Close
USC Libraries
University of Southern California
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Folder
Simulations as real-time integration of information: Covalence, an organic chemistry game
(USC Thesis Other) 

Simulations as real-time integration of information: Covalence, an organic chemistry game

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Copy asset link
Request this asset
Request accessible transcript
Transcript (if available)
Content SIMULATIONS
 AS
 REAL-­‐TIME
 INTEGRATION
 OF
 
INFORMATION:
 
COVALENCE,
 AN
 ORGANIC
 CHEMISTRY
 GAME
 
BY
 
JASON
 MATHIAS
 

 
A
 THESIS
 Presented
 to
 the
 
 
FACULTY
 OF
 THE
 USC
 SCHOOL
 OF
 CINEMATIC
 ARTS
 
UNIVERSITY
 OF
 SOUTHERN
 CALIFORNIA
 
In
 Partial
 Fulfillment
 of
 the
 
 
Requirements
 For
 the
 Degree
 
MASTER
 OF
 FINE
 ARTS
 
INTERACTIVE
 MEDIA
 
 

 
May
 2013
 

 

 

 
Copyright
 2013
   
   
   
   
   
   
  Jason
 Mathias

  2
 
ACKNOWLEDGEMENTS
 
To
 Jeremy
 Gibson
 and
 Marientina
 Gotsis,
 my
 first
 teachers
 of
 Interactive
 Media.
 Thank
 you
 for
 your
 
understanding,
 and
 for
 telling
 me
 when
 I
 needed
 to
 work
 harder.
 But
 most
 of
 all,
 thank
 you
 for
 your
 
faith
 in
 me,
 before
 even
 I
 believed
 in
 my
 abilities.
 
 
To
 Alex
 Beachum
 and
 Kedar
 Reddy,
 for
 being
 tangible
 examples
 of
 successfully
 living
 a
 creative
 life,
 
and
 for
 carrying
 me
 through
 my
 bleakest
 moments.
 
 
To
 Simon
 Wiscombe
 and
 Loan
 Verneau
 for
 creating
 such
 an
 atmosphere
 of
 creativity,
 mutual
 respect
 
and
 free
 thought,
 to
 Sarah
 Scialli,
 Sanghee
 Oh
 and
 Yasaman
 Hashemian
 for
 letting
 me
 be
 myself,
 and
 
to
 everyone
 in
 the
 IMD
 Class
 of
 2013
 for
 your
 respect,
 your
 unending
 warmth,
 and
 for
 truly
 making
 
me
 feel
 like
 I’ve
 found
 a
 clan
 I
 will
 always
 belong
 to.
 
 
To
 Lisa
 Clements,
 for
 knowing
 how
 to
 keep
 me
 thinking
 calmly
 and
 practically
 when
 it
 was
 far
 too
 
overwhelming,
 to
 Danny
 Bilson
 and
 Scott
 Fisher
 for
 letting
 me
 see
 my
 passion
 and
 intuition
 through,
 
to
 Mark
 Bolas
 and
 Laird
 Malamed
 for
 letting
 (or
 forcing)
 me
 see
 the
 expansive
 possibilities
 in
 my
 
work,
 to
 Steve
 Anderson
 and
 William
 Huber
 for
 giving
 me
 a
 pride
 in
 the
 most
 abstract
 of
 intellectual
 
curiosities,
 to
 Mallory
 Jebbia
 for
 seeing
 the
 scientific
 potential
 of
 this
 project
 and
 entertaining
 my
 
repeated
 questions
 about
 Organic
 Chemistry.
 
To
 my
 family
 and
 to
 Mary
 Emory,
 for
 taking
 care
 of
 me
 through
 nearly
 a
 year
 of
 seemingly
 unending
 
illnesses.
 

 

 

 
And
 most
 importantly,
 to
 my
 parents,
 who
 fearfully,
 but
 faithfully,
 took
 the
 greatest
 risk
 of
 their
 
entire
 lives
 –
 trusting
 me
 when
 I
 said
 I
 wanted
 to
 make
 video
 games.
 
   
 

  3
 
TABLE
 OF
 CONTENTS
 
Acknowledgements
 .................................................................................................................
 2
 
Table
 of
 Figures
 ........................................................................................................................
 4
 
Abstract
 .......................................................................................................................................
 5
 
Paper
 Objectives
 ......................................................................................................................
 5
 
Covalence
 Project
 Description
 .............................................................................................
 6
 
Audience
 ...............................................................................................................................................
 7
 
Advantages
 of
 the
 Digital
 Platform
 –
 Why
 a
 Video
 Game?
 .........................................
 7
 
Visual
 Model
 Integration
 .................................................................................................................
 8
 
Curation
 of
 Knowledge:
 The
 Just-­‐In-­‐Time
 Principle
 ..............................................................
 8
 
Application
 of
 Rules
 and
 Logic
 ......................................................................................................
 9
 
Design
 Philosophy:
 The
 PsychoSocial
 Moratorium
 .....................................................
 9
 
Challenges
 in
 Teaching
 the
 Modern
 Organic
 Chemistry
 Student
 ...................................
 10
 
Additional
 Technical
 Challenge:
 3-­‐Dimensionality
 .............................................................
 11
 
The
 Problem:
 Multiple
 Visual
 Models,
 Overwhelming
 information,
 Hidden
 
Knowledge
 ..............................................................................................................................
 11
 
The
 Solution:
 Designing
 an
 Integrated
 Visual
 Model
 for
 Covalence
 ....................
 15
 
The
 Electron
 Pair
 ............................................................................................................................
 16
 
Prior
 Visual
 Models
 ..............................................................................................................
 18
 
VSEPR
 Theory
 ...................................................................................................................................
 19
 
Lewis
 Dot
 Diagram
 .........................................................................................................................
 20
 
Skeletal
 Formula
 .............................................................................................................................
 21
 
Information
 Not
 Included
 ............................................................................................................
 22
 
Creating
 the
 Levels:
 Nuclear
 Substitution
 as
 a
 way
 to
 explain
 Organic
 
Chemistry’s
 Elegance
 and
 Subtle
 Difficulty
 .................................................................
 22
 
Why
 Nuclear
 Substitution?
 ..........................................................................................................
 23
 
The
 Walden
 Inversion
 ...................................................................................................................
 25
 
Prior
 Art
 ...................................................................................................................................
 26
 
Fold
 It
 (2008)
 ...................................................................................................................................
 26
 
Dragon
 Box+
 (We
 Want
 to
 Know
 AS,
 2012)
 ...........................................................................
 28
 
The
 Chirality
 Game
 (2002)
 ..........................................................................................................
 29
 
What
 Games
 Have
 To
 Teach
 Us
 about
 Learning
 and
 Literacy
 (Gee,
 2007)
 ..................
 30
 
Thomas
 Was
 Alone
 (Bithell,
 2012)
 ...........................................................................................
 32
 
Ninja
 Gaiden
 Black
 (Team
 Ninja,
 2005)
 ..................................................................................
 33
 
Next
 Steps
 and
 Further
 Evaluation
 .................................................................................
 35
 
Evaluation
 ..........................................................................................................................................
 36
 

  4
 
Bibliography
 ...........................................................................................................................
 37
 

 
TABLE
 OF
 FIGURES
 
Figure
 1
 ..............................................................................................................................................................................................
 6
 
Figure
 2
 ..............................................................................................................................................................................................
 8
 
Figure
 3
 ...........................................................................................................................................................................................
 12
 
Figure
 4
 ...........................................................................................................................................................................................
 13
 
Figure
 5
 ...........................................................................................................................................................................................
 13
 
Figure
 6
 ...........................................................................................................................................................................................
 15
 
Figure
 7
 ...........................................................................................................................................................................................
 16
 
Figure
 8
 ...........................................................................................................................................................................................
 17
 
Figure
 9
 ...........................................................................................................................................................................................
 17
 
Figure
 10
 ........................................................................................................................................................................................
 18
 
Figure
 11
 ........................................................................................................................................................................................
 19
 
Figure
 12
 ........................................................................................................................................................................................
 20
 
Figure
 13
 ........................................................................................................................................................................................
 21
 
Figure
 14
 ........................................................................................................................................................................................
 23
 
Figure
 15
 ........................................................................................................................................................................................
 25
 
Figure
 16
 ........................................................................................................................................................................................
 26
 
Figure
 17
 ........................................................................................................................................................................................
 27
 
Figure
 18
 ........................................................................................................................................................................................
 28
 
Figure
 19
 ........................................................................................................................................................................................
 30
 
Figure
 20
 ........................................................................................................................................................................................
 34
 
Figure
 21
 ........................................................................................................................................................................................
 35
 

 

   
 

  5
 
ABSTRACT
 
College-­‐level
  Organic
  Chemistry
  classes
  can
  be
  overwhelming
  to
  their
  students.
  In
  addition
  to
 
learning
 a
 relatively
 large
 amount
 of
 information,
 students
 have
 to
 learn
 to
 read
 multiple
 visual
 
models
 and
 use
 them
 to
 understand
 subtle
 differences
 in
 the
 science.
 In
 making
 the
 puzzle
 game
 
Covalence
 to
 address
 Organic
 Chemistry
 education,
 I
 decided
 to
 focus
 on
 three
 aspects
 of
 the
 subject’s
 
education
  –
  Hidden
  information
  in
  the
  various
  visual
  models,
  the
  lack
  of
  integration
  of
  these
 
representations
 into
 a
 3D
 representation
 of
 Chemical
 phenomena,
 and
 an
 atom-­‐based
 view
 of
 the
 
molecules
 and
 how
 they
 contribute
 to
 the
 field’s
 subtle
 issues.
 
 
This
 paper
 discusses
 various
 traditional
 visual
 models
 taught
 in
 Organic
 Chemistry
 classes,
 devising
 a
 
new
 visual
 model
 to
 bring
 out
 hidden
 information
 in
 these
 traditional
 models,
 and
 designing
 levels
 
based
 on
 known
 reactions
 and
 their
 consequences,
 to
 illustrate
 Organic
 Chemistry’s
 elegance
 and
 
subtlety.
 
PAPER
 OBJECTIVES
 
Before
 I
 delve
 further
 into
 this
 paper,
 I
 would
 like
 to
 provide
 a
 framework
 for
 how
 I
 decided
 to
 
approach
 it.
 I
 set
 out
 to
 make
 Covalence
 an
 alternative
 form
 of
 education
 for
 Organic
 Chemistry,
 and
 
to
 do
 that,
 I
 had
 to
 analyze
 the
 strengths
 of
 this
 new
 medium,
 and
 the
 problems
 with
 the
 former
 
media.
 
 I
 then
 had
 to
 choose
 what
 my
 audience
 was,
 what
 their
 specific
 relation
 to
 Organic
 Chemistry
 
was,
 and
 how
 I
 was
 going
 to
 constrain
 my
 game
 to
 address
 their
 issues.
 I
 then
 chose
 the
 subject
 
matter
 of
 the
 game,
 based
 on
 how
 that
 subject
 matter
 could
 further
 illustrate
 a
 sense
 of
 discovery
 of
 
Organic
 Chemistry,
 and
 a
 feeling
 of
 intuitive
 deduction.
 Finally,
 I
 looked
 at
 a
 series
 of
 prior
 art,
 games
 
and
 educational
 materials
 that
 have
 tackled
 similar
 (if
 not
 the
 same)
 subjects
 before,
 and
 decided
 
how
 these
 products
 could
 provide
 inspiration
 for
 Covalence.
 This
 paper
 addresses
 each
 of
 these
 in
 
turn,
 so
 that
 readers
 may
 get
 a
 sense
 of
 how
 these
 subjects
 were
 tackled.
 
