Close
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected
Invert selection
Deselect all
Deselect all
Click here to refresh results
Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
USC microgrid assessment study
(USC Thesis Other)
USC microgrid assessment study
PDF
Download
Share
Open document
Flip pages
Contact Us
Contact Us
Copy asset link
Request this asset
Transcript (if available)
Content
Master Thesis
USC Microgrid Assessment Study
By
Zejia Jing
USC ID: 2950132974
Advisor: Dr. Mohammed Beshir
A thesis submitted in partial fulfillment of
The requirement for the degree of
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
UNIVERSITY OF SOUTHERN CALIFORNIA
Viterbi School of Engineering
MAY 2015
I
Master Thesis
ACKNOWLEDGMENT
Six months have passed since the thesis began. During this period, many people helped
me a lot in building and simulating USC microgrid in PSS/E. I would like to express my
sincere gratitude to my advisor Dr. Mohammed Beshir. He gives me many great ideas and
kind help in doing the thesis. I would like to express my sincere gratitude to the supervision
of Jose Conto, who is now working in ERCOT and an expert in power system and dynamic
studies. I would also like to express my thanks to my roommates Rui Pan and Yijun Xu.
They help me a lot build the USC model in PSS/E. I would like to thank Cong Hou because
he gave me much help in dynamic analysis. And I want to thank Zeming Jiang and Carol
Fern in FMS. They gave me a lot of useful advice based on USC power grid data. Without
them, I don’t know how to deal with such large amount of data. I would also like to say thank
you to Mengna Ding and Aarti Gurav. I am doing my master thesis based on the work done
by them in previous research. Finally I want to thank my parents, they give me much
encouragement and unselfish support during my life. And I believe they will be satisfied and
pleased with the master degree I will get.
II
Master Thesis
ABSTRACT
Last spring, Mengna Ding introduced the “USC Microgrid Development Conceptual
Plan” in her thesis work. Her paper gives me a clear concept of what USC microgrid is and
how to build it. Then Aarti Gurav finished the following work in her last summer direct
research and came out a report titled “Control of USC microgrid in island mode”. This is a
very good attempt to analysis USC microgrid in a simple way.
Based on the work done by Mengna and Aarti, I build the USC microgrid model, do the
power flow and dynamic analysis using PSS/E. PSS/E is one of the most popular power
simulation software in the world. Many kinds of power system analysis including fault
analysis, power flow and dynamic analysis can be done by PSS/E to help engineers make
decision. There are two USC power grid model existing now. Those are the USC power grid
model built by Zeming Jiang using DEW and the USC grid model built by KSG Consulting
Company using SKM. And I have built the third kind of USC grid model using PSS/E. I
build the USC microgrid based on the data collected from USC FMS. And then I involve
several micro sources, such as micro turbines, solar photovoltaic panels and EV/Battery
models in my system. They make up the entire USC microgrid.
In the thesis, the following three parts are discussed:
Build the actual USC model in PSS/E. This includes the modeling of all the 19 feeders,
392 buses, 112 transformers, 112 loads and all the other components in power grid. I build all
of them, check the data number to see if there is mismatch and do voltage limitation check to
ensure the model is correctly built.
Add the PV, Battery/EV and MT model according to Mengna's microgrid conceptual
plan. Then I do the power flow analysis in different case scenarios in both day/night mode
and connect/island mode. The full peak load is considered in the connect mode. And only the
critical load is considered in island mode. 81 scenarios of power flow are discussed and
simulated in PSS/E.
Dynamic analysis from Connect Mode to Island Mode in both day and night conditions.
The coding of Python and .dyr file will be used in dynamic analysis.
III
Master Thesis
IV
Master Thesis
TABLE OF CONTENT
ACKNOWLEDGMENT ............................................................................................................................... II
ABSTRACT ............................................................................................................................................... III
List of Figures ........................................................................................................................................ VII
List of Tables ......................................................................................................................................... VIII
CHAPTER 1: Introduction ........................................................................................................................ 9
1.1 Background of PSS/E ....................................................................................................... 9
1.2 USC campus microgrid .................................................................................................... 9
1.3 Previous work done by others ....................................................................................... 10
1.3.1 Zeming’s work ....................................................................................................... 10
1.3.2 Aarti Gurav’s work ................................................................................................. 11
1.3.3 USC Short Circuit Study Report done by KSG ........................................................ 12
1.3.4 Mengna’s thesis report.......................................................................................... 13
1.4 Power System Studies ................................................................................................... 14
CHAPTER 2: Modeling USC Microgrid in PSS/E ..................................................................................... 16
2.1 Buses ............................................................................................................................. 16
2.2 Branches ........................................................................................................................ 20
2.3 Load ............................................................................................................................... 20
2.4 Machines ....................................................................................................................... 23
2.4.1 Photovoltaic panels ............................................................................................... 23
2.4.2 Microturbines ........................................................................................................ 24
2.4.3 EV/Batteries ........................................................................................................... 25
2.5 Winding Transformer .................................................................................................... 27
2.6 Voltage limitation check ................................................................................................ 27
2.7 Switched Shunts ............................................................................................................ 29
2.8 Combine the .sav file ..................................................................................................... 30
2.9 Combine the .sld file ..................................................................................................... 31
CHAPTER 3: Load Flow Analysis ............................................................................................................ 33
3.1 Case A Day Mode Scenario 6 ......................................................................................... 39
