Close
USC Libraries
University of Southern California
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Folder
Sensitive, specific, and generative face recognition in a newborn visual system
(USC Thesis Other) 

Sensitive, specific, and generative face recognition in a newborn visual system

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Copy asset link
Request this asset
Request accessible transcript
Transcript (if available)
Content Running
 Head:
 FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
  1
 

 

 

 

 

 

 

 

 

 
Sensitive,
 specific,
 and
 generative
 face
 recognition
 in
 a
 newborn
 visual
 
system
 
 

 
Samantha
 M.
 Waters
 
(In
 collaboration
 with
 Justin
 N.
 Wood)
 
University
 of
 Southern
 California
 

 

 

 

 

 

   
 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
2
 

 

 
TABLE
 OF
 CONTENTS
 

 
Abstract
 .......................................................................................................................................................................
 3
 
Introduction
 &
 Background
 ................................................................................................................................
 4
 
Results
 ..........................................................................................................................................................................
 9
 
Discussion
 ................................................................................................................................................................
 13
 
Methods
 &
 Materials
 ...........................................................................................................................................
 16
 
References
 ...............................................................................................................................................................
 19
 
Supplementary
 Information
 ............................................................................................................................
 21
 

 

 

 

   
 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
3
 
Abstract
 
Despite
 the
 computational
 difficulty,
 adults
 easily
 recognize
 faces
 with
 incredibly
 high
 
sensitivity
 and
 specificity
 across
 novel
 changes
 in
 viewing
 conditions.
 Mature
 face
 
representations
 are
 invariant
 to
 identity-­‐preserving
 changes
 (e.g.,
 changes
 in
 expression
 or
 
viewing
 angle)
 while
 intolerant
 to
 identity-­‐transforming
 changes
 (e.g.,
 changes
 in
 texture,
 
age,
 and
 gender).
 Yet,
 due
 to
 constraints
 in
 testing
 newborn
 subjects,
 the
 origins
 of
 these
 
characteristics
 remain
 unknown.
 Are
 highly
 sensitive,
 specific,
 and
 generative
 face
 
representations
 the
 product
 of
 extensive
 visual
 experience,
 or
 do
 genes
 build
 neural
 
machinery
 that
 generates
 sensitive,
 specific,
 and
 generative
 face
 representations
 from
 the
 
onset
 of
 experience
 with
 faces?
 To
 probe
 the
 nature
 of
 the
 first
 face
 representation
 created
 
in
 the
 newborn
 mind,
 we
 reared
 newborn
 chickens
 for
 one
 week
 in
 a
 virtual
 reality
 
chamber
 that
 contained
 no
 objects
 except
 a
 single
 virtual
 human
 face
 (the
 “Virtual
 Parent”).
 
Immediately
 after,
 the
 chickens
 were
 tested
 for
 one
 week
 on
 their
 ability
 to
 discriminate
 
between
 the
 Virtual
 Parent
 and
 a
 set
 of
 distractor
 faces.
 Distractors
 were
 identical
 to
 the
 
Virtual
 Parent,
 with
 the
 exception
 of
 a
 single
 dimension
 (e.g.,
 changes
 in
 texture,
 structure,
 
inversion,
 and
 expressions).
 Subjects
 were
 able
 to
 distinguish
 the
 Virtual
 Parent
 from
 
distractors
 that
 differed
 in
 texture,
 age,
 gender,
 and
 inversion,
 but
 not
 distractors
 that
 
differed
 in
 feature
 configuration
 or
 facial
 expression.
 Further,
 subjects
 were
 able
 to
 
recognize
 the
 Virtual
 Parent
 across
 novel
 changes
 in
 head
 orientation
 (i.e.,
 view
 direction),
 
indicating
 that
 subjects
 built
 invariant
 face
 representations.
 These
 results
 show
 that
 the
 
first
 face
 representation
 built
 by
 the
 newborn
 visual
 system
 can
 be
 sensitive,
 specific,
 and
 
generative.
 
 

   
 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
4
 
Sensitive,
 specific,
 and
 generative
 face
 recognition
 in
 a
 newborn
 visual
 system
 

 

  Despite
 the
 computational
 difficulty,
 the
 adult
 visual
 system
 recognizes
 faces
 in
 
novel
 viewing
 conditions
 with
 impressive
 sensitivity
 (identifying
 positive
 matches)
 and
 
specificity
 (identifying
 mismatches).
 Face
 recognition
 has
 critical
 evolutionary
 importance
 
due
 to
 its
 role
 in
 social
 cognition
 and
 successful
 social
 interaction.
 Indeed,
 newborn
 infants
 
(1)
 and
 chickens
 (2)
 show
 a
 preference
 for
 attending
 to
 face-­‐like
 stimuli
 from
 birth,
 
suggesting
 innate
 mechanisms
 that
 orient
 attention
 to
 specific
 structural
 configurations
 or
 
‘sensory’
 features
 (e.g.,
 dark/light
 vertical
 asymmetry,
 horizontal
 symmetry,
 and
 high
 
contrast)
 (3).
 A
 plethora
 of
 research
 indicates
 that
 our
 brains
 process
 faces
 differently
 from
 
other
 images,
 using
 different
 cognitive
 strategies
 and
 neural
 regions
 than
 other
 types
 of
 
image
 processing
 (4-­‐8).
 

  However,
 due
 to
 the
 challenges
 of
 testing
 newborns,
 there
 is
 still
 significant
 debate
 
over
 what
 machinery
 for
 face
 recognition
 is
 inherent
 to
 the
 newborn
 mind
 and
 how
 that
 
machinery
 is
 shaped
 by
 experience.
 Evidence
 from
 patients
 who
 had
 cataracts
 as
 children
 
(but
 corrected
 vision
 in
 later
 life)
 suggests
 that
 many
 elements
 of
 face
 processing
 are
 
learned
 through
 experience,
 and
 subject
 to
 a
 sensitive
 developmental
 period
 (9-­‐11)
 .
 
Absence
 of
 visual
 experience
 during
 this
 sensitive
 period
 disrupts
 some
 natural
 processing
 
abilities
 (e.g.,
 the
 composite
 face
 effect
 and
 the
 ability
 to
 distinguish
 faces
 based
 on
 featural
 
spacing).
 However,
 these
 patients
 are
 still
 able
 to
 recognize
 faces
 based
 on
 features
 and
 
contour
 information
 (10).
 
 

  While
 research
 on
 cataract
 patients
 suggests
 that
 visual
 experiences
 are
 critical
 to
 
normal
 face
 perception,
 other
 studies
 have
 pointed
 to
 face
 recognition
 abilities
 in
 subjects
 
with
 highly
 constrained
 visual
 experience.
 Neonates
 who
 are
 only
 three
 days
 old
 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
5
 
discriminate
 their
 mother’s
 face
 from
 a
 stranger’s
 face
 (12).
 In
 an
 elegant
 controlled
 
rearing
 study,
 Sugita
 (13)
 raised
 infant
 macaques
 without
 any
 exposure
 to
 faces
 for
 6-­‐24
 
months.
 The
 macaques
 showed
 a
 preference
 for
 viewing
 faces
 rather
 than
 objects,
 and
 
were
 able
 to
 discriminate
 faces
 that
 varied
 by
 features
 and
 featural
 spacing.
 These
 findings
 
suggest
 that
 face
 recognition
 may
 rely
 on
 innate
 building
 blocks
 of
 face
 processing.
 
