Close
The page header's logo
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Comparison of HLD CAL-MOD scores obtained from digital versus plaster models
(USC Thesis Other) 

Comparison of HLD CAL-MOD scores obtained from digital versus plaster models

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Copy asset link
Request this asset
Transcript (if available)
Content Comparison
 of
 HLD
 Cal-­‐Mod
 Scores
 Obtained
 From
 Digital
 Versus
 Plaster
 Models
 

 
By
 

 
Hany
 Youssef
 

 

 
A
 Thesis
 Presented
 to
 the
 
FACULTY
 OF
 THE
 USC
 GRADUATE
 SCHOOL
 
UNIVERSITY
 OF
 SOUTHERN
 CALIFORNIA
 
In
 Partial
 Fulfillment
 of
 the
 Requirements
 for
 the
 Degree
 
 
MASTER
 OF
 SCIENCE
 
(CRANIOFACIAL
 BIOLOGY)
 

 

 

 

 

 

 

 

 

 

 

 
May
 2014
 

 

 

 

 

 

 

 

  2
 
Acknowledgements
 

 
I
 would
 like
 to
 express
 my
 greatest
 appreciation
 and
 gratitude
 to
 Dr.
 Stephen
 Yen
 for
 all
 his
 time
 and
 
valuable
 mentorship,
 throughout
 this
 project.
 I
 would
 also
 like
 to
 thank
 Dr.
 Frederick
 Schubert
 from
 Denti-­‐
Cal
 and
 Dr.
 David
 Noel
 from
 the
 Department
 of
 Health
 Care
 Services
 for
 sharing
 their
 insights
 and
 instruction
 
on
 the
 HLD
 index.
 I
 am
 grateful
 to
 Dr.
 Hussein
 Ebrahim,
 who
 scored
 the
 models,
 worked
 with
 Denti-­‐Cal
 and
 
helped
 me
 with
 this
 project.
 I
 would
 also
 like
 to
 thank
 Christiane
 Lane,
 who
 performed
 the
 statistical
 
analysis.
 
 

 
I
 would
 like
 to
 express
 special
 gratitude
 to
 my
 director,
 Dr.
 Glenn
 Sameshima,
 who
 provided
 my
 
colleagues
 and
 myself
 with
 the
 best
 opportunities
 to
 learn
 and
 grow
 professionally.
 Because
 of
 his
 
leadership,
 my
 residency
 experience
 at
 USC
 has
 been
 phenomenal.
 My
 appreciation
 extends
 to
 the
 full-­‐time
 
and
 part-­‐time
 faculty
 for
 sharing
 their
 knowledge
 and
 helping
 me
 to
 become
 a
 competent
 orthodontist.
 

 
Special
 thanks
 to
 my
 family:
 words
 cannot
 express
 how
 grateful
 I
 am
 to
 my
 parents
 for
 all
 of
 the
 
sacrifices
 that
 they
 have
 made
 and
 for
 their
 unlimited
 and
 unconditional
 love
 and
 support.
 Thank
 you
 to
 my
 
dear
 sister
 and
 best
 friend,
 Caroline,
 who
 has
 been
 always
 there
 for
 me.
 

 

  3
 
Table
 of
 Contents
 
Chapter
 1:
 Background
 .............................................................................................................................
 5
 
The
 Development
 of
 Orthodontic
 Indices
 .............................................................................................
 6
 
Angle’s
 Classification
 .............................................................................................................................
 6
 
Index
 of
 Tooth
 Position
 .........................................................................................................................
 7
 
Malalignment
 Index
 ..............................................................................................................................
 9
 
Summers
 Occlusal
 Index
 .....................................................................................................................
 10
 
Handicapping
 Labio-­‐lingual
 Deviation
 ................................................................................................
 10
 
Requirements
 for
 Orthodontic
 Indices
 ...............................................................................................
 13
 
World
 Health
 Organization
 Requirements
 ..........................................................................................
 13
 
Purpose
 of
 Orthodontic
 Indices
 ..........................................................................................................
 14
 
HLD
 Score
 Sheet
 ..............................................................................................................................
 16
 
HLD
 Data
 Sheet
 d-­‐10
 .......................................................................................................................
 17
 
HLD
 California
 Modification
 ............................................................................................................
 18
 
Development
 of
 Laser
 Scanners
 and
 Digital
 Models
 ..........................................................................
 21
 
Denti-­‐Cal
 Authorization
 Process
 .........................................................................................................
 21
 
Chapter
 2:
 Objective
 ...............................................................................................................................
 23
 
Chapter
 3:
 Materials
 and
 Methods
 .........................................................................................................
 24
 
Sample
 ................................................................................................................................................
 24
 
Raters
 and
 Calibration
 ........................................................................................................................
 24
 
Experimental
 Design
 and
 Data
 Collection
 ...........................................................................................
 25
 
Overjet
 and
 negative
 overjet
 measurements
 are
 made
 using
 the
 back
 end
 of
 the
 caliper
 which
 sticks
 of
 
the
 ruler
 like
 and
 extension
 (Figure
 6
 and
 7)
 ......................................................................................
 30
 
Labio-­‐lingual
 spread
 is
 measured
 from
 the
 most
 labial
 to
 the
 most
 lingual
 anterior
 tooth
 (figure
 11).30
 
Openbite
 measurement
 is
 made
 from
 contact
 area
 of
 upper
 incisors
 to
 the
 contact
 area
 of
 the
 lower
 
incisors.
 (Figure.9)
 ...............................................................................................................................
 30
 
Ectopic
 eruption
 is
 only
 scored
 when
 there
 are
 2
 or
 more
 ectopically
 erupted
 teeth
 otherwise
 crowding
 
is
 scored
 instead.
 ................................................................................................................................
 30
 
A
 tooth
 must
 be
 50%
 blocked
 to
 be
 considered
 ectopically
 erupted.
 ................................................
 30
 
Figure
 11:
 Labio-­‐lingual
 spread
 measurement
 ...................................................................................
 31
 
Statistical
 Methods
 .............................................................................................................................
 32
 
Chapter
 4:
 Results
 ...................................................................................................................................
 33
 
Descriptive
 Statistics:
 ..........................................................................................................................
 33
 
Inter-­‐rater
 Reliability
 comparing
 Raters’
 Plaster
 Model
 Scores
 to
 Dr.
 Schubert’s
 HLD
 scores
 ...........
 33
 
Inter-­‐rater
 Agreement
 between
 Raters
 1
 and
 2
 HLD
 scores
 ...............................................................
 33
 
Intra-­‐rater
 Reliability
 of
 Plaster
 versus
 Digital
 HLD
 scores
 ..................................................................
 33
 
Statistical
 Analysis
 ...............................................................................................................................
 34
 
Inter-­‐rater
 Comparison
 of
 Rater
 1
 scores
 versus
 Rater
 2
 scores
 ........................................................
 36
 
Intra-­‐rater
 Reliability
 of
 Plaster
 versus
 Digital
 Model
 Scores
 .............................................................
 36
 
Chapter
 5:
 Discussion
 ..............................................................................................................................
 37
 
References
 ..............................................................................................................................................
 48
 

 

 

 

   
 

 

  4
 
Abstract
 
Objective:
 The
 Handicapping
 Labio-­‐lingual
 Deviation
 Index
 (HLD)
 is
 an
 orthodontic
 treatment
 need
 index,
 
which
 is
 used
 to
 assess
 the
 severity
 of
 a
 malocclusion.
 States
 such
 as
 California
 use
 the
 HLD
 as
 a
 screening
 tool
 
to
 determine
 whether
 patients
 qualify
 for
 subsidized
 treatment.
 The
 objective
 of
 this
 study
 was
 to
 compare
 
HLD
 scores
 using
 plaster
 versus
 digital
 models.
 
 
Methods:
 Seventy-­‐eight
 duplicate
 study
 models
 that
 were
 sent
 from
 Children’s
 Hospital
 Los
 Angeles
 (CHLA)
 to
 
Denti-­‐Cal
 for
 evaluation
 were
 scored
 by
 an
 orthodontic
 fellow
 (rater
 1),
 a
 senior
 orthodontic
 resident
 (rater
 2)
 
and
 by
 the
 Denti-­‐Cal
 orthodontic
 consultant.
 The
 scores
 of
 a
 Denti-­‐Cal
 consultant
 were
 considered
 the
 gold
 
standard
 in
 this
 study.
 Fifty
 out
 of
 these
 models
 were
 then
 scanned
 using
 the
 3D
 Ortho
 Insight
 laser
 scanner.
 
Rater
 1
 and
 rater
 2
 scored
 the
 50
 digital
 models.
 Kappa
 statistics
 were
 used
 to
 compare
 inter-­‐
 and
 intra-­‐rater
 
reliability.
 Comparisons
 included
 (a)
 inter-­‐rater
 reliability
 between
 plaster
 model
 scores
 of
 both
 raters
 versus
 
the
 gold
 standard,
 (b)
 inter-­‐rater
 reliability
 between
 rater
 1
 versus
 rater
 2
 for
 both
 plaster
 and
 digital
 model
 
scores
 and
 (c)
 intra-­‐rater
 reliability
 between
 digital
 and
 plaster
 model
 scores
 for
 each
 rater.
 
Results:
 Inter-­‐rater
 reliability
 of
 Raters
 1
 and
 2
 (post-­‐calibration)
 versus
 gold
 standard
 was
 almost
 perfect
 
(combined
 K=
 0.89).
 Inter-­‐rater
 reliability
 of
 rater
 1
 versus
 rater
 2
 was
 almost
 perfect
 for
 both
 plaster
 and
 
digital
 model
 scores
 (combined
 K=
 0.85).
 Intra-­‐rater
 reliability
 was
 substantial
 for
 both
 Rater
 1
 (K=
 0.79)
 and
 
Rater
 2
 (K
 =
 0.67).
 
 
 

 Conclusion:
 There
 was
 substantial
 intra-­‐rater
 agreement
 between
 HLD
 Cal-­‐Mod
 digital
 and
 plaster
 model
 
scores.
 Differences
 in
 HLD
 Cal-­‐Mod
 scores
 between
 digital
 and
 plaster
 models
 were
 as
 high
 as
 13%,
 and
 the
 
combined
 kappa
 for
 intra-­‐rater
 agreement
 was
 0.73.
 HLD
 specific
 software
 is
 needed
 to
 correct
 the
 sources
 
of
 difference
 in
 HLD
 score.
 
 Digital
 models
 present
 a
 promising
 alternative
 to
 plaster
 models
 for
 use
 with
 the
 
HLD
 Index.
 Training
 and
 calibrating
 raters
 on
 proper
 usage
 of
 digital
 model
 software
 and
 its
 tools
 are
 
recommended,
 prior
 to
 HLD
 digital
 scoring.
 

  5
 
Chapter
 1:
 Background
 
 
The
 Handicapping
 Labio-­‐lingual
 Deviation
 Index
 (HLD)
 is
 an
 orthodontic
 treatment
 need
 index
 
used
 to
 quantify
 the
 severity
 of
 a
 malocclusion
 and
 demonstrate
 the
 presence
 or
 absence
 of
 a
 handicap
 
by
 using
 a
 cutoff
 point.
 Harry
 Draker
 developed
 the
 HLD
 in
 1960,
 when
 public
 health
 orthodontists
 
highlighted
 the
 need
 for
 an
 objective
 simple
 index
 to
 complement—and
 possibly
 replace—the
 clinical
 
judgment
 needed
 to
 decide
 whether
 or
 not
 a
 patient
 qualifies
 for
 free
 treatment
 through
 government-­‐
funded
 health
 programs
 (Draker,
 1960).
 Currently,
 the
 HLD
 is
 used
 by
 state-­‐supported
 entitlement
 
programs
 in
 many
 states
 such
 as
 California
 and
 New
 York
 to
 help
 determine
 eligibility
 for
 free
 orthodontic
 
treatment.
 Due
 to
 the
 financial
 constraints
 to
 these
 programs,
 not
 all
 patients
 who
 apply
 would
 receive
 
free
 orthodontic
 treatment.
 The
 HLD
 index
 is
 used
 as
 a
 screening
 tool
 to
 quantify
 malocclusion,
 prioritize
 
need
 for
 treatment,
 and
 identify
 only
 those
 patients
 who
 demonstrate
 a
 handicapping
 malocclusion
 for
 
free
 treatment.
 
 
In
 the
 state
 of
 California,
 Denti-­‐Cal
 accepts
 second
 pour
 diagnostic
 models
 as
 documentation
 for
 
authorization
 in
 all
 handicapping
 malocclusion
 and
 cleft
 palate
 cases.
 Providers
 must
 send
 diagnostic
 
models
 to
 the
 Denti-­‐Cal
 office
 in
 Sacramento
 in
 order
 to
 obtain
 authorization
 for
 subsidized
 orthodontic
 
treatment
 (Denti-­‐Cal
 Provider
 Hand
 Book
 2014).
 But
 these
 models
 are
 subject
 to
 loss
 and/or
 damage
 
during
 the
 shipping
 process,
 which
 could
 force
 the
 patient
 to
 return
 to
 the
 provider
 to
 make
 a
 new
 set
 of
 
models
 to
 send
 to
 Sacramento
 for
 authorization.
 Denti-­‐Cal
 does
 not
 return
 the
 models;
 therefore,
 once
 a
 
case
 is
 approved,
 the
 orthodontist
 is
 required
 to
 take
 an
 additional
 set
 of
 impressions
 in
 order
 to
 acquire
 
models
 for
 his
 own
 records.
 
 
With
 advances
 in
 digital
 technology,
 three-­‐dimensional
 models
 are
 becoming
 more
 popular
 in
 
orthodontics.
 Our
 presupposition
 is
 that
 digital
 models
 for
 HLD
 scoring
 streamline
 the
 authorization
 and
 
reduce
 costs,
 in
 comparison
 to
 the
 current
 use
 of
 plaster
 models.
 However,
 it
 is
 not
 yet
 known
 whether
 

  6
 
digital
 and
 plaster
 models
 will
 yield
 the
 same
 HLD
 scores.
 Therefore,
 this
 study
 was
 undertaken
 to
 
compare
 HLD
 scores
 between
 digital
 and
 plaster
 models.
 

 
The
 Development
 of
 Orthodontic
 Indices
 
Occlusion
 has
 been
 of
 major
 interest
 to
 dentists
 since
 the
 late
 nineteenth
 century.
 In
 1899,
 
Edward
 H.
 Angle
 realized
 the
 need
 to
 identify
 normal
 occlusion
 and
 assess
 deviations
 from
 normal
 
occlusion,
 which
 he
 classified
 into
 three
 classes
 of
 malocclusion
 (Angle,
 1900).
 Since
 then,
 researchers
 
have
 developed
 various
 indices
 to
 measure
 and
 assess
 malocclusion.
 An
 orthodontic
 index
 can
 be
 
qualitative,
 in
 that
 it
 classifies
 and
 categorizes
 malocclusion,
 or
 quantitative,
 when
 it
 measures
 the
 
amount
 of
 malocclusion
 and
 gauges
 its
 severity.
 

