

  I
 would
 also
 like
 to
 thank
 the
 mental
 health
 cluster,
 in
 particular
 Dr.
 Concepcion
 
Barrio,
 for
 her
 continual
 guidance,
 support,
 and
 encouragement.
 I
 also
 wish
 to
 acknowledge
 
the
 support
 of
 the
 USC
 School
 of
 Social
 Work’s
 doctoral
 program,
 Dr.
 Michalle
 Mor
 Barak,
 
the
 program
 chair,
 and
 Malinda
 Sampson,
 the
 program
 coordinator,
 for
 all
 their
 
educational
 and
 financial
 support
 throughout
 my
 doctoral
 program.
 
 

  This
 process
 would
 not
 have
 been
 possible
 without
 the
 unyielding
 support
 of
 my
 
family,
 especially
 my
 parents,
 siblings,
 and
 a
 few
 very
 close
 friends
 for
 being
 there.
 A
 very
 

  iv
 
special
 thanks
 to
 my
 husband,
 Asim
 Nigam,
 for
 being
 my
 emotional
 rock.
 I
 appreciate
 your
 
never-­‐ending
 patience
 and
 unrelenting
 support
 through
 my
 bouts
 of
 self-­‐doubt
 and
 for
 
helping
 me
 through
 the
 dissertation
 writing
 process.
 
 

  Last,
 but
 not
 the
 least,
 I
 would
 like
 to
 thank
 my
 friends,
 both
 in
 the
 doctoral
 program
 
and
 outside,
 for
 their
 encouragement
 and
 help.
 I
 am
 grateful
 for
 the
 support
 I
 received
 from
 
my
 cohort
 members
 and
 other
 students
 in
 the
 mental
 health
 cluster,
 especially
 Liat
 Kriegel
 
and
 Anthony
 Fulginiti,
 for
 helping
 me
 collect
 data
 for
 this
 study.
 

 

 

 

 

 

  v
 
TABLE
 OF
 CONTENTS
 

 
Dedication
 

 
ii
 
Acknowledgements
 

 
iii
 
List
 of
 Tables
  vii
 

   
 
List
 of
 Figures
  ix
 

   
 
Abstract
  x
 

   
 
CHAPTER
 ONE:
 INTRODUCTION
 AND
 OVERVIEW
  1
 
Background
 of
 the
 Problem
  1
 
Purpose
 and
 Contributions
 of
 the
 Present
 Study
  3
 
Specific
 Aims
 and
 Hypotheses
  6
 
Overview
 of
 Methodology
  7
 
Organization
 of
 the
 Study
  7
 

   
 
CHAPTER
 TWO:
 LITERATURE
 REVIEW
 AND
 THEORETICAL
 BACKGROUND
  9
 
The
 Cultural
 Context
 of
 Mental
 Illness
  9
 
Mental
 Health
 in
 India,
 Social
 Support,
 and
 Stigma
  11
 
Community
 and
 Theoretical
 Approaches
 to
 Understanding
 Community
  13
 
Community
 Integration
 and
 its
 Theoretical
 Frameworks
  16
 
Social
 Networks,
 Social
 Resources,
 and
 Social
 Support:
 How
 They
 
Inform
 Community
 Integration
 
18
 
Stigma
 in
 Mental
 Health
  28
 
Stigma
 and
 Disclosure
 about
 Mental
 Illness
  30
 
Community
 Integration:
 Normalization
 versus
 Subcultures
  31
 
Research
 on
 Community
 Integration
 of
 the
 Individuals
 with
 SMI
  33
 

   
 
CHAPTER
 THREE:
 METHODS
  36
 
Data
 Source
  36
 
Preliminary
 Studies
  36
 
Recruitment
 of
 the
 Sample
  38
 
Data
 Collection
  40
 
Data
 Analysis
  50
 

   
 
CHAPTER
 FOUR:
 RESULTS
  57
 
Description
 of
 the
 Sample
  57
 
Results
 for
 Research
 Aim
 1:
 Physical,
 social,
 and
 psychological
 
integration
 community
 integration
 of
 individuals
 with
 SMI
 in
 Indian
 
and
 U.S.
 samples:
 
61
 
Results
 for
 Research
 Aim
 2:
 Psychosocial
 and
 network
 variables
  78
 

  vi
 
associated
 with
 the
 three
 dimensions
 of
 community
 integration
 for
 
individuals
 with
 SMI
 in
 India
 and
 United
 States
 
Results
 for
 Research
 Aim
 3:
 Multilevel
 analysis
 with
 individual
 and
 
network-­‐level
 variables
 associated
 with
 disclosure
 about
 mental
 illness
 
93
 

   
 
CHAPTER
 FIVE:
 DISCUSSION
  96
 
Network
 Differences:
 India
 and
 the
 United
 States
  99
 
Bridging
 and
 Bonding
 Social
 Capital:
 A
 Social
 Networks
 Phenomenon
 in
 
India
 and
 the
 United
 States
 
102
 
Regression
 Models
 of
 Community
 Integration
  103
 
Implications
 for
 Social
 Work
 Research
 and
 Practice
  108
 
Limitations,
 Strengths,
 and
 Suggestions
 for
 Further
 Study
  110
 
Conclusion
  112
 

   
 
REFERENCES
  113
 

   
 

  vii
 
LIST
 OF
 TABLES
 
Table
 1:
  Demographic
 Characteristics
 of
 the
 Whole
 Sample
 

 
59
 
Table
 2:
 
  Psychosocial
 Characteristics
 of
 Samples
 from
 India
 and
 United
 
States
 of
 Individuals
 with
 SMI
 

 
61
 
Table
 3:
  Comparison
 between
 United
 States
 Regarding
 their
 Physical,
 
Psychological,
 and
 Social
 Community
 Integration
 Characteristics
 

 
64
 
Table
 4:
  Comparison
 between
 United
 States
 and
 India
 In
 Terms
 of
 Their
 
Network
 Characteristics
 

 
66
 
Table
 5:
  Social
 Support
 Network
 Characteristics
 (Emotional-­‐Informational
 
Social
 Support:
 Sharing
 Personal
 Problems)
 

 
68
 
Table
 6:
  Social
 Support
 Network
 Characteristics
 (Positive
 Social
 Interaction:
 
Do
 Something
 Enjoyable)
 

 
69
 
Table
 7:
  Social
 Resources
 Network
 Characteristics:
 Domestic
 Resources
 
Type
 (Finding
 Bargains)
 

 
71
 
Table
 8:
  Social
 Resources
 Network
 Characteristics
 (Expert
 Advice
 Type:
 
Advice
 about
 Earning
 Money)
 

 
73
 
Table
 9:
  Social
 Resources
 Network
 Characteristics
 (Personal
 Skills
 Type:
 
Taking
 Care
 of
 Health)
 

 
74
 
Table
 10:
  Social
 Resources
 Network
 Characteristics
 (Problem
 Solving
 Type:
 
Fixing
 Things
 around
 the
 House)
 

 
76
 
Table
 11:
  Stigma
 Network
 Characteristics
 (Not
 Wish
 to
 Tell
 or
 Wish
 the
 
Network
 Members
 Did
 Not
 Know
 about
 Their
 Mental
 Illness)
 

 
78
 
Table
 12:
  Correlation
 between
 Variables
 Used
 in
 the
 Regression
 Models
 

 
80
 
Table
 13:
  Multivariate
 Regression
 of
 Physical
 Community
 Integration
 
(Involvement
 in
 Community
 Activities)
 of
 Individuals
 with
 SMI
 

 
83
 
Table
 14:
  Multivariate
 Regression
 of
 Physical
 Community
 Integration
 (Total
 
Social
 Resources)
 of
 Individuals
 with
 SMI
 

 
84
 
Table
 15:
  Multivariate
 Regression
 of
 Psychological
 Community
 Integration
 in
 
Mental
 Health
 Community
 of
 Individuals
 with
 SMI
 

 
87
 
Table
 16:
  Multivariate
 Regression
 of
 Psychological
 Community
 Integration
 in
  90
 

  viii
 
Non-­‐Mental
 Health
 Community
 of
 Individuals
 with
 SMI
 

 
Table
 17:
  Multivariate
 Regression
 of
 Social
 Community
 Integration
 (Perceived
 
Social
 Support)
 in
 Individuals
 with
 SMI
 

 
93
 
Table
 18:
  Multilevel
 Analysis
 with
 Individual-­‐
 and
 Network-­‐Level
 Variables
 
Associated
 with
 Unwillingness
 to
 Disclose
 about
 Mental
 Illness
 
96
 

  ix
 
LIST
 OF
 FIGURES
 

 
Figure
 1:
  Wong
 and
 Solomon’s
 model
 of
 community
 integration
 and
 its
 
dimensions.
 
19
 

   
   
 

  x
 
ABSTRACT
 
Community
 integration
 is
 an
 important
 treatment
 outcome
 integral
 to
 the
 recovery
 
process
 for
 individuals
 with
 severe
 mental
 illness.
 However,
 little
 empirical
 work
 examines
 
the
 experience
 and
 characteristics
 of
 community
 integration
 for
 the
 seriously
 mentally
 ill
 in
 
community-­‐based
 settings.
 Additionally,
 cultural
 factors
 are
 known
 to
 have
 tremendous
 
impact
 on
 the
 conception,
 course,
 and
 outcomes
 associated
 with
 the
 illness,
 along
 with
 the
 
experience
 of
 symptoms,
 types,
 and
 acceptability
 of
 treatments
 and
 social
 tolerance
 of
 
mental
 illnesses.
 The
 differential
 courses
 of
 illness
 and
 prognoses
 have
 implications
 for
 the
 
cross-­‐cultural
 and
 cross-­‐national
 generalizations
 in
 terms
 of
 research
 and
 practice.
 Existing
 
empirical
 evidence
 on
 community
 integration
 fails
 to
 consider
 this
 difference.
 Keeping
 this
 
in
 mind,
 the
 primary
 goal
 of
 this
 dissertation
 was
 to
 explore
 the
 concepts
 of
 community
 
integration
 in
 India
 and
 the
 United
 States
 to
 bridge
 this
 theoretical
 and
 conceptual
 
disconnect.
 
 
Using
 the
 conceptual
 framework
 of
 Wong
 and
 Solomon

 
(2002),
 we
 aimed
 to
 explore
 
the
 idea
 of
 community
 and
 community
 integration
 of
 individuals
 with
 serious
 mental
 
illness
 who
 are
 receiving
 treatment
 in
 a
 public
 health
 care
 setting
 within
 the
 socio-­‐cultural
 
contexts
 of
 India
 and
 United
 States
 and
 to
 examine
 the
 associated
 network
 and
 
psychosocial
 factors.
 Data
 from
 30
 individuals
 from
 the
 United
 States
 and
 26
 individuals
 
from
 India
 were
 collected.
 Community
 integration
 was
 assessed
 using
 social
 network
 
interviews
 and
 a
 battery
 of
 quantitative
 measures,
 including
 measures
 of
 involvement
 in
 
community
 activities,
 social
 resources,
 social
 support,
 and
 subjective
 sense
 of
 integration.
 
Associated
 psychosocial
 factors
 were
 assessed
 using
 measures
 of
 internalized
 stigma,
 
symptomatology,
 and
 psychosocial
 functioning.
 Overall,
 the
 findings
 suggested
 that
 in
 

  xi
 
terms
 of
 community
 integration,
 the
 two
 countries
 were
 similar
 in
 some
 dimensions
 and
 
differed
 in
 others.
 Specifically,
 the
 Indian
 sample,
 in
 general,
 were
 found
 to
 be
 less
 
integrated
 in
 the
 mental
 health
 community,
 rated
 by
 the
 interviewer
 to
 be
 more
 integrated
 
in
 the
 non-­‐mental
 health
 community,
 had
 higher
 levels
 of
 perceived
 social
 support,
 and
 
expressed
 that
 family
 primarily
 populated
 their
 social
 networks.
 Conversely,
 individuals
 
from
 the
 United
 States
 felt
 more
 integrated
 into
 the
 mental
 health
 community,
 were
 rated
 
by
 the
 interviewer
 to
 be
 more
 integrated
 in
 the
 mental
 health
 community,
 received
 more
 
social
 resources
 from
 the
 mental
 health
 community,
 and
 had
 a
 combination
 of
 mental
 
health-­‐
 and
 non-­‐mental
 health-­‐based
 networks
 in
 their
 lives.
 Second,
 the
 regression
 models
 
found
 country
 affiliation
 was
 associated
 with
 some
 dimensions
 of
 community
 integration
 
and
 not
 others.
 Third,
 various
 social
 network
 variables
 were
 found
 be
 associated
 with
 
different
 dimensions
 of
 community
 integration.
 Fourth,
 multilevel
 analysis
 using
 network
 
and
 individual
 level
 variables
 was
 found
 to
 be
 a
 worthy
 approach
 to
 attain
 a
 complex
 
understanding
 of
 factors
 associated
 with
 disclosure
 about
 mental
 illness.
 Mental
 health
 
practice
 and
 cross-­‐national
 research
 implications,
 as
 well
 as
 suggestions
 for
 future
 
research,
 are
 discussed.

  1
 
CHAPTER
 ONE:
 
 
INTRODUCTION
 and
 OVERVIEW
 
Background
 of
 the
 Problem
 
Severe
 mental
 illness
 (SMI)
 is
 one
 of
 the
 leading
 causes
 of
 disability
 in
 both
 the
 
developed
 and
 developing
 worlds
 (Hopper,
 2007;
 National
 Institutes
 of
 Health,
 1991;
 
Wiley-­‐Exley,
 2007).
 According
 to
 a
 report
 by
 the
 World
 Health
 Organization
 (WHO),
 
published
 in
 2001,
 11
 percent
 of
 the
 world’s
 total
 burden
 of
 disease
 comes
 from
 mental
 
and
 behavioral
 disorders
 (Campanini,
 2001;
 Wiley-­‐Exley,
 2007).
 Considering
 the
 
debilitating
 nature
 of
 mental
 illness,
 both
 national
 organizations
 (such
 as
 the
 National
 
Institute
 of
 Mental
 Health)
 and
 international
 agencies
 (such
 as
 WHO)
 have
 made
 it
 a
 
priority
 to
 include
 a
 more
 nuanced
 understanding
 of
 mental
 illness
 and
 associating
 factors
 
into
 their
 mission
 statements
 (Hopper,
 2007;
 National
 Institutes
 of
 Health,
 1991).
 
 
While
 still
 being
 perceived
 as
 challenging,
 there
 has
 been
 a
 shift
 in
 the
 expectation
 
for
 the
 course
 of
 serious
 mental
 illnesses
 in
 the
 past
 decades
 (J.
 H.
 Jenkins
 &
 Carpenter-­‐
Song,
 2005).
 Mental
 Health
 outcomes
 have
 been
 increasingly
 linked
 with
 the
 idea
 of
 
recovery,
 which
 has
 been
 defined
 as
 the
 process
 where
 individuals
 are
 able
 to
 live,
 work,
 
participate,
 and
 contribute
 in
 their
 communities
 (Jivanjee,
 Kruzich,
 &
 Gordon,
 2008;
 New
 
Freedom
 Commission
 on
 Mental
 Health,
 2003;
 Perkins,
 Raines,
 Tschopp,
 &
 Warner,
 2009;
 
Townley,
 Kloos,
 &
 Wright,
 2009).
 As
 Jenkins
 and
 Carpenter-­‐Song
 stated,
 “For
 some
 
individuals,
 recovery
 is
 the
 ability
 to
 live
 a
 productive
 life
 despite
 a
 disability”
 (J.
 H.
 Jenkins
 
&
 Carpenter-­‐Song,
 2005,
 p.
 380).
 Despite
 the
 growing
 evidence
 that
 many
 individuals
 with
 
SMI
 can
 recover
 from
 mental
 illness,
 re-­‐integrate
 into
 their
 communities,
 and
 lead
 
productive
 lives
 (Bellack,
 2006),
 persons
 with
 SMI
 continue
 to
 be
 engaged
 in
 mental
 health
 

  2
 
treatment
 modalities,
 ranging
 from
 intense
 community
 treatments,
 in-­‐patient
 and
 
outpatient
 hospital
 programs,
 and
 individual
 and
 group
 therapy.
 By
 definition,
 such
 
immersion
 in
 mental
 health-­‐focused
 treatment
 can
 challenge
 the
 fundamental
 notions
 of
 
community
 integration
 and,
 hence,
 recovery.
 
 
At
 the
 same
 time,
 the
 idea
 of
 what
 comprises
 a
 community
 and
 what
 is
 a
 “good”
 
outcome,
 in
 terms
 of
 integration
 into
 that
 community,
 is
 as
 subjective
 as
 the
 views
 about
 
mental
 illness
 (Bond,
 Salyers,
 Rollins,
 Rapp,
 &
 Zipple,
 2004).
 Barring
 the
 generally
 accepted
 
universality
 of
 incidence
 of
 mental
 illness,
 notions
 about
 mental
 illness
 and
 its
 treatment
 
are
 often
 based
 in
 the
 normative,
 social,
 and
 cultural
 contexts
 of
 mental
 illness
 (Laungani,
 
1999).
 The
 ethnic
 culture
 theory
 (Mirowsky
 &
 Ross,
 1980;
 Sue
 &
 Chu,
 2003)
 also
 assumes
 
that
 concepts
 related
 to
 mental
 health,
 mental
 illnesses,
 and
 mental
 health
 services
 vary
 
based
 on
 tradition,
 cultural
 norms,
 and
 practices
 and
 could
 impact
 mental
 health
 diagnosis,
 
prognosis,
 and
 protective
 factors
 differently.
 Hence,
 cultural
 factors,
 perhaps
 even
 
independent
 of
 the
 initial
 illness,
 severity,
 and
 functioning
 have
 tremendous
 impacts
 on
 the
 
course,
 outcomes,
 and
 mental
 health
 services
 associated
 with
 the
 illness
 (Hopper
 &
 
Wanderling,
 2000;
 Lauber
 &
 Rossler,
 2007).
 India
 and
 the
 United
 States,
 for
 example,
 have
 
differences
 in
 terms
 of
 resources,
 target
 populations,
 goals
 of
 services,
 and
 barriers
 to
 
services
 (Srinivasaraghavan
 et
 al.,
 2012).
 These
 differences
 need
 to
 be
 considered
 before
 
incorporating
 the
 concepts
 and
 services
 developed
 in
 the
 United
 States
 into
 India
 in
 terms
 
of
 practice
 and
 research.
 However,
 existing
 empirical
 evidence
 falls
 short
 in
 accounting
 for
 
these
 subjective
 differences,
 across
 both
 individuals
 and
 various
 ethnic
 and
 cultural
 groups
 
(Townley
 et
 al.,
 2009;
 Tsang
 et
 al.,
 2007).
 Exploration
 of
 the
 concepts
 of
 community
 and
 

  3
 
community
 integration
 across
 individuals
 and
 different
 societies
 will
 help
 us
 in
 
understanding
 and
 facilitating
 recovery
 as
 a
 process
 and
 an
 outcome.
 
Purpose
 and
 Contributions
 of
 the
 Present
 Study
 
The
 purpose
 of
 this
 study
 was
 to
 examine
 multiple
 dimensions
 of
 community
 
integration
 in
 United
 States
 and
 India
 using
 Wong
 and
 Solomon’s
 conceptualization
 (Wong
 
&
 Solomon,
 2002).
 This
 study
 was
 built
 on
 and
 significantly
 expanded
 previous
 research
 on
 
community
 integration
 for
 individuals
 with
 SMI.
 Our
 previous
 research
 was
 the
 first
 to
 
empirically
 examine
 multiple
 dimensions
 of
 community
 integration
 in
 the
 United
 States
 
using
 Wong
 and
 Solomon’s
 conceptualization
 (Pahwa
 et
 al.,
 2013).
 The
 current
 study
 added
 
a
 cross-­‐national
 and
 cross-­‐cultural
 context
 to
 the
 previous
 research
 and
 expanded
 the
 
measurement
 protocol
 for
 community
 integration
 by
 refining
 the
 social
 network
 
methodology
 to
 include
 identified
 sources
 of
 social
 support,
 social
 resources,
 and
 stigma.
 
Theoretically,
 this
 study
 also
 expanded
 the
 community
 integration
 model
 of
 Wong
 and
 
Solomon
 (Wong
 &
 Solomon,
 2002)
 by
 using
 the
 social
 capital
 theory
 to
 explain
 the
 
importance
 of
 social
 networks
 as
 a
 form
 of
 social
 community
 integration.
 Several
 bodies
 of
 
literature
 were
 central
 to
 this
 effort,
 providing
 information
 on
 four
 areas
 of
 interest:
 (1)
 
theoretical
 and
 conceptual
 approaches
 to
 community;
 (2)
 theoretical
 conceptualizations
 of
 
community
 integration,
 with
 an
 emphasis
 on
 Wong
 and
 Solomon’s
 (2002)
 dimensions
 of
 
community
 integration
 and
 the
 tension
 between
 normalization
 and
 the
 subculture/identity
 
perspective
 of
 community
 integration
 (Mandiberg,
 1999);
 (3)
 theoretical
 frameworks
 of
 
different
 dimensions
 of
 community
 integration
 within
 Wong
 and
 Solomon’s
 model
 of
 
community
 integration;
 and
 (4)
 cross-­‐cultural
 and
 cross-­‐national
 theoretical
 contexts
 of
 
mental
 illness.
 Specifically,
 regarding
 the
 third
 area
 of
 interest,
 this
 study
 examined
 the
 

  4
 
theoretical
 frameworks
 for
 social
 networks
 and
 social
 support
 and
 used
 the
 social
 capital
 
theory
 and
 its
 bonding
 and
 bridging
 social
 capital
 perspectives
 (Putnam,
 2000;
 Szreter
 &
 
Woolcock,
 2004)
 to
 expand
 and
 explain
 the
 social
 dimension
 of
 community
 integration.
 The
 
literature
 on
 stigma,
 because
 of
 its
 association
 with
 community
 integration,
 was
 also
 
examined.
 These
 areas
 were
 reviewed
 to
 set
 the
 stage
 for
 the
 aims
 and
 methods
 of
 this
 
study.
 
 

  The
 current
 study
 made
 some
 very
 important
 contributions
 and
 additions
 to
 
previous
 work
 in
 the
 following
 ways:
 
1. It
 included
 a
 cross-­‐national
 component
 to
 get
 a
 more
 nuanced
 understanding
 of
 
community
 integration
 within
 an
 individual’s
 cultural
 context.
 
2. It
 expanded
 the
 social
 dimension
 of
 community
 integration
 using
 social
 resources
 as
 
forms
 of
 bonding
 and
 bridging
 social
 capital
 perspectives
 of
 the
 social
 capital
 theory.
 
3. It
 enhanced
 the
 network
 methodology
 to
 include
 relational-­‐level
 network
 data
 to
 
attain
 more
 information
 about
 an
 individual’s
 network.
 
4. It
 added
 stigma
 as
 a
 variable
 that
 may
 impact
 the
 dimensions
 of
 community
 
integration.
 
5. It
 explored
 the
 use
 of
 multilevel
 modeling
 in
 examining
 the
 effects
 of
 individual-­‐
 and
 
network-­‐level
 variables
 on
 disclosure
 about
 mental
 illness.
 
 
The
 present
 study
 aimed
 to
 make
 a
 significant
 contribution
 in
 understanding
 
community
 integration,
 especially
 because
 no
 other
 study
 has
 examined
 different
 
dimensions
 of
 community
 integration
 using
 relational-­‐level
 network
 data.
 However,
 at
 the
 
same
 time,
 due
 to
 a
 dearth
 in
 previous
 research
 to
 draw
 from,
 some
 of
 the
 aims
 of
 the
 
current
 study
 were
 largely
 exploratory.
 
 

  5
 
The
 questions
 explored
 within
 the
 context
 of
 each
 individual’s
 socio-­‐cultural
 
environment
 were
 as
 follows:
 
1. To
 which
 communities
 do
 individuals
 with
 SMI
 feel
 they
 belong
 (psychological
 
integration)?
 
 
2. From
 where
 do
 individuals
 with
 SMI
 access
 their
 resources
 (physical
 integration)?
 
3. What
 are
 the
 network
 compositions
 of
 individuals
 with
 SMI
 (social
 integration)?
 
4. How
 do
 different
 dimensions
 of
 community
 integration
 and
 relationships
 vary
 
across
 two
 cultural
 contexts
 in
 the
 United
 States
 and
 India?
 
 
5. What
 and
 who
 are
 the
 important
 sources
 of
 social
 support
 for
 individuals
 with
 SMI
 
(social
 integration)?
 
 
6. What
 are
 the
 sources
 of
 social
 resources,
 and
 stigma?
 
7. How
 is
 stigma
 associated
 with
 community
 integration
 and
 other
 psychosocial
 
factors?
 
8. How
 can
 we
 study
 the
 network-­‐
 and
 individual-­‐level
 variables
 simultaneously
 to
 
understand
 the
 factors
 associated
 with
 community
 integration?
 

  The
 current
 study,
 with
 the
 inclusion
 of
 multiple
 dimensions
 of
 community
 
integration
 and
 advanced
 network
 methodology,
 has
 a
 unique
 advantage
 in
 being
 able
 to
 
explore
 the
 study
 questions
 within
 the
 context
 of
 theories
 of
 community,
 community
 
integration,
 social
 network,
 social
 capital,
 social
 support,
 and
 stigma.
 This
 is
 the
 first
 study
 
to
 use
 multiple
 methodologies
 to
 empirically
 examine
 community
 integration
 using
 Wong
 
and
 Solomon’s
 conceptualization
 cross-­‐nationally
 and
 to
 use
 theories
 of
 social
 capital
 to
 
expand
 the
 social
 community
 integration
 dimension.
 
 

   
 

  6
 
Specific
 Aims
 and
 Hypotheses
 
AIM
 1:
 To
 use
 network
 analysis
 and
 Wong
 and
 Solomon’s
 dimensions
 of
 community
 
integration
 to
 study
 and
 compare
 the
 degree
 of
 community
 integration
 (physical,
 social,
 
and
 psychological
 integration)
 of
 individuals
 with
 SMI
 in
 samples
 from
 India
 and
 United
 
States.
 
Hypothesis
 1a:
 Samples
 of
 individuals
 with
 SMI
 in
 India
 and
 the
 United
 States
 will
 
differ
 in
 terms
 of
 different
 community
 integration
 dimensions.
 Specifically,
 
individuals
 from
 India
 will
 be
 more
 integrated
 in
 the
 non-­‐mental
 health
 community
 
compared
 with
 individuals
 from
 the
 United
 States.
 
 
Hypothesis
 1b:
 Samples
 of
 individuals
 with
 SMI
 in
 India
 and
 the
 United
 States
 will
 
differ
 in
 terms
 of
 their
 social
 network
 structures
 and
 the
 networks
 from
 which
 they
 
access
 social
 support
 and
 social
 resources.
 Specifically,
 individuals
 from
 India
 will
 
have
 more
 non-­‐mental
 health
 community-­‐based
 networks
 compared
 with
 
individuals
 from
 the
 United
 States.
 
AIM
 2:
 To
 use
 quantitative
 and
 network-­‐level
 variables
 to
 understand
 community
 
integration
 and
 how
 the
 psychosocial
 and
 network
 variables
 are
 associated
 with
 the
 three
 
dimensions
 of
 community
 integration
 for
 individuals
 with
 SMI
 in
 samples
 from
 India
 and
 
the
 United
 States.
 
Hypothesis
 2:
 Samples
 from
 India
 and
 the
 United
 States
 will
 differ
 in
 terms
 of
 
factors
 associated
 with
 the
 three
 dimensions
 of
 community
 integration.
 
AIM
 3:
 To
 explore
 the
 use
 of
 multilevel
 analysis
 in
 examining
 the
 effects
 of
 individual-­‐
 and
 
network-­‐level
 variables
 on
 disclosure
 about
 mental
 illness
 in
 samples
 from
 India
 and
 the
 
United
 States.
 
 

  7
 
Overview
 of
 Methodology
 

  The
 present
 study
 uses
 a
 unique
 combination
 of
 quantitative
 and
 network
 
methodologies
 to
 explore
 the
 concept
 of
 community
 integration
 in
 India
 and
 the
 United
 
States.
 Thirty
 individuals
 from
 the
 United
 States
 and
 26
 individuals
 from
 India
 were
 asked
 
to
 participate
 in
 a
 network
 interview,
 where
 they
 were
 asked
 to
 nominate
 individuals
 in
 
their
 social
 networks
 with
 whom
 they
 had
 interacted
 with
 in
 the
 previous
 two
 months.
 
Next,
 they
 were
 asked
 specific
 questions
 about
 their
 social
 networks
 to
 obtain
 detailed
 
information,
 including
 attributes
 of
 their
 networks
 and
 individuals
 in
 their
 networks
 who
 
they
 identify
 as
 being
 a
 source
 of
 social
 support,
 social
 resources,
 and
 stigma.
 The
 second
 
part
 of
 the
 interview
 consisted
 of
 a
 battery
 quantitative
 questions
 to
 collect
 information
 on
 
their
 demographic
 characteristics,
 psychosocial
 characteristics,
 and
 different
 dimensions
 of
 
community
 integration.
 Data
 collected
 from
 the
 two
 parts
 of
 the
 interview
 process
 were
 
used
 to
 address
 Aims
 1–3
 using
 descriptive,
 inferential,
 and
 multilevel
 methodologies.
 
 
Organization
 of
 the
 Study
 

  The
 present
 dissertation
 consists
 of
 five
 chapters.
 Chapter
 one
 presents
 the
 
background
 and
 the
 purpose
 of
 the
 study
 along
 with
 the
 specific
 aims.
 Chapter
 two
 
provides
 the
 literature
 review
 and
 theoretical
 background
 of
 the
 study.
 It
 includes
 a
 
detailed
 literature
 background
 and
 theoretical
 perspectives
 on
 community,
 community
 
integration,
 social
 support,
 social
 networks,
 social
 capital,
 and
 cross-­‐cultural
 research.
 
Chapter
 three
 includes
 the
 methodology
 used
 in
 the
 study,
 including
 specific
 aims,
 
hypotheses,
 research
 design,
 and
 analysis
 plans
 for
 the
 three
 study
 aims.
 Chapter
 four
 
enlists
 the
 results
 from
 Aims
 1,
 2,
 and
 3.
 The
 first
 part
 of
 Chapter
 four
 includes
 the
 results
 
of
 the
 descriptive
 analysis,
 followed
 by
 the
 bivariate
 analyses.
 The
 second
 part
 of
 the
 

  8
 
chapter
 includes
 regression
 models
 that
 tested
 the
 association
 of
 different
 dimensions
 of
 
community
 integration
 with
 different
 demographic
 and
 psychosocial
 factors.
 The
 third
 part
 
of
 this
 chapter
 includes
 results
 from
 the
 multilevel
 analysis
 that
 tested
 the
 association
 of
 
different
 psychosocial,
 network,
 and
 community
 integration
 variables
 on
 disclosure
 about
 
mental
 illness.
 Chapter
 five
 presents
 the
 discussion
 of
 the
 findings,
 their
 implications
 for
 
social
 work
 and
 cross-­‐national
 practice
 and
 research,
 future
 directions,
 limitations
 of
 the
 
study,
 and
 conclusions.
 
 

 

  9
 
CHAPTER
 TWO:
 
 
LITERATURE
 REVIEW
 AND
 THEORETICAL
 BACKGROUND
 
The
 Cultural
 Context
 of
 Mental
 Illness
 
It
 has
 been
 suggested
 that
 mental
 health
 practices
 and
 ideologies
 that
 originate
 in
 
developed
 countries,
 when
 applied
 to
 other
 countries
 without
 addressing
 the
 cultural
 
contexts
 within
 which
 they
 are
 situated,
 might
 be
 more
 detrimental
 than
 beneficial
 
(Nizamie,
 Katsu,
 &
 Praharaj,
 2012;
 Nunley,
 1998).
 There
 are
 differences
 in
 mental
 health
 
perception,
 prognosis,
 goals
 of
 services,
 and
 the
 content
 of
 services
 in
 developing
 and
 
developed
 countries
 (Srinivasaraghavan
 et
 al.,
 2012).
 India,
 known
 for
 its
 culturally
 rich
 
society,
 is
 also
 known
 for
 its
 pluralistic
 approach
 to
 medicine
 and,
 specifically,
 to
 mental
 
illness
 (Pakaslahti,
 2012).
 Whereas
 community
 mental
 health
 services
 are
 growing
 rapidly
 
in
 India,
 there
 is
 still
 a
 substantial
 number
 of
 people
 who
 believe
 in
 the
 supernatural
 basis
 
of
 mental
 illnesses
 and
 seek
 indigenous
 and
 faith
 healers
 as
 their
 initial
 treatment
 modality
 
(Banerjee
 &
 Roy,
 1998).
 However,
 although
 there
 is
 a
 tremendous
 stigma
 associated
 with
 
mental
 illness
 (Longanathan
 &
 Murthy,
 2012;
 Longanathan
 &
 Murthy,
 2008),
 there
 is
 also
 
family
 involvement
 and
 support
 available
 to
 individuals
 with
 mental
 illness
 in
 India
 
(Bhatia,
 Garg,
 &
 Galhotra,
 2012b;
 Thara,
 Padmavati,
 Arynkran,
 &
 John,
 2008).
 
Concurrently,
 there
 is
 evidence
 of
 better
 long-­‐term
 treatment
 outcomes
 for
 
individuals
 with
 SMI,
 such
 as
 schizophrenia,
 in
 developing
 counties
 compared
 with
 
developed
 countries
 (Hopper,
 2007;
 Hopper
 &
 Wanderling,
 2000;
 Jadhav
 et
 al.,
 2007;
 
Kulhara,
 Mattoo,
 Avasthi,
 &
 Malhotra,
 1987).
 A
 series
 of
 WHO
 studies
 (World
 Health
 
Organization,
 1973,
 1978)
 and
 subsequent
 follow-­‐up
 studies
 (Hopper
 &
 Wanderling,
 2000)
 
found
 significant
 differences
 between
 developing
 (India,
 Colombia,
 and
 Nigeria)
 and
 

  10
 
developed
 (USA,
 UK,
 Ireland,
 Denmark,
 Czech
 Republic,
 Slovakia,
 Japan,
 and
 Russia)
 
countries
 in
 terms
 of
 mental
 health
 treatment
 outcomes,
 with
 developing
 countries
 
showing
 more
 promising
 results
 (Hopper,
 2007).
 This
 differential
 course
 of
 illness
 and
 
prognosis
 has
 implications
 for
 cross-­‐cultural
 and
 cross-­‐national
 generalizations,
 both
 in
 
terms
 of
 research
 and
 practice.
 Cultural
 backgrounds
 are
 known
 to
 influence
 the
 
conception
 of
 mental
 illness,
 experience
 of
 symptoms,
 types
 and
 acceptability
 of
 
treatments,
 and
 social
 tolerance
 of
 mental
 illnesses.
 
Other
 cross-­‐cultural
 studies
 have
 identified
 differences
 in
 the
 way
 mental
 illnesses
 
are
 perceived.
 Kleinman
 (1991)
 discussed
 mental
 illness
 in
 the
 context
 of
 “theory
 of
 
causation”
 that
 dictates
 how
 a
 mental
 illness
 is
 conceptualized,
 provided
 a
 meaning
 and
 
expectations
 regarding
 the
 course
 and
 outcomes
 of
 a
 mental
 illness
 (Kleinman,
 1991;
 
Swerdlow,
 1992).
 He
 discusses
 cultures
 where
 mental
 illness
 is
 considered
 more
 acute
 
rather
 than
 chronic,
 recovery
 is
 an
 expectation,
 and
 mental
 illness
 is
 not
 automatically
 
linked
 to
 disability
 (Kleinman,
 1991;
 Swerdlow,
 1992),
 which
 is
 in
 contrast
 to
 a
 society
 
where
 mental
 illness
 is
 attached
 to
 the
 identity
 of
 an
 individual
 (Estroff,
 1989).
 More
 
traditional
 or
 socio-­‐centric
 societies,
 like
 India,
 that
 emphasize
 social
 relationships,
 
traditions,
 and
 roles
 that
 sustain
 long-­‐term
 relationships
 are
 considered
 to
 have
 more
 
extended
 and
 long-­‐term
 social
 connections
 that
 may
 provide
 a
 buffer
 against
 the
 negative
 
effects
 of
 having
 a
 mental
 illness
 (K.
 Lin
 &
 Kleinman,
 1988).
 
 

 
  In
 the
 light
 of
 these
 cultural
 factors,
 an
 abundance
 of
 caution
 should
 be
 exercised
 
when
 applying
 more
 westernized
 conceptions
 of
 mental
 illness
 on
 individuals
 diagnosed
 
with
 SMI
 in
 countries
 such
 as
 India.
 Consequently,
 questions
 about
 the
 community
 life
 of
 
persons
 with
 SMI
 need
 to
 be
 explored
 within
 these
 unique
 cultural
 contexts.
 
 

  11
 
Mental
 Health
 in
 India,
 Social
 Support,
 and
 Stigma
 
Social
 support
 and
 family
 support
 are
 two
 important
 factors
 that
 play
 predominant
 
roles
 in
 attaining
 better
 outcomes
 for
 individuals
 with
 SMI,
 especially
 in
 developing
 
countries
 (Hopper
 &
 Wanderling,
 2000).
 India,
 one
 of
 the
 most
 rapidly
 developing
 
societies,
 is
 rooted
 in
 its
 rich
 cultural
 and
 social
 beliefs,
 and
 these
 beliefs
 also
 extend
 to
 the
 
origination
 and
 course
 of
 SMI
 (Wagner,
 Duveen,
 Themel,
 &
 Verma,
 1999).
 It
 would
 be
 
hazardous
 to
 perceive
 India
 as
 a
 culturally
 and
 socially
 homogenous
 society,
 considering
 
the
 diversity
 in
 terms
 of
 region,
 language,
 and
 religious
 practices
 (Bhatia
 et
 al.,
 2012b).
 
Even
 so,
 the
 engagement
 of
 Indian
 families
 in
 the
 course
 of
 treatment
 for
 a
 family
 member
 
diagnosed
 with
 SMI,
 from
 the
 initial
 decision
 to
 seek
 help
 to
 medication
 adherence,
 
provision
 of
 financial
 assistance,
 and
 logistical
 support,
 are
 suggested
 to
 influence
 better
 
course
 and
 illness
 outcomes
 (Nunley,
 1998).
 Family
 involvement
 in
 the
 life
 and
 care
 of
 
individuals
 with
 SMI
 have
 been
 linked
 with
 the
 following
 benefits:
 (1)
 family
 involvement
 
means
 a
 voice
 and
 patient
 advocacy
 at
 every
 step
 of
 the
 way;
 (2)
 family
 and
 caregivers
 have
 
proved
 to
 be
 a
 very
 good
 source
 of
 information
 for
 service
 providers;
 (3)
 inclusion
 of
 
family
 could
 mean
 better
 adherence
 to
 treatment
 and
 medication
 for
 individuals
 with
 a
 
SMI;
 and
 (4)
 in
 lieu
 of
 no
 financial
 safety
 net
 for
 individuals
 with
 SMI
 in
 India,
 family
 
involvement
 could
 mean
 better
 economic
 provision
 of
 care
 (Bhatia,
 Garg,
 &
 Galhotra,
 
2012a;
 Nunley,
 1998)
 
There
 has
 been
 considerable
 research
 over
 the
 years
 in
 India
 linking
 family
 
structure,
 size,
 socio-­‐economic
 status,
 education,
 and
 family
 religious
 practices
 to
 better
 
prognosis
 of
 various
 mental
 illnesses
 (Bhatia
 et
 al.,
 2012b;
 Sethi,
 1983);
 yet,
 family
 
entrenchment
 in
 the
 lives
 of
 individuals
 with
 SMI
 is
 not
 always
 positive.
 Studies
 have
 

  12
 
identified
 negative
 impacts
 of
 family
 members
 serving
 as
 the
 primary
 caregivers
 of
 
individuals
 with
 SMI,
 for
 the
 caretakers
 and
 the
 care
 receivers.
 Personal
 and
 financial
 
burdens
 associated
 with
 care
 giving
 (Rammohan,
 Rao,
 &
 Subbakrishna,
 2002),
 depreciating
 
quality
 of
 life
 of
 the
 caregiver
 (Caqueo-­‐Urízar,
 Gutiérrez-­‐Maldonado,
 &
 Miranda-­‐Castillo,
 
2009),
 and
 expressed
 emotion
 (Butzlaff
 &
 Hooley,
 1998)
 are
 just
 as
 prevalent
 as
 the
 
positive
 effects
 of
 family
 involvement
 in
 the
 lives
 of
 persons
 with
 SMI.
 
 
Stigma
 has
 been
 recognized
 as
 an
 integral
 part
 of
 the
 experience
 of
 mental
 illness,
 a
 
key
 barrier
 to
 accessing
 mental
 health
 care,
 and
 an
 important
 deterrent
 in
 re-­‐integration
 
into
 mainstream
 community.
 Although
 stigma
 associated
 with
 mental
 illness
 is
 not
 a
 
phenomenon
 of
 developing
 countries
 alone,
 studies
 in
 India
 have
 found
 the
 presence
 of
 
stigma
 at
 multiple
 levels
 (Longanathan
 &
 Murthy,
 2012),
 including
 perceived
 stigma
 
internalized
 by
 the
 individual
 with
 mental
 illness
 (Raguram,
 Weiss,
 Channabasavanna,
 &
 
Devins,
 1996),
 at
 the
 level
 of
 family
 and
 caregivers
 (Thara,
 Kamath,
 &
 Kumar,
 2003a,
 
2003b),
 at
 the
 level
 of
 service
 providers
 (Chowdhury,
 Sanyal,
 Dutta,
 Banerjee,
 De,
 
Bhattacharya,
 Patit,
 et
 al.,
 2000;
 Imran
 &
 Haider,
 2007)
 ,
 and
 at
 the
 level
 of
 society
 
(Chowdhury,
 Sanyal,
 Dutta,
 Banerjee,
 De,
 Bhattacharya,
 Patit,
 et
 al.,
 2000).
 Whereas
 
experiencing
 stigma
 at
 these
 levels
 could
 be
 negatively
 associated
 with
 the
 experiences
 of
 
having
 a
 mental
 illness
 and
 a
 barrier
 to
 accessing
 services,
 in
 India,
 the
 interaction
 of
 
stigma
 with
 other
 family-­‐level
 factors
 makes
 for
 a
 particularly
 convoluted
 picture.
 As
 
previously
 discussed,
 family
 plays
 an
 important
 role
 in
 connecting
 an
 individual
 with
 a
 
mental
 illness
 to
 mental
 health
 services
 in
 India.
 Family
 provides
 financial
 support,
 
advocates
 for
 the
 consumer,
 and
 takes
 on
 a
 caregiver
 role
 at
 home.
 However,
 at
 the
 same
 
time,
 because
 of
 the
 structure
 of
 Indian
 society,
 the
 stigma
 of
 having
 a
 mental
 illness
 is
 not
 

  13
 
only
 directed
 at
 or
 felt
 by
 the
 individual.
 It
 may
 also
 become
 a
 source
 of
 shame
 and
 
embarrassment
 for
 the
 family
 member
 (Longanathan
 &
 Murthy,
 2012).
 The
 picture
 is
 
further
 complicated
 by
 the
 idea
 of
 the
 marriageability
 of
 an
 individual
 if
 they
 are
 known
 to
 
have
 a
 mental
 illness.
 Indian
 society
 is
 still
 a
 culture
 that
 practices
 arranged
 marriages,
 and
 
any
 association
 of
 mental
 illness
 within
 a
 family
 could
 imply
 diminishing
 marriage
 
prospects,
 not
 just
 for
 the
 individual
 with
 a
 mental
 illness,
 but
 for
 their
 siblings
 and
 other
 
members
 of
 the
 family,
 as
 well
 (Thara
 et
 al.,
 2003a,
 2003b).
 