However,
 the
 macaques
 in
 Sugita’s
 study
 had
 extensive
 experience
 with
 visual
 objects.
 This
 
raises
 the
 possibility
 that
 the
 face
 recognition
 abilities
 seen
 in
 Sugita’s
 study
 emerged
 from
 
domain-­‐general
 processes
 that
 were
 tuned
 by
 subjects’
 extensive
 object
 experiences.
 The
 
visual
 system
 is
 highly
 plastic
 and
 uses
 statistical
 redundancies
 present
 in
 the
 natural
 
world
 to
 fine-­‐tune
 the
 response
 of
 neurons
 (14-­‐16),
 so
 the
 macaques’
 robust
 experience
 
with
 objects
 may
 have
 informed
 their
 perception
 of
 faces.
 The
 goal
 of
 the
 present
 study
 was
 
to
 test
 what
 types
 of
 face
 representations
 are
 possible
 to
 build
 in
 the
 newborn
 mind
 
without
 prior
 visual
 experiences
 with
 faces
 or
 objects.
 

  Past
 studies
 of
 the
 newborn
 mind
 have
 faced
 significant
 challenges.
 Human
 infants
 
cannot
 ethically
 be
 raised
 in
 controlled
 environments
 from
 birth,
 and
 collecting
 more
 than
 
a
 few
 trials
 from
 each
 subject
 is
 typically
 impossible.
 These
 difficulties
 have
 limited
 
researchers’
 abilities
 to
 study
 the
 mind’s
 inherent
 machinery
 and
 how
 that
 machinery
 is
 
molded
 over
 time
 through
 experience.
 To
 probe
 the
 first
 face
 representation
 created
 by
 the
 
newborn
 brain,
 we
 used
 a
 new
 controlled
 rearing
 method
 in
 which
 an
 animal
 model—the
 
domestic
 chicken—can
 be
 raised
 from
 birth
 for
 several
 weeks
 entirely
 within
 a
 virtual
 
reality
 chamber.
 These
 chambers
 provide
 complete
 control
 over
 all
 visual
 object
 and
 face
 
experiences
 from
 birth.
 Face
 stimuli
 were
 presented
 to
 the
 subject
 by
 projecting
 animated
 
videos
 onto
 two
 virtual
 walls
 situated
 on
 opposite
 sides
 of
 the
 chamber
 (Figure
 1A
 &
 B).
 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
6
 
The
 chambers
 contained
 extended
 surfaces
 only.
 
 Food
 and
 water
 were
 provided
 in
 
recessed
 compartments,
 and
 the
 subjects
 were
 fed
 “sand-­‐like”
 grain
 because
 grain
 does
 not
 
have
 the
 properties
 of
 a
 solid
 objects
 with
 a
 bounded
 shape.
 Thus,
 the
 chambers
 contained
 
no
 objects
 other
 than
 the
 virtual
 face
 presented
 on
 the
 virtual
 walls.
 The
 chicken
 is
 an
 ideal
 
animal
 model
 for
 studying
 the
 origins
 of
 face
 recognition.
 Like
 humans,
 chickens
 build
 
object
 representations
 and
 can
 recognize
 2-­‐D
 and
 3-­‐D
 shapes
 (17-­‐19).
 They
 also
 have
 
neural
 substrates
 that
 are
 similar
 to
 the
 mammalian
 neocortex
 (20).
 However,
 unlike
 
humans,
 chickens
 are
 a
 precocial
 species
 with
 early
 motor
 development,
 allowing
 them
 to
 
explore
 their
 environment
 immediately
 after
 birth.
 Chickens
 do
 not
 require
 parental
 care,
 
allowing
 us
 to
 raise
 them
 in
 an
 environment
 completely
 devoid
 of
 objects
 and
 non-­‐virtual
 
companions.
 
 

 
Figure
 1
 
MONITOR 1!
MONITOR 2!
Input Phase (Week 1):!
M1! M2!
…! …!
!"#$%&'("($)%*+,
'%
!" #"
$"
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
7
 
A)
 Chickens
 were
 raised
 from
 birth
 for
 one
 week
 in
 a
 world
 containing
 no
 objects
 other
 
than
 a
 single
 virtual
 face.
 B)
 The
 Input
 Phase
 presented
 the
 Virtual
 Parent
 on
 alternating
 
virtual
 walls
 (Monitor
 1
 and
 Monitor
 2).
 C)
 All
 subjects
 were
 imprinted
 to
 the
 same
 Virtual
 
Parent.
 During
 the
 Input
 Phase
 (one
 week),
 the
 Virtual
 Parent
 was
 the
 only
 stimulus
 
presented
 to
 the
 subjects
 on
 the
 virtual
 walls.
 In
 Experiment
 1,
 the
 Virtual
 Parent’s
 face
 
rotated
 through
 180°;
 while
 in
 Experiment
 2,
 the
 Virtual
 Parent’s
 face
 rotated
 through
 10°.
 

 

  Additionally,
 our
 design
 takes
 advantage
 of
 filial
 imprinting,
 a
 rapid
 learning
 process
 
in
 which
 a
 chicken
 develops
 a
 social
 preference
 for
 a
 conspicuous
 stimulus
 in
 their
 
environment
 (18).
 Because
 the
 imprinted
 stimulus
 is
 seen
 as
 a
 parent
 or
 social
 partner,
 
chickens
 prefer
 to
 spend
 time
 with
 their
 imprinted
 stimulus
 rather
 than
 a
 novel
 stimulus.
 
During
 testing,
 we
 simultaneously
 presented
 the
 newborn
 chickens
 with
 the
 Virtual
 Parent
 
on
 one
 of
 the
 virtual
 walls
 and
 a
 distractor
 face
 on
 the
 other
 virtual
 wall
 and
 measured
 how
 
much
 time
 subjects
 spent
 with
 each
 stimulus.
 This
 design
 exploits
 the
 subjects’
 natural
 
motivation
 to
 spend
 time
 with
 their
 parent.
 For
 each
 condition,
 the
 distractor
 face
 was
 
created
 by
 modifying
 the
 Virtual
 Parent
 (See
 Figure
 1C)
 along
 a
 single
 dimension.
 

  Experiment
 1
 targeted
 four
 questions
 related
 to
 the
 specificity
 (3
 questions)
 and
 
sensitivity
 (1
 question)
 of
 the
 first
 face
 representation
 created
 by
 the
 newborn
 brain.
 
 

  1)
 Is
 the
 first
 face
 representation
 selective
 for
 texture
 information
 (specificity)?
 
Conditions
 1
 &
 2
 tested
 whether
 the
 Virtual
 Parent
 could
 be
 distinguished
 from
 a
 version
 of
 
the
 Virtual
 Parent
 either
 with
 texture
 removed
 or
 with
 only
 the
 edges
 of
 the
 face
 preserved.
 