 
Angle’s
 Classification
 
In
 1899
 Angle
 defined
 and
 classified
 malocclusion
 based
 on
 the
 relationship
 of
 the
 upper
 and
 
lower
 first
 molars.
 As
 an
 orthodontist,
 Angle
 focused
 on
 the
 diagnosis
 and
 treatment
 of
 malocclusion.
 His
 
classification
 is
 considered
 to
 be
 the
 first
 method
 for
 describing
 and
 defining
 malocclusion.
 However,
 
Angle’s
 classification
 was
 criticized
 because
 it
 only
 considered
 the
 antero-­‐posterior
 deviation
 (Tang,
 
1993).
 Case
 pointed
 out
 the
 fact
 that
 Angle
 ignored
 the
 relationship
 between
 teeth
 and
 face
 (Case,
 1963).
 
Gravely
 and
 Johnston
 (1974)
 further
 found
 Angle’s
 method
 to
 be
 unreliable,
 due
 to
 high
 inter-­‐
 and
 intra-­‐
examiner
 error,
 when
 assessing
 Class
 II
 Division
 2
 cases.
 As
 a
 clinician,
 Angle
 was
 more
 concerned
 with
 
diagnosis
 and
 treatment
 planning
 and
 therefore
 developed
 his
 classification
 to
 serve
 these
 purposes.
 

 

 

 

  7
 
Index
 of
 Tooth
 Position
 
Until
 1950,
 the
 majority
 of
 occlusal
 indices
 were
 qualitative,
 practitioner-­‐focused,
 and
 primarily
 
concerned
 with
 diagnosis
 and
 treatment
 methods.
 Massler
 and
 Frankel
 (1951)
 recognized
 those
 
deficiencies
 and
 proposed
 a
 method
 of
 assessing
 malocclusion
 that
 could
 produce
 statistical
 data.
 They
 
proposed
 the
 Index
 of
 Tooth
 Position,
 which
 was
 meant
 to
 serve
 the
 epidemiologic
 needs
 of
 quantifying
 
the
 prevalence
 rate
 and
 incidence
 of
 malocclusion.
 The
 index
 was
 based
 on
 quantifying
 the
 number
 of
 
teeth
 displaced
 or
 rotated
 as
 all
 or
 none
 (Massler
 and
 Frankel
 1951).
 Since
 1950,
 several
 innovative
 
orthodontic
 indices
 have
 been
 developed.
 The
 most
 popular
 and
 widely
 acceptable
 indices
 are
 
summarized
 in
 Table
 1.
 

 
Table
 1:
 Summary
 of
 Orthodontic
 Indices
 
Year
  Index
  Summary
 
1951
  Index
 of
 Tooth
 Position
 
(Massler
 and
 Frankel)
 
Counts
 the
 number
 of
 displaced
 and/or
 rotated
 teeth
 
qualitatively
 (all
 or
 none).
 
1959
  Malalignment
 Index
 
(Vankirk
 and
 Pennell)
 
Quantitatively
 measures
 rotated
 and
 displaced
 teeth.
 
1961
  Occlusal
 Feature
 Index
 
(Poulton
 and
 Aaronson)
 
Measures
 lower
 anterior
 crowding,
 cuspal
 interdigitation,
 
vertical
 overbite,
 and
 horizontal
 overjet.
 
1961
 
  Malocclusion
 Severity
 
Estimate
 (Grainger)
 
Seven
 weighted
 and
 defined
 measurements:
 
1. Overjet
 
 
2. Overbite
 
 
3. Anterior
 open
 bite
 
 
4. Congenitally
 missing
 maxillary
 incisors
 
5. First
 permanent
 molar
 relationship
 
6. Posterior
 crossbite
 
 
7. Tooth
 displacement
 
 
1964
  Bjork
 Method
  Records
 malocclusion
 based
 on
 symptoms
 and
 detailed
 
definitions.
 
 
1. Anomalies
 of
 the
 dentition:
 tooth
 anomalies,
 abnormal
 
eruption
 and
 malalignment
 of
 individual
 teeth.
 
 
2. Occlusal
 anomalies:
 deviations
 in
 the
 positional
 
relationship
 between
 the
 upper
 and
 lower
 dental
 
arches
 in
 the
 sagittal,
 vertical,
 and
 transverse
 planes.
 
3. Deviation
 in
 space
 conditions:
 spacing
 or
 crowding.
 

  8
 
1966
  Occlusal
 Index
 
(Summers)
 
Nine
 weighted
 and
 defined
 measurements
 
1. Molar
 relation
 
2. Overbite
 
3. Overjet
 
4. Posterior
 crossbite
 
5. Posterior
 open
 bite
 
6. Tooth
 displacement
 
7. Midline
 relation
 
8. Maxillary
 median
 diastema
 
9. Congenitally
 missing
 maxillary
 incisors
 
1973
   
  Five-­‐Point
 System
 
(Ackerman
 and
 Proffit)
 
1. Alignment:
 ideal,
 crowding,
 spacing,
 mutilated
 
2. Profile:
 mandibular
 prominence,
 mandibular
 recession,
 
lip
 profile
 relative
 to
 nose
 and
 chin
 
 
3. Crossbite:
 Relationship
 of
 the
 dental
 arches
 in
 the
 
transverse
 plane
 
 
4. Angle
 classification:
 antero-­‐posterior
 relationship
 of
 the
 
dental
 arches
 
5. Bite
 depth:
 Relationship
 of
 the
 dental
 arches
 in
 the
 
vertical
 plane
 
 
1966-­‐
1974
 
Swedish
 Medical
 Board
 
Index
 (SMBI)
 
Relies
 on
 the
 subjective
 judgment
 and
 taking
 patient’s
 wish
 in
 
consideration.
 Originally
 it
 had
 4
 categories
 of
 treatment
 need
 
(1966)
 then
 in
 1974
 Linder-­‐Aronson
 and
 co-­‐workers
 added
 the
 
‘zero’
 or
 no
 need
 for
 treatment
 category.
 
0. No
 need:
 Normal
 occlusion
 
 
1. Little
 need:
 Mild
 deviations
 from
 normal
 occlusion,
 
such
 as
 class
 III
 with
 little
 crossbite,
 class
 II
 without
 
other
 anomalies,
 mild
 deep
 or
 open,
 mild
 crowding,
 
spacing
 or
 rotations.
 
2. Moderate:
 Esthetically/functionally
 disturbing
 
proclined
 or
 retroclined
 incisors,
 deep
 bite
 with
 gingival
 
contact
 but
 without
 gingival
 irritation,
 severe
 crowding
 
or
 spacing
 and
 moderate
 frontal
 rotations.
 
3. Urgent:
 Class
 III
 with
 forced
 bite,
 deep
 bite
 with
 
gingival
 irritation
 not
 only
 on
 incisive
 papilla,
 large
 
overjet
 with
 lower
 lip
 behind
 upper
 centrals,
 extremely
 
open
 bite,
 crossbite
 causing
 transverse
 forced
 bite,
 
scissors
 bite
 interfering
 with
 articulation,
 severe
 frontal
 
crowding
 or
 spacing,
 retained
 canines,
 aesthetically
 
and/or
 functionally
 disturbing
 rotations.
 
4. Very
 urgent:
 Esthetically
 and/or
 functionally
 
handicapping
 anomalies
 such
 as
 cleft
 lip
 and
 palate,
 
extreme
 class
 II
 or
 III
 malcocclusion.
 

  9
 
1992
  Peer
 Assessment
 Rating
 
Index
 (PAR)
 
(Richmond)
 
Evaluates
 occlusal
 traits
 in
 11
 segments
 of
 the
 dentition
 and
 
the
 scores
 are
 added
 to
 make
 the
 final
 PAR
 score.
 A
 score
 of
 
zero
 means
 perfect
 occlusion
 and
 the
 higher
 the
 score
 indicate
 
more
 deviation
 from
 ideal.
 
 
1. Upper
 right
 segment
 
2. Upper
 anterior
 segment
 
3. Upper
 left
 segment
 
4. Lower
 right
 segment
 
5. Lower
 anterior
 segment
 
6. Lower
 left
 segment
 
7. Right
 buccal
 occlusion
 
8. Overjet
 
9. Overbite
 
10. Centerline
 
11. Left
 buccal
 segment
 
2000
  Index
 of
 Complexity,
 
Outcome,
 and
 Need
 
(ICON)
 
(Daniels
 and
 Richmond)
 
Five
 components
 are
 measured
 on
 the
 cast
 and
 their
 scores
 
are
 weighted
 as
 follow:
 
1. Dental
 esthetics
 (multiplied
 by
 7)
 
2. Crowding
 or
 spacing
 (multiplied
 by
 5)
 
3. Crossbite
 (multiplied
 by
 5)
 
4. Incisor
 open
 bite/overbite
 (multiplied
 by
 5)
 
5. Buccal
 segments
 anterior-­‐posterior
 relationship
 
 
(multiplied
 by
 3)
 
Complexity
 is
 interpreted
 from
 scores
 as
 follow:
 
Less
 than
 29
 are
 classified
 as
 easy
 
29
 to
 50
 is
 mild
 
51
 to
 63
 is
 moderate
 
64
 to
 77
 is
 difficult
 
Greater
 than
 77
 is
 very
 difficult.
 
The
 treatment
 outcome
 is
 evaluated
 by
 this
 formula:
 
 
Pre-­‐Treatment–
 4
 x
 Post-­‐Treatment
 =
 Improvement
 
Improvement
 grades
 are
 interpreted
 as
 follow:
 
Greater
 than
 -­‐1
 indicates
 great
 improvement
 
 
-­‐25
 to
 -­‐1
 indicates
 substantial
 improvement
 
53
 to
 -­‐26
 indicates
 moderate
 improvement
 
-­‐85
 to
 -­‐54
 indicates
 minimal
 improvement
 
Less
 than
 -­‐85
 is
 no
 improvement
 or
 worse
 

 
Malalignment
 Index
 
In
 1959
 Van
 Kirk
 and
 Pennell
 developed
 the
 Malalignment
 Index,
 which
 measured
 the
 degree
 of
 
tooth
 displacement
 and
 rotation
 in
 a
 quantitative
 fashion.
 

 

  10
 
Summers
 Occlusal
 Index
 
In
 1966,
 Summers
 described
 a
 scoring
 system
 that
 measured
 nine
 characteristics
 of
 malocclusion:
 
(a)
 dental
 age,
 (b)
 molar
 relation,
 (c)
 overbite,
 (d)
 overjet,
 (e)
 posterior
 crossbite,
 (f)
 posterior
 open
 bite,
 
(g)
 tooth
 displacement,
 (h)
 midline
 relations,
 and
 (i)
 missing
 permanent
 teeth.
 Summers
 aimed
 to
 make
 
the
 Occlusal
 Index
 score
 valid
 over
 time
 by
 taking
 into
 consideration
 dental
 age
 and
 molar
 relationship.
 
According
 to
 the
 Occlusal
 Index,
 molar
 relationship
 yields
 different
 values,
 depending
 on
 the
 particular
 
dental
 stage
 of
 the
 patient
 (Summers
 1971).
 
Handicapping
 Labio-­‐lingual
 Deviation
 
In
 1960,
 H.
 L.
 Draker
 proposed
 the
 HLD
 Index
 as
 an
 approach
 to
 scoring
 and
 weighting
 selected
 
deviations
 from
 ideal
 occlusion.
 The
 HLD
 is
 a
 quantitative
 treatment
 need
 index.
 Essentially,
 Draker’s
 goal
 
was
 to
 develop
 a
 simple
 and
 objective
 administrative
 tool
 to
 aid
 public
 health
 workers
 in
 identifying
 
malocclusions
 that
 were
 severe
 enough
 to
 be
 considered
 as
 handicapping
 (Draker
 1960).
 The
 HLD
 and
 its
 
evolution
 are
 further
 discussed
 within
 this
 chapter.
 
Dental
 Aesthetic
 Index
 
 
In
 1980,
 Jenny
 et
 al.
 developed
 the
 Dental
 Aesthetic
 Index
 (DAI),
 to
 overcome
 a
 deficiency
 
recognized
 in
 many
 orthodontic
 treatment
 need
 indices.
 Because
 other
 indices
 ignored
 the
 aesthetic
 
handicap
 and
 its
 possible
 psychosocial
 impact
 on
 patients,
 the
 DAI
 provided
 an
 objective
 quantitative
 
method
 to
 assess
 the
 aesthetic
 handicap
 and
 the
 resulting
 psychosocial
 handicap.
 The
 DAI
 uses
 initial
 
diagnostic
 models
 to
 evaluate
 occlusal
 traits
 thought
 to
 contribute
 to
 dental
 aesthetics:
 missing
 teeth,
 
incisal
 crowding,
 antero-­‐posterior
 molar
 relationship,
 anterior
 tooth
 diastema,
 anterior
 tooth
 
irregularities,
 overjet
 and
 open
 bite.
 The
 traits
 are
 differentially
 weighted
 relative
 to
 their
 contributions
 to
 
the
 aesthetic
 handicap.
 The
 DAI
 uses
 a
 threshold
 score,
 or
 cutoff
 point,
 to
 determine
 subsequent
 need
 for
 

  11
 
treatment.
 This
 threshold
 score
 can
 be
 adjusted
 according
 to
 the
 resources
 available
 in
 publicly
 funded
 
health
 programs.
 The
 DAI
 traits
 and
 weights
 are
 summarized
 in
 Table
 2
 (Cons
 et
 al.
 1986).
 
Table
 2:
 DAI
 Traits
 and
 their
 Weights
 
DAI
 component
  Weight
 
Number
 of
 missing
 visible
 teeth
 (incisors,
 canines,
 and
 premolars)
  5.76
 
Assessment
 of
 incisal
 segment
 crowded:
 0,
 no
 segment
 crowded,
 1:
 1
 segment
 
crowded,
 2:
 2
 segments
 crowded
 
1.15
 
Assessment
 of
 incisal
 segment
 spacing:
 0,
 no
 segment
 spaced,
 1:
 1
 segment
 
spaced,
 2:
 2
 segments
 spaced
 
1.31
 
Measurement
 of
 midline
 diastema
 in
 mm
  3.13
 
Measurement
 of
 the
 largest
 anterior
 irregularity
 in
 mm
 on
 the
 maxilla
  1.34
 
Measurement
 of
 the
 largest
 anterior
 irregularity
 in
 mm
 on
 the
 mandible
  0.75
 
Overjet
 in
 mm
  3.68
 
Open
 bite
 in
 mm
  3.69
 
Antero-­‐posterior
 molar
 relationship
 on
 the
 most
 deviated
 side,
 0
 for
 normal,
 1
 
for
 half
 cusp
 and
 2
 for
 full
 cusp,
 either
 mesial
 or
 distal
 
2.69
 
Index
 of
 Orthodontic
 Treatment
 Need
 
In
 1989,
 Brook
 and
 Shaw
 developed
 the
 Index
 of
 Orthodontic
 Treatment
 Need
 (IOTN),
 which
 
incorporated
 two
 components.
 The
 first
 component
 consisted
 of
 the
 dental
 health
 and
 functional
 
indications
 for
 treatment.
 The
 second
 included
 the
 aesthetic
 impairment
 caused
 by
 the
 malocclusion.
 
Brook
 and
 Shaw
 (1989)
 recognized
 the
 importance
 of
 aesthetic
 assessment
 in
 any
 treatment
 need
 index
 
and
 stated
 that
 the
 primary
 benefit
 to
 the
 patient
 from
 orthodontic
 treatment
 is
 aesthetic
 improvement,
 
and
 results
 in
 the
 consequent
 improvement
 of
 a
 patient’s
 social
 well-­‐being.
 
