Close
USC Libraries
University of Southern California
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Folder
Vegetated facades as environmental control systems: filtering fine particulate matter (PM2.5) for improving indoor air quality
(USC Thesis Other) 

Vegetated facades as environmental control systems: filtering fine particulate matter (PM2.5) for improving indoor air quality

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Copy asset link
Request this asset
Request accessible transcript
Transcript (if available)
Content
   
 

 

 

 

 
VEGETATED
 FACADES
 AS
 ENVIRONMENTAL
 CONTROL
 SYSTEMS:
 
Filtering
 Fine
 Particulate
 Matter
 (PM2.5)
 For
 Improving
 Indoor
 Air
 Quality
 

 

 

 

 

 

 

 

 
By:
 

 
Ioli
 Papaioannou
 

 

 

 

 

 

 

 

 

 
A
 Thesis
 presented
 to
 the
 
FACULTY
 OF
 THE
 USC
 SCHOOL
 OF
 ARCHITECTURE
 
UNIVERSITY
 OF
 SOUTHERN
 CALIFORNIA
 
In
 Partial
 Fulfillment
 of
 the
 
Requirements
 for
 the
 Degree
 
MASTER
 OF
 BUILDING
 SCIENCE
 

 

 

 

 
May
 2013
 

 

 

 

 

 
Copyright
 2013
   
   
   
   
   
   
  Ioli
 Papaioannou
 

 

  i
 

ACKNOWLEDGEMENTS
 

 

 
I
 would
 like
 to
 express
 my
 gratitude
 to
 Professor
 Douglas
 Noble
 for
 his
 support
 
throughout
 my
 thesis.
 He
 always
 encouraged
 me
 to
 examine
 different
 aspects
 of
 the
 
project
 and
 pursue
 the
 correct
 answers
 to
 my
 concerns
 in
 order
 to
 bring
 my
 thesis
 
to
 completion.
 He
 motivated
 me
 to
 keep
 on-­‐track
 and
 always
 provided
 me
 with
 
appropriate
 feedback
 to
 reflect
 upon.
 Doug,
 it
 was
 an
 honor
 having
 you
 as
 my
 chair.
 

 
I
 would
 also
 like
 to
 thank
 Professor
 Kyle
 Konis.
 His
 involvement
 from
 the
 initial
 
stages
 has
 made
 this
 thesis
 possible.
 His
 contribution
 to
 my
 thesis
 and
 his
 guidance,
 
especially
 during
 the
 development
 of
 my
 research
 and
 experimental
 methodology
 
was
 essential
 and
 helped
 me
 to
 understand
 some
 difficult
 concepts
 involved.
 His
 
enthusiasm
 was
 inspiring
 and
 encouraging.
 Kyle,
 I
 hope
 I
 will
 get
 the
 chance
 to
 work
 
with
 you
 again
 in
 the
 future.
 

 
I
 gratefully
 acknowledge
 the
 contribution
 of
 Pavel
 Getov.
 He
 was
 always
 available
 to
 
discuss
 my
 thesis
 and
 stimulated
 me
 to
 develop
 a
 well-­‐rounded
 insight
 of
 the
 topic.
 
He
 constantly
 encouraged
 me
 to
 combine
 the
 experimental
 and
 architectural
 part
 of
 
the
 study
 and
 guided
 me
 to
 the
 right
 direction
 to
 do
 so.
 Pavel,
 I
 hope
 we
 will
 keep
 up
 
our
 collaboration
 to
 the
 future.
 

 

  ii
 
I
 am
 thankful
 to
 Professor
 Gail
 Borden.
 He
 always
 found
 time
 to
 have
 productive
 
discussions
 about
 my
 progress,
 my
 concerns
 and
 answer
 my
 questions.
 He
 helped
 
me
 comprehend
 the
 broad
 possibilities
 and
 limitations
 of
 my
 thesis
 and
 provided
 
me
 with
 an
 alternative
 point
 of
 view
 to
 take
 into
 consideration.
 His
 enthusiasm
 and
 
advice
 were
 inspiring.
 Gail,
 it
 has
 been
 a
 pleasure
 working
 with
 you.
 

 
I
 owe
 gratitude
 to
 Professor
 Constantinos
 Sioutas
 and
 Payam
 Pakbin
 from
 the
 
Aerosol
 Lab
 of
 the
 USC
 School
 of
 Civil
 and
 Environmental
 Engineering.
 Their
 
contribution
 to
 completing
 the
 experimental
 part
 of
 my
 thesis,
 by
 providing
 me
 with
 
the
 appropriate
 resources
 was
 crucial.
 The
 time
 they
 devoted
 to
 my
 study
 and
 their
 
input
 provided
 the
 scientific
 background
 to
 successfully
 complete
 my
 thesis.
 I
 hope
 
that
 this
 collaboration
 will
 open
 an
 opportunity
 for
 a
 future
 one.
 

 
A
 special
 thank
 you
 goes
 to
 my
 family.
 Without
 their
 support
 and
 encouragement
 
throughout
 the
 years
 of
 my
 graduate
 studies
 none
 of
 this
 would
 be
 possible.
 

 
Finally,
 I
 would
 like
 to
 thank
 everyone
 else
 who
 contributed
 to
 the
 completion
 of
 my
 
thesis
 through
 supporting
 me
 and
 encouraging
 me.
 

 

 

 

 

 

  iii
 
TABLE
 OF
 CONTENTS
 

 
ACKNOWLEDGEMENTS
 ___________________________________________________________
 I
 
LIST
 OF
 TABLES
 _________________________________________________________________
 VI
 
LIST
 OF
 FIGURES
 _______________________________________________________________
 VII
 
ABSTRACT
 ____________________________________________________________________
 1
 
CHAPTER
 ONE:
 INTRODUCTION
 ___________________________________________________
 3
 
1.1
 THE
 PROBLEM
 ______________________________________________________________
 3
 
1.1.1
 Ambient
 Air
 Pollution
 _______________________________________________________
 4
 
1.1.2
 Indoor
 Air
 Pollution
 ________________________________________________________
 5
 
1.1.3
 Air
 Pollutants
 Measuring
 and
 Control
 __________________________________________
 9
 
1.2
 RESEARCH
 STATEMENT
 ______________________________________________________
 10
 
1.3
 BIOREMEDIATION
 __________________________________________________________
 11
 
1.3.1
 Bio-­‐Facades
  _____________________________________________________________
 12
 
1.3.2
 Vegetated
 Facades
 ________________________________________________________
 13
 
1.4
 NATIONAL
 AMBIENT
 AIR
 QUALITY
 STANDARDS
 ___________________________________
 16
 
1.4.1
 Particulate
 Matter
 ________________________________________________________
 17
 
1.5
 AIR
 FILTRATION/AIR-­‐CLEANING
 SYSTEMS
 ________________________________________
 18
 
1.5.1
 Ventilation
 ______________________________________________________________
 20
 
1.5.2
 ASHRAE
 62.1
 and
 52.2
 _____________________________________________________
 22
 
1.6
 OBJECTIVES
 OF
 THE
 STUDY
 AND
 GOALS
 _________________________________________
 24
 
1.7
 SCOPE
 OF
 WORK
 ___________________________________________________________
 24
 
1.8
 CONCLUSIONS
 _____________________________________________________________
 25
 
CHAPTER
 TWO:
 BACKGROUND
 RESEARCH
 _________________________________________
 26
 
2.1
 AMBIENT
 AIR
 POLLUTION
 DATA
 _______________________________________________
 26
 
2.1.1
 Air
 Quality
 Management
 District
 _____________________________________________
 27
 
2.2
 CONVENTIONAL
 AIR
 FILTRATION
  ______________________________________________
 27
 
2.2.1
 Materials
  _______________________________________________________________
 28
 
2.2.2
 Metrics
 to
 measure
 effectiveness
 ____________________________________________
 30
 
2.2.3
 MERV
 and
 HEPA
 filters
 _____________________________________________________
 35
 
2.2.4
 Energy
 Consumption
 ______________________________________________________
 36
 
2.3
 COURSE
 OF
 PARTICULATE
 MATTER
 IN
 URBAN
 STREET
 CANYONS
 ______________________
 38
 
2.4
 PHYTOREMEDIATION
  _______________________________________________________
 40
 
2.4.1
 Phytofiltration
 ___________________________________________________________
 41
 
2.4.2
 Phytovolatalization
 ________________________________________________________
 41
 
2.4.3
 Phytodegradation,
 Phytoextraction,
 Rhizofiltration.
 ______________________________
 42
 
2.4.4
 Rhizoremediation
 _________________________________________________________
 42
 
2.5
 DRY
 DEPOSITION
 AS
 PART
 OF
 THE
 PHYTOREMEDIATION
 PROCESS
 ____________________
 43
 
2.6
 THE
 FACADE
 AS
 A
 FILTRATION
 SURFACE
 _________________________________________
 44
 
2.7
 PREVIOUS
 RESEARCH
 ________________________________________________________
 46
 
2.8
 CASE
 STUDIES
  _____________________________________________________________
 49
 
2.8.1
 Rennselear
 CASE
 &
 SOM,
 Active
 Phytoremediation
 Modular
 System
 ________________
 49
 

  iv
 
2.8.2
 Filtration
 Block
 by
 Elaine
 Tong
 _______________________________________________
 50
 
2.8.3
 “Bubble
 Wrap”
 by
 Andrew
 TÉTRAULT
 /
 Ben
 LEE:
 An
 air-­‐purifying
 infrastructure
 for
 New
 
York
 City.
 ____________________________________________________________________
 51
 
2.9
 CONCLUSIONS
 _____________________________________________________________
 53
 
CHAPTER
 THREE:
 METHODOLOGY
 ________________________________________________
 54
 
3.1
 PARTICULATE
 MATTER
 2.5
 ____________________________________________________
 54
 
3.2
 SYSTEM
 DESCRIPTION
 AND
 INTEGRATION
 SCHEMES
 _______________________________
 56
 
3.2.1
 Vertical
 Configuration
 _____________________________________________________
 56
 
3.2.2
 Shelves
 Configuration
  _____________________________________________________
 57
 
3.2.3
 Horizontal
 Configuration
 ___________________________________________________
 58
 
3.3
 THE
 ENVIRONMENTAL
 CHAMBER
 ______________________________________________
 59
 
3.3.1
 Plant
 selection
 ___________________________________________________________
 62
 
3.4
 ENVIRONMENTAL
 CHAMBER
 FINAL
 SETUP
 _______________________________________
 65
 
3.4.1
 Instruments
 Used
 for
 the
 final
 setup
 __________________________________________
 67
 
3.4.2
 Plants
 configurations
 inside
 the
 chamber
 ______________________________________
 68
 
3.4.3
 Images
 of
 the
 final
 setup
 ___________________________________________________
 71
 
3.5
 TESTING
 PROCEDURE
 _______________________________________________________
 74
 
CHAPTER
 FOUR:
 DATA
 _________________________________________________________
 75
 
4.1
 AMBIENT
 AIR
 CONDITIONS
 ON
 THE
 DAY
 OF
 THE
 EXPERIMENT
 AND
 ADITIONS
 TO
 THE
 SET-­‐UP

 ____________________________________________________________________________
 77
 
4.1
 EXPERIMENT
 RESULTS
 _______________________________________________________
 79
 
4.1.1
 Control
 Measurement,
 Empty
 Chamber
 _______________________________________
 79
 
4.1.2
 Plants
 at
 the
 sides
 of
 the
 outlet
 ______________________________________________
 81
 
4.1.3
 Plants
 at
 the
 sides
 of
 chamber
 _______________________________________________
 82
 
4.1.4
 One
 row
 of
 plants
 _________________________________________________________
 83
 
4.1.5
 Two
 rows
 of
 plants
 ________________________________________________________
 84
 
4.1.6
 Three
 rows
 of
 plants
  ______________________________________________________
 85
 
4.1.7
 Five
 Rows
 of
 plants
 ________________________________________________________
 86
 
4.1.8
 Chamber
 full
 of
 plants
 (8
 rows)
 ______________________________________________
 87
 
4.1.9
 One
 row
 of
 plants
 with
 wet
 foliage
 ___________________________________________
 88
 
4.1.10
 Full
 chamber,
 wet
 foliage
 __________________________________________________
 89
 
4.1.11
 Size
 Distribution
 Plot
 _____________________________________________________
 90
 
4.2
 CONCLUSIONS
 _____________________________________________________________
 92
 
CHAPTER
 FIVE:
 ANALYSIS
 _______________________________________________________
 93
 
5.1
 RESULTS
 ACCURACY
 _________________________________________________________
 93
 
5.2
 PARTICLE
 CATEGORIZATION
 __________________________________________________
 94
 
5.3
 MASS
 CONCENTRATION
 AND
 NUMBER
 CONCENTRATION
 ___________________________
 95
 
5.4
 RESULTS
 ANALYSIS
 __________________________________________________________
 98
 
5.4.1
 Control
 Measurement
 _____________________________________________________
 98
 
5.4.2
 Vegetation
 at
 the
 sides
 of
 the
 opening
 ________________________________________
 99
 

  v
 
5.4.3
 Screen
 Configuration
 ______________________________________________________
 99
 
5.4.4
 Maximum
 Vegetated
 Surface
  _______________________________________________
 99
 
5.4.5
 Area
 to
 removal
 ratio
 _____________________________________________________
 100
 
5.4.6
 Wet
 Deposition
  _________________________________________________________
 101
 
5.5
 COMPARATIVE
 TABLE
 OF
 EFFICIENCY
 __________________________________________
 102
 
5.6
 SIZE
 DISTRIBUTION
 ANALYSIS
 ________________________________________________
 103
 
5.7
 CONCLUSIONS
 ____________________________________________________________
 105
 
CHAPTER
 SIX:
 CONCLUSIONS
 ___________________________________________________
 106
 
6.1
 THE
 DESIGN
 OF
 EXPERIMENTAL
 PROCESS
 _______________________________________
 106
 
6.2
 IMPLEMENTATION
  ________________________________________________________
 108
 
6.3
 EXTRAPOLATION/
 LARGE
 SCALE
 APPLICATION
 ___________________________________
 112
 
6.4
 BENEFITS
 ________________________________________________________________
 114
 
6.5
 CONCERNS
 _______________________________________________________________
 117
 
CHAPTER
 SEVEN:
 FUTURE
 WORK
 ________________________________________________
 122
 
7.1
 IMPROVEMENT
 OF
 THE
 EXPERIMENTAL
 METHOD
 ________________________________
 122
 
7.2
 ARCHITECTURAL
 APPLICATION
 _______________________________________________
 123
 
BIBLIOGRAPHY
 ______________________________________________________________
 125
 
ONLINE
 RESOURCES:
 __________________________________________________________
 127
 
APPENDIX
 A:
 DESCRIPTION
 OF
 THE
 SETUPS
 USED
 AND
 RESULTS
 ______________________
 128
 
A.1
 INITIAL
 SETUP
 OF
 THE
 ENVIRONMENTAL
 CHAMBER
 ______________________________
 128
 
A.1.1
 Images
 and
 details
 of
 the
 initial
 setup
 ________________________________________
 129
 
A.1.2
 Sensors
 ________________________________________________________________
 131
 
A.1.3
 Testing
 Procedure
 and
 Results
  _____________________________________________
 133
 
A.1.4
 What
 went
 wrong
 _______________________________________________________
 137
 
A.2
 SECOND
 SETUP
 ___________________________________________________________
 139
 
A.2.1
 Images
 of
 the
 second
 setup
 ________________________________________________
 140
 
A.2.2
 Sensors
 and
 testing
 Procedure
 _____________________________________________
 143
 
A.2.3
 What
 went
 wrong
 _______________________________________________________
 145
 
APPENDIX
 B:
 CALCULATIONS
 FOR
 THE
 ARCHITECTURAL
 APPLICATION
 _________________
 147
 
APPENDIX
 C:
 PRELIMINARY
 CFD
 AND
 DAYLIGHT
 STUDIES
 ____________________________
 156
 
C.1
 AIR-­‐FLOW
 STUDY
 __________________________________________________________
 157
 
C.2
 DAYLIGHT
 STUDY
 __________________________________________________________
 159
 


  vi
 
LIST
 OF
 TABLES
 

 
TABLE
 1-­‐1:
 MOST
 COMMON
 AIR
 POLLUTANTS
 .........................................................................................
 4
 
TABLE
 1-­‐2:
 INDOOR
 POLLUTANTS
 AND
 SOURCES
 .......................................................................................
 7
 
TABLE
 1-­‐3:
 NATIONAL
 AMBIENT
 AIR
 QUALITY
 STANDARDS
 .......................................................................
 17
 
TABLE
 2-­‐2:
 ASHRAE
 52.2
 MERV
 PARAMETERS
 ....................................................................................
 32
 
TABLE
 2-­‐3:
 APPLICATIONS
 AND
 FILTER
 TYPES
 ACCORDING
 TO
 MERV
 RATING
 ..............................................
 35
 
TABLE
 4-­‐1:
 CONTROL
 MEASUREMENT
 RESULTS
 ......................................................................................
 80
 
TABLE
 4-­‐2:
 TWO
 PLANTS
 AT
 THE
 SIDES
 OF
 THE
 OUTLET,
 RESULTS
 ...............................................................
 81
 
TABLE
 4-­‐3:
 PLANTS
 AT
 THE
 SIDES
 OF
 THE
 CHAMBER
 RESULTS
 ....................................................................
 82
 
TABLE
 4-­‐4:
 ONE
 ROW
 OF
 PLANTS
 RESULTS
 .............................................................................................
 83
 
TABLE
 4-­‐5:
 TWO
 ROWS
 OF
 PLANTS
 RESULTS
 ..........................................................................................
 84
 
TABLE
 4-­‐6:
 THREE
 ROWS
 OF
 PLANTS
 RESULTS
 .........................................................................................
 85
 
TABLE
 4-­‐7:
 FIVE
 ROWS
 OF
 PLANTS
 RESULTS
 ...........................................................................................
 86
 
TABLE
 4-­‐8:
 EIGHT
 ROWS
 OF
 PLANTS
 RESULTS
 .........................................................................................
 87
 
TABLE
 4-­‐9:
 ONE
 ROW
 OF
 PLANTS
 WET
 DEPOSITION
 RESULTS
 ....................................................................
 88
 
TABLE
 4-­‐10:
 EIGHT
 ROWS
 OF
 PLANTS
 WET
 DEPOSITION
 RESULTS
 ..............................................................
 89
 
TABLE
 5-­‐1:
 COMPARATIVE
 TABLE
 OF
 EFFICIENCY
 %
 TO
 AMBIENT
 AIR
 CONCENTRATION
 AND
 TO
 THE
 CONTROL
 
MEASUREMENT
 .......................................................................................................................
 102
 
TABLE
 A-­‐1:
 PARTICLE
 SIZES
 ...............................................................................................................
 133
 






















  vii
 
LIST
 OF
 FIGURES
 

 
FIGURE
 1-­‐1:
 BIOLOGICAL
 FACADE
 USING
 ALGAE
 TO
 PRODUCE
 ELECTRICITY
 BY
 SPLITTERWERK,
 ARUP,
 STRATEGIC
 
SCIENCE
 CONSULT
 OF
 GERMANY
 AND
 COLT
 INTERNATIONAL,
 LOCATED
 IN
 GERMANY
 ............................
 12
 
FIGURE
 1-­‐2:
 LIVING
 WALL
 DESIGNED
 BY
 GSKY
 FOR
 AN
 ESTATE
 AT
 MIAMI
 INDIAN
 CREEK
 ISLAND
 .....................
 13
 
FIGURE
 1-­‐3:
 GREEN-­‐SCREEN
 VEGETATED
 FAÇADE
 AT
 THE
 NATIONAL
 FEDERATION
 HEADQUARTERS
 IN
 RESTON,
 
VIRGINIA
 .................................................................................................................................
 14
 
FIGURE
 1-­‐4:
 VERTICAL
 GREENHOUSE,
 "CENTER
 OF
 URBAN
 AGRICULTURE"
 PROPOSAL
 FOR
 DOWNTOWN
 SEATTLE,
 
BY
 MITHUN
 ..............................................................................................................................
 14
 
FIGURE
 2-­‐1:
 IMAGE
 OF
 A
 PLEATED
 PAPER
 AIR
 FILTER
 ................................................................................
 29
 
FIGURE
 2-­‐2:
 IMAGE
 OF
 A
 FOAM
 FILTER
 ..................................................................................................
 30
 
FIGURE
 2-­‐3:
 IMAGE
 OF
 A
 FIBERGLASS
 FILTERS
 .........................................................................................
 30
 
FIGURE
 2-­‐4:
 AIR
 FILTERS
 COST
 BREAKDOWN
 ..........................................................................................
 37
 
FIGURE
 2-­‐5:
 AIR
 POLLUTANT
 TRACKS
 IN
 URBAN
 STREET
 CANYONS
 ............................................................
 39
 
FIGURE
 2-­‐6:
 CATEGORIES
 OF
 PHYTOREMEDIATION
 ACCORDING
 TO
 THE
 DIFFERENT
 PART
 OF
 THE
 PLANT
 THAT
 ARE
 
RESPONSIBLE
 ............................................................................................................................
 41
 
FIGURE
 2-­‐7:
 ACTIVE
 MODULAR
 PHYTOREMEDIATION
 SYSTEM
 ...................................................................
 50
 
FIGURE
 2-­‐8:
 FILTRATION
 BLOCK
 ...........................................................................................................
 51
 
FIGURE
 2-­‐9:
 "BUBBLE
 WRAP"
 .............................................................................................................
 52
 
FIGURE
 3-­‐1:
 DAILY
 24-­‐HR
 AVERAGE
 AND
 MAXIMUM
 VALUE
 OF
 PM2.5
 FOR
 CENTRAL
 LOS
 ANGELES,
 FROM
 1ST
 
OF
 OCTOBER
 TO
 21ST
 OF
 MARCH
 ................................................................................................
 55
 
FIGURE
 3-­‐2:
 VERTICAL
 (SCREEN)
 CONFIGURATION
 ..................................................................................
 56
 
FIGURE
 3-­‐3:
 VERTICAL
 (LIVING
 WALL)
 CONFIGURATION
 ...........................................................................
 57
 
FIGURE
 3-­‐4:
 SHELVES
 CONFIGURATION
 .................................................................................................
 58
 
FIGURE
 3-­‐5:
 HORIZONTAL
 (GREEN
 ROOF)
 CONFIGURATION
 ......................................................................
 59
 
FIGURE
 3-­‐6:
 ENVIRONMENTAL
 CHAMBER
 BASIC
 CONFIGURATION
 .............................................................
 60
 
FIGURE
 3-­‐7:
 ENVIRONMENTAL
 CHAMBER
 DIAGRAM
 ................................................................................
 62
 
FIGURE
 3-­‐8:
 FESCUE
 RIDGED
 LEAF
 SURFACE
 ...........................................................................................
 63
 
FIGURE
 3-­‐9:
 FESCUE
 ROOT
 SYSTEM
 ......................................................................................................
 64
 
FIGURE
 3-­‐10:
 GROWING
 PROPERTIES
 ACCORDING
 TO
 THE
 SELLER
 TAG.
 .......................................................
 65
 
FIGURE
 3-­‐11:
 ENVIRONMENTAL
 CHAMBER
 FINAL
 SETUP
 ..........................................................................
 66
 
FIGURE
 3-­‐12:
 TWO
 PLANTS
 AT
 THE
 SIDES
 OF
 THE
 CHAMBER,
 TOTAL
 AREA
 OF
 VEGETATION
 0.22FT
2
.
 .................
 68
 
FIGURE
 3-­‐13:
 ONE
 ROW
 OF
 PLANTS,
 TOTAL
 AREA
 OF
 VEGETATION
 0.5
 FT
2
.
 .................................................
 69
 
FIGURE
 3-­‐14:
 TWO
 ROWS
 OF
 PLANTS,
 TOTAL
 AREA
 OF
 VEGETATION
 1FT
2
.
 ...................................................
 69
 
FIGURE
 3-­‐15:
 THREE
 ROWS
 OF
 PLANTS,
 TOTAL
 AREA
 OF
 VEGETATION
 1.5FT
2
.
 ..............................................
 69
 
FIGURE
 3-­‐16:
 FIVE
 ROWS
 OF
 PLANTS,
 TOTAL
 AREA
 OF
 VEGETATION
 2.5FT
2
.
 .................................................
 70
 
FIGURE
 3-­‐17:
 TWO
 ROWS
 OF
 PLANTS
 AT
 THE
 SIDES,
 TOTAL
 AREA
 OF
 VEGETATION
 2FT
2
.
 .................................
 70
 
FIGURE
 3-­‐18:
 CHAMBER
 FULL
 OF
 PLANTS,
 TOTAL
 AREA
 OF
 VEGETATION
 4.5FT
2
.
 ...........................................
 70
 
FIGURE
 3-­‐19:
 
 FINAL
 SETUP
 OF
 THE
 ENVIRONMENTAL
 CHAMBER,
 INLET
 .......................................................
 71
 
FIGURE
 3-­‐20:
 FINAL
 SETUP
 OF
 THE
 ENVIRONMENTAL
 CHAMBER,
 OUTLET
 AND
 PUMP
 .....................................
 72
 
FIGURE
 3-­‐21:
 THE
 DUSTTRAK
 AEROSOL
 MONITORS
 ................................................................................
 72
 
FIGURE
 3-­‐22:
 THE
 DUSTTRAK
 AEROSOL
 MONITORS
 AND
 THE
 TSI
 PARTICLE
 COUNTER
 ..................................
 73
 
FIGURE
 3-­‐23:
 THE
 TSI
 ELECTROSTATIC
 CLASSIFIER
 ..................................................................................
 73
 
FIGURE
 4-­‐1:
 LOCATION
 OF
 THE
 OFF-­‐CAMPUS
 AEROSOL
 LAB
 ......................................................................
 76
 
FIGURE
 4-­‐2:
 LOCATION
 OF
 THE
 OFF-­‐CAMPUS
 AEROSOL
 LAB
 AND
 PROXIMITY
 TO
 110
 FREEWAY
 .......................
 77
 
FIGURE
 4-­‐3:
 CONTROL
 MEASUREMENT,
 EMPTY
 CHAMBER
 ........................................................................
 80
 
FIGURE
 4-­‐4:
 CONFIGURATION
 1,
 TWO
 PLANTS
 AT
 THE
 SIDES
 .....................................................................
 81
 

  viii
 
FIGURE
 4-­‐5:
 CONFIGURATION
 5,
 PLANTS
 AT
 SIDES
 OF
 THE
 CHAMBER
 ..........................................................
 82
 
FIGURE
 4-­‐6:
 CONFIGURATION
 2,
 ONE
 ROW
 OF
 PLANTS
 ............................................................................
 83
 
FIGURE
 4-­‐7:
 CONFIGURATION
 3,
 TWO
 ROWS
 OF
 PLANTS
 ..........................................................................
 84
 
FIGURE
 4-­‐8:
 CONFIGURATION
 4,
 THREE
 ROWS
 OF
 PLANTS
 ........................................................................
 85
 
FIGURE
 4-­‐9:
 CONFIGURATION
 6,
 FIVE
 ROWS
 OF
 PLANTS
 ...........................................................................
 86
 
FIGURE
 4-­‐10:
 CONFIGURATION
 7,
 EIGHT
 ROWS
 OF
 PLANTS,
 FULL
 CHAMBER
 .................................................
 87
 
FIGURE
 4-­‐11:
 CONFIGURATION
 2,
 ONE
 ROW
 OF
 PLANTS,
 WET
 LEAVES
 ........................................................
 88
 
FIGURE
 4-­‐12:
 CONFIGURATION
 7,
 EIGHT
 ROWS
 OF
 PLANTS,
 WET
 LEAVES
 .....................................................
 89
 
FIGURE
 4-­‐13:
 COMPARATIVE
 SIZE
 DISTRIBUTION
 PLOT
 ............................................................................
 91
 
FIGURE
 5-­‐1:
 A
 TYPICAL
 AMBIENT
 PARTICLE
 DISTRIBUTION
 AS
 A
 FUNCTION
 OF
 PARTICLE
 SIZE
 EXPRESSED
 BY
 PARTICLE
 
NUMBER,
 SURFACE
 AREA,
 AND
 VOLUME.
 THE
 LATTER
 IS
 EQUIVALENT
 TO
 A
 MASS
 DISTRIBUTION
 WHEN
 
VARIATION
 IN
 PARTICLE
 DENSITY
 IS
 SMALL.
 VERTICAL
 SCALING
 IS
 INDIVIDUAL
 TO
 EACH
 PANEL
 ..................
 97
 
FIGURE
 5-­‐2:
 COMPARISON
 OF
 PARTICULATE
 MATTER
 SIZE
 .......................................................................
 97
 
FIGURE
 5-­‐3:
 REMOVAL
 EFFICIENCY
 PERCENTILE
 TO
 VEGETATED
 SURFACE
 AREA
 .........................................
 100
 
FIGURE
 5-­‐4:
 REMOVAL
 PERCENTILE
 PER
 PARTICLE
 SIZE
 ...........................................................................
 104
 
FIGURE
 6-­‐1:
 BEST
 MEASURED
 EFFICIENCY
 AND
 HIGHMERV
 FILTER
 COMBINATION
 ......................................
 110
 
FIGURE
 6-­‐2:
 VEGETATED
 SURFACE
 USED
 FOR
 NATURAL
 VENTILATION.
 .......................................................
 110
 
FIGURE
 6-­‐3:
 COMBINATION
 OF
 VEGETATED
 SURFACE
 AND
 HIGHMERV
 FILTER
 FOR
 MECHANICAL
 VENTILATION.

 ............................................................................................................................................
 111
 
FIGURE
 6-­‐4:
 COMBINATION
 OF
 VEGETATED
 SURFACE
 AND
 HIGHMERV
 FILTER
 FOR
 NATURAL
 AND
 MECHANICAL
 
VENTILATION.
 .........................................................................................................................
 111
 
FIGURE
 6-­‐5:
 PREDICTION
 OF
 THE
 MAXIMUM
 EFFICIENCY
 OF
 THE
 SURFACE.
 ................................................
 112
 
FIGURE
 6-­‐6:
 REMOVAL
 EFFICIENCY
 ESTIMATION
 FOR
 0.01ΜM
 TO
 0.3ΜM
 ................................................
 113
 
FIGURE
 6-­‐7:
 COMPARATIVE
 CHART
 OF
 THE
 PREDICTED
 AND
 BEST
 MEASURED
 EFFICIENCY
 OF
 VEGETATION
 AND
 
HIGHMERV
 FILTER
 COMBINATION
 .............................................................................................
 114
 
FIGURE
 A-­‐1:
 INITIAL
 SETUP
 OF
 THE
 ENVIRONMANTAL
 CHAMBER
 ..............................................................
 128
 
FIGURE
 A-­‐2:
 FINISHED
 CHAMBER
 .......................................................................................................
 129
 
FIGURE
 A-­‐3:
 ENVIRONMENTAL
 CHAMBER
 FULL
 SET-­‐UP
 .........................................................................
 129
 
FIGURE
 A-­‐4:
 THE
 ARDUINO
 BOARDS
 CONNECTED
 TO
 THE
 LED
 DISPLAYS
 ...................................................
 130
 
FIGURE
 A-­‐5:
 THE
 SENSORS
 MOUNTED
 IN
 THE
 PVC
 PIPES
 ........................................................................
 130
 
FIGURE
 A-­‐6:
 THE
 ELECTRONIC
 STEP-­‐LESS
 SPEED
 CONTROL
 .....................................................................
 131
 
FIGURE
 A-­‐7:
 AVERAGED
 CONTROL
 MEASUREMENT
 #2,
 PARTICLE
 SOURCE:
 CORNSTARCH,
 FAN
 SPEED:
 HIGH
 .
 134
 
FIGURE
 A-­‐8:
 AVERAGED
 CONTROL
 MEASUREMENT
 #6,
 PARTICLE
 SOURCE:
 CORNSTARCH,
 FAN
 SPEED:
 LOW
 ..
 134
 
FIGURE
 A-­‐9:
 TEST#1
 PARTICLE
 SOURCE:
 MATCH
 SMOKE,
 FAN
 SPEED:
 LOW
 ..............................................
 135
 
FIGURE
 A-­‐10:
 TEST#3,
 PARTICLE
 SOURCE:
 MATCH
 SMOKE,
 FAN
 SPEED:
 HIGH
 ..........................................
 135
 
FIGURE
 A-­‐11:
 TEST#5,
 PARTICLE
 SOURCE:
 CORNSTARCH,
 FAN
 SPEED:
 HIGH
 .............................................
 136
 
FIGURE
 A-­‐12:
 TEST#11,
 PARTICLE
 SOURCE:
 CORNSTARCH,
 FAN
 SPEED:
 LOW
 ............................................
 136
 
FIGURE
 A-­‐13:
 SECOND
 SETUP
 OF
 THE
 ENVIRONMENTAL
 CHAMBER
 ...........................................................
 139
 
FIGURE
 A-­‐14:
 THE
 CHAMBERS
 SECOND
 SETUP
 AT
 THE
 AEROSOL
 LAB
 ........................................................
 140
 
FIGURE
 A-­‐15:
 INLET,
 THE
 CONNECTION
 TO
 THE
 AEROSOL
 GENERATOR
 AND
 THE
 DUSTTRAK
 AEROSOL
 MONITOR
 
MEASURING
 MASS
 CONCENTRATION
 ...........................................................................................
 141
 
FIGURE
 A-­‐16:
 OUTLET,
 CONNECTION
 TO
 THE
 PUMP
 AND
 THE
 AEROSOL
 DUSTTRAK
 MONITOR
 MEASURING
 MASS
 
CONCENTRATION
 .....................................................................................................................
 141
 
FIGURE
 A-­‐17:
 CONNECTION
 OF
 THE
 TWO
 CHAMBERS
 ............................................................................
 142
 
FIGURE
 A-­‐18:
 THE
 AEROSOL
 GENERATOR
 ............................................................................................
 142
 
FIGURE
 A-­‐19:
 MEASUREMENT
 WITH
 THE
 CHAMBER
 FULL
 OF
 PLANTS
 ........................................................
 143
 
FIGURE
 4RATION
 TEST
 WITH
 WATER
 PENETRATING
 THE
 CHAMBER
 FROM
 THE
 PLYWOOD
 BOTTOM
 ..................
 143
 
FIGURE
 B-­‐1:
 VOLUME
 OF
 AIR
 USED
 FOR
 THE
 CALCULATIONS.
 ...................................................................
 147
 

  ix
 
FIGURE
 B-­‐2:
 DIMENSIONS
 OF
 A
 TYPICAL
 OFFICE
 SPACE.
 ..........................................................................
 148
 
FIGURE
 B-­‐3:
 HORIZONTAL
 SHELVES,
 36"
 DEPTH,
 20
 ROWS.
 ...................................................................
 149
 
FIGURE
 B-­‐4:
 HORIZONTAL
 SHELVES,
 48"
 DEPTH,
 15
 ROWS
 EQUALLY
 SPACED.
 ...........................................
 150
 
FIGURE
 B-­‐5:
 HORIZONTAL
 SHELVES,
 48"
 DEPTH,
 15
 ROWS.
 ...................................................................
 150
 
FIGURE
 B-­‐6:
 HORIZONTAL
 SHELVES,
 54”
 DEPTH,
 13
 ROWS
 EQUALLY
 SPACED.
 ...........................................
 151
 
FIGURE
 B-­‐7:
 HORIZONTAL
 SHELVES,
 54"
 DEPTH,
 13
 ROWS.
 ...................................................................
 151
 
FIGURE
 B-­‐8:
 HORIZONTAL
 SHELVES,
 60”
 DEPTH,
 12
 ROWS
 EQUALLY
 SPACED.
 ...........................................
 152
 
FIGURE
 B-­‐9:
 HORIZONTAL
 SHELVES,
 60"
 DEPTH,
 12
 ROWS.
 ...................................................................
 152
 
FIGURE
 B-­‐10:
 HORIZONTAL
 SHELVES,
 72"
 DEPTH,
 10
 ROWS
 EQUALLY
 SPACED.
 .........................................
 153
 
FIGURE
 B-­‐11:
 HORIZONTAL
 SHELVES,
 72"
 DEPTH,
 10
 ROWS.
 .................................................................
 153
 
FIGURE
 B-­‐12:
 VERTICAL
 PANELS.
 .......................................................................................................
 154
 
FIGURE
 C-­‐1:
 HORIZONTAL
 SHELVES,
 DEPTH
 72",
 SECTION
 ......................................................................
 156
 
FIGURE
 C-­‐2:
 HORIZONTAL
 SHELVES
 EQUALLY
 SPACED,
 72"
 DEPTH,
 SECTION
 ..............................................
 157
 
FIGURE
 C-­‐3:
 VERTICAL
 PANELS
 18"X18",
 SECTION
 ................................................................................
 157
 
FIGURE
 C-­‐4:
 CFD
 SIMULATION
 RESULTS
 FOR
 HORIZONTAL
 SHELVES,
 DEPTH
 72"
 ........................................
 158
 
FIGURE
 C-­‐5:
 CFD
 SIMULATION
 RESULTS
 FOR
 HORIZONTAL
 SHELVES
 EQUALLY
 SPACED,
 DEPTH
 72"
 ................
 158
 
FIGURE
 C-­‐6:
 CFD
 SIMULATION
 RESULTS
 FOR
 VERTICAL
 PANELS
 18"X18"
 ..................................................
 159
 
FIGURE
 C-­‐7:
 COMPARATIVE
 INTERIOR
 PSEUDO-­‐COLOR
 RENDERING
 FOR
 06/21,
 12P.M.
 ..............................
 160
 
FIGURE
 C-­‐8:
 COMPARATIVE
 INTERIOR
 PSEUDO-­‐COLOR
 RENDERING
 FOR
 06/21,
 1P.M.
 ................................
 160
 
FIGURE
 C-­‐9:
 COMPARATIVE
 INTERIOR
 PSEUDO-­‐COLOR
 RENDERING
 FOR
 06/21,
 2P.M.
 ................................
 160
 
FIGURE
 C-­‐10:
 COMPARATIVE
 INTERIOR
 PSEUDO-­‐COLOR
 RENDERING
 FOR
 06/21,
 3P.M.
 ..............................
 161
 
FIGURE
 C-­‐11:
 COMPARATIVE
 INTERIOR
 PSEUDO-­‐COLOR
 RENDERING
 FOR
 12/21,
 12P.M.
 ............................
 161
 
FIGURE
 C-­‐12:
 COMPARATIVE
 INTERIOR
 PSEUDO-­‐COLOR
 RENDERING
 FOR
 12/21,
 1P.M.
 ..............................
 161
 
FIGURE
 C-­‐13:
 COMPARATIVE
 INTERIOR
 PSEUDO-­‐COLOR
 RENDERING
 FOR
 12/21,
 2P.M.
 ..............................
 162
 
FIGURE
 C-­‐14:
 COMPARATIVE
 INTERIOR
 PSEUDO-­‐COLOR
 RENDERING
 FOR
 12/21,
 3P.M.
 ..............................
 162
 
FIGURE
 C-­‐15:
 DAYLIGHT
 ON
 A
 POINT
 GRID
 ON
 A
 HORIZONTAL
 SHELF,
 FOR
 06/12,
 12P.M.
 ...........................
 163
 
FIGURE
 C-­‐16:
 DAYLIGHT
 ON
 A
 POINT
 GRID
 ON
 A
 HORIZONTAL
 SHELF,
 FOR
 06/12,
 1P.M.
 .............................
 163
 
FIGURE
 C-­‐17:
 
 DAYLIGHT
 ON
 A
 POINT
 GRID
 ON
 A
 HORIZONTAL
 SHELF,
 FOR
 06/12,
 2P.M.
 ............................
 164
 
FIGURE
 C-­‐18:
 DAYLIGHT
 ON
 A
 POINT
 GRID
 ON
 A
 HORIZONTAL
 SHELF,
 FOR
 06/12,
 3P.M.
 .............................
 164
 
FIGURE
 C-­‐19:
 DAYLIGHT
 ON
 A
 POINT
 GRID
 ON
 A
 HORIZONTAL
 SHELF,
 FOR
 12/12,
 12P.M.
 ...........................
 165
 
FIGURE
 C-­‐20:
 DAYLIGHT
 ON
 A
 POINT
 GRID
 ON
 A
 HORIZONTAL
 SHELF,
 FOR
 12/12,
 1P.M.
 .............................
 165
 
FIGURE
 C-­‐21:
 DAYLIGHT
 ON
 A
 POINT
 GRID
 ON
 A
 HORIZONTAL
 SHELF,
 FOR
 12/12,
 2P.M.
 .............................
 166
 
FIGURE
 C-­‐22:
 DAYLIGHT
 ON
 A
 POINT
 GRID
 ON
 A
 HORIZONTAL
 SHELF,
 FOR
 06/12,
 3P.M.
 .............................
 166
 

  1
 

 
ABSTRACT
 


Air
  pollution
  is
  a
  problem
  present
  in
  the
  majority
  of
  the
  built
  environments.
 
