Close
The page header's logo
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
The expected and unexpected roles of TRPM8: cold pain and metabolism
(USC Thesis Other) 

The expected and unexpected roles of TRPM8: cold pain and metabolism

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Contact Us
Contact Us
Copy asset link
Request this asset
Transcript (if available)
Content       The  expected  and  unexpected  roles  of  TRPM8:  Cold  Pain  and  Metabolism         by       Daniel  David  McCoy                         A  Dissertation  Presented  to  the   FACULTY  OF  THE  USC  GRADUATE  SCHOOL   UNIVERSITY  OF  SOUTHERN  CALIFORNIA   In  Partial  Fulfillment  of  the   Requirements  for  the  Degree   DOCTOR  OF  PHILOSOPHY   (Molecular  Biology)         May  2014                       Copyright  2014                                                                                                                                                                                            Daniel  McCoy   ii     DEDICATION                             For  my  wife  Stacy,  “You  and  Me”       iii     ACKNOWLEDEGMENTS         Graduate  school  is  a  long  and  arduous  journey  and  I  am  certain  that  without  the   help   of   my   friends,   family   and   colleagues   I   would   never   have   finished.     Dr.   David   McKemy  has  been  a  fantastic  mentor.    He  has  always  been  available  for  scientific,   personal  and  career  discussions  and  I  will  be  forever  indebted  to  him  for  his  sage  advice   and   guidance   over   the   years.     His   encouragement   and   enthusiasm   in   the   face   of   scientific  heartbreak  has  been  instrumental  in  keeping  me  motivated  and  focused  on  my   work  and  I  can  proudly  say  I  am  a  better  scientist  because  of  him.    I  would  also  like  to   thank  the  members  of  my  guidance  committee  Drs.  Don  Arnold,  Sergey  Nuzhdin  and   Jeannie  Chen  for  their  valuable  insights  and  counsel  along  the  way.       The  feedback  and  technical  help  provided  by  Dr.  Alan  Watts,  Dr.  Ligang  Zhou,  Dr.   Casey  Donovan  and  Anh-­‐Khoi  Nguyen  were  essential  to  the  completion  of  this  work  and   I  would  like  to  thank  them  for  their  collaborative  efforts,  without  which  I  would  not  have   been  able  to  pursue  such  a  project  outside  our  lab’s  realm  of  expertise.       I  have  been  fortunate  enough  to  have  shared  a  lab  with  a  number  of  wonderful   people  and  I  would  like  to  thank  them  all  for  their  support  and  camaraderie.    Dr.  Luke   Daniels,  Dr.  Yoshio  Takashima  and  Dr.  Wendy  Knowlton  were  always  welcoming  and   available  while  I  was  learning  my  way  around  the  lab.    Wendy  was  particularly  helpful  in   training  me  how  to  work  with  live  animals  and  manage  a  colony,  a  daunting  task  as  a   new  student.    I  have  grown  as  a  scientist  with  Erika  Lippoldt  and  Radhika  Palkar  and   their  different  perspectives  over  the  years  of  sitting  through,  what  sometimes  seemed   iv     like  never-­‐ending  lab  meetings,  have  been  a  great  asset.    Also,  working  with  Yuening   Yang  and  the  “super  undergrads”  Rebecca  Romanu,  Jessica  Chen  and  Melissa  Sajnani   has  been  a  very  rewarding  experience.     Misery  loves  company  and  I  can’t  thank  my  fellow  MCB  friends  enough  for  our   graduate  student  vent  sessions  and  numerous  activities  over  the  years.    Displays  of  our   athleticism  (or  lack  thereof)  in  softball,  basketball,  flag  football  etc.  served  to  reinforce   my  decision  to  stick  to  science.    The  frequent  lunches  at  Caveman  and  occasional  ping   pong  sessions  in  RRI  with  Jared  Peace,  Zac  Ostrow  and  Ian  Slaymaker  in  particular  kept   me  sane  and  grounded.    My  friendships  outside  of  science  from  Reading,  Wake  Forest   and  Los  Angeles  have  also  been  influential  during  my  time  at  USC.    I  would  especially  like   to  thank  Steven  Clough  and  Justin  St.  James  for  the  hours  of  phone  conversations  and   multiple  visits  over  the  years  and  Pete  Byrne  for  being  crazy  enough  to  move  to  San   Diego  following  my  own  selfish  endorsement.    I  would  also  like  to  thank  my  Lakeshore   friends   for   providing   me   some   semblance   of   a   social   life   while   here   (Halloween,   Thanksgiving,  Super  Bowl,  July  4th,  Field  Day  and  various  other  get-­‐togethers).   My  family  has  been  hugely  supportive  during  my  tenure  as  a  graduate  student.     Words  cannot  describe  my  gratefulness  for  the  love  and  support  of  my  parents  Lynn  and   John,  sisters  Natalie  and  Jenny  and  in-­‐laws  Betsey,  Julie  and  Darrick.    The  science  gene   did  not  skip  a  generation  and  I  would  particularly  like  to  thank  my  parents  for  being   wonderful  role  models  and  my  sisters  for  inspiring  me  to  follow  my  passions  as  they  do   their  own.     v     Lastly,  and  most  importantly,  I  would  like  to  thank  my  incredible  wife  Stacy   without  whom  none  of  this  would  have  been  possible.    Through  the  ups  and  downs  of   school  and  life  she  has  been  my  rock,  my  constant,  my  everything.   vi     TABLE  OF  CONTENTS       DEDICATION   ii             ACKNOWLEDGEMENTS   iii             LIST  OF  FIGURES   ix             ABSTRACT   xi             CHAPTER  ONE    Introduction   1               TRPM8  cloning,  modulation,  and  mechanism  in  vitro   2       TRPM8  confers  cold  sensation  in  vivo   8       Cold  and  chronic  pain   15       How  can  TRPM8  mediate  both  innocuous  cool  and  noxious  cold?   17       Conclusion:  TRPM8  as  a  Therapeutic  Target   22             CHAPTER  TWO    Enhanced  insulin  clearance  in  mice  lacking  TRPM8  channels   25               Introduction   26       Materials  and  Methods   28       Results   37       Streptozotocin  sensitivity,  decreased  body  weight,  and  decreased     37       fasting  insulin  in  TRPM8 -­‐/-­‐   mice         Normal  morphology  and  function  in  pancreatic  β-­‐cells  in  Trpm8 -­‐/-­‐     40       mice         Trpm8 -­‐/-­‐  mice  show  prolonged  hypoglycemia  in  response  to  insulin   41       Enhanced  insulin  clearance  in  Trpm8 -­‐/-­‐  mice   44       TRPM8-­‐expressing  afferent  fibers  innervate  the  hepatic  portal  vein   46       Increased  insulin-­‐degrading  enzyme  (IDE)  expression  in  Trpm8 -­‐/-­‐  liver   47       Conclusion   50                               vii     CHAPTER  THREE    TRPM8  pore  dilation  allows  for  permeation  of  large  cationic     55     molecules                 Introduction   56       Materials  and  Methods   61       Results   65       PO-­‐PRO3  can  permeate  both  TRPA1  and  TRPV1   65       WS-­‐12  can  stimulate  PO-­‐PRO3  dye  uptake  in  heterologous  cells   65       WS-­‐12-­‐mediated  PO-­‐PRO3  uptake  is  TRPM8-­‐specific   69       WS-­‐12  can  stimulate  PO-­‐PRO3  dye  uptake  in  cultured  sensory     69       neurons  expressing  TRPM8         WS-­‐12/QX-­‐314  co-­‐administration  can  block  the  development  of  cold-­‐   72       hypersensitivity  in  response  to  WS-­‐12  in  vivo         Conclusion   74             CHAPTER  FOUR    Translational  profiling  approach  for  the  molecular     77     characterization  of  TRPM8  expressing  sensory  neurons                 Introduction   78       Materials  and  Methods   82       Results   88       Targeting  of  the  TRPM8-­‐eGFP-­‐L10a  transgenic  mouse  line   88       TRPM8-­‐eGFP-­‐L10a  mice  express  eGFP-­‐L10a  in  a  subset  of  small,     88       menthol-­‐sensitive  sensory  neurons         Immunoprecipitation  of  eGFP-­‐L10a  and  associated  transcripts  from   93       transfected  HEK  cell  lysates         Immunoprecipitation  of  eGFP-­‐L10a  and  associated  transcripts  from     93       TRPM8-­‐eGFP-­‐L10a  sensory  tissue         Development  of  a  Lox-­‐mCherry-­‐L10a-­‐Lox-­‐eGFP-­‐L10a  construct  for  the     94       profiling  of  two  distinct  cell  populations  at  once         Conclusion   98             CHAPTER  FIVE    Conclusion     101           REFERENCES       109             viii     APPENDIX    Development  of  a  TRPA1-­‐CRE  BAC-­‐transgenic  mouse  line       120               Introduction   121       Materials  and  Methods   123       Results   127       Generation  of  the  TRPA1-­‐CRE  BAC-­‐transgenic  mouse  line   127       TRPA1-­‐CRE  mouse  lines  express  CRE  in  a  subset  of  sensory  neurons     127       and  in  many  non-­‐neuronal  cell  types         TRPA1-­‐CRE  driven  tomato  expression  overlaps  with  other  markers   132       TRPA1-­‐CRE-­‐Tomato  cultured  neurons  indicate  functional  responses     135       to  Cinnamaldehyde  irrespective  of  reporter  expression         TRPA1  transcript  levels  unchanged  in  TRPA1-­‐CRE-­‐DTA  ablated  mice   137       Conclusion   139                         ix     LIST  OF  FIGURES     CHAPTER  ONE    Introduction                       1.1.    Temperature  preference  and  temperature  avoidance  in  TRPM8 -­‐/-­‐     mice     14       1.2.    Model  for  innocuous  cool  vs.  noxious  cold  TRPM8  afferent  subtypes       21             CHAPTER  TWO    Enhanced  insulin  clearance  in  mice  lacking  TRPM8  channels                 2.1.    Streptozotocin  (STZ)  sensitivity  in  TRPM8  -­‐/-­‐  mice   38       2.2.    Metabolic  characterization  of  TRPM8  -­‐/-­‐  mice   40       2.3.    Pancreatic  β-­‐cell  function  in  TRPM8  -­‐/-­‐  mice     42       2.4.    TRPM8  -­‐/-­‐  mice  exhibit  heightened  insulin  sensitivity  in  vivo   43       2.5.    Enhanced  insulin  clearance  in  TRPM8  -­‐/-­‐  mice   46       2.6.    Innervation  of  TRPM8-­‐expressing  afferent  fibers  in  the  hepatic   portal  vein  (HPV)   48       2.7.    Insulin-­‐degrading  enzyme  expression  is  increased  in  TRPM8  -­‐/-­‐   mouse  liver   49             CHAPTER  THREE    TRPM8  pore  dilation  allows  for  permeation  of  large  cationic   molecules                     3.1.    PO-­‐PRO3  dye  uptake  in  TRPA1  and  TRPV1-­‐transfected  HEK  cells   66       3.2.    PO-­‐PRO3  dye  uptake  in  TRPM8-­‐transfected  HEK  cells   67       3.3.    Relative  quantification  of  PO-­‐PRO3  dye  uptake  in  TRPM8-­‐ transfected  HEK  cells   68       3.4.    WS-­‐12-­‐mediated  dye  uptake  is  TRPM8  specific   70       3.5.    WS-­‐12-­‐mediated  dye  uptake  in  TRPM8-­‐expressing  sensory  neurons   71       3.6.    QX-­‐314/WS-­‐12  co-­‐administration  can  block  WS-­‐12-­‐mediated  cold   hypersensitivity  in  vivo   73                                         x       CHAPTER  FOUR        Translational  profiling  approach  for  the  molecular   characterization  of  TRPM8  expressing  sensory  neurons             4.1.    BAC-­‐TRAP  technique  work  flow   81       4.2.    Targeting  strategy  of  the  TRPM8-­‐eGFP-­‐L10a  transgenic  mouse  line   89       4.3.    The  TRPM8-­‐eGFP-­‐L10a  mouse  line  expresses  eGFP-­‐L10a  in  a  subset   of  small  sensory  neurons   91       4.4.    GFP +  neurons  from  the  TRPM8-­‐eGFP-­‐L10a  mouse  line  functionally   respond  to  menthol   92       4.5.    eGFP-­‐L10a  and  associated  transcripts  can  be  immunoprecipitated   from  transfected  HEK  cell  lysates   95       4.6.    Development  of  a  Lox-­‐mCherry-­‐L10a-­‐Lox-­‐eGFP-­‐L10a  construct  for   the  profiling  of  two  distinct  cell  populations  at  once   97             APPENDIX        Development  of  a  TRPA1-­‐CRE  BAC-­‐transgenic  mouse  line   molecules                     A.1.    Development  of  the  TRPA1-­‐CRE  BAC-­‐transgenic  mouse  line   128       A.2.    CRE-­‐driven  LacZ  expression  in  TRPA1-­‐CRE  mice  crossed  with  the   ROSA-­‐STOP-­‐LacZ  reporter  line   130       A.3.    Sensory  neuron  size  distribution  in  TRPA1-­‐CRE  mice  crossed  with   the  ROSA-­‐STOP-­‐Tomato  reporter  line   131       A.4.    Tomato  expression  is  widespread  in  tissues  isolated  from  TRPA1-­‐ CRE  X  ROSA-­‐STOP-­‐Tomato  mice   132       A.5.    Immunostaining  in  TRPA1-­‐CRE  X  ROSA-­‐STOP-­‐Tomato  sensory  tissue   shows  significant  overlap  in  the  tomato-­‐expressing  and  TRPV1-­‐ expressing  neuron  populations   134       A.6.    Calcium  imaging  reveals  no  correlation  between  tomato  expression   and  TRPA1  agonist  sensitivity  in  TRPA1-­‐CRE  X  ROSA-­‐STOP-­‐Tomato   cultured  TG  neurons   136       A.7.    qPCR  analysis  reveals  no  change  in  TRPA1  transcript  in  TRPA1-­‐CRE-­‐ cell  ablated  sensory  tissue   138     xi         ABSTRACT     Over  the  last  sixteen  years,  a  number  of  nonselective  cation  channels  belonging   to  the  transient  receptor  potential  (TRP)  family  have  been  found  to  play  instrumental   roles  in  thermosensation.  The  two  most  prominent  thermosensory  TRP  channels  are   TRPV1,  which  responds  to  noxious  heat  and  heat  mimetics  such  as  capsaicin  (the  active   ingredient  in  chili  peppers),  and  TRPM8,  which  responds  to  cold  and  cold  mimetics  such   as   menthol   (the   active   ingredient   in   mint).   These   channels   are   highly   expressed   in   sensory  afferents  innervating  the  skin  and  knockout  studies  have  implicated  them  in   both  acute  thermosensation  and  the  development  of  thermal  hypersensitivity.  Although   the  role  of  these  channels  in  thermosensation  is  firmly  established,  we  currently  know   little   in   regards   to   the   causal   intracellular   mechanisms   controlling   thermal   hypersensitivity.  Furthermore,  there  are  no  TRP  channel-­‐specific  treatments  for  sensory-­‐ related   conditions   that   do   not   have   serious   side   effects.   This   area   of   research   is   complicated  by  the  fact  that  many  TRP  family  channels  have  been  found  in  areas  of  the   body   that   are   not   exposed   to   the   temperatures   necessary   for   their   activation,   suggesting  roles  for  these  channels  in  other  cellular  processes.     Here  we  identify  a  novel  role  of  the  cold-­‐sensitive  channel  TRPM8  in  insulin   homeostasis.  We  find  that  Trpm8 -­‐/-­‐  mice  have  heightened  insulin  clearance  compared  to   wildtype,  a  phenotype  that  also  correlates  with  increased  insulin  degrading  enzyme   (IDE)  in  the  liver,  the  predominant  organ  involved  in  insulin  clearance.  Furthermore,  as   previous  studies  have  shown  that  TRPV1 +  afferents  in  the  hepatic  portal  vein  (HPV)  are   xii     instrumental  in  glucose  sensing,  the  presence  of  TRPM8 +  sensory  afferents  in  the  HPV   suggests  that  TRPM8-­‐expressing  neurons  may  be  influencing  liver  insulin  clearance  by   controlling  localized  expression  of  IDE.   In  addition  to  identifying  a  new  role  of  TRPM8  outside  of  thermosensation,  we   show  that  TRPM8  pore  dilation  can  be  used  to  selectively  target  the  large  cationic  dye   PO-­‐PRO3  to  cold-­‐sensing  neurons,  a  finding  that  refutes  previous  work  claiming  that   TRPM8  does  not  allow  such  large  cationic  molecule  permeation.  These  results  provide   proof  of  principle  for  this  technique  to  be  used  to  selectively  block  cold  sensing  neurons   using  the  positively  charged  lidocaine  derivative  QX-­‐314.   Finally,  to  better  understand  what  is  going  on  inside  of  cold-­‐sensing  neurons,  we   have  developed  a  transgenic  mouse  line  that  enables  the  specific  immunoprecipitation   of  actively  translating  transcripts  from  TRPM8-­‐expressing  cells.   The  data  we  present  here  furthers  our  understanding  of  TRPM8,  its  role  outside   of  thermosensation,  and  opens  the  door  to  a  new  therapeutic  methodology  for  the   treatment  of  chronic  cold  hypersensitivity.  Future  studies  using  the  tools  developed   herein  will  help  to  identify  targets  and  pathways  involved  in  cold  sensation  and  aid  in   the   development   of   new   treatments   for   various   sensory-­‐related   conditions. 1                   CHAPTER  ONE                 Introduction                           Adapted  from:    McCoy,  D.D.,  Knowlton,  W.M.,  and  McKemy,  D.D.  (2011).      Scraping   through  the  ice:  uncovering  the  role  of  TRPM8  in  cold  transduction.    American  Journal  of   Physiology  Regulatory,  Integrative  and  Comparative  Physiology.  300(6):  R1278-­‐87.   2     Introduction     Temperature  discrimination  is  vital  for  the  survival  of  most  organisms  as  failure   to  avoid  non-­‐optimal  temperatures  can  result  in  tissue  damage,  or  even  death.    While   not  as  robust  or  precipitous  as  the  sensation  of  heat,  exposure  to  cold  can  produce   strong  and  uncomfortable  sensations,  and  can  be  dangerous  in  terms  of  tissue  damage   (frostbite)  and  maintenance  of  core  body  temperature.    Cold  can  also  be  therapeutic  as   it  is  a  common  treatment  strategy  in  response  to  injury.    Thus,  understanding  how   cold—an   external   stimuli—is   converted   to   neural   activity—an   internal   signal—is   an   important  question  both  biologically  and  clinically.    Within  the  last  decade  and  a  half,  a   subset  of  genes  of  the  Transient  Receptor  Potential  (TRP)  family  of  ion  channels  has   emerged  as  key  mediators  of  temperature  sensation  with  the  preponderance  of  the   thermal-­‐sensitive  channels  involved  in  heat  sensation  (McKemy  2005).    In  this  chapter   we   will   discuss   the   well-­‐defined   role   of   TRPM8   in   cold   sensation   as   well   as   its   therapeutic  potential  outside  of  its  known  sensory  roles.     TRPM8  cloning,  modulation,  and  mechanism  in  vitro     TRPM8   (or   Trp-­‐p8)   was   originally   discovered   in   a   subtractive   screen   for   molecules   highly   expressed   in   cancerous   prostate   cells,   but   neither   its   functional   properties  nor  its  expression  in  sensory  ganglia  were  reported  (Tsavaler,  Shapero  et  al.   2001).     In   a   remarkable   convergence,   two   independent   groups,   using   different   experimental  strategies,  identified  TRPM8  as  a  putative  cold  sensor  in  primary  sensory   3     afferents  (McKemy,  Neuhausser  et  al.  2002;  Peier,  Moqrich  et  al.  2002).  One  approach   was  based  on  a  genomic  screen  for  TRP  ion  channels  with  robust  expression  in  sensory   ganglia  (Peier,  Moqrich  et  al.  2002).    This  intuitive  strategy  was  based  on  the  previous   identification   of   the   heat-­‐sensitive   channel   TRPV1   in   sensory   neurons   (Caterina,   Schumacher   et   al.   1997)   and,   in   addition   to   TRPM8,   was   instrumental   in   the   identification  of  other  somatosensory  relevant  TRP  channels  such  as  TRPA1  and  TRPV3   (Peier,  Reeve  et  al.  2002;  Smith,  Gunthorpe  et  al.  2002;  Xu,  Ramsey  et  al.  2002;  Story,   Peier  et  al.  2003).    The  second  strategy  used  an  expression  cloning  paradigm  similar  to   that   used   to   identify   TRPV1,   in   this   case   a   screen   for   trigeminal   sensory   neuron   transcripts  which  could  confer  menthol-­‐  and  cold-­‐sensitivity  to  a  heterologous  cell-­‐type   (McKemy,  Neuhausser  et  al.  2002).    The  hypothesis  for  this  strategy  stemmed  from   Hensel  and  Zotterman’s  original  posit  that  menthol’s  action  is  “upon  an  enzyme,  which   is   concerned   in   the   thermally   conditioned   regulation   of   the   discharge   of   the   cold   receptors”  (Hensel  and  Zotterman  1951).    Thus,  if  the  molecular  mediator  of  menthol’s   action  were  to  be  identified  it,  like  that  previously  for  capsaicin  (Caterina,  Schumacher   et  al.  1997),  would  provide  insights  into  cold  transduction  (McKemy,  Neuhausser  et  al.   2002).     This   indeed   was   the   case,   and   once   cloned,   the   functional   properties   of   recombinant  TRPM8  channels  were  found  to  be  remarkably  similar  to  that  observed  for   menthol-­‐  and  cold-­‐gated  currents  in  cold-­‐responsive  afferents,  including  temperature   sensitivity,   menthol   sensitivity,   cation   selectivity,   channel   rectification,   and   Ca 2+ -­‐ 4     dependent  adaptation  (McKemy,  Neuhausser  et  al.  2002;  Peier,  Moqrich  et  al.  2002;   Reid  and  Flonta  2002).   Aside  from  menthol,  a  number  of  natural  and  synthetic  chemicals  have  been   shown  to  activate  TRPM8  (Eid  and  Cortright  2009).    Another  plant-­‐derived  chemical,   eucalyptol,  was  also  found  to  activate  the  channel,  albeit  mildly,  whereas  the  synthetic   chemical  icilin  (AG-­‐3-­‐5)  is  a  much  more  potent  TRPM8  agonist,  thus  its  designation  as  a   “super-­‐cooling”  agent  (Wei  and  Seid  1983;  McKemy,  Neuhausser  et  al.  2002).    A  number   of  menthol-­‐derived  WS  compounds  have  been  reported  to  gate  the  channel,  with  WS-­‐ 12  being  the  most  potent  known  agonist  of  TRPM8  to  date  (Bodding  2007).    Although   endogenous  TRPM8  activators  have  been  reported,  such  as  lysophospholipids  produced   by   the   activity   of   calcium-­‐independent   phospholipases   (iPLA2),   the   mechanism   and   purpose  of  non-­‐thermal  TRPM8  activation  is  unknown  (Vanden  Abeele,  Zholos  et  al.   2006;  Andersson,  Nash  et  al.  2007).    Overall,  the  effect  of  chemical  activators  of  TRPM8   is  to  shift  the  temperature  gating  curve  of  the  channel  so  that  it  is  more  likely  to  open  at   warmer  temperatures  (Reid  and  Flonta  2001).     Another  mode  of  TRPM8  modulation  is  the  rapid  calcium-­‐dependent  adaptation   of  the  channel  upon  cold  or  agonist  stimulation  (McKemy,  Neuhausser  et  al.  2002).    Like   many  sensory  systems,  cold  receptors  adapt  to  prolonged  cold  stimuli,  a  process  that  is   essential  for  signal  discrimination  in  a  changing  thermal  environment  (Darian-­‐Smith,   Johnson  et  al.  1973;  Campero,  Serra  et  al.  2001).    In  vitro,  recombinant  TRPM8  channels   also   adapt   or   desensitize   to   prolonged   cold   stimulation   in   a   manner   that   is   Ca 2+ -­‐ 5     dependent   (McKemy,   Neuhausser   et   al.   2002).     The   mechanism   of   adaptation   was   recently   demonstrated   to   be   a   negative   feedback   loop   due   to   cleavage   of   the   membrane  lipid  phosphatidylinositol-­‐(4,5)-­‐bisphosphate  (PIP2)  via  calcium-­‐dependent   activation  of  cytosolic  phospholipase  C  (PLC)  (Liu  and  Qin  2005;  Rohacs,  Lopes  et  al.   2005;  Daniels,  Takashima  et  al.  2009).    Evidence  suggests  that  an  influx  of  calcium  ions   through  the  channel  activates  Ca 2+ -­‐sensitive  PLCδ  isozymes,  likely  PLCδ3  or  4  (Daniels,   Takashima  et  al.  2009),  which  cleaves  PIP2  in  the  inner  leaflet  of  the  plasma  membrane   into   the   second   messengers   diacylglycerol   (DAG)   and   inositol¬(1,4,5)-­‐trisphosphate   (IP3).    Since  the  direct  association  of  PIP2  with  TRPM8  is  necessary  for  normal  channel   function,  its  enzymatic  cleavage  or  removal  by  PIP2-­‐scavenging  molecules  results  in  the   reduction  of  TRPM8  currents  (Liu  and  Qin  2005;  Rohacs,  Lopes  et  al.  2005;  Daniels,   Takashima  et  al.  2009).    Subsequent  stimulation  of  the  channel  is  impaired  until  normal   PIP2  levels  are  restored,  which  can  be  achieved  by  warming  the  cell  to  physiological   temperatures  and  PIP2  resynthesis  by  PI-­‐kinases  (Liu  and  Qin  2005;  Daniels,  Takashima   et  al.  2009).    As  PLC  is  a  common  downstream  effector  protein  of  many  cell  surface   signaling  receptors  (Basbaum,  Bautista  et  al.  2009),  this  form  of  regulation  likely  strongly   influences  cold  signaling  via  TRPM8  (Daniels,  Takashima  et  al.  2009).    Specifically,  if  the   rate  of  PIP2  breakdown  is  larger  than  synthesis,  activation  of  TRPM8  channels  would   produce  a  less-­‐than-­‐optimal  change  in  membrane  potential,  thereby  necessitating  a   more  robust  stimulus  for  nerve  activation.    This  may  influence  cold  signaling  in  two   ways.  First,  under  pathological  conditions  which  lead  to  increased  PLC  activity,  cold   6     receptors  may  require  a  more  robust  stimulus  for  activation.    For  example,  cold  and   menthol  evoked  responses  are  diminished  in  DRG  neurons  treated  with  inflammatory   mediators   such   as   bradykinin,   prostaglandin   E2,   or   histamine   (Linte,   Ciobanu   et   al.   2007).     Second,   some   cell   types   may   have   intrinsically   lower   PIP2   levels   due   to   differential  effects  of  breakdown/synthesis  pathways.    Thus,  in  this  scenario,  reduced   TRPM8¬mediated   currents   are   present,   thereby   requiring   a   stronger   stimulus   for   activation.     Precedence   for   lower   levels   of   functional   TRPM8   expression   has   been   reported  in  vitro  for  cold-­‐sensitive  cells  with  significantly  colder  thresholds  for  activation   (Madrid,  de  la  Pena  et  al.  2009).    Thus,  one  postulate  for  TRPM8  function  in  innocuous   cool  versus  noxious  cold  signaling  afferents  could  include  differential  levels  of  PIP2   and/or  PIP2  synthesis  and  degradation  pathways.     The  physical  mechanism  of  temperature  sensing  for  TRPM8,  as  well  as  other   thermosensitive  TRP  channels,  is  an  area  of  intensive  study.    Both  TRPV1  and  TRPM8  do   show  some  voltage-­‐dependency  in  that  each  is  characterized  as  having  currents  with   strong  outward  rectification  (Caterina,  Schumacher  et  al.  1997;  Tominaga,  Caterina  et  al.   1998;  McKemy,  Neuhausser  et  al.  2002).    These  properties  suggest  that  activation  by   temperature  and  voltage  are  intimately  linked,  as  temperature  has  been  shown  to  affect   the  maximum  open  probability  of  the  channel  in  response  to  voltage  changes,  and  a   change  in  the  channel’s  ability  to  sense  voltage  affects  its  thermal  gating  (Brauchi,  Orio   et  al.  2004;  Voets,  Droogmans  et  al.  2004;  Voets,  Owsianik  et  al.  2007).    For  instance,   neutralization  of  positively  charged  residues  in  the  fourth  transmembrane  domain  (S4)   7     and  the  S4-­‐S5  linker  domain  of  the  channel  reduce  the  number  of  gating  charges,   suggesting   that   this   is   the   site   of   a   voltage   sensor   (Voets,   Owsianik   et   al.   2007).     However,  there  is  evidence  that  temperature-­‐,  agonist-­‐,  and  voltage-­‐dependent  gating   are   independent   processes   since   distinct   activation   domains   for   each   have   been   identified,  suggesting  that  the  effect  of  one  gating  mechanism  acts  on  another  in  an   allosteric  fashion  (Brauchi,  Orio  et  al.  2004;  Brauchi,  Orta  et  al.  2006;  Brauchi,  Orta  et  al.   2007;  Matta  and  Ahern  2007;  Daniels,  Takashima  et  al.  2009).    For  example,  chimeric   TRPM8   and   TRPV1   channels   suggest   that   the   temperature   sensor   is   a   modular   C-­‐ terminal   domain   and   not   associated   with   the   S4-­‐S5   domains   previously   linked   to   temperature  and  voltage  sensing  (Brauchi,  Orta  et  al.  2006;  Voets,  Owsianik  et  al.  2007).     Similarly,   PIP2-­‐   and   PLC-­‐mediated   adaptation   leads   to   a   change   in   the   voltage   dependence  of  the  channel  but  does  not  alter  thermal  sensitivity  of  TRPM8  channels   (Daniels,  Takashima  et  al.  2009).    This,  as  well  as  recent  evidence  of  the  dissociation  of   thermal  and  voltage  gating  in  TRPV1,  suggests  that  the  mechanisms  of  activation  of   TRPM8   by   cold   and   by   voltage,   although   related,   are   separate   processes   (Voets,   Droogmans  et  al.  2004;  Daniels,  Takashima  et  al.  2009;  Grandl,  Kim  et  al.  2010).    It   should   be   noted,   however,   that   despite   these   distinct   activation   domains   certain   TRPM8-­‐specific   antagonists   have   been   shown   to   inhibit   more   than   one   process   (Lashinger,  Steiginga  et  al.  2008).               8     TRPM8  confers  cold  sensation  in  vivo     In  2007,  three  independent  groups  created  mouse  lines  in  which  the  trpm8   genomic   allele   was   disrupted   which,   when   bred   to   homozygosity,   were   null   for   functional  TRPM8  channels  (Bautista,  Siemens  et  al.  2007;  Colburn,  Lubin  et  al.  2007;   Dhaka,  Murray  et  al.  2007).    In  a  wide  array  of  cellular  and  behavioral  assays,  these   TRPM8-­‐knockout  mice  were  shown  to  have  severe  deficits  in  cold  sensation  and  lacked   cold  allodynia  and  analgesia  (Bautista,  Siemens  et  al.  2007;  Colburn,  Lubin  et  al.  2007;   Dhaka,  Murray  et  al.  2007).    Classical  thermal  behavioral  assays  include  a  heated  or   cooled  plate  from  which  the  animals’  latency  to  paw  withdrawal  is  recorded  as  an   indicator  of  thermal  sensitivity.    While  this  test  is  relatively  robust  for  heat,  rodent   behavior  on  a  cold  plate  is  spurious  at  best.    Indeed,  as  compared  to  the  hot  plate  test,   the  latencies  to  response  in  the  cold  plate  test  tend  to  be  highly  variable  from  group  to   group   (Daniels   and   McKemy   2007).     Two   groups   reported   no   difference   between   TRPM8-­‐knockout  mice  and  their  wildtype  littermates  when  placed  on  cold  plates  held  at   10,  0,-­‐1,-­‐5  or  -­‐10°C  (Bautista,  Siemens  et  al.  2007;  Dhaka,  Murray  et  al.  2007),  while  a   third  group  did  find  a  significant  difference  on  a  0°C  cold  plate  test  (Colburn,  Lubin  et  al.   2007).    Furthermore,  the  time  to  paw  withdrawal  at  near  freezing  temperatures  for   wildtype  mice  ranged  from  5-­‐50  seconds  (5,  20,  and  50  seconds)  between  the  three   studies.    These  significant  differences  in  animal  behavior  highlight  the  difficulty  of  these   assays,  and  demonstrate  the  need  for  additional  experimental  paradigms.         9     With  such  variability  in  the  cold  plate  assay,  a  variation  on  this  approach  using   lightly   restrained   mice   was   reported   recently   (Gentry,   Stoakley   et   al.   2010).     This   method  allows  for  easier  measurements  of  both  paws  independently  as  only  one  is   placed  on  a  cold  plate  at  a  time.    Additionally,  this  assay  eliminates  any  confounds   caused  by  whole  body  exposure  to  cold  and  subsequent  reduction  in  mobility  as  seen  in   the  cold  plate  assay.    