3.2 Case A Night Mode Scenario 45 .................................................................................... 39
3.3 Case B Day Mode Scenario 66 ....................................................................................... 41
3.4 Case B Night Mode Scenario 70 .................................................................................... 42
CHAPTER 4: Dynamic Analysis ............................................................................................................... 44
4.1 EV/Battery ..................................................................................................................... 45
4.2 Photovoltaic Plant ......................................................................................................... 46
4.2.1 PVGU1 ................................................................................................................... 47
4.2.2 PVEU1 .................................................................................................................... 47
4.2.3 PANELU1 ................................................................................................................ 49
4.2.4 IRRADU1 ................................................................................................................ 50
4.3 Micro Turbine and Utility .............................................................................................. 52
V
Master Thesis
4.3.1 GENROU ................................................................................................................ 52
4.3.2 IEEET1 .................................................................................................................... 53
4.3.3 GAST ...................................................................................................................... 54
4.3.4 PSS2A ..................................................................................................................... 56
4.3.5 GENCLS .................................................................................................................. 57
4.4 Connect to Island Mode At Night .................................................................................. 58
4.5 Connect to Island Mode In Daytime .............................................................................. 64
4.5.1 Half PVs are connected to the system ................................................................... 65
4.5.2 All PVs are connected to the system ..................................................................... 66
4.6 Test Case Results ........................................................................................................... 68
CHAPTER 5: Future work ....................................................................................................................... 69
CHAPTER 6: Conclusions ....................................................................................................................... 70
REFERENCES .......................................................................................................................................... 71
BIBLIOGRAPHY ...................................................................................................................................... 72
APPENDIX ............................................................................................................................................ - 1 -
A. FEEDER A-T in PSS/E ............................................................................................................ - 2 -
B. .dyr file .............................................................................................................................. - 21 -
C. Python Code For Dynamic Analysis ................................................................................... - 39 -
VI
Master Thesis
List of Figures
Figure 1 Zeming’s USC Distribution Power Grid EDD Model ......................................................... 10
Figure 2 Aarti Gurav’s USC model ................................................................................................. 11
Figure 3 FEEDER A Done by SKM Power Tools .............................................................................. 13
Figure 4 Microgrid architecture diagram ...................................................................................... 14
Figure 5 Compare of dynamic, transient and steady-state study ................................................. 15
Figure 6 PV Data Record Example ................................................................................................. 24
Figure 7 Simulation of micro turbine in PSS/E .............................................................................. 25
Figure 8 Simulation of PV and EV in PSS/E .................................................................................... 26
Figure 9 All the DGs added in PSS/E USC model ........................................................................... 27
Figure 10 Voltage limitation check ................................................................................................ 28
Figure 11 Shunted capacitor added in PSS/E ................................................................................ 30
Figure 12 Save RAW file as add to working case ........................................................................... 31
Figure 13 PSS/E Autodraw ............................................................................................................. 31
Figure 14 Combine the 19 feeders SLD in one case using autodraw ............................................ 32
Figure 15 The Case Scenario file folders I built to do simulation .................................................. 34
Figure 16 Setting for Case Scenario 45 .......................................................................................... 40
Figure 17 Dynamic Figure Standard from WECC-NERC ................................................................. 45
Figure 18 Relationship within PV module ..................................................................................... 47
Figure 19 Irradence Model Line Chart........................................................................................... 52
Figure 20 Logic Diagram of IEEET1 ................................................................................................ 54
Figure 21 Gas Turbine Scheme ...................................................................................................... 55
Figure 22 Logic Diagram of GAST .................................................................................................. 56
Figure 23 The three file folders/cases I built to do dynamic analysis in Day/Night ...................... 58
Figure 24 PSB-EV Parameter Editor ............................................................................................... 59
Figure 25 Dynamic Setting for CBEST in Night Mode .................................................................... 59
Figure 26 Machine Settings when dynamic analysis at night ........................................................ 61
Figure 27 Program Automation ..................................................................................................... 61
Figure 28 Voltage at bus BIEGLER-1 at night mode ....................................................................... 61
Figure 29 Voltage at bus BIEGLER-2 at night mode ....................................................................... 62
Figure 30 Voltage at bus JEFFERSON-2 at night mode .................................................................. 62
Figure 31 Frequency at Bus PSD-208 at night mode ..................................................................... 63
Figure 32 Power Flow at Bus 323 at night mode ........................................................................... 63