 
In
 conclusion,
 Indian
 society
 presents
 an
 interesting
 contradiction,
 where
 family
 
support
 and
 social
 support
 are
 potential
 buffers
 to
 many
 negative
 aspects
 involved
 for
 
individuals
 with
 a
 mental
 illness.
 If
 harnessed
 properly,
 family
 could
 be
 a
 means
 to
 improve
 
access
 and
 efficacy
 of
 care.
 However,
 lack
 of
 awareness,
 beliefs
 about
 mental
 illnesses,
 and
 
the
 stigma
 it
 carries
 could
 also
 turn
 family
 involvement
 into
 a
 barrier
 to
 accessing
 care
 and
 
could
 hinder
 the
 process
 of
 recovery.
 
 
Community
 and
 Theoretical
 Approaches
 to
 Understanding
 Community
 
Community
 has
 been
 defined
 in
 terms
 of
 a
 geographical
 space,
 as
 well
 as
 a
 group
 of
 
people
 who
 interact
 with
 each
 other
 and
 have
 common
 interests,
 shared
 goals,
 and
 a
 
collective
 sense
 of
 identity
 (Cooper,
 Arber,
 Fee,
 &
 Ginn,
 1999;
 Post,
 1997).
 On
 one
 level,
 
community
 is
 composed
 of
 the
 place,
 neighborhood,
 or
 other
 various
 locations
 of
 society
 
(Brennan
 &
 Brown,
 2008;
 Tyler,
 2006).
 On
 another
 level,
 community
 stands
 for
 a
 sense
 of
 
belonging,
 interdependence,
 identity,
 and
 shared
 experiences
 that
 individuals
 derive
 from
 
the
 people
 with
 which
 they
 interact
 (Bhattacharyya,
 2004;
 Blackshaw,
 2009;
 A.
 P.
 Cohen,
 
1985).
 
 

  14
 
The
 term
 community
 originates
 from
 the
 Latin
 word
 communis,
 which
 means
 
“fellowship,”
 and
 contains
 the
 attribute
 of
 “community
 of
 relations
 and
 feelings”
 (Barrett-­‐
Lennard,
 1994;
 Callus,
 2006).
 There
 are
 multiple
 perspectives
 in
 the
 literature
 that
 explore
 
what
 community
 is,
 how
 it
 has
 been
 conceptualized,
 and
 how
 it
 can
 be
 measured.
 George
 
Hillery,
 in
 1955,
 gave
 94
 definitions
 of
 community,
 which
 illustrates
 the
 complexity
 of
 this
 
concept
 (Hillery,
 1955).
 The
 earliest
 definitions
 focused
 on
 community
 as
 an
 “organized
 
body
 of
 people”
 (Tyler,
 2006,
 p.
 21).
 Gradually,
 with
 the
 development
 of
 trade
 and,
 hence,
 a
 
society
 where
 its
 members
 were
 more
 dependent
 on
 each
 other,
 community
 came
 to
 be
 
known
 in
 terms
 of
 relationships
 between
 people
 (Tyler,
 2006).
 
 
It
 was
 within
 the
 context
 of
 modern
 time,
 with
 the
 development
 of
 states
 and
 
nations,
 that
 community
 was
 interpreted
 in
 terms
 of
 individuals
 sharing
 a
 geographical
 
space
 (Brennan
 &
 Brown,
 2008;
 Tyler,
 2006).
 Tönnies
 (2001)
 further
 formalized
 this
 
definition
 of
 community
 by
 making
 a
 distinction
 between
 Gemeinschaft
 (defined
 in
 terms
 
of
 significant
 local
 community)
 and
 Gesellschaft
 (defined
 in
 terms
 of
 the
 larger
 society).
 
Gemeinschaft
 was
 conceptualized
 as
 a
 traditional
 interconnected
 community,
 where
 family
 
history
 and
 traditions
 connected
 its
 members,
 not
 unlike
 a
 small
 village
 (Blackshaw,
 2009;
 
Tönnies,
 2001).
 Gesellschaft,
 on
 the
 other
 hand,
 was
 characterized
 by
 independence
 and
 
impersonal
 existence,
 mainly
 as
 a
 result
 of
 industrialization,
 which
 was
 more
 like
 an
 urban
 
city
 (Blackshaw,
 2009;
 Tönnies,
 2001).
 This
 definition
 of
 community
 limited
 the
 idea
 of
 
community
 to
 a
 geographical
 space.
 
The
 interpretation
 of
 community
 only
 in
 the
 context
 of
 a
 geographical
 space
 was
 
challenged
 as
 early
 as
 1964
 and
 has
 been
 many
 times
 since
 by
 various
 theorists
 who
 
recognized
 that
 defining
 community
 only
 in
 terms
 of
 geography
 and
 spatial
 proximity
 

  15
 
might
 be
 limiting
 (Bhattacharyya,
 2004;
 Blackshaw,
 2009;
 Webber,
 1964).
 During
 this
 
period
 is
 when
 the
 definition
 of
 community
 via
 connections
 and
 social
 networks
 came
 into
 
being
 (Bradshaw,
 2008;
 Calhoun,
 2007).
 Bradshaw
 (Bradshaw,
 2008,
 p.
 5)
 defined
 
community
 as
 the
 “networks
 of
 people
 tied
 together
 by
 solidarity,
 a
 shared
 identity
 and
 set
 
of
 norms,
 that
 do
 not
 necessarily
 reside
 in
 a
 same
 place.”
 In
 recognition
 of
 the
 importance
 
of
 individual
 networks,
 network
 ties,
 and
 network
 features,
 such
 as
 reciprocity,
 many
 
community
 theorists
 have
 pointed
 to
 network
 analysis
 as
 a
 key
 method
 for
 understanding
 
communities
 (Blackshaw,
 2009).
 
Community
 has
 also
 been
 interpreted
 in
 the
 context
 of
 an
 individual’s
 identity
 and
 
sense
 of
 belonging.
 Bhattacharyya
 (2004)
 identified
 community
 in
 terms
 of
 solidarity
 and
 
common
 values,
 social
 norms,
 and
 attributes
 that
 could
 lead
 to
 a
 shared
 sense
 of
 identity.
 
Cohen,
 in
 his
 theory
 of
 community
 (A.
 P.
 Cohen,
 1985),
 talked
 about
 the
 symbols,
 customs,
 
habits
 and
 rituals
 are
 used
 to
 communicate
 within
 the
 context
 of
 a
 community.
 This
 idea
 of
 
community
 is
 based
 on
 a
 shared
 sense
 of
 reality
 but
 is
 symbolically
 constructed
 and
 a
 
source
 of
 an
 individual’s
 sense
 of
 identity
 and
 belonging
 (Blackshaw,
 2009).
 
 
The
 premise
 of
 identity-­‐based
 community
 also
 comes
 from
 the
 concept
 of
 likeness.
 
As
 Heller
 (1999)
 pointed
 out,
 we
 are
 more
 like
 ourselves
 than
 anyone
 else,
 and
 we
 are
 
more
 like
 the
 social
 group
 we
 belong
 to
 (Bhattacharyya,
 2004;
 Cooper
 et
 al.,
 1999;
 Heller,
 
1999;
 Post,
 1997).
 Embedded
 within
 this
 idea
 of
 likeness
 is
 the
 idea
 of
 distinctiveness,
 
whereby
 an
 individual’s
 identity,
 within
 the
 context
 of
 a
 community,
 is
 based
 on
 how
 
different
 they
 are
 from
 the
 members
 of
 other
 communities
 (Blackshaw,
 2009;
 R.
 Jenkins,
 
2008).
 This
 idea
 is
 especially
 relevant
 to
 individuals
 with
 mental
 illness
 who
 may
 
experience
 a
 shift
 away
 from
 their
 primary
 identity
 as
 a
 mental
 health
 patient
 when
 they
 

  16
 
become
 a
 well-­‐integrated
 member
 of
 the
 general
 community
 (Bond
 et
 al.,
 2004;
 McColl,
 
Davies,
 Carlson,
 Johnston,
 &
 Minnes,
 2001;
 Pilisuk,
 2001).
 However,
 when
 individuals
 
within
 the
 general
 community
 have
 a
 sense
 of
 identity
 that
 is
 perceived
 to
 be
 different
 from
 
an
 individual
 with
 a
 mental
 illness,
 stigma
 may
 arise,
 making
 it
 difficult
 for
 individuals
 with
 
SMI
 to
 develop
 a
 sense
 of
 belonging
 in
 this
 mainstream
 community
 (Mandiberg,
 1999).
 
 
The
 current
 study
 takes
 into
 account
 these
 definitions
 of
 community,
 including
 
community
 as
 geographical
 space
 (where
 an
 individual
 spends
 time),
 community
 in
 terms
 
of
 an
 individual’s
 social
 network
 connections,
 and
 community
 based
 on
 an
 individual’s
 
sense
 of
 identity
 and
 belonging.
 This
 definition
 of
 community
 has
 implications
 for
 the
 
notion
 of
 community
 integration.
 
 
Community
 Integration
 and
 Its
 Theoretical
 Frameworks
 

  Community
 integration
 has
 been
 recognized
 as
 a
 manifestation
 of
 the
 recovery
 
experience
 (Bond
 et
 al.,
 2004),
 as
 an
 important
 outcome
 of
 mental
 health
 treatment,
 and
 as
 
a
 challenge
 for
 individuals
 with
 SMI
 (Abdallah,
 Cohen,
 Sanchez-­‐Almira,
 Reyes,
 &
 Ramirez,
 
2009;
 Baumgartner
 &
 Herman,
 2012;
 Perkins
 et
 al.,
 2009;
 Townley
 et
 al.,
 2009).
 Because
 
the
 passage
 of
 the
 Community
 Mental
 Health
 Centers
 Act
 of
 1963,
 it
 has
 been
 suggested
 
that
 individuals
 with
 SMI
 are
 better
 served
 when
 they
 integrate
 into
 the
 general
 or
 non-­‐
mental
 health
 community
 (Wong,
 Sands,
 &
 Solomon,
 2010).
 The
 deinstitutionalization
 of
 
persons
 with
 SMI
 was
 based
 on
 the
 philosophy
 that
 all
 individuals,
 regardless
 of
 their
 
illness
 burden,
 should
 be
 integrated
 into
 society
 and
 fit
 into
 culturally
 normative
 activities
 
and
 roles
 (Wong
 et
 al.,
 2010);
 however,
 little
 work
 has
 been
 conducted
 to
 identify
 the
 
process
 of
 community
 integration
 and
 associated
 factors
 for
 persons
 with
 SMI
 (Prince
 &
 

  17
 
Gerber,
 2005;
 Wieland,
 Rosenstock,
 Kelsey,
 Ganguli,
 &
 Wisniewski,
 2007;
 Wong
 &
 Solomon,
 
2002).
 
 
Based
 on
 the
 initial
 definition
 of
 community
 as
 a
 geographical
 space,
 community
 
integration
 of
 individuals
 with
 SMI
 was
 originally
 only
 associated
 with
 physical
 integration,
 
which
 implied
 that
 for
 individuals
 with
 SMI
 to
 become
 integrated
 into
 the
 mainstream
 
community,
 they
 had
 to
 spend
 more
 of
 their
 time
 in
 the
 non-­‐mental
 health
 community
 and
 
use
 it
 for
 their
 day-­‐to-­‐day
 needs
 (Segal
 &
 Aviram,
 1978).
 This
 definition
 has
 since
 been
 
expanded
 to
 include
 multiple
 dimensions
 of
 community
 integration
 (Wong
 &
 Solomon,
 
2002),
 which
 is
 reflective
 of
 the
 multidimensional
 definition
 of
 community.
 The
 present
 
study
 is
 informed
 by
 the
 holistic
 conceptual
 framework
 put
 forward
 by
 Wong
 and
 Solomon
 
(2002)
 that
 focuses
 on
 three
 dimensions
 of
 community
 integration:
 physical,
 social,
 and
 
psychological
 integration.
 This
 idea
 of
 community
 integration
 moves
 beyond
 the
 traditional
 
definition
 of
 community
 as
 a
 place
 of
 residence
 to
 include
 subjective
 emotional
 
connections,
 bonds,
 and
 a
 sense
 of
 identity
 and
 belonging
 (Cummins
 &
 Lau,
 2003;
 Wong
 &
 
Solomon,
 2002).
 
According
 to
 Wong
 and
 Solomon’s
 dimensions,
 community
 integration
 can
 be
 
defined
 in
 the
 following
 ways:
 
 
1. Physical
 integration:
 the
 extent
 to
 which
 an
 individual
 spends
 time
 and
 participates
 
in
 a
 community
 and
 “uses
 goods
 and
 services
 in
 the
 community
 outside
 his/her
 
home”
 (Wong
 &
 Solomon,
 2002,
 p.
 18).
 
2. Psychological
 integration:
 the
 extent
 to
 which
 an
 individual
 feels
 they
 are
 a
 part
 of
 a
 
community
 (Wong
 &
 Solomon,
 2002).
 
3. Social
 integration:
 Social
 integration
 has
 been
 divided
 in
 to
 two
 sub
 dimensions:
 
   
 

  18
 
a. Social
 interaction:
 the
 “extent
 to
 which
 an
 individual
 engages
 in
 social
 
interaction
 with
 other
 community
 members”
 (Wong
 &
 Solomon,
 2002,
 p.
 18).
 
 
b. Social
 networks:
 the
 adequacy
 of
 an
 individual’s
 social
 network
 in
 terms
 of
 
its
 size
 and
 the
 level
 of
 support
 it
 provides.
 
 

 The
 present
 study
 has
 operationalized
 this
 multidimensional
 perspective
 to
 bring
 
together
 theories
 of
 social
 capital,
 social
 support,
 and
 social
 networks
 and
 weave
 them
 in
 to
 
the
 community
 integration
 perspective.
 Additionally,
 we
 are
 suggesting
 an
 expansion
 of
 the
 
social
 integration
 dimension
 of
 Wong
 and
 Solomon’s
 model
 in
 the
 form
 of
 social
 resources
 
using
 the
 theory
 of
 bridging
 and
 bonding
 social
 capital
 (Putnam,
 2000).
 This
 theory
 
examines
 the
 members
 of
 a
 social
 network
 from
 whom
 individuals
 access
 different
 kinds
 of
 
social
 resources.
 
 
Social
 Networks,
 Social
 Resources,
 and
 Social
 Support:
 How
 They
 Inform
 Community
 
Integration
 
Whereas
 there
 are
 several
 overlapping
 definitions
 of
 social
 networks,
 social
 
support,
 and
 social
 resources
 in
 the
 literature,
 all
 three
 concepts
 are
 considered
 very
 
important
 to
 community
 development
 and
 reintegration
 (Barrera,
 1986;
 Dolan,
 2008).
 The
 
current
 study
 used
 Wong
 and
 Solomon’s
 (2002)
 framework
 of
 community
 integration
 
(physical,
 social,
 psychological
 integration),
 conceptualized
 social
 support
 levels,
 and
 social
 
network
 variables
 as
 the
 measure
 of
 social
 integration.
 We
 used
 the
 theory
 of
 social
 
resources
 to
 measure
 two
 dimensions
 of
 Wong
 and
 Solomon’s
 model
 of
 community
 
integration.
 First,
 we
 used
 the
 availability
 of
 total
 social
 resources
 to
 an
 individual
 as
 a
 
proxy
 of
 physical
 integration
 for
 individuals
 with
 SMI.
 Second,
 we
 made
 use
 of
 the
 theory
 of
 

  19
 
bridging
 and
 bonding
 social
 resources
 to
 study
 the
 actual
 network
 relationships
 that
 
provide
 specific
 social
 resources
 to
 individuals
 with
 SMI.
 
 

 
Figure
 1.
 Wong
 and
 Solomon’s
 model
 of
 community
 integration
 and
 its
 dimensions.
 

 

 
The
 three
 concepts,
 their
 theoretical
 foundations,
 and
 their
 relationship
 to
 
community
 integration
 are
 discussed
 below.
 
 
Social
 networks.
 Central
 to
 the
 definition
 of
 a
 social
 network
 is
 its
 ability
 to
 
“provide
 the
 structural
 element
 of
 the
 mechanism
 of
 social
 interaction”
 through
 which
 
“individuals
 learn
 about,
 come
 to
 understand,
 and
 attempt
 to
 handle
 difficulties”
 
(Pescosolido,
 1992,
 2006).
 Social
 networks
 and
 connections
 form
 the
 basis
 of
 how
 
community
 is
 sometimes
 defined
 (Bradshaw,
 2008;
 Calhoun,
 2007).
 Social
 networks,
 in
 the
 
form
 of
 family
 and
 community,
 transfer
 the
 cultural
 norms
 and
 practices
 to
 an
 individual
 
that
 shapes
 their
 interpersonal
 behavior
 (Cullen
 &
 Whiteford,
 2001;
 National
 Institutes
 of
 
Health,
 1991).
 
 
Community
 
Integration
 
Physical
 
Integration
 
Psychological
 
Integration
 
Social
 
Integration
 
Social
 
interaction
 
Social
 
Networks
 

  20
 
There
 is
 a
 substantial
 body
 of
 literature
 that
 has
 established
 the
 importance
 of
 social
 
ties
 and
 social
 networks
 for
 mental
 illness
 and
 psychological
 well-­‐being
 (Cullen
 &
 
Whiteford,
 2001;
 Kawachi
 &
 Berkman,
 2001;
 Webber,
 2004;
 Webber
 &
 Huxley,
 2007).
 
There
 is
 also
 an
 association
 between
 presence
 of
 psychiatric
 disorders
 and
 significant
 
impairment
 in
 the
 social
 networks
 for
 individuals
 with
 SMI
 (Brugha,
 Wing,
 Brewin,
 
MacCarthy,
 &
 Lesage,
 1993;
 Holmes-­‐Eber
 &
 Riger,
 1990).
 Compared
 with
 the
 general
 
population,
 individuals
 with
 schizophrenia
 are
 known
 to
 have
 smaller
 networks,
 which
 in
 
turn
 are
 associated
 with
 lower
 social
 support
 and
 sparse
 environmental
 resources,
 
especially
 in
 the
 times
 of
 stress
 and
 crises
 (Brugha
 et
 al.,
 2004;
 Stein,
 Barry,
 Van
 Dien,
 
Hollingsworth,
 &
 Sweeney,
 1999).
 
Historically,
 being
 able
 to
 form
 and
 maintain
 social
 relationships
 and
 reciprocal
 
social
 ties
 has
 been
 vital
 to
 better
 health
 outcomes
 and
 the
 process
 of
 recovery
 for
 
individuals
 with
 SMI
 (Cooper
 et
 al.,
 1999;
 Ware,
 Hopper,
 Tugenberg,
 Dickey,
 &
 Fisher,
 
2007).
 Strong
 social
 networks
 have
 been
 shown
 to
 positively
 influence
 the
 course
 and
 
experience
 of
 a
 mental
 illness
 and
 the
 outcome
 of
 mental
 health
 services
 (Sartorius,
 2003).
 
Paradoxically,
 many
 individuals
 with
 SMI
 experience
 an
 absence
 of
 meaningful
 
relationships,
 have
 inadequate
 and
 limited
 social
 networks,
 and
 remain
 isolated
 while
 
physically
 being
 in
 a
 community
 (Brugha
 et
 al.,
 1993;
 Holmes-­‐Eber
 &
 Riger,
 1990;
 Prince
 &
 
Gerber,
 2005;
 Stein
 et
 al.,
 1999).
 Individuals
 with
 SMI
 can
 be
 caught
 with
 a
 strange
 
predicament.
 In
 one
 respect,
 social
 support
 and
 social
 networks
 creates
 a
 buffer
 that
 
shields
 them
 from
 high
 stress
 situations;
 however,
 individuals
 with
 SMI
 end
 up
 isolated
 
and
 in
 a
 more
 socially
 underprivileged
 position
 because
 of
 their
 disability
 (Cullen
 &
 
Whiteford,
 2001;
 Jones,
 2005).
 
 

  21
 

  There
 is
 significant
 research
 on
 the
 size
 and
 density
 of
 the
 social
 network
 of
 
individuals
 with
 SMI
 and
 the
 detrimental
 effects
 of
 smaller
 and
 less-­‐dense
 networks.
 
Whereas
 that
 is
 very
 important,
 there
 is
 also
 a
 need
 to
 look
 at
 the
 composition
 of
 an
 
individual’s
 network
 to
 identify
 the
 actual
 source
 of
 support
 and
 resources
 (a
 friend
 or
 a
 
family
 member
 versus
 a
 mental
 health
 service
 provider)
 for
 more
 targeted
 interventions
 
(Holmes-­‐Eber
 &
 Riger,
 1990).
 An
 individual’s
 network
 consists
 of
 different
 kinds
 of
 
relationships
 and
 different
 types
 of
 ties.
 Different
 ties
 could
 be
 potential
 sources
 of
 
different
 levels
 of
 support
 and
 resources
 (Wellman
 &
 Wortley,
 1990).
 Once
 we
 are
 able
 to
 
delineate
 the
 actual
 source
 of
 support
 and
 resources
 associated
 with
 better
 outcomes
 and
 
social
 integration,
 researchers
 and
 practitioners
 could
 then
 work
 toward
 mobilizing
 similar
 
types
 of
 support
 in
 other
 individuals
 with
 similar
 socio-­‐cultural
 environments.
 
   
 
To
 summarize,
 social
 networks
 can
 guide
 the
 understanding
 of
 community
 
integration
 in
 two
 ways.
 First,
 it
 can
 be
 a
 good
 measure
 of
 the
 levels
 of
 social
 community
 
integration
 of
 individuals
 with
 SMI
 to
 explore
 if
 variables
 such
 as
 stigma,
 psychosocial
 
functioning,
 and
 symptomatology
 are
 associated
 with
 social
 functioning.
 Second,
 relational-­‐
level
 network
 data
 could
 be
 used
 as
 a
 means
 to
 delineate
 sources
 of
 social
 resources,
 social
 
support,
 and
 stigma
 in
 an
 individual’s
 network
 to
 better
 understand
 the
 process
 of
 
community
 integration.
 The
 present
 study
 used
 the
 network
 data
 in
 both
 ways.
 
 
Social
 capital.
 The
 concept
 of
 social
 capital
 is
 historically
 rooted
 in
 the
 concept
 of
 
capital,
 introduced
 by
 Marx,
 in
 which
 capital
 described
 the
 “circulation
 of
 commodities
 
between”
 the
 producers
 and
 consumers
 (N.
 Lin,
 1999a).
 This
 concept
 led
 to
 the
 origination
 
of
 a
 theory
 based
 on
 social
 relations
 between
 two
 classes,
 which
 Lin
 called
 the
 classical
 
theory
 of
 capital
 (N.
 Lin,
 1999a).
 Subsequent
 theories
 of
 capital
 were
 classified
 into
 a
 

  22
 
broader
 category
 of
 neocapital
 theories
 that
 included
 the
 human
 capital
 theory,
 cultural
 
capital
 theory,
 and
 social
 capital
 theory.
 According
 to
 the
 human
 capital
 theory,
 individuals
 
and
 societies
 experience
 economic
 gains
 by
 investing
 in
 other
 individuals
 (N.
 Lin,
 1999a;
 
Schultz,
 1961;
 Sweetland,
 1996).
 Human
 capital
 was
 mainly
 interpreted
 in
 terms
 of
 
education,
 skills,
 and
 tools
 that
 could
 subsequently
 be
 used
 for
 economic
 gains
 (N.
 Lin,
 
2002).
 Cultural
 capital
 theory
 is
 based
 on
 the
 premise
 of
 symbols
 and
 meanings,
 primarily
 
defined
 by
 the
 dominant
 class
 and
 imposed
 on
 the
 dominated
 class,
 in
 the
 form
 of
 
education,
 skills,
 and
 practices
 to
 propagate
 the
 dominant
 culture
 (Bourdieu,
 1992,
 2008;
 
N.
 Lin,
 1999a).
 
 
The
 third
 neoclassical
 theory
 of
 capital,
 and
 the
 one
 most
 discussed
 in
 recent
 
decades,
 is
 the
 social
 capital
 theory.
 Different
 theorists
 like
 Bourdieu,
 Lin,
 Cokeman,
 
Erikson,
 and
 Putnam
 have
 made
 significant
 contributions
 in
 the
 conceptualization
 of
 social
 
capital.
 The
 basic
 premise
 behind
 social
 capital
 is
 that
 it
 exists
 in
 the
 “embedded
 resources
 
in
 an
 individual’s
 social
 networks”
 (N.
 Lin,
 1999a).
 Social
 capital,
 through
 interaction
 with
 
ones
 environment
 and
 community,
 enables
 the
 development
 of
 an
 individual’s
 natural
 
defenses,
 which
 help
 them
 cope
 with
 life’s
 stressors
 that
 could
 lead
 to
 poor
 health
 and
 
functioning
 (Cullen
 &
 Whiteford,
 2001).
 
 

  There
 is
 a
 lack
 of
 consistency
 in
 the
 literature
 on
 how
 social
 capital
 is
 
conceptualized
 and,
 hence,
 measured
 (Vyncke
 et
 al.,
 2013).
 There
 are
 two
 streams
 of
 
thought
 on
 whether
 social
 capital
 is
 an
 individual-­‐level
 or
 a
 group-­‐level
 phenomenon
 
(Vyncke
 et
 al.,
 2013).
 Various
 scholars
 identify
 it
 only
 as
 a
 function
 of
 a
 group
 or
 a
 
community
 (Coleman,
 1988;
 Cooper
 et
 al.,
 1999;
 Grant,
 2001).
 Within
 the
 context
 of
 social
 
capital
 as
 a
 group
 phenomenon,
 it
 is
 viewed
 as
 a
 collective
 asset
 available
 to
 an
 individual
 

  23
 
as
 part
 of
 their
 membership
 in
 a
 group
 or
 community
 (Bourdieu,
 2008;
 Coleman,
 1988;
 
Putnam,
 1993,
 2000).
 Bourdieu
 has
 defined
 social
 capital
 along
 the
 same
 lines
 as
 he
 
 
defined
 the
 cultural
 capital
 theory.
 He
 stated,
 “social
 capital
 as
 the
 investment
 of
 the
 
members
 in
 the
 dominant
 class
 (as
 a
 group
 or
 network)
 engaging
 in
 mutual
 recognition
 
and
 acknowledgment
 so
 as
 to
 maintain
 and
 reproduce
 group
 solidarity
 and
 preserve
 the
 
group's
 dominant
 position”
 (Bourdieu,
 1992;
 N.
 Lin,
 1999b).
 Putnam
 has
 defined
 social
 
capital
 as
 “the
 features
 of
 social
 life
 such
 as
 networks,
 norms,
 and
 social
 trust
 that
 facilitate
 
coordination
 and
 co-­‐operation
 for
 mutual
 benefit”
 (Putnam,
 1995,
 p.
 67).
 Coleman
 has
 
conceptualized
 social
 capital
 as
 a
 derivative
 from
 the
 interaction
 between
 an
 individual’s
 or
 
a
 community’s
 intangible
 social
 and
 human
 resources,
 as
 well
 as
 the
 tangible
 physical
 and
 
economic
 resources
 (Coleman,
 1988).
 Various
 other
 scholars
 identify
 social
 capital
 as
 an
 
individual-­‐level
 phenomenon
 but
 only
 in
 the
 contexts
 of
 their
 relationships
 in
 their
 
networks
 (N.
 Lin,
 1999a,
 1999b,
 2002;
 N.
 Lin
 &
 Dumin,
 1986;
 Szreter
 &
 Woolcock,
 2004;
 
Van
 Der
 Gaag
 &
 Snijders,
 2005).
 Within
 the
 individual-­‐level
 social
 capital
 perspective,
 the
 
focus
 is
 on
 (1)
 the
 investment
 an
 individual
 makes
 in
 their
 social
 relationships
 and
 (2)
 the
 
extent
 to
 which
 they
 can
 access
 resources
 embedded
 in
 their
 relationships.
 
 
Within
 the
 context
 of
 a
 community,
 these
 resources
 could
 be
 embedded
 in
 a
 specific
 
community
 where
 individuals
 go
 to
 for
 information,
 to
 facilitate
 change,
 to
 access
 social
 
relationships,
 and
 to
 seek
 their
 identity.
 Within
 the
 context
 of
 community
 integration,
 these
 
resources
 could
 influence
 which
 community
 an
 individual
 feels
 integrated
 into.
 Within
 the
 
context
 of
 social
 capital
 through
 an
 individual’s
 networks,
 Putnam
 distinguishes
 between
 
“bonding”
 and
 “bridging”
 types
 of
 social
 capital
 (Putnam,
 2000;
 Szreter
 &
 Woolcock,
 2004).
 
Bonding
 social
 capital
 refers
 to
 a
 more
 linear
 or
 horizontal
 transfer
 of
 different
 kinds
 of
 

  24
 
resources
 within
 an
 individual’s
 social
 networks
 (De
 Silva,
 McKenzie,
 Harpham,
 &
 Huttly,
 
2005;
 Ellison,
 Steinfield,
 &
 Lampe,
 2007).
 Individuals
 sharing
 bonding
 social
 capital
 are
 
generally
 in
 similar
 social
 positions
 and
 share
 a
 sense
 of
 identity.
 Bridging
 social
 capital
 is
 
more
 vertical
 or
 hierarchical.
 It
 is
 derived
 from
 a
 sense
 of
 respect.
 Bridging
 social
 capital
 is
 
based
 on
 weak
 ties
 (Ellison
 et
 al.,
 2007;
 Szreter
 &
 Woolcock,
 2004).
 Mitchell
 and
 LaGory
 
(2002)
 call
 bonding
 social
 capital
 “exclusive,
 cohesive,
 strong
 ties
 [that]
 facilitate
 solidarity
 
and
 reciprocity”
 and
 bridging
 social
 capital
 “inclusive,
 diverse,
 weak
 ties
 [that]
 provide
 
linkages
 to
 external
 assets
 and
 information
 diffusion”
 (Mitchell
 &
 LaGory,
 2002).
 
Whereas
 network
 variables
 such
 as
 size,
 density,
 and
 reciprocity
 might
 give
 a
 
general
 idea
 about
 the
 resources
 potentially
 available
 to
 an
 individual,
 for
 the
 purposes
 of
 
assessing
 social
 capital,
 measuring
 resources
 embedded
 in
 ones
 social
 network
 is
 
considered
 to
 provide
 a
 good
 estimate
 of
 an
 individual’s
 social
 capital
 (Van
 Der
 Gaag
 &
 
Webber,
 2008).
 The
 current
 study
 suggests
 incorporation
 of
 both
 concepts
 to
 the
 existing
 
model
 by
 Wong
 and
 Solomon
 (Wong
 &
 Solomon,
 2002)
 and
 explores
 the
 concept
 of
 social
 
capital
 in
 the
 form
 of
 social
 resources
 within
 the
 context
 of
 an
 individual’s
 social
 
connections
 and
 networks.
 For
 example,
 bridging
 social
 capital
 could
 refer
 to
 the
 mental
 
health-­‐based
 peers,
 providers,
 and
 mental
 health
 friends,
 acquaintances,
 neighbors,
 and
 
colleagues,
 and
 bonding
 social
 capital
 could
 occur
 in
 the
 context
 of
 non-­‐mental
 health
 
friends
 and
 family
 (Irwin,
 LaGory,
 Ritchey,
 &
 Fitzpatrick,
 2008)
 in
 the
 current
 study.
 This
 
method
 not
 only
 has
 the
 potential
 to
 render
 the
 concept
 of
 social
 capital
 measurable
 in
 
multiple
 ways,
 but
 also
 provides
 a
 unique
 opportunity
 to
 measure
 individual-­‐level
 social
 
support
 in
 the
 context
 of
 affiliation
 into
 two
 (mental
 health
 and
 non-­‐mental
 health)
 
communities.
 

  25
 
Social
 support.
 Social
 support
 is
 in
 an
 integral
 part
 of
 a
 community
 in
 that
 it
 allows
 
its
 members
 to
 have
 access
 to
 formal
 and
 informal
 networks
 (Dolan,
 2008).
 Social
 support
 
is
 associated
 with
 community
 as
 a
 place
 or
 geographical
 phenomenon
 (Brennan
 &
 Brown,
 
2008;
 Dolan,
 2008)
 and
 as
 a
 source
 of
 belonging
 or
 identity
 (Bhattacharyya,
 2004;
 
Blackshaw,
 2009;
 Dolan,
 2008).
 Social
 support
 can
 be
 seen
 as
 a
 form
 of
 bonding
 social
 
capital
 (Szreter
 &
 Woolcock,
 2004),
 but
 it
 is
 treated
 separately
 for
 the
 purposes
 of
 this
 
study.
 
Social
 support
 is
 broadly
 defined
 as
 the
 emotional
 support,
 guidance,
 or
 tangible
 aid
 
people
 receive
 from
 social
 relationships
 (Ell,
 1984;
 Heaney
 &
 Israel,
 2002).
 In
 the
 
literature,
 social
 support
 has
 been
 divided
 into
 four
 categories
 of
 support:
 emotional,
 
instrumental,
 informational,
 and
 appraisal
 (Heaney
 &
 Israel,
 2002;
 House,
 1981).
 
Irrespective
 of
 the
 type
 of
 social
 support,
 an
 individual
 goes
 back
 to
 his
 or
 her
 community
 
of
 choice
 or
 identification
 to
 access
 this
 support
 (Dolan,
 2008),
 whether
 it
 is
 from
 family,
 
friends,
 peers,
 or
 more
 formal
 relationships
 such
 as
 mental
 health
 service
 providers.
 
Additionally,
 social
 support
 has
 been
 measured
 in
 the
 context
 of
 the
 availability
 and
 
adequacy
 of
 support
 as
 perceived
 by
 the
 participant
 (perceived
 social
 support),
 by
 the
 
amount
 of
 contact
 with
 and
 number
 of
 significant
 individuals,
 and
 directly
 through
 
indicators
 of
 support
 provided
 (enacted
 social
 support)
 (Barrera,
 1986;
 Tardy,
 1985).
 The
 
present
 study
 simultaneously
 explores
 social
 support
 in
 terms
 of
 the
 availability
 of
 the
 
perceived
 support
 and
 adequacy
 of
 social
 support
 in
 the
 form
 of
 network
 connections.
 
 
Numerous
 theoretical
 models
 in
 the
 literature
 conceptualize
 different
 aspects
 of
 
social
 support.
 One
 such
 model
 on
 “Social
 Embeddedness”
 (Barrera,
 1986)
 refers
 to
 social
 
connections
 and
 being
 embedded
 in
 these
 connections.
 The
 concept
 of
 social
 

  26
 
embeddedness
 can
 be
 approached
 in
 two
 ways.
 According
 to
 the
 first,
 an
 individual’s
 social
 
connections
 could
 be
 a
 source
 of
 support
 when
 required.
 The
 second
 approach
 identifies
 
the
 importance
 of
 structural
 forms
 of
 social
 support,
 namely,
 social
 network
 and
 social
 
network
 characteristics
 such
 as
 size,
 density,
 and
 reachability,
 as
 a
 form
 of
 social
 support
 
(Barrera,
 1986;
 Dolan,
 2008).
 
 
Whereas
 ongoing
 social
 support
 is
 considered
 important
 in
 an
 individual’s
 life,
 
social
 support
 is
 most
 appreciated
 in
 moments
 of
 crisis,
 also
 known
 as
 stressful
 events.
 
There
 are
 a
 number
 of
 studies
 that
 conceptualize
 social
 support
 in
 the
 context
 of
 stress
 in
 
an
 individual’s
 life.
 One
 such
 model
 is
 the
 stress
 prevention
 model.
 In
 this
 model,
 social
 
support
 is
 either
 considered
 to
 prevent
 stressful
 events
 from
 occurring
 altogether
 or
 to
 
minimize
 the
 threat
 of
 a
 stressful
 event
 that
 has
 occurred
 (Barrera,
 1986).
 Another
 model
 
that
 conceptualizes
 social
 support
 in
 terms
 of
 stress
 is
 the
 support
 deterioration
 model,
 
whereby
 the
 presence
 of
 a
 stress
 might
 lead
 to
 a
 lessening
 of
 perceived
 availability
 or
 
effectiveness
 of
 social
 support
 (N.
 Lin
 &
 Ensel,
 1984).
 The
 support
 deterioration
 model
 also
 
seems
 to
 be
 accordant
 with
 the
 stigma
 theory,
 whereby
 an
 individual
 with
 a
 stressor
 in
 his
 
life,
 for
 example,
 a
 mental
 illness,
 could
 potentially
 lead
 to
 the
 stigmatizing
 of
 that
 
individual,
 in
 turn,
 leading
 to
 a
 deterioration
 of
 social
 support.
 
Two
 other
 models
 that
 link
 stress
 and
 social
 support
 are
 the
 main
 effect
 model
 and
 
the
 stress
 buffering
 model
 of
 health
 outcomes
 (Cohen
 and
 Wills,
 1985),
 which
 explains
 the
 
role
 of
 social
 support
 in
 the
 lives
 of
 individuals
 with
 a
 mental
 illness
 (S.
 Cohen
 &
 Wills,
 
1985;
 DeGarmo,
 Patras,
 &
 Eap,
 2008;
 Kawachi
 &
 Berkman,
 2001).
 According
 to
 the
 two
 
models,
 social
 relationships
 and
 social
 interactions
 impact
 the
 health
 behavior
 of
 an
 
individual
 in
 two
 ways.
 The
 main
 effects
 model
 stipulates
 that
 the
 benefits
 of
 social
 support
 

  27
 
are
 linked
 to
 the
 presence
 of
 large
 and
 stable
 social
 networks
 (S.
 Cohen
 &
 Wills,
 1985).
 
Social
 networks
 provide
 regularized
 social
 interactions
 and
 could
 potentially
 influence
 an
 
individual’s
 self-­‐worth,
 in
 turn,
 leading
 to
 positive
 health
 outcomes.
 The
 main
 effect
 model
 
also
 posits
 that
 the
 more
 diverse
 an
 individual’s
 social
 networks
 are,
 the
 greater
 their
 
access
 is
 to
 functional
 social
 relationships
 that
 can
 provide
 necessary
 support
 for
 them
 to
 
deal
 with
 a
 stressor.
 However,
 the
 stress-­‐buffering
 model
 stipulates
 that
 social
 support
 
could
 intervene
 between
 the
 experience
 of
 stress
 and
 a
 pathological
 reaction
 by
 “reducing
 
or
 eliminating
 the
 stress
 reaction”
 (S.
 Cohen
 &
 Wills,
 1985;
 DeGarmo
 et
 al.,
 2008).
 
 
Having
 explained
 the
 role
 of
 social
 support
 in
 regular
 life
 and
 stressful
 situations,
 
the
 literature
 links
 social
 support
 and
 community,
 both
 in
 terms
 of
 geography
 and,
 more
 
importantly,
 the
 capacity
 of
 the
 community
 members
 to
 provide
 social
 support
 via
 a
 
common
 sense
 of
 identity
 and
 bonds.
 For
 individuals
 with
 SMI,
 this
 could
 be
 a
 recovery-­‐
based
 mainstream
 community
 or
 a
 sub-­‐identity-­‐based
 mental
 health
 community.
 Hence,
 
community,
 if
 harnessed
 suitably,
 has
 a
 potential
 to
 be
 a
 source
 of
 sense
 of
 identity
 and
 
support
 in
 stressful
 situations.
 
 
Whereas
 it
 is
 very
 important
 to
 delineate
 and
 operationalize
 the
 concept
 of
 
community
 integration
 into
 measurable
 forms,
 understanding
 of
 this
 concept
 would
 be
 
incomplete
 without
 understanding
 its
 relationship
 with
 associated
 factors.
 In
 addition
 to
 
providing
 a
 framework
 for
 understanding
 community
 integration,
 Wong
 and
 Solomon’s
 
(2002)
 conceptual
 model
 also
 includes
 factors
 that
 could
 potentially
 be
 associated
 with
 
community
 integration
 levels.
 For
 example,
 where
 Wong
 and
 Solomon’s
 model
 
concentrated
 on
 an
 array
 of
 socio-­‐demographic
 and
 environmental
 factors
 potentially
 
associated
 with
 community
 integration,
 studies
 by
 Prince
 and
 Prince
 (Prince
 &
 Prince,
 

  28
 
2002)
 and
 Gulcur
 et
 al.
 (Gulcur,
 Tsemberis,
 Stefancic,
 &
 Greenwood,
 2007)
 emphasized
 the
 
role
 of
 stigma
 on
 different
 dimensions
 of
 community
 integration
 of
 individuals
 with
 SMI.
 
The
 studies
 found
 stigma
 to
 be
 negatively
 associated
 with
 psychological
 integration,
 
indicating
 that
 stigma
 might
 have
 a
 detrimental
 effect
 on
 an
 individual’s
 sense
 of
 identity
 
and
 belonging
 (Gulcur
 et
 al.,
 2007).
 
 
Stigma
 in
 Mental
 Health
 
Stigma
 is
 defined
 as
 an
 attitude
 whereby
 certain
 individuals
 have,
 or
 are
 believed
 to
 
have,
 some
 attributes
 that
 set
 them
 apart
 from
 others
 and
 lead
 them
 to
 be
 excluded,
 
rejected,
 blamed,
 or
 devalued
 (Day,
 Edgren,
 &
 Eshleman,
 2007;
 Major
 &
 O'Brien,
 2005;
 
Weiss
 &
 Ramakrishna,
 2006).
 Marginalization
 and
 stigmatization
 of
 individuals
 with
 a
 
mental
 illness
 are
 harsh
 realities
 that
 individuals
 with
 SMI
 and
 their
 families
 have
 to
 face
 
(Lloyd,
 King,
 &
 Moore,
 2010).
 Various
 studies
 have
 reported
 that
 stigma
 associated
 with
 a
 
mental
 illness
 has
 the
 potential
 of
 being
 more
 destructive
 than
 the
 actual
 illness
 itself
 (P.
 W.
 
Corrigan,
 1999;
 Day
 et
 al.,
 2007).
 Individuals
 with
 a
 mental
 illness
 are
 more
 likely
 to
 
remain
 unemployed
 (Stuart,
 2006;
 Tsang
 et
 al.,
 2007),
 have
 relatively
 less
 income
 
compared
 with
 individuals
 without
 a
 mental
 illness,
 have
 limited
 social
 networks
 and
 less
 
social
 support,
 and
 have
 lower
 self-­‐esteem
 (Link,
 Cullen,
 Frank,
 &
 Wozniak,
 1987;
 Perkins
 
et
 al.,
 2009).
 Limited
 social
 network
 resources
 caused
 by
 associated
 stigma
 leads
 to
 
isolation
 and
 makes
 individuals
 with
 SMI
 more
 vulnerable
 to
 stress,
 increasing
 the
 
probability
 of
 future
 relapse
 (Penn
 &
 Martin,
 1998;
 Perkins
 et
 al.,
 2009).
 Individuals
 with
 
SMI
 also
 have
 difficulty
 being
 close
 to
 people
 because
 they
 are
 generally
 perceived
 to
 be
 
dangerous
 or
 untrustworthy
 (Mehta
 &
 Farina,
 1997).
 Faced
 with
 such
 stigma,
 individuals
 
with
 SMI
 use
 various
 strategies,
 such
 as
 secrecy,
 denial,
 and
 silence,
 as
 protection
 against
 

  29
 
the
 discrimination
 associated
 with
 mental
 illness
 (J.
 H.
 Jenkins
 &
 Carpenter-­‐Song,
 2008).
 
Gender,
 too,
 tends
 to
 interact
 with
 stigma
 to
 impact
 outcomes
 and
 levels
 of
 community
 
involvement.
 Literature
 has
 shown
 that
 women
 tend
 to
 conceal
 the
 presence
 of
 mental
 
illness
 more
 than
 men
 in
 reaction
 to
 perceived
 stigma,
 which,
 in
 turn,
 has
 implications
 for
 
community
 reintegration
 (Phelan,
 Bromet,
 &
 Link,
 1998).
 