 

  6
 
In
 truth,
 many
 of
 these
 processes
 were
 intertwined
 with
 each
 other
 and
 occurred
 simultaneously,
 but
 
for
 the
 sake
 of
 understanding
 this
 process,
 I
 am
 choosing
 to
 represent
 it
 here
 in
 sets
 of
 information
 
rather
 than
 chronologically.
 
 
COVALENCE
 PROJECT
 DESCRIPTION
 
Covalence
 is
 a
 puzzle
 game
 designed
 to
 make
 players
 see
 atoms
 and
 molecules
 as
 tools,
 and
 
then
 learn
 to
 experiment
 with
 these
 tools
 to
 achieve
 new
 goals.
 Initially,
 the
 player
 is
 introduced
 to
 
the
 atoms,
 and
 learns
 only
 how
 they
 fit
 into
 molecules,
 and
 how
 they
 attract
 and
 repel
 each
 other.
 In
 
the
 latter
 stages
 of
 the
 game,
 the
 player
 uses
 only
 this
 information
 to
 deduce
 how
 a
 specific
 reaction,
 
the
 SN2
 reaction,
 comes
 about,
 and
 what
 its
 consequences
 are.
 
 

 
FIGURE
 1
 
AN
 EARLY
 SCREENSHOT
 OF
 COVALENCE.
 THE
 PLAYER
 NAVIGATES
 AROUND
 THE
 3D
 SPACE
 AND
 TRIES
 TO
 RECREATE
 
THE
 MODELS
 SHOWN
 IN
 THE
 ‘GOAL’
 WINDOW.
 

 
The
 game
 plays
 in
 a
 3D
 space,
 and
 the
 player
 is
 free
 to
 rotate
 around
 the
 world,
 pulling
 on
 
the
 molecule’s
 bonds
 and
 pushing
 atoms
 together
 to
 see
 what
 will
 happen.
 The
 intention
 is
 to
 make
 
Organic
 Chemistry
 something
 to
 be
 pulled
 and
 prodded,
 something
 to
 aid
 player
 curiosity
 and
 allow
 a
 
deduction
 of
 more
 complex
 effects
 from
 a
 few
 basic
 rules.
 
 

  7
 
Covalence
 has
 an
 overarching
 goal
 to
 make
 Chemistry
 an
 approachable
 science
 –
 The
 game
 is
 
intended
 to
 be
 as
 easy
 to
 pick
 up
 as
 possible,
 something
 rarely
 attributed
 to
 chemistry.
 Furthermore,
 
Covalence
 is
 intended
 to
 integrate
 multiple
 coexisting
 models
 to
 explain
 Organic
 Chemistry
 into
 one
 
form,
 via
 the
 principles
 of
 auditory,
 visual
 and
 interactive
 aesthetics
 afforded
 by
 the
 medium
 of
 video
 
games.
 
 
AUDIENCE
 

  Covalence’s
 audience
 is
 the
 student
 itself,
 specifically
 students
 that
 are
 entering
 classes
 in
 
Organic
 Chemistry,
 after
 having
 completed
 courses
 in
 General
 Chemistry.
 In
 the
 United
 States,
 this
 
audience
 is
 generally
 the
 University
 Student,
 ranging
 from
 future
 Chemists
 to
 Dentistry,
 Pharmacy,
 
Optometry
 and
 Medical
 School
 hopefuls.
 
 
Organic
 Chemistry
 is
 a
 required
 class
 in
 many
 college
 Pre-­‐Med
 tracks,
 and
 is
 a
 requirement
 for
 the
 
Medical
 College
 Admissions
 Test
 (MCAT),
 as
 well
 as
 the
 Pharmacy
 Aptitude
 Test
 (PAT)
 and
 Dental
 
Admissions
 Test
 (DAT).
 
 
Since
 many
 students
 in
 Organic
 Chemistry
 courses
 may
 not
 necessarily
 be
 interested
 in
 Chemistry
 
specifically,
 and
 more
 generally
 interested
 in
 health-­‐related
 fields,
 I
 chose
 to
 make
 Covalence
 as
 
universally
 applicable
 as
 I
 could,
 so
 that
 it
 would
 apply
 to
 both
 groups.
 
ADVANTAGES
 OF
 THE
 DIGITAL
 PLATFORM
 –
 WHY
 A
 VIDEO
 GAME?
 
Interactive,
 digital
 platforms
 hold
 a
 few
 advantages
 over
 physical,
 paper
 and
 video
 demonstrations
 of
 
the
 same
 reactions.
 Information
 can
 be
 relayed
 to
 the
 player
 in
 real-­‐time,
 so
 they
 can
 know
 instantly
 
if
 they’ve
 made
 a
 wrong
 move.
 Moreover,
 the
 system
 can
 customize
 information
 for
 each
 player,
 so
 if
 
they
 continue
 to
 make
 the
 wrong
 assumptions,
 the
 computer
 can
 directly
 address
 that
 specific
 
assumption.
 
 

   
 

  8
 
VISUAL
 MODEL
 INTEGRATION
 
Hidden
 information
 is
 often
 done
 for
 simplicity
 –
 If
 everything
 was
 included
 in
 a
 model,
 there
 would
 
be
 far
 too
 much
 clutter
 on
 screen,
 as
 Chemistry
 is
 a
 complex
 science.
 However,
 if
 the
 student
 can
 
change
 the
 models
 at
 will,
 then
 she
 can
 look
 at
 a
 preferred
 model
 and
 understand
 how
 it
 connects
 
with
 a
 different
 model,
 and
 then
 compare
 that
 with
 a
 3-­‐dimensional
 representation
 of
 the
 atom,
 one
 
that
 doesn’t
 rely
 on
 abstracted
 models
 to
 illustrate
 that
 dimensionality.
 
 

 
FIGURE
 2
 
TWO
 MODES
 OF
 REPRESENTATION
 IN
 COVALENCE.
 THE
 PLAYER
 CAN
 SWITCH
 BETWEEN
 BOTH
 ON
 THE
 FLY,
 AND
 SEE
 
THE
 DIFFERENCES
 AND
 RELATIONSHIPS
 BETWEEN
 THE
 TWO.
 
In
 addition
 to
 creating
 a
 newer
 visual
 model
 for
 Covalence,
 the
 interactive
 medium
 allows
 the
 game
 
to
 simultaneously
 support
 two
 visual
 models,
 so
 that
 the
 player
 can
 swap
 between
 them
 in
 real
 time.
 
For
 instance,
 the
 Skeletal
 Formula
 (discussed
 in
 ‘Prior
 Visual
 Models’
 below)
 is
 the
 most
 common
 
model
 seen
 on
 college
 level
 exams.
 I
 wanted
 the
 player
 to
 have
 quick
 access
 to
 this
 model,
 so
 she
 
would
 have
 a
 very
 easy
 way
 to
 mentally
 convert
 the
 Covalence
 model
 to
 the
 model
 she
 would
 see
 on
 a
 
test.
 
 
CURATION
 OF
 KNOWLEDGE:
 THE
 JUST-­‐IN-­‐TIME
 PRINCIPLE
 
James
 Paul
 Gee
 wrote
 about
 video
 games’
 unique
 ability
 to
 provide
 relevant
 information
 to
 a
 player
 
“on-­‐demand
  and
  just-­‐in-­‐time,”
  (Gee,
  138)
1

 because
  a
  computer
  could
  ‘listen’
  for
  certain
  player
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1

 James
 Paul
 Gee,
 What
 Video
 Games
 Have
 to
 Teach
 Us
 About
 Learning
 and
 Literacy.
 
Second
 Edition:
 Revised
 and
 Updated
 Edition,
 2nd
 ed.
 (Palgrave
 Macmillan,
 2007).
 

  9
 
actions.
 Thus,
 if
 a
 player
 was
 repeating
 an
 action
 that
 was
 not
 helping
 her
 beat
 the
 game,
 then
 the
 
game
 could
 give
 the
 player
 a
 hint.
 In
 the
 context
 of
 education,
 that
 is
 very
 valuable
 –
 If
 a
 student
 is
 
understanding
  a
  lesson
  wrong,
  and
  is
  demonstrating
  that
  misunderstanding
  through
  repeated
 
interactions,
 the
 game
 can
 tell
 the
 student
 what
 she
 is
 doing
 wrong.
 A
 textbook
 or
 video
 simply
 
cannot
 listen
 to
 the
 reader’s
 thoughts
 in
 the
 same
 way.
 
 

 
APPLICATION
 OF
 RULES
 AND
 LOGIC
 
When
 using
 a
 physical
 model,
 it
 is
 difficult
 to
 ascertain
 the
 logic
 of
 a
 system
 if
 the
 model
 has
 not
 
designed
 for
 it.
 The
 user
 could,
 for
 instance,
 simply
 pop
 an
 atom
 off
 of
 a
 molecule
 physically,
 even
 if
 
that
 atom
 could
 not
 be
 so
 easily
 removed
 in
 real
 life.
 An
 interactive
 simulation
 can
 be
 programmed
 
such
 that
 this
 could
 not
 happen
 –
 Or,
 that
 these
 rules
 could
 be
 relaxed
 or
 suspended
 in
 order
 to
 teach
 
single
 principles,
 and
 then
 enforced
 when
 the
 player
 decides
 she
 understands
 their
 consequences.
 
 
 
DESIGN
 PHILOSOPHY:
 THE
 PSYCHOSOCIAL
 MORATORIUM
 
James
 Paul
 Gee
 describes
 in
 What
 Video
 Games
 Have
 to
 Teach
 Us
 About
 Learning
 an
 Literacy
 an
 idea
 
of
 the
 Psychosocial
 Moratorium
 –
 A
 mental
 and
 social
 space
 in
 which
 one
 feels
 free
 to
 fail
 and
 
experiment,
  because
  of
  a
  lowered
  sense
  of
  consequence
 (Gee,
  62)
2
.
  In
  designing
  Covalence,
  my
 
primary
 interest
 was
 to
 create
 such
 a
 space
 for
 the
 Chemistry
 student
 –
 a
 space
 where
 learning
 can
 
be
 facilitated,
 and
 the
 intimidation
 of
 Organic
 Chemistry
 can
 be
 minimized
 or
 at
 least
 temporarily
 
forgotten.
 
 
In
 order
 to
 achieve
 this
 state,
 I
 was
 interested
 in
 using
 the
 paradigm
 of
 the
 puzzle
 game
 to
 create
 a
 
sort
 of
 scientific
 method
 within
 the
 player
 –
 the
 creation
 of
 a
 hypothesis,
 the
 testing
 out
 of
 that
 
hypothesis,
 and
 the
 validation
 or
 correcting
 of
 that
 hypothesis
 until
 it
 aligns
 with
 reality.
 Thus,
 each
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2

 Ibid.
 

  10
 
puzzle
 should
 build
 upon
 what
 the
 player
 knows
 from
 previous
 puzzles,
 and
 its
 answer
 should
 be
 
readily
 deducible
 from
 what
 the
 player
 knows
 and
 what
 the
 player
 can
 learn
 from
 feedback.
 
 
Design-­‐wise,
 this
 meant
 that
 I
 had
 to
 focus
 heavily
 on
 iterating
 feedback
 and
 visual
 language
 –
 an
 
“accidental
 success”
 (the
 player
 succeeding
 without
 knowing
 the
 reason
 for
 the
 success)
 would
 be
 a
 
failure
 of
 the
 game’s
 design,
 as
 the
 player
 would
 not
 actually
 learn
 the
 chemistry
 behind
 completing
 a
 
level.
 