Figure 33 PSB-EV Parameter Editor ............................................................................................... 64
Figure 34 Dynamic Setting for CBEST in Day Mode ....................................................................... 64
Figure 35 Voltage at bus JEFFERSON-2 at day mode half PV......................................................... 65
Figure 36 Voltage at bus 324 K-MH67 at day mode half PV .......................................................... 66
Figure 37 Voltage at bus JEFFERSON-2 at day mode all PVs.......................................................... 67
Figure 38 Voltage at bus 324 K-MH67 at day mode all PVs ........................................................... 67
Figure 39 A simplified Microgrid diagram with relay protection .................................................. 69
VII
Master Thesis
List of Tables
Table 1 Aarti Gurav’s power flow scenario table ........................................................................... 11
Table 2 Bus number ....................................................................................................................... 19
Table 3 Critical Load ...................................................................................................................... 21
Table 4 None Critical Load ............................................................................................................. 23
Table 5 Solar Panel Capacity .......................................................................................................... 24
Table 6 Table of Power Flow Case Scenario Result ........................................................................ 39
Table 7 CBEST Model Parameters .................................................................................................. 46
Table 8 PVGU1 Model Parameters ................................................................................................ 47
Table 9 PVEU1 Model Parameters ................................................................................................. 49
Table 10 PANELU1 Model Parameters ........................................................................................... 50
Table 11 IRRADU1 Model Parameters ........................................................................................... 51
Table 12 GENROU Model Parameters ........................................................................................... 53
Table 13 IEEET1 Model Parameters ............................................................................................... 54
Table 14 GAST Model Parameters ................................................................................................. 55
Table 15 PSS2A Model Parameters ............................................................................................... 57
Table 16 GENCLS Model Parameters ............................................................................................. 58
Table 17 Dynamic Test Case Results at Bus 225 Jefferson-2.......................................................... 68
VIII
Master Thesis
CHAPTER 1: Introduction
1.1 Background of PSS/E
PSS/E is a program that can handle the study of power transmission system, steady-state
and dynamic function generator. It can also handle power flow calculation, fault analysis,
network equivalent, and safe operation of the optimization problem. Nowadays PSS/E is the
most widely used power system analysis software in the power industry. It is an integrated set
of computer programs that can handle the following power system analysis calculations:
• Power flow and related network analysis functions.
• Balanced and unbalanced fault analysis.
• Network equivalent construction.
• Dynamic simulation.
To the steady-state and dynamic analyses, PSS/E provides the user with a wide range of
auxiliary programs for installation, data input, output, manipulation and preparation.
PSS/E also uses many types of files. Here is a brief description of important file types
that are used in this thesis:
*.sav – Saved case file
*.raw – Power flow raw data file (input data file)
*.sld – Slider file (Single Line Diagram)
*.dyr –Dynamic Analysis Setting file
*.py – Dynamic Analysis Auto run file
1.2 USC campus microgrid
The electric service for the UPC campus has already experienced a history of changes
and steady growth that defines its present characteristics. The campus is served directly from
two LADWP 4.8 kV distribution stations, Jefferson and Biegler, which enter the UPC
campus. Jefferson Station locates in Building EVB and Biegler Station is in EVA. Each of
these two distribution stations has two services and separated into 19 sub-circuits in total that
feed the campus. Throughout the campus there are 112 first level transformers which
transform the 4.8 kV voltage from LADWP distribution station into 480V and 208V. Then
around the first level transformers there are 118 second level ones producing the needed
voltage value by specific loads such as 277V and 120V.
When the outside power grid fails or there are power outage quality problems, micro-
grid can cut off the main circuit breaker from the outside world, isolated micro-grid
operation. This can improve the stability of the power system and can be effective to reduce
the power loss caused by the accident.
Microgrid mainly introduces the new energy technologies to provide users the power
supply when the power grid fails. At present, 322 MW of college campus microgrids are up
and running in the United States. A microgrid can be considered as a small grid based on
distributed generators (DGs). The microgrid can operate either in grid connected or islanded
9
Master Thesis
mode. The available power of all DG units should meet the total load demand for islanded
operation; otherwise load shedding need to be implemented. The frequency and voltage in an
islanded microgrid should be maintained within the predefined limits.
The DGs in a microgrid can be classified as either, dispatchable and non dispatchable, or
inertial and non-inertial depending on their power flow control and dynamic behavior. The
output power of dispatchable DGs such as micro turbines, fuel cells and bio-diesel generators
are controlled to maintain the desired system frequency and voltage in an islanded microgrid.
On the other hand, non dispatchable DGs such as wind and PV, in which the output power
depends on the environmental conditions, are controlled in maximum power point tracking
(MPPT) to harness as much energy as possible.
1.3 Previous work done by others
1.3.1 Zeming’s work
Zeming Jiang built the EDD model of USC power grid several years ago. He built the
USC model based on the data from USC FMS. The EDD model he built is shown as below.
Then he write a paper introducing the impact of EV to USC power grid.
Figure 1 Zeming’s USC Distribution Power Grid EDD Model
In his paper, a thorough analysis based on real-world project is conducted to evaluate the
impact of electric vehicles infrastructure on the grid relating to system load flow, load factor,
and voltage stability. University of Southern California (USC) Distribution microgrid was
selected and tested along with different case scenarios utilizing the electrical distribution
design (EDD) software to find out the potential impacts to the grid. This paper presents a
detailed analysis based on SGRDP to evaluate the impact of electric vehicles infrastructure
on the grid relating to system load flow, load factor, and voltage stability. USC Distribution
microgrid was selected and tested under different case scenarios in the EDD to assess the
potential impacts to the grid.
10
Master Thesis
1.3.2 Aarti Gurav’s work
Aarti Gurav built the USC microgrid model one line diagram in a very simple way. The
model she built is shown as below.