 
1. The
 aesthetic
 component
 utilizes
 the
 standardized
 continuum
 of
 aesthetic
 need
 (SCAN),
 which
 
was
 developed
 from
 pictures
 of
 1,000
 12-­‐year-­‐olds.
 Six
 non-­‐dental
 judges
 rated
 these
 photos
 on
 a
 
visual
 analogue
 scale
 and
 on
 a
 10-­‐point
 scale
 from
 0.5
 to
 5,
 with
 0.5
 being
 most
 attractive
 and
 5
 
being
 least
 attractive.
 
2. The
 dental
 health
 and
 functional
 component
 categorizes
 occlusion
 using
 five
 grades:
 Grade
 1
 
represents
 no
 or
 little
 need
 for
 treatment
 and
 Grade
 5
 means
 that
 great
 treatment
 is
 needed
 
(Table
 3).
 

  12
 
Table
 3:
 Traits
 Measured
 in
 the
 Dental
 Health
 and
 Functional
 Component
 of
 the
 IOTN
 

 
Grade
 5—very
 great
 need
 
Defects
 of
 cleft
 lip
 and/or
 palate.
 
Increased
 overjet
 greater
 than
 9
 mm.
 
Reverse
 overjet
 greater
 than
 3.5
 mm
 with
 reported
 masticatory
 or
 speech
 difficulties.
 
Impeded
 eruption
 of
 teeth
 due
 to
 crowding,
 displacement,
 presence
 of
 supernumerary
 teeth,
 
retained
 deciduous
 teeth,
 and/or
 any
 other
 pathological
 cause.
 
Extensive
 hypodontia
 with
 restorative
 implications
 (more
 than
 one
 tooth
 missing
 in
 any
 quadrant),
 
requiring
 pre-­‐restorative
 orthodontics.
 
Grade
 4—great
 need
 
Increased
 overjet
 greater
 than
 6
 mm
 but
 less
 than
 or
 equal
 to
 9
 mm.
 
Reverse
 overjet
 greater
 than
 3.5
 mm
 with
 no
 reported
 masticatory
 or
 speech
 difficulties.
 
Reverse
 overjet
 greater
 than
 1
 mm
 but
 less
 than
 or
 equal
 to
 3.5
 mm
 with
 reported
 masticatory
 or
 
speech
 difficulties.
 
 
Anterior
 or
 posterior
 crossbites
 with
 greater
 than
 2
 mm
 displacement
 between
 retruded
 contact
 
position
 and
 intercuspal
 position.
 
Posterior
 lingual
 crossbites
 with
 no
 occlusal
 contact
 in
 one
 or
 both
 buccal
 segments.
 
Severe
 displacement
 of
 teeth
 greater
 than
 4
 mm.
 
Extreme
 lateral
 or
 anterior
 open
 bite
 greater
 than
 4
 mm.
 
Increased
 overbite
 causing
 notable
 indentations
 on
 the
 palate
 or
 labial
 gingiva.
 
Patient
 referred
 by
 colleague
 for
 collaborative
 care
 (e.g.,
 periodontal,
 restorative,
 or
 TMJ).
 
 
Less
 extensive
 hypodontia
 requiring
 pre-­‐restorative
 orthodontics
 or
 orthodontic
 space
 closure
 to
 
obviate
 the
 need
 for
 a
 prosthesis
 (not
 more
 than
 one
 tooth
 missing
 in
 any
 quadrant).
 
 
Grade
 3—moderate
 need
 
Increased
 overjet
 more
 than
 3.5
 mm
 but
 less
 than/equal
 to
 6
 mm
 with
 incompetent
 lips.
 
Reverse
 overjet
 greater
 than
 1
 mm
 but
 less
 than
 or
 equal
 to
 3.5
 mm.
 
Increased
 overbite
 with
 gingival
 contact
 but
 without
 indentations
 or
 trauma.
 
Anterior
 or
 posterior
 crossbite
 with
 less
 than
 or
 equal
 to
 2
 mm
 but
 greater
 than
 1
 mm.
 Displacement
 
between
 retruded
 contact
 position
 and
 intercuspal
 position.
 
Moderate
 lateral
 or
 anterior
 open
 bite
 greater
 than
 2
 mm
 but
 less
 than
 or
 equal
 to
 4
 mm.
 Moderate
 
displacement
 of
 teeth
 greater
 than
 2
 mm
 but
 less
 than
 or
 equal
 to
 4
 mm.
 
 
Grade
 2—little
 need
 
Increased
 overjet
 greater
 than
 3.5
 mm
 but
 less
 than/equal
 to
 6
 mm
 with
 lips
 competent.
 
 
Reverse
 overjet
 greater
 than
 0
 mm
 but
 less
 than
 or
 equal
 to
 1
 mm.
 
Increased
 overbite
 greater
 than
 3.5
 mm
 with
 no
 gingival
 contact.
 
Anterior
 or
 posterior
 crossbite
 with
 less
 than
 or
 equal
 to
 1
 mm
 displacement
 between
 retruded
 
contact
 position
 and
 intercuspal
 position.
 
Small
 lateral
 or
 anterior
 open
 bites
 greater
 than
 1
 mm
 but
 less
 than
 or
 equal
 to
 2
 mm.
 
Pre-­‐normal
 or
 post-­‐normal
 occlusions
 with
 no
 other
 anomalies.
 
Mild
 displacement
 of
 teeth
 greater
 than
 1
 mm
 but
 less
 than
 or
 equal
 to
 2
 mm.
 
 
Grade
 1—no/little
 need
 
Other
 variations
 in
 occlusion
 including
 displacement
 less
 than
 or
 equal
 to
 1
 mm.
 
 

 

 

  13
 
Requirements
 for
 Orthodontic
 Indices
 
 
In
 late
 1950s,
 Jamison
 and
 McMillan
 (1950)
 suggested
 a
 list
 of
 requirements
 for
 any
 index
 used
 by
 
a
 public
 orthodontic
 program
 as
 a
 screening
 tool.
 The
 list
 included
 the
 following
 criteria
 for
 any
 such
 
index:
 
1. It
 should
 be
 simple,
 accurate,
 reliable,
 and
 reproducible.
 
 
2. It
 should
 be
 objective
 in
 nature
 and
 yield
 quantitative
 data
 that
 may
 be
 analyzed
 using
 current
 
statistical
 methods.
 
 
 
3. It
 must
 be
 designed
 so
 as
 to
 differentiate
 between
 handicapping
 and
 non-­‐handicapping
 
malocclusions.
 
4. The
 examination
 required
 must
 be
 one
 that
 can
 be
 performed
 quickly,
 even
 by
 examiners
 without
 
special
 instruction
 in
 orthodontic
 diagnosis.
 
 
5. It
 should
 lend
 itself
 to
 modification
 for
 the
 collection
 of
 epidemiological
 data
 regarding
 
malocclusion
 other
 than
 prevalence,
 incidence,
 and
 severity
 (e.g.,
 frequency
 of
 malpositioning
 of
 
individual
 teeth).
 
 
Draker
 added
 two
 more
 criteria
 to
 the
 list,
 which
 are
 as
 follows:
 
 
6. It
 should
 be
 usable
 on
 either
 patients
 or
 study
 models.
 
 
7. It
 should
 measure
 the
 degree
 of
 handicap
 and
 avoid
 classifying
 the
 malocclusion.
 

 
World
 Health
 Organization
 Requirements
 
In
 1966,
 the
 World
 Health
 Organization
 (WHO)
 reported
 on
 international
 epidemiological
 studies
 
of
 oral
 diseases,
 defining
 nine
 requirements
 for
 indices.
 In
 1979,
 in
 response
 to
 the
 increased
 public
 and
 
institutional
 funding
 of
 orthodontic
 services,
 the
 WHO
 developed
 a
 simplified
 method
 for
 recording
 

  14
 
malocclusion.
 The
 WHO
 index
 was
 made
 to
 assess
 the
 prevalence
 of
 malocclusion
 and
 estimate
 the
 
treatment
 need
 of
 a
 population.
 
 
The
 WHO
 requirements
 for
 an
 ideal
 index
 are
 as
 follows:
 
1. The
 index
 should
 be
 expressed
 as
 a
 single
 number
 that
 corresponds
 to
 a
 relative
 position
 on
 a
 
finite
 scale,
 with
 definite
 upper
 and
 lower
 limits,
 running
 by
 progressive
 gradation
 from
 zero
 
(absence
 of
 disease)
 to
 the
 ultimate
 point
 (disease
 in
 its
 terminal
 stage).
 
2. The
 index
 should
 be
 sensitive
 throughout
 the
 scale.
 
3.
 
 
 The
 score
 should
 correspond
 to
 the
 clinical
 importance
 of
 the
 disease
 stage
 it
 represents.
 
4.
 
 
 The
 index
 value
 should
 be
 amendable
 to
 statistical
 analysis.
 
5.
 
 
 The
 classification
 must
 be
 reproducible.
 
6. The
 index
 should
 be
 simple
 and
 accurate
 and
 yield
 itself
 to
 modification
 for
 data
 collection.
 
7. The
 examination
 procedure
 should
 require
 minimal
 judgment.
 
8. The
 index
 should
 be
 simple
 enough
 to
 permit
 the
 study
 of
 a
 large
 population
 without
 undue
 cost
 
in
 time
 or
 energy.
 
9. The
 examination
 required
 should
 be
 performed
 quickly
 to
 show
 a
 group
 variation.
 
Summers
 added
 a
 tenth
 criterion:
 
10. The
 index
 should
 be
 valid
 over
 time,
 meaning
 that
 it
 focuses
 on
 dental
 abnormalities
 that
 are
 
constant
 and
 do
 not
 improve
 with
 age.
 
Purpose
 of
 Orthodontic
 Indices
 
Shaw

 
et
 al.
 (1995)
 classified
 orthodontic
 indices
 based
 on
 their
 purpose,
 into
 the
 following
 
categories:
 
1.
 
 
 Diagnostic
 index—a
 qualitative
 tool
 used
 to
 describe
 and
 classify
 malocclusion,
 in
 order
 to
 
develop
 a
 treatment
 prescription.
 

  15
 
2.
 
 
 Epidemiologic
 index—used
 to
 quantify
 the
 prevalence
 rate
 and
 incidence
 of
 malocclusion
 in
 a
 
population.
 
 
3.
 
 
 Treatment
 need
 index—used
 to
 quantify
 the
 malocclusion
 and
 consequently,
 the
 need
 for
 
treatment.
 
 
4.
 
 
 Orthodontic
 treatment
 outcome
 index—measures
 and
 evaluates
 post-­‐orthodontic
 treatment
 
results.
 
 
5.
 
 
 Orthodontic
 treatment
 complexity
 index—used
 to
 evaluate
 the
 level
 of
 complexity
 of
 a
 case,
 
prior
 to
 treatment.
 
 
A
 summary
 of
 the
 indices
 and
 their
 purpose
 is
 given
 in
 Table
 4
 (Shaw
 et
 al.
 1995).
 

 
Table
 4:
 Classification
 of
 Indices
 Based
 on
 Their
 Purpose
 of
 Use
 

 
Diagnostic
 indices
  Angle
 Classification
 System
 
 
Incisal
 Categories
 of
 Ballard
 and
 Wayman
 (1964)
 
 
Five-­‐Point
 System
 of
 Ackerman
 and
 Proffit
 (1969)
 
Epidemiologic
 indices
 

 
Index
 of
 Tooth
 Position
 (Massler
 and
 Frankel
 1951)
 
 
Malalignment
 Index
 (Van
 Kirk
 and
 Pennel
 1959)
 
 
Occlusal
 Feature
 Index
 (Poulton
 and
 Aaronson
 1961)
 
 
Bjork
 Method
 (Bjork
 et
 al.
 1964)
 
Summer’s
 Occlusal
 index
 (Summers
 1971)
 
 
FDI
 Method
 (Baume
 et
 al.
 1973)
 
 
Little’s
 Irregularity
 Index
 (Little
 1975)
 
Orthodontic
 
treatment
 need
 
indices
 
Handicapping
 Labio-­‐lingual
 Deviation
 Index
 (Draker
 1960)
 
Swedish
 Medical
 Board
 Index
 (Swedish
 Medical
 Health
 Board
 1966;
 
Linder-­‐Aronson
 1974,
 1976)
 
Dental
 Aesthetic
 Index
 (Cons
 et
 al.
 1986)
 
Index
 of
 Orthodontic
 Treatment
 Need
 (Brook
 and
 Shaw
 1989)
 
 
Index
 of
 Complexity,
 Outcome,
 and
 Need
 (Daniels
 and
 Richmond
 
2000)
 
Orthodontic
 
treatment
 outcome
 
indices
 
Peer
 Assessment
 Rating
 Index
 (Richmond
 et
 al.
 1992)
 
 

  16
 
Orthodontic
 
treatment
 complexity
 
indices
 
Index
 of
 Orthodontic
 Treatment
 Complexity
 (Llewellyn
 et
 al.
 2007)
 
 

 

 

 
Evolution
 of
 the
 HLD
 and
 the
 California
 Modification
 
In
 1959
 Draker
 developed
 an
 index
 that
 would
 measure
 particular
 deviations
 from
 the
 ideal
 
occlusion,
 which
 were
 scored
 and
 weighted.
 His
 goal
 was
 to
 develop
 a
 simple,
 objective
 administrative
 
tool
 to
 help
 public
 health
 workers
 identify
 malocclusions
 that
 were
 severe
 enough
 to
 qualify
 as
 
handicapping.
 The
 result
 was
 the
 HLD
 Index
 (Draker
 1960).
 
 

 
HLD
 Score
 Sheet
 
Draker
 initially
 proposed
 a
 score
 sheet
 for
 the
 HLD
 Index
 (Figure
 1),
 which
 evaluated
 nine
 
components
 of
 malocclusion:
 (a)
 cleft
 plate,
 (b)
 severe
 traumatic
 occlusion,
 (c)
 overjet
 in
 mm,
 (d)
 overbite
 
in
 mm,
 (e)
 mandibular
 protrusion,
 (f)
 open
 bite,
 (g)
 ectopic
 eruption
 of
 anterior
 teeth,
 (h)
 anterior
 
crowding
 in
 maxilla
 and
 mandible,
 and
 (i)
 labio-­‐lingual
 spread.
 

  17
 

 
Figure
 1:
 Draker’s
 score
 sheet.
 
According
 to
 the
 score
 sheet,
 a
 score
 of
 13
 or
 higher
 is
 considered
 handicapping.
 A
 cleft
 palate
 and
 
severe
 traumatic
 occlusion
 automatically
 received
 a
 score
 of
 15.
 Measurements
 are
 multiplied
 for
 the
 
following
 conditions
 as
 follows;
 mandibular
 protrusion
 by
 five,
 open
 bite
 by
 four,
 and
 ectopic
 eruption
 by
 
three.
 