There
 are
 many
 theoretical
 models
 linked
 with
 stigma
 and
 its
 perception.
 Major
 and
 
O’Brien
 (2005)
 have
 talked
 about
 the
 identity-­‐threat
 model,
 whereby
 stigma
 and
 
stigmatizing
 situations
 are
 perceived
 as
 a
 threat
 to
 the
 sense
 of
 self
 of
 an
 individual
 with
 
SMI
 and
 impacts
 their
 identity
 (Major
 &
 O'Brien,
 2005;
 Yang
 et
 al.,
 2007).
 Along
 similar
 
lines,
 Corrigan
 and
 Watson
 (P.
 W.
 Corrigan
 &
 Watson,
 2002)
 have
 proposed
 a
 social-­‐
cognitive
 model
 of
 stigma
 whereby
 exposure
 to
 stigma
 leads
 to
 a
 personal
 response,
 which
 
leads
 to
 the
 internalization
 of
 stigma
 and
 can
 cause
 self-­‐discrimination
 (P.
 W.
 Corrigan
 &
 
Watson,
 2002;
 Yang
 et
 al.,
 2007).
 
 
Scheff
 (1966)
 and
 Link
 et
 al.
 (1989)
 have
 proposed
 the
 labeling
 theory
 and
 modified
 
labeling
 theory
 (Link,
 Yang,
 Phelan,
 &
 Collins,
 2004;
 Scheff,
 1966).
 Whereas
 both
 theorists
 
explain
 the
 process
 of
 stigma
 via
 socialization
 and
 reinforcement,
 the
 modified
 labeling
 
theory
 linked
 the
 labeling
 processes
 to
 negative
 outcomes
 related
 to
 a
 mental
 illness.
 
 
The
 present
 study
 has
 explored
 stigma
 in
 the
 context
 of
 the
 modified
 labeling
 theory
 
to
 examine
 whether
 stigma
 in
 individuals
 with
 SMI
 is
 associated
 with
 their
 levels
 of
 
community
 integration.
 Although
 stigma
 associated
 with
 mental
 illness
 seems
 to
 be
 
pervasive
 across
 cultures
 (J.
 H.
 Jenkins
 &
 Carpenter-­‐Song,
 2008;
 Link
 et
 al.,
 2004),
 it
 needs
 
to
 be
 studied
 in
 the
 socio-­‐cultural
 context
 of
 an
 individual
 to
 delineate
 its
 origins,
 
meanings,
 and
 associated
 outcomes
 (J.
 H.
 Jenkins
 &
 Carpenter-­‐Song,
 2008;
 Thara
 &
 

  30
 
Srinivasan,
 2000).
 Studies
 on
 stigma
 in
 different
 cultures
 have
 shown
 some
 differences
 and
 
commonalities
 in
 terms
 of
 attitudes
 toward
 mental
 illnesses
 (Thara
 &
 Srinivasan,
 2000).
 As
 
identified
 by
 Yang
 et
 al.
 (2007),
 stigma
 is
 conceptualized,
 expressed,
 and
 practiced
 
differently
 across
 different
 cultures
 and,
 hence,
 needs
 to
 be
 studied
 within
 the
 context
 of
 an
 
individual’s
 local
 social
 world
 (Coker,
 2005;
 Yang
 et
 al.,
 2007).
 
 
Stigma
 and
 Disclosure
 about
 Mental
 Illness
 

  Individuals
 with
 a
 mental
 illness
 often
 hide
 their
 illnesses
 from
 people
 around
 them.
 
This
 lack
 of
 disclosure
 about
 one’s
 mental
 illness
 might
 be
 due
 to
 a
 fear
 of
 rejection,
 
discrimination,
 and
 even
 loss
 of
 self-­‐esteem
 (Chaudoir
 &
 Fisher,
 2010).
 Lack
 of
 disclosure
 
might
 also
 be
 caused
 by
 previous
 bad
 experiences
 associated
 with
 disclosure
 (Omarzu,
 
2000).
 An
 individual
 with
 a
 mental
 illness
 could
 be
 evaluated
 less
 favorably
 and
 judged
 for
 
their
 mental
 illness,
 resulting
 in
 a
 change
 in
 people’s
 perception
 and
 behavior
 toward
 them
 
(Farina,
 Gliha,
 Bourdreau,
 Ale,
 &
 Sherman,
 1971).
 
 
Whereas
 disclosure
 could
 have
 negative
 repercussions,
 there
 are
 positive
 effects
 of
 
disclosure.
 Self-­‐disclosure
 has
 been
 associated
 with
 higher
 levels
 of
 trust
 and
 better
 mental
 
health
 by
 decreasing
 alienation
 and
 a
 sense
 of
 consonance
 between
 ones
 self-­‐concept
 and
 
others’
 perceptions
 (Rosenfeld,
 1979).
 Disclosure
 could
 increase
 self-­‐awareness
 and
 
societal
 awareness
 about
 an
 individual’s
 mental
 illness,
 potentially
 reducing
 the
 associated
 
stigma
 in
 the
 future
 (Chaudoir
 &
 Fisher,
 2010).
 As
 Garcia
 and
 Crocker
 state,
 “disclosing
 
enables
 stigmatized
 people
 to
 both
 receive
 support
 and
 provide
 social
 support
 to
 others
 
who
 have
 the
 stigma,
 thereby
 decreasing
 feelings
 of
 loneliness
 and
 isolation
 for
 the
 self
 and
 
others
 …
 because
 one’s
 mental
 health
 status
 is
 not
 always
 readily
 visible,
 disclosure
 may
 be
 
necessary
 to
 facilitate
 contact”
 (Garcia
 &
 Crocker,
 2008).
 

  31
 
Because
 disclosure
 has
 been
 recognized
 as
 an
 important
 extension
 of
 stigma,
 and
 
stigma
 has
 been
 recognized
 as
 an
 important
 deterrent
 to
 community
 integration,
 we
 used
 
multilevel
 analysis
 to
 study
 various
 individual
 and
 social
 network
 factors
 that
 could
 be
 
associated
 with
 disclosure
 related
 to
 one’s
 mental
 illness.
 
Community
 Integration:
 Normalization
 versus
 Subcultures
 
In
 addition
 to
 how
 integration
 is
 defined,
 there
 is
 also
 tension
 in
 the
 literature
 about
 
how
 individuals
 with
 SMI
 define
 their
 sense
 of
 belonging
 in
 a
 particular
 community.
 There
 
are
 two
 differing
 value-­‐oriented
 perspectives
 in
 the
 literature
 on
 community
 integration
 
for
 the
 mentally
 ill:
 ideas
 of
 normalization
 and
 subcultures
 or
 identity
 communities.
 
Traditionally,
 community
 integration
 has
 been
 based
 on
 the
 concept
 of
 normalization
 
(Bond
 et
 al.,
 2004;
 Cummings
 &
 Kropf,
 2009;
 Wolfensberger,
 2011;
 Wolfensberger
 &
 
Tullman,
 1982).
 Normalization
 postulates
 that
 individuals
 with
 mental
 illness
 belong
 to
 
and
 are
 expected
 to
 be
 reintegrated
 in
 to
 the
 general
 community
 (Bond
 et
 al.,
 2004;
 McColl
 
et
 al.,
 2001),
 potentially
 resulting
 in
 a
 shift
 of
 an
 individual’s
 primary
 identity
 from
 that
 of
 a
 
mental
 health
 patient
 to
 well-­‐integrated
 members
 of
 the
 general
 community
 (Bond
 et
 al.,
 
2004;
 McColl
 et
 al.,
 2001;
 Pilisuk,
 2001).
 Individuals
 who
 spend
 more
 of
 their
 time
 in
 the
 
mental
 health
 community
 and
 whose
 networks
 primarily
 consist
 of
 mental
 health
 peers
 
and
 service
 providers
 are
 considered
 to
 be
 further
 away
 from
 recovery
 (Bond
 et
 al.,
 2004).
 
 
However,
 literature
 also
 shows
 that
 many
 individuals
 with
 a
 mental
 illness
 living
 in
 
the
 general
 community
 are
 isolated,
 and
 once
 they
 are
 moved
 away
 from
 their
 mental
 
health
 community
 in
 the
 name
 of
 normalization,
 they
 become
 isolated
 even
 further
 (Ware
 
et
 al.,
 2007;
 Wong
 et
 al.,
 2010).
 In
 this
 regard,
 Mandiberg
 (1999)
 has
 discussed
 the
 concept
 

  32
 
of
 a
 mental
 health
 subculture,
 later
 renamed
 by
 Mandiberg
 (2012)
 as
 identity
 communities
 
(Mandiberg,
 1999,
 2012).
 
 
The
 idea
 of
 identity
 communities
 postulates
 that
 community
 for
 individuals
 with
 
mental
 illness
 is
 a
 combination
 of
 both
 mental
 health-­‐based
 identity
 and
 belonging
 to
 the
 
larger
 non-­‐mental
 health
 community
 (Mandiberg,
 2012;
 Wong
 et
 al.,
 2010).
 The
 identity
 
perspective
 stresses
 that
 being
 connected
 to
 the
 mental
 health
 identity
 communities
 and
 
trying
 to
 get
 reintegrated
 into
 the
 dominant
 community
 can
 go
 in
 tandem,
 with
 the
 
individual
 deciding
 the
 extent
 to
 which
 they
 want
 to
 be
 a
 part
 of
 each
 community
 at
 
different
 times.
 The
 identity
 community
 could
 be
 a
 source
 of
 identity,
 support,
 and
 buffer
 
from
 stigma
 prevalent
 in
 the
 non-­‐mental
 health
 community
 (Mandiberg,
 1999).
 
Unfortunately,
 there
 has
 been
 little
 empirical
 investigation
 into
 the
 two
 facets—
normalization
 and
 subcommunities—of
 community
 integration
 for
 individuals
 with
 SMI.
 
 
Despite
 being
 recognized
 both
 as
 an
 important
 component
 of
 the
 recovery
 process
 
and
 an
 outcome
 in
 itself,
 community
 integration
 is
 not
 well
 understood
 (Carling,
 1990;
 
Wong
 et
 al.,
 2010).
 The
 current
 study
 defines
 community
 integration
 as
 belonging,
 
acceptance,
 and
 participation,
 using
 measures
 of
 different
 dimensions
 of
 community
 
integration.
 
 
Research
 on
 Community
 Integration
 of
 the
 Individuals
 with
 SMI
 
There
 is
 little
 empirical
 research
 on
 the
 different
 dimensions
 of
 community
 
integration.
 There
 is
 one
 study
 by
 Gulcur
 et
 al.
 (2007)
 that
 examined
 the
 factor
 structure
 of
 
community
 integration
 dimensions
 by
 Wong
 and
 Solomon
 followed
 by
 a
 predictive
 model
 
to
 study
 the
 association
 between
 community
 integration
 dimensions
 and
 factors
 such
 as
 
symptomology
 and
 stigma
 (Gulcur
 et
 al.,
 2007).
 Whereas
 this
 study
 found
 negative
 

  33
 
associations
 between
 stigma
 and
 community
 integration,
 as
 well
 as
 symptomatology
 and
 
community
 integration,
 this
 study,
 alone,
 is
 not
 sufficient
 to
 make
 predictions
 about
 the
 
process
 of
 community
 integration
 and
 the
 factors
 associated
 with
 it
 (Gulcur
 et
 al.,
 2007).
 
Another
 study
 by
 Cohen,
 Pathak,
 Ramirez,
 &
 Vahia
 (2009)
 on
 community
 integration
 of
 
older
 adults
 with
 schizophrenia
 used
 five
 conceptual
 models
 to
 study
 the
 association
 of
 age
 
with
 various
 other
 variables,
 including
 community
 integration
 (C.
 I.
 Cohen,
 Pathak,
 
Ramirez,
 &
 Vahia,
 2009).
 Cohen
 et
 al.
 (2009)
 used
 Wong
 and
 Solomon’s
 model
 to
 study
 
community
 integration.
 The
 study
 found
 that
 individuals
 without
 schizophrenia
 were
 twice
 
as
 integrated
 in
 the
 community
 compared
 with
 their
 similarly
 aged
 counterparts
 with
 
schizophrenia.
 
 
A
 study
 by
 Bromley
 et
 al.
 (2013)
 used
 qualitative
 semi-­‐structured
 interviews
 to
 
study
 the
 concept
 of
 community
 and
 community
 integration
 in
 a
 sample
 of
 30
 individuals
 
with
 SMI
 getting
 service
 in
 two
 public
 mental
 health
 clinics.
 The
 study
 found
 four
 themes
 
integral
 to
 their
 concepts
 of
 community:
 receiving
 help,
 minimizing
 risk,
 avoiding
 stigma,
 
and
 giving
 back.
 The
 study
 also
 found
 the
 mental
 health
 community
 as
 a
 source
 of
 identity
 
and
 belonging
 for
 individuals
 with
 SMI,
 hence
 questioning
 the
 integration
 of
 individuals
 
into
 the
 mainstream
 community
 as
 a
 singular
 goal
 of
 recovery
 (Bromley
 et
 al.,
 2013).
 
 
Our
 previous
 study
 on
 community
 integration
 (Pahwa
 et
 al.,
 2013)
 is
 the
 only
 study
 
in
 the
 literature
 to
 use
 multiple
 methodologies
 to
 understand
 the
 concept
 of
 community
 
integration
 within
 the
 normalization
 and
 subcommunities
 perspective
 and
 its
 association
 
with
 service
 intensity.
 The
 study
 used
 data
 from
 33
 ethnically
 diverse
 individuals
 with
 SMI.
 
Eighteen
 participants
 belonged
 to
 a
 high-­‐service
 intensity
 group,
 and
 15
 belonged
 to
 a
 low-­‐
service
 intensity
 group.
 Community
 integration
 was
 measured
 using
 the
 community-­‐

  34
 
integration
 scale,
 involvement
 in
 community
 activities
 scale,
 social
 resources
 scale,
 social
 
support
 scale,
 and
 social
 network
 maps.
 The
 results
 showed
 that,
 in
 terms
 of
 psychological
 
integration,
 the
 individuals
 felt
 more
 integrated
 into
 the
 mental
 health
 community.
 
However,
 in
 terms
 of
 social
 integration
 (measured
 via
 their
 social
 network
 characteristics),
 
individuals
 relied
 more
 on
 their
 non-­‐mental
 health
 communities
 (Pahwa
 et
 al.,
 2013).
 
These
 findings
 were
 replicated
 in
 the
 low-­‐intensity
 group,
 but
 the
 high-­‐intensity
 group
 
showed
 more
 physical,
 social,
 and
 psychological
 integration
 into
 the
 mental
 health
 
community.
 
 
The
 current
 dissertation
 was
 built
 on
 the
 findings
 of
 Pahwa
 et
 al.
 (2013).
 In
 addition
 
to
 the
 same
 theoretical
 model
 by
 Wong
 and
 Solomon,
 the
 current
 study
 also
 used
 network
 
and
 quantitative
 methodologies,
 as
 well
 as
 used
 the
 same
 measures
 operationalized,
 to
 
understand
 different
 dimensions
 of
 community
 integration.
 To
 reiterate,
 the
 current
 study
 
has
 made
 important
 additions
 to
 the
 previous
 work
 in
 the
 following
 ways:
 
1. The
 current
 study
 included
 a
 cross-­‐national
 component
 to
 the
 study
 to
 get
 a
 more
 
nuanced
 understanding
 of
 community
 integration
 within
 an
 individual’s
 cultural
 
context.
 
2. The
 current
 study
 expanded
 the
 social
 dimension
 of
 community
 integration
 using
 
bonding
 and
 bridging
 social
 capital
 perspectives
 of
 the
 social
 capital
 theory.
 
3. The
 current
 study
 enhanced
 the
 network
 methodology
 used
 in
 the
 previous
 study
 to
 
include
 relational-­‐level
 network
 data
 to
 attain
 more
 information
 about
 an
 
individual’s
 networks.
 
4. The
 current
 study
 added
 stigma
 as
 a
 variable
 that
 might
 impact
 the
 different
 
dimensions
 of
 community
 integration.
 

  35
 
5. The
 current
 study
 incorporated
 multilevel
 modeling
 to
 study
 the
 association
 
between
 stigma
 and
 various
 individual-­‐level
 and
 network-­‐level
 variables.
 

  36
 
CHAPTER
 THREE:
 
 
METHODS
 
Data
 Source
 

  This
 dissertation
 was
 a
 cross-­‐sectional
 study
 designed
 to
 understand
 community
 
integration
 for
 individuals
 with
 SMI
 seeking
 treatment
 in
 community
 mental
 health
 
agencies
 in
 India
 and
 the
 United
 States.
 The
 data
 were
 collected
 by
 the
 author,
 who
 was
 
also
 the
 principal
 investigator
 (PI),
 with
 the
 help
 of
 two
 trained
 doctoral
 research
 
assistants.
 The
 study
 used
 quantitative
 measures
 and
 network
 data
 using
 social
 network
 
analysis
 from
 voluntary
 participants
 in
 India
 and
 United
 States.
 This
 is
 the
 first
 study
 to
 
examine
 and
 compare
 community
 integration
 for
 individuals
 with
 SMI
 in
 the
 two
 countries.
 
Because
 of
 the
 exploratory
 nature
 of
 the
 study
 and
 innovative
 mixture
 of
 social
 network
 
and
 quantitative
 methodology
 for
 individuals
 with
 SMI,
 the
 PI
 conducted
 feasibility
 trials
 in
 
the
 United
 States
 and
 India.
 
 
Preliminary
 Studies
 
Community
 integration:
 A
 pilot
 study
 in
 the
 United
 States.
 For
 the
 pilot
 study
 in
 
the
 United
 States,
 data
 were
 collected
 on
 different
 dimensions
 of
 community
 integration
 
from
 33
 ethnically
 diverse
 individuals
 with
 SMI
 treated
 in
 two
 publicly
 funded
 mental
 
health
 clinics
 in
 Los
 Angeles
 County.
 Community
 integration
 was
 assessed
 using
 different
 
measures,
 including
 measures
 of
 involvement
 in
 community
 activities,
 social
 resources,
 
social
 support,
 social
 network
 maps,
 and
 subjective
 sense
 of
 integration.
 The
 results
 
indicated
 a
 difference
 in
 community
 integration
 behavior
 of
 individuals
 from
 the
 high-­‐
intensity
 service
 group
 and
 the
 low-­‐intensity
 service
 group.
 The
 low-­‐intensity
 group
 was
 
associated
 with
 greater
 integration
 into
 the
 non-­‐mental
 health
 community,
 more
 overall
 

  37
 
social
 resources,
 and
 less
 embedding
 into
 the
 mental
 health
 community.
 Results
 from
 the
 
preliminary
 study
 have
 been
 documented
 in
 Bromley
 et
 al.
 (2013)
 and
 Pahwa
 et
 al.
 (2013).
 
Feasibility
 trial
 in
 India:
 To
 test
 the
 feasibility
 of
 the
 study
 and
 transferability
 of
 
the
 measures,
 the
 preliminary
 quantitative
 community
 integration
 study
 (CI
 study)
 
previously
 described
 was
 replicated
 in
 a
 community-­‐based
 psychiatric
 hospital
 that
 
provides
 outpatient
 mental
 health
 services
 in
 Chandigarh,
 India.
 The
 feasibility
 trial
 with
 
five
 subjects
 showed
 that
 although
 the
 measures
 worked,
 the
 entire
 process
 took
 far
 longer
 
than
 in
 the
 United
 States
 because
 the
 participants
 asked
 the
 interviewer
 for
 Hindi
 
translations
 of
 the
 more
 technical
 and
 mental
 health-­‐related
 terms.
 Hence,
 a
 decision
 was
 
made
 to
 translate
 the
 measures
 into
 Hindi
 and
 use
 both
 the
 Hindi
 and
 English
 measures,
 
depending
 on
 the
 language
 preference
 of
 the
 participants.
 The
 study
 scales
 and
 the
 
qualitative
 interview
 were
 translated
 into
 Hindi
 by
 a
 team
 of
 two
 mental
 health
 
professionals
 and
 a
 professional
 translator.
 Back
 translation
 of
 the
 Hindi
 adaptation
 was
 
performed
 to
 examine
 the
 conceptual
 and
 semantic
 equivalence
 of
 the
 translation.
 The
 
Hindi
 translation
 was
 discussed
 with
 the
 experts.
 A
 pilot
 study
 for
 comparison
 of
 the
 
English
 and
 Hindi
 version
 was
 conducted.
 A
 sample
 of
 five
 patients
 diagnosed
 with
 SMI
 was
 
given
 the
 English
 and
 the
 Hindi
 versions
 of
 the
 same
 scale,
 and
 responses
 were
 compared.
 
Suggestions
 and
 feedback
 regarding
 simplicity
 of
 the
 language
 used
 and
 understandability
 
of
 the
 scale
 were
 taken
 and
 incorporated
 into
 the
 final
 modification.
 
 
Recruitment
 of
 the
 Sample
 

  The
 sample
 for
 this
 study
 came
 from
 a
 subset
 of
 a
 parent
 study,
 which
 was
 
conducted
 in
 India
 and
 the
 United
 States
 by
 the
 PI
 (Pahwa)
 to
 understand
 community
 
integration
 of
 consumers
 of
 outpatient
 mental
 health
 services
 in
 the
 two
 countries.
 The
 

  38
 
parent
 study
 consisted
 of
 a
 sample
 of
 91
 participants,
 with
 60
 participants
 from
 the
 United
 
States
 and
 31
 participants
 from
 India.
 Of
 the
 60
 individuals
 in
 the
 United
 States,
 30
 came
 
from
 high-­‐intensity
 community
 treatment
 teams,
 called
 full-­‐service
 partnerships,
 that
 are
 
grounded
 in
 the
 assertive
 community
 treatment
 model
 with
 low
 caseloads
 (20:1)
 and
 an
 in
 
vivo
 “whatever-­‐it-­‐takes”
 approach.
 The
 other
 30
 belonged
 to
 the
 usual
 care
 outpatient
 
model
 that
 uses
 a
 traditional
 office-­‐based
 approach
 (one
 to
 four
 appointments
 per
 month)
 
with
 medication
 management
 and
 case
 management
 or
 therapy.
 The
 Indian
 sample
 was
 
collected
 from
 individuals
 at
 the
 low-­‐intensity
 service
 usual
 care
 site
 who
 also
 used
 the
 
traditional
 office-­‐based
 approach
 with
 medicine
 management
 and
 therapy.
 The
 results
 of
 
the
 feasibility
 trial
 in
 the
 United
 States
 (Bromley
 et
 al.,
 2013;
 Pahwa
 et
 al.,
 2013)
 indicated
 
differences
 in
 community
 integration
 in
 mental
 health
 and
 non-­‐mental
 communities
 for
 
individuals
 in
 different
 service
 intensities.
 Considering
 these
 results,
 and
 because
 the
 
Indian
 sample
 only
 consisted
 of
 individuals
 from
 the
 low-­‐intensity
 service
 setting,
 a
 subset
 
of
 the
 parent
 study
 using
 the
 low-­‐intensity
 service
 participants
 was
 selected
 and
 used
 for
 
the
 current
 study.
 
 
Participants
 were
 recruited
 in
 India
 from
 a
 community-­‐based
 psychiatric
 hospital
 
providing
 outpatient
 mental
 health
 services
 to
 individuals
 with
 mental
 illnesses
 living
 in
 
the
 local
 and
 neighboring
 cities.
 Eligibility
 for
 participation
 included
 the
 following
 
characteristics:
 
 
1.
 Between
 18
 and
 65
 years
 of
 age
 
 
2.
 Had
 a
 diagnosis
 of
 schizophrenia
 spectrum
 disorder
 (i.e.,
 schizophrenia,
 
schizoaffective,
 or
 schizophreniform
 disorder),
 bipolar
 disorder,
 or
 major
 depression
 
 
3.
 Had
 availed
 the
 outpatient
 mental
 health
 services
 in
 that
 particular
 site
 for
 at
 

  39
 
least
 two
 months.
 
 
The
 exclusion
 criteria
 included
 the
 following:
 
 
1.
 A
 diagnosis
 of
 mental
 retardation
 or
 an
 identifiable
 neurological
 disorder
 
 
2.
 If
 they
 met
 criteria
 for
 drug
 or
 alcohol
 abuse
 or
 dependence
 in
 the
 previous
 six
 
months.
 
 
To
 maintain
 confidentiality,
 the
 department
 representatives
 at
 each
 site
 identified
 
the
 potential
 participants
 who
 met
 the
 study
 criteria
 and
 contacted
 them.
 Once
 the
 
participants
 were
 recruited,
 the
 PI
 gained
 their
 consent,
 gave
 each
 participant
 an
 
information
 sheet
 describing
 the
 study,
 and
 addressed
 any
 doubts
 or
 questions.
 The
 
approximate
 length
 of
 the
 data
 collection
 process
 (including
 the
 survey
 and
 network
 
interview)
 was
 45-­‐60
 minutes
 per
 participant.
 Data
 were
 collected
 in
 India
 from
 October
 
2011
 to
 December
 2011
 and
 June
 2012
 to
 August
 2012
 and
 from
 April
 2012
 to
 July
 2012
 in
 
the
 United
 States.
 A
 matched-­‐pair
 sampling
 strategy
 was
 used
 to
 recruit
 participants
 in
 the
 
United
 States
 receiving
 outpatient
 mental
 health
 services
 at
 a
 community-­‐based
 clinic,
 both
 
in
 the
 high-­‐
 and
 low-­‐intensity
 groups.
 The
 participants
 were
 matched
 on
 diagnosis,
 
functioning,
 and
 demographic
 characteristics,
 such
 as
 gender
 and
 age.
 For
 the
 actual
 
process
 of
 matching,
 demographic
 and
 diagnostic
 information
 of
 the
 participants
 from
 the
 
Indian
 sample
 were
 given
 to
 the
 service
 providers
 in
 the
 United
 States.
 The
 service
 
providers
 then
 identified
 their
 matches,
 made
 the
 initial
 contact,
 and,
 if
 the
 consumers
 
were
 interested,
 referred
 the
 consumers
 to
 the
 PI
 or
 the
 research
 assistants
 for
 the
 
consenting
 process.
 The
 study
 was
 reviewed
 and
 approved
 by
 the
 Institution
 Review
 
Boards
 at
 the
 University
 of
 California,
 Los
 Angeles,
 the
 University
 of
 Southern
 California,
 
and
 the
 Los
 Angeles
 County
 Department
 of
 Mental
 Health
 Human
 Subjects
 Committee.
 The
 

  40
 
PI
 was
 advised
 by
 the
 Indian
 agency
 not
 to
 pay
 the
 participants
 at
 the
 Indian
 site
 because
 it
 
is
 not
 only
 culturally
 inappropriate,
 but
 could
 also
 be
 construed
 as
 coercive.
 Hence,
 only
 
American
 participants
 were
 paid
 $25
 per
 interview.
 
 
Data
 Collection
 
Part
 1:
 Face-­‐to-­‐face
 network
 interview.
 Personal
 network
 data
 were
 collected
 as
 
a
 part
 of
 the
 face-­‐to-­‐face
 interview
 using
 the
 free
 recall
 name
 generator,
 whereby
 
participants
 responded
 to
 a
 prompt
 that
 defined
 certain
 criteria
 (Rice
 et
 al.,
 in
 press).
 Using
 
the
 free
 recall
 name
 generator
 is
 fairly
 common
 in
 social
 network
 analysis
 and
 enables
 the
 
nomination
 of
 both
 strong
 and
 weak
 ties
 (Brewer,
 2000;
 McCarty
 &
 Govindaramanujam,
 
2005).
 Additionally,
 completeness
 of
 an
 individual’s
 network
 is
 directly
 determined
 by
 
inclusiveness
 of
 the
 prompts
 used
 in
 a
 name
 generator
 (McCarty,
 Killworth,
 &
 Rennell,
 
2007).
 As
 is
 suggested
 by
 the
 name,
 the
 effectiveness
 of
 the
 free
 recall
 name
 generator
 is
 
dependent
 on
 the
 memory
 of
 the
 respondent.
 Failure
 to
 recall
 or
 a
 biased
 recall
 directly
 
impact
 the
 quality
 of
 network
 data
 collected
 (McCarty
 et
 al.,
 2007).
 Multiple
 prompts
 and
 
subsequent
 probes
 reduce
 these
 effects
 (Brewer,
 2000;
 Brewer
 &
 Garrett,
 2001;
 McCarty
 et
 
al.,
 2007).
 
 
The
 initial
 prompt
 used
 for
 the
 current
 network
 interview
 was,
 “Think
 about
 the
 last
 
two
 months.
 I
 want
 to
 know
 about
 the
 people
 you
 have
 had
 contact
 with,
 who
 you
 talk
 to,
 
who
 you
 hang
 out
 with,
 who
 you
 talk
 on
 the
 phone
 with,
 who
 you
 email,
 text,
 or
 talk
 with
 
on
 the
 Internet.”
 The
 respondents
 were
 asked
 to
 list
 as
 many
 people
 as
 they
 could.
 Another
 
option
 would
 have
 been
 to
 give
 the
 exact
 number
 of
 possible
 alters
 (individuals
 in
 their
 
networks)
 the
 respondents
 could
 nominate.
 However,
 that
 would
 have
 forced
 the
 
responders
 to
 nominate
 a
 specific
 number
 of
 connections,
 which
 could
 have
 increased
 

  41
 
responder
 bias
 (McCarty
 et
 al.,
 2007).
 To
 invoke
 as
 many
 names
 as
 possible,
 subsequent
 
prompts
 were
 used
 to
 identify
 different
 networks,
 such
 as
 “friends,”
 “family,”
 “case
 
workers,”
 “people
 you
 know
 in
 your
 neighborhood,”
 “girlfriend/boyfriend
 or
 
husband/wife,”
 “neighbor,”
 “colleague,”
 “people
 you
 know
 from
 agencies,”
 and
 “friends
 you
 
knew
 before
 you
 started
 using
 mental
 health
 agencies.”
 
 
An
 egocentric
 network
 graph
 was
 created
 for
 each
 participant,
 and
 directed
 ties
 
were
 drawn
 from
 the
 participant
 to
 and
 from
 every
 alter
 nominated
 in
 their
 network.
 The
 
nominated
 people
 were
 represented
 with
 different
 color
 codes
 signifying
 their
 affiliation
 to
 
the
 mental
 health
 community
 or
 non-­‐mental
 health
 community.
 Friends
 and
 family
 
members
 were
 also
 identified.
 The
 participants
 were
 asked
 a
 follow-­‐up
 question
 about
 
whom
 they
 go
 to
 when
 they
 need
 help.
 Participants
 were
 then
 asked
 specific
 questions
 
about
 each
 alter
 nominated
 in
 their
 network.
 The
 questions
 included
 the
 following:
 
 
• Socio-­‐demographic
 data:
 Information
 was
 collected
 about
 the
 alters
 such
 as
 gender,
 
age,
 and
 ethnicity
 (only
 valid
 in
 the
 U.S.
 sample),
 as
 well
 as
 the
 type
 of
 relationship
 
(e.g.,
 family
 member,
 friend,
 or
 mental
 health
 service
 provider).
 
 
• Relationship
 quality:
 To
 assess
 strength
 of
 ties,
 information
 on
 the
 closeness
 of
 the
 
relationship
 was
 collected
 (ranging
 from
 1
 
 =
 not
 at
 all
 to
 5
 
 =
 extremely),
 along
 with
 
the
 frequency
 of
 contact
 (ranging
 from
 1
 
 =
 almost
 every
 day
 to
 4
 
 =
 less
 than
 once
 a
 
month).
 
• Information
 on
 whether
 or
 not
 the
 alter
 was
 a
 part
 of
 the
 mental
 health
 community
 
and
 if
 they
 were
 a
 service
 provider
 or
 a
 consumer.
 
 
• Social
 support:
 Network
 interviews
 gained
 information
 about
 the
 specific
 kinds
 of
 
social
 support
 the
 participant
 received
 and
 the
 person
 in
 their
 network
 they
 

  42
 
received
 it
 from.
 To
 specify
 the
 kind
 and
 source
 of
 social
 support,
 the
 four
 items
 
included
 in
 the
 Rand
 Medical
 Outcomes
 Study
 Social
 Support
 (MOSSS)
 survey
 
developed
 by
 Sherbourne
 and
 Stewart
 (1991)
 were
 used
 as
 network
 
prompts(Sherbourne
 &
 Stewart,
 1991).
 For
 example,
 the
 question
 in
 the
 survey
 that
 
asked,
 “How
 often
 do
 you
 have
 someone
 to
 help
 with
 daily
 chores
 if
 you
 are
 sick?”
 
was
 reworded
 as
 a
 network
 question,
 and
 the
 participant
 was
 asked
 to
 identify
 the
 
people
 in
 their
 network
 who
 helped
 them
 with
 daily
 chores
 if
 they
 became
 sick.
 The
 
four
 social
 support
 network
 questions
 adapted
 from
 the
 MOSSS
 measure
 were
 as
 
follows:
 
o Who
 in
 this
 network
 will
 you
 go
 to
 if
 you
 need
 help
 with
 daily
 chores
 if
 you
 
are
 sick
 (tangible
 support)?
 
 
o Who
 in
 this
 network
 will
 you
 turn
 to
 for
 suggestions
 about
 how
 to
 deal
 with
 a
 
personal
 problem
 (emotional
 support)?
 
o Who
 in
 the
 network
 would
 you
 do
 something
 enjoyable
 with
 (positive
 social
 
interaction)?
 
o Who
 in
 the
 network
 loves
 you
 and
 makes
 you
 feel
 wanted
 (affectionate
 
support)?
 
• Social
 resources:
 Information
 on
 social
 resources
 was
 also
 gathered
 using
 the
 social
 
network
 interview.
 Questions
 were
 taken
 from
 the
 social
 capital
 resource
 generator
 
(Van
 Der
 Gaag
 &
 Webber,
 2008)
 and
 adapted
 to
 the
 mental
 health
 population.
 For
 
example,
 the
 question
 on
 the
 resource
 generator
 that
 asked
 the
 participant
 if
 they
 
had
 someone
 who
 “has
 a
 car
 you
 can
 borrow
 sometimes,”
 asked
 the
 individual
 to
 
specify
 and
 select
 everyone
 in
 their
 network
 they
 would
 go
 to
 if
 they
 needed
 to
 

  43
 
borrow
 a
 car.
 Additional
 choices
 of
 “none
 of
 the
 above”
 and
 “all
 of
 the
 above”
 were
 
included
 in
 case
 the
 individual
 did
 not
 have
 access
 to
 a
 particular
 resource
 or
 if
 they
 
had
 access
 to
 a
 resource
 from
 everyone
 in
 their
 network.
 The
 information
 gathered
 
from
 these
 questions
 was
 used
 in
 two
 ways.
 A
 sum
 score
 representing
 the
 total
 
social
 resources
 was
 used
 as
 a
 proxy
 for
 physical
 community
 integration
 in
 Wong
 
and
 Solomon’s
 model
 for
 community
 integration.
 Additionally,
 network
 information
 
in
 the
 form
 of
 specific
 relationships
 that
 are
 sources
 of
 specific
 forms
 of
 social
 
resources
 were
 identified
 as
 bridging
 or
 bonding
 social
 capital
 and
 used
 as
 a
 
suggested
 expansion
 of
 the
 social
 integration
 dimension
 of
 Wong
 and
 Solomon’s
 
model
 of
 community
 integration.
 Specific
 questions
 adapted
 from
 the
 resource
 
generator
 and
 included
 in
 the
 network
 interview
 were
 as
 follows:
 
 
• Domestic
 social
 resources:
 
o Who
 in
 the
 network
 knows
 where
 to
 find
 bargains?
 
o Who
 in
 the
 network
 has
 a
 car
 you
 can
 borrow
 sometimes?
 
o Who
 in
 the
 network
 could
 help
 you
 to
 find
 somewhere
 to
 live
 if
 you
 had
 to
 
move?
 
o Who
 in
 the
 network
 could
 help
 you
 make
 your
 home
 more
 pleasant
 or
 
comfortable?
 
• Expert
 advice
 social
 resources:
 
o Who
 in
 the
 network
 gives
 good
 advice
 about
 earning
 money?
 
o Who
 in
 the
 network
 gives
 you
 good
 advice
 about
 money
 problems?
 
• Personal
 skills
 social
 resources:
 
o Who
 in
 the
 network
 knows
 about
 good
 places
 to
 live?
 

  44
 
o Who
 
 in
 the
 network
 offers
 opportunities
 for
 fun
 activities?
 
o Who
 
 in
 the
 network
 knows
 about
 volunteer
 or
 work
 opportunities?
 
o Who
 
 in
 the
 network
 knows
 about
 education
 or
 job
 training?
 
o Who
 
 in
 the
 network
 can
 sometimes
 employ
 people?
 
o Who
 
 in
 the
 network
 could
 help
 you
 take
 care
 of
 your
 health?
 
• Problem-­‐solving
 social
 resources:
 
o Who
 
 in
 the
 network
 knows
 how
 to
 fix
 problems
 with
 computers?
 
o Who
 
 in
 the
 network
 knows
 a
 lot
 about
 benefits
 you
 might
 qualify
 for?
 
o Who
 
 in
 the
 network
 knows
 how
 to
 get
 around
 the
 city?
 
o Who
 
 in
 the
 network
 knows
 a
 lot
 about
 fixing
 things
 around
 the
 house?
 
• Stigma:
 Questions
 on
 stigma
 and
 sources
 of
 stigma
 were
 also
 asked
 during
 the
 
network
 interview.
 For
 example,
 the
 participant
 was
 asked
 to
 identify
 everyone
 in
 
their
 network
 who
 “knows
 that
 you
 have
 a
 mental
 illness”
 and
 “who
 would
 you
 not
 
wish
 to
 tell
 that
 you
 have
 a
 mental
 illness.”
 An
 additional
 choice
 of
 “none
 of
 the
 
above”
 was
 included
 in
 case
 the
 individual
 could
 not
 identify
 anyone
 in
 his
 or
 her
 
network
 who
 could
 be
 a
 potential
 source
 of
 stigma.
 
 
o Who
 in
 your
 network
 knows
 that
 you
 have
 a
 mental
 illness?
 
o Who
 would
 you
 not
 wish
 to
 tell
 that
 you
 have
 a
 mental
 illness?
 Of
 the
 people
 
who
 already
 know,
 who
 do
 you
 wish
 didn’t
 know
 about
 your
 mental
 illness?
 
o Who
 would
 look
 at
 or
 behave
 differently
 with
 you
 if
 they
 found
 out
 that
 you
 
have
 a
 mental
 illness?
 
o Who
 would
 stop
 talking
 to
 you
 if
 they
 found
 out
 that
 you
 have
 a
 mental
 
illness?
 

  45
 
• Additional
 variables
 derived
 from
 the
 network
 questions
 included
 size
 and
 
proportion
 of
 alters
 in
 each
 network
 that
 represented
 different
 relationship
 types
 
like
 friends,
 family,
 mental
 health
 professionals,
 and
 mental
 health
 peers.
 
Part
 2:
 Quantitative
 survey.
 Quantitative
 data
 came
 from
 the
 following
 scales
 that
 
measured
 different
 dimensions
 of
 community
 integration
 and
 were
 completed
 by
 the
 
participants
 as
 part
 of
 a
 battery
 of
 instruments
 administered
 by
 the
 research
 interviewer.
 
 
Socio-­‐demographic
 characteristics.
 Demographic
 information
 on
 age,
 gender,
 
education
 level,
 ethnicity
 (only
 for
 the
 U.S.
 sample),
 relationship
 status,
 and
 employment
 
status
 was
 gathered
 using
 a
 demographic
 measure.
 To
 obtain
 the
 information
 on
 age,
 
participants
 were
 asked
 to
 report
 their
 date
 of
 birth,
 and
 this
 information
 was
 converted
 
into
 a
 continuous
 variable
 representing
 their
 age
 for
 analysis.
 Gender
 was
 coded
 into
 two
 
categories
 with
 values
 of
 0
 and
 1
 assigned
 to
 females
 and
 males,
 respectively.
 Information
 
about
 relationships
 included
 six
 categories:
 currently
 married,
 widowed,
 divorced,
 
separated,
 never
 married,
 and
 with
 a
 partner.
 This
 variable
 was
 dichotomized
 into
 a
 single
 
item
 regarding
 whether
 or
 not
 an
 individual
 was
 currently
 married
 or
 with
 a
 partner
 (1
 
 =
 
married/with
 a
 partner;
 0
 
 =
 single,
 divorced,
 separated,
 or
 widowed)
 for
 future
 analyses.
 
Finally,
 a
 single
 question
 asked
 whether
 an
 individual
 was
 currently
 employed
 to
 obtain
 
their
 employment
 status
 (1
 
 =
 currently
 employed;
 0
 
 =
 not
 employed).
 
Community
 integration
 measures.
 
 
Physical
 community
 integration.
 Physical
 integration
 was
 defined
 as
 the
 “extent
 to
 
which
 an
 individual
 participates
 in
 activities”
 and
 “uses
 goods
 and
 services
 in
 community”
 
(Wong
 &
 Solomon,
 2002).
 It
 was
 measured
 by
 the
 two
 following
 scales.
 
 

  46
 
Involvement
 in
 community
 activities
 scale.
 This
 scale
 measured
 the
 extent
 to
 which
 
an
 individual
 participated
 in
 community
 activities.
 It
 was
 adapted
 from
 the
 subscale
 on
 
community
 activities
 of
 a
 larger
 scale
 measuring
 independent
 living
 skills
 developed
 by
 
Wallace,
 Liberman,
 Tauber,
 &
 Wallace
 (Wallace,
 Liberman,
 Tauber,
 &
 Wallace,
 2000).

 
The
 
subscale
 consisted
 of
 11
 items.
 The
 first
 10
 items
 asked
 the
 responders
 to
 indicate
 whether
 
they
 had
 participated
 in
 any
 of
 10
 specific
 community
 activities
 in
 the
 past
 30
 days.
 The
 last
 
item
 asked
 their
 satisfaction
 with
 their
 level
 of
 community
 activity.
 
 
Social
 resources
 scale.
 The
 extent
 to
 which
 an
 individual
 used
 “goods
 and
 services”
 
(Wong
 &
 Solomon,
 2002)
 in
 a
 community
 was
 measured
 using
 an
 adaptation
 of
 the
 social
 
capital
 resource
 generator
 (Van
 Der
 Gaag
 &
 Webber,
 2008).
 The
 resource
 generator
 was
 
expanded
 to
 trace
 the
 sources
 of
 social
 resources
 from
 both
 mental
 health
 and
 non-­‐mental
 
health
 individuals.
 This
 scale
 included
 questions
 such
 as,
 “Is
 there
 someone
 in
 your
 life
 now
 
who
 has
 a
 car
 you
 can
 borrow
 sometimes?”
 A
 summed
 score
 of
 total
 social
 resources
 and
 
social
 resources
 from
 mental
 health
 and
 non-­‐mental
 health
 communities
 was
 created
 and
 
used
 as
 a
 proxy
 of
 physical
 community
 integration.
 
Psychological
 community
 integration.
 Psychological
 integration,
 defined
 as
 the
 
extent
 to
 which
 an
 individual
 perceives
 membership
 in
 a
 community
 (Wong
 &
 Solomon,
 
2002),
 was
 measured
 in
 two
 ways.
 First,
 we
 used
 the
 Community
 Integration
 Measure
 
(CIM;
 (McColl
 et
 al.,
 2001),
 a
 10-­‐item
 self-­‐report
 measure
 that
 assesses
 the
 degree
 to
 which
 
someone
 participates,
 feels
 connected
 to,
 and
 feels
 a
 sense
 of
 belonging
 in
 their
 community.
 