Ambient
 air
 pollution
 is
 consisted
 by
 many
 different
 pollutants
 which,
 depending
 on
 
their
 concentration
 in
 the
 air,
 can
 have
 a
 severe
 impact
 on
 human
 health
 with
 long-­‐
term
 implications,
 and
 they
 can
 also
 deteriorate
 the
 surfaces
 of
 the
 buildings
 they
 
come
 in
 contact
 with.
 Fine
 Particulate
 Matter
 (PM2.5)
 is
 amongst
 them.
 It
 is
 a
 
pollutant
 that
 tends
 to
 exceed
 the
 allowable
 levels
 and
 that
 can
 have
 a
 severe
 impact
 
on
 human
 health,
 as
 it
 is
 able
 to
 penetrate
 deep
 into
 the
 human
 respiratory
 system.
 
Ambient
  air
  pollution
  is
  directly
  connected
  with
  Indoor
  Air
  Quality
  through
 
infiltration
 and
 ventilation.
 In
 order
 to
 ensure
 good
 Indoor
 Air
 Quality
 and
 user
 
comfort,
 the
 air
 introduced
 indoors
 needs
 to
 comply
 with
 specific
 standards.
 Air-­‐
pollution
 control
 doesn’t
 address
 the
 issue
 of
 pollutants
 already
 in
 the
 atmosphere,
 
and
 for
 reducing
 those
 other
 filtration
 methods
 need
 to
 be
 applied.
 These
 practices
 
can
 be
 energy
 consuming,
 especially
 when
 there
 is
 not
 proper
 maintenance,
 and
 
sometimes
 even
 not
 as
 effective
 as
 expected.
 Bioremediation
 is
 a
 procedure
 based
 
on
 biological
 processes,
 for
 filtering
 pollutants
 from
 air,
 soil
 or
 water,
 using
 living
 
organisms.
 Phytoremediation
 is
 the
 specific
 process
 of
 filtering
 pollutants
 through
 
the
 metabolism
 of
 plants.
 The
 use
 of
 vegetation
 on
 facades
 is
 being
 increased
 due
 to
 
their
  many
  benefits
  for
  the
  building
  (shading,
  insulation).
  Since
  the
  building
 
envelope
 is
 the
 part
 of
 the
 building
 that
 is
 in
 constant
 contact
 with
 the
 ambient
 air,
 
the
 question
 that
 rises
 is
 whether
 a
 vegetated
 façade
 can
 be
 used
 as
 a
 filtration
 
medium
 for
 ambient
 and
 indoor
 air.
 For
 testing
 this
 hypothesis,
 an
 experimental
 

  2
 
method
 was
 required
 to
 be
 developed,
 based
 on
 the
 testing
 method
 of
 conventional
 
filters,
  to
  determine
  whether
  the
  process
  of
  phytofiltration,
  a
  form
  of
 
phytoremediation,
 can
 provide
 efficient
 filtration
 for
 a
 specific
 pollutant,
 Particulate
 
Matter
 2.5.
 
 
 
 

 

 

 

 















  3
 
Chapter
 One:
 Introduction
 

 
This
 study
 will
 explore
 the
 potential
 effectiveness
 of
 a
 façade
 system
 that
 can
 
contribute
 in
 filtering
 ambient
 Fine
 Particulate
 Matter
 (PM2.5)
 and
 introduce
 it
 
indoors
 through
 phytofiltration.
 This
 chapter
 presents
 the
 problem,
 the
 hypothesis
 
and
 articulates
 the
 strategy
 for
 addressing
 the
 problem.
 
 

 
1.1
 THE
 PROBLEM
 

   
 
Air
 Pollution
 is
 the
 presence
 of
 solids,
 liquids,
 or
 gases
 in
 the
 outdoor
 air
 in
 amounts
 
that
 are
 harmful
 or
 detrimental
 to
 humans,
 animal,
 plants,
 or
 property
 or
 that
 
unreasonably
 interferes
 with
 the
 comfortable
 enjoyment
 of
 life
 and
 property
1
.
 The
 
effects
 of
 air
 pollution
 can
 be
 influenced
 by
 many
 factors.
 Those
 are
 the
 weather
 
conditions
 (wind
 velocity
 and
 direction,
 temperature,
 sunlight,
 precipitation),
 the
 
topography
 of
 the
 terrain
 and
 the
 chemical
 properties
 of
 the
 pollutant
 itself.
2

 Air
 
pollution
 can
 refer
 to
 ambient
 (outdoors)
 air,
 and
 indoor
 air.
 One
 of
 the
 most
 
dangerous
 pollutants
 that
 can
 have
 a
 severe
 impact
 on
 human
 health
 is
 Particulate
 
Matter
 especially
 that
 consisted
 of
 particles
 with
 diameter
 of
 less
 or
 equal
 to
 2.5μm.
 
The
 thesis
 will
 concentrate
 on
 addressing
 the
 specific
 pollutant
 by
 taking
 into
 
consideration
 its
 physical
 properties.
 

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1

 Jacko,
 R.
 and
 T.
 La
 Breche.
 2009,
 “Air
 Pollution
 and
 Noise
 Control,
 in
 Environmental
 Engineering”
 chapter
 4.
2

 “British
 Columbia
 Air
 Quality”
 site,
 http://www.bcairquality.ca/101/air-­‐quality-­‐factors.html.
 

  4
 
1.1.1
 Ambient
 Air
 Pollution
 

Ambient
 air
 pollution
 can
 be
 defined
 as
 the
 presence
 of
 pollutants
 in
 the
 outdoor
 air.
 
These
 pollutants
 are
 mainly
 products
 of
 fossil
 fuel
 combustion;
 gases
 and
 particles
 
deriving
 from
 chemical
 and
 biological
 materials
 used
 for
 agriculture
 (herbicides
 and
 
pesticides)
 and
 products
 of
 chemical
 reactions
 in-­‐between
 the
 above.
 The
 biggest
 
source
 of
 pollutants
 however
 is
 due
 to
 fossil
 fuel
 combustion.
 Below,
 a
 table
 with
 the
 
most
 common
 air
 pollutants
 is
 provided
 (table
 1-­‐1).
 

 
Table
 1-­‐1:
 Most
 Common
 Air
 Pollutants
3

 
Pollutant
  Description
 and
 Sources
  Health
 Impact
  Environment
 
Particulate
 
Matter
 (PM)
 

 
Dust,
 soot
 
and
 tiny
 bits
 
of
 solid
 
materials.
 
PM10:
 Particles
 
smaller
 than
 
10μm(microns)
 
in
 diameter.
 
• Road
 dust,
 
road,
 
construction
 
• Mixing
 and
 
applying
 
fertilizers/
 
pesticides,
 
• Forest
 fires.
 
Coarse
 particles
 irritate
 
the
 throat
 and
 nose,
 but
 
do
 not
 normally
 
penetrate
 into
 the
 lungs.
 

 
• PM
 is
 the
 main
 
source
 of
 haze
 
that
 reduces
 
visibility,
 
• It
 takes
 hours
 
to
 days
 for
 
PM10
 to
 settle
 
out
 of
 the
 air,
 
• Because
 they
 
are
 so
 small,
 
PM2.5
 stays
 in
 
the
 air
 much
 
longer
 than
 
PM10
 taking
 
days
 to
 weeks
 
to
 be
 removed,
 
• PM
 can
 make
 
lakes
 and
 
other
 sensitive
 
areas
 more
 
acidic,
 causing
 
changes
 to
 the
 
nutrient
 
balance
 and
 
harming
 
aquatic
 life.
 
PM2.5:
 Particles
 
smaller
 than
 
2.5μm
 in
 
diameter.
 
• Combustion
 
of
 fossil
 
fuels
 and
 
wood,
 
• Industrial
 
activity,
 
• Garbage
 
incineration,
 
• Agricultural
 
burning.
 
• Fine
 particles
 are
 small
 
enough
 to
 make
 their
 
way
 deep
 into
 the
 
lungs.
 
 They
 are
 
associated
 with
 all
 
sorts
 of
 health
 
problems,
 from
 a
 runny
 
nose
 and
 coughing
 to
 
bronchitis,
 asthma,
 
emphysema,
 
pneumonia,
 heart
 
disease,
 and
 even
 
premature
 death.
 
• PM2.5
 is
 the
 worst
 
public
 health
 problem
 
from
 air
 pollution
 in
 
the
 province.
 (Research
 
indicates
 the
 number
 
of
 hospital
 visits
 
increases
 on
 days
 with
 
increased
 PM
 levels).
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3

 “British
 Columbia
 Air
 Quality”
 site,
 http://www.bcairquality.ca/101/pollutants-­‐table.html.
 

  5
 
Ground
 
Level
 Ozone
 
(O3)
 

 
Bluish
 gas
 
with
 pungent
 
odor
 

 
• At
 ground
 level
 ozone
 is
 formed
 
by
 chemical
 reactions
 between
 
volatile
 organic
 compounds
 
(VOCs)
 and
 nitrogen
 dioxide
 
(NO2)
 in
 the
 presence
 of
 
sunlight,
 
• VOCs
 and
 NO2
 are
 released
 by
 
burning
 coal,
 gasoline
 and
 other
 
fuels;
 and
 naturally
 by
 plants
 
and
 trees
 
• Exposure
 for
 6-­‐7
 hours,
 
even
 at
 low
 
concentrations,
 
significantly
 reduces
 
lung
 function
 and
 
causes
 respiratory
 
inflammation
 in
 
healthy
 people
 during
 
periods
 of
 moderate
 
exercise.
 Can
 be
 
accompanied
 by
 
symptoms
 such
 as
 
chest
 pain,
 coughing,
 
nausea,
 and
 pulmonary
 
congestion.
 Impacts
 on
 
individuals
 with
 pre-­‐
existing
 heart
 or
 
respiratory
 conditions
 
can
 be
 very
 serious,
 
• Ozone
 exposure
 can
 
contribute
 to
 asthma,
 
and
 reduced
 resistance
 
to
 colds
 and
 other
 
infections.
 
• Ozone
 can
 
damage
 plants
 
and
 trees,
 
leading
 to
 
reduced
 yields.
 
• Leads
 to
 lung
 
and
 
respiratory
 
damage
 in
 
animals.
 
• Ozone
 can
 also
 
be
 good:
 the
 
ozone
 layer
 
above
 the
 
earth
 (the
 
stratosphere)
 
protects
 us
 
from
 harmful
 
ultraviolet
 
rays.
 
Other
 
Pollutants
 
• Sulphur
 Dioxide
 (SO2),
 
• Carbon
 Monoxide
 (CO),
 
• Nitrogen
 Dioxide
 (NO2),
 
• Total
 Reduced
 Sulphur
 (TRS),
 
• Volatile
 Organic
 Compounds
 
(VOCs),
 
• Persistent
 Organic
 Pollutants
 
(POPs),
 
• Lead
 (Ps),
 
• Polycyclic
 Aromatic
 
Hydrocarbons
 (PAHs),
 
• Dioxins
 and
 furans.
 

 
Most
 of
 these
 pollutants
 come
 
from
 combustion
 and
 industrial
 
processes
 or
 the
 evaporation
 of
 
paints
 and
 common
 chemical
 
products.
 
∗ The
 health
 impacts
 of
 
these
 pollutants
 are
 
varied,
 
∗ Sulphur
 dioxide
 (SO2),
 
for
 example,
 can
 
transform
 in
 the
 
atmosphere
 to
 
sulphuric
 acid,
 a
 major
 
component
 of
 acid
 rain,
 
∗ Carbon
 monoxide
 is
 
fatal
 at
 high
 
concentrations,
 and
 
causes
 illness
 at
 lower
 
concentrations.
 
∗ Dioxins
 and
 furans
 are
 
among
 the
 most
 toxic
 
chemicals
 in
 the
 world.
 
While
 some
 of
 
these
 pollutants
 
have
 local
 impact
 
on
 the
 
environment
 
(e.g.,
 lead)
 or
 are
 
relatively
 short
 
lived
 (NO2)
 some
 
are
 long
 lived
 
(POPs)
 and
 can
 
travel
 the
 world
 
on
 wind
 currents
 
in
 the
 upper
 
atmosphere.
 

 

 
1.1.2
 Indoor
 Air
 Pollution
 

 
Indoor
 air
 pollution
 refers
 to
 the
 air
 quality
 in
 indoor
 spaces.
 This
 type
 of
 pollution
 
may
 come
 from
 carbon
 monoxide
 (CO),
 cigarette
 smoke,
 Particulate
 Matter,
 
combustion
 products
 coming
 from
 sources
 like
 cooking
 or
 heating
 and
 Volatile
 

  6
 
Organic
 Compounds
 (VOC)
 emitted
 from
 building
 materials
 like
 walls,
 finishes
 etc.
 
or
 furniture.
 Indoor
 air
 quality
 (IAQ)
 can
 be
 affected
 by
 the
 ambient
 air
 pollution.
 
This
 is
 due
 to
 infiltration
 of
 outdoor
 pollutants
 into
 indoor
 spaces
 but
 also
 through
 
natural
 and
 mechanical
 ventilation.
 Specifically,
 Gabriel
 Beko
 et
 al.
 (2008)
4

 
estimated
 that
 […]‘‘indoor
 proportion
 of
 outdoor
 particles’’
 (IPOP)
 the
 annual
 average
 
of
 indoor
 PM10
 concentration
 without
 particle
 filtration
 to
 lie
 between
 65%
 and
 95%
 
of
 the
 outdoor
 PM10
 level.
 It
 is
 safe
 to
 conclude
 that
 an
 important
 factor
 that
 affects
 
the
 concentration
 of
 the
 ambient
 air
 pollutants
 indoors
 is
 the
 ventilation
 of
 the
 
building,
 something
 that
 will
 be
 explained
 further
 in
 the
 following
 chapter.
 Below
 a
 
table
 with
 common
 indoor
 air
 pollutants
 and
 their
 sources
 is
 provided
 (table
 1-­‐2),
 
as
 well
 as
 the
 allowable
 levels,
 according
 to
 ASHRAE
 62.1-­‐2010.
 

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4

 Gabriel
 Beko
 et
 al.
 2008,
 “Is
 the
 use
 of
 particle
 filtration
 justified?
 Costs
 and
 benefits
 of
 filtration
 with
 regard
 to
 
health
 effects,
 building
 cleaning
 and
 occupant
 productivity”,
 Building
 and
 Environment
 43,
 pp.
 1647-­‐1657.
 

  7
 
Table
 1-­‐2:
 Indoor
 Pollutants
 and
 Sources
5

 
Pollutants
  Sources
  NAAQS/EPA
 
Radon
  and
  radioactive
 
daughters
 (
222
Rn)
 
Soil,
 Ground
 Water,
 Building
 Materials
   
 
Nitrogen
 Oxides
 (NOx)
  Combustion
  0.05ppm
 [1
 yr.]
 
Volatile
  Organic
 
Compounds
  (including
 
HCHO)
 
Building
 Materials,
 Carpets,
 Solvents,
 Paints,
 
Personal
  Care
  Products,
  House
  Cleaning
 
Products,
  Room
  Fresheners,
  Pesticides,
 
Mothball,
 Humans
 

 
Carbon
 Monoxide
 (COx)
  Combustion
  9ppm
 
35
 ppm
 [1
 h.]*
 
Ozone
 (O3)
  Outdoor
  Air,
  Photocopying
  Machines,
 
Electrostatic
 Air
 Cleaners
 
0.12
 ppm
 [1
 h]*
 
0.08ppm
 
Sulfur
 Dioxide
 (SO2)
  Combustion
  0.03
 ppm
 [1
 yr.]
 
0.14
 ppm
 [24
 hr.]*
 
Particulate
 Matter
  Combustion
  15
 µm/m
3

 (PM2.5)
 
150
 µm/m
3

 (PM10)
 
Asbestos
  Building
 Materials,
 Hair
 Drier
   
 
Bioaerosols
  Air
  Conditioners,
  Cold
  Water
  Spray
 
Humidifiers
 

 
∗ Not
 to
 be
 exceeded
 more
 than
 once
 per
 year.
 

 
In
 order
 to
 limit
 ambient
 air
 pollutants
 into
 indoor
 spaces
 the
 Environmental
 
Protection
 Agency
 (EPA)
 proposes
 three
 strategies:
 source
 control,
 improved
 
ventilation
 and
 air
 cleaners.
 However,
 two
 out
 of
 the
 three
 strategies
 mentioned
 
above
 require
 some
 kind
 of
 filtration
 of
 the
 air
 introduced
 indoors,
 either
 this
 is
 
done
 actively
 through
 an
 air
 cleaner,
 that
 removes
 the
 pollutants
 of
 the
 ambient
 air
 
to
 avoid
 the
 contamination
 of
 the
 space
 with
 other
 ones,
 or
 passively
 through
 some
 
other
 system,
 in
 the
 case
 of
 improved
 ventilation.
 Either
 way,
 a
 filtration
 system
 is
 
required.
 
 


   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5

 Lazaridis,
 Michalis.
 2011.
 “First
 Principles
 of
 Meteorology
 and
 Air
 Pollution”,
 Environmental
 Pollution,
 Volume
 
19,
 pp.
 255
 –
 304.
 

 

  8
 
Because
 people
 spend
 about
 85%
 of
 their
 time
 indoors
6

 they
 are
 constantly
 exposed
 
to
 these
 pollutants
 that
 have
 an
 impact
 on
 their
 health.
 Ambient
 air
 pollution
 has
 
also
 various
 serious
 consequences
 on
 human
 health.
 For
 example,
 according
 to
 the
 
World
 Health
 Organization,
 in
 Europe,
 exposure
 to
 Particulate
 Matter
 from
 
anthropogenic
 sources,
 which
 is
 a
 pollutant
 for
 both
 indoor
 and
 outdoor
 spaces,
 can
 
reduce
 up
 to
 8.6
 months
 life
 expectancy
 and
 the
 increase
 of
 1μg/m
3

 of
 PM2.5
 for
 a
 
year
 can
 result
 an
 average
 Lost
 Life
 Expectancy
 of
 0.22
 days
 per
 person.
7

 
 

Apart
 from
 the
 various
 consequences
 air
 pollution
 may
 have
 on
 human
 health
 it
 is
 
also
 a
 threat
 for
 buildings
 and
 mainly
 for
 the
 building
 envelope.
 That
 is
 because
 this
 
is
 the
 only
 part
 of
 the
 building
 that
 is
 in
 constant
 contact
 with
 the
 ambient
 air.
 This
 
causes
 the:
 
 
“…
 deterioration
 of
 the
 external
 layer
 because
 some
 of
 the
 above
 deposited
 
chemical
 agents
 react
 with
 surfaces.
 Sulphur
 compounds
 have
 been
 indicted
 as
 the
 
most
 critical
 factors
 in
 this
 regard,
 mainly
 because
 they
 are
 often
 acidic
 and
 can
 have
 
high
 concentrations
 in
 city
 and
 suburban
 air;
 however,
 nitrogen
 compounds
 should
 be
 
considered
 as
 well.
 Fluxes
 of
 trace
 gases
 (e.g.,
 sulphur
 dioxide)
 can
 be
 high,
 especially
 
when
 promoted
 by
 biological
 activity.
 Dissolution
 by
 chemical
 reactions
 with
 
contaminants
 contained
 in
 precipitation
 is
 one
 of
 the
 most
 familiar
 eroding
 processes,
 
particularly
 in
 the
 case
 of
 carbonaceous
 stone.”
8

 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6

 Ibid.
 
7

 Marchwinska-­‐Wyrwal,
 E.
 et
 al.
 2011.
 “Impact
 of
 Air
 Pollution
 on
 Public
 Health,
 The
 Impact
 of
 Air
 Pollution
 on
 
Health,
 Economy,
 Environment
 and
 Agricultural
 Sources”,
 Dr,
 Mohamed
 Khallaf
 (Ed.),
 In
 Tech.
 
8

 Norvaišienė,
 R
 et
 al.
 2003
 “Climatic
 and
 Air
 Pollution
 Effects
 on
 Building
 Facades”
 Materials
 Science,
 Vol.9,
 No.1.
 
pp
 102-­‐105.
 

  9
 
It
 can
 be
 concluded
 from
 the
 above,
 that
 it
 is
 necessary
 to
 find
 a
 way
 to
 control
 and
 
regulate
 the
 unwanted
 chemical
 elements
 in
 the
 atmosphere
 in
 polluted
 
environments
 as
 they
 are
 harmful
 not
 only
 for
 their
 inhabitants
 but
 for
 the
 buildings
 
as
 well.
 
 The
 most
 prevalent
 way
 for
 that
 is
 mechanical
 air
 filtration,
 either
 of
 air
 
released
 in
 the
 atmosphere,
 either
 of
 air
 entering
 a
 building.
 However
 this
 
procedure
 is
 energy
 consuming
 and
 the
 materials
 used
 for
 it
 are
 usually
 not
 
environmental
 friendly.
 

 
1.1.3
 Air
 Pollutants
 Measuring
 and
 Control
 

   
 
To
 quantify
 the
 concentration
 of
 air
 pollutants
 in
 the
 atmosphere,
 sensors
 are
 
usually
 being
 used.
 These
 sensors
 are
 specific
 to
 the
 pollutant
 being
 measured
 and
 
can
 either
 indicate
 values
 per
 time
 period
 (hourly,
 30-­‐minute
 intervals
 etc.)
 or
 they
 
can
 simply
 display
 a
 warning
 when
 the
 pollutant
 might
 pose
 a
 threat
 for
 human
 
health
 e.g.
 smoke
 detectors.
 There
 are
 various
 methods
 of
 measuring
 air
 pollution.
 It
 
can
 either
 be
 measured
 directly
 when
 emitted
 by
 a
 source
 as
 mass/volume
 of
 
emission
 (e.g.,
 grams/m
3
)
 or
 mass/process
 parameter
 (e.g.,
 grams/Kg
 fuel
 
consumed
 or
 grams/second),
 or
 by
 measuring
 the
 concentration
 of
 the
 pollutant
 in
 
a
 specific
 volume
 of
 air
 (e.g.,
 micrograms/m
3
).
9

 
 

 
Air
 pollution
 management
 is
 generally
 focused
 on
 treating
 the
 emission
 sources
 of
 air
 
pollutants.
 These
 practices
 effectively
 reduce
 the
 local
 emission
 of
 new
 air
 pollutants,
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9

 “Clean
 Air
 World”
 site,
 http://www.cleanairworld.org/TopicDetails.asp?parent=21.
 

  10
 
but
 do
 not
 address
 pollutants
 already
 in
 the
 air.
 To
 remove
 existing
 air
 pollutants,
 
different
 approaches
 need
 to
 be
 employed.
10

 
 

 
1.2
 RESEARCH
 STATEMENT
 

 
This
 study
 will
 propose
 a
 system
 that
 can
 filter
 air,
 through
 an
 alternative
 biological
 
procedure,
 for
 improving
 its
 quality,
 once
 introduced
 into
 indoor
 spaces.
 
 

 
The
 building
 envelope
 can
 be
 used
 as
 an
 air-­‐filtration
 medium
 to
 improve
 
indoor
 air
 quality.
 -­‐
 Hypothesis
 

 
There
 are
 several
 strategies
 that
 can
 be
 used
 as
 architectural
 solutions
 in
 order
 to
 
address
 this
 issue.
 The
 most
 popular
 passive
 solution
 for
 controlling
 ambient
 air
 
pollutants
 is
 green
 roofs.
 However,
 according
 to
 a
 research
 conducted
 in
 the
 city
 of
 
Chicago
 by
 Yang
 Jun
 et
 al.
 (2008),
 even
 if
 the
 total
 area
 of
 all
 the
 building
 roofs
 were
 
to
 be
 turned
 into
 green
 roofs
 this
 cannot
 be
 used
 as
 a
 standalone
 measure.
 Although
 
costly,
 the
 installation
 of
 green
 roofs
 could
 be
 justified
 in
 the
 long
 run
 if
 the
 
environmental
 benefits
 were
 considered.
 The
 green
 roof
 can
 be
 used
 to
 supplement
 the
 
use
 of
 urban
 trees
 in
 air
 pollution
 control,
 especially
 in
 situations
 where
 land
 and
 
public
 funds
 are
 not
 readily
 available.

 11

 The
 problem
 in
 urban
 built
 environments
 is
 
that
 they
 are
 usually
 so
 densely
 built
 that
 the
 option
 of
 creating
 green
 or
 bioclimatic
 
outdoor
 spaces
 that
 could
 help
 alleviate
 the
 problem
 is
 almost
 impossible.
 Since
 the
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10

 Jun,
 Yang
 et
 al.
 2008.
 “Quantifying
 air
 pollution
 removal
 by
 green
 roofs
 in
 Chicago”,
 Atmospheric
 Environment
 
Journal,
 Vol.42,
 Issue
 21,
 pp.
 7266-­‐7273.
 

 
11

 Ibid.
 

  11
 
horizontal
 surfaces
 of
 buildings
 are
 already
 being
 used
 in
 the
 form
 of
 green
 roofs
 for
 
addressing
 this
 issue
 amongst
 others,
 the
 question
 is
 whether
 the
 rest
 of
 the
 
surfaces
 of
 the
 building
 envelope
 could
 also
 be
 used
 for
 this
 purpose.
 The
 roof
 of
 a
 
building
 is
 the
 smallest
 in
 dimensions
 surface
 of
 the
 building
 envelope
 that
 can
 be
 
used,
 so
 if
 all
 of
 the
 vertical
 surfaces
 are
 taken
 in
 advantage,
 the
 facades,
 the
 amount
 
of
 the
 surface
 to
 use
 for
 this
 purpose
 will
 drastically
 increase.
 This
 is
 a
 field
 that
 
architects
 and
 engineers
 have
 only
 recently
 started
 to
 explore
 and
 not
 many
 
projects
 have
 been
 materialized
 towards
 this
 direction.
 
 

 
1.3
 BIOREMEDIATION
 

   
 
Bioremediation
 is
 the
 use
 of
 microorganism
 metabolism
 to
 remove
 pollutants
12

 
from
 polluted
 environments.
 These
 organisms
 are
 usually
 plants,
 microbes,
 bacteria,
 
algae,
 and
 fungi.
 The
 microorganisms
 used
 for
 this
 purpose
 are
 called
 
bioremediators.
 Bioremediation
 is
 a
 procedure
 that
 happens
 naturally
 as
 a
 part
 of
 
an
 organism’s
 nutrition
 functions
 but
 it
 can
 also
 be
 enhanced
 through
 fertilizers.
 
More
 specifically,
 the
 biological
 treatment
 of
 air
 pollution
 depends
 on
 aerobic
 
microorganisms
 mostly
 mesophilic
 bacteria
 that
 feed
 on
 both
 organic
 and
 inorganic
 
compounds
 in
 the
 waste
 gas.
 The
 microbes
 convert
 the
 pollutants
 into
 carbon
 dioxide,
 
water,
 and
 salts.
13

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12

 “Wikipedia”
 site,
 last
 modified
 on
 22
 February
 2013,
 http://en.wikipedia.org/wiki/Bioremediation.
 
13

 “Pollution
 Online”
 site,
 July
 16
 1998,
 http://www.pollutiononline.com/doc.mvc/Biological-­‐Treatment-­‐of-­‐Air-­‐
Pollution-­‐0001.
 

 

  12
 
Most
 of
 the
 contaminants
 can
 be
 treated
 through
 this
 process,
 however
 some
 of
 
them,
 like
 heavy
 metals
 are
 processed
 with
 bigger
 difficulty
 by
 microorganisms.
 
Plants
 are
 the
 most
 effective
 bioremediators
 because
 they
 can
 process
 also
 through
 
other
 functions
 happening
 in
 their
 upper
 part,
 like
 evapotranspiration.
 The
 
advantages
 of
 this
 method
 are
 that
 it
 is
 cost
 effective
 and
 it
 doesn’t
 require
 almost
 
any
 energy
 use.
 The
 species
 used
 are
 harmless
 to
 the
 environment
 and
 can
 be
 
disposed
 without
 creating
 any
 more
 waste.
 

 
1.3.1
 Bio-­‐Facades
 

 
For
 the
 purposes
 of
 this
 study
 bio-­‐facades
 can
 be
 defined
 as
 facades
 that
 integrate
 
biological
 organisms
 to
 benefit
 the
 building.
 Usually
 they
 are
 employed
 to
 improve
 
the
 energy
 consumption
 of
 the
 building
 by
 producing
 energy,
 as
 passive
 shading
 
systems
 or
 insulating
 systems,
 and
 to
 promote
 sustainability.
 Most
 common
 
applications
 are
 algae-­‐facades
 and
 vegetated
 façades.
 

 
Figure
 1-­‐1:
 Biological
 Facade
 using
 algae
 to
 produce
 electricity
 by
 Splitterwerk,
 ARUP,
 Strategic
 Science
 
Consult
 of
 Germany
 and
 Colt
 International,
 located
 in
 Germany
14

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14

 Image
 source
 “Inhabitat”
 site,
 http://inhabitat.com/splitterwerk-­‐architects-­‐design-­‐worlds-­‐first-­‐algae-­‐
powered-­‐building-­‐for-­‐germany.
 

  13
 

 
1.3.2
 Vegetated
 Facades
 

Vegetated
 facades
 are
 bio-­‐facades
 that
 use
 plants
 in
 order
 to
 benefit
 the
 building.
 
They
 can
 be
 distinguished
 into
 living
 walls
 and
 green
 facades,
 depending
 on
 their
 
configuration.
 For
 the
 purposes
 of
 this
 study,
 the
 following
 distinctions
 can
 be
 made
 
when
 describing
 a
 vegetated
 façade.
 

   
 
Living
 walls
 use
 a
 structural
 system
 that
 is
 attached
 on
 the
 building
 and
 includes
 the
 
growing
 substrate
 of
 the
 plants
 in
 a
 vertical
 configuration.
 
 

 
Figure
 1-­‐2:
 Living
 Wall
 designed
 by
 GSky
 for
 an
 estate
 at
 Miami
 Indian
 Creek
 Island
15

 

 
Green
 facades
 on
 the
 other
 hand
 are
 facades
 that
 are
 covered
 by
 plants
 but
 the
 
growing
 substrate
 is
 not
 necessarily
 located
 on
 the
 façade,
 and
 if
 so
 it
 is
 attached
 
horizontally
 throughout
 the
 height
 of
 the
 building
 similar
 to
 a
 shelving
 system.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15

 Image
 source
 “HGTV”
 site:
 http://www.hgtv.com/outdoor-­‐rooms/design-­‐trend-­‐living-­‐
walls/pictures/index.html.
 

  14
 
Green
 facades
 may
 also
 be
 facades
 covered
 with
 ivies,
 or
 other
 creepers.
 Trellis
 
configurations
 or
 vertical
 greenhouses
 may
 also
 be
 categorized
 as
 green
 facades.
 


 
Figure
 1-­‐3:
 Green-­‐Screen
 Vegetated
 Façade
 at
 the
 National
 Federation
 Headquarters
 in
 Reston,
 
Virginia
16

 
 

 
Figure
 1-­‐4:
 Vertical
 Greenhouse,
 "Center
 of
 Urban
 Agriculture"
 proposal
 for
 downtown
 Seattle,
 by
 
Mithun
17

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16

 Image
 source
 “Continuing
 Education”
 site:
 
http://continuingeducation.construction.com/article_print.php?L=168&C=604
 

  15
 

 
Vegetated
 facades
 are
 getting
 more
 popular
 as
 architectural
 assemblies,
 as
 they
 
benefit
 buildings
 in
 more
 than
 one
 way.
 They
 are
 excellent
 shading
 systems
 and
 
depending
 on
 the
 plant
 selection
 they
 can
 contribute
 significantly
 in
 decreasing
 the
 
energy
 consumption
 of
 a
 building.
 That
 can
 happen
 through
 selecting
 plant
 species
 
that
 shed
 during
 the
 winter
 and
 allow
 the
 sunlight
 to
 enter
 the
 building
 and
 bloom
 
during
 the
 summer
 to
 provide
 shade.
 Another
 benefit
 is
 that
 plants,
 through
 
evapotranspiration,
 cool
 their
 immediate
 environment,
 lowering
 the
 temperature
 of
 
the
 building
 surface
 and
 therefore
 reducing
 the
 need
 for
 cooling.
 Finally
 vegetated
 
facades,
 in
 the
 form
 of
 living
 walls,
 can
 also
 work
 as
 a
 noise-­‐barrier
 providing
 
acoustic
 insulation
 from
 the
 surrounding
 environment,
 but
 that
 is
 more
 relevant
 to
 
the
 thickness
 of
 the
 substrate
 rather
 than
 the
 volume
 of
 vegetation.
 

 
There
 are
 also
 some
 considerations
 when
 a
 vegetated
 façade
 is
 installed.
 The
 most
 
important
 is
 the
 maintenance
 cost.
 Since
 they
 are
 composed
 solely
 from
 living
 
organisms,
 the
 need
 to
 be
 maintained
 properly
 is
 very
 important.
 Irrigation
 is
 a
 big
 
issue,
 as
 it
 is
 necessary
 for
 plants
 to
 grow
 and
 survive,
 but
 the
 management
 of
 the
 
run-­‐off
 water
 is
 also
 a
 problem
 that
 needs
 to
 be
 considered
 for
 filtering
 or
 simply
 for
 
proper
 drainage.
 Furthermore,
 the
 irrigation
 of
 vertical
 vegetated
 surface
 can
 also
 
be
 costly
 and
 the
 higher
 the
 building
 the
 more
 expensive
 it
 gets
 to
 pump
 water
 to
 
higher
 floors.
 Another
 issue
 is
 that,
 as
 a
 living
 organism
 it
 becomes
 a
 part
 of
 a
 small
 
ecosystem
 attracting
 insects,
 birds
 and
 other
 small
 animals
 that
 may
 live
 in
 the
 city.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17

 Image
 source
 “Ecogeek”
 site:
 http://node1.ecogeek-­‐cdn.net/ecogeek/images/stories/mithunbig.jpg.
 

  16
 
This
 may
 lead
 to
 the
 contamination
 of
 a
 part
 of
 the
 façade,
 which
 can
 even
 spread
 to
 
the
 entire
 vegetated
 surface.
 In
 addition,
 since
 plants
 have
 a
 specific
 lifespan,
 that
 is
 
much
 shorter
 than
 the
 lifespan
 of
 the
 building
 or
 simply
 of
 the
 façade,
 they
 need
 to
 
be
 replaced
 often
 to
 maintain
 the
 aesthetic
 result
 the
 designer
 was
 aiming
 for.
 Lastly
 
even
 in
 the
 case
 of
 a
 simple
 screen
 with
 creepers
 there
 is
 still
 a
 problem
 with
 the
 
visual
 comfort
 of
 the
 users,
 as
 the
 volume
 of
 the
 vegetation
 may
 not
 provide
 
satisfying
 viewings
 from
 inside.
 

 
Since
 plants
 are
 a
 part
 of
 a
 bioremediation
 process,
 they
 can
 potential
 work
 as
 filters
 
cleaning
 up
 the
 ambient
 air
 and
 also
 the
 air
 that
 is
 moved
 through
 the
 building
 to
 
accommodate
 its
 ventilating
 needs.
 Throughout
 the
 years
 there
 has
 not
 been
 
conducted
 extensive
 research
 on
 how
 vegetation
 on
 buildings
 may
 impact
 the
 
concentration
 of
 gases
 or
 particles
 in
 the
 atmosphere
 that
 are
 harmful
 for
 humans.
 
 

 
1.4
 NATIONAL
 AMBIENT
 AIR
 QUALITY
 STANDARDS
 

 
The
 EPA
 has
 set
 the
 National
 Ambient
 Air
 Quality
 Standards
 (NAAQS)
 for
 ambient
 
air,
 for
 pollutants
 considered
 harmful
 to
 public
 health
 and
 the
 environment.
18

 The
 
measuring
 of
 the
 concentration
 of
 air
 pollutants
 in
 the
 ambient
 air
 is
 usually
 done
 in
 
parts
 per
 million
 by
 volume
 (ppm).
 The
 concentration
 of
 PM
 is
 expressed
 as
 mass
 
per
 volume
 of
 air
 (μg/m
3
).
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18

 “U.S.
 Environmental
 Protection
 Agency
 site”,
 last
 updated
 on
 December
 14,
 2012.
 
http://www.epa.gov/air/criteria.html.
 

  17
 
Table
 1-­‐3:
 National
 Ambient
 Air
 Quality
 Standards
19

 
POLLUTANT
  AVERAGING
 TIME
  PRIMARY
 STANDARD
 
PM10
  Annual
 arithmetic
 mean
  50
 μg/m
3
 
24-­‐h
 average
  150
 μg/m
3

 
PM2.5
  Annual
 arithmetic
 mean
  15
 μg/m
3

 
24-­‐h
 average
  35
 μg/m
3

 
Lead
  Quarterly
 average
  1.5
 μg/m
3

 
CO
  1-­‐h
 average
  35
 ppm
 
8-­‐h
 average
  9
 ppm
 
SO2
  Annual
 arithmetic
 mean
  80
 μg/m
3

 
24-­‐h
 average
  365
 μg/m
3

 
NO2
  Annual
 arithmetic
 mean
  0.053
 ppm
 
O3
  8-­‐h
 average
  0.08
 ppm
 

 
 
1.4.1
 Particulate
 Matter
 

 
Particulate
 Matter
 is
 a
 pollutant
 that
 has
 a
 severe
 impact
 on
 human
 health,
 
especially
 on
 sensitive
 groups,
 when
 ambient
 air
 concentration
 exceeds
 the
 
allowable
 levels.
 "Particulate
 matter,"
 also
 known
 as
 particle
 pollution
 or
 PM,
 is
 a
 
complex
 mixture
 of
 extremely
 small
 particles
 and
 liquid
 droplets.
 Particle
 pollution
 is
 
made
 up
 of
 a
 number
 of
 components,
 including
 acids
 (such
 as
 nitrates
 and
 sulfates),
 
organic
 chemicals,
 metals,
 and
 soil
 or
 dust
 particles.
20

 According
 to
 the
 EPA,
 
Particulate
 Matter
 can
 be
 distinguished
 into
 two
 different
 categories
 depending
 on
 
the
 size
 of
 the
 particles
 that
 comprise
 it.
 
 Particles
 with
 diameter
 smaller
 than
 10μm
 
but
 larger
 than
 2.5μm
 are
 the
 “Inhalable
 coarse
 particles”
 and
 even
 though
 they
 
have
 some
 impact
 on
 human
 health
 the
 effects
 are
 not
 that
 dangerous.
 Particles
 with
 
diameter
 smaller
 than
 2.5µm
 are
 called
 “fine
 particles”
 due
 to
 their
 small
 size.
 These
 
particles
 are
 usually
 products
 of
 combustion
 from
 forest
 fires,
 smoke
 or
 fossil
 fuel,
 
or
 of
 chemical
 reactions
 between
 gases
 when
 emitted
 from
 cars,
 industries
 or
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19

 Ibid.
 
20

 Definition
 from
 the
 “Environmental
 Protection
 Agency”
 site,
 last
 updated
 on
 March
 18
th

 2013.
 
http://www.epa.gov/pm/.
 

  18
 
plants.
 Due
 to
 their
 size,
 they
 pose
 a
 much
 greater
 risk
 for
 human
 health
 as
 they
 can
 
easily
 penetrate
 into
 the
 human
 respiratory
 system
 and
 create
 serious
 problems.
 It
 
has
 been
 noticed
 that
 the
 symptoms
 of
 patients
 with
 respiratory
 problems
 intensify
 
during
 days
 with
 higher
 levels
 of
 particulate
 matter
 in
 the
 atmosphere.
 

 
1.5
 AIR
 FILTRATION/AIR-­‐CLEANING
 SYSTEMS
 

 
For
 the
 purposes
 of
 this
 study,
 air
 filtration
 can
 be
 defined
 as
 the
 process
 of
 
removing
 pollutants
 from
 the
 air.
 These
 pollutants
 are
 usually
 solid
 particles,
 such
 
as
 dust,
 mold
 and
 bacteria
 and
 chemical
 contaminants
 that
 belong
 in
 Volatile
 
Organic
 Compounds
 category.
 Air
 filters
 are
 usually
 applied
 in
 commercial
 and
 
industrial
 buildings
 for
 the
 ventilation
 of
 these
 spaces
 to
 ensure
 the
 IAQ.
 The
 air
 
filtered
 may
 be
 ambient
 air,
 or
 indoor
 air
 recirculating
 to
 be
 used
 again.
 Another
 
application
 for
 filters
 is
 in
 the
 automotive
 industry
 for
 ensuring
 the
 air
 quality
 in
 
automotive
 cabins
 as
 well
 as
 controlling
 the
 emissions
 from
 car
 exhausts
 produced
 
from
 the
 combustion
 of
 fossil
 fuel.
 Finally,
 air
 filtration
 may
 also
 be
 applied
 for
 
industrial
 waste,
 for
 cleaning
 out
 the
 fumes,
 or
 particles
 occurring
 during
 
production.
 
 

 
Air
 filtration
 is
 essential
 for
 a
 building
 as
 it
 is
 the
 way
 to
 ensure
 that
 the
 IAQ
 will
 
remain
 in
 levels
 that
 are
 not
 threatening
 for
 human
 health.
 It
 prevents
 ambient
 air
 
pollution
 to
 enter
 the
 building
 and
 it
 cleans
 the
 indoor
 air
 from
 hazardous
 
pollutants
 in
 order
 to
 be
 recirculated.
 This
 is
 done
 through
 air
 cleaning
 systems.
 