However,  the  act  of  restraining  and  habituating  the  animals  to   being  restrained  can  be  problematic.  Using  this  assay,  Gentry  et  al.  found  that  TRPM8   knockout  mice  had  significantly  higher  withdrawal  latencies  than  wildtype  when  their   hind  paws  were  placed  on  a  10°C  plate  (WT=~15s,  TRPM8-­‐KO=~29s),  thus  reaffirming   that  TRPM8  plays  a  role  in  cold  sensation  (Gentry,  Stoakley  et  al.  2010).       The  use  of  the  evaporative  cooling  assay,  in  which  acetone  is  applied  to  the  hind   paw,  has  further  implicated  TRPM8  in  this  process,  with  two  groups  both  showing   reductions  in  acetone-­‐evoked  behaviors  in  TRPM8  knockout  mice  (Bautista,  Siemens  et   al.  2007;  Dhaka,  Murray  et  al.  2007).    In  addition,  TRPM8  knockout  mice  appear  to  have   altered  thermal  preference  as  seen  by  their  spending  the  majority  of  their  time  in  the   26-­‐27°C  range,  differing  significantly  from  the  30-­‐31°C  range  seen  in  wildtypes,  on  a   thermal  gradient  from  15-­‐53.5°C  (Dhaka,  Murray  et  al.  2007).     The   two-­‐temperature   choice   assay   has   also   proven   to   be   a   useful   tool   in   characterizing  the  role  of  TRPM8  in  cold  sensation  (Fig.  1.1A).    Mice  are  placed  in  a   chamber  and  given  a  choice  between  two  surfaces  held  at  different  temperatures.    If   both   surfaces   are   maintained   at   30°C—the   optimal,   or   “thermoneutral,”   surface   10     temperature  for  normal  mice  (59)—they  will  explore  the  entire  chamber  and  spend  an   equal  amount  of  time  on  each  surface.    If  one  surface  is  held  at  a  cooler  temperature,   wildtype  mice  show  a  strong  preference  for  30°C  by  spending  the  majority  of  the  time   on  that  warmer  surface.  However,  Bautista  et  al.,  showed  that  TRPM8-­‐knockout  mice   display  no  preference  for  the  30°C  surface  when  the  test  plate  is  held  at  temperatures   down  to  15°C  (Bautista,  Siemens  et  al.  2007).    Thus,  mice  lacking  intact  TRPM8  channels   cannot  discriminate  between  warm  and  putative  innocuous  cool  temperatures.    Once   temperatures  drop  into  the  noxious  range  (10  and  5°C),  TRPM8-­‐knockouts  display  a   preference  for  the  warm  side,  albeit  less  than  what  is  observed  for  wildtype  mice   (Bautista,  Siemens  et  al.  2007).    Data  by  Dhaka  and  colleagues  support  these  findings   using   a   variety   of   temperature   pairings   (Dhaka,   Murray   et   al.   2007).   Since   cool   temperatures  in  the  range  of  15-­‐30°C  are  generally  considered  innocuous  while  lower   temperatures  are  noxious,  at  first  approximation  these  data  suggest  not  only  a  TRPM8-­‐ dependent  mechanism  for  innocuous  cold  transduction,  but  also  the  presence  of  a   TRPM8-­‐independent   mechanism   for   noxious   cold   transduction.     Yet,   Colburn   et   al.   reported  a  clear  effect  of  knocking  out  TRPM8  when  the  temperatures  were  set  to  room   temperature   (~25°C)   and   5°C   with   wildtypes   showing   a   strong   preference   for   the   warmer  temperature  whereas  the  knockouts  showing  no  preference  between  the  two   (Colburn,  Lubin  et  al.  2007).     This  incongruity  suggests  that  the  interpretation  of  these  results  deserves  a   reexamination.  Although  two  mouse  lines  lacking  functional  TRPM8  were  shown  to   11     spend  more  time  on  the  plate  held  at  30°C  than  the  one  held  at  10°C  or  lower,  it  is  not   clear  if  this  preference  for  warmth  is  due  to  a  drive  to  avoid  a  detected  unpleasant   stimulus,   or   perhaps,   as   we   would   suggest,   results   from   a   concurrent   drive   to   seek/remain  in  a  comfortably  warm  environment  (Fig.  1.1A-­‐B).    Such  a  signal  may  be   vital  for  proper  maintenance  of  body  temperature,  and  in  the  absence  of  this  input   (perhaps   signaled   through   warm-­‐tuned   fibers)   animals   would   actively   seek   a   thermoneutral  environment.    TRPM8-­‐knockout  mice  may  not  be  able  to  discern  the   noxious  cold  signal,  but  are  attracted  to  the  thermoneutral  30°C  surface,  thus  displaying   a  preference  for  the  warmer  side  in  absence  of  any  purely  cold-­‐sensory  behaviors.     Indeed,  in  the  above  example  from  Colburn  et  al.,  setting  up  the  assay  so  the  warmer   side   is   set   to   a   temperature   below   the   thermoneutral   point   (25°C)   abolishes   the   confound  of  this  warmth-­‐seeking  drive  (Colburn,  Lubin  et  al.  2007).     Further  support  for  our  hypothesis  comes  from  a  subtly  different  interpretation   of  the  two-­‐temperature  plate  assay  data  that  our  lab  recently  reported  (Knowlton,   Fisher  et  al.  2010).    When  the  number  of  times  an  animal  crosses  from  the  30°C  surface   to  the  test  surface  and  back  again  is  counted,  wildtype  mice  show  a  precipitous  drop  in   the  number  of  crossing  events  as  one  plate  is  cooled  (Knowlton,  Fisher  et  al.  2010).    In   this  light,  the  two-­‐temperature  choice  assay  can  be  viewed  as  an  operant  conditioning   assay,  with  the  discomfort  and/or  pain  from  the  cold  surface  serving  as  the  punishment   for  sampling  that  part  of  the  chamber,  thus  resulting  in  fewer  excursions  into  that   portion   of   the   chamber   for   the   remainder   of   the   testing   period   regardless   of   a   12     concurrent  drive  to  seek  a  comfortably  warm  surface.    Furthermore,  in  this  paradigm,  a   single  sampling  of  a  stimulus  within  the  noxious  cold  range  could  be  sufficient  to  result   in  an  immediate  drop  in  the  behavior,  namely  the  exposure  of  the  paws  to  the  aversive   cold   surface.     Indeed,   when   the   test   plate   is   held   at   5°C,   wildtype   mice   cross   the   threshold  between  the  two  surfaces  an  average  of  two  times  (from  warm  to  cold  and   back  again),  indicating  that  one  exposure  to  the  aversive  stimulus  is  sufficient  to  steeply   reduce   the   sampling   behavior   (Knowlton,   Fisher   et   al.   2010).     If   TRPM8   was   only   responsible  for  signaling  within  the  innocuous  range  of  temperatures,  it  could  be  argued   that  as  the  temperature  of  the  paw  skin  cools  from  warm  to  cool  to  noxiously  cold,   wildtype  mice  use  the  initial  innocuous  phase  of  skin  cooling  as  a  cue  for  the  impending   noxious  stimulus,  while  TRPM8  mice  would  not  have  this  information  and  thus  would   not  respond  until  skin  temperatures  reached  the  noxious  range.    If  this  were  so,  then  we   would  expect  the  aversive  stimulus  to  still  be  effective  in  this  conditioning  paradigm  and   the  TRPM8-­‐knockout  mice  should  display  reduced  crossings  with  lower  temperatures.     However,  TRPM8-­‐knockout  mice  show  no  avoidance  at  even  5°C  with  a  crossing  rate   equal  to  when  both  surfaces  are  held  at  30°C,  clearly  indicating  that  the  mice  fail  to   sense  the  aversive  stimulus  (Knowlton,  Fisher  et  al.  2010).    It  is  important  to  note  two   additional  points:  1.  this  temperature  (5°C)  is  indeed  noxious,  since  experiments  with   wildtype  mice  have  shown  that,  counter  intuitively,  the  chill  of  5°C  is  actually  more   aversive  than  the  heat  of  45°C,  and  2.    TRPM8-­‐knockout  mice  are  still  able  to  sense  and   avoid  noxious  stimuli  since  they  avoid  a  hot  surface  of  45°C  (Colburn,  Lubin  et  al.  2007).     13     These  data,  along  with  the  observation  that  even  at  5°C  TRPM8-­‐knockouts  show  small   but  significant  impairment  in  preference  for  30°C  than  their  wildtype  counterparts,   suggest  that  the  preference  quantification  method  of  the  two-­‐temperature  choice  assay   may  be  assessing  multiple  behavioral  drives  than  simply  cold-­‐sensory  responses,  and   that   TRPM8   does   in   fact   mediate   at   least   a   significant   component   of   noxious   cold   sensation.     Consistent  with  these  results,  chemical-­‐evoked  cooling  and  in  vivo  measures  of   neural  activity  also  point  to  TRPM8  as  a  noxious  cold  transducer    (Dhaka,  Murray  et  al.   2007;  Knowlton,  Fisher  et  al.  2010).    For  example,  intraperitoneal  administration  of  the   super-­‐cooling  agent  icilin  produces  a  distinct  “wet  dog  shake”  behavior,  characterized  by   prolonged   grooming   and   shaking   (Wei   and   Seid   1983).     Strikingly,   this   behavior   is   completely  abolished  in  TRPM8-­‐knockout  mice  (Dhaka,  Murray  et  al.  2007).    Similarly,   hind  paw  injections  of  icilin  induce  a  robust  nocifensive  flinching  and  guarding  response   that   is   absent   in   TRPM8-­‐nulls   (Knowlton,   Fisher   et   al.   2010).     Furthermore,   neural   activation  of  cold-­‐sensing  circuits,  as  measured  by  activation  of  the  immediate  early   gene   c-­‐Fos   in   the   spinal   cord,   was   found   to   be   TRPM8-­‐dependent   in   response   to   menthol,  icilin,  and  0°C  stimuli  (Knowlton,  Fisher  et  al.  2010).    Thus,  a  role  for  TRPM8  in   noxious  cold  transduction  appears  to  be  likely,  but  why  all  aspects  of  noxious  cold   sensing,  using  current  behavioral  assays,  cannot  be  accounted  for  by  TRPM8  remains  to   be  fully  explained.     14                                       FIGURE  1.1   Temperature  preference  and  temperature  avoidance  in  TRPM8 -­‐/-­‐  mice     A)  In  the  temperature  preference  assay  the  proportion  of  the  testing  period  that  the  mice  spend  on   each  plate  is  measured  with  a  50%  reading  for  any  given  plate  indicating  no  preference.    As  the   temperature  of  one  of  the  plates  is  lowered,  WT  mice  spend  a  greater  proportion  of  the  testing  period   on  the  30°C  plate,  while  KO  mice  show  little  to  no  preference  for  the  30°C  plate.    KO  mice  do  show   some  preference  for  the  30°C  plate  when  the  test  plate  is  set  to  5°C;  however,  their  responses  are  still   reduced  compared  with  WT  mice.    This  can  be  explained  by  the  presence  of  two  partially  overlapping   drives:  a  discomfort  avoidance  drive,  and  a  thermoregulatory  drive  to  maintain  proper  bodily   temperatures  by  reducing  the  thermoregulatory  burden.    At  warm  or  mildly  cool  temperatures,  this   second  drive  does  not  significantly  affect  animal  behavior,  thus  the  behavior  is  driven  solely  by  the   discomfort  avoidance  drive.    However,  at  noxious  cold  temperatures,  this  autonomic  drive  would   engage  and  direct  the  behavior  of  both  WT  and  KO  mice  to  spend  more  time  in  the  thermoregulation-­‐ favorable  environment.  B)  Thermal  avoidance  is  quantified  as  the  number  of  times  the  mouse  crosses   the  plate  boundary,  with  WT  mice  showing  dramatically  reduced  numbers  of  crossings  as  the  test  plate   temperature  is  lowered.  The  KO  mice,  on  the  other  hand,  continue  crossing  at  a  high  rate  regardless  of   the  temperature  of  the  test  plate.    Since  the  autonomic  thermoregulatory  drive  in  (A)  would  not  be   involved  in  crossing  behavior,  only  the  discomfort  drive  would  be  influencing  this  behavior.  Since  KO   mice  show  no  changes  in  crossings  across  the  temperatures  tested,  this  indicates  that  TRPM8  is   responsible  for  the  detection  of  both  innocuous  and  noxious  cold  through  the  skin.   15     Cold  and  chronic  pain     Outside   of   acute   thermosensation,   TRPM8   also   plays   a   role   in   cold   hypersensitivity  in  conditions  of  chronic  pain.    After  injury,  painful  stimuli  become  more   intense  (hyperalgesia)  and  normally  innocuous  stimuli  become  painful  (allodynia).    Both   cold   hyperalgesia   and   allodynia   are   well-­‐documented   phenomena   in   chronic   pain   patients,  and  behavioral  assays  testing  induced  models  of  chronic  pain  in  animals  have   been  developed  (Zimmermann  2001).    Rodents  with  induced  chronic  pain  show  both   hyperalgesia  and  allodynia  in  a  variety  of  thermal  and  mechanical  behavioral  assays,   including  tests  of  cold  responses.    Using  the  cold  plate  test,  rats  with  neuropathic  (using   the   chronic   constriction   injury,   or   CCI,   model)   or   inflammatory   (using   injection   of   Complete  Freund’s  adjuvant,  or  CFA,  into  one  hind  paw)  pain  show  a  marked  increase  in   both  the  number  and  duration  of  paw  withdrawals  from  a  noxious  cold  surface  (Bennett   and  Xie  1988;  Jasmin,  Kohan  et  al.  1998;  Allchorne,  Broom  et  al.  2005).    In  another   model  of  neuropathic  pain  (spinal  nerve  ligation,  or  SNL),  rats  exhibit  a  heightened   response  to  normally  innocuous  evaporative  cooling  via  the  application  of  acetone  to   the  affected  hind  paw  (Choi,  Yoon  et  al.  1994),  as  well  as  reduced  latencies  in  paw-­‐ withdrawals  on  a  cold  plate  (Allchorne,  Broom  et  al.  2005).    Colburn  et  al.  directly   investigated  the  role  of  TRPM8  in  both  the  CCI  and  CFA  chronic  injury  models  using   TRPM8-­‐knockout  mice  (Chung  and  Caterina  2007).    In  both  models,  TRPM8-­‐null  mice   exhibited   significantly   lower   response   intensities   and   durations   in   the   evaporative   cooling  assay  as  compared  to  injured  wildtypes.  Importantly,  hypersensitivity  to  heat   16     and  mechanical  stimuli  remained  intact  in  TRPM8¬nulls,  indicating  that  the  deletion  of   TRPM8  specifically  affected  cold  hypersensitivity  and  no  other  aspects  of  chronic  pain   hypersensitivity.    Although  differing  results  in  the  noxious  cold-­‐plate  test  under  normal   conditions   have   been   reported   for   TRPM8-­‐null   mice,   the   role   of   TRPM8   in   cold   hyperalgesia  in  this  assay  has  not  yet  been  reported  (Bautista,  Siemens  et  al.  2007;   Colburn,  Lubin  et  al.  2007;  Dhaka,  Murray  et  al.  2007).     Almost   paradoxically,   TRPM8   is   also   involved   in   cooling-­‐mediated   analgesia.     Cold  packs  and  cooling  compounds  such  as  menthol  have  long  been  used  for  their   analgesic  properties  in  treatment  of  both  acute  and  chronic  pain  symptoms.    In  an   elegant  study,  Proudfoot  and  colleagues  reported  that  activation  of  TRPM8  by  moderate   cooling  or  cooling  chemicals  results  in  analgesia  in  the  CCI  and  CFA  models  (Proudfoot,   Garry  et  al.  2006).    In  mice  treated  with  either  topical  or  intrathecal  menthol  or  icilin,   thermal  (heat)  and  mechanical  hypersensitivities  were  nearly  abolished  ipsilateral  to  the   injury.    Intrathecal  application  of  TRPM8-­‐directed  antisense  oligonucleotides  eliminated   this   analgesic   effect,   providing   a   direct   link   between   TRPM8   and   analgesia.     These   findings  were  further  corroborated  by  Dhaka  and  colleagues  with  studies  in  TRPM8   knockout  mice  using  formalin,  a  compound  which  elicits  acute  followed  by  inflammatory   pain  (Dhaka,  Murray  et  al.  2007).  When  wildtype  mice  were  given  a  single  hind  paw   injection  of  formalin,  they  exhibited  fewer  nocifensive  responses  during  both  acute  and   inflammatory  pain  phases  when  placed  on  a  cool  17°C  surface.    This  effect  was  lost  in   injected   TRPM8-­‐knockout   mice   placed   on   a   cool   surface.   Of   note,   Proudfoot   et   al.   17     observed  that  if  analgesic  cooling  was  more  than  moderate  (i.e.  less  than  15°C  and   therefore  in  the  noxious  cold  range),  then  the  stimulus  was  switched  to  a  hyperalgesic   effect  (Proudfoot,  Garry  et  al.  2006).  Again,  it  remains  unclear  whether  the  hyperalgesic   effect  of  cold  in  chronic  pain  is  due  to  TRPM8  or  other  receptors,  but  it  will  be  intriguing   to  explore  how  this  one  channel  is  involved  in  such  diverse  actions  as  thermosensation,   nociception,  hypersensitivity,  and  analgesia.       How  can  TRPM8  mediate  both  innocuous  cool  and  noxious  cold?     In   humans,   the   sensation   of   cold   has   been   shown   to   be   mediated   by   both   myelinated  Aδ-­‐  and  unmyelinated  C-­‐fibers  (Campero,  Serra  et  al.  2001).    Psychophysical   studies  in  humans  have  shown  that  the  sensation  of  cool  begins  at  temperatures  below   30°C  and  becomes  painful  at  temperatures  below  15°C  (Morin  and  Bushnell  1998).     Cold-­‐sensitive   Aδ   fibers   have   been   generally   accepted   to   convey   innocuous   cool   sensation,   as   selective   block   of   these   fibers   significantly   impairs   cool   temperature   discrimination  (Mackenzie,  Burke  et  al.  1975).    Recent  research,  however,  has  shown  a   substantial  amount  of  overlap  between  the  cold  responsive  properties  of  what  are   considered  to  be  nociceptive  (C)  and  non-­‐nociceptive  (Aδ)  fibers,  and  suggests  a  more   complex  view  of  cold  sensation  and  the  roles  of  specific  fiber  types  (Campero,  Baumann   et  al.  2009).    Furthermore,  it  has  been  suggested  that  the  burning  sensation  associated   with  extreme  cold  is  mediated  by  a  class  of  polymodal  cold-­‐sensitive  C  fibers  which  also   respond  to  heat  (Campero,  Serra  et  al.  2001;  Campero,  Baumann  et  al.  2009).    Other   18     factors,  including  skin  type  and  cooling  rates  have  also  been  shown  to  further  diversify   cold  sensation  (Harrison  and  Davis  1999).    How  does  TRPM8  fit  into  this  seemingly   complex  picture  of  the  different  modalities  of  cold  sensation?    Although  TRPM8  was   originally  cloned  out  of  a  sensory  neuron  cDNA  library,  its  expression  patterns  in  the   body  were  unknown.    Recently,  the  use  of  genetically  encoded  axonal  tracers  (such  as   GFP)  has  allowed  the  labeling  of  TRPM8-­‐expressing  afferents  in  vivo  (Takashima,  Daniels   et  al.  2007;  Dhaka,  Earley  et  al.  2008).    This  technique  has  enabled  the  visualization  of   TRPM8-­‐expressing  neurons  with  robust  GFP  labeling  in  afferents  projecting  to  the  skin,   where  innervation  can  be  sparse  (Takashima,  Daniels  et  al.  2007).    Consistent  with  the   broad   range   of   cold-­‐related   behaviors   reported,   TRPM8+   neurons   express   both   nociceptive  and  non-­‐nociceptive  markers  as  well  as  markers  for  both  Aδ-­‐  and  C-­‐fibers.   Furthermore,  TRPM8  axon  terminals  can  be  observed  in  both  the  skin  and  the  tooth,  a   highly   cold-­‐sensitive   organ,   in   at   least   two   distinct   peripheral   regions   with   unique   reported   pain-­‐sensing   characteristics,   supporting   the   hypothesis   that   the   overall   population  of  TRPM8 +  neurons  is  quite  diverse  in  function,  containing  both  nociceptors   and  non-­‐nociceptors  (Jyvasjarvi  and  Kniffki  1987;  Morin  and  Bushnell  1998;  Takashima,   Daniels  et  al.  2007).       How   is   this   diversity   in   expression   phenotype   correlated   to   function?     As   discussed  above,  sodium  and  potassium  currents  can  affect  a  cell’s  ability  to  fire  action   potentials,  and  both  the  sodium  channel  Nav1.8  and  Kv1  potassium  channels  have  been   implicated  in  cold  responses  (Zimmermann,  Leffler  et  al.  2007;  Abrahamsen,  Zhao  et  al.   19     2008;  Madrid,  de  la  Pena  et  al.  2009).    Nav1.8,  a  tetrodotoxin-­‐resistant  sodium  channel   expressed  in  peripheral  sensory  neurons,  is  resistant  to  the  cold-­‐induced  inhibition  seen   in  all  other  sodium  channels  (Zimmermann,  Leffler  et  al.  2007).    Although  cold  does  not   cause  this  channel  to  fire  action  potentials  directly,  it  reduces  the  voltage-­‐activation   threshold  for  the  channel  making  it  more  sensitive  to  changes  in  membrane  currents   (such  as  those  generated  by  TRPM8).    Mice  lacking  the  Nav1.8  gene,  or  whose  Nav1.8-­‐ expressing  neurons  have  been  genetically  ablated,  show  severe  deficits  in  responses  to   cold   stimuli   as   well   as   to   mechanical   stimuli   and   inflammatory   hypersensitivity   (Zimmermann,  Leffler  et  al.  2007;  Abrahamsen,  Zhao  et  al.  2008).    Menthol-­‐evoked   sensitization  of  cold  fibers  was  retained,  although  significantly  reduced,  in  the  presence   of  TTX  in  wildtype  mice,  but  completely  abolished  in  Nav1.8-­‐null  mice  (Zimmermann,   Leffler  et  al.  2007).  Indeed,  we  have  found  that  greater  than  one-­‐quarter  of  TRPM8-­‐ expressing  neurons  in  the  mouse  are  immunoreactive  for  Nav1.8  (R.  Romanu,  W.M.   Knowlton,   D.D.   McKemy   unpublished   observations).   Thus   these   data   suggest   that   TRPM8  and  Nav1.8  function  in  noxious  cold  receptors,  and  that  Nav1.8  likely  acts  as  the   second  step  in  the  cold  transduction  process,  turning  the  initial  currents  generated  by   TRPM8  into  action  potentials.     As   for   potassium   channels,   provocative   data   suggests   that   the   relative   expression   of   TRPM8   and   hyperpolarizing   potassium   conductances   are   critical   in   determining  a  neuron’s  thermal  threshold  (Madrid,  de  la  Pena  et  al.  2009).    Several   groups  have  reported  that  cold-­‐sensitive  neurons  in  vitro  fall  into  two  loosely  related   20     categories,  those  with  a  low-­‐  (LT)  or  high-­‐thermal  (HT)  activation  threshold  responding   at  either  innocuous  cool  or  noxious  cold  temperatures,  respectively  (Fig.  1.2A)  (Reid,   Babes  et  al.  2002;  Thut,  Wrigley  et  al.  2003;  Madrid,  de  la  Pena  et  al.  2009).    Madrid  et   al.  recently  reported  that  menthol  exerts  a  more  prominent  effect  on  LT  cold-­‐sensitive   neurons  in  comparison  to  the  HT  population;  a  difference  to  which  they  postulated  is   due  to  decreased  TRPM8  channel  expression  in  the  latter  cell  type  (Madrid,  de  la  Pena   et  al.  2009).    This  same  study  also  found  a  correlation  between  temperature  threshold   and   the   level   of   expression   of   a   voltage-­‐dependent   slowly   inactivating   K +   current,   termed  IKD.  Specifically,  cells  with  a  high  temperature  threshold  expressed  high  levels  of   IKD  currents  which  were  attributed  to  Kv1  channels.    Thus,  these  results  indicate  that   neurons  which  fall  into  the  LT  subtype  and  likely  mediate  responses  to  innocuously  cool   temperatures  express  high  levels  of  TRPM8,  but  have  low  expression  of  a  particular   type(s)  of  Kv1  channel  (Madrid,  de  la  Pena  et  al.  2009).    Conversely,  the  expression   ratios  of  TRPM8  and  Kv1’s  are  reversed  in  the  HT  subtype,  thereby  necessitating  a  more   robust  thermal  stimulus  to  activate  sufficient  TRPM8  currents  in  order  to  overcome  the   excitability  brake  established  by  the  K +  conductances  (Fig.  1.2B).    This  attractive  model   provides  a  robust  explanation  for  the  range  of  cold  responses  that  TRPM8  has  been   shown   to   mediate   in   vivo.   However,   the   molecular   identification   of   the   critical   components  of  the  K +  conductances  has  yet  to  be  elucidated,  and  the  contribution  of   other  ionic  conductances  (e.g.  Nav1.8,  TREK-­‐1,  TRAAK)  that  have  been  shown  to  be   21     important   for   cold   transduction   have   not   been   incorporated   into   this   functionally   distinct  cellular  model.                                                                                                 FIGURE  1.2   Model  for  innocuous  cool  vs.  noxious  cold  TRPM8  afferent  subtypes       Cold-­‐sensitive  neurons  respond  to  different  threshold  stimuli  and  are  characterized  by  differential   molecular  landscapes.    A)  Low  threshold  (LT)  cold-­‐sensitive  neurons  respond  to  innocuous  stimuli   starting  ~25°C,  while  high  threshold  (HT)  cold-­‐sensitive  neurons  respond  to  noxious  stimuli  starting   ~15°C.  B:  LT  neurons  are  predominantly  controlled  by  heightened  TRPM8-­‐mediated  currents  due  to   high  channel  expression  and/or  activity  regulated  by  high  levels  of  phosphatidylinositol-­‐(4,5)-­‐ bisphosphate  (PIP2)  (the  substrate  for  PLCδ).  Potassium  brake  currents  associated  with  voltage-­‐gated   potassium  channels  belonging  to  the  Kv1  family  are  reduced  relative  to  HT  neurons,  resulting  in  more   easily  excitable  cells.  Unknown  voltage-­‐gated  sodium  channels  may  also  be  involved  in  LT  cold   transduction.  HT  neurons  have  reduced  TRPM8-­‐mediated  currents  due  to  low  expression  and/or   activity  facilitated  by  lower  levels  of  PIP2.  They  are  strongly  influenced  by  heightened  potassium  brake   currents  coming  from  channels  such  as  Kv1,  TREK,  and  TRAAK.  HT  cold-­‐sensing  neurons  also  express   the  voltage-­‐gated  sodium  channel  Nav1.8  (a  cold-­‐insensitive  channel),  which  directly  facilitates  action   potential  generation  at  lower  temperatures  where  other  sodium  channels  would  be  inhibited.   22     Conclusion:  TRPM8  as  a  Therapeutic  Target     TRPM8’s  involvement  in  the  development  of  cold  hypersensitivity  has  made  it  an   ideal   target   for   the   treatment   of   various   forms   of   chronic   pathological   cold   pain.     Diabetes  is  often  accompanied  by  some  forms  of  polyneuropathy  as  a  result  of  the   direct,  toxic  effects  of  glucose  on  nerve  cells,  and  in  some  cases  this  can  manifest  itself   as   cold   hyperalgesia   (Pluijms,   Huygen   et   al.   2010).     The   chemotherapeutic   drug   oxaliplatin   is   also   known   to   result   in   moderate   to   severe   cold   dysesthesia   (Attal,   Bouhassira  et  al.  2009).    Both  of  these  conditions  can  be  debilitating,  and  with  no   specific   treatments   available   patients   are   often   left   with   no   options   for   directly   alleviating  their  symptoms.    Future  development  of  TRPM8-­‐specific  antagonists  could  be   the  answer  for  these  patients,  but  as  it  stands  now,  no  published  antagonist  has  been   found  without  significant  off-­‐target  effects  (Behrendt,  Germann  et  al.  2004;  Madrid,   Donovan-­‐Rodriguez  et  al.  2006;  Malkia,  Madrid  et  al.  2007;  Lashinger,  Steiginga  et  al.   2008;  Meseguer,  Karashima  et  al.  2008).     As  mentioned  above,  TRPM8  has  been  implicated  in  both  injury-­‐related  cold   hypersensitivity  as  well  as  the  widely  known  analgesic  effects  of  both  mild  cooling  and   menthol,  a  paradox  which  remains  to  be  explained  and  further  complicates  the  channels   therapeutic  potential  (Proudfoot,  Garry  et  al.  2006;  Colburn,  Lubin  et  al.  2007).    Studies   have  shown  that  TRPM8  agonists  like  menthol  and  icilin  can  both  facilitate  and  alleviate   itch  depending  on  dosage  and  application  (Han  JH  Khoi  HK  2012)(Patel  T  Yosipovitch  G,   2010)  (panahi  Y  Davoodi  SM,  2007)  (Bromm  B  Scharein  E,  1995)  (Yosipovitch  G  Szolar  C   23     1996)  (Lucaciu  OC  Connel  GP,  2013).    The  TRPM8-­‐dependence  of  these  effects  has  yet  to   be  tested  and  therefore,  the  role  of  TRPM8  in  itch  remains  an  intriguing  topic  for  future   investigation.   Furthermore,  TRPM8  has  been  shown  to  be  expressed  in  a  number  of  cell  types   in  which  there  appears  to  be  no  thermosensory  function:  bladder,  lungs,  heart,  and   prostate  to  name  a  few  (Stein,  Santos  et  al.  2004;  Yang,  Lin  et  al.  2006;  Sabnis,  Shadid  et   al.  2008).    The  TRPM8  antagonist  N-­‐(3-­‐aminopropyl)-­‐2-­‐{[(3¬methylphenyl)  methyl]oxy}-­‐ N-­‐(2-­‐thienylmethyl)benzamide  hydrochloride  salt  (AMTB)  has  been  shown  to  diminish   the  frequency  of  volume-­‐induced  bladder  contractions  in  rat  models  of  overactive  and   painful  bladder  syndrome  for  instance  (Lashinger,  Steiginga  et  al.  2008).    Additionally,   TRPM8  expression  has  been  shown  to  be  up  regulated  in  a  number  of  cancers  including   prostate,   breast,   skin,   colorectal,   lung   and   bladder,   and   could   have   additional   therapeutic   relevance   in   regards   to   their   treatment   (Tsavaler,   Shapero   et   al.   2001;   Yamamura,  Ugawa  et  al.  2008;  Li,  Wang  et  al.  2009).    Although  the  main  known  function   of  TRPM8  lies  in  cold  transduction,  the  expression  of  TRPM8  in  tissues  not  exposed  to   environmental  changes  in  temperature  leaves  the  door  open  for  a  multitude  of  other   possible  therapeutic  applications.    Before  these  avenues  can  be  explored  however,   research  must  first  be  done  to  determine  its  function  in  tissues  of  interest.     Here  we  describe  novel  findings  that  further  expand  our  knowledge  relating  to   the  channel  properties  of  TRPM8  and  the  role  it  plays  outside  of  thermosensation.    Our   in  vivo  studies  in  mice  show  TRPM8-­‐dependent  regulation  of  insulin  clearance  that   24     correlates  with  both  the  presence  of  TRPM8-­‐expressing  neuronal  projections  in  the  HPV   and  an  enhanced  liver  expression  of  Insulin-­‐degrading  enzyme.    Additionally,  we  show   that  activation  of  the  TRPM8  channel  can  be  used  as  a  means  of  delivering  large  cationic   molecules  to  cold-­‐sensing  neurons,  a  method  which  opens  the  door  to  new  treatment   methodologies  targeted  at  conditions  of  chronic  cold  hypersensitivity.    Finally,  we  will   discuss  the  development  of  a  transgenic  mouse  line  that  allows  for  the  screening  of   genes  associated  with  TRPM8-­‐expressing  cell  populations.    Such  screens,  under  normal   and  pathological  conditions,  will  help  to  identify  new  targets  and  pathways  involved  in   cold-­‐pain  and  have  the  potential  to  enhance  our  understanding  of  TRPM8-­‐expressing   cells  both  inside  and  outside  of  the  peripheral  nervous  system.   25                 CHAPTER  TWO                 Enhanced  insulin  clearance  in  mice  lacking  TRPM8  channels                             Adapted  from:    McCoy,  D.D.,  Ngyuyen,  A.K.,  Watts,  A.G.,  Donovan,  C.M.,  and  McKemy,   D.D.  (2013).      Enhanced  insulin  clearance  in  mice  lacking  TRPM8  channels.    American   Journal  of  Physiology  Endocrinology  and  Metabolism.    305(1):  E78-­‐88.     26     INTRODUCTION   Many   TRP   family   cation   channels   are   essential   for   the   detection   of   environmental  stimuli  and  their  functional  role  in  somatosensation  is  well-­‐established   (Basbaum,  Bautista  et  al.  2009).    However,  these  channels  are  also  expressed  in  primary   sensory  neurons  innervating  internal  tissues,  where  the  environment  changes  little,  and   likely   monitor   the   body’s   internal   environment   (Uchida   and   Tominaga   2011).   For   example   pancreatic   sensory   neurons   expressing   TRPV1,   a   noxious   heat-­‐gated   ion   channel  that  is  the  receptor  for  capsaicin,  the  “hot”  ingredient  in  chili  peppers,  mediate   insulin   resistance   and   islet   inflammation   (Razavi,   Chan   et   al.   2006).     Furthermore,   TRPV1 +   neurons   innervate   the   hepatic   portal   vein   (HPV)   and   are   involved   in   the   detection  of  hypoglycemia  (Fujita,  Bohland  et  al.  2007).    Complicating  the  neuronal  role   of  these  channels,  recent  evidence  suggests  many  are  also  expressed  in  non-­‐neuronal   tissues  and  involved  in  other  cellular  processes  related  to  glucose  metabolism.    TRPV1   expression  has  been  reported  in  pancreatic  β-­‐cell  lines  where  it  may  modulate  insulin   secretion  (Akiba,  Kato  et  al.  2004),  although  it  is  not  clear  if  TRPV1  is  expressed  in  native   β-­‐cells   (Uchida   and   Tominaga   2011).     Similarly,   TRPA1,   a   broad   spectrum   irritant   receptor  (Jordt,  Bautista  et  al.  2004),  is  found  in  native  β-­‐cells  and  its  activation  by   endogenous  ligands  induces  insulin  release  via  an  increase  in  intracellular  calcium  (Cao,   Zhong  et  al.  2012).    Lastly,  several  TRPM  channels  mediate  insulin  secretion  by  sensing   changes  in  intracellular  second-­‐messengers  such  as  Ca 2+  and  NAD  metabolites,  and  are   integral  in  regulation  through  hormone  receptors  (Uchida  and  Tominaga  2011).    Thus,   27     TRP  ion  channels  appear  to  be  novel  regulators  of  insulin  secretion  and  pancreatic   function  yet,  mechanistically,  their  role  in  such  processes  is  unclear.   Like  TRPV1,  TRPM8  is  a  temperature  gated  ion  channel  activated  by  cool  to  cold   temperatures   and   mediates   the   psychophysical   sensation   of   cold   associated   with   menthol,   the   active   ingredient   in   mint   (McKemy,   Neuhausser   et   al.   2002;   McCoy,   Knowlton  et  al.  2011).    TRPM8  is  the  predominant  mediator  of  cold  perception  in   mammals  owing  to  its  robust  expression  in  a  subset  of  peripheral  sensory  neurons   (Takashima,  Daniels  et  al.  2007).    However,  TRPM8  has  non-­‐somatosensory  functions  in   tissues  such  as  the  bladder  where  it  has  been  implicated  in  the  bladder  micturition   reflex   and   over-­‐active   bladder   syndromes   (Mukerji,   Yiangou   et   al.   2006;   Lashinger,   Steiginga  et  al.  2008).    TRPM8  was  initially  identified  in  prostate  and  its  expression  is   androgen-­‐dependent   and   elevated   in   the   initial   stages   of   epithelial   prostate   malignancies,  making  the  channel  a  potential  marker  for  prostate  cancer  (Tsavaler,   Shapero  et  al.  2001;  Zhang  and  Barritt  2006).    Nonetheless,  a  role  for  TRPM8  outside  of   the   peripheral   nervous   system   has   yet   to   be   established.     Here   we   report   data   suggesting  that  mice  with  a  targeted  mutation  in  the  Trpm8  gene  (Trpm8 -­‐/-­‐ )  (McKemy,   Neuhausser   et   al.   2002;   Bautista,   Siemens   et   al.   2007)   have   heightened   insulin   sensitivity   likely   due   to   compensatory   mechanisms   related   to   enhanced   insulin   clearance,  results  demonstrating  a  novel  role  for  this  channel  in  insulin  homeostasis.   28     MATERIALS  AND  METHODS   Breeding  Scheme   Trpm8 -­‐/-­‐  mice  are  of  the  C57BL/6  genetic  background  and  were  obtained  from   The   Jackson   Laboratory.     For   weight   tracking   and   food   intake   studies   Trpm8 -­‐/-­‐   and   wildtype  (both  littermates  and  aged  matched  C57/Bl6  mice  from  Jackson)  were  used,   generated   from   crosses   of   heterozygous   animals   (Trpm8 +/-­‐ )   as   described   (Bautista,   Siemens  et  al.  2007;  Knowlton,  Bifolck-­‐Fisher  et  al.  2010;  Knowlton,  Daniels  et  al.  2011;   Knowlton,  Palkar  et  al.  2013).    All  experiments  were  approved  by  the  University  of   Southern  California  (USC)  Institutional  Animal  Care  and  Use  Committee  and  performed   in  accordance  with  the  recommendations  of  the  National  Institutes  of  Health  Guide  for   the  Care  and  Use  of  Laboratory  Animals.     STZ  experiments   All  animals  used  were  males  aged  8-­‐12  weeks  of  age  (C57/BL6  background).   180mg/kg   of   streptozotocin   was   administered   by   intraperitoneal   injection   (i.p.).     Bodyweight  and  blood  glucose  were  then  monitored  at  varying  intervals  over  a  2  week   period.     DAB  Labeling  for  Islet  size  quantification     Fixed/frozen   pancreatic   sections   (10µm)   were   thawed   for   10min   and   permeabilized  in  PBST  (0.1M  PBS,  0.1%  Triton  X-­‐100)  for  30min.    Sections  were  pre-­‐ 29     treated  in  1%  H 2 O 2  for  30min,  washed  3  times  for  5min  in  PBST,  and  blocked  for  1hr  in   5%  normal  goat  serum  (NGS)/PBST.    Sections  were  then  incubated  overnight  at  4°C  in   primary   antibody   solution   containing   1:500   diluted   guinea   pig   anti-­‐insulin   (AB7842,   Abcam)  in  1%  NGS/PBST,  washed  as  before,  and  incubated  in  1:200  diluted    biotinylated   rabbit  anti-­‐guinea  pig  secondary  antibody  (Vectastain  ABC  kit)  in  1%  NGS/PBST  for  1hr   at  room  temperature.    After  3  washes  slides  were  incubated  in  ABC  reagent  for  1hr  at   room   temperature,   washed   again   as   before,   and   incubated   first   for   15min   in   DAB   solution  (DAB  in  PBS)  and  then  for  5min  in  DAB  solution  +  0.003%  H 2 O 2 .    Slides  were   then  washed  3  more  times,  cover  slipped,  and  analyzed.     Islet  isolation   After  clamping  the  duodenum  on  both  sides  of  the  major  duodenal  papilla,  the   pancreas  was  inflated  via  the  common  bile  duct  with  3ml  of  collagenase  solution  (1X   HBSS  pH  7.4,  1mM  CaCl 2 ,  1mg/ml  Collagenase  XI)  using  a  30½G  needle.    The  inflated   pancreas  was  then  removed  and  incubated  in  2ml  of  collagenase  solution  for  25min  at   37°C  with  frequent  vigorous  mixing  by  hand.    Collagenase  digestion  was  stopped  by   adding  25ml  of  ice  cold  re-­‐suspension  solution  (1X  HBSS  pH  7.4,  1mM  CaCl 2 )  and  the   cells  were  pelleted  at  500g  for  30s.    The  above  steps  were  repeated  2  times  to  wash  the   pellet.  The  cell  suspension  was  then  filtered  through  a  70µm  nylon  filter,  and  washed   over  with  25ml  of  re-­‐suspension  solution.    The  nylon  filter  was  then  turned  upside  down   and  any  islets  stuck  to  the  filter  surface  were  washed  off  using  10ml  of  growth  media   30     (RPMI  1640  media,  20mM  L-­‐glutamine,  100U/ml  penicillin,  100µg/ml  streptomycin,  10%   FBS).    Islets  were  then  picked  by  pipette  and  allowed  to  recover  for  2hrs  in  a  37°C  5%   CO2  humidified  incubator  before  use.     Static  insulin  secretion  assay   Similarly  sized  islets  (approx.  100-­‐200µm  in  diameter  )  were  grouped  into  sets  of   10,  added  to  1ml  of  assay  solution  (10mM  HEPES  pH  7.4,  129mM  NaCl,  4.7mM  KCl,   1.2mM  KH 2 PO 4 ,  2mM  CaCl 2 ,  5mM  NaHCO 3 ,  2.8mM  glucose,  0.1%  BSA),  and  allowed  to   equilibrate  for  30min  in  the  incubator.    Each  set  of  10  islets  was  then  added  to  a   baseline  well  of  a  24-­‐well  plate  containing  1ml  of  assay  solution.    After  15min  the  islets   were  then  promptly  removed  from  the  baseline  well  and  added  to  an  experimental  well   containing   assay   solution   with   16.8mM   glucose   or   40mM   KCl   depending   on   the   experiment.    After  15min  the  islets  were  removed  from  the  experimental  well  and   insulin  content  quantified  using  the  Insulin  (Mouse)  Ultrasensitive  ELISA  kit  (ALPCO).     Total  Pancreatic  insulin  content     Each  mouse  pancreas  was  incubated  in  10ml  of  Acid-­‐Ethanol  solution  (1.5%  HCl   in  70%  EtOH)  overnight  at  -­‐20°C,  homogenized,  and  then  incubated  again  overnight  at  -­‐ 20°C.  Extracts  were  centrifuged  at  ~850g  at  4°C  for  15min  and  samples  were  neutralized   by  adding  an  equal  volume  of  1M  Tris  pH7.5  solution.    Insulin  content  was  measured   31     using  the  Insulin  (Mouse)  Ultrasensitive  ELISA  kit  (ALPCO)  and  expressed  as  a  function  of   total  protein  content  found  via  Bradford  assay.       qPCR/RTPCR     RNA  was  isolated  from  RNAlater  ICE-­‐stabilized  tissue  using  the  RNeasy  mini  kit   with  in-­‐column  DNAse  digestion  (Qiagen).    The  iScript  cDNA  synthesis  kit  (Bio-­‐Rad)  was   used  for  synthesizing  cDNA  from  purified  RNA  samples,  and  qPCR  was  carried  out  using   Ssofast  EvaGreen  supermix  (Bio-­‐Rad)  and  a  Bio-­‐Rad  CFX96  detection  system.    RTPCR   experiments  were  carried  out  on  the  same  cDNA  used  for  qPCR  but  a  standard  Taq   polymerase  was  used  in  place  of  Ssofast  EvaGreen.    The  primers  used  are  listed  below.   Insulin           FWD:     5’   TCAGCAAGCAGGTCATTGTTTC   3’             (212bp)         REV:   5’  CTTGTGGGTCCTCCACTTCA  3’   PDX1             FWD:   5’  GAAACGTAGTAGCGGGACCC  3’     (457bp)         REV:   5’  CAGATCTGGCCATTCGCTTG  3’   GLUT2             FWD:   5’  GATCACCGGAACCTTGGC  3’     (400bp)         REV:   5’  GGGCTCCAGTCAATGAGAGG  3’   TRPM8  (5’)         FWD:   5’  GCTGCCTGAAGAGGAAATTG  3’     (600bp)         REV:   5’  GCCCAGATGAAGAGAGCTTG  3’     TRPM8  (3’)(pore)       FWD:   5’  CTTCCGCTCTGTCATCTATG  3’     (127bp)         REV:   5’  CACACACAGTGGCTTGGACT  3’   32       GAPDH           FWD:   5’  TGTAGACCATGTAGTGAGGTCA  3’     (123bp)         REV:   5’  AGGTCGGTGTGAACGGATTTG  3’   Alpha-­‐1-­‐anti-­‐trypsin         FWD:     5’  CCTCTCCGGAATCACAGAGG  3’     (327bp)                                                         REV:     5’  GGACTTGCTGTAGCATCAGG  3’     Glucose  Tolerance/Insulin  Tolerance  Tests     GTT  experiments  were  carried  out  on  acute  (5.5hrs)  or  overnight  (14-­‐16hrs)   fasted  animals.    Following  2g/kg  IP  administration  of  glucose,  blood  was  sampled  from   the   tail   vein   every   30mins   for   2hrs   and   glucose   levels   were   measured   using   an   AlphaTRAK   (Abbot)   blood   glucose   monitor.     For   serum   insulin   measurement,   approximately  20µl  of  blood  was  sampled  at  each  time  point  and  allowed  to  clot  in   serum   separator   tubes   (Sarstedt)   for   20mins   at   room   temperature.     After   clotting,   serum  was  immediately  isolated  by  spinning  at  10,000g  for  5mins  and  stored  on  ice   before  being  frozen  at  -­‐20°C  upon  completion  of  the  experiment.    Serum  insulin  and  C-­‐ peptide   was   then   measured   using   the   Insulin   (Mouse)   Ultrasensitive   ELISA   kit   and   (Mouse)  C-­‐peptide  ELISA  kit  per  manufacturer’s  instructions  (ALPCO).    ITT  experiments   were  carried  out  on  fed  or  acute  fasted  animals.    Following  0.75U  IP  administration  of   recombinant  Humulin  (Lilly),  blood  glucose  was  measured  as  described  previously,  every   15mins  for  1hr  and  every  30mins  for  an  additional  1hr.       33     Core  temperature  monitoring  and  activity  measurements   Mice  were  implanted  with  G2  e-­‐mitters  (Mini  Mitter,  Bend,  OR)  as  described   (Knowlton,  Daniels  et  al.  2011),  and  allowed  to  recover  from  surgery  for  at  least  one   week  to  ensure  the  absence  of  infection  and  fever.    On  the  day  of  experiments,  animals   were  acclimated  to  the  experiment  room  at  least  one  hour  prior  to  the  commencement   of  monitoring.    Mice  were  placed  in  mouse  cages  containing  food,  water  bottles  and   bedding,  with  the  cages  placed  on  top  of  a  telemeter  receiver.    Core  temperature  and   gross  motor  activity  (detected  as  a  change  in  location  by  the  telemetric  receiver)  were   collected  every  10  seconds  for  24-­‐48hrs  at  ambient  temperatures  of  24°C.  Studies  began   at  6:00  A.M.  when  the  lights  were  turned  on,  and  the  lights  were  turned  off  at  6:00  P.M.   Data  are  represented  as  the  mean  ±  standard  error  in  10min  blocks  and  statistical   significance  was  determined  using  a  Student’s  t-­‐test.     Western  blots  and  quantification   Fresh   tissue   samples   were   isolated   from   wildtype   and   Trpm8 -­‐/-­‐   mice   and   immediately  homogenized  using  a  Tissue  Tearor  model  985-­‐370  (Biospec  Products,  INC)   in  RIPA  buffer  containing  0.5%  sodium  deoxycholate,  1%  NP40  and  0.1%  SDS.    Samples   were  then  incubated  for  1hr  with  agitation  at  4°C  to  ensure  complete  lysis.    After   centrifuging  at  18,000g  for  20mins  to  remove  cellular  debris,  supernatants  were  then   flash  frozen  in  liquid  nitrogen  and  stored  at  -­‐80°C.  50µg  of  total  denatured  protein  was   run  on  a  4%/10%  polyacrylamide  gel  and  transferred  to  a  PVDF  membrane.  Membranes   34     were  blocked  for  1hr  at  room  temperature  in  2.5%  BSA,  2.5%  normal  donkey  serum   (NDS)   in   PBST   (0.1%   Tween   20).     Primary   antibody   incubations   were   carried   out   overnight  at  4°C  at  dilutions  of  1:1000  for  each  antibody  in  1%  BSA,  1%  NDS  in  PBST.     The  primary  antibodies  used  were  as  follows:  Chicken  anti  B.actin  (AB13822,  Abcam),   Chicken  anti  GAPDH  (AB83956,  Abcam),  Rabbit  anti  INSR  (SC-­‐711,  Santa  Cruz),  Rabbit   anti   IDE   (AB32216,   Abcam).     After   four   5min   washes   in   PBST,   secondary   antibody   incubations   were   carried   out   for   30-­‐60mins   at   room   temperature   at   dilutions   of   1:15,000  for  each  antibody  in  1%  BSA,  1%  NDS  in  PBST  plus  0.02%  SDS.  The  secondary   antibodies  used  were  as  follows:  Donkey  anti  Chicken  680  (926-­‐68028,  Li-­‐Cor),  and   Donkey   anti   Rabbit   800   (926-­‐32213,   Li-­‐Cor).     After   four   5min   washes   in   PBST,   membranes  were  then  imaged  using  a  Li-­‐Cor  model  9120  Odyssey  imager.   Western  band  quantification  was  done  using  the  Gel  Analysis  tool  in  ImageJ   following   standard   methods   (see   http://lukemiller.org/index.php/2010/11/analyzing-­‐ gels-­‐and-­‐western-­‐blots-­‐with-­‐image-­‐j/)   Band   intensities   for   target   proteins   were   normalized   across   each   membrane   and   expressed   as   a   percentage   of   summed   intensities  for  each  target.    These  values  were  then  compared  to  loading  control  values   from  the  same  membrane  to  get  relative  protein  expression  values.    For  liver  and  kidney   βactin  was  used  as  a  loading  control  and  for  muscle  GAPDH  was  used.         35     Immunostaining   Mice  and  rats  were  transcardially  perfused  with  ice  cold  4%  paraformaldehyde   (PFA)  solution  in  0.1M  PBS.    Tissues  were  carefully  dissected  and  post-­‐fixed  for  2hrs  on   ice  in  4%  PFA,  and  dehydrated  in  30%  sucrose  solution  in  0.1M  PBS  overnight  at  4°C.   Pancreas  tissue  was  quickly  frozen  in  OCT  on  dry  ice,  sectioned  with  a  cryostat  at  10µm   onto  Superfrost  Plus  slides  (VWR)  and  stored  at  -­‐80°C.    Hepatic  portal  vein  (HPV)  tissue   was  cut  on  one  side  to  flatten  and  stored  in  cryoprotectant  solution  (30%  sucrose,  30%   ethylene  glycol  in  0.1M  PBS)  at  -­‐20°C.   Cryosections  were  thawed  at  room  temperature  for  10mins,    permeabilized  in   PBST   for   30mins,   washed   3   times   in   PBS   for   5mins   and   blocked   for   1hr   at   room   temperature  in  PBST  +  5%  NGS.    Primary  antibodies  were  diluted  1:500  in  a  working   solution  of  PBST  +  1%  NGS  and  incubated  on  the  slides  overnight  at  4°C  in  a  humidified   box.  The  primary  antibodies  used  are  as  follows:  Rabbit  anti-­‐GFP  (A11122,  Invitrogen),   Chicken   anti-­‐GFP   (GFP1020,   Aves),   and   Guinea   pig   anti-­‐PGP9.5   (AB5898,   Millipore).     Slides  were  washed  3  times  in  PBST  for  5mins  and  incubated  in  secondary  antibody   solution  (1:1000  secondary  antibody,  PBST  +  1%  NGS)  for  2hrs  at  room  temperature.     The   secondary   antibodies   used   were   fluorescently   conjugated   Alexa-­‐488   or   Alexa-­‐ 594(Invitrogen).  Slides  were  washed  3  times  in  PBST  for  10mins  and  cover  slipped  with   Vectorshield-­‐DAPI   (Vector   Labs),   or   Prolong   Gold   (Invitrogen)   mounting   medium.   Imaging  was  carried  out  on  a  Zeiss  Axio  Imager  M2  with  Apotome.   36     Hepatic  portal  vein  tissue  was  stained  whole  mount.  HPV  tissue  was  removed   from  cryoprotectant  and  washed  6  times  in  TBS  for  5min,  blocked  in  TBST  +  2%  NGS  for   2hrs  at  room  temperature,  and  then  incubated  for  48hrs  at  4°C  with  primary  antibody   diluted  1:1000  in  TBST  +  2%NGS.  The  primary  antibodies  used  were  as  follows:  Chicken   anti-­‐GFP  (GFP1020,  Aves),  Rabbit  anti-­‐TRPM8  (C-­‐terminus).    Tissue  was  washed  6  times   in  TBS  for  5mins,  incubated  for  24hrs  at  4°C  with  secondary  antibody  diluted  1:1000  in   TBST  +  2%  NGS,  washed  6  times  again  with  TBS  for  5mins,  mounted,  cover  slipped  and   imaged  as  described.     Statistics   All  statistical  analysis  was  carried  out  using  the  Students  unpaired  t-­‐test,  and   means  are  expressed  ±  standard  error  of  the  mean  (sem)  with  p  values  less  the  0.05   considered  statistically  significant.   37     RESULTS   Streptozotocin   sensitivity,   decreased   body   weight,   and   decreased   fasting   insulin   in   TRPM8 -­‐/-­‐   mice     Streptozotocin   (STZ),   a   glucosamine-­‐nitrosourea   compound   that   causes   DNA   alkylation  and  cell  death,  is  commonly  used  to  induce  type  I  diabetes  in  rodents  (Brosky   and   Logothetopoulos   1969).     The   diabetogenicity   of   STZ   comes   from   its   structural   similarity   to   glucose   allowing   the   compound   to   be   exclusively   taken   up   by   insulin-­‐ secreting  β-­‐cells,  resulting  in  their  specific  ablation.    The  ablation  of  these  β-­‐cells  leads   to   a   reduction   in   insulin   secretion   and   the   development   of   a   type   I   diabetic/hyperglycemic  state.    After  STZ  (180mg/kg)  was  administered  by  i.p.  injection,   we  observed  a  rapid  decline  in  body  weight  of  Trpm8 -­‐/-­‐  mice  (4  of  8  mice)  compared  to   STZ-­‐injected  control  littermates  (Fig.  2.1A).  These  mice  were  lethargic  with  matted  fur   and  exhibited  some  rigidity  (Fig.  2.1B),  results  suggesting  that  Trpm8 -­‐/-­‐  mice  are  highly   sensitive  to  STZ  in  a  model  of  type  I  diabetes.    Next  we  asked  if  Trpm8 -­‐/-­‐  mice  display   obvious  metabolic  abnormalities.  On  further  examination,  untreated  Trpm8 -­‐/-­‐  mice  were   found  to  be  >10%  smaller  than  their  wildtype  littermates,  examined  up  to  4  months  of   age  (Fig.  2.1C).    This  was  not  due  to  a  developmental  difference  in  body  size  as  body   length  was  similar  in  both  male  and  female  wildtype  and  Trpm8 -­‐/-­‐  mice  (Fig.  2.1D).     Moreover,  weights  of  Trpm8 -­‐/-­‐  mice  of  both  genders  were  significantly  smaller  than   wildtypes  (Fig.  2.1E),  despite  consuming  equivalent  amounts  of  food  per  day  (Fig.  2.1F).   38                           FIGURE  2.1   Streptozotocin  (STZ)  sensitivity  in  TRPM8  -­‐/-­‐  mice   A)  Body  weight  tracking  in  wild-­‐type  and  TRPM8 -­‐/-­‐  mice  injected  with  180  mg/kg  STZ  or  vehicle   (veh:  n  =  4–6,  STZ:  n  =  4).  B)  Representative  picture  of  wild-­‐type  and  TRPM8 -­‐/-­‐  mice  1  wk  following  STZ   administration.  C)  Weight  tracking  in  male  littermates  (male  and  female)  from  4–16  wk  of  age  fed   normal  chow  (wt:  24.1  ±  1.0;  TRPM8 -­‐/-­‐ :  21.1  ±  0.3  g  by  12  wk,  P    0.001,  n  =  6  each  genotype).  D)  Body   length  measurements  of  TRPM8 -­‐/-­‐  and  wild-­‐type  mice  of  both  sexes.  E)  Weight  tracking  in  mice  from  D;   P  >  0.05  NS,  *P  <  0.05,  **P  <  0.01,  n  =  6–8  mice.  Food  intake  [wt:  3.68  ±  0.11;  Trpm8 -­‐/-­‐ :  3.72  ±  0.09   g/day,  P  =  0.75  (F);  wt:  0.17  ±  0.004,  Trpm8 -­‐/-­‐ :  0.19  ±  0.01  g/day/g  body  wt,  P  =  0.01,  n  =  11–12  (G)].   39     However,   when   food   intake   was   adjusted   for   bodyweight   Trpm8 -­‐/-­‐   mice   ate   approximately  12%  more  per  day  than  wildtypes  (Fig.  2.1G).       TRPM8  is  a  cold-­‐gated  ion  channel  that  is  known  to  be  involved  in  hypothermia   (Knowlton,  Daniels  et  al.  2011).  Therefore  we  asked  whether  Trpm8 -­‐/-­‐  mice  had  distinct   differences   in   thermoregulation   under   controlled,   non-­‐stimulating   environments.     Wildtype  and  Trpm8 -­‐/-­‐  littermates  were  monitored  for  diurnal  changes  in  core  body   temperatures  with  implantable  internal  telemetric  monitors.    Over  a  48-­‐hr  period  we   observed  no  differences  between  each  genotype  in  core  body  temperature  (Fig.  2.2A),   nor  were  they  statistically  different  (p>0.05)  between  day  and  night  temperatures  (Fig.   2.2B).    Next,  we  examined  resting  blood  glucose  and  serum  insulin  levels,  finding  the   former  comparable  in  wildtype  and  Trpm8 -­‐/-­‐  mice  under  fed  and  fasting  conditions  (Fig.   2.2C).   Similarly,   serum   insulin   levels   were   equivalent   in   both   genotypes   under   fed   conditions,  but  were  significantly  lower  in  Trpm8 -­‐/-­‐  mice  after  either  acute  (5.5hrs)  or   overnight  fasts  (14-­‐16hrs)  (Fig.  2.2D).  After  an  acute  fast  serum  insulin  was  0.73±0.4  and   0.55±0.05mg/dl  (p<0.05)  in  wildtype  and  Trpm8 -­‐/-­‐  mice,  respectively,  and  0.40±0.03  and   0.22±0.02mg/dl   (p<0.001)   after   an   overnight   fast   in   wildtype   and   Trpm8 -­‐/-­‐   mice,   respectively  (Fig.  2.2D).    Thus,  in  addition  to  differences  in  body  weight  and  food  intake,   Trpm8 -­‐/-­‐  mice  are  deficient  in  insulin  homeostasis  when  food  restricted.   40       Normal  morphology  and  function  in  pancreatic  β-­‐cells  in  Trpm8 -­‐/-­‐  mice   Since  serum  insulin  levels  were  reduced  in  fasted  animals,  we  determined  if  this   phenotype  was  due  to  altered  pancreatic  β-­‐cell  physiology  and  function.    Gross  pancreas   morphology,  based  on  islet  shape  and  size  distribution  (Fig.  2.3A-­‐B),  was  normal  in   Trpm8 -­‐/-­‐  mice,  as  was  total  pancreas  insulin  content  (Fig.  2.3C).    Additionally,  there  was   no  difference  in  expression  of  common  β-­‐cell  specific  transcripts,  measured  by  qPCR,                       FIGURE  2.2   Metabolic  characterization  of  TRPM8  -­‐/-­‐  mice   A)  Telemetric  monitoring  of  core  body  temperature  in  wild-­‐type  and  TRPM8 -­‐/-­‐  mice.    Scatter  plot  and   averaged  data  are  shown  over  a  48-­‐h  period  (n=2).    B)  mean  core  body  temperature  during  light  (day:   6  AM-­‐^  PM)  and  dark  cycles  (night:  6  PM-­‐6  AM)  for  wild-­‐type  and  TRPM8 -­‐/-­‐  mice  (n=4).  Blood  glucose   (C)  and  serum  insulin  (D)  levels  under  fed  and  fasting  conditions  (n=7-­‐16).  Values  are  expressed  as   means  ±  SE.  *P  <  0.05,  **P  <  0.01,  ***P  <  0.001  by  Student’s  unpaired  t-­‐test.     41     between  wildtype  and  Trpm8 -­‐/-­‐  mice  (Fig.  2.3D).    To  determine  if  the  decrease  in  serum   insulin  levels  observed  in  Trpm8 -­‐/-­‐  mice  was  a  result  of  a  deficiency  in  insulin  release   mechanisms,  we  performed  in  vitro  analyses  of  stimulus  evoked  insulin  release  from   isolated   pancreatic   islets.     Isolated   islets,   stimulated   with   16.8mM   glucose   or   depolarized  with  40mM  KCl,  released  equivalent  amounts  of  insulin  from  islets  isolated   from  both  wildtype  and  Trpm8 -­‐/-­‐  mice  (p=0.4-­‐0.8,  Fig.  2.3E).       Trpm8 -­‐/-­‐  mice  show  prolonged  hypoglycemia  in  response  to  insulin   The  above  results  prompted  us  to  examine  the  response  of  Trpm8 -­‐/-­‐  mice  to   metabolic  challenges  to  determine  if  the  STZ,  weight,  food  intake,  and  fasted  serum   insulin  phenotypes  we  observe  in  these  animals  are  a  result  of  altered  metabolism  of   glucose  or  insulin.  To  test  insulin  function  in  vivo,  we  utilized  both  the  glucose  (GTT)  and   insulin  tolerance  tests  (ITT),  induced  by  bolus  (i.p.)  injections  of  either  substance,  under   fed  and  fasting  conditions.  Consistent  with  normal  basal  glucose  levels  observed  in   these   animals   when   both   fed   and   fasted   (Fig.   2.2C),   we   found   that   Trpm8 -­‐/-­‐   mice   respond    similarly  to  wildtype  mice  to  an  injection  of  glucose  (2g/kg)  after  acute  and   overnight  fasts  (Fig.  2.4A-­‐B).    However,  when  given  a  bolus  i.p.  injection  of  insulin   (0.75U/kg)  after  an  acute  fast,  Trpm8 -­‐/-­‐  mice  had  a  prolonged  hypoglycemia  with  blood   glucose  levels  dropping  significantly  to  137.3±13.8  and  89.3±7mg/dl  for  wildtype  and   Trpm8 -­‐/-­‐  mice,  respectively,  by  60min  post-­‐injection  (p<0.01,  Fig.  2.4C).    These  results   are  consistent  with  lowered  basal  insulin  levels  observed  in  fasted  mice  (Fig.  2.2D).    Of     42         FIGURE  2.3   Pancreatic  β-­‐cell  function  in  TRPM8  -­‐/-­‐  mice   A)  Representative  immunostaining  for  insulin  in  mouse  pancreatic  islets.  B)  Distribution  of  pancreatic   islet  sizes  in  TRPM8 -­‐/-­‐  compared  with  wild-­‐type  mice  (n  =  2,076  islets  measured  from  3  mice  of  each   genotype).  C)  Whole  pancreatic  insulin  content  expressed  as  ng  insulin/µg  total  protein  (wt:  3.5  ±   1.3ng/µg,  TRPM8 -­‐/-­‐ :  4.8  ±1.3  ng/µg  protein,  P  =  0.51,  n  =  3).  D)  Gene  expression  analysis  of  common  β-­‐ cell-­‐specific  transcripts  in  isolated  pancreatic  islets  by  qPCR.  Values  expressed  as  ΔCT  relative  to   GAPDH  expression  (n  =  3).  E)  Insulin  secretion  stimulated  by  16.8  mM  glucose  (wt:  0.58  ±  0.02,  TRPM8 -­‐ /-­‐ :  0.63  ±  0.06  ng/islet/15  min),  or  40  mM  KCl  (wt:  0.72  ±  0.03,  TRPM8 -­‐/-­‐ :  0.75  ±  0.06  ng/islet/15  min,  P   =  0.05,  n  =  3)  from  isolated  islets  (baseline:  2.8  mM  glucose).  All  experiments  were  carried  out  on  adult   male  mice  aged  8–12  wk  old  unless  otherwise  noted.  Values  are  expressed  as  means  ±  SE;  P  >  0.05  NS   by  Student’s  unpaired  t-­‐test.   43         FIGURE  2.4   TRPM8  -­‐/-­‐  mice  exhibit  heightened  insulin  sensitivity  in  vivo   Intraperitoneal  (IP)  glucose  tolerance  test  (IPGTT)  performed  on  acute-­‐  (5.5  h;  A)  and  overnight-­‐fasted   (14–16  h;  B)  mice  by  injecting  2.0  g/kg  body  wt  IP  glucose  (n  =  14–16  for  acute  and  n  =  18–19  for   overnight).  C)  Blood  glucose  concentrations  in  an  insulin  tolerance  (IPITT)  test  performed  on  acute-­‐ fasted  mice  by  injecting  0.75  U/kg  body  wt  IP  insulin  (n  =  17–18).  D)  Insulin  tolerance  test  performed   on  fed  mice  by  injecting  0.75  U/kg  insulin  IP  (n  =  5–6).  E)  Serum  insulin  (basal:  wt:  0.42  ±  0.04,  TRPM8  -­‐ /-­‐ :  0.24  ±  0.01  ng/ml,  P  <  0.01;  at  60  min:  wt:  0.59  ±  0.07,  TRPM8  -­‐/-­‐ :  0.55  ±  0.06  ng/ml,  P  =  0.68,  n  =  14– 17)  following  2.0  g/kg  body  wt  IP  glucose  to  overnight-­‐fasted  mice.  Values  are  expressed  as  means  ±   SE.  **P  <  0.01  by  Student’s  unpaired  t-­‐test.   44     note,  fed  Trpm8 -­‐/-­‐  mice  responded  similarly  to  wildtypes  (Fig.  2.4D),  in  line  with  their   normal  serum  insulin  levels  when  fed  (Fig.  2.2D).    To  test  the  regulation  of  insulin   secretion   in   Trpm8 -­‐/-­‐   mice   we   monitored   serum   insulin   levels   following   a   glucose   challenge  in  mice  fasted  overnight.    After  a  2.0g/kg  glucose  injection,  spiking  serum   insulin  levels  were  significantly  lower  in  Trpm8 -­‐/-­‐  mice  compared  to  wildtype  littermates,   peaking  at  15min  post-­‐injection  to  0.53±0.06  and  0.80±0.08ng/ml,  respectively  (p<0.01,   Fig.  2.4E).    Interestingly,  while  these  and  starting  serum  insulin  levels  in  Trpm8 -­‐/-­‐  mice   were  reduced,  they  recovered  to  values  similar  to  wildtype  by  60min  after  the  injection.       Enhanced  insulin  clearance  in  Trpm8 -­‐/-­‐  mice   As  Trpm8 -­‐/-­‐  mice  have  normal  insulin  content  and  β-­‐cell  function  in  vitro  (Fig.   2.3C,E),  and  reduced  spiking  serum  insulin  levels  following  glucose  challenge  in  vivo,  we   examined  insulin  clearance  in  these  animals.    To  test  this,  we  examined  the  content  and   release  of  C-­‐peptide  in  Trpm8 -­‐/-­‐  mice  (Polonsky  and  Rubenstein  1984;  Lebowitz  and   Blumenthal  1993).    The  mature  form  of  insulin  results  from  the  cleavage  of  proinsulin   into  insulin  and  C-­‐peptide  in  the  secretory  granules  of  the  β  -­‐cell.  Since  the  content  of  C-­‐ peptide  and  insulin  is  1:1  as  a  result  of  this  process,  when  the  secretory  granules  of  the   β  -­‐cell  release  their  contents  into  the  blood  upon  stimulation  they  release  equimolar   concentrations  of  insulin  and  C-­‐peptide.    Due  to  the  half-­‐life  of  C-­‐peptide  being  10-­‐fold   longer  than  that  of  insulin  in  the  bloodstream,  serum  C-­‐peptide  levels  are  an  accurate   measure  of  insulin  secretion  following  glucose  challenge.    The  ratio  of  C-­‐peptide  to   45     insulin  following  such  a  challenge  is  often  used  as  a  measure  of  insulin  clearance  as  C-­‐ peptide  clearance  rates  remain  constant  while  insulin  clearance  rates  can  vary  (Polonsky   and  Rubenstein  1984;  Lebowitz  and  Blumenthal  1993).    