Past
 studies
 with
 adult
 participants
 have
 indicated
 that
 shape
 and
 texture
 information
 are
 
critical
 to
 face
 processing
 (21-­‐23).
 In
 these
 conditions,
 the
 subjects
 needed
 to
 rely
 on
 
changes
 in
 texture
 information
 alone
 to
 identify
 the
 Virtual
 Parent.
 

  2)
 Is
 the
 first
 face
 representation
 subject
 to
 configural
 effects
 (specificity)?
 
Conditions
 3
 &
 4
 tested
 how
 feature
 information
 is
 used
 in
 object
 recognition.
 Face
 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
8
 
perception
 in
 adults
 is
 subject
 to
 a
 “configural
 effect,”
 which
 relies
 on
 features
 remaining
 in
 
the
 same
 location
 and
 context
 (24).
 In
 Condition
 3,
 the
 distractor
 face
 consisted
 of
 features
 
alone,
 removing
 all
 feature
 context.
 Conversely,
 in
 Condition
 4,
 the
 distractor
 face
 was
 
created
 by
 altering
 the
 location
 of
 the
 facial
 features,
 while
 holding
 the
 facial
 context
 
constant.
 Configural
 effects
 have
 also
 been
 implicated
 in
 findings
 that
 inversion
 
significantly
 impairs
 face
 recognition
 (25,
 26).
 In
 Condition
 5,
 subjects
 needed
 to
 
distinguish
 between
 the
 Virtual
 Parent
 and
 the
 same
 face
 inverted.
 

  3)
 Does
 the
 first
 face
 representation
 recognize
 identity-­‐transforming
 changes
 to
 
the
 face
 (specificity)?
 The
 aim
 of
 face
 processing
 is
 to
 recognize
 the
 same
 face
 across
 
changes
 in
 the
 retinal
 image,
 while
 distinguishing
 faces
 of
 different
 individuals.
 We
 tested
 
subjects
 using
 distractor
 faces
 that
 altered
 the
 Virtual
 Parent
 along
 an
 identity-­‐
transforming
 dimension.
 Conditions
 6-­‐8
 tested
 versions
 of
 the
 Virtual
 Parent
 that
 were
 
elderly,
 masculine
 in
 coloring,
 or
 masculine
 in
 shape,
 respectively.
 

  4)
 Is
 the
 first
 face
 representation
 tolerant
 to
 identity-­‐preserving
 changes
 to
 the
 
face
 (sensitive)?
 In
 Conditions
 9
 and
 10,
 we
 tested
 whether
 subjects
 would
 discriminate
 
the
 distractor
 face
 when
 the
 Virtual
 Parent
 was
 changed
 along
 an
 identity-­‐preserving
 
dimension:
 emotional
 expression.
 In
 these
 conditions,
 the
 distractor
 faces
 were
 identical
 to
 
the
 Virtual
 Parent
 but
 either
 angry
 or
 fearful,
 altering
 the
 retinal
 image
 produced,
 but
 not
 
the
 actual
 identity
 of
 the
 face.
 
 

  Our
 second
 experiment
 tested
 whether
 the
 first
 face
 representation
 created
 by
 a
 
newborn
 visual
 system
 can
 be
 generative,
 allowing
 for
 recognition
 in
 novel
 viewing
 
conditions.
 In
 Experiment
 2,
 a
 new
 set
 of
 subjects
 were
 presented
 with
 the
 same
 Virtual
 
Parent
 used
 in
 Experiment
 1;
 however,
 the
 Virtual
 Parent
 was
 shown
 from
 a
 limited
 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
9
 
viewing
 range,
 rotating
 through
 an
 angle
 of
 ±10º
 about
 a
 vertical
 axis
 passing
 through
 its
 
centroid
 (rather
 than
 ±90º
 as
 in
 Experiment
 1).
 During
 the
 two
 Test
 Phases,
 subjects
 
needed
 to
 distinguish
 between
 the
 Virtual
 Parent
 and
 a
 distractor.
 Test
 Phase
 1
 used
 the
 No
 
Texture
 distractor,
 while
 Test
 Phase
 2
 used
 the
 Masculine
 Color
 distractor.
 Unlike
 
Experiment
 1,
 the
 retinal
 images
 produced
 by
 the
 Virtual
 Parent
 during
 the
 Test
 Phases
 did
 
not
 match
 the
 retinal
 images
 produced
 during
 the
 Input
 Phase.
 During
 the
 test
 trials,
 the
 
Virtual
 Parent
 was
 shown
 rotating
 10°
 through
 novel
 viewpoints
 vertically,
 horizontally,
 or
 
diagonally
 (rather
 than
 rotating
 horizontally
 around
 a
 vertical
 axis,
 as
 in
 the
 Input
 Phase).
 
Thus,
 to
 succeed,
 subjects
 needed
 to
 build
 a
 view-­‐invariant
 face
 representation.
 

  Subjects’
 movements
 were
 tracked
 by
 micro-­‐cameras
 embedded
 in
 the
 ceilings
 of
 
the
 chambers
 and
 analyzed
 with
 automated
 animal
 tracking
 software.
 Test
 trials
 were
 
scored
 as
 “correct”
 when
 subjects
 spent
 a
 greater
 proportion
 of
 time
 with
 their
 imprinted
 
object
 and
 “incorrect”
 when
 they
 spent
 a
 greater
 proportion
 of
 time
 with
 the
 unfamiliar
 
object.
 

 
Results
 

  We
 used
 hierarchical
 Bayesian
 models
 to
 assess
 subjects’
 performance.
 This
 analysis
 
takes
 into
 account
 the
 hierarchical
 dependencies
 inherent
 to
 the
 data
 and
 the
 inter-­‐
 and
 
intra-­‐subject
 variability
 for
 each
 condition.
 Here,
 we
 report
 the
 actual
 probability
 that
 
performance
 in
 each
 condition
 is
 at
 chance
 or
 lower,
 rather
 than
 traditional
 p-­‐values
 (more
 
details
 on
 the
 analysis
 can
 be
 found
 in
 SI).
 All
 analyses
 were
 performed
 using
 R
 version
 
2.15.0
 (http://www.r-­‐project.org/),
 JAGS
 (http://mcmc-­‐jags.sourceforge.net/)
 and
 
adaptation
 of
 program
 code
 from
 Dr.
 John
 Kruschke
 (27).
 The
 subjects
 were
 able
 to
 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
10
 
distinguish
 the
 Virtual
 Parent
 from
 distractors
 despite
 having
 no
 visual
 experience
 with
 
any
 faces
 or
 objects
 other
 than
 the
 Virtual
 Parent
 prior
 to
 testing.
 
 
Experiment
 1
 

  See
 Figure
 2
 for
 results
 across
 all
 trials.
 