According
 to
 ASHRAE
 62.1-­‐2010,
 the
 term
 air
 cleaning
 systems
 means
 a
 device,
 or
 a
 

  19
 
combination
 of
 devices
 applied
 to
 reduce
 the
 concentration
 of
 airborne
 
contaminants
 such
 as
 microorganisms,
 dusts,
 fumes,
 inhalable
 particles,
 other
 
particulate
 matter
 and/or
 vapors
 in
 the
 air.
 These
 devices
 may
 be
 pollutant
 specific
 
or
 they
 may
 be
 used
 to
 treat
 more
 than
 one
 pollutant.
 They
 may
 also
 be
 used
 to
 
clean
 either
 ambient
 or
 indoor
 air
 pollutants
 or
 both.
 As
 this
 study
 will
 concentrate
 
on
 the
 removal
 of
 fine
 Particulate
 Matter
 it
 is
 worth
 mentioning
 some
 of
 the
 most
 
popular
 air
 cleaning
 systems
 for
 this
 pollutant.
 
 
 

 
Mechanical
 air
 filters
 is
 the
 most
 commonly
 used
 method
 for
 cleaning
 air.
 These
 
filters
 are
 made
 from
 fibrous
 materials
 and
 have
 the
 ability
 to
 capture
 particles
 on
 
these
 fibers.
 They
 are
 rated
 according
 to
 their
 efficiency
 of
 removing
 Particulate
 
Matter.
 They
 can
 be
 distinguished
 into
 MERV
 filters
 and
 HEPA
 filters.
 The
 problem
 
with
 most
 of
 these
 filters
 is
 the
 fact
 that
 even
 though
 they
 are
 good
 in
 capturing
 
larger
 particulates,
 when
 it
 comes
 to
 smaller
 particles,
 they
 are
 inefficient.
 
 

 
Another
 way
 of
 removing
 particles
 from
 the
 air
 is
 Electronic
 air
 cleaners.
 These
 
cleaners
 use
 a
 process
 called
 electrostatic
 attraction
 to
 trap
 charged
 particles.
 
According
 to
 the
 EPA:
 

 
“They
 draw
 air
 through
 an
 ionization
 section
 where
 particles
 obtain
 an
 
electrical
 charge.
 The
 charged
 particles
 then
 accumulate
 on
 a
 series
 of
 flat
 plates
 
called
 a
 collector
 that
 is
 oppositely
 charged.
 Ion
 generators,
 or
 ionizers,
 disperse
 
charged
 ions
 into
 the
 air,
 similar
 to
 the
 electronic
 air
 cleaners
 but
 without
 a
 collector.
 

  20
 
These
 ions
 attach
 to
 airborne
 particles,
 giving
 them
 a
 charge
 so
 that
 they
 attach
 to
 
nearby
 surfaces
 such
 as
 walls
 or
 furniture,
 or
 attach
 to
 one
 another
 and
 settle
 
faster.”
21

 

 
The
 side
 effect
 of
 using
 this
 type
 of
 air
 cleaners
 is
 that
 they
 may
 produce
 ozone,
 
which
 is
 another
 dangerous
 pollutant
 for
 human
 health.
 

 
The
 biggest
 threat
 with
 recirculating
 indoor
 air
 is
 re-­‐contamination,
 especially
 in
 
buildings
 occupied
 by
 more
 sensitive
 groups
 like
 schools,
 offices
 or
 hospitals.
 
Therefore,
 it
 is
 preferred
 clean
 outdoor
 air
 to
 be
 brought
 in
 rather
 than
 having
 
indoor
 recirculated
 air
 in
 heavily
 occupied
 buildings.
 
 

 
1.5.1
 Ventilation
 

 
ASHRAE
 62.1-­‐2010
 provides
 the
 following
 definitions
 and
 distinctions
 between
 
different
 procedures
 of
 ventilation:
 
-­‐ Ventilation
 is
 the
 process
 of
 supplying
 air
 to
 or
 removing
 air
 from
 a
 space
 
for
 the
 purpose
 of
 controlling
 air
 contaminant
 levels,
 humidity
 or
 
temperature
 within
 the
 space.
 
-­‐ Air
 ventilation
 is
 that
 portion
 of
 supply
 air
 that
 is
 outdoor
 air
 plus
 any
 re-­‐
circulated
 air
 that
 has
 been
 treated
 for
 the
 purpose
 of
 maintaining
 
acceptable
 indoor
 air
 quality.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21

 “U.S.
 Environmental
 Protection
 Agency”
 site,
 last
 updated
 on
 July
 3,
 2012.
 
http://www.epa.gov/iaq/pubs/airclean.html.
 

  21
 
-­‐ Natural
 ventilation
 is
 provided
 by
 thermal
 wind
 or
 diffusion
 effects
 
through
 doors,
 windows
 or
 other
 intentional
 openings
 in
 the
 building.
 

   
 
The
 reasons
 buildings
 require
 ventilation
 are
 multiple
 but
 they
 all
 have
 the
 same
 
purpose,
 to
 improve
 the
 quality
 and
 the
 occupant
 comfort
 of
 the
 indoor
 
environment.
 One
 reason
 is
 for
 to
 adjust
 relative
 humidity,
 or
 moisture
 in
 the
 air.
 
Humidity
 plays
 a
 great
 role
 into
 the
 occupants’
 comfort
 in
 a
 space,
 but
 it
 is
 also
 
related
 to
 the
 temperature.
 Generally
 the
 rule
 is
 that
 the
 relative
 humidity
 in
 a
 space
 
should
 not
 be
 less
 than
 30%
 to
 prevent
 symptoms
 as
 sore
 eyes
 or
 throat
 and
 more
 
than
 60%
 to
 prevent
 the
 growth
 of
 microorganisms.
22

 Human
 activity
 may
 also
 
increase
 the
 humidity
 in
 a
 space
 through
 transpiration
 or
 skin
 evaporation.
 

 
Another
 reason
 for
 ventilation
 is
 to
 increase
 the
 thermal
 comfort
 of
 the
 occupants
 
and
 decrease
 the
 cooling
 needs
 of
 the
 building.
 This
 is
 a
 process
 that
 refers
 to
 
specific
 temperature
 conditions,
 when
 the
 outdoor
 air
 is
 cooler
 than
 the
 indoor
 air.
 
By
 letting
 the
 cooler
 outdoor
 air
 enter
 the
 building
 the
 indoor
 air
 temperature
 is
 
decreased.
 Often,
 even
 if
 the
 temperature
 decrease
 is
 really
 small
 the
 wind
 velocity
 
over
 the
 occupants’
 skin
 may
 overall
 improve
 their
 comfort
 level.
 Ventilation
 may
 
also
 be
 used
 to
 cool
 the
 building
 during
 the
 night
 when
 it
 is
 not
 occupied
 and
 there
 
are
 not
 concerns
 about
 human
 comfort.
 This
 process
 is
 called
 night
 flushing.
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22

 Lstiburek,
 Joseph.
 2002.
 “Relative
 Humidity,
 Research
 Report
 -­‐0203”,
 Building
 Science
 Corporation
 site:
 
http://www.buildingscience.com.
 

  22
 
The
 most
 important
 reason
 for
 ventilating
 spaces
 is
 improving
 IAQ.
 Ventilation
 is
 
used
 to
 bring
 oxygen
 into
 an
 interior
 space
 and
 at
 the
 same
 time
 to
 remove
 the
 
hazardous
 pollutants
 accumulating,
 by
 exchanging
 volumes
 of
 air.
 The
 times
 that
 air
 
needs
 to
 be
 exchanged
 in
 an
 hour
 vary
 for
 building
 types
 and
 occupancy
 types.
 The
 
method
 that
 the
 building
 is
 ventilated
 is
 also
 dependent
 on
 the
 type
 and
 occupancy,
 
although
 this
 is
 not
 a
 standard.
 Buildings
 generally
 can
 use
 natural
 or
 mechanical
 
ventilation
 and
 this
 is
 distinguished
 based
 on
 the
 way
 the
 air
 exchange
 happens.
 
Buildings
 can
 also
 use
 a
 combination
 of
 those
 two.
 Generally,
 the
 bigger
 the
 building,
 
or
 the
 amount
 of
 occupants,
 the
 bigger
 the
 needs
 for
 ventilation,
 therefore
 it
 needs
 
more
 frequent
 air
 exchanges
 in
 a
 faster
 rate
 so
 mechanical
 ventilation
 is
 preferred.
 
However,
 it
 is
 not
 uncommon
 for
 residential
 buildings
 to
 use
 mechanical
 ventilation
 
as
 a
 part
 of
 their
 HVAC
 system.
 As
 it
 is
 discussed
 later,
 mechanical
 ventilation
 is
 a
 
procedure
 that
 consumes
 energy,
 especially
 when
 there
 is
 not
 a
 proper
 
maintenance,
 so
 the
 trend
 in
 sustainable
 buildings
 is
 to
 be
 avoided
 when
 possible.
 

 
1.5.2
 ASHRAE
 62.1
 and
 52.2
 

 
ASHRAE
 was
 founded
 in
 1984
 and
 it
 is
 an
 organization
 that
 focuses
 on
 building
 
systems,
 energy
 efficiency,
 indoor
 air
 quality
 and
 sustainability
 within
 the
 industry.
 
Through
 research,
 standards
 writing,
 publishing
 and
 continuing
 education,
 ASHRAE
 
shapes
 tomorrow’s
 built
 environment
 today.
23

 For
 the
 purpose
 of
 this
 study
 two
 of
 
ASHRAE’s
 standards
 were
 referenced
 in
 order
 to
 evaluate
 the
 process
 and
 the
 
results:
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23

 “ASHRAE”
 site:
 http://www.ashrae.org/about-­‐ashrae/.
 

  23
 

 
-­‐ ASHRAE
 62.1-­‐2010:
 
 “Standard
 for
 Ventilation
 for
 Acceptable
 Indoor
 Air
 
Quality”.
 This
 standard
 is
 used
 to
 ensure
 that
 the
 IAQ
 in
 buildings
 is
 
maintained
 to
 provide
 user
 comfort.
 It
 includes
 the
 outside
 airflow
 basis
 
that
 buildings
 need
 to
 have
 in
 order
 to
 comply,
 the
 ventilation
 rates
 
depending
 on
 the
 building
 use
 and
 size
 and
 maintenance
 guidelines
 for
 
the
 HVAC
 system
 (filter
 changes,
 damper
 and
 rain
 pans
 control).
 This
 
standard
 was
 used
 to
 understand
 how
 ambient
 air
 introduced
 into
 a
 
building
 should
 be
 treated
 through
 ventilation
 (mechanical
 or
 natural),
 in
 
order
 to
 provide
 a
 healthy
 environment
 for
 the
 occupants.
 
-­‐ ASHRAE
 52.2-­‐2007:
 
 “Method
 of
 Testing
 General
 Ventilation
 Air-­‐
Cleaning
 Devices
 for
 Removal
 Efficiency
 by
 Particle
 Size”.
 This
 standard
 
provides
 the
 guidelines
 for
 testing
 the
 efficiency
 of
 conventional
 filters
 
for
 removing
 particles
 from
 the
 ambient
 air
 when
 it
 is
 introduced
 into
 an
 
indoor
 space.
 Furthermore,
 it
 specifies
 the
 rating
 system
 used
 depending
 
on
 the
 efficiency
 of
 the
 filter
 and
 the
 particle
 size
 and
 based
 on
 that
 
system
 the
 filters
 needed
 for
 different
 building
 use.
 The
 standard
 was
 
used
 to
 understand
 the
 testing
 procedure
 that
 would
 be
 used
 for
 the
 
thesis,
 as
 well
 as
 a
 base
 to
 translate
 and
 validate
 the
 results
 in
 order
 to
 
determine
 the
 efficiency
 of
 the
 method
 proposed.
 

 

   
 

  24
 
1.6
 OBJECTIVES
 OF
 THE
 STUDY
 AND
 GOALS
 

 
The
 current
 project
 focuses
 on
 finding
 alternative
 ways
 of
 filtering
 ambient
 air
 in
 
urban
 environments,
 for
 increasing
 both
 the
 outdoor
 and
 indoor
 air
 quality,
 as
 these
 
two
 values
 are
 associated
 in
 many
 ways.
 More
 specifically,
 the
 study
 will
 focus
 on:
 

 
-­‐ Explore
 and
 evaluate
 an
 example
 process
 of
 phytoremediation
 as
 a
 possible
 
ambient
 air
 filtration
 method.
 
-­‐ The
 development
 of
 an
 experimental
 process
 to
 determine
 and
 quantify
 the
 
above.
 
-­‐ The
 architectural
 applications
 of
 this
 method,
 a
 vegetated
 façade
 as
 an
 air
 
filter.
 

 
1.7
 SCOPE
 OF
 WORK
 

 
This
 study
 will
 focus
 on
 examining
 whether
 a
 vegetated
 façade
 system
 can
 perform
 
as
 a
 passive
 air-­‐pollution
 filter.
 Through
 a
 physical
 model
 and
 the
 construction
 of
 a
 
test-­‐cell
 the
 amount
 of
 fine
 Particulate
 Matter
 withheld
 on
 by
 the
 vegetation
 will
 be
 
quantified.
 For
 different
 configurations
 the
 measurement
 results
 may
 vary.
 This
 
research
 can
 be
 separated
 into
 three
 major
 parts
 that
 will
 help
 develop
 the
 
methodology
 of
 the
 study.
 These
 parts
 are
 the
 literature
 study,
 the
 physical
 testing
 
and
 the
 analysis
 of
 the
 results.
 

 

   
 

  25
 
1.8
 CONCLUSIONS
 

 

 Air
 quality
 is
 an
 important
 factor
 for
 life
 quality
 in
 built
 environments.
 In
 order
 to
 
maintain
 the
 standards
 suggested
 by
 national
 organizations,
 architects
 need
 to
 take
 
them
 into
 account
 when
 designing.
 However
 in
 order
 to
 reduce
 the
 concentration
 of
 
pollutants
 in
 the
 air,
 either
 ambient
 or
 indoor,
 so
 far
 energy-­‐consuming
 methods
 are
 
mainly
 used.
 Furthermore
 the
 materials
 being
 used
 so
 far
 are
 usually
 not
 
environmental
 friendly
 and
 they
 also
 require
 energy
 to
 be
 recycled
 or
 disposed.
 

 
This
 thesis
 suggests
 a
 specific
 application
 of
 biological
 filtration
 that
 can
 be
 applied
 
on
 the
 building
 envelope
 and
 transform
 it
 into
 an
 air
 filter
 that
 will
 benefit
 both
 
ambient
 air
 and
 the
 IAQ
 through
 ventilation.
 The
 study
 emphasizes
 on
 the
 process
 
of
 phytoremediation
 that
 may
 be
 able
 to
 address
 the
 problem
 and
 contribute
 to
 its
 
solution.
 The
 proposed
 system
 may
 have
 different
 integration
 solutions
 to
 satisfy
 
the
 architectural
 and
 design
 needs
 of
 the
 buildings
 it
 may
 be
 applied
 on.
 

   
 
In
 the
 following
 chapter
 the
 basic
 principles
 of
 air
 filtration
 and
 phytoremediation
 
will
 be
 analyzed
 to
 support
 the
 methodology
 and
 thinking
 process
 of
 this
 study.
 

 

 

 

   
 

  26
 
Chapter
 Two:
 Background
 Research
 

 

 
Air
 quality
 is
 an
 important
 aspect
 both
 for
 the
 urban
 built
 environment,
 as
 well
 as
 
the
 spaces
 that
 humans
 occupy.
 As
 the
 problem
 of
 air
 pollution
 gets
 more
 severe
 it
 is
 
important
 for
 architects
 to
 consider
 the
 air
 quality
 of
 the
 spaces
 they
 design.
 In
 this
 
chapter
 background
 research
 on
 ambient
 air
 pollution,
 conventional
 air
 filtration
 
methods,
 phytoremediation
 as
 an
 alternative
 method
 of
 filtration
 and
 some
 
architectural
 applications
 are
 presented.
 
 

 
2.1
 AMBIENT
 AIR
 POLLUTION
 DATA
 

 
In
 order
 to
 have
 a
 better
 understanding
 of
 the
 existing
 conditions
 of
 ambient
 air
 
pollution
 in
 Los
 Angeles,
 especially
 in
 the
 Central
 Los
 Angeles
 area
 that
 is
 the
 area
 of
 
interest
 for
 the
 specific
 project,
 it
 was
 necessary
 to
 acquire
 data
 reporting
 the
 daily
 
values
 of
 fine
 Particulate
 Matter.
 These
 data
 are
 important
 for
 the
 study
 as
 they
 
provide
 a
 better
 insight
 of
 the
 specific
 pollutant’s
 highest
 levels
 and
 will
 help
 set
 the
 
metric
 and
 define
 what
 the
 anticipated
 results
 are.
 The
 data
 were
 taken
 from
 the
 Air
 
Quality
 Management
 District.
 

 

   
 

  27
 
2.1.1
 Air
 Quality
 Management
 District
 

 
The
 Air
 Quality
 Management
 District
 (AQMD)
 is
 a
 smog
 control
 agency
 for
 all
 of
 
Orange
 County
 and
 the
 urban
 portions
 of
 Los
 Angeles,
 Riverside
 and
 San
 Bernardino
 
counties,
 the
 smoggiest
 region
 of
 the
 U.S.
24

 The
 agency
 has
 sensors
 installed
 
throughout
 the
 areas
 mentioned
 above
 and
 provides
 hourly
 data
 for
 different
 
pollutants
 (Particulate
 Matter,
 CO,
 NO2
 and
 O3),
 as
 well
 as
 an
 Air
 Quality
 Index
 (AQI).
 
The
 index
 is
 used
 to
 define
 the
 daily
 air
 quality
 based
 on
 the
 health
 effects
 that
 it
 
may
 have
 on
 different
 demographics.
 The
 hourly
 data
 of
 fine
 Particulate
 Matter
 for
 
each
 day
 were
 averaged
 for
 each
 day
 to
 be
 compared
 with
 the
 NAAQS.
 

 
2.2
 CONVENTIONAL
 AIR
 FILTRATION
 

   
   
 
The
 way
 that
 air
 filtration
 has
 been
 handled
 so
 far
 has
 been
 through
 the
 HVAC
 
system
 of
 buildings
 by
 adding
 mediums
 that
 can
 withhold
 particles
 as
 the
 air
 flows
 
through
 them.
 Air
 filters
 are
 applied
 on
 almost
 all
 building
 types
 to
 prevent
 
pollutants
 entering
 the
 conditioned
 spaces.
 
 The
 basics
 of
 the
 materials,
 the
 metrics
 
and
 the
 energy
 consumption
 of
 filtering
 air
 through
 mechanical
 ventilation
 will
 be
 
explained
 below.
 

 

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24

 “Air
 Quality
 Management
 District”
 site,
 http://www.aqmd.gov.
 

  28
 
2.2.1
 Materials
 

 
Filters
 used
 in
 the
 building
 sector,
 for
 controlling
 Particulate
 Matter,
 are
 made
 from
 
fibrous
 materials
 that
 allow
 the
 particles
 to
 stick
 on
 them.
 The
 most
 common
 
materials
 that
 these
 filters
 are
 made
 of
 are
 pleated
 paper,
 foam
 and
 fiberglass
 
elements.
 

 
-­‐ Pleated
 Paper
 Filters.
 These
 filters
 consist
 of
 consecutive
 layers
 of
 paper.
 
They
 are
 semi-­‐permeable
 paper
 barriers
 placed
 perpendicular
 to
 airflow
 
in
 order
 to
 remove
 particles
 from
 the
 air.
 The
 material
 itself
 is
 quite
 
different
 from
 common
 paper.
 It
 is
 porous
 and
 it
 is
 manufactured
 from
 
long
 fibers
 in
 order
 to
 be
 able
 to
 withhold
 the
 particles.

 25

 
 These
 filters
 
are
 more
 common
 in
 the
 automotive
 industry,
 however
 there
 are
 
applications
 on
 buildings
 as
 well.
 The
 advantage
 of
 these
 filters
 is
 that
 
they
 have
 a
 larger
 total
 area
 compared
 to
 others
 and
 therefore
 can
 
capture
 a
 bigger
 amount
 of
 particles.
 
 
-­‐ Foam
 Filters.
 These
 filters
 are
 usually
 made
 from
 polyurethane
 foam.
 
Depending
 on
 the
 thickness
 foam
 filters
 can
 withhold
 smaller
 or
 larger
 
amounts
 of
 particles,
 with
 not
 much
 obstruction
 of
 the
 airflow.
 These
 
filters
 are
 also
 used
 in
 automotive
 and
 aeronautical
 industry,
 as
 well
 as
 in
 
buildings.
 The
 main
 disadvantage
 of
 this
 type
 of
 filter
 is
 the
 material
 that
 
it
 is
 manufactured
 from,
 as
 it
 is
 not
 environmental
 friendly.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25

 Definition
 from
 “Wikipedia”
 site,
 last
 modified
 on
 10
 March
 2013.
 http://en.wikipedia.org/wiki/Filter_paper.
 

  29
 
-­‐ Fiberglass
 Filters.
 
 Fiberglass
 filters
 are
 the
 most
 commonly
 used
 for
 
building
 applications.
 They
 are
 manufactured
 from
 spun
 fiberglass
 and
 
they
 are
 capable
 of
 withholding
 particles
 on
 their
 fibers.
 They
 are
 
disposable
 filters
 but
 amongst
 the
 three
 categories
 the
 most
 cost
 efficient
 
solution
 and
 that
 is
 the
 reason
 they
 are
 preferred.
 
 

 
Filters,
 depending
 on
 their
 shape
 can
 also
 be
 distinguished
 into
 bag,
 V-­‐bank
 and
 box
 
filters.
 
 

 

 
Figure
 2-­‐1:
 Image
 of
 a
 pleated
 paper
 air
 filter
26

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26

 Image
 source
 “Hickey
 Home
 Improvement”
 blog,
 http://shawnphickey.wordpress.com/2009/01/17/furnace-­‐
air-­‐filter/
 

  30
 

 
Figure
 2-­‐2:
 Image
 of
 a
 foam
 filter
27

 

 
Figure
 2-­‐3:
 Image
 of
 a
 fiberglass
 filters
28

 

 
2.2.2
 Metrics
 to
 measure
 effectiveness
 

 
According
 to
 ASHRAE
 52.2-­‐2007
 air-­‐filters’
 performance
 is
 determined
 by
 
measuring
 the
 particle
 counts
 upstream
 and
 downstream
 of
 the
 air-­‐cleaning
 device
 
being
 tested.
 
 The
 procedure
 for
 testing
 the
 filter
 is
 the
 following.
 The
 particles
 are
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27

 Image
 source
 “Home-­‐Air”
 blog,
 http://homeairnews.blogspot.com/2010/09/walmart-­‐home-­‐air-­‐filters.html
 
28

 Image
 source
 “Air
 Filters
 In.”
 site,
 http://www.filterace.com/images/Product/medium/663.jpg
 

  31
 
being
 separated
 into
 twelve
 different
 ranges
 according
 to
 their
 diameter.
 A
 
laboratory
 aerosol
 generator
 is
 used
 to
 produce
 a
 controlled
 aerosol
 sample.
 This
 
generator
 works
 similarly
 to
 a
 paint
 sprayer
 and
 the
 diameter
 of
 the
 particles
 
produced
 can
 be
 specified.
 The
 tests
 run
 for
 six
 cycles,
 for
 each
 particle
 range
 with
 a
 
total
 of
 72
 measurements.
 
 
 

 
For
  each
  measurement,
  the
  filtration
  efficiency
  is
  stated
  as
  a
  ratio
  of
  the
 
downstream-­‐to-­‐upstream
 particle
 count.
 The
 lowest
 values
 over
 the
 six
 test
 cycles
 are
 
then
 used
 to
 determine
 the
 Composite
 Minimum
 Efficiency
 Curve.
 Using
 the
 lowest
 
measured
 efficiency
 avoids
 the
 misinterpretation
 of
 averaging
 and
 provides
 a
 “worst
 
case”
 experience
 over
 the
 entire
 test.
29

 
 

 
After
 that
 the
 ranges
 are
 categorized
 into
 groups
 by
 four
 and
 the
 percentages
 for
 
each
 group
 are
 averaged
 to
 determine
 the
 Particles
 Size
 Efficiency
 (PSE).
30

 

 
The
 Minimum
 Efficiency
 Reporting
 Value
 (MERV)
 is
 the
 overall
 reporting
 value
 of
 
the
 testing
 results
 and
 it
 is
 related
 also
 to
 the
 speed
 velocity
 the
 tests
 were
 
conducted.
 To
 simplify
 the
 results
 the
 MERV
 is
 reported
 as
 a
 single
 number
 in
 a
 16
 
point
 system
 and
 it
 derives
 from
 the
 Particles
 Size
 Efficiency
 (PSE)
 for
 every
 group.
 
The
 tables
 below
 show
 the
 groups
 and
 particle
 size
 ranges
 and
 the
 MERV
 
parameters
 to
 determine
 a
 filter’s
 efficiency,
 according
 to
 ASHRAE
 52.2-­‐2007
 
(tables
 2-­‐1
 and
 2-­‐2):
 
   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29

 “National
 Air
 Filtration
 Association
 (NAFA)”
 site,
 http://www.nafahq.org/understanding-­‐merv/.
 
30

 “Allergy
 Clean
 Environments”
 site,
 http://allergyclean.com/article-­‐understandingmerv.htm.
 

  32
 
Table
 2-­‐1:
 ASHRAE
 52.2
 Particle
 Size
 Ranges
 
Range
  Size
 (in
 microns
 μm)
  Group
 
1
  From
 0.30μm
 to
 0.40μm
  E1
 
2
  From
 0.40μm
 to
 0.55μm
 
3
  From
 0.55μm
 to
 0.70μm
 
4
  From
 0.70μm
 to
 1.00
 μm
 
5
  From
 1.00μm
 to
 1.30μm
  E2
 
6
  From
 1.30μm
 to
 1.60μm
 
7
  From
 1.60μm
 to
 2.20μm
 
8
  From
 2.20μm
 to
 3.00μm
 
9
  From
 3.00μm
 to
 4.00μm
  E3
 
10
  From
 4.00μm
 to
 5.50μm
 
11
  From
 5.50μm
 to
 7.00μm
 
12
  From
 7.00μm
 to
 10.00μm
 

 

 
Table
 2-­‐2:
 ASHRAE
 52.2
 MERV
 Parameters
 
MERV
 Value
  Group
 E1
 (Av.
 Eff.
 %)
  Group
 E2
 (Av.
 Eff.
 %)
  Group
 E3
 (Av.
 Eff.
 %)
 
1
  N/A
  N/A
  E3
 <
 20
 
2
  N/A
  N/A
  E3
 <
 20
 
3
  N/A
  N/A
  E3
 <
 20
 
4
  N/A
  N/A
  E3
 <
 20
 
5
  N/A
  N/A
  20
 ≤
 E3
 <
 35
 
6
  N/A
  N/A
  35
 ≤
 E3
 <
 50
 
7
  N/A
  N/A
  50
 ≤
 E3
 <
 70
 
8
  N/A
  N/A
  70
 ≤
 E3
 
9
  N/A
  E2
 <
 50
  85
 ≤
 E3
 
10
  N/A
  50
 ≤
 E2
 <
 65
  85
 ≤
 E3
 
11
  N/A
  65
 ≤
 E2
 <
 80
  85
 ≤
 E3
 
12
  N/A
  80
 ≤
 E2
  90
 ≤
 E3
 
13
  E1
 <
 75
  90
 ≤
 E2
  90
 ≤
 E3
 
14
  75
 ≤
 E1
 <
 85
  90
 ≤
 E2
  90
 ≤
 E3
 
15
  85
 ≤
 E1
 <
 95
  90
 ≤
 E2
  90
 ≤
 E3
 
16
  95
 ≤
 E1
  95
 ≤
 E2
  90
 ≤
 E3
 

 

  33
 

 
The
 air
 velocities
 for
 which
 the
 tests
 are
 conducted
 are
 also
 standardized
 and
 must
 
be
 stated
 when
 the
 filters
 MERV
 is
 reported.
 These
 velocities
 are
 the
 following,
 
according
 to
 ASHRAE
 52.2-­‐2007:
 

 
-­‐ 118
 FPM
 (0.60
 m/s)
 
-­‐ 246
 FPM
 (1.25
 m/s)
 
-­‐ 295
 FPM
 (1.50
 m/s)
 
-­‐ 374
 FPM
 (1.90
 m/s)
 
-­‐ 492
 FPM
 (2.50
 m/s)
 
-­‐ 630
 FPM
 (3.20
 m/s)
 
-­‐ 748
 FPM
 (3.80
 m/s)
 

 
The
 filter’s
 effectiveness
 is
 then
 reported
 as
 a
 MERV
 value
 at
 an
 airflow
 rate
 (e.g.
 
MERV
 10
 @295
 FPM)
 
 

   
 
ASHRAE
 62.1-­‐2010
 has
 set
 some
 guidelines
 for
 the
 filters
 used
 to
 remove
 
Particulate
 Matter
 in
 general
 and
 for
 areas
 were
 the
 measured
 concentration
 of
 
Particulate
 Matter
 exceeds
 the
 National
 Ambient
 Air
 Quality
 Standards.
 These
 
guidelines
 will
 be
 useful
 for
 the
 study,
 as
 they
 will
 establish
 a
 comparison
 basis
 for
 
the
 anticipated
 results.
 
 

 

  34
 
-­‐ Particulate
 Matter
 Removal.
 Particulate
 matter
 filters
 or
 air
 cleaners
 
having
 a
 minimum
 efficiency
 reporting
 value
 (MERV)
 of
 not
 less
 than
 6
 
when
 rated
 in
 accordance
 with
 ANSI/ASHRAE
 52.2
 shall
 be
 provided
 
upstream
 of
 all
 cooling
 coils
 or
 other
 devices
 with
 wetted
 surfaces
 
through
 which
 air
 is
 supplied
 to
 an
 occupiable
 space.
 
-­‐ Particulate
 Matter
 Smaller
 than
 10
 μm.
 (PM10).
 When
 the
 building
 is
 
located
 in
 an
 area
 where
 the
 national
 standard
 or
 guideline
 for
 PM10
 is
 
exceeded,
 particle
 filters
 or
 air
 cleaning
 devices
 shall
 be
 provided
 to
 clean
 
the
 outdoor
 air
 at
 any
 location
 prior
 to
 its
 introduction
 to
 occupied
 
spaces.
 Particulate
 matter
 filters
 or
 air
 cleaners
 shall
 have
 a
 Minimum
 
Efficiency
 Reporting
 Value
 of
 6
 or
 higher
 when
 rated
 in
 accordance
 with
 
ANSI/ASHRAE
 Standard
 52.2.
 
-­‐ Particulate
 Matter
 Smaller
 than
 2.5
 μm.
 (PM2.5).
 When
 the
 building
 is
 
located
 in
 an
 area
 where
 the
 national
 standard
 or
 guideline
 for
 PM2.5
 is
 
exceeded,
 particle
 filters
 or
 air
 cleaning
 devices
 shall
 be
 provided
 to
 clean
 
the
 outdoor
 air
 at
 any
 location
 prior
 to
 its
 introduction
 to
 occupied
 
spaces.
 Particulate
 matter
 filters
 or
 air
 cleaners
 shall
 have
 a
 Minimum
 
Efficiency
 Reporting
 Value
 of
 11
 or
 higher
 when
 rated
 in
 accordance
 with
 
ANSI/ASHRAE
 Standard
 52.2.
 

 

   
 

  35
 
2.2.3
 MERV
 and
 HEPA
 filters
 

 
The
 table
 below
 shows
 the
 efficiency,
 application
 of
 the
 different
 MERV
 type
 filters
 
(table
 2-­‐3):
 

 
Table
 2-­‐3:
 Applications
 and
 Filter
 Types
 According
 to
 MERV
 Rating
31

 
MERV
 Rating
  Efficiency
  Particle
 Size
  Applications
  Filter
 Type
 
1-­‐4
  <20%
  >10μm
  Residential
 
Light
 Commercial
 
Equipment
 
Fiberglass
 
Poly
 Panel
 
Permanent
 
Metal
 
 
Foam
 
5-­‐8
  20%
 to35%
  3μm
 to
 10μm
  Commercial
 
Industrial
 
Better
 Residential
 
Paint
 Booth
 
Pleated
 Filters
 
Tackified
 
9-­‐12
  40%
 to
 75%
  1μm
 to
 3μm
  Residential
 –
 Best
 
Commercial
 
Telecommunications
 
Industrial
 
Best
 Pleated
 
Rigid
 Box
 
Rigid
 Cell
 
Bag
 
13-­‐16
  80%
 to
 95%
  0.3μm
 to
 1μm
  Smoke
 Removal
 
General
 Surgery
 
Hospitals
 
Health
 Care
 
Superior
 Comm.
 
Rigid
 Cell
 
Bags
 
V-­‐Cell
 
Mini-­‐Pleat
 

 

 
As
 mentioned
 above,
 MERV
 is
 a
 rating
 system
 that
 is
 used
 for
 evaluating
 the
 
efficiency
 of
 an
 air
 filter.
 The
 highest
 the
 MERV
 rate
 the
 better
 the
 effectiveness.
 The
 
HEPA
 filters
 are
 High
 Efficiency
 Particulate
 Arresting
 air
 filters
 and
 are
 used
 for
 
maintaining
 air
 quality
 in
 many
 building
 types
 (commercial,
 medical,
 industrial,
 
residential)
 but
 also
 in
 other
 industries
 like
 the
 automotive
 or
 the
 aeronautical.
 
 
HEPA
 filters
 are
 filters
 with
 a
 MERV
 between
 17
 and
 19.
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31

 Ibid.
 

  36
 
2.2.4
 Energy
 Consumption
 

 

 The
 energy
 consumed
 when
 filtering
 air
 is
 mainly
 the
 energy
 needed
 to
 move
 the
 
air
 through
 the
 ducts
 with
 a
 constant
 velocity
 and
 that
 needed
 to
 overcome
 the
 
pressure
 drop
 across
 the
 filter.
 Essentially
 the
 energy
 needed
 to
 move
 air
 through
 the
 
filter.
32

 At
 this
 point,
 the
 difference
 between
 ventilation
 and
 infiltration
 must
 be
 
defined.
 Ventilation,
 as
 defined
 earlier
 is
 the
 is
 the
 process
 of
 supplying
 air
 to
 or
 
removing
 air
 from
 a
 space
 for
 the
 purpose
 of
 controlling
 air
 contaminant
 levels,
 
humidity
 or
 temperature
 within
 the
 space.
 Infiltration
 on
 the
 other
 hand
 is
 the
 
uncontrolled
 inward
 air
 leakage
 to
 conditioned
 spaces
 through
 unintentional
 openings
 
in
 ceilings,
 floors
 and
 walls
 from
 unconditioned
 spaces
 or
 the
 outdoors
 caused
 by
 the
 
same
 pressure
 differences
 that
 induce
 exfiltration.
33

 Infiltration
 has
 a
 very
 important
 
role
 in
 ventilation.
 Leakages
 can
 increase
 the
 energy
 consumption
 of
 a
 ventilating
 
system,
 not
 only
 in
 the
 effort
 of
 maintaining
 a
 constant
 temperature
 in
 a
 space,
 but
 
also
 and
 more
 importantly,
 as
 it
 can
 allow
 ambient
 air
 contaminants
 to
 enter
 the
 
ventilated
 space.
 Since
 the
 contaminants
 are
 added
 to
 the
 ones
 already
 existing
 in
 
the
 space,
 the
 need
 for
 air
 changes
 increases
 and
 it
 results
 increased
 energy
 
consumption
 of
 the
 mechanical
 ventilating
 system.
 

   
 
Another
 reason
 why
 mechanical
 ventilation
 can
 increase
 the
 energy
 consumption
 of
 
a
 building
 is
 improper
 maintenance.
 Even
 though,
 as
 mentioned
 above,
 the
 
efficiency
 of
 air
 filters
 may
 improve
 over
 time,
 as
 particles
 are
 being
 withheld
 on
 the
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32

 Beko,
 Gabriel
 et
 al.
 2008.
 “Is
 the
 use
 of
 particle
 filtration
 justified?
 Costs
 and
 benefits
 of
 filtration
 with
 regard
 
to
 health
 effects,
 building
 cleaning
 and
 occupant
 productivity”,
 Building
 and
 Environment
 43,
 pp.
 1647-­‐1657.
 
33

 Definition
 form
 ASHRAE
 62.2-­‐2007,
 page
 4.
 

  37
 
fibrous
 material
 it
 is
 only
 up
 to
 a
 point
 that
 this
 can
 work
 in
 the
 advantage
 of
 the
 
filtration
 system.
 If
 the
 filter
 is
 not
 properly
 cleaned
 and
 maintained,
 the
 amount
 of
 
energy
 needed
 to
 overcome
 the
 pressure
 drop
 across
 the
 installed
 filter
 and
 to
 
maintain
 the
 airflow
 at
 desired
 levels
 after
 a
 point
 only
 increases.
 It
 also
 makes
 
sense
 that
 the
 larger
 the
 building,
 the
 larger
 the
 mechanical
 ventilation
 system
 and
 
therefore
 the
 bigger
 the
 energy
 consumption
 of
 the
 system.
 Energy
 consumption
 of
 
a
 filter,
 according
 to
 James
 F.
 Montgomery
 et
 al.
 (2012)
34

 may
 also
 be
 dependent
 on
 
the
 filters
 category
 by
 shape
 (box,
 V,
 bag)
 and
 the
 MERV
 rating,
 with
 the
 most
 
efficient
 the
 V-­‐shaped
 filters
 for
 each
 corresponding
 MERV.
 

 
According
 to
 the
 National
 Air
 Filtration
 Association
 the
 total
 cost
 of
 air
 filtration
 can
 
be
 described
 as
 follows
 (figure
 2-­‐4):
 

 

 

 
Figure
 2-­‐4:
 Air
 Filters
 Cost
 Breakdown
35

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34

 James
 F.
 Montgomery
 et
 al.
 2012.
 “Predicting
 the
 energy
 use
 and
 operation
 of
 HVAC
 air
 filters”,
 Energy
 and
 
Buildings
 47,
 pp.
 
 643-­‐650.
 
35

 Image
 source
 “National
 Air
 Filtration
 Association
 (NAFA)”
 site
 http://www.nafahq.org/pressure-­‐drop-­‐
considerations-­‐in-­‐air-­‐filtration/
 

  38
 
It
 is
 obvious
 that
 the
 biggest
 cost
 for
 running
 filters
 in
 mechanical
 ventilation
 
systems
 is
 the
 energy
 consumed,
 followed
 by
 the
 maintenance
 or
 disposal
 expenses.
 
The
 main
 cause
 of
 energy
 consumption
 is
 as
 mentioned
 above
 the
 pressure
 drop
 
from
 one
 side
 of
 the
 filter
 to
 the
 other
 and
 maintain
 the
 appropriate
 airflow
 in
 the
 
duct.
 However,
 these
 apply
 only
 to
 mechanical
 ventilation,
 as
 natural
 ventilation
 
does
 not
 require
 the
 use
 of
 mechanical
 parts
 e.g.
 fans.
 
 

 
2.3
 COURSE
 OF
 PARTICULATE
 MATTER
 IN
 URBAN
 STREET
 CANYONS
 

 
Another
 important
 aspect
 for
 addressing
 air
 pollution
 in
 the
 urban
 built
 
environment
 is
 the
 course
 of
 Particulate
 Matter
 in
 urban
 street
 canyons.
 The
 design
 
of
 the
 proposed
 system
 should
 be
 taking
 into
 consideration
 these
 tracks
 in
 order
 to
 
provide
 practical
 applications.
 
 

 
According
 to
 Thomas
 A.M.
 Pugh
 et
 al.
 (2012)
 urban
 street
 canyons
 are
 poorly
 
ventilated
 which
 results
 to
 high
 concentration
 of
 air
 pollutants
 due
 to
 the
 fact
 that
 
air
 recirculates
 in
 these
 areas
 and
 is
 not
 exchanged
 with
 cleaner.
 In
 urban
 street
 
canyons
 the
 emissions
 from
 automobiles
 increases
 the
 problem,
 even
 though
 the
 
pollutants
 from
 these
 sources
 are
 reduced
 by
 dispersion,
 this
 is
 limited
 at
 the
 street-­‐
level
 by
 in-­‐canyon
 air
 recirculation
 and
 low
 wind
 speeds.
36

 
 Through
 Computational
 
Fluid
 Dynamics
 simulations
 the
 tracks
 of
 pollutants
 are
 shown
 in
 the
 following
 
diagram
 (figure
 2-­‐5).
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36

 Pugh,
 Thomas
 A.M.
 et
 al.
 2012.
 ”Effectiveness
 of
 Green
 Infrastructure
 for
 Improvement
 of
 Air
 Quality
 in
 Urban
 
Street
 Canyons”,
 Environmental
 Science
 and
 Technology
 46,
 pp.
 7692-­‐7699.
 