Resting  levels  of  C-­‐peptide  in  fed   as  well  as  acute  and  overnight  fasted  mice  were  similar  in  both  genotypes  (Fig.  2.5A),   unlike  the  significant  decrease  in  serum  insulin  under  similar  fasting  conditions  (Fig.   2.2D).    Moreover,  distinct  from  the  significant  reduction  in  the  spike  in  serum  insulin   after  a  glucose  challenge  in  Trpm8 -­‐/-­‐  versus  wildtype  animals  (Fig.  2.4E),  there  was  no   difference   in   C-­‐peptide   release   in   the   IPGTT   assay   (Fig.   2.5B).     As   serum   insulin   concentration  is  the  net  of  the  rates  of  release  versus  clearance,  we  measured  the  molar   insulin:C-­‐peptide   ratio,   a   measure   of   insulin   clearance,   after   glucose   challenge,   observing  significantly  lowered  values  in  Trpm8 -­‐/-­‐  mice  at  both  baseline  and  15min  post   glucose  challenge  (p<0.05,  Fig.  2.5C).    Lastly,  in  a  further  measurement  of  clearance  we   compared   the   incremental   increase   in   both   peptides   at   15min   following   glucose   challenge,  finding  no  differences  in  the  molar  amount  of  C-­‐peptide  (p=0.97),  but  a   significantly  decreased  level  of  insulin  in  Trpm8 -­‐/-­‐  mice  (p<0.001,  Fig.  2.5D),  evidence   demonstrating  enhanced  insulin  clearance  in  these  animals.     46       TRPM8-­‐expressing  afferent  fibers  innervate  the  hepatic  portal  vein   Pancreatic  expression  of  TRPM8  has  not  been  reported  (Tsavaler,  Shapero  et  al.   2001),  and  consistent  with  these  data  we  did  not  detect  TRPM8  transcripts  in  this  tissue   by   RT-­‐PCR   (Fig.   6A).     The   liver   is   the   primary   organ   involved   in   insulin   clearance,   responsible  for  removing  over  50%  of  blood  insulin  after  one  pass  through  the  hepatic   network  (Valera  Mora,  Scarfone  et  al.  2003).    As  in  the  pancreas,  trpm8  transcripts  were     FIGURE  2.5   Enhanced  insulin  clearance  in  TRPM8  -­‐/-­‐  mice   A)  Resting  serum  C-­‐peptide  levels  in  fed  and  fasted  mice  (n  =  7–10).  B)  Serum  C-­‐peptide  following  2.0   g/kg  body  wt  IP  glucose  to  overnight-­‐fasted  mice  (n  =  6).  C)  Serum  insulin-­‐to-­‐C-­‐peptide  ratios  during   different  intervals  following  glucose  injection.  D)  Incremental  increase  of  insulin  (wt:  116.1  ±  2.6,   TRPM8  -­‐/-­‐ :  52.4  ±  3.5  pmol/l)  compared  with  C-­‐peptide  (wt:  249.1  ±  38.2,  TRPM8  -­‐/-­‐ :  251.1  ±  46.0   pmol/l)  from  0–15  min  following  glucose  challenge.  Values  are  expressed  as  means  ±  SE.  *P  <  0.05,   ***P  <  0.001,  NS  P  >  0.05  by  Student’s  unpaired  t-­‐test.   47     undetectable  in  the  liver  (Fig.  2.6A),  results  consistent  with  previous  expression  analysis   in   non-­‐neuronal   tissues   (Tsavaler,   Shapero   et   al.   2001).     However,   using   a   TRPM8   reporter  line  (Takashima,  Daniels  et  al.  2007),  we  do  find  TRPM8-­‐expressing  afferent   fibers  innervating  the  hepatic  portal  vein  (HPV,  Fig.  2.6B-­‐C).    This  is  of  note  as  it  is  well   established  that  afferent  innervation  of  the  HPV  is  important  for  proper  glucose/insulin   homeostasis  (Fujita,  Bohland  et  al.  2007).    As  TRPM8  antibodies  are  not  reliable  in   mouse  tissue  staining,  we  confirmed  that  TRPM8  is  being  expressed  in  these  axonal   projections  in  the  HPV  by  immunolabeling  rat  HPV  tissue  directly  with  an  antibody   raised  against  the  C  terminus  of  TRPM8  (Fig.  2.6D).    Consistent  with  mouse  reporter   expression,  we  found  TRPM8  immunolabeling  in  the  rat  HPV,  immunoreactivity  that  was   absent   when   the   antibody   was   pre-­‐incubated   with   the   antigen   peptide   (Fig.   2.6E).     These   results   confirm   TRPM8   expression   in   neurons   innervating   the   HPV,   results   consistent  with  previous  reports  showing  TRPV1  expression  in  this  tissue  (Uchida  and   Tominaga  2011).     Increased  insulin-­‐degrading  enzyme  (IDE)  expression  in  Trpm8 -­‐/-­‐  liver     As  Trpm8 -­‐/-­‐  mice  clear  insulin  at  a  faster  rate  than  wildtype,  and  TRPM8  afferent   innervation  was  found  in  the  hepatic  portal  vein  we  next  determined  if  liver  function   was  altered  in  the  absence  of  TRPM8  channels.    Insulin  clearance  occurs  in  two  main   phases:   1)   receptor   binding   and   internalization   and   2)   degradation.     As   the   Insulin   receptor  (InsR)  is  required  for  the  first  phase  of  this  process  and  insulin-­‐degrading     48         FIGURE  2.6   Innervation  of  TRPM8-­‐expressing  afferent  fibers  in  the  hepatic  portal  vein  (HPV)   A)  RT-­‐PCR  from  cDNA  from  trigeminal/dorsal  root  ganglia,  whole  pancreas,  isolated  islets,  or  liver.  Two   primer  sets  were  used  to  amplify  both  5’-­‐  (M8  5’)  and  3’-­‐  (M8  3’)  regions  of  TRPM8.  GAPDH  (GAP)  was   used  as  a  universal  control  for  sample  integrity,  and  insulin  (INS)  and  α1-­‐anti-­‐trypsin  (α-­‐AT)  were  used   as  tissue-­‐specific  controls  for  pancreas  and  liver,  respectively.  All  experiments  were  carried  out  on   male  mice  age  8–12  wk.  Values  are  expressed  as  means  ±  SE.  *P  <  0.05,  **P  <  0.01,  ***P  <  0.001  by   Student’s  unpaired  t-­‐test.  B  and  C)  Whole-­‐mount  staining  shows  TRPM8-­‐expressing  afferents  (green)  in   the  HPV  of  Trpm8GFP  reporter  mice  vs.  all  afferent  fibers  labeled  with  the  pan-­‐neuronal  marker   PGP9.5  (red).  Arrowheads  demarcate  axons,  and  all  experiments  were  carried  out  on  male  mice  aged   8–12  wk.  D)  Immunoreactivity  to  TRPM8  (green)  and  PGP9.5  (red)  from  whole-­‐mount  rat  HPV.  E)   TRPM8  immunoreactivity  was  absent  when  tissue  was  probed  with  TRPM8  antibodies  pretreated  with   the  antigenic  peptide.   49     enzyme  (IDE)  is  required  for  the  second  phase,  we  looked  at  expression  levels  of  these   proteins  in  relevant  tissues  regarding  insulin  clearance,  the  liver,  kidney  and  muscle.    By   quantitative  western  blot  analysis  we  observed  that  IDE  expression  levels  in  liver  were   significantly  increased  in  Trpm8 -­‐/-­‐  mice  (Fig.  2.7A),  but  unchanged  in  both  kidney  (Fig.   2.7B)  and  muscle  (Fig.  2.7C),  results  consistent  with  the  enhanced  insulin  clearance   phenotype.    In  contrast,  InsR  was  found  to  be  expressed  at  statistically  similar  levels  in   all  three  tissues  of  wildtype  and  Trpm8 -­‐/-­‐  animals  (Fig.  2.7D).     FIGURE  2.7   Insulin-­‐degrading  enzyme  expression  is  increased  in  TRPM8  -­‐/-­‐  mouse  liver   Semi-­‐quantitative  Western  blotting  on  whole  tissue  lysates  isolated  from  overnight-­‐fasted  wild-­‐type   and  TRPM8  -­‐/-­‐  mice.  A–C)  Insulin-­‐degrading  enzyme  (IDE)  protein  expression  is  quantified  in  liver  (A),   kidney  (B),  and  muscle  (C).  Expression  levels  are  shown  by  animal  (left)  and  means  ±  SE  (right)  for  each   genotype  relative  to  β-­‐actin  (liver  and  kidney)  or  GAPDH  (muscle).  D)  Insulin  receptor  (InsR)  expression   levels  in  the  3  aforementioned  tissues  expressed  as  means  ±  SE  (n  =  3).  *P  <  0.05,  by  Student’s   unpaired  t-­‐test.   50       CONCLUSION   Our  studies  show  that  TRPM8  plays  a  role  in  insulin  homeostasis  by  influencing   the  regulation  of  insulin  clearance  and  suggest  a  change  in  insulin  sensitivity  that  may   result  from  lower  insulin  levels  under  non-­‐fed  conditions.      Our  data  shows  that  TRPM8   is  most  likely  not  mediating  these  changes  in  insulin  response  via  pancreatic  β  or  liver   cell  function  directly,  but  support  the  growing  evidence  that  sensory  neuron  innervation   is   critical   for   metabolic   homeostasis   (Islam   2011;   Uchida   and   Tominaga   2011).     Expression  levels  of  IDE,  the  enzyme  required  for  the  degradation  of  insulin,  were  found   to  be  higher  in  the  Trpm8 -­‐/-­‐  liver  relative  to  wildtype.    Taken  together  with  data  showing   TRPM8-­‐expressing  afferents  innervating  the  hepatic  portal  vein,  these  results  suggest   TRPM8-­‐expressing  afferents  regulate  liver  function  in  regards  to  insulin  clearance.    It   remains  to  be  determined  if  this  difference  in  insulin  clearance  occurs  as  a  direct  or   indirect  result  of  the  loss  of  TRPM8  function,  and  future  studies  are  warranted  to   determine  the  mechanistic  function  of  TRPM8  in  this  regard.    These  results  add  to  the   newly  appreciated  role  of  TRP  channels  and  their  afferents  in  regulating  the  internal   milieu   in   addition   to   their   robust   function   in   monitoring   changes   in   the   external   environment  (Uchida  and  Tominaga  2011).   Numerous  non-­‐selective  cation  channels  of  the  TRP  family  have  been  implicated   in  the  regulation  of  insulin.    Their  involvement  has  been  shown  at  the  cellular  level  in  β-­‐ cells,  as  well  as  the  neuronal  level  via  afferent  innervation  of  the  liver  and  pancreas   51     (Islam  2011;  Uchida  and  Tominaga  2011;  Gao,  Miyata  et  al.  2012).    TRP  channels  of  the   TRPC  (C1-­‐6),  TRPM  (M3-­‐5),  TRPV  (TRPV1-­‐2,V4)  and  TRPA  (A1)  subfamilies  are  reportedly   expressed   in   mammalian   pancreatic   β-­‐cells   (Islam   2011;   Cao,   Zhong   et   al.   2012).     Although  their  roles  in  this  context  are  not  completely  understood,  evidence  suggests   they  function  in  establishing  excitability  that  is  important  for  the  switching  of  the  β-­‐cell   from  a  basal  to  a  stimulated  state.    For  example,  analyses  of  mice  lacking  functional   TRPM2  and  TRPM5  channels  have  shown  that  when  either  gene  is  eliminated,  glucose-­‐ induced  insulin  secretion  is  significantly  reduced  or  abolished,  solidifying  an  active  role   of   TRP   channels   in   insulin   secretion   (Brixel,   Monteilh-­‐Zoller   et   al.   2010;   Colsoul,   Schraenen  et  al.  2010;  Uchida,  Dezaki  et  al.  2011).   Aside  from  the  direct  influence  various  TRP  channels  have  on  β-­‐cell  function,  and   relevant   to   our   own   studies   regarding   TRPM8,   TRPV1   has   also   been   shown   to   be   expressed   in   neurons   innervating   the   pancreas,   suggesting   an   indirect   role   in   the   regulation  of  insulin  and  glucose  homeostasis  (Razavi,  Chan  et  al.  2006;  Tanaka,  Shimaya   et  al.  2011).    The  pancreas  is  heavily  innervated  by  both  afferent  and  efferent  neurons   of  both  extrinsic  and  intrinsic  origin  and  as  a  result  of  this  complexity  our  understanding   of   the   pancreatic   neural   network   is   somewhat   limited   (Niebergall-­‐Roth   and   Singer   2001).    TRPV1  afferents  release  calcitonin  gene-­‐related  peptide  (CGRP)  and  Substance  P   in  response  to  robust  afferent  stimulation  and  this  release  is  involved  in  inflammatory   responses  and  vasodilation  (Benemei,  Nicoletti  et  al.  2009).    Recent  studies  have  found   that  TRPV1-­‐expressing  afferents  innervating  the  pancreas  regulate  insulin  secretion  and   52     β-­‐cell  physiology  through  the  release  of  Substance  P  suggesting  a  negative  feedback   model  in  which  insulin  and  Substance  P  are  maintained  at  levels  to  preserve  proper  β-­‐ cell  function  (Razavi,  Chan  et  al.  2006).    In  agreement  with  this  study,  treatment  with  a   TRPV1  antagonist  has  been  shown  to  increase  insulin  secretion  and  sensitization  in   diabetic   ob/ob   mice   and   is   believed   to   mediate   this   through   suppressing   TRPV1-­‐ mediated   neuropeptide   secretion   (Tanaka,   Shimaya   et   al.   2011).     Given   that   approximately   40%   of   TRPM8-­‐expressing   sensory   neurons   have   been   shown   to   co-­‐ localize  with  TRPV1,  and  TRPM8-­‐expessing  afferents  were  also  found  to  innervate  the   pancreas  (data  not  shown),  it  is  plausible  that  the  phenotype  observed  here  could   somehow  be  correlated  with  these  pancreatic  afferents,  although  with  Trpm8 -­‐/-­‐  mice   having   no   observable   differences   in   pancreatic   function   this   is   unlikely   (Takashima,   Daniels  et  al.  2007).     The  influence  of  neural  projections  in  the  liver  are  perhaps  more  intriguing  in  this   regard.  TRPV1/CGRP-­‐expressing  afferents  innervating  the  hepatic  portal  vein  (HPV)  have   been  shown  to  be  required  for  the  proper  detection  of  hypoglycemic  conditions  (Fujita,   Bohland  et  al.  2007).    The  elimination  of  TRPV1 +  HPV  neurons  significantly  suppresses   the  sympathoadrenal  response  to  hypoglycemia,  highlighting  the  importance  of  these   neurons  in  glucose  sensing  (Fujita,  Bohland  et  al.  2007).    Furthermore,  TRPV1-­‐mediated   regulation  of  liver-­‐related  paraventricular  nucleus  (PVN)  neurons  has  also  been  shown,   suggesting  a  direct  influence  of  TRPV1  in  the  regulation  of  hepatic  glucose  production   (Gao,  Miyata  et  al.  2012).    Interestingly,  TRPV1-­‐mediated  excitation  of  liver-­‐related  PVN   53     neurons  was  found  to  be  reduced  in  a  mouse  model  of  type  1  diabetes,  and  this  activity   was  restored  by  insulin  administration  in  a  phosphatidylinositol  3-­‐kinase/protein  kinase   C-­‐dependent  manner,  illustrating  the  ability  of  insulin  to  control  TRPV1  activity  (Gao,   Miyata   et   al.   2012).     This   phenotype   is   reminiscent   of   human   subjects   who   have   undergone  liver  transplant  and  highlight  the  influence  of  hepatic  innervation  on  insulin   clearance.    All  hepatic  neuronal  connections  are  eliminated  as  a  result  of  this  transplant   surgery  and  two  independent  studies  found  that  transplant  patients  cleared  insulin  at  a   faster   rate   than   control   patients   in   a   manner   that   was   independent   of   immunosuppressive  treatment  (Perseghin,  Regalia  et  al.  1997;  Schneiter,  Gillet  et  al.   1999).    Thus,  TRPM8-­‐mediated  neuronal  signals  may  provide  negative  regulation  of   insulin  clearance  via  hepatic  neural  innervations  influencing  local  IDE  expression  levels.   In  such  a  scenario  hepatic  insulin  clearance  is  heightened  due  to  dis-­‐inhibition  of  this   circuit  in  the  absence  of  TRPM8  channels.   In  summary,  our  studies  suggest  that  TRPM8  plays  an  important  role  in  insulin   homeostasis  through  the  regulation  of  insulin  clearance.    As  the  liver  is  essential  for   proper   hypoglycemic   detection   and   clearance   of   insulin,   the   presence   of   TRPM8   afferents  in  the  HPV  is  intriguing.    Given  that  TRP  channels  have  been  shown  to  be   important  in  the  regulation  of  insulin  on  both  β-­‐cell  and  neuronal  levels,  future  studies   are   warranted   to   understand   the   mechanistic   role   of   TRPM8   in   insulin   clearance.     Understanding  these  pathways  could  shed  new  light  on  how  insulin  is  regulated  in  the   54     body   with   the   potential   to   yield   new   therapeutic   targets   for   the   treatment   and   prevention  of  diabetes  and  other  metabolic  disorders.     55                 CHAPTER  THREE                 TRPM8  pore  dilation  allows  for  permeation  of  large  cationic  molecules                         56     INTRODUCTION     The  sensing  of  pain,  referred  to  as  nociception,  is  important  for  survival  as  it   signals  when  something  is  wrong  and  teaches  to  avoid  harmful  situations  in  which  tissue   damage  might  occur.    The  signaling  network  involved  is  finely  tuned  to  distinguish   between  noxious  (painful)  and  innocuous  (nonpainful)  stimuli  and  communicates  to   higher   order   brain   centers   via   action   potentials   generated   in   peripheral   sensory   neurons.    Pain  signals  are  carried  by  pain-­‐sensing  neurons  (nociceptors)  that  fall  into   two  categories,  those  that  are  myelinated  and  those  that  are  not.    The  traditional   primary   sharp   shooting   pain   experienced   when   burning   your   hand   on   a   stove   for   example,  is  carried  by  myelinated  Aδ  fibers,  while  the  secondary  more  dull  aching  pain   that   follows   is   carried   by   unmyelinated   C   fibers   (Basbaum,   Bautista   et   al.   2009).     Regardless   of   which   type   of   pain   is   being   experienced   the   same   behavior   results,   avoidance  of  the  noxious  stimuli.  However,  problems  arise  when  this  signaling  network   is  not  properly  controlled.    For  instance,  loss  of  function  mutations  in  the  nociceptive   sodium  channel  Nav1.7  lead  to  a  condition  referred  to  as  Congenital  Insensitivity  to  Pain   (CIP)  (Goldberg,  MacFarlane  et  al.  2007).    Although  CIP  patients  show  normal  awareness   to  what  others  consider  painful,  they  are  unable  to  sense  pain  themselves  and  often  die   at  a  young  age  due  to  the  complications  that  arise  when  pain  goes  unnoticed  (Goldberg,   MacFarlane  et  al.  2007).    Conversely,  errant  sensitization  of  nociceptors  can  occur  and   manifest  itself  as  chronic  pain.    Interestingly,  a  recent  study  found  that  31%  of  people   57     surveyed  reported  some  sort  of  chronic  pain,  highlighting  its  prevalence  in  the  general   population  (Bouhassira,  Lanteri-­‐Minet  et  al.  2008).     Pain  caused  by  thermal  hypersensitivity  is  very  common  and  one  of  the  first   examples  that  come  to  mind  involves  the  thermal  sensitivity  of  the  tooth.    Dentine   thermal  sensitivity  occurs  in  10-­‐30%  of  people  and  can  be  exacerbated  by  things  like  diet   and  eating  habits  or  dental  work  (Shiau  2012).    The  severity  of  the  hypersensitivity  can   vary  but  in  the  vast  majority  of  cases  it  is  merely  an  irritant  and  not  severe  in  nature.     However,  other  conditions  in  which  thermal  hypersensitivity  can  be  quite  debilitating   also  exist.    For  instance,  patients  with  the  inflammatory  disorder  fibromyalgia  (FM)   often  report  extreme  sensitivity  to  mild  heat  and/or  cold  (Rehm,  Koroschetz  et  al.  2010).     Diabetic  patients  are  also  known  to  develop  thermal  polyneuropathies  caused  by  the   stress  put  on  sensory  neurons  under  prolonged  hyperglycemia  (Pluijms,  Huygen  et  al.   2010).     Finally,   over   50%   of   patients   with   complex   regional   pain   syndrome   have   hypersensitivities  to  both  heat  and  cold  (Tahmoush,  Schwartzman  et  al.  2000).    Because   the  mechanisms  underlying  thermal  hypersensitivity  are  poorly  understood,  treatment   options  are  often  limited  to  general  anesthetics  that  have  significant  off-­‐target  effects.     Thus,  there  is  a  significant  need  for  the  specific  treatment  of  thermal  hypersensitivity.   As  mentioned  in  Chapter  one,  TRPM8-­‐expressing  neurons  are  required  for  the   development   of   cold   hypersensitivity   in   models   of   inflammatory   injury   and   chronic   neuropathic  pain.    More  recently  it  has  been  found  that  these  neurons  are  also  involved   in  the  cold  dysesthesia  that  accompanies  the  use  of  the  common  chemotherapeutic   58     drug  oxaliplatin  (Knowlton,  Daniels  et  al.  2011).    With  this  in  mind,  it  is  not  unreasonable   to  think  that  the  targeting  of  cold-­‐sensing/TRPM8-­‐expressing  neurons  could  be  a  viable   option  for  the  specific  treatment  of  cold-­‐hypersensitive  conditions.    TRPM8-­‐specific   antagonists   could   be   the   answer   for   such   conditions,   but   as   it   stands   today   no   commercially   available   antagonist   exists   without   significant   off-­‐target   effects,   highlighting   the   need   for   alternative   approaches   (Behrendt,   Germann   et   al.   2004;   Madrid,  Donovan-­‐Rodriguez  et  al.  2006;  Malkia,  Madrid  et  al.  2007;  Lashinger,  Steiginga   et  al.  2008;  Meseguer,  Karashima  et  al.  2008;  Knowlton,  Daniels  et  al.  2011;  Almeida,   Hew-­‐Butler  et  al.  2012;  Matthews,  Qin  et  al.  2012).   In  2007  work  done  by  Binshtok  et  al.  demonstrated  that  the  silencing  of  heat   nociceptors  could  be  achieved  by  selectively  targeting  QX-­‐314,  a  cationic  derivative  of   the  local  anesthetic  lidocaine,  to  TRPV1-­‐expressing  neurons  (Binshtok,  Bean  et  al.  2007).     Like  lidocaine,  QX-­‐314  is  a  voltage-­‐gated  sodium  channel  blocker  that  prevents  nerve   firing.    However,  while  lidocaine  is  able  to  cross  lipid  bilayers  indiscriminately  due  to  its   hydrophobic  nature,  the  positive  charge  of  QX-­‐314  requires  that  it  be  transported  across   the  membrane  in  order  to  bind  to  its  target.    In  these  studies  it  was  shown  that  robust   stimulation  with  capsaicin  caused  TRPV1  channels  to  dilate,  allowing  QX-­‐314  to  enter   the  cell  through  the  channel  pore  and  block  nerve  firing  in  vitro  (Binshtok,  Bean  et  al.   2007).    Furthermore,  when  QX-­‐314  was  co-­‐administered  with  capsaicin  via  intraplantar   hind  paw  and  sciatic  injections,  deficits  in  acute  mechanical  and  thermal  pain  resulted   while  motor  and  tactile  responses  remained  intact  (Binshtok,  Bean  et  al.  2007).    Based   59     on  these  studies,  it  was  posited  that  pore  dilation  of  TRPM8  could  be  similarly  used  to   selectively  silence  cold-­‐sensing  neurons.     Two   studies   have   been   published   on   this   subject   with   both   concluding   that   TRPM8  cannot  be  used  in  such  a  manner.    The  most  recent  work  published  in  2013   studied  the  permeability  of  TRPM8  to  QX-­‐314  via  hind  paw  injections,  but  curiously  only   measured  behavioral  heat  responses  following  injection  (Nakagawa  and  Hiura  2013).     They  then  concluded  that  because  QX-­‐314/menthol  co-­‐administration  did  not  block   heat  pain  responses,  QX-­‐314  could  not  permeate  TRPM8  channels,  a  conclusion  that  is   very  perplexing  given  that  TRPM8-­‐expressing  neurons  are  known  to  have  no  significant   effect  on  heat  responses  in  vivo  (Knowlton,  Palkar  et  al.  2013;  Nakagawa  and  Hiura   2013).    Chen  et  al.  showed  that  in  HEK  293  cells  expressing  human  TRPM8  neither  the   large  cationic  dye  YO-­‐PRO-­‐1  (357da)  nor  the  smaller  charge  carrier  NMDG +  (195da)   could  significantly  permeate  the  channel  upon  100µM  menthol  stimulation  (Chen,  Kim   et  al.  2009).    As  QX-­‐314  (263da)  is  larger  in  size  than  NMDG + ,  it  was  concluded  that  it   too  would  not  permeate  TRPM8  (Chen,  Kim  et  al.  2009).    However,  as  the  highest   concentration  of  menthol  used  in  this  study  was  100µM,  a  concentration  very  close  to   its   published   half   maximal   effective   concentration   (EC50)   of   66.7µM   (McKemy,   Neuhausser   et   al.   2002),   we   cannot   be   certain   TRPM8   channels   were   sufficiently   stimulated  to  allow  for  pore  dilation.    Furthermore,  a  high-­‐throughput  FLIPR-­‐based   approach  was  used  in  this  study  with  the  change  in  fluorescence  of  an  entire  well  being   used  as  a  measure  of  channel-­‐mediated  dye  permeation.    Although  convenient,  this   60     approach  is  highly  sensitive  to  differences  in  transfection  efficiency,  plate  confluency   and  cell  viability  and,  as  a  result,  tends  to  have  a  much  higher  background  and  lower   sensitivity.    For  these  reasons  we  believed  that  large  cationic  permeation  via  TRPM8   warranted  further  study.       Here  we  describe  TRPM8-­‐mediated  uptake  of  the  large  cationic  dye  PO-­‐PRO3   (351da)   in   both   heterologous   cells   and   neurons   using   the   super   agonist   WS-­‐12,   a   phenomena  that  we  found  could  be  blocked  by  the  TRPM8  antagonist  PBMC.    As  WS-­‐12   is   a   menthol   derivative   and   previous   work   has   shown   in   vitro   menthol-­‐mediated   currents  through  another  TRP  channel,  TRPA1,  we  tested  the  specificity  of  WS-­‐12  in  this   assay  and  found  that  no  dye  was  taken  up  through  TRPA1  channels  in  the  presence  of   the  agonist.    Furthermore,  preliminary  studies  in  vivo  indicate  that  co-­‐administration  of   WS-­‐12  and  QX-­‐314  can  block  the  development  of  cold-­‐hypersensitive  behaviors  in  mice,   evidence  supporting  the  hypothesis  that  the  silencing  of  cold-­‐sensing  neurons  can  be   achieved  using  TRPM8  pore  dilation.   61     MATERIALS  AND  METHODS   Heterologous  cell  culture   Mammalian  expression  vectors  containing  cDNA  clones  of  rTRPM8,  rTRPA1,  and   rTRPV1  were  transfected  into  the  human  embryonic  kidney  cell  line  293  (HEK293)  using   TransIT-­‐LT1  reagent  (Mirus)  following  manufacturer’s  instructions.    Cells  were  split  onto   round  matrigel-­‐coated  (BD)  coverglass  24hrs  after  transfection  and  imaged  within  48hrs   of   splitting.     Cells   were   maintained   in   Dulbecco’s   Modification   of   Eagle’s   Medium   (DMEM)   supplemented   with   10%   fetal   bovine   serum   (FBS)   and   1%   penicillin-­‐ streptomycin  inside  a  37°C,  5%  CO2  humidified  incubator.     Dye  uptake  experiments   All  experiments  were  carried  out  in  standard  calcium  imaging  buffer  lacking   calcium  (CIB -­‐ )  unless  otherwise  noted.  CIB -­‐  contains:  136mM  NaCl,  5.4mM  KCl,  1mM   MgCL 2 ,  10mM  EGTA,  10mM  HEPES,  10mM  glucose  and  0.33mM  NaH 2 PO 4  adjusted  to  pH   7.4.  CIB  buffer  is  the  same  as  CIB -­‐  buffer  only  it  contains  instead  of  10mM  EGTA,  1.8mM   CaCl 2 .    After  acclimating  HEK  293  cells  transiently  transfected  with  rTRPM8/V1/A1  or   sensory  neurons  in  CIB -­‐  at  room  temperature  for  approximately  20  mins,  cells  were  first   perfused  with  CIB -­‐  containing  1µM  PO-­‐PRO3  (Life  Technologies)  for  2mins  to  identify   dead  cells.    Subsequent  incubations  were  then  carried  out  in  solutions  containing  the   various  experimental  compounds  tested  and  1µM  PO-­‐PRO3.     62     Neuron  culture   Trigeminal   Ganglia   were   dissected   from   newborn   transgenic   mice   (<P14)   engineered  to  express  GFP  in  TRPM8 +  sensory  neurons  and  dissociated  with  0.25%   collagenase  Type  1  (Roche)  in  a  solution  of  50%  DMEM  and  50%  F-­‐12  for  30mins.    The   ganglia  were  then  pelleted  and  resuspended  in  0.05%  trypsin  and  incubated  at  37°C  for   2mins.    After  washing  in  DMEM/F12  and  pelleting,  cells  were  triturated  gently  with  a   fire-­‐polished   Pasteur   pipette   in   culture   medium   (DMEM/F-­‐12   with   10%   FBS   and   penicillin-­‐streptomycin).    Cells  were  then  spun  through  a  percol  gradient  consisting  of   60%  percol  overlaid  by  30%  percol  in  culture  media.  Enriched  sensory  neurons  were   then  collected  from  the  interphase  between  the  30%  and  60%  layers,  washed,  pelleted   and   resuspended   in   culture   medium   supplemented   with   nerve   growth   factor   7S   (Invitrogen)  (100ng/ml)  and  plated  onto  coverslips  coated  with  Matrigel  (BD)  (20µl/ml).   Cultures  were  then  used  12-­‐24hrs  after  plating  for  dye  uptake  experiments.       Calcium  imaging  (for  neurons)   To  identify  live  functioning  neurons  in  sensory  neuron  cultures,  cells  were  tested   via  calcium  imaging.    Neurons  were  preloaded  for  1hr  at  room  temperature  with  10µM   Fura-­‐2,  a  cell  permeable  fluorescent  dye  that  is  differentially  excited  by  340nm  and   380nm  light  based  on  whether  or  not  it  is  bound  to  calcium.    Positive  PO-­‐PRO3  dye   uptake  was  defined  as  fluorescence  exceeding  a  threshold  of  3  standard  deviations   above  baseline  measurements  carried  out  on  non-­‐responding  neurons  over  a  10  minute   63     window.    After  PO-­‐PRO3  dye  uptake  experiments  had  concluded  cells  were  perfused   with   CIB   for   10mins   followed   by   a   brief   15s   pulse   of   CIB   containing   50mM   KCl   to   depolarize  all  electrically  active  cells.    Subsequent  changes  in  intracellular  calcium  were   measured  via  radiometric  imaging  and  used  to  identify  live  functioning  neurons  for   quantification  purposes.         Acetone  behavior/paw  injections   Cold  behavioral  responses  were  measured  using  the  evaporative  cooling  assay   and  performed  as  follows:  mice  were  acclimated  for  30mins  inside  a  4  chambered   plexiglass  housing  on  top  of  a  metal  mesh  platform.    A  syringe  with  tubing  attached  to   the  end  was  used  to  apply  1  drop,  or  ~50µl,  of  acetone  to  the  hind  paw  of  the  mouse   and  behavioral  responses  were  recorded  by  video  camera.    Behaviors  were  then  scored   according  to  the  magnitude  of  the  response  along  the  following  scale:  0-­‐no  response;  1-­‐ brief  lift,  sniff,  flick,  or  startle;  2-­‐jumping,  paw  shaking;  3-­‐multiple  lifts,  paw  lick;  4-­‐ prolonged  paw  lifting,  licking,  shaking,  or  jumping;  5-­‐paw  guarding.    The  scale  was   designed  so  that  the  extreme  values  (0  and  5)  occurred  only  rarely.  Mice  were  tested   four  at  a  time  in  a  sequential/alternating  fashion  so  that  each  mouse  was  tested  once   every  2mins  and  each  paw  once  every  4mins  for  a  total  of  3  trials  for  each  paw.     WS-­‐12/QX-­‐314  paw  injections  were  carried  out  via  intraplantar  injection  of  20  µl   of   corn   oil   (Sigma)   containing   20µg   WS-­‐12   (Tocris),   2%   QX-­‐314   (Sigma),   or   both.     Acetone  behavioral  responses  were  then  recorded  every  30mins  following  injection.  All   64     experiments  were  performed  according  to  the  policies  and  recommendations  of  the   International   Association   for   the   Study   of   Pain   and   approved   by   the   University   of   Southern  California  Animal  Care  and  Use  Committee.   65     RESULTS   PO-­‐PRO3  can  permeate  both  TRPA1  and  TRPV1   As   previous   studies   had   shown   that   the   large   cationic   dye   YO-­‐PRO1   could   permeate  both  TRPA1  and  TRPV1  upon  channel  stimulation  we  first  set  out  to  confirm   that  this  could  be  replicated  in  our  own  hands  as  a  positive  control  (Binshtok,  Bean  et  al.   2007;  Chen,  Kim  et  al.  2009).    