It
 included
 statements
 such
 as,
 “I
 feel
 like
 part
 of
 this
 community,
 like
 I
 belong
 here,”
 and
 
asks
 the
 responders
 to
 agree
 or
 disagree
 with
 the
 statement
 on
 a
 5-­‐point
 Likert
 scale,
 with
 
smaller
 values
 representing
 more
 agreement.
 Subjects
 were
 asked
 to
 respond
 to
 two
 

  47
 
versions
 of
 the
 scale.
 One
 version
 was
 targeted
 to
 the
 mental
 health
 community
 of
 peers
 
and
 providers,
 and
 the
 other
 version
 targeted
 the
 non-­‐mental
 health
 community,
 consisting
 
of
 friends,
 family,
 and
 non-­‐mental
 health
 acquaintances.
 The
 scale
 has
 a
 reliability
 of
 0.87
 
(McColl
 et
 al.,
 2001).
 For
 the
 sample
 in
 this
 study,
 alpha
 for
 the
 version
 pertaining
 to
 the
 
mental
 health
 community
 was
 0.87,
 and
 alpha
 for
 the
 version
 pertaining
 to
 the
 non-­‐mental
 
health
 community
 was
 0.89.
 
Second,
 we
 used
 the
 CIM
 Interviewer
 rating
 scale,
 adapted
 from
 the
 CIM
 (McColl
 et
 
al.,
 2001).
 It
 consists
 of
 six
 items
 that
 ask
 the
 interviewer
 to
 rate
 the
 degree
 to
 which
 the
 
subject
 participated
 in,
 was
 connected
 to,
 and
 was
 accepted
 by
 the
 mental
 health
 and
 non-­‐
mental
 health
 communities.
 Cronbach’s
 alpha
 for
 the
 three
 mental
 health
 community
 items
 
was
 .88
 and
 .93
 for
 the
 three
 non-­‐mental
 health
 community
 items.
 These
 questions
 gauge
 
at
 the
 interviewer’s
 perception
 of
 each
 participant’s
 community
 involvement
 from
 the
 
entire
 interview
 process,
 including
 the
 network
 interview.
 The
 interviewer
 was
 asked
 to
 
complete
 this
 scale
 at
 the
 end
 of
 the
 interviews.
 
 
Social
 community
 integration.

 
Social
 intergration
 was
 defined
 in
 terms
 of
 the
 an
 
individual’s
 perception
 of
 social
 support
 available
 to
 them
 and
 their
 social
 networks
 (Wong
 
&
 Solomon,
 2002).
 First,
 perceived
 availability
 of
 social
 support
 was
 measured
 by
 the
 4-­‐
item
 short
 version
 of
 the
 MOSSS
 (Sherbourne
 &
 Stewart,
 1991).
 This
 survey
 is
 rated
 from
 1
 
to
 5,
 with
 higher
 ratings
 indicating
 more
 social
 support.
 The
 4-­‐item
 scale
 has
 a
 reliability
 of
 
.83,
 and
 in
 this
 sample,
 reliability
 was
 .73
 (Gjesfjeld,
 Greeno,
 &
 Kim,
 2007).
 
 
Second,
 the
 aforementioned
 social
 network
 interview
 was
 used
 to
 operationalize
 
the
 social
 network
 dimension
 of
 social
 integration
 (Rice,
 2010;
 Rice,
 Milburn,
 &
 Monro,
 
2011).
 The
 PI
 and
 the
 interviewers
 were
 trained
 and
 supervised
 in
 the
 network
 mapping
 

  48
 
method
 by
 the
 developer
 of
 the
 method.
 Affiliation
 to
 the
 mental
 health
 community
 or
 non-­‐
mental
 health
 community
 was
 identified
 for
 each
 network
 member.
 Network
 data
 from
 this
 
interview
 included
 variables
 such
 as
 network
 size
 and
 composition
 of
 the
 network,
 
including
 proportions
 of
 mental
 health
 and
 non-­‐mental
 health
 members,
 friends,
 family,
 
mental
 health
 peers,
 and
 mental
 health
 providers,
 and
 the
 data
 were
 used
 as
 proxies
 of
 
social
 integration.
 These
 data
 were
 quantified
 using
 the
 procedure
 described
 in
 Rice
 
(2010).
 
 
In
 addition
 to
 using
 the
 social
 support
 and
 the
 general
 social
 network
 
characteristics,
 the
 current
 study
 used
 the
 social
 capital
 theory
 to
 expand
 the
 social
 
community
 integration
 dimension
 proposed
 by
 Wong
 and
 Solomon
 (Wong
 &
 Solomon,
 
2002).
 Availability
 of
 social
 resources
 from
 specific
 network
 members
 in
 the
 form
 of
 
bridging
 and
 bonding
 social
 capital
 were
 conceptualized
 as
 an
 extension
 of
 the
 social
 
community
 integration.
 For
 this
 purpose,
 the
 network
 questions
 on
 social
 resources
 
previously
 mentioned
 were
 used
 to
 assess
 social
 integration
 in
 terms
 of
 specific
 network
 
members.
 
 
Additional
 predictors.
 
Stigma
 measure.
 The
 Internalized
 Stigma
 of
 Mental
 Illness
 scale
 (ISMI,
 Ritsher
 &
 
Phelan,
 2004;
 Ritsher-­‐Boyd,
 Otilingam,
 &
 Grajales,
 2003)
 was
 used
 to
 measure
 the
 
internalized
 stigma
 of
 the
 consumers.
 The
 original
 ISMI
 is
 a
 29-­‐item,
 5
 factor,
 4-­‐point
 Likert
 
scale
 and
 measures
 five
 dimensions
 of
 internalized
 stigma.
 We
 excluded
 the
 fifth
 factor
 in
 
our
 study
 because
 the
 alphas
 of
 the
 four
 factors
 in
 the
 original
 study
 by
 Ritsher-­‐Boyd
 were
 
found
 to
 be
 greater
 than
 the
 threshold
 of
 α
 =
 .70,
 except
 for
 the
 stigma
 resistance
 subscale
 
(α
 =
 .58;
 (Ritsher
 &
 Phelan,
 2004;
 Ritsher-­‐Boyd
 et
 al.,
 2003;
 Stevelink,
 Wu,
 Voorend,
 &
 van
 

  49
 
Brakel,
 2012).
 The
 four
 factors
 used
 in
 the
 study
 were
 as
 follows:
 (1)
 alienation,
 which
 
measured
 the
 subjective
 experience
 of
 being
 less
 than
 a
 full
 member
 of
 society
 or
 having
 a
 
spoiled
 identity;
 (2)
 stereotype
 endorsement,
 which
 measured
 the
 degree
 to
 which
 
respondents
 agreed
 with
 common
 stereotypes
 about
 people
 with
 mental
 illness;
 (3)
 
discrimination
 experience,
 which
 measured
 the
 extent
 to
 which
 people
 experience
 
discrimination
 associated
 with
 a
 mental
 illness;
 and
 (4)
 social
 withdrawal,
 which
 measured
 
the
 extent
 to
 which
 people
 withdraw
 socially
 as
 a
 result
 of
 experiencing
 self-­‐stigma.
 The
 
alpha
 of
 the
 4-­‐factor
 version
 was
 .91
 of
 the
 original
 scale.
 The
 reliability
 of
 the
 subscales
 
ranged
 between
 .74
 and
 .80,
 with
 the
 test-­‐retest
 reliability
 ranging
 between
 .68
 and
 .94
 
(Ritsher-­‐Boyd
 et
 al.,
 2003).
 As
 per
 the
 recommendation
 of
 the
 developer
 of
 the
 scale,
 we
 
used
 the
 items
 as
 a
 single
 factor
 to
 represent
 internalized
 stigma
 instead
 of
 the
 distinct
 4
 
factors.
 The
 alpha
 for
 the
 single
 factor
 internalized
 stigma
 measure
 in
 the
 current
 data
 was
 
.90.
 
Symptom
 measure.
 Psychiatric
 symptoms
 were
 assessed
 using
 the
 14-­‐item
 
Colorado
 Symptom
 Index
 (CSI,
 Shern,
 Lee,
 &
 Coen,
 1996)
 .
 CSI
 is
 a
 self-­‐report
 measure
 
assessing
 psychological
 or
 emotional
 difficulties
 in
 the
 past
 30
 days.
 It
 is
 measured
 using
 a
 
5-­‐point
 Likert
 scale,
 with
 higher
 ratings
 representing
 more
 difficulty.
 The
 measure
 had
 a
 
reliability
 of
 .92
 for
 the
 current
 data.
 
Functional
 outcome
 measure.
 The
 Strauss
 and
 Carpenter
 Functional
 Outcomes
 
scale
 was
 used
 to
 measure
 functional
 outcomes
 (Strauss
 &
 Carpenter,
 1972).
 This
 measure
 
has
 four
 discrete
 dimensions,
 each
 of
 which
 is
 rated
 from
 0
 to
 4.
 It
 measures
 functionality
 
on
 the
 following
 4
 dimensions:
 duration
 of
 non-­‐institutionalization,
 social
 contacts,
 useful
 
employment,
 and
 symptoms.
 
 

  50
 
Data
 Analysis
 
Preliminary
 analysis.
 Data
 were
 first
 subjected
 to
 preliminary
 analyses
 to
 
determine
 demographic
 characteristics
 and
 group
 differences
 between
 India
 and
 the
 
United
 States,
 as
 well
 as
 determining
 the
 reliability
 of
 the
 scales
 used
 in
 the
 analyses.
 
Descriptive
 statistics
 are
 provided
 in
 the
 Results
 section.
 Differences
 between
 India
 and
 the
 
United
 States
 on
 the
 psychosocial
 variables
 (symptomatology,
 psychosocial
 functioning,
 
and
 internalized
 stigma)
 were
 also
 analyzed
 and
 are
 listed
 in
 the
 Results
 section.
 Analysis
 
was
 conducted
 using
 SPSS
 version
 18
 (SPSS
 Inc,
 2009)
 
Analysis
 of
 network
 data
 and
 quantitative
 analysis.
 
 
AIM
 1:
 Using
 network
 analysis
 and
 Wong
 and
 Solomon’s
 dimensions
 of
 
community
 integration,
 to
 study
 and
 compare
 the
 degree
 of
 community
 
integration
 (including
 physical,
 social,
 and
 psychological
 integration)
 of
 
individuals
 with
 severe
 mental
 illness
 in
 Indian
 and
 United
 States
 samples.
 

  To
 address
 the
 first
 aim
 of
 the
 this
 study,
 a
 series
 of
 independent
 sample
 t-­‐tests
 
were
 run
 to
 assess
 the
 differences
 between
 India
 and
 the
 United
 States
 for
 the
 three
 
dimensions
 of
 community
 integration.
 For
 physical
 community
 integration,
 scores
 on
 the
 
Community
 Activities
 scale
 and
 the
 Social
 Resources
 scale
 were
 compared
 between
 India
 
and
 the
 United
 States.
 For
 psychological
 community
 integration,
 t-­‐tests
 were
 performed
 for
 
the
 mental
 health
 and
 non-­‐mental
 health
 versions
 of
 self-­‐perception
 of
 community
 
integration
 scales,
 as
 well
 as
 the
 mental
 health
 and
 non-­‐mental
 health
 versions
 of
 the
 
Interviewer’s
 Perception
 of
 Community
 Integration
 scale.
 Social
 community
 integration
 
was
 measured,
 first,
 by
 using
 the
 social
 support
 measure
 to
 assess
 differences
 in
 means
 of
 
social
 support
 in
 India
 and
 the
 United
 States
 using
 a
 t-­‐test.
 To
 study
 the
 second
 part
 of
 the
 

  51
 
social
 community
 integration
 (social
 networks),
 data
 collected
 from
 the
 network
 
interviews
 were
 used
 to
 generate
 descriptive
 statistics
 of
 variables
 that
 originated
 from
 the
 
data.
 The
 variables
 analyzed
 included
 the
 numbers
 and
 proportions
 of
 each
 type
 of
 alter
 
chosen
 by
 an
 individual
 (i.e.,
 family
 members,
 friends,
 people
 from
 mental
 health
 agencies,
 
service
 providers,
 etc.),
 the
 different
 types
 networks
 that
 individuals
 access
 for
 social
 
support
 and
 other
 resources
 (i.e.,
 proportion
 of
 friends
 that
 are
 a
 source
 of
 emotional
 social
 
support—tangible
 social
 support),
 and
 the
 network
 affiliates
 that
 were
 a
 source
 of
 stigma
 
(e.g.,
 proportion
 of
 networks
 that
 include
 family
 and
 are
 also
 a
 source
 of
 stigma).
 These
 
variables
 were
 used
 to
 compare
 the
 composition
 of
 the
 networks
 in
 the
 two
 countries
 for
 
Aim
 2.
 The
 results
 are
 presented
 in
 the
 Results
 section.
 
 
AIM
 2:
 To
 use
 quantitative
 and
 network-­‐level
 variables
 to
 understand
 
community
 integration
 and
 how
 the
 psychosocial
 and
 network
 variables
 are
 
associated
 with
 the
 three
 dimensions
 of
 community
 integration
 for
 
individuals
 with
 SMI
 in
 samples
 from
 India
 and
 the
 United
 States.
 
For
 Aim
 2,
 bivariate
 correlations
 were
 initially
 performed
 to
 examine
 relationships
 
between
 the
 different
 dimensions
 of
 community
 integration
 and
 individual
 demographics,
 
psychosocial
 factors,
 and
 network
 variables.
 Coefficients
 were
 calculated
 to
 determine
 
whether
 the
 study
 variables
 were
 significantly
 correlated
 and,
 thus,
 needed
 to
 be
 
controlled
 for
 in
 regression
 models.
 The
 statistical
 software
 package
 SPSS
 version
 18
 (SPSS
 
Inc,
 2009)
 was
 used
 for
 Aim
 2.
 A
 series
 of
 nested
 regression
 models
 were
 subsequently
 run
 
using
 hierarchical
 regression
 to
 examine
 the
 relative
 contribution
 of
 each
 set
 of
 predictors
 
for
 the
 three
 dimensions
 of
 community
 integration
 as
 dependent
 variables.
 The
 correlation
 
models
 were
 also
 used
 as
 a
 means
 to
 establish
 the
 models.
 Because
 the
 sample
 size
 was
 

  52
 
small,
 we
 could
 only
 include
 seven
 or
 eight
 predictors
 in
 each
 model.
 Hence,
 the
 predictors
 
with
 most
 significant
 relationships
 with
 the
 dependent
 variable
 at
 a
 bivariate
 level
 were
 
included
 in
 the
 models.
 To
 be
 consistent
 across
 models
 for
 the
 different
 dimensions
 of
 
community
 integration,
 the
 same
 set
 of
 predictors
 were
 used
 across
 dimensions.
 

  The
 first
 set
 of
 models
 aimed
 to
 study
 the
 association
 between
 physical
 community
 
integration
 and
 the
 three
 sets
 of
 demographic,
 psychosocial,
 and
 network
 variables.
 
Physical
 community
 integration
 was
 operationalized
 using
 the
 Involvement
 in
 Community
 
Activities
 scale.
 Model
 1
 included
 the
 employment
 variable;
 Model
 2
 included
 the
 
employment
 variable
 and
 psychosocial
 variables,
 which
 included
 symptomatology,
 
psychosocial
 functioning,
 and
 stigma
 levels.
 Model
 3
 included
 the
 employment
 variable,
 
psychosocial
 variables,
 and
 network
 variables,
 which
 included
 proportions
 of
 family
 in
 an
 
individual’s
 network,
 proportions
 of
 non-­‐mental
 health
 friends
 in
 an
 individual’s
 network,
 
and
 proportions
 of
 caseworkers
 in
 an
 individual’s
 network.
 Model
 4
 included
 the
 
employment
 variable,
 psychosocial
 variables,
 network
 variables,
 and
 country
 affiliation.
 
Based
 on
 the
 comparison
 in
 the
 F-­‐statistic,
 the
 model
 that
 explained
 maximum
 variation
 in
 
physical
 community
 integration
 was
 identified
 and
 selected.
 
 
This
 process
 was
 replicated
 for
 the
 two
 forms
 of
 psychological
 community
 
integration
 (into
 mental
 health
 and
 non-­‐mental
 health
 communities)
 and
 social
 community
 
integration
 in
 the
 form
 of
 perception
 of
 social
 support.
 
 
AIM
 3:
 To
 explore
 the
 use
 of
 multilevel
 analysis
 in
 examining
 the
 effects
 of
 
individual-­‐
 and
 network-­‐level
 variables
 on
 disclosure
 about
 mental
 illness
 in
 
samples
 from
 India
 and
 the
 United
 States.
 

  53
 
For
 AIM
 3,
 we
 used
 multilevel
 analysis
 to
 study
 the
 network
 at
 the
 individual
 and
 
relational
 levels.
 Multilevel
 modeling
 includes
 a
 random
 intercept
 for
 each
 network
 of
 the
 
participating
 individual
 and
 their
 set
 of
 relationships
 with
 their
 alters
 to
 account
 for
 
repeated
 observations
 of
 the
 same
 individual
 (Raudenbush
 &
 Bryk,
 2002;
 Snijders
 &
 
Bosker,
 1999).
 Use
 of
 multilevel
 modeling
 accounted
 for
 variation
 because
 of
 specific
 
individual-­‐alter
 (also
 known
 as
 ego-­‐alter)
 relationships
 while
 also
 accounting
 for
 the
 
differences
 between
 individuals.
 
 
For
 the
 relational-­‐level
 analysis,
 the
 individual
 and
 their
 alters
 yielded
 a
 tie.
 For
 
example,
 if
 an
 individual
 chose
 four
 alters,
 they
 were
 considered
 as
 four
 observed
 
relational
 ties
 and
 not
 one
 individual.
 Therefore,
 Level
 1
 of
 the
 analysis
 was
 the
 relational
 
level.
 At
 this
 level,
 we
 looked
 at
 the
 characteristics
 of
 the
 alters
 and
 the
 characteristics
 of
 
the
 relationship
 between
 the
 individuals
 and
 their
 alters.
 Level
 2
 of
 the
 analysis
 was
 at
 an
 
individual
 level
 and
 included
 the
 demographic
 characteristics
 of
 the
 egos,
 their
 network
 
compositions
 and
 structures,
 psychosocial
 variables,
 and
 levels
 of
 perception
 of
 community
 
integration
 into
 mental
 health
 and
 non-­‐mental
 health
 communities,
 as
 well
 as
 the
 impact
 of
 
these
 variables
 on
 stigma
 associated
 with
 disclosure
 about
 mental
 illness.
 Data
 were
 
analyzed
 using
 Stata
 version
 13
 (StataCorp,
 2013)
 .
 Looking
 at
 the
 individual
 and
 network-­‐
level
 data
 simultaneously
 provided
 a
 more
 comprehensive
 understanding
 of
 the
 
association
 between
 community
 integration
 and
 stigma.
 
 
Because
 the
 outcome
 variable
 was
 a
 dichotomous
 variable
 on
 whether
 or
 not
 an
 
individual
 had
 told
 or
 would
 like
 to
 tell
 their
 alters
 about
 their
 mental
 illness
 (0
 =
 have
 told
 
or
 would
 not
 mind
 telling;
 1
 =
 have
 not
 told/
 would
 not
 want
 to
 tell),
 the
 multilevel
 models
 
were
 run
 as
 logit
 models.
 
 

  54
 
Dependent
 variable.
 The
 variable
 addressing
 stigma
 about
 disclosure
 was
 derived
 
from
 one
 item
 that
 asked
 the
 individual
 to
 identify
 people
 in
 their
 networks
 to
 whom
 they
 
would
 not
 wish
 tell
 they
 have
 a
 mental
 illness.
 A
 follow-­‐up
 question
 asked
 the
 respondents
 
to
 list
 individuals
 who
 already
 knew
 about
 their
 mental
 illness
 but
 wished
 did
 not
 know.
 
Using
 a
 combination
 of
 the
 information
 obtained
 from
 the
 one
 network
 item
 and
 follow-­‐up
 
question,
 a
 dichotomous
 variable
 on
 stigma
 about
 disclosure
 was
 created.
 Responses
 were
 
dichotomized
 so
 a
 value
 of
 1
 represented
 individuals
 to
 whom
 the
 respondents
 wished
 
they
 had
 not
 disclosed
 or
 would
 not
 wish
 to
 disclose
 their
 mental
 illness
 and
 a
 value
 of
 0
 
represented
 individuals
 to
 whom
 the
 respondents
 had
 no
 problem
 disclosing
 their
 mental
 
illness.
 
 
Level
 1
 predictors.
 
1. Length
 of
 association:
 This
 was
 a
 continuous
 variable
 that
 included
 
information
 on
 how
 long
 (in
 years)
 the
 individual
 had
 known
 each
 of
 their
 
alters.
 
2. Knew
 before
 mental
 health
 services:
 This
 variable
 provided
 information
 
about
 which
 alters
 the
 individual
 knew
 before
 starting
 mental
 health
 
treatment.
 Responses
 were
 dichotomized
 so
 a
 value
 of
 1
 indicated
 alters
 the
 
individuals
 knew
 before
 starting
 mental
 health
 services
 and
 a
 value
 of
 0
 
indicated
 alters
 the
 individuals
 did
 not
 know
 before
 starting
 mental
 health
 
services.
 
3. Relationship:
 The
 relationship
 variable
 was
 converted
 to
 six
 dummy
 
variables.
 Family
 was
 chosen
 as
 the
 reference
 group.
 The
 other
 five
 dummy
 
variables
 and
 their
 dichotomized
 values
 were
 categorized
 as
 follows:
 

  55
 
a. Friend:
 A
 value
 of
 1
 indicated
 the
 alter
 was
 identified
 as
 a
 friend
 and
 a
 
value
 of
 0
 indicated
 the
 alter
 was
 not
 identified
 as
 a
 friend.
 
b. Neighbor:
 A
 value
 of
 1
 indicated
 the
 alter
 was
 identified
 as
 a
 neighbor
 and
 
a
 value
 of
 0
 indicated
 the
 alter
 was
 not
 identified
 as
 a
 neighbor.
 
c. Colleague:
 A
 value
 of
 1
 indicated
 the
 alter
 was
 identified
 as
 a
 colleague
 
and
 a
 value
 of
 0
 indicated
 the
 alter
 was
 not
 identified
 as
 a
 colleague.
 
d. Caseworker:
 A
 value
 of
 1
 indicated
 the
 alter
 was
 identified
 as
 a
 
caseworker
 and
 a
 value
 of
 0
 indicated
 the
 alter
 was
 not
 identified
 as
 a
 
caseworker.
 
e. Acquaintance:
 A
 value
 of
 1
 indicated
 the
 alter
 was
 identified
 as
 an
 
acquaintance
 and
 a
 value
 of
 0
 indicated
 the
 alter
 was
 not
 identified
 as
 an
 
acquaintance.
 
Level
 2
 predictors.
 
1. Country
 affiliation:
 This
 dichotomized
 variable
 indicated
 whether
 the
 individual
 
was
 from
 the
 India
 sample
 or
 the
 United
 States.
 The
 variable
 was
 dichotomized
 
so
 a
 value
 of
 indicated
 the
 individual
 was
 from
 the
 United
 States
 and
 a
 value
 of
 0
 
indicated
 the
 individual
 was
 from
 India.
 
2. Employed:
 This
 dichotomized
 variable
 indicated
 whether
 an
 individual
 was
 
employed.
 A
 value
 of
 1
 indicated
 employment
 and
 a
 value
 of
 0
 indicated
 no
 
employment.
 
3. Symptom:
 Psychiatric
 symptoms
 were
 assessed
 using
 a
 sum
 of
 the
 14-­‐item
 CSI
 
(Shern
 et
 al.,
 1996).
 It
 was
 a
 continuous
 variable
 whereby
 an
 increase
 in
 value
 
indicated
 an
 increase
 in
 symptomatology.
 

  56
 
4. Psychosocial
 functioning:
 The
 Strauss
 and
 Carpenter
 Functional
 Outcomes
 scale
 
was
 used
 to
 measure
 functional
 outcomes
 (Strauss
 &
 Carpenter,
 1972).
 It
 was
 a
 
continuous
 variable
 whereby
 an
 increase
 in
 value
 indicated
 an
 increase
 in
 
functioning.
 
 
5. Internalized
 stigma:
 The
 ISMI
 was
 used
 to
 measure
 the
 internalized
 stigma
 of
 the
 
consumers
 (Ritsher-­‐Boyd
 et
 al.,
 2003).
 It
 was
 a
 continuous
 variable
 whereby
 an
 
increase
 in
 value
 indicated
 an
 increase
 in
 internalized
 stigma.
 
6. Perceived
 social
 support:
 Perceived
 availability
 of
 social
 support
 was
 measured
 
with
 the
 4-­‐item
 short
 version
 of
 the
 MOSSS
 (Sherbourne
 &
 Stewart,
 1991).
 
 
7. Psychological
 community
 integration
 in
 a
 mental
 health
 community
 and
 
psychological
 community
 integration
 in
 a
 non-­‐mental
 health
 community:
 Two
 
versions
 of
 the
 10-­‐item
 CIM
 (McColl
 et
 al.,
 2001)
 were
 used
 to
 measure
 
community
 integration
 in
 mental
 health
 and
 non-­‐mental
 health
 communities.
 
Both
 were
 continuous
 variables,
 where
 an
 increase
 in
 value
 indicated
 an
 
increase
 in
 psychological
 integration
 in
 that
 particular
 community.
 
Data
 were
 analyzed
 using
 the
 xtmelogit
 model
 in
 Stata
 version
 13
 (StataCorp,
 2013).
 
Wald
 tests
 and
 z-­‐tests
 were
 used
 to
 determine
 the
 significance
 of
 obtained
 odds
 
ratios
 (OR).
 
 

  57
 
CHAPTER
 FOUR:
 
 
RESULTS
 
Description
 of
 the
 Sample
 

  Of
 the
 86
 individuals
 originally
 enrolled
 in
 the
 study,
 30
 participants
 from
 the
 low-­‐
intensity
 service
 group
 in
 the
 United
 States
 and
 26
 from
 the
 low-­‐intensity
 service
 group
 in
 
India
 were
 selected
 for
 this
 analysis,
 making
 the
 total
 sample
 size
 56.
 Table
 1
 provides
 an
 
overview
 of
 the
 demographic
 characteristics
 of
 the
 U.S.
 and
 Indian
 samples.
 The
 U.S.
 
sample
 had
 an
 average
 age
 of
 46
 years
 (SD
 =
 9.62),
 and
 the
 Indian
 sample
 had
 an
 average
 
age
 of
 39
 years
 (SD
 =
 13.38).
 The
 U.S.
 sample
 was
 predominantly
 female
 compared
 with
 the
 
Indian
 sample
 (63%
 vs.
 42%,
 respectively).
 The
 U.S.
 sample
 chiefly
 consisted
 of
 ethnic
 
minorities
 with
 representations
 of
 33%
 Euro-­‐Americans,
 53%
 Latinos,
 3%
 African
 
American,
 3%
 Asian,
 and
 approximately
 7%
 mixed
 ethnicity.
 The
 Indian
 sample
 was
 
ethnically
 homogeneous.
 
 Most
 of
 the
 Indian
 sample
 (65%)
 was
 married
 or
 with
 a
 partner
 
compared
 to
 23%
 of
 the
 U.S.
 sample,
 whereas
 40%
 of
 the
 U.S.
 sample
 had
 never
 been
 
married
 compared
 to
 23%
 of
 the
 Indian
 sample.
 In
 the
 U.S.
 sample,
 33%
 was
 divorced
 or
 
separated
 compared
 to
 12%
 of
 the
 Indian
 sample,
 and
 only
 the
 U.S.
 sample
 had
 a
 
participant
 (3%)
 who
 was
 widowed.
 In
 terms
 of
 employment,
 more
 than
 half
 of
 the
 Indian
 
sample
 was
 employed
 (54%
 employed
 vs.
 46%
 unemployed),
 whereas
 only
 one
 person
 in
 
the
 U.S.
 sample
 was
 employed.
 While
 both
 the
 United
 States
 and
 Indian
 samples
 included
 
individuals
 who
 were
 diagnosed
 with
 a
 SMI,
 approximately
 two-­‐thirds
 of
 the
 U.S.
 sample
 
was
 diagnosed
 with
 bipolar
 disorder,
 and
 approximately
 one-­‐third
 had
 a
 diagnosis
 of
 
schizophrenia
 spectrum
 disorder.
 46%
 of
 the
 Indian
 sample
 had
 a
 diagnosis
 of
 

  58
 
schizophrenia
 spectrum
 disorder,
 39%
 had
 a
 diagnosis
 of
 bipolar
 disorder
 and
 15%
 had
 a
 
diagnosis
 of
 major
 depression.
 
 
Table
 1
 
Demographic
 Characteristics
 of
 the
 Whole
 Sample
 (N
 
 =
 56)
 

  United
 States
 (N
 
 =
 30)
  India
 (N
 
 =
 26)
 

  Mean
 (SD)
 or
 N
 (%)
  Mean
 (SD)
 or
 N
 (%)
 
Age
 (in
 years)
  46.030
 (9.615)
  38.690
 (13.377)
 
Gender
   
   
 

  Male
  11
 (36.7)
  15
 (57.7)
 

  Female
  19
 (63.3)
  11
 (42.3)
 
Ethnicity
   
   
 

  Euro-­‐American
  10
 (33.3)
  -­‐
 

  African
 American
  1
 (3.3)
  -­‐
 

  Latino
  16
 (53.3)
  -­‐
 

  Asian/Pacific
 Islanders
  1
 (3.3)
  -­‐
 

  Mixed
 Race
  2
 (6.7)
  -­‐
 

  Indian
  -­‐
  26
 (100)
 
Relationship
 status
   
   
 

  Married/living
 with
 partner
  7
 (23.3)
  17
 (65.4)
 

  Never
 married
  12
 (40)
  6
 (23.1)
 

  Divorced/separated
  10
 (33.3)
  3
 (11.5)
 

  Widowed
  1
 (3.3)
  -­‐
 
Employment
 status
   
   
 

  Employed
  1
 (3.3)
  14
 (53.8)
 

  Not
 employed
  29
 (96.7)
  12
 (46.2)
 
Diagnosis
   
   
 

  Schizophrenia
 spectrum
 disorder
  9
 (30)
  12
 (46.2)
 

  Bipolar
 disorder
  21
 (70)
  10
 (38.5)
 

  Major
 depression
  -­‐
  4
 (15.4)
 

 

 

  59
 
In
 the
 second
 step
 of
 the
 analysis,
 independent
 sample
 t-­‐tests
 were
 performed
 to
 
test
 whether
 the
 two
 samples
 were
 similar
 in
 terms
 of
 their
 psychosocial
 characteristics.
 
Table
 2
 describes
 the
 psychosocial
 characteristics
 of
 the
 Indian
 and
 U.S.
 samples
 in
 terms
 of
 
their
 levels
 of
 symptomatology,
 psychosocial
 functioning,
 and
 internalized
 stigma.
 The
 two
 
groups
 were
 found
 to
 be
 similar
 in
 terms
 of
 their
 symptomatology,
 as
 measured
 by
 both
 
the
 distress
 due
 to
 symptoms
 scale
 (Shern
 et
 al.,
 1996)
 (t
 =
 .82;
 p
 =
 .41)
 and
 as
 a
 sub
 
dimension
 of
 the
 functioning
 measure
 (t
 =
 1.10;
 p
 =
 .28).
 The
 two
 groups
 were
 similar
 in
 
terms
 of
 their
 overall
 psychosocial
 functioning
 but
 were
 found
 to
 be
 different
 in
 in
 terms
 of
 
number
 of
 hospitalizations,
 number
 of
 social
 contacts,
 and
 vocational
 functioning.
 While
 
the
 U.S.
 sample
 was
 higher
 functioning
 in
 terms
 of
 number
 of
 hospitalizations
 (t
 =
 2.72;
 p
 =
 
.01)
 and
 social
 contacts
 (t
 =
 2.56;
 p
 =
 .01),
 the
 Indian
 sample
 was
 found
 to
 be
 higher
 in
 
vocational
 functioning
 (t
 =
 -­‐4.08;
 p
 =
 .00).
 Yet,
 the
 Indian
 sample
 was
 found
 to
 have
 higher
 
levels
 of
 internalized
 stigma
 (t
 =
 -­‐2.58;
 p
 =
 .01).
 

 

 

 

 

 

 

 

 

   
 

  60
 
Table
 2
 
 
Psychosocial
 Characteristics
 of
 Samples
 from
 India
 and
 United
 States
 of
 
Individuals
 with
 SMI
 
 

 

  United
 States
 (N
 
 =
 30)
  India
 (N
 =
 26)
   
 
Variable
  Mean
  SD
  Mean
  SD
  t-­‐value
 
Symptomatology
 
a

  36.170
  13.123
  33.000
  15.383
  .825
 
Psychosocial
 functioning
 
b

  10.370
  2.008
  10.580
  3.384
  -­‐.277
 

 
 
 Institutionalized
  3.970
  .183
  3.650
  .562
  2.719**
 

 
 
 Social
 contacts
  3.530
  .819
  2.730
  1.402
  2.565**
 

 
 
 Employment
  .430
  1.135
  2.040
  1.777
  -­‐3.958***
 

 
 
 Absence
 of
 symptoms
  2.430
  1.006
  2.150
  .881
  1.098
 
Internalized
 stigma
 
c

  18.170
  8.465
  24.500
  9.925
  -­‐2.578**
 
*p
 <
 .1;
 **
 p
 <
 .05;
 ***
 p
 <
 .01
 
 
a
 
Measured
 by
 Colorado
 Symptom
 Inventory
 (Shern
 et
 al.,
 1996).
 
b

 Measured
 by
 Straus
 and
 Carpenter
 Functional
 Outcome
 Scale
 (Strauss
 &
 Carpenter,
 1972).
 
c
 
Measured
 by
 Internalized
 Stigma
 of
 Mental
 Illness
 scale
 (Ritsher-­‐Boyd
 et
 al.,
 2003).
 

  61
 
Results
 for
 Research
 Aim
 1:
 Physical,
 social,
 and
 psychological
 community
 
integration
 of
 individuals
 with
 SMI
 in
 India
 and
 the
 United
 States.
 
Aim
 1
 examined
 and
 compared
 the
 degree
 of
 community
 integration
 of
 individuals
 
with
 SMI
 in
 India
 and
 the
 United
 States.
 It
 was
 hypothesized
 that
 there
 would
 be
 country-­‐
specific
 differences
 in
 terms
 of
 the
 three
 dimensions
 of
 community
 integration:
 physical,
 
social,
 and
 psychological.
 It
 was
 further
 hypothesized
 that
 the
 two
 countries
 would
 be
 
different
 in
 their
 network
 structures.
 
Hypothesis
 1a:
 Samples
 of
 individuals
 with
 SMI
 in
 India
 and
 the
 United
 States
 will
 
differ
 in
 terms
 of
 different
 community
 integration
 dimensions.
 Specifically,
 
individuals
 from
 India
 will
 be
 more
 integrated
 in
 the
 non-­‐mental
 health
 community
 
compared
 with
 individuals
 from
 the
 United
 States.
 
To
 assess
 the
 differences
 between
 India
 and
 the
 United
 States
 in
 terms
 of
 the
 
community
 integration
 dimensions,
 a
 series
 of
 independent
 sample
 t-­‐tests
 were
 performed.
 
Table
 3
 summarizes
 the
 characteristics
 of
 the
 physical,
 social,
 and
 psychological
 measures
 
of
 community
 integration
 for
 the
 two
 countries.
 Concerning
 physical
 integration,
 there
 
were
 no
 significant
 differences
 between
 the
 U.S.
 and
 Indian
 samples
 in
 terms
 of
 number
 of
 
community
 activities
 the
 individuals
 participated
 in
 during
 the
 previous
 30
 days
 (3.67
 vs.
 
3.38;
 p
 =
 .62).
 In
 terms
 of
 satisfaction
 with
 community
 activities,
 both
 samples
 were
 
“somewhat
 satisfied”
 with
 their
 level
 of
 community
 activities
 (p
 =
 .69).
 In
 terms
 of
 their
 
social
 resources,
 there
 was
 no
 significant
 difference
 between
 the
 two
 groups
 in
 terms
 of
 
their
 level
 of
 total
 social
 resources
 (t
 =
 1.21;
 p
 =
 .23)
 and
 social
 resources
 from
 the
 non-­‐
mental
 health
 community
 (t
 =
 .81;
 p
 =
 .42).
 However,
 the
 U.S.
 sample
 was
 found
 to
 have
 

  62
 
significantly
 more
 social
 resources
 from
 the
 mental
 health
 community
 compared
 with
 the
 
Indian
 sample
 (t
 =
 5.39;
 p
 =
 .00).
 
In
 terms
 of
 social
 community
 integration,
 the
 participants
 from
 India
 had
 more
 
perceived
 social
 support
 compared
 with
 the
 U.S.
 sample
 (t
 =
 -­‐1.615;
 p
 =
 .056).
 
Regarding
 psychological
 integration,
 on
 the
 self-­‐rated
 scale
 of
 community
 
integration,
 the
 U.S.
 group
 felt
 significantly
 more
 integrated
 into
 the
 mental
 health
 
community
 than
 the
 Indian
 sample
 (t
 =
 5.03;
 p
 =
 .00),
 but
 the
 two
 samples
 did
 not
 differ
 
significantly
 in
 terms
 of
 their
 perception
 of
 community
 integration
 into
 the
 non-­‐mental
 
health
 community
 (t
 =
 -­‐.68;
 p
 =
 .25).
 However,
 in
 terms
 of
 magnitude,
 the
 Indian
 sample
 
seemed
 to
 be
 more
 integrated
 in
 the
 non-­‐mental
 health
 community,
 but
 this
 difference
 was
 
not
 statistically
 significant.
 This
 difference
 between
 the
 U.S.
 and
 Indian
 groups
 was
 more
 
pronounced
 in
 terms
 of
 the
 interviewer’s
 perception
 of
 an
 individual’s
 integration
 into
 the
 
mental
 health
 community,
 whereby
 the
 interviewer
 rated
 the
 Indian
 sample
 to
 be
 more
 
integrated
 into
 the
 non-­‐mental
 health
 community
 compared
 with
 the
 U.S.
 sample
 (t
 =
 -­‐2.37;
 
p
 =
 .01),
 and,
 conversely,
 the
 U.S.
 sample
 was
 perceived
 as
 being
 more
 integrated
 into
 the
 
mental
 health
 community
 (t
 =
 1.71;
 p
 =
 .045).
 
 

 

 

 

 

 

 

 

   
 

  63
 
Table
 3
 
 
Comparison
 between
 the
 United
 States
 and
 India
 regarding
 Physical,
 Social,
 and
 
Psychological
 Community
 Integration
 Characteristics
 

  United
 States
 (N
 =
 30)
  India
 (N
 =
 26)
  t-­‐value
 

  Mean
 (SD)
  Mean
 (SD)
   
 
Physical
 community
 integration
 
Community
 activities
   
   
   
 
No.
 of
 community
 activities
 
a
 
3.670
 (1.845)
  3.380
 (2.334)
  .505
 
Satisfaction
 with
 level
 of
 activity
  1.900
 (1.185)
  2.040
 (1.428)
  -­‐.397
 
Social
 resources

 
 

   
   
 
Total
 social
 resources
 
b
 
35.267
 (17.865)
  29.231
 (19.574)
  1.206
 
From
 mental
 health
 community
 
b
 
2.767
 (3.059)
  .615
 (1.098)
  3.594***
 
From
 non-­‐mental
 health
 community
 
b
 
32.500
 (16.598)
  28.615
 (19.114)
  .814
 
Psychological
 community
 integration
 
Self-­‐perception
 of
 community
 integration
 
c
 

 
Mental
 health
 community
  39.633
 (7.346)
  30.038
 (6.856)
  5.027***
 
Non-­‐mental
 health
 community

 
40.500
 (8.072)
  41.846
 (6.398)
  -­‐.684
 
Interviewer
 perception
 of
 community
 integration
 
c
 
Mental
 health
 community

 
6.270
 (1.929)
  5.350
 (2.097)
  1.711**
 
Non-­‐mental
 health
 community
  8.570
 (2.897)
  10.310
 (2.558)
  -­‐2.367***
 
Social
 community
 integration
 
Social
 support

 d
 
14.130
 (4.117)
  15.620
 (2.684)
  -­‐1.615*
 
*p
 <
 .1;
 **p
 <
 .05;
 ***p
 <
 .01
 on
 two-­‐tailed
 tests
 for
 significance
 for
 physical
 community
 integration
 and
 one-­‐tailed
 tests
 for
 significance
 
for
 psychological
 and
 social
 integration.
 
a

 Measured
 by
 Involvement
 in
 Community
 Activities
 Scale
 adapted
 from
 Living
 Skills
 Scale
 (Wallace
 et
 al.,
 2000).
 
b

 Measured
 by
 using
 an
 adaptation
 of
 the
 social
 capital
 resource
 generator
 (Van
 Der
 Gaag
 &
 Webber,
 2008).
 
c
 
Measured
 by
 Community
 Integration
 Measure
 (CIM;
 (McColl
 et
 al.,
 2001)
 
d
 
Measured
 by
 the
 4-­‐item
 short
 version
 of
 the
 Medical
 Outcomes
 Study
 Social
 Support
 Survey
 (MOSSS;
 (Sherbourne
 &
 Stewart,
 1991)
 

  64
 
Social
 network
 differences
 in
 individuals
 with
 SMI
 in
 India
 and
 United
 States.
 
Hypothesis
 1b:
 Samples
 of
 individuals
 with
 SMI
 in
 India
 and
 the
 United
 States
 will
 
differ
 in
 terms
 of
 their
 social
 network
 structures
 and
 the
 networks
 from
 which
 they
 
access
 social
 support
 and
 social
 resources.
 Specifically,
 individuals
 from
 India
 will
 
have
 more
 non-­‐mental
 health
 community-­‐based
 networks
 compared
 with
 
individuals
 from
 the
 United
 States.
 

  When
 examining
 social
 integration
 in
 terms
 of
 the
 social
 network
 characteristics
 of
 
the
 two
 counties,
 there
 were
 no
 significant
 differences
 in
 network
 size
 between
 the
 U.S.
 and
 
Indian
 samples
 (15.90
 vs.
 15.65;
 p
 =
 .11).
 Both
 groups
 had,
 on
 average,
 a
 higher
 proportion
 
of
 non-­‐mental
 health
 connections
 compared
 with
 mental
 health
 connections
 (85%
 non-­‐
mental
 health
 in
 the
 United
 States
 and
 88%
 non-­‐mental
 health
 in
 India).
 The
 U.S.
 group
 had
 
almost
 one-­‐third
 of
 their
 network
 listed
 as
 friends,
 which
 was
 significantly
 more
 than
 the
 
India
 group
 (30%
 vs.
 8%;
 p
 =
 .00),
 and
 almost
 half
 listed
 as
 family.
 Within
 the
 Indian
 group,
 
two-­‐thirds
 of
 their
 network
 was
 listed
 as
 family.
 The
 Indian
 sample
 also
 showed
 a
 
significantly
 higher
 proportion
 of
 colleagues
 compared
 with
 the
 U.S.
 sample
 (<1%
 vs.
 4%;
 p
 
=
 .012),
 whereas
 the
 U.S.
 sample
 had
 a
 higher
 proportion
 of
 caseworkers
 (14%
 vs.
 11%;
 p
 =
 
.068).
 Contrary
 to
 the
 hypothesis,
 the
 Indian
 sample
 contained
 a
 higher
 proportion
 of
 
acquaintances
 from
 the
 mental
 health
 community
 compared
 with
 the
 U.S.
 sample
 (>1%
 vs.
 
2%;
 p
 =
 .085),
 and
 the
 U.S.
 sample
 had
 a
 higher
 proportion
 of
 non-­‐mental
 health
 
acquaintances
 compared
 with
 the
 Indian
 sample
 (2%
 vs.
 
 <1%;
 p
 
 =
 .068).
 The
 differences
 
between
 the
 United
 States
 and
 India
 in
 terms
 of
 their
 network
 characteristics
 are
 shown
 in
 
Table
 4.
 