  39
 

 

 
Figure
 2-­‐5:
 Air
 Pollutant
 Tracks
 in
 Urban
 Street
 Canyons
37

 

   
 
From
 this
 diagram
 it
 can
 be
 concluded
 that
 the
 vertical
 surfaces
 of
 buildings
 can
 
potentially
 accept
 a
 large
 amount
 of
 particles.
 A
 percentile
 of
 the
 pollutants
 also
 
passes
 above
 the
 canyon
 through
 the
 roof
 levels.
 

 
So
 far
 the
 basics
 of
 mechanical
 ventilation
 and
 air
 filtration
 have
 been
 explained
 
along
 with
 the
 main
 concerns
 why
 this
 method
 of
 filtering
 air
 might
 not
 be
 as
 energy
 
efficient,
 or
 environmentally
 friendly
 as
 possible.
 This
 study
 proposes
 a
 method
 for
 
turning
 the
 vertical
 surfaces
 of
 a
 building
 into
 filtration
 mediums
 through
 the
 
method
 of
 phytoremediation.
 The
 basic
 principles
 of
 phytoremediation
 along
 with
 
some
 research
 and
 architectural
 case
 studies
 are
 presented
 in
 the
 following
 section.
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37

 Image
 source
 
 “InTech”
 site,
 http://www.intechopen.com/source/html/16145/media/image4.png
 

  40
 
2.4
 PHYTOREMEDIATION
 

 
The
 method
 proposed,
 applied
 and
 tested
 in
 this
 study
 is
 phytoremediation.
 This
 
method
 was
 chosen
 because
 it
 is
 a
 sustainable
 way
 of
 filtering
 contaminants.
 It
 does
 
not
 require
 the
 amount
 of
 energy
 as
 conventional
 air
 purification
 trough
 filters
 and
 
the
 materials
 used
 are
 far
 less
 harmful
 to
 the
 environment,
 as
 they
 do
 not
 have
 
embodied
 energy
 or
 demand
 energy
 to
 be
 recycled
 or
 disposed.
 Furthermore
 it
 is
 a
 
method
 that
 is
 aesthetically
 pleasing,
 especially
 when
 it
 has
 architectural
 
applications
 and,
 as
 mentioned
 above,
 it
 can
 also
 benefit
 buildings
 in
 several
 other
 
ways.
 

 
Phytoremediation
 is
 the
 use
 of
 plants
 and
 their
 associated
 microbes
 for
 
environmental
 cleanup.
 
38

 That
 may
 refer
 to
 soil
 cleanup,
 water
 cleanup
 or
 air
 
cleanup.
 Different
 parts
 or
 biological
 operations
 of
 the
 plant
 can
 perform
 the
 
cleaning
 process.
 Each
 of
 these
 represents
 a
 different
 type
 of
 phytoremediation
 that
 
can
 be
 divided
 into
 the
 following
 categories.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38

 Elizabeth
 Pilon-­‐Smits,
 2005.“Phytoremediation,
 Annual
 Review
 of
 Plant
 Biology”,
 Vol.
 56, pp 15–39.
 

  41
 

 
Figure
 2-­‐6:
 Categories
 of
 Phytoremediation
 according
 to
 the
 different
 part
 of
 the
 plant
 that
 are
 
responsible
39

 
2.4.1
 Phytofiltration
 

 
Phytofiltration
 is
 the
 process
 of
 using
 the
 morphological
 characteristics
 of
 plants
 to
 
trap
 or
 capture
 Particulate
 Matter
 from
 ambient
 air.
40

 These
 may
 include
 the
 leaf
 
morphology
 and
 surface
 area,
 the
 foliage
 orientation
 or
 the
 bark
 of
 the
 plant.
 
2.4.2
 Phytovolatalization
 

 
Phytovolatilization
 refers
 to
 the
 uptake
 and
 transpiration
 of
 contaminants,
 primarily
 
organic
 compounds,
 by
 plants.
 The
 contaminant,
 present
 in
 the
 water,
 or
 soil,
 is
 
taken
 up
 by
 the
 plant,
 passes
 through
 the
 plant
 or
 is
 modified
 by
 the
 plant,
 and
 is
 
released
 to
 the
 atmosphere
 (evaporates
 or
 vaporizes).
41

 This
 type
 of
 
phytoremediation
 is
 mainly
 used
 for
 removing
 heavy
 metals
 from
 soil
 or
 water.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39

 Image
 source:
 Yang,
 Hua
 and
 Liu,
 Yanju.
 2011.
 “The
 Impact
 of
 Air
 Pollution
 on
 Health,
 Economy,
 Environment
 
and
 Natural
 Sources,
 Chapter
 13:
 Phytoremediation
 on
 Air
 Pollution”,
 Dr.
 Mohamed
 Khallaf
 (Ed.)
 In
 Tech
 
Publications.
 
40

 Yang,
 Hua
 and
 Liu,
 Yanju,
 “The
 Impact
 of
 Air
 Pollution
 on
 Health,
 Economy,
 Environment
 and
 Natural
 Sources,
 
Chapter
 13:
 Phytoremediation
 on
 Air
 Pollution”,
 Dr.
 Mohamed
 Khallaf
 (Ed.)
 In
 Tech
 Publications.
 
41

 “University
 of
 Hawaii
 System”
 site,
 http://www.hawaii.edu/abrp/Technologies/phyvola.html
 

  42
 
2.4.3
 Phytodegradation,
 Phytoextraction,
 Rhizofiltration.
 

 
Phytodegradation
 is
 the
 breakdown
 of
 contaminants
 taken
 up
 by
 plants
 through
 
metabolic
 processes
 within
 the
 plant
 or
 the
 breakdown
 of
 contaminants
 
surrounding
 the
 plant
 through
 the
 effect
 of
 compounds
 (such
 as
 enzymes)
 produced
 
by
 the
 plants.
42

 This
 method
 is
 used
 mainly
 to
 control
 herbicides,
 ammunition
 waste
 
and
 chlorinated
 solvents.
 

 
Phytoextraction,
 also
 called
 phytoaccumulation,
 refers
 to
 the
 uptake
 of
 metals
 from
 
soil
 by
 plant
 roots
 into
 aboveground
 portions
 of
 plants.
43

 The
 plants
 used
 for
 this
 
method
 are
 usually
 “hyperaccumulators”
44

 which
 means
 they
 can
 uptake
 larger
 
amounts
 of
 contaminants
 compared
 to
 other
 species.
 This
 method
 is
 mainly
 used
 for
 
soil
 cleanup
 from
 metals.
 
 

 
Rhizofiltration,
 is
 the
 removal
 by
 plant
 roots
 of
 contaminants
 in
 surface
 water,
 
wastewater,
 or
 extracted
 ground
 water,
 through
 adsorption
 or
 precipitation
 onto
 
the
 roots,
 or
 absorption
 into
 the
 roots.
45

 
2.4.4
 Rhizoremediation
 

 
Rhizoremediation
 or
 rhizodegradation
 is
 the
 breakup
 of
 pollutants
 by
 bacteria,
 
microbes
 and
 other
 microorganisms
 located
 in
 the
 root
 system
 of
 a
 plant.
 This
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42

 “Biology
 Online”
 site,
 last
 updated
 on
 June
 23,
 2008.
 http://www.biology-­‐
online.org/articles/phytoremediation-­‐a-­‐lecture/phytodegradation.html
 
43

 “United
 Nations
 Environment
 Program”
 site,
 
http://www.unep.or.jp/ietc/publications/freshwater/fms2/2.asp
 
44

 Wendy
 Ann
 Peer
 et
 al.
 2006
 “Molecular
 Biology
 of
 Homeostasis
 and
 Detoxification:
 Phytoremediation
 and
 
hyperaccumulator
 plants”,
 Topics
 in
 Current
 Genetics,
 Vol.14,
 pp.
 229-­‐340.
 
45

 Pivetz.
 Bruce
 E.
 2011.
 “Phytoremediation
 of
 Contaminated
 Soil
 and
 Ground
 Water
 at
 Hazardous
 Waste
 Sites”,
 
EPA/540/S-­‐01/500.
 

  43
 
method
 is
 used
 to
 treat
 pollutants,
 mostly
 organic
 compounds
 that
 are
 hydrophobic
 
and
 therefore
 cannot
 enter
 the
 plant.
46

 

 
The
 study
 will
 focus
 on
 examining
 phytofiltration
 as
 a
 possible
 filtering
 method
 and
 
the
 potential
 effectiveness
 of
 a
 vegetated
 façade
 to
 reduce
 the
 levels
 of
 Fine
 
Particulate
 Matter
 through
 this
 process.
 
 

 
2.5
 DRY
 DEPOSITION
 AS
 PART
 OF
 THE
 PHYTOREMEDIATION
 PROCESS
 

 
Another
 process
 that
 needs
 to
 be
 mentioned
 and
 is
 part
 of
 the
 phytofiltration
 
process
 is
 dry
 deposition.
 
 
“Dry
 deposition
 is
 the
 process
 by
 which
 atmospheric
 trace
 chemicals
 are
 
transferred
 by
 air
 motions
 to
 the
 surface
 of
 the
 Earth.
 Gravitational
 settling
 affects
 
deposition
 of
 particles,
 especially
 those
 larger
 than
 a
 few
 micrometers
 in
 diameter.
 
Emission
 of
 gases
 and
 particles
 from
 the
 surface
 can
 be
 the
 major
 factor
 in
 the
 dry
 air
 
surface
 exchange
 of
 some
 gases
 and
 particles.”
47

 

 
 

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
“Colorado
 State
 University”
 site,
 
http://rydberg.biology.colostate.edu/Phytoremediation/2008%20websites/Alford%20Phytostimulation%20W
ebpage/rhizoremediation.htm.
 
47

 Wesely
 M.L.
 and
 B.B.
 Hicks.
 2000.
 “A
 review
 of
 the
 current
 status
 of
 knowledge
 on
 dry
 deposition”,
 
Atmospheric
 Environment
 34,
 pp.
 2261-­‐2282.
 

  44
 
The
 particles
 that
 are
 deposited
 on
 the
 plant
 surfaces
 can
 then
 be
 absorbed
 by
 the
 
stomata
 of
 the
 plants
 and
 be
 broken
 down
 by
 its
 metabolism
 (phytovolitalization).
 It
 
is
 phytofiltration
 that
 particulate
 matter
 in
 air
 is
 reduced
 through
 the
 surface
 of
 
plants.
48

 
 

 
2.6
 THE
 FACADE
 AS
 A
 FILTRATION
 SURFACE
 

   
 
The
 building
 envelope
 is
 the
 component
 of
 a
 building
 that
 is
 in
 continuous
 contact
 
with
 the
 exterior
 environmental
 conditions.
 Its
 function
 is
 very
 similar
 to
 the
 human
 
skin;
 it
 should
 protect
 the
 interior
 to
 ensure
 that
 the
 building
 is
 operating
 smoothly,
 
but
 at
 the
 same
 time
 it
 should
 be
 able
 to
 filter
 exterior
 elements,
 like
 daylight
 or
 
ventilation,
 and
 allow
 them
 to
 penetrate
 the
 interior
 to
 only
 improve
 the
 interior
 
conditions.
 The
 filtering
 should
 be
 happening
 to
 benefit
 the
 building,
 and
 similar
 to
 
the
 human
 body,
 regulate
 the
 energy
 that
 under
 other
 circumstances
 would
 be
 
required
 to
 maintain
 the
 occupants
 comfort.
 
 

 
Air
 pollution
 is
 an
 issue
 that
 must
 be
 constantly
 be
 addressed
 in
 urban
 centers.
 The
 
conventional
 methods
 are
 energy
 consuming
 and
 usually
 not
 environmental
 
friendly.
 Since
 the
 facades
 are
 already
 being
 used
 to
 regulate
 the
 buildings
 
operations
 in
 matters
 of
 day
 lighting,
 energy
 consumption,
 or
 acoustics
 it
 makes
 
sense
 that
 they
 can
 also
 be
 used
 as
 a
 filter
 for
 improving
 air
 quality.
 Architects
 have
 
employed
 green
 roofs
 for
 attempting
 to
 address
 this
 issue.
 However,
 research
 has
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48

 Hua
 Yang
 and
 Yanju
 Lie.
 2011.
 “Phytoremediation
 on
 Air
 Pollution:
 The
 Impact
 of
 Air
 Pollution
 on
 Health
 
Economy,
 Environment
 and
 Agricultural
 Sources”,
 Dr.
 Mohamed
 Khallaf
 (Ed.)
 In
 Tech
 Publications.
 

  45
 
shown
 that
 even
 when
 the
 total
 surface
 area
 of
 all
 the
 roofs
 in
 the
 built
 environment
 
is
 used,
 this
 can
 only
 contribute
 slightly
 to
 alleviating
 the
 problem.
 This
 makes
 sense
 
when
 looking
 at
 the
 air
 pollution
 tracks
 in
 an
 urban
 street
 canyon,
 as
 green
 roofs
 fail
 
to
 address
 the
 amount
 of
 air
 recirculating
 in
 them,
 trapped
 between
 buildings.
 
Green
 roofs
 can
 be
 used
 to
 treat
 roof
 level
 air
 streams.
 
 But
 for
 the
 air
 circulating
 in
 
urban
 street
 canyons
 it
 is
 obvious
 that
 the
 vertical
 surface
 of
 a
 building
 should
 also
 
be
 employed.
 Furthermore
 since
 green
 roofs
 have
 been
 found
 to
 have
 an
 effect
 in
 
treating
 air
 pollution
 but
 not
 enough
 surface
 area,
 it
 makes
 sense
 to
 try
 to
 engage
 
the
 entire
 surface
 of
 the
 building
 envelope.
 The
 total
 area
 of
 the
 vertical
 surfaces
 of
 a
 
building
 is
 usually
 much
 larger
 than
 the
 area
 of
 the
 roof
 by
 itself,
 a
 fact
 that
 makes
 
façades
 a
 great
 possible
 solution
 in
 treating
 air
 pollution.
 

 
The
 technology
 of
 turning
 facades
 into
 vegetated
 surfaces
 has
 advanced
 and
 offers
 
many
 different
 options
 for
 the
 architect.
 Apart
 from
 the
 visual
 pleasing
 effect
 that
 a
 
green
 surface
 might
 provide
 for
 the
 occupants
 of
 the
 built
 environment,
 it
 is
 
possible
 that
 through
 biological
 processes
 (phytoremediation)
 the
 plants
 used
 can
 
also
 contribute
 into
 increasing
 air
 quality.
 Below
 are
 presented
 the
 results
 of
 some
 
research
 conducted
 to
 determine
 the
 effects
 of
 different
 phytoremediation
 types,
 as
 
well
 as
 some
 architectural
 suggestions
 for
 utilizing
 this
 process.
 

 

   
 

  46
 
2.7
 PREVIOUS
 RESEARCH
 

 
The
 effectiveness
 of
 dry
 deposition
 depends
 on
 the
 configuration
 of
 the
 surface
 that
 
it
 is
 happening.
 According
 to
 Thomas
 A.M.
 Pugh,
 et
 al.
 (2012)
 vertical
 vegetated
 
surfaces
 in
 urban
 street
 canyons
 can
 contribute
 significantly
 into
 reducing
 the
 
amount
 of
 certain
 pollutants,
 NO2
 and
 Particulate
 Matter.
 The
 researchers
 
developed
 a
 mathematical
 model
 and
 used
 Computational
 Fluid
 Dynamics
 (CFD)
 
simulation
 in
 order
 to
 determine
 the
 concentrations
 and
 courses
 of
 particles
 in
 
urban
 street
 canyons.
 CiTTy-­‐Street,
 another
 mathematical
 model,
 was
 used
 to
 
calculate
 the
 deposition
 of
 particles
 on
 the
 vegetated
 facades.
 Taking
 into
 account
 
different
 sizing
 scenarios
 of
 surfaces
 the
 study
 tried
 to
 estimate
 the
 deposition
 
velocities
 of
 the
 pollutants
 on
 them.
 The
 term
 of
 deposition
 velocity
 in
 aerosol
 
physics
 is
 defined
 as
 process
 by
 which
 aerosol
 particles
 collect
 or
 deposit
 
themselves
 on
 solid
 surfaces
 decreasing
 their
 concentration
 in
 the
 air.
 
49

 The
 
amount
 of
 particles
 withheld
 onto
 vegetated
 surfaces
 is
 proved
 to
 be
 considerably
 
larger
 (from
 15%
 to
 23%)
 compared
 to
 brick
 walls,
 depending
 on
 the
 wind
 velocity.
 
This
 research
 also
 suggest
 that
 vegetated
 vertical
 surfaces
 consist
 a
 much
 more
 
effective
 way
 of
 controlling
 these
 contaminants
 compared
 to
 horizontal
 surfaces
 
(green
 roofs).
 
50

 
Similar
  studies
  have
  been
  done
  toward
  that
  direction
  to
  explore
  the
 
phytoremediation
 properties
 of
 plants
 for
 treating
 air
 pollutants.
 Hua
 Yang
 et
 al.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49

 “Wikipedia”
 site,
 last
 modified
 on
 27
 March,
 2013.
 
http://en.wikipedia.org/wiki/Deposition_(aerosol_physics)
 
50

 Pugh,
 Thomas
 A.M.
 et
 al.
 2012.
 ”Effectiveness
 of
 Green
 Infrastructure
 for
 Improvement
 of
 Air
 Quality
 in
 Urban
 
Street
 Canyons”,
 Environmental
 Science
 and
 Technology
 46,
 pp.
 7692-­‐7699.
 

  47
 
(2011)
  tried
  to
  determine
  the
  removal
  of
  benzene
  and
  toluene,
  a
  benzene
  bi-­‐
product,
 by
 using
 various
 species
 of
 ornamental
 houseplants
 by
 the
 process
 of
 
phytoremediation.
 These
 gases
 are
 common
 indoor
 air
 pollutants
 and
 are
 classified
 
as
 Volatile
 Organic
 Compounds.
 
 The
 experiment
 included
 eight
 cylindrical
 Plexiglas
 
chambers
 where
 the
 gases
 were
 carried
 through
 pipes.
 The
 results
 showed
 that
 the
 
plants
 were
 able
 to
 remove
 more
 than
 30%
 of
 the
 hazardous
 gases
 at
 a
 6-­‐hour
 
sampling,
 depending
 on
 the
 concentration
 level
 at
 the
 beginning
 of
 the
 experiment
 
and
 the
 total
 leaf
 area.
51

 
Another
 research
 by
 Sharyn
 E.
 Gaskin
 et
 al.
 (2010)
 tested
 the
 rhizoremediation
 
properties
  of
  various
  species
  of
  Australian
  grasses
  for
  removing
  hydrocarbons,
 
coming
 from
 diesel
 oil.
 
 For
 this
 experiment,
 a
 mix
 of
 diesel
 oil
 and
 engine
 fuel
 with
 
soil
 that
 would
 represent
 the
 concentration
 of
 these
 chemicals
 into
 soil
 located
 near
 
a
 mine
 site.
 Native
 perennial
 grasses
 seeds
 where
 chosen
 for
 the
 experiment
 and
 
planted
 into
 the
 contaminated
 soil.
 Sampling
 of
 rhizosphere
 soil
 was
 conducted
 
periodically
 for
 a
 total
 of
 100
 days.
 
 The
 results
 showed
 that,
 depending
 on
 the
 grass
 
species
 there
 was
 efficiency
 up
 to
 88%
 of
 removing
 the
 chemicals
 within
 the
 first
 
two
 weeks
 of
 the
 experiment.
52

 Other
 studies
53

 have
 also
 indicated
 that
 other
 grass
 
types,
 like
 rye
 grass,
 are
 able
 to
 effectively
 remove
 oil
 contaminants
 from
 soil.
 
 

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51

 Hua
 Yang
 and
 Yanju
 Lie.
 2011.
 “Phytoremediation
 on
 Air
 Pollution:
 The
 Impact
 of
 Air
 Pollution
 on
 Health
 
Economy,
 Environment
 and
 Agricultural
 Sources”,
 Dr.
 Mohamed
 Khallaf
 (Ed.)
 In
 Tech
 Publications.
 
52

 Sharyn
 E.
 et
 al.
 2010.
 “Rhizoremediation
 of
 hydrocarbon
 contaminated
 soil
 using
 Australian
 native
 grasses”,
 
Science
 of
 Total
 Environment
 408,
 pp.
 3683-­‐3688.
 
53

 Voulliamoz
 J.
 and
 Mike
 M.
 2001.
 “Effect
 of
 compost
 in
 phytoremediation
 of
 diesel-­‐contaminated
 soils”,
 Water
 
Science
 Technology,
 43,
 pp.
 291-­‐5.
 

 

  48
 
The
 Central
 Pollution
 Control
 Board
 of
 Delhi
 published
 in
 2007
 published
 a
 research
 
study
  exploring
  the
  phytoremediation
  of
  particulate
  matter
  through
  the
  dust
 
capturing
 ability
 of
 native
 outdoors
 plant
 species.
 The
 study
 evaluated
 the
 dust
 
deposition
 ability
 of
 different
 plants
 in
 several
 categories,
 herbs,
 shrubs
 and
 trees,
 
throughout
  the
  year.
  The
  sites
  selected
  were
  located
  in
  areas
  with
  high
 
concentrations
 of
 Particulate
 Matter
 in
 the
 ambient
 air,
 near
 factories,
 mines,
 and
 in
 
areas
  with
  heavy
  traffic.
  The
  methodology
  used
  in
  this
  study
  to
  evaluate
  the
 
phytoremediation
 properties
 of
 these
 plants
 was
 the
 following.
 Leaves
 of
 plants
 
were
  collected
  during
  a
  two-­‐year
  time
  period
  to
  evaluate
  the
  amount
  of
  dust
 
absorption
  throughout
  the
  various
  seasonal
  and
  climatic
  changes.
  The
  study
 
concluded
 that
 for
 the
 specific
 process
 of
 phytoremediation,
 two
 factors
 have
 the
 
most
  important
  role
  for
  its
  effectiveness,
  the
  morphology
  and
  the
  anatomical
 
features
 of
 the
 leaves.
 These
 are
 related
 to
 two
 important
 biological
 functions
 of
 
plants,
 photosynthesis
 and
 transpiration.
 Other
 factors
 that
 may
 affect
 the
 dust
 
capturing
 ability
 of
 a
 plant
 and
 are
 also
 connected
 to
 the
 leaf
 shape
 are
 the
 water
 
movement
 on
 the
 leaf,
 the
 seasonal
 shedding
 and
 the
 metabolism
 rate.
 The
 product
 
of
 the
 research
 was
 a
 list
 of
 plants
 depending
 on
 their
 dust
 capturing
 properties.
 
 

 

   
 

  49
 
2.8
 CASE
 STUDIES
 

 
Even
 though
 there
 has
 been
 a
 lot
 of
 research
 on
 the
 thermal
 and
 acoustic
 properties
 
of
 vegetated
 facades,
 there
 has
 not
 been
 substantial
 research
 concerning
 the
 
pollution
 control
 properties
 that
 a
 green
 wall
 might
 have.
 Some
 architectural
 
applications
 of
 these
 methods
 are
 the
 following:
 
2.8.1
 Rennselear
 CASE
 &
 SOM,
 Active
 Phytoremediation
 Modular
 System
 

 
The
 Rennselear
 School
 of
 Architecture
 in
 collaboration
 with
 SOM
 architects
 
introduced
 the
 Active
 Phytoremediation
 Modular
 System
 (Figure
 2-­‐7).
 This
 system
 
is
 used
 as
 an
 interior
 filter
 of
 Volatile
 Organic
 Compounds
 and
 uses
 the
 method
 of
 
rhizoremediation.
 The
 system
 has
 integrated
 small
 fans
 into
 its
 structure
 that
 push
 
the
 air
 through
 the
 roots
 of
 the
 plants
 and
 filter
 it.
 The
 study
 showed
 that
 the
 
amount
 of
 VOC’s
 treated
 by
 a
 four-­‐module
 configuration
 of
 the
 system
 was
 
equivalent
 to
 the
 result
 of
 800-­‐1200
 houseplants
54
.
 The
 measurements
 were
 
conducted
 in
 a
 Plexiglas
 chamber
 were
 the
 effectiveness
 of
 a
 single
 module
 was
 
tested.
 The
 chamber
 consisted
 of
 two
 separate
 compartments,
 were
 the
 air
 quality
 
was
 measured,
 the
 intake,
 were
 controlled
 amounts
 of
 VOC’s
 were
 introduced
 in
 the
 
air
 and
 the
 outtake,
 were
 the
 filtered
 air
 was
 measured.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54

 Gerfen
 Katie.
 August
 11,
 2009,
 “Active
 Phytoremediation
 Wall
 System”,
 Architect
 Magazine
 site,
 
http://www.architectmagazine.com/green-­‐technology/active-­‐phytoremediation-­‐wall-­‐system.aspx
 

  50
 

 
Figure
 2-­‐7:
 Active
 Modular
 Phytoremediation
 System
55

 

 
2.8.2
 Filtration
 Block
 by
 Elaine
 Tong
 

 
The
 filtration
 block
 (figure
 2-­‐8)
 is
 a
 modular
 structural
 unit
 that
 performs
 as
 an
 
interior
 filtration
 system.
 The
 way
 it
 works
 is
 that
 it
 instead
 of
 a
 mechanical
 filter,
 it
 
uses
 common
 houseplants
 and
 through
 the
 method
 of
 rhizoremediation
 it
 purifies
 
indoor
 air.
 The
 modules
 can
 be
 installed
 on
 the
 ceiling
 or
 on
 a
 structural
 wall.
 They
 
are
 constructed
 from
 Plexiglas
 to
 allow
 light
 exposure
 and
 they
 are
 sustained
 
through
 a
 water-­‐misting
 infrastructure.
 Fans
 integrated
 to
 alternating
 modules
 
support
 the
 absorption
 of
 polluted
 air.
56

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55

 Image
 source
 “Rennselear
 SOA”
 site,
 http://www.rpi.edu/research/magazine/fall10/index.html.
 
56

 “University
 of
 Toronto”
 site,
 15
 January,
 2011.
 http://rad.daniels.utoronto.ca/2011/01/filtration-­‐block/.
 

  51
 

 
Figure
 2-­‐8:
 Filtration
 Block
57

 

 
2.8.3
 “Bubble
 Wrap”
 by
 Andrew
 TÉTRAULT
 /
 Ben
 LEE:
 An
 air-­‐purifying
 
infrastructure
 for
 New
 York
 City.
 

 
An
 exterior
 application
 of
 the
 phytoremediation
 process
 is
 proposed
 in
 this
 project
 
(figure
 2-­‐9).
 It
 is
 an
 air
 purification
 infrastructure,
 inspired
 by
 the
 “Andrea
 ST
 
Filter”.
 The
 way
 this
 system
 operates
 is
 that
 it
 collects
 air
 form
 subway
 exhausts
 via
 
an
 extensive
 chimney
 system.
 The
 air
 is
 being
 filtered
 through
 consecutive
 planted
 
“pods”
 and
 is
 then
 being
 re-­‐released
 into
 street
 level.
 These
 pods
 work
 are
 also
 used
 
as
 a
 public
 outdoor
 space.
58

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57

 Image
 source
 “Pinterest”
 site,
 http://images.wantmi.com/wp-­‐content/uploads/2012/08/Filtration-­‐Block-­‐
Elaine-­‐Tong-­‐3.jpg.
 
58

 “Sucker
 Punch
 Daily”
 site,
 http://www.suckerpunchdaily.com/2011/04/10/bubble-­‐wrap/#more-­‐13010.
 

  52
 

 
Figure
 2-­‐9:
 "Bubble
 Wrap"
59

 
 

 
Even
 though
 these
 studies
 introduce
 the
 phytoremediation
 processes
 in
 
architecture
 and
 propose
 some
 very
 interesting
 applications
 there
 are
 no
 data
 
available
 on
 their
 effectiveness.
 Therefore,
 it
 is
 uncertain
 whether
 these
 designs
 
have
 any
 actual
 filtration
 properties
 or
 are
 based
 solely
 on
 studies
 conducted
 for
 
environmental
 purposes.
 

 

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59

 Image
 source
 “Sucker
 Punch
 Daily”
 site,
 http://www.suckerpunchdaily.com/2011/04/10/bubble-­‐
wrap/#more-­‐13010.
 

  53
 
2.9
 CONCLUSIONS
 

 
Air
 filtration
 is
 a
 method
 that
 needs
 to
 take
 into
 account
 many
 parameters
 in
 order
 
to
 have
 effective
 results
 in
 ensuring
 air
 quality
 for
 maintaining
 human
 life
 quality
 
and
 comfort
 within
 the
 established
 standards,
 but
 more
 importantly
 to
 prevent
 
serious
 health
 issues
 that
 may
 occur
 when
 these
 standards
 are
 not
 being
 followed.
 
With
 the
 evolution
 of
 science,
 new
 methods
 are
 being
 proposed
 as
 filtration
 
methods,
 more
 sustainable
 and
 environmental
 friendly.
 The
 following
 chapters
 will
 
investigate
 the
 possibility
 of
 utilizing
 these
 methods,
 and
 more
 specifically
 
phytoremediation,
 as
 an
 alternative
 filtration
 medium.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

  54
 
Chapter
 Three:
 Methodology
 

   
 
This
 chapter
 will
 examine
 the
 effectiveness
 of
 a
 system
 using
 the
 dry
 deposition
 and
 
phytofiltration
 process
 in
 order
 to
 treat
 airborne
 fine
 Particulate
 Matter.
 
 Since
 
software
 that
 will
 allow
 the
 simulation
 of
 such
 a
 procedure
 does
 not
 exist
 yet,
 the
 
simulation
 was
 needed
 to
 done
 through
 a
 physical
 model.
 
 In
 this
 chapter
 the
 
methodology
 of
 setting
 up
 the
 experiment
 is
 described.
 

 
3.1
 PARTICULATE
 MATTER
 2.5
 

 
The
 pollutant
 that
 the
 system
 was
 tested
 to
 determine
 its
 filtration
 possibilities
 was
 
PM2.5.
 As
 it
 was
 noticed
 from
 the
 data
 taken
 from
 AQMD,
 PM2.5
 often
 presents
 high
 
concentrations
 in
 the
 ambient
 air
 of
 the
 Central
 Los
 Angeles
 area
 and
 it
 is
 often
 a
 
reason
 that
 the
 Air
 Quality
 Index
 decreases
 from
 good
 to
 moderate.
 Furthermore,
 
the
 24-­‐hour
 average
 has
 exceeded
 the
 NAAQS
 in
 a
 total
 of
 17
 times
 in
 the
 period
 of
 
five
 months,
 more
 times
 than
 allowed
 per
 year
 (Figure
 3-­‐1).
 The
 data
 were
 taken
 
from
 the
 AQMD
 and
 the
 hourly
 values
 for
 each
 day
 were
 averaged
 to
 get
 the
 24-­‐hour
 
average.
 

  55
 

 
Figure
 3-­‐1:
 Daily
 24-­‐hr
 average
 and
 Maximum
 Value
 of
 PM2.5
 for
 Central
 Los
 Angeles,
 from
 1st
 of
 
October
 to
 21st
 of
 March
 

 
Particulate
 Matter,
 especially
 PM2.5
 is
 one
 of
 pollutants
 that
 pose
 a
 big
 threat
 in
 
human
 health,
 as
 fine
 dust
 can
 reach
 the
 lungs
 through
 inhalation
 and
 is
 responsible
 
for
 a
 lot
 of
 health
 problems
 inhabitants
 of
 big
 cities
 face.
 Particulate
 Matter
 is
 a
 
pollutant
 that
 can
 be
 found
 both
 in
 the
 indoor
 air
 as
 well
 as
 the
 ambient
 air.
 This
 
pollutant
 has
 also
 serious
 health
 impacts
 in
 human
 health.
 This
 study
 focuses
 in
 
capturing
 fine
 Particulate
 Matter
 from
 ambient
 air
 and
 introducing
 it
 in
 interior
 
spaces
 for
 improving
 IAQ.
 
 

 

   
 
0.00
 
10.00
 
20.00
 
30.00
 
40.00
 
50.00
 
60.00
 
70.00
 
80.00
 
90.00
 
100.00
 
µg/m3
 
 
PM2.5
 Daily
 High
 and
 24hr
 average
 
NAAQS
 24hr
 average
  24hr
 average
  Max
 Value
 

  56
 
3.2
 SYSTEM
 DESCRIPTION
 AND
 INTEGRATION
 SCHEMES
 
 

 
The
 airflow
 patterns
 in
 urban
 built
 environments
 were
 examined
 in
 order
 to
 
understand
 how
 Particulate
 Matter
 may
 move
 in
 an
 urban
 street
 canyon,
 and
 
determine
 what
 configuration
 and
 which
 surfaces
 would
 be
 appropriate
 for
 the
 
system
 to
 be
 applied
 on.
 The
 suggested
 possible
 configurations
 of
 the
 system,
 taking
 
advantage
 of
 the
 entire
 building
 envelope
 are
 shown
 in
 the
 following
 diagrams.
 

 
3.2.1
 Vertical
 Configuration
 

 
Configuration
 as
 a
 vertical
 vegetated
 surface
 (Figures
 3-­‐2,
 3-­‐3).
 This
 
configuration
 will
 be
 that
 of
 a
 vegetated
 façade,
 parallel
 to
 the
 existing
 façade
 of
 the
 
building.
 It
 may
 be
 as
 a
 living
 wall
 or
 a
 screen.
 In
 both
 configurations
 the
 air
 may
 
enter
 the
 interior
 of
 the
 building
 through
 ducts,
 or
 through
 natural
 ventilation.
 
 

 
Figure
 3-­‐2:
 Vertical
 (Screen)
 Configuration
 

  57
 

 

 
Figure
 3-­‐3:
 Vertical
 (Living
 Wall)
 Configuration
 

 
3.2.2
 Shelves
 Configuration
 

 
Configuration
 as
 shelves
 on
 the
 exterior
 of
 the
 façade
 (Figure
 3-­‐4).
 This
 
configuration
 will
 be
 that
 of
 a
 vertical
 green
 house,
 where
 shelves
 with
 the
 plants
 
will
 be
 placed
 perpendicular
 to
 the
 existing
 façade.
 It
 may
 be
 as
 a
 part
 of
 a
 double
 
skin
 façade.
 The
 filtration
 of
 the
 air
 will
 be
 happening
 through
 dry
 deposition
 and
 
phytofiltration.
 The
 air
 may
 enter
 the
 interior
 of
 the
 building
 through
 ducts,
 or
 
through
 natural
 ventilation.
 

 

  58
 

 
Figure
 3-­‐4:
 Shelves
 Configuration
 

 
3.2.3
 Horizontal
 Configuration
 

 
Configuration
 as
 a
 horizontal
 surface
 (Figure
 3-­‐5).
 This
 configuration
 will
 be
 that
 
of
 a
 green
 roof
 with
 an
 agricultural
 membrane
 placed
 above
 it,
 or
 a
 short
 
greenhouse.
 With
 this
 configuration
 the
 system
 can
 only
 be
 applied
 on
 the
 roof
 of
 
the
 building.
 The
 air
 filtered
 will
 be
 that
 at
 the
 roof
 level,
 so
 it
 will
 mostly
 be
 an
 air
 
filtration
 method
 for
 the
 ambient
 air,
 however
 ducts
 may
 be
 used
 to
 bring
 the
 
filtered
 air
 in
 the
 interior
 of
 the
 building.
 
 
 

  59
 

 
Figure
 3-­‐5:
 Horizontal
 (Green
 Roof)
 Configuration
 

   
 
3.3
 THE
 ENVIRONMENTAL
 CHAMBER
 
 

   
 
Since
 computer
 software
 that
 will
 allow
 modeling
 the
 suggested
 system
 does
 not
 
exist,
 an
 environmental
 chamber
 was
 built
 to
 measure
 the
 efficiency
 of
 the
 method
 
proposed.
 
 The
 environmental
 chamber
 configuration
 was
 based
 on
 the
 method
 
used
 to
 test
 conventional
 filters.
 
 The
 process
 consists
 of
 a
 source
 that
 will
 supply
 
the
 system
 with
 an
 amount
 of
 particles.
 These
 particles
 are
 be
 pushed
 through
 the
 
filter
 by
 a
 fan.
 The
 filtration
 efficiency
 is
 measured
 by
 two
 sensors,
 one
 measuring
 
the
 concentration
 in
 µg/m
3

 at
 the
 inlet
 (upstream
 particles)
 and
 one
 measuring
 the
 
concentration
 of
 particles
 at
 the
 outlet
 (downstream
 particles).
 The
 filter,
 in
 this
 
case
 the
 vegetated
 surface,
 will
 be
 placed
 in-­‐between
 the
 two
 sensors.
 The
 process
 
is
 summarized
 in
 the
 following
 diagram
 (figure
 3-­‐6).
 

  60
 

 
Figure
 3-­‐6:
 Environmental
 Chamber
 Basic
 Configuration
 

   
 
The
 following
 materials
 and
 parts
 were
 used
 to
 build
 the
 environmental
 chamber:
 

   
 
-­‐ Vertical
 sides
 of
 the
 chamber:
 Four
 pieces
 of
 Plexiglas
 with
 dimensions
 
18”x36”
 and
 18”x18”
 of
 0.22
 inch
 thickness.
 One
 hole
 at
 each
 of
 the
 
18”x18”
 sides
 were
 drilled
 in
 the
 center
 and
 12”
 from
 the
 bottom
 to
 
mount
 the
 vents.
 The
 pieces
 were
 glued
 together
 with
 a
 special
 adhesive
 
to
 prevent
 air
 leakages.
 Plexiglas
 was
 chosen
 as
 material
 that
 allows
 
immediate
 viewing
 at
 the
 interior
 of
 the
 chamber.
 
-­‐ Lid:
 Plexiglas
 surface
 with
 dimensions
 18”x36”
 of
 0.22
 inch
 thickness.
 At
 
the
 edges
 of
 this
 piece,
 rubber
 foam
 weather
 seal
 was
 added
 to
 prevent
 
air
 leaking.
 
-­‐ Plywood
 base:
 The
 base
 was
 constructed
 by
 18”x36”
 plywood
 of
 ¾”
 
thickness.
 At
 the
 bottom
 poplar
 square
 wood
 dowels
 of
 1”
 thickness
 were
 
added
 to
 prevent
 warping
 of
 the
 base.
 The
 Plexiglas
 pieces
 were
 then
 
drilled
 on
 the
 base
 with
 screws
 with
 seals
 and
 the
 joints
 were
 covered
 
with
 silicon
 to
 prevent
 leaking.
 
-­‐ Adjustable
 Bottom:
 A
 second
 base
 that
 would
 allow
 adjusting
 the
 height
 
that
 the
 plants
 were
 located
 was
 also
 necessary.
 This
 base
 was
 also
 
Particle
 
source
 
fan
 
Sensor
 
(measuring
 
upstream
 
particles)
 
Filter
 
(plants)
 
Sensor
 
(measuring
 
downstream
 
particles)
 

  61
 
constructed
 by
 plywood
 of
 ½”
 thickness.
 At
 the
 bottom
 square
 wood
 
dowels
 of
 1”
 thickness
 were
 added
 to
 prevent
 warping.
 Round
 wooden
 
dowels
 of
 different
 height
 were
 used
 to
 adjust
 its
 height.
 This
 base
 also
 
needed
 to
 be
 sealed
 to
 avoid
 leaking.
 Clear
 plastic
 weather
 seal
 strip
 was
 
used
 to
 avoid
 leaking
 of
 air
 to
 the
 below
 compartment.
 
-­‐ Vents:
 Two
 4-­‐inch
 diameter
 plastic
 vents.
 (SM-­‐RSV-­‐4).
 
 
-­‐ Sensor
 Cases:
 Two
 4-­‐inch
 coupling
 PVC
 pipes
 (HubxHub)
 
-­‐ Flexible
 Vinyl
 Duct.
 To
 connect
 the
 PVC
 pipes
 with
 the
 fan
 and
 the
 
provision
 of
 the
 particle
 material.
 
-­‐ Fan:
 An
 Altwood
 Turbo
 4000
 fan
 was
 used.
 The
 fans
 speed
 was
 not
 
adjustable
 so
 it
 was
 connected
 to
 an
 electronic
 step-­‐less
 speed
 control
 in
 
order
 to
 change
 the
 air
 velocity
 in
 the
 chamber.
 

 
The
 environmental
 chamber
 was
 designed
 to
 work
 as
 follows:
 The
 air
 would
 be
 
pushed
 through
 the
 leaves
 of
 the
 plants
 to
 examine
 and
 evaluate
 the
 process
 of
 dry
 
deposition
 and
 phytofiltration.
 Two
 sensors
 one
 at
 the
 inlet
 and
 one
 at
 the
 outlet
 
where
 placed
 to
 measure
 the
 amount
 of
 airborne
 particulate
 matter
 at
 these
 
locations.
 The
 difference
 between
 these
 two
 values
 determines
 the
 effectiveness
 of
 
the
 process
 as
 a
 filtering
 method.
 This
 way
 the
 amount
 of
 particles
 deposited
 
directly
 on
 the
 leaves
 of
 the
 plants
 can
 be
 quantified.
 It
 can
 be
 assumed
 that
 most
 of
 
these
 particles
 will
 be
 absorbed
 by
 the
 stomata
 of
 the
 leaves
 and
 broken
 down
 
through
 the
 plant
 metabolism.
 