We  chose  to  work  with  the  similarly  sized  cationic  dye  PO-­‐ PRO3,  mainly  because  its  fluorescence  properties  are  in  the  red  channel.    We  reasoned   that  should  PO-­‐PRO3  prove  able  to  permeate  TRPM8  in  heterologous  cells,  we  could  use   this  same  dye  in  later  experiments  looking  at  dye  uptake  in  GFP-­‐labeled  TRPM8 +  sensory   neurons.    As  the  fluorescence  spectrum  of  YO-­‐PRO1  overlaps  with  that  of  GFP,  these   experiments  would  not  be  possible  using  this  dye.  We  determined  that  HEK293  cells   expressing  rTRPA1  or  rTRPV1  were  able  to  robustly  take  up  PO-­‐PRO3  upon  stimulation   with  300µM  Allyl  isothiocyanate  (AITC)  or  10µM  capsaicin  respectively,  with  no  dye   uptake  in  control  cells  transfected  with  empty  vector  (pcDNA3)  (Fig.  3.1).       WS-­‐12  can  stimulate  PO-­‐PRO3  dye  uptake  in  heterologous  cells   With  successful  PO-­‐PRO3  dye  uptake  established  in  TRPV1  and  TRPA1-­‐expressing   HEK293  cells,  we  next  determined  if  this  was  possible  in  TRPM8-­‐expressing  cells.    As  the   only  other  known  study  published  on  this  subject  found  that  TRPM8  could  not  allow   uptake   of   YO-­‐PRO1   upon   stimulation   with   menthol   (EC50   66.7µM),   a   known   weak   agonist  for  TRPM8,  we  sought  to  test  if  the  potent  agonist  WS-­‐12  (EC50  193nM)  would   66     be  more  successful  (McKemy,  Neuhausser  et  al.  2002;  Bodding,  Wissenbach  et  al.  2007).     We  found  that  HEK293  cells  transfected  with  rTRPM8  were  able  to  take  up  PO-­‐PRO3  dye   in   the   presence   of   WS-­‐12   in   a   concentration-­‐dependent   manner   with   a   maximal   response  coming  from  concentrations  equal  or  greater  to  2µM,  and  no  dye  uptake  seen   at  any  concentration  in  control  empty  vector-­‐transfected  cells  (Fig.  3.2A-­‐B,  Fig.  3.3A).     Similar  results  were  found  using  menthol  although  equivalent  dye  uptake  seen  using   2µM  WS-­‐12  was  seen  using  1mM  menthol  (Fig.  3.2C-­‐D,  Fig.  3.3B).    This  difference  is   further  shown  in  a  comparative  dose  response  curve  (EC50  WS-­‐12  =  ~813nM,  EC50   Menthol  =  ~409µM)  with  WS-­‐12  being  over  500  times  more  potent  than  menthol  in     FIGURE  3.1   PO-­‐PRO3  dye  uptake  in  TRPA1  and  TRPV1-­‐transfected  HEK  cells   HEK  293  cells  transfected  with  rTRPA1  and  rTRPV1  can  take  up  dye  in  the  presence  of  mustard  oil  and   capsaicin  respectively.    Cells  were  first  profused  with  1µM  PO-­‐PRO3  for  2  minutes  (120s),  followed  by   10  minutes  (600s)  of  1µM  PO-­‐PRO3  plus  agonist  (300µM  MO  or  10µM  CAP  demarcated  by  arrow).     Values  are  expressed  as  arbitrary  fluorescence  units  ±  SE  (n=15  cells,  3  experiments).   67       FIGURE  3.2   PO-­‐PRO3  dye  uptake  in  TRPM8-­‐transfected  HEK  cells   A)  Untransfected  HEK  293  cells  transfected  do  not  take  up  dye  in  the  presence  saturating   concentrations  of  WS-­‐12  (10µM).  B-­‐D)  HEK  293  cells  transfected  with  rTRPM8  take  up  dye  in  the   presence  of  2µM  WS-­‐12  (B),  100µM  menthol  (C),  and  1mM  menthol  (D).    Cells  were  first  profused  with   1µM  PO-­‐PRO3  for  2  minutes,  followed  by  10  minutes  of  1uM  PO-­‐PRO3  plus  agonist.   68      facilitating   TRPM8-­‐dependent   dye   uptake   (Fig.   3.3C).   However,   when   these   experiments   were   repeated   in   the   presence   of   Ca 2+   the   amount   of   dye   uptake   in   response  to  WS-­‐12  stimulation  dropped  precipitously,  results  consistent  with  previous   findings   regarding   calcium-­‐dependent   desensitization   of   TRPM8   channels   (Fig.   3.3D)(McKemy,  Neuhausser  et  al.  2002).       FIGURE  3.3   Relative  quantification  of  PO-­‐PRO3  dye  uptake  in  TRPM8-­‐transfected  HEK  cells   A)  HEK  293  cells  transfected  with  rTRPM8  take  up  dye  in  the  presence  of  WS-­‐12  (A)  and  menthol  (B)  in   a  concentration-­‐dependent  manner.  C)  Concentration  response  curves  for  WS-­‐12  and  menthol-­‐evoked   PO-­‐PRO3  dye  uptake.  D)  WS-­‐12-­‐mediated  dye  uptake  in  the  presence  or  absence  of  extracellular  Ca 2+ .     PO-­‐PRO3  dye  uptake  experiments  were  carried  out  by  first  perfusing  1µM  PO-­‐PRO3  for  2  minutes,   followed  by  10  minutes  of  1uM  PO-­‐PRO3  plus  agonist.  Values  are  expressed  as  arbitrary  fluorescence   units  ±  SE  (n=15  cells,  3  experiments)   69       WS-­‐12-­‐mediated  PO-­‐PRO3  uptake  is  TRPM8-­‐specific   To  further  test  the  TRPM8-­‐specificity  of  PO-­‐PRO3  uptake  in  heterologous  cells   transfected  with  rTRPM8,  we  incubated  cells  with  the  specific  antagonist  PBMC.    In  the   presence   of   25nM   PBMC   PO-­‐PRO3   uptake   was   both   prevented,   if   pre-­‐treated,   and   halted,  if  administered  during  WS-­‐12-­‐mediated  dye  uptake  experiments  (Fig.  3.4A).      A   previous   study   has   shown   that   TRPA1   can   be   activated   by   menthol   at   certain   concentrations   in   vitro   (Karashima,   Damann   et   al.   2007).     As   WS-­‐12   is   a   menthol   derivative,  we  tested  the  agonist  on  rTRPA1-­‐transfected  cells  and  found  that  even  at   super  saturating  concentrations  of  10µM,  WS-­‐12  did  not  induce  dye  uptake.    However,   the  addition  of  the  TRPA1-­‐specific  agonist  AITC  following  WS-­‐12  administration  did   induce  uptake  in  these  cells,  proving  that  they  were  in  fact  expressing  TRPA1  (Fig.  3.4B).       Taken   together   these   data   support   a   TRPM8-­‐specific   dye   uptake   resulting   from   administration  of  the  potent  agonist  WS-­‐12.     WS-­‐12  can  stimulate  PO-­‐PRO3  dye  uptake  in  cultured  sensory  neurons  expressing  TRPM8   With  TRPM8-­‐specific  dye  uptake  seen  in  heterologous  cells  using  WS-­‐12  and   menthol,  we  next  turned  our  focus  on  whether  these  same  results  could  be  replicated  in   native   cells.     Trigeminal   ganglia   from   the   TRPM8-­‐GFP   BAC-­‐transgenic   mouse   line   engineered  by  our  lab  to  express  GFP  in  TRPM8 +  neurons  were  first  dispersed  and   cultured  overnight.    We  found  that  87.4  +/-­‐  5.0%  of  GFP +  neurons  responded  with  an   70     increase  in  PO-­‐PRO3  fluorescence  in  response  to  2µM  WS-­‐12.    Moreover,  we  only   observed  dye  uptake  in  1.9%  of  GFP -­‐  cells,  results  consistent  with  TRPM8-­‐mediated  dye   uptake  (7  experiments,  175  neurons  measured,  20.6%  of  neurons  were  GFP + )(Fig.  3.5).     FIGURE  3.4   WS-­‐12-­‐mediated  dye  uptake  is  TRPM8  specific   A)  HEK  293  cells  transfected  with  rTRPM8  take  up  PO-­‐PRO3  in  the  presence  of  WS-­‐12  (2µM)  but  do   not  take  up  dye  if  simultaneously  incubated  with  the  TRPM8-­‐specific  antagonist  PBMC  (25nM)  (B)   Saturating  concentrations  of  WS-­‐12  (10µM)  does  not    cause  dye  uptake  in  HEK  293  cells  transfected   with  rTRPA1.    PO-­‐PRO3  dye  uptake  experiments  were  carried  out  by  first  perfusing  1µM  PO-­‐PRO3   for  2  minutes,  followed  by  5  or  10  minute  experimental  treatments  in  the  presence  of  1uM  PO-­‐ PRO3.  Values  are  expressed  as  arbitrary  fluorescence  units  ±  SE  (n=15  cells,  3  experiments)   71         FIGURE  3.5   WS-­‐12-­‐mediated  dye  uptake  in  TRPM8-­‐expressing  sensory  neurons   Representative  trigeminal  sensory  neuron  culture  from  TRPM8-­‐GFP +  mice.  A)  Bright  field  (left)  and   bright  field  superimposed  with  GFP  channel  (right).  Green  arrow  marks  a  GFP +  neuron  while  yellow   arrows  mark  GFP -­‐  neurons.  B)  Calcium  imaging  in  cells  loaded  with  Fura-­‐2  dye  (340:380nm)  before   (left)  and  after  (right)  brief  membrane  depolarization  (via  50mM  KCl  exposure)  identify  active  neurons.   C)  PO-­‐PRO3  dye  uptake  experiments  after  2  minutes  PO-­‐PRO3  alone  (left)  and  after  subsequent  10   minute  incubation  with  PO-­‐PRO3  and  WS-­‐12  (right).   72     WS-­‐12/QX-­‐314  co-­‐administration  can  block  the  development  of  cold-­‐hypersensitivity  in   response  to  WS-­‐12  in  vivo   The  lidocaine  derivative  QX-­‐314  is  normally  membrane  impermeable  due  to  its   permanent  positive  charge.    Like  lidocaine,  it  blocks  neuronal  transmission  by  binding  to   the  cytosolic  surface  of  voltage-­‐gated  sodium  channels  once  inside  the  cell,  blocking   their  activity.    As  it  is  approximately  25%  smaller  than  PO-­‐PRO3  (263da  vs  351da),  we   next  wanted  to  see  if  WS-­‐12  stimulation  could  block  cold  sensation  in  vivo  by  facilitating   the  entry  of  QX-­‐314  via  TRPM8.    Wildtype  mice  exhibit  cold  hypersensitivity  in  response   to  intraplantar  hind  paw  injection  of  10µg  of  WS-­‐12,  with  a  peak  hypersensitivity  seen   30  minutes  post  injection  via  acetone  behavior  test  (Fig.  3.6A).  When  2%  QX-­‐314  is  co-­‐ injected   with   10µg   WS-­‐12   however,   the   development   of   cold   hypersensitivity   is   abolished  with  near  identical  values  to  vehicle  (saline)  injected  mice  (Fig.  3.6B).      These   data   suggest   that   robust   TRPM8   stimulation   can   be   used   as   a   means   of   targeting   positively  charged  therapeutics,  like  QX-­‐314,  to  cold-­‐sensing  neurons  in  vivo.   73       (Data  courtesy  of  Radhika  Palkar)   FIGURE  3.6   QX-­‐314/WS-­‐12  coadministration  can  block  WS-­‐12-­‐mediated  cold  hypersensitivity  in  vivo   A)  Acetone  response  scores  following  intraplantar  hindpaw  injection  of  10ug  WS-­‐12  in  wild  type  mice   (n=4-­‐6).  B)  Acetone  response  scores  following  intraplantar  hindpaw  injection  of  vehicle  (2%  QX-­‐314),   10ug  WS-­‐12  alone,  and  10ug  WS-­‐12  +  2%  QX-­‐314  (n=4-­‐6).  Values  are  expressed  as  means  ±  SE.  *P  <   0.05,  **P  <  0.01,  ***P  <  0.001,  by  Student’s  unpaired  t-­‐test.   74     CONCLUSION   Here  we  have  presented  evidence  that  TRPM8  channels  can  allow  large  cationic   molecules   to   pass   in   response   to   strong   agonist   stimulation.     Specifically,   we   have   shown  that  the  cationic  dye  PO-­‐PRO3  is  taken  up  by  heterologous  cells  transfected  with   rTRPM8  when  robustly  stimulated  by  WS-­‐12  and  menthol.    Previously  published  work   concluded  that  the  large  cationic  dye  YO-­‐PRO1  could  not  permeate  TRPM8  in  such  a   manner,  a  conclusion  we  believed  to  be  premature  based  on  flaws  in  their  experimental   model   (Chen,   Kim   et   al.   2009;   Nakagawa   and   Hiura   2013).     Although   we   did   see   significant  PO-­‐PRO3  uptake  in  cells  stimulated  with  100µM  menthol,  the  maximum   concentration  used  in  the  previously  mentioned  study  resulting  in  no  dye  uptake,  our   ability  to  measure  this  amount  of  dye  uptake  was  enhanced  by  the  sensitivity  of  our   approach.    While  Chen  et  al.  used  a  high  throughput  FLIPR  based  approach  in  which  the   entire   fluorescence   of   a   lawn   of   cells   from   a   well   was   summed   for   an   overall   measurement  of  dye  uptake,  we  measured  dye  uptake  in  individual  cells  (Chen,  Kim  et   al.  2009).    In  addition  to  the  FLIPR  assay  being  less  sensitive  due  to  the  unknown   transfection  efficiency  of  the  cells  being  measured,  it  also  has  higher  background  due  to   variations  in  cell  confluency  and  its  inclusion  of  non-­‐specific  dye  uptake  in  dead  or  dying   cells.     Taken   together   with   the   fact   that   this   study   used   a   submaximal   100µM   concentration  of  menthol  (EC50  66.7uM),  we  believe  the  authors  were  unable  to  see   TRPM8-­‐mediated  dye  uptake  due  to  the  limitations  of  their  assay  design  (McKemy,   Neuhausser  et  al.  2002).    By  more  robustly  stimulating  TRPM8  with  menthol  and  the   75     super-­‐potent   agonist   WS-­‐12   (EC50   193nM),   and   controlling   for   sensitivity   and   background  issues  by  measuring  individual  cells,  we  were  able  to  definitively  show  dye   uptake  in  TRPM8-­‐transfected  heterologous  cells  (Bodding,  Wissenbach  et  al.  2007).    To   further  test  the  TRPM8-­‐specificity  of  this  phenomenon  we  showed  that  the  TRPM8-­‐ specific  antagonist  PBMC  could  be  used  to  both  prevent  and  block  the  progression  of   WS-­‐12-­‐mediated   dye   uptake.     Additionally,   in   agreement   with   previously   published   reports  on  the  high  specificity  of  WS-­‐12  for  TRPM8,  we  showed  that  WS-­‐12  did  not   cause  dye  uptake  in  cells  expressing  other  TRP  family  channels  TRPA1  or  TRPV1  (Ma,  G   et  al.  2008;  Anand,  Otto  et  al.  2010).   Using  our  TRPM8-­‐GFP  BAC-­‐transgenic  mouse  line,  we  next  showed  similar  WS-­‐ 12-­‐mediated  dye  uptake  in  cultured  native  cells.    We  found  that  dye  uptake  in  the   presence   of   WS-­‐12   overlapped   almost   exclusively   with   the   TRPM8-­‐expressing   subpopulation  of  sensory  neurons  with  87.4  +/-­‐  5.0%  of  GFP +  neurons  vs  1.9%  GFP -­‐   neurons  taking  up  dye.    These  results  are  consistent  with  previously  published  work   characterizing  calcium  responses  using  menthol  in  similarly  cultured  sensory  neurons   (Takashima,  Daniels  et  al.  2007).    Lastly,  we  tested  if  cold  behavioral  responses  could  be   silenced  using  this  method  in  vivo.    We  found  that  mice  injected  with  20µg  WS-­‐12  IP  into   the   hind   paw   develop   cold   hypersensitivity,   a   phenotype   not   seen   in   control   mice   injected  with  vehicle  or  2%  QX-­‐314  alone.    However,  when  WS-­‐12  was  co-­‐injected  with   2%  QX-­‐314  we  saw  no  cold  hypersensitivity  develop  in  response  to  acetone.    These   preliminary  studies  serve  as  the  first  evidence  that  support  the  hypothesis  that  TRPM8   76     pore  dilation  can  be  used  to  specifically  target  therapeutics  to  cold  sensing  neurons.   Future  electrophysiological  studies  will  show  definitively  if  QX-­‐314  can  permeate  TRPM8   and  block  neuron  firing  in  vitro,  and  shed  light  on  the  physical  pore  dilation  properties  of   the  channel  itself.    Although  the  high  degree  of  specificity  of  WS-­‐12  for  TRPM8  has  been   published,  WS-­‐12  paw  injections  in  TRPM8-­‐knockout  mice  will  tell  us  if  WS-­‐12-­‐induced   cold  hypersensitivity  is  dependent  on  TRPM8  in  vivo  (Ma,  G  et  al.  2008;  Anand,  Otto  et   al.  2010).    Furthermore,  as  we  and  others  have  shown  that  TRPM8  is  involved  in  a   variety  of  chronic  cold  pain  models,  whether  it  be  inflammatory  (CFA),  neuropathic   (CCI),   or   chemotherapeutic-­‐induced   (Oxaliplatin),   further   testing   the   utility   of   this   approach   will   provide   valuable   insights   into   the   treatments   of   these   and   similar   conditions  (Colburn,  Lubin  et  al.  2007;  Knowlton,  Daniels  et  al.  2011;  Knowlton,  Palkar  et   al.  2013).   77                 CHAPTER  FOUR                 Translational  profiling  approach  for  the  molecular  characterization  of  TRPM8-­‐expressing   sensory  neurons                           78     INTRODUCTION   The  sensory  nervous  system  is  responsible  for  the  detection  of  a  wide  variety  of   environmental   cues.   One   sensory   pathway   in   which   biological   players   have   been   identified  is  that  of  temperature  sensation.  As  discussed  previously,  a  series  of  Transient   Receptor  Potential  (TRP)  ion  channels  have  been  found  to  play  integral  roles  in  the   perception   of   temperature   in   that   they   are   thermally-­‐gated,   leading   to   the   depolarization  of  the  neurons  and  nerve  firing  upon  activation  (Jordt,  McKemy  et  al.   2003).   The   channel   TRPM8   detects   both   noxious   and   innocuous   cold   and   is   the   molecular  basis  for  the  cooling  associated  with  menthol  (McKemy,  Neuhausser  et  al.   2002;  Bautista,  Siemens  et  al.  2007).    Knockout  mouse  studies  have  shown  TRPM8’s     involvement   in   cold   nociception,   cold-­‐mediated   analgesia,   and   cold   hyperalgesia   (Bautista,  Siemens  et  al.  2007;  Colburn,  Lubin  et  al.  2007;  Dhaka,  Murray  et  al.  2007).   How  one  gene  can  be  involved  in  these  varied  phenotypes  remains  unclear,  and  the   mechanisms  that  may  regulate  TRPM8  function  in  this  regard  have  yet  to  be  identified.   Furthermore,   TRPM8   has   been   directly   implicated   in   pain   models   associated   with   diabetic   and   chemotherapeutic-­‐induced   cold   neuropathies   (Knowlton,   Daniels   et   al.   2011;  McCoy,  Zhou  et  al.  2013).  These  conditions  are  often  debilitating,  and  with  no   clear  understanding  of  the  underlying  mechanisms  involved,  patients  are  left  with  no   way  of  directly  alleviating  their  symptoms.  As  TRPM8  has  a  myriad  of  functions,  a   transcriptional   snapshot   of   these   cold-­‐sensitive,   TRPM8-­‐expressing   neurons   under   normal   and   pathological   conditions   would   help   in   our   understanding   of   thermal   79     sensitivity  and  has  the  potential  to  reveal  new  therapeutic  targets  for  the  treatment  of   cold-­‐hypersensitive  conditions.     Typical   gene   expression   profiling   approaches   use   fluorescence-­‐activated   cell   sorting  (FACS)  to  collect  a  specific  cell  type  to  be  profiled.  However,  TRPM8  is  expressed   in  a  very  small  subset  of  sensory  neurons  and,  due  to  the  inefficiencies  in  attaining   ample  amounts  of  mRNA  using  FACS,  an  alternative  approach  was  needed  (Takashima,   Daniels  et  al.  2007).  Here  we  describe  applying  a  new  translating  ribosome  affinity   purification  (TRAP)  technique  for  this  purpose  (Fig.  4.1).  This  technique  employs  the  use   of  an  eGFP  labeled  ribosomal  protein  L10a  (eGFP-­‐L10a)  as  a  means  to  pull  down  cell-­‐ specific  translating  mRNA  sequences  when  genetically  targeted  to  TRPM8  expressing   neurons  (Heiman,  Schaefer  et  al.  2008).  The  advantages  of  this  technique  are  numerous   but  include:  1)  shorter  processing  time,  minimizing  mRNA  degradation  and  expression   changes  brought  on  by  cell  stress,  2)  cell-­‐type  specificity  due  to  its  genetic  targeting,  and   3)  provides  a  more  accurate  reflection  of  protein  levels  due  to  the  specificity  for  mRNA   transcripts  actively  being  translated  by  ribosomes.     Described  herein  is  the  development  of  a  TRPM8-­‐BAC-­‐transgenic  line  where   eGFP-­‐L10a  has  been  targeted  to  cold-­‐sensitive,  TRPM8-­‐expressing  neurons  (TRPM8-­‐ eGFP-­‐L10a).  Although  dozens  of  transgenic  mouse  lines  have  been  generated  using  the   BAC-­‐TRAP  methodology  (Doyle,  Dougherty  et  al.  2008),  this  mouse  is  the  first  in  which  a   sensory   neuron   population   has   been   targeted.   Successful   pull-­‐down   of   ribosomal   protein   and   intact   translating   transcripts   from   heterologous   cells   provide   proof   of   80     principle  for  this  technique  to  be  used  to  isolate  TRPM8  neuron-­‐specific  transcripts  from   our   mouse   line.   Furthermore,   as   the   TRPM8-­‐expressing   neuronal   population   is   functionally  heterogeneous  in  nature,  we  will  also  discuss  the  development  of  a  CRE   recombinase  based  approach  in  which  eGFP-­‐L10a  and  mCherry-­‐L10a  can  be  specifically   targeted  to  distinct  TRPM8  subpopulations  allowing  for  their  comparison  following  tag-­‐ specific  immunoprecipitation.  These  tools  will  serve  two  main  purposes  1)  to  better   understand  molecular  expression  in  cold-­‐sensitive,  TRPM8-­‐expressing  neurons  and  2)  to   identify  genes  involved  in  the  development  of  cold  hypersensitivity.   81                                                                    (Emery  and  Barres  2008)     FIGURE  4.1   BAC-­‐TRAP  technique  work  flow   BAC-­‐TRAP  technique  work  flow  highlighting  the  cell-­‐specific  isolation  of  mRNA  transcripts  using  the   ribosomal  subunit  L10a   82     MATERIALS  AND  METHODS   TRPM8-­‐L10a-­‐eGFP  mouse  BAC-­‐transgenic  generation   The   TRPM8   bacterial   artificial   chromosome   (BAC)   clone   was   modified   by   homologous  recombination  as  described  (Heiman,  Schaefer  et  al.  2008),  targeting  an   L10a-­‐eGFP  transgene  to  the  second  exon  at  nucleotide  position  1927  in  the  TRPM8  gene   (numbering  based  on  the  Ensembl  Genome  Browser;  gene  ID,  ENS-­‐MUSG00000036251).   A  targeting  (Abox)  sequence  consisting  of  ~370  bp  upstream  (5’)  to  the  recombination   site  was  cloned  into  the  S296  shuttle  vector  containing  L10a-­‐eGFP  (a  gift  from  N.  Heintz,   Rockefeller  University,  New  York).    TRPM8-­‐Abox-­‐L10a-­‐eGFP  shuttle  vector  DNA  was   then  electroporated  into  electrocompetent  bacteria  containing  the  TRPM8-­‐BAC  and  a   Recombinase-­‐A   (RecA)   plasmid   and   selected   in   Luria   Broth   (LB)   medium   containing   carbenicillin   (shuttle   vector),   chloramphenicol   (TRPM8-­‐BAC),   and   tetracycline   (RecA)   overnight.   The   culture   was   then   plated   onto   carbenicillin/chloramphenicol   growth   plates  and  again  grown  overnight.    Identification  of  cointegrates  was  done  via  PCR   analysis  using  the  following  BAC-­‐specific  and  transgene-­‐specific  primers:     P1  (5’  BAC-­‐specific),  5’-­‐GCAAACAGAAGAGACATCGCTAGC-­‐3’   P2  (3’  GFP-­‐specific),  5’-­‐GTTCAGCGTGTCCGGCGAGGGCG-­‐3’     P3  (5’  R6K-­‐specific),  5’CAGGTTGAACTGCTGATCAACAGATC-­‐3’   P4  (3’  BAC-­‐specific),  5’-­‐GCAATAAAACTCCCTGCTTCATAG-­‐3’   Modified  BAC  clones  were  also  screened  via  Southern  blot  analysis  using  a  Biotin   labeled  probe  corresponding  to  the  targeting  Abox  sequence.  Modified  BAC-­‐DNA  was   83     purified  over  a  sepharose  column  and  dialyzed  for  2  days  in  excess  injection  buffer   (10nM  EDTA,  10mM  Tris,  100mM  NaCl  pH  7.5).  Purified  DNA  was  then  injected  into  the   pronucleus  of  fertilized  ova  at  the  University  of  Southern  California  (USC)  Transgenic   Core  Facility.  Transgenic  founder  mice  were  identified  by  PCR  and  mated  to  C57BL/6   mice.  All  animals  were  handled  and  cared  for  in  accordance  with  guidelines  established   by  the  USC  Animal  Care  and  Use  Committee.     Immunostaining   Mice   were   transcardially   perfused   with   ice   cold   4%   paraformaldehyde   (PFA)   solution  in  0.1M  PBS.    Tissues  were  carefully  dissected  and  post-­‐fixed  for  2hrs  on  ice  in   4%  PFA,  and  dehydrated  in  30%  sucrose  solution  in  0.1M  PBS  overnight  at  4°C.  Sensory   tissue  was  quickly  frozen  in  OCT  on  dry  ice,  sectioned  with  a  cryostat  at  10µm  onto   Superfrost  Plus  slides  (VWR)  and  stored  at  -­‐80°C.  Cryosections  were  thawed  at  room   temperature  for  10mins,    permeabilized  in  PBST  (0.1M  PBS,  0.1%  Triton  X-­‐100)  for   30mins,  washed  3  times  in  PBS  for  5mins  and  blocked  for  1hr  at  room  temperature  in   PBST  +  5%  Normal  Goat  Serum  (NGS).    Slides  were  then  incubated  with  a  1:500  dilution   of  Guinea  pig  anti  PGP9.5  (AB5898,  Millipore)  in  PBST  +  1%  NGS  overnight  at  4°C  in  a   humidified  box  to  label  all  sensory  neurons.    Slides  were  washed  3  times  in  PBST  for   5mins  and  incubated  in  secondary  antibody  solution  (1:1000  Alexa-­‐594  (Invitrogen)  in   PBST  +  1%  NGS)  for  2hrs  at  room  temperature.  Slides  were  washed  3  times  in  PBST  for   10mins   and   cover   slipped   with   Vectorshield-­‐DAPI   (Vector   Labs),   or   Prolong   Gold   84     (Invitrogen)  mounting  medium.  Imaging  was  carried  out  on  a  Zeiss  Axio  Imager  M2  with   Apotome.   Note:   GFP   labeling   was   not   needed   as   L10a-­‐eGFP   transgene   was   bright   enough  to  label  cells  on  its  own.     Neuron  culture  and  Calcium  imaging   Trigeminal   Ganglia   were   dissected   from   newborn   transgenic   mice   (<P14)   engineered  to  express  L10a-­‐eGFP  in  TRPM8-­‐positive  sensory  neurons  and  dissociated   with  0.25%  collagenase  Type  1  (Roche)  in  a  solution  of  50%  DMEM  and  50%  F-­‐12  for   30mins.     The   ganglia   were   then   pelleted   and   resuspended   in   0.05%   trypsin   and   incubated  at  37°C  for  2mins.    After  washing  in  DMEM/F12  and  pelleting,  cells  were   triturated  gently  with  a  fire-­‐polished  Pasteur  pipette  in  culture  medium  (DMEM/F-­‐12   with  10%  FBS  and  penicillin-­‐streptomycin).    Cells  were  then  spun  through  a  percol   gradient  consisting  of  60%  percol  overlaid  by  30%  percol  in  culture  media.  Enriched   sensory  neurons  were  then  collected  from  the  interphase  between  the  30%  and  60%   layers,  washed,  pelleted  and  resuspended  in  culture  medium  supplemented  with  nerve   growth   factor   7S   (Invitrogen)   (100ng/ml)   and   plated   onto   coverslips   coated   with   Matrigel  (BD)  (20µl/ml).  Cultures  were  then  used  12-­‐24hrs  after  plating.     Neurons  were  preloaded  for  1hr  at  room  temperature  with  10µM  Fura-­‐2,  a  cell   permeable  fluorescent  dye  that  is  differentially  excited  by  340nm  and  380nm  light   based  on  whether  or  not  it  is  bound  to  calcium.  Cells  were  first  acclimated  to  calcium   imaging  buffer  (CIB)  containing:  136mM  NaCl,  5.4mM  KCl,  1mM  MgCL 2 ,  1.8mM  CaCl 2 ,   85     10mM  HEPES,  10mM  glucose  and  0.33mM  NaH 2 PO 4  adjusted  to  pH  7.4.  Next,  cells  were   perfused  with  500µM  menthol  in  CIB  to  identify  TRPM8-­‐expressing  neurons.  Finally,   cells  were  perfused  with  CIB  spiked  with  50mM  KCl  to  identify  all  active  neurons  in  the   culture.   Changes   in   intracellular   calcium   were   measured   via   radiometric   imaging   (340:380nm   ratio)   and   used   to   identify   live   functioning   neurons   for   quantification   purposes.         Mammalian  cell  culture  and  transfection   Mammalian  expression  vectors  containing  L10a-­‐eGFP,  LC(L10a)LG(L10a),  or  CRE   were  transfected  into  the  human  embryonic  kidney  cell  line  293  (HEK293)  using  TransIT-­‐ LT1  reagent  (Mirus)  following  the  manufacturer’s  instructions.    Cells  were  split  onto   round  matrigel-­‐coated  (BD)  coverglass  24hrs  after  transfection  and  imaged  within  48hrs   of   splitting.     Cells   were   maintained   in   Dulbecco’s   Modification   of   Eagle’s   Medium   (DMEM)   supplemented   with   10%   fetal   bovine   serum   (FBS)   and   1%   penicillin-­‐ streptomycin  inside  a  37°C,  5%  CO 2  humidified  incubator.     Immunoprecipitation   HEK  cells  transfected  with  L10a-­‐eGFP,  LC(L10a)LG(L10a),  or  CRE  were  harvested   48hrs   post   transfection   and   lysates   immunoprecipitated   (IP)   as   described   (Heiman,   Schaefer  et  al.  2008).  Briefly,  cells  were  first  resuspended  in  polysome  extraction  buffer   (10mM  HEPES,  5mM  MgCl 2 ,  150mM  KCl,  0.5mM  dithiothreitol,  100μM  cycloheximide,   86     protease  inhibitors,  and  RNase  inhibitors  pH  7.4)  and  immediately  homogenized  using  a   teflon-­‐glass  homogenizer.  Lysates  were  centrifuged  for  10mins  at  2,000  x  g  at  4°C  to   pellet   cell   debris,   and   NP-­‐40   and   DHPC   were   added   to   the   supernatant   at   a   final   concentration  of  1%  and  30mM  respectively.  Supernatants  were  then  incubated  on  ice   for  30mins  with  frequent  hand  over  hand  mixing  and  centrifuged  for  10mins  at  13,000  x   g  to  pellet  unsolubilized  material.  Mouse  anti-­‐GFP  (clones  19C8  and  19F7  from  MSKCC)   or   mouse   anti-­‐mCherry   (Clontech)   coated   MyOne   T1   Dynabeads   (precoated   with   biotinylated  protein  L)  were  added  to  the  supernatant  and  incubated  at  4°C  with  end-­‐ over-­‐end  rotation  for  30min-­‐overnight.  Beads  were  washed  three  times  on  a  magnetic   rack  with  high-­‐salt  polysome  wash  buffer  (10mM  HEPES,  5mM  MgCl 2 ,  150mM  KCl,   0.5mM  dithiothreitol,  100μM  cycloheximide  pH  7.4)  and  resuspended  in  2X  SDS  (for   western  blotting)  or  Qiagen  RNA-­‐cleanup  lysis  buffer  (for  RNA  purification).       RTPCR   RNA  isolated  by  IP  was  purified  using  the  RNeasy  minipret  kit  with  in-­‐column   DNase  digestion  per  manufacturer’s  instructions  (Qiagen).  RTPCR  was  then  carried  out   on   RNA   samples   using   the   SuperScript   III   One-­‐Step   RT-­‐PCR   kit   per   manufacturer’s   instructions   (Invitrogen)   using   β-­‐actin-­‐specific   primers   as   a   measure   of   intact   RNA   following  IP/purification.  Samples  were  visualized  via  gel  electrophoresis  after  40  cycles.   The  β-­‐actin  primers  used  were  as  follows:  FWD  5’-­‐TCCTTCGTTGCCGGTCCACA-­‐3’  and  REV   5’-­‐GGGCCACACGCAGCTCATTGTA-­‐3’  (329bp).   87     Western  Blotting   Protein  samples  isolated  by  IP  were  loaded  and  run  on  a  4%/10%  polyacrylamide   gel  and  transferred  to  a  PVDF  membrane.  Membranes  were  blocked  for  1hr  at  room   temperature  in  2.5%  BSA,  2.5%  normal  donkey  serum  (NDS)  in  PBST  (0.1%  Tween  20).     Primary  antibody  incubations  were  carried  out  overnight  at  4°C  at  dilutions  of  1:1000  for   each  antibody  in  1%  BSA,  1%  NDS  in  PBST.    The  primary  antibodies  used  were  as  follows:   Mouse   anti-­‐L10a   (H00004736-­‐M01,   Abnova),   Rabbit   anti-­‐GFP   (A11122,   Invitrogen),   Mouse  anti-­‐mCherry  (Clontech).    After  four  5min  washes  in  PBST,  secondary  antibody   incubations   were   carried   out   for   30-­‐60mins   at   room   temperature   at   dilutions   of   1:10,000  for  each  antibody  in  1%  BSA,  1%  NDS  in  PBST  plus  0.02%  SDS.  The  secondary   antibodies   used   were   as   follows:   Donkey   anti   Rabbit-­‐HRP   (Jackson   Immuno),   and   Donkey   anti   Mouse-­‐HRP   (Jackson   Immuno).     After   four   5min   washes   in   PBST,   membranes  were  then  incubated  for  5mins  in  SuperSignal  West  Pico  substrate  (34079,   Pierce)  and  immediately  imaged  on  X-­‐ray  film.   88     RESULTS   Targeting  of  the  TRPM8-­‐eGFP-­‐L10a  transgenic  mouse  line   The   TRPM8-­‐eGFP-­‐L10a   BAC   transgenic   mouse   line   was   generated   using   the   methods   pioneered   by   Nathaniel   Heintz’s   lab   at   Rockefeller   University   (Heiman,   Schaefer  et  al.  2008).  