 
Figure
 2
 
Percent
 of
 successful
 trials
 for
 each
 condition.
 The
 percent
 of
 successful
 trials
 was
 
calculated
 by
 collapsing
 trials
 across
 all
 subjects
 (using
 the
 raw
 data
 without
 Bayesian
 
analysis).
 Based
 on
 the
 hierarchical
 Bayesian
 analysis
 of
 performance,
 subjects
 were
 able
 to
 
distinguish
 their
 Virtual
 Parent
 from
 the
 distractor
 in
 all
 conditions
 except
 changes
 in
 
emotional
 expressions
 and
 changes
 in
 feature
 configuration.
 

 

  Subjects
 were
 successful
 at
 distinguishing
 their
 Virtual
 Parent
 from
 a
 distractor
 face
 
in
 which
 all
 texture
 information
 was
 removed.
 The
 probability
 that
 the
 underlying
 group
 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
11
 
performance
 was
 at
 chance
 (50%)
 or
 below
 was
 <0.001
 for
 both
 Conditions
 1
 and
 2.
 Thus,
 
subjects
 were
 able
 to
 distinguish
 the
 Virtual
 Parent
 from
 distractor
 faces
 with
 an
 identical
 
structure.
 

  Feature
 context
 was
 important
 for
 subjects’
 face
 recognition.
 In
 Condition
 3
 
(Features
 Alone),
 the
 probability
 of
 underlying
 group
 performance
 at
 chance
 or
 below
 was
 
<0.001.
 However,
 subjects
 did
 not
 successfully
 use
 featural
 spacing
 to
 recognize
 their
 
Virtual
 Parent.
 In
 Condition
 4
 (New
 Feature
 Locations),
 the
 probability
 that
 the
 underlying
 
group
 performance
 was
 at
 chance
 or
 below
 was
 0.919.
 These
 findings
 suggest
 that
 the
 
building
 blocks
 of
 the
 configural
 effect
 in
 the
 newborn
 brain
 may
 not
 rely
 on
 featural
 
spacing.
 

  Conversely,
 the
 inversion
 effect
 was
 important
 in
 face
 recognition.
 In
 Condition
 5
 
(Inverted
 Face),
 the
 probability
 that
 the
 underlying
 group
 performance
 was
 at
 chance
 or
 
lower
 was
 0.003.
 This
 finding
 is
 especially
 striking
 given
 that
 the
 frames
 of
 each
 video
 (the
 
Virtual
 Parent
 and
 the
 distractor)
 were
 identical
 except
 for
 their
 orientation
 in
 the
 picture
 
plane.
 

  Subjects
 were
 also
 successful
 at
 distinguishing
 their
 Virtual
 Parent
 from
 distractor
 
faces
 with
 new
 identities.
 The
 probability
 that
 the
 underlying
 group
 performance
 was
 at
 
chance
 or
 lower
 in
 Condition
 6
 (Elderly
 Face)
 was
 0.001.
 The
 probability
 that
 the
 
underlying
 group
 performance
 was
 at
 chance
 or
 lower
 in
 both
 Conditions
 7
 and
 8
 
(Masculine
 Color
 and
 Masculine
 Shape)
 was
 0.028.
 

  Finally,
 subjects
 did
 not
 distinguish
 the
 Virtual
 Parent
 from
 a
 distractor
 with
 a
 
different
 emotional
 expression.
 The
 probability
 that
 the
 underlying
 group
 performance
 
was
 at
 chance
 or
 lower
 in
 Condition
 9
 (angry
 expression)
 was
 0.431.
 The
 probability
 that
 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
12
 
the
 underlying
 group
 performance
 was
 at
 chance
 or
 lower
 in
 Condition
 10
 (fearful
 
expression)
 was
 0.425.
 Thus,
 just
 like
 face
 processing
 in
 human
 adults,
 newborn
 chickens
 
can
 recognize
 faces
 across
 identity-­‐preserving
 transformations
 caused
 by
 facial
 
expressions.
 
Experiment
 2
 

  When
 paired
 with
 either
 distractor,
 subjects
 were
 able
 to
 recognize
 the
 Virtual
 
Parent
 across
 substantial
 changes
 in
 head
 orientation.
 The
 results
 are
 shown
 in
 Figure
 3.
 
Six
 hierarchical
 Bayesian
 analyses
 were
 performed,
 with
 conditions
 grouped
 by
 the
 
distractor
 face
 (No
 Texture
 or
 Masculine
 Color)
 and
 by
 the
 extremity
 of
 the
 Virtual
 Parent’s
 
viewpoint
 rotation
 (0°,
 25°,
 or
 50°).
 For
 the
 No
 Texture
 distractor,
 the
 probability
 that
 
performance
 was
 at
 or
 below
 chance
 was
 <
 0.001
 for
 all
 viewing
 angles.
 
 For
 the
 Masculine
 
Color
 distractor,
 the
 probability
 that
 performance
 was
 at
 or
 below
 chance
 was
 0.001,
 
<0.001,
 and
 0.001
 for
 0°,
 25°,
 or
 50°,
 respectively.
 Thus,
 the
 face
 representations
 were
 
remarkably
 generative,
 i.e.,
 insensitive
 to
 large
 (previously
 unobserved)
 changes
 in
 head
 
orientation.
 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
13
 

 
Figure
 3
 
Heatmaps
 depicting
 percent
 of
 successful
 trials
 for
 each
 condition.
 The
 percent
 of
 
successful
 trials
 was
 calculated
 by
 collapsing
 trials
 across
 all
 subjects
 (using
 the
 raw
 data
 
without
 Bayesian
 analysis).
 

 
Discussion
 

  This
 study
 examined
 the
 developmental
 origins
 of
 face
 recognition
 by
 probing
 the
 
nature
 of
 the
 first
 face
 representation
 created
 by
 a
 newborn
 visual
 system.
 We
 found
 
evidence
 that
 the
 first
 face
 representation
 created
 by
 the
 newborn
 brain
 can
 be
 highly
 
specific,
 sensitive,
 and
 generative.
 Subjects
 were
 able
 to
 discriminate
 their
 Virtual
 Parent
 
from
 faces
 that
 had
 undergone
 identity-­‐transforming
 changes,
 but
 could
 not
 discriminate
 
their
 Virtual
 Parent
 from
 faces
 that
 had
 undergone
 identity-­‐preserving
 changes.
 Moreover,
 
!"#$%&'$(%)*&'+,)
!"#$%&'()*+),-%.)*
!"#$%&'$(%)*&'+,)
!"#$%&'()*+),-%.)*
/0*
1//0*
2/0*
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
14
 
this
 first
 face
 representation
 contained
 elements
 found
 in
 mature
 face
 processing,
 such
 as
 
reliance
 on
 texture
 and
 structure
 information,
 facial
 context,
 and
 upright
 presentation
 in
 
the
 picture
 plane.
 Finally,
 our
 results
 indicate
 that
 face
 representations
 are
 highly
 
generative,
 allowing
 for
 recognition
 of
 the
 same
 face
 across
 novel
 rotations.
 