 

  62
 

 

 

 
Figure
 3-­‐7:
 Environmental
 Chamber
 Diagram
 

 
3.3.1
 Plant
 selection
 

 
The
 plant
 species
 selection
 was
 a
 very
 important
 parameter
 for
 this
 study,
 as
 it
 
should
 be
 a
 plant
 that
 would
 be
 able
 to
 grow
 under
 specific
 conditions,
 tolerate
 air
 
pollution
 and
 have
 specific
 foliage
 geometry.
 In
 order
 for
 the
 plant
 to
 be
 able
 to
 be
 
used
 with
 the
 architectural
 configurations
 mentioned
 above
 it
 should
 be
 an
 
herbaceous,
 perennial
 plant.
 To
 add
 to
 that
 the
 species
 should
 be
 able
 to
 survive
 
long
 exposure
 in
 sunlight,
 not
 having
 a
 lot
 of
 maintenance
 needs
 –
 especially
 
watering
 –
 and
 be
 tolerant
 to
 air
 pollution.
 The
 plant
 selected
 was
 “Festuca
 Festina”
 
(blue
 fescue).
 The
 selection
 was
 done
 based
 on
 the
 following
 factors:
 

 
-­‐ Foliage
 type
 (figure
 3-­‐8)
 According
 to
 the
 boards
 provided
 by
 the
 research
 
mentioned
 earlier
 conducted
 by
 the
 Central
 Pollution
 Control
 Board
 of
 Delhi,
 
pine
 tree
 has
 a
 good
 dust
 deposition
 capability.
 As
 the
 dust
 deposition
 is
 
mainly
 affected
 by
 the
 morphology
 of
 the
 plant
 leaves,
 a
 plant
 with
 similar
 
type
 of
 foliage
 needed
 to
 be
 found.
 The
 foliage
 of
 the
 pine
 tree
 consists
 of
 

  63
 
needle
 shaped
 leaves
 bundled
 in
 clusters
 called
 fascicles.
60

 Similarly
 the
 
foliage
 of
 fescue
 is
 made
 from
 waxy
 blades
 that
 will
 encourage
 the
 dust
 
deposition
 on
 their
 surface.
 Furthermore,
 its
 surface
 is
 ridged
 which
 
increases
 its
 dust
 capturing
 possibilities.
 Another
 important
 aspect
 of
 the
 
foliage
 will
 be
 the
 stomata
 configuration
 that
 determined
 the
 amount
 of
 the
 
pollutants
 the
 plant
 can
 uptake
 and
 break
 through
 its
 metabolism.
 
 

 

 
Figure
 3-­‐8:
 Fescue
 Ridged
 Leaf
 Surface
61

 
-­‐ Root
 configuration
 (figure
 3-­‐9).
 For
 the
 purposes
 of
 the
 architectural
 
application
 on
 the
 vegetated
 surface
 the
 root
 system
 should
 be
 shallow
 so
 it
 
can
 allow
 the
 plant
 to
 grow
 on
 shallow
 substrates
 that
 are
 used
 on
 living
 wall
 
or
 green
 roof
 configurations.
 The
 species
 belongs
 in
 the
 grasses
 categories
 
that
 have
 shallow
 roots
 that
 make
 it
 ideal
 for
 growing
 on
 a
 shallow
 substrate.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60

 “Wikipedia”
 site,
 last
 modified
 on
 26
 March
 2013,
 http://en.wikipedia.org/wiki/Pine.
 
61

 Image
 source
 “Oregon
 State
 University”
 site,
 http://horticulture.oregonstate.edu/node/592.
 

  64
 

 
Figure
 3-­‐9:
 Fescue
 Root
 System
62

 

 
-­‐ Growing
 conditions
 (figure
 3-­‐10).
 The
 plant
 selected
 grows
 to
 a
 maximum
 
height
 of
 18
 inches
 and
 its
 maximum
 spread
 is
 also
 18
 inches.
 Its
 life
 
expectancy
 is
 about
 8
 years
 when
 it
 is
 properly
 maintained
 and
 in
 
appropriate
 environmental
 conditions.
 It
 is
 a
 plant
 that
 can
 survive
 sun
 
exposure
 and
 actually
 it
 benefits
 from
 full
 sun
 or
 partial
 shade.
 It
 grows
 
mainly
 in
 average
 to
 dry
 locations
 and
 dislikes
 excessive
 moisture.
 It
 is
 
considered
 as
 a
 drought-­‐tolerant
 plant
 and
 it
 makes
 a
 good
 choice
 for
 
xeriscape
 applications.
63

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62

 Image
 source
 “eHow”
 site,
 
 http://www.ehow.com/how_7188532_grow-­‐blue-­‐fescue-­‐seed.html
 
63

 “Squak
 MT,
 Greenhouse
 and
 Nursery”
 site,
 
http://www.qscaping.com/12230001/Plant/6441/Festina_Blue_Fescue
 

  65
 

 
Figure
 3-­‐10:
 Growing
 Properties
 according
 to
 the
 seller
 tag.
 

 
“Festina
 Festuca”
 was
 found
 appropriate
 for
 using,
 as
 it
 fulfills
 the
 factors
 discussed
 
for
 the
 species
 selection,
 plus
 it
 is
 a
 native
 California
 species,
 which
 is
 one
 more
 
advantage
 for
 selecting
 it.
 

 
3.4
 ENVIRONMENTAL
 CHAMBER
 FINAL
 SETUP
 

 
Two
 different
 setups
 were
 used
 before
 concluding
 what
 the
 best
 setup
 would
 be
 for
 
the
 purposes
 of
 this
 study.
 The
 previous
 configurations
 are
 described
 in
 Appendix
 A,
 
along
 with
 the
 results
 of
 the
 measurements
 realized
 and
 the
 problems
 that
 
occurred.
 To
 summarize,
 once
 the
 initial
 setup
 was
 tested
 the
 limitations
 that
 
occurred
 were
 taken
 into
 consideration.
 The
 Aerosol
 Lab
 of
 the
 USC
 Viterbi
 School
 
of
 Civil
 and
 Environmental
 Engineering
 was
 then
 advised,
 to
 determine
 the
 best
 
solution
 for
 the
 problems
 encountered
 and
 to
 acquire
 access
 to
 more
 accurate
 
documentation
 equipment.
 The
 two
 most
 important
 parameters
 that
 needed
 to
 be
 
controlled
 were
 the
 stability
 of
 the
 concentration
 of
 the
 sample
 of
 particles
 

  66
 
introduced
 inside
 the
 chamber
 and
 the
 issue
 of
 leaking
 which
 could
 not
 be
 fully
 
controlled.
 
 The
 final
 set
 up
 of
 the
 environmental
 chamber
 used
 for
 the
 
measurements
 is
 illustrated
 at
 the
 figure
 below
 (Figure
 3-­‐11).
 

 

 
Figure
 3-­‐11:
 Environmental
 Chamber
 final
 setup
 

 
The
 chamber
 was
 then
 transferred
 at
 the
 off-­‐campus
 Aerosol
 lab
 to
 perform
 the
 
measurements.
 This
 would
 provide
 a
 solution
 for
 both
 of
 the
 parameters
 mentioned
 
above.
 First,
 for
 the
 particles
 introduced
 into
 the
 chamber
 ambient
 air
 was
 used.
 
That
 would
 ensure
 both
 a
 steady
 and
 continuous
 concentration
 of
 particles,
 but
 it
 
would
 also
 provide
 more
 realistic
 results,
 as
 real
 world
 conditions
 were
 used.
 
Second,
 the
 leaking
 of
 the
 chambers
 was
 a
 given
 and
 despite
 the
 efforts
 to
 make
 the
 
chambers
 airtight,
 it
 was
 a
 problem
 that
 could
 not
 be
 surpassed.
 Placing
 the
 
chamber
 outdoors
 ensured
 that
 the
 air
 infiltrating
 the
 chamber
 would
 have
 the
 
same
 particle
 concentration
 as
 the
 air
 used
 to
 perform
 the
 measurements.
 
Therefore,
 air
 infiltrating
 would
 not
 result
 as
 decreasing
 the
 concentration
 
measured
 at
 the
 outlet
 due
 to
 dilution.
 
 

 

  67
 
3.4.1
 Instruments
 Used
 for
 the
 final
 setup
 

 
The
 chamber
 was
 then
 connected
 to
 more
 accurate
 instruments,
 compared
 to
 the
 
sensors
 used
 during
 the
 initial
 setup,
 to
 perform
 the
 tests.
 These
 were
 the
 following:
 

 
-­‐ TSI
 DustTrak
 8520
 Aerosol
 Monitor:
 These
 sensors,
 according
 to
 the
 
specification
 sheets,
 are
 able
 to
 monitor
 particle
 sizes
 ranging
 from
 PM1.0,
 
PM2.5
 and
 PM10.
 They
 have
 a
 continuous
 analog
 output
 that
 displays
 the
 
particle
 mass
 concentration
 in
 mg/m
3
.
 The
 DustTrak
 sensors
 provide
 a
 real-­‐
time
 measurement
 based
 on
 90
o

 scattering.
 A
 pump
 draws
 the
 sample
 aerosol
 
through
 an
 optics
 chamber
 were
 it
 is
 measured.
64

 
-­‐ TSI
 3022A
 Ultrafine
 Condensation
 Particle
 Counter:
 The
 Condensation
 
Particle
 Counter
 is
 an
 instrument
 able
 to
 measure
 the
 number
 of
 particles
 
from
 7nm
 up
 to
 more
 than
 3μm.
 The
 output
 is
 displayed
 on
 an
 LED
 screen
 
and
 expressed
 as
 0.00*10
n

 particles/cm
3
.
 It
 can
 count
 particle
 concentration
 
up
 to
 10
7

 and,
 according
 to
 the
 specification
 sheet
 it
 has
 a
 false
 background
 
count
 less
 than
 0.01
 particle/cm
3
.
 
 
-­‐ TSI
 3080
 Electrostatic
 Classifier:
 This
 instrument
 was
 used
 to
 measure
 the
 
size
 distribution
 of
 particles.
 According
 to
 the
 specification
 sheet,
 the
 way
 it
 
does
 that
 is
 by
 charging
 specific
 size
 particles
 either
 with
 a
 positive,
 negative
 
or
 neutral
 charge.
 The
 particles
 than
 enter
 a
 Differential
 Mobility
 Analyzer
 
(DMA)
 and
 are
 separated
 accordingly
 to
 their
 electrical
 charge.
 Particles
 with
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64

 TSI
 DustTrak
 specification
 sheet:
 
http://www.tsi.com/uploadedFiles/_Site_Root/Products/Literature/Spec_Sheets/2980077_DustTrak_8520.pdf
 

  68
 
a
 negative
 charge
 are
 repelled
 and
 deposited
 on
 the
 walls,
 particles
 with
 
neutral
 charge
 exit
 with
 the
 excess
 air.
 Only
 particles
 with
 a
 narrow
 range
 of
 
electrical
 mobility
 have
 the
 correct
 trajectory
 to
 pass
 through
 an
 open
 slit
 near
 
the
 DMA.
65

 

 
3.4.2
 Plants
 configurations
 inside
 the
 chamber
 

 
The
 configuration
 of
 the
 plants
 inside
 the
 chamber
 was
 also
 an
 important
 parameter
 
for
 the
 testing.
 Several
 different
 configurations
 were
 tested
 that
 represented
 
different
 conditions
 of
 the
 area
 and
 placement
 of
 a
 vegetated
 surface
 applied
 on
 the
 
building
 envelope.
 These
 configurations
 would
 also
 help
 to
 understand
 the
 potential
 
relationship
 between
 the
 area
 and
 volume
 of
 the
 vegetation
 to
 the
 possible
 filtration
 
of
 particles.
 By
 gradually
 increasing
 the
 area
 that
 the
 plants
 would
 cover
 the
 results
 
could
 be
 better
 extrapolated
 for
 bigger
 surfaces.
 The
 following
 diagrams
 illustrate
 
the
 different
 positioning
 configurations
 of
 the
 pots
 of
 the
 plants
 in
 the
 chamber,
 as
 a
 
plan.
 

 

 
Figure
 3-­‐12:
 Two
 plants
 at
 the
 sides
 of
 the
 chamber,
 total
 area
 of
 vegetation
 0.22ft
2
.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65

 TSI
 3080
 Electrostatic
 Classifier
 specification
 sheet:
 
http://www.tsi.com/uploadedFiles/_Site_Root/Products/Literature/Spec_Sheets/3080.pdf
 

  69
 

 

 

 
Figure
 3-­‐13:
 One
 row
 of
 plants,
 total
 area
 of
 vegetation
 0.5
 ft
2
.
 

 

 
Figure
 3-­‐14:
 Two
 rows
 of
 plants,
 total
 area
 of
 vegetation
 1ft
2
.
 

 

 

 
Figure
 3-­‐15:
 Three
 rows
 of
 plants,
 total
 area
 of
 vegetation
 1.5ft
2
.
 

 

 

  70
 

 
Figure
 3-­‐16:
 Five
 rows
 of
 plants,
 total
 area
 of
 vegetation
 2.5ft
2
.
 

 

 

 
Figure
 3-­‐17:
 Two
 rows
 of
 plants
 at
 the
 sides,
 total
 area
 of
 vegetation
 2ft
2
.
 

 

 

 
Figure
 3-­‐18:
 Chamber
 full
 of
 plants,
 total
 area
 of
 vegetation
 4.5ft
2
.
 

 

   
 

  71
 
3.4.3
 Images
 of
 the
 final
 setup
 

 
Images
 from
 the
 final
 set
 up
 and
 instruments.
 

 

 
Figure
 3-­‐19:
 
 Final
 setup
 of
 the
 environmental
 chamber,
 inlet
 

  72
 

 
Figure
 3-­‐20:
 Final
 setup
 of
 the
 environmental
 chamber,
 outlet
 and
 pump
 

 

 
Figure
 3-­‐21:
 The
 DustTrak
 Aerosol
 Monitors
 

 

 

  73
 

 
Figure
 3-­‐22:
 The
 DustTrak
 Aerosol
 Monitors
 and
 the
 TSI
 Particle
 Counter
 

 
Figure
 3-­‐23:
 The
 TSI
 Electrostatic
 Classifier
 

 

  74
 
3.5
 TESTING
 PROCEDURE
 

 
The
 procedure
 of
 the
 testing
 was
 straightforward
 for
 this
 set-­‐up.
 A
 pump
 was
 
connected
 at
 the
 outlet
 to
 pull
 ambient
 air
 through
 the
 chamber.
 One
 aerosol
 
monitor
 was
 connected
 to
 the
 outlet
 to
 measure
 the
 particle
 mass
 concentration
 
after
 passing
 through
 the
 chamber.
 The
 other
 aerosol
 monitor
 was
 measuring
 the
 
mass
 concentration
 of
 the
 ambient
 air.
 The
 particle
 counter
 was
 alternately
 either
 
measuring
 the
 particle
 number
 of
 the
 ambient
 air
 or
 the
 outlet
 of
 the
 chamber.
 The
 
same
 was
 done
 with
 the
 Electrostatic
 Classifier
 for
 the
 ambient
 air
 and
 the
 chamber
 
full
 of
 plants.
 The
 readings
 were
 recorded
 as
 soon
 as
 the
 indications
 of
 aerosol
 
sensor
 and
 the
 particle
 counter
 connected
 to
 the
 outlet
 were
 stabilized,
 with
 a
 
deviation
 of
 no
 more
 than
 0.1
 pc/cm
3

 for
 number
 concentration
 and
 0.002
 mg/m
3

 
for
 mass
 concentration
 and
 no
 further
 significant
 change
 occurred.
 The
 volumetric
 
flow
 rate
 that
 the
 pump
 was
 pulling
 the
 ambient
 air
 though
 the
 chamber
 was
 set
 at
 
50lt/m.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  75
 
Chapter
 Four:
 Data
 

 

 
The
 experimental
 process
 developed
 intended
 to
 investigate
 if
 a
 vegetated
 façade
 
could
 substitute
 a
 conventional
 air-­‐filtration
 system
 to
 improve
 indoor
 air
 quality.
 
 
In
 this
 chapter
 the
 results
 of
 the
 experiments
 performed
 are
 presented
 for
 each
 of
 
the
 different
 configurations
 of
 the
 plants
 inside.
 These
 configurations
 aimed
 to
 
address
 the
 following
 questions
 relevant
 to
 the
 study
 and
 the
 application
 of
 a
 
vegetated
 surface
 on
 the
 building
 envelope:
 

 
-­‐ The
 maximum
 possible
 efficiency
 that
 can
 be
 achieved
 with
 the
 specific
 
setup.
 The
 most
 substantial
 question
 of
 this
 study
 was
 whether
 there
 would
 
be
 any
 noticeable
 particle
 removal
 by
 the
 vegetated
 surface,
 compared
 to
 the
 
control
 measurement.
 
 
 
-­‐ The
 relevance
 between
 the
 vegetated
 surface
 area
 and
 the
 filtration
 
efficiency.
 By
 gradually
 increasing
 the
 amount
 of
 the
 vegetated
 surface
 inside
 
the
 chamber,
 the
 efficacy
 of
 the
 vegetation
 per
 unit
 area
 was
 investigated
 and
 
then,
 it
 was
 attempted
 to
 be
 expressed
 in
 the
 form
 of
 a
 useful
 metric
 
(percentile
 for
 surface
 area).
 
-­‐ The
 configuration
 of
 plants
 inside
 the
 chamber
 also
 reflected
 different
 
applications
 of
 vegetated
 facades
 to
 examine
 their
 potential
 efficiency.
 A
 
screen
 configuration,
 with
 or
 without
 an
 opening,
 was
 represented
 by
 one
 
row
 of
 plants
 in
 front
 of
 the
 outlet.
 
 
 

  76
 
-­‐ The
 effect
 of
 wet
 foliage
 was
 also
 tested
 to
 investigate
 whether
 wet
 
deposition
 of
 particles
 would
 be
 a
 more
 or
 less
 effective
 mechanism
 for
 
phytofiltration.
 

 
The
 data
 acquired
 from
 the
 experiments
 present
 the
 percentile
 of
 the
 particle
 
number
 reduction
 and
 the
 mass
 concentration
 for
 each
 test.
 The
 tests
 were
 
performed
 at
 the
 off-­‐campus
 Aerosol
 Lab
 of
 the
 Viterbi
 School
 of
 Environmental
 and
 
Civil
 Engineering.
 The
 map
 below
 shows
 the
 location
 of
 the
 off-­‐campus
 lab
 (Figures
 
4-­‐1,
 4-­‐2).
 

 

 
Figure
 4-­‐1:
 Location
 of
 the
 off-­‐campus
 Aerosol
 lab
 

 

  77
 

 
Figure
 4-­‐2:
 Location
 of
 the
 off-­‐campus
 Aerosol
 lab
 and
 proximity
 to
 110
 Freeway
 

 
The
 off-­‐campus
 lab
 is
 located
 at
 a
 parking
 lot,
 close
 to
 the
 110
 Harbor
 Freeway
 and
 
was
 an
 ideal
 location
 for
 running
 the
 measurements,
 as
 the
 concentration
 of
 PM2.5
 
would
 be
 increased
 due
 to
 the
 traffic
 on
 the
 freeway.
 

 
4.1
 AMBIENT
 AIR
 CONDITIONS
 ON
 THE
 DAY
 OF
 THE
 EXPERIMENT
 AND
 
ADITIONS
 TO
 THE
 SET-­‐UP
 

 
To
 address
 the
 limitation
 of
 air
 infiltration
 that
 occurred
 during
 the
 experiments
 
performed
 in
 lab
 environment
 and
 led
 to
 significantly
 decreased
 measurements
 at
 
the
 outlet,
 the
 chamber
 was
 transferred
 outdoors.
 This
 would
 ensure
 that
 the
 
composition
 of
 the
 air
 infiltrating
 would
 be
 the
 same
 as
 the
 composition
 of
 air
 used
 
to
 take
 the
 measurements.
 Ambient
 air
 was
 used
 to
 examine
 if
 particle
 
concentration
 could
 be
 reduced
 by
 the
 vegetated
 surface.
 It
 is
 important
 to
 describe
 

  78
 
the
 ambient
 air
 particulate
 matter
 levels
 for
 the
 specific
 day.
 The
 measured
 PM2.5
 
for
 that
 day,
 during
 the
 hours
 that
 the
 experiment
 took
 place
 was
 15.0,
 18.0,
 21.0,
 
34.0
 μg/m
3

 for
 12:00am
 to
 3:00am
 respectively,
 according
 to
 data
 taken
 from
 the
 
AQMD,
 for
 the
 Central
 Los
 Angeles
 area.
 However,
 the
 recorded
 ambient
 mass
 
concentration
 of
 the
 particles
 during
 the
 experiment
 differs
 from
 these
 numbers.
 
More
 specifically,
 the
 total
 mass
 concentration
 of
 Particulate
 Matter
 recorded
 
during
 the
 experiments
 is
 much
 higher
 than
 the
 reported
 AQMD
 mass
 concentration
 
of
 PM2.5.
 This
 can
 be
 justified
 for
 two
 reasons.
 
 First,
 the
 air
 quality
 measurements
 
are
 taken
 at
 least
 one
 level
 above
 ground,
 while
 the
 experiment
 measurements
 were
 
done
 on
 ground
 level,
 where
 the
 mass
 concentration
 of
 particles
 is
 much
 higher
 due
 
to
 immediate
 exposure
 to
 traffic
 pollution,
 soil
 dust
 and
 other
 types
 of
 dust
 that
 do
 
not
 reach
 the
 higher
 levels
 of
 air.
 The
 second
 reason
 is
 that
 the
 DustTrakt
 Aerosol
 
Monitor
 sensors
 used
 for
 the
 experiment,
 are
 not
 able
 to
 distinguish
 between
 
particle
 sizes
 and
 in
 addition
 they
 take
 into
 account
 particles
 with
 mass
 even
 higher
 
than
 10μm.
 The
 particle
 mass
 concentration
 reported
 is
 the
 total
 amount
 of
 mass
 for
 
the
 entire
 range
 of
 airborne
 particles
 that
 starts
 from
 approximately
 0.1μm
 and
 goes
 
up
 to
 10μm
 or
 more.
 Therefore,
 airborne
 particles
 that
 are
 not
 in
 the
 area
 of
 the
 
interest
 of
 this
 study,
 above
 2.5μm,
 are
 included
 in
 the
 reading
 of
 the
 sensors.
 
 

 
To
 address
 this
 limitation
 of
 the
 sensors,
 another
 instrument
 was
 added
 into
 the
 
setup
 that
 would
 be
 able
 report
 the
 amount
 of
 airborne
 particles.
 The
 TSI
 
Condensation
 Particle
 Counter
 reported
 the
 number
 of
 particles
 per
 cm
3

 at
 single
 
data
 point.
 This
 instrument
 was
 then
 connected
 to
 the
 TSI
 Electrostatic
 Classifier
 

  79
 
that
 provided
 a
 sample
 analysis
 and
 a
 plot
 of
 the
 size
 distribution
 of
 particles
 in
 
ambient
 air.
 This
 way,
 the
 reduction
 of
 the
 actual
 number
 of
 particles
 could
 be
 
measured
 and
 with
 the
 addition
 of
 the
 size
 distribution
 plot,
 the
 specific
 sizes
 of
 the
 
particles
 removed
 by
 the
 plants
 could
 be
 determined.
 The
 pump
 connected
 to
 the
 
chamber
 was
 set
 to
 pull
 the
 air
 at
 50lt/m,
 but
 due
 to
 infiltration
 the
 flow
 rate
 could
 
not
 be
 considered
 consistent
 throughout
 the
 volume
 of
 the
 chamber.
 The
 measured
 
flow
 rate
 at
 the
 inlet
 was
 less
 than
 10lt/m.
 

 
4.1
 EXPERIMENT
 RESULTS
 

 
The
 following
 tables
 illustrate
 the
 reduction
 of
 the
 particle
 amount
 as
 well
 as
 the
 
concentration
 of
 ambient
 air
 compared
 to
 the
 mass
 concentration
 of
 particles
 inside
 
the
 chamber.
 The
 reduction
 for
 both
 of
 these
 values
 is
 expressed
 as
 a
 percentile.
 The
 
values
 of
 the
 number
 concentration
 where
 taken
 when
 the
 instruments
 indication
 
was
 stabilized
 around
 a
 specific
 number
 with
 a
 0.1
 positive
 or
 negative
 deviation
 for
 
the
 particle
 number
 concentration
 and
 0.002
 positive
 or
 negative
 deviation
 for
 the
 
mass
 concentration.
 Those
 values
 were
 documented
 and
 then
 averaged
 to
 get
 the
 
average
 number
 and
 mass
 concentration.
 

 
4.1.1
 Control
 Measurement,
 Empty
 Chamber
 

 
A
 control
 measurement
 was
 important,
 as
 it
 would
 indicate
 if
 any
 changes
 in
 the
 
number
 or
 mass
 concentration
 would
 be
 due
 to
 the
 chamber,
 and
 if
 so
 in
 what
 
amount
 did
 the
 chamber
 contribute
 to
 the
 reduction
 of
 particles.
 
 

  80
 

 

 
Figure
 4-­‐3:
 Control
 Measurement,
 empty
 chamber
 

 
Table
 4-­‐1:
 Control
 Measurement
 Results
 

 
  Particles/cm
3
 

 
   
 
  Average
 pc/cm
3

  mg/m
3

 
Ambient
  3.72
  *10
4

  37200
   
 37883
  0.056
 

 
  3.83
  *10
4

  38300
   
 
   
 
 

 
  3.79
  *10
4
 
37900
 

 

 
 

 
  3.90
  *10
4

  39000
   
 
   
 
 

 
  3.68
  *10
4

  36800
   
 
   
 
 

 
  3.81
  *10
4

  38100
   
 
   
 
 

 
   
 
   
 
   
 
   
 
   
 
 
Chamber
  3.04
  *10
4

  30400
  29883
  0.034
 

 
  3.01
  *10
4

  30100
   
 
   
 
 

 
  2.95
  *10
4

  29500
 

 

 
 

 
  3.10
  *10
4

  31000
   
 
   
 
 

 
  2.93
  *10
4

  29300
   
 
   
 
 

 
  2.90
  *10
4

  29000
   
 
   
 
 
PERCENTILE
   
 
   
 
   
 
  21.12%
  39.29%
 

 
The
 control
 measurement
 was
 performed
 two
 times
 and
 indicated
 that
 there
 was
 an
 
average
 19.48%
 decrease
 of
 the
 number
 concentration
 of
 particles
 and
 an
 average
 
37%
 reduction
 of
 mass
 concentration.
 A
 difference
 of
 more
 than
 5%
 for
 the
 
measurements
 following
 would
 indicate
 a
 filtration
 possibility,
 as
 a
 difference
 less
 

  81
 
than
 that
 may
 be
 due
 to
 the
 fluctuation
 of
 the
 levels
 of
 particulate
 matter
 in
 the
 air
 
rather
 than
 the
 presence
 of
 plants
 inside
 the
 chamber.
 
 

 
4.1.2
 Plants
 at
 the
 sides
 of
 the
 outlet
 
 

 

 

 
Figure
 4-­‐4:
 Configuration
 1,
 two
 plants
 at
 the
 sides
 

 

 
Table
 4-­‐2:
 Two
 plants
 at
 the
 sides
 of
 the
 outlet,
 Results
 

 
  Particles/cm
3
 

 
   
 
  Average
 pc/cm
3
 
mg/m
3
 
Ambient
  2.38
  *10
4
 
23800
   
 23650
  0.084
 

 
  2.30
  *10
4

  23000
   
 
   
 
 

 
  2.43
  *10
4

  24300
 

 

 
 

 
  2.35
  *10
4

  23500
   
 
   
 
 

 
   
 
   
 
   
 
   
 
   
 
 
Chamber
  2.00
  *10
4

  20000
   
 19650
  0.055
 

 
  1.91
  *10
4

  19100
   
 
   
 
 

 
  1.96
  *10
4

  19600
 

 

 
 

 
  1.99
  *10
4

  19900
   
 
   
 
 
PERCENTILE
   
 
   
 
   
 
  16.91%
  34.52%
 

 

 
This
 setup,
 which
 was
 representing
 a
 screen
 configuration
 with
 an
 opening
 in
 front
 
of
 the
 outlet,
 did
 not
 show
 any
 improvement
 compared
 to
 the
 control
 measurement.
 

  82
 
4.1.3
 Plants
 at
 the
 sides
 of
 chamber
 

 
The
 following
 setup
 was
 a
 hyperbolic
 configuration
 of
 the
 previous.
 This
 
configuration
 aimed
 to
 determine
 whether
 the
 biggest
 amount
 of
 vegetation
 that
 
was
 possible
 to
 be
 placed
 inside
 the
 chamber
 without
 having
 any
 plants
 directly
 in
 
front
 of
 the
 outlet
 would
 provide
 any
 filtration.
 

 

 

 
Figure
 4-­‐5:
 Configuration
 5,
 plants
 at
 sides
 of
 the
 chamber
 

 
Table
 2-­‐3:
 Plants
 at
 the
 sides
 of
 the
 chamber
 Results
 

 
  Particles/cm
3
 

 
   
 
  Average
 pc/cm
3
 
mg/m
3
 
Ambient
  2.30
  *10
4

  23000
  23320
  0.075
 

 
  2.31
  *10
4

  23100
   
 
   
 
 

 
  2.35
  *10
4

  23500
 

 

 
 

 
  2.38
  *10
4

  23800
   
 
   
 
 

 
  2.32
  *10
4

  23200
   
 
   
 
 

 
   
 
   
 
   
 
   
 
   
 
 
Chamber
  1.59
  *10
4

  15900
   
 15600
  0.059
 

 
  1.57
  *10
4

  15700
   
 
   
 
 

 
  1.55
  *10
4

  15500
 

 

 
 

 
  1.61
  *10
4

  16100
   
 
   
 
 

 
  1.48
  *10
4

  14800
   
 
   
 
 
PERCENTILE
   
 
   
 
   
 
  33.10%
  21.33%
 

 

  83
 
The
 results
 showed
 a
 slight
 decrease
 of
 the
 particle
 number
 concentration.
 
 
4.1.4
 One
 row
 of
 plants
 

 

 
Figure
 4-­‐6:
 Configuration
 2,
 one
 row
 of
 plants
 

 
Table
 4-­‐4:
 One
 row
 of
 plants
 Results
 

 
  Particles/cm
3
 
 

 
   
 
  Average
 pc/cm
3
 
mg/m
3
 
Ambient
  2.60
  *10
4

  26000
  25300
  0.083
 

 
  2.54
  *10
4

  25400
 

 

 
 

 
  2.45
  *10
4

  24500
   
 
   
 
 

 
   
 
   
 
   
 
   
 
   
 
 
Chamber
  1.96
  *10
4

  19600
  19200
  0.060
 

 
  1.88
  *10
4

  18800
 

 

 
 

 
  1.92
  *10
4

  19200
   
 
   
 
 
PERCENTILE
   
 
   
 
   
 
  24.11%
  27.71%
 

 
This
 measurement
 that
 was
 representing
 the
 screen
 configuration
 showed
 a
 slight
 
improvement
 compared
 to
 the
 control
 measurement.
 This
 application
 appears
 to
 
have
 a
 slight
 potential
 in
 filtering
 airborne
 particles
 
 

 
The
 purpose
 of
 the
 following
 configurations
 was
 to
 determine
 whether
 increasing
 
the
 amount
 of
 the
 vegetated
 surfaced
 would
 result
 increased
 filtration
 efficiency.
 

  84
 

 
4.1.5
 Two
 rows
 of
 plants
 
 

 

 

 
Figure
 4-­‐7:
 Configuration
 3,
 two
 rows
 of
 plants
 

 
Table
 4-­‐5:
 Two
 rows
 of
 plants
 Results
 

 
  Particles/cm
3
 

 
   
 
  Average
 pc/cm
3
 
mg/m
3
 
Ambient
  2.67
  *10
4

  26700
   
 26620
  0.082
 

 
  2.59
  *10
4

  25900
   
 
   
 
 

 
  2.62
  *10
4

  26200
 

 

 
 

 
  2.78
  *10
4

  27800
   
 
   
 
 

 
  2.65
  *10
4

  26500
   
 
   
 
 

 
   
 
   
 
   
 
   
 
   
 
 
Chamber
  1.74
  *10
4

  17400
  18020
  0.0575
 

 
  1.80
  *10
4

  18000
   
 
 

   
 
  1.79
  *10
4

  17900
 

   
   
 
  1.87
  *10
4

  18700
   
 
   
 
 

 
  1.81
  *10
4

  18100
   
 
   
 
 
PERCENTILE
   
 
   
 
   
 
  32.31%
  29.88%
 

 

 

  85
 
By
 doubling
 the
 amount
 of
 vegetation
 inside
 the
 chamber
 the
 efficiency
 of
 the
 
system
 increased
 noticeably.
 The
 measurement
 showed
 a
 32.31%
 in
 reducing
 the
 
particle
 number
 concentration
 compared
 to
 the
 ambient
 air.
 
 
 

 
4.1.6
 Three
 rows
 of
 plants
 
 

 

 

 
Figure
 4-­‐8:
 Configuration
 4,
 three
 rows
 of
 plants
 

 
Table
 4-­‐6:
 Three
 rows
 of
 plants
 Results
 

 
  Particles/cm
3
 

 
   
 
  Average
 pc/cm
3
 
mg/m
3
 
Ambient
  2.71
  *10
4

  27100
   
 26920
  0.082
 

 
  2.66
  *10
4

  26600
   
 
   
 
 

 
  2.68
  *10
4

  26800
 

 

 
 

 
  2.67
  *10
4

  26700
   
 
   
 
 

 
  2.74
  *10
4

  27400
   
 
   
 
 

 
   
 
   
 
   
 
   
 
   
 
 
Chamber
  1.70
  *10
4

  17000
  16380
  0.056
 

 
  1.66
  *10
4

  16600
   
 
 

   
 
  1.63
  *10
4

  16300
 

   
   
 
  1.61
  *10
4

  16100
   
 
   
 
 

 
  1.59
  *10
4

  15900
   
 
   
 
 
PERCENTILE
   
 
   
 
   
 
  39.15%
  31.71%
 

 

 

  86
 

 
4.1.7
 Five
 Rows
 of
 plants
 
 

 

 

 
Figure
 4-­‐9:
 Configuration
 6,
 five
 rows
 of
 plants
 

 
Table
 4-­‐7:
 Five
 rows
 of
 plants
 Results
 

 
  Particles/cm
3
 

 
   
 
  Average
 pc/cm
3
 
mg/m
3
 
Ambient
  2.28
  *10
4

  22800
  23546
  0.076
 

 
  2.34
  *10
4

  23400
   
 
   
 
 

 
  2.35
  *10
4

  23530
 

 

 
 

 
  2.38
  *10
4

  23800
   
 
   
 
 

 
  2.42
  *10
4

  24200
   
 
   
 
 

 
   
 
   
 
   
 
   
 
   
 
 
Chamber
  1.48
  *10
4

  14800
   
 14980
  0.045
 

 
  1.55
  *10
4

  15500
   
 
   
 
 

 
  1.49
  *10
4

  14900
 

 

 
 

 
  1.50
  *10
4

  15000
   
 
   
 
 

 
  1.47
  *10
4

  14700
   
 
   
 
 
PERCENTILE
   
 
   
 
   
 
  36.38%
  40.79%
 

 

 

 

   
 

  87
 
4.1.8
 Chamber
 full
 of
 plants
 (8
 rows)
 

 

 

 
Figure
 4-­‐10:
 Configuration
 7,
 eight
 rows
 of
 plants,
 full
 chamber
 

 
Table
 4-­‐8:
 Eight
 rows
 of
 plants
 Results
 

 
  Particles/cm
3
 

 
   
 
  Average
 pc/cm
3
 
mg/m
3
 
Ambient
  2.58
  *10
4

  25800
  25460
  0.073
 

 
  2.51
  *10
4

  25100
   
 
   
 
 

 
  2.56
  *10
4

  25600
 

 

 
 

 
  2.50
  *10
4

  25000
   
 
   
 
 

 
  2.58
  *10
4

  25800
   
 
   
 
 

 
   
 
   
 
   
 
   
 
   
 
 
Chamber
  1.38
  *10
4

  13800
   
 13580
  0.055
 

 
  1.37
  *10
4

  13700
   
 
   
 
 

 
  1.35
  *10
4

  13500
 

 

 
 

 
  1.36
  *10
4

  13600
   
 
   
 
 

 
  1.33
  *10
4

  13300
   
 
   
 
 
PERCENTILE
   
 
   
 
   
 
  46.66%
  24.66%
 

 

 
This
 measurement
 was
 performed
 twice
 and
 showed
 an
 average
 reduction
 in
 the
 
particle
 number
 concentration
 of
 51.28%
 compared
 to
 ambient
 air
 and
 it
 was
 the
 
best
 efficiency
 recorded.
 
 

 

  88
 
Subsequently,
 it
 was
 tested
 whether
 moisture
 on
 the
 foliage
 of
 the
 plants
 would
 
affect
 the
 results,
 for
 two
 of
 the
 above
 configurations.
 
4.1.9
 One
 row
 of
 plants
 with
 wet
 foliage
 
 

 

 
Figure
 4-­‐11:
 Configuration
 2,
 one
 row
 of
 plants,
 wet
 leaves
 

 
Table
 3:
 One
 row
 of
 plants
 Wet
 Deposition
 Results
 

 
  Particles/cm
3
 

 
   
 
  Average
 pc/cm
3
 
mg/m
3
 
Ambient
  3.33
  *10
4

  33300
   
 33680
  0.061
 

 
  3.40
  *10
4

  34000
   
 
   
 
 

 
  3.35
  *10
4

  33500
 

 

 
 

 
  3.39
  *10
4

  33900
   
 
   
 
 

 
  3.37
  *10
4

  33700
   
 
   
 
 

 
   
 
   
 
   
 
   
 
   
 
 
Chamber
  2.32
  *10
4

  23200
   
 23540
  0.038
 

 
  2.36
  *10
4

  23600
   
 
   
 
 

 
  2.40
  *10
4

  24000
 

 

 
 

 
  2.38
  *10
4

  23800
   
 
   
 
 

 
  2.31
  *10
4

  23100
   
 
   
 
 
PERCENTILE
   
 
   
 
   
 
  30.11%
  37.70%
 

 

  89
 
This
 measurement
 showed
 an
 increase
 in
 the
 efficiency,
 compared
 to
 the
 same
 
measurement
 with
 dry
 foliage
 of
 about
 6%.
 This
 is
 not
 a
 significant
 difference
 to
 
make
 safe
 conclusions
 about
 the
 effectiveness
 of
 wet
 deposition.
 
 

 
4.1.10
 Full
 chamber,
 wet
 foliage
 

 

 

 
Figure
 4-­‐12:
 Configuration
 7,
 eight
 rows
 of
 plants,
 wet
 leaves
 

 
Table
 4-­‐10:
 Eight
 rows
 of
 plants
 Wet
 Deposition
 Results
 

 
  Particles/cm
3
 

 
   
 
  Average
 pc/cm
3
 
mg/m
3
 
Ambient
  3.44
  *10
4

  34400
  33450
 
  0.057
 

 
  3.37
  *10
4

  33700
   
 
   
 
 

 
  3.22
  *10
4

  32200
   
 
   
 
 

 
  3.24
  *10
4

  32400
 

 

 
 

 
  3.39
  *10
4

  33900
   
 
   
 
 

 
  3.41
  *10
4

  34100
   
 
   
 
 

 
   
 
   
 
   
 
   
 
   
 
 
Chamber
  1.66
  *10
4

  16600
  17225
 
  0.056
 

 
  1.76
  *10
4

  17600
   
 
   
 
 

 
  1.70
  *10
4

  17000
   
 
   
 
 

 
  1.72
  *10
4

  17200
 

 

 
 

 
  1.79
  *10
4

  17850
   
 
   
 
 

 
  1.71
  *10
4

  17100
   
 
   
 
 
PERCENTILE
   
 
   
 
   
 
  48.51%
  1.75%
 

  90
 

 
The
 measurement
 did
 not
 show
 any
 increased
 efficiency
 compared
 to
 the
 
measurements
 performed
 with
 dry
 leaves.
 

 
4.1.11
 Size
 Distribution
 Plot
 

   
 
By
 observing
 the
 results
 of
 the
 measurements
 above,
 it
 was
 noticed
 that
 the
 
readings
 of
 the
 DustTrak
 sensors
 compared
 to
 the
 Particle
 Counter
 were
 
contradicting.
 While
 the
 dust
 monitors
 were
 indicating
 that
 the
 reduction
 of
 mass
 
concentration
 remained
 around
 the
 same
 levels
 for
 all
 of
 the
 measurements,
 the
 
particle
 counter
 showed
 a
 noticeable
 decrease
 in
 the
 particle
 number
 concentration.
 
In
 order
 to
 validate
 which
 of
 the
 two
 instrument
 readings
 was
 correct,
 the
 
Electrostatic
 Classifier
 was
 connected
 to
 the
 outlet
 of
 the
 full
 chamber
 to
 determine
 
if
 indeed
 there
 was
 any
 reduction
 and
 what
 was
 the
 specific
 size
 of
 particles
 the
 
plants
 were
 able
 to
 remove.
 This
 plot
 was
 compared
 to
 the
 ambient
 air
 plot.
 The
 
results
 of
 the
 two
 plots
 are
 presented
 below.
 