Specifically,  a  shuttle  vector  containing  a  TRPM8-­‐specific  Abox   sequence  followed  by  the  eGFP-­‐L10a  transgene  was  targeted  to  a  bacterial  artificial   chromosome   (BAC)   containing   TRPM8   and   its   upstream   regulatory   region   via   homologous   recombination   (Fig.   4.2A).   Successful   modification   of   BAC   DNA   was   confirmed  via  PCR  analysis  using  BAC-­‐specific  and  transgene-­‐specific  primers  and  via   Southern  Blot  (Fig.  4.2B).  Purified  BAC  DNA  was  then  injected  into  200  single  cell  stage   mouse  embryos  and  implanted  in  six  pseudopregnant  females.  Four  out  of  six  females   gave  birth  to  litters  with  only  one  litter  of  five  mice  surviving  past  neonatal  age.  Three   targeted  mice  out  of  the  five  were  identified  via  PCR  analysis  of  genomic  DNA  taken   from  the  tail,  two  of  which  were  found  to  have  targeted  the  germline,  and  one  of  which   reproduced  past  the  F1  generation  (Fig.  4.2C).  All  of  the  mouse  data  presented  beyond   this  point  was  using  this  mouse  line  and  is  referred  to  as  the  TRPM8-­‐eGFP-­‐L10a  line.     TRPM8-­‐eGFP-­‐L10a  mice  express  eGFP-­‐L10a  in  a  subset  of  small,  menthol-­‐sensitive   sensory  neurons   To   confirm   correct   expression   of   eGFP-­‐L10a   in   TRPM8-­‐expressing   sensory   neurons,  trigeminal  (TG)  and  dorsal  root  ganglia  (DRG)  were  sectioned  and  stained  with   89         FIGURE  4.2   Targeting  strategy  of  the  TRPM8-­‐eGFP-­‐L10a  transgenic  mouse  line   A)  A  shuttle  vector  containing  the  L10a-­‐eGFP  transgene  and  a  homologous  region  of  TRPM8  sequence   was  targeted  to  a  Bacterial  artificial  chromosome  (BAC)  containing  the  genomic  sequence  of  TRPM8   using  Recombinase  A  (RecA).  B-­‐C)  BAC  modification  was  confirmed  via  PCR  analysis  using  specific   external  (P1+4)  and  internal  (P2+3)  primers  (A)  and  Southern  blot  analysis  using  a  biotin-­‐labeled   TRPM8-­‐target  sequence  probe  (B).  Bands  expected  are  ~9.85kb  for  unmodified  TRPM8-­‐BAC  DNA  and   ~9.2kb  +  ~2.2kb  for  modified  TRPM8-­‐BAC  DNA.  D)  PCR  analysis  on  mouse  genomic  DNA  isolated  from   the  tail  show  successful  targeting  of  the  TRPM8-­‐eGFP-­‐L10a  BAC  transgene  (Tg1  =  Transgenic  founder   #1).   90     the   pan   neuronal   marker   PGP9.5.   GFP   fluorescence   was   visualized   without   immunolabeling  and  appeared  to  be  somatic  in  nature  with  no  GFP  signal  seen  in  axonal   projections,  as  expected  for  a  ribosomal  marker  (Fig.  4.3A).  Higher  magnification  images   showed  punctate  fluorescence  around  the  nucleus  of  labeled  neurons,  characteristic  of   polysome  labeling  (Fig.  4.3A  right)  (Doyle,  Dougherty  et  al.  2008).  GFP  fluorescence  was   found  in  15.8  ±  1.4%  of  neurons  in  the  TG  (n=3  mice,  3925  neurons)  and  11.0  ±  0.8%  of   neurons  in  the  DRG  (n=3  mice,  2500  neurons)  (Fig.  4.3A).  Furthermore,  GFP +  neurons   were  small  in  diameter  averaging  19.1  ±  0.23μM  in  the  TG  (n=506)  and  16.5  ±  0.30μM  in   the   DRG   (n=225),   results   consistent   with   TRPM8-­‐expressing   neurons   (Fig.   4.3B)   (Takashima,  Daniels  et  al.  2007).  Although  by  expression  patterns  it  appeared  that  eGFP-­‐ L10a   had   been   successfully   targeted   to   the   TRPM8-­‐expressing   sensory   neuron   population,  in  the  absence  of  a  commercially  available  TRPM8  antibody  that  labels   mouse  tissue  we  could  not  be  certain.  To  circumvent  this  problem  we  turned  to  in  vitro   calcium-­‐imaging  studies.  It  was  found  that  93.5  ±  4.3%  of  GFP +  and  only  5.7  ±  2.5%  of   GFP -­‐   neurons     responded   to   the   TRPM8-­‐agonist   menthol   (9   experiments   144   total   neurons),   results   again   consistent   with   the   eGFP-­‐L10a   transgene   being   correctly   targeted  to  the  cold-­‐sensitive,  TRPM8-­‐expressing  neuron  population  (Fig.4A-­‐B).     91       FIGURE  4.3   The  TRPM8-­‐eGFP-­‐L10a  mouse  line  expresses  eGFP-­‐L10a  in  a  subset  of  small  sensory  neurons   A)  Fluorescence  in  TRPM8-­‐L10a-­‐eGFP +  mouse  DRG  (Top)  and  TG  (Bottom)  stained  with  pan  neuronal   marker  PGP9.5  (red).  Green  channel  confocal  high  magnification  shown  to  the  right.  TG  (n=3  mice,   3925  neurons)  and  DRG  (n=3  mice,  2500  neurons).  B)  Distribution  of  GFP +  sensory  neuron  diameters   from  the  DRG/TG  of  TRPM8-­‐L10a-­‐eGFP +  mice.  Values  are  expressed  as  percentage  ±  SE  (TG  n  =  3  mice,   506  neurons,  DRG  n  =  3  mice,  225  neurons)   92             FIGURE  4.4   GFP +  neurons  from  the  TRPM8-­‐eGFP-­‐L10a  mouse  line  functionally  respond  to  menthol   A)  Calcium  imaging  on  sensory  neurons  isolated  from  P9  TRPM8-­‐L10a-­‐eGFP  mice  using  the  indicator   Fura-­‐2.    93.5  +/-­‐  4.3%  of  GFP  positive  neurons  responded  to  500µM  menthol  bath  application  (9   experiments  n=144  neurons).  B)  Quantification  of  A)  as  measured  by  A340/380nm.   93     Immunoprecipitation  of  eGFP-­‐L10a  and  associated  transcripts  from  transfected  HEK  cell   lysates   To  provide  proof  of  principal  that  we  could  use  the  TRAP  technique  to  IP  mRNA   from  TRPM8-­‐expressing  sensory  tissue  using  our  TRPM8-­‐eGFP-­‐L10a  transgenic  line,  we   first  tested  the  technique  in  a  heterologous  system.  Using  a  modified  protocol  provided   by   Myrian   Heiman   (Rockefeller   University),   we   were   able   to   successfully   isolate   ribosomal   protein   from   HEK293T   cells   transiently   transfected   with   eGFP-­‐L10a,   as   evidenced  by  western  blot  analysis  of  IP  protein  samples  (Fig.  4.5A).  Additionally,  using   β-­‐actin  as  a  marker  of  intact  mRNA,  we  were  able  to  show  that  mRNA  could  also  be  co-­‐ immunoprecipitated  in  a  manner  that  was  dependent  on  the  use  of  anti-­‐GFP  coated   beads,   as   expected   (Fig.   4.5B).   Taken   together,   these   data   show   successful   IP   of   polysomes  and  their  associated  intact  mRNA  transcripts.       Immunoprecipitation  of  eGFP-­‐L10a  and  associated  transcripts  from  TRPM8-­‐eGFP-­‐L10a   sensory  tissue   Although   eGFP-­‐L10a   protein   and   associated   transcripts   were   successfully   immunoprecipitated   from   heterologously   transfected   cells,   attempting   this   using   sensory  tissue  proved  to  be  quite  difficult  (data  not  shown).  This  is  most  likely  due  to   the  presence  of  more  connective  tissue  in  sensory  ganglia  compared  to  the  brain,  the   tissue  source  in  which  this  protocol  was  first  optimized.  Western  blot  analysis  of  protein   samples  isolated  from  TRPM8-­‐eGFP-­‐L10a  TG/DRG  tissue  showed  that  we  could  identify   94     eGFP-­‐L10a  using  anti  GFP  antibodies,  however,  much  of  the  protein  was  trapped  in  the   cell  pellets  following  centrifugation  and  not  in  the  supernatant  as  expected.  Despite   prolonged  and  more  rigorous  homogenization  of  the  tissue  using  a  motorized  glass   Teflon  homogenizer  or  a  plastic  mini  microcentrifuge  tube  pestle  homogenizer,  the   majority  of  eGFP-­‐L10a  remained  in  pellet  lysate  samples.  Furthermore,  attempts  at   immunoprecipitating  eGFP-­‐L10a  and  associated  mRNA  from  TG/DRG  isolated  from  as   many  as  16  mice  were  also  unsuccessful.  No  enrichment  for  TRPM8  mRNA  was  seen   when  comparing  samples  incubated  with  beads  bound  with  anti  GFP  antibody  versus   those  incubated  with  beads  alone.  Future  experiments  will  need  to  focus  on  optimizing   the  homogenization  of  sensory  tissue  to  maximize  the  amount  of  free  eGFP-­‐L10a  bound   to  mRNA  before  immunoprecipitation.  It  will  be  critical  to  ensure  that  both  polysomes   and  RNA  remain  intact  throughout  the  processing  of  the  samples  and  the  use  of  a   bioanalyzer  will  aid  in  the  troubleshooting  of  this  process.     Development  of  a  Lox-­‐mCherry-­‐L10a-­‐Lox-­‐eGFP-­‐L10a  construct  for  the  profiling  of  two   distinct  cell  populations  at  once   As  the  TRPM8-­‐expressing  neuronal  population  has  been  found  to  be  extremely   heterogeneous  in  terms  of  gene  expression  and  function,  future  studies  on  distinct   subpopulations  is  warranted  (McKemy,  Neuhausser  et  al.  2002;  Takashima,  Daniels  et  al.   2007;  Madrid,  de  la  Pena  et  al.  2009).  To  this  end  we  have  developed  a  CRE-­‐based   approach   that   allows   for   mRNA   from   two   distinct   subpopulations   to   be   95       FIGURE  4.5   eGFP-­‐L10a  and  associated  transcripts  can  be  immunoprecipitated  from  transfected  HEK  cell  lysates   A)  Western  blot  analysis  of  immunoprecipitated  L10a-­‐eGFP  protein  from  transfected  HEK  cell  lysates.   Loaded  amounts  are  0.5%  for  input  lysate  and  flow  through  samples  and  5%  for  IP  samples.  B)  2-­‐Step   RTPCR    for  the  housekeeping  gene  Beta-­‐actin  on  mRNA  isolated  from  IP  experiments  in  A).   96     immunoprecipitated   simultaneously   using   the   TRAP   technique   (Fig.   4.6A).   A   lox-­‐ mCherry-­‐L10a-­‐lox-­‐eGFP-­‐L10a   (LC(L10a)LG(L10a))   cassette   was   cloned   into   the   mammalian   expression   vector   pCDNA3   and   transfected   into   HEK293T   cells.   Cells   transfected  with  the  LC(L10a)LG(L10a)  plasmid  alone  fluoresced  in  the  red  channel  but   not  in  the  green  channel,  indicative  of  exclusive  expression  of  the  mCherry-­‐L10a  fusion   protein  (Fig.  4.6.B).  Conversely,  cells  transfected  with  LC(L10a)LG(L10a)  and  CRE  showed   mosaic  fluorescence  in  both  channels  in  a  manner  that  directly  correlated  with  the  ratio   of  CRE  to  LC(L10a)LG(L10a)  transfected,  indicative  of  successful  excision  of  the  mCherry-­‐ L10a  cassette  and  subsequent  expression  of  the  eGFP-­‐L10a  fusion  protein  (Fig.  4.6B).   Expression  of  these  fusion  proteins  was  later  confirmed  via  Western  blot  analysis  on  cell   lysates   (Fig.   4.6C).   Both   mCherry-­‐L10a   and   eGFP-­‐L10a   were   successfully   immunoprecipitated  from  mixed  lysates  with  no  cross  reactivity  seen  between  capture   antibodies,   serving   as   proof   of   principle   for   this   technique   (Fig.   4.6C).   The   LC(L10a)LG(L10a)  cassette  was  then  targeted  to  the  TRPM8-­‐BAC  using  the  same  strategy   used  to  generate  the  TRPM8-­‐eGFP-­‐L10a  transgenic  line  and  confirmed  by  PCR  (Fig.   4.6D).   97       FIGURE  4.6   Development  of  a  Lox-­‐mCherry-­‐L10a-­‐Lox-­‐eGFP-­‐L10a  construct  for  the  profiling  of  two  distinct  cell   populations  at  once   A)  Design  and  function  of  the  Lox-­‐mCherry-­‐L10a-­‐Lox-­‐eGFP-­‐L10a  (LCLG)  targeting  construct.  L10a-­‐ mCherry  is  expressed  in  the  absence  of  CRE  while  L10a-­‐eGFP  is  expressed  in  the  presence  of  CRE.  B)   HEK  293-­‐T  cells  transiently  transfected  with  pcDNA3-­‐LCLG  express  mCherry-­‐L10a,  while  cells  co-­‐ transfected  with  CRE  recombinase  express  eGFP-­‐L10a.  C)  IPs  on  pooled  lysates  containing  mCherry-­‐ L10a  and  eGFP-­‐L10a  show  antigen  specificity.  D)  PCR  analysis  of  5’  and  3’  recombination  sites  confirm   successful  targeting  of  the  LCLG  construct  to  the  TRPM8-­‐BAC.   98     CONCLUSION   Here  we  have  described  the  development  of  a  BAC-­‐transgenic  mouse  line  that   can  be  used  to  identify  molecular  candidates  involved  in  cold  sensation.  We  have  shown   that  the  eGFP-­‐L10a  transgene  has  been  successfully  targeted  to  cold-­‐sensitive,  TRPM8-­‐ expressing  sensory  neurons  and,  as  proof  of  principle,  we  have  used  the  TRAP  technique   to  IP  mRNA  from  heterologous  cells.  As  stated  previously,  this  TRPM8-­‐eGFP-­‐L10a  mouse   line  will  be  used  for  two  main  purposes:  1)  to  better  understand  molecular  expression  in   cold-­‐sensitive,   TRPM8-­‐expressing   neurons   and   2)   to   identify   genes   involved   in   the   development  of  cold  hypersensitivity.  Specifically,  this  will  be  accomplished  by  first   profiling  the  TRPM8-­‐expressing  neuron  population  under  normal  conditions  and  then   repeating   this   process   using   mice   under   various   models   of   cold   hypersensitivity   (inflammatory,  neuropathic,  oxaliplatin-­‐induced).  Recent  work  has  identified  candidate   molecules  involved  in  the  sensitization  to  cold  stimuli.  For  example,  specific  potassium   channel  (Kv1)  inhibitors  have  been  shown  to  increase  cold  sensitive  neuron  temperature   thresholds  in  vitro  (Madrid,  de  la  Pena  et  al.  2009).  Additionally,  work  in  our  lab  has   shown  that  Phospholipase  C  (PLC)-­‐mediated  depletion  of  the  phospholipid  PIP2  results   in  reduced  cold-­‐induced  TRPM8  currents  (Daniels,  Takashima  et  al.  2009).  In  a  model  of   cold  hypersensitivity  we  would  expect  that  genes  involved  in  the  regulation  of  Kv1   expression  and/or  PIP2  synthesis  could  be  differentially  regulated  compared  to  controls.   TRPM8  is  involved  in  both  innocuous  and  noxious  cold  sensation,  involved  in  the   development  of  cold  hypersensitivity,  required  for  cooling-­‐induced  analgesia,  and  has   99     been  implicated  in  the  alleviation  of  itch  (Bromm,  Scharein  et  al.  1995;  Proudfoot,  Garry   et  al.  2006;  Bautista,  Siemens  et  al.  2007;  Colburn,  Lubin  et  al.  2007;  Dhaka,  Murray  et   al.  2007;  Frolich,  Enk  et  al.  2009;  Knowlton,  Bifolck-­‐Fisher  et  al.  2010;  Knowlton,  Daniels   et  al.  2011;  Knowlton,  Palkar  et  al.  2013).  The  diverse  roles  of  this  channel  suggest  that   TRPM8   expression   is   not   limited   to   merely   one   sensory   circuit,   but   rather   TRPM8   subpopulations  are  functionally  distinct.  As  highlighted  in  Chapter  1,  several  groups   have  shown  that  cold-­‐sensitive  neurons  fall  into  two  loosely  related  categories  in  vitro,   those  with  low  thermal  (LT)  activation  thresholds  and  those  with  high  thermal  (HT)   activation   thresholds   responding   to   either   innocuous   or   noxious   cold   temperatures   respectively  (Reid,  Babes  et  al.  2002;  Thut,  Wrigley  et  al.  2003;  Madrid,  de  la  Pena  et  al.   2009).  In  fact,  lower  levels  of  functional  TRPM8  expression  have  been  reported  in  vitro   for   cold-­‐sensitive   neurons   with   significantly   colder   thresholds   for   activation,   results   consistent  with  this  categorization  of  cold-­‐sensing  neurons  (Madrid,  de  la  Pena  et  al.   2009).  Furthermore,  approximately  40%  of  TRPM8  neurons  express  Nav1.8,  a  voltage-­‐ gated  sodium  channel  known  to  be  highly  expressed  in  nociceptors,  suggesting  that  this   subpopulation  of  TRPM8  neurons  is  specifically  involved  in  cold  pain  (Knowlton,  Palkar   et  al.  2013).    In  line  with  this  theory,  when  Nav1.8-­‐expressing  neurons  were  ablated,   mice  exhibited  severe  deficits  in  cold  pain  behaviors  while  innocuous  cold  detection  was   unaffected   (Abrahamsen,   Zhao   et   al.   2008).   To   better   study   TRPM8-­‐expressing   subpopulations  we  have  expanded  the  BAC-­‐TRAP  technique  to  allow  for  the  specific  IP   of   transcripts   from   two   different   populations   simultaneously.   Specifically,   we   have   100     generated  a  targeting  construct  containing  a  floxed  mCherry-­‐L10a  transgene  inserted   upstream  of  the  eGFP-­‐L10a  cassette  (LC(L10a)LG(L10a).  The  utility  of  this  approach  is   when  a  LC(L10a)LG(L10a)  BAC-­‐transgenic  line  is  crossed  with  a  CRE-­‐driver  line,  mCherry-­‐ L10a,   and   eGFP-­‐L10a   are   expressed   in   distinct   subsets   within   the   BAC-­‐driven   cell   population.  We  have  shown  that  heterologous  cells  transfected  with  LC(L10a)LG(L10a)   and  CRE  express  both  mCherry  and  eGFP  as  expected,  and  lysates  from  these  cells  can   be  specifically  pulled  down  in  a  capture  antibody-­‐specific  manner.  We  have  targeted   this  LC(L10a)LG(L10a)  cassette  to  the  same  TRPM8-­‐BAC  used  to  generate  the  TRPM8-­‐ eGFP-­‐L10a   transgenic   line   and   future   experiments   will   involve   the   targeting   and   characterization  of  this  transgenic  line.  Once  the  line  has  been  generated,  subsequent   crossings  with  one  of  the  hundreds  of  CRE-­‐driver  lines  that  exist  in  the  Jackson  database   will  allow  for  the  profiling  of  TRPM8-­‐expressing  neuron  subpopulations.  Of  particular   interest  will  be  crossing  this  BAC-­‐transgenic  line  with  the  Nav1.8-­‐CRE  and/or  TRPV1-­‐CRE   lines,  allowing  for  the  specific  profiling  of  presumptive  cold-­‐nociceptors.       In  summary,  the  development  of  the  TRPM8-­‐eGFP-­‐L10a  BAC-­‐transgenic  mouse   line  provides  a  means  to  better  study  the  internal  milieu  of  TRPM8-­‐expressing  neurons.   Future  profiling  of  these  neurons  in  various  pain  models  has  the  potential  to  reveal  new   targets  and  pathways  for  the  treatment  of  cold-­‐hypersensitive  conditions.  Furthermore,   the   development   our   CRE-­‐based   BAC-­‐TRAP   approach   will   allow   us   to   expand   our   understanding  of  what  defines    functionally  distinct  sensory  subpopulations.   101                   CHAPTER  FIVE                 Conclusion                       102     CONCLUSION   In  this  dissertation  we  have  described  two  novel  characteristics  of  the  cold-­‐ sensitive  ion  channel  TRPM8.    In  testing  the  TRPM8  dependence  of  cold  hypersensitivity   in  a  model  of  type  I  diabetes,  we  serendipitously  found  that  the  lack  of  TRPM8  resulted   in   enhanced   insulin   clearance,   suggesting   an   inhibitory   role   of   the   channel   in   this   process.     Additionally,   we   found   that   strong   activation   of   TRPM8   allows   for   large   positively  charged  molecules  to  permeate  the  channel,  a  result  contrary  to  previously   published  findings  and  relevant  for  future  therapeutic  approaches  using  TRPM8  as  a   means  of  targeting  cold-­‐sensitive  neurons.    Finally,  we  have  developed  a  transgenic   mouse  line  that  will  enable  the  study  of  TRPM8  neurons  on  a  transcriptional  level,  and   has  the  potential  to  help  in  the  identification  of  new  targets  and  pathways  involved  in   the  development  of  cold-­‐pain.       In  chapter  2,  we  discussed  how  mice  lacking  functional  TRPM8  were  found  to  be   more  susceptible  to  the  diabetogenic  drug  Streptozotocin,  showing  rapid  weight  loss   and  lethargy  soon  after  I.P.  injection.    This  phenotype  correlated  with  lower  resting   levels  of  serum  insulin  and  heightened  insulin  sensitivity  in  uninjected  TRPM8 -­‐/-­‐  mice   compared  to  wildtype.    These  differences  in  insulin  and  insulin  sensitivity  were  not  due   to   differences   in   pancreatic   function,   but   appeared   to   be   due   to   enhanced   insulin   clearance.    The  lower  incremental  increases  in  serum  insulin  following  glucose  challenge   in  TRPM8 -­‐/-­‐  mice  vs.  wildtype  controls  showed  that  insulin  was  being  cleared  at  a  faster   rate  in  these  animals  as  incremental  increases  in  C-­‐peptide  under  the  same  conditions   103     were  the  same  across  genotypes.    Although  we  can’t  be  sure  about  the  mechanism  by   which  TRPM8  is  exerting  its  influence  on  insulin  clearance,  the  heightened  expression  of   IDE   in   TRPM8 -­‐/-­‐   liver   samples   suggests   this   influence   to   be   hepatic   in   nature.   The   presence  of  TRPM8  neuronal  projections  in  the  hepatic-­‐portal  vein  is  intriguing  in  this   regard  as  the  HPV  carries  75%  of  the  blood  supply  to  the  liver  and  innervations  of  the   HPV   have   already   been   shown   to   be   required   for   hypoglycemic   detection   (Fujita,   Bohland  et  al.  2007).    Additionally,  human  liver  transplant  patients  in  which  all  hepatic   innervations   are   disrupted   have   been   shown   to   have   heightened   hepatic   insulin   clearance  (Perseghin,  Regalia  et  al.  1997;  Schneiter,  Gillet  et  al.  1999),  a  phenotype   similar  to  what  we  see  in  TRPM8 -­‐/-­‐  mice.    Taken  together,  these  data  suggest  that   TRPM8  mediated  neuronal  signals  may  provide  negative  regulation  of  insulin  clearance   via   hepatic   neural   innervations   influencing   local   IDE   expression   levels.     In   such   a   scenario,   hepatic   insulin   clearance   is   heightened   in   TRPM8 -­‐/-­‐   mice   due   to   the   disinhibition  of  this  circuit  in  the  absence  of  functional  TRPM8  channels.  Future  studies   on  these  hepatic  TRPM8 +  neurons  will  provide  a  better  understanding  of  the  mechanism   by  which  TRPM8  is  working  in  regards  to  insulin  clearance  and  have  the  potential  for   profound   therapeutic   relevance   in   the   treatment   of   diabetes   and   other   metabolic   disorders.   In  chapter  3,  we  tested  whether  or  not  large  positively  charged  molecules  could   permeate  TRPM8  channels  following  robust  channel  activation.    Previously  published   reports  concluded  that  TRPM8  could  not  pass  large  cationic  molecules  in  such  a  manner   104     (Chen,  Kim  et  al.  2009;  Nakagawa  and  Hiura  2013).    We  questioned  the  validity  of  these   conclusions   for   a   number   of   reasons.     First,   the   TRPM8   agonist   previously   used,   menthol,  is  known  to  be  a  rather  weak  agonist  for  the  channel  and  it  was  possible  that   this  agonist  was  not  potent  enough  to  cause  TRPM8  pore  dilation.    Second,  the  maximal   concentration  used  in  this  study  was  close  to  the  previously  reported  EC50  values  for   menthol  in  in  vitro  systems  (66.7µM)(McKemy,  Neuhausser  et  al.  2002).    We  postulated   this  may  have  resulted  in  the  mischaracterization  of  the  channel  due  to  suboptimal   doses  of  agonist  being  used.    Finally,  the  previous  study  used  a  high  throughput  96-­‐well   format  in  which  the  changes  in  fluorescence  of  an  entire  well  of  TRPM8-­‐transfected  cells   were  used  as  a  measure  of  dye  uptake.    This  method  proved  to  be  fast  and  convenient   but  the  different  transfection  efficiencies  and  cell  viabilities  between  wells  most  likely   resulted  in  a  rather  high  background  signal  and  low  sensitivity.    In  our  studies  we   addressed  these  three  issues  by  1)  using  the  super-­‐potent  TRPM8  agonist  WS-­‐12  (EC50   ~193nM),  2)  testing  higher  concentrations  of  menthol,  and  3)  measuring  increases  in   fluorescence  in  individual  viable  cells  to  minimize  background  and  increase  sensitivity.     We  found  that  WS-­‐12  activated  HEK  cells  transfected  with  rTRPM8  robustly  enough  to   allow  the  entry  of  the  large  cationic  dye  PO-­‐PRO3  with  a  maximal  response  attained  at   concentrations  greater  than  or  equal  to  2µM.    Similarly,  we  repeated  the  experiment   using  menthol  and  found  that  the  maximal  concentration  used  by  the  previous  group   (100µM)   was   sufficient   enough   to   allow   dye   entry   in   a   TRPM8-­‐dependent   manner   although   this   was   nowhere   near   the   maximal   responses   seen   using   WS-­‐12.     105     Furthermore,   when   a   10-­‐fold   higher   concentration   of   menthol   was   used   (1mM)   a   maximal  response  similar  to  that  of  WS-­‐12  was  seen.    As  WS-­‐12  is  a  menthol  derivative   and  a  previously  published  work  has  shown  in  vitro  menthol-­‐mediated  currents  through   another  TRP  channel,  TRPA1  (Karashima,  Damann  et  al.  2007),  we  tested  the  specificity   of  WS-­‐12  in  this  assay  using  HEK  cells  transfected  with  rTRPA1.    We  found  that  no  dye   was  taken  up  by  these  cells  even  at  maximal  concentrations,  results  consistent  with   previous  studies  showing  WS-­‐12  to  be  TRPM8-­‐specific  (Ma,  G  et  al.  2008;  Anand,  Otto  et   al.  2010).    Additionally,  to  ensure  that  the  dye  influx  was  mediated  by  TRPM8  and  did   not  occur  as  a  consequence  of  some  other  channel  activation  or  general  cell  death,  we   showed  that  WS-­‐12  mediated  entry  of  POPRO-­‐3  could  be  halted  in  HEK  cells  transfected   with  rTRPM8  by  adding  the  TRPM8-­‐specific  antagonist  PBMC.    Finally,  we  used  our   mouse  TRPM8-­‐GFP  reporter  line  to  show  that  TRPM8-­‐expressing  sensory  neurons  in   culture  could  be  stimulated  by  WS-­‐12  to  take  up  PO-­‐PRO3,  with  87.4  +/-­‐  5.0%  of  GFP +   neurons  vs  1.9%  GFP -­‐  neurons  taking  up  dye  upon  stimulation.    Our  results  prove  that   TRPM8  can  in  fact  be  used  to  allow  entry  of  large  cationic  molecules  upon  robust   channel  activation  in  vitro,  results  contrary  to  previously  published  work  (Chen,  Kim  et   al.  2009;  Nakagawa  and  Hiura  2013).  It  remains  to  be  seen  whether  positively  charged   drugs  can  be  used  to  block  TRPM8  neuron  firing  both  in  vitro  and  in  vivo  using  this   method   but   preliminary   data   from   the   lab   showing   the   successful   block   of   cold   hypersensitivity  in  response  to  WS-­‐12  paw  injections  when  it  is  co-­‐administered  with   the  lidocaine  derivative  QX-­‐314  is  promising.    The  ability  of  the  TRPM8  channel  to   106     facilitate   delivery   of   therapeutics   to   cold-­‐sensing   neurons   opens   the   door   for   the   development  of  treatment  paradigms  that  are  highly  specific  to  cold  pain  conditions.     In  chapter  four,  we  discussed  the  development  of  a  mouse  BACTRAP  transgenic   line  in  which  an  eGFP  tagged  version  of  the  ribosomal  subunit  L10a  is  targeted  to   TRPM8-­‐expressing  neurons.    The  BACTRAP  technique,  developed  by  the  lab  of  Nathaniel   Heintz   at   Rockefeller   University,   employs   the   use   of   anti   GFP   antibodies   to   co-­‐ immunoprecipitate  mRNA  associated  with  actively  translating  GFP  tagged  ribosomes   (Heiman,  Schaefer  et  al.  2008).    The  purpose  of  our  TRPM8-­‐L10a-­‐eGFP  mouse  line  was   twofold.    First  we  wanted  to  understand  how  cold-­‐sensing  neurons  differ  from  other   sensory   neurons   on   a   transcriptome   level.     Second,   we   wanted   to   identify   gene   expression  changes  in  cold-­‐sensing  neurons  under  conditions  of  chronic  cold  pain,  with   the  aim  of  identifying  candidate  cold-­‐transduction  molecules  in  both  scenarios.  To  this   end  we  have  successfully  engineered  a  TRPM8-­‐L10a-­‐eGFP  mouse  line  with  GFP  labeling   in   13.9   ±   1.0%   of   sensory   neurons,   results   consistent   with   TRPM8   expression.     Additionally,  we  found  that  93.5  ±  4.3%  of  these  GFP +  sensory  neurons  respond  to  the   TRPM8   agonist   menthol   in   culture   via   calcium   imaging,   further   evidence   that   our   transgene  was  successfully  targeted.    In  preliminary  studies  in  HEK  cells  transfected  with   L10a-­‐eGFP  we  have  shown  successful  immunoprecipitation  of  protein  and  intact  mRNA   transcripts.    Future  studies  will  work  to  bring  this  technique  in  vivo  using  mouse  sensory   neuron   tissue   from   our   TRPM8-­‐L10a-­‐eGFP   line.     As   cold-­‐sensory   neurons   are   functionally  heterogeneous  in  nature,  we  also  engineered  a  CRE  recombinase  based   107     approach  that  allows  for  the  comparison  of  gene  expression  between  different  TRPM8   subpopulations.    We  have  generated  a  targeting  construct  with  a  floxed  L10a-­‐mCherry   transgene  upstream  to  the  L10a-­‐eGFP  used  in  the  aforementioned  transgenic  mouse   line.    When  targeted,  this  construct  allows  for  CRE-­‐driven  expression  of  L10a-­‐eGFP   within  the  BAC-­‐transgenic  cell  population  while  retaining  L10a-­‐mCherry  expression  in   cells  lacking  CRE.    The  result  is  a  mosaic  of  L10a-­‐eGFP  and  L10a-­‐mCherry-­‐expressing  cells   where  transcripts  from  CRE +  vs  CRE -­‐  subpopulations  can  be  pulled  down  simultaneously   using   specific   antibodies   to   eGFP   and   mCherry   respectively.     Proof   of   principle   experiments  in  HEK  cells  have  shown  successful  expression  of  L10a-­‐mCherry  and  L10a-­‐ eGFP  in  the  absence  or  presence  of  co-­‐transfected  CRE.    Furthermore,  western  blot   studies  on  mixed  HEK  cell  lysates  IPed  with  both  mCherry  and  eGFP  antibodies  indicate   no   cross   reactivity.     We   have   generated   a   modified   TRPM8-­‐BAC   containing   these   transgenes  and  when  this  mouse  line  is  ready  to  be  made,  future  studies  will  allow  for   the   molecular   definition   of   distinct   TRPM8   subpopulations   under   normal   and   pathological  conditions.   TRPM8  has  proven  to  be  a  versatile  channel  with  roles  including,  but  not  limited   to,   innocuous   and   noxious   cold   sensation,   cold   hypersensitivity,   cooling-­‐mediated   analgesia,  pruritus,  and  thermoregulation  (Bautista,  Siemens  et  al.  2007;  Colburn,  Lubin   et  al.  2007;  Dhaka,  Murray  et  al.  2007;  Knowlton,  Daniels  et  al.  2011;  Knowlton,  Palkar   et  al.  2013;  Lippoldt,  Elmes  et  al.  2013).    Here  we  have  expanded  our  understanding  of   the  functional  role  of  TRPM8  to  include  insulin  homeostasis,  established  methodologies   108     to   utilize   the   channel   itself   as   a   means   of   delivering   therapeutics   to   cold-­‐sensing   neurons,  and  developed  transgenic  tools  that  will  allow  for  the  cells  expressing  this   channel   to   be   studied   long   term.     These   studies   have   not   only   broadened   our   understanding  of  TRPM8  and  its  therapeutic  potential  in  areas  not  before  considered,   but  have  also  provided  new  tools  and  valuable  information  that  will  inform  future  work   studying  this  channel  and  the  cells  that  express  it.   109     REFERENCES   Abrahamsen,  B.,  J.  Zhao,  et  al.  (2008).  "The  cell  and  molecular  basis  of  mechanical,  cold,   and  inflammatory  pain."  Science  321(5889):  702-­‐5.   Akiba,   Y.,   S.   Kato,   et   al.   (2004).   "Transient   receptor   potential   vanilloid   subfamily   1   expressed   in   pancreatic   islet   beta   cells   modulates   insulin   secretion   in   rats."   Biochem  Biophys  Res  Commun  321(1):  219-­‐25.   Allchorne,  A.  J.,  D.  C.  Broom,  et  al.  (2005).  "Detection  of  cold  pain,  cold  allodynia  and   cold  hyperalgesia  in  freely  behaving  rats."  Mol  Pain  1:  36.   Almeida,  M.  C.,  T.  Hew-­‐Butler,  et  al.  (2012).  "Pharmacological  blockade  of  the  cold   receptor   TRPM8   attenuates   autonomic   and   behavioral   cold   defenses   and   decreases  deep  body  temperature."  J  Neurosci  32(6):  2086-­‐99.   Anand,  U.,  W.  R.  Otto,  et  al.  (2010).  "Sensitization  of  capsaicin  and  icilin  responses  in   oxaliplatin  treated  adult  rat  DRG  neurons."  Mol  Pain  6:  82.   Anand,   U.,   W.   R.   Otto,   et   al.   (2008).   "TRPA1   receptor   localisation   in   the   human   peripheral  nervous  system  and  functional  studies  in  cultured  human  and  rat   sensory  neurons."  Neurosci  Lett  438(2):  221-­‐7.   Andersson,   D.   A.,   C.   Gentry,   et   al.   (2011).   "TRPA1   mediates   spinal   antinociception   induced   by   acetaminophen   and   the   cannabinoid   Delta(9)-­‐ tetrahydrocannabiorcol."  Nat  Commun  2:  551.   Andersson,  D.  A.,  M.  Nash,  et  al.  (2007).  "Modulation  of  the  cold-­‐activated  channel   TRPM8  by  lysophospholipids  and  polyunsaturated  fatty  acids."  J  Neurosci  27(12):   3347-­‐55.   Atoyan,  R.,  D.  Shander,  et  al.  (2009).  "Non-­‐neuronal  expression  of  transient  receptor   potential  type  A1  (TRPA1)  in  human  skin."  J  Invest  Dermatol  129(9):  2312-­‐5.   Attal,  N.,  D.  Bouhassira,  et  al.  (2009).  "Thermal  hyperalgesia  as  a  marker  of  oxaliplatin   neurotoxicity:  a  prospective  quantified  sensory  assessment  study."  Pain  144(3):   245-­‐52.   Bandell,  M.,  G.  M.  Story,  et  al.  (2004).  "Noxious  cold  ion  channel  TRPA1  is  activated  by   pungent  compounds  and  bradykinin."  Neuron  41(6):  849-­‐57.   Barabas,  M.  E.,  E.  A.  Kossyreva,  et  al.  (2012).  "TRPA1  is  functionally  expressed  primarily   by   IB4-­‐binding,   non-­‐peptidergic   mouse   and   rat   sensory   neurons."   PLoS   One   7(10):  e47988.   110     Basbaum,  A.  I.,  D.  M.  Bautista,  et  al.  (2009).  "Cellular  and  molecular  mechanisms  of   pain."  Cell  139(2):  267-­‐84.   Bautista,  D.  M.,  S.  E.  Jordt,  et  al.  (2006).  "TRPA1  mediates  the  inflammatory  actions  of   environmental  irritants  and  proalgesic  agents."  Cell  124(6):  1269-­‐82.   Bautista,  D.  M.,  P.  Movahed,  et  al.  (2005).  "Pungent  products  from  garlic  activate  the   sensory  ion  channel  TRPA1."  Proc  Natl  Acad  Sci  U  S  A  102(34):  12248-­‐52.   Bautista,  D.  M.,  J.  Siemens,  et  al.  (2007).  "The  menthol  receptor  TRPM8  is  the  principal   detector  of  environmental  cold."  Nature  448(7150):  204-­‐8.   Behrendt,  H.  J.,  T.  Germann,  et  al.  (2004).  "Characterization  of  the  mouse  cold-­‐menthol   receptor  TRPM8  and  vanilloid  receptor  type-­‐1  VR1  using  a  fluorometric  imaging   plate  reader  (FLIPR)  assay."  Br  J  Pharmacol  141(4):  737-­‐45.   Benemei,  S.,  P.  Nicoletti,  et  al.  (2009).  "CGRP  receptors  in  the  control  of  pain  and   inflammation."  Curr  Opin  Pharmacol  9(1):  9-­‐14.   Bennett,  G.  J.  and  Y.  K.  Xie  (1988).  "A  peripheral  mononeuropathy  in  rat  that  produces   disorders  of  pain  sensation  like  those  seen  in  man."  Pain  33(1):  87-­‐107.   Binshtok,  A.  M.,  B.  P.  Bean,  et  al.  (2007).  "Inhibition  of  nociceptors  by  TRPV1-­‐mediated   entry  of  impermeant  sodium  channel  blockers."  Nature  449(7162):  607-­‐10.   Bodding,  M.  (2007).  "TRP  proteins  and  cancer."  Cell  Signal  19(3):  617-­‐24.   Bodding,   M.,   U.   Wissenbach,   et   al.   (2007).   "Characterisation   of   TRPM8   as   a   pharmacophore  receptor."  Cell  Calcium  42(6):  618-­‐628.   Bouhassira,   D.,   M.   Lanteri-­‐Minet,   et   al.   (2008).   "Prevalence   of   chronic   pain   with   neuropathic  characteristics  in  the  general  population."  Pain  136(3):  380-­‐7.   Brauchi,   S.,   P.   Orio,   et   al.   (2004).   "Clues   to   understanding   cold   sensation:   thermodynamics  and  electrophysiological  analysis  of  the  cold  receptor  TRPM8."   Proc  Natl  Acad  Sci  U  S  A  101(43):  15494-­‐9.   Brauchi,  S.,  G.  Orta,  et  al.  (2007).  "Dissection  of  the  components  for  PIP2  activation  and   thermosensation  in  TRP  channels."  Proc  Natl  Acad  Sci  U  S  A  104(24):  10246-­‐51.   Brauchi,  S.,  G.  Orta,  et  al.  (2006).  "A  hot-­‐sensing  cold  receptor:  C-­‐terminal  domain   determines   thermosensation   in   transient   receptor   potential   channels."   J   Neurosci  26(18):  4835-­‐40.   111     Breitman,  M.  L.,  H.  Rombola,  et  al.  (1990).  "Genetic  ablation  in  transgenic  mice  with  an   attenuated  diphtheria  toxin  A  gene."  Mol  Cell  Biol  10(2):  474-­‐9.   Brierley,  S.  M.,  J.  Castro,  et  al.  (2011).  "TRPA1  contributes  to  specific  mechanically   activated  currents  and  sensory  neuron  mechanical  hypersensitivity."  J  Physiol   589(Pt  14):  3575-­‐93.   Brixel,  L.  R.,  M.  K.  Monteilh-­‐Zoller,  et  al.  (2010).  "TRPM5  regulates  glucose-­‐stimulated   insulin  secretion."  Pflugers  Arch  460(1):  69-­‐76.   Bromm,  B.,  E.  Scharein,  et  al.  (1995).  "Effects  of  menthol  and  cold  on  histamine-­‐induced   itch  and  skin  reactions  in  man."  Neurosci  Lett  187(3):  157-­‐60.   Brosky,  G.  and  J.  Logothetopoulos  (1969).  "Streptozotocin  diabetes  in  the  mouse  and   guinea  pig."  Diabetes  18(9):  606-­‐11.   Campero,  M.,  T.  K.  Baumann,  et  al.  (2009).  "Human  cutaneous  C  fibres  activated  by   cooling,  heating  and  menthol."  J  Physiol  587(Pt  23):  5633-­‐52.   Campero,  M.,  J.  Serra,  et  al.  (2001).  "Slowly  conducting  afferents  activated  by  innocuous   low  temperature  in  human  skin."  J  Physiol  535(Pt  3):  855-­‐65.   Cao,  D.  S.,  L.  Zhong,  et  al.  (2012).  "Expression  of  transient  receptor  potential  ankyrin  1   (TRPA1)  and  its  role  in  insulin  release  from  rat  pancreatic  beta  cells."  PLoS  One   7(5):  e38005.   Caterina,   M.   J.,   M.   A.   Schumacher,   et   al.   (1997).   "The   capsaicin   receptor:   a   heat-­‐ activated  ion  channel  in  the  pain  pathway."  Nature  389(6653):  816-­‐24.   Chen,   J.,   D.   Kim,   et   al.   (2009).   "Pore   dilation   occurs   in   TRPA1   but   not   in   TRPM8   channels."  Mol  Pain  5:  3.   Choi,  Y.,  Y.  W.  Yoon,  et  al.  (1994).  "Behavioral  signs  of  ongoing  pain  and  cold  allodynia  in   a  rat  model  of  neuropathic  pain."  Pain  59(3):  369-­‐76.   Chung,  M.  K.  and  M.  J.  Caterina  (2007).  "TRP  channel  knockout  mice  lose  their  cool."   Neuron  54(3):  345-­‐7.   Colburn,  R.  W.,  M.  L.  Lubin,  et  al.  (2007).  "Attenuated  cold  sensitivity  in  TRPM8  null   mice."  Neuron  54(3):  379-­‐86.   Collier,   R.   J.   (2001).   "Understanding   the   mode   of   action   of   diphtheria   toxin:   a   perspective  on  progress  during  the  20th  century."  Toxicon  39(11):  1793-­‐803.   112     Colsoul,  B.,  A.  Schraenen,  et  al.  (2010).  "Loss  of  high-­‐frequency  glucose-­‐induced  Ca2+   oscillations   in   pancreatic   islets   correlates   with   impaired   glucose   tolerance   in   Trpm5-­‐/-­‐  mice."  Proc  Natl  Acad  Sci  U  S  A  107(11):  5208-­‐13.   Dai,  Y.,  S.  Wang,  et  al.  (2007).  "Sensitization  of  TRPA1  by  PAR2  contributes  to  the   sensation  of  inflammatory  pain."  J  Clin  Invest  117(7):  1979-­‐87.   Daniels,  R.  L.  and  D.  D.  McKemy  (2007).  "Mice  left  out  in  the  cold:  commentary  on  the   phenotype  of  TRPM8-­‐nulls."  Mol  Pain  3:  23.   Daniels,  R.  L.,  Y.  Takashima,  et  al.  (2009).  "Activity  of  the  Neuronal  Cold  Sensor  TRPM8  Is   Regulated   by   Phospholipase   C   via   the   Phospholipid   Phosphoinositol   4,5-­‐ Bisphosphate."  J  Biol  Chem  284(3):  1570-­‐82.   Darian-­‐Smith,  I.,  K.  O.  Johnson,  et  al.  (1973).  ""Cold"  fiber  population  innervating  palmar   and  digital  skin  of  the  monkey:  responses  to  cooling  pulses."  J  Neurophysiol   36(2):  325-­‐46.   Dhaka,  A.,  T.  J.  Earley,  et  al.  (2008).  "Visualizing  cold  spots:  TRPM8-­‐expressing  sensory   neurons  and  their  projections."  J  Neurosci  28(3):  566-­‐75.   Dhaka,  A.,  A.  N.  Murray,  et  al.  (2007).  "TRPM8  is  required  for  cold  sensation  in  mice."   Neuron  54(3):  371-­‐8.   Doyle,   J.   P.,   J.   D.   Dougherty,   et   al.   (2008).   "Application   of   a   translational   profiling   approach  for  the  comparative  analysis  of  CNS  cell  types."  Cell  135(4):  749-­‐62.   Earley,  S.,  A.  L.  Gonzales,  et  al.  (2009).  "Endothelium-­‐dependent  cerebral  artery  dilation   mediated  by  TRPA1  and  Ca2+-­‐Activated  K+  channels."  Circ  Res  104(8):  987-­‐94.   Eid,  S.  R.  and  D.  N.  Cortright  (2009).  "Transient  receptor  potential  channels  on  sensory   nerves."  Handb  Exp  Pharmacol(194):  261-­‐81.   Emery,  B.  and  B.  A.  Barres  (2008).  "Unlocking  CNS  cell  type  heterogeneity."  Cell  135(4):   596-­‐8.   Frolich,  M.,  A.  Enk,  et  al.  (2009).  "Successful  treatment  of  therapy-­‐resistant  pruritus  in   lichen  amyloidosis  with  menthol."  Acta  Derm  Venereol  89(5):  524-­‐6.   Fujita,   S.,   M.   Bohland,   et   al.   (2007).   "Hypoglycemic   detection   at   the   portal   vein   is   mediated   by   capsaicin-­‐sensitive   primary   sensory   neurons."   Am   J   Physiol   Endocrinol  Metab  293(1):  E96-­‐E101.   113     Gao,   H.,   K.   Miyata,   et   al.   (2012).   "Transient   receptor   potential   vanilloid   type   1-­‐ dependent  regulation  of  liver-­‐related  neurons  in  the  paraventricular  nucleus  of   the  hypothalamus  diminished  in  the  type  1  diabetic  mouse."  Diabetes  61(6):   1381-­‐90.   Garcia-­‐Anoveros,  J.  and  K.  Nagata  (2007).  "Trpa1."  Handb  Exp  Pharmacol(179):  347-­‐62.   Gentry,   C.,   N.   Stoakley,   et   al.   (2010).   "The   roles   of   iPLA2,   TRPM8   and   TRPA1   in   chemically  induced  cold  hypersensitivity."  Mol  Pain  6:  4.   Goldberg,  Y.  P.,  J.  MacFarlane,  et  al.  (2007).  "Loss-­‐of-­‐function  mutations  in  the  Nav1.7   gene  underlie  congenital  indifference  to  pain  in  multiple  human  populations."   Clin  Genet  71(4):  311-­‐9.   Grandl,  J.,  S.  E.  Kim,  et  al.  (2010).  "Temperature-­‐induced  opening  of  TRPV1  ion  channel   is  stabilized  by  the  pore  domain."  Nat  Neurosci  Epub  ahead  of  print.   Harrison,  G.  S.,  F.  Maxwell,  et  al.  (1991).  "Activation  of  a  diphtheria  toxin  A  gene  by   expression   of   human   immunodeficiency   virus-­‐1   Tat   and   Rev   proteins   in   transfected  cells."  Hum  Gene  Ther  2(1):  53-­‐60.   Harrison,  J.  L.  and  K.  D.  Davis  (1999).  "Cold-­‐evoked  pain  varies  with  skin  type  and  cooling   rate:  a  psychophysical  study  in  humans."  Pain  83(2):  123-­‐35.   Heiman,   M.,   A.   Schaefer,   et   al.   (2008).   "A   translational   profiling   approach   for   the   molecular  characterization  of  CNS  cell  types."  Cell  135(4):  738-­‐48.   Hensel,  H.  and  Y.  Zotterman  (1951).  "The  effect  of  menthol  on  the  thermoreceptors."   Acta  Physiol  Scand  24:  27-­‐34.   Islam,  M.  S.  (2011).  "TRP  channels  of  islets."  Adv  Exp  Med  Biol  704:  811-­‐30.   Jasmin,  L.,  L.  Kohan,  et  al.  (1998).  "The  cold  plate  as  a  test  of  nociceptive  behaviors:   description   and   application   to   the   study   of   chronic   neuropathic   and   inflammatory  pain  models."  Pain  75(2-­‐3):  367-­‐82.   Jordt,  S.  E.,  D.  M.  Bautista,  et  al.  (2004).  "Mustard  oils  and  cannabinoids  excite  sensory   nerve  fibres  through  the  TRP  channel  ANKTM1."  Nature  427(6971):  260-­‐5.   Jordt,  S.  E.,  D.  D.  McKemy,  et  al.  (2003).  "Lessons  from  peppers  and  peppermint:  the   molecular  logic  of  thermosensation."  Curr  Opin  Neurobiol  13(4):  487-­‐92.   114     Jyvasjarvi,  E.  and  K.  D.  Kniffki  (1987).  "Cold  stimulation  of  teeth:  a  comparison  between   the  responses  of  cat  intradental  A  delta  and  C  fibres  and  human  sensation."  J   Physiol  391:  193-­‐207.   Karashima,  Y.,  N.  Damann,  et  al.  (2007).  "Bimodal  action  of  menthol  on  the  transient   receptor  potential  channel  TRPA1."  J  Neurosci  27(37):  9874-­‐84.   Karashima,  Y.,  K.  Talavera,  et  al.  (2009).  "TRPA1  acts  as  a  cold  sensor  in  vitro  and  in   vivo."  Proc  Natl  Acad  Sci  U  S  A  106(4):  1273-­‐8.   Knowlton,  W.  M.,  A.  Bifolck-­‐Fisher,  et  al.  (2010).  "TRPM8,  but  not  TRPA1,  is  required  for   neural  and  behavioral  responses  to  acute  noxious  cold  temperatures  and  cold-­‐ mimetics  in  vivo."  Pain  150(2):  340-­‐50.   Knowlton,  W.  M.,  R.  L.  Daniels,  et  al.  (2011).  "Pharmacological  Blockade  of  TRPM8  Ion   Channels  Alters  Cold  and  Cold  Pain  Responses  in  Mice."  PLoS  One  6(9):  e25894.   Knowlton,  W.  M.,  A.  Fisher,  et  al.  (2010).  "TRPM8,  but  not  TRPA1,  is  required  for  neural   and  behavioral  responses  to  acute  noxious  cold  temperatures  and  cold-­‐mimetics   in  vivo.  ."  Pain  150(2):  340-­‐350.   Knowlton,  W.  M.,  R.  Palkar,  et  al.  (2013).  "A  Sensory-­‐Labeled  Line  for  Cold:  TRPM8-­‐ Expressing  Sensory  Neurons  Define  the  Cellular  Basis  for  Cold,  Cold  Pain,  and   Cooling-­‐Mediated  Analgesia."  J  Neurosci  33(7):  2837-­‐48.   Kochukov,  M.  Y.,  T.  A.  McNearney,  et  al.  (2006).  "Thermosensitive  TRP  Ion  Channels   Mediate  Cytosolic  Calcium  Response  in  Human  Synoviocytes."  Am  J  Physiol  Cell   Physiol.   Kondo,  T.,  K.  Obata,  et  al.  (2009).  "Transient  receptor  potential  A1  mediates  gastric   distention-­‐induced  visceral  pain  in  rats."  Gut  58(10):  1342-­‐52.   Kwan,  K.  Y.,  A.  J.  Allchorne,  et  al.  (2006).  "TRPA1  Contributes  to  Cold,  Mechanical,  and   Chemical  Nociception  but  Is  Not  Essential  for  Hair-­‐Cell  Transduction."  Neuron   50(2):  277-­‐289.   Kwan,  K.  Y.,  J.  M.  Glazer,  et  al.  (2009).  "TRPA1  modulates  mechanotransduction  in   cutaneous  sensory  neurons."  J  Neurosci  29(15):  4808-­‐19.   Lashinger,   E.   S.,   M.   S.   Steiginga,   et   al.   (2008).   "AMTB,   a   TRPM8   channel   blocker:   evidence  in  rats  for  activity  in  overactive  bladder  and  painful  bladder  syndrome."   Am  J  Physiol  Renal  Physiol  295(3):  F803-­‐10.   115     Lebowitz,  M.  R.  and  S.  A.  Blumenthal  (1993).  "The  molar  ratio  of  insulin  to  C-­‐peptide.  An   aid  to  the  diagnosis  of  hypoglycemia  due  to  surreptitious  (or  inadvertent)  insulin   administration."  Arch  Intern  Med  153(5):  650-­‐5.   Li,  Q.,  X.  Wang,  et  al.  (2009).  "Menthol  induces  cell  death  via  the  TRPM8  channel  in  the   human  bladder  cancer  cell  line  T24."  Oncology  77(6):  335-­‐41.   Linte,  R.  M.,  C.  Ciobanu,  et  al.  (2007).  "Desensitization  of  cold-­‐  and  menthol-­‐sensitive  rat   dorsal  root  ganglion  neurones  by  inflammatory  mediators."  Exp  Brain  Res  178(1):   89-­‐98.   Lippoldt,  E.  K.,  R.  Elmes,  et  al.  (2013).  "Artemin,  a  glial  cell  line-­‐derived  neurotrophic   factor   family   member,   induces   TRPM8-­‐dependent   cold   pain."   J   Neurosci   submitted.   Liu,  B.  and  F.  Qin  (2005).  "Functional  control  of  cold-­‐  and  menthol-­‐sensitive  TRPM8  ion   channels  by  phosphatidylinositol  4,5-­‐bisphosphate."  J  Neurosci  25(7):  1674-­‐81.   Ma,  S.,  G.  G,  et  al.  (2008).  "Menthol  derivative  WS-­‐12  selectively  activates  transient   receptor  potential  melastatin-­‐8  (TRPM8)  ion  channels."  Pak  J  Pharm  Sci  21(4):   370-­‐8.   Mackenzie,   R.   A.,   D.   Burke,   et   al.   (1975).   "Fibre   function   and   perception   during   cutaneous  nerve  block."  J  Neurol  Neurosurg  Psychiatry  38(9):  865-­‐73.   Madrid,   R.,   E.   de   la   Pena,   et   al.   (2009).   "Variable   threshold   of   trigeminal   cold-­‐ thermosensitive  neurons  is  determined  by  a  balance  between  TRPM8  and  Kv1   potassium  channels."  J  Neurosci  29(10):  3120-­‐31.   Madrid,  R.,  T.  Donovan-­‐Rodriguez,  et  al.  (2006).  "Contribution  of  TRPM8  channels  to   cold  transduction  in  primary  sensory  neurons  and  peripheral  nerve  terminals."  J   Neurosci  26(48):  12512-­‐25.   Malkia,  A.,  R.  Madrid,  et  al.  (2007).  "Bidirectional  shifts  of  TRPM8  channel  gating  by   temperature  and  chemical  agents  modulate  the  cold  sensitivity  of  mammalian   thermoreceptors."  J  Physiol  581(Pt  1):  155-­‐74.   Matta,  J.  A.  and  G.  P.  Ahern  (2007).  "Voltage  is  a  partial  activator  of  rat  thermosensitive   TRP  channels."  J  Physiol  585(2):  469-­‐482.   Matthews,  J.  M.,  N.  Qin,  et  al.  (2012).  "The  design  and  synthesis  of  novel,  phosphonate-­‐ containing   transient   receptor   potential   melastatin   8   (TRPM8)   antagonists."   Bioorg  Med  Chem  Lett  22(8):  2922-­‐6.   116     Maxwell,   R.   J.,   R.   J.   Devenish,   et   al.   (1986).   "The   nucleotide   sequence   of   the   mitochondrial  DNA  genome  of  an  abundant  petite  mutant  of  Saccharomyces   cerevisiae  carrying  the  ori1  replication  origin."  Biochem  Int  13(1):  101-­‐7.   McCoy,  D.  D.,  W.  M.  Knowlton,  et  al.  (2011).  "Scraping  through  the  ice:  uncovering  the   role  of  TRPM8  in  cold  transduction."  Am  J  Physiol  Regul  Integr  Comp  Physiol   300(6):  R1278-­‐87.   McCoy,  D.  D.,  L.  Zhou,  et  al.  (2013).  "Enhanced  insulin  clearance  in  mice  lacking  TRPM8   channels."  Am  J  Physiol  Endocrinol  Metab.   McKemy,  D.  D.  (2005).  "How  cold  is  it?  TRPM8  and  TRPA1  in  the  molecular  logic  of  cold   sensation."  Mol  Pain  1(1):  16.   McKemy,  D.  D.,  W.  M.  Neuhausser,  et  al.  (2002).  "Identification  of  a  cold  receptor   reveals  a  general  role  for  TRP  channels  in  thermosensation."  Nature  416(6876):   52-­‐8.   Meseguer,  V.,  Y.  Karashima,  et  al.  (2008).  "Transient  receptor  potential  channels  in   sensory  neurons  are  targets  of  the  antimycotic  agent  clotrimazole."  J  Neurosci   28(3):  576-­‐86.   Morin,  C.  and  M.  C.  Bushnell  (1998).  "Temporal  and  qualitative  properties  of  cold  pain   and  heat  pain:  a  psychophysical  study."  Pain  74(1):  67-­‐73.   Mukerji,  G.,  Y.  Yiangou,  et  al.  (2006).  "Cool  and  menthol  receptor  TRPM8  in  human   urinary  bladder  disorders  and  clinical  correlations."  BMC  Urol  6:  6.   Nagata,  K.,  A.  Duggan,  et  al.  (2005).  "Nociceptor  and  hair  cell  transducer  properties  of   TRPA1,  a  channel  for  pain  and  hearing."  J  Neurosci  25(16):  4052-­‐61.   Nakagawa,  H.  and  A.  Hiura  (2013).  "Comparison  of  the  transport  of  QX-­‐314  through   TRPA1,  TRPM8,  and  TRPV1  channels."  J  Pain  Res  6:  223-­‐30.   Niebergall-­‐Roth,  E.  and  M.  V.  Singer  (2001).  "Central  and  peripheral  neural  control  of   pancreatic  exocrine  secretion."  J  Physiol  Pharmacol  52(4  Pt  1):  523-­‐38.   Nozawa,  K.,  E.  Kawabata-­‐Shoda,  et  al.  (2009).  "TRPA1  regulates  gastrointestinal  motility   through  serotonin  release  from  enterochromaffin  cells."  Proc  Natl  Acad  Sci  U  S  A   106(9):  3408-­‐13.   Palmiter,  R.  D.,  R.  R.  Behringer,  et  al.  (1987).  "Cell  lineage  ablation  in  transgenic  mice  by   cell-­‐specific  expression  of  a  toxin  gene."  Cell  50(3):  435-­‐43.   117     Peier,  A.  M.,  A.  Moqrich,  et  al.  (2002).  "A  TRP  channel  that  senses  cold  stimuli  and   menthol."  Cell  108(5):  705-­‐15.   Peier,  A.  M.,  A.  J.  Reeve,  et  al.  (2002).  "A  heat-­‐sensitive  TRP  channel  expressed  in   keratinocytes."  Science  296(5575):  2046-­‐9.   Perseghin,  G.,  E.  Regalia,  et  al.  (1997).  "Regulation  of  glucose  homeostasis  in  humans   with  denervated  livers."  J  Clin  Invest  100(4):  931-­‐41.   Pluijms,  W.,  F.  Huygen,  et  al.  (2010).  "18.  Painful  Diabetic  Polyneuropathy."  Pain  Pract   11(2):  191-­‐198.   Polonsky,  K.  S.  and  A.  H.  Rubenstein  (1984).  "C-­‐peptide  as  a  measure  of  the  secretion   and  hepatic  extraction  of  insulin.  Pitfalls  and  limitations."  Diabetes  33(5):  486-­‐94.   Proudfoot,  C.  J.,  E.  M.  Garry,  et  al.  (2006).  "Analgesia  Mediated  by  the  TRPM8  Cold   Receptor  in  Chronic  Neuropathic  Pain."  Curr  Biol  16(16):  1591-­‐605.   Razavi,  R.,  Y.  Chan,  et  al.  (2006).  "TRPV1+  sensory  neurons  control  beta  cell  stress  and   islet  inflammation  in  autoimmune  diabetes."  Cell  127(6):  1123-­‐35.   Rehm,  S.  E.,  J.  Koroschetz,  et  al.  (2010).  "A  cross-­‐sectional  survey  of  3035  patients  with   fibromyalgia:   subgroups   of   patients   with   typical   comorbidities   and   sensory   symptom  profiles."  Rheumatology  (Oxford)  49(6):  1146-­‐52.   Reid,  G.,  A.  Babes,  et  al.  (2002).  "A  cold-­‐  and  menthol-­‐activated  current  in  rat  dorsal  root   ganglion  neurones:  properties  and  role  in  cold  transduction."  J  Physiol  545(Pt  2):   595-­‐614.   Reid,  G.  and  M.  L.  Flonta  (2001).  "Cold  current  in  thermoreceptive  neurons."  Methods   111:  1-­‐8.   Reid,  G.  and  M.  L.  Flonta  (2002).  "Ion  channels  activated  by  cold  and  menthol  in  cultured   rat  dorsal  root  ganglion  neurones."  Neurosci  Lett  324(2):  164-­‐8.   Rohacs,   T.,   C.   M.   Lopes,   et   al.   (2005).   "PI(4,5)P2   regulates   the   activation   and   desensitization  of  TRPM8  channels  through  the  TRP  domain."  Nat  Neurosci  8(5):   626-­‐34.   Sabnis,  A.  S.,  M.  Shadid,  et  al.  (2008).  "Human  lung  epithelial  cells  express  a  functional   cold-­‐sensing  TRPM8  variant."  Am  J  Respir  Cell  Mol  Biol  39(4):  466-­‐74.   Schneiter,  P.,  M.  Gillet,  et  al.  (1999).  "Hepatic  nonoxidative  disposal  of  an  oral  glucose   meal  in  patients  with  liver  cirrhosis."  Metabolism  48(10):  1260-­‐6.   118     Shiau,  H.  J.  (2012).  "Dentin  hypersensitivity."  J  Evid  Based  Dent  Pract  12(3  Suppl):  220-­‐8.   Smith,  G.  D.,  M.  J.  Gunthorpe,  et  al.  (2002).  "TRPV3  is  a  temperature-­‐sensitive  vanilloid   receptor-­‐like  protein."  Nature  418(6894):  186-­‐90.   Stein,  R.  J.,  S.  Santos,  et  al.  (2004).  "Cool  (TRPM8)  and  hot  (TRPV1)  receptors  in  the   bladder  and  male  genital  tract."  J  Urol  172(3):  1175-­‐8.   Story,  G.  M.,  A.  M.  Peier,  et  al.  (2003).  "ANKTM1,  a  TRP-­‐like  Channel  Expressed  in   Nociceptive  Neurons,  Is  Activated  by  Cold  Temperatures."  Cell  112(6):  819-­‐29.   Streng,  T.,  H.  E.  Axelsson,  et  al.  (2008).  "Distribution  and  function  of  the  hydrogen   sulfide-­‐sensitive  TRPA1  ion  channel  in  rat  urinary  bladder."  Eur  Urol  53(2):  391-­‐9.   Tahmoush,   A.   J.,   R.   J.   Schwartzman,   et   al.   (2000).   "Quantitative   sensory   studies   in   complex  regional  pain  syndrome  type  1/RSD."  Clin  J  Pain  16(4):  340-­‐4.   Takashima,  Y.,  R.  L.  Daniels,  et  al.  (2007).  "Diversity  in  the  neural  circuitry  of  cold  sensing   revealed  by  genetic  axonal  labeling  of  transient  receptor  potential  melastatin  8   neurons."  J  Neurosci  27(51):  14147-­‐57.   Tanaka,  H.,  A.  Shimaya,  et  al.  (2011).  "Enhanced  insulin  secretion  and  sensitization  in   diabetic  mice  on  chronic  treatment  with  a  transient  receptor  potential  vanilloid  1   antagonist."  Life  Sci  88(11-­‐12):  559-­‐63.   Thut,  P.  D.,  D.  Wrigley,  et  al.  (2003).  "Cold  transduction  in  rat  trigeminal  ganglia  neurons   in  vitro."  Neuroscience  119(4):  1071-­‐83.   Tominaga,  M.,  M.  J.  Caterina,  et  al.  (1998).  "The  cloned  capsaicin  receptor  integrates   multiple  pain-­‐producing  stimuli."  Neuron  21(3):  531-­‐43.   Tsavaler,  L.,  M.  H.  Shapero,  et  al.  (2001).  "Trp-­‐p8,  a  novel  prostate-­‐specific  gene,  is  up-­‐ regulated  in  prostate  cancer  and  other  malignancies  and  shares  high  homology   with  transient  receptor  potential  calcium  channel  proteins."  Cancer  Res  61(9):   3760-­‐9.   Uchida,  K.,  K.  Dezaki,  et  al.  (2011).  "Lack  of  TRPM2  impaired  insulin  secretion  and   glucose  metabolisms  in  mice."  Diabetes  60(1):  119-­‐26.   Uchida,   K.   and   M.   Tominaga   (2011).   "The   role   of   thermosensitive   TRP   (transient   receptor  potential)  channels  in  insulin  secretion."  Endocr  J  58(12):  1021-­‐8.   Valera  Mora,  M.  E.,  A.  Scarfone,  et  al.  (2003).  "Insulin  clearance  in  obesity."  J  Am  Coll   Nutr  22(6):  487-­‐93.   119     Vanden   Abeele,   F.,   A.   Zholos,   et   al.   (2006).   "Ca2+-­‐independent   phospholipase   A2-­‐ dependent  gating  of  TRPM8  by  lysophospholipids."  J  Biol  Chem  281(52):  40174-­‐ 82.   Vetter,  I.,  F.  Touska,  et  al.  (2012).  "Ciguatoxins  activate  specific  cold  pain  pathways  to   elicit  burning  pain  from  cooling."  EMBO  J  31(19):  3795-­‐808.   Voets,  T.,  G.  Droogmans,  et  al.  (2004).  "The  principle  of  temperature-­‐dependent  gating   in  cold-­‐  and  heat-­‐sensitive  TRP  channels."  Nature  430(7001):  748-­‐54.   Voets,   T.,   G.   Owsianik,   et   al.   (2007).   "TRPM8   voltage   sensor   mutants   reveal   a   mechanism  for  integrating  thermal  and  chemical  stimuli."  Nat  Chem  Biol  3(3):   174-­‐82.   Wei,  E.  T.  and  D.  A.  Seid  (1983).  "AG-­‐3-­‐5:  a  chemical  producing  sensations  of  cold."  J   Pharm  Pharmacol  35(2):  110-­‐2.   Xu,  H.,  I.  S.  Ramsey,  et  al.  (2002).  "TRPV3  is  a  calcium-­‐permeable  temperature-­‐sensitive   cation  channel."  Nature  418(6894):  181-­‐6.   Yamamura,  H.,  S.  Ugawa,  et  al.  (2008).  "TRPM8  activation  suppresses  cellular  viability  in   human  melanoma."  Am  J  Physiol  Cell  Physiol  295(2):  C296-­‐301.   Yang,   X.   R.,   M.   J.   Lin,   et   al.   (2006).   "Functional   Expression   of   Transient   Receptor   Potential   Melastatin-­‐   (TRPM)   and   Vanilloid-­‐Related   (TRPV)   Channels   in   Pulmonary   Arterial   and   Aortic   Smooth   Muscle."   Am   J   Physiol   Lung   Cell   Mol   Physiol  290(6):  L1267-­‐L1276.   Yoshida,  N.,  K.  Kobayashi,  et  al.  (2011).  "Inhibition  of  TRPA1  channel  activity  in  sensory   neurons   by   the   glial   cell   line-­‐derived   neurotrophic   factor   family   member,   artemin."  Mol  Pain  7:  41.   Zhang,  L.  and  G.  J.  Barritt  (2006).  "TRPM8  in  prostate  cancer  cells:  a  potential  diagnostic   and  prognostic  marker  with  a  secretory  function?"  Endocr  Relat  Cancer  13(1):   27-­‐38.   Zimmermann,  K.,  A.  Leffler,  et  al.  (2007).  "Sensory  neuron  sodium  channel  Nav1.8  is   essential  for  pain  at  low  temperatures."  Nature  447(7146):  855-­‐8.   Zimmermann,  M.  (2001).  "Pathobiology  of  neuropathic  pain."  Eur  J  Pharmacol  429(1-­‐3):   23-­‐37.         120                   APPENDIX                 Development  of  a  TRPA1-­‐CRE  BAC-­‐transgenic  mouse  line   121     INTRODUCTION   The  ability  of  organisms  to  sense  pain  is  vitally  important  for  survival.  Not  only   does  pain  draw  attention  to  a  wound  so  that  it  can  be  tended  to,  but  it  also  warns  about   potential  damage.  Transient  receptor  potential  ankyrin  1  (TRPA1)  is  a  chemosensory  ion   channel  that  has  been  shown  to  mediate  acute  and  chronic  pain,  and  play  an  important   role  in  inflammation  and  hypersensitivity  to  both  thermal  and  mechanical  stimuli  via   mouse  knockout  studies  (Bautista,  Jordt  et  al.  2006;  Kwan,  Allchorne  et  al.  2006;  Garcia-­‐ Anoveros  and  Nagata  2007;  Karashima,  Talavera  et  al.  2009).  It  is  mainly  known  for  its   activation  by  allyl  isothiocyanate  (AITC  -­‐  the  active  ingredient  in  mustard  oil  and  wasabi),   but  has  also  been  shown  to  be  activated  by  a  number  of  irritant  compounds  including   hydrogen   peroxide,   acrolein   (found   in   tear   gas   and   exhaust   fumes),   formalin,   cinnamaldehyde  (found  in  cinnamon),  and  many  thiosulfanates  (found  in  things  like   garlic   and   onions)   and   is   widely   considered   to   be   a   general   irritant/pain   receptor   (Bandell,  Story  et  al.  2004;  Jordt,  Bautista  et  al.  2004;  Nagata,  Duggan  et  al.  2005;   Bautista,  Jordt  et  al.  2006;  Garcia-­‐Anoveros  and  Nagata  2007).  Outside  of  its  known   roles  in  sensory  neurons  however,  TRPA1  has  also  been  suggested  to  be  expressed  in  a   number   of   non-­‐neuronal   cell   types   including   hair   cells,   enterochromaffin   cells,   keratinocytes,  cerebellar  and  cerebral  artery  epithelium,  urothelium,  melanocytes,    and   fibroblasts  to  name  a  few  (Nagata,  Duggan  et  al.  2005;  Kochukov,  McNearney  et  al.   2006;  Anand,  Otto  et  al.  2008;  Streng,  Axelsson  et  al.  2008;  Atoyan,  Shander  et  al.  2009;   Earley,  Gonzales  et  al.  2009;  Kwan,  Glazer  et  al.  2009;  Nozawa,  Kawabata-­‐Shoda  et  al.   122     2009).  Very  little  is  known  about  its  function  in  these  cell  types/areas  and  with  there   being  no  adequate  antibody  for  recognizing  the  protein  in  mice,  the  primary  model   organism  used  in  the  TRP  channel  field,  it  has  proven  to  be  a  difficult  channel  to  study.     Here  we  show  the  development  of  a  BAC-­‐transgenic  mouse  line  in  which  CRE   recombinase  is  targeted  to  TRPA1-­‐expressing  cells.  The  motivation  behind  making  this   mouse  was  that  when  crossed  with  a  CRE-­‐dependent  reporter  line  TRPA1-­‐expressing   cells  could  theoretically  be  labeled  without  the  need  of  antibodies.  Such  a  labeled   mouse  could  then  be  used  to  identify  and  study  TRPA1-­‐expression  in  the  body  and  also   track  its  expression  through  development.  The  advantage  of  making  this  mouse  over   more   conventional   transgenic   methods,   driving   marker   expression   using   the   TRPA1   promoter  region,  was  that  it  could  also  be  crossed  with  other  CRE-­‐specific  lines  to  allow   for  the  selective  ablation  or  silencing  of  TRPA1-­‐expressing  cells.  Thus,  this  mouse  would   allow  us  to  not  only  study  the  channel  itself,  but  also  the  cells  in  which  it  is  expressed.   Although  we  report  here  that  we  have  successfully  targeted  the  CRE  transgene  to  two   independent   mouse   lines,   we   have   conflicting   data   regarding   whether   or   not   it   is   specifically  expressed  in  TRPA1-­‐expressing  cells.  Future  characterization  of  this  mouse   line  will  tell  if  it  is  viable  for  the  study  of  this  enigmatic  channel.   