 
HLD
 Data
 Sheet
 d-­‐10
 

  Through
 his
 research,
 Draker
 found
 that
 measurements
 of
 ectopic
 eruptions
 and
 crowding
 are
 not
 
statistically
 reliable.
 He
 also
 found
 that
 labio-­‐lingual
 deviation
 is
 the
 most
 accurate
 measure
 of
 a
 
handicap.
 In
 May
 1959,
 he
 developed
 and
 published
 HLD
 data
 sheet
 d-­‐10,
 to
 replace
 the
 original
 score
 
sheet.
 The
 HLD
 data
 sheet
 d-­‐10
 (Figure
 2)
 eliminates
 the
 conditions
 of
 ectopic
 eruption
 and
 crowding,
 and
 
has
 only
 seven
 components
 of
 malocclusion.
 
 Moreover,
 the
 new
 sheet
 does
 not
 use
 weighted
 factors.
 

  18
 

 
Figure
 2:
 HLD
 data
 sheet
 d-­‐10
 
HLD
 California
 Modification
 
In
 1989
 the
 State
 of
 California
 was
 sued
 for
 not
 complying
 with
 the
 orthodontic
 provisions
 of
 
Medicaid
 statutes.
 William
 Parker,
 an
 orthodontist
 in
 Sacramento,
 was
 recruited
 to
 help
 design
 an
 index
 
to
 select
 patients
 who
 qualified
 for
 treatment.
 Parker
 wrote
 a
 paper
 identifying
 the
 factors
 that
 should
 be
 
weighed
 when
 determining
 the
 medical
 necessity
 of
 orthodontic
 treatment.
 He
 suggested
 the
 use
 of
 the
 
HLD
 Index
 with
 some
 additions.
 He
 added
 two
 automatically
 qualifying
 conditions:
 (a)
 destruction
 of
 
tissue
 due
 to
 deep
 impinging
 bites
 and
 (b)
 destruction
 of
 tissue
 due
 to
 crossbites
 of
 individual
 anterior
 
teeth.
 As
 a
 result
 of
 the
 lawsuit,
 another
 category
 was
 added
 to
 the
 scoring
 portion
 of
 the
 index;
 the
 
unilateral
 posterior
 crossbite.
 
The
 original
 HLD
 (Cal
 Mod)
 was
 created
 and
 put
 into
 use
 in
 1991.
 In
 1994
 California
 was
 sued
 again
 
by
 Duran
 Belche,
 which
 opened
 the
 door
 for
 more
 modifications.
 An
 overjet
 greater
 than
 9
 mm
 was
 
added
 as
 an
 automatic
 qualifying
 condition,
 as
 previously
 suggested
 by
 Parker’s
 research
 results.
 To
 
resolve
 the
 lawsuit,
 a
 reverse
 overjet
 greater
 than
 3.5
 mm
 was
 added
 as
 a
 qualifying
 condition
 (Parker
 
1998).
 
 

  19
 
The
 current
 form
 of
 the
 HLD
 index
 (Figure
 3)
 has
 13
 parameters
 or
 conditions
 that
 are
 taken
 into
 
consideration
 in
 the
 scoring
 process.
 The
 first
 six
 (1-­‐6A)
 are
 automatically
 qualifying
 conditions,
 meaning
 
that
 if
 the
 model
 shows
 that
 the
 patient
 has
 one
 of
 these
 conditions,
 then
 no
 more
 scoring
 is
 necessary
 
and
 the
 patient
 automatically
 qualifies
 for
 subsidized
 treatment.
 These
 automatic
 qualifying
 conditions
 
are
 as
 follows:
 (a)
 cleft
 palate,
 (b)
 craniofacial
 anomaly,
 (c)
 deep
 impinging
 overbite,
 (d)
 anterior
 crossbite
 
causing
 attachment
 loss,
 (e)
 severe
 traumatic
 deviation,
 and
 (f)
 overjet
 greater
 than
 9
 mm.
 The
 conditions
 
from
 6B
 to
 13
 are
 used
 to
 score
 the
 malocclusion
 and
 include
 the
 following:
 (a)
 overjet
 equal
 to
 or
 less
 
than
 9
 mm,
 (b)
 overbite,
 (c)
 mandibular
 protrusion,
 (d)
 open
 bite,
 (e)
 ectopic
 eruption,
 (f)
 anterior
 
crowding,
 (g)
 labio-­‐lingual
 spread,
 and
 (h)
 posterior
 unilateral
 crossbite.
 

  20
 

 

 
Figure
 3.
 The
 current
 HLD
 form.
 

 

 

  21
 
Development
 of
 Laser
 Scanners
 and
 Digital
 Models
 
Digital
 models
 were
 introduced
 in
 the
 1990s
 as
 a
 result
 of
 improvements
 in
 laser
 scanning
 
technology.
 Advances
 in
 technology
 decreased
 the
 price
 of
 both
 hardware
 and
 software,
 enabling
 more
 
companies
 to
 produce
 three-­‐dimensional
 laser
 scanners
 which
 in
 turn,
 eventually
 made
 this
 technology
 
affordable
 to
 orthodontist
 consumers.
 
A
 digital
 study
 models
 is
 produced
 by
 a
 method
 of
 laser
 scanning
 or
 a
 combination
 of
 laser
 
scanning
 and
 stereophotogrammetry,
 in
 order
 to
 produce
 a
 three-­‐dimensional
 representation
 of
 a
 study
 
model.
 The
 Motion
 View
 system
 uses
 three
 lasers
 to
 scan
 a
 dental
 model
 placed
 on
 a
 rotating
 platform.
 
 
The
 proprietary
 software
 allows
 the
 practitioner
 to
 perform
 linear
 measurements,
 Bolton
 analysis,
 and
 
space
 analysis
 on
 the
 digital
 model.
 The
 validity
 and
 reproducibility
 of
 digital
 models
 have
 been
 
demonstrated
 in
 clinical
 studies.
 Mayers
 and
 co-­‐workers
 (2005)
 found
 the
 peer
 assessment
 rating
 (PAR)
 
scores
 of
 plaster
 versus
 digital
 models
 to
 be
 highly
 correlated.
 Jooseong
 Kim
 and
 co-­‐workers
 (2013)
 
compared
 the
 plaster
 models
 to
 the
 3-­‐D
 models
 scanned
 by
 the
 Ortho
 Insight
 Motion
 View
 Scanner
 and
 
found
 the
 digital
 models
 had
 high
 accuracy.
 However,
 it
 was
 unclear
 whether
 three-­‐dimensional
 models
 
would
 produce
 the
 same
 HLD
 results,
 which
 combines
 measurements
 with
 weighted
 scoring.
 

 
Denti-­‐Cal
 Authorization
 Process
 
Denti-­‐Cal
 allows
 an
 orthodontic
 provider
 to
 send
 initial
 second
 pour
 diagnostic
 models
 to
 its
 main
 
office
 in
 Sacramento,
 for
 scoring
 by
 one
 of
 Denti-­‐Cal
 three
 calibrated
 orthodontic
 raters.
 These
 models
 
may
 be
 subjected
 to
 loss
 and/or
 physical
 damage
 during
 shipping.
 If
 the
 models
 are
 lost
 or
 damaged,
 the
 
orthodontist
 can
 then
 copy
 the
 retained
 original
 cast
 set
 to
 be
 resent
 to
 Sacramento.
 Denti-­‐Cal
 does
 not
 
return
 the
 sent
 models.
 
 

 

  22
 
Denti-­‐Cal
 Raters
 Calibration
 and
 Quality
 Management
 
Denti-­‐Cal
 quality
 management
 randomly
 draws
 a
 statistical
 amount
 of
 scored
 casts
 every
 month
 
from
 each
 of
 the
 three
 orthodontic
 consultants.
 The
 consultants
 are
 expected
 to
 score
 98%
 accurate
 
grades
 each
 month.
 
 If
 there
 are
 any
 differences
 in
 scoring
 the
 consultant
 reviews
 the
 scoring
 with
 quality
 
management
 and
 can
 defend
 that
 score
 of
 if
 not
 accurate,
 be
 calibrated
 on
 that
 case.
 Every
 3
 months
 all
 
three
 orthodontic
 consultants
 grade
 the
 same
 3
 cast
 set
 and
 later
 meet
 with
 quality
 management
 to
 
review
 and
 discuss
 any
 differences.
 This
 calibration
 insures
 all
 three
 consultants
 approach
 the
 scoring
 in
 
an
 accurate
 and
 uniform
 way.
 

 

 

 

 

 

 

 

 

 

 

 

 

  23
 
Chapter
 2:
 Objective
 
In
 this
 study,
 the
 use
 of
 laser-­‐scanned
 digital
 models
 for
 HLD
 scoring
 was
 compared
 to
 plaster
 models.
 
This
 substitution
 could
 save
 time
 and
 decrease
 the
 cost
 of
 the
 authorization
 process.
 However,
 it
 is
 
unknown
 whether
 digital
 and
 plaster
 models
 would
 yield
 the
 same
 HLD
 scores.
 
 Therefore,
 this
 study
 was
 
undertaken
 to
 compare
 the
 HLD
 scores
 and
 to
 analyze
 why
 digital
 and
 plaster
 models
 might
 differ
 in
 HLD
 
scores.
 

   
 

  24
 
Chapter
 3:
 Materials
 and
 Methods
 
Sample
 
This
 study
 compared
 two
 types
 of
 study
 models:
 digital
 vs.
 plaster
 models.
 The
 plaster
 model
 
group
 consisted
 of
 78
 sets
 of
 plaster
 models
 obtained
 from
 the
 Children’s
 Hospital
 Los
 Angeles
 (CHLA)
 
dental
 department.
 Each
 set
 of
 models
 consisted
 of
 upper
 and
 lower
 casts
 that
 were
 trimmed
 according
 
to
 a
 wax
 bite
 taken
 in
 centric
 occlusion.
 The
 digital
 model
 group
 consisted
 of
 fifty
 sets
 of
 models
 taken
 
from
 the
 plaster
 group
 which
 were
 scanned
 using
 the
 Ortho
 Insight
 3-­‐D
 laser
 scanner
 (Motion
 View
 
Software
 LLC,
 Hixson,
 Tenn.).
 
 The
 HLD
 Index–California
 Modification
 (HLD
 Cal-­‐Mod)
 was
 used
 for
 score
 
the
 plaster
 and
 digital
 models.
 All
 measurements
 on
 study
 casts
 were
 made
 with
 a
 6
 inch
 Mitotoyo
 digital
 
caliper
 that
 is
 calibrated
 to
 an
 accuracy
 of
 0.01mm.
 
 Overjet
 measurements
 were
 made
 using
 the
 back
 
end
 of
 the
 caliper
 which
 sticks
 of
 the
 ruler
 like
 and
 extension.
 

 
Raters
 and
 Calibration
 
Using
 the
 HLD
 Cal-­‐Mod,
 two
 raters
 scored
 the
 two
 groups
 of
 models.
 In
 addition,
 an
 official
 rater
 
from
 Denti-­‐Cal
 traveled
 from
 Sacramento
 to
 Los
 Angeles
 in
 order
 to
 score
 the
 Group
 1
 plaster
 models.
 His
 
scores
 were
 used
 as
 the
 gold
 standard
 for
 comparison.
 Rater
 1
 was
 an
 orthodontic
 fellow,
 and
 Rater
 2
 
was
 a
 third-­‐year
 postgraduate
 orthodontic
 resident.
 The
 Denti-­‐Cal
 rater
 was
 Dr.
 Frederick
 Schubert,
 one
 
of
 three
 orthodontists
 who
 score
 models
 submitted
 to
 Denti-­‐Cal
 for
 authorization.
 He
 has
 scored
 over
 
70,000
 casts
 for
 the
 State
 of
 California
 using
 the
 HLD
 Cal-­‐Mod.
 
 
Prior
 to
 calibration,
 Rater
 1
 scored
 Group
 1
 using
 the
 HLD
 Cal-­‐Mod.
 Dr.
 Schubert
 trained
 and
 
calibrated
 both
 Raters
 1
 and
 2
 for
 one
 day.
 Denti-­‐Cal
 provided
 a
 calibration
 DVD
 made
 by
 Dr.
 Donald
 
Poulton.
 For
 8
 hours,
 Raters
 1
 and
 2
 observed
 Dr.
 Schubert
 scoring
 78
 sets
 of
 plaster
 models.
 
 There
 were
 
some
 unwritten
 rules
 for
 measuring
 models
 with
 digital
 calipers
 that
 were
 taught
 to
 Rater
 1
 and
 2
 by
 Dr.
 

  25
 
Schubert
 (Table
 5).
 These
 unwritten
 instructions
 used
 by
 Denti-­‐Cal
 were
 recorded
 with
 a
 Kodak
 digital
 
camcorder.
 After
 calibration,
 Raters
 1
 and
 2
 scored
 Group
 1
 (78
 plaster
 models)
 and
 Group
 2
 (50
 digital
 
models)
 using
 the
 HLD
 Cal-­‐Mod.
 Dr.
 Schubert’s
 scores
 for
 Group
 1
 were
 used
 for
 comparison
 in
 this
 study.
 
 

 
Experimental
 Design
 and
 Data
 Collection
 
The
 current
 form
 of
 the
 HLD
 Cal-­‐Mod
 includes
 13
 conditions
 that
 are
 taken
 into
 consideration
 in
 
the
 scoring
 process.
 The
 first
 six
 (1-­‐6A)
 (Figure
 4)
 are
 automatically
 qualifying
 conditions.
 If
 the
 model
 
displays
 that
 a
 patient
 has
 one
 of
 these
 conditions,
 then
 no
 further
 scoring
 would
 be
 required:
 the
 patient
 
would
 automatically
 qualify
 for
 receiving
 subsidized
 treatment.
 
 

 
Figure
 4:
 HLD
 Cal-­‐Mod
 automatic
 qualifying
 conditions.
 
These
 automatic
 qualifying
 conditions
 are
 as
 follows:
 
1.
 
 
 Cleft
 palate
 
 
2.
 
 
 Craniofacial
 anomaly
 
 
3.
 
 
 Deep
 impinging
 overbite
 (when
 lower
 incisors
 are
 destroying
 the
 soft
 tissue
 of
 the
 palate)
 
4.
 
 
 Anterior
 crossbite
 when
 clinical
 attachment
 loss
 and
 recession
 of
 the
 gingival
 margin
 are
 present.
 
(Figure
 5)
 
5.
 
 
 Severe
 traumatic
 deviation
 (e.g.,
 loss
 of
 a
 premaxilla
 segment
 by
 burns
 or
 accident
 or
 as
 the
 result
 
of
 osteomyelitis
 or
 other
 gross
 pathology)
 

  26
 
6A.
 Overjet
 greater
 than
 9mm
 or
 mandibular
 protrusion
 (reverse
 overjet)
 greater
 than
 3.5mm.
 Overjet
 
is
 recorded
 with
 the
 patient’s
 teeth
 in
 centric
 occlusion
 and
 is
 measured
 from
 the
 labial
 of
 the
 
lower
 incisors
 to
 the
 labial
 of
 the
 corresponding
 upper
 central
 incisors.
 This
 measurement
 should
 
record
 the
 greatest
 distance
 between
 any
 one
 upper
 central
 incisor
 and
 its
 corresponding
 lower
 
central
 or
 lateral
 incisor.
 An
 automatic
 qualifying
 condition
 exists
 when
 the
 overjet
 is
 greater
 than
 9
 
mm
 or
 mandibular
 protrusion
 (reverse
 overjet)
 is
 greater
 than
 3.5
 mm.
 (Figures
 6
 and
 7)
 

 
Figure
 5.
 Anterior
 cross-­‐bite
 with
 gingival
 recession
 

 

 
Figure
 6:
 Overjet
 measurement
 

  27
 

 
Figure
 7:
 Reverse
 Overjet
 measurement
 

 
When
 a
 cast
 has
 one
 of
 the
 aforementioned
 automatic
 qualifying
 conditions,
 the
 rater
 indicates
 the
 
condition
 on
 the
 form,
 and
 no
 further
 scoring
 is
 required.
 If
 none
 of
 the
 automatic
 qualifying
 conditions
 
exist
 then
 conditions
 6B
 to
 13
 are
 assessed
 (Figure
 8).
 