 

 

  91
 

 
Figure
 4-­‐13:
 Comparative
 Size
 Distribution
 Plot
 

   
 
The
 plot
 showed
 a
 significant
 reduction
 of
 particles
 that
 their
 diameter
 was
 in
 the
 
range
 of
 0.01μm
 to
 1μm.
 The
 total
 number
 concentration
 for
 the
 particles
 in
 this
 size
 
range
 was
 25,744
 pc/cm
3

 and
 the
 particle
 number
 concentration
 after
 the
 air
 
passed
 through
 the
 chamber
 was
 18,617
 pc/cm
3
.
 The
 percentile
 of
 particle
 removal
 
for
 the
 total
 of
 particles
 of
 the
 specific
 spectrum
 was
 27.68%.
 
 

 

   
 
0
 
100
 
200
 
300
 
400
 
500
 
600
 
10
  100
  1000
 
Number
 Concentration
 (#/cm
3
)
 
Particle
 Diameter
 (nm)
 
Size
 Distribution
 Plot
 
Ambient
  After
 Chamber
 

  92
 
4.2
 CONCLUSIONS
 

 
The
 results
 of
 the
 measurements
 showed
 that
 with
 the
 specific
 setup
 of
 the
 chamber
 
and
 with
 the
 specific
 plants
 the
 number
 concentration
 of
 particles
 can
 be
 reduced
 
for
 most
 of
 the
 configurations
 used.
 The
 particle
 removal
 was
 found
 to
 be
 relevant
 
to
 the
 vegetated
 surface
 area,
 as
 a
 gradual
 increase
 of
 efficiency
 was
 recorded
 in
 
accordance
 to
 the
 increase
 of
 plants
 inside
 the
 chamber.
 The
 placement
 of
 the
 plants
 
also
 proved
 to
 be
 relevant
 to
 the
 filtration
 efficiency.
 For
 achieving
 noticeable
 
particle
 removal,
 plants
 needed
 to
 be
 placed
 directly
 in
 front
 of
 the
 outlet.
 Lastly,
 
wet
 deposition
 did
 not
 have
 a
 positive
 or
 negative
 effect
 on
 the
 filtration
 efficiency.
 

 

 

 

 

 

 

 

 

   
 

  93
 
Chapter
 Five:
 Analysis
 

 

 
In
 this
 chapter,
 the
 results
 of
 the
 experiments
 will
 be
 analyzed.
 This
 study
 was
 based
 
on
 observations
 made
 during
 an
 experimental
 procedure
 and
 not
 on
 a
 mathematical
 
model,
 or
 simulation
 software.
 It
 is
 a
 preliminary
 research
 on
 this
 subject
 that
 
leaves
 a
 lot
 of
 room
 for
 further
 improvement
 of
 the
 method
 and
 future
 analysis.
 

 
The
 objectives
 of
 the
 analysis
 are
 to:
 
-­‐ Examine
 the
 validity
 of
 the
 measurements
 and
 explain
 the
 factors
 that
 could
 
be
 affecting
 them.
 
-­‐ Explain
 the
 difference
 between
 mass
 concentration
 and
 number
 
concentration
 of
 particles.
 This
 will
 help
 in
 understanding
 why
 there
 was
 a
 
difference
 in
 these
 values
 during
 the
 experimental
 process.
 
-­‐ Explain
 the
 difference
 in
 the
 mechanisms
 that
 resulted
 in
 particle
 removal
 
according
 to
 their
 size
 categorization.
 
-­‐ Provide
 a
 comparative
 table
 for
 removal
 efficiency
 compared
 to
 the
 ambient
 
air
 as
 well
 as
 the
 control
 measurement.
 

 
5.1
 RESULTS
 ACCURACY
 

 
The
 problem
 of
 infiltration
 was
 not
 resolved
 for
 this
 setup.
 An
 effort
 was
 made
 to
 
provide
 the
 best
 possible
 solution
 for
 achieving
 results
 that
 would
 better
 reflect
 the
 
potential
 filtration
 efficiency
 of
 the
 testing
 cell.
 From
 the
 tests
 performed
 previously
 
in
 lab
 environment,
 it
 was
 observed
 that
 the
 particle
 mass
 concentration
 difference
 

  94
 
between
 the
 inlet
 and
 the
 outlet
 was
 far
 from
 what
 was
 expected,
 especially
 when
 
the
 control
 measurements
 were
 performed.
 This
 was
 due
 to
 the
 extremely
 clean
 lab
 
air
 infiltrating
 the
 chambers
 and
 reducing
 the
 total
 particle
 mass
 concentration
 as
 it
 
was
 getting
 mixed
 up
 with
 the
 aerosol
 sample.
 For
 avoiding
 that
 consequence,
 it
 was
 
decided
 that
 since
 it
 was
 not
 possible
 to
 completely
 address
 the
 leaking
 problem,
 an
 
adequate
 solution
 would
 be
 to
 make
 sure
 that
 the
 air
 being
 pulled
 through
 the
 
chamber
 would
 have
 the
 same
 mass
 concentration
 as
 the
 air
 infiltrating.
 That
 way,
 
the
 measurement
 results
 might
 also
 not
 be
 as
 accurate
 as
 anticipated,
 but
 still
 they
 
would
 be
 a
 more
 acceptable
 representation
 of
 the
 effectiveness
 of
 the
 system.
 The
 
infiltration
 in
 this
 case,
 would
 work
 as
 a
 disadvantage
 to
 the
 measurements,
 not
 
favoring
 the
 system
 by
 showing
 a
 higher
 effectiveness
 than
 it
 might
 actually
 have.
 
Furthermore,
 it
 might
 be
 a
 better
 representation
 of
 the
 real
 world
 problem
 since
 
this
 system
 will
 be
 placed
 on
 the
 exterior
 of
 the
 building,
 where
 that
 parameter
 
cannot
 be
 controlled.
 

 
5.2
 PARTICLE
 CATEGORIZATION
 

 
The
 results
 of
 the
 measurements
 showed
 that
 the
 number
 concentration
 of
 particles
 
was
 significantly
 reduced
 by
 the
 vegetated
 surface,
 compared
 to
 ambient
 air.
 More
 
specifically,
 the
 particles
 removed
 were
 secondary
 particles.
 Airborne
 particles
 of
 
the
 ambient
 air
 that
 can
 infiltrate
 indoor
 spaces
 can
 be
 categorized
 as
 primary
 and
 
secondary
 according
 to
 their
 size.
 Secondary
 particulate
 matter
 has
 a
 size
 smaller
 
than
 2.5μm
 and
 usually
 less
 than
 1.0μm.
 The
 difference
 between
 primary
 and
 
secondary
 is
 that
 the
 latter
 is
 deposited
 on
 surfaces
 through
 diffusional
 loss
 and
 not
 

  95
 
through
 gravitational
 loss.
 Bigger
 particles
 may
 be
 deposited
 on
 the
 leaves
 of
 the
 
plants,
 or
 other
 surfaces,
 simply
 when
 pulled
 by
 gravity.
 The
 smaller
 particle
 losses
 
are
 mainly
 due
 to
 diffusion.
 This
 is
 the
 process
 by
 which
 aerosol
 particles
 move
 
randomly
 due
 to
 collisions
 with
 gas
 molecules.
 Such
 collisions
 may
 lead
 to
 further
 
collisions
 with
 either
 obstacles
 or
 surfaces.
66

 Furthermore,
 particles
 that
 their
 mass
 is
 
bigger
 are
 usually
 deposited
 within
 hours
 due
 to
 gravity.
 On
 the
 other
 hand,
 
particles
 that
 are
 smaller
 in
 size
 and
 therefore
 their
 mass
 is
 smaller,
 stay
 for
 longer
 
in
 the
 air,
 sometimes
 for
 weeks,
 and
 are
 deposited
 on
 surfaces
 usually
 trough
 
precipitation
67
.
 Therefore,
 the
 number
 concentration
 of
 these
 sizes
 is
 much
 bigger
 
compared
 to
 larger
 particles.
 Particles
 of
 this
 size
 are
 also
 the
 ones
 that
 are
 more
 
toxic
 for
 humans,
 as
 their
 main
 source
 is
 gases
 that
 their
 chemical
 elements
 are
 still
 
coagulating,
 until
 they
 reach
 the
 size
 of
 0.3μm.
 

 
5.3
 MASS
 CONCENTRATION
 AND
 NUMBER
 CONCENTRATION
 

 
Mass
 concentration
 of
 particles
 and
 the
 number
 concentration
 of
 particles
 are
 two
 
different
 methods
 of
 expressing
 the
 amount
 of
 the
 specific
 pollutant
 in
 the
 air.
 Mass
 
concentration
 of
 particles
 is
 expressed
 in
 μg/m
3

 or
 mg/m
3
,

 
which
 is
 essentially
 
related
 to
 their
 volume.
 The
 number
 concentration
 of
 airborne
 particles
 is
 
expressed
 as
 particles/cm
3
,
 which
 is
 the
 absolute
 number
 of
 particles
 for
 a
 specific
 
volume.
 As
 the
 size
 of
 particles
 suspended
 in
 the
 air
 increases
 their
 mass
 also
 
increases,
 but
 their
 actual
 number
 remains
 the
 same.
 An
 example
 for
 this
 is
 that
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66

 “Wikipedia”
 site,
 last
 modified
 on
 27
 March
 2013,
 http://en.wikipedia.org/wiki/Deposition_(aerosol_physics).
 
67

 Ibid.
 

  96
 
when
 comparing
 one
 particle
 with
 diameter
 0.1μm
 to
 one
 particle
 with
 diameter
 
10μm,
 the
 volume
 of
 the
 latter
 one
 is
 about
 10,000
 times
 bigger
 (figure
 5-­‐2).
 
Therefore,
 larger
 particles
 can
 influence
 more
 the
 mass
 concentration
 as
 it
 is
 
immediately
 relative
 to
 the
 volume
 of
 particles.
 The
 sensors
 used
 throughout
 the
 
experiment
 are
 dust
 sensors,
 which
 are
 able
 to
 accurately
 measure
 the
 mass
 
concentration
 of
 airborne
 particles,
 but
 they
 cannot
 make
 a
 distinction
 between
 the
 
different
 sizes.
 Furthermore,
 these
 sensors
 also
 measure
 particles
 with
 a
 diameter
 
much
 bigger
 than
 2.5μm
 and
 even
 larger
 than
 10μm,
 which
 was
 not
 in
 the
 scope
 of
 
work
 of
 this
 study.
 
 

 
The
 charts
 below
 represent
 a
 typical
 concentration
 of
 particles
 in
 the
 ambient
 air,
 as
 
their
 size
 distribution
 in
 relation
 to
 their
 number,
 their
 surface
 area
 and
 volume
 
(Figure
 5-­‐1)
 and
 a
 comparison
 of
 different
 sizes
 of
 particles
 (Figure
 5-­‐2).
 The
 
highest
 values
 differ
 depending
 on
 which
 of
 the
 methods
 mentioned
 above
 is
 used
 
to
 quantify
 the
 particle
 concentration.
 When
 looking
 at
 the
 mass
 concentration,
 the
 
biggest
 impact
 is
 from
 particles
 with
 diameter
 from
 0.1
 μm
 to
 1
 μm
 and
 from
 2.5
 μm
 
to
 up
 to
 more
 than
 10μm.
 While
 looking
 at
 number
 concentration,
 the
 peak
 value
 is
 
for
 0.01
 μm.
 The
 red
 area
 represents
 the
 range
 of
 particles
 of
 the
 size
 distribution
 
plot
 taken
 during
 the
 experiments.
 

  97
 

 
Figure
 5-­‐1:
 A
 typical
 ambient
 particle
 distribution
 as
 a
 function
 of
 particle
 size
 expressed
 by
 particle
 
number,
 surface
 area,
 and
 volume.
 The
 latter
 is
 equivalent
 to
 a
 mass
 distribution
 when
 variation
 in
 
particle
 density
 is
 small.
 Vertical
 scaling
 is
 individual
 to
 each
 panel
68

 

 
Figure
 5-­‐2:
 Comparison
 of
 Particulate
 Matter
 Size
69

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68

 Heal,
 Mathew
 et
 al.
 2012.
 “Particles,
 air
 quality,
 policy
 and
 health”
 Chem.
 Soc.
 Rev.,
 Vol.41,
 pp.
 6606-­‐6630.
 
69

 Image
 source
 “Santa
 Barbara
 Air
 Pollution
 Control
 District”
 site,
 
http://www.sbcapcd.org/images/sbcapcdParticleSize600.jpg
 

  98
 

 
For
 the
 purposes
 of
 this
 study
 the
 reduction
 of
 the
 mass
 concentration
 of
 particles
 
was
 not
 taken
 into
 consideration,
 as
 there
 was
 not
 significant
 deviations
 throughout
 
the
 different
 configurations
 tested.
 That
 is
 because
 the
 aerosol
 monitors
 used
 to
 
measure
 the
 difference
 were
 not
 calibrated
 in
 a
 way
 that
 could
 accurately
 account
 
particles
 of
 specific
 ranges.
 The
 measurements
 of
 the
 TSI
 Particle
 Counter
 proved
 to
 
be
 more
 in
 the
 scope
 of
 work
 of
 this
 study,
 as
 they
 were
 measuring
 number
 of
 
particles
 and
 those
 included
 particles
 with
 a
 diameter
 as
 small
 as
 7nm.
 This
 study
 
intended
 to
 focus
 in
 PM2.5.
 However,
 the
 percentile
 of
 the
 reduction
 of
 particle
 mass
 
concentration
 is
 also
 mentioned,
 as
 it
 is
 an
 additional
 indication
 that
 the
 particles
 
removed,
 by
 the
 different
 configurations
 compared
 to
 the
 control
 measurements,
 
are
 the
 secondary
 particles,
 which
 do
 not
 impact
 mass
 concentration.
 

 
5.4
 RESULTS
 ANALYSIS
 

 
The
 results
 of
 the
 measurements
 are
 examined
 in
 total
 to
 determine
 their
 overall
 
efficiency
 and
 the
 possibility
 of
 an
 architectural
 application.
 

 
5.4.1
 Control
 Measurement
 

 
The
 control
 measurement
 showed
 that
 even
 with
 an
 empty
 chamber
 the
 number
 
concentration
 of
 particles
 was
 reduced
 by
 an
 average
 19.48%.
 This
 is
 concluded
 by
 
the
 recorded
 reduction
 of
 both
 mass
 and
 number
 particle
 concentration
 and
 it
 is
 
due
 to
 deposition
 of
 particles,
 both
 gravitational
 and
 diffusional
 on
 the
 various
 
surfaces
 of
 the
 chamber.
 
 

  99
 

 
5.4.2
 Vegetation
 at
 the
 sides
 of
 the
 opening
 

 
The
 placement
 of
 the
 plants
 proved
 to
 be
 a
 key
 factor
 of
 the
 filtration
 potential
 of
 
the
 vegetated
 surface.
 When
 plants
 were
 not
 placed
 directly
 in
 front
 of
 the
 outlet
 the
 
recorded
 efficiency
 per
 surface
 area
 was
 minimal
 to
 poor
 comparing
 to
 the
 
corresponding
 when
 the
 plants
 were
 also
 placed
 in
 front
 of
 the
 outlet.
 
 

 
5.4.3
 Screen
 Configuration
 

 
By
 observing
 the
 results,
 it
 is
 noticed
 that
 even
 one
 row
 of
 plants
 in
 front
 of
 the
 
outlet
 can
 reduce
 an
 amount
 of
 particles
 from
 entering
 indoor
 spaces.
 The
 
improvement
 was
 about
 30%,
 compared
 to
 the
 ambient
 air
 number
 concentration,
 
and
 5.75%
 compared
 to
 the
 control
 measurement.
 

 
5.4.4
 Maximum
 Vegetated
 Surface
 

 
The
 maximum
 vegetated
 surface
 tested
 was
 when
 the
 chamber
 was
 filled
 with
 
plants.
 The
 total
 surface
 area
 was
 4.5ft
2

 and
 the
 measurement
 results
 showed
 an
 
average
  51.28%
  reduction
  in
  the
  particle
  number
  concentration
  and
  a
  39.49%
 
improvement
 compared
 to
 the
 control
 measurement.
 

 

   
 

  100
 
5.4.5
 Area
 to
 removal
 ratio
 

 
The
 study
 also
 attempted
 to
 find
 a
 relationship
 between
 the
 vegetated
 surface
 area
 
and
 the
 efficiency
 of
 removal.
 The
 chamber
 dimensions
 were
 a
 given,
 so
 by
 
gradually
 increasing
 the
 vegetation
 surface
 inside
 it
 was
 observed
 that
 the
 removal
 
efficiency
 was
 also
 improved.
 By
 examining
 the
 removal
 rate
 of
 the
 different
 
configurations
 it
 can
 be
 concluded
 that
 as
 the
 vegetated
 area
 increases,
 the
 removal
 
efficiency
 also
 increases.
 
 This
 is
 an
 indication
 that
 with
 a
 specific
 area
 of
 vegetation,
 
higher
 removal
 may
 be
 achieved.
 It
 needs
 to
 be
 highlighted
 again
 that
 the
 spectrum
 
of
 particles
 that
 were
 taken
 into
 consideration
 for
 calculating
 the
 reduction
 number
 
concentration
 range
 from
 3nm
 and
 up.
 
 

 

 
Figure
 5-­‐3:
 Removal
 Efficiency
 Percentile
 to
 Vegetated
 Surface
 Area
 

 
0.00%
 
10.00%
 
20.00%
 
30.00%
 
40.00%
 
50.00%
 
60.00%
 
70.00%
 
0
  0.5
  1
  1.5
  2
  2.5
  3
  3.5
  4
  4.5
  5
 
Surface
 Area
 (ft
2
)
 
Removal
 Percentile
 to
 
 Surface
 Area
 
REDUCTION
  REDUCTION
 WET
 LEAVES
 
REDUCTION
 SIDES
 VEGETATION
 
  Reduction
 Trend
 

  101
 
Finally,
 it
 must
 be
 noted
 that
 the
 results
 were
 obtained
 with
 a
 specific
 volumetric
 
flow
 rate.
 The
 pump
 was
 set
 at
 50lt/m,
 which
 means
 that
 the
 air
 velocity
 at
 the
 
outlet
 was
 0.10
 m/s.
 The
 maximum
 possible
 air
 velocity
 in
 the
 chamber
 can
 be
 
calculated
 as
 0.012m/s
 but
 that
 is
 probably
 not
 the
 case
 as
 due
 to
 infiltration
 it
 is
 
expected
 that
 it
 would
 be
 even
 lower.
 This
 limitation
 did
 not
 allow
 for
 tests
 to
 be
 
performed
 with
 different
 volumetric
 flow
 rates.
 The
 results
 presented
 above
 are
 
relevant
 to
 the
 specific
 flow
 rate
 and
 different
 follow
 rates
 could
 result
 different
 
efficiency.
 

 
5.4.6
 Wet
 Deposition
 

 
Wet
 deposition
 was
 also
 decided
 to
 be
 tested,
 as
 water
 is
 an
 element
 that
 is
 present
 
through
 the
 entire
 life
 cycle
 of
 plants
 either
 as
 a
 part
 of
 their
 nutrition,
 or
 as
 a
 part
 of
 
their
 metabolism
 process,
 through
 transpiration
 as
 water
 vapor.
 Furthermore,
 the
 
system
 will
 be
 constantly
 exposed
 to
 weather
 conditions.
 It
 is
 therefore
 inevitable
 
that
 the
 foliage
 of
 the
 plants
 will
 be
 at
 some
 point
 wet.
 For
 determining
 whether
 the
 
wet
 foliage
 of
 plants
 would
 impact
 the
 filtration
 efficiency,
 it
 was
 decided
 that
 the
 
two
 configurations
 that
 should
 be
 tested
 initially
 would
 be
 the
 more
 and
 the
 least
 
efficient.
 These
 were
 the
 one
 row
 of
 plants
 and
 the
 chamber
 full
 of
 plants.
 If
 a
 
significant
 improvement
 was
 documented,
 then
 more
 configurations
 would
 be
 
tested.
 The
 measurements
 showed
 that
 there
 was
 no
 important
 difference
 in
 the
 
reduction
 of
 the
 particle
 number
 concentration
 when
 the
 foliage
 of
 the
 plants
 was
 
wet
 compared
 to
 dry
 leaves.
 The
 reduction
 noticed,
 for
 both
 of
 the
 configurations,
 
was
 less
 than
 5%,
 compared
 to
 the
 ones
 with
 dry
 leaves.
 That
 can
 be
 attributed
 as
 

  102
 
result
 of
 the
 fluctuation
 of
 the
 amount
 pollutants
 in
 the
 ambient
 air
 when
 taking
 the
 
measurements.
 With
 this
 setup,
 the
 deviation
 was
 too
 small
 to
 conclude
 whether
 
wet
 deposition
 is
 more
 effective,
 as
 a
 filtration
 method.
 

 
5.5
 COMPARATIVE
 TABLE
 OF
 EFFICIENCY
 

 
The
 results
 displayed
 above
 show
 the
 removal
 efficiency
 compared
 to
 the
 recorded
 
ambient
 air
 concentration.
 However,
 it
 is
 important
 to
 compare
 these
 results
 also
 to
 
the
 base
 case,
 as
 there
 was
 a
 noticeable
 reduction
 of
 number
 concentration
 during
 
those
 measurements
 and
 a
 part
 of
 the
 particles
 removed
 for
 all
 configurations
 might
 
be
 attributed
 to
 that.
 The
 following
 table
 displays
 the
 efficiency
 of
 the
 different
 
configurations
 compared
 both
 to
 ambient
 air
 and
 the
 control
 measurement.
 

 
Table
 5-­‐1:
 Comparative
 Table
 of
 Efficiency
 %
 to
 ambient
 air
 concentration
 and
 to
 the
 control
 
measurement
 
Configuration
  Area
 (ft
2
)
  %
 compared
 to
 
Ambient
 Air
 
%
 compared
 to
 
Control
 Measurement
 
Base
 Case
 
  0
  19.48%
  0.00%
 
1
 row
 of
 plants
  0.5
  24.11%
  5.75%
 
2
 rows
 of
 plants
  1
  32.31%
  15.93%
 
3
 rows
 of
 plants
  1.5
  39.15%
  24.43%
 
5
 rows
 of
 plants
  2.5
  36.38%
  20.99%
 
8
 rows
 of
 plants
  4.5
  51.28%
  39.49%
 
2
 pots
 at
 the
 sides
  0.22
  16.91%
  0.00%
 
16
 pots
 at
 the
 sides
  2
  33.10%
  16.92%
 

 

   
 

  103
 
5.6
 SIZE
 DISTRIBUTION
 ANALYSIS
 

 
The
 size
 distribution
 analysis
 of
 the
 chamber
 when
 it
 was
 full
 with
 plants
 was
 
accounting
 for
 particles
 with
 diameter
 range
 from
 0.01μm
 up
 to
 1μm.
 The
 percentile
 
of
 particle
 removal
 for
 these
 sizes
 was
 27.68%,
 comparing
 to
 ambient
 air.
 Taking
 
into
 consideration
 the
 total
 reduction
 of
 the
 number
 of
 particles
 when
 the
 chamber
 
was
 full
 that
 was
 in
 an
 average
 51.28%
 the
 vegetated
 surface
 was
 able
 to
 also
 
remove
 successfully
 particles
 with
 a
 diameter
 more
 than
 1μm
 and
 less
 than
 0.01μm.
 
The
 lower
 detection
 limit
 was
 3nm.
 It
 can
 be
 assumed,
 from
 the
 charts
 above
 
showing
 a
 typical
 size
 distribution
 of
 particles
 in
 the
 ambient
 air,
 that
 since
 larger
 
particles
 with
 a
 diameter
 of
 0.1μm
 to
 10μm
 do
 not
 seem
 to
 impact
 the
 number
 
concentration,
 and
 the
 mass
 concentration
 remained
 the
 same,
 comparing
 to
 the
 
base
 case,
 that
 the
 majority
 of
 particles
 removed
 belong
 in
 the
 fine
 Particulate
 
Matter.
 The
 efficiency
 percentage
 per
 size
 is
 shown
 in
 the
 chart
 below
 with
 an
 
indication
 of
 which
 size
 and
 above
 MERV
 filters
 address
 (figure
 5-­‐4).
 

 

  104
 

 
Figure
 5-­‐4:
 Removal
 percentile
 per
 Particle
 Size
 

 
The
 removal
 efficiency
 per
 size
 appears
 to
 be
 more
 consistent
 for
 sizes
 between
 
0.01μm
 and
 0.3μm
 with
 a
 steady
 rate
 ranging
 between
 20%
 and
 40%.
 For
 particles
 
with
 diameter
 bigger
 than
 0.3μm
 the
 efficiency
 becomes
 more
 irregular
 and
 
fluctuates
 from
 0%
 to
 40%.
 
 

 

   
 
-­‐80.00%
 
-­‐60.00%
 
-­‐40.00%
 
-­‐20.00%
 
0.00%
 
20.00%
 
40.00%
 
60.00%
 
10
  100
  1000
 
Particle
 Size
 (nm)
 
removal
 percentile
 per
 size
 
limitation
 of
 MERV
 
ilters
 (0.3μm)
 

  105
 
5.7
 CONCLUSIONS
 

 
The
 analysis
 of
 the
 results
 showed
 that
 there
 was
 a
 noticeable
 reduction
 in
 the
 
particle
 number
 concentration
 as
 air
 was
 treated
 in
 the
 chamber,
 and
 that
 this
 
reduction
 is
 relevant
 to
 the
 vegetated
 surface.
 A
 significant
 amount
 of
 particles
 
removed
 proved
 to
 be
 in
 the
 range
 of
 the
 scope
 of
 work
 of
 this
 study.
 There
 is
 still
 a
 
lot
 of
 room
 for
 improvement
 of
 the
 experimental
 process,
 which
 would
 help
 in
 
repeating
 the
 measurements
 and
 validating
 the
 results,
 but
 this
 is
 an
 expected
 
difficulty
 when
 developing
 a
 physical
 testing
 method.  















  106
 
Chapter
 Six:
 Conclusions
 

 

 
This
 study
 focused
 on
 determining
 whether
 a
 vegetated
 façade
 can
 function
 as
 a
 
filtration
 medium,
 especially
 for
 particles
 with
 a
 diameter
 less
 than
 2.5μm,
 to
 
increase
 indoor
 air
 quality.
 The
 conclusions
 are
 described
 in
 this
 chapter.
 
 
 

 
6.1
 THE
 DESIGN
 OF
 EXPERIMENTAL
 PROCESS
 
 

 
As
 mentioned
 above,
 an
 experimental
 method
 needed
 to
 be
 developed
 to
 perform
 
the
 required
 measurements.
 This
 method
 included
 the
 construction
 of
 an
 
environmental
 chamber
 that
 would
 be
 able
 to
 control
 various
 parameters
 that
 are
 
present
 in
 the
 real
 world
 and
 focus
 on
 the
 filtration
 efficiency
 of
 the
 specific
 
vegetated
 area.
 The
 process
 of
 constructing
 the
 chamber
 itself
 was
 challenging,
 as
 
there
 were
 many
 issues
 that
 needed
 to
 be
 addressed
 to
 achieve
 the
 desired
 results.
 
The
 most
 important
 issue
 was
 that
 of
 the
 airtightness.
 The
 materials
 used
 for
 the
 
chamber
 were
 proved
 to
 be
 unsuitable
 for
 this
 construction.
 More
 specifically,
 the
 
plywood
 base
 was
 a
 poor
 selection,
 as
 air
 could
 pass
 through
 the
 pores
 and
 the
 
cracks
 of
 the
 material.
 To
 add
 to
 that
 in
 an
 effort
 to
 better
 seal
 the
 joints
 of
 the
 base,
 
silicone
 caulk
 was
 used,
 but
 it
 provided
 minimum
 protection.
 
 Another
 important
 
issue
 that
 could
 be
 redesigned
 for
 future
 research
 would
 be
 the
 lid
 of
 the
 chamber.
 
In
 an
 effort
 to
 make
 the
 lid
 airtight,
 rubber-­‐foam
 weather-­‐seal
 was
 used.
 This
 was
 
not
 enough
 as
 a
 single
 measure.
 A
 more
 complex
 way
 for
 ensuring
 that
 air
 is
 not
 
leaking
 through
 the
 joints
 of
 the
 top
 part
 of
 the
 chamber
 is
 necessary,
 potentially
 a
 
design
 that
 allows
 the
 lid
 to
 be
 fastened
 on
 tightly
 to
 the
 chamber.
 Lastly,
 the
 

  107
 
construction
 of
 all
 the
 joints,
 either
 of
 the
 chamber
 or
 from
 other
 parts
 attached
 to
 
it,
 should
 be
 reconsidered,
 as
 the
 single
 caulk
 line
 of
 silicon
 proved
 to
 not
 be
 enough.
 
For
 results
 to
 be
 considered
 valid,
 especially
 in
 a
 lab
 environment,
 where
 the
 
dilution
 of
 the
 air
 in
 the
 chamber
 with
 the
 clean
 lab
 air
 could
 result
 to
 decrease
 
particle
 mass
 concentration,
 it
 was
 suggested
 that
 the
 reading
 of
 the
 air
 flow
 meter
 
should
 not
 indicate
 a
 difference
 more
 than
 30%,
 from
 the
 inlet
 to
 the
 outlet.
 

 
There
 are
 also
 some
 parameters
 that
 may
 be
 improved,
 as
 far
 as
 the
 testing
 
procedure
 is
 concerned.
 The
 fact
 that
 the
 airtightness
 of
 the
 chambers
 could
 not
 be
 
addressed
 successfully
 was
 a
 limitation
 for
 the
 specific
 study.
 The
 question
 that
 
rises
 is
 whether
 the
 testing
 results
 would
 be
 even
 more
 encouraging,
 if
 ambient
 air
 
was
 not
 infiltrating
 the
 interior
 of
 the
 chamber,
 at
 the
 final
 setup
 used.
 Another
 
observation
 is
 that
 with
 a
 more
 airtight
 chamber,
 the
 flow
 rates
 will
 be
 controlled
 
accurately.
 Therefore
 the
 setup
 will
 be
 able
 to
 include
 the
 airflow
 rates
 as
 a
 
parameter,
 which
 appears
 to
 be
 an
 important
 factor,
 especially
 when
 expressed
 as
 
an
 air
 exchange
 rate.
 Another
 factor
 that
 could
 be
 important
 may
 be
 the
 ambient
 air
 
concentration.
 It
 was
 not
 possible
 to
 test
 different
 ambient
 air
 mass
 concentrations
 
and
 determine
 if
 this
 system
 can
 get
 saturated
 and
 stop
 working
 effectively
 after
 an
 
ambient
 particle
 concentration
 is
 exceeded.
 Lastly,
 the
 plant
 foliage
 geometry
 might
 
also
 be
 a
 factor
 for
 the
 system
 efficiency.
 The
 specific
 plant
 was
 chosen
 according
 to
 
some
 criteria
 that
 this
 study
 had
 set.
 However,
 there
 are
 a
 lot
 more
 plant
 species
 
that
 could
 be
 used
 for
 the
 same
 application
 and
 that
 would
 make
 suitable
 candidates
 
for
 this
 experiment.
 
 

  108
 

 
6.2
 IMPLEMENTATION
 
 
 
 

 
The
 results
 of
 the
 tests
 are
 promising
 and
 have
 shown
 an
 average
 reduction
 of
 
number
 concentration
 of
 particles
 about
 51.28%
 for
 the
 maximum
 surface
 that
 was
 
tested,
 compared
 to
 the
 ambient
 air.
 The
 particles
 filtered
 are
 mainly
 secondary
 
particles,
 which
 are
 the
 more
 toxic
 for
 humans,
 as
 they
 are
 still
 chemically
 active
 
and
 easier
 to
 penetrate
 the
 respiratory
 system
 due
 to
 their
 size.
 

 
As
 discussed
 above,
 a
 vegetated
 façade
 shows
 potential
 in
 filtering
 airborne
 
particles.
 However,
 it
 cannot
 completely
 replace
 the
 mechanical
 filtration
 system
 
that
 buildings
 usually
 use.
 The
 reason
 is
 that
 the
 vegetated
 surface
 appeared
 to
 be
 
successful
 in
 removing
 particles
 that
 conventional
 filters
 may
 not
 be
 able
 to
 address
 
particles
 with
 a
 diameter
 from
 0.3μm
 and
 below.
 The
 efficiency
 of
 conventional
 
mechanical
 filtration
 systems
 is
 tested
 for
 particles
 from
 0.3μm
 and
 above.
 Metrics
 
on
 the
 efficiency
 of
 those
 systems
 for
 smaller
 particles
 do
 not
 exist.
 Therefore,
 
phytofiltration
 is
 a
 method
 that
 contributes
 effectively
 in
 filtering
 the
 suspended
 
particles
 with
 a
 small
 diameter,
 for
 which
 MERV
 air-­‐filters
 efficacy
 is
 not
 known,
 but
 
for
 bigger
 particles
 the
 results
 did
 not
 show
 significant
 reduction.
 A
 vegetated
 
facade
 can
 have
 two
 major
 applications
 that
 could
 benefit
 indoor
 air
 quality:
 

 
− As
 a
 system
 for
 buildings
 that
 use
 natural
 ventilation
 to
 improve
 IAQ
 (Figure
 
6-­‐2).
 Mechanical
 filtration
 is
 not
 always
 applied
 to
 buildings.
 There
 are
 a
 lot
 
of
 buildings
 that
 up
 to
 this
 day
 use
 natural
 ventilation
 and
 they
 do
 not
 

  109
 
include
 a
 filtration
 system.
 An
 example
 of
 a
 building
 that
 uses
 natural
 
ventilation
 for
 some
 of
 its
 spaces
 is
 the
 San
 Francisco
 Federal
 Building,
 by
 
Thom
 Mayne.
 
 
− Combined
 with
 another
 filtration
 system
 (Figures
 6-­‐1,
 6-­‐3,
 6-­‐4),
 that
 
addresses
 particles
 of
 a
 different
 diameter
 range.
 This
 system
 could
 either
 be
 
mechanical,
 a
 high-­‐MERV
 filter,
 or
 another
 material,
 like
 a
 permeable
 fabric.
 
In
 this
 case,
 the
 system
 can
 work
 as
 an
 additional
 measure
 to
 the
 filtration
 
system
 to
 improve
 IAQ.
 This,
 as
 a
 holistic
 system
 would
 be
 able
 to
 address
 
successfully
 almost
 the
 entire
 range
 of
 airborne
 Particulate
 Matter
 that
 could
 
be
 introduced
 in
 the
 interior
 of
 a
 building.
 Furthermore,
 as
 there
 are
 
indications
 that
 this
 system
 can
 address
 an
 amount
 of
 other
 ranges
 of
 
particles,
 it
 could
 potentially
 expand
 the
 lifecycle
 of
 the
 filter
 itself,
 by
 
delaying
 clogging
 and
 therefore
 contribute
 to
 reducing
 the
 energy
 
consumption
 that
 is
 a
 result
 of
 improper
 maintenance.
 
 The
 chart
 below
 
illustrates
 the
 best
 filtration
 efficiency
 measured,
 in
 addition
 with
 a
 high
 
MERV
 filter.
 
 

 

  110
 

 
Figure
 6-­‐1:
 Best
 measured
 efficiency
 and
 HighMERV
 filter
 combination
 

 

 
Figure
 6-­‐2:
 Vegetated
 surface
 used
 for
 natural
 ventilation.
 

 
0.00%
 
10.00%
 
20.00%
 
30.00%
 
40.00%
 
50.00%
 
60.00%
 
70.00%
 
80.00%
 
90.00%
 
100.00%
 
10
  100
  1000
  10000
 
Particle
 Size
 (nm)
 
Best
 Measurement
 and
 High
 MERV
 hilter
 combination
 efhiciency
 
 
HighMERV
  Vegetation
 
300
 

  111
 

 
Figure
 6-­‐3:
 Combination
 of
 vegetated
 surface
 and
 HighMERV
 filter
 for
 mechanical
 ventilation.
 

 
Figure
 6-­‐4:
 Combination
 of
 vegetated
 surface
 and
 HighMERV
 filter
 for
 natural
 and
 mechanical
 
ventilation.
 

 
Lastly,
 it
 was
 noticed
 that
 even
 in
 the
 base
 case
 testing,
 when
 the
 chamber
 was
 
empty,
 there
 was
 some
 particle
 removal,
 which
 could
 be
 an
 indication
 that
 even
 just
 
a
 double
 skin
 façade
 might
 be
 able
 to
 provide
 some
 filtration
 of
 particles.
 

 

  112
 
6.3
 EXTRAPOLATION/
 LARGE
 SCALE
 APPLICATION
 

 
The
 extrapolation
 of
 the
 system
 is
 based
 on
 estimations
 of
 the
 data
 that
 have
 been
 
acquired
 during
 the
 experimental
 process.
 By
 examining
 the
 trend-­‐line
 of
 the
 chart
 
illustrating
 the
 removal
 efficiency
 to
 the
 vegetated
 surface
 area,
 a
 prediction
 can
 be
 
made
 about
 the
 maximum
 removal
 percentile
 that
 may
 be
 achieved.
 The
 chart
 
predicts
 that
 a
 75%
 removal
 can
 be
 achieved
 (Figure
 6-­‐5)
 for
 a
 12ft
2

 surface,
 and
 
after
 that
 it
 seemingly
 decreases
 again.
 Understandably,
 the
 decrease
 is
 not
 a
 
representative
 prediction,
 however
 it
 makes
 sense
 that
 the
 surface
 will
 have
 an
 
upper
 limit
 of
 removal
 and
 will
 not
 be
 able
 to
 address
 completely
 the
 entire
 range
 of
 
airborne
 particles.
 

 

 
Figure
 6-­‐5:
 Prediction
 of
 the
 Maximum
 Efficiency
 of
 the
 surface.
 
0.00%
 
10.00%
 
20.00%
 
30.00%
 
40.00%
 
50.00%
 
60.00%
 
70.00%
 
80.00%
 
0
  2
  4
  6
  8
  10
  12
  14
 
Surface
 Area
 (ft
2
)
 
Removal
 Percentile
 to
 Surface
 Area
 
REDUCTION
  REDUCTION
 WET
 LEAVES
 
REDUCTION
 SIDES
 VEGETATION
 
  Reduction
 Trend
 

  113
 

 
An
 estimation
 of
 the
 percentile
 of
 particle
 removal
 ranging
 from
 0.01
 μm
 to
 0.3
 μm
 
was
 attempted,
 based
 on
 the
 size
 distribution
 plot
 measurement
 for
 the
 biggest
 
surface
 of
 vegetation
 tested
 (Figure
 5-­‐4).
 The
 specific
 range
 was
 isolated
 for
 three
 
reasons:
 
-­‐ The
 consistency
 that
 was
 noticed
 in
 the
 filtration
 of
 the
 specific
 sizes,
 
-­‐ The
 impact
 that
 the
 specific
 sizes
 have
 on
 human
 health,
 
-­‐ There
 are
 no
 data
 on
 how
 well
 conventional
 MERV
 filtration
 systems
 address
 
those
 particles.
 
 
The
 following
 chart
 shows
 the
 removal
 measured
 when
 the
 chamber
 was
 full,
 the
 
estimated
 removal
 of
 one
 row
 of
 plants
 and
 the
 maximum
 efficiency
 calculated
 
above
 (Figure
 6-­‐6).
 

 
Figure
 6-­‐6:
 Removal
 Efficiency
 Estimation
 for
 0.01μm
 to
 0.3μm
 
-­‐5.00%
 
10.00%
 
25.00%
 
40.00%
 
55.00%
 
70.00%
 
85.00%
 
100.00%
 
10
  60
  110
  160
  210
  260
  310
 
Particle
 Size
 (nm)
 
Removal
 Efhiciency
 Estimation
 for
 Specihic
 Particle
 Sizes
 
maximum
 measured
 removal
 
maximum
 estimated
 removal
  minimum
 estimated
 removal
 

  114
 

 
Based
 on
 the
 maximum
 efficiency
 estimations,
 the
 combination
 of
 the
 vegetated
 
surface
 with
 the
 HighMERV
 filter
 is
 illustrated
 at
 the
 following
 figure
 (Figure
 6-­‐7).
 