 

  65
 
Table
 4
 
 
Comparison
 between
 the
 United
 States
 and
 India
 In
 Terms
 of
 Their
 Network
 Characteristics
 

  United
 States
  India
  t-­‐value
 

  Mean
 (SD)
  Mean
 (SD)
   
 
Social
 network
 characteristics
   
   
   
 
Network
 size
  15.900
 (9.689)
  15.650
 (6.112)
  .1.12
 
Proportion
 of
 network
 in
 MH
 community
  .148
 (.075)
  .125
 (.066)
  .1.196
 
Proportion
 of
 network
 in
 NMH
 community
  .852
 (.075)
  .875
 (.066)
  -­‐1.196
 
Proportion
 of
 network
 that
 are
 family
 
members
 
.480
 (.192)
  .690
 (.196)
  -­‐4.031***
 
Proportion
 of
 network
 that
 are
 friends
  .300
 (.200)
  .080
 (.114)
  5.169***
 
Proportion
 of
 NMH
 friends
  .296
 (.189)
  .078
 (.116)
  5.284***
 
Proportion
 of
 MH
 friends
  .007
 (.026)
  .004
 (.014)
  .504
 
Proportion
 of
 case
 workers
  .140
 (.075)
  .112
 (.060)
  1.513*
 
Proportion
 of
 neighbors
  .049
 (.107)
  .057
 (.113)
  -­‐.273
 
Proportion
 of
 colleagues
  .006
 (0.023)
  .043
 (.078)
  -­‐2.360**
 
Proportion
 of
 NMH
 others
  .019
 (.039)
  .007
 (.020)
  1.514*
 
Proportions
 of
 MH
 others
  .001
 (.005)
  .008
 (.025)
  -­‐1.405*
 
Note.
 MH
 =
 mental
 health;
 NMH
 =
 non-­‐mental
 health.
 
*p
 <
 .1;
 **p
 <
 .05;
 ***p
 <
 .01
 on
 a
 one-­‐tailed
 test
 for
 significance
 .
 

 

 

   
 

  66
 
As
 a
 next
 step,
 we
 used
 the
 network
 data
 to
 understand
 the
 sources
 from
 which
 
individuals
 from
 the
 two
 countries
 differed
 in
 terms
 of
 from
 where
 they
 received
 their
 
social
 support.
 Tables
 5
 and
 6
 provide
 the
 differences
 in
 social
 networks
 that
 were
 sources
 
of
 emotional-­‐informational
 and
 positive
 social
 interaction
 forms
 of
 social
 support.
 To
 
collect
 information
 on
 the
 emotional-­‐informational
 social
 support,
 participants
 were
 asked
 
to
 look
 at
 their
 respective
 network
 maps
 and
 nominate
 individuals
 who
 they
 shared
 
personal
 problems
 with.
 Results
 listed
 in
 Table
 5
 show
 that
 participants
 from
 the
 United
 
States
 identified
 26%
 of
 their
 network
 as
 sources
 of
 emotional
 social
 support
 compared
 to
 
the
 17%
 who
 Indian
 participants
 identified
 as
 sources
 of
 emotional
 social
 support
 (t
 =
 2.29;
 
p
 =
 .013).
 The
 U.S.
 participants
 reported
 receiving
 more
 emotional
 and
 informational
 social
 
support
 from
 the
 mental
 health
 community
 compared
 with
 the
 Indian
 responders
 (4%
 vs.
 
1%;
 p
 =
 .022)
 and
 identified
 a
 higher
 percentage
 of
 friends
 as
 their
 sources
 of
 emotional
 
support
 compared
 with
 the
 Indian
 group
 (21%
 vs.
 7%;
 p
 =
 .000).
 The
 U.S.
 participants
 also
 
nominated
 a
 higher
 percentage
 of
 caseworkers
 as
 those
 with
 whom
 they
 shared
 personal
 
problems
 compared
 with
 the
 Indian
 responders
 (4%
 vs.
 1%;
 p
 =
 .027).
 
As
 noted
 in
 Table
 6,
 the
 U.S.
 participants
 identified
 a
 higher
 percentage
 of
 their
 
network
 from
 which
 they
 accessed
 positive
 social
 interactional
 support
 (27%
 vs.
 15%;
 p
 =
 
.003).
 Participants
 from
 the
 United
 States
 accessed
 more
 social
 interactional
 social
 support
 
from
 their
 non-­‐mental
 health
 network
 members
 compared
 with
 the
 Indian
 responders
 
(27%
 vs.
 15%;
 p
 =
 .004)
 and
 a
 higher
 proportion
 of
 friends
 from
 whom
 they
 accessed
 
interactional
 social
 support
 (22%
 vs.
 9%;
 p
 =
 .002).
 

   
 

   
 

  67
 
Table
 5
 
 
Social
 Support
 Network
 Characteristics
 (Emotional-­‐Informational
 Social
 Support:
 
Sharing
 Personal
 Problems)
 

  United
 States
  India
  t-­‐value
 

  Mean
 (SD)
  Mean
 (SD)
   
 
Proportion
 of
 total
 network
 
  .266
 (.143)
  .172
 (.164)
  2.292**
 
Proportion
 of
 MH
 network
 
  .040
 (.083)
  .007
 (.024)
  2.093**
 
Proportion
 of
 NMH
 network
 
  .226
 (.133)
  .164
 (.160)
  1.560
 
Proportion
 of
 family
  .146
 (.113)
  .150
 (.159)
  -­‐.130
 
Proportion
 of
 friends
 
  .214
 (.159)
  .070
 (.075)
  4.412***
 
Proportion
 of
 NMH
 friends
 
  .077
 (.092)
  .006
 (.016)
  4.152***
 
Proportion
 of
 MH
 friends
  .003
 (.016)
  0
  .930
 
Proportion
 of
 caseworkers
 
  .037
 (.079)
  .007
 (.024)
  1.984**
 
Proportion
 of
 neighbors
  .003
 (.016)
  .008
 (.031)
  -­‐.835
 
Note.
 MH
 =
 mental
 health;
 NMH
 =
 non-­‐mental
 health.
 
*p
 <
 .1;
 **p
 <
 .05;
 ***p
 <
 .01
 on
 a
 one-­‐tailed
 test
 for
 significance.
 

 

   
 

  68
 
Table
 6
 
 
Social
 Support
 Network
 Characteristics
 (Positive
 Social
 Interaction:
 Do
 Something
 
Enjoyable)
 

  United
 States
  India
  t-­‐value
 

  Mean
 (SD)
  Mean
 (SD)
   
 
Proportion
 of
 total
 network
  .271
 (.182)
  .146
 (.143)
  2.810***
 
Proportion
 of
 MH
 network
 
  .003
 (.016)
  0
  .930
 
Proportion
 of
 NMH
 network
 
  .268
 (.181)
  .146
 (.143)
  2.750***
 
Proportion
 of
 family
  .173
 (.154)
  .128
 (.148)
  1.116
 
Proportion
 of
 friends
 
  .222
 (.202)
  .086
 (.126)
  2.959***
 
Proportion
 of
 NMH
 friends
 
  .095
 (.156)
  .015
 (.040)
  2.702***
 
Proportion
 of
 MH
 friends
  .003
 (.016)
  0
  .930
 
Note.
 MH
 =
 mental
 health;
 NMH
 =
 non-­‐mental
 health.
 
*p
 <
 .1;
 **p
 <
 .05;
 ***p
 <
 .01
 on
 a
 one-­‐tailed
 test
 for
 significance.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  69
 
When
 examining
 social
 integration
 in
 terms
 of
 social
 resources
 network
 
characteristics,
 we
 tested
 four
 kinds
 of
 social
 resources,
 as
 identified
 by
 the
 developers
 of
 
the
 social
 capital
 resource
 generator
 (Van
 Der
 Gaag
 &
 Webber,
 2008).
 Table
 7
 shows
 the
 
country
 differences
 in
 the
 network
 characteristics
 of
 the
 domestic
 form
 of
 social
 resources
 
accessed
 by
 the
 individuals
 from
 their
 networks.
 The
 results
 show
 that
 Indian
 participants
 
had,
 on
 average,
 a
 higher
 proportion
 of
 individuals
 in
 their
 networks
 from
 whom
 they
 
accessed
 the
 domestic
 type
 of
 social
 resources
 (in
 the
 form
 of
 help
 in
 finding
 bargains)
 
(28%
 vs.
 16%;
 p
 =
 .045).
 Participants
 from
 India
 also
 had
 a
 higher
 proportion
 of
 family
 
members
 from
 whom
 they
 accessed
 the
 domestic
 type
 of
 social
 resources
 (25%
 vs.
 16%;
 p
 
=
 .012).
 The
 U.S.
 respondents
 had
 a
 higher
 proportion
 of
 individuals
 in
 their
 networks
 who
 
were
 identified
 as
 non-­‐mental
 health
 friends
 from
 whom
 they
 accessed
 the
 domestic
 type
 
of
 social
 resources
 (6%
 vs.
 1%;
 p
 =
 .004).
 
 

   
 

  70
 
Table
 7
 
 
Social
 Resources
 Network
 Characteristics:
 Domestic
 Resources
 Type
 (Finding
 
Bargains)
 

  United
 States
  India
  t-­‐value
 

  Mean
 (SD)
  Mean
 (SD)
   
 
Proportion
 of
 total
 network
  .163
 (.094)
  .282
 (.340)
  -­‐1.734**
 
Proportion
 of
 MH
 network
 
  0
  .020
 (.046)
  -­‐2.204**
 
Proportion
 of
 NMH
 network
 
  .163
 (.094)
  .263
 (.307)
  -­‐1.591
 
Proportion
 of
 family
  .108
 (.085)
  .253
 (.299)
  -­‐2.394**
 
Proportion
 of
 friends
 
  .135
 (.108)
  .103
 (.208)
  .575
 
Proportion
 of
 NMH
 friends
 
  .056
 (.085)
  .010
 (.032)
  2.736***
 
Proportion
 of
 caseworkers
  0
  .020
 (.046)
  -­‐2.204**
 
Note.
 MH
 =
 mental
 health;
 NMH
 =
 non-­‐mental
 health.
 
*p
 <
 .1;
 **p
 <
 .05;
 ***p
 <
 .01
 on
 a
 one-­‐tailed
 test
 for
 significance.
 

 

  71
 

  To
 assess
 the
 differences
 between
 the
 two
 countries
 in
 terms
 of
 the
 expert
 advice
 
form
 of
 social
 resources,
 participants
 were
 asked
 to
 look
 at
 their
 respective
 network
 maps
 
and
 nominate
 individuals
 who
 gave
 them
 advice
 about
 earning
 money.
 The
 results
 in
 Table
 
8
 show
 that
 participants
 from
 the
 United
 States
 nominated
 more
 individuals
 from
 their
 
network
 from
 whom
 they
 accessed
 expert
 advice
 (14%
 vs.
 10%;
 p
 =
 .063).
 Participants
 
from
 the
 United
 States
 also
 identified
 10%
 of
 their
 friends
 and
 4%
 of
 their
 non-­‐mental
 
health
 friends
 from
 whom
 they
 accessed
 expert
 advice,
 which
 was
 significantly
 different
 
from
 the
 Indian
 sample
 (5%
 of
 friends
 and
 
 <1%
 of
 non-­‐mental
 health
 friends;
 p
 <
 .05).
 
 

  To
 attain
 information
 on
 the
 personal
 skills
 type
 of
 social
 resources,
 participants
 
were
 asked
 to
 look
 at
 their
 respective
 network
 maps
 and
 nominate
 individuals
 who
 helped
 
them
 take
 care
 of
 their
 health.
 The
 results
 indicated
 in
 Table
 9
 show
 that
 whereas
 there
 
was
 no
 difference
 between
 India
 and
 the
 United
 States
 in
 terms
 of
 total
 network
 from
 
which
 they
 accessed
 personal
 skills,
 participants
 from
 the
 United
 States
 nominated
 4%
 of
 
their
 nominees
 from
 the
 mental
 health
 community
 as
 individuals
 who
 would
 help
 them
 
take
 care
 of
 their
 health
 (as
 compared
 to
 <1%
 of
 the
 Indian
 respondents;
 p
 =
 .002).
 
Participants
 from
 the
 United
 States
 also
 nominated
 a
 higher
 percentage
 of
 caseworkers
 
(3%
 vs.
 <1%;
 p
 =
 .005)
 and
 proportion
 of
 friends
 (16%
 vs.
 10%;
 p
 =
 .045)
 compared
 with
 
the
 Indian
 responders
 in
 this
 social
 resource.
 However,
 compared
 with
 the
 U.S.
 
participants,
 Indian
 participants
 had
 a
 higher
 percentage
 of
 family
 members
 who
 helped
 
them
 take
 care
 of
 their
 health
 (24%
 vs.
 14%;
 p
 =
 .026).
 

   
 

  72
 
Table
 8
 
 
Social
 Resources
 Network
 Characteristics
 (Expert
 Advice
 Type:
 Advice
 About
 Earning
 
Money)
 

  United
 States
  India
  t-­‐value
 

  Mean
 (SD)
  Mean
 (SD)
   
 
Proportion
 of
 total
 network
  .142(.102)
  .107(.064)
  1.554*
 
Proportion
 of
 MH
 network
 
  .006(.024)
  0
  1.404*
 
Proportion
 of
 NMH
 network
 
  .136(.098)
  .107(.064)
  1.321
 
Proportion
 of
 family
  .095(.088)
  .102(.070)
  -­‐.301
 
Proportion
 of
 friends
 
  .107(.103)
  .057(.061)
  2.222**
 
Proportion
 of
 NMH
 friends
 
  .039(.073)
  .006(.021)
  2.369**
 
Proportion
 of
 case
 workers
  .006(.024)
  0
  1.404*
 
Note.
 MH
 =
 mental
 health;
 NMH
 =
 non-­‐mental
 health.
 
*p
 <
 .1;
 **p
 <
 .05;
 ***p
 <
 .01
 on
 a
 one-­‐tailed
 test
 for
 significance.
 

   
 

  73
 
Table
 9
 
 
Social
 Resources
 Network
 Characteristics
 (Personal
 Skills
 Type:
 Taking
 Care
 of
 Health)
 

  United
 States
  India
  t-­‐value
 

  Mean
 (SD)
  Mean
 (SD)
   
 
Proportion
 of
 total
 network
  .210(.140)
  .245(.228)
  -­‐.705
 
Proportion
 of
 MH
 network
 
  .036(.055)
  .004(.016)
  2.998***
 
Proportion
 of
 NMH
 network
 
  .174(.127)
  .241(.219)
  -­‐1.422*
 
Proportion
 of
 family
  .144(.111)
  .239(.219)
  -­‐2.005**
 
Proportion
 of
 friends
 
  .156(.140)
  .097(.116)
  1.696**
 
Proportion
 of
 NMH
 friends
 
  .025(.077)
  .002(.009)
  1.639*
 
Proportion
 of
 MH
 friends
  .003(.016)
  0
  .930
 
Proportion
 of
 case
 workers
  .033(.055)
  .004(.016)
  2.740***
 
Note.
 MH
 =
 mental
 health;
 NMH
 =
 non-­‐mental
 health.
 
*p
 <
 .1;
 **p
 <
 .05;
 ***p
 <
 .01
 on
 a
 one-­‐tailed
 test
 for
 significance.
 

  74
 
To
 assess
 differences
 between
 the
 two
 countries
 in
 terms
 of
 the
 problem-­‐solving
 
type
 of
 social
 resources,
 participants
 were
 asked
 to
 look
 at
 their
 respective
 network
 maps
 
and
 nominate
 individuals
 who
 helped
 them
 in
 fixing
 things
 around
 the
 house.
 As
 shown
 in
 
Table
 10,
 individuals
 from
 the
 United
 States
 nominated
 a
 higher
 proportion
 of
 their
 total
 
network
 that
 could
 help
 them
 fix
 things
 around
 the
 house
 as
 compared
 to
 8%
 nominated
 
by
 the
 India
 participants
 (p
 =
 .012).
 Compared
 with
 the
 Indian
 participants,
 the
 U.S.
 
participants
 also
 nominated
 twice
 as
 many
 individuals
 from
 their
 non-­‐mental
 health
 
network
 that
 could
 provide
 them
 with
 the
 problem-­‐solving
 type
 of
 social
 resources
 (p
 =
 
.012).
 Moreover,
 they
 selected
 approximately
 12%
 of
 their
 friends
 who
 could
 help
 them
 fix
 
things
 around
 their
 house
 as
 compared
 to
 ˂3%
 nominated
 by
 the
 Indian
 participants
 (p
 =
 
.00).
 
 

   
 

  75
 
Table
 10
 
 
Social
 Resources
 Network
 Characteristics
 (Problem-­‐Solving
 Type:
 Fixing
 Things
 around
 the
 
House)
 

  United
 States
  India
  t-­‐value
 

  Mean
 (SD)
  Mean
 (SD)
   
 
Proportion
 of
 total
 network
  .138(.105)
  .078(.086)
  2.336***
 
Proportion
 of
 NMH
 network
 
  .138(.105)
  .078(.086)
  2.336***
 
Proportion
 of
 family
  .097(.087)
  .078(.086)
  .812
 
Proportion
 of
 friends
 
  .115(.114)
  .028(.034)
  3.997***
 
Proportion
 of
 NMH
 friends
 
  .033(.068)
  0
  2.687***
 
Note.
 NMH
 =
 non-­‐mental
 health.
 
*p
 <
 .1;
 **p
 <
 .05;
 ***p
 <
 .01
 on
 a
 one-­‐tailed
 test
 for
 significance.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  76
 
Table
 11
 lists
 the
 differences
 between
 the
 United
 States
 and
 India
 in
 terms
 of
 stigma
 
associated
 with
 disclosure
 of
 mental
 illness.
 The
 Indian
 sample
 had
 a
 higher
 proportion
 of
 
their
 social
 network
 to
 whom
 they
 would
 not
 like
 to
 disclose
 their
 mental
 illness
 (11%
 vs.
 
25%;
 p
 =
 .033).
 The
 Indian
 sample
 also
 had
 a
 higher
 proportion
 of
 non-­‐mental
 health
 
network
 individuals
 to
 whom
 they
 did
 not
 want
 to
 disclose
 their
 mental
 illness
 (11%
 vs.
 
25%;
 p
 =
 .035).
 Indian
 responders
 also
 indicated
 stigma
 related
 to
 disclosure
 from
 slightly
 
more
 than
 16%
 of
 their
 family
 members
 (as
 compared
 to
 only
 4%
 indicated
 by
 the
 U.S.
 
responders;
 p
 =
 .023).
 Furthermore,
 the
 Indian
 sample
 had
 a
 higher
 percentage
 of
 their
 
network
 who
 were
 colleagues
 to
 whom
 they
 did
 not
 want
 to
 disclose
 their
 mental
 illness
 
(>1%
 vs.
 3%;
 p
 =
 .021)
 

 

   
 

  77
 
Table
 11
 
 
Stigma
 Network
 Characteristics
 (Not
 Wish
 to
 Tell
 or
 Wish
 the
 Network
 Members
 
Did
 Not
 Know
 about
 Their
 Mental
 Illness)
 

  United
 States
  India
  t-­‐value
 

  Mean
 (SD)
  Mean
 (SD)
   
 
Proportion
 of
 network
  .114
 (.212)
  .254
 (.340)
  -­‐1.813**
 
Proportion
 MH
 network
  .004
 (.020)
  .009
 (.028)
  -­‐.822
 
Proportion
 NMH
 network
  .110
 (.203)
  .245
 (.320)
  -­‐1.845**
 
Proportion
 family
 
  .042
 (.094)
  .163
 (.285)
  -­‐2.077**
 
Proportion
 friends
 
  .098
 (.212)
  .159
 (.267)
  -­‐.957
 
Proportion
 of
 NMH
 friends
 
  .044
 (.098)
  .031
 (.091)
  .508
 
Proportion
 of
 caseworkers
 
  .004
 (.020)
  .009
 (.028)
  -­‐.822
 
Proportion
 of
 neighbors
  .017
 (.062)
  .018
 (.055)
  -­‐.017
 
Proportion
 of
 colleagues
  .004
 (.021)
  .029
 (.057)
  -­‐2.106**
 
Note.
 MH
 =
 mental
 health;
 NMH
 =
 non-­‐mental
 health.
 
*p
 <
 .1;
 **p
 <
 .05;
 ***p
 <
 .01
 on
 a
 one-­‐tailed
 test
 for
 significance.
 

 

  78
 
Results
 for
 Research
 Aim
 2:
 Psychosocial
 and
 network
 variables
 associated
 
with
 the
 three
 dimensions
 of
 community
 integration
 for
 individuals
 with
 SMI
 in
 India
 
and
 the
 United
 States
 

  Aim
 2
 explored
 the
 association
 of
 various
 psychosocial
 and
 network
 variables
 with
 
the
 three
 dimensions
 of
 community
 integration.
 

  Table
 12
 shows
 the
 correlation
 values
 for
 the
 dependent
 and
 independent
 variables
 
in
 the
 regression
 models.
 Bivariate
 correlations
 showed
 significant
 relationships
 between
 
the
 dependent
 variables
 and
 various
 predictors
 in
 the
 models.
 For
 the
 physical
 community
 
integration,
 community
 activities
 were
 significantly
 associated
 with
 employment
 status
 (r
 
=
 .29;
 p
 <
 0.05),
 psychosocial
 functioning
 (r
 =
 .40;
 p
 <
 0.01),
 internalized
 stigma
 (r
 =
 -­‐.27;
 p
 
<
 .05),
 proportion
 of
 mental
 health
 network
 (r
 =
 -­‐.39;
 p
 <
 0.01),
 proportion
 of
 family
 (r
 =
 -­‐
.26;
 p
 <
 .10),
 and
 proportion
 of
 non-­‐mental
 health
 friends
 (r
 =
 .29;
 p
 <
 0.05).
 Social
 
integration,
 measured
 by
 the
 perceived
 availability
 of
 social
 support,
 was
 significantly
 
associated
 with
 symptomatology
 (r
 =
 -­‐.42;
 p
 <
 .01)
 and
 psychosocial
 functioning
 (
 r
 =
 -­‐.30;
 p
 
<
 .05).
 For
 psychological
 integration,
 community
 integration
 in
 a
 mental
 health
 community
 
was
 significantly
 associated
 with
 marital
 status
 (r
 =
 -­‐.34;
 p
 <
 .01),
 symptomatology
 (r
 =
 -­‐.25;
 
p
 <
 .10),
 psychosocial
 functioning
 (r
 =
 .33;
 p
 <
 .05),
 internalized
 stigma
 (r
 =
 -­‐.50;
 p
 <
 0.01),
 
proportion
 of
 family
 (r
 =
 -­‐.44;
 p
 <
 0.01),
 and
 proportion
 of
 non-­‐mental
 health
 friends
 (r
 =
 
.49;
 p
 <
 0.01).
 Community
 integration
 into
 a
 non-­‐mental
 health
 community
 was
 
significantly
 associated
 with
 employment
 status
 (r
 =
 .31;
 p
 <
 0.05),
 symptomatology
 (r
 =
 -­‐
.32;
 p
 <
 0.05),
 psychosocial
 functioning
 (r
 =
 .38;
 p
 <
 .01),
 and
 proportion
 of
 friends
 from
 the
 
mental
 health
 community
 (r
 =
 -­‐.41;
 p
 <
 0.01).
 

  79
 
Table
 12
 
 
Correlation
 between
 Variables
 Used
 in
 the
 Regression
 Models
 
Variable
  1
  2
  3
  4
  5
  6
  7
  8
  9
  10
  11
  12
  13
  14
  15
  16
  17
 
1.
 NMH
 Community
 Integ
 
a
 
1
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
 
2.
 MH
 Community
 Integ
 
a
 
.297**
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
 
3.
 Symptoms
 
b

  -­‐.324**
  -­‐.254*
  1
   
   
   
   
   
   
   
   
   
   
   
   
   
   
 
4.
 Psychosocial
 functioning
 
c
 
.380***
  .329**
  -­‐.501***
  1
   
   
   
   
   
   
   
   
   
   
   
   
   
 
5.
 Internalized
 stigma
 
d
 
-­‐.206
  -­‐.496***
  .372***
  -­‐.256*
  1
   
   
   
   
   
   
   
   
   
   
   
   
 
6.
 Social
 support
 
e

  .258*
  .136
  -­‐.422***
  .125
  -­‐.297**
  1
   
   
   
   
   
   
   
   
   
   
   
 
7.
 Community
 activities
 
f
 
.008
  .298**
  -­‐.128
  .405***
  -­‐.274**
  .102
  1
   
   
   
   
   
   
   
   
   
   
 
8.
 MH
 Comm
 Integ
 interviewer
 
g
 
.044
  .372***
  .175
  .162
  -­‐.242*
  -­‐.099
  .304**
  1
   
   
   
   
   
   
   
   
   
 
9.
 NMH
 Comm
 Integ
 interviewer
 
g
 
.399***
  .066
  -­‐.308**
  .411***
  -­‐.188
  .411***
  .457***
  .179
  1
   
   
   
   
   
   
   
   
 
10.
 Country
 affiliation
  -­‐.093
  .565***
  .113
  -­‐.039
  -­‐.331**
  -­‐.209
  .069
  .227*
  -­‐.307**
  1
   
   
   
   
   
   
   
 
11.
 Total
 social
 resources
 
h
 
.010
  .264**
  -­‐.049
  .218
  -­‐.074
  .185
  .386***
  .048
  .295**
  .162
  1
   
   
   
   
   
   
 
12.
 Employment
  .307**
  -­‐.184
  -­‐.227*
  .451***
  .112
  .167
  .294**
  .28
  .390***
  -­‐.569***
  .106.
  1
   
   
   
   
   
 
13.
 Proportion
 of
 caseworkers
  -­‐.074
  .179
  .124
  -­‐.249*
  .011
  -­‐.048
  -­‐.386***
  -­‐.149
  -­‐.439***
  .202
  -­‐.233*
  -­‐.245*
  1
   
   
   
   
 
14.
 Proportion
 of
 family
  .144
  -­‐.439***
  .160
  -­‐.282**
  .460***
  .101
  -­‐.260*
  -­‐.211
  -­‐.032
  -­‐.481***
  -­‐.125
  .210
  -­‐.189
  1
   
   
   
 
15.
 Proportion
 of
 friends
  -­‐.195
  .481***
  -­‐.119
  .209
  -­‐.385***
  .058
  .293**
  .260*
  .121
  .561***
  .243*
  -­‐.293**
  .012
  -­‐.794***
  1
   
   
 
16.
 Proportion
 of
 NMH
 friend
  -­‐.156
  .492***
  -­‐.124
  .228*
  -­‐.379***
  .045
  .286**
  .272**
  .119
  .571***
  .251*
  -­‐.285**
  .026
  -­‐.781***
  .995***
  1
   
 
17.
 Proportion
 of
 MH
 friend
  -­‐.412***
  .040
  .012
  -­‐.116
  -­‐.163
  .133
  .152
  -­‐.037
  .056
  .068
  -­‐.004
  -­‐.158
  -­‐.121
  -­‐.348***
  .334**
  .235*
  1
 
Note.
 MH
 =
 mental
 health;
 NMH
 =
 non-­‐mental
 health.
 
*p
 <
 .1;
 **p
 <
 .05;
 ***p
 <
 .01
 on
 a
 two-­‐tailed
 test
 of
 significance.
 
a
 
Measured
 by
 Community
 Integration
 Measure
 (CIM;
 (McColl
 et
 al.,
 2001).
 
b
 
Measured
 by
 Colorado
 Symptom
 Inventory
 (Shern
 et
 al.,
 1996).
 
c

 Measured
 by
 Straus
 and
 Carpenter
 Functional
 Outcome
 scale
 (Strauss
 &
 Carpenter,
 1972).
 
d
 
Measured
 by
 Internalized
 Stigma
 of
 Mental
 Illness
 scale
 (Ritsher-­‐Boyd
 et
 al.,
 2003).
 
e
 
Measured
 by
 the
 4-­‐item
 short
 version
 of
 the
 Medical
 Outcomes
 Study
 Social
 Support
 Survey
 (MOSSS;
 (Sherbourne
 &
 Stewart,
 1991).
 
f
 
Measured
 by
 Involvement
 in
 Community
 Activities
 Scale
 adapted
 from
 Living
 Skills
 Scale
 (Wallace
 et
 al.,
 2000).

 
g
 
Measured
 by
 Community
 Integration
 Interviewer
 scale
 mental
 health
 and
 non-­‐mental
 health
 versions,
 adapted
 from
 the
 CIM
 (McColl
 et
 al.,
 2001).

 
h
 
Measured
 by
 an
 adaptation
 of
 the
 social
 resources
 resource
 generator
 (Van
 Der
 Gaag
 &
 Webber,
 2008).

 

  80
 
Physical
 community
 integration
 regression
 model.
 Initial
 modeling
 strategies
 
showed
 high
 collinearity
 between
 the
 network
 variables.
 Due
 to
 collinearity
 and
 the
 small
 
sample
 size,
 we
 did
 not
 include
 all
 significant
 social
 network
 variables
 in
 the
 bivariate
 
analysis.
 The
 network
 variables
 used
 in
 the
 models
 included
 the
 following:
 proportion
 of
 
family,
 proportion
 of
 non-­‐mental
 health
 friends,
 and
 proportion
 of
 caseworkers.
 Using
 the
 
different
 dimensions
 of
 community
 integration
 in
 separate
 analyses,
 four
 sets
 of
 
hierarchical
 regression
 were
 tested,
 each
 with
 four
 nested
 models.
 Table
 13
 shows
 a
 
detailed
 review
 of
 the
 models
 for
 physical
 community
 integration
 using
 the
 sum
 of
 the
 total
 
community
 activities
 an
 individual
 participated
 in
 during
 the
 previous
 30
 days
 as
 a
 
dependent
 variable
 and
 operationalization
 of
 the
 physical
 community
 integration.
 Model
 1
 
tested
 the
 association
 of
 employment
 status
 with
 physical
 community
 integration.
 Models
 2
 
and
 3
 subsequently
 added
 psychosocial
 factors
 (symptomatology,
 psychosocial
 functioning,
 
and
 internalized
 stigma)
 and
 social
 network
 variables
 (proportion
 of
 family,
 proportion
 of
 
non-­‐mental
 friends,
 and
 proportion
 of
 caseworkers),
 respectively,
 and
 Model
 4
 added
 the
 
country
 affiliation.
 
 

  As
 shown
 in
 Table
 13,
 Model
 2
 was
 a
 better-­‐fitted
 model
 compared
 with
 Model
 1
 
(∆F
 =
 3.69;
 p
 <
 .05);
 Model
 3
 was
 significantly
 better
 than
 Model
 2
 (∆F
 =
 3.56;
 p
 <
 .05).
 
However,
 Model
 4
 was
 not
 better
 fitted
 than
 Model
 3.
 Based
 on
 these
 findings,
 Model
 3
 was
 
identified
 as
 the
 best-­‐fitting
 model,
 which
 accounted
 for
 approximately
 39%
 of
 the
 variance
 
in
 physical
 community
 integration.
 Compared
 with
 the
 people
 who
 were
 unemployed,
 the
 
people
 who
 were
 employed
 showed
 high
 levels
 of
 physical
 integration
 at
 a
 trend
 level.
 
Being
 employed
 led
 to
 a
 1.33-­‐unit
 increase
 in
 physical
 community
 integration
 (p
 <
 .10).
 
Additionally,
 a
 higher
 proportion
 of
 caseworkers
 in
 one’s
 network
 led
 to
 a
 decrease
 in
 

  81
 
physical
 community
 integration.
 Every
 unit
 increase
 in
 the
 proportion
 of
 caseworkers
 led
 
to
 a
 9.74-­‐unit
 decrease
 in
 physical
 community
 integration
 (p
 <
 .05).
 Controlling
 for
 other
 
variables,
 symptomatology,
 psychosocial
 functioning,
 stigma,
 proportion
 of
 family,
 and
 
proportion
 of
 non-­‐mental
 health
 friends
 were
 not
 found
 to
 be
 significantly
 associated
 with
 
physical
 community
 integration.
 Because
 adding
 country
 affiliation
 did
 not
 improve
 the
 
model
 fit,
 country
 affiliation
 was
 not
 found
 to
 be
 associated
 with
 physical
 community
 
integration.
 
 
Another
 set
 of
 models
 was
 run
 with
 total
 social
 resources
 as
 an
 operationalization
 of
 
physical
 community
 integration
 using
 hierarchical
 regression
 testing
 four
 models.
 Model
 1
 
tested
 the
 association
 of
 employment
 status
 with
 physical
 community
 integration
 (total
 
social
 resources).
 Models
 2
 and
 3
 subsequently
 added
 psychosocial
 factors
 
(symptomatology,
 psychosocial
 functioning,
 and
 internalized
 stigma)
 and
 social
 network
 
variables
 (proportion
 of
 family,
 proportion
 of
 non-­‐mental
 friends,
 and
 proportion
 of
 
caseworkers),
 respectively,
 and
 Model
 4
 added
 the
 country
 affiliation.
 None
 of
 the
 models
 
was
 found
 to
 be
 significant,
 and
 we
 did
 not
 find
 any
 independent
 variables
 that
 were
 
associated
 with
 the
 amount
 of
 social
 resources
 an
 individual
 had.
 The
 full
 model
 accounted
 
for
 17%
 of
 variance
 in
 the
 dependent
 variable.
 The
 results
 of
 these
 models
 are
 given
 in
 
Table
 14.
 
 

 

   
   
 

  82
 
Table
 13
 
 
Multivariate
 Regression
 of
 Physical
 Community
 Integration
 (Involvement
 in
 Community
 
Activities)
a

 of
 Individuals
 with
 SMI
 

 

  Model
 1
  Model
 2
  Model
 3
  Model
 4
 
Variables
  B
  SE
  B
  SE
  B
  SE
  B
  SE
 

 
 
 Constant
  3.171
  .315
  .949
  1.765
  3.591
  2.450
  3.589
  2.465
 
Demographic
 variables
   
   
   
   
   
   
   
   
 

 
 
 Employed
 

 
1.363**
  .609
  1.027
  .661
  1.332*
  .673
  1.568**
  .766
 
Psychosocial
 predictors
   
   
   
   
   
   
   
   
 

 
 
 Symptomatology
 
b
 

   
  .028
  .022
  .025
  .020
  .022
  .021
 

 
 
 Psychosocial
 functioning
 
c
 

   
  .251**
  .120
  .114
  .122
  .101
  .125
 

 
 
 Internalized
 stigma
 
d

   
   
  -­‐.062**
  .030
  -­‐.042
  .030
  -­‐.038
  .031
 
Social
 network
 predictors
   
   
   
   
   
   
   
   
 

 
 
 Proportion
 of
 NMH
 friends
   
   
   
   
  1.989
  2.075
  1.524
  2.203
 

 
 
 Proportion
 of
 family
   
   
   
   
  -­‐1.258
  1.929
  -­‐1.288
  1.941
 

 
 
 Proportion
 of
 caseworker
   
   
   
   
  -­‐9.739**
  3.760
  -­‐10.095**
  3.822
 
Cross-­‐national
 predictors
   
   
   
   
   
   
   
   
 

 
 
 Country
 
   
   
   
   
   
   
  .466
  .707
 
F
  5.014**
   
  4.211***
   
  4.300***
   
  3.772***
   
 
R
2

  .086
   
  .252
   
  .390
   
  .396
   
 
∆F
   
   
  3.688**
   
  3.558**
   
  .435
   
 
∆R
2

   
   
  .166
   
  .138
   
  .006
   
 
Note.
 NMH
 =
 non-­‐mental
 health.
 
*p
 <
 .1;
 **p
 <
 .05;
 ***p
 <
 .01
 on
 a
 two-­‐tailed
 test
 of
 significance.
 
a
 
Measured
 by
 Involvement
 in
 Community
 Activities
 Scale
 adapted
 from
 Living
 Skills
 Scale
 (Wallace
 et
 al.,
 2000).
 
b
 
Measured
 by
 Colorado
 Symptom
 Inventory
 (Shern
 et
 al.,
 1996).

 
c
 
Measured
 by
 Straus
 and
 Carpenter
 Functional
 Outcome
 scale
 (Strauss
 &
 Carpenter,
 1972).
 
d
 
Measured
 by
 Internalized
 Stigma
 of
 Mental
 Illness
 scale
 (Ritsher-­‐Boyd
 et
 al.,
 2003).
 

 

 

   
 

  83
 
Table
 14
 
 
Multivariate
 Regression
 of
 Physical
 Community
 Integration
 (Total
 Social
 Resources)
 
a

 of
 
Individuals
 with
 SMI
 

 

  Model
 1
  Model
 2
  Model
 3
  Model
 4
 
Variables
  B
  SE
  B
  SE
  B
  SE
  B
  SE
 

 
 
 Constant
  31.268
  2.966
  12.282
  17.972
  11.117
  26.189
  11.092
  26.095
 
Demographic
 variables
   
   
   
   
   
   
   
   
 

 
 
 Employed
 

 
4.465
  5.732
  1.043
  6.726
  4.511
  7.193
  8.894
  8.107
 
Psychosocial
 predictors
   
   
   
   
   
   
   
   
 

 
 
 Symptomatology
 
b
 

   
  .128
  .220
  .111
  .216
  .053
  .221
 

 
 
 Psychosocial
 functioning
 
c
 

   
  1.676
  1.223
  .833
  1.308
  .579
  1.322
 

 
 
 Internalized
 stigma
 
d

   
   
  -­‐.099
  .301
  -­‐.010
  .317
  .072
  .324
 
Social
 network
 predictors
   
   
   
   
   
   
   
   
 

 
 Proportion
 of
 NMH
 friends
   
   
   
   
  36.162
  22.179
  27.525
  23.326
 

 
 
 Proportion
 of
 family
   
   
   
   
  11.425
  20.619
  10.854
  20.551
 

 
 
 Proportion
 of
 caseworker
   
   
   
   
  -­‐46.184
  40.194
  -­‐52.795
  40.456
 
Cross-­‐national
 predictors
   
   
   
   
   
   
   
   
 

 
 
 Country
 
   
   
   
   
   
   
  8.657
  7.485
 
F
  .607
   
  .720
   
  1.189
   
  1.215
   
 
R
2

  .011
   
  .054
   
  .150
   
  .174
   
 
∆F
   
   
  .761
   
  1.770
   
  1.338
   
 
∆R
2

   
   
  .043
   
  .096
   
  .024
   
 
Note.
 NMH
 =
 non-­‐mental
 health.
 
*p
 <
 .1;
 **p
 <
 .05;
 ***p
 <
 .01
 on
 a
 two-­‐tailed
 test
 of
 significance.
 
a
 
Measured
 by
 total
 social
 resources
 obtain
 from
 social
 resources
 resource
 generator
 (Van
 Der
 Gaag
 &
 Webber,
 2008).
 
b
 
Measured
 by
 Colorado
 Symptom
 Inventory
 (Shern
 et
 al.,
 1996).

 
c
 
Measured
 by
 Straus
 and
 Carpenter
 Functional
 Outcome
 scale
 (Strauss
 &
 Carpenter,
 1972).
 
d
 
Measured
 by
 Internalized
 Stigma
 of
 Mental
 Illness
 scale
 (Ritsher-­‐Boyd
 et
 al.,
 2003).
 

 

 

  84
 

  Psychological
 community
 integration
 into
 the
 mental
 health
 community.
 
Hierarchical
 regression
 was
 used
 to
 test
 the
 association
 between
 psychological
 community
 
integration
 into
 the
 mental
 health
 community
 and
 various
 demographic,
 psychosocial,
 and
 
network
 variables.
 Model
 1
 tested
 the
 association
 of
 employment
 status
 with
 psychological
 
community
 integration
 into
 the
 mental
 health
 community.
 Models
 2
 and
 3
 subsequently
 
added
 psychosocial
 factors
 (symptomatology,
 psychosocial
 functioning,
 and
 internalized
 
stigma)
 and
 social
 network
 variables
 (proportion
 of
 family,
 proportion
 of
 non-­‐mental
 
friends,
 and
 proportion
 of
 caseworkers),
 respectively,
 and
 Model
 4
 added
 the
 country
 
affiliation.
 
 

  As
 shown
 in
 Table
 15,
 Model
 2
 was
 a
 better-­‐fitted
 model
 compared
 with
 Model
 1
 
(∆F
 =
 8.575;
 p
 <
 .01);
 Model
 3
 was
 significantly
 better
 than
 Model
 2
 (∆F
 =
 2.917;
 p
 <
 .05),
 
and
 Model
 4
 was
 significantly
 better
 than
 Model
 3
 (∆F
 =
 8.604;
 p
 <
 .01).
 Based
 on
 these
 
findings,
 Model
 4
 was
 identified
 as
 the
 best-­‐fitting
 model,
 which
 accounted
 for
 
approximately
 55%
 of
 the
 variance
 in
 psychological
 community
 integration
 into
 the
 mental
 
health
 community.
 An
 increase
 in
 internalized
 stigma
 was
 found
 to
 be
 associated
 with
 a
 
decrease
 in
 psychological
 community
 integration
 into
 the
 mental
 health
 community.
 A
 1-­‐
unit
 increase
 in
 stigma
 was
 associated
 with
 a
 .22-­‐unit
 decrease
 in
 psychological
 community
 
integration
 into
 the
 mental
 health
 community
 (p
 <
 .05).
 A
 1-­‐point
 increase
 in
 psychosocial
 
functioning
 was
 also
 associated
 with
 a
 1.11-­‐unit
 increase
 in
 psychological
 community
 
integration
 into
 the
 mental
 health
 community.
 Among
 the
 network
 variables,
 proportion
 of
 
caseworkers
 was
 associated
 with
 an
 increase
 in
 psychological
 community
 integration
 into
 
the
 mental
 health
 community
 at
 a
 trend
 level.
 A
 1-­‐point
 increase
 in
 the
 proportion
 of
 
caseworkers
 in
 an
 individual’s
 network
 was
 associated
 with
 a
 25.825-­‐unit
 (p
 <
 .10)
 

  85
 
increase
 in
 psychological
 community
 integration
 into
 the
 mental
 health
 community.
 Finally,
 
county
 affiliation
 was
 found
 to
 be
 associated
 with
 psychological
 community
 integration
 
into
 the
 mental
 health
 community.
 Individuals
 from
 the
 United
 States
 were
 found
 have
 
higher
 levels
 of
 psychological
 community
 integration
 into
 the
 mental
 health
 community
 
compared
 with
 the
 participants
 from
 India.
 Participants
 from
 the
 United
 States
 had
 7.417
 
units
 (p
 <
 .01)
 greater
 psychological
 community
 integration
 into
 the
 mental
 health
 
community
 compared
 with
 participants
 from
 India.
 Controlling
 for
 other
 factors,
 
employment
 status,
 symptomatology,
 proportions
 of
 non-­‐mental
 health
 friends,
 and
 
proportion
 of
 family
 were
 not
 found
 to
 be
 significantly
 associated
 with
 psychological
 
community
 integration
 into
 the
 mental
 health
 community.
 

   
 

  86
 
Table
 15
 
 
Multivariate
 Regression
 of
 Psychological
 Community
 Integration

 a

 in
 Mental
 Health
 
Community
 of
 Individuals
 with
 SMI
 

  Model
 1
  Model
 2
  Model
 3
  Model
 4
 
Variable
  B
  SE
  B
  SE
  B
  SE
  B
  SE
 

 
 
 Constant
  36.122
  1.337
  31.187
  6.732
  19.096
  9.502
  19.074
  8.816
 
Demographic
 variables
   
   
   
   
   
   
   
   
 

 
 
 Employed
  -­‐3.522
  2.584
  -­‐6.002**
  2.519
  -­‐3.406
  2.610
  .348
  2.739
 
Psychosocial
 predictors
   
   
   
   
   
   
   
   
 

 
 
 Symptoms
 
b
 

   
  -­‐.001
  .082
  .007
  .078
  -­‐.056
  .075
 

 
 
 Functioning
 
c
 

   
  1.189**
  .458
  1.108**
  .475
  .890*
  .447
 

 
 
 Stigma
 
d
 

   
  -­‐.323***
  .113
  -­‐.294**
  .115
  -­‐.224**
  .109
 
Social
 network
 predictors
   
   
   
   
   
   
   
   
 

 
 
 Proportion
 NMH
 friends
   
   
   
   
  17.040**
  8.047
  9.642
  7.880
 

 
 
 Proportion
 of
 family
   
   
   
   
  7.790
  7.481
  7.301
  6.943
 

 
 
 Proportion
 of
 case
 
workers
 

   
   
   
  31.489**
  14.583
  25.825*
  13.667
 
Cross-­‐national
 predictors
   
   
   
   
   
   
   
   
 

 
 
 Country
   
   
   
   
   
   
  7.417***
  2.529
 
F
  1.858
   
  7.095***
   
  5.771***
   
  6.942***
   
 
R
2

  .034
   
  .362
   
  .462
   
  .547
   
 
∆F
   
   
  8.575***
   
  2.917**
   
  8.604***
   
 
∆R
2

   
   
  .328
   
  .100
   
  .085
   
 

 

 
Note.
 NMH
 =
 non-­‐mental
 health.
 