 

  Previous
 work
 has
 studied
 the
 foundations
 of
 face
 recognition
 in
 primates
 with
 no
 
prior
 visual
 experience
 of
 faces
 (13).
 These
 primates
 were
 able
 to
 discriminate
 faces
 that
 
differed
 in
 features
 and
 featural
 spacing.
 However,
 these
 subjects’
 face
 recognition
 abilities
 
may
 have
 been
 heavily
 shaped
 by
 their
 extensive
 experiences
 with
 other
 visual
 objects.
 In
 
our
 experiment,
 subjects
 were
 only
 exposed
 to
 the
 Virtual
 Parent
 prior
 to
 testing,
 without
 
any
 exposure
 to
 other
 objects
 or
 faces.
 This
 method
 allows
 for
 an
 exploration
 of
 the
 
experience-­‐independent
 building
 blocks
 of
 face
 recognition.
 

  We
 found
 evidence
 for
 some
 of
 the
 signatures
 of
 adult
 face
 recognition
 in
 our
 
newborn
 subjects.
 Shape
 and
 texture
 information
 are
 important
 cues
 for
 face
 processing
 in
 
adults
 (21-­‐23).
 The
 newborn
 chickens
 were
 able
 to
 discriminate
 the
 Virtual
 Parent
 from
 
distractors
 that
 had
 a
 different
 texture,
 but
 identical
 structure
 (the
 conditions
 with
 no
 
texture
 information,
 only
 edges
 preserved,
 and
 masculine
 coloring).
 Similarly,
 the
 subjects
 
were
 able
 to
 discriminate
 the
 Virtual
 Parent
 from
 a
 distractor
 with
 identical
 texture,
 but
 
altered
 structure
 (the
 masculine
 shaped
 face).
 Thus,
 sensitivity
 to
 texture
 and
 structural
 
patterns
 of
 faces
 may
 be
 inherent
 to
 face
 recognition.
 

  Another
 property
 of
 mature
 face
 recognition
 is
 configural,
 or
 holistic
 processing.
 In
 
the
 current
 study,
 subjects
 showed
 some
 of
 the
 hallmarks
 of
 configural
 effects
 (Diamond
 &
 
Carey,
 1986)
 (24,
 28).
 Subjects
 were
 sensitive
 to
 whether
 the
 face
 was
 presented
 upright
 or
 
inverted.
 They
 were
 also
 sensitive
 to
 whether
 the
 features
 were
 presented
 in
 the
 context
 of
 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
15
 
a
 face
 background.
 This
 suggests
 that
 the
 inversion
 effect
 and
 the
 importance
 of
 feature
 
context
 may
 be
 part
 of
 the
 building
 blocks
 for
 the
 configural
 effect
 seen
 in
 mature
 face
 
processing.
 However,
 subjects
 were
 not
 able
 to
 discriminate
 the
 Virtual
 Parent
 from
 a
 
distractor
 that
 had
 features
 warped
 to
 new
 locations.
 One
 possible
 interpretation
 of
 this
 
failure
 is
 that
 the
 importance
 of
 featural
 spacing
 requires
 maturation
 and
 environmental
 
learning.
 This
 interpretation
 is
 consistent
 with
 studies
 finding
 that
 the
 configural
 effect
 
takes
 longer
 to
 develop
 than
 feature
 recognition
 (29).
 However,
 the
 finding
 is
 also
 
consistent
 with
 recent
 research
 claiming
 that
 face
 perception
 is
 actually
 piecemeal:
 
recognition
 of
 faces
 does
 not
 outperform
 a
 Bayesian
 algorithm
 that
 integrates
 information
 
from
 each
 individual
 feature
 (30).
 This
 theory
 is
 consistent
 with
 our
 finding
 that
 the
 
newborn
 chickens
 did
 not
 discriminate
 a
 face
 with
 the
 same
 features
 moved
 to
 new
 
locations.
 

  Finally,
 are
 newborn
 brains
 equipped
 to
 distinguish
 identity-­‐preserving
 changes
 
from
 identity-­‐transforming
 changes?
 A
 single
 face
 can
 produce
 an
 infinite
 number
 of
 retinal
 
images
 (depending
 on
 changes
 in
 viewpoint,
 position,
 lighting,
 etc.).
 Nonetheless,
 the
 
subjects
 were
 able
 to
 discriminate
 the
 Virtual
 Parent
 from
 distractors
 that
 varied
 by
 age
 
and
 gender
 (identity-­‐transforming
 manipulations),
 but
 not
 from
 distractors
 that
 varied
 by
 
emotional
 expression
 (identity-­‐preserving
 manipulations).
 This
 finding
 indicates
 that
 even
 
the
 first
 face
 representation
 created
 in
 the
 newborn
 brain
 is
 subject
 to
 a
 tradeoff
 between
 
sensitivity
 (being
 tolerant
 enough
 to
 allow
 flexibility
 to
 changes
 in
 the
 retinal
 input)
 and
 
specificity
 (the
 ability
 to
 recognize
 a
 change
 in
 face
 identity)
 (31).
 

  Importantly,
 subjects
 were
 also
 able
 to
 recognize
 the
 Virtual
 Parent
 despite
 changes
 
in
 the
 orientation
 of
 the
 face.
 Previous
 theories
 of
 object
 recognition
 have
 assumed
 3-­‐D
 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
16
 
object
 recognition
 is
 accomplished
 by
 associating
 together
 multiple
 views
 of
 an
 object
 
through
 visual
 experience
 (32).
 However,
 more
 recent
 evidence
 indicates
 that
 mature
 
subjects
 are
 able
 to
 recognize
 objects
 at
 novel,
 previously
 unseen
 viewpoints,
 up
 to
 60°
 in
 
rotation
 (33).
 Similarly,
 our
 findings
 also
 indicate
 that
 face
 representations
 are
 generative
 
without
 requiring
 actual
 visual
 experience
 of
 a
 specific
 viewpoint
 for
 recognition.
 

 
Materials
 and
 Methods
 
Subjects
 
 

  Subjects
 were
 domestic,
 newborn
 chickens
 (Gallus
 gallus)
 hatched
 in
 complete
 
darkness.
 Fertilized
 eggs
 were
 obtained
 from
 a
 local
 egg
 distributor.
 Eggs
 were
 placed
 in
 an
 
incubator
 in
 the
 laboratory
 until
 day
 19
 of
 incubation.
 Temperature
 was
 maintained
 at
 
99.6°F
 and
 humidity
 was
 maintained
 at
 45%.
 On
 day
 19,
 we
 increased
 the
 humidity
 to
 60%.
 
On
 day
 1
 of
 life,
 chickens
 were
 taken
 from
 the
 dark
 incubator
 room
 and
 moved
 in
 complete
 
darkness
 to
 their
 virtual
 reality
 chambers
 (with
 experimenters
 using
 night
 vision
 goggles
 
for
 aid).
 
 
Materials
 

  The
 chickens
 were
 raised
 in
 virtual
 reality
 chambers
 (66cm
 length,
 42cm
 width,
 
69cm
 height)
 with
 two
 virtual
 walls
 (40.5cm
 length,
 26cm
 height)
 opposite
 each
 other.
 