6B.
 Overjet
 equal
 to
 or
 less
 than
 9
 mm
 is
 recorded
 as
 in
 condition
 6A.
 The
 measurement
 is
 rounded
 
off
 to
 the
 nearest
 millimeter
 and
 entered
 on
 the
 score
 sheet
 (Figure
 6).
 
 
7.
 
 Overbite:
 A
 pencil
 mark
 on
 the
 tooth
 indicating
 the
 extent
 of
 overlap
 facilitates
 this
 measurement.
 
It
 is
 measured
 to
 the
 nearest
 millimeter
 and
 entered
 on
 score
 sheet.
 
 
8.
 
 Mandibular
 protrusion
 (reverse
 overjet)
 less
 than
 or
 equal
 to
 3.5mm
 is
 recorded,
 as
 in
 condition
 
6A.
 The
 measurement
 is
 rounded
 off
 to
 the
 nearest
 millimeter,
 recorded
 on
 score
 sheet,
 and
 then
 
multiplied
 by
 five
 (Figure
 7).
 
9.
 
 Open
 bite:
 This
 condition
 is
 defined
 as
 the
 absence
 of
 occlusal
 contact
 in
 the
 anterior
 region.
 It
 is
 
measured
 in
 millimeters
 from
 the
 incisal
 edge
 of
 a
 maxillary
 central
 incisor
 to
 incisal
 edge
 of
 a
 
corresponding
 mandibular
 incisor.
 The
 measurement
 is
 entered
 on
 the
 score
 sheet
 and
 multiplied
 
by
 four.
 (Figure
 9)
 
10.
 Ectopic
 eruption:
 Each
 tooth
 is
 counted,
 except
 third
 molars.
 Each
 qualifying
 tooth
 must
 be
 more
 
than
 50%
 blocked
 out
 of
 the
 arch.
 Only
 one
 tooth
 is
 counted
 when
 two
 teeth
 are
 mutually
 blocked
 

  28
 
out.
 The
 number
 of
 qualifying
 teeth
 is
 entered
 on
 the
 score
 sheet
 and
 multiplied
 by
 three.
 If
 
anterior
 crowding
 (condition
 11)
 also
 exists
 in
 the
 same
 arch,
 then
 only
 the
 condition
 that
 scores
 
the
 most
 points
 is
 scored.
 Only
 one
 of
 those
 two
 conditions
 (anterior
 crowding
 and
 ectopic
 
eruption)
 is
 scored;
 however
 posterior
 ectopic
 teeth
 can
 still
 be
 counted
 separately
 from
 anterior
 
crowding
 when
 they
 occur
 in
 the
 same
 arch.
 
 
11.
 Anterior
 crowding
 presents
 as
 arch
 length
 insufficiency,
 which
 must
 exceed
 3.5mm
 to
 be
 scored.
 
Mild
 rotations
 that
 may
 react
 favorably
 to
 stripping
 or
 mild
 expansion
 procedures
 are
 not
 to
 be
 
scored
 as
 crowded.
 A
 score
 of
 1
 is
 given
 for
 a
 crowded
 maxillary
 arch
 and/or
 1
 for
 a
 crowded
 
mandibular
 arch.
 The
 total
 is
 entered
 on
 the
 score
 sheet
 and
 multiplied
 by
 five.
 If
 ectopic
 eruption
 
(condition
 10)
 exists
 in
 the
 anterior
 region
 of
 the
 same
 arch,
 then
 only
 the
 condition
 that
 scores
 
the
 most
 points
 is
 scored.
 However,
 posterior
 ectopic
 teeth
 can
 still
 be
 counted
 separately
 from
 
anterior
 crowding
 when
 they
 occur
 in
 the
 same
 arch.
 
 
12.
 Labio-­‐lingual
 spread:
 A
 Boley
 gauge
 is
 used
 to
 determine
 the
 extent
 of
 deviation
 from
 a
 normal
 
arch.
 When
 there
 is
 only
 a
 protruded
 or
 lingually
 displaced
 anterior
 tooth,
 the
 measurement
 is
 
made
 from
 the
 incisal
 edge
 of
 that
 tooth
 to
 the
 normal
 arch
 line.
 Otherwise,
 the
 total
 distance
 
between
 the
 most
 protruded
 anterior
 tooth
 and
 the
 most
 lingually
 displaced
 adjacent
 anterior
 
tooth
 is
 measured.
 In
 the
 event
 that
 multiple
 anterior
 crowding
 of
 teeth
 is
 observed,
 only
 the
 
most
 severe
 individual
 measurement
 should
 be
 entered
 on
 the
 score
 sheet.
 
 
13.
 Posterior
 unilateral
 crossbite:
 This
 condition
 involves
 two
 or
 more
 adjacent
 teeth,
 one
 of
 which
 
must
 be
 a
 molar.
 The
 crossbite
 must
 involve
 two
 or
 more
 maxillary
 posterior
 teeth
 that
 are
 palatal
 
or
 buccal
 in
 relation
 to
 the
 mandibular
 posterior
 teeth.
 The
 presence
 of
 posterior
 unilateral
 
crossbite
 is
 indicated
 by
 a
 score
 of
 4
 on
 the
 score
 sheet.
 
 

  29
 

 
Figure
 8:
 HLD
 Cal-­‐Mod
 conditions
 6B
 through
 13.
 

 

 
Figure
 9:
 Open
 bite
 measurement
 

 
The
 cutoff
 score
 for
 the
 HLD
 index
 to
 qualify
 a
 patient
 for
 treatment
 is
 26.
 When
 the
 scores
 from
 
conditions
 6A
 through
 13
 are
 added
 and
 yield
 a
 final
 score
 of
 26
 or
 greater,
 the
 patient
 will
 qualify
 for
 
subsidized
 treatment.
 Conversely,
 if
 the
 total
 score
 totals
 25
 or
 less,
 then
 the
 patient
 will
 not
 qualify.
 
Raters
 1
 and
 2
 recorded
 the
 final
 scores
 on
 HLD
 form
 sheets
 and
 transferred
 the
 scores
 to
 an
 Excel
 
spreadsheet,
 where
 the
 “X”
 represents
 the
 qualifying
 models
 and
 the
 “O”
 represents
 the
 non-­‐qualifying
 
models
 (Figure
 10).
 

  30
 

 
 
 
 
 
 
 
Figure
 10:
 Excel
 sheet
 used
 to
 record
 the
 scores.
 

 

 
Table
 5:
 Dr.Schubert
 Unwritten
 Rules
 for
 using
 calipers
 for
 scoring
 
Overjet
 and
 negative
 overjet
 measurements
 are
 made
 using
 the
 back
 end
 of
 the
 
caliper,
 which
 sticks
 out
 of
 the
 ruler
 like,
 and
 extension.
 This
 extension
 should
 be
 
parallel
 to
 the
 occlusal
 plane
 (Figure
 6
 and
 7).
 
When
 measuring
 overbite,
 a
 mechanical
 pencil
 is
 used
 parallel
 to
 the
 occlusal
 plane
 to
 
make
 a
 mark
 on
 lower
 incisors,
 then
 the
 overbite
 is
 measured
 from
 the
 pencil
 mark
 to
 
the
 lower
 incisor
 incisal
 edge
 (Figures
 10,11
 and
 12).
 
Labio-­‐lingual
 spread
 is
 measured
 from
 the
 labial
 surface
 of
 the
 most
 labial
 to
 the
 lingual
 
surface
 of
 the
 most
 lingual
 anterior
 tooth,
 with
 the
 caliper
 being
 parallel
 to
 the
 occlusal
 
surface
 of
 the
 arch.
 This
 measurement
 is
 made
 only
 on
 one
 arch
 with
 the
 highest
 
measurement
 (Figure
 13).
 
Openbite
 measurement
 is
 made
 from
 contact
 area
 of
 upper
 incisors
 to
 the
 contact
 area
 
of
 the
 lower
 incisors,
 not
 from
 incisal
 edge
 to
 incisal
 edge
 (Figure
 9).
 
Ectopic
 eruption
 is
 only
 scored
 when
 there
 are
 2
 or
 more
 ectopically
 erupted
 teeth
 per
 
arch
 otherwise
 crowding
 is
 scored
 instead
 because
 it
 gives
 the
 patient
 more
 points.
 
A
 tooth
 must
 be
 50%
 blocked
 to
 be
 considered
 ectopically
 erupted.
 

 

 
Figure
 10:
 Mechanical
 pencil
 used
 to
 mark
 overbite
 

 

  31
 

 
Figure
 11:
 Overbite
 mark
 

 

 

 
Figure
 12:
 Overbite
 measurement
 

 

 

 

 
Figure
 13:
 Labio-­‐lingual
 spread
 measurement
 

 

 

 

  32
 
Statistical
 Methods
 
Kappa
 statistics
 were
 used
 to
 compare
 inter-­‐
 and
 intra-­‐rater
 reliability
 of
 the
 dichotomous
 
outcome
 of
 qualifying
 versus
 non-­‐qualifying
 for
 subsidized
 treatment.
 Comparisons
 included
 the
 
following:
 
 
1. Inter-­‐rater
 reliability
 between
 gold
 standard
 versus
 Rater
 1
 plaster
 scores
 pre-­‐calibration.
 
2. Inter-­‐rater
 reliability
 between
 gold
 standard
 versus
 Rater
 1
 plaster
 scores
 post-­‐calibration.
 
3. Inter-­‐rater
 reliability
 between
 gold
 standard
 versus
 Rater
 2
 plaster
 scores.
 
 
4. Inter-­‐rater
 reliability
 between
 Raters
 1
 versus
 2
 plaster
 scores.
 
5. Inter-­‐rater
 reliability
 between
 Raters
 1
 versus
 2
 digital
 scores.
 
6. Intra-­‐rater
 reliability
 between
 Rater
 1
 plaster
 versus
 digital
 scores.
 
 
7. Intra-­‐rater
 reliability
 between
 Rater
 2
 plaster
 versus
 digital
 model
 scores.
 
Kappa
 statistics
 were
 evaluated
 using
 the
 suggestions
 in
 Landis
 and
 Koch
 (1977):
 <
 0
 =
 poor,
 0–0.2
 
=
 slight
 agreement,
 0.21–0.4
 =
 fair,
 0.41–0.6
 =
 moderate,
 0.61–0.8
 =
 substantial,
 and
 0.81–1
 =
 almost
 
perfect.
 
 

   
 

  33
 
Chapter
 4:
 Results
 
Descriptive
 Statistics:
 
Dr.
 Schubert
 scored
 78
 plaster
 models.
 Before
 calibration,
 Rater
 1
 scored
 67
 plaster
 models.
 After
 
calibration,
 Raters
 1
 and
 2
 scored
 78
 plaster
 models
 and
 50
 digital
 models.
 

 
Inter-­‐rater
 Reliability
 comparing
 Raters’
 Plaster
 Model
 Scores
 to
 Dr.
 Schubert’s
 scores
 
1. Before
 calibration:
 Rater
 1
 plaster
 model
 scores,
 when
 compared
 to
 Dr.
 Schubert’s
 scores,
 showed
 
agreement
 in
 47
 cases
 (70%)
 and
 disagreement
 in
 20
 cases
 (30%)
 (Table
 6).
 
2. After
 calibration:
 Rater
 1
 plaster
 models
 scores
 (Group
 A),
 when
 compared
 to
 Dr.
 Schubert’s
 
scores,
 showed
 agreement
 in
 74
 cases
 (95%)
 and
 disagreement
 in
 4
 cases
 (5%)
 (Table
 7).
 
3. After
 calibration:
 Rater
 2
 plaster
 models
 scores,
 when
 compared
 to
 Dr.
 Schubert’s
 scores,
 showed
 
agreement
 in
 73
 cases
 (93.5%)
 and
 disagreement
 in
 5
 cases
 (6.5%)
 (Table
 8).
 
Inter-­‐rater
 Agreement
 between
 Raters
 1
 and
 2
 HLD
 scores
 
1. Comparison
 of
 Rater
 1
 to
 Rater
 2
 plaster
 model
 scores
 for
 the
 same
 group
 showed
 agreement
 in
 
72
 cases
 (92%)
 and
 disagreement
 in
 6
 cases
 (8%)
 (Table
 9).
 
 
2. Comparison
 of
 Rater
 1
 to
 Rater
 2
 digital
 model
 scores
 for
 the
 same
 group
 showed
 agreement
 in
 46
 
cases
 (94%)
 and
 disagreement
 in
 3
 cases
 (6%)
 (Table
 10).
 
 
Intra-­‐rater
 Reliability
 of
 Plaster
 versus
 Digital
 HLD
 scores
 
1. Rater
 1
 plaster
 versus
 digital
 model
 scores
 showed
 agreement
 in
 45
 cases
 (90%)
 and
 disagreement
 
in
 5
 cases
 (10%)
 (Table
 11).
 
 
2. Rater
 2
 plaster
 versus
 digital
 model
 scores
 showed
 agreement
 in
 42
 cases
 (84%)
 and
 disagreement
 
in
 8
 cases
 (16%)
 (Table
 12).
 

  34
 
Statistical
 Analysis
 
1. Inter-­‐rater
 reliability
 when
 comparing
 raters
 1
 and
 2
 plaster
 models
 scores
 separately
 to
 Dr.
 
Schubert’s
 scores.
 
 Before
 calibration,
 Rater
 1
 plaster
 model
 scores
 showed
 moderate
 agreement,
 
with
 a
 kappa
 value
 of
 0.41
 (Table
 6).
 After
 calibration,
 this
 value
 increased
 to
 0.92,
 showing
 
perfect
 agreement
 between
 Rater
 1
 and
 Dr.
 Schubert
 (Table
 6).
 Rater
 2
 plaster
 model
 scores
 had
 
almost
 perfect
 agreement
 compared
 to
 Dr.
 Schubert,
 with
 a
 kappa
 value
 of
 0.86
 (Table
 8).
 
 
2. Inter-­‐rater
 reliability
 (between
 Raters
 1
 and
 2)
 was
 almost
 perfect
 for
 both
 plaster
 (k
 =
 0.83)
 and
 
digital
 (k
 =
 0.88)
 models
 (Tables
 9
 and
 10).
 
3. Intra-­‐rater
 reliability
 (a
 comparison
 of
 digital
 to
 plaster
 model
 scores
 of
 the
 same
 rater)
 showed
 
substantial
 agreement
 for
 both
 Rater
 1
 (k
 =
 0.79)
 and
 Rater
 2
 (k
 =
 0.67)
 (Tables
 11
 and
 12).
 