*p
 <
 .1;
 **p
 <
 .05;
 ***p
 <
 .01
 on
 a
 two-­‐tailed
 test
 of
 significance.
 
a
 
Dependent
 variable:
 measured
 by
 the
 mental
 health
 version
 of
 Community
 Integration
 Measure
 (CIM;
 (McColl
 et
 al.,
 2001).

 
b
 
Measured
 by
 Colorado
 Symptom
 Inventory
 (Shern
 et
 al.,
 1996).
 
c

 Measured
 by
 Straus
 and
 Carpenter
 Functional
 Outcome
 scale
 (Strauss
 &
 Carpenter,
 1972).
 
d
 
Measured
 by
 Internalized
 Stigma
 of
 Mental
 Illness
 scale
 (Ritsher-­‐Boyd
 et
 al.,
 2003).
 

  87
 

  Psychological
 community
 integration
 into
 the
 non-­‐mental
 health
 community.
 
Hierarchical
 regression
 was
 used
 to
 test
 the
 association
 between
 psychological
 community
 
integration
 into
 the
 non-­‐mental
 health
 community
 and
 various
 demographic,
 psychosocial,
 
and
 network
 variables.
 Model
 1
 tested
 the
 association
 of
 employment
 status
 with
 
psychological
 community
 integration
 into
 the
 non-­‐mental
 health
 community.
 Models
 2
 and
 
3
 subsequently
 added
 psychosocial
 factors
 (symptomatology,
 psychosocial
 functioning,
 and
 
internalized
 stigma)
 and
 social
 network
 variables
 (proportion
 of
 family,
 proportion
 of
 non-­‐
mental
 friends,
 and
 proportion
 of
 caseworkers),
 respectively.
 Initial
 modeling
 indicated
 the
 
absence
 of
 a
 linear
 relationship
 between
 proportion
 of
 family
 members
 and
 psychological
 
community
 integration
 into
 the
 non-­‐mental
 health
 community,
 which
 seemed
 contrary
 to
 
the
 literature
 on
 importance
 of
 family
 support
 in
 psychological
 community
 integration
 into
 
the
 non-­‐mental
 health
 community.
 Hence,
 adding
 the
 quadratic
 term
 for
 the
 proportion
 of
 
family
 variables
 tested
 a
 curvilinear
 relationship
 between
 proportion
 of
 family
 in
 the
 
network
 and
 psychological
 community
 integration
 into
 the
 non-­‐mental
 health
 community.
 
The
 results
 indicated
 the
 presence
 of
 a
 curvilinear
 relationship.
 Hence,
 both
 the
 linear
 and
 
quadratic
 terms
 were
 added
 to
 the
 final
 Model
 3.
 Model
 4
 added
 the
 country
 affiliation,
 
along
 with
 employment
 status,
 psychosocial
 variables,
 and
 social
 network
 variables.
 
 

  As
 shown
 in
 Table
 16,
 Model
 2
 was
 a
 better-­‐fitted
 model
 compared
 with
 Model
 1
 
(∆F
 =
 2.32;
 p
 <
 .10);
 Model
 3
 was
 significantly
 better
 than
 Model
 2
 (∆F
 =
 3.834;
 p
 <
 .01).
 
However,
 Model
 4
 was
 not
 a
 better-­‐fitted
 model
 than
 Model
 3.
 Based
 on
 these
 findings,
 
Model
 3
 was
 identified
 as
 the
 best-­‐fitting
 model,
 which
 accounted
 for
 approximately
 40%
 
of
 the
 variance
 in
 psychological
 community
 integration
 into
 the
 non-­‐mental
 health
 
community.
 An
 increase
 in
 internalized
 stigma
 was
 associated
 with
 a
 decrease
 in
 

  88
 
psychological
 community
 integration
 into
 the
 non-­‐mental
 health
 community
 at
 a
 trend
 
level.
 A
 1-­‐unit
 increase
 in
 internalized
 stigma
 was
 associated
 with
 a
 .192-­‐unit
 decrease
 in
 
psychological
 community
 integration
 into
 the
 non-­‐mental
 health
 community
 (p
 <
 .10).
 A
 1-­‐
unit
 increase
 in
 the
 proportion
 of
 family
 also
 led
 to
 a
 65.24-­‐unit
 (p
 <
 .01)
 increase
 in
 
psychological
 community
 integration
 into
 the
 non-­‐mental
 health
 community,
 but
 this
 effect
 
tapered
 off
 as
 the
 proportion
 of
 family
 increased,
 and
 eventually,
 this
 relationship
 became
 
negative.
 Hence,
 a
 high
 proportion
 of
 family
 was
 found
 to
 be
 negatively
 associated
 with
 
psychological
 community
 integration
 into
 the
 non-­‐mental
 health
 community
 (B
 =
 -­‐47.44;
 p
 
<
 .01).
 Controlling
 for
 other
 factors,
 employment
 status,
 symptomatology,
 psychosocial
 
functioning,
 proportions
 of
 non-­‐mental
 health
 friends,
 and
 proportion
 of
 caseworkers
 were
 
not
 found
 to
 be
 significantly
 associated
 with
 psychological
 community
 integration
 into
 the
 
non-­‐mental
 health
 community.
 Additionally,
 because
 adding
 country
 affiliation
 did
 not
 
improve
 the
 model
 fit,
 country
 affiliation
 was
 not
 found
 to
 be
 associated
 with
 psychological
 
community
 integration
 into
 the
 non-­‐mental
 health
 community.
 
 

   
 

  89
 
Table
 16
 
 
Multivariate
 Regression
 of
 Psychological
 Community
 Integration
 in
 Non-­‐Mental
 Health
 
Community
 
a

 of
 Individuals
 with
 SMI
 

  Model
 1
  Model
 2
  Model
 3
  Model
 4
 
Variable
  B
  SE
  B
  SE
  B
  SE
  B
  SE
 

 
 
 Constant
  39.780
  1.107
  39.551
  6.423
  21.815
  9.040
  21.999
  9.103
 
Demographic
 variables
   
   
   
   
   
   
   
   
 

 
 
 Employed
  5.020**
  2.138
  3.396
  2.404
  3.138
  2.445
  3.906
  2.740
 
Psychosocial
 predictors
   
   
   
   
   
   
   
   
 

 
 
 Symptoms
 
b
 

   
  -­‐.070
  .079
  -­‐.111
  .074
  -­‐.120
  .076
 

 
 
 Functioning
 
c
 

   
  .497
  .437
  .516
  .461
  .480
  .467
 

 
 
 Stigma
 
d
 

   
  -­‐.100
  .108
  -­‐.192*
  .105
  -­‐.177
  .108
 
Social
 network
 predictors
   
   
   
   
   
   
   
   
 

 
 
 Proportion
 NMH
 friends
   
   
   
   
  2.459
  7.543
  .734
  8.061
 

 
 
 Proportion
 of
 family
   
   
   
   
  65.241***
  20.482
  63.753***
  20.748
 

 Proportion
 of
 family
 
(quad
 term)
 

   
   
   
  -­‐47.441***
  16.929
  -­‐46.230***
  17.146
 

 
 
 Proportion
 of
 case
 
workers
 

   
   
   
  6.643
  13.420
  5.567
  13.613
 
Cross-­‐national
 predictors
   
   
   
   
   
   
   
   
 

 
 
 Country
   
   
   
   
   
   
  1.600
  2.511
 
F
  5.510**
   
  3.223**
   
  3.894***
   
  3.461***
   
 
R
2

  .094
   
  .205
   
  .404
   
  .409
   
 
∆F
   
   
  2.323*
   
  3.834***
   
  .406
   
 
∆R
2

   
   
  .111
   
  .199
   
  .005
   
 

 
Note.
 NMH
 =
 non-­‐mental
 health.
 
*p
 <
 .1;
 **p
 <
 .05;
 ***p
 <
 .01
 on
 a
 two-­‐tailed
 test
 of
 significance.
 
a
 
Dependent
 variable:
 measured
 by
 the
 non-­‐mental
 health
 version
 of
 Community
 Integration
 Measure
 (CIM;
 (McColl
 et
 al.,
 2001).

 
b
 
Measured
 by
 Colorado
 Symptom
 Inventory
 (Shern
 et
 al.,
 1996).
 
c

 Measured
 by
 Straus
 and
 Carpenter
 Functional
 Outcome
 scale
 (Strauss
 &
 Carpenter,
 1972).
 
d
 
Measured
 by
 Internalized
 Stigma
 of
 Mental
 Illness
 scale
 (Ritsher-­‐Boyd
 et
 al.,
 2003).
 

  90
 

  Social
 community
 integration.
 Hierarchical
 regression
 was
 used
 to
 test
 the
 
association
 between
 social
 community
 integration
 and
 various
 demographic,
 psychosocial,
 
and
 network
 variables.
 Model
 1
 tested
 the
 association
 of
 employment
 status
 with
 social
 
community
 integration,
 as
 measured
 by
 perceived
 social
 support.
 Models
 2
 and
 3
 
subsequently
 added
 psychosocial
 factors
 (symptomatology,
 psychosocial
 functioning,
 and
 
internalized
 stigma)
 and
 social
 network
 variables
 (proportion
 of
 family,
 proportion
 of
 non-­‐
mental
 friends,
 and
 proportion
 of
 caseworkers),
 respectively,
 and
 Model
 4
 added
 the
 
country
 affiliation.
 
 
As
 shown
 in
 Table
 17,
 Model
 2
 was
 a
 better-­‐fitted
 model
 compared
 with
 Model
 1
 
(∆F
 =
 4.781;
 p
 <
 .01);
 Model
 3
 was
 significantly
 better
 than
 Model
 2
 (∆F
 =
 2.367;
 p
 <
 .10),
 
and
 Model
 4
 was
 significantly
 better
 than
 Model
 3
 (∆F
 =
 3.467;
 p
 <
 .10).
 Based
 on
 these
 
findings,
 Model
 4
 was
 identified
 as
 the
 best-­‐fitting
 model,
 which
 accounted
 for
 
approximately
 35%
 of
 the
 variance
 in
 social
 community
 integration.
 A
 1-­‐unit
 increase
 in
 
symptom
 severity
 was
 significantly
 associated
 with
 a
 .081-­‐unit
 decrease
 in
 perceived
 social
 
support
 (p
 <
 .05).
 A
 1-­‐unit
 increase
 in
 internalized
 stigma
 was
 also
 found
 to
 be
 associated
 
with
 a
 .14-­‐unit
 decrease
 in
 perceived
 social
 support
 (p
 <
 .05).
 
 
Among
 the
 network
 variables,
 proportion
 of
 non-­‐mental
 health
 friends
 was
 
associated
 with
 an
 increase
 in
 psychological
 community
 integration
 into
 the
 mental
 health
 
community
 at
 a
 trend
 level.
 A
 1-­‐point
 increase
 in
 the
 proportion
 of
 non-­‐mental
 health
 
friends
 in
 an
 individual’s
 network
 was
 associated
 with
 a
 7.498-­‐unit
 increase
 in
 perceived
 
social
 support
 (p
 <
 .05).
 Proportion
 of
 family
 members
 in
 an
 individual’s
 network
 was
 also
 
found
 to
 be
 significantly
 associated
 with
 the
 levels
 of
 perceived
 social
 support.
 A
 1-­‐unit
 
increase
 in
 the
 proportion
 of
 family
 members
 was
 found
 to
 be
 associated
 with
 9.179-­‐unit
 

  91
 
increase
 in
 perceived
 social
 support
 (p
 <
 .01).
 Finally,
 county
 affiliation
 was
 found
 to
 be
 
associated
 with
 perceived
 social
 support
 at
 a
 trend
 level.
 Individuals
 from
 the
 United
 States
 
were
 found
 have
 lower
 levels
 of
 perceived
 social
 support
 compared
 with
 the
 participants
 
from
 India.
 Participants
 from
 the
 United
 States
 had
 2.283
 units
 (p
 <
 .01)
 units
 smaller
 
perceived
 social
 support
 levels
 compared
 with
 participants
 from
 India.
 To
 summarize,
 
controlling
 for
 other
 factors,
 employment
 status,
 psychosocial
 functioning,
 and
 proportions
 
of
 caseworkers
 were
 not
 found
 to
 be
 significantly
 associated
 with
 levels
 of
 perceived
 social
 
support.
 

   
 

  92
 
Table
 17
 
 
Multivariate
 Regression
 of
 Social
 Community
 Integration
 (Perceived
 Social
 Support
 
a
)
 in
 
Individuals
 with
 SMI
 

  Model
 1
  Model
 2
  Model
 3
  Model
 4
 
Variable
  B
  SE
  B
  SE
  B
  SE
  B
  SE
 

 
 
 Constant
  14.463
  .560
  22.860
  3.061
  14.797
  4.386
  14.803
  4.275
 
Demographic
 variables
   
   
   
   
   
   
   
   
 

 
 
 Employed
  1.337
  1.083
  1.627
  1.146
  1.665
  1.205
  .509
  1.328
 
Psychosocial
 predictors
   
   
   
   
   
   
   
   
 

 
 
 Symptoms
 
b
 

   
  -­‐.102***
  .037
  -­‐.097***
  .036
  -­‐.081**
  .036
 

 
 
 Functioning
 
c
 

   
  -­‐.301
  .208
  -­‐.197
  .219
  -­‐.130
  .217
 

 
 
 Stigma
 
d
 

   
  -­‐.085
  .051
  -­‐.120**
  .053
  -­‐.141**
  .053
 
Social
 network
 predictors
   
   
   
   
   
   
   
   
 

 
 
 Proportion
 NMH
 friends
   
   
   
   
  7.498**
  3.714
  9.775**
  3.821
 

 
 
 Proportion
 of
 family
   
   
   
   
  9.179**
  3.453
  9.330***
  3.367
 

 
 
 Proportion
 of
 case
 workers
   
   
   
   
  5.814
  6.731
  7.558
  6.627
 
Cross-­‐national
 predictors
   
   
   
   
   
   
   
   
 

 
 
 Country
   
   
   
   
   
   
  -­‐2.283*
  1.226
 
F
  1.523
   
  4.048***
   
  3.517***
   
  3.673***
   
 
R
2

  .028
   
  .245
   
  .344
   
  .390
   
 
∆F
   
   
  4.781***
   
  2.367*
   
  3.467*
   
 
∆R
2

   
   
  .217
   
  .099
   
  .046
   
 

 

 

 
Note.
 NMH
 =
 non-­‐mental
 health.
 
*p
 <
 .1;
 **p
 <
 .05;
 ***p
 <
 .01
 on
 a
 two-­‐tailed
 test
 of
 significance.
 
a
 
Measured
 by
 the
 4-­‐item
 short
 version
 of
 the
 Medical
 Outcomes
 Study
 Social
 Support
 Survey
 (MOSSS;
 (Sherbourne
 &
 Stewart,
 1991).
 
b
 
Measured
 by
 Colorado
 Symptom
 Inventory
 (Shern
 et
 al.,
 1996).
 
c

 Measured
 by
 Straus
 and
 Carpenter
 Functional
 Outcome
 scale
 (Strauss
 &
 Carpenter,
 1972).
 
d
 
Measured
 by
 Internalized
 Stigma
 of
 Mental
 Illness
 scale
 (Ritsher-­‐Boyd
 et
 al.,
 2003).
 

  93
 
Results
 for
 Research
 Aim
 3:
 Multilevel
 analysis
 with
 individual-­‐
 and
 network-­‐level
 
variables
 associated
 with
 Disclosure
 about
 mental
 illness.
 
Aim
 3
 examined
 the
 effects
 of
 individual-­‐
 and
 network-­‐level
 variables
 on
 stigma
 
associated
 with
 disclosure
 about
 mental
 illness
 using
 a
 multilevel
 model.
 
 

  Table
 18
 presents
 the
 findings
 from
 the
 multilevel
 multivariate
 logistic
 regression
 
models.
 Among
 the
 individual-­‐level
 variables,
 symptoms,
 internalized
 stigma,
 and
 
perceived
 social
 support
 were
 found
 to
 be
 associated
 with
 disclosure
 about
 mental
 illness.
 
With
 every
 unit
 increase
 in
 symptom
 level,
 the
 odds
 of
 an
 individual
 disclosing
 that
 they
 
have
 a
 mental
 illness
 increased
 by
 approximately
 9%
 (OR
 =
 .913;
 p
 <
 .10).
 It
 is
 noteworthy
 
that
 the
 OR
 indicated
 in
 Table
 18
 is
 .913,
 which
 would
 indicate
 an
 inverse
 relationship
 with
 
our
 dependent
 variable.
 Because
 our
 dependent
 variable
 is
 worded
 negatively
 (did
 not
 
want
 to
 disclose),
 an
 inverse
 relationship
 would,
 hence,
 indicate
 an
 increase
 in
 the
 
probability
 of
 disclosure.
 
 
As
 per
 the
 internalized
 stigma
 levels,
 an
 increase
 was
 associated
 with
 a
 25%
 
decrease
 in
 the
 odds
 of
 disclosure
 about
 mental
 illness
 (OR
 =
 1.245;
 p
 <
 .01).
 An
 increase
 in
 
perception
 of
 social
 support
 was
 associated
 with
 a
 28.5%
 increase
 in
 the
 odds
 of
 disclosure
 
(OR
 =
 .715;
 p
 <
 .10).
 
 
In
 terms
 of
 the
 network-­‐level
 variables,
 length
 of
 association
 was
 found
 to
 be
 
associated
 with
 disclosure.
 A
 1-­‐year
 increase
 in
 length
 of
 association
 with
 a
 network
 
member
 was
 associated
 with
 a
 5%
 increase
 in
 the
 odds
 of
 disclosure
 (OR
 =
 .950;
 p
 <
 .01).
 In
 
terms
 of
 whether
 an
 individual
 knew
 a
 network
 member
 before
 they
 started
 receiving
 
mental
 health
 services,
 individuals
 were
 twice
 as
 likely
 to
 disclose
 to
 individuals
 they
 knew
 
before
 mental
 health
 treatment
 compared
 with
 the
 network
 members
 they
 did
 not
 know
 

  94
 
before
 starting
 mental
 health
 services.
 In
 terms
 of
 relationship
 with
 the
 alter,
 compared
 
with
 family
 members,
 individuals
 were
 two
 times
 less
 likely
 to
 share
 with
 friends
 (OR
 =
 
2.185;
 p
 <
 .10),
 four
 times
 less
 likely
 to
 disclose
 to
 neighbors
 (OR
 =
 4.218;
 p
 <
 .05),
 and
 22
 
times
 less
 likely
 to
 disclose
 to
 colleagues
 (OR
 =
 22.608;
 p
 <
 .01).
 However,
 compared
 with
 
family
 members,
 individuals
 were
 99%
 more
 likely
 to
 disclose
 to
 a
 caseworker
 (OR
 =
 .005;
 
p
 <
 .01).
 

 

   
 

  95
 
Table
 18
 
 
Multilevel
 Analysis
 with
 Individual-­‐
 and
 Network-­‐Level
 Variables
 Associated
 with
 
Unwillingness
 to
 Disclose
 about
 Mental
 Illness
 
a

 
Variable
  OR
  SE
  95%
 CI
 

 
 
 
 Constant
  .169
  1.334
   
 
Individual-­‐level
 variables
   
   
   
 
Country
 

 
.300
  .502
  .011—7.954
 
Employed
 

 
1.378
  2.538
  .037—50.937
 
Symptoms
 
b
 
.913*
  .052
  .817—1.022
 
Psychosocial
 functioning
 
c
 
.866
  .262
  .478—1.568
 
Internalized
 stigma
 
d
 
1.245***
  .104
  1.057—1.467
 
Perceived
 social
 support
 
e
 
.715*
  .157
  .465—1.098
 
Psychological
 community
 integration
 in
 MH
 community
 
f
 
.903
  .101
  .725—1.126
 
Psychological
 community
 integration
 in
 NMH
 community
 
f
 
1.210
  .167
  .923—1.587
 
Network-­‐level
 variables
   
   
   
 
Length
 of
 association
  .950***
  .017
  .917—.985
 
Knew
 before
 mental
 health
 services
  .430*
  .206
  .168—1.100
 
Network-­‐level
 relationship
 variables
 (reference
 group:
 
family/partner)
 

   
   
 
Friend
  2.185*
  .977
  .910—5.248
 
Neighbor
  4.218**
  2.741
  1.180—15.076
 
Colleague
  22.608***
  19.285
  4.248—120.323
 
Caseworker
  .005***
  .006
  .001—.044
 
Acquaintance
  2.888
  3.362
  .295—28.298
 
Note.
 MH
 =
 mental
 health;
 NMH
 =
 non-­‐mental
 health.
 
*p
 <
 .1;
 **p
 <
 .05;
 ***p
 <
 .01.
 
a
 
Dependent
 variable:
 measured
 using
 a
 question
 asked
 during
 the
 network
 interview
 on
 disclosure
 about
 mental
 illness.
 
b
 
Measured
 by
 Colorado
 Symptom
 Inventory
 (Shern
 et
 al.,
 1996).

 
c

 Measured
 by
 Straus
 and
 Carpenter
 Functional
 Outcome
 scale
 (Strauss
 &
 Carpenter,
 1972).
 
d
 
Measured
 by
 Internalized
 Stigma
 of
 Mental
 Illness
 scale
 (Ritsher-­‐Boyd
 et
 al.,
 2003).
 
e
 
Measured
 by
 the
 4-­‐item
 short
 version
 of
 the
 Medical
 Outcomes
 Study
 Social
 Support
 Survey
 (MOSSS;
 (Sherbourne
 &
 Stewart,
 1991).
 
f
 
Measured
 by
 the
 mental
 health
 and
 non-­‐mental
 health
 versions
 of
 Community
 Integration
 Measure
 (CIM;
 (McColl
 et
 al.,
 2001).

 

  96
 
CHAPTER
 FIVE:
 
 
DISCUSSION
 

 
Although
 community
 integration
 has
 been
 identified
 as
 an
 important
 treatment
 
outcome
 and
 an
 integral
 aspect
 of
 mental
 health
 recovery,
 there
 is
 little
 empirical
 work
 that
 
examines
 the
 experience
 and
 characteristics
 of
 community
 integration
 for
 the
 individuals
 
with
 SMI
 in
 community-­‐based
 settings
 (Abdallah
 et
 al.,
 2009;
 Prince
 &
 Gerber,
 2005;
 
Wieland
 et
 al.,
 2007;
 Wong
 &
 Solomon,
 2002).
 Additionally,
 cultural
 factors
 are
 known
 to
 
have
 tremendous
 impact
 on
 the
 conception,
 course,
 and
 outcomes
 associated
 with
 the
 
illness
 (Hopper
 &
 Wanderling,
 2000;
 Lauber
 &
 Rossler,
 2007).
 The
 differential
 courses
 of
 
illness
 and
 prognosis
 have
 implications
 for
 the
 cross-­‐cultural
 and
 cross-­‐national
 
generalizations,
 both
 in
 terms
 of
 research
 and
 practice.
 Existing
 empirical
 evidence
 on
 
community
 integration
 fails
 to
 give
 sufficient
 credence
 to
 these
 individual
 differences
 
across
 individuals
 and
 ethnic
 and
 cultural
 groups
 (Townley
 et
 al.,
 2009).
 Keeping
 this
 in
 
mind,
 the
 primary
 aim
 of
 this
 dissertation
 was
 to
 explore
 the
 concepts
 of
 community
 
integration
 in
 India
 and
 the
 United
 States
 to
 bridge
 this
 theoretical
 and
 conceptual
 
disconnect.
 We
 aimed
 to
 explore
 the
 idea
 of
 community
 integration
 of
 individuals
 with
 SMI
 
who
 were
 receiving
 treatment
 in
 a
 public
 mental
 health
 care
 setting
 within
 the
 socio-­‐
cultural
 contexts
 of
 India
 and
 the
 United
 States
 and
 examine
 the
 social
 network
 and
 
psychosocial
 factors
 that
 facilitate
 and
 subvert
 the
 process
 of
 community
 integration.
 
Using
 the
 conceptual
 framework
 of
 Wong
 and
 Solomon

 
(2002),
 and
 within
 the
 
contexts
 of
 theories
 of
 community,
 community
 integration,
 social
 network,
 social
 
resources,
 social
 support,
 and
 stigma,
 we
 conceptualized
 community
 integration
 as
 
physical
 integration,
 social
 integration,
 and
 psychological
 integration.
 The
 study
 used
 a
 
unique
 methodology
 to
 increase
 the
 nuanced
 understanding
 of
 community
 integration
 and
 

  97
 
factors
 associated
 with
 it.
 Along
 with
 the
 measures
 of
 integration,
 community
 activities,
 
social
 resources,
 and
 social
 support,
 we
 used
 social
 network
 analysis
 methods
 to
 obtain
 
detailed
 information
 about
 the
 individuals’
 networks
 and
 attributes
 of
 those
 networks,
 as
 
well
 as
 to
 identify
 the
 individuals
 in
 their
 networks
 who
 were
 a
 source
 of
 social
 support,
 
social
 resources,
 and
 stigma.
 
 
Specific
 aims
 of
 this
 dissertation
 were
 as
 follows:
 (1)
 to
 study
 and
 compare
 the
 
degree
 of
 community
 integration
 (including
 physical,
 social,
 and
 psychological
 integration)
 
of
 individuals
 with
 SMI
 in
 Indian
 and
 U.S.
 samples,
 (2)
 to
 understand
 community
 
integration
 and
 how
 the
 psychosocial
 and
 network
 variables
 are
 associated
 with
 the
 three
 
dimensions
 of
 community
 integration
 for
 individuals
 with
 SMI
 in
 Indian
 and
 U.S.
 samples,
 
and
 (3)
 to
 explore
 the
 use
 of
 multilevel
 analysis
 in
 examining
 the
 effects
 of
 individual-­‐
 and
 
network-­‐level
 variables
 on
 disclosure
 about
 mental
 illness.
 
Overall,
 the
 results
 indicate
 country
 differences
 in
 some
 of
 the
 conceptualization
 
and
 levels
 of
 community
 integration
 for
 the
 different
 dimensions
 proposed
 by
 Wong
 and
 
Solomon
 (2002).
 Primary
 descriptive
 statistics
 reveal
 some
 very
 interesting
 differences
 
between
 the
 Indian
 and
 U.S.
 samples.
 Most
 (approximately
 two-­‐thirds)
 of
 the
 Indian
 
sample
 is
 married
 as
 compared
 to
 less
 than
 a
 quarter
 of
 the
 U.S.
 sample.
 This
 finding
 is
 
consistent
 with
 the
 culturally
 rooted
 Indian
 society
 that
 still
 believes
 in
 marriage
 as
 a
 
panacea
 to
 mental
 illness
 and
 where
 not
 being
 married
 is
 almost
 as,
 if
 not
 more,
 
stigmatizing
 as
 having
 a
 mental
 illness
 (Srivastava,
 2013;
 Thara
 et
 al.,
 2003a,
 2003b).
 We
 
also
 found
 more
 than
 half
 of
 the
 Indian
 sample
 is
 employed
 as
 compared
 to
 less
 than
 5%
 of
 
the
 U.S.
 participants.
 Even
 within
 the
 Indian
 sample,
 the
 phenomenon
 of
 being
 employed
 is
 
predominantly
 male.
 This
 can
 also
 be
 traced
 back
 to
 the
 cultural
 roots
 of
 the
 country,
 

  98
 
whereby
 men
 have
 a
 compelling
 need
 to
 be
 the
 bread
 winners
 of
 the
 family
 (Marwaha
 &
 
Johnson,
 2004;
 Srinivasan
 &
 Thara,
 1997).
 At
 the
 same
 time,
 just
 being
 employed
 is
 not
 
generally
 indicative
 of
 the
 kind
 of
 work
 an
 individual
 is
 employed
 in
 and
 the
 levels
 of
 their
 
satisfaction
 with
 their
 work.
 A
 study
 by
 Srinivasan
 and
 Thara
 (1997)
 on
 an
 Indian
 sample
 
found
 “good
 rates”
 (80%)
 of
 employment
 in
 their
 sample
 but
 attributed
 this
 to
 their
 low-­‐
education
 and
 socio-­‐economic
 status,
 which
 could
 imply
 that
 these
 jobs
 were
 not
 highly
 
skilled
 or
 did
 not
 require
 much
 education
 (Srinivasan
 &
 Thara,
 1997).
 
 
Importantly,
 the
 samples
 from
 the
 two
 countries
 are
 not
 significantly
 different
 from
 
each
 other
 in
 terms
 of
 their
 symptom
 levels
 and
 over
 all
 psychosocial
 functioning.
 The
 two
 
samples,
 however,
 are
 found
 to
 be
 significantly
 different
 in
 terms
 of
 their
 internalized
 
stigma
 levels.
 This
 finding
 parallels
 previous
 research
 that
 has
 shown
 stigma
 related
 to
 
mental
 illness
 to
 be
 pervasive
 and
 multilayered
 in
 India
 (Chowdhury,
 Sanyal,
 Dutta,
 
Banerjee,
 De,
 Bhattacharya,
 Palit,
 et
 al.,
 2000;
 Longanathan
 &
 Murthy,
 2012;
 Raguram
 et
 al.,
 
1996).
 
 
In
 terms
 of
 country
 differences
 associated
 with
 community
 integration
 of
 
individuals
 with
 SMI,
 AIM
 1
 of
 this
 study,
 the
 two
 countries
 are
 different
 in
 some
 
dimensions
 of
 community
 integration
 and
 not
 in
 others.
 Indian
 respondents,
 in
 general,
 are
 
less
 integrated
 in
 the
 mental
 health
 community,
 rated
 by
 the
 interviewer
 to
 be
 more
 
integrated
 in
 the
 non-­‐mental
 health
 community,
 have
 higher
 amounts
 of
 perceived
 social
 
support,
 and
 have
 more
 members
 affiliated
 to
 the
 non-­‐mental
 health
 community,
 and
 
family
 primarily
 populates
 their
 social
 networks.
 These
 findings
 can
 be
 interpreted
 using
 
the
 normalization
 perspective
 (Wolfensberger,
 2011;
 Wolfensberger
 &
 Tullman,
 1982)
 that
 
supports
 the
 notion
 that
 community
 integration
 into
 the
 non-­‐mental
 health
 community
 can
 

  99
 
occur
 (Bond
 et
 al.,
 2004;
 Wolfensberger,
 2011;
 Wolfensberger
 &
 Tullman,
 1982).
 
Individuals
 from
 the
 United
 States
 feel
 more
 integrated
 into
 the
 mental
 health
 community,
 
were
 rated
 by
 the
 interviewer
 to
 be
 more
 integrated
 in
 the
 mental
 health
 community,
 
receive
 more
 social
 resources
 from
 mental
 health
 community
 members,
 and
 have
 a
 mixture
 
of
 mental
 health-­‐
 and
 non-­‐mental
 health-­‐based
 networks
 ties
 in
 their
 lives.
 These
 findings
 
can
 be
 interpreted
 using
 the
 subcultures
 paradigm,
 whereby
 community
 for
 individuals
 
with
 mental
 illness
 is
 a
 combination
 of
 both
 mental
 health-­‐based
 identity
 and
 belonging
 to
 
the
 larger
 non-­‐mental
 health
 community
 (Mandiberg,
 2012;
 Wong
 et
 al.,
 2010).
 Hence,
 we
 
find
 support
 for
 Wong’s
 (Wong
 et
 al.,
 2010)
 idea
 of
 multiple
 communities
 and
 Mandiberg’s
 
(Mandiberg,
 2012)
 idea
 of
 subcultures
 in
 that
 not
 only
 do
 the
 individuals
 have
 distinct
 
communities
 they
 interact
 with,
 but
 they
 also
 experience
 integration
 into
 these
 
communities
 differently.
 Pending
 further
 investigation,
 this
 might
 also
 indicate
 that
 
individuals
 from
 the
 United
 States
 have
 more
 congruence
 in
 their
 sense
 of
 community
 
belonging
 and
 where
 they
 receive
 social
 network
 membership
 but
 might
 be
 further
 away
 
from
 one
 expected
 goal
 of
 recovery,
 which
 is
 to
 integrate
 into
 the
 non-­‐mental
 health
 
community.
 
Network
 Differences:
 India
 and
 the
 United
 States
 
The
 general
 network
 characteristics
 support
 our
 hypothesis
 in
 that
 the
 Indian
 
sample
 has
 more
 family
 members
 and
 colleagues
 in
 their
 networks
 compared
 with
 the
 U.S.
 
sample
 and
 a
 smaller
 proportion
 of
 caseworkers.
 However,
 contrary
 to
 our
 hypothesis,
 the
 
U.S.
 sample
 has
 a
 higher
 proportion
 of
 friends
 and
 non-­‐mental
 health
 acquaintances.
 The
 
first
 finding
 speaks
 to
 the
 cultural
 environment
 of
 India,
 where
 family
 is
 more
 emphasized
 
and
 forms
 the
 primary
 sources
 of
 support
 (Bhatia
 et
 al.,
 2012a;
 Nunley,
 1998),
 which
 is
 

  100
 
why
 almost
 70%
 of
 Indian
 networks
 are
 family
 based.
 The
 U.S.
 sample,
 however,
 is
 more
 
friend
 based.
 This
 finding
 is
 in
 keeping
 with
 the
 existing
 literature
 on
 social
 networks,
 their
 
typologies,
 and
 the
 effect
 of
 different
 types
 of
 majority
 networks
 on
 the
 mental
 health
 of
 an
 
individual.
 Previous
 studies
 in
 the
 United
 States
 on
 networks
 suggest
 that
 friend-­‐based
 
networks
 are
 more
 prominent
 and
 more
 influential
 compared
 with
 family-­‐based
 networks
 
and
 have
 a
 higher
 association
 with
 positive
 mental
 health
 outcomes
 (Fiori,
 Antonucci,
 &
 
Cortina,
 2006;
 Litwin,
 2001).
 If
 we
 were
 to
 go
 by
 this
 previous
 evidence
 gathered
 from
 
research
 in
 the
 United
 States,
 high
 family-­‐intensive
 networks
 in
 India
 would
 imply
 lower
 
functioning
 individuals.
 However,
 our
 findings
 actually
 suggest
 that
 Indian
 participants
 are
 
not
 different
 from
 the
 U.S.
 participants
 in
 terms
 of
 symptomatology
 or
 overall
 functioning
 
and
 are
 actually
 better
 functioning
 in
 terms
 of
 employment.
 This
 is
 a
 good
 example
 of
 how
 
culture
 influences
 norms
 and
 practices
 in
 a
 society,
 and
 findings
 from
 one
 culture
 should
 be
 
generalized
 to
 another
 culture
 with
 extreme
 caution.
 
 
The
 importance
 of
 friends-­‐based
 networks
 for
 the
 U.S.
 participants
 is
 further
 
emphasized
 when
 we
 look
 at
 the
 specific
 relationships
 that
 are
 sources
 of
 social
 support
 
and
 social
 resources
 in
 India
 and
 the
 United
 States.
 In
 our
 study,
 we
 found
 that
 the
 
individuals
 from
 the
 United
 States
 nominated
 significantly
 more
 friends
 from
 whom
 they
 
derive
 different
 types
 of
 social
 support
 and
 social
 resources
 compared
 with
 the
 
participants
 from
 India.
 
Our
 study
 results
 also
 show
 some
 interesting
 findings
 in
 terms
 of
 mental
 health
 and
 
non-­‐mental
 health
 acquaintances
 that
 are
 contrary
 to
 what
 we
 hypothesized.
 We
 had
 
hypothesized
 that
 Indian
 participants
 would
 have
 more
 non-­‐mental
 health-­‐based
 
networks,
 which
 is
 true
 for
 most
 categories.
 However,
 we
 found
 the
 participants
 from
 India
 

  101
 
to
 have
 more
 mental
 health
 acquaintances
 compared
 with
 the
 U.S.
 participants.
 A
 possible
 
explanation
 for
 this
 finding
 could
 be
 that
 the
 Indian
 sample
 has
 most
 of
 their
 strong
 ties
 
defined
 by
 the
 non-­‐mental
 health
 community.
 Other
 than
 the
 caseworker,
 the
 other
 ties
 
identified
 within
 the
 mental
 health
 community
 are
 actually
 weak
 ties
 and,
 hence,
 fall
 under
 
the
 category
 of
 acquaintances
 and
 not
 identified
 under
 other
 mental
 health
 categories
 of
 
friends,
 peers,
 or
 peer
 providers.
 This
 would
 imply
 that
 most
 strong
 ties
 in
 the
 participants
 
from
 India
 are
 based
 out
 of
 the
 non-­‐mental
 health
 community.
 
The
 ability
 to
 identify
 the
 specific
 relationships
 that
 could
 be
 sources
 of
 social
 
support,
 social
 resources,
 and
 stigma
 was
 a
 unique
 contribution
 of
 this
 study.
 The
 
quantitative
 results
 were
 enhanced
 by
 the
 use
 of
 network
 methodology
 that
 allowed
 us
 to
 
dig
 deeper
 and
 get
 a
 better
 understanding
 of
 the
 various
 dimensions
 and
 concepts
 related
 
to
 community
 integration.
 For
 example,
 when
 the
 participants
 were
 asked
 about
 their
 
perception
 of
 social
 support,
 it
 was
 found
 that
 on
 an
 average,
 participants
 from
 India
 have
 a
 
higher
 perception
 of
 social
 support
 compared
 with
 the
 participants
 from
 the
 United
 States.
 
However,
 when
 asked
 to
 identify
 specific
 individuals
 from
 whom
 they
 receive
 this
 social
 
support,
 participants
 from
 the
 United
 States
 nominate
 a
 higher
 percentage
 of
 individuals
 
from
 whom
 they
 access
 both
 emotional
 and
 interactional
 social
 support.
 This
 could
 imply
 
that
 although
 Indian
 participants
 identify
 fewer
 numbers
 of
 network
 members
 who
 can
 be
 
a
 potential
 source
 of
 social
 support,
 whoever
 they
 do
 nominate
 are
 strong
 enough
 and
 
close
 enough
 ties
 that
 they
 lead
 to
 an
 increased
 perception
 of
 social
 support.
 In
 other
 
words,
 more
 people
 do
 not
 necessarily
 indicate
 quality
 relationships
 (House,
 Landis,
 &
 
Umberson,
 1988;
 House,
 Umberson,
 &
 Landis,
 1988).
 Additionally,
 participants
 from
 the
 
United
 States
 receive
 significantly
 more
 emotional
 support
 from
 the
 mental
 health
 

  102
 
community,
 friends,
 and
 caseworkers
 compared
 with
 the
 participants
 from
 India,
 which
 
could
 be
 another
 reason
 why
 they
 feel
 more
 integrated
 into
 the
 mental
 health
 community.
 
Bridging
 and
 Bonding
 Social
 Resources:
 A
 Social
 Networks
 Phenomenon
 in
 India
 and
 
the
 United
 States
 

  Social
 resources
 accessed
 from
 one’s
 network
 has
 been
 linked
 in
 the
 literature
 to
 
positive
 experiences
 related
 to
 mental
 illness
 and
 better
 outcomes
 (Sartorius,
 2003).
 
Whereas
 bonding
 social
 resources
 (in
 the
 form
 of
 intimate
 friends,
 family
 members,
 and
 
close
 ties
 in
 this
 study)
 are
 linked
 to
 better
 health
 outcomes,
 bridging
 social
 resources
 
(service
 providers,
 neighbors,
 and
 colleagues
 in
 this
 study)
 are
 known
 to
 protect
 
individuals
 from
 the
 stressors
 associated
 with
 a
 mental
 illness
 by
 providing
 access
 to
 a
 
broader
 range
 of
 networks
 and
 resources
 (Szreter
 &
 Woolcock,
 2004).
 Our
 results
 on
 social
 
resources
 obtained
 from
 individual
 networks
 indicate
 that
 individuals,
 both
 in
 India
 and
 
the
 United
 States,
 access
 different
 kinds
 of
 social
 resources
 from
 different
 groups
 of
 people.
 
More
 importantly,
 when
 we
 specifically
 looked
 at
 the
 information
 on
 personal
 social
 
resources,
 whereby
 individuals
 identified
 people
 in
 their
 networks
 who
 helped
 them
 take
 
care
 of
 their
 health,
 there
 was
 a
 marked
 difference
 in
 where
 the
 individuals
 from
 the
 two
 
countries
 access
 resources.
 Indian
 participants
 largely
 depend
 on
 family
 to
 help
 them
 take
 
care
 of
 their
 health,
 whereas
 participants
 from
 the
 United
 States
 have
 a
 mixture
 of
 mental
 
health
 (caseworkers)
 and
 non-­‐mental
 network
 members
 (friends)
 who
 they
 access
 their
 
health
 care
 resources
 from.
 If
 interpreted
 in
 terms
 of
 bridging
 and
 bonding
 social
 capital,
 it
 
would
 seem
 that
 Indian
 participants
 depend
 more
 on
 the
 bonding
 social
 capital
 for
 their
 
health
 care
 needs
 and
 resources,
 whereas
 the
 participants
 from
 the
 United
 States
 have
 a
 
mix
 of
 bridging
 and
 bonding
 social
 capital.
 Other
 types
 of
 social
 resources
 show
 mixed
 

  103
 
results,
 but
 the
 personal
 skills
 type
 of
 social
 resources,
 whereby
 the
 network
 members
 
influence
 positive
 health
 behavior,
 is
 most
 meaningful
 for
 our
 study.
 The
 Indian
 sample
 
indicate
 using
 family
 as
 their
 primary
 source
 of
 help
 for
 their
 health,
 which
 is
 intuitive,
 
since
 family
 is
 closest
 and,
 in
 many
 instances,
 individuals
 in
 India
 live
 with
 immediate
 and
 
extended
 family
 members
 who
 could
 physically
 be
 present
 to
 help
 them
 take
 care
 of
 their
 
health.
 However,
 health
 resources
 are
 more
 than
 that.
 They
 include
 information
 about
 
resources
 that
 come
 from
 a
 more
 heterogeneous
 group
 of
 people
 that
 are
 usually
 more
 
resourceful
 (Irwin
 et
 al.,
 2008),
 for
 instance,
 caseworkers
 who
 can
 provide
 and
 link
 them
 to
 
much-­‐needed
 services
 (Mitchell
 &
 LaGory,
 2002;
 Szreter
 &
 Woolcock,
 2004).
 These
 
resources
 are
 equally
 important
 for
 an
 individual
 to
 access
 appropriate
 care
 when
 needed.
 
Whereas
 family
 can
 be
 an
 important
 support,
 in
 a
 country
 like
 India
 with
 limited
 awareness
 
about
 mental
 illnesses,
 there
 is
 a
 need
 for
 more
 formalized
 networks
 consisting
 of
 
professionals
 and
 para-­‐professionals
 who
 can
 link
 them
 with
 appropriate
 care
 and
 
services.
 In
 conclusion,
 both
 bridging
 and
 bonding
 social
 capital
 are
 required
 in
 balance
 to
 
promote
 proper
 health
 behavior.
 Whereas
 bonding
 social
 capital
 is
 very
 important,
 
bridging
 social
 capital
 is
 required
 for
 this
 population
 to
 break
 “social
 and
 economic
 
isolation”
 due
 to
 their
 illness
 (Mitchell
 &
 LaGory,
 2002;
 Putnam,
 2000).
 