Figure 2 Aarti Gurav’s USC model
Then she uses this simple PSS/E USC microgrid model to do the power flow analysis.
She identified 31 scenarios based on connect mode and islanded mode in day time and at
night. Part of her power flow scenario table is shown as below.
Table 1 Aarti Gurav’s power flow scenario table
In Aarti’s report, she said the following issues needs to be addressed in future research
work:
1. The information for calculating the critical load was insufficient so in future we
should have a proper data base wherein we know the actual critical load for each of
11
Master Thesis
the critical buildings listed above.
Then I built the PSS/E model of USC microgrid based on the actual data of the
system. And I choose to build the USC model which is more close to reality.
2. The graphs and the waveforms after dynamic simulation in PSSE are not stable
before isolation, the system seems not to be in steady state. So the results for the
waveforms needs to be reinterpreted and some changes needs to made in dyr files so
the waveforms are stable.
Then in my thesis, I built a new dyr file and make the dynamic simulation based on
the actual USC model more stable before and after isolation.
1.3.3 USC Short Circuit Study Report done by KSG
The report is done by KOCHER SCHIRRA GOHARIZI Consulting Engineers, Inc using
power simulation software SKM at the Date: October, 2007.This short circuit study has been
performed USC University Park Campus at the request of Facilities Management. The study
was performed in order to identify the present worst case short circuit current levels at key
points in the electrical distribution system.
This study covers the system from the switchgear at the Jefferson and Biegler
Substations, through the 4.8kV distribution to the secondary side of building service
transformers. The transmission lines, transformers and buses data, the classification,
organization and look of every feeder are very useful information for me to build the USC
power grid model in PSS/E.
I will give Feeder A for example to show the SKM model of USC built by KSG.
12
Master Thesis
Figure 3 FEEDER A Done by SKM Power Tools
1.3.4 Mengna’s thesis report
Last year, Mengna introduced the conceptual plan of USC microgrid. I build and analysis
USC microgrid according to the proposals in her conceptual plan.
Photovoltaic and microturbines are chosen to be microsources. It will help with the design
and construction as an applicable reference. Main elements in microgrid concept include:
integrated energy system, distributed energy resources (DER), electrical loads, in mode of
parallel or islanded from the existing utility power grid.
In her proposal, the distributed energy resources (DER) - small power generators typically
located at users’ sites where the energy (both electric and thermal) they generate is used - have
13
Master Thesis
emerged as a promising option to meet growing customer needs for electric power with an
emphasis on reliability and power quality.
In her proposal, she mentions that a microgrid can connect and disconnect from the grid
to enable it to operate in both grid-connected or island-mode.
A Microgrid could be defined as a low-voltage distribution network with
distributed energy sources altogether with storage devices and loads. Generally speaking,
Microgrid could be operated in either grid-connected or islanding mode. A typical Microgrid
architecture diagram is illustrated in Figure below. The Microgrid structure assumes an
aggregation of loads and microsources operating as a single system providing both power
and heat. The majority of the microsources must be power electronic based to provide the
required flexibility to insure controlled operation as a single aggregated system. This
control flexibility allows the Microgrid to present itself to the bulk power system as a
single controlled unit, have plug-and- play simplicity for each microsource, and meet the
customers’ local needs. There are a cluster of radial feeders in the basic Microgrid
architecture. Critical loads on feeders A-B require local generation (diesel generator, PV
cell, wind turbine, Micro-turbine and fuel cell etc).
As local control of distributed generations dominate in power system, the conventional
central dispatch is not necessary. During disturbances, the static switch is able to islandedly
separate the subsystem from the distribution system to isolate the microgrid from the
disturbance without harming the transmission grid’s integrity. As you can see in the figure,
feeders A-B can switch to off-grid mode using the static switch. The non-critical loads on
feeder C can only be supported in grid-connected mode. The static switch recloses
immediately after the fault is cleared.
Figure 4 Microgrid architecture diagram
1.4 Power System Studies
The power system study includes three different parts.
The first part is steady-state power system analysis. This includes the analysis of
14
Master Thesis
Production Cost Models, Load (Power) Flow, Voltage Regulation, Power transfer and Short-
Circuit Study
The second part is dynamic analysis which includes Voltage Stability and Power angle
Stability Analysis.
The third part is transient analysis which includes Transient Stability and Harmonics
Analysis.
The time length of the three parts are shown as below. Only dynamic and steady-state
power system analysis will be discussed in the thesis.
Figure 5 Compare of dynamic, transient and steady-state study
15
Master Thesis
CHAPTER 2: Modeling USC Microgrid in PSS/E
2.1 Buses
All equipment information associated with each bus in the system can be obtained by
accessing the buses tab. Inside the buses tab there will be several parameters that can be set
or adjusted. The important parameters will be described below:
Displays the number assigned to a specific bus (1 through 999997).
Bus base voltage; entered in kV.
Bus type code:
1 - Load bus (no generator boundary condition)
2 - Generator or plant bus (either voltage regulating or fixed Mvar)
3 - Swing bus
4 - Disconnected (isolated) bus
5 – Same as type 1, but located on the boundary of an area in which an equivalent is to
be constructed
To build the model in PSS/E, I have to give every bus in the system a unique bus
number. Give every bus a certain number will help me a lot combine the .sav and .sld file
from separate feeders together into one big system. There is one swing bus in the system
which is bus 323 JEFFERSON-1. Thus the bus type code for bus 323 is set as 3-swing bus.