 

 
Figure
 6-­‐7:
 Comparative
 chart
 of
 the
 predicted
 and
 best
 measured
 efficiency
 of
 vegetation
 and
 
HighMERV
 filter
 combination
 

 
6.4
 BENEFITS
 

 
There
 are
 certainly
 many
 benefits
 in
 the
 large-­‐scale
 application
 of
 vegetated
 facades
 
in
 the
 urban
 built
 environment.
 These
 can
 be
 performative
 or
 aesthetic.
 As
 
mentioned
 in
 previous
 chapters,
 the
 performance
 of
 such
 systems
 has
 been
 studied
 
for
 many
 different
 parameters.
 These
 are:
 
0.00%
 
10.00%
 
20.00%
 
30.00%
 
40.00%
 
50.00%
 
60.00%
 
70.00%
 
80.00%
 
90.00%
 
100.00%
 
10
  100
  1000
  10000
 
Particle
 Size
 (nm)
 
Maximum
 efhiciency
 prediction
 of
 Vegetationn
 and
 HighMERV
 hilter
 
combination
 
Best
 Measurement
  Prediction
 Maximum
 
HighMERV
  Vegetation
 
300
 

  115
 
− Pollution
 control.
 This
 was
 the
 scope
 of
 work
 of
 this
 study.
 It
 was
 observed
 
through
 an
 experimental
 method
 that
 vegetated
 surfaces
 have
 the
 potential
 
of
 removing
 airborne
 particles
 of
 a
 specific
 range.
 The
 removal
 of
 fine
 dust
 
and
 coarse
 particulate
 matter
 by
 the
 plants
 was
 promising.
 Towards
 that
 
direction,
 there
 is
 still
 research
 that
 needs
 to
 be
 done
 to
 determine
 whether
 
plants
 can
 also
 address
 other
 ranges
 of
 particles.
 Furthermore,
 from
 previous
 
research
 was
 determined
 that
 specific
 species
 succeed
 to
 remediate
 specific
 
chemical
 pollutants.
 However
 PM2.5
 has
 the
 biggest
 impact
 on
 human
 health.
 
By
 using
 plants
 that
 are
 known
 to
 remediate
 specific
 pollutants
 (NOx,
 VOC’s
 
etc.),
 in
 environments
 where
 they
 exceed
 the
 NAAQS,
 this
 problem
 can
 be
 
addressed
 even
 more
 successfully.
 
− Shading.
 Vegetated
 facades
 can
 be
 great
 passive
 shading
 systems.
 Depending
 
on
 the
 climate
 and
 the
 orientation
 of
 the
 façade
 and
 by
 using
 the
 appropriate
 
species,
 either
 evergreen
 or
 deciduous,
 the
 passive
 solar
 gains
 can
 be
 
regulated
 in
 a
 way
 that
 the
 energy
 performance
 of
 the
 building
 is
 improved.
 
It
 needs
 to
 be
 added,
 that
 the
 system
 should
 be
 also
 designed
 in
 a
 way
 that
 
does
 not
 obstruct
 viewings
 from
 the
 interior.
 
− Thermal
 performance.
 Apart
 from
 regulating
 the
 heat
 gains
 of
 a
 building
 as
 a
 
passive
 shading
 system,
 a
 vegetated
 façade
 can
 also
 work
 as
 a
 thermal
 
insulation
 system.
 This
 is
 mostly
 relevant
 to
 the
 volume
 of
 the
 vegetation
 and
 
the
 configuration,
 however
 studies
 have
 observed
 decreased
 surface
 
temperatures
 when
 they
 were
 covered
 with
 vegetation,
 compared
 to
 
surfaces
 covered
 by
 traditional
 building
 materials
 e.g.
 brick,
 glass.
 It
 must
 be
 

  116
 
noted
 that
 for
 this
 purpose
 the
 plant
 species
 selected
 should
 be
 an
 evergreen,
 
so
 it
 can
 maintain
 its
 properties
 consistently
 throughout
 the
 year.
 
 
 
 
− Acoustics.
 Vegetated
 surfaces
 have
 been
 greatly
 used
 to
 reduce
 noise
 
pollution
 from
 automotive
 and
 railway
 routes.
 Studies
 conducted
 have
 
shown
 that,
 for
 living
 wall
 systems
 the
 sound
 absorption
 is
 close
 to
 concrete,
 
but
 this
 is
 also
 more
 relevant
 to
 the
 material,
 the
 substrate
 and
 less
 to
 the
 
plant
 species
 used
70
.
 
− Aesthetics.
 The
 aesthetics
 of
 the
 vegetated
 surfaces
 are
 also
 an
 important
 
benefit
 from
 such
 applications.
 In
 urban
 built
 environments
 the
 possibility
 of
 
introducing
 green
 spaces,
 like
 urban
 parks,
 is
 limited,
 especially
 in
 dense
 
ones.
 The
 application
 of
 a
 vegetated
 façade
 can
 transform
 the
 building
 
envelope
 into
 a
 visually
 pleasing
 surface.
 Furthermore,
 it
 can
 provide
 
aesthetic
 variations
 with
 the
 application
 of
 different
 species,
 with
 different
 
volumes,
 textures,
 colors
 and
 growth
 heights,
 resulting
 an
 enhanced
 optical
 
effect.
 
− Social.
 Architecture
 is
 a
 science
 that
 involves
 social
 implications.
 Apart
 from
 
the
 aesthetic
 and
 performative
 criteria
 mentioned
 above,
 there
 are
 also
 
social
 benefits
 coming
 from
 the
 application
 of
 such
 systems
 that
 should
 be
 
mentioned.
 Vegetation
 has
 proved
 to
 have
 an
 impact
 on
 human
 psychology.
 
There
 have
 been
 various
 studies
 exploring
 this
 issue
 that
 have
 shown
 that
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70

 Wong,
 Nyuk
 Hien
 et
 al.
 2010.
 “Acoustics
 evaluation
 of
 vertical
 greenery
 systems
 for
 building
 walls”,
 Building
 
and
 Environment,
 Volume
 45,
 Issue
 2,
 pp.
 411-­‐420.
 

  117
 
vegetation
 has
 a
 positive
 effect
 on
 patient
 recovery
 and
 on
 stress
 release.
71

 
To
 add
 to
 that,
 it
 has
 also
 been
 suggested
 that
 vegetation
 can
 improve
 
productivity
 in
 workplace
 environments.
72

 Lastly,
 a
 vegetated
 surface
 in
 an
 
urban
 built
 environment
 can
 potentially
 and
 promote
 sustainability
 and
 raise
 
awareness
 of
 the
 inhabitants
 to
 claim
 healthier
 leaving
 conditions
 and
 
standards,
 for
 a
 better
 quality
 of
 life.
 
 

 
6.5
 CONCERNS
 

 
Even
 though
 the
 results
 of
 the
 measurements
 showed
 some
 significant
 removal,
 
there
 are
 a
 lot
 of
 arguments
 that
 can
 be
 made
 and
 should
 be
 further
 investigated,
 
concerning
 both
 the
 experimental
 method,
 as
 well
 as
 the
 application
 of
 the
 system.
 
 

 
There
 were
 several
 issues
 that
 occurred
 during
 the
 testing
 process
 which
 where
 
attempted
 to
 be
 resolved,
 some
 in
 a
 more
 successful
 manner
 than
 others.
 The
 most
 
important
 issue
 was,
 as
 mentioned
 several
 times
 before,
 the
 air-­‐tightness
 of
 the
 
chambers,
 a
 problem
 that
 was
 never
 resolved
 completely.
 The
 approach
 that
 was
 
followed
 to
 address
 this
 was
 ultimately
 the
 best
 possible,
 but
 it
 was
 also
 an
 
approach
 that
 could
 be
 compromising
 the
 measurement
 results,
 as
 ambient
 air
 was
 
infiltrating
 the
 chamber
 and
 possibly
 increasing
 the
 final
 particle
 number
 
concentration.
 It
 was
 a
 solution
 that
 was
 working
 as
 a
 disadvantage
 to
 the
 study
 and
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71

 Ulrich
 R.S
 and
 R.
 Parsons,
 1992.
 “Influences
 of
 passive
 experiences
 with
 plants
 on
 individual
 well-­‐being
 and
 
health”,
 The
 Role
 of
 Horticulture
 in
 Human
 Well-­‐being
 and
 Social
 Development,
 Timber
 Press,
 Portland,
 Oregon,
 pp.
 
93-­‐105,
 
 
72

 Lohr,
 Virginia
 I.
 et
 al.
 1996.
 “Interior
 Plants
 May
 Improve
 Worker
 Productivity
 and
 Reduce
 Stress
 in
 a
 
Windowless
 Environment”,
 Journal
 of
 Environmental
 Horticulture,
 14(2
 :),
 pp.
 97-­‐100.
 

  118
 
in
 any
 case
 it
 was
 not
 favoring
 the
 findings.
 However,
 it
 was
 assumed
 to
 be
 
reasonable
 representation
 of
 the
 real
 world
 problem.
 The
 question
 that
 still
 remains
 
is
 how
 much
 this
 issue
 actually
 influenced
 the
 measurement
 results
 and
 whether
 
those
 results
 would
 be
 improved
 with
 a
 better-­‐sealed
 chamber.
 
 

 
There
 are
 also
 several
 considerations
 that
 occur
 for
 the
 application
 method.
 
 
− Effect
 of
 pollution
 on
 vegetation.
 The
 results
 of
 the
 study
 are
 only
 based
 on
 
the
 physical
 properties
 of
 the
 particles.
 As
 far
 as
 the
 chemical
 properties
 of
 
these
 particles
 are
 concerned
 there
 is
 definitely
 a
 limitation
 on
 the
 amount
 of
 
pollutants
 the
 plants
 can
 uptake
 and
 break
 down
 through
 their
 metabolism
 
before
 their
 stomata
 get
 clogged
 or
 before
 those
 chemicals
 have
 an
 impact
 on
 
the
 health
 of
 the
 plants.
 More
 specifically,
 nitrogen,
 sulfur,
 and
 ozone,
 which
 
are
 common
 gas
 pollutants,
 have
 a
 big
 impact
 on
 plant
 health.
 That
 should
 be
 
one
 of
 the
 main
 concerns
 of
 the
 designer,
 as
 the
 visual
 result
 of
 a
 vegetated
 
façade
 is
 usually
 the
 main
 reason
 this
 system
 is
 selected
 to
 be
 applied
 on
 a
 
building.
 
− Species
 selection.
 This
 leads
 to
 another
 question
 regarding
 the
 plant
 species
 
selection.
 The
 plants
 selected
 for
 the
 purposes
 of
 this
 study,
 followed
 specific
 
criteria
 about
 their
 foliage
 geometry,
 their
 endurance
 in
 specific
 weather
 
conditions
 and
 their
 growth
 ability.
 Apparently,
 there
 are
 a
 lot
 more
 plant
 
species
 that
 can
 be
 used
 for
 a
 vegetated
 façade.
 However,
 the
 plant
 species
 
selection
 should
 be
 carefully
 done
 in
 order
 to
 not
 affect
 the
 indoor
 air
 quality.
 
The
 plants
 could
 be
 releasing
 pollen
 in
 the
 air
 introduced
 indoors,
 causing
 

  119
 
allergic
 reactions,
 or
 even
 worse,
 other
 toxic
 substances
 as
 a
 defense
 
mechanism
 e.g.
 Volatile
 Organic
 Compounds
 are
 emitted
 from
 some
 plant
 
species
 to
 repel
 insects
 
73
.
 In
 addition
 to
 that,
 since
 a
 vegetated
 surface
 would
 
essentially
 create
 a
 small
 ecosystem
 at
 the
 exterior
 of
 the
 building,
 it
 is
 
possible
 that
 the
 development
 of
 certain
 microorganisms
 and
 insects,
 which
 
get
 transferred
 in
 the
 interior
 of
 the
 building,
 could
 also
 have
 an
 impact
 in
 
indoor
 air
 quality.
 
− Climate
 conditions.
 In
 addition
 to
 the
 above,
 the
 climate
 conditions
 should
 
also
 be
 carefully
 examined
 to
 select
 the
 plant
 species
 and
 under
 the
 concept
 
sustainability
 native
 species
 should
 be
 preferred.
 For
 the
 purposes
 of
 this
 
study,
 the
 plant
 selected
 was
 a
 native
 plant
 that
 would
 be
 able
 to
 survive
 the
 
weather
 conditions
 of
 Los
 Angeles.
 It
 is
 very
 likely
 that
 in
 other
 climate
 
zones,
 the
 specific
 species
 would
 not
 be
 able
 to
 survive.
 
− Maintenance.
 For
 the
 system
 to
 maintain
 both
 the
 performative
 as
 well
 as
 the
 
decorative
 function
 appropriate
 maintenance
 is
 necessary.
 Again,
 as
 these
 
facades
 are
 essentially
 living
 organisms,
 for
 maintaining
 their
 health
 and
 
avoiding
 contamination
 from
 bacteria,
 microorganisms
 or
 insects
 the
 use
 of
 
herbicides
 is
 required.
 The
 use
 of
 these
 substances
 is
 definitely
 an
 aspect
 that
 
needs
 careful
 planning,
 as
 it
 is
 common
 knowledge
 that
 those
 contain
 
ingredients
 harmful
 to
 humans,
 and
 their
 penetration
 into
 indoor
 spaces
 
should
 be
 certainly
 avoided.
 To
 add
 to
 that,
 maintenance
 can
 also
 result
 to
 
increased
 generation
 of
 particles
 that
 can
 be
 introduced
 indoors,
 like
 dust,
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73

 Freeman,
 Brian
 C.
 and
 Gwyn
 A.
 Beattie.
 2008.
 “An
 Overview
 of
 Plant
 Defenses
 against
 Pathogens
 and
 
Herbivores”,
 the
 Plant
 Heath
 Instructor,
 DOI:
 10.1094/PHI-­‐I-­‐2008-­‐0226-­‐01.
 

  120
 
soil
 or
 dead
 cells
 of
 the
 plants
 when
 being
 trimmed.
 Finally,
 the
 efficiency
 of
 
the
 system
 in
 the
 case
 that
 the
 plants
 have
 died
 should
 be
 tested,
 as
 it
 is
 a
 
probable
 scenario
 when
 the
 system
 is
 applied.
 
− Irrigation
 and
 storm
 water
 management.
 A
 very
 important
 concern
 is
 the
 
irrigation
 system
 of
 the
 vegetated
 façade.
 Either
 it
 is
 a
 drip
 system
 or
 a
 spray
 
system;
 it
 is
 only
 up
 to
 a
 certain
 height
 that
 it
 can
 be
 cost
 effective.
 The
 cost
 
for
 the
 function
 of
 the
 pump
 providing
 water
 for
 parts
 of
 the
 vegetated
 
facades
 that
 exceed
 this
 height
 increases
 significantly.
 There
 are
 solutions
 
that
 could
 be
 further
 studied,
 like
 a
 greywater
 irrigation
 system
 that
 could
 
provide
 immediately
 water
 for
 these
 heights,
 or
 collecting
 rainwater
 on
 the
 
roof,
 to
 later
 use
 it
 for
 irrigation.
 Another
 concern
 is
 that,
 the
 surplus
 of
 
water,
 either
 coming
 from
 the
 irrigation
 system,
 either
 from
 weather
 
conditions
 should
 be
 carefully
 handled.
 The
 façade
 should
 be
 designed
 in
 
such
 way
 that
 it
 will
 not
 allow
 water
 penetrating
 its
 components,
 or
 even
 
worse,
 the
 curtain
 wall
 components
 of
 the
 building.
 Moreover,
 it
 should
 not
 
allow
 water
 to
 be
 retained
 in
 various
 parts,
 because
 the
 moisture
 created
 
could
 potentially
 damage
 parts
 of
 the
 façade,
 or
 the
 curtain
 wall.
 
 
− Overall
 living
 conditions
 of
 plants.
 Depending
 on
 the
 species
 selection,
 the
 
living
 conditions
 of
 the
 plants
 should
 be
 examined
 and
 design
 the
 system
 in
 
accordance.
 These
 conditions
 include
 sunlight
 exposure,
 growing
 substrate
 
type;
 irrigation
 needs,
 life
 span,
 durability
 etc.
 
− Cost.
 Vegetated
 facades
 have
 high
 installation
 costs
 and
 specific
 maintenance
 
needs
 that
 need
 to
 be
 addressed.
 They
 are
 systems
 that
 have
 recently
 started
 

  121
 
to
 be
 broadly
 applied
 on
 buildings,
 therefore,
 the
 payback
 period
 is
 not
 yet
 
known.
 To
 add
 to
 that,
 the
 installation
 cost,
 compared
 to
 the
 savings
 from
 the
 
reduction
 of
 the
 energy
 consumption,
 is
 still
 under
 study.
 
− Humidity
 and
 moisture
 control.
 Through
 the
 natural
 process
 of
 
evapotranspiration
 water
 vapor
 is
 released
 from
 plants
 and
 the
 soil.
 A
 very
 
important
 parameter
 of
 indoor
 air
 quality
 is
 humidity.
 
 To
 ensure
 the
 user
 
comfort
 of
 indoor
 spaces,
 a
 regulating
 system
 to
 control
 the
 amount
 of
 water
 
vapor
 that
 is
 introduced
 in
 the
 interior
 of
 the
 building,
 along
 with
 the
 clean
 
air
 should
 also
 be
 considered.
 
 
− Wind
 velocity
 on
 the
 vegetated
 surface.
 The
 air
 was
 pulled
 through
 the
 
chamber
 with
 a
 pump.
 The
 flow
 rate
 was
 measured
 at
 the
 outlet
 of
 the
 
chamber
 and
 it
 was
 50lt/m.
 The
 maximum
 possible
 wind
 velocity
 at
 the
 
vegetated
 surface
 would
 be
 0.012m/s.
 
 However,
 since
 it
 was
 realized
 that
 
the
 flow
 rates
 was
 not
 consistent,
 this
 is
 only
 an
 assumption.
 To
 add
 to
 that,
 
when
 the
 system
 is
 used
 to
 improve
 air
 quality
 of
 a
 natural
 ventilated
 
building
 there
 will
 be
 different
 wind
 velocities
 for
 different
 months
 and
 
seasons
 and
 sometimes
 even
 still
 air
 days.
 This
 is
 a
 fragment
 of
 the
 study
 that
 
was
 intended
 to
 be
 studied,
 the
 way
 different
 flow
 rates
 may
 affect
 the
 
filtration
 properties
 of
 the
 vegetation,
 but
 due
 to
 lack
 of
 airtightness
 of
 the
 
chambers,
 it
 was
 not
 accomplished.
 

 

 

  122
 
Chapter
 Seven:
 Future
 Work
 

 

 
The
 study
 focused
 on
 determining
 whether
 a
 vegetated
 façade
 can
 work
 as
 a
 filter
 to
 
reduce
 airborne
 fine
 particulate
 matter
 infiltrating
 interior
 spaces
 and
 therefore
 
improve
 indoor
 air
 quality
 for
 the
 users
 of
 the
 building.
 That
 required
 the
 
construction
 of
 a
 physical
 test-­‐cell
 that
 would
 allow
 performing
 measurements
 to
 
determine
 that.
 Throughout
 the
 study
 many
 problems
 occurred,
 some
 of
 them
 were
 
successfully
 addressed,
 others
 were
 documented
 and
 not
 completely
 resolved.
 The
 
results
 of
 the
 measurements
 taken
 were
 encouraging
 and
 show
 potential
 that
 a
 
vegetated
 surface
 can
 indeed
 remove
 particles
 of
 a
 specific
 size.
 However,
 due
 to
 the
 
limitations
 presented,
 it
 is
 still
 too
 soon
 to
 make
 a
 general
 statement
 that
 all
 
vegetated
 facades
 can
 successfully
 address
 fine
 particulate
 matter.
 Overall,
 the
 study
 
has
 set
 a
 base
 for
 the
 further
 exploration
 and
 improvement
 of
 the
 experimental
 
method
 as
 well
 as
 the
 possibility
 and
 feasibility
 of
 the
 architectural
 application.
 

 
7.1
 IMPROVEMENT
 OF
 THE
 EXPERIMENTAL
 METHOD
 

 
The
 limitations
 of
 the
 study
 encountered
 through
 the
 experimental
 method
 can
 be
 
improved
 to
 repeat
 the
 measurements
 and
 validate
 the
 results.
 The
 most
 important
 
 
 
parameters
 would
 be:
 
-­‐ Infiltration.
 Improving
 the
 design
 of
 the
 chambers
 could
 lead
 to
 different
 
results
 demonstrating
 less
 or
 more
 filtration
 efficiency.
 

  123
 
-­‐ Volumetric
 flow
 rate.
 As
 a
 continuation
 of
 the
 above,
 when
 the
 infiltration
 is
 
not
 a
 limitation,
 different
 flow
 rates
 can
 be
 examined
 to
 determine
 the
 
impact
 of
 wind
 velocity
 to
 filtration
 efficiency.
 
-­‐ The
 chamber
 dimensions.
 The
 chambers
 constructed
 had
 given
 dimensions.
 
A
 bigger
 chamber
 allowing
 a
 larger
 surface
 area
 to
 be
 tested
 will
 give
 a
 better
 
understanding
 of
 the
 total
 amount
 filtration
 that
 can
 be
 achieved
 and
 if
 that
 
could
 reach
 100%
 for
 a
 specific
 area.
 
-­‐ Plants.
 The
 study
 only
 tested
 a
 specific
 plant
 species
 with
 specific
 foliage
 
geometry.
 Different
 leaf
 geometries
 could
 result
 different
 filtration
 efficiency.
 
-­‐ Weather
 conditions.
 The
 weather
 conditions
 can
 have
 an
 impact
 on
 the
 
filtration
 efficiency.
 Humidity
 and
 sunlight
 are
 two
 factors
 that
 affect
 the
 
levels
 of
 particulate
 matter
 in
 the
 ambient
 air
 and
 could
 affect
 the
 
measurement
 results.
 
-­‐  
 
7.2
 ARCHITECTURAL
 APPLICATION
 

 
The
 architectural
 application
 was
 briefly
 examined
 in
 this
 study.
 Further
 
exploration
 of
 the
 vegetated
 façade
 as
 an
 architectural
 solution
 may
 also
 be
 useful
 in
 
determining
 if
 a
 vegetated
 façade
 could
 be
 feasible
 as
 an
 air-­‐filtration
 medium:
 
-­‐ Computational
 Fluid
 Dynamic
 Analysis.
 The
 air
 movement
 on
 the
 vegetated
 
surface
 can
 be
 studied
 to
 determine
 what
 amount
 of
 air
 that
 is
 filtered
 by
 the
 
plants
 can
 reach
 indoors
 for
 naturally
 ventilated
 building.
 Different
 wind
 
velocities
 may
 be
 examined
 for
 different
 scenarios
 and
 climates.
 This
 can
 also
 
humidity
 and
 air
 temperature.
 

  124
 
-­‐ Irrigation
 system.
 The
 efficacy
 and
 cost
 effectiveness
 of
 the
 irrigation
 system
 
can
 also
 be
 examined.
 The
 cost
 and
 the
 energy
 consumption
 of
 a
 system
 like
 
that
 can
 dramatically
 increase
 as
 the
 building
 height
 increases.
 The
 point
 at
 
which
 the
 cost
 of
 this
 system
 is
 getting
 larger
 than
 the
 benefits
 remains
 a
 
question.
 Another
 direction
 in
 this
 area
 that
 can
 be
 further
 explored
 is
 the
 
potential
 use
 of
 a
 greywater
 system,
 or
 a
 rainwater
 harvesting
 system
 for
 
irrigation.
 
-­‐ Daylight
 Analysis.
 One
 of
 the
 applications
 suggested
 in
 this
 study
 is
 a
 
horizontal
 shelf
 configuration.
 The
 optimization
 of
 the
 shelf
 depth
 for
 the
 
plants
 to
 get
 adequate
 light
 for
 their
 survival
 and
 at
 the
 same
 time
 the
 indoor
 
conditions
 is
 an
 area
 leaves
 a
 lot
 of
 room
 for
 further
 research.
 
-­‐ Smart
 components.
 The
 addition
 of
 smart
 components
 can
 also
 be
 a
 useful
 
for
 the
 architectural
 application.
 The
 façade
 could
 be
 able
 to
 sense
 the
 indoor
 
air
 quality
 and
 the
 ambient
 air
 quality
 and
 make
 a
 decision
 on
 whether
 the
 
interior
 needs
 to
 be
 ventilated
 and
 if
 the
 filtered
 air
 quality
 will
 improve
 the
 
occupants
 comfort
 levels.
 This
 could
 also
 include
 the
 air
 temperature
 and
 
humidity
 to
 achieve
 even
 higher
 levels
 of
 user
 comfort.
 

 

 

 

 

 

  125
 
Bibliography
 

 
-­‐ American
 Society
 of
 Heating
 Refrigerating
 and
 Air
 Conditioning
 Engineers,
 Standard
 
52.2-­‐2007,
 “Method
 of
 Testing
 General
 Ventilation
 Air-­‐Cleaning
 Devices
 for
 Removal
 
Efficiency
 by
 Particle
 Size”
 
-­‐ American
 Society
 of
 Heating
 Refrigerating
 and
 Air
 Conditioning
 Engineers,
 Standard
 
62.1-­‐2010,
 “Standard
 for
 Ventilation
 for
 Acceptable
 Indoor
 Air
 Quality”.
 
-­‐ Atikah
  Fukaihah
  Amir,
  Foong
  Swee
  Yeok,
  Aldrin
  Abdullah
  and
  Abdul
  Malek
  Abdul
 
Rahman.
 2011.
 “Biofacade
 for
 Urban
 Development:
 Pest
 and
 Diseases,
 Its
 Control
 and
 
Prevention”,
 Journal
 of
 Sustainable
 Development,
 Vol.
 4,
 No.5.
 
-­‐ Beko,
 Gabriel,
 Geo
 Clausen
 and
 Charles
 J.
 Wescher.
 2008.
 “Is
 the
 use
 of
 particle
 filtration
 
justifies?
 Costs
 and
 benefits
 of
 filtration
 with
 regard
 to
 health
 effects,
 building
 cleaning
 
and
 occupant
 productivity”,
 Building
 and
 Environment
 43,
 pp.
 1647-­‐1657.
 
-­‐ Cooper,
 David
 C.
 2007.
 “Encyclopedia
 of
 Chemical
 Technology”,
 Kirk-­‐Othmer.
 
-­‐ Freeman,
 Brian
 C.,
 and
 Gwyn
 A.
 Beattie.
 2008.
 “An
 Overview
 of
 Plant
 Defenses
 against
 
Pathogens
 and
 Herbivores”,
 the
 Plant
 Heath
 Instructor,
 DOI:
 10.1094/PHI-­‐I-­‐2008-­‐0226-­‐
01.
 
-­‐ Gaskin,
 Sharyn
 E.
 and
 Richard
 H.
 Bentham.
 2010.
 “Rhizoremediation
 of
 hydrocarbon
 
contaminated
 soil
 using
 Australian
 native
 grasses”,
 Science
 of
 Total
 Environment
 408,
 pp.
 
3683-­‐3688.
 
-­‐ Heal,
 Mathew
 R.,
 Prashant
 Kumar
 and
 Roy
 M.
 Harrison.
 2012.
 “Particles,
 air
 quality,
 
policy
 and
 health,”
 Chem.
 Soc.
 Rev.,
 Vol.
 41,
 pp.
 6606-­‐6630.
 
-­‐ Hua,
 Yang
 and
 Lie
 Yanju.
 2011.
 “Phytoremediation
 on
 Air
 Pollution,
 the
 Impact
 of
 Air
 
Pollution
 on
 Health
 Economy,
 Environment
 and
 Agricultural
 Sources”,
 Dr.
 Mohamed
 
Khallaf
 (Ed.)
 In
 Tech
 Publications.
 
-­‐ Jacko,
 R.
 and
 T.
 La
 Breche.
 2009.
 “Air
 Pollution
 and
 Noise
 Control,
 in
 Environmental
 
Engineering:
 Environmental
 Health
 and
 Safety
 for
 Municipal
 Infrastructure,
 Land
 Use
 
and
 Planning,
 and
 Industry,
 Sixth
 Edition”,
 (eds
 N.
 L.
 Nemerow,
 F.
 J.
 Agardy,
 P.
 Sullivan
 
and
 J.
 A.
 Salvato),
 John
 Wiley
 &
 Sons,
 Inc.,
 Hoboken,
 NJ,
 USA.
 doi:
 10.1002/9780470432822,
 
ch4.
 
-­‐ Lazaridis,
  Michalis.
  2011.
  “First
  Principles
  of
  Meteorology
  and
  Air
  Pollution”,
 
Environmental
 Pollution,
 Volume
 19,
 pp.
 255
 –
 304.
 
-­‐ Lohr,
 Virginia
 I.,
 Caroline
 H.
 Pearson-­‐Mims
 and
 Georgia
 H.
 Goodwin.
 1996.
 “Interior
 
Plants
  May
  Improve
  Worker
  Productivity
  and
  Reduce
  Stress
  in
  a
  Windowless
 
Environment”,
 Journal
 of
 Environmental
 Horticulture,
 14(2
 :),
 pp.
 97-­‐100.
 
-­‐ Lstiburek,
 Joseph.
 2002.
 “Relative
 Humidity,
 Research
 Report
 -­‐0203”,
 Building
 Science
 
Corporation.
 http://www.buildingscience.com.
 

  126
 
-­‐ Marchwinska-­‐Wyrwal,E.,
 G.
 Dziubanek,
 I.
 Hajok,
 K.
 Oleksiuk,
 and
 M.
 Kubasiak.
 2011.
 
“Impact
  of
  Air
  Pollution
  on
  Public
  Health:
  The
  Impact
  of
  Air
  Pollution
  on
  Health,
 
Economy,
 Environment
 and
 Agricultural
 Sources”,
 Dr,
 Mohamed
 Khallaf
 (Ed.),
 ISBN:
 978-­‐
953-­‐307-­‐528-­‐0,
 In
 Tech.
 
-­‐ Montgomery,
 James
 F.,
 Sheldon
 I.
 Green,
 Steven
 N.
 Rogan
 and
 Karen
 Bartlett.
 2012.
 
“Predicting
 the
 energy
 use
 and
 operation
 of
 HVAC
 air
 filters”,
 Energy
 and
 Buildings
 47,
 
pp.
 643-­‐650.
 
-­‐ Morikawa,
 Hirochimi
 and
 Özgür
 Cem
 Erkin,
 2003.
 “Basic
 processes
 in
 phytoremediation
 
and
 some
 applications
 in
 air
 pollution
 control”,
 Chemosphere
 52,
 pp.
 1553-­‐1558.
 
-­‐ Norvaišienė,
 R.,
 R.
 Miniotaitė
 and
 V.
 Stankevičius.
 2003.
 “Climatic
 and
 Air
 Pollution
 
Effects
 on
 Building
 Facades”,
 Materials
 Science,
 Vol.
 9,
 No.
 1,
 pp.
 102-­‐105.
 
-­‐ Peer,
 Wendy
 Ann,
 Ivan
 R.
 Baxter,
 Elizabeth
 L.
 Richards,
 John
 L.
 Freeman,
 and
 Angus
 S.
 
Murphy.
 2006
 “Molecular
 Biology
 of
 Homeostasis
 and
 Detoxification:
 Phytoremediation
 
and
 hyperaccumulator
 plants”,
 Topics
 in
 Current
 Genetics,
 Vol.14,
 pp.
 229-­‐340.
 
-­‐ Pilon-­‐Smith,
 Elizabeth.
 2005.
 “Phytoremediation,
 Annual
 Review
 of
 Plant
 Biology”,
 Vol.
 
56, pp. 15–39.
 
-­‐ Pivetz,
 Bruce
 E.
 2001.
 “Phytoremediation
 of
 Contaminated
 Soil
 and
 Ground
 Water
 at
 
Hazardous
 Waste
 Sites”,
 EPA/540/S-­‐01/500.
 
-­‐ Pugh,
 Thomas
 A.M.,
 Robert
 A.
 McKenzie,
 Duncan
 J.
 Whyatt
 and
 Nicholas
 C.
 Hewitt.
 2012.
 
 
“Effectiveness
 of
 Green
 Infrastructure
 for
 Improvement
 of
 Air
 Quality
 in
 Urban
 Street
 
Canyons”,
 Environmental
 Science
 and
 Technology
 46,
 pp.
 7692-­‐7699.
 
-­‐ Shivastra
 N.G.,
 C.S.
 Sharma
 and
 S.
 Bhatnagar.
 2007.
 “Phytoremediation
 of
 Particulate
 
Matter
  from
  Ambient
  Environment
  Through
  Dust
  Capturing
  Plant
  Species”,
  Central
 
Pollution
 Control
 Board
 (Ministry
 of
 Environment
 &
 Forests),
 Delhi.
 
-­‐ Ulrich,
 R.S.
 and
 R.
 Parsons.
 1992.
 “Influences
 of
 passive
 experiences
 with
 plants
 on
 
individual
 well-­‐being
 and
 health”,
 The
 Role
 of
 Horticulture
 in
 Human
 Well-­‐being
 and
 
Social
 Development,
 Timber
 Press,
 Portland,
 Oregon,
 pp.
 93-­‐105.
 
-­‐ Voulliamoz,
 J.
 and
 M.
 Mike.
 2001.
 “Effect
 of
 compost
 in
 phytoremediation
 of
 diesel-­‐
contaminated
 soils”,
 Water
 Science
 Technology,
 43,
 pp.
 291-­‐5.
 
-­‐ Wesely,
 M.L.
 and
 B.B.
 Hicks.
 2000.
 “A
 review
 of
 the
 current
 status
 of
 knowledge
 on
 dry
 
deposition”,
 Atmospheric
 Environment
 34,
 pp.
 2261-­‐2282.
 
-­‐ Wong,
 Nyuk-­‐Hien,
 Kwang,
 Tan,
 Alex-­‐Yong,
 Yok-­‐Tan,
 Puay,
 Chiang,
 Kelly,
 Wong,
 Ngian-­‐
Chung.
 2010.
 “Acoustics
 evaluation
 of
 vertical
 greenery
 systems
 for
 building
 walls”,
 
Building
 and
 Environment,
 Volume
 45,
 Issue
 2,
 pp.
 411-­‐420.
 
-­‐ Yang,
 Jun,
 Qian
 Yu
 and
 Peng
 Gong.
 2008.
 “Quantifying
 air
 pollution
 removal
 by
 green
 
roofs
 in
 Chicago”,
 Atmospheric
 Environment
 Journal,
 Vol.42,
 Issue
 21,
 pp.
 7266-­‐7273.
 

  127
 
ONLINE
 RESOURCES:
 

 
1. Wikipedia:
 http://www.wikipedia.com/
 

 
2. ASHRAE:
 http://www.ashrae.org/
 

 
3. National
 Air
 Filtration
 Association:
 http://www.nafahq.org/
 

 
4. Environmental
 Protection
 Agency:
 http://www.epa.gov
 

 
5.  
 Air
 Quality
 Management
 District:
 http://www.aqmd.gov
 

 
6. British
 Columbia
 Air
 Quality
 Site:
 http://www.bcairquality.ca/
 

 
7. Clean
 Air
 World
 Site:
 http://www.cleanairworld.org/
 

 
8. Engineering
 Toolbox
 Site:
 http://www.engineeringtoolbox.com/
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  128
 
APPENDIX
 A:
 Description
 of
 the
 Setups
 Used
 and
 Results
 

 
A.1
 INITIAL
 SETUP
 OF
 THE
 ENVIRONMENTAL
 CHAMBER
 

 
The
 initial
 set
 up
 of
 the
 chamber
 was
 that
 of
 a
 single
 chamber
 using
 Sharp
 
GP2Y1010AU0F
 Optical
 Dust
 Sensors
 to
 measure
 the
 particle
 mass
 concentration
 at
 
the
 inlet
 and
 the
 outlet.
 The
 fan
 used
 to
 push
 particles
 inside
 the
 chamber
 was
 an
 
Altwood
 Turbo
 4000
 fan.
 The
 fans
 speed
 was
 not
 adjustable
 so
 it
 was
 connected
 to
 
an
 electronic
 step-­‐less
 speed
 control
 in
 order
 to
 change
 the
 air
 velocity
 in
 the
 
chamber.
 The
 original
 setup
 is
 illustrated
 at
 diagram
 bellow
 (figure
 A-­‐1).
 

 

 
Figure
 A-­‐1:
 Initial
 setup
 of
 the
 environmantal
 chamber
 

 

   
 

  129
 
A.1.1
 Images
 and
 details
 of
 the
 initial
 setup
 

 
Images
 and
 details
 of
 the
 finished
 environmental
 chamber:
 

 

 

 
Figure
 A-­‐2:
 Finished
 Chamber
 

 

 

 

 
Figure
 A-­‐3:
 Environmental
 Chamber
 Full
 Set-­‐Up
 

  130
 

 

 
Figure
 A-­‐4:
 The
 Arduino
 Boards
 Connected
 to
 the
 LED
 displays
 

 

 

 

 
Figure
 A-­‐5:
 The
 Sensors
 mounted
 in
 the
 PVC
 pipes
 

  131
 

 

 
Figure
 A-­‐6:
 The
 Electronic
 Step-­‐Less
 Speed
 Control
 

 
A.1.2
 Sensors
 

 
The
 sensors
 selected
 to
 measure
 the
 amount
 of
 particulate
 matter
 were
 two
 Sharp
 
GP2Y1010AU0F
 Optical
 Dust
 Sensors,
 connected
 to
 Arduino
 boards.
 The
 operation
 
of
 the
 sensors
 is
 the
 following.
 
 
The Sharp Optical Dust Sensors, according to the specification sheet, have
 an
 infrared
 
emitting
 diode
 (IRED)
 and
 a
 phototransistor
 that
 are
 diagonally
 arranged
 into
 the
 
device.
 It
 detects
 the
 reflected
 light
 of
 dust
 in
 air.
 
 Especially,
 it
 is
 effective
 to
 detect
 
very
 fine
 particle
 like
 the
 cigarette
 smoke.
 
 In
 addition,
 the
 sensitivity
 can
 be
 
adjusted
 so
 it
 can
 distinguish
 smoke
 from
 house
 dust
 by
 pulse
 pattern
 of
 output
 
voltage.
 The
 sensors
 output
 is
 an
 analog
 voltage
 proportional
 to
 the
 measured
 dust
 

  132
 
density,
 with
 sensitivity
 of
 0.5V
 /
 0.1
 mg/m
3
.

 74

 
 Therefore
 the
 sensors
 are
 sensitive
 
enough
 to
 detect
 particles
 belonging
 in
 the
 E1
 group,
 according
 to
 ASHRAE
 52.2-­‐
2007
 standards.
 
 
The
 Sensors
 were
 then
 connected
 to
 Arduino
 boards
 to
 translate
 and
 record
 the
 
measurements.
 The
 results
 were
 reported
 in
 Volt
 and
 based
 on
 the
 specifications
 of
 
the
 sensors
 the
 following
 equation
 was
 applied
 to
 convert
 the
 results:
 
-­‐ From
 Volts
 to
 mg/m
3
:
 
 (V
 –
 0.9)/K,
 where:
 
V:
 Voltage
 output
 
K:
 Sensitivity
 of
 sensor
 (since
 a
 change
 in
 the
 voltage
 output
 of
 0.5
 means
 a
 
0.1
 change
 in
 the
 dust
 concentration
 in
 the
 typical
 mode,
 the
 sensitivity
 is
 
0.5/0.1)
 
0.9:
 the
 sensor
 output
 when
 no
 dust
 is
 present
 is
 typically
 0.9
 Volts,
 which
 
should
 be
 deducted
 from
 the
 total
 output.
 
The
 Arduino
 boards
 were
 connected
 to
 LED
 displays,
 showing
 the
 particle
 
concentrations
 so
 any
 change
 from
 the
 intake
 to
 the
 outtake
 would
 be
 immediately
 
noticed
 and
 recorded.
 

 

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74

 Source:
 http://www.sparkfun.com/datasheets/Sensors/gp2y1010au_e.pdf
 

  133
 
A.1.3
 Testing
 Procedure
 and
 Results
 

 
Some
 initial
 tests
 were
 conducted
 in
 order
 to
 determine
 whether
 the
 environmental
 
chamber
 was
 working
 as
 expected.
 For
 those
 tests
 the
 results
 were
 not
 recorder.
 
The
 efficiency
 of
 the
 chamber
 was
 based
 on
 the
 variation
 of
 the
 LED
 displays
 output
 
for
 the
 intake
 and
 outtake.
 
 

   
 
In
 order
 to
 simulate
 the
 particle
 size
 of
 combustion
 products
 that
 their
 range
 is
 up
 
to
 2.5μm
 the
 particle
 size
 of
 some
 commonly
 available
 products
 was
 examined
 in
 
order
 to
 determine
 what
 could
 substitute
 these
 pollutants.
 The
 following
 table
 
(table
 a-­‐1)
 shows
 the
 particles
 chosen
 compared
 to
 the
 size
 of
 atmospheric
 dust.
 