 
Regression
 Models
 of
 Community
 Integration
 

  The
 second
 aim
 of
 this
 dissertation
 was
 to
 understand
 community
 integration
 and
 
how
 the
 psychosocial
 and
 network
 variables
 are
 associated
 with
 the
 three
 dimensions
 of
 
community
 integration
 for
 individuals
 with
 SMI
 in
 India
 and
 the
 United
 States.
 Several
 
important
 results
 emerged
 from
 the
 regression
 models
 on
 different
 community
 integration
 
dimensions.
 The
 overall
 findings
 are
 as
 follows:
 First,
 country
 affiliation
 is
 associated
 with
 

  104
 
some
 dimensions
 of
 community
 integration
 and
 not
 others.
 Specifically,
 psychological
 
integration
 into
 the
 mental
 health
 community
 as
 an
 indicator
 of
 psychological
 community
 
integration
 and
 social
 support
 as
 an
 indicator
 of
 social
 community
 integration
 are
 found
 to
 
be
 associated
 with
 country
 affiliation.
 Participants
 from
 the
 United
 States
 are
 found
 to
 have
 
higher
 levels
 of
 physical
 community
 integration
 in
 terms
 of
 involvement
 in
 community
 
activities.
 Indian
 participants,
 on
 the
 other
 hand,
 are
 found
 to
 have
 higher
 levels
 of
 
perceived
 social
 support.
 These
 findings
 are
 consistent
 with
 the
 previous
 literature
 on
 the
 
presence
 of
 social
 support
 in
 the
 lives
 of
 individuals
 with
 SMI
 in
 India
 that
 can
 be
 related
 to
 
better
 outcomes
 in
 countries
 like
 India
 (Hopper
 &
 Wanderling,
 2000).
 
The
 second
 important
 finding
 is
 the
 importance
 of
 social
 networks
 that
 are
 
associated
 with
 different
 community
 integration
 dimensions.
 This
 was
 the
 first
 study
 to
 
find
 that
 different
 network
 relationships
 are
 associated
 with
 different
 types
 of
 community
 
integration.
 In
 the
 current
 study,
 a
 higher
 proportion
 of
 caseworkers
 are
 associated
 with
 
decreasing
 physical
 integration
 and
 increasing
 psychological
 integration
 into
 the
 mental
 
health
 community.
 Higher
 proportions
 of
 family
 members
 in
 one’s
 network
 are
 found
 to
 be
 
associated
 with
 an
 increase
 in
 psychological
 integration
 into
 the
 non-­‐mental
 health
 
community,
 to
 a
 certain
 extent.
 However,
 as
 the
 proportion
 of
 family
 increases,
 its
 
association
 with
 psychological
 community
 integration
 becomes
 negative.
 This
 finding
 
speaks
 to
 the
 literature
 on
 family
 involvement
 in
 mental
 illness,
 specifically
 in
 India
 and
 
otherwise.
 Whereas
 family
 engagement
 of
 Indian
 families
 in
 different
 facets
 of
 the
 lives
 of
 
individuals
 with
 SMI
 is
 associated
 with
 a
 better
 course
 of
 illness
 and
 outcomes
 (Bhatia
 et
 
al.,
 2012a;
 Nunley,
 1998),
 it
 has
 also
 been
 linked
 with
 increased
 stigma,
 blaming,
 expressed
 
emotions,
 and
 delay
 in
 seeking
 services
 (Bhatia
 et
 al.,
 2012a;
 Khandelwal,
 Jhingan,
 Ramesh,
 

  105
 
Gupta,
 &
 Srivastava,
 2004;
 Longanathan
 &
 Murthy,
 2012;
 Pakaslahti,
 2012).
 Additionally,
 
an
 increased
 proportion
 of
 family-­‐based
 networks
 could
 imply
 the
 presence
 of
 extended
 
family
 in
 the
 nominated
 networks,
 which
 could,
 in
 turn,
 imply
 the
 presence
 of
 the
 negative
 
factors
 associated
 with
 family
 members,
 with
 no
 or
 little
 support
 associated
 with
 close
 
family
 networks.
 
As
 for
 the
 social
 community
 integration,
 both
 the
 proportion
 of
 family
 and
 non-­‐
mental
 health
 friends
 are
 found
 to
 be
 significantly
 associated
 with
 an
 increase
 in
 perceived
 
social
 support
 as
 an
 indicator
 of
 social
 community
 integration.
 This
 speaks
 to
 the
 idea
 of
 
the
 main
 effect
 theory
 of
 social
 support,
 whereby
 the
 more
 diverse
 an
 individual’s
 social
 
network,
 the
 greater
 their
 access
 is
 to
 functional
 social
 relationships
 that
 can
 provide
 the
 
necessary
 support
 for
 them
 to
 deal
 with
 a
 stressor
 (S.
 Cohen
 &
 Wills,
 1985).
 
 

  Finally,
 in
 terms
 of
 demographic
 and
 psychosocial
 characteristics,
 being
 employed
 is
 
significantly
 associated
 with
 physical
 community
 integration
 (involvement
 in
 community
 
activities).
 Higher
 psychosocial
 functioning
 is
 found
 to
 be
 associated
 with
 a
 decrease
 in
 
psychological
 community
 integration
 in
 the
 mental
 health
 community.
 This
 could
 imply
 
that
 poorer
 psychosocial
 functioning
 would
 mean
 that
 an
 individual
 would
 have
 a
 harder
 
time
 adjusting
 in
 mainstream
 community,
 and
 the
 mental
 health
 community
 during
 those
 
times
 could
 feel
 like
 a
 safe
 haven.
 This
 finding
 has
 implications
 for
 interventions,
 whereby
 
an
 individual
 with
 SMI
 would
 need
 to
 be
 equipped
 with
 various
 social
 and
 instrumental
 
tools
 to
 function
 better
 in
 mainstream
 community
 and
 move
 toward
 recovery.
 
 
Higher
 psychiatric
 symptoms
 are
 also
 found
 to
 be
 associated
 with
 lower
 social
 
support.
 We
 can
 find
 roots
 of
 this
 in
 the
 literature
 where
 social
 support
 has
 been
 found
 to
 
be
 inversely
 related
 to
 symptoms
 of
 mental
 illness
 and
 associated
 distress
 (Barrera,
 2000;
 

  106
 
Patrick
 W
 Corrigan
 &
 Phelan,
 2004;
 Eaton,
 1978;
 Ozer,
 Best,
 Lipsey,
 &
 Weiss,
 2008).
 
Greater
 internalized
 stigma
 is
 associated
 with
 higher
 psychological
 community
 
integration
 in
 the
 mental
 health
 community
 and
 a
 decrease
 in
 community
 integration
 in
 the
 
non-­‐mental
 health
 community.
 This
 finding
 is
 consistent
 with
 the
 literature
 on
 
subcommunities,
 whereby
 stigma
 in
 the
 non-­‐mental
 health
 community
 could
 be
 a
 primary
 
reason
 that
 an
 individual
 with
 a
 mental
 illness
 might
 seek
 support
 in
 the
 mental
 health
 
community,
 and
 less
 internalized
 stigma
 could
 potentially
 increase
 integration
 into
 
mainstream
 community
 (Mandiberg,
 2012;
 Wong
 &
 Solomon,
 2002)
 

  The
 current
 study
 recognizes
 the
 importance
 of
 stigma
 in
 the
 process
 of
 community
 
integration.
 This
 is
 why
 stigma
 was
 studied
 at
 the
 level
 of
 the
 individual
 in
 the
 form
 of
 
internalized
 stigma
 and
 also
 at
 the
 network
 level
 to
 identify
 the
 sources
 of
 stigma.
 Our
 
initial
 bivariate
 and
 multivariate
 analyses
 on
 stigma
 are
 representative
 of
 the
 existing
 
literature
 that
 emphasizes
 the
 importance
 of
 mental
 health
 stigma
 in
 the
 lives
 in
 
individuals
 with
 mental
 illness,
 especially
 in
 India.
 The
 Indian
 participants
 had
 high
 levels
 
of
 internalized
 stigma
 compared
 with
 the
 U.S.
 participants
 and
 nominated
 more
 individuals
 
in
 their
 non-­‐mental
 health-­‐based
 social
 networks
 who
 were
 a
 source
 of
 stigma.
 They
 
recognize
 mainly
 family
 and
 colleagues
 who
 are
 sources
 of
 stigma.
 These
 findings
 give
 
credence
 to
 the
 literature
 on
 stigma
 in
 India
 whereby
 stigma
 is
 pervasive
 across
 different
 
levels,
 including
 at
 the
 level
 of
 the
 family
 (Chowdhury,
 Sanyal,
 Dutta,
 Banerjee,
 De,
 
Bhattacharya,
 Palit,
 et
 al.,
 2000;
 Imran
 &
 Haider,
 2007;
 Longanathan
 &
 Murthy,
 2012;
 
Longanathan
 &
 Murthy,
 2008;
 Raguram
 et
 al.,
 1996;
 Thara
 &
 Srinivasan,
 2000).
 

  Finally,
 the
 third
 aim
 of
 this
 study
 was
 to
 explore
 the
 use
 of
 multilevel
 analytical
 
techniques
 in
 examining
 the
 effects
 of
 individual-­‐
 and
 network-­‐level
 variables
 on
 an
 

  107
 
individual’s
 disclosure
 about
 mental
 illness.
 Given
 that
 the
 disclosure
 about
 mental
 illness
 
could
 be
 a
 good
 indicator
 of
 stigma,
 understanding
 disclosure
 gives
 us
 an
 insight
 into
 how
 
stigma
 might
 be
 expressed
 in
 the
 lives
 of
 individuals
 with
 SMI.
 By
 using
 the
 individual-­‐level
 
and
 network-­‐level
 data
 simultaneously,
 this
 study
 provides
 a
 complex
 understanding
 of
 
factors
 that
 are
 associated
 with
 disclosure
 related
 to
 mental
 illness.
 Several
 important
 
findings
 emerged
 from
 this
 analysis.
 
 
Turning
 to
 the
 individual-­‐level
 results,
 we
 found
 that
 higher
 symptoms
 and
 more
 
perceived
 social
 support
 each
 lead
 to
 greater
 disclosure
 about
 mental
 illness.
 The
 first
 
finding
 supports
 existing
 literature
 that
 suggests
 it
 is
 relatively
 easy
 to
 hide
 a
 mental
 illness
 
if
 the
 signs
 and
 symptoms
 are
 not
 obvious
 (Chaudoir
 &
 Fisher,
 2010;
 Garcia
 &
 Crocker,
 
2008);
 however,
 if
 the
 symptoms
 become
 more
 severe,
 disclosure
 may
 become
 more
 
necessary.
 Increased
 social
 support
 has
 been
 linked
 in
 the
 literature
 with
 both
 stigma
 
reduction
 (Rüsch,
 Angermeyer,
 &
 Corrigan,
 2005)
 and
 an
 increase
 in
 disclosure
 about
 
mental
 illness
 (Chaudoir
 &
 Fisher,
 2010;
 Garcia
 &
 Crocker,
 2008).
 Internalized
 stigma
 is
 
also
 associated
 with
 disclosure.
 Higher
 levels
 of
 internalized
 stigma
 are
 associated
 with
 a
 
greater
 unwillingness
 to
 disclose.
 This
 finding
 gives
 us
 an
 insight
 in
 how
 self-­‐stigmatizing
 
might
 lead
 someone
 to
 not
 share
 or
 disclose
 about
 their
 mental
 illness.
 This
 relationship
 
between
 internalized
 stigma
 and
 disclosure
 could
 be
 a
 result
 of
 decreased
 self-­‐image
 or
 
previous
 bad
 experiences
 associated
 with
 disclosure
 (Omarzu,
 2000).
 
 

  An
 individual’s
 willingness
 (or
 unwillingness,
 as
 measured
 in
 the
 current
 study)
 to
 
disclose
 is
 found
 to
 be
 related
 primarily
 to
 the
 relationship
 network-­‐level
 variables.
 
Compared
 with
 family,
 individuals
 are
 less
 willing
 to
 disclose
 to
 friends,
 neighbors,
 and
 
colleagues
 and
 more
 willing
 to
 disclose
 to
 caseworkers.
 This
 finding
 is
 consistent
 with
 the
 

  108
 
literature
 on
 disclosure
 in
 that
 disclosure
 is
 not
 only
 linked
 with
 stigma
 and
 the
 possibility
 
of
 stigma,
 but
 it
 is
 also
 associated
 with
 maintaining
 a
 certain
 self-­‐image
 in
 front
 of
 society
 
(Fisher,
 Burnet,
 Huang,
 Chin,
 &
 Cagney,
 2007;
 Garcia
 &
 Crocker,
 2008).
 
There
 is
 one
 individual-­‐level
 finding
 that
 is
 not
 significant
 but
 is
 worth
 mentioning.
 
Country
 affiliation
 is
 not
 significantly
 associated
 with
 disclosure
 about
 mental
 illness.
 This
 
finding
 is
 especially
 relevant
 because
 both
 our
 bivariate
 and
 multivariate
 analyses
 show
 
important
 country
 differences
 in
 terms
 of
 stigma
 and
 disclosure.
 Indian
 participants
 have
 
higher
 levels
 of
 internalized
 stigma,
 and
 at
 a
 bivariate
 level,
 have
 higher
 levels
 of
 
unwillingness
 to
 disclose,
 especially
 to
 family
 members
 and
 colleagues.
 A
 possible
 rationale
 
for
 this
 could
 be
 that
 membership
 in
 a
 particular
 network
 category
 is
 more
 important
 to
 
the
 behavior
 associated
 with
 disclosure
 rather
 than
 country
 affiliation.
 Hence,
 because
 we
 
added
 network-­‐level
 variables
 that
 account
 for
 the
 relationship
 with
 the
 network
 tie
 and
 
how
 having
 a
 particular
 relationship
 could
 be
 associated
 with
 disclosure,
 the
 country
 
affiliation
 is
 no
 longer
 significant.
 This
 particular
 finding
 speaks
 to
 the
 relevance
 of
 
multilevel
 methodologies
 to
 study
 complex
 phenomena
 like
 community
 integration,
 stigma,
 
and
 social
 resources,
 where
 understanding
 the
 source
 or
 context
 of
 a
 phenomenon
 is
 as
 
important
 as
 measuring
 the
 total
 levels
 of
 a
 particular
 phenomenon.
 For
 example,
 if
 we
 
were
 to
 use
 this
 technique
 for
 predicting
 various
 forms
 of
 social
 resources,
 we
 would
 be
 
able
 to
 account
 for
 different
 individual-­‐level
 and
 network-­‐level
 factors
 that
 could
 influence
 
the
 presence
 of
 social
 resources.
 
 
Implications
 for
 Social
 Work
 Practice
 and
 Research
 
The
 current
 study
 has
 important
 implications
 for
 cross-­‐national
 research
 and
 
practice.
 First,
 given
 that
 our
 samples
 show
 different
 levels
 of
 integration
 into
 different
 

  109
 
aspects
 of
 community
 integration
 suggests
 that
 community
 integration
 is
 not
 an
 unalloyed
 
concept
 and,
 hence,
 interventions
 aimed
 toward
 increasing
 community
 integration
 should
 
be
 adapted
 and
 targeted
 appropriately.
 Second,
 because
 social
 networks
 are
 found
 to
 be
 
important
 both
 as
 a
 representation
 of
 social
 community
 integration
 and
 as
 significantly
 
associated
 with
 various
 dimensions
 of
 community
 integration,
 it
 opens
 the
 avenue
 for
 
practitioners
 to
 incorporate
 individuals
 from
 their
 client’s
 networks
 to
 increase
 the
 efficacy
 
of
 interventions.
 Whereas
 incorporation
 of
 family
 members
 into
 the
 treatment
 and
 follow-­‐
up
 plans
 have
 already
 been
 suggested
 and
 encouraged
 in
 service
 delivery
 settings,
 our
 
results
 emphasize
 the
 importance
 of
 friends
 in
 the
 lives
 of
 individuals
 with
 mental
 illness,
 
especially
 in
 the
 United
 States,
 which
 gives
 rise
 to
 the
 possibility
 of
 tapping
 into
 this
 
network
 resource
 in
 an
 individual’s
 life.
 
 
Third,
 given
 that
 the
 study
 found
 country
 differences
 in
 some
 dimensions
 of
 
community
 integration
 and
 not
 others,
 any
 practice
 or
 intervention
 needs
 to
 be
 culturally
 
adapted
 to
 be
 relevant
 across
 different
 cultures
 and
 nations.
 Where
 cross-­‐national
 
differences
 give
 credence
 to
 the
 cultural
 basis
 of
 community
 and
 community
 integration,
 
they
 also
 raise
 questions
 about
 the
 practice
 of
 applying
 concepts
 to
 ethically
 heterogeneous
 
groups
 of
 people
 within
 the
 United
 States.
 Research
 with
 racial/ethnic
 minorities
 with
 SMI
 
should
 examine
 cultural
 factors,
 such
 as
 social
 support
 and
 social
 network
 structures
 that
 
may
 influence
 concepts
 like
 community
 integration.
 
 
In
 terms
 of
 implications
 for
 research,
 this
 study
 uses
 two
 innovative
 methods
 to
 
study
 community
 integration
 and
 associated
 factors.
 First,
 the
 combination
 of
 quantitative
 
and
 network
 methods
 give
 good
 insight
 into
 the
 community
 integration
 behavior
 of
 
individuals
 with
 SMI.
 Second,
 this
 study
 uses
 multilevel
 modeling
 to
 understand
 how
 the
 

  110
 
complex
 association
 of
 individual
 and
 network-­‐level
 factors
 are
 associated
 with
 factors
 
related
 to
 community
 integration.
 In
 this
 study,
 we
 used
 multilevel
 modeling
 to
 get
 an
 in-­‐
depth
 understanding
 of
 disclosure
 about
 mental
 illness.
 However,
 this
 can
 be
 used
 to
 
understand
 other
 concepts
 related
 to
 community
 integration.
 
Limitations,
 Strengths,
 and
 Suggestions
 for
 Further
 Study
 
There
 are
 a
 few
 important
 limitations
 to
 the
 current
 study
 that
 need
 to
 be
 
considered
 while
 interpreting
 the
 results.
 First,
 this
 study
 used
 cross-­‐sectional
 data,
 which
 
make
 the
 results
 associational
 and
 not
 causal.
 Lack
 of
 a
 longitudinal
 design
 and
 
unavailability
 of
 accompanying
 qualitative
 data
 limited
 our
 ability
 to
 establish
 causality.
 
However,
 inferences
 about
 causality
 are
 often
 difficult
 to
 make
 in
 field
 research
 because
 of
 
many
 uncontrolled
 background
 sources
 of
 variance.
 
Second,
 all
 data
 were
 self-­‐report,
 which
 may
 lead
 to
 social
 desirability
 bias.
 
Additionally,
 the
 data
 only
 represented
 voluntary
 participants.
 Third,
 these
 data
 were
 drawn
 
from
 purposive
 sampling,
 which
 is
 good
 for
 comparisons
 but
 might
 not
 be
 generalizable
 to
 the
 
entire
 population
 of
 individuals
 with
 SMI.
 Fourth,
 data
 were
 collected
 from
 one
 site
 each
 in
 the
 
United
 States
 and
 India,
 which
 could
 present
 another
 problem
 in
 the
 generalizability
 of
 the
 
results.
 Next,
 most
 of
 the
 sample
 in
 the
 United
 States
 was
 Euro-­‐American
 or
 Latino.
 Hence,
 the
 
findings
 might
 not
 be
 representative
 of
 other
 ethnic
 or
 cultural
 groups.
 Another
 limitation
 of
 
the
 study
 is
 its
 small
 sample
 size,
 which
 in
 combination
 with
 cross-­‐sectional
 data,
 limited
 
our
 ability
 to
 draw
 conclusive
 inferences.
 Fifth,
 we
 did
 not
 have
 enough
 information
 in
 the
 
data
 to
 distinguish
 between
 urban
 and
 rural
 participants,
 both
 in
 India
 and
 the
 United
 
States.
 This
 difference
 might
 be
 significant
 because
 of
 the
 presence
 of
 more
 stigma
 and
 
different
 perceptions
 related
 to
 mental
 illnesses.
 
 

  111
 

  There
 were
 several
 major
 strengths
 of
 this
 dissertation.
 First,
 this
 is
 the
 first
 study
 
to
 examine
 different
 dimensions
 of
 community
 integration
 in
 two
 different
 countries
 using
 
a
 unique
 blend
 of
 quantitative
 and
 network
 methodologies.
 The
 cross-­‐national
 component,
 
in
 particular,
 gave
 us
 a
 more
 nuanced
 understanding
 of
 community
 integration
 within
 an
 
individual’s
 cultural
 context.
 Second,
 this
 study
 expanded
 the
 social
 dimension
 of
 
community
 integration
 given
 by
 Wong
 and
 Solomon
 (2002)
 using
 bonding
 and
 bridging
 
social
 capital
 perspectives
 of
 the
 social
 capital
 theory.
 Third,
 we
 enhanced
 the
 information
 
availed
 using
 network
 methodology
 to
 include
 relational-­‐level
 network
 data
 to
 attain
 more
 
information
 about
 an
 individual’s
 network.
 Fourth,
 stigma
 was
 studied
 on
 multiple
 levels:
 
as
 a
 variable
 that
 might
 impact
 the
 dimensions
 of
 community
 integration
 and
 its
 
relationship
 with
 disclosure
 about
 mental
 illness
 at
 the
 network
 level.
 Finally,
 this
 study
 
incorporated
 multilevel
 modeling
 to
 study
 the
 association
 between
 stigma
 and
 various
 
individual-­‐level
 and
 network-­‐level
 variables.
 
Despite
 the
 limitations
 of
 the
 current
 study,
 this
 research
 provides
 a
 foundation
 for
 
further
 exploration
 in
 a
 variety
 of
 the
 ways.
 First,
 because
 we
 found
 differences
 in
 the
 
levels
 of
 community
 integration
 for
 individuals
 in
 high-­‐
 and
 low-­‐intensity
 service
 groups
 in
 
the
 United
 States
 (Pahwa
 et
 al.,
 2013),
 future
 studies
 could
 explore
 country
 differences
 in
 
terms
 of
 different
 service-­‐intensity
 modalities.
 Additionally,
 our
 sample
 size
 was
 not
 large
 
enough
 for
 us
 to
 do
 subgroup
 analyses
 in
 terms
 of
 different
 cultural/racial
 groups
 within
 
the
 United
 States.
 Future
 studies
 should
 include
 diverse
 subgroups
 to
 understand
 cultural
 
differences
 in
 terms
 of
 different
 community
 integration
 dimensions.
 Furthermore,
 the
 
current
 study
 provided
 some
 interesting
 and
 important
 insights
 into
 the
 process
 of
 
community
 integration.
 However,
 the
 concepts
 require
 a
 larger
 sample
 size
 using
 a
 

  112
 
longitudinal
 methodology
 to
 establish
 causal
 relationships
 and
 emphatic
 conclusions.
 Using
 
qualitative
 methodologies
 would
 also
 enhance
 our
 understanding
 of
 community,
 
community
 integration,
 social
 support,
 social
 resources,
 and
 stigma
 in
 the
 lives
 of
 
individuals
 with
 SMI.
 Beyond
 the
 methodological
 and
 theoretical
 contributions,
 this
 study
 
raised
 questions
 about
 community
 integration
 and
 factors
 that
 might
 influence
 this
 
process.
 Additional
 studies
 will
 further
 elucidate
 the
 questions
 raised
 by
 this
 study.
 
Conclusion
 
Findings
 from
 the
 current
 study
 provide
 a
 good
 foundation
 to
 understand
 the
 
concept
 of
 community
 integration
 and
 the
 factors
 associated
 with
 this
 process.
 This
 study
 
advances
 the
 investigation
 of
 community
 integration
 in
 important
 ways
 by
 using
 
comprehensive
 and
 innovative
 methodologies
 and
 measures
 and
 by
 distinguishing
 
empirically
 between
 mental
 health
 and
 non-­‐mental
 health
 communities
 for
 individuals
 in
 
two
 different
 countries.
 
 
Overall,
 we
 would
 recommend
 that
 approaches
 to
 community
 integration
 for
 this
 
population
 recognize
 the
 challenges,
 opportunities,
 and
 contradictions
 that
 individuals
 
with
 SMI
 face
 as
 they
 navigate
 between,
 share
 network
 membership
 with,
 and
 access
 
resources
 from
 mental
 health
 and
 non-­‐mental
 health
 communities.
 

 

 

  113
 
REFERENCES
 

 
Abdallah,
 C.,
 Cohen,
 C.
 I.,
 Sanchez-­‐Almira,
 M.,
 Reyes,
 P.,
 &
 Ramirez,
 P.
 (2009).
 Community
 
Integration
 and
 Associated
 Factors
 Among
 Older
 Adults
 With
 Schizophrenia.
 
Psychiatric
 Services,
 60(12),
 1642-­‐1648.
 
 
Banerjee,
 G.,
 &
 Roy,
 S.
 (1998).
 Determinants
 of
 help-­‐seeking
 behaviour
 of
 families
 of
 
schizophrenic
 patients
 attending
 a
 teaching
 hospital
 in
 India:
 An
 indigenous
 
explanatory
 model.
 International
 Journal
 of
 Social
 Psychiatry,
 44(3),
 199-­‐214.
 
 
Barrera,
 M.
 (1986).
 Distinctions
 between
 social
 support
 concepts,
 measures,
 and
 models.
 
American
 Journal
 of
 Community
 Psychology,
 14(4),
 413-­‐445.
 
 
Barrera,
 M.
 (2000).
 Social
 support
 research
 in
 community
 psychology.
 Handbook
 of
 
Community
 Psychology,
 215-­‐245.
 
 
Barrett-­‐Lennard,
 G.
 T.
 (1994).
 Toward
 a
 person-­‐centered
 theory
 of
 community.
 Journal
 of
 
Humanistic
 Psychology,
 34(3),
 62-­‐86.
 
 
Baumgartner,
 J.
 N.,
 &
 Herman,
 D.
 B.
 (2012).
 Community
 integration
 of
 formerly
 homeless
 
men
 and
 women
 with
 severe
 mental
 illness
 after
 hospital
 discharge.
 Psychiatric
 
Services,
 63(5),
 435-­‐437.
 doi:
 10.1176/appi.ps.201100392
 
Bellack,
 A.
 S.
 (2006).
 Scientific
 and
 consumer
 models
 of
 recovery
 in
 schizophrenia:
 
Concordance,
 contrasts,
 and
 implications.
 Schizophrenia
 Bulletin,
 32(3),
 432-­‐442.
 
 
Bhatia,
 V.,
 Garg,
 R.,
 &
 Galhotra,
 A.
 (2012a).
 Family
 and
 mental
 health
 in
 India.
 In
 B.
 S.
 
Chavan,
 N.
 Gupta,
 A.
 Sidana,
 P.
 Arun
 &
 S.
 Jadhav
 (Eds.),
 Community
 mental
 health
 in
 
India
 (pp.
 77-­‐88).
 New
 Delhi:
 Jaypee
 Brothers,
 Medical
 Publishers.
 
Bhatia,
 V.,
 Garg,
 R.,
 &
 Galhotra,
 A.
 (2012b).
 General
 hospital
 psychiatry.
 In
 B.
 S.
 Chavan,
 N.
 
Gupta,
 A.
 Sidana,
 P.
 Arun
 &
 S.
 Jadhav
 (Eds.),
 Community
 mental
 health
 in
 India
 (pp.
 
39-­‐52).
 New
 Delhi:
 Jaypee
 Brothers,
 Medical
 Publishers.
 
Bhattacharyya,
 J.
 (2004).
 Theorizing
 community
 development.
 Community
 Development,
 
34(2),
 5-­‐34.
 
 
Blackshaw,
 T.
 (2009).
 Key
 concepts
 in
 community
 studies:
 Sage
 Publications
 Limited.
 
Bond,
 G.
 R.,
 Salyers,
 M.
 P.,
 Rollins,
 A.
 L.,
 Rapp,
 C.
 A.,
 &
 Zipple,
 A.
 M.
 (2004).
 How
 evidence-­‐
based
 practices
 contribute
 to
 community
 integration.
 Community
 Mental
 Health
 
Journal,
 40(6),
 569-­‐588.
 
 
Bourdieu,
 P.
 (1992).
 The
 logic
 of
 practice:
 Stanford
 University
 Press.
 
Bourdieu,
 P.
 (2008).
 The
 Forms
 of
 Capital.
 In
 N.
 W.
 Biggart
 (Ed.),
 Readings
 in
 economic
 
sociology
 (pp.
 280).
 

  114
 
Bradshaw,
 T.
 K.
 (2008).
 The
 post-­‐place
 community:
 Contributions
 to
 the
 debate
 about
 the
 
definition
 of
 community.
 Community
 Development,
 39(1),
 5-­‐16.
 
 
Brennan,
 M.
 A.,
 &
 Brown,
 R.
 B.
 (2008).
 Community
 theory:
 current
 perspectives
 and
 future
 
directions.
 Community
 Development,
 39(1),
 1-­‐4.
 
 
Brewer,
 D.
 D.
 (2000).
 Forgetting
 in
 the
 recall-­‐based
 elicitation
 of
 personal
 and
 social
 
networks.
 Social
 Networks,
 22(1),
 29-­‐43.
 
 
Brewer,
 D.
 D.,
 &
 Garrett,
 S.
 B.
 (2001).
 Evaluation
 of
 interviewing
 techniques
 to
 enhance
 
recall
 of
 sexual
 and
 drug
 injection
 partners.
 Sexually
 Transmitted
 Diseases,
 28(11),
 
666-­‐677.
 
 
Bromley,
 E.,
 Gabrielian,
 S.,
 Brekke,
 B.,
 Pahwa,
 R.,
 Daly,
 K.
 A.,
 Brekke,
 J.
 S.,
 &
 Braslow,
 J.
 T.
 
(2013).
 Experiencing
 Community:
 Perspectives
 of
 Individuals
 Diagnosed
 as
 Having
 
Serious
 Mental
 Illness.
 Psychiatric
 Services.
 doi:
 10.1176/appi.ps.201200235
 
Brugha,
 T.,
 Jenkins,
 R.,
 Bebbington,
 P.,
 Meltzer,
 H.,
 Lewis,
 G.,
 &
 Farrell,
 M.
 (2004).
 Risk
 
factors
 and
 the
 prevalence
 of
 neurosis
 and
 psychosis
 in
 ethnic
 groups
 in
 Great
 
Britain.
 Social
 Psychiatry
 and
 Psychiatric
 Epidemiology,
 39(12),
 939-­‐946.
 
 
Brugha,
 T.,
 Wing,
 J.
 K.,
 Brewin,
 C.
 R.,
 MacCarthy,
 B.,
 &
 Lesage,
 A.
 (1993).
 The
 relationship
 of
 
social
 network
 deficits
 with
 deficits
 in
 social
 functioning
 in
 long-­‐term
 psychiatric
 
disorders.
 Social
 Psychiatry
 and
 Psychiatric
 Epidemiology,
 28(5),
 218-­‐224.
 
 
Butzlaff,
 R.
 L.,
 &
 Hooley,
 J.
 M.
 (1998).
 Expressed
 emotion
 and
 psychiatric
 relapse:
 a
 meta-­‐
analysis.
 Archives
 of
 General
 Psychiatry,
 55(6),
 547.
 
 
Calhoun,
 C.
 (2007).
 Community
 without
 propinquity
 revisited:
 Communications
 technology
 
and
 the
 transformation
 of
 the
 urban
 public
 sphere.
 Sociological
 Inquiry,
 68(3),
 373-­‐
397.
 
 
Callus,
 I.
 (2006).
 Theorizing
 Europe
 from
 the
 other
 shore:
 Derrida,
 community
 and
 the
 
exemplary
 of
 Europe.
 In
 S.
 Herbrechter
 &
 M.
 Higgins
 (Eds.),
 Critical
 studies,
 
returning
 (to)
 communities.
 Theory,
 culture
 and
 political
 practice
 of
 the
 communal
 
(Vol.
 28,
 pp.
 29-­‐54).
 Amsterdam,
 NLD
 Editions
 Rodopi
 
 
Campanini,
 B.
 (2001).
 The
 World
 Health
 Report
 2001:
 Mental
 health:
 new
 understanding,
 
new
 hope.
 In
 A.
 Haden
 (Ed.):
 World
 health
 organization
 (WHO).
 
Caqueo-­‐Urízar,
 A.,
 Gutiérrez-­‐Maldonado,
 J.,
 &
 Miranda-­‐Castillo,
 C.
 (2009).
 Quality
 of
 life
 in
 
caregivers
 of
 patients
 with
 schizophrenia:
 A
 literature
 review.
 Health
 and
 Quality
 of
 
Life
 Outcomes,
 7(1),
 84.
 doi:
 10.1186/1477-­‐7525-­‐7-­‐84
 
Carling,
 P.
 J.
 (1990).
 Major
 mental
 illness,
 housing,
 and
 supports.
 The
 promise
 of
 
community
 integration.
 American
 Psychologist,
 45(8),
 969-­‐975.
 
 

  115
 
Chaudoir,
 S.
 R.,
 &
 Fisher,
 J.
 D.
 (2010).
 The
 disclosure
 processes
 model:
 understanding
 
disclosure
 decision
 making
 and
 postdisclosure
 outcomes
 among
 people
 living
 with
 a
 
concealable
 stigmatized
 identity.
 Psychological
 Bulletin,
 136(2),
 236.
 
 
Chowdhury,
 A.
 N.,
 Sanyal,
 D.,
 Dutta,
 S.
 K.,
 Banerjee,
 S.,
 De,
 R.,
 Bhattacharya,
 K.,
 .
 .
 .
 Weiss,
 M.
 
G.
 (2000).
 Stigma
 and
 mental
 illness:
 Pilot
 study
 of
 laypersons
 and
 health
 care
 
providers
 with
 the
 EMIC
 in
 rural
 West
 Bengal,
 India.
 International
 Medical
 Journal,
 
7(4),
 257-­‐260.
 
 
Chowdhury,
 A.
 N.,
 Sanyal,
 D.,
 Dutta,
 S.
 K.,
 Banerjee,
 S.,
 De,
 R.,
 Bhattacharya,
 K.,
 .
 .
 .
 Weiss,
 M.
 
G.
 (2000).
 Stigma
 and
 Mental
 Illness:
 Pilot
 Study
 of
 Laypersons
 and
 Health
 Care
 
Provides
 with
 the
 EMIC
 in
 Rural
 West
 Bengal,
 India.
 International
 Medical
 Journal,
 
7(4),
 257-­‐260.
 
 
Cohen,
 A.
 P.
 (1985).
 The
 symbolic
 construction
 of
 community:
 Routledge.
 
Cohen,
 C.
 I.,
 Pathak,
 R.,
 Ramirez,
 P.
 M.,
 &
 Vahia,
 I.
 (2009).
 Outcome
 Among
 Community
 
Dwelling
 Older
 Adults
 with
 Schizophrenia:
 Results
 Using
 Five
 Conceptual
 Models.
 
Community
 Mental
 Health
 Journal,
 45(2),
 151-­‐156.
 
 
Cohen,
 S.,
 &
 Wills,
 T.
 A.
 (1985).
 Stress,
 social
 support,
 and
 the
 buffering
 hypothesis.
 
Psychological
 Bulletin,
 98(2),
 310.
 
 
Coker,
 E.
 M.
 (2005).
 Selfhood
 and
 social
 distance:
 Toward
 a
 cultural
 understanding
 of
 
psychiatric
 stigma
 in
 Egypt.
 Social
 Science
 &
 Medicine,
 61(5),
 920-­‐930.
 
 
Coleman,
 P.
 J.
 (1988).
 Social
 capital
 in
 the
 creation
 of
 human
 capital.
 The
 American
 Journal
 
of
 Sociology,
 94,
 S95-­‐S120.
 
 
Cooper,
 H.,
 Arber,
 S.,
 Fee,
 L.,
 &
 Ginn,
 J.
 (1999).
 The
 influence
 of
 social
 support
 and
 social
 
capital
 on
 health:
 a
 review
 and
 analysis
 of
 British
 data:
 Health
 Education
 Authority
 
London.
 
Corrigan,
 P.
 W.
 (1999).
 The
 impact
 of
 stigma
 on
 severe
 mental
 illness.
 Cognitive
 and
 
Behavioral
 Practice,
 5(2),
 201-­‐222.
 
 
Corrigan,
 P.
 W.,
 &
 Watson,
 A.
 C.
 (2002).
 Understanding
 the
 impact
 of
 stigma
 on
 people
 with
 
mental
 illness.
 World
 Psychiatry,
 1(1),
 16.
 
 
Corrigan,
 Patrick
 W,
 &
 Phelan,
 Sean
 M.
 (2004).
 Social
 support
 and
 recovery
 in
 people
 with
 
serious
 mental
 illnesses.
 Community
 Mental
 Health
 Journal,
 40(6),
 513-­‐523.
 
 
Cullen,
 M.
 ,
 &
 Whiteford,
 H.
 .
 (2001).
 The
 interrelations
 of
 social
 capital
 with
 health
 and
 
mental
 health.
 Canberra:
 The
 commonwealth
 of
 Australia.
 
Cummings,
 S.
 M.,
 &
 Kropf,
 N.
 P.
 (2009).
 Formal
 and
 informal
 support
 for
 older
 adults
 with
 
severe
 mental
 illness.
 Aging
 &
 Mental
 Health,
 13(4),
 619-­‐627.
 
 

  116
 
Cummins,
 R.
 A.,
 &
 Lau,
 A.
 L.
 D.
 (2003).
 Community
 integration
 or
 community
 exposure?
 A
 
review
 and
 discussion
 in
 relation
 to
 people
 with
 an
 intellectual
 disability.
 Journal
 of
 
Applied
 Research
 in
 Intellectual
 Disabilities,
 16(2),
 145-­‐157.
 
 
Day,
 E.
 N.,
 Edgren,
 K.,
 &
 Eshleman,
 A.
 (2007).
 Measuring
 Stigma
 Toward
 Mental
 Illness:
 
Development
 and
 Application
 of
 the
 Mental
 Illness
 Stigma
 Scale1.
 Journal
 of
 Applied
 
Social
 Psychology,
 37(10),
 2191-­‐2219.
 
 
De
 Silva,
 M.,
 McKenzie,
 K.,
 Harpham,
 T.,
 &
 Huttly,
 S.
 R.
 A.
 (2005).
 Social
 capital
 and
 mental
 
illness:
 a
 systematic
 review.
 Journal
 of
 Epidemiology
 and
 Community
 Health,
 59(8),
 
619-­‐627.
 
 
DeGarmo,
 D.
 S.,
 Patras,
 J.,
 &
 Eap,
 S.
 (2008).
 Social
 support
 for
 divorced
 fathers'
 parenting:
 
Testing
 a
 stress-­‐buffering
 model.
 Family
 relations,
 57(1),
 35-­‐48.
 
 
Dolan,
 P.
 (2008).
 Social
 support,
 social
 justice,
 and
 social
 capital:
 A
 tentative
 theoretical
 
triad
 for
 community
 development.
 Community
 Development,
 39(1),
 112-­‐119.
 doi:
 
10.1111/j.1099-­‐0860.2007.00126.x
 
Eaton,
 W.
 W.
 (1978).
 Life
 events,
 social
 supports,
 and
 psychiatric
 symptoms:
 A
 re-­‐analysis
 
of
 the
 New
 Haven
 data.
 Journal
 of
 Health
 and
 Social
 Behavior,
 230-­‐234.
 
 
Ell,
 K.
 (1984).
 Social
 networks,
 social
 support,
 and
 health
 status:
 A
 review.
 The
 Social
 
Service
 Review,
 133-­‐149.
 
 
Ellison,
 N.
 B.,
 Steinfield,
 C.,
 &
 Lampe,
 C.
 (2007).
 The
 Benefits
 of
 Facebook
 “Friends:”
 Social
 
Capital
 and
 College
 Students’
 Use
 of
 Online
 Social
 Network
 Sites.
 Journal
 of
 
Computer-­‐Mediated
 Communication,
 12(4),
 1143-­‐1168.
 doi:
 10.1111/j.1083-­‐
6101.2007.00367.x
 
Estroff,
 S.
 E.
 (1989).
 Self,
 identity,
 and
 subjective
 experiences
 of
 schizophrenia.
 
Schizophrenia
 Bulletin,
 15(2),
 189-­‐196.
 
 
Farina,
 A.,
 Gliha,
 D.,
 Bourdreau,
 L.
 A.,
 Ale,
 J.
 G.,
 &
 Sherman,
 M.
 (1971).
 Mental
 illness
 and
 the
 
impact
 of
 believing
 others
 know
 about
 it.
 Journal
 of
 Abnormal
 Psychology,
 77(1),
 1.
 
 
Fiori,
 K.
 L.,
 Antonucci,
 T.
 C.,
 &
 Cortina,
 K.
 S.
 (2006).
 Social
 network
 typologies
 and
 mental
 
health
 among
 older
 adults.
 The
 Journals
 of
 Gerontology
 Series
 B:
 Psychological
 
Sciences,
 61(1),
 P25-­‐P32.
 
 
Fisher,
 T.
 L.,
 Burnet,
 D.
 L.,
 Huang,
 E.
 S.,
 Chin,
 M.
 H.,
 &
 Cagney,
 K.
 A.
 (2007).
 Cultural
 leverage:
 
interventions
 using
 culture
 to
 narrow
 racial
 disparities
 in
 health
 care.
 Medical
 care
 
research
 and
 review
 :
 MCRR,
 64(5
 Suppl),
 243S-­‐282S.
 
 
Garcia,
 J.
 A.,
 &
 Crocker,
 J.
 (2008).
 Reasons
 for
 disclosing
 depression
 matter:
 The
 
consequences
 of
 having
 egosystem
 and
 ecosystem
 goals.
 Social
 Science
 and
 Medicine,
 
67(3),
 453-­‐462.
 
 

  117
 
Gjesfjeld,
 C.
 D.,
 Greeno,
 C.
 G.,
 &
 Kim,
 K.
 H.
 (2007).
 A
 Confirmatory
 Factor
 Analysis
 of
 an
 
Abbreviated
 Social
 Support
 Instrument:
 The
 MOS-­‐SSS.
 Research
 on
 Social
 Work
 
Practice,
 18(3),
 231-­‐237.
 doi:
 10.1177/1049731507309830
 
Grant,
 E.
 (2001).
 Social
 capital
 and
 community
 strategies:
 Neighbourhood
 Development
 in
 
Guatemala
 City.
 Development
 and
 Change,
 32(5),
 975-­‐997.
 
 
Gulcur,
 L.,
 Tsemberis,
 S.,
 Stefancic,
 A.,
 &
 Greenwood,
 R.
 M.
 (2007).
 Community
 integration
 of
 
adults
 with
 psychiatric
 disabilities
 and
 histories
 of
 homelessness.
 Community
 Mental
 
Health
 Journal,
 43(3),
 211-­‐228.
 
 
Heaney,
 C.
 A.,
 &
 Israel,
 B.
 A.
 (2002).
 Social
 networks
 and
 social
 support.
 In
 K.
 Glanz,
 B.
 K.
 
Rimer
 &
 K.
 Viswanath
 (Eds.),
 Health
 behavior
 and
 health
 education:
 Theory,
 research,
 
and
 practice
 (Vol.
 3,
 pp.
 185-­‐209).
 
Heller,
 A.
 (1999).
 A
 theory
 of
 modernity:
 Blackwell
 Publishers
 Oxford.
 
Hillery,
 G.
 A.
 (1955).
 Definitions
 of
 community:
 Areas
 of
 agreement.
 Rural
 Sociology,
 20,
 
111-­‐123.
 