And there are also some buses connected with PV, EV and MT. Those bus codes are set as 2-
generator bus. The bus number is listed below.
Bus
Number Bus Name
Bus
Number Bus Name
Bus
Number Bus Name
Bus
Number Bus Name
Bus
Number Bus Name
1
BIEGLER-
1 80 T-MH19 159 DEN-480 238
TS-
T69,T70 317 Q-MH24
2 A-MH15 81 I-MH12 160 DEN-208 239 KAP-480 318 R-MH67
3 A-MH14 82 I-MH21 161 DEN/IMS 240 KAP-208 319 R-MH54
4 A-MH13 83 I-MH1 162 F-MH18 241 M-MH48 320 R-MH55
5 T1-P 84 TS-T83 163 F-MH45 242 J-MH35 321 R-MH56
6 RRB 85 AHF 164 F-MH46 243
TS-
T107,T108 322 R-MH16
7 A-HH9 86 T-MH12 165 WAH 244 LRC 323
JEFFERS
ON-1
8 T2-P 87 I-MH40 166 T38-P 245 Q-MH35 324 K-MH67
9
FNS/YWC/
STO 88 I-MH50 167 F-MH60 246 MAC 325 K-MH54
16
Master Thesis
10 T3-P 89 TS-T87 168 PHE 247 J-MH36 326 T51-P
11 STO 90 LVL 169 TS-T40 248 J-MH42 327
SHC/URC
/FWH
12 A-MH4 91 N-MH50 170 S-MH18 249 J-MH53 328 T52-P
13 A-MH19 92 I-MH51 171 SAL 250
TS-
T66,T67,T6
8 329 ASI
14 A-SPL1 93 I-MH52 172 T39-P 251 L-MH53 330 K-MH55
15 T5-P 94 I-MH57 173 F-MH76 252 UCC-208 331 K-MH56
16 ACC 95 N-MH57 174 IRC-2 253
UCC-
480(1) 332 T53,T54-P
17 T6-P 96 TS-T91 175 TS-T72 254
UCC-
480(2) 333 ASC-2
18 BRI 97 DCC 176 M-MH76 255
JEFFERSO
N-2 334 ASC-1
19 A-MH12 98 I-MH1B 177 F-MH77 256 T85,T86-P 335 BIT
20 A-MH20 99 I-MH1C 178 IRC-1 257 CTV 336 T55-P
21 T7-P 100
TS-
T24,T25,T
26 179 TS-T71 258 LPB/SSS 337 K-MH16
22
RGL/TJF/J
HH/FA 101 ADM-N 180 M-MH77 259 N-MH67 338 K-MH1B
23 A-HH6 102 K-MH1C 181 ACB-480 260 N-MH38 339 L-MH67
24 TS-T8 103 ADM-C 182 ACB-208 261 N-MH28 340 L-MH37
25 DML 104 ADM-S 183 H-MH22 262 N-MH40 341 L-MH36
26 TS-T9,T10 105 I-MH16 184 H-MH18 263 N-MH51 342 L-MH42
27 REG/TRO 106 I-MH70 185 LHI 264
MRF/EDL/
SWC 343 L-MH41
28 P-MH9 107 I-MH71 186 TS-T74 265 T88-P 344 T61-P
29 T10-P 108 TS-T80 187 H-MH43 266 N-MH52 345 WTO
30 PTD/ALM 109 HNB 188 LHI/SLH 267 PSD-480 346 T65-P
31 P-MH65 110 S-MH71 189 TS-T75 268 PSD-208 347 JEF
32 B-TB1 111 SSC-480 190 S-MH43 269 T90-P 348 T62-P
17
Master Thesis
33 B-MH15 112 D-TB1 191
TS-T76-
T79 270 T89-P 349 KOH
34 T9,10-P 113
BIEGLER
-2 192 T78,79-P 271 P-MH67 350 T63-P
35 OHE-480 114 BHE 193
SHS/OCW/
LJS-2 272 P-MH38 351 FLT
36 OHE-208 115 T27-P 194
SHS/OCW/
LJS-1 273 P-MH5 352 L-MH62
37 B-MH14 116 MH22 195 H-MH11 274 P-MH40 353 T64-P
38 PSB-LOAD 117 D-MH18 196 MHP 275 THH 354 PSB
39 UPV 118 D-MH24 197 T41-P 276 JEP/AHN 355 M-MH67
40 B-MH27 119 D-MH31 198 H-MH64 277 T92-P 356 M-MH37
41 B-MH13 120 SSL 199 H-MH19 278 T93-P 357 M-MH36
42 B-MH4 121 T33-P 200 H-MH49 279 P-MH21 358 M-MH35
43 B-MH19 122 SSC-208-2 201 T42,T43-P 280
WPH/SOS/
CAS-2 359 M-MH34
44
T12,13,14-
P 123
T30,31,32-
P 202 T44-P 281
WPH/SOS/
CAS-1 360 M-MH33
45 TSC-480 124 SSC-208-1 203 HOH-480 282 T94,T95-P 361 M-MH32
46 TSC-208 125 D-MH44 204 HOH-208 283 VKC-208 362 M-MH24
47 STU 126 D-MH25 205 LAW 284 T97-P 363 M-MH25
48 B-MH12 127 PKS 206 H-MH12 285 P-MH29 364 M-MH60
49 B-MH3 128 T28,29-P 207 H-MH1 286 P-MH66 365 S-MH67
50 TS-T17 129 PKX 208 H-MH21 287 P-MH30 366 S-MH37
51 P-MH3 130 D-MH61 209 H-MH40 288 VKC-480 367 S-MH36