Food
 and
 water
 were
 provided
 ad
 libitum
 in
 food
 compartments
 (2.5cm
 width,
 66cm
 
length,
 2.7cm
 height)
 within
 the
 chambers.
 The
 food
 compartments
 were
 below
 the
 
subjects
 so
 that
 subjects
 were
 eating
 and
 drinking
 from
 holes
 in
 the
 ground
 rather
 than
 
from
 object-­‐like
 containers.
 Food
 was
 a
 sand-­‐like
 grain
 because
 grain
 does
 not
 behave
 with
 
the
 property
 of
 objects
 (i.e.,
 solidity
 and
 rigid
 boundaries).
 Each
 food
 compartment
 was
 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
17
 
divided
 into
 thirds
 (21cm,
 24cm,
 and
 21cm
 in
 length)
 with
 water
 in
 the
 inner
 
compartments
 and
 food
 in
 the
 outer
 compartments.
 Each
 chamber
 had
 flooring
 units
 
through-­‐out
 (39.5cm
 width,
 66cm
 length,
 2.7cm
 height)
 for
 subjects
 to
 walk
 on
 that
 
allowed
 waste
 to
 fall
 through,
 below
 the
 subjects.
 Each
 subjects’
 entire
 experience
 in
 the
 
virtual
 reality
 chambers
 was
 tracked
 and
 monitored
 using
 Ethovision
 XT
 7.0
 (Noldus
 
Information
 Technology™
 Wageningen
 ,
 The
 Netherlands)
 and
 cameras
 with
 diameter
 of
 
1.5cm.
 
 

  Imprinting
 stimuli
 consisted
 of
 computer-­‐presented
 animation
 of
 a
 Caucasian
 
female
 face
 (ear-­‐to-­‐ear
 width:
 6.5cm,
 height:
 10cm,
 distance
 about
 flooring
 unit:
 1cm,
 see
 
Fig.
 1C).
 Imprinting
 and
 test
 animations
 were
 created
 using
 frames
 from
 FaceGen.
 At
 the
 
end
 of
 the
 each
 trial,
 a
 black
 screen
 appeared
 for
 1
 minute
 before
 the
 next
 trial
 began.
 
 
Bayesian
 Analysis
 

  Due
 to
 the
 hierarchical
 dependencies
 in
 the
 data
 collected
 (see
 SI),
 the
 data
 were
 
analyzed
 using
 hierarchical
 Bayesian
 models.
 A
 major
 advantage
 of
 using
 a
 Bayesian
 
analysis
 instead
 of
 traditional
 null
 hypothesis
 testing
 statistics
 is
 that
 Bayesian
 models
 are
 
designed
 to
 be
 appropriate
 to
 the
 data
 structure
 (27,
 34),
 allowing
 for
 richer
 inferences
 
from
 the
 data.
 The
 model
 used
 here
 provides
 parameter
 estimates
 for
 each
 individual
 
newborn
 chicken
 as
 well
 as
 the
 underlying
 probability
 of
 success
 for
 each
 condition
 
(provided
 in
 SI).
 With
 the
 Bayesian
 analysis,
 we
 can
 calculate
 the
 actual
 probability
 that
 the
 
likelihood
 of
 success
 is
 50%
 or
 less
 (a
 highly
 intuitive
 statistic
 to
 interpret),
 rather
 than
 a
 p-­‐
value
 that
 calculates
 the
 probability
 of
 getting
 data
 as
 extreme
 as
 the
 data
 actually
 obtained
 
assuming
 that
 the
 null
 hypothesis
 is
 actually
 true.
 
 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
18
 

  For
 each
 condition,
 the
 Bayesian
 model
 uses
 an
 “uninformative
 prior”
 of
 1
 success
 
and
 1
 failure
 for
 the
 overall
 group
 mean.
 This
 prior
 assumes
 that
 all
 means
 are
 equally
 
likely,
 a
 conservative
 assumption.
 The
 model
 also
 includes
 a
 parameter
 called
 kappa
 that
 
represents
 “certainty”
 (conceptually,
 how
 consistent
 results
 are
 across
 subjects).
 We
 use
 a
 
uniform
 prior
 (35)
 from
 0.000001
 to
 the
 maximum
 reasonable
 kappa.
 The
 maximum
 
reasonable
 kappa
 is
 the
 kappa
 for
 subject
 performance
 when
 differentiating
 between
 the
 
Virtual
 Parent
 and
 a
 blank
 screen,
 calculated
 during
 non-­‐test
 trials
 during
 the
 Test
 Phase.
 

  The
 hierarchical
 Bayesian
 model
 uses
 Markov
 Chain
 Monte
 Carlo
 (MCMC)
 sampling
 
to
 approximate
 the
 posterior
 distribution
 of
 the
 parameters
 for
 each
 individual
 subject
 and
 
the
 hyperparameter
 for
 each
 condition.
 The
 analysis
 used
 a
 burn-­‐in
 of
 10,000
 steps,
 with
 a
 
total
 of
 100,000
 steps
 after
 burn-­‐in.
 

 

   
 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
19
 
References
 
1.
  Johnson
 MH,
 Dziurawiec
 S,
 Ellis
 H,
 &
 Morton
 J
 (1991)
 Newborns
 Preferential
 
Tracking
 of
 Face-­‐Like
 Stimuli
 and
 Its
 Subsequent
 Decline.
 Cognition
 40(1-­‐2):1-­‐19.
 
2.
  Rosa-­‐Salva
 O,
 Regolin
 L,
 &
 Vallortigara
 G
 (2010)
 Faces
 are
 special
 for
 newly
 hatched
 
chicks:
 evidence
 for
 inborn
 domain-­‐specific
 mechanisms
 underlying
 spontaneous
 
preferences
 for
 face-­‐like
 stimuli.
 Developmental
 Sci
 13(4):565-­‐577.
 
3.
  Balas
 B
 (2010)
 Using
 innate
 visual
 biases
 to
 guide
 face
 learning
 in
 natural
 scenes:
 a
 
computational
 investigation.
 Developmental
 Sci
 13(3):469-­‐478.
 
4.
  Johnson
 MH
 (2005)
 Subcortical
 face
 processing.
 Nat
 Rev
 Neurosci
 6(10):766-­‐774.
 
5.
  Kanwisher
 N
 (2000)
 Domain
 specificity
 in
 face
 perception.
 Nature
 neuroscience
 
3(8):759-­‐763.
 
6.
  Kanwisher
 N
 &
 Yovel
 G
 (2006)
 The
 fusiform
 face
 area:
 a
 cortical
 region
 specialized
 
for
 the
 perception
 of
 faces.
 Philos
 T
 R
 Soc
 B
 361(1476):2109-­‐2128.
 
7.
  Gauthier
 I,
 et
 al.
 (2000)
 The
 fusiform
 "face
 area"
 is
 part
 of
 a
 network
 that
 processes
 
faces
 at
 the
 individual
 level.
 J
 Cognitive
 Neurosci
 12(3):495-­‐504.
 
8.
  Pitcher
 D,
 Walsh
 V,
 Yovel
 G,
 &
 Duchaine
 B
 (2007)
 TMS
 evidence
 for
 the
 involvement
 
of
 the
 right
 occipital
 face
 area
 in
 early
 face
 processing.
 Curr
 Biol
 17(18):1568-­‐1573.
 