 

 
CHALLENGES
 IN
 TEACHING
 THE
 MODERN
 ORGANIC
 CHEMISTRY
 STUDENT
 
Covalence
 is
 designed
 to
 reach
 a
 very
 specific
 audience,
 at
 a
 specific
 time
 in
 their
 academic
 career.
 
Thus,
  understanding
  their
  issues
  regarding
  the
  learning
  of
  Organic
  Chemistry
  allowed
  us
  to
 
understand
 our
 design
 constraints.
 
 
I
 wanted
 to
 make
 the
 game
 as
 an
 easy-­‐to-­‐integrate
 supplement
 to
 the
 regular
 course,
 something
 that
 
would
 minimize
 the
 amount
 of
 energy
 a
 player
 would
 need
 in
 order
 to
 acclimate
 and
 be
 familiar
 with
 
the
 system.
 That
 meant
 a
 few
 design
 constraints
 –
 I
 couldn’t
 re-­‐skin
 the
 world
 of
 Chemistry
 too
 far
 
from
 what
 is
 understood,
 nor
 could
 I
 simplify
 the
 phenomena
 too
 much,
 lest
 the
 system
 become
 
another
 roadblock
 to
 learning,
 and
 possibly
 not
 a
 way
 to
 learn
 Organic
 Chemistry
 at
 all.
 
 
Based
 on
 this
 criteria,
 I
 developed
 a
 list
 of
 necessary
 design
 constraints,
 and
 worked
 my
 way
 around
 
them:
 
 
• The
 game’s
 design
 must
 fit
 easily
 into
 what
 the
 player
 already
 knows
 about
 chemistry.
 
• The
 game
 must
 feel
 like
 easy
 experimentation
 will
 lead
 to
 the
 answers,
 and
 that
 conclusions
 
can
  be
  made
  based
  solely
  on
  what’s
  known
  in
  the
  game,
  not
  from
  previous
  chemistry
 
knowledge.
 
• The
 look
 and
 feel
 cannot
 contradict
 known
 visual
 language;
 rather,
 it
 should
 complement
 
and
 integrate
 that
 language
 wherever
 possible.
 

  11
 
ADDITIONAL
 TECHNICAL
 CHALLENGE:
 3-­‐DIMENSIONALITY
 
While
  complex
  molecules
  are
  studied
  in
  General
  Chemistry,
  their
  orientations
  in
  space
  are
  not
 
important.
 In
 many
 ways,
 however,
 Organic
 Chemistry
 is
 the
 study
 of
 how
 atoms
 position
 themselves
 
and
  move
  in
  3D
  space.
  Thus,
  Covalence
  had
  to
  be
  a
  3-­‐dimensional
  game,
  something
  which
 
complicates
  the
  game
  immensely.
  For
  instance,
  the
  screen
  and
  the
  mouse
  are
  both
  on
  a
  2-­‐
dimensional
 plane.
 Programs
 such
 as
 Autodesk’s
 Maya
3

 and
 games
 such
 as
 Homeworld
4

 deal
 with
 
translating
 3D
 movement
 onto
 a
 2-­‐D
 plane,
 these
 movements
 require
 multiple
 inputs
 to
 define
 a
 
specific
  point
  in
  3D
  space.

 
While
  3D
  illustration
  of
  molecules
  may
  be
  a
  strength
  for
  Covalence
 
learning-­‐wise,
  it
  was
  also
  an
  important
  obstacle
  that
  needed
  careful
  assessment
  throughout
 
development.
 
 
 
THE
 PROBLEM:
 MULTIPLE
 VISUAL
 MODELS,
 OVERWHELMING
 
INFORMATION,
 HIDDEN
 KNOWLEDGE
 
Many
 of
 the
 visual
 models
 that
 Chemistry
 students
 learn
 omit
 or
 imply
 information
 that
 is
 important
 
for
 the
 understanding
 of
 a
 reaction.
 Thus,
 it
 becomes
 difficult
 for
 a
 student
 to
 quickly
 ascertain
 the
 
information
 without
 looking
 at
 multiple
 models
 or
 having
 a
 video
 demonstration
 of
 the
 reaction.
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3

 0003
  Maya
  Movement
  Key
  Commands,
  2011,
 
http://www.youtube.com/watch?v=gt0yLpQ6uhE&feature=youtube_gdata_player.
 
4

 Homeworld
 (Vivendi
 Universal,
 1999),
 http://www.relic.com/games/homeworld/.
 

  12
 

 
FIGURE
 3
 
ALL
 OF
 THESE
 IMAGES
 REPRESENT
 PROPANE,
 A
 3-­‐CARBON
 MOLECULE.
 THE
 DIFFERENT
 VERSIONS
 OF
 THE
 SAME
 
MOLECULE
 CAN
 BE
 CONFUSING
 FOR
 FIRST
 TIME
 LEARNERS,
 ESPECIALLY
 IF
 THEY
 DO
 NOT
 KNOW
 HOW
 TO
 TRANSLATE
 
FROM
 ONE
 MODEL
 TO
 ANOTHER.
 THE
 INTERACTIVE
 MEDIUM
 ALLOWS
 FOR
 A
 USER
 TO
 RAPIDLY
 SWITCH
 BETWEEN
 
MODELS,
 ESPECIALLY
 AFTER
 MODIFYING
 THE
 MOLECULE,
 TO
 SEE
 HOW
 THESE
 MODELS
 ARE
 RELATED.
 
5

 

 
For
 example,
 when
 starting
 an
 OChem
 class,
 students
 often
 purchase
 physical
 toy
 models,
 such
 as
 the
 
Molymod
 Molecular
 Chemistry
 set.
6

 These
 models
 will
 mimic
 the
 shapes
 of
 the
 molecules
 when
 
atoms
 are
 added,
 but
 they
 lack
 the
 electrons
 that
 actually
 force
 the
 atoms
 into
 the
 shapes
 they
 are
 in,
 
so
 they
 user
 won’t
 be
 able
 to
 fully
 deduce
 the
 reason
 for
 this
 model
 without
 further
 study.
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5

 “Propane,”
  Wikipedia,
  the
  Free
  Encyclopedia,
  March
  27,
  2013,
 
http://en.wikipedia.org/w/index.php?title=Propane&oldid=545220208.
 
6

 Molymod
  Organic/Inorganic
  Molecular
  Model
  Student
  Set
  (Carolina
  Biological
 
Supply
 Company,
 n.d.).
 

  13
 

 
FIGURE
 4
 
ORGANIC
 CHEMISTRY
 MOLECULAR
 MODELS
 CAN
 SHOW
 SHAPES,
 BUT
 IF
 A
 STUDENT
 WANTS
 TO
 'ADD'
 TO
 THE
 
MOLECULE,
 HE
 WILL
 SIMPLY
 POP
 IT
 INTO
 THE
 STRUCTURE,
 WHETHER
 OR
 NOT
 THE
 REAL
 SYSTEM
 WOULD
 WORK
 
THAT
 WAY.
 THE
 GAME
 IS
 INTENDED
 TO
 PRESENT
 MOLECULES
 IN
 THIS
 SAME
 3D
 SHAPE,
 BUT
 ADHERE
 TO
 REAL
 
CHEMISTRY
 RULES
 AND
 PROCEDURES.
 
Much
 of
 this
 difficulty
 comes
 from
 an
 imperfect
 representation
 of
 the
 3-­‐dimensional
 study
 on
 two-­‐
dimensional
 formats
 such
 as
 a
 drawn
 model.
 Thus,
 when
 learning
 or
 being
 tested
 on
 the
 material,
 the
 
chemistry
 student
 has
 the
 additional
 problem
 of
 discerning
 small
 differences
 through
 a
 visual
 model
 
that
 may
 make
 those
 differences
 hard
 to
 discern.
 

 
FIGURE
 5
 
THIS
 DRAWN
 MODEL
 MAKES
 IT
 DIFFICULT
 TO
 DISCERN
 SPATIAL
 SHAPES
 –
 WHETHER
 THE
 H3CH2C
 IS
 UNDERSTOOD
 
TO
 BE
 THE
 ‘FRONT’
 OF
 THE
 MOLECULE
 OR
 ‘BEHIND’
 THE
 MOLECULE
 IS
 NOT
 AT
 ALL
 CLEAR
 IN
 THIS
 REPRESENTATION.
 

  14
 
Organic
 Chemistry
 is
 a
 study
 of
 Carbon-­‐based
 (“organic”)
 compounds,
 and
 their
 creation
 through
 
various
 laboratory
 procedures.
 However,
 much
 of
 the
 science’s
 difficulty
 lies
 in
 subtle
 differences
 
that
 are
 nevertheless
 vitally
 important.
 For
 instance,
 two
 Carbon
 atoms
 connected
 to
 the
 same
 four
 
atoms,
 but
 in
 different
 orders,
 may
 have
 completely
 different
 effects
 when
 introduced
 into
 the
 human
 
body.
 

   
 

  15
 

 

 
FIGURE
 6
 
AN
 ILLUSTRATION
 OF
 TWO
 ENANTIOMERS,
 TWO
 DIFFERENT
 MOLECULES
 WITH
 THE
 SAME
 ATOMIC
 MAKEUP.
 
SIMILAR
 TO
 THE
 LEFT
 AND
 RIGHT
 HAND,
 THE
 TWO
 OBJECTS
 CANNOT
 BE
 SUPERIMPOSED
 OVER
 EACH
 OTHER.
7

 
 
Because
 of
 this,
 students
 must
 first
 learn
 a
 naming
 and
 illustration
 convention
 before
 they
 can
 
reasonably
 discuss
 the
 intricate
 details
 about
 Organic
 molecules.
 Soon
 thereafter,
 they
 must
 use
 this
 
visual
 language
 to
 learn
 very
 subtle
 differences
 in
 chemical
 structure,
 such
 as
 discerning
 mirror
 
images.
 Organic
 Chemistry
 as
 a
 study
 emphasizes
 an
 attention
 to
 detail,
 as
 adding
 chemicals
 together
 
in
 the
 wrong
 order,
 or
 in
 the
 incorrect
 solution,
 can
 have
 devastating
 consequences
 when
 applied
 to
 
medical
 or
 pharmaceutical
 pursuits.
 
 
THE
 SOLUTION:
 DESIGNING
 AN
 INTEGRATED
 VISUAL
 MODEL
 FOR
 
COVALENCE
 
In
 designing
 Covalence,
 it
 became
 clear
 that
 a
 previous
 model,
 converted
 to
 3D,
 would
 not
 be
 enough
 
for
 players
 to
 navigate
 through
 the
 game.
 Previous
 models
 hide
 information
 to
 the
 point
 that
 multiple
 
models
 are
 necessary
 to
 display
 all
 the
 information
 necessary
 to
 understand
 why
 a
 single
 reaction
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7

 Miloslav
 Nič
 et
 al.,
 eds.,
 “Chirality,”
 in
 IUPAC
 Compendium
 of
 Chemical
 Terminology,
 
2.1.0
  ed.
  (Research
  Triagle
  Park,
  NC:
  IUPAC),
  accessed
  March
  30,
  2013,
 
http://goldbook.iupac.org/C01058.html.
 

  16
 
occurs.
 For
 a
 Chemist,
 this
 makes
 sense
 –
 much
 of
 this
 information
 is
 so
 well
 digested
 that
 putting
 it
 
into
 a
 model
 is
 unnecessary.
 For
 the
 student
 learning
 the
 material
 for
 the
 first
 time,
 however,
 this
 is
 a
 
thorny
 issue.
 
 
When
  I
  designed
  Covalence’s
  visual
  model,
  I
  decided
  to
  focus
  on
  the
  core
  of
  what
  makes
  the
 
structures
 and
 reactions
 possible
 –
 the
 electron.
 This
 allowed
 me
 to
 then
 analyze
 each
 visual
 model
 
for
 what
 is
 relevant,
 and
 provided
 a
 basis
 for
 integration
 of
 these
 models.
 