52 COM/BKS 131 PSA 210 H-MH29 289 T98-P 368 S-MH35
53 C-MH22 132 T34-P 211 H-MH30 290 P-MH12 369 S-MH34
54 VHE-208 133 GER 212 H-HH11 291 P-MH20 370 S-MH33
55
T17,18,19-
P 134 TS-T35 213
BSR/HRH/
EVK 292 T99-P 371 S-MH16
56 VHE-480-2 135 M-MH44 214 TS-T45 293 RGL 372 S-MH70
18
Master Thesis
Table 2 Bus number
57 C-MH72 136 DRB 215 P-HH11 294 P-HH6 373 S-MH72
58 T16-P 137 T36-P 216 J-MH27 295 T100-P 374 S-MH11
59 HED/PCE 138 SCD 217 J-MH32 296 JKP 375 S-MH64
60 VHE-480-1 139 T37-P 218 J-MH33 297 T81-P 376 T73-P
61 RTH-208 140 PED-208 219 J-MH16 298 BMH 377 HAR
62 G-MH27 141 PED-480 220 GFS 299 Q-MH67 378 T-MH67
63 G-MH32 142 E-MH27 221 T50-P 300 Q-MH37 379 T-MH38
64 G-MH24 143 E-MH32 222
HRC/CWO
/CWT 301 Q-MH36 380 T-MH28
65 G-MH25 144 E-MH33 223 T46-P 302 T101-P 381 T-MH5
66 G-MH73 145 E-MH16 224 J-MH34 303
POA/PPB/
PPG+ 382 T-MH40
67 F-MH25 146
TS-
T111,T112 225 J-MH47 304 T102-P 383 T-MH21
68 TS-T22 147 R-MH33 226 J-HH14 305
CST/FPM/
ZMT 384 T-MH66
69 EEB 148 SGM-2 227 BDF 306 Q-MH34 385 T-MH65
70 Q-MH73 149 SGM-1 228 T48-P 307 Q-MH39 386 T82-P
71 RTH-480 150 E-MH56 229 DRC 308 T106-P 387
RHM/MU
S
72
TS-
T109,T110 151 E-MH1 230 T49-P 309 HER 388 T-MH64
73 I-MH22 152 T59,T60-P 231
TS-
T113,T114 310
T104,T105-
P 389 I-MH7
74 I-MH18 153 K-MH1 232 RIH-1 311 PIC-480 390 T-23-P
75 I-MH43 154 E-MH55 233 R-MH47 312 PIC-208 391 NCT
76 I-MH64 155 E-MH54 234 RIH-2 313 T103-P 392 T21-P
77 I-MH19 156 E-MH68 235 J-MH48 314 LTS
78 TS-T84 157
TS-
T56,T57,T
58 236 MTS 315 Q-MH33
79 ZHS 158 K-MH68 237 T47-P 316 Q-MH32
19
Master Thesis
2.2 Branches
Each ac network branch to be represented in PSS/E as a branch is introduced by reading
a branch data record. The important branch data records that will be considered are X, R and
length. The branch data is got from the KSG report.
2.3 Load
Each network bus at which load is to be represented must be specified in at least one
load data record. The load tab accesses the load data record. The important parameters for the
load tab are described below:
Active power component of constant MVA load; entered in MW.
Reactive power component of constant MVA load; entered in MVAR.
When the power system runs in grid-connect mode, I have to consider the full peak load
in the system to support energy usage of the whole campus with labs, classrooms, libraries,
dormitories and other facilities. If peak load can be picked up without an issue, the microgrid
will be considered applicable.
According the data collected by Zeming and FMS, UPC campus has a peak load power
of 28.545MW. What’s more, the total critical load of USC is around 8.094 MW and 4.701
Mvar and is distributed in various circuits (i.e from CIRCUIT A to CIRCUIT T)
The list of critical buildings and their load profile data is as given below. Load takes only
total active power and reactive power of each phase. Here the whole system is assumed to be
balanced system with a global power factor of 0.87. This power factor value is the common
value used at USC FMS (Facility Management Service). The total load data is attached in the
appendix under every feeder.