 

   
 

  35
 
Inter-­‐rater
 Comparison
 of
 Raters
 1
 and
 2
 Plaster
 HLD
 scores
 versus
 Dr.
 Schubert’s
 

 
Table
 6:
 Rater
 1
 pre-­‐calibration
 plaster
 versus
 gold
 standard
 (k
 =
 .406)
 

 
Plaster
   
  Gold
 standard
  Total
 

  Qualify
  No
  Yes
   
 
Rater
 1
 
before
 
calibration
  No
  19
  15
  34
 

  Yes
  5
  28
  33
 
Total
   
  24
  43
  67
 

 
Table
 7:
 Rater
 1
 post-­‐calibration
 plaster
 versus
 gold
 standard
 (k
 =
 .917)
 

 
Plaster
   
  Gold
 standard
  Total
 

  Qualify
  No
  Yes
   
 
Rater
 1
 after
 
calibration
  No
  27
  3
  30
 

  Yes
  0
  47
  47
 
Total
   
  27
  50
  77
 

 
Table
 8:
 Rater
 2
 post-­‐calibration
 plaster
 versus
 gold
 standard
 (k
 =
 .860)
 

 
Plaster
   
  Gold
 standard
  Total
 

  Qualify
  No
  Yes
   
 
Rater
 2,
 after
 
calibration
  No
  25
  2
  27
 

  Yes
  3
  48
  51
 
Total
   
  28
  50
  78
 

 

 

 

 

   
 

  36
 
Inter-­‐rater
 Comparison
 of
 Rater
 1
 scores
 versus
 Rater
 2
 scores
 
Table
 9:
 Plaster
 (k
 =
 .832)
 

 
After
 
calibration
   
  Rater
 2
  Total
 

  Qualify
  No
  Yes
   
 
Rater
 1
  No
  25
  5
  30
 

  Yes
  1
  46
  47
 
Total
   
  26
  51
  77
 

 
Table
 10:
 Digital
 (k
 =
 .880)
 

 
After
 
calibration
   
  Rater
 2
  Total
 

  Qualify
  No
  Yes
   
 
Rater
 1
  No
  23
  1
  24
 

  Yes
  2
  24
  26
 
Total
   
  25
  25
  50
 

 
Intra-­‐rater
 Reliability
 of
 Plaster
 versus
 Digital
 Model
 Scores
 
Table
 11:
 Rater
 1
 after
 calibration
 (k
 =
 .794)
 

 
After
 
calibration
   
  Digital
  Total
 

  Qualify
  No
  Yes
   
 
Plaster
  No
  19
  1
  20
 

  Yes
  4
  25
  27
 
Total
   
  23
  26
  49
 

 
Table
 12:
 
 Rater
 2
 after
 calibration
 (k
 =
 .671)
 

 
After
 
calibration
   
  Digital
  Total
 

  Qualify
  No
  Yes
   
 
Plaster
  No
  16
  0
  16
 

  Yes
  8
  26
  34
 
Total
   
  24
  26
  50
 

 

 

 

 

  37
 
Chapter
 5:
 Discussion
 
The
 objective
 of
 this
 study
 was
 to
 compare
 the
 HLD
 scores
 obtained
 through
 the
 use
 of
 digital
 
versus
 plaster
 models
 in
 order
 to
 determine
 whether
 digital
 models
 could
 substitute
 for
 plaster
 models
 by
 
Denti-­‐Cal
 or
 by
 any
 agency
 using
 the
 HLD
 index
 as
 a
 treatment
 need
 index.
 This
 study
 compared
 HLD
 
scores
 of
 digital
 versus
 plaster
 models
 for
 each
 rater
 and
 for
 each
 of
 the
 scores
 against
 the
 Denti-­‐Cal
 
scores
 presented
 by
 Dr.
 Schubert,
 the
 Denti-­‐Cal
 consultant.
 Kappa
 statistics
 were
 used
 to
 compare
 inter-­‐
 
and
 intra-­‐rater
 agreement
 of
 the
 dichotomous
 outcome
 of
 qualifying
 for
 subsidized
 treatment.
 
 
Before
 calibration,
 the
 comparison
 of
 Rater
 1
 to
 the
 Denti-­‐Cal
 rater
 scores
 showed
 a
 kappa
 value
 
of
 0.41.
 This
 value
 increased
 to
 0.92
 after
 calibration.
 Also,
 after
 calibration,
 the
 plaster
 model
 scores
 for
 
Rater
 2
 when
 compared
 to
 Denti-­‐Cal
 scores
 showed
 a
 kappa
 value
 of
 0.86.
 Kappa
 statistics
 for
 intra-­‐rater
 
comparisons
 (plaster
 versus
 digital
 model
 scores
 of
 the
 same
 rater)
 were
 0.79
 for
 Rater
 1
 and
 0.67
 for
 
Rater
 2.
 Kappa
 statistics
 for
 inter-­‐rater
 comparisons
 (Rater
 1
 versus
 Rater
 2
 scores)
 was
 0.83
 for
 plaster
 
models
 and
 0.88
 for
 digital
 models.
 
According
 to
 Landis
 and
 Koch
 (1977),
 the
 following
 guidelines
 are
 used
 to
 interpret
 the
 kappa
 
scores:
 
 k
 <
 0
 =
 poor
 agreement,
 0–0.2
 =
 slight
 agreement,
 0.21–0.4
 =
 fair,
 0.41–0.6
 =
 moderate,
 0.61–0.8
 
=
 substantial,
 0.81–1
 =
 almost
 perfect.
 Using
 these
 guidelines,
 one
 could
 interpret
 that
 post-­‐calibration,
 
there
 is
 almost
 perfect
 agreement
 between
 the
 plaster
 scores
 of
 both
 raters
 and
 the
 Denti-­‐Cal
 scores.
 
 
 
During
 the
 calibration
 session,
 many
 unwritten
 methods
 for
 measuring
 the
 models
 with
 digital
 calipers
 
were
 learned
 by
 Raters
 1
 and
 2,
 which
 led
 to
 the
 increase
 in
 agreement
 after
 calibration.
 There
 was
 
substantial
 agreement
 between
 the
 digital
 scores
 of
 both
 raters
 and
 the
 Denti-­‐Cal
 scores.
 Similarly,
 there
 
was
 substantial
 intra-­‐rater
 agreement
 between
 the
 digital
 and
 plaster
 scores
 of
 the
 same
 rater.
 There
 was
 
almost
 perfect
 inter-­‐rater
 agreement
 between
 Raters
 1
 and
 2.
 
 

  38
 
In
 the
 literature,
 plaster
 models
 and
 laser-­‐scanned
 models
 have
 been
 compared
 for
 other
 occlusal
 
indices.
 
 Paul
 Major
 (2006)
 compared
 plaster
 versus
 digital
 model
 for
 PAR
 scores
 and
 concluded
 that
 
digital
 models
 are
 clinically
 acceptable
 replacement
 to
 plaster
 models.
 
 Efstratiadis
 et
 al.
 (2005)
 concluded
 
that
 1)
 digital
 models
 were
 a
 viable
 alternative
 to
 plaster
 models,
 2)
 digital
 models
 had
 slightly
 higher
 
inter-­‐rater
 reliability
 than
 the
 digital
 models,
 3)
 software
 improvements
 were
 needed
 for
 more
 accurate
 
measurements
 on
 digital
 models
 and
 4)
 calibration
 of
 raters
 was
 critical.
 Mayers
 et
 al.
 research
 (2005),
 
which
 concluded
 that
 there
 were
 no
 significant
 differences
 between
 PAR
 scores
 of
 digital
 versus
 plaster
 
models.
 Our
 findings
 with
 the
 HLD
 index
 generally
 agrees
 with
 these
 studies
 in
 terms
 of
 accuracy
 of
 model
 
representation
 but
 may
 differ
 in
 the
 final
 outcomes
 on
 who
 qualifies
 for
 treatment
 or
 not.
 
 
In
 terms
 of
 assessing
 the
 need
 for
 prior
 calibration,
 the
 kappa
 analysis
 showed
 a
 significant
 
difference
 when
 comparing
 the
 agreement
 between
 Rater
 1
 and
 the
 Dr.
 Schubert’s
 scores,
 both
 before
 
and
 after
 calibration.
 The
 increase
 of
 kappa
 value
 from
 0.4
 pre-­‐calibration
 to
 0.9
 post-­‐calibration
 
confirmed
 the
 importance
 of
 calibration,
 which
 was
 reported
 in
 previous
 studies
 (Richmond
 1993,
 
Efstratiadis
 2005).
 The
 protocol
 for
 calibration
 in
 this
 study,
 which
 used
 methods
 learned
 from
 Denti-­‐Cal,
 
could
 be
 the
 basis
 for
 a
 course
 to
 teach
 orthodontists
 how
 to
 score
 the
 HLD
 Index.
 
 

  An
 important
 part
 of
 the
 study
 was
 to
 determine
 where
 differences
 might,
 occur
 when
 scoring
 
digital
 versus
 plaster
 models.
 
 For
 Rater
 1,
 five
 cases
 out
 of
 50
 yielded
 different
 digital
 and
 plaster
 scores,
 
such
 that
 the
 cases
 qualified
 for
 treatment
 as
 plaster
 models
 but
 not
 as
 digital
 models.
 For
 Rater
 2,
 six
 
cases
 out
 of
 50
 yielded
 different
 digital
 and
 plaster
 scores.
 
 It
 should
 be
 noted
 that
 five
 of
 these
 six
 cases
 
for
 Rater
 2
 were
 the
 same
 cases
 as
 Rater
 1.
 
 
 
When
 these
 cases
 were
 reviewed,
 four
 sources
 of
 error
 were
 identified
 that
 led
 to
 differences
 
between
 digital
 and
 plaster
 models
 scores.
 The
 first
 source
 of
 error
 was
 dental
 crowding,
 when
 crowding
 
was
 not
 recorded
 in
 one
 or
 both
 arches
 in
 the
 digital
 version.
 The
 HLD
 Cal-­‐Mod
 scores
 crowding
 as
 “all-­‐or-­‐
none”.
 
 Crowding
 greater
 than
 3.5
 mm
 yields
 in
 a
 score
 of
 5
 points
 per
 arch.
 Depending
 on
 whether
 

  39
 
dental
 crowding
 was
 scored
 as
 present
 or
 not,
 in
 borderline-­‐crowding
 cases,
 there
 could
 be
 a
 5-­‐
 to
 10-­‐
point
 difference
 in
 HLD
 scores,
 which
 would
 alter
 the
 final
 decision.
 The
 second
 source
 of
 error
 was
 from
 
the
 weighted
 categories
 for
 open
 bite
 and
 anterior
 crossbite.
 For
 an
 open
 bite,
 a
 difference
 of
 1mm
 
would
 be
 multiplied
 by
 four.
 For
 an
 anterior
 crossbite,
 a
 difference
 of
 1mm
 would
 be
 multiplied
 by
 five.
 
Therefore,
 seemingly
 small
 differences
 in
 measurement
 may
 lead
 to
 a
 4-­‐
 to
 5-­‐fold
 magnification
 of
 error.
 
The
 third
 source
 of
 error
 was
 due
 to
 combinations
 of
 measurements
 for
 overjet,
 overbite,
 and
 labio-­‐
lingual
 spread.
 For
 example,
 a
 1
 mm
 difference
 in
 overjet,
 overbite,
 and
 labio-­‐lingual
 spread
 would
 add
 up
 
to
 3
 points.
 According
 to
 HLD
 Cal-­‐Mod
 protocols,
 the
 measurements
 are
 approximated
 to
 the
 nearest
 
millimeter.
 If
 an
 overjet
 or
 overbite
 was
 measured
 as
 1.4
 instead
 of
 1.5,
 then
 this
 0.10
 mm
 difference
 
could
 alter
 the
 score
 by
 1
 point,
 depending
 on
 whether
 the
 measurement
 was
 rounded
 up
 or
 down.
 The
 
fourth
 source
 of
 error
 was
 failure
 to
 identify
 automatically
 qualifying
 conditions,
 such
 as
 the
 anterior
 
crossbite
 with
 clinical
 attachment
 loss
 and
 gingival
 recession.
 Failure
 to
 identify
 an
 automatically
 
qualifying
 condition
 might
 be
 due
 to
 inadequate
 models,
 inadequate
 scanning
 of
 the
 gingiva
 and
 soft
 
tissue
 or
 to
 failure
 of
 the
 examiner
 to
 identify
 the
 condition
 on
 the
 scanned
 model.
 
 Our
 study
 found
 that
 
borderline
 cases
 that
 scored
 close
 to
 the
 cutoff
 point
 of
 26
 could
 be
 troublesome
 and
 show
 differences
 
between
 digital
 versus
 plaster
 model
 qualification
 outcomes
 as
 marginally-­‐small
 errors
 could
 be
 amplified
 
and
 lead
 to
 changes
 in
 overall
 point
 total,
 altering
 the
 final
 decision.
 
 
During
 this
 study,
 we
 recognized
 that
 software
 limitations
 and
 human
 error
 also
 represented
 two
 
potential
 problems
 that
 could
 lead
 to
 differences
 between
 plaster
 and
 digital
 scores.
 Keating
 et
 al.
 (2008)
 
reported
 a
 range
 of
 differences
 between
 the
 plaster
 and
 digital
 model
 measurements,
 ranging
 from
 0.10
 
to
 0.19
 mm.
 Lagrave`re
 et
 al.
 (2008)
 reported
 that
 the
 mean
 difference
 between
 digital
 and
 plaster
 
models
 was
 ≤
 0.23
 ±
 0.169
 mm.
 In
 this
 study,
 there
 were
 limitations
 to
 how
 the
 Motion
 View
 software
 
recorded
 overjet.
 Motion
 View
 software
 used
 a
 bisecting
 tool
 that
 split
 the
 model
 in
 half
 along
 the
 sagittal
 
plane,
 clearing
 the
 right
 half
 of
 the
 model
 while
 leaving
 the
 left
 half
 (Figures
 14
 and
 15).
 If
 maximal
 

  40
 
overjet
 was
 on
 the
 right
 side,
 then
 this
 measurement
 would
 be
 missed,
 as
 the
 right
 side
 would
 be
 cleared
 
from
 the
 screen.
 To
 correct
 for
 this
 limitation,
 in
 cases
 where
 the
 maximum
 overjet
 was
 on
 the
 right,
 the
 
bisecting
 tool
 was
 not
 used,
 and
 the
 virtual
 caliper
 was
 used
 instead
 (Figure
 16).
 However,
 the
 
introduction
 of
 two
 dissimilar
 tools
 for
 measuring
 overjet
 can
 result
 in
 scoring
 differences.
 This
 problem
 
can
 be
 avoided
 by
 either
 improving
 the
 software
 to
 provide
 options
 for
 excluding
 the
 right
 or
 left
 side
 of
 
the
 models,
 or
 by
 using
 other
 types
 of
 software,
 do
 not
 have
 this
 problem.
 
 

 
 

 
Figure
 14:
 Ortho
 Insight
 bisecting
 tool
 and
 caliper
 to
 measure
 overjet.
 

 

  41
 

 
Figure
 15:
 Ortho
 Insight
 bisecting
 tool
 with
 a
 grid
 ruler
 to
 measure
 overjet.
 