 
THE
 ELECTRON
 PAIR
 
If
 we
 imagine
 the
 electron
 as
 a
 sort
 of
 negative
 magnet,
 we
 can
 imagine
 that
 they
 repel
 other
 
electrons
 while
 attracting
 an
 atom’s
 positive
 center.
 When
 they
 are
 between
 two
 atomic
 centers,
 they
 
vacillate
 between
 both,
 creating
 a
 certain
 closeness
 between
 the
 two
 atoms.
 Thus,
 a
 certain
 push-­‐
and-­‐pull
 creates
 the
 structures
 we
 see
 in
 molecules.
 
 

 
FIGURE
 7
 
EACH
 OUTER
 ATOM
 REPULSES
 THE
 OTHER
 WHILE
 STILL
 BEING
 ATTRACTED
 TO
 THE
 CENTRAL
 ATOM,
 THUS
 
CREATING
 THE
 SHAPES
 WE
 SEE
 IN
 MOLECULES.
 NOTE
 HOW
 THE
 ENTRANCE
 OF
 THE
 THIRD
 (YELLOW)
 ATOM
 PUSHES
 
THE
 OTHER
 TWO
 ATOMS
 DOWNWARD.
 I
 CHOSE
 TO
 EMPHASIZE
 THE
 ELECTRONS
 (HIDDEN
 HERE)
 WHEN
 MAKING
 THE
 
GAME,
 SO
 THAT
 THE
 REASONS
 FOR
 THIS
 WOULD
 BE
 MORE
 CLEAR.
8

 
Thus,
 every
 bond
 in
 a
 molecule
 is
 actually
 a
 pair
 of
 electrons,
 sitting
 between
 two
 atoms
 and
 bringing
 
them
 together.
 
 This
 was
 crucial
 to
 the
 understanding
 of
 the
 system,
 so
 we
 spent
 quite
 a
 bit
 of
 time
 on
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8

 “VSEPR
  Theory,”
  Wikipedia,
  the
  Free
  Encyclopedia,
  March
  29,
  2013,
 
http://en.wikipedia.org/w/index.php?title=VSEPR_theory&oldid=546494233.
 

  17
 
visualization
 of
 this
 system.
 In
 the
 current
 iteration
 of
 the
 design,
 this
 means
 that
 the
 bond
 is
 
represented
 by
 two
 atoms,
 with
 the
 bond
 acting
 as
 a
 charge
 that
 goes
 between
 them.
 

 
FIGURE
 8
 
BONDS
 AS
 ELECTRONS
 WITH
 FORCE
 PASSING
 BETWEEN
 THEM,
 FROM
 THE
 MOST
 CURRENT
 PROTOTYPE
 OF
 THE
 
GAME.
 
In
 addition,
 some
 atoms
 have
 a
 stronger
 pull
 on
 these
 electrons,
 and
 this
 means
 that
 bonds
 can
 be
 
broken,
 with
 the
 atoms
 going
 to
 one
 side.
 
 Traditional
 models
 (such
 as
 Lewis
 Diagrams
 and
 Skeletal
 
models,
  discussed
  below)
  represent
  bonds
  as
  straight
  lines
  or
  pairs
  of
  electrons,
  but
  rarely
 
acknowledge
 a
 one-­‐sided
 draw
 of
 electrons.
 
 

 
FIGURE
 9
 
EARLY
 COVALENCE
 PROTOTYPE
 WITH
 UNEVEN
 BOND.
 EMPHASIZING
 A
 VISUAL
 PULL
 TO
 ONE
 SIDE
 HELPED
 PLAYERS
 
UNDERSTAND
 AN
 IMMEDIATE
 DIFFERENCE,
 
 

  18
 
There
 were
 a
 few
 other
 issues
 that
 I
 needed
 to
 illuminate,
 such
 as
 atom
 instability,
 so
 that
 they
 were
 
present
 in
 the
 mind
 of
 the
 user.
 Much
 of
 these
 designs
 came
 from
 lessons
 in
 graphic
 design
 and
 
cinematography,
 noting
 that
 certain
 visual
 contrasts
 are
 very
 good
 at
 catching
 the
 attention
 of
 a
 user.
 
Movement
 in
 an
 otherwise
 static
 screen,
 for
 instance,
 is
 almost
 certain
 to
 get
 a
 player’s
 attention
 
(Block,
 2007)
9
,
 so
 I
 could
 program
 the
 game
 to
 use
 movement
 as
 a
 feedback
 tool
 and
 teach
 the
 player
 
what
 was
 successful.
 
 

 
FIGURE
 10
 
USING
 MOVEMENT,
 SATURATION
 OF
 COLOR
 AND
 OBJECT
 GROWTH
 AS
 INDICATORS
 OF
 A
 CARBON’S
 INSTABILITY.
 
PRIOR
 VISUAL
 MODELS
 
Not
 all
 theories
 in
 Chemistry
 agree
 as
 to
 where
 electrons
 are
 on
 an
 atom,
 nor
 what
 they
 are
 even
 
made
 of.
 Many
 of
 these
 conflict
 and
 explain
 different
 phenomena
 in
 Chemistry,
 as
 well.
 However,
 for
 
the
 sake
 of
 education,
 College
 level
 Organic
 Chemistry
 classes
 choose
 to
 emphasize
 a
 certain
 series
 of
 
models,
 and
 teach
 their
 lessons
 based
 on
 those
 models.
 
In
 the
 same
 vein,
 I
 chose
 to
 integrate
 the
 following
 models
 into
 a
 unified
 visual
 model,
 taking
 their
 
individual
  strengths
  with
  an
  eye
  towards
  highlighting
  information
  from
  multiple
  levels.
  These
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9

 Bruce
 Block,
 The
 Visual
 Story:
 Creating
 the
 Visual
 Structure
 of
 Film,
 TV
 and
 Digital
 
Media,
 2nd
 ed.
 (Focal
 Press,
 2007).
 

  19
 
models
 are
 mostly
 taken
 from
 texbooks
 such
 as
 Organic
 Chemistry
 from
 T.W.
 Solomons
 and
 Craig
 
Fryhle
10
.
 
VSEPR
 THEORY
 
VSEPR
 (“Valence
 Shell
 ElectronPair
 Repulsion”)
 theory
 dictates
 the
 shapes
 of
 electrons,
 and
 that
 
these
 shapes
 occur
 based
 on
 the
 electrons
 that
 are
 present
 in
 bonds
 and
 on
 atoms.
 
 

 
FIGURE
 11
 
EACH
 BOND
 OR
 ELECTRON
 PAIR
 REPULSES
 THE
 OTHER,
 ACCORDING
 TO
 VSEPR
 THEORY,
 AND
 THIS
 EXPLAINS
 HOW
 
MOLECULES
 TAKE
 THE
 SHAPES
 THAT
 THEY
 DO.
11

 HERE,
 THE
 THEORY
 IS
 ILLUSTRATED
 USING
 THE
 SKELETAL
 
FORMULA,
 EXPLAINED
 BELOW.
 
This
  theory
  is
  important
  for
  explaining
  reactions,
 which
 are
 based
 on
  one
  atom’s
  proximity
  to
 
another,
 and
 their
 likelihood
 for
 bonding.
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10

 T.
  W.
  Graham
  Solomons
  and
  Craig
  Fryhle,
  Organic
 Chemistry,
  8th
  ed.
  (Wiley,
 
2003).
 
11

 Chem
  11,
  “Chemistry
  11:
  VSEPR,”
  Chemistry
  11,
  May
  5,
  2012,
 
http://mageechemistry11.blogspot.com/2012/05/vsepr.html.
 

  20
 
More
 importantly,
 VSEPR
 theory
 places
 electron
 pairs
 in
 specific
 locations.
 Other
 theories
 (such
 as
 
Molecular
 Orbital
 theory
12
)
 place
 electrons
 in
 a
 certain
 area
 of
 probability,
 rather
 than
 at
 a
 specific
 
place,
 and
 this
 becomes
 problematic
 when
 trying
 to
 understand
 why
 atoms
 repulse
 each
 other
 at
 
certain
 angles,
 or
 why
 certain
 reactions
 cannot
 happen
 because
 of
 electrons
 that
 stand
 in
 the
 way.
 
 
LEWIS
 DOT
 DIAGRAM
 
An
 electron-­‐focused
 diagram,
 the
 Lewis
 diagram
 illustrates
 the
 transfer
 of
 electrons
 from
 single
 atom
 
"ownership"
 to
 two-­‐atom
 bonds,
 and
 vice
 versa.
 This
 diagram
 is
 one
 of
 the
 few
 that
 showcases
 
electrons
 and
 their
 placement
 on
 the
 atom.
 
 

 
FIGURE
 12
 
THE
 LEWIS
 DOT
 DIAGRAM
 OF
 PENTANE
 (SHOWN
 ABOVE).
 NOTE
 THAT
 BONDS
 ARE
 SHOWN
 AS
 PAIRS
 OF
 ELECTRONS
 
BETWEEN
 TWO
 ATOMS.
 
However,
 these
 diagrams
 ignore
 3D
 space,
 and
 put
 all
 four
 electron
 pairs
 on
 the
 flat
 2D
 plane.
 This
 is
 
in
 direct
 conflict
 with
 the
 VSEPR
 theory
 above,
 and
 makes
 the
 understanding
 of
 molecular
 structure
 
difficult.
 However,
 it
 is
 very
 successful
 in
 making
 the
 transfer
 of
 charge
 intuitive
 to
 the
 learner.
 Thus,
 
I
 wanted
 to
 keep
 bonds
 forever
 in
 the
 player’s
 memory
 as
 a
 pair
 of
 electrons
 rather
 than
 just
 a
 line.
 
 

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12

 Molecular
  Orbitals,
  accessed
  March
  27,
  2013,
 
http://www.sparknotes.com/chemistry/bonding/molecularorbital/.
 

  21
 
SKELETAL
 FORMULA
 
Perhaps
 the
 most
 visually
 recognizable
 model
 of
 Organic
 Chemistry,
 the
 skeletal
 formula
 (also
 often
 
referred
 to
 as
 the
 ‘line
 drawing’)
 represents
 atoms
 as
 letters,
 and
 bonds
 as
 straight
 lines.
 In
 some
 
drawings,
  Carbon
  and
  hydrogen’s
  letters
  are
  omitted,
  and
  a
  Carbon
  is
  understood
  to
  be
  the
 
intersection
 of
 two
 lines,
 while
 Hydrogens
 are
 removed
 entirely,
 and
 the
 viewer
 is
 meant
 to
 deduce
 
their
 location.
 
 
This
 visual
 model
 also
 accounts
 for
 3-­‐dimensional
 space
 by
 drawing
 dashed
 lines
 for
 objects
 ‘behind’
 
the
 plane
 of
 the
 paper,
 and
 triangular
 lines
 for
 objects
 ‘in
 front’
 of
 the
 paper.
 
 

 
FIGURE
 13
 
SKELETAL
 FORMULAE.
 IN
 THE
 LEFT
 FORMULA,
 THE
 BROMINE
 AND
 CHLORINE
 ARE
 DRAWN
 OUT,
 BUT
 THE
 CARBONS
 
(LINE
 CORNERS)
 AND
 HYDROGENS
 (NOT
 PICTURED)
 ARE
 IMPLIED.
13

 IN
 THE
 RIGHT
 FORMULA,
 THE
 FLOURINE
 IS
 
‘BEHIND’
 THE
 PAPER,
 AND
 THE
 CHLORINE
 IS
 ‘IN
 FRONT
 OF’
 THE
 PAPER,
 A
 NOD
 TO
 THE
 3-­‐DIMENSIONALITY
 OF
 
MOLECULES.
 