Critical load
Bus Building kVA Max kW Using
max
KVA
q kvar pf Level Priority
213
BSR-
COL-
EVK-
HRH
750 432 66% 496.81 244.43 0.87 1 1
174 IRC 2,500 496 23% 570.40 280.64 0.87 1 2
178 PRB 2,000 216 12% 248.40 122.21 0.87 1 3
129 PKS (F) 300 90 35% 103.50 50.92 0.87 1 4
127 PKS (G) 500 53 12% 60.95 29.99 0.87 1 5
30
PTD-
ALM
300 92 35% 105.80 52.05 0.87 1 6
27
TRO-
REG
300 212 81% 243.80 119.95 0.87 1 7
345 WTO 1,500 316 24% 363.40 178.79 0.87 1 8
20
Master Thesis
Table 3 Critical Load
As Carol in FMS told me, this priority list and transformer sheet which is made by USC
FMS are primarily concerned with providing power after a catastrophic event, such as an
earthquake. Level 1 buildings are associated with maintaining power to areas where Human
Life and Animal Research are of prime concern. This list starts with addressing residential
halls, triage locations and food service locations and animal research areas. The exact order
in which generators are placed will be determined based on the specific conditions at that
time, but is a general guideline.
Besides the critical load, the rest load in USC system are recognized as non-critical load.
Thus I list all the non-critical load bus numbers and bus voltage below. The load data is
available in appendix.
351 FLT 1,000 484 56% 556.60 273.85 0.87 1 9
327
SHC-
FWH-
URC
500 174 40% 200.10 98.45 0.87 1 10
39 UPV 225 112 57% 128.80 63.37 0.87 1 11
268 PSD 75 20 31% 23.00 11.32 0.87 1 12
46 TCC 2,500 648 30% 745.20 366.64 0.87 1 13
45
TCC
Mechani
cal
2,500 1,095 50% 1259.25 619.55 0.87 1 14
131 PSA 300 155 59% 178.25 87.70 0.87 1 15
349 KOH 750 298 46% 342.70 168.61 0.87 1 16
159 DEN 1,500 896 69% 1030.45 506.98 0.87 1 17
161 DEN 500 240 55% 276.00 135.79 0.87 1 18
244 LRC 500 85 20% 97.75 48.09 0.87 1 19
232 RRI 1,500 444 34% 510.60 251.22 0.87 1 20
234 RRI 1,500 568 44% 653.20 321.37 0.87 1 21
109 HNB 1,000 315 36% 362.25 178.23 0.87 1 22
85 AHF 750 450 69% 517.50 254.61 0.87 1 23
314 LTS 225 100 51% 115.00 56.58 0.87 1 24
305 FPM 500 72 17% 82.80 40.74 0.87 1 25
Non Critical Load
6 RRB 0.4800 138 SCD 0.2080 254 UCC-480(2) 0.4800
21
Master Thesis
9 FNS/YWC/STO 0.4800 140 PED-208 0.2080 257 CTV 0.4800
16 ACC 0.2080 141 PED-480 0.4800 258 LPB/SSS 0.2080
18 BRI 0.2080 148 SGM-2 0.4800 264 MRF/EDL/SWC 0.4800
25 DML 0.4800 149 SGM-1 0.4800 267 PSD-480 0.4800
35 OHE-480 0.4800 160 DEN-208 0.2080 275 THH 0.4800
36 OHE208 0.2080 165 WAH 0.4800 276 JEP/AHN 0.2080
47 STU 0.4800 168 PHE 0.4800 280 WPH/SOS/CAS20.4800
52 COM/BKS 0.4800 171 SAL 0.4800 281 WPH/SOS/CAS10.2080
54 VHE-208 0.2080 181 ACB-480 0.4800 283 VKC-208 0.2080
56 VHE-480-2 0.4800 182 ACB-208 0.2080 288 VKC-480 0.4800
59 HED/PCE 0.4800 185 LHI 0.4800 293 RGL 0.2080
60 VHE-480-1 0.4800 188 LHI/SLH 0.4800 296 JKP 0.4800
61 RTH-208 0.2080 193 SHS/OCW/LJS20.4800 298 BMH 0.2080
69 EEB 0.4800 194 SHS/OCW/LJS10.2080 303 POA/PPB/PPG+0.2080
71 RTH-480 0.4800 196 MHP 0.2080 309 HER 0.4800
79 ZHS 0.4800 203 HOH-480 0.4800 311 PIC-480 0.4800
90 LVL 0.4800 204 HOH-208 0.2080 312 PIC-208 0.2080
97 DCC 0.4800 205 LAW 0.4800 329 ASI 0.2080
101 ADM-N 0.4800 220 GFS 0.4800 333 ASC-1 0.4800
103 ADM-C 0.4800 222 HRC/CWO/CWT 0.4800 334 ASC-2 0.4800
104 ADM-S 0.4800 227 BDF 0.4800 335 BIT 0.2080
111 SSC-480 0.4800 229 DRC 0.2080 347 JEF 0.2080
114 BHE 0.2080 236 MTS 0.4800 354 PSB 0.4800
120 SSL 0.2080 239 KAP-480 0.4800 377 HAR 0.4800
122 SSC-208-2 0.2080 240 KAP-208 0.2080 387 RHM/MUS 0.4800
124 SSC-208-1 0.2080 246 MAC 0.4800 391 NCT 0.2080
133 GER 0.4800 252 UCC-208 0.2080
136 DRB 0.4800 253 UCC-480(1) 0.4800
22
Master Thesis
Table 4 None Critical Load
2.4 Machines
Data entered in the spreadsheet view will be entered in the load flow working case (*.sav
file). The source data records may be input from a Machine Impedance Data File or from the
dialog input device (console keyboard or Response File). The important parameters for the
machines tab are described below:
This is a one, or two, character uppercase, nonblank, alphanumeric machine identifier. It
is used to distinguish among multiple machines at a plant (i.e., at a generator bus). At buses
in which there is a single machine present, ID = 1. In my project, I try to classify every
machine in the system. Thus for different kind of DG, I give them different ID. For example,
I name the photovoltaic panels as ID=PV. For microturbines, ID=MT. For utility, ID=UT.