123     MATERIALS  AND  METHODS   TRPA1-­‐CRE  mouse  BAC  transgenesis   The   TRPA1   bacterial   artificial   chromosome   (BAC)   clone   was   modified   by   homologous  recombination  as  described  in  Chapter  4  (see  Chapter  4  Materials  and   Methods).  A  targeting  (Abox)  sequence  consisting  of  1027  bp  upstream  (5’)  to  the   recombination   site   was   used   to   target   the   CRE   transgene   to   the   TRPA1   BAC.   Identification  of  cointegrates  was  done  via  PCR  analysis  using  the  following  BAC-­‐specific   and  transgene-­‐specific  primers:     P1  (5’  BAC-­‐specific),  5’-­‐CACCTATGCTGTGGAG-­‐3’   P2  (3’  CRE-­‐specific),  5’-­‐GAACCTGAAGATGTTCGCG-­‐3’   P3  (5’  R6K-­‐specific),  5’-­‐CAGGTTGAACTGCTGATCAACAGATC-­‐3’   P4  (3’  BAC-­‐specific),  5’-­‐GAAATGGCAGGAGACAGTATC-­‐3’   Modified  BAC  clones  were  also  screened  via  Southern  blot  analysis  using  a  Biotin   labeled  probe  corresponding  to  the  targeting  Abox  sequence.  Purified  DNA  was  then   injected  into  the  pronucleus  of  fertilized  ova  at  the  University  of  Southern  California   (USC)  Transgenic  Core  Facility.  Transgenic  founder  mice  were  identified  by  PCR  and   mated  to  C57BL/6  mice.  All  animals  were  handled  and  cared  for  in  accordance  with   guidelines  established  by  the  USC  Animal  Care  and  Use  Committee.         124     Mouse  breeding   The  following  mouse  strains  ordered  from  Jackson  were  bred  against  our  TRPA1-­‐ CRE   transgenic   lines:   Rosa-­‐STOP-­‐DTA   (B6;129-­‐Gt(ROSA)26Sortm1(DTA)Mrc/J,   stock   #010527),   Rosa-­‐STOP-­‐LacZ   (B6;129S4-­‐Gt(ROSA)26Sortm1Sor/J,   stock   #003309),   Rosa-­‐ STOP-­‐Tomato   (B6.Cg-­‐Gt(ROSA)26Sortm14(CAG-­‐tdTomato)Hze/J,   stock   #007914).   All   experiments  were  approved  by  the  University  of  Southern  California  (USC)  Institutional   Animal   Care   and   Use   Committee   and   performed   in   accordance   with   the   recommendations  of  the  National  Institutes  of  Health  Guide  for  the  Care  and  Use  of   Laboratory  Animals.       LacZ  staining   After  thawing  freshly  frozen  tissue  sections  at  room  temperature  for  5  mins,   slides  were  fixed  for  10mins  at  4°C  in  a  slide  mailer  (fixative  =  0.2%  Glutaraldehyde  in   PBS).  Slides  were  washed  first  in  PBS,  followed  by  detergent  rinse  (0.02%  NP-­‐40,  0.01%   Sodium  Deoxycholate,  2mM  MgCl2  in  PBS)  for  10mins  each.  After  2hrs  of  incubating  at   37°C  in  X-­‐gal  staining  solution  (detergent  rinse  solution  +  5mM  Potassium  ferricyanide,   5mM  Potassium  Ferrocyanide,  1mg/ml  Xgal),  slides  were  post-­‐fixed  in  4%  PFA  in  PBS  at   4°C  for  10mins,  followed  by  two  10min  PBS  washes  before  mounting  and  imaging.               125     Immunofluorescence   Immunofluorescence  experiments  were  carried  out  as  described  in  Chapter  2   (see  Chapter  2  Materials  and  Methods)  using  the  following  antibodies:    1°  guinea  pig   anti-­‐PGP9.5   (AB5898,   Millipore),   1°   goat   anti-­‐NF200   (N4142,   Sigma),   1°   rabbit   anti-­‐ peripherin  (AB1530,  Millipore),  1°  rabbit  anti-­‐TRPV1  (AB5889,  Millipore),  2°  donkey  anti-­‐ guinea  pig-­‐AMCA  (706-­‐155-­‐148,  Jackson  Immuno),  2°  donkey  anti-­‐goat-­‐488  (A11055,   Invitrogen),  2°  donkey  anti-­‐rabbit-­‐488  (A11034,  Invitrogen).       Neuron  culture   Trigeminal  Ganglia  were  dissected  from  newborn  transgenic  mice  crossed  with   the   Rosa-­‐STOP-­‐Tomato   reporter   line   (<P14)   and   neurons   isolated   as   described   in   Chapter  3  (see  Chapter  3  Materials  and  Methods).  Neurons  were  purified  through  a   60:30%  percoll  gradient  to  separate  neurons  from  large  cell  debris  and  smaller  cells  such   as  glia.  Calcium  imaging  experiments  were  carried  out  as  described  in  Chapter  3  with   500µM  cinnamaldehyde  and  1µM  capsaicin  used  to  correlate  transgene  driven  tomato   expression  with  functional  TRPA1  and  TRPV1  responses  respectively.     qPCR  analysis   qPCR  was  carried  out  on  TG/DRG  samples  as  described  previously  in  Chapter  2   (See  Chapter  2  Materials  and  Methods).  The  primers  used  are  listed  below:     126     GAPDH  (123bp)     FWD:   5’  TGTAGACCATGTAGTGAGGTCA  3’               REV:   5’  AGGTCGGTGTGAACGGATTTG  3’   TRPM8  (600bp)     FWD:   5’  GCTGCCTGAAGAGGAAATTG  3’               REV:   5’  GCCCAGATGAAGAGAGCTTG  3’   TRPV1  #1  (294bp)     FWD:   5’  GGAGGTGGCAGATAACACAGC  3’           REV:   5’  CAGGTGTCAATGCAGGACAGG  3’   TRPV1  #2  (391bp)     FWD:   5’  CATGCTGGTGTCTGTGGTACTG  3’           REV:     5’  GTTCTCGGTGAACTCCAGGTC  3’   TRPA1  #1  (302bp)     FWD:   5’  CACCATGACCTGGCAGAATAC  3’           REV:   5’  CAGGCATAATGGAGAGGTGTG  3’   TRPA1  #2  (333bp)     FWD:   5’  GCTACAATGCTGACATCCTCC  3’           REV:   5’  CCACATCCTGGGTAGGTGCTA  3’   TRPA1  #3  (237bp)     FWD:   5’  GGTAGAATACCTCCCCGAGTG  3’           REV:   5’  CTACACACAGGGTGGTTGAGG  3’   127     RESULTS   Generation  of  the  TRPA1-­‐CRE  BAC-­‐transgenic  mouse  line   The  TRPA1-­‐CRE  BAC  transgenic  mouse  line  was  generated  using  the  methods   pioneered  by  the  lab  of  Nathaniel  Heintz  at  Rockefeller  University  (Heiman,  Schaefer  et   al.   2008).   Specifically,   a   shuttle   vector   containing   a   TRPA1-­‐specific   Abox   sequence   followed  by  the  CRE  transgene  was  targeted  to  a  bacterial  artificial  chromosome  (BAC)   containing  TRPA1  and  its  upstream  regulatory  region  via  homologous  recombination   (Fig.  A1.A-­‐B).  Successful  modification  of  BAC  DNA  was  confirmed  via  PCR  analysis  using   BAC-­‐specific  and  transgene-­‐specific  primers,  and  Southern  Blot  (Fig.  A1.C-­‐D).  Purified   BAC  DNA  was  then  injected  into  250  single  cell  stage  mouse  embryos  and  implanted  in   nine  pseudopregnant  females.  Five  out  of  nine  females  gave  birth  to  litters  yielding   twenty   total   pups.   Seven   of   the   twenty   mice   were   identified   as   being   successfully   targeted  via  PCR  analysis  of  genomic  DNA  taken  from  the  tail,  three  of  which  were   found  to  have  targeted  the  germline,  and  two  of  which  expressed  CRE  as  evidenced  by   subsequent  LacZ  reporter  mouse  line  crossings.  All  of  the  mouse  data  presented  beyond   this  point  will  refer  to  these  two  lines  as  TRPA1-­‐CRE-­‐Line1  and  2.     TRPA1-­‐CRE  mouse  lines  express  CRE  in  a  subset  of  sensory  neurons  and  in  many  non-­‐ neuronal  cell  types   To  confirm  that  the  two  TRPA1-­‐CRE  transgenic  lines  were  expressing  functional   CRE  recombinase  we  first  crossed  them  with  a  CRE  reporter  line  in  which  a  floxed  STOP   128       FIGURE  A.1   Development  of  the  TRPA1-­‐CRE  BAC-­‐transgenic  mouse  line   A)  A  shuttle  vector  containing  the  CRE  transgene  and  a  homologous  region  of  TRPA1  sequence  was   targeted  to  a  Bacterial  artificial  chromosome  (BAC)  containing  the  genomic  sequence  of  TRPA1  using   Recombinase  A  (RecA).  B)  Example  crossing  of  the  TRPA1-­‐CRE  BAC-­‐transgenic  and  ROSA-­‐STOP-­‐Tomato   reporter  mouse  line  results  in  CRE-­‐mediated  Tomato  expression.  C)  PCR  analysis  confirming  successful   BAC  targeting  using  primer  sets  flanking  5’  and  3’  junction  sites.  The  P1+P2  primer  set  yields  a  band   only  using  wildtype  TRPA1-­‐BAC  DNA  template  as  the  modified  BAC  amplicon  is  too  large  to  amplify   under  controlled  conditions.  The  P1+CreR  and  R6K+P2  primer  sets  only  yield  bands  using  modified  BAC   DNA  template  as  wildtype  TRPA1-­‐BAC  DNA  lacks  the  transgene-­‐specific  sequence  required  for  the  Cre   and  R6K  primers  to  anneal.  D)  Southern  blot  analysis  of  EcoRI  digested  wildtype  and  modified  TRPA1-­‐ BAC  DNA  using  a  biotin-­‐labeled  targeting  sequence  probe.  Wildtype  TRPA1-­‐BAC  DNA  yields  1  band   (~2.93kb)  while  successfully  modified  BAC  DNA  yields  2  bands  (~3.33kb  +  ~1.1kb)  due  to  the  addition   of  a  duplicate  targeting  sequence  as  part  of  the  targeting  paradigm.     129     cassette  is  removed  in  the  presence  of  CRE  recombinase,  allowing  for  subsequent  LacZ   expression  (ROSA-­‐STOP-­‐LacZ).  We  found  that  29.2  ±  0.8%  and  32.0  ±  1.1%  of  TG  and   DRG  neurons  from  Line  1  crossed  mice  expressed  LacZ  while  38.0  ±  2.2%  and  29.9  ±   1.1%  of  TG  and  DRG  neurons  did  from  Line  2  (Fig.  A2).  These  data  agree  with  previous   published  findings  on  TRPA1  expression  in  sensory  neurons  (Jordt,  Bautista  et  al.  2004;   Bautista,  Movahed  et  al.  2005;  Yoshida,  Kobayashi  et  al.  2011).  Next,  we  crossed  Line  1   with  a  similar  CRE  reporter  line  engineered  to  express  the  fluorescent  tdTomato  (Tom)   protein  in  CRE +  cells  to  better  measure  neuron  cell  sizes.  We  found  that  Tom  was   expressed  in  neurons  of  all  sizes.  Specifically,  TG  Tom +  cells  averaged  355  ±  7µM 2  while   Tom -­‐  cells  averaged  338  ±  5µM 2  and  DRG  Tom +  cells  averaged  350  ±  10µM 2  while  Tom -­‐   cells  averaged  327  ±  6µM 2  (Fig.  A3).  In  both  cases  there  was  no  statistical  difference   between  the  sizes  of  Tom +  and  Tom -­‐  neurons.  Similar  results  were  found  using  Line  2   crosses  (not  shown).  This  data  goes  against  the  notion  that  TRPA1  expression  is  limited   to  small  diameter  neurons  (Jordt,  Bautista  et  al.  2004;  Bautista,  Movahed  et  al.  2005;   Nagata,  Duggan  et  al.  2005;  Brierley,  Castro  et  al.  2011;  Barabas,  Kossyreva  et  al.  2012),   but  is  in  line  with  a  previously  published  report  finding  TRPA1  expression  in  neurons  of   all  sizes  (Kwan,  Glazer  et  al.  2009).  Furthermore,  Tom  does  appear  to  be  expressed  in   sensory  nerve  endings  in  the  skin  as  expected,  but  its  diffuse  presence  in  the  spinal  cord   is  different  from  the  known  expression  pattern  of  TRPA1  in  the  most  superficial  layers  of   the  dorsal  horn  (Fig.  A4)  (Andersson,  Gentry  et  al.  2011).  Moreover,  the  presence  of   Tom  in  every  tissue  source  we  sampled  was  perplexing.   130       FIGURE  A.2   CRE-­‐driven  LacZ  expression  in  TRPA1-­‐CRE  mice  crossed  with  the  ROSA-­‐STOP-­‐LacZ  reporter  line   LacZ  staining  in  DRG  and  TG  tissue  isolated  from  2  independent  TRPA1-­‐CRE  transgenic  mouse  lines   yields  CRE-­‐mediated  LacZ  expression  in  ~30-­‐40%  of  sensory  neurons.  Values  are  expressed  as  averages   ±  SE  (n  =  3  mice  for  all  panels,  Neurons  counted:  Line1  TG  =  3,827,  DRG  =  5,979,  Line2  TG  =  3,679,  DRG   =  2,829)   131         FIGURE  A.3   Sensory  neuron  size  distribution  in  TRPA1-­‐CRE  mice  crossed  with  the  ROSA-­‐STOP-­‐Tomato  reporter   line   PGP9.5  staining  and  cell  area  measurements  in  TG  (A)  and  DRG  (B)  isolated  from  TRPA1-­‐CRE-­‐Line1  X   ROSA-­‐STOP-­‐Tomato  mice.  Values  are  expressed  as  averages  ±  SE  (n  =  3  mice,  Total  neurons  measured:   TG  =  1,730,  DRG  =  1,575)     132       TRPA1-­‐CRE  driven  tomato  expression  overlaps  with  other  markers   To  better  characterize  the  CRE-­‐expressing  neuronal  population  we  next  stained   Tom +  neurons  with  various  markers.  Unfortunately  there  is  no  anti-­‐TRPA1  antibody  that   works  staining  mouse  tissue.  To  work  around  this,  we  stained  for  other  markers  known   to  co-­‐localize  with  TRPA1.  Previous  work  has  shown  that  the  TRPA1-­‐expressing  neuronal   population  exists  almost  entirely  within  the  population  expressing  the  noxious  heat     FIGURE  A.4   Tomato  expression  is  widespread  in  tissues  isolated  from  TRPA1-­‐CRE  X  ROSA-­‐STOP-­‐Tomato  mice   Tomato  expression  can  be  seen  throughout  the  body  in  TRPA1-­‐CRE-­‐Line1  X  ROSA-­‐STOP-­‐Tomato  mice.   Tissues  were  sampled  from  Adult  mice  ~12  weeks  of  age.     133     receptor  TRPV1  (Jordt,  Bautista  et  al.  2004;  Bautista,  Jordt  et  al.  2006;  Dai,  Wang  et  al.   2007).  We  found  that  79.4%  of  Tom +  TG  neurons  are  immunoreactive  for  TRPV1,  results   consistent  with  previous  TRPA1/TRPV1  staining  in  rat  sensory  tissue  (Fig.  A5)  (Dai,  Wang   et  al.  2007;  Kondo,  Obata  et  al.  2009).  As  TRPA1  is  considered  to  be  highly  expressed  in   nociceptors  we  next  stained  with  the  nociceptive  marker  peripherin.    We  found  that   22.6%  of  Tom +  neurons  co-­‐labeled  with  peripherin,  a  proportion  much  lower  than  has   been   previously   reported   (Fig.A5)   (Vetter,   Touska   et   al.   2012).   Furthermore   the   presence  of  NF200  immunoreactivity,  a  marker  for  large  myelinated  neurons,  in  50.9%   of  Tom +  neurons  further  complicated  our  findings  as  the  majority  of  previous  reports   indicate  little  to  no  overlap  in  the  TRPA1  and  NF200-­‐expressing  populations  (Fig.  A5)   (Dai,  Wang  et  al.  2007;  Kondo,  Obata  et  al.  2009;  Vetter,  Touska  et  al.  2012).  Although   the  overlap  of  TRPV1  and  Tom  is  in  line  with  the  hypothesis  that  Tom  is  expressed  in  the   TRPA1-­‐expressing  population,  the  unexpected  overlap  with  peripherin  and  NF200  was   problematic.   As   the   Tom +   population   using   this   CRE-­‐based   approach   theoretically   represented  all  cells  that  expressed  TRPA1  at  some  stage  in  development,  we  reasoned   that  it  was  possible  that  some  of  these  cells  did  not  actually  express  TRPA1  at  the  time   they  were  sectioned.  This  theory  could  explain  why  we  saw  greater  overlap  with  the   NF200  marker,  widely  believed  to  be  expressed  in  cells  outside  of  the  TRPA1-­‐expressing   neuron  population,  but  the  low  correlation  between  Tom  and  peripherin  was  could  not   be   explained   using   this   logic.   We   next   focused   on   determining   if   functional   TRPA1   responses  were  seen  in  these  Tom +  neurons.   134         FIGURE  A.5   Immunostaining  in  TRPA1-­‐CRE  X  ROSA-­‐STOP-­‐Tomato  sensory  tissue  shows  significant  overlap  in  the   tomato-­‐expressing  and  TRPV1-­‐expressing  neuron  populations   A)  Representative  images  from  triple  labeling  experiments  using  TRPA1-­‐CRE-­‐Line1  X  ROSA-­‐STOP-­‐ Tomato  mouse  TG  (Tomato  expression  =  red,  Marker  staining  =  green,  pan  neuronal  marker  PGP9.5   staining  =  blue).  B)  Quantification  of  triple  labeling  experiments  shown  in  A.   135     TRPA1-­‐CRE-­‐Tomato  cultured  neurons  indicate  functional  responses  to  Cinnamaldehyde   irrespective  of  reporter  expression     To  better  determine  if  CRE  recombinase  was  correctly  targeted  to  the  TRPA1-­‐ expressing  sensory  neuron  population,  we  carried  out  calcium  imaging  experiments  on   cultured  TG  neurons  isolated  from  TRPA1-­‐CRE-­‐Line1  X  ROSA-­‐STOP-­‐Tomato  mice.  We   found   that   only   22.6%   of   Tom +   neurons   responded   to   the   TRPA1   agonist   Cinnamaldehyde  (CA)  (Fig.  A6).  Furthermore  39.8%  of  Tom -­‐  neurons  were  found  to   respond  to  CA  with  a  response  seen  in  34.8%  of  all  neurons  (Fig.  A6).  Although  the   overall  percentage  of  neurons  responding  to  CA  (22.6%  /  39.8%  Tom +  /  Tom -­‐ )  and  the   high  correlation  between  CA  and  capsaicin  (CAP)  responses  (67.6%  /  74.7%  Tom +  /  Tom -­‐ )   are  consistent  with  previous  findings  regarding  TRPA1-­‐mediated  calcium  responses  in   cultured  sensory  neurons  (Jordt,  Bautista  et  al.  2004;  Bautista,  Movahed  et  al.  2005),  the   fact  that  the  Tom +  population  did  not  account  for  all  CA  responses  suggested  that  our   CRE  transgene  was  not  in  fact  targeted  to  TRPA1-­‐expressing  sensory  neurons  (Fig.  A6).   Similar  results  were  also  found  using  line  2  and  another  potent  TRPA1  agonist  AITC  (data   not  shown).  Although  previous  work  has  shown  that  sensory  neurons  can  change  their   expression  patterns  as  a  result  of  the  culturing  process  (Barabas,  Kossyreva  et  al.  2012),   the  fact  that  our  findings  show  that  CA  responses  were  seen  in  cells  irrespective  of  the   presence  of  Tom  solidified  the  fact  that  we  could  not  be  certain  whether  or  not  our   transgene  was  correctly  targeted  to  all  TRPA1-­‐expressing  sensory  neurons.     136         FIGURE  A.6   Calcium  imaging  reveals  no  correlation  between  tomato  expression  and  TRPA1  agonist  sensitivity  in   TRPA1-­‐CRE  X  ROSA-­‐STOP-­‐Tomato  cultured  TG  neurons   Representative  images  from  calcium  imaging  on  cultured  TG  neurons  from  TRPA1-­‐CRE-­‐Line1  X  ROSA-­‐ STOP-­‐Tomato  mouse  pups  (<P14).  Red  arrows  mark  Tomato +  electrically  active  neurons  (as   determined  calcium  responses  following  KCl  depolarization)  and  white  triangles  mark  Tomato -­‐  neurons   responding  to  the  TRPA1  agonist  Cinnamaldehyde.  Quantification  of  the  experiments  is  seen  in  the   table  below.     137     TRPA1  transcript  levels  unchanged  in  TRPA1-­‐CRE-­‐DTA  ablated  mice   Simultaneous  to  crosses  with  Tom  reporter  lines,  we  also  crossed  the  TRPA1-­‐CRE   lines  to  a  mouse  engineered  to  express  diphtheria  toxin  subunit  A  (DTA)  in  CRE +  cells.   Cells  in  which  DTA  is  expressed  die  due  to  inhibition  of  protein  translation,  but  as  the   toxin  lacks  subunit  B,  which  is  required  for  cell  entry,  the  toxicity  is  limited  to  the  cells  in   which  subunit  A  is  expressed  (Maxwell,  Devenish  et  al.  1986;  Palmiter,  Behringer  et  al.   1987;  Breitman,  Rombola  et  al.  1990;  Harrison,  Maxwell  et  al.  1991;  Collier  2001).  As  we   still  did  not  know  whether  our  transgene  was  correctly  targeted,  we  reasoned  that  we   would  be  able  to  use  this  crossing  to  quantitatively  measure  the  amount  of  TRPA1   transcript  in  ablated  vs.  non-­‐ablated  mice,  with  the  presumption  being  that  if  CRE  was   correctly  targeted  TRPA1  transcript  would  be  lost  in  ablated  mice.  By  qPCR  analysis   adult   Line   1   ablated   mice   appeared   to   have   TRPA1   transcript   expression   levels   indistinguishable  from  their  non-­‐ablated  littermates  (Fig.  A7).  Similar  results  were  seen   in  3  week  old  Line  2  ablated  mice  (not  shown).  Interestingly  however,  despite  line  1  and   line  2  being  remarkably  similar  in  regards  to  reporter  expression  patterns  in  sensory   ganglia,  line  2  ablated  mice  were  very  sickly,  rarely  surviving  beyond  weaning  age  of  3   weeks,  while  line  1  ablated  mice  appeared  to  be  healthy  (personal  observations).  These   data  further  complicated  our  assessment  but  supported  our  prior  results  suggesting  that   our  transgene  was  not  targeted  to  the  correct  population.     138       FIGURE  A.7   qPCR  analysis  reveals  no  change  in  TRPA1  transcript  in  TRPA1-­‐CRE-­‐cell  ablated  sensory  tissue   Pooled  cDNA  isolated  from  TG  and  DRG  tissue  from  TRPA1-­‐CRE-­‐Line1  X  ROSA-­‐STOP-­‐DTA  (Ablated)  mice   show  similar  TRPA1  transcript  levels  as  control  ROSA-­‐STOP-­‐DTA  (Non-­‐Ablated).  Values  are  expressed   as  the  average  difference  in  cycle  number  from  the  internal  control  GAPDH  at  threshold  (ΔCt   (GAPDH)(n  =  3  mice  per  condition  assayed  in  duplicate).   139     CONCLUSION   The  experiments  described  here  show  that  we  have  successfully  generated  a   CRE-­‐expressing  transgenic  line.  Although  we  have  successfully  targeted  CRE  to  the  ATG   start   site   of   the   TRPA1   genomic   sequence   contained   within   a   BAC   clone,   and   this   modified  BAC  has  integrated  into  the  germ  line  of  2  independent  mouse  lines,  we  still  do   not  know  if  CRE  is  specifically  expressed  in  all  TRPA1-­‐expressing  cells.  In  the  absence  of  a   commercially  available  anti-­‐TRPA1  antibody  that  works  staining  mouse  tissue  we  were   forced   to   turn   to   alternative   methods   to   confirm   successful   transgene   targeting.   Reporter  line  crosses  show  our  transgenic  lines  express  CRE  in  a  percentage  of  sensory   neurons  that  is  reminiscent  of  TRPA1  expression,  and  CRE  expression  overlaps  with   TRPV1  as  expected,  however,  the  overlap  seen  with  other  markers  and  the  presence  of   CRE  in  larger  neurons  conflicts  with  most  studies  on  TRPA1-­‐expressing  sensory  neurons   (Jordt,  Bautista  et  al.  2004;  Bautista,  Movahed  et  al.  2005;  Dai,  Wang  et  al.  2007;  Kondo,   Obata  et  al.  2009;  Vetter,  Touska  et  al.  2012).  CRE  does  appear  to  be  expressed  in   sensory  afferents  innervating  the  skin,  but  it  is  also  present  diffusely  in  the  spinal  cord   and   not   localized   to   the   most   superficial   layers   of   the   dorsal   horn   as   expected   (Andersson,  Gentry  et  al.  2011).  Furthermore,  we  found  reporter  expression  in  subsets   of  cells  from  every  tissue  we  assayed,  which  could  be  very  interesting  developmentally  if   it  is  in  fact  reflective  of  TRPA1-­‐expression,  but  does  little  to  help  confirm  whether  or  not   our   transgene   has   been   successfully   targeted.   Functional   experiments   on   cultured   sensory   neurons   show   no   correlation   between   reporter   expression   and   calcium   140     responses  to  TRPA1-­‐specific  agonists,  and  mice  in  which  TRPA1-­‐CRE-­‐expressing  neurons   are  selectively  ablated  show  no  reduction  in  TRPA1  transcript  levels  in  sensory  ganglia.   Taken  together  these  data  suggest  that  that  our  transgene  is  not  targeted  to  TRPA1-­‐ expressing  neurons.     Although   it   is   possible   our   transgene   is   targeted   to   a   subset   of   TRPA1-­‐ expressing/lineage   neurons   and   our   BAC-­‐targeting   scheme   did   not   include   all   the   regulatory   elements   controlling   TRPA1-­‐expression,   it   is   equally   possible   that   our   transgene  is  targeted  to  some  other  population  of  sensory  neurons  entirely.  Regardless   of  what  is  going  on,  future  experiments  must  focus  on  proving  if  TRPA1  transcript  or   protein   physically   overlaps   with   transgene   expression.   Preliminary   studies   trying   to   correlate  reporter  expression  to  an  in  situ  probe  that  hybridizes  to  TRPA1  mRNA  have   been  unsuccessful,  but  future  work  should  focus  on  this  technique.  If  we  are  unable  to   visualize  in  situ  probe  hybridization  and  reporter  expression  simultaneously,  we  could   try  multiplex  fluorescence  in  situ  hybridization  (M-­‐FISH)  using  probes  for  both  TRPA1   and  CRE.  If  TRPA1  mRNA  is  found  in  cells  not  expressing  CRE  then  our  transgenic  line  has   not   been   successfully   targeted   to   all   TRPA1-­‐expressing   cells.   Alternatively,   if   no   transcript  is  found  outside  the  CRE-­‐expressing  population  we  can  be  confident  that  our   transgenic  line  is  in  fact  targeted  correctly  and  that  the  negative  results  presented   earlier  could  be  due  to  artifacts  caused  by  the  experimental  methods.     If  we  find  that  our  transgenic  lines  have  been  correctly  targeted  to  the  TRPA1-­‐ expressing  cell  population,  we  will  be  able  to  study  TRPA1-­‐expression  and  how  it  varies   141     during  development  using  CRE  reporters,  and  look  at  the  role  of  TRPA1-­‐expressing  cells   in  pain  and  other  systems  through  their  selective  ablation  and/or  silencing. 
Abstract (if available)
Abstract Over the last sixteen years, a number of nonselective cation channels belonging to the transient receptor potential (TRP) family have been found to play instrumental roles in thermosensation. The two most prominent thermosensory TRP channels are TRPV1, which responds to noxious heat and heat mimetics such as capsaicin (the active ingredient in chili peppers), and TRPM8, which responds to cold and cold mimetics such as menthol (the active ingredient in mint). These channels are highly expressed in sensory afferents innervating the skin and knockout studies have implicated them in both acute thermosensation and the development of thermal hypersensitivity. Although the role of these channels in thermosensation is firmly established, we currently know little in regards to the causal intracellular mechanisms controlling thermal hypersensitivity. Furthermore, there are no TRP channel‐specific treatments for sensory‐related conditions that do not have serious side effects. This area of research is complicated by the fact that many TRP family channels have been found in areas of the body that are not exposed to the temperatures necessary for their activation, suggesting roles for these channels in other cellular processes. ❧ Here we identify a novel role of the cold-sensitive channel TRPM8 in insulin homeostasis. We find that Trpm8-/- mice have heightened insulin clearance compared to wildtype, a phenotype that also correlates with increased insulin degrading enzyme (IDE) in the liver, the predominant organ involved in insulin clearance. Furthermore, as previous studies have shown that TRPV1⁺ afferents in the hepatic portal vein (HPV) are instrumental in glucose sensing, the presence of TRPM8⁺ sensory afferents in the HPV suggests that TRPM8‐expressing neurons may be influencing liver insulin clearance by controlling localized expression of IDE. ❧ In addition to identifying a new role of TRPM8 outside of thermosensation, we show that TRPM8 pore dilation can be used to selectively target the large cationic dye PO-PRO3 to cold‐sensing neurons, a finding that refutes previous work claiming that TRPM8 does not allow such large cationic molecule permeation. These results provide proof of principle for this technique to be used to selectively block cold sensing neurons using the positively charged lidocaine derivative QX-314. ❧ Finally, to better understand what is going on inside of cold-sensing neurons, we have developed a transgenic mouse line that enables the specific immunoprecipitation of actively translating transcripts from TRPM8-expressing cells. ❧ The data we present here furthers our understanding of TRPM8, its role outside of thermosensation, and opens the door to a new therapeutic methodology for the treatment of chronic cold hypersensitivity. Future studies using the tools developed herein will help to identify targets and pathways involved in cold sensation and aid in the development of new treatments for various sensory‐related conditions. 
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button
Conceptually similar
The roles of TRPM8 in cold sensation: the six sides of TRPM8
PDF
The roles of TRPM8 in cold sensation: the six sides of TRPM8 
Functional regulation of the neuronal cold sensor TRPM8
PDF
Functional regulation of the neuronal cold sensor TRPM8 
The selective role of GFRα3 in cold pain
PDF
The selective role of GFRα3 in cold pain 
The genetic axonal labeling of TRPM8 neurons
PDF
The genetic axonal labeling of TRPM8 neurons 
Elucidating the elusive role of TRPA1 in neurogenic inflammatory cold pain
PDF
Elucidating the elusive role of TRPA1 in neurogenic inflammatory cold pain 
Selective inhibition of inflammatory and neuropathic cold pain
PDF
Selective inhibition of inflammatory and neuropathic cold pain 
Transient receptor potential melastatin 8 is required for migraine-like pain behaviors in mice
PDF
Transient receptor potential melastatin 8 is required for migraine-like pain behaviors in mice 
Gating mechanisms of transient receptor potential ion channels TRPM5 and TRPM4 in native and heterologous cells
PDF
Gating mechanisms of transient receptor potential ion channels TRPM5 and TRPM4 in native and heterologous cells 
Investigation of the molecular mechanisms underlying polarized trafficking of the potassium channels Kv4.2 and Kv1.3 in neurons
PDF
Investigation of the molecular mechanisms underlying polarized trafficking of the potassium channels Kv4.2 and Kv1.3 in neurons 
The role of the cofilin/Limk1 signaling pathway in axon growth during development and regeneration
PDF
The role of the cofilin/Limk1 signaling pathway in axon growth during development and regeneration 
The role of glial cells in spinal muscular atrophy
PDF
The role of glial cells in spinal muscular atrophy 
The roles of endoplasmic reticulum chaperones in regulating liver homeostasis and tumorigenesis
PDF
The roles of endoplasmic reticulum chaperones in regulating liver homeostasis and tumorigenesis 
The role of fibroblast growth factor signaling on postnatal hepatic progenitor cell expansion
PDF
The role of fibroblast growth factor signaling on postnatal hepatic progenitor cell expansion 
The role of neuregulin receptors in cell differentiation and the response to inflammatory cytokines in the intestinal epithelium
PDF
The role of neuregulin receptors in cell differentiation and the response to inflammatory cytokines in the intestinal epithelium 
Generation of monoclonal antibodies via phage display and in vitro affinity maturation using activation induced deoxycytidine deaminase and DNA polymerase eta
PDF
Generation of monoclonal antibodies via phage display and in vitro affinity maturation using activation induced deoxycytidine deaminase and DNA polymerase eta 
Action button
Asset Metadata
Creator McCoy, Daniel David (author) 
Core Title The expected and unexpected roles of TRPM8: cold pain and metabolism 
School College of Letters, Arts and Sciences 
Degree Doctor of Philosophy 
Degree Program Molecular Biology 
Publication Date 01/28/2014 
Defense Date 12/10/2013 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag cold,Diabetes,insulin clearance,menthol,OAI-PMH Harvest,Pain,thermosensation,TRP,TRPM8 
Format application/pdf (imt) 
Language English
Contributor Electronically uploaded by the author (provenance) 
Advisor McKemy, David (committee chair), Arnold, Donald B. (committee member), Chen, Jeannie (committee member), Nuzhdin, Sergey V. (committee member) 
Creator Email daniel.david.mccoy@gmail.com,danieldm@usc.edu 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c3-360414 
Unique identifier UC11296316 
Identifier etd-McCoyDanie-2234.pdf (filename),usctheses-c3-360414 (legacy record id) 
Legacy Identifier etd-McCoyDanie-2234.pdf 
Dmrecord 360414 
Document Type Dissertation 
Format application/pdf (imt) 
Rights McCoy, Daniel David 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law.  Electronic access is being provided by the USC Libraries in agreement with the a... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Tags
cold
insulin clearance
menthol
thermosensation
TRP
TRPM8