 
This
 drawing
 style
 is
 the
 style
 most
 likely
 to
 be
 seen
 on
 tests,
 and
 most
 relevant
 to
 the
 chemistry
 
student.
 The
 primary
 issue
 of
 this
 model
 is
 the
 hiding
 of
 information,
 as
 a
 single
 glance
 does
 not
 show
 
all
 of
 the
 chemical
 model,
 and
 this
 can
 cause
 the
 student
 to
 misread
 the
 system
 if
 they
 do
 not
 fully
 
understand
 the
 rules
 of
 the
 model.
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13

 “2-­‐Bromo-­‐1-­‐chloropropane,”
 Wikipedia,
 the
 Free
 Encyclopedia,
 March
 29,
 2013,
 
http://en.wikipedia.org/w/index.php?title=2-­‐Bromo-­‐1-­‐
chloropropane&oldid=543868745.
 

  22
 

 
INFORMATION
 NOT
 INCLUDED
 
These
  models
  also
  ignore
  some
  important
  principles
  and
  atom-­‐specific
  properties,
  especially
 
electronegativity
 and
 Carbon
 stability,
 and
 I
 wanted
 to
 make
 sure
 these
 lessons
 were
 visually
 clear
 to
 
the
 player.
 In
 the
 case
 of
 Carbon
 Stability,
 this
 principle
 wasn’t
 strictly
 defined
 in
 Organic
 Chemistry
 
textbooks,
 so
 I
 had
 the
 opportunity
 to
 exert
 a
 designer’s
 touch
 and
 define
 this
 property
 in
 a
 way
 that
 
would
 organically
 fit
 the
 rest
 of
 the
 game,
 instead
 of
 relying
 on
 outside
 principles.
 
 
Electronegativity
 is
 simply
 a
 measure
 of
 how
 much
 a
 specific
 atom
 pulls
 electrons
 towards
 itself
 
(Fryhle,
 2003).
14

 
 Since
 Carbon
 is
 the
 main
 backbone
 of
 Organic
 Chemistry,
 atoms
 that
 pull
 electrons
 
more
 than
 Carbon
 have
 the
 potential
 to
 pull
 those
 electrons
 away,
 and
 break
 the
 bond
 between
 the
 
two
 atoms.
 However,
 in
 most
 molecular
 diagrams,
 bonds
 are
 universally
 straight,
 and
 no
 clue
 is
 given
 
as
 to
 their
 pull
 either
 way.
 
 
CREATING
 THE
 LEVELS:
 NUCLEAR
 SUBSTITUTION
 AS
 A
 WAY
 TO
 
EXPLAIN
 ORGANIC
 CHEMISTRY’S
 ELEGANCE
 AND
 SUBTLE
 DIFFICULTY
 
My
 intention
 for
 this
 project
 was
 not
 to
 completely
 replace
 the
 Organic
 Chemistry
 curriculum,
 but
 
rather
 to
 illustrate
 a
 method
 for
 thinking
 about
 problems
 that
 the
 student
 is
 likely
 to
 encounter.
 As
 
such,
 it
 was
 important
 for
 me
 to
 provide
 a
 basis
 for
 why
 the
 science
 is
 viewed
 the
 way
 it
 is,
 and
 how
 
certain
 properties
 in
 the
 field
 contribute
 to
 its
 most
 important
 concerns
 and
 lessons.
 
 
I
 decided
 to
 focus
 on
 one
 type
 of
 reaction,
 the
 nuclear
 substitution,
 and
 use
 that
 reaction
 as
 a
 catalyst
 
to
 teach
 the
 basis
 of
 all
 reactions,
 as
 well
 as
 more
 complex
 issues
 such
 as
 chirality.
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14

 Solomons
 and
 Fryhle,
 Organic
 Chemistry.
 

  23
 

 
WHY
 NUCLEAR
 SUBSTITUTION?
 
One
 of
 the
 earliest
 reactions
 taught
 in
 an
 Organic
 Chemistry
 classroom
 is
 the
 Nuclear
 Substitution,
 
the
 act
 of
 switching
 out
 one
 atom
 (or
 group)
 for
 another.
 
 Specifically
 for
 Covalence,
 I
 focused
 on
 the
 
Bimolecular
 Nuclear
 Substitution
 (SN2)
 reaction,
 a
 fairly
 well-­‐known
 reaction
 in
 Organic
 Chemistry.
 
Carbon
 can
 bond
 with
 up
 to
 four
 other
 atoms,
 and
 (unless
 connected
 to
 two
 or
 three
 other
 Carbons),
 
will
 not
 allow
 an
 atom
 to
 leave
 a
 bond,
 and
 will
 force
 itself
 to
 re-­‐bond
 with
 the
 leaving
 atom
 in
 order
 
to
 keep
 its
 four-­‐bond
 structure.
 For
 a
 leaving
 atom
 to
 successfully
 leave,
 ,
 a
 replacement
 atom
 must
 
approach
 from
 the
 side
 opposite
 to
 the
 leaving
 atom,
 and
 start
 to
 bond
 with
 the
 Carbon.
 Then,
 the
 
Carbon
 atom
 will
 have
 a
 replacement
 fourth
 bond,
 and
 the
 leaving
 group
 is
 free
 to
 leave.
 In
 my
 
opinion,
 this
 felt
 exactly
 like
 a
 game
 mechanic,
 and
 it
 also
 illustrated
 Organic
 Chemistry’s
 elegance
 
rather
 well.
 
 

 
FIGURE
 14
 
EXAMPLE
 OF
 AN
 SN2
 NUCLEAR
 SUBSTITUTION,
 WHERE
 THE
 LEFT
 MOLECULE
 IS
 PUSHING
 THE
 PURPLE
 ATOM
 OUT
 OF
 
THE
 MOLECULE.
 

  24
 
The
 key
 to
 this
 reaction
 lies
 in
 the
 magnetic
 repulsion
 of
 electrons
 –
 Each
 atom
 has
 a
 certain
 draw
 
towards
 electrons,
 and
 between
 the
 ‘leaving’
 atom
 and
 the
 Carbon
 it
 is
 bonded
 to,
 the
 ‘leaving’
 atom
 
pulls
 electrons
 more
 tightly.
 Thus,
 if
 the
 leaving
 atom
 is
 pushed
 away
 from
 the
 carbon,
 it
 will
 break
 
its
 bond
 and
 take
 the
 electrons
 with
 it.
 When
 this
 happens,
 if
 Carbon
 is
 satisfied
 by
 having
 another
 
fourth
 bond,
 the
 leaving
 atom
 can
 drift
 away
 successfully.
 
 
Current
 visual
 models
 make
 this
 difficult
 to
 explain
 to
 a
 chemistry
 student,
 as
 single
 bonds
 in
 most
 
models
 are
 drawn
 alike,
 so
 the
 student
 cannot
 immediately
 tell
 what
 bonds
 are
 breakable.
 Similarly,
 
merely
 implying
 that
 a
 bond
 was
 breakable
 was
 not
 enough
 –
 The
 player
 would
 simply
 break
 the
 
bond
 and
 then
 wonder
 why
 the
 Carbon
 was
 re-­‐bonding
 the
 atom,
 and
 assume
 it
 was
 a
 bug.
 In
 the
 
end,
 we
 used
 the
 fact
 that
 an
 uneven
 bond
 creates
 a
 slight
 positive
 charge
 on
 the
 Carbon,
 and
 placed
 
an
 indicator
 for
 where
 the
 incoming
 atom
 should
 go.
 This
 then
 led
 to
 the
 players
 understanding
 what
 
to
 do,
 and
 was
 still
 within
 the
 bounds
 of
 Chemistry.
 
 

 
What
 is
 most
 important
 to
 teach
 here
 is
 the
 spatial
 orientation
 of
 the
 molecule,
 and
 the
 location
 of
 
attack
 for
 the
 incoming
 atom.
 The
 location
 where
 the
 incoming
 atom
 can
 enter
 is
 strictly
 defined
 to
 
be
 the
 opposite
 side
 of
 the
 leaving
 group,
 because
 that
 is
 farthest
 away
 from
 the
 leaving
 group’s
 field
 
of
 repulsion.
 Unfortunately,
 that
 lesson
 is
 hard
 to
 impart
 through
 drawings.
 
 

  25
 

 
FIGURE
 15
 
INCOMING
 ATOMS
 IN
 AN
 SN2
 REACTION
 NEED
 TO
 ATTACK
 AT
 A
 CERTAIN
 SPACE
 TO
 SUCCEED.
 ALSO
 NOT
 THE
 SPATIAL
 
CHANGE
 IN
 THE
 GREY
 MOLECULES
 WHILE
 THIS
 OCCURS
 -­‐
 THE
 MOLECULES
 'FLATTEN'
 IN
 RELATION
 TO
 CARBON,
 
THEN
 BECOME
 INVERTED
 

 THE
 WALDEN
 INVERSION
 
An
 SN2
 reaction
 always
 occurs
 at
 the
 point
 of
 a
 Carbon
 atom,
 which
 is,
 at
 that
 point,
 attached
 to
 four
 
other
 atoms.
 When
 an
 SN2
 reaction
 occurs,
 the
 “legs”
 of
 the
 Carbon
 (the
 three
 bonds
 that
 are
 not
 the
 
leaving
 group’s
 bond)
 will
 ‘flip,’
 similar
 to
 an
 umbrella
 flipping
 backwards
 during
 a
 strong
 wind.
 This
 
is
 known
 as
 the
 Walden
 Inversion
15
,
 and
 is
 one
 of
 the
 more
 important
 takeaways
 of
 SN2
 reactions.
 
Whatever
 orientation
 the
 three
 ‘legs’
 were
 in
 before
 the
 flip
 will
 be
 reversed
 after
 the
 flip,
 and
 
students
 must
 take
 note
 of
 this
 while
 doing
 their
 experiments
 or
 answering
 exam
 questions.
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15

 Miloslav
 Nič
 et
 al.,
 eds.,
 “Walden
 Inversion,”
 in
 IUPAC
 Compendium
 of
 Chemical
 
Terminology,
 2.1.0
 ed.
 (Research
 Triagle
 Park,
 NC:
 IUPAC),
 accessed
 March
 30,
 2013,
 
http://goldbook.iupac.org/W06653.html.
 

  26
 

 
FIGURE
 16
 
IF
 WE
 IMAGINE
 THE
 HYDROGEN,
 FLOURINE
 AND
 OXYGEN
 TO
 BE
 POINTS
 ON
 A
 CIRCLE,
 THE
 FLUORINE
 (F)
 IS
 COUNTER-­‐
CLOCKWISE
 FROM
 THE
 OXYGEN
 ON
 THE
 LEFT,
 BUT
 CLOCKWISE
 TO
 THE
 OXYGEN
 ON
 THE
 RIGHT.
 
This
 is
 a
 good
 example
 of
 the
 basics
 of
 the
 system
 creating
 a
 problem
 that
 occurs
 as
 a
 natural
 
consequences
 of
 the
 system’s
 actions.
 The
 only
 reason
 that
 the
 Walden
 inversion
 occurs
 is
 because
 of
 
the
 magnetic
 repulsion
 of
 the
 ‘legs’,
 rather
 than
 due
 to
 some
 other
 property
 of
 chemistry
 such
 as
 
electronegativity.
  Thus,
  when
  the
  player
  observes
  the
  ‘flip’
  and
  notices
  how
  the
  orientation
  is
 
different
 when
 she
 flips
 the
 molecule’s
 legs,
 she
 will
 learn
 to
 be
 observant
 of
 how
 many
 ‘flips’
 she
 is
 
doing,
 an
 important
 lesson
 that
 is
 nonetheless
 difficult
 to
 impart
 otherwise.
 