 
Holmes-­‐Eber,
 P.,
 &
 Riger,
 S.
 (1990).
 Hospitalization
 and
 the
 composition
 of
 mental
 patients'
 
social
 networks.
 Schizophrenia
 Bulletin,
 16(1),
 157-­‐164.
 
 
Hopper,
 K.
 (2007).
 Recovery
 from
 schizophrenia:
 an
 international
 perspective
 :
 a
 report
 from
 
the
 WHO
 collaborative
 project,
 the
 international
 study
 of
 schizophrenia:
 Oxford
 
University
 Press.
 
Hopper,
 K.,
 &
 Wanderling,
 J.
 (2000).
 Revisiting
 the
 developed
 versus
 developing
 country
 
distinction
 in
 course
 and
 outcome
 in
 schizophrenia:
 Results
 from
 ISoS,
 the
 WHO
 
collaborative
 followup
 project.
 Schizophrenia
 Bulletin,
 26(4),
 835-­‐846.
 
 
House,
 J.
 S.
 (1981).
 Work
 stress
 and
 social
 support:
 Addison-­‐Wesley
 Publishing
 Company
 
Reading,
 MA.
 
House,
 J.
 S.,
 Landis,
 K.
 R.,
 &
 Umberson,
 D.
 (1988).
 Social
 relationships
 and
 health.
 Science,
 
241(4865),
 540-­‐545.
 
 
House,
 J.
 S.,
 Umberson,
 D.,
 &
 Landis,
 K.
 R.
 (1988).
 Structures
 and
 processes
 of
 social
 
support.
 Annual
 Review
 of
 Sociology,
 293-­‐318.
 
 
Imran,
 N.,
 &
 Haider,
 I.
 I.
 (2007).
 The
 stigmatization
 of
 psychiatric
 illness:
 What
 attitudes
 do
 
medical
 students
 and
 family
 physicians
 hold
 towards
 people
 with
 mental
 illness?
 
Pakistan
 Journal
 of
 Medical
 Science,
 23(3),
 318.
 
 
Irwin,
 J.,
 LaGory,
 M.,
 Ritchey,
 F.,
 &
 Fitzpatrick,
 K.
 (2008).
 Social
 assets
 and
 mental
 distress
 
among
 the
 homeless:
 Exploring
 the
 roles
 of
 social
 support
 and
 other
 forms
 of
 social
 
capital
 on
 depression.
 Social
 Science
 &
 Medicine,
 67(12),
 1935-­‐1943.
 
 

  118
 
Jadhav,
 S.,
 Littlewood,
 R.,
 Ryder,
 A.G.,
 Chakraborty,
 A.,
 Jain,
 S.,
 &
 Barua,
 M.
 (2007).
 
Stigmatization
 of
 severe
 mental
 illness
 in
 India:
 Against
 the
 simple
 industrialization
 
hypothesis.
 Indian
 Journal
 of
 Psychiatry,
 49(3),
 189-­‐194.
 
 
Jenkins,
 J.
 H.,
 &
 Carpenter-­‐Song,
 E.
 (2005).
 The
 new
 paradigm
 of
 recovery
 from
 
schizophrenia:
 cultural
 conundrums
 of
 improvement
 without
 cure.
 Culture,
 Medicine
 
and
 Psychiatry,
 29(4),
 379-­‐413.
 
 
Jenkins,
 J.
 H.,
 &
 Carpenter-­‐Song,
 E.
 A.
 (2008).
 Stigma
 Despite
 Recovery.
 Medical
 
Anthropology
 Quarterly,
 22(4),
 381-­‐409.
 
 
Jenkins,
 R.
 (2008).
 Social
 identity
 (Vol.
 10):
 Routledge.
 
Jivanjee,
 P.,
 Kruzich,
 J.
 ,
 &
 Gordon,
 L.
 J.
 (2008).
 Community
 integration
 of
 transition-­‐age
 
individuals:
 views
 of
 young
 with
 mental
 health
 disorders.
 Journal
 of
 Behavioral
 
Health
 Services
 &
 Research,
 35(4),
 402-­‐418.
 
 
Jones,
 S.
 M.
 (2005).
 Attachment
 style
 differences
 and
 similarities
 in
 evaluations
 of
 affective
 
communication
 skills
 and
 person-­‐centered
 comforting
 messages.
 Western
 Journal
 of
 
Communication,
 69(3),
 233-­‐249.
 
 
Kawachi,
 I.,
 &
 Berkman,
 L.
 F.
 (2001).
 Social
 ties
 and
 mental
 health.
 Journal
 of
 Urban
 Health,
 
78(3),
 458-­‐467.
 
 
Khandelwal,
 S.
 K.,
 Jhingan,
 H.
 P.,
 Ramesh,
 S.,
 Gupta,
 R.
 K.,
 &
 Srivastava,
 V.
 K.
 (2004).
 India
 
mental
 health
 country
 profile.
 International
 Review
 of
 Psychiatry,
 16(1/2),
 126-­‐141.
 
 
Kleinman,
 A.
 (1991).
 Rethinking
 psychiatry:
 From
 cultural
 category
 to
 personal
 experience.
 
New
 York:
 Free
 Press.
 
Kulhara,
 P.,
 Mattoo,
 S.
 K.,
 Avasthi,
 A.,
 &
 Malhotra,
 A.
 (1987).
 The
 Brief
 Psychiatric
 Rating
 
Scale
 in
 positive
 and
 negative
 subtypes
 of
 schizophrenia.
 Indian
 Journal
 of
 
Psychiatry,
 29(3),
 213-­‐220.
 
 
Lauber,
 C.,
 &
 Rossler,
 W.
 (2007).
 Stigma
 towards
 people
 with
 mental
 illness
 in
 developing
 
countries
 in
 Asia.
 International
 Review
 of
 Psychiatry,
 19(2),
 157-­‐178.
 
 
Laungani,
 P.
 (1999).
 Understanding
 mental
 illness
 in
 India
 and
 Britain.
 International
 
Journal
 of
 Health
 Promotion
 and
 Education,
 37(4),
 144-­‐157.
 
 
Lin,
 K.,
 &
 Kleinman,
 A.
 M.
 (1988).
 Psychopathology
 and
 clinical
 course
 of
 schizophrenia:
 a
 
cross-­‐cultural
 perspective.
 Schizophrenia
 Bulletin,
 14(4),
 555-­‐567.
 
 
Lin,
 N.
 (1999a).
 Building
 a
 network
 theory
 of
 social
 capital.
 Connections,
 22(1),
 28-­‐51.
 
 
Lin,
 N.
 (1999b).
 Social
 networks
 and
 status
 attainment.
 Annual
 Review
 of
 Sociology,
 467-­‐
487.
 
 

  119
 
Lin,
 N.
 (2002).
 Social
 capital:
 A
 theory
 of
 social
 structure
 and
 action
 (Vol.
 19):
 Cambridge
 
University
 Press.
 
Lin,
 N.,
 &
 Dumin,
 M.
 (1986).
 Access
 to
 occupations
 through
 social
 ties.
 Social
 Networks,
 8(4),
 
365-­‐385.
 
 
Lin,
 N.,
 &
 Ensel,
 W.
 M.
 (1984).
 Depression-­‐mobility
 and
 its
 social
 etiology:
 The
 role
 of
 life
 
events
 and
 social
 support.
 Journal
 of
 Health
 and
 Social
 Behavior,
 176-­‐188.
 
 
Link,
 B.
 G.,
 Cullen,
 F.
 T.,
 Frank,
 J.,
 &
 Wozniak,
 J.
 F.
 (1987).
 The
 social
 rejection
 of
 former
 
mental
 patients:
 understanding
 why
 labels
 matter.
 American
 Journal
 of
 Sociology,
 
1461-­‐1500.
 
 
Link,
 B.
 G.,
 Yang,
 L.
 H.,
 Phelan,
 J.
 C.,
 &
 Collins,
 P.
 Y.
 (2004).
 Measuring
 mental
 illness
 stigma.
 
Schizophrenia
 Bulletin,
 30(3),
 511-­‐541.
 
 
Litwin,
 H.
 (2001).
 Social
 network
 type
 and
 morale
 in
 old
 age.
 The
 Gerontologist,
 41(4),
 516-­‐
524.
 
 
Lloyd,
 C.,
 King,
 R.,
 &
 Moore,
 L.
 (2010).
 Subjective
 and
 objective
 indicators
 of
 recovery
 in
 
severe
 mental
 illness:
 A
 cross-­‐sectional
 study.
 International
 Journal
 of
 Social
 
Psychiatry,
 56(3),
 220-­‐229.
 
 
Longanathan,
 S.,
 &
 Murthy,
 R.
 S.
 (2012).
 Stigma
 of
 mental
 illness.
 In
 B.
 S.
 Chavan,
 N.
 Gupta,
 
A.
 Sidana,
 P.
 Arun
 &
 S.
 Jadhav
 (Eds.),
 Community
 Mental
 Health
 in
 India
 (pp.
 89-­‐111).
 
New
 Delhi:
 Jaypee
 Brothers,
 Medical
 Publishers.
 
Longanathan,
 S.,
 &
 Murthy,
 S.
 (2008).
 Experiences
 of
 stigma
 and
 discrimination
 endured
 by
 
people
 suffering
 from
 schizophrenia.
 Indian
 Journal
 of
 Psychiatry,
 50,
 39-­‐46.
 
 
Major,
 B.,
 &
 O'Brien,
 L.T.
 (2005).
 The
 social
 psychology
 of
 stigma.
 Annual
 Review
 of
 
Psychology,
 56,
 393-­‐421.
 
 
Mandiberg,
 J.
 M.
 (1999).
 The
 sword
 of
 reform
 has
 two
 sharp
 edges:
 Normalcy,
 
normalization,
 and
 the
 destruction
 of
 the
 social
 group.
 New
 Directions
 for
 Mental
 
Health
 Services,
 1999(83),
 31-­‐44.
 
 
Mandiberg,
 J.
 M.
 (2012).
 Commentary:
 The
 failure
 of
 social
 inclusion:
 an
 alternative
 
approach
 through
 community
 development.
 Psychiatric
 Services,
 63(5),
 458-­‐460.
 
doi:
 10.1176/appi.ps.201100367
 
Marwaha,
 S.,
 &
 Johnson,
 S.
 (2004).
 Schizophrenia
 and
 employment.
 Social
 Psychiatry
 and
 
Psychiatric
 Epidemiology,
 39(5),
 337-­‐349.
 
 
McCarty,
 C.,
 &
 Govindaramanujam,
 S.
 (2005).
 A
 modified
 elicitation
 of
 personal
 networks
 
using
 dynamic
 visualization.
 Connections,
 26(2),
 61-­‐69.
 
 

  120
 
McCarty,
 C.,
 Killworth,
 P.
 D.,
 &
 Rennell,
 J.
 (2007).
 Impact
 of
 methods
 for
 reducing
 
respondent
 burden
 on
 personal
 network
 structural
 measures.
 Social
 Networks,
 
29(2),
 300-­‐315.
 
 
McColl,
 M.
 A.,
 Davies,
 D.,
 Carlson,
 P.,
 Johnston,
 J.,
 &
 Minnes,
 P.
 (2001).
 The
 community
 
integration
 measure:
 Development
 and
 preliminary
 validation.
 Archives
 of
 Physical
 
Medicine
 and
 Rehabilitation,
 82(4),
 429-­‐434.
 
 
Mehta,
 S.,
 &
 Farina,
 A.
 (1997).
 Is
 being
 ìsickî
 really
 better?
 Effect
 of
 the
 disease
 view
 of
 
mental
 disorder
 on
 stigma.
 Journal
 of
 Social
 and
 Clinical
 Psychology,
 16(4),
 405-­‐419.
 
 
Mirowsky,
 J.,
 &
 Ross,
 C.
 E.
 (1980).
 Minority
 status,
 ethnic
 culture,
 and
 distress:
 A
 
comparison
 of
 Blacks,
 Whites,
 Mexicans,
 and
 Mexican
 Americans.
 American
 Journal
 
of
 Sociology,
 479-­‐495.
 
 
Mitchell,
 C.
 U.,
 &
 LaGory,
 M.
 (2002).
 Social
 capital
 and
 mental
 distress
 in
 an
 impoverished
 
community.
 City
 &
 Community,
 1(2),
 199-­‐222.
 
 
National
 Institutes
 of
 Health.
 (1991).
 The
 numbers
 count:
 Mental
 disorders
 in
 America.
 
Retrieved
 on
 July,
 20,
 2012
 from
 http://www.nimh.nih.gov/health/publications/the-­‐
numbers-­‐count-­‐mental-­‐disorders-­‐inamerica/index.shtml
 -­‐
 Intro.
 
 
New
 Freedom
 Commission
 on
 Mental
 Health.
 (2003).
 Achieving
 the
 promise:
 Transforming
 
mental
 health
 care
 in
 America
 Rockville,
 MD:
 Department
 of
 Health
 and
 Human
 
Services.
 
Nizamie,
 S.
 H.,
 Katsu,
 M.
 Z.,
 &
 Praharaj,
 S.
 K.
 (2012).
 Psychiatry
 in
 India:
 A
 historical
 
perspective.
 In
 B.
 S.
 Chavan,
 N.
 Gupta,
 A.
 Sidana,
 P.
 Arun
 &
 S.
 Jadhav
 (Eds.),
 
Community
 Mental
 Health
 in
 India
 (pp.
 25-­‐38).
 New
 Delhi:
 Jaypee
 Brothers,
 Medical
 
Publishers.
 
Nunley,
 M.
 (1998).
 The
 involvement
 of
 families
 in
 Indian
 psychiatry.
 Culture,
 Medicine
 and
 
Psychiatry,
 22(3),
 317-­‐353.
 
 
Omarzu,
 J.
 (2000).
 A
 disclosure
 decision
 model:
 Determining
 how
 and
 when
 individuals
 
will
 self-­‐disclose.
 Personality
 and
 Social
 Psychology
 Review,
 4(2),
 174-­‐185.
 
 
Ozer,
 E.
 J.,
 Best,
 S.
 R.,
 Lipsey,
 T.
 L.,
 &
 Weiss,
 D.
 S.
 (2008).
 Predictors
 of
 posttraumatic
 stress
 
disorder
 and
 symptoms
 in
 adults:
 a
 meta-­‐analysis.
 Paper
 presented
 at
 the
 annual
 
meeting
 of
 the
 international
 society
 for
 traumatic
 stress
 studies,
 14th,
 Nov,
 1998,
 
Washington,
 DC,
 US;
 This
 article
 is
 based
 on
 a
 paper
 presented
 at
 the
 
aforementioned
 meeting.
 
Pahwa,
 R.,
 Bromley,
 E.,
 Brekke,
 B.,
 Gabrielian,
 S.,
 Braslow,
 J.
 T.,
 &
 Brekke,
 J.
 S.
 (2013).
 The
 
community
 integration
 of
 individuals
 with
 severe
 mental
 illness,
 and
 its
 relationship
 
with
 mental
 health
 service
 intensity.
 Psychological
 Services,
 (under
 review).
 
 

  121
 
Pakaslahti,
 A.
 (2012).
 Cultural
 dimensions
 of
 health-­‐seeking
 behaviour
 for
 psychiatric
 
disorders
 in
 north
 India:
 An
 exploration
 of
 medical
 pluralism.
 In
 B.
 S.
 Chavan,
 N.
 
Gupta,
 A.
 Sidana,
 P.
 Arun
 &
 S.
 Jadhav
 (Eds.),
 Community
 Mental
 Health
 in
 India
 (pp.
 
567-­‐577).
 New
 Delhi:
 Jaypee
 Brothers,
 Medical
 Publishers.
 
Penn,
 D.
 L.,
 &
 Martin,
 J.
 (1998).
 The
 stigma
 of
 severe
 mental
 illness:
 Some
 potential
 
solutions
 for
 a
 recalcitrant
 problem.
 Psychiatric
 Quarterly,
 69(3),
 235-­‐247.
 
 
Perkins,
 D.
 V.,
 Raines,
 J.
 A.,
 Tschopp,
 M.
 K.,
 &
 Warner,
 T.
 C.
 (2009).
 Gainful
 employment
 
reduces
 stigma
 toward
 people
 recovering
 from
 schizophrenia.
 Community
 Mental
 
Health
 Journal,
 45(3),
 158-­‐162.
 
 
Pescosolido,
 B.
 A.
 (1992).
 Beyond
 rational
 choice:
 The
 social
 dynamics
 of
 how
 people
 seek
 
help.
 American
 Journal
 of
 Sociology,
 1096-­‐1138.
 
 
Pescosolido,
 B.
 A.
 (2006).
 Of
 pride
 and
 prejudice:
 The
 role
 of
 sociology
 and
 social
 networks
 
in
 integrating
 the
 health
 sciences.
 Journal
 of
 Health
 and
 Social
 Behavior,
 47(3),
 189-­‐
208.
 doi:
 10.1177/002214650604700301
 
Phelan,
 J.
 C.,
 Bromet,
 E.
 J.,
 &
 Link,
 B.
 G.
 (1998).
 Psychiatric
 illness
 and
 family
 stigma.
 
Schizophrenia
 Bulletin,
 24(1),
 115-­‐126.
 
 
Pilisuk,
 M.
 (2001).
 A
 job
 and
 a
 home:
 Social
 networks
 and
 the
 integration
 of
 the
 mentally
 
disabled
 in
 the
 community.
 American
 Journal
 of
 Orthopsychiatry,
 71(1),
 49-­‐60.
 
 
Post,
 R.
 C.
 (1997).
 Community
 and
 the
 first
 amendment.
 Arizona
 State
 Law
 Journal,
 29,
 473-­‐
486.
 
 
Prince,
 P.
 N.,
 &
 Gerber,
 G.
 J.
 (2005).
 Subjective
 well-­‐being
 and
 community
 integration
 
among
 clients
 of
 assertive
 community
 treatment.
 Quality
 of
 Life
 Research,
 14(1),
 
161-­‐169.
 
 
Prince,
 P.
 N.,
 &
 Prince,
 C.
 R.
 (2002).
 Perceived
 stigma
 and
 community
 integration
 among
 
clients
 of
 assertive
 community
 treatment.
 Psychiatric
 Rehabilitation
 Journal,
 25(4),
 
323-­‐331.
 
 
Putnam,
 R.
 D.
 (1993).
 The
 prosperous
 community.
 The
 American
 Prospect,
 4(13),
 35-­‐42.
 
 
Putnam,
 R.
 D.
 (1995).
 Bowling
 alone:
 America’s
 declining
 social
 capital.
 Journal
 of
 
Democracy,
 6(1),
 65-­‐78.
 
 
Putnam,
 R.
 D.
 (2000).
 Bowling
 alone:
 The
 collapse
 and
 revival
 of
 American
 community:
 
Simon
 &
 Schuster.
 
Raguram,
 R.
 ,
 Weiss,
 M.
 G.,
 Channabasavanna,
 S.
 M.,
 &
 Devins,
 G.
 M.
 (1996).
 Stigma,
 
depression,
 and
 somatization
 in
 South
 India.
 American
 Journal
 of
 Psychiatry,
 153(8),
 
1043-­‐1049.
 
 

  122
 
Rammohan,
 A.,
 Rao,
 K.,
 &
 Subbakrishna,
 D.
 K.
 (2002).
 Burden
 and
 coping
 in
 caregivers
 of
 
persons
 with
 schizophrenia.
 Indian
 Journal
 of
 Psychiatry,
 44(3),
 220-­‐225.
 
 
Raudenbush,
 S.
 W.,
 &
 Bryk,
 A.
 S.
 (2002).
 Hierarchical
 linear
 models:
 Applications
 and
 data
 
analysis
 methods
 (Vol.
 1):
 Sage
 Publications,
 Inc.
 
Rice,
 E.
 (2010).
 The
 positive
 role
 of
 social
 networks
 and
 social
 networking
 technology
 in
 
the
 condom-­‐using
 behaviors
 of
 homeless
 young
 people.
 Public
 Health
 Reports,
 
125(4),
 588-­‐595.
 
 
Rice,
 E.,
 Holloway,
 I.
 W.,
 Barman-­‐Adhikari,
 A.,
 Fuentes,
 D.,
 Brown,
 C.
 H.,
 &
 Palinkas,
 L.
 A.
 (in
 
press).
 A
 mixed
 methods
 approach
 to
 netowk
 data
 collection.
 Field
 Methods.
 
 
Rice,
 E.,
 Milburn,
 N.
 G.,
 &
 Monro,
 W.
 (2011).
 Social
 networking
 technology,
 social
 network
 
composition,
 and
 reductions
 in
 substance
 use
 among
 homeless
 adolescents.
 
Prevention
 Science,
 1-­‐9.
 
 
Ritsher,
 J.
 B.,
 &
 Phelan,
 J.
 C.
 (2004).
 Internalized
 stigma
 predicts
 erosion
 of
 morale
 among
 
psychiatric
 outpatients.
 Psychiatry
 Research,
 129(3),
 257-­‐265.
 
 
Ritsher-­‐Boyd,
 J.,
 Otilingam,
 P.
 G.,
 &
 Grajales,
 M.
 (2003).
 Internalized
 stigma
 of
 mental
 
illness:
 psychometric
 properties
 of
 a
 new
 measure.
 Psychiatry
 Research,
 121(1),
 31-­‐
49.
 
 
Rosenfeld,
 L.
 B.
 (1979).
 Self-­‐disclosure
 avoidance:
 Why
 I
 am
 afraid
 to
 tell
 you
 who
 I
 am.
 
Communications
 Monographs,
 46(1),
 63-­‐74.
 
 
Rüsch,
 N.,
 Angermeyer,
 M.
 C.,
 &
 Corrigan,
 P.
 W.
 (2005).
 Mental
 illness
 stigma:
 concepts,
 
consequences,
 and
 initiatives
 to
 reduce
 stigma.
 European
 Psychiatry,
 20(8),
 529-­‐539.
 
 
Sartorius,
 N.
 (2003).
 Social
 capital
 and
 mental
 health.
 Current
 Opinion
 in
 Psychiatry,
 16,
 
S101-­‐S105.
 
 
Scheff,
 T.
 J.
 (1966).
 A
 sociological
 theory
 of
 mental
 disorders.
 Approaches
 to
 
Psychopathology,
 250.
 
 
Schultz,
 T.
 W.
 (1961).
 Investment
 in
 human
 capital.
 The
 American
 Economic
 Review,
 1-­‐17.
 
 
Segal,
 S.
 P.,
 &
 Aviram,
 U.
 (1978).
 The
 mentally
 ill
 in
 community-­‐based
 sheltered
 care:
 A
 study
 
of
 community
 care
 and
 social
 integration.
 New
 York:
 Wiley
 
 
Sethi,
 B.
 B.
 (1983).
 Family
 and
 Psychiatry.
 Indian
 Journal
 of
 Psychiatry,
 25(3),
 165-­‐166.
 
 
Sherbourne,
 C.
 D.,
 &
 Stewart,
 A.
 L.
 (1991).
 The
 MOS
 social
 support
 survey.
 Social
 Science
 &
 
Medicine,
 32(6),
 705-­‐714.
 
 
Shern,
 D,
 Lee,
 B,
 &
 Coen,
 A.
 (1996).
 The
 Colorado
 Symptom
 Inventory:
 A
 self-­‐report
 measure
 
for
 psychiatric
 symptoms.
 Tampa,
 Florida:
 Louis
 de
 la
 Parte
 Mental
 Health
 Institute.
 

  123
 
Snijders,
 T.
 A.
 B.,
 &
 Bosker,
 R.
 J.
 (1999).
 Multilevel
 analysis:
 An
 introduction
 to
 basic
 and
 
advanced
 multilevel
 modeling:
 SAGE
 publications
 Ltd.
 
SPSS
 Inc.
 (2009).
 PASW
 Statistics
 for
 Mac,
 Version
 18.0.
 Chicago:
 SPSS
 Inc.
 
Srinivasan,
 T.
 N.,
 &
 Thara,
 R.
 (1997).
 How
 do
 men
 with
 schizophrenia
 fare
 at
 work?
 A
 
follow-­‐up
 study
 from
 India.
 Schizophrenia
 Research,
 25(2),
 149-­‐154.
 
 
Srinivasaraghavan,
 J.,
 Mittal,
 S.,
 Kumar,
 N.,
 Sahasranaman,
 B.,
 Garyali,
 V.,
 Gupta,
 S.,
 &
 
Panguluri,
 R.
 (2012).
 Community
 psychiatry
 in
 United
 States
 of
 America.
 In
 B.
 S.
 
Chavan,
 N.
 Gupta,
 A.
 Sidana,
 P.
 Arun
 &
 S.
 Jadhav
 (Eds.),
 Community
 Mental
 Health
 in
 
India
 (pp.
 270-­‐280).
 New
 Delhi:
 Jaypee
 Brothers,
 Medical
 Publishers.
 
Srivastava,
 A.
 (2013).
 Marriage
 as
 a
 perceived
 panacea
 to
 mental
 illness
 in
 India:
 Reality
 
check.
 Indian
 Journal
 of
 Psychiatry,
 55(6),
 S239-­‐S242.
 doi:
 10.4103/0019-­‐
5545.105542
 
StataCorp.
 (2013).
 Stata
 Statistical
 Software:
 Release
 13.
 College
 Station,
 TX:
 StataCorp
 LP.
 
Stein,
 L.
 I.,
 Barry,
 K.
 L.,
 Van
 Dien,
 G.,
 Hollingsworth,
 E.
 J.,
 &
 Sweeney,
 J.
 K.
 (1999).
 Work
 and
 
social
 support:
 a
 comparison
 of
 consumers
 who
 have
 achieved
 stability
 in
 ACT
 and
 
clubhouse
 programs.
 Community
 Mental
 Health
 Journal,
 35(2),
 193-­‐204.
 
 
Stevelink,
 S.,
 Wu,
 I.,
 Voorend,
 C.,
 &
 van
 Brakel,
 W.
 (2012).
 The
 psychometric
 assessment
 of
 
internalized
 stigma
 instruments:
 a
 systematic
 review.
 Stigma
 Research
 and
 Action,
 
2(2).
 doi:
 10.5463/sra.v1i3.35
 
Strauss,
 J.
 S.,
 &
 Carpenter,
 W.
 T.
 (1972).
 The
 prediction
 of
 outcome
 in
 schizophrenia:
 I.
 
Characteristics
 of
 outcome.
 Archives
 of
 General
 Psychiatry,
 27(6),
 739-­‐746.
 
 
Stuart,
 H.
 (2006).
 Mental
 illness
 and
 employment
 discrimination.
 Current
 Opinion
 in
 
Psychiatry,
 19(5),
 522-­‐526.
 
 
Sue,
 S.,
 &
 Chu,
 J.
 Y.
 (2003).
 The
 mental
 health
 of
 ethnic
 minority
 groups:
 Challenges
 posed
 
by
 the
 Supplement
 to
 the
 Surgeon
 General's
 Report
 on
 Mental
 Health.
 Culture,
 
Medicine
 and
 Psychiatry,
 27(4),
 447-­‐465.
 
 
Sweetland,
 S.
 R.
 (1996).
 Human
 capital
 theory:
 Foundations
 of
 a
 field
 of
 inquiry.
 Review
 of
 
Educational
 Research,
 66(3),
 341-­‐359.
 
 
Swerdlow,
 M.
 (1992).
 "Chronicity,"
 "nervios"
 and
 community
 care:
 a
 case
 study
 of
 Puerto
 
Rican
 psychiatric
 patients
 in
 New
 York
 City.
 Culture,
 Medicine
 &
 Psychiatry,
 16(2),
 
217-­‐235.
 
 
Szreter,
 S.,
 &
 Woolcock,
 M.
 (2004).
 Health
 by
 association?
 Social
 capital,
 social
 theory,
 and
 
the
 political
 economy
 of
 public
 health.
 International
 Journal
 of
 Epidemiology,
 33(4),
 
650-­‐667.
 
 

  124
 
Tardy,
 C.
 H.
 (1985).
 Social
 support
 measurement.
 American
 Journal
 of
 Community
 
Psychology,
 13(2),
 187-­‐202.
 
 
Thara,
 R.,
 Padmavati,
 R.,
 Arynkran,
 J.
 R.,
 &
 John,
 S.
 (2008).
 Community
 mental
 health
 in
 
India:
 A
 rethink.
 International
 Journal
 of
 Mental
 Health
 Systems,
 2(11).
 doi:
 
10.1186/1752-­‐448-­‐2-­‐11
 
Thara,
 R.,
 &
 Srinivasan,
 T.
 N.
 (2000).
 How
 stigmatising
 Is
 schizophrenia
 in
 India?
 
International
 Journal
 of
 Social
 Psychiatry,
 46(2),
 135-­‐141.
 
 
Thara,
 Rangaswami,
 Kamath,
 Shanta,
 &
 Kumar,
 Shuba.
 (2003a).
 Women
 with
 schizophrenia
 
and
 broken
 marriages-­‐doubly
 disadvantaged?
 Part
 I:
 Family
 perspective.
 
International
 Journal
 of
 Social
 Psychiatry,
 49(3),
 225-­‐232.
 
 
Thara,
 Rangaswami,
 Kamath,
 Shanta,
 &
 Kumar,
 Shuba.
 (2003b).
 Women
 with
 schizophrenia
 
and
 broken
 marriages-­‐doubly
 disadvantaged?
 Part
 II:
 Family
 perspective.
 
International
 Journal
 of
 Social
 Psychiatry,
 49(3),
 233-­‐240.
 
 
Tönnies,
 F.
 (2001).
 Tönnies:
 community
 and
 civil
 society:
 Cambridge
 University
 Press.
 
Townley,
 G.,
 Kloos,
 B.,
 &
 Wright,
 P.
 A.
 (2009).
 Understanding
 the
 experience
 of
 place:
 
expanding
 methods
 to
 conceptualize
 and
 measure
 community
 integration
 of
 
persons
 with
 serious
 mental
 illness.
 Health
 &
 Place,
 15(2),
 520-­‐531.
 
 
Tsang,
 H.
 W.
 H.,
 Angell,
 B.,
 Corrigan,
 P.
 W.,
 Lee,
 Y.
 T.,
 Shi,
 K.,
 Lam,
 C.
 S.,
 .
 .
 .
 Fung,
 K.
 M.
 T.
 
(2007).
 A
 cross-­‐cultural
 study
 of
 employers'
 concerns
 about
 hiring
 people
 with
 
psychotic
 disorder:
 implications
 for
 recovery.
 Social
 Psychiatry
 and
 Psychiatric
 
Epidemiology,
 42(9),
 723-­‐733.
 
 
Tyler,
 R.
 (2006).
 Comprehending
 Community.
 In
 S.
 Herbrechter
 &
 M.
 Higgins
 (Eds.),
 Critical
 
studies,
 returning
 (to)
 communities.
 Theory,
 culture
 and
 political
 practice
 of
 the
 
communal
 (Vol.
 28,
 pp.
 21-­‐28).
 Amsterdam,
 NLD
 Editions
 Rodopi
 
 
Van
 Der
 Gaag,
 M.,
 &
 Snijders,
 T.A.B.
 (2005).
 The
 Resource
 Generator:
 social
 capital
 
quantification
 with
 concrete
 items.
 Social
 Networks,
 27(1),
 1-­‐29.
 
 
Van
 Der
 Gaag,
 M.,
 &
 Webber,
 M.
 (2008).
 Measurement
 of
 individual
 social
 capital
 Social
 
Capital
 and
 Health
 (pp.
 29-­‐49).
 New
 York:
 Springer.
 
Vyncke,
 V.,
 De
 Clercq,
 B.,
 Stevens,
 V.,
 Costongs,
 C.,
 Barbareschi,
 G.,
 Jónsson,
 S.
 H.,
 .
 .
 .
 Maes,
 L.
 
(2013).
 Does
 neighbourhood
 social
 capital
 aid
 in
 levelling
 the
 social
 gradient
 in
 the
 
health
 and
 well-­‐being
 of
 children
 and
 adolescents?
 A
 literature
 review.
 BMC
 Public
 
Health,
 13(1),
 65-­‐83.
 
 
Wagner,
 W.,
 Duveen,
 G.,
 Themel,
 M.,
 &
 Verma,
 J.
 (1999).
 The
 modernization
 of
 tradition:
 
thinking
 about
 madness
 in
 Patna,
 India.
 Culture
 &
 Psychology,
 5(4),
 413-­‐445.
 doi:
 
10.1177/1354067x9954003
 

  125
 
Wallace,
 C.
 J.,
 Liberman,
 R.
 P.,
 Tauber,
 R.,
 &
 Wallace,
 J.
 (2000).
 The
 independent
 living
 skills
 
survey:
 A
 comprehensive
 measure
 of
 the
 community
 functioning
 of
 severely
 and
 
persistently
 mentally
 ill
 individuals.
 Schizophrenia
 Bulletin,
 26(3),
 631-­‐658.
 
 
Ware,
 N.
 C.,
 Hopper,
 K.,
 Tugenberg,
 T.,
 Dickey,
 B.,
 &
 Fisher,
 D.
 (2007).
 Connectedness
 and
 
citizenship:
 Redefining
 social
 integration.
 Psychiatric
 Services,
 58(4),
 469-­‐474.
 
 
Webber,
 M.
 (1964).
 The
 urban
 place
 and
 the
 nonplace
 urban
 realm.
 In
 M.
 Webber
 (Ed.),
 
Explorations
 into
 Urban
 Structures.
 Philadelphia:
 University
 of
 Pennsylvania
 Press.
 
Webber,
 M.
 (2004).
 Mental
 health
 and
 social
 capitals.
 The
 British
 Journal
 of
 Psychiatry,
 
184(2),
 185-­‐b-­‐186.
 doi:
 10.1192/bjp.184.2.185-­‐b
 
Webber,
 M.,
 &
 Huxley,
 P.
 J.
 (2007).
 Measuring
 access
 to
 social
 capital:
 The
 validity
 and
 
reliability
 of
 the
 resource
 generator-­‐UK
 and
 its
 association
 with
 common
 mental
 
disorder.
 Social
 Science
 &
 Medicine,
 65(3),
 481-­‐492.
 
 
Weiss,
 M.G.,
 &
 Ramakrishna,
 J.
 (2006).
 Stigma
 interventions
 and
 research
 for
 international
 
health.
 Ophthalmology
 Clinics
 of
 North
 America,
 367(9509),
 536-­‐538.
 
 
Wellman,
 B.,
 &
 Wortley,
 S.
 (1990).
 Different
 strokes
 from
 different
 folks:
 Community
 ties
 
and
 social
 support.
 American
 Journal
 of
 Sociology,
 558-­‐588.
 
 
Wieland,
 M.
 E.,
 Rosenstock,
 J.,
 Kelsey,
 S.
 F.,
 Ganguli,
 M.,
 &
 Wisniewski,
 S.
 R.
 (2007).
 Distal
 
support
 and
 community
 living
 among
 individuals
 diagnosed
 with
 schizophrenia
 and
 
schizoaffective
 disorder.
 Psychiatry-­‐Interpersonal
 and
 Biological
 Processes,
 70(1),
 1-­‐
11.
 
 
Wiley-­‐Exley,
 E.
 (2007).
 Evaluations
 of
 community
 mental
 health
 care
 in
 low-­‐
 and
 middle-­‐
income
 countries:
 a
 10-­‐year
 review
 of
 the
 literature.
 Social
 Science
 &
 Medicine,
 
64(6),
 1231-­‐1241.
 doi:
 10.1016/j.socscimed.2006.11.009
 
Wolfensberger,
 W.
 (2011).
 Social
 role
 valorization:
 A
 proposed
 new
 term
 for
 the
 principle
 
of
 normalization.
 Journal
 of
 Intellectual
 Development
 and
 Disability,
 49(6),
 435-­‐440.
 
doi:
 10.1352/1934-­‐9556-­‐49.6.435
 
Wolfensberger,
 W.,
 &
 Tullman,
 S.
 (1982).
 A
 brief
 outline
 of
 the
 principle
 of
 normalization.
 
Rehabilitation
 Psychology,
 27(3),
 131-­‐145.
 doi:
 10.1037/h0090973
 
Wong,
 Y.
 L.
 I.,
 Sands,
 R.
 G.,
 &
 Solomon,
 P.
 L.
 (2010).
 Conceptualizing
 community:
 the
 
experience
 of
 mental
 health
 consumers.
 Qualitative
 Health
 Research,
 20(5),
 654-­‐667.
 
doi:
 10.1177/1049732310361610
 
Wong,
 Y.
 L.
 I.,
 &
 Solomon,
 Phyllis
 L.
 (2002).
 Community
 integration
 of
 persons
 with
 
psychiatric
 disabilities
 in
 supportive
 independent
 housing:
 a
 conceptual
 model
 and
 
methodological
 considerations.
 Mental
 Health
 Services
 Research,
 4(1),
 13-­‐28.
 
 

  126
 
World
 Health
 Organization.
 (1973).
 Report
 of
 the
 international
 pilot
 study
 of
 schizophrenia
 
(Vol.
 1).
 Geneva:
 World
 Health
 Organization.
 
World
 Health
 Organization.
 (1978).
 Report
 of
 the
 international
 pilot
 study
 of
 schizophrenia
 
(Vol.
 2).
 Geneva:
 World
 Health
 Organization.
 
Yang,
 L.
 H.,
 Kleinman,
 A.,
 Link,
 B.
 G.,
 Phelan,
 J.
 C.,
 Lee,
 S.,
 &
 Good,
 B.
 (2007).
 Culture
 and
 
stigma:
 adding
 moral
 experience
 to
 stigma
 theory.
 Social
 Science
 &
 Medicine,
 64(7),
 
1524-­‐1535. 
Abstract (if available)
Abstract Community integration is an important treatment outcome integral to the recovery process for individuals with severe mental illness. However, little empirical work examines the experience and characteristics of community integration for the seriously mentally ill in community-based settings. Additionally, cultural factors are known to have tremendous impact on the conception, course, and outcomes associated with the illness, along with the experience of symptoms, types, and acceptability of treatments and social tolerance of mental illnesses. The differential courses of illness and prognoses have implications for the cross-cultural and cross-national generalizations in terms of research and practice. Existing empirical evidence on community integration fails to consider this difference. Keeping this in mind, the primary goal of this dissertation was to explore the concepts of community integration in India and the United States to bridge this theoretical and conceptual disconnect. ❧ Using the conceptual framework of Wong and Solomon (2002), we aimed to explore the idea of community and community integration of individuals with serious mental illness who are receiving treatment in a public health care setting within the socio-cultural contexts of India and United States and to examine the associated network and psychosocial factors. Data from 30 individuals from the United States and 26 individuals from India were collected. Community integration was assessed using social network interviews and a battery of quantitative measures, including measures of involvement in community activities, social resources, social support, and subjective sense of integration. Associated psychosocial factors were assessed using measures of internalized stigma, symptomatology, and psychosocial functioning. Overall, the findings suggested that in terms of community integration, the two countries were similar in some dimensions and differed in others. Specifically, the Indian sample, in general, were found to be less integrated in the mental health community, rated by the interviewer to be more integrated in the non-mental health community, had higher levels of perceived social support, and expressed that family primarily populated their social networks. Conversely, individuals from the United States felt more integrated into the mental health community, were rated by the interviewer to be more integrated in the mental health community, received more social resources from the mental health community, and had a combination of mental health- and non-mental health-based networks in their lives. Second, the regression models found country affiliation was associated with some dimensions of community integration and not others. Third, various social network variables were found be associated with different dimensions of community integration. Fourth, multilevel analysis using network and individual level variables was found to be a worthy approach to attain a complex understanding of factors associated with disclosure about mental illness. Mental health practice and cross-national research implications, as well as suggestions for future research, are discussed. 
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button
Conceptually similar
The impact of psychosocial rehabilitation services on recovery outcomes for racial/ethnic minorities with severe mental illness
PDF
The impact of psychosocial rehabilitation services on recovery outcomes for racial/ethnic minorities with severe mental illness 
Sociocultural influences on mental health functioning: implications for the design of community-based services
PDF
Sociocultural influences on mental health functioning: implications for the design of community-based services 
Asian Americans served at community mental health agencies for a diagnosis of schizophrenia
PDF
Asian Americans served at community mental health agencies for a diagnosis of schizophrenia 
Suicide talk as a vital sign: a theory-informed examination of individual and relational factors that influence suicidal disclosure
PDF
Suicide talk as a vital sign: a theory-informed examination of individual and relational factors that influence suicidal disclosure 
Transitional housing and wellness center: a holistic approach to decreasing homelessness and mental illness in the Black community
PDF
Transitional housing and wellness center: a holistic approach to decreasing homelessness and mental illness in the Black community 
Social media and health: social support and social capital on pregnancy-related social networking sites
PDF
Social media and health: social support and social capital on pregnancy-related social networking sites 
Implementation of peer providers in integrated health care settings
PDF
Implementation of peer providers in integrated health care settings 
Exploring the social determinants of health in a population with similar access to healthcare: experiences from United States active-duty army wives
PDF
Exploring the social determinants of health in a population with similar access to healthcare: experiences from United States active-duty army wives 
Mental health advocacy and navigation partnerships: the case for a community collaborative approach
PDF
Mental health advocacy and navigation partnerships: the case for a community collaborative approach 
Building personal wellness communities: meaningful play in the everyday life of a network society
PDF
Building personal wellness communities: meaningful play in the everyday life of a network society 
Neighborhood context and adolescent mental health: development and mechanisms
PDF
Neighborhood context and adolescent mental health: development and mechanisms 
A network analysis of online and offline social influence processes in relation to adolescent smoking and alcohol use
PDF
A network analysis of online and offline social influence processes in relation to adolescent smoking and alcohol use 
Atender, live! Strategies to acknowledge and cope with cultural taboos in the Latinx community
PDF
Atender, live! Strategies to acknowledge and cope with cultural taboos in the Latinx community 
Social network influences on depressive symptoms among Chinese adolescents
PDF
Social network influences on depressive symptoms among Chinese adolescents 
Mindfulness and resilience: an investigation of the role of mindfulness in post-9/11 military veterans' mental health-related outcomes
PDF
Mindfulness and resilience: an investigation of the role of mindfulness in post-9/11 military veterans' mental health-related outcomes 
Unleashing prevention and reaching the masses with a positive mental wellness museum
PDF
Unleashing prevention and reaching the masses with a positive mental wellness museum 
Empowering rural youth: a comprehensive approach to mental health services in rural America
PDF
Empowering rural youth: a comprehensive approach to mental health services in rural America 
A study of depression disclosure among Latino older adults  in Los Angeles
PDF
A study of depression disclosure among Latino older adults in Los Angeles 
Adolescent social networks, smoking, and loneliness
PDF
Adolescent social networks, smoking, and loneliness 
Main, moderating, and mediating effects of social network compositions on suicidal ideation among North Korean refugees in South Korea
PDF
Main, moderating, and mediating effects of social network compositions on suicidal ideation among North Korean refugees in South Korea 
Action button
Asset Metadata
Creator Pahwa, Rohini (author) 
Core Title Community integration of individuals with serious mental illness: a network perspective from India and United States 
School School of Social Work 
Degree Doctor of Philosophy 
Degree Program Social Work 
Publication Date 11/23/2013 
Defense Date 10/09/2013 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag community integration,mental health community,non-mental health community,OAI-PMH Harvest,severe mental illness,social network analysis 
Format application/pdf (imt) 
Language English
Contributor Electronically uploaded by the author (provenance) 
Advisor Brekke, John S. (committee chair), Pearce, Celeste Leigh (committee member), Rice, Eric R. (committee member) 
Creator Email pahwa@usc.edu,rohini05@gmail.com 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c3-350411 
Unique identifier UC11295424 
Identifier etd-PahwaRohin-2178.pdf (filename),usctheses-c3-350411 (legacy record id) 
Legacy Identifier etd-PahwaRohin-2178.pdf 
Dmrecord 350411 
Document Type Dissertation 
Format application/pdf (imt) 
Rights Pahwa, Rohini 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law.  Electronic access is being provided by the USC Libraries in agreement with the a... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Tags
community integration
mental health community
non-mental health community
severe mental illness
social network analysis