9.
  Geldart
 S,
 Mondloch
 CJ,
 Maurer
 D,
 de
 Schonen
 S,
 &
 Brent
 HP
 (2002)
 The
 effect
 of
 
early
 visual
 deprivation
 on
 the
 development
 of
 face
 processing.
 Developmental
 Sci
 
5(4):490-­‐501.
 
10.
  Le
 Grand
 R,
 Mondloch
 CJ,
 Maurer
 D,
 &
 Brent
 HP
 (2003)
 Expert
 face
 processing
 
requires
 visual
 input
 to
 the
 right
 hemisphere
 during
 infancy.
 Nature
 neuroscience
 
6(10):1108-­‐1112.
 
11.
  Le
 Grand
 R,
 Mondloch
 CJ,
 Maurer
 D,
 &
 Brent
 HP
 (2004)
 Impairment
 in
 holistic
 face
 
processing
 following
 early
 visual
 deprivation.
 Psychological
 science
 15(11):762-­‐768.
 
12.
  Pascalis
 O,
 Deschonen
 S,
 Morton
 J,
 Deruelle
 C,
 &
 Fabregrenet
 M
 (1995)
 Mothers
 Face
 
Recognition
 by
 Neonates
 -­‐
 a
 Replication
 and
 an
 Extension.
 Infant
 Behav
 Dev
 
18(1):79-­‐85.
 
13.
  Sugita
 Y
 (2008)
 Face
 perception
 in
 monkeys
 reared
 with
 no
 exposure
 to
 faces.
 
Proceedings
 of
 the
 National
 Academy
 of
 Sciences
 of
 the
 United
 States
 of
 America
 
105(1):394-­‐398.
 
14.
  Edelman
 S
 &
 Intrator
 N
 (2003)
 Towards
 structural
 systematicity
 in
 distributed,
 
statically
 bound
 visual
 representations.
 Cognitive
 Sci
 27(1):73-­‐109.
 
15.
  Olshausen
 BA
 &
 Field
 DJ
 (1996)
 Emergence
 of
 simple-­‐cell
 receptive
 field
 properties
 
by
 learning
 a
 sparse
 code
 for
 natural
 images.
 Nature
 381(6583):607-­‐609.
 
16.
  Wallis
 G
 &
 Rolls
 ET
 (1997)
 Invariant
 face
 and
 object
 recognition
 in
 the
 visual
 
system.
 Prog
 Neurobiol
 51(2):167-­‐194.
 
17.
  Oreilly
 RC
 &
 Johnson
 MH
 (1994)
 Object
 Recognition
 and
 Sensitive
 Periods
 -­‐
 a
 
Computational
 Analysis
 of
 Visual
 Imprinting.
 Neural
 Comput
 6(3):357-­‐389.
 
18.
  Bolhuis
 JJ
 (1999)
 Early
 learning
 and
 the
 development
 of
 filial
 preferences
 in
 the
 
chick.
 Behavioural
 brain
 research
 98(2):245-­‐252.
 
19.
  Fontanari
 L,
 Rugani
 R,
 Regolin
 L,
 &
 Vallortigara
 G
 (2011)
 Object
 individuation
 in
 3-­‐
day-­‐old
 chicks:
 use
 of
 property
 and
 spatiotemporal
 information.
 Developmental
 Sci
 
14(5):1235-­‐1244.
 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
20
 
20.
  Wang
 YA,
 Brzozowska-­‐Prechtl
 A,
 &
 Karten
 HJ
 (2010)
 Laminar
 and
 columnar
 
auditory
 cortex
 in
 avian
 brain.
 Proceedings
 of
 the
 National
 Academy
 of
 Sciences
 of
 the
 
United
 States
 of
 America
 107(28):12676-­‐12681.
 
21.
  Hill
 H,
 Bruce
 V,
 &
 Akamatsu
 S
 (1995)
 Perceiving
 the
 Sex
 and
 Race
 of
 Faces
 -­‐
 the
 Role
 
of
 Shape
 and
 Color.
 P
 Roy
 Soc
 Lond
 B
 Bio
 261(1362):367-­‐373.
 
22.
  Said
 CP
 &
 Todorov
 A
 (2011)
 A
 Statistical
 Model
 of
 Facial
 Attractiveness.
 
Psychological
 science
 22(9):1183-­‐1190.
 
23.
  Walker
 M
 &
 Vetter
 T
 (2009)
 Portraits
 made
 to
 measure:
 Manipulating
 social
 
judgments
 about
 individuals
 with
 a
 statistical
 face
 model.
 J
 Vision
 9(11).
 
24.
  Farah
 MJ,
 Wilson
 KD,
 Drain
 M,
 &
 Tanaka
 JN
 (1998)
 What
 is
 "special"
 about
 face
 
perception?
 Psychol
 Rev
 105(3):482-­‐498.
 
25.
  Diamond
 R
 &
 Carey
 S
 (1986)
 Why
 Faces
 Are
 and
 Are
 Not
 Special
 -­‐
 an
 Effect
 of
 
Expertise.
 J
 Exp
 Psychol
 Gen
 115(2):107-­‐117.
 
26.
  Yin
 RK
 (1969)
 Looking
 at
 Upside-­‐down
 Faces.
 J
 Exp
 Psychol
 81(1):141-­‐&.
 
27.
  Kruschke
 JK
 (2010)
 What
 to
 believe:
 Bayesian
 methods
 for
 data
 analysis.
 Trends
 in
 
cognitive
 sciences
 14(7):293-­‐300.
 
28.
  Maurer
 D,
 Le
 Grand
 R,
 &
 Mondloch
 CJ
 (2002)
 The
 many
 faces
 of
 configural
 
processing.
 Trends
 in
 cognitive
 sciences
 6(6):255-­‐260.
 
29.
  Mondloch
 CJ,
 Le
 Grand
 R,
 &
 Maurer
 D
 (2002)
 Configural
 face
 processing
 develops
 
more
 slowly
 than
 featural
 face
 processing.
 Perception
 31(5):553-­‐566.
 
30.
  Gold
 JM,
 Mundy
 PJ,
 &
 Tjan
 BS
 (2012)
 The
 Perception
 of
 a
 Face
 Is
 No
 More
 Than
 the
 
Sum
 of
 Its
 Parts.
 Psychological
 science
 23(4):427-­‐434.
 
31.
  Serre
 T,
 Oliva
 A,
 &
 Poggio
 T
 (2007)
 A
 feedforward
 architecture
 accounts
 for
 rapid
 
categorization.
 Proceedings
 of
 the
 National
 Academy
 of
 Sciences
 of
 the
 United
 States
 
of
 America
 104(15):6424-­‐6429.
 