 
Table
 A-­‐1:
 Particle
 Sizes
75

 
Particles
   
  Size
 in
 microns
 (μm)
 
Atmospheric
 Dust
  0.001
 –
 40
 
Cornstarch
  0.1
 –
 0.8
 
Tobacco
 Smoke
  0.01
 -­‐
 4
 

 
After
 it
 was
 confirmed
 that
 the
 sensors
 and
 the
 chamber
 were
 working
 
appropriately
 the
 recorded
 preliminary
 tests
 begun.
 For
 a
 particle
 sources
 match
 
smoke
 and
 cornstarch
 was
 used.
 For
 each
 particle
 type
 more
 than
 one
 tests
 were
 
performed
 at
 different
 fan
 speeds.
 In
 total
 12
 preliminary
 tests
 were
 conducted
 in
 a
 
25
 minute
 period.
 The
 preliminary
 results
 are
 presented
 in
 the
 following
 charts.
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75

 Source:
 http://www.engineeringtoolbox.com/particle-­‐sizes-­‐d_934.html
 

  134
 

 
Figure
 A-­‐7:
 Averaged
 Control
 Measurement
 #2,
 Particle
 Source:
 Cornstarch,
 Fan
 Speed:
 High
 

 

 
Figure
 A-­‐8:
 Averaged
 Control
 Measurement
 #6,
 Particle
 Source:
 Cornstarch,
 Fan
 Speed:
 Low
 

 
-­‐0.1
 
0
 
0.1
 
0.2
 
0.3
 
0.4
 
0.5
 
0.6
 
0:00
  0:10
 
Paerticle
 Concentration
 (μg/m^3)
 
Time
 (minutes)
 
Averaged
 Control
 Measurements
 #2
 
Average
 Inlet
 Concentration
  Average
 Outlet
 Concentration
 
0
 
0.1
 
0.2
 
0.3
 
0.4
 
0.5
 
0.6
 
0:00
  0:10
  0:20
  0:30
  0:40
  0:50
 
Particle
 Concentration
 (μg/m^3)
 
time
 (minutes)
 
Averaged
 Control
 Measurements
 #6
 
Average
 Inlet
 Concentration
  Average
 Outlet
 Concentration
 

  135
 

 
Figure
 A-­‐9:
 Test#1
 Particle
 Source:
 Match
 Smoke,
 Fan
 Speed:
 Low
 

 

 

 
Figure
 A-­‐10:
 Test#3,
 Particle
 Source:
 Match
 Smoke,
 Fan
 Speed:
 High
 

 
-­‐0.1
 
0
 
0.1
 
0.2
 
0.3
 
0.4
 
0.5
 
0.6
 
0:00
  0:10
  0:20
  0:30
  0:40
  0:50
  1:00
  1:10
  1:20
  1:30
 
Particles
 Concentration
 (μg/m^3)
 
Time
 (minutes)
 
Test
 #1
 
intake
 Cncentration
  outtake
 Cncentration
 
-­‐0.1
 
0
 
0.1
 
0.2
 
0.3
 
0.4
 
0.5
 
0.6
 
0:00
  0:10
  0:20
  0:30
  0:40
  0:50
 
Particle
 Concentration
 (μg/m^3)
 
Time
 (minutes)
 
Test
 #3
 
intake
 Concentration
  outtake
 Concentration
 

  136
 

 
Figure
 A-­‐11:
 Test#5,
 Particle
 Source:
 Cornstarch,
 Fan
 Speed:
 High
 

 
Figure
 A-­‐12:
 Test#11,
 Particle
 Source:
 Cornstarch,
 Fan
 Speed:
 Low
 

 

   
 
-­‐0.1
 
0
 
0.1
 
0.2
 
0.3
 
0.4
 
0.5
 
0.6
 
0:00
  0:10
  0:20
 
Particle
 Concentration
 (μg/m^3)
 
Time
 (minutes)
 
Test
 #5
 
intake
 Concentration
  outtake
 Concentration
 
-­‐0.1
 
0
 
0.1
 
0.2
 
0.3
 
0.4
 
0.5
 
0.6
 
0:00
  0:10
  0:20
  0:30
 
Particle
 Concentration
 (μg/m^3)
 
Time
 (minutes)
 
Test
 #11
 
intake
 Concentration
  outtake
 Concentration
 

  137
 
The
 time
 period
 for
 each
 test
 was
 from
 1:30
 minutes
 to
 0:20
 minutes.
 The
 
environmental
 chamber
 was
 designed
 to
 measure
 the
 particle
 concentration
 in
 the
 
intake
 and
 the
 outtake.
 Similarly
 to
 a
 conventional
 MERV
 filter,
 what
 is
 measured
 is
 
the
 amount
 of
 particles
 deposited
 directly
 on
 the
 filter,
 which
 in
 this
 case
 is
 the
 
foliage,
 and
 withheld
 on
 it.
 This
 amount
 of
 particles
 can
 be
 assumed
 that
 will
 be
 
gradually
 absorbed
 and
 broken
 down
 by
 the
 plant.
 The
 time
 period
 for
 each
 test
 was
 
determined
 to
 be
 from
 the
 time
 that
 the
 particles
 were
 inserted
 in
 the
 duct
 leading
 
to
 the
 filter,
 to
 the
 time
 the
 outtake
 sensor
 indication
 on
 the
 LED
 display
 returned
 to
 
the
 minimum
 amount
 of
 concentration,
 indicating
 that
 all
 of
 the
 particles
 were
 
either
 deposited
 on
 the
 leaves,
 or
 passed
 through
 to
 the
 outtake.
 

 
The
 results
 of
 the
 measurements
 showed
 some
 filtration
 potential
 when
 the
 
chamber
 was
 full
 of
 plants
 compared
 to
 the
 control
 measurements
 with
 the
 same
 
fan
 speed
 and
 an
 empty
 chamber.
 These
 preliminary
 conclusions
 indicated
 that
 
filtration
 was
 relative
 to
 the
 particle
 size
 and
 the
 air
 velocity
 inside
 the
 chamber.
 
However
 there
 are
 some
 components
 that
 need
 to
 be
 further
 examined
 in
 order
 to
 
be
 able
 to
 state
 that.
 These
 parameters
 are
 described
 bellow.
 
A.1.4
 What
 went
 wrong
 
Some
 of
 the
 parameters
 that
 may
 be
 affecting
 the
 results
 of
 the
 preliminary
 tests
 
needed
 to
 be
 taken
 into
 consideration
 to
 determine
 their
 impact
 on
 the
 testing
 
results.
 These
 parameters
 were
 the
 following.
 

 

  138
 
The
 air
 velocity
 in
 the
 environmental
 chamber
 was
 an
 important
 parameter
 that
 
through
 the
 first
 measurements
 affected
 the
 results.
 With
 the
 fan
 speed
 set
 at
 higher
 
settings
 for
 both
 the
 particle
 sources,
 there
 was
 not
 a
 difference,
 for
 the
 intake
 and
 
the
 outtake.
 However
 for
 the
 lower
 settings,
 there
 was
 noticed
 some
 filtration,
 
depending
 on
 the
 particles
 used
 for
 the
 testing.
 Furthermore,
 the
 fan
 speed
 was
 
controlled
 by
 an
 electronic
 step-­‐less
 speed
 control,
 which
 made
 it
 impossible
 to
 
duplicate
 the
 same
 fan
 speed
 for
 more
 multiple
 tests.
 
 This
 issue
 could
 be
 easily
 
addressed
 through
 an
 air-­‐velocity
 meter,
 either
 handheld
 or
 other.
 

   
 
Another
 important
 parameter
 was
 the
 particle
 source
 itself.
 For
 the
 preliminary
 
tests,
 the
 amount
 of
 particles
 introduced
 in
 the
 chamber
 was
 not
 accurately
 
controlled,
 which
 means
 that
 for
 the
 same
 particle
 source,
 the
 concentration
 of
 
particles
 at
 the
 intake
 could
 be
 different.
 It
 is
 possible
 that
 this
 by
 itself
 might
 affect
 
the
 results,
 as
 for
 a
 bigger
 amount
 of
 particles;
 the
 amount
 deposited
 on
 the
 foliage
 
of
 the
 plants
 might
 be
 too
 small
 to
 be
 detected.
 

 
The
 sensors
 themselves
 could
 also
 be
 a
 parameter
 that
 might
 create
 an
 issue
 into
 
not
 getting
 accurate
 enough
 results.
 The
 sensors
 selected
 have
 a
 threshold
 of
 
measuring
 concentration
 of
 particles.
 Specifically,
 the
 sensor
 has
 a
 maximum
 output
 
of
 about
 3.5V,
 which
 is
 equivalent,
 based
 on
 the
 translating
 equation
 used,
 to
 0.6
 
mg/m
3
.
 Changes
 beyond
 that
 threshold
 might
 not
 be
 detectable.
 Furthermore,
 the
 
sensors
 might
 not
 be
 sensitive
 enough
 to
 detect
 slight
 changes
 in
 the
 concentration
 
at
 the
 intake
 and
 the
 outtake.
 This
 problem
 could
 be
 addressed
 either
 by
 adjusting
 

  139
 
the
 equation
 that
 translates
 the
 output
 voltage
 of
 these
 sensors,
 or
 by
 using
 
different,
 more
 sensitive
 ones.
 The
 equation
 used
 to
 translate
 the
 results
 was
 (V
 –
 
0.9)/K,
 based
 on
 the
 specification
 sheet
 of
 the
 sensors.
 However,
 for
 the
 specific
 
application
 an
 Internet
 tutorial
 suggested
 that
 the
 concentration
 should
 be
 
translated
 by
 this
 equation
 C
 =
 0.172
 *
 V
 -­‐
 0.0999
76
.
 As
 a
 change
 of
 one
 Volt
 in
 the
 
output,
 is
 translated
 to
 a
 204.6
 step
 by
 the
 Arduino
 board,
 an
 equation
 that
 will
 be
 
able
 to
 translate
 smaller
 decimal
 changes
 into
 concentration
 might
 be
 able
 to
 
provide
 more
 accurate
 readings
 for
 changes
 smaller
 than
 one
 decimal
 as
 an
 output.
 
 

 
A.2
 SECOND
 SETUP
 

 
After
 consulting
 with
 the
 Aerosol
 lab
 of
 the
 USC
 School
 of
 Civil
 and
 Environmental
 
Engineering
 the
 initial
 setup
 of
 the
 chambers
 was
 revised
 to
 better
 represent
 the
 
conditions
 of
 the
 problem
 trying
 to
 be
 simulated
 (Figure
 A-­‐13).
 

 
Figure
 A-­‐13:
 Second
 setup
 of
 the
 environmental
 chamber
 

 
The
 first
 improvement
 was
 that
 another
 chamber
 was
 required
 to
 be
 built
 to
 
represent
 the
 indoor
 space
 while
 the
 original
 chamber
 would
 represent
 the
 
conditions
 of
 the
 ambient
 air.
 The
 size
 of
 the
 opening
 of
 the
 second
 chamber,
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76

 “Air
 Quality
 Monitoring”
 site.
 http://www.howmuchsnow.com/arduino/airquality/
 

  140
 
allowing
 the
 ambient
 air
 to
 enter
 the
 indoor
 space,
 was
 based
 on
 the
 Title
 24
 
standard
 for
 natural
 ventilation:
 

“The sum of the areas of the openings must total at least 5 percent of the floor area of
each space that is naturally ventilated.”
77


 

 The
 position
 of
 the
 pump
 that
 would
 move
 the
 particles
 inside
 the
 configuration
 
was
 placed
 at
 the
 outlet.
 This
 was
 done
 because
 pulling
 the
 particles
 would
 simulate
 
better
 the
 effect
 of
 an
 opening
 that
 is
 used
 for
 ventilation
 and
 the
 penetration
 of
 
ambient
 air
 to
 an
 indoors
 space.
 
 

 
A.2.1
 Images
 of
 the
 second
 setup
 

 
Images
 and
 details
 of
 the
 second
 setup
 

 
Figure
 A-­‐14:
 The
 chambers
 second
 setup
 at
 the
 Aerosol
 Lab
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77

 “Title
 24
 ventilation
 requirements
 for
 non-­‐residential
 occupied
 spaces”
 

  141
 

 
Figure
 A-­‐15:
 Inlet,
 the
 connection
 to
 the
 aerosol
 generator
 and
 the
 DustTrak
 Aerosol
 Monitor
 measuring
 
mass
 concentration
 

 
Figure
 A-­‐16:
 Outlet,
 connection
 to
 the
 pump
 and
 the
 Aerosol
 DustTrak
 Monitor
 measuring
 mass
 
concentration
 

  142
 

 
Figure
 A-­‐17:
 Connection
 of
 the
 two
 chambers
 

 
Figure
 A-­‐18:
 The
 aerosol
 generator
 

  143
 

 
Figure
 A-­‐19:
 Measurement
 with
 the
 chamber
 full
 of
 plants
 

 
Figure
 4ration
 test
 with
 water
 penetrating
 the
 chamber
 from
 the
 plywood
 bottom
 

 
A.2.2
 Sensors
 and
 testing
 Procedure
 

 
The
 new
 setup
 was
 transferred
 at
 the
 Aerosol
 Lab,
 where
 the
 appropriate
 
equipment
 was
 provided
 to
 make
 more
 accurate
 measurements.
 The
 sensors
 used
 
for
 this
 setup
 were
 the
 DustTrak
 Aerosol
 monitors,
 described
 in
 chapter
 3.
 An
 

  144
 
aerosol
 generator
 was
 connected
 to
 the
 inlet
 of
 the
 chamber
 representing
 the
 
outdoors
 space.
 An
 Ammonium
 Sulfate
 aerosol
 was
 used,
 which
 is
 better
 for
 
modeling
 secondary
 outdoor
 particles.
 A
 pump
 was
 connected
 at
 the
 outlet
 of
 the
 
chamber
 representing
 the
 indoor
 space.
 The
 pump
 was
 set
 to
 pull
 air
 at
 a
 steady
 
flow
 rate
 of
 60lt/m.
 In
 order
 for
 the
 test
 to
 be
 more
 realistic,
 the
 air
 exchange
 rate
 
should
 be
 about
 1
 change
 per
 hour,
 but
 since
 scaling
 down
 the
 space
 of
 the
 indoor
 
space
 for
 the
 purpose
 of
 modeling,
 it
 was
 acceptable
 that
 the
 air
 exchange
 rate
 
would
 increase.
 
 

   
 
The
 testing
 procedure
 was
 simple.
 The
 aerosol
 generator
 would
 produce
 particles
 
continuously
 and
 therefore,
 the
 output
 of
 the
 aerosol
 monitor
 connected
 to
 the
 inlet
 
would
 remain
 the
 same
 throughout
 the
 measurements
 with
 slight
 deviations.
 The
 
second
 aerosol
 monitor
 would
 display
 the
 concentration
 of
 particles
 at
 the
 outlet.
 
For
 each
 configuration
 of
 plants,
 as
 soon
 as
 the
 reading
 would
 stabilize
 without
 any
 
serious
 deviations
 (more
 than
 0.1mg/m
3
)
 it
 was
 considered
 that
 this
 would
 
represent
 the
 concentration
 of
 particles
 in
 the
 chamber
 representing
 the
 indoors
 
space.
 The
 initial
 concentration
 of
 the
 aerosol
 was
 set
 at
 20.5
 mg/m
3
.
 
 

 
The
 configurations
 of
 the
 plants
 inside
 the
 chamber
 were
 the
 same
 as
 the
 ones
 used
 
for
 the
 final
 setup.
 The
 results
 for
 all
 of
 those
 measurements
 showed
 absolutely
 no
 
difference
 when
 the
 chamber
 was
 empty
 to
 when
 the
 chamber
 was
 full
 of
 plants.
 
The
 initial
 particle
 concentration
 was
 about
 20.5
 mg/m
3

 with
 slight
 deviations
 and
 
the
 reading
 of
 the
 aerosol
 monitor
 connected
 to
 the
 outlet
 would
 consistently
 

  145
 
stabilize
 at
 about
 6mg/m
3
.
 Although
 this
 could
 be
 an
 encouraging
 result
 when
 the
 
chamber
 was
 full
 of
 plants,
 it
 was
 not
 justifiable
 when
 performing
 the
 control
 
measurement
 with
 the
 empty
 box.
 
 

 
A.2.3
 What
 went
 wrong
 

 
By
 examining
 the
 results
 of
 the
 second
 setup,
 the
 first
 reason
 that
 would
 rationalize
 
those
 values
 would
 be
 to
 determine
 if
 there
 was
 a
 leak.
 The
 leak
 test
 showed
 that
 
both
 of
 the
 chambers
 were
 not
 properly
 sealed.
 A
 flow
 meter
 was
 connected
 to
 the
 
outlet,
 where
 the
 pump
 was
 pulling
 air.
 The
 indication
 was
 60lt/m.
 The
 flow
 meter
 
was
 then
 connected
 to
 the
 inlet
 and
 the
 airflow
 at
 that
 side
 was
 less
 than
 10lt/m.
 
 
For
 figuring
 out
 where
 the
 leaks
 were,
 the
 inlet
 was
 sealed
 and
 the
 pump
 was
 left
 to
 
draw
 air
 from
 the
 chambers.
 Water
 was
 then
 sprayed
 around
 the
 edges
 and
 the
 
joints
 to
 see
 whether
 specific
 joints
 were
 leaking.
 Unfortunately,
 the
 environmental
 
chamber
 with
 the
 plywood
 base
 was
 a
 big
 issue,
 as
 air
 was
 infiltrating
 through
 the
 
cracks
 and
 pores
 of
 the
 base
 (figure
 A-­‐20).
 The
 water
 was
 instantly
 pulled
 up
 by
 the
 
difference
 of
 air
 pressure
 inside
 and
 outside
 of
 the
 chamber.
 Again,
 the
 same
 
procedure
 was
 performed
 with
 the
 smaller
 chamber,
 but
 it
 was
 not
 possible
 to
 
overcome
 the
 leaking
 problems.
 

 
The
 results
 of
 the
 measurements
 could
 than
 be
 explained.
 The
 chambers
 were
 
leaking
 so
 much
 that
 the
 air
 from
 the
 chambers
 was
 leaking
 out,
 and
 clean
 air
 from
 
the
 lab
 was
 infiltrating.
 The
 air
 in
 the
 chamber
 was
 diluted
 so
 much
 that
 it
 would
 
always
 end
 up
 having
 the
 same
 particle
 concentration
 for
 all
 the
 measurements.
 
 

  146
 

 
Through
 this
 process
 the
 parameters
 that
 were
 noted
 as
 problematic
 at
 the
 initial
 
setup
 could
 be
 controlled.
 Those
 were
 the
 amount
 and
 consistency
 of
 the
 particle
 
sample
 introduced
 inside
 the
 chamber,
 a
 better
 control
 of
 the
 airflow
 rate
 inside
 the
 
chambers
 and
 accurate
 equipment
 for
 documentation.
 However
 a
 new
 problem
 was
 
discovered,
 that
 of
 the
 airtightness
 of
 the
 chambers
 used.
 In
 order
 to
 get
 more
 
accurate
 results,
 the
 chambers
 need
 to
 be
 sealed
 so
 the
 air
 inside
 them
 will
 not
 get
 
mixed
 up
 and
 diluted
 with
 air
 that
 it’s
 particle
 concentration
 cannot
 be
 controlled.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  147
 
APPENDIX
 B:
 Calculations
 for
 the
 Architectural
 Application
 

 
Based
 on
 the
 results
 of
 the
 physical
 experiments,
 some
 calculations
 were
 attempted
 
to
 make
 a
 rough
 estimation
 on
 the
 amount
 of
 the
 vegetated
 surface
 needed
 to
 cover
 
the
 ventilation
 needs
 of
 a
 typical
 office
 space.
 These
 calculations
 were
 made,
 by
 
making
 assumptions
 on
 the
 efficiency
 of
 the
 system
 as
 the
 vegetated
 area
 increases
 
and
 the
 time
 needed
 for
 a
 specific
 air
 volume
 to
 be
 cleaned.
 

 
Given
 data:
 

 
1. The
 total
 volume
 of
 the
 chamber
 is
 18”x18”x36”=
 11,664
 in
3

 =
 
 6.75
 ft
3
.
 

 
The
 total
 height
 of
 the
 chamber
 is
 18”,
 
The
 adjustable
 platform
 height
 is
 7”
 from
 the
 bottom,
 
The
 height
 of
 the
 pots
 is
 5”,
 
The
 height
 of
 the
 foliage
 is
 6”.
 
The
 volume
 of
 air
 that
 can
 be
 assumed
 that
 was
 cleaned
 was
 the
 air
 from
 the
 
top
 of
 the
 pots
 of
 the
 plants
 to
 the
 lid
 of
 the
 chamber
 (figure
 b-­‐1).
 

 

 
Figure
 B-­‐1:
 Volume
 of
 air
 used
 for
 the
 calculations.
 

 
2. A
 typical
 office
 space
 has
 14’x10’x12’
 dimensions,
 where
 9’
 is
 the
 net
 height
 
of
 the
 office.
 

  148
 
The
 total
 volume
 of
 this
 space
 is
 9’x10’x12’=1,080
 ft
3
.
 
Assume
 that
 the
 vegetated
 surface
 is
 placed
 on
 the
 largest
 side,
 12’
 

 

 

 
Figure
 B-­‐2:
 Dimensions
 of
 a
 typical
 office
 space.
 

 

 
3. According
 to
 the
 engineering
 toolbox
 site
 the
 typical
 exchange
 rate
 for
 a
 
private
 office
 per
 hour
 is
 4.
 
 
That
 means
 the
 total
 volume
 of
 air
 is
 renewed
 every
 15
 minutes.
 

 
4. The
 time
 needed
 to
 clean
 the
 specific
 volume
 of
 air
 of
 the
 chamber
 was
 about
 
5
 minutes.
 
 
This
 is
 concluded
 by
 the
 time
 the
 particle
 counter
 reading
 took
 to
 stabilize.
 
(When
 the
 particle
 counter
 reached
 a
 range
 that
 indicated
 that
 there
 would
 
be
 no
 further
 increase
 or
 reduction.)
 

 

 

 

 
• By
 calculating
 the
 volume
 of
 air
 moving
 through
 the
 foliage
 of
 the
 plants.
 

 
The
 height
 of
 the
 volume
 calculated
 will
 be
 6”
 
The
 volume
 of
 the
 air
 the
 chamber
 cleans
 is:
 
6”x18”x36”=
 3,888
 in
3

 =
 2.25
 ft
3
 

 
The
 chamber
 needs
 5
 minutes
 to
 clean
 a
 volume
 of
 2.
 25
 ft
3

 
At
 15
 minutes
 time
 the
 chamber
 cleans
 2.25x3
 =
 6.75
 ft
3
.
 

 

  149
 
To
 clean
 1,080
 ft
3

 of
 air
 volume
 in
 15
 minutes
 the
 chambers
 needed
 are:
 
1,080/6.75=
 160.
 
If
 the
 vegetated
 surface
 is
 placed
 by
 its
 smallest
 dimension
 (1.5’),
 
on
 one
 row
 on
 the
 façade
 8
 chambers
 can
 be
 placed.
 
 
160/8=
 20
 rows
 

 
The
 total
 amount
 of
 vegetated
 surface
 needed
 will
 be
 
(18”x36”)x8x20=103,680in
2

 or
 720ft
2
.
 

 
The
 height
 of
 the
 façade
 is
 9
 feet.
 
 
That
 means
 that
 the
 rows
 will
 be
 placed
 with
 about
 5.4”
 spacing.
 

 
For
 the
 total
 height
 of
 the
 floor
 14
 feet
 total
 height
 
0.7
 feet
 spacing,
 8.4”
 

 

 
Figure
 B-­‐3:
 Horizontal
 Shelves,
 36"
 Depth,
 20
 rows.
 

 

 
• By
 increasing
 the
 shelves
 depth
 and
 assuming
 that
 the
 time
 taken
 to
 clean
 
the
 air
 volume
 still
 remains
 5
 minutes,
 which
 would
 correspond
 to
 increasing
 
the
 flow
 rate
 during
 the
 physical
 testing:
 

 
• If
 the
 depth
 of
 the
 shelf
 is
 48”
 Than
 the
 total
 surface
 area
 of
 one
 shelf
 will
 be:
 
18”x48”=864
 in
2

 or
 6ft
2
.
 
 
According
 to
 the
 trend-­‐line
 of
 figure
 6-­‐3
 this
 also
 increases
 the
 efficiency
 at
 
60%
 

 
If
 720ft
2
 
of
 total
 vegetated
 surface
 are
 required,
 and
 the
 area
 of
 one
 shelf
 is
 
 
 
6ft
2
,
 than
 720/6=
 120
 shelves.
 One
 row
 will
 have
 8
 shelves,
 so
 120/8=
 15
 

 
Total
 will
 be
 15
 rows,
 at
 0.93
 feet
 or
 11.16”
 equal
 spacing.
 

  150
 

 

 
Figure
 B-­‐4:
 Horizontal
 Shelves,
 48"
 Depth,
 15
 rows
 equally
 spaced.
 

 
Or,
 for
 allowing
 viewing
 outdoors
 

 

 
Figure
 B-­‐5:
 Horizontal
 Shelves,
 48"
 Depth,
 15
 rows.
 

 
• If
 the
 depth
 of
 the
 shelf
 is
 54”
 Than
 the
 total
 surface
 area
 of
 one
 shelf
 will
 be:
 
18”x54”=972
 in
2

 or
 6.75ft
2
.
 
 
According
 to
 the
 trend-­‐line
 of
 figure
 6-­‐3
 this
 also
 increases
 the
 efficiency
 at
 
about
 63%
 

 
If
 720ft
2
 
of
 total
 vegetated
 surface
 are
 required,
 and
 the
 area
 of
 one
 shelf
 is
 
 
 
6.75ft
2
,
 than
 720/6=
 107
 shelves.
 One
 row
 will
 have
 8
 shelves,
 so
 107/8=
 13
 

 
Total
 will
 be
 13
 rows,
 at
 1.07
 feet
 or
 12.8”
 equal
 spacing.
 

  151
 

 

 
Figure
 B-­‐6:
 Horizontal
 Shelves,
 54”
 Depth,
 13
 rows
 equally
 spaced.
 

 
Or,
 for
 allowing
 viewing
 outdoors
 

 

 
Figure
 B-­‐7:
 Horizontal
 Shelves,
 54"
 Depth,
 13
 rows.
 

 

 

 
• If
 the
 depth
 of
 the
 shelf
 is
 60”
 Than
 the
 total
 surface
 area
 of
 one
 shelf
 will
 be:
 
18”x60”=1,080
 in
2

 or
 7.5ft
2
.
 
 
According
 to
 the
 trend-­‐line
 of
 figure
 6-­‐3
 this
 also
 increases
 the
 efficiency
 at
 
about
 67%
 

 
If
 720ft
2
 
of
 total
 vegetated
 surface
 are
 required,
 and
 the
 area
 of
 one
 shelf
 is
 
 
 
7.5ft
2
,
 than
 720/7.5=
 96
 shelves.
 One
 row
 will
 have
 8
 shelves,
 so
 107/8=
 12
 

  152
 

 
Total
 will
 be
 12
 rows,
 at
 1.17
 feet
 or
 14”equal
 spacing.
 

 

 

 
Figure
 B-­‐8:
 Horizontal
 Shelves,
 60”
 Depth,
 12
 rows
 equally
 spaced.
 

 
Or,
 for
 allowing
 viewing
 outdoors,
 

 

 
Figure
 B-­‐9:
 Horizontal
 Shelves,
 60"
 Depth,
 12
 rows.
 

 

 

 
• If
 the
 depth
 of
 the
 shelf
 is
 72”
 Than
 the
 total
 surface
 area
 of
 one
 shelf
 will
 be:
 
18”x60”=1,296
 in
2

 or
 9ft
2
.
 
 
According
 to
 the
 trend-­‐line
 of
 figure
 6-­‐3
 this
 also
 increases
 the
 efficiency
 at
 
about
 70%
 

  153
 

 
If
 720ft
2
 
of
 total
 vegetated
 surface
 are
 required,
 and
 the
 area
 of
 one
 shelf
 is
 
 
 
9ft
2
,
 than
 720/9=
 80
 shelves.
 One
 row
 will
 have
 8
 shelves,
 so
 80/8=
 10
 

 
Total
 will
 be
 10
 rows,
 at
 1.4
 feet
 or
 16.8”
 equal
 spacing.
 

 

 
Figure
 B-­‐10:
 Horizontal
 Shelves,
 72"
 Depth,
 10
 rows
 equally
 spaced.
 

 

 
Or,
 for
 allowing
 viewing
 outdoors
 

 

 

 
Figure
 B-­‐11:
 Horizontal
 Shelves,
 72"
 Depth,
 10
 rows.
 

 

 

 
VERTICAL
 SQUARE
 PANEL
 

  154
 

 
• If
 I
 have
 18”x18”
 vertical
 square
 panels:
 

 
The
 total
 area
 of
 one
 panel
 will
 be:
 
18”x18”=324
 in
2

 or
 2.25
 ft
2

 

 
If
 it
 takes
 5
 minutes
 for
 the
 air
 to
 be
 cleaned
 by
 a
 4.5
 ft
2
 
surface
 area
 
For
 2.25
 ft
2

 it
 will
 need
 about
 2.5
 minutes.
 
The
 volume
 cleaned
 in
 15
 minutes
 will
 be
 2.25x6=13.5ft
3

 

 
To
 clean
 1,080
 ft
3

 of
 air
 volume
 in
 15
 minutes
 the
 panels
 needed
 are:
 
1,080/13.5=
 80.
 
That
 is
 a
 total
 surface
 area
 of
 80x2.25=180ft
2

 

 

  The
 total
 available
 surface
 is
 14x12=
 168
 ft
2

 
This
 means
 76
 square
 panels,
 which
 is
 an
 acceptable
 result
 if
 the
 entire
 
vertical
 surface
 is
 covered
 by
 panels.
 

 

 

 

 
Figure
 B-­‐12:
 Vertical
 Panels.
 

 

 

 

 
Opening
 Size:
 

 
If
 the
 boxes
 are
 160
 and
 each
 box
 has
 a
 12.56in
2

 opening
 
Total
 opening
 is
 2009in
2

 which
 is
 13.95ft
2

 

 
As
 title
 24
 indicates
 5%
 of
 floor
 area
 should
 be
 the
 opening
 

  155
 
Total
 floor
 area
 of
 the
 office
 is
 120ft
2
.
 

 
The
  minimum
  total
  area
  of
  openings
  indicated
  by
  Title24
  for
  natural
 
ventilation,
 is
 5%,
 which
 is
 6ft
2
.
 

 
The
 calculations
 above
 where
 done
 with
 specific
 assumptions
 concerning
 the
 time
 
needed
 for
 the
 air
 volume
 to
 be
 cleaned
 and
 the
 efficiency
 of
 the
 system.
 The
 vertical
 
system
 appears
 to
 be
 more
 suitable
 for
 applying
 it
 on
 a
 façade,
 based
 on
 these
 
calculations.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  156
 
APPENDIX
 C:
 Preliminary
 CFD
 and
 Daylight
 Studies
 

 
Within
 the
 context
 of
 the
 architectural
 application,
 two
 preliminary
 studies
 were
 
also
 performed
 to
 examine
 if
 the
 vegetated
 façade,
 as
 the
 system
 that
 the
 thesis
 
proposed,
 would
 be
 a
 possible
 and
 efficient
 application.
 These
 studies
 could
 be
 
subject
 to
 further
 analysis
 and
 not
 in
 the
 scope
 of
 work
 of
 this
 thesis.
 However,
 they
 
constituted
 a
 useful
 exercise
 to
 examine
 the
 feasibility
 of
 the
 system
 as
 a
 complete
 
architectural
 application.
 Three
 different
 configurations
 were
 chosen,
 based
 on
 the
 
calculations
 made
 that
 offered
 the
 best
 potential
 as
 a
 façade
 system.
 The
 sections
 of
 
the
 three
 systems
 tested
 are
 presented
 below
 (Figures
 C-­‐1,
 C-­‐2,
 C-­‐3).
 

 

 
Figure
 C-­‐1:
 Horizontal
 Shelves,
 Depth
 72",
 section
 

  157
 

 
Figure
 C-­‐2:
 Horizontal
 Shelves
 equally
 spaced,
 72"
 Depth,
 section
 

 

 
Figure
 C-­‐3:
 Vertical
 Panels
 18"x18",
 section
 

 
C.1
 AIR-­‐FLOW
 STUDY
 

 
A
 preliminary
 air-­‐flow
 study
 was
 performed,
 as
 wind
 movement
 and
 wind
 velocity
 
through
 the
 foliage
 of
 the
 vegetated
 surfaces
 would
 indicate
 whether
 the
 application
 
would
 be
 successful
 or
 not.
 The
 speed
 of
 the
 air
 should
 increase
 as
 it
 passed
 through
 
the
 leaves
 and
 be
 pulled
 inside
 the
 building
 through
 the
 vents
 or
 the
 operable
 

  158
 
windows
 for
 natural
 ventilation.
 The
 software
 used
 for
 this
 study
 was
 Autodesk
 CFD
 
Simulation
 2013.
 The
 initial
 wind
 speed
 was
 set
 at
 a
 typical
 air
 velocity
 for
 Los
 
Angeles
 at
 1
 m/s.
 The
 following
 figures
 (C-­‐4,
 C-­‐5,
 C-­‐6)
 illustrate
 the
 results
 of
 the
 
simulation.
 

 

 
Figure
 C-­‐4:
 CFD
 Simulation
 Results
 for
 horizontal
 Shelves,
 Depth
 72"
 

 

 
Figure
 C-­‐5:
 CFD
 Simulation
 Results
 for
 horizontal
 shelves
 equally
 spaced,
 Depth
 72"
 

 

  159
 

 
Figure
 C-­‐6:
 CFD
 Simulation
 Results
 for
 vertical
 panels
 18"x18"
 

 
The
 simulation
 results
 showed
 that
 the
 horizontal
 shelves,
 especially
 when
 equally
 
spaced
 present
 a
 better
 potential
 as
 a
 filtration
 mechanism,
 as
 wind
 velocity
 
increases
 when
 it
 is
 passing
 through
 the
 vegetated
 surfaces.
 The
 foliage
 of
 the
 
plants,
 through
 phytofiltration,
 will
 then
 remove
 an
 amount
 of
 airborne
 particles
 
and
 subsequently
 the
 air
 will
 be
 pulled
 inside
 the
 building,
 either
 through
 the
 
operable
 window
 or
 the
 vent.
 
C.2
 DAYLIGHT
 STUDY
 

 
Another
 important
 aspect
 for
 the
 system
 to
 be
 applicable
 is
 the
 amount
 of
 daylight
 
that
 it
 allows
 to
 reach
 the
 interior,
 as
 well
 as,
 for
 the
 shelves
 configurations,
 the
 
amount
 of
 daylight
 reaching
 the
 back
 of
 the
 shelves
 for
 the
 plants
 to
 survive.
 The
 
simulations
 were
 performed
 with
 the
 daylight
 analysis
 tool
 of
 Autodesk
 3ds
 Max
 
2013,
 for
 a
 south-­‐facing
 facade.
 The
 study
 was
 performed
 for
 Los
 Angeles
 and
 the
 
days
 and
 hours
 that
 the
 simulations
 were
 performed
 for,
 were
 the
 21
st

 of
 June
 and
 
21
st

 of
 December,
 12pm,
 1pm,
 2pm
 and
 3pm
 respectively.
 
 

 

  160
 

 
Figure
 C-­‐7:
 Comparative
 interior
 pseudo-­‐color
 rendering
 for
 06/21,
 12p.m.
 

 
Figure
 C-­‐8:
 Comparative
 interior
 pseudo-­‐color
 rendering
 for
 06/21,
 1p.m.
 

 
Figure
 C-­‐9:
 Comparative
 interior
 pseudo-­‐color
 rendering
 for
 06/21,
 2p.m.
 

  161
 

 
Figure
 C-­‐10:
 Comparative
 interior
 pseudo-­‐color
 rendering
 for
 06/21,
 3p.m.
 

 
Figure
 C-­‐11:
 Comparative
 interior
 pseudo-­‐color
 rendering
 for
 12/21,
 12p.m.
 

 

 
Figure
 C-­‐12:
 Comparative
 interior
 pseudo-­‐color
 rendering
 for
 12/21,
 1p.m.
 

  162
 

 
Figure
 C-­‐13:
 Comparative
 interior
 pseudo-­‐color
 rendering
 for
 12/21,
 2p.m.
 

 
Figure
 C-­‐14:
 Comparative
 interior
 pseudo-­‐color
 rendering
 for
 12/21,
 3p.m.
 

 
The
 daylight
 study
 for
 the
 interior
 showed
 that
 the
 vertical
 panels
 configuration
 did
 
not
 provide
 any
 shading
 at
 all
 for
 the
 most
 of
 the
 hours
 tested.
 The
 horizontal
 
shelves
 were
 a
 better
 solution,
 but
 there
 were
 times
 that
 there
 was
 noticeable
 glare
 
on
 the
 floor
 and
 walls
 of
 the
 interior.
 The
 equally
 spaced
 shelves
 proved
 to
 be
 a
 
better
 solution,
 as
 they
 provided
 both
 shading
 and
 uniform
 ambient
 light,
 adequate
 
for
 workspaces,
 about
 400-­‐600
 lux.
 
 

 
Lastly,
 an
 important
 factor
 would
 also
 be
 the
 sun
 light
 reaching
 the
 back
 of
 those
 
shelves
 and
 if
 it
 would
 be
 adequate
 for
 the
 selected
 plant
 species
 survival.
 

  163
 

 
Figure
 C-­‐15:
 Daylight
 on
 a
 point
 grid
 on
 a
 horizontal
 shelf,
 for
 06/12,
 12p.m.
 

 
Figure
 C-­‐16:
 Daylight
 on
 a
 point
 grid
 on
 a
 horizontal
 shelf,
 for
 06/12,
 1p.m.
 

  164
 

 
Figure
 C-­‐17:
 
 Daylight
 on
 a
 point
 grid
 on
 a
 horizontal
 shelf,
 for
 06/12,
 2p.m.
 

 
Figure
 C-­‐18:
 Daylight
 on
 a
 point
 grid
 on
 a
 horizontal
 shelf,
 for
 06/12,
 3p.m.
 

 

  165
 

 
Figure
 C-­‐19:
 Daylight
 on
 a
 point
 grid
 on
 a
 horizontal
 shelf,
 for
 12/12,
 12p.m.
 

 

 
Figure
 C-­‐20:
 Daylight
 on
 a
 point
 grid
 on
 a
 horizontal
 shelf,
 for
 12/12,
 1p.m.
 

  166
 

 
Figure
 C-­‐21:
 Daylight
 on
 a
 point
 grid
 on
 a
 horizontal
 shelf,
 for
 12/12,
 2p.m.
 

 

 
Figure
 C-­‐22:
 Daylight
 on
 a
 point
 grid
 on
 a
 horizontal
 shelf,
 for
 06/12,
 3p.m.
 

 
The
 analysis
 showed
 that
 even
 though
 there
 was
 some
 sun
 light
 reaching
 the
 back
 of
 
the
 shelves,
 it
 was
 not
 adequate
 for
 the
 survival
 of
 the
 specific
 species.
 This
 should
 
be
 taken
 into
 consideration
 during
 the
 plant
 species
 selection
 of
 a
 future
 application. 
Asset Metadata
Creator Papaioannou, Ioli (author) 
Core Title Vegetated facades as environmental control systems: filtering fine particulate matter (PM2.5) for improving indoor air quality 
Contributor Electronically uploaded by the author (provenance) 
School School of Architecture 
Degree Master of Building Science 
Degree Program Building Science 
Publication Date 05/13/2013 
Defense Date 03/15/2013 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag fine particulate matter,indoor air quality,OAI-PMH Harvest,phytofiltration,phytoremediation,PM2.5,vegetated facades 
Format application/pdf (imt) 
Language English
Advisor Noble, Douglas (committee chair), Borden, Gail Peter (committee member), Getov, Pavel (committee member), Konis, Kyle (committee member) 
Creator Email ioni.papaioannou@gmail.com 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c3-255369 
Unique identifier UC11293985 
Identifier etd-Papaioanno-1688.pdf (filename),usctheses-c3-255369 (legacy record id) 
Legacy Identifier etd-Papaioanno-1688.pdf 
Dmrecord 255369 
Document Type Thesis 
Format application/pdf (imt) 
Rights Papaioannou, Ioli 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law.  Electronic access is being provided by the USC Libraries in agreement with the a... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Abstract (if available)
Abstract Air pollution is a problem present in the majority of the built environments. Ambient air pollution is consisted by many different pollutants which, depending on their concentration in the air, can have a severe impact on human health with long-term implications, and they can also deteriorate the surfaces of the buildings they come in contact with. Fine Particulate Matter (PM2.5) is amongst them. It is a pollutant that tends to exceed the allowable levels and that can have a severe impact on human health, as it is able to penetrate deep into the human respiratory system. Ambient air pollution is directly connected with Indoor Air Quality through infiltration and ventilation. In order to ensure good Indoor Air Quality and user comfort, the air introduced indoors needs to comply with specific standards. Air-pollution control doesn’t address the issue of pollutants already in the atmosphere, and for reducing those other filtration methods need to be applied. These practices can be energy consuming, especially when there is not proper maintenance, and sometimes even not as effective as expected. Bioremediation is a procedure based on biological processes, for filtering pollutants from air, soil or water, using living organisms. Phytoremediation is the specific process of filtering pollutants through the metabolism of plants. The use of vegetation on facades is being increased due to their many benefits for the building (shading, insulation). Since the building envelope is the part of the building that is in constant contact with the ambient air, the question that rises is whether a vegetated façade can be used as a filtration medium for ambient and indoor air. For testing this hypothesis, an experimental method was required to be developed, based on the testing method of conventional filters, to determine whether the process of phytofiltration, a form of phytoremediation, can provide efficient filtration for a specific pollutant, Particulate Matter 2.5. 
Tags
fine particulate matter
indoor air quality
phytofiltration
phytoremediation
PM2.5
vegetated facades
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button