 

 
Figure
 16:
 Caliper
 tool
 used
 to
 measure
 overjet
 when
 larger
 overjet
 is
 on
 right
 side.
 

 
Another
 potential
 problem
 is
 the
 loss
 of
 detail
 in
 digital
 images,
 which
 could
 make
 identifying
 
landmarks
 difficult
 (Houston
 1983).
 
 For
 example,
 gingival
 attachment
 loss
 might
 be
 missed
 because
 parts
 
of
 the
 gingival
 margins
 were
 lost
 in
 the
 scan,
 or
 the
 image
 resolution
 was
 insufficient
 for
 showing
 the
 
differences
 in
 gingival
 contour.
 
 
 In
 these
 cases,
 additional
 intraoral
 color
 photographs
 would
 be
 helpful,
 

  42
 
especially
 as
 these
 conditions
 may
 lead
 to
 automatic
 qualification
 based
 on
 the
 presence
 of
 soft
 tissue
 
defects.
 
 The
 caliper
 tool
 in
 the
 Motion
 View
 software
 is
 problematic.
 It
 allows
 the
 rater
 to
 obtain
 linear
 
measurements
 by
 clicking
 on
 any
 two
 points
 in
 space.
 When
 this
 tool
 is
 used
 to
 measure
 dental
 crowding
 
and
 labio-­‐lingual
 deviation
 (Figures
 17
 and
 18),
 it
 is
 important
 to
 take
 the
 missing
 third
 dimension
 into
 
consideration.
 The
 rater
 can
 only
 view
 two
 dimensions
 on
 the
 screen,
 when
 clicking
 on
 the
 two
 points.
 
Thus,
 when
 making
 these
 clicks,
 the
 points
 should
 be
 on
 the
 same
 third
 plane,
 otherwise
 the
 points
 will
 
be
 farther
 apart
 than
 in
 the
 same
 plane,
 leading
 to
 a
 larger
 measurement
 value.
 This
 difference
 in
 
perspective,
 when
 measuring
 differences
 between
 two
 points
 in
 space,
 can
 lead
 to
 different
 linear
 
measurements.
 Zilberman
 et
 al.
 (2003)
 showed
 that
 landmark
 identification
 was
 more
 difficult
 when
 
viewing
 a
 three-­‐dimensional
 object
 on
 a
 two-­‐dimensional
 screen.
 Another
 potential
 source
 of
 error
 is
 the
 
scanning
 of
 the
 bite
 registration,
 which
 could
 lead
 to
 changes
 in
 bite
 opening
 and
 overjet
 when
 the
 digital
 
maxillary
 and
 mandibular
 dentitions
 are
 placed
 into
 occlusion.
 A
 possible
 solution
 would
 be
 to
 first
 trim
 
the
 plaster
 models
 with
 the
 wax
 bite
 registration
 so
 that
 the
 backs
 of
 the
 models
 could
 define
 the
 bite
 
and
 then
 scan
 the
 bite.
 The
 digital
 bite
 registration
 could
 be
 checked
 against
 the
 backs
 of
 the
 model.
 
Additional
 bite
 registrations
 could
 also
 confirm
 the
 accuracy
 of
 the
 bite
 registration.
 When
 the
 casts
 are
 
trimmed
 in
 the
 correct
 bite
 before
 scanning,
 the
 Motion
 View
 software
 has
 the
 capability
 to
 align
 the
 
models
 in
 the
 correct
 bite
 automatically,
 without
 the
 need
 for
 scanning
 the
 bite
 registration.
 

  43
 

 
Figure
 17:
 Measuring
 crowding
 using
 the
 digital
 caliper.
 

 
Figure
 18:
 Measuring
 labio-­‐lingual
 spread
 using
 the
 digital
 caliper.
 

 
This
 study
 examined
 50
 digital
 models.
 It
 is
 possible
 that
 a
 larger
 study
 might
 uncover
 more
 errors
 
that
 could
 lead
 to
 differences
 between
 digital
 and
 plaster
 HLD
 scores.
 With
 larger
 numbers,
 certain
 
patterns
 in
 errors
 might
 be
 detected
 and
 help
 with
 future
 corrections
 of
 the
 software
 design.
 
 The
 
statistical
 data
 for
 this
 study
 was
 dichotomous
 as
 the
 final
 outcome
 measure
 for
 this
 study
 was
 whether
 
or
 not
 a
 particular
 set
 of
 models
 scored
 high
 enough
 to
 qualify
 for
 treatment,
 a
 dichotomous
 outcome.
 

  44
 
Yet,
 some
 of
 the
 measurements
 were
 linear
 which
 could
 be
 separately
 compared
 as
 continuous
 variables.
 
Further
 studies
 could
 compare
 individual
 measurements
 used
 in
 the
 HLD
 index
 and
 examine
 how
 the
 
linear
 measurements
 differed
 between
 digital
 and
 plaster
 models.
 
 
One
 of
 the
 reasons
 for
 conducting
 this
 study
 is
 based
 on
 recognizing
 potential
 benefits
 of
 using
 
digital
 technology
 for
 processing
 Denti-­‐Cal
 authorization
 claims.
 
 For
 California
 and
 the
 states
 that
 use
 the
 
HLD
 Index,
 digital
 models
 can
 potentially
 save
 costs
 to
 the
 Denti-­‐Cal
 program
 and
 to
 orthodontists.
 
 For
 
example,
 when
 cases
 are
 rejected
 by
 Denti-­‐Cal,
 the
 models
 are
 stored
 for
 twelve
 months
 in
 case
 there
 are
 
provider
 requests
 for
 a
 rescore.
 Rejected
 cases
 represent
 40%
 of
 all
 the
 submitted
 cases
 which
 means
 
tens
 of
 thousands
 of
 models
 are
 placed
 into
 storage
 facilities
 by
 the
 State
 of
 California.
 The
 cost
 of
 storing
 
rejected
 models
 could
 be
 replaced
 by
 digitizing
 the
 models
 for
 long-­‐term
 recall.
 Since
 the
 models
 can
 be
 
stored
 as
 an
 STL
 document
 (Standard
 Tessellation
 Language)
 on
 computers,
 these
 digital
 models
 can
 be
 
stored
 on
 DVDs,
 memory
 cards,
 external
 hard
 drives,
 large
 servers
 and
 cloud-­‐based
 storage
 systems.
 The
 
savings
 to
 the
 state
 would
 be
 the
 cost
 for
 storing
 the
 models.
 The
 savings
 to
 the
 orthodontist
 would
 
include
 the
 cost
 of
 the
 impressions,
 plaster,
 boxing
 and
 shipping
 of
 the
 models,
 as
 well
 as
 costs
 associated
 
with
 retaking
 impression
 due
 to
 loss
 or
 breakage.
 Digital
 models
 may
 also
 improve
 the
 efficiency
 of
 the
 
authorization
 process,
 resulting
 in
 quicker
 turnaround
 time
 for
 authorization
 decisions
 since
 digital
 
models
 can
 be
 moved,
 saved
 and
 accessed
 via
 the
 Internet
 by
 both
 orthodontists
 and
 Denti-­‐Cal
 
consultants.
 Denti-­‐Cal
 consultants
 can
 view
 the
 models
 from
 any
 location
 at
 any
 time
 making
 the
 work
 
conditions
 more
 flexible
 and
 the
 communication
 of
 information
 instantaneous.
 
 The
 chances
 for
 model
 
breakage
 or
 loss
 are
 eliminated.
 
 
Dr.
 Noel
 from
 the
 Department
 of
 Health
 Care
 Services
 expressed
 that
 fraud
 is
 a
 major
 concern
 for
 
Denti-­‐Cal.
 
 
 At
 present,
 it
 is
 difficult
 to
 assess
 whether
 fraud
 could
 be
 prevented
 by
 using
 digital
 
technology;
 however,
 additional
 photographic
 data
 can
 be
 useful
 for
 corroborating
 the
 identity
 and
 
integrity
 of
 the
 model
 data,
 whether
 the
 models
 are
 plaster
 or
 digital.
 
 Digital
 models
 would
 have
 to
 be
 

  45
 
tamper-­‐proof
 like
 electronic
 medical
 records.
 
 If
 the
 digital
 platform
 is
 used,
 then
 data
 recognition
 
technology
 could
 be
 incorporated
 into
 the
 software
 to
 prevent
 double
 submission
 of
 records.
 Commercial
 
companies
 like
 e-­‐models
 (Falcon
 Heights,
 MN)
 and
 OrthoCad/itero
 (San
 Jose,
 CA)
 might
 be
 able
 to
 provide
 
both
 the
 digitizing
 service
 and
 security
 for
 Denti-­‐Cal
 submissions.
 
Although
 our
 data
 suggests
 that
 laser
 scanning
 can
 produce
 an
 accurate
 replica
 of
 a
 plaster
 model,
 
this
 study
 does
 not
 support
 use
 of
 digital
 models
 for
 HLD
 Cal-­‐Mod
 scoring
 by
 Denti-­‐Cal
 at
 this
 time.
 
 
 On
 
the
 one
 hand,
 the
 intra-­‐rater
 reliability
 between
 plaster
 and
 digital
 models
 is
 substantially
 high
 (k
 =
 0.73)
 
and
 the
 inter-­‐rater
 reliability
 is
 higher
 than
 the
 plaster
 model
 scores,
 which
 would
 favor
 the
 use
 of
 digital
 
models.
 But
 on
 the
 other
 hand,
 the
 disagreement
 in
 HLD
 scores
 between
 digital
 and
 plaster
 scores
 was
 as
 
high
 as
 13%,
 which
 may
 be
 too
 high
 for
 Denti-­‐Cal
 to
 accept
 as
 these
 differences
 could
 potentially
 lead
 to
 
additional
 lawsuits.
 This
 study
 recommends
 that
 software
 changes
 be
 implemented
 to
 correct
 the
 
problems
 identified
 in
 this
 thesis
 before
 it
 can
 be
 used
 by
 Denti-­‐Cal.
 
 An
 HLD-­‐specific
 software
 rather
 than
 
proprietary
 scanner
 software
 might
 be
 co-­‐developed
 between
 the
 software
 companies
 and
 Denti-­‐Cal
 
since
 both
 parties
 would
 have
 a
 vested
 interest
 in
 developing
 this
 technology.
 
Finally,
 it
 is
 important
 to
 consider
 who
 would
 pay
 for
 the
 cost
 of
 using
 this
 new
 laser
 scanning
 
technology,
 which
 is
 still
 expensive,
 and
 time
 consuming.
 In
 today’s
 market,
 a
 laser
 scanner
 costs
 
 
 
US
 $18,000-­‐23,000.
 It
 is
 unlikely
 that
 all
 orthodontists
 in
 California
 will
 own
 a
 laser
 scanner
 when
 plaster
 
models
 are
 the
 current
 standard
 of
 care.
 
 However,
 the
 cost
 of
 making
 a
 single
 digital
 model
 when
 the
 
service
 is
 provided
 by
 a
 commercial
 company,
 like
 e-­‐model
 or
 OrthoCad,
 is
 approximately
 the
 same
 as
 the
 
laboratory
 fees
 for
 producing
 a
 plaster
 orthodontic
 model
 from
 dental
 impressions.
 
 The
 cost
 of
 the
 
technology,
 if
 adopted
 by
 Denti-­‐Cal,
 could
 be
 affordable
 if
 the
 digital
 models
 are
 made
 through
 
commercial
 vendors.
 These
 vendors
 could
 also
 provide
 the
 quality
 control
 and
 anti-­‐fraud
 protection
 
needed
 for
 Denti-­‐Cal
 submissions.
 Software
 changes
 for
 HLD
 applications
 could
 be
 made
 by
 these
 vendors
 
in
 consultation
 with
 Denti-­‐Cal
 so
 that
 these
 companies
 would
 become
 designated
 centers
 for
 rendering
 

  46
 
digital
 models
 from
 alginate
 impressions
 in
 sealed
 bags
 or
 plaster
 models.
 Any
 mailed
 plaster
 models
 
would
 be
 returned
 to
 the
 orthodontist
 by
 the
 digitizing
 vendors;
 thus,
 avoiding
 the
 need
 to
 duplicate
 
models,
 one
 for
 Denti-­‐Cal
 and
 one
 for
 the
 orthodontist.
 In
 other
 words,
 there
 would
 be
 no
 need
 for
 Denti-­‐
Cal
 to
 hold
 on
 to
 the
 models
 needed
 for
 authorization
 and
 therefore,
 only
 one
 set
 of
 diagnostic
 casts
 
would
 be
 made
 for
 the
 orthodontist’s
 own
 records.
 
 
 
In
 conclusion,
 the
 digital
 model
 technology
 represents
 a
 promising
 alternative
 to
 plaster
 models
 
for
 use
 with
 the
 HLD
 index.
 It
 is
 anticipated
 that
 software
 specific
 to
 the
 HLD
 index
 will
 be
 developed
 in
 
order
 to
 take
 advantage
 of
 the
 conveniences
 brought
 by
 digital
 technology.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  47
 
Chapter
 6:
 Conclusion
 

 
1-­‐ There
 was
 substantial
 intra-­‐rater
 agreement
 between
 HLD
 Cal-­‐Mod
 digital
 and
 plaster
 model
 
scores.
 
2-­‐ Differences
 in
 HLD
 Cal-­‐Mod
 scores
 between
 digital
 and
 plaster
 models
 were
 as
 high
 as
 13%,
 and
 
the
 combined
 kappa
 for
 intra-­‐rater
 agreement
 was
 0.73.
 
3-­‐ HLD
 specific
 software
 is
 needed
 to
 correct
 the
 sources
 of
 difference
 in
 HLD
 score
 and
 include
 
features
 to
 prevent
 fraud
 like
 data
 recognition.
 
4-­‐ Digital
 models
 present
 a
 promising
 alternative
 to
 plaster
 models
 for
 use
 with
 the
 HLD
 Index,
 in
 the
 
near
 future
 
5-­‐ Effectively
 training
 and
 calibrating
 raters
 on
 proper
 usage
 of
 Motion
 View
 software
 and
 its
 tools
 is
 
recommended,
 prior
 to
 HLD
 digital
 scoring.
 

 

 

 

 

 

 

 

 

 

 

 

 

  48
 
References
 

 
1. Ackerman
 JL,
 Proffit
 WR.
 (1969).
 The
 characteristics
 of
 malocclusion:
 a
 modern
 approach
 to
 
classification
 and
 diagnosis.
 Am
 J
 Orthod
 56,
 443-­‐454.
 
2. Angle
 EH.
 (1900).
 Treatment
 of
 malocclusion
 of
 the
 teeth
 and
 fractures
 of
 the
 maxillae.
 Angle's
 
System
 6.
 Philadelphia:
 SS
 White
 Dental
 Mfg
 Co
 
3. Ballard
 CF;
 Wayman
 JB.
 (1964).
 A
 report
 on
 a
 survey
 of
 the
 orthodontic
 requirements
 of
 310
 army
 
apprentices.
 Transactions
 of
 the
 British
 Society
 for
 the
 Study
 of
 Orthodontics
 86,
 81-­‐86.
 