 
PRIOR
 ART
 
Of
 course,
 no
 art
 is
 created
 in
 a
 vacuum.
 I’m
 indebted
 to
 a
 series
 of
 books
 and
 games
 for
 their
 
portrayal
 of
 both
 Chemistry
 and
 three-­‐dimensional
 navigation,
 as
 well
 as
 a
 critical
 and
 philosophical
 
approach
 to
 using
 games
 as
 powerful
 educational
 experiences.
 
 
FOLD
 IT
 (2008)
 
The
 most
 directly
 connected
 prior
 art
 game
 in
 the
 educational
 games
 field,
 FoldIt
 is
 a
 3D
 protein
 
folding
  simulation,
  intended
  as
  a
  crowdsourcing
  game
  to
  help
  scientists
  study
  protein
  folding
 

  27
 
patterns.
 The
 game
 uses
 a
 similar
 3D
 navigational
 style,
 and
 the
 player
 grabs
 pieces
 of
 the
 protein
 
and
 brings
 it
 closer
 to
 or
 farther
 away
 from
 other
 pieces
 of
 the
 protein,
 in
 order
 to
 get
 a
 better
 fit
 and
 
minimize
 tension
 between
 the
 pieces
 of
 the
 protein.
 
 

 
FIGURE
 17
 
FOLDIT’S
 GRAPHICAL
 STYLE
 MAKES
 IT
 EASY
 TO
 FOCUS
 ON
 THE
 AREAS
 OF
 STRAIN,
 SHOWN
 AS
 RED
 CIRCLES.
 
Foldit
 was
 a
 useful
 example
 of
 visual
 design
 and
 navigation
 around
 a
 3D
 space,
 but
 as
 an
 educational
 
tool,
 it
 went
 in
 a
 different
 direction
 than
 Covalence.
 While
 Foldit
 does
 talk
 about
 protein
 pieces
 like
 
Beta-­‐Pleated
 Sheets,
 Foldit
 does
 not
 focus
 on
 teaching
 the
 player
 about
 these
 elements
 of
 the
 protein,
 
but
 rather
 boils
 the
 matter
 down
 to
 a
 question
 of
 strain
 and
 tension,
 indicated
 by
 red
 spheres
 and
 
spiked
 balls.
 In
 doing
 so,
 the
 player
 can
 understand
 visually
 where
 the
 problem
 is,
 even
 if
 she
 doesn’t
 
understand
 why
 it
 is
 occurring.
 The
 real
 power
 in
 Foldit’s
 design
 is
 the
 ability
 to
 crowdsource
 large
 
questions
 about
 protein
 folding,
 and
 it
 uses
 that
 power
 to
 give
 the
 designers
 information
 about
 the
 
game
 and
 its
 levels,
 rather
 than
 the
 players.
 
 

  28
 
Covalence,
 on
 the
 other
 hand,
 is
 interested
 in
 using
 each
 piece
 of
 information
 to
 teach
 a
 larger
 picture,
 
and
 to
 teach
 it
 primarily
 to
 the
 player
 playing
 the
 game.
 Thus,
 the
 design
 of
 the
 levels
 and
 the
 
experiential
 arc
 of
 the
 game
 take
 a
 different
 direction
 than
 Foldit.
 
 
DRAGON
 BOX+
 (WE
 WANT
 TO
 KNOW
 AS,
 2012)
 
Dragon
 Box
 is
 a
 puzzle
 game
 designed
 to
 teach
 algebra,
 specifically
 the
 navigation
 around
 equations.
 
This
 is
 done,
 however,
 without
 numbers
 or
 variables,
 but
 instead
 with
 pictures,
 for
 the
 first
 few
 
hours
 of
 gameplay.
 In
 fact,
 there
 isn’t
 even
 an
 “=”
 sign
 in
 the
 game,
 but
 rather
 a
 pair
 of
 boxes.
 The
 
object
 is
 to
 keep
 one
 image
 by
 itself
 on
 one
 box,
 by
 dropping
 “negative”
 (oppositely
 colored)
 versions
 
of
 images
 into
 both
 boxes,
 so
 that
 the
 opposites
 in
 a
 single
 box
 cancel
 each
 other
 out.
 

 
FIGURE
 18
 
ADDING
 THE
 "POSITIVE"
 FLY
 TO
 BOTH
 SIDES
 WILL
 GET
 THE
 BOX
 ALONE,
 AN
 ANALOGY
 FOR
 HAVING
 X
 ON
 ONE
 SIDE
 
OF
 THE
 EQUATION.
 
The
 game
 is
 designed
 so
 that
 the
 player
 gets
 used
 to
 the
 movement
 and
 thought
 pattern
 of
 algebra,
 
but
 without
 consciously
 realizing
 that
 she
 is
 studying
 algebra.
 The
 player
 gets
 used
 to
 the
 rules
 of
 
adding
 to
 both
 sides,
 multiplying
 everything
 by
 the
 same
 number,
 and
 that
 there
 are
 multiple
 ways
 to
 
attack
 the
 same
 problem,
 though
 a
 certain
 order
 of
 operations
 must
 be
 followed.
 Similar
 to
 Covalence,
 
the
 intent
 is
 to
 make
 an
 intimidating
 system
 easier
 to
 understand.
 
 

  29
 
Initially,
 there
 was
 some
 impetus
 in
 Covalence
 to
 go
 away
 from
 the
 familiar
 chemical
 models,
 and
 the
 
ball-­‐and-­‐stick
 visualizations
 often
 seen
 in
 Chemistry.
 If
 the
 system
 was
 seen
 in
 a
 different,
 less
 
abrasive
 manner,
 perhaps
 the
 student
 playing
 the
 game
 would
 have
 an
 easier
 time
 getting
 the
 core
 
idea
 of
 the
 game
 down,
 before
 slowly
 being
 revealed
 the
 chemistry
 behind
 it.
 
 
However,
 a
 design
 decision
 was
 made
 early
 on
 in
 the
 development
 of
 the
 game,
 to
 make
 this
 system
 
as
 easy
 to
 integrate
 in
 to
 regular
 curriculum
 as
 possible.
 One
 of
 the
 biggest
 issues
 of
 learning
 Organic
 
Chemistry
 is
 the
 multiple
 modes
 of
 literacy
 that
 Chemists
 use
 to
 explain
 the
 same
 molecule.
 During
 
the
 expected
 window
 that
 we
 hope
 the
 player
 would
 be
 using
 Covalence,
 these
 multiple
 modes
 are
 
being
 introduced
 to
 students,
 and
 students
 are
 expected
 to
 learn
 both
 these
 reading
 systems,
 and
 the
 
material
 that
 they
 are
 meant
 to
 represent.
 Thus,
 if
 the
 player
 had
 to
 learn
 a
 new
 system
 on
 top
 of
 
those
 modes,
 it
 seemed
 like
 an
 unattractive
 proposition
 for
 a
 potential
 customer,
 and
 would
 be
 a
 
barrier
 to
 engaging
 with
 the
 material,
 as
 opposed
 to
 a
 smoother
 way
 to
 learn
 the
 material.
 
 
In
  fact,
  doing
  the
  opposite
  seemed
  more
  attractive
  –
  Covalence
  would
  have
  the
  opportunity
  to
 
integrate
 multiple
 systems
 of
 literacy
 into
 a
 single
 interface,
 thus
 allowing
 players
 to
 understand
 how
 
these
 multiple
 systems
 work
 within
 each
 other.
 Thus,
 Covalence
 would
 be
 an
 attractive
 way
 to
 speed
 
up
 learning,
 of
 multiple
 systems.
 
 
THE
 CHIRALITY
 GAME
 (2002)
 
A
 game
 designed
 for
 the
 Nobel
 Prize
 website,
 the
 Chirality
 Game
 shows
 the
 principle
 of
 chirality
 via
 a
 
card-­‐matching
 game,
 in
 which
 the
 player
 matches
 molecules
 and
 other
 images
 that
 are
 not
 exactly
 
the
 same,
 but
 instead
 mirror
 images.
16

 The
 game
 takes
 a
 familiar
 game
 mechanic
 –
 card
 matching
 –
 
And
 uses
 it
 as
 a
 way
 to
 illustrate
 how
 chiral
 molecules
 are
 very
 similar,
 and
 subtly
 different.
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16

 The
  Chirality
  Game
  -­‐
  About
  (Nobel
  Media,
  n.d.),
 
http://www.nobelprize.org/educational/chemistry/chiral/game/game.html.
 

  30
 

 
FIGURE
 19
 
TWO
 SNAILS
 WITH
 MIRROR-­‐IMAGE
 (CHIRAL)
 SHELLS
 HELP
 THE
 PLAYER
 PICK
 OUT
 CHIRAL
 OBJECTS
 SUCH
 AS
 HANDS
 
AND
 MOLECULES.
 
The
 Chiral
 Game
 uses
 a
 pair
 of
 chiral
 mascots
 and
 a
 familiar
 game
 mechanic
 to
 emphasize
 how
 subtle
 
chirality
 is
 –
 Everything
 looks
 so
 similar,
 and
 one
 must
 really
 look
 carefully
 to
 discern
 the
 materials.
 
However,
 The
 Chiral
 Game
 feels
 limited
 in
 that
 one
 can
 only
 look
 at
 the
 differences
 via
 a
 two-­‐
dimensional
 image,
 and
 if
 the
 player
 does
 not
 understand
 how
 to
 pick
 out
 the
 difference,
 little
 help
 is
 
offered
 in
 the
 game
 to
 do
 so,
 once
 the
 cards
 are
 on
 display.
 
 
WHAT
 GAMES
 HAVE
 TO
 TEACH
 US
 ABOUT
 LEARNING
 AND
 LITERACY
 (GEE,
 
2007)
 
In
 the
 chapter
 “Learning
 and
 Identity,”
 Gee
 emphasizes
 an
 idea
 of
 the
 “Player
 As
 Avatar,”
 a
 sentence
 
in
 which
 a
 game
 player
 is
 aware
 of
 all
 three
 states
 –
 the
 real
 (recognized
 as
 ‘James
 Paul
 Gee’),
 the
 
virtual
 (the
 avatar
 character
 that
 he
 named
 ‘Bead
 Bead’),
 and
 projective.
17

 
“The
 projective
 identity
 of
 Bead
 Bead
 as
 a
 project
 (mine)
 in
 the
 making
 can
 fail
 because
 I
 (the
 real-­‐
world
 James
 Paul
 Gee)
 have
 caused
 Bead
 Bead
 (the
 virtual
 me)
 to
 do
 something
 in
 the
 game
 that
 the
 
character
 I
 want
 Bead
 Bead
 to
 be
 would
 not
 or
 should
 not
 do.
 For
 example,
 on
 my
 first
 try
 at
 the
 game,
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17

 Gee,
 What
 Video
 Games
 Have
 to
 Teach
 Us
 About
 Learning
 and
 Literacy.
 Second
 
Edition.
 

  31
 
early
 on
 I
 had
 Bead
 Bead
 sell
 the
 ring
 the
 old
 man
 had
 given
 her.
 This
 is
 not
 a
 mistake
 at
 playing
 the
 
game…It’s
 a
 move
 allowed
 [by
 the
 game,
 and]
 not
 something
 that
 Half-­‐Elves
 can’t
 do
 or
 are,
 for
 that
 
matter,
 necessarily
 too
 principled
 or
 ungreedy
 to
 want
 to
 do.
 Thus
 it
 is
 not
 necessarily
 a
 violation
 of
 
Bead
 Bead
 as
 a
 virtual
 identity.
 