32.
  Stryker
 MP
 (1991)
 Neurobiology
 -­‐
 Temporal
 Associations.
 Nature
 354(6349):108-­‐
109.
 
33.
  Wang
 G,
 Obama
 S,
 Yamashita
 W,
 Sugihara
 T,
 &
 Tanaka
 K
 (2005)
 Prior
 experience
 of
 
rotation
 is
 not
 required
 for
 recognizing
 objects
 seen
 from
 different
 angles.
 Nature
 
neuroscience
 8(12):1768-­‐1775.
 
34.
  Kruschke
 JK
 (2011)
 Doing
 bayesian
 data
 analysis
 :
 a
 tutorial
 with
 R
 and
 BUGS
 
(Academic
 Press,
 Burlington,
 MA)
 pp
 xvii,
 653
 p.
 
35.
  Gelman
 A
 (2006)
 Prior
 distributions
 for
 variance
 parameters
 in
 hierarchical
 
models(Comment
 on
 an
 Article
 by
 Browne
 and
 Draper).
 Bayesian
 Anal
 1(3):515-­‐
533.
 

 

 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
21
 
Supplementary
 Information
 Contents
 &
 Captions
 
• Figure
 1:
 Schematic
 of
 hierarchical
 Bayesian
 model.
 Top
 diagram
 is
 a
 Bayes
 Net
 
diagram
 depicting
 the
 hierarchical
 dependency
 of
 the
 data.
 Bottom
 diagram
 
illustrates
 how
 the
 hierarchical
 dependencies
 are
 incorporated
 in
 the
 hierarchical
 
Bayesian
 analysis.
 The
 analysis
 estimates
 the
 hyperparameter
 of
 each
 condition
 and
 
the
 parameter
 for
 each
 individual
 chick.
 
 
 
• Figures
 2
 -­‐
 11:
 Experiment
 1
 Results
 (overall
 and
 by
 subject)
 of
 hierarchical
 
Bayesian
 analysis.
 Each
 figure
 shows
 the
 distractor
 face
 alongside
 the
 Virtual
 
Parent.
 The
 data
 are
 shown
 in
 probability
 density
 charts
 for
 the
 hyperparameter
 of
 
the
 condition
 and
 the
 parameter
 for
 each
 individual
 chick.
 
• Figure
 12:
 Experiment
 1
 time
 course
 of
 test
 phase
 results
 graphed
 as
 performance
 
by
 day.
 
 
• Figures
 13
 -­‐
 18:
 Experiment
 2
 Results
 (overall
 and
 by
 subject)
 of
 hierarchical
 
Bayesian
 analysis.
 Each
 figure
 shows
 the
 distractor
 face
 alongside
 the
 different
 test
 
head
 orientations
 of
 the
 Virtual
 Parent.
 The
 data
 are
 shown
 in
 probability
 density
 
charts
 for
 the
 hyperparameter
 of
 the
 condition
 and
 the
 parameter
 for
 each
 
individual
 chick.
 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
22
 
SI
 Figure
 1
 
!"#$%&
'&
!"#$%&
(&
)*+,-./&
'&
0123#412&
#&
!"#$%&
5&
!"#$%&
'&
!"#$%&
(&
)*+,-./&
(&
!"#$%&
5&
!"#$%&
'&
!"#$%&
(&
)*+,-./&
,&
!"#$%&
5&
!"#"$%&'("()*&)"+$!','-.'-)&'/$
!"#$%&"#' 6'7&'8&
92#:1";&<#=/"#+*412&
6>?>>>>>'7&&
-=/?&;$@#;*;8&
AB& 6'CA8B&
6$7&+8&
()*+'!+%*,'
D-"21*%%#&
<#=/"#+*412&
012304$!020$
D-/$&<#=/"#+*412&
D-/$&<#=/"#+*412&
-%./)/*+%*)0'1)2.3%)#'4"$.0'
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
23
 
SI
 Figure
 2
 

 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
24
 
SI
 Figure
 3
 
 

 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
25
 
SI
 Figure
 4
 

 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
26
 
SI
 Figure
 5
 

 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
27
 
SI
 Figure
 6
 

 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
28
 
SI
 Figure
 7
 

 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
29
 
SI
 Figure
 8
 

 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
30
 
SI
 Figure
 9
 

 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
31
 
SI
 Figure
 10
 

 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
32
 
SI
 Figure
 11
 

 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
33
 
SI
 Figure
 12
 

 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
34
 
SI
 Figure
 13
 

 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
35
 
SI
 Figure
 14
 

 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
36
 
SI
 Figure
 15
 

 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
37
 
SI
 Figure
 16
 

 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
38
 
SI
 Figure
 17
 

 
FACE
 RECOGNITION
 IN
 A
 NEWBORN
 VISUAL
 SYSTEM
 

 
39
 
SI
 Figure
 18 
Asset Metadata
Creator Waters, Samantha M. (author) 
Core Title Sensitive, specific, and generative face recognition in a newborn visual system 
Contributor Electronically uploaded by the author (provenance) 
School College of Letters, Arts and Sciences 
Degree Master of Arts 
Degree Program Psychology 
Publication Date 04/18/2013 
Defense Date 10/08/2012 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag chicken,cognition,Development,early experience,face recognition,OAI-PMH Harvest 
Format application/pdf (imt) 
Language English
Advisor Bechara, Antoine (committee member), Mintz, Toben H. (committee member), Tjan, Bosco S. (committee member) 
Creator Email samantha.waters@gmail.com,samantha.waters@usc.edu 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c3-239134 
Unique identifier UC11294791 
Identifier etd-WatersSama-1548.pdf (filename),usctheses-c3-239134 (legacy record id) 
Legacy Identifier etd-WatersSama-1548.pdf 
Dmrecord 239134 
Document Type Thesis 
Format application/pdf (imt) 
Rights Waters, Samantha M. 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law.  Electronic access is being provided by the USC Libraries in agreement with the a... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Abstract (if available)
Abstract Despite the computational difficulty, adults easily recognize faces with incredibly high sensitivity and specificity across novel changes in viewing conditions. Mature face representations are invariant to identity-preserving changes (e.g., changes in expression or viewing angle) while intolerant to identity-transforming changes (e.g., changes in texture, age, and gender). Yet, due to constraints in testing newborn subjects, the origins of these characteristics remain unknown. Are highly sensitive, specific, and generative face representations the product of extensive visual experience, or do genes build neural machinery that generates sensitive, specific, and generative face representations from the onset of experience with faces? To probe the nature of the first face representation created in the newborn mind, we reared newborn chickens for one week in a virtual reality chamber that contained no objects except a single virtual human face (the “Virtual Parent”). Immediately after, the chickens were tested for one week on their ability to discriminate between the Virtual Parent and a set of distractor faces. Distractors were identical to the Virtual Parent, with the exception of a single dimension (e.g., changes in texture, structure, inversion, and expressions). Subjects were able to distinguish the Virtual Parent from distractors that differed in texture, age, gender, and inversion, but not distractors that differed in feature configuration or facial expression. Further, subjects were able to recognize the Virtual Parent across novel changes in head orientation (i.e., view direction), indicating that subjects built invariant face representations. These results show that the first face representation built by the newborn visual system can be sensitive, specific, and generative. 
Tags
chicken
cognition
early experience
face recognition
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button