4. Baume
 LJ,
 Horowitz
 HS,
 Summers
 CJ,
 Dirks
 BO,
 Brown
 WAB;
 Carlos
 JP.
 (1973).
 A
 method
 for
 
measuring
 occlusal
 traits.
 Int
 Dent
 J
 23,
 530-­‐537
 
5. Bjork
 A,
 Krebs
 A,
 Solow
 B.
 (1964)
 A
 method
 for
 the
 epidemiological
 registration
 of
 malocclusion.
 
Acta
 Odontol
 Scand
 22,
 27-­‐41.
 
6. Brook
 PH,
 Shaw
 WC.
 (1989).
 The
 development
 of
 an
 index
 of
 orthodontic
 treatment
 priority.
 Eur
 J
 
Orthod
 20,
 309-­‐320.
 
 
7. Case
 CS.
 (1963).
 Techniques
 and
 principles
 of
 dental
 orthopedia.
 New
 York:
 Leo
 Bruder
 ,16-­‐18
 
8. Cons
 NC,
 Jenny
 J,
 Kohout
 FJ.
 (1986).
 DAI:
 The
 dental
 aesthetic
 index.
 Iowa
 City:
 University
 of
 Iowa.
 
 
 
9. Daniels
 C,
 Richmond
 S.
 (2000).
 The
 development
 of
 the
 index
 of
 complexity,
 outcome
 and
 need
 
(ICON).
 J
 Orthod
 27,
 149-­‐162.
 
10. Denti-­‐Cal
 provider
 hand
 book
 [Internet].
 California;
 Denti-­‐Cal;
 February
 2014.
 Available
 from:
 
http://www.denti-­‐cal.ca.gov/provsrvcs/manuals/handbook2/handbook.pdf
 
11. Draker
 HL.
 (1960).
 Handicapping
 labio-­‐lingual
 deviations:
 a
 proposed
 index
 for
 public
 health
 
purposes.
 Am
 J
 Orthod
 46,
 295-­‐305.
 
 
12. Efstratiadis
 S,
 Costalos
 PA,
 Sarraf
 K,
 Cangialosi
 TJ.
 (2005).Evaluation
 of
 the
 accuracy
 of
 digital
 
model
 analysis
 for
 the
 American
 Board
 of
 Orthodontics
 objective
 grading
 system
 for
 dental
 casts.
 
Am
 J
 Orthod
 Dentofacial
 Orthop
 128(5),
 624-­‐29.
 
13. Grainger
 RM.
 (1967).
 Orthodontic
 treatment
 priority
 index
 (Public
 Health
 Service
 Publication
 No.
 
1000).
 Washington
 DC:
 US
 Government
 Printing
 Office.
 
14. Gravely
 JF
 and
 Johnson
 DB.
 (April
 1974).
 Angle's
 classification
 of
 malocclusion:
 an
 assessment
 of
 
reliability.
 J
 Orthod
 1,
 79-­‐86
 
15. Houston
 WJ.
 (1983).
 The
 analysis
 of
 errors
 in
 orthodontic
 measurements.
 Am
 J
 Orthod
 83,
 382-­‐90.
 
 
16. Jamison
 HC,
 McMillan
 RS.
 (1950).
 An
 index
 of
 malocclusion
 for
 use
 in
 multiphasic
 screening
 and
 
epidemiological
 investigations.
 University
 of
 Michigan
 School
 Public
 Health.
 
 

  49
 
17. Jenny
 J,
 Cons
 NC,
 Kohout
 FJ,
 Frazier
 PJ.
 (1980).
 Test
 of
 a
 method
 to
 determine
 socially
 acceptable
 
occlusal
 conditions.
 Community
 Dent
 Oral
 Epidemiol
 8,
 424-­‐433.
 
18. Jenny
 J,
 Cons
 NC.
 (1996).
 Comparing
 and
 contrasting
 two
 orthodontic
 indices:
 the
 index
 of
 
orthodontic
 treatment
 need
 and
 the
 dental
 aesthetic
 index.
 Am
 J
 Orthod
 Dentofacial
 Orthop
 110,
 
410-­‐416.
 
19. Jooseong
 Kim,
 Giseon
 Heo,
 Manuel
 O
 Lagravère.
 (2013).
 Accuracy
 of
 laser-­‐scanned
 models
 
compared
 to
 plaster
 models
 and
 cone-­‐beam
 computed
 tomography.
 The
 Angle
 Orthodontist;
 In-­‐
Press.
 doi:
 http://dx.doi.org/10.2319/051213-­‐365.1
 
20. Keating
 AP,
 Knox
 J,
 Bibb
 R,
 Zhurov
 AI.
 (2008).
 A
 comparison
 of
 plaster,
 digital
 and
 reconstructed
 
study
 model
 accuracy.
 J
 Orthod
 35,
 191-­‐201.
 
 
21. Major
 PW,
 Heo
 G,
 Raboud
 DW,
 Nebbe
 B,
 Flores-­‐Mir
 C,
 Stevens
 DR,
 Landis
 JR,
 Koch
 GG.
 (June
 2006)
 
Validity,
 reliability,
 and
 reproducibility
 of
 plaster
 vs.
 digital
 study
 models:
 comparison
 of
 peer
 
assessment
 rating
 and
 Bolton
 analysis
 and
 their
 constituent
 measurements.
 Am
 J
 Orthod
 
Dentofacial
 Orthop
 129(6),
 794-­‐803.
 
22. Landis
 JR.,
 Koch
 GG.
 (1977).
 The
 measurement
 of
 observer
 agreement
 for
 categorical
 data.
 
Biometrics
 33,
 159-­‐174.
 
23. Leifert
 MF,
 Leifert
 MM,
 Efstratiadis
 SS,
 Cangialosi
 TJ.
 (2009).
 Comparison
 of
 space
 analysis
 
evaluations
 with
 digital
 models
 and
 plaster
 dental
 casts.
 Am
 J
 Orthod
 Dentofacial
 Orthop
 136(16),
 
1-­‐4.
 
 
24. Linder-­‐Aronson
 S.(
 1974).
 Orthodontics
 in
 the
 Swedish
 public
 dental
 health
 service.
 Transactions
 of
 
the
 European
 Orthodontic
 Society,
 233-­‐240.
 
25. Linder-­‐Aronson
 S,
 Fridh
 G,
 Jensen
 R.
 (1976).
 Need
 of
 orthodontic
 treatment
 and
 orthodontic
 
specialists
 in
 Sweden.
 Swed
 Dent
 J
 68,
 383-­‐402.
 
26. Little
 RM.
 (1975).
 The
 irregularity
 index.
 Am
 J
 Orthod
 68,
 554-­‐
 563.
 
27. Llewellyn
 SK,
 Hamdan
 AM,
 Rock
 WP.
 (2007).
 An
 index
 of
 orthodontic
 treatment
 complexity.
 Eur
 J
 
Orthod
 29,
 186-­‐92.
 
 
28. Massler
 M,
 Frankel
 J.
 (1951).
 Prevalence
 of
 malocclusion
 in
 children
 aged
 14
 to
 18
 years.
 Am
 J
 
Orthod
 Dentofacial
 Orthop
 37,
 751-­‐768.
 
29. Mayers
 M,
 Firestone
 AR,
 Rashid
 R,
 Katherine
 WL
 Vig.
 (2005).
 Comparison
 of
 peer
 assessment
 
rating
 (PAR)
 index
 scores
 of
 plaster
 and
 computer-­‐based
 digital
 models.
 Am
 J
 Orthod
 Dentofacial
 
Orthop
 128(4),
 431-­‐34.
 
30. Parker
 WS.
 (1998).
 The
 HLD
 (Cal-­‐Mod)
 Index
 and
 the
 index
 question.
 Am
 J
 Orthod
 Dentofacial
 
Orthop
 114,
 134-­‐141.
 
31. Parker
 WS.
 (1999).
 A
 study
 of
 1000
 malocclusions
 selected
 by
 the
 HLD
 (CalMod)
 Index.
 Am
 J
 
Orthod
 Dentofacial
 Orthop
 115,
 343-­‐351.
 

  50
 
32. Poulton
 DR;
 Aaronson
 SA.
 (1961).
 The
 relationship
 between
 occlusion
 and
 periodontal
 Status.
 Am
 
J
 Orthod
 47,
 690-­‐699
 
33. Richmond
 S,
 Shaw
 WC,
 O’Brien
 KD,
 Buchanan
 IB,
 Jones
 R,
 Stephens
 CD,
 Roberts
 CT,
 Andrews
 M.
 
(1992).
 The
 development
 of
 the
 PAR
 Index
 (Peer
 Assessment
 Rating):
 reliability
 and
 validity.
 Eur
 J
 
Orthod
 14,
 125-­‐139.
 
34. Richmond
 S,
 Turbill
 E.
 (1993).
 Calibration
 o
 f
 Dental
 and
 non-­‐dental
 personnel
 in
 the
 use
 of
 the
 
PAR
 index.
 Br
 J
 Orthod
 20,
 231-­‐234.
 
35. Salzmann
 JA.
 (1968)
 Handicapping
 malocclusion
 assessment
 to
 establish
 treatment
 priority.
 Am
 J
 
Orthod
 Dentofacial
 Orthop
 54,
 749-­‐765.
 
 
36. Santoro
 M,
 Galkin
 S,
 Teredesai
 M,
 Nicolay
 O,
 Cangialosi
 TJ.
 (2003).
 Comparison
 of
 measurements
 
made
 on
 digital
 and
 plaster
 models.
 Am
 J
 Orthod
 Dentofacial
 Orthop
 124,
 101-­‐105.
 
 
37. Shaw
 WC,
 Richmond
 S,
 O’Brien
 KD.
 (1995).
 The
 use
 of
 occlusal
 indices:
 a
 European
 perspective.
 
Am
 J
 Orthod
 Dentofacial
 Orthop
 107,
 1-­‐10.
 
 
38. Shaw,
 WC,
 Richmond,
 S,
 O’Brien,
 K,
 Brook,
 P,
 Stephens,
 C.
 (1991).
 Quality
 control
 in
 orthodontics:
 
indices
 of
 treatment
 need
 and
 treatment
 standards.
 Br
 Dent
 J
 170,
 107-­‐112.
 
39. Summers
 CJ.
 (1971).
 The
 occlusal
 index:
 a
 system
 for
 identifying
 and
 scoring
 occlusal
 disorders.
 
Am
 J
 Orthod
 Dentofacial
 Orthop
 59,
 552-­‐567.
 
40. Swedish
 Medical
 Health
 Board
 (1966);
 Socialstyrelsen
 Kungl
 Medicinalstyrelsens
 circular
 den
 21
 
februari
 angående
 anvisningarna
 för
 journalföring
 inom
 folktandvårdens
 tandregleringsvård.
 
Stockholm.
 
41. Tang
 E,
 Lisa
 LY.
 (1993).
 A
 comparative
 study
 using
 the
 occlusal
 index
 and
 the
 index
 of
 orthodontic
 
treatment
 need.
 Angle
 Orthod
 62,
 57-­‐64.
 
 
42. Van
 Kirk
 LK
 and
 Pennell
 EH.
 (1959).
 Assessment
 of
 malocclusion
 in
 population
 groups.
 Am
 J
 Orthod
 
45,
 752-­‐758.
 
 
43. World
 Health
 Organization.
 An
 international
 methodology
 for
 epidemiological
 studies
 of
 oral
 
disease.
 (1966).
 Manual
 No.
 5:
 Epidemiological
 studies
 of
 periodontal
 disease.
 First
 draft.
 Geneva:
 
World
 Health
 Organization.
 
44. Zilberman
 O,
 Huggare
 J,
 Parikakis
 K.
 (2003).
 Evaluation
 of
 the
 validity
 of
 tooth
 size
 and
 arch
 width
 
measurements
 using
 conventional
 and
 three-­‐dimensional
 virtual
 orthodontic
 models.
 Angle
 
Orthod
 73,
 301-­‐306.
 
 

 
Bibliography:
 
Dr.
 Barry
 Dugger,
 D.M.D,
 Chief
 Dental
 Consultant,
 State
 Government
 Programs,
 Denti-­‐Cal,
 Delta
 Dental
 
Plan
 of
 California.
 (2002).
 HLD
 Calibration
 Instruction
 DVD. 
Asset Metadata
Creator Youssef, Hany (author) 
Core Title Comparison of HLD CAL-MOD scores obtained from digital versus plaster models 
Contributor Electronically uploaded by the author (provenance) 
School School of Dentistry 
Degree Master of Science 
Degree Program Craniofacial Biology 
Publication Date 04/11/2014 
Defense Date 03/17/2014 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag digital models,HLD,laser scanner,OAI-PMH Harvest 
Format application/pdf (imt) 
Language English
Advisor Yen, Stephen (committee chair), Grauer, Dan (committee member), Paine, Michael L. (committee member), Sameshima, Glenn T. (committee member) 
Creator Email hsyousse@gmail.com,hsyousse@usc.edu 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c3-375879 
Unique identifier UC11296087 
Identifier etd-YoussefHan-2345.pdf (filename),usctheses-c3-375879 (legacy record id) 
Legacy Identifier etd-YoussefHan-2345.pdf 
Dmrecord 375879 
Document Type Thesis 
Format application/pdf (imt) 
Rights Youssef, Hany 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law.  Electronic access is being provided by the USC Libraries in agreement with the a... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Abstract (if available)
Abstract Objective: The Handicapping Labio‐lingual Deviation Index (HLD) is an orthodontic treatment need index, which is used to assess the severity of a malocclusion. States such as California use the HLD as a screening tool to determine whether patients qualify for subsidized treatment. The objective of this study was to compare HLD scores using plaster versus digital models. ❧ Methods: Seventy‐eight duplicate study models that were sent from Children’s Hospital Los Angeles (CHLA) to Denti‐Cal for evaluation were scored by an orthodontic fellow (rater 1), a senior orthodontic resident (rater 2) and by the Denti‐Cal orthodontic consultant. The scores of a Denti‐Cal consultant were considered the gold standard in this study. Fifty out of these models were then scanned using the 3D Ortho Insight laser scanner. Rater 1 and rater 2 scored the 50 digital models. Kappa statistics were used to compare inter‐ and intra‐rater reliability. Comparisons included (a) inter‐rater reliability between plaster model scores of both raters versus the gold standard, (b) inter‐rater reliability between rater 1 versus rater 2 for both plaster and digital model scores and (c) intra‐rater reliability between digital and plaster model scores for each rater. ❧ Results: Inter‐rater reliability of Raters 1 and 2 (post‐calibration) versus gold standard was almost perfect (combined K= 0.89). Inter‐rater reliability of rater 1 versus rater 2 was almost perfect for both plaster and digital model scores (combined K= 0.85). Intra‐rater reliability was substantial for both Rater 1 (K= 0.79) and Rater 2 (K = 0.67). ❧ Conclusion: There was substantial intra‐rater agreement between HLD Cal‐Mod digital and plaster model scores. Differences in HLD Cal‐Mod scores between digital and plaster models were as high as 13%, and the combined kappa for intra‐rater agreement was 0.73. HLD specific software is needed to correct the sources of difference in HLD score. Digital models present a promising alternative to plaster models for use with the HLD Index. Training and calibrating raters on proper usage of digital model software and its tools are recommended, prior to HLD digital scoring. 
Tags
digital models
HLD
laser scanner
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button