 

 

  However,
 the
 act
 just
 seemed
 wrong
 for
 the
 creature
 I
 wanted
 Bead
 Bead
 to
 be
 (or
 to
 have
 
become…by
 the
 end
 of
 the
 game).
 I
 felt
 that
 when
 I
 (Bead
 Bead)
 had
 sold
 the
 ring
 that
 I
 was
 forming
 a
 
history
 for
 Bead
 Bead
 that
 was
 not
 the
 one
 she
 should
 have.
 I
 wanted
 her
 to
 be
 a
 creature
 who
 acted
 
more
 intelligently
 and
 more
 cautiously,
 a
 creature
 who
 could
 eventually
 look
 back
 on
 the
 history
 of
 her
 
acts
 without
 regret.
 I
 felt
 I
 had
 “let
 her
 down”…Thus,
 in
 my
 projective
 identity
 –
 Bead
 Bead
 as
 my
 project
 
–
 I
 am
 attributing
 feelings
 and
 motives
 to
 Bead
 Bead
 that
 go
 beyond
 the
 confines
 of
 the
 game
 world
 and
 
enter
 the
 realm
 of
 a
 world
 of
 my
 own
 creation.”
 
 
This
 projective
 identity,
 then,
 is
 a
 way
 that
 the
 player
 imbues
 personal
 convictions
 upon
 the
 world
 of
 
the
 game,
 and
 decides
 how
 she
 (and
 her
 avatar)
 will
 choose
 to
 play
 the
 hand
 they
 are
 dealt.
 In
 large,
 
expansive
 role-­‐laying
 games,
 for
 instance,
 a
 sense
 that
 one
 can
 project
 in
 any
 direction
 one
 desires
 
will
 usually
 lead
 to
 the
 game
 being
 described
 positively,
 as
 an
 “immersive”
 and
 “open”
 game.
 
 
Gee
 argues
 that
 this
 Projection
 as
 the
 unification
 of
 the
 Real
 and
 Virtual
 self
 is
 at
 the
 heart
 of
 
choosing
 if
 one
 wants
 to
 take
 a
 specific
 career
 path,
 or
 if
 one
 can
 take
 said
 career
 path.
 
 
“People
  cannot
  learn
  in
  a
  deep
  way
  within
  a
  semiotic
  domain
  if
  they
  are
  not
  willing
  to
  commit
 
themselves
 fully
 to
 the
 learning
 in
 terms
 of
 effort,
 and
 active
 engagement.
 Such
 a
 commitment
 requires
 
that
 they
 are
 willing
 to
 see
 themselves
 in
 terms
 of
 a
 new
 identity,
 that
 is,
 to
 see
 themselves
 as
 the
 kind
 of
 
person
 who
 can
 learn,
 use,
 and
 value
 the
 new
 semiotic
 domain.
 In
 turn,
 they
 need
 to
 believe
 that,
 if
 they
 
are
 successful
 learners
 in
 the
 domain,
 they
 will
 be
 valued
 and
 accepted
 by
 others
 committed
 to
 that
 
domain…It
 has
 been
 argued
 that
 some
 poor
 urban
 African-­‐American
 children
 and
 teenagers
 resist
 
learning
 literacy
 in
 school
 because
 they
 see
 school-­‐based
 literacy
 as
 “white,”
 as
 associated
 with
 people
 
who
 disregard
 them
 and
 others
 like
 them.
 They
 don’t
 believe
 that
 a
 society
 that
 they
 view
 as
 racist
 will
 

  32
 
ever
 allow
 them
 to
 gain
 a
 good
 job,
 status,
 and
 power,
 even
 if
 they
 do
 succeed
 at
 school-­‐based
 literacy.
 
Thus,
 they
 will
 not
 [see
 themselves]
 as
 the
 “kind
 of
 person”
 who
 learns,
 values
 and
 uses
 such
 literacy
 and
 
gets
 valued
 and
 respected
 for
 doing
 so.”
 
 
In
 other
 words,
 if
 a
 student
 believes
 they
 can’t
 be
 taken
 seriously
 as
 a
 scientist
 because
 of
 some
 
barrier
 (be
 it
 racial,
 sexual,
 or
 based
 on
 anything
 they
 identify
 with),
 then
 they
 won’t
 be
 able
 to
 be
 
invested
 in
 learning
 it.
 This,
 I
 suspect,
 is
 why
 many
 who
 have
 not
 grown
 up
 with
 games
 will
 say
 they
 
“aren’t
 a
 gamer”
 before
 they
 pick
 up
 a
 controller,
 and
 are
 quick
 to
 put
 down
 the
 controller
 if
 they
 
don’t
 see
 progress
 quickly.
 This
 is
 also
 why
 STEM
 fields
 can
 be
 so
 incredibly
 off-­‐putting
 to
 someone
 
that
 doesn’t
 have
 the
 background
 in
 it.
 
 
Covalence
 is
 an
 attempt
 to
 use
 this
 idea
 of
 projection
 as
 a
 manifesto,
 a
 design
 philosophy
 interested
 in
 
acknowledging
  the
  tension
  that
  many
  students
  entering
  Organic
  Chemistry
  feel
  regarding
  their
 
current
 skills
 and
 the
 complexity
 of
 the
 material.
 
 
THOMAS
 WAS
 ALONE
 (BITHELL,
 2012)
 
Thomas
 Was
 Alone
 is
 a
 platformer
 that
 uses
 a
 story,
 delivered
 by
 narration,
 to
 assign
 context,
 fears,
 
and
 motivations
 to
 characters
 that
 are
 otherwise
 only
 a
 set
 of
 rectangles.
 
 
Each
 of
 the
 rectangles
 have
 a
 unique
 shape,
 color
 and
 jump
 height,
 and
 perhaps
 a
 special
 ability
 such
 
as
 floating
 on
 water.
 Yet
 by
 attributing
 a
 certain
 size
 or
 jump
 height
 to
 a
 personality
 style,
 the
 game
 
makes
 these
 shapes
 memorable.
 
 
I
 was
 inspired
 by
 Thomas
 Was
 Alone’s
 narrative
 style
 to
 try
 and
 give
 a
 certain
 character
 to
 each
 of
 the
 
atoms,
 so
 that
 the
 player
 will
 recognize
 each
 atom
 by
 its
 specific
 actions.
 While
 this
 sort
 of
 activity
 
did
 not
 ultimately
 make
 it
 into
 the
 final
 game,
 it
 was
 a
 very
 worthwhile
 exercise
 to
 imagine
 the
 atoms
 
as
 different
 ‘characters’
 based
 solely
 in
 singular
 differences
 such
 as
 the
 number
 of
 electrons
 that
 they
 
need
 to
 find
 stability.
 
 

 

  33
 
NINJA
 GAIDEN
 BLACK
 (TEAM
 NINJA,
 2005)
 
Ninja
 Gaiden
 Black
 is
 an
 excellent
 example
 of
 using
 elegance
 as
 a
 tool
 for
 players
 to
 feel
 free
 to
 
experiment.
  When
  designing
  Covalence,
  I
  had
  to
  explain
  a
  few
  concepts
  that
  were
  otherwise
 
nebulously
 explained
 in
 the
 science
 of
 chemistry,
 and
 give
 them
 a
 defined
 system.
 In
 the
 vein
 of
 Ninja
 
Gaiden
 Black,
 I
 endeavored
 to
 make
 those
 design
 decisions
 in
 such
 a
 way
 that
 the
 player
 could
 draw
 
conclusions
 from
 whatever
 the
 system
 ended
 up
 being.
 
For
 instance,
 the
 idea
 of
 Carbon
 ‘shedding’
 a
 leaving
 group
 is
 not
 strictly
 defined
 in
 actual
 
Chemical
 terms,
 but
 is
 a
 phenomena
 that
 is
 observed
 in
 multiple
 situations
 in
 substitution
 reactions.
 
Similarly,
 other
 mechanics
 that
 were
 ultimately
 not
 put
 into
 the
 game
 dealt
 with
 ‘resonance
 stability,’
 
the
 possibility
 of
 a
 Carbon
 with
 only
 3
 bonds
 being
 somewhat
 stable
 due
 to
 those
 three
 bonds
 being
 
to
 other
 Carbon
 atoms.
 In
 Covalence,
 these
 phenomena
 are
 defined
 by,
 and
 reinforce,
 the
 Substitution
 
reaction.
 This
 largely
 came
 from
 looking
 at
 how
 controls
 were
 defined
 in
  Ninja
 Gaiden
 so
 that
 
dodging
 and
 blocking
 were
 largely
 the
 same
 mental
 space
 and
 physical
 button,
 and
 as
 a
 player
 I
 could
 
easily
 follow
 from
 one
 action
 to
 the
 other
 without
 imagining
 a
 whole
 new
 input
 process.
 

  Ninja
 Gaiden
 is
 a
 game
 developed
 for
 the
 Xbox
 platform,
 heralded
 as
 one
 of
 the
 most
 difficult
 
games
  of
  its
  console
  generation.
 
18

 The
  player
  plays
  a
  ninja
  whose
  lithe
  movements
  are
  key
  to
 
surviving
 combat,
 fighting
 enemies
 that
 can
 cause
 large
 amounts
 of
 damage
 with
 every
 attack.
 The
 
player
 must
 then
 learn
 to
 navigate
 the
 world
 through
 an
 “incredibly
 intuitive
 and
 accessible’
 control
 
scheme”
  (IGN,
  2004)
19

 that
  allows
  the
  player
  to
  learn
  how
  to
  do
  complex
  movements
  such
  as
 
blocking
 and
 rolling
 with
 a
 minimal
 change
 in
 button
 presses.
 
 
Holding
 down
 the
 left
 trigger
 while
 not
 moving
 makes
 Ryu
 block,
 and
 moving
 in
 any
 direction
 while
 
in
 blocking
 causes
 the
 player
 to
 roll.
 In
 playing
 through
 myself,
 I
 learned
 how
 to
 roll
 before
 I
 learned
 
to
 block,
 as
 rolling
 and
 jumping
 were
 the
 fastest
 way
 to
 get
 around
 the
 levels.
 Because
 of
 this,
 rolling
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18

 Clive
 Thompson,
 “The
 Wonderfully
 Difficult
 Ninja
 Gaiden,”
 Slate,
 May
 6,
 2004,
 
http://www.slate.com/articles/technology/gaming/2004/05/tough_love.html.
 
19

 Hilary
  Goldstein,
  “Ninja
  Gaiden
  Review,”
  IGN,
  February
  27,
  2004,
 
http://www.ign.com/articles/2004/02/27/ninja-­‐gaiden-­‐review-­‐2?page=1.
 

  34
 
was
 well-­‐understood,
 and
 I
 instinctively
 used
 it
 do
 dodge
 attacks
 from
 enemies.
 However,
 a
 curious
 
thing
 happened
 because
 of
 this
 –
 After
 I
 finished
 a
 dodge,
 I
 left
 my
 finger
 on
 the
 left
 trigger
 a
 hair
 too
 
long,
 and
 when
 a
 ninja
 attacked
 Ryu,
 he
 blocked.
 Thus,
 I
 learned
 how
 to
 block
 intuitively
 without
 
needing
 to
 look
 at
 a
 tutorial
 or
 instructional
 image.
 
 

 
FIGURE
 20
 
However,
  in
  case
  players
  do
  not
  learn
  dodging
  and
  blocking
  through
  button
  presses,
  however,
 
prompts
 do
 appear
 in
 later
 stages
 of
 the
 first
 level.
 However,
 it
 is
 worth
 noting
 that
 the
 intuitive
 
controls
 allow
 for
 the
 player
 to
 go
 from
 blocking
 to
 dodging
 to
 strong
 attacks
 fluidly
 ‘within
 the
 blink
 
of
 an
 eye’
 (IGN
 2004),
20

 and
 this
 allows
 for
 a
 quick
 thinking
 on
 the
 part
 of
 the
 player.
 
The
  first
  level
  of
  Ninja
  Gaiden
  is
  also
  a
  great
  example
  of
  using
  an
  open
  feel
  of
  exploration
  to
 
encourage
 learning.
 Although
 the
 game
 has
 a
 reputation
 for
 difficulty,
 Ninja
 Gaiden
 Black
 starts
 with
 
an
 open
 space,
 devoid
 of
 enemies,
 and
 the
 player
 must
 simply
 get
 out
 of
 the
 area.
 
 There
 are
 no
 
instructional
  button
  images,
  nor
  are
  there
  goal
  markers.
  Because
  of
  this,
  the
  player
  naturally
 
experiments
 with
 the
 controls
 by
 pressing
 buttons
 until
 she
 understands
 how
 to
 move
 around
 the
 
space.
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20

 Ibid.
 

  35
 

 
FIGURE
 21
 
THE
 RIVERBED
 THAT
 THE
 PLAYER
 MUST
 ESCAPE
 FROM
 IN
 THE
 BEGINNING
 OF
 THE
 GAME.
 THERE
 IS
 NO
 INSTRUCTION
 
OF
 WHERE
 TO
 GO,
 AND
 ALSO
 NO
 INSTRUCTION
 DEFINING
 CONTROLS,
 BUT
 THERE
 ARE
 ALSO
 NO
 ENEMIES,
 AND
 FALLS
 
INCUR
 NO
 DAMAGE.
 
This
 allows
 the
 player
 to
 gain
 a
 certain
 understanding
 of
 the
 controls
 intuitively,
 but
 pressing
 buttons
 
to
 see
 what
 happens.
 When
 designing
 the
 levels
 of
 Covalence,
 I
 tried
 to
 imagine
 each
 level
 as
 a
 
similarly
 open
 possibility
 space,
 one
 that
 the
 player
 can
 feel
 free
 to
 experiment
 with,
 even
 if
 they
 
don’t
 know
 exactly
 what
 everything
 is
 doing.
 However,
 Ninja
 Gaiden
 was
 aimed
 towards
 players
 used
 
to
 its
 parent
 genre,
 and
 could
 assume
 a
 familiarity
 with
 conventions
 of
 that
 genre.
 My
 audience
 was
 
aimed
  towards
  students
  knew
  to
  this
  educational
  experience.
  Ultimately,
  the
  science
  proved
 
overwhelming,
 and
 I
 decided
 to
 opt
 for
 teaching
 the
 pieces
 of
 the
 game
 more
 explicitly.
 Thus,
 not
 all
 
levels,
 could
 hold
 true
 to
 this
 design
 philosophy,
 but
 in
 my
 opinion,
 a
 few
 of
 them
 did.
 
 
NEXT
 STEPS
 AND
 FURTHER
 EVALUATION
 
As
 this
 project
 has
 continued,
 I’ve
 inevitably
 had
 to
 contend
 with
 the
 urge
 to
 grow
 it
 beyond
 the
 
year’s
 timeframe.
 Given
 the
 amount
 of
 experience
 I’ve
 gained
 from
 the
 project
 already,
 I’m
 interested
 
in
 possibilities
 for
 the
 project
 going
 forward,
 and
 what
 a
 continuation
 of
 Covalence
 would
 look
 like.
 
 
Early
 on
 in
 the
 game’s
 design,
 there
 was
 an
 intention
 to
 include
 line
 drawings,
 IUPAC
 nomenclature,
 
and
 reaction
 temperature
 in
 the
 feedback
 of
 the
 game.
 Unfortunately,
 due
 to
 time
 constraints,
 many
 

  36
 
of
 these
 things
 were
 severely
 curtailed
 in
 the
 current
 build,
 though
 they
 will
 likely
 be
 important
 
subjects
 to
 consider
 in
 future
 iterations.
 In
 particular,
 the
 IUPAC
 nomenclature
 is
 a
 complex,
 but
 very
 
logic-­‐driven
 system.
 That
 system
 is
 something
 I
 believe
 would
 be
 much
 easier
 to
 understand
 if
 a
 
student
 could
 simply
 make
 a
 molecule
 and
 watch
 as
 its
 name
 changes.
 
 
EVALUATION
 
So
 far,
 evaluation
 has
 been
 a
 more
 firmly
 rooted
 in
 the
 traditions
 of
 the
 playtest,
 bringing
 players
 
(chemistry
 students
 and
 non-­‐students
 alike)
 to
 play
 builds
 of
 the
 game,
 and
 gauge
 their
 response.
 
While
 this
 has
 been
 useful
 for
 the
 purpose
 of
 building
 the
 game,
 I
 am
 curious
 about
 standardizing
 and
 
proving
 a
 meaningful
 change
 in
 Organic
 Chemistry
 knowledge.
 This
 is
 especially
 true
 since
 I
 have
 
taken
 steps
 to
 include
 the
 Skeletal
 Formula
 model
 in
 the
 game
 as
 an
 optional
 view,
 so
 as
 to
 provide
 
an
 easy
 transition
 for
 learning
 the
 material.
 I’m
 curious
 to
 gauge
 how
 many
 students
 use
 this
 view,
 
and
 if
 it
 comes
 in
 handy,
 or
 if
 it
 is
 the
 only
 view
 used
 by
 students.
 In
 fact,
 this
 view
 could
 serve
 as
 a
 
‘normal’
  by
  which
  the
  Covalence
 visual
  model
  could
  be
  compared,
  to
  see
  if
  there
  really
  is
  any
 
improvement
 due
 to
 the
 new
 model,
 or
 just
 due
 to
 the
 game
 being
 a
 3D,
 interactive
 representation.
 
   
 

  37
 
BIBLIOGRAPHY
 
0003
 Maya
 Movement
 Key
 Commands,
 2011.
 
http://www.youtube.com/watch?v=gt0yLpQ6uhE&feature=youtube_gdata_player.
 

 
11,
 Chem.
 “Chemistry
 11:
 VSEPR.”
 Chemistry
 11,
 May
 5,
 2012.
 
http://mageechemistry11.blogspot.com/2012/05/vsepr.html.
 

 
“2-­‐Bromo-­‐1-­‐chloropropane.”
 Wikipedia,
 the
 Free
 Encyclopedia,
 March
 29,
 2013.
 
http://en.wikipedia.org/w/index.php?title=2-­‐Bromo-­‐1-­‐chloropropane&oldid=543868745.
 

 
Block,
 Bruce.
 The
 Visual
 Story:
 Creating
 the
 Visual
 Structure
 of
 Film,
 TV
 and
 Digital
 Media.
 2nd
 ed.
 
Focal
 Press,
 2007.
 

   
 
Gee,
 James
 Paul.
 What
 Video
 Games
 Have
 to
 Teach
 Us
 About
 Learning
 and
 Literacy.
 Second
 Edition:
 
Revised
 and
 Updated
 Edition.
 2nd
 ed.
 Palgrave
 Macmillan,
 2007.
 

 
Goldstein,
 Hilary.
 “Ninja
 Gaiden
 Review.”
 IGN,
 February
 27,
 2004.
 
http://www.ign.com/articles/2004/02/27/ninja-­‐gaiden-­‐review-­‐2?page=1.
 

 
Homeworld.
 Vivendi
 Universal,
 1999.
 http://www.relic.com/games/homeworld/.
 

 
Molecular
 Orbitals.
 Accessed
 March
 27,
 2013.
 
http://www.sparknotes.com/chemistry/bonding/molecularorbital/.
 

 
Molymod
 Organic/Inorganic
 Molecular
 Model
 Student
 Set.
 Carolina
 Biological
 Supply
 Company,
 n.d.
 
Nič,
 Miloslav,
 Jiří
 Jirát,
 Bedřich
 Košata,
 Aubrey
 Jenkins,
 and
 Alan
 McNaught,
 eds.
 

 

 “Chirality.”
 In
 IUPAC
 Compendium
 of
 Chemical
 Terminology.
 2.1.0
 ed.
 Research
 Triagle
 Park,
 NC:
 
IUPAC.
 Accessed
 March
 30,
 2013.
 http://goldbook.iupac.org/C01058.html.
 

 
“Walden
 Inversion.”
 In
 IUPAC
 Compendium
 of
 Chemical
 Terminology.
 2.1.0
 ed.
 Research
 Triagle
 Park,
 
NC:
 IUPAC.
 Accessed
 March
 30,
 2013.
 http://goldbook.iupac.org/W06653.html.
 

 
“Propane.”
 Wikipedia,
 the
 Free
 Encyclopedia,
 March
 27,
 2013.
 
http://en.wikipedia.org/w/index.php?title=Propane&oldid=545220208.
 

 
Solomons,
 T.
 W.
 Graham,
 and
 Craig
 Fryhle.
 Organic
 Chemistry.
 8th
 ed.
 Wiley,
 2003.
 

 
The
 Chirality
 Game
 -­‐
 About.
 Nobel
 Media,
 n.d.
 
http://www.nobelprize.org/educational/chemistry/chiral/game/game.html.
 

 

  38
 
Thompson,
 Clive.
 “The
 Wonderfully
 Difficult
 Ninja
 Gaiden.”
 Slate,
 May
 6,
 2004.
 
http://www.slate.com/articles/technology/gaming/2004/05/tough_love.html.
 

 
“VSEPR
 Theory.”
 Wikipedia,
 the
 Free
 Encyclopedia,
 March
 29,
 2013.
 
http://en.wikipedia.org/w/index.php?title=VSEPR_theory&oldid=546494233. 
Asset Metadata
Creator Mathias, Jason (author) 
Core Title Simulations as real-time integration of information: Covalence, an organic chemistry game 
Contributor Electronically uploaded by the author (provenance) 
School School of Cinematic Arts 
Degree Master of Fine Arts 
Degree Program Interactive Media 
Publication Date 04/30/2013 
Defense Date 04/30/2013 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag Computer Science,digital media,Interactive Media,media arts,OAI-PMH Harvest,organic chemistry 
Format application/pdf (imt) 
Language English
Advisor Gibson, Jeremy (committee chair), Clements, Lisa (committee member), Gotsis, Marientina (committee member) 
Creator Email jason.mathias@gmail.com 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c3-248899 
Unique identifier UC11294511 
Identifier etd-MathiasJas-1637.pdf (filename),usctheses-c3-248899 (legacy record id) 
Legacy Identifier etd-MathiasJas-1637-1.pdf 
Dmrecord 248899 
Document Type Thesis 
Format application/pdf (imt) 
Rights Mathias, Jason 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law.  Electronic access is being provided by the USC Libraries in agreement with the a... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Abstract (if available)
Abstract College-level Organic Chemistry classes can be overwhelming to their students. In addition to learning a relatively large amount of information, students have to learn to read multiple visual models and use them to understand subtle differences in the science. In making the puzzle game Covalence to address Organic Chemistry education, I decided to focus on three aspects of the subject’s education – Hidden information in the various visual models, the lack of integration of these representations into a 3D representation of Chemical phenomena, and an atom-­‐based view of the molecules and how they contribute to the field’s subtle issues. ❧ This paper discusses various traditional visual models taught in Organic Chemistry classes, devising a new visual model to bring out hidden information in these traditional models, and designing levels based on known reactions and their consequences, to illustrate Organic Chemistry’s elegance and subtlety. 
Tags
digital media
media arts
organic chemistry
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button