And for EV/Battery module, ID=EV.
2.4.1 Photovoltaic panels
According to Mengna’s proposal in her conceptual plan, basing on data of the 13 sub
areas offered by the map system in UPC campus, together with graphical status of each
building, further estimation is conducted for every building. 38 buildings within campus are
chosen to be objects of installing photovoltaic panels.
Considering error of the solar map and estimation of each building solar potential, a
factor of 0.9 is used for a safe plan. Total photovoltaic panel capacity is calculated as
3.82MW AC output.
Buildin
g
ID
Circu
it
Capacity(K
W)
Buildin
g ID
Circu
it
Capacity(K
W)
Buildin
g ID
Circu
it
Capacity(K
W)
SEL N 88 ACB S,H 28 DMT H,P 88
MRF N 88 LAW H 180 DEN E,K 285
DCC N,I 88 BRI A 88 HER Q 156
PSD N 340 ACC A 88 OHE B 12
BIT K 88 HOH H 88 PRB M,F 84
PED K,E 268 AHF T 88 IRC M,F 120
THH P 88 LRC J,Q 20 GER D 120
ADM I,K 88 JKP P 88 WTO L 12
BKS A 88 DML A,P 84 PSB L 12
STU I 85 VKC P 128 KAP M,J 108
23
Master Thesis
RRB A 88 LVL N,I 88 DRB M 120
SHS S,H 28 PTD A,P 84 PSA D 34
SLH S,H 28 BSR H,P 168
Table 5 Solar Panel Capacity
Solar resources are taken as inverter type distributed resources in PSS/E. For adjusting
output power for every building, measurement controlled P&Q output is used as control type.
The generator machine which ID is PV is added in PSS/E model. The PV generator machine
is added to the buses above and the Real Power generated in PV is set according to data
above.
PV Panel Load flow Setting:
PV panels are decoupled from the grid by a power converter which is actually connected
to the grid. The wind control mode should be set as 2 for PV panel, i.e. a wind machine
which controls a remote bus voltage within the given range [Qmin; Qmax] of reactive power.
As for load flow models of most power electronic devices, the source reactance of this
machine should be set as infinite: XSORCE = 99999.
Figure 6 PV Data Record Example
I have to mention that because PV plants have limited Pmax and Qmax, Qmin. Thus I set
them as 1.5 MW and +/- 0.5 Mvar in my project. And I set the MVAbase for all PVs as
1.8MVA.
2.4.2 Microturbines
Microturbines have small number of moving parts, compact size, low emissions and
relatively low installed and O&M costs. So Microturbines are used for compensating critical
load in UPC campus assisting solar energy.
24
Master Thesis
As Mengna mentions in her report, the microturbines (MTs) running on natural gas
represent an important and emerging technology in distributed generation (DG) systems.
Micro Gas Turbine can have many positive impacts on the operation of power systems. And
the micro gas turbine is also the one Mengna uses in her conceptual plan. One of the
significant benefits MTG could bring us is that it can start very quickly at the peak load
period to remedy the demand constraint. In addition, the combined heat and power (CCHP)
system is able to reuse the waste heat.
6 MW microturbine capacity is taken in to consideration. According to Mengna’s
proposal in her conceptual plan, each 1.5MW of microturbines is installed near each of the
four LADWP services, because there is no main transformer in charge of the whole campus.
Power produced by the microturbines can be transmitted to different circuits and then
transform into different voltage levels according to the load need.
The four microturbines is put at bus 1: BIEGLER-1, 113: BIEGLER-2, 255:
JEFFERSON-2, 324: K-MH67.
Figure 7 Simulation of micro turbine in PSS/E
2.4.3 EV/Batteries
Batteries are used when necessary for energy storage device, especially when there is a
system issue in the bulk grid and UPC grid isolates as a microgrid. Energy storage system can
store energy when the system operate normally. During transient time domain, there may be
power fluctuation from sources and loads. The battery can serve as an energy supplier to
smooth the system and keep its stability.
The energy stored in the battery can be used either for tariff based rate arbitrage or
power quality and reliability. When grid connected, the battery can charge or discharge as
dictated by the Energy Management System in order to maximize the economic benefit of the
25
Master Thesis
battery. The rate arbitrage scheme is based on the utility tariff structure and not on real time
pricing. During a grid disturbance or outage, the energy in the battery is used to continuously
supply high quality power to the on-site loads.
The battery is sized at 3MWh to be able to serve the facility demand. Two battery each is
1.5Mh is installed in the two parking structure, PSD-208 and PSB. In this way the EVs in
parking structure are served as kind of battery module. This would allow the facility to island
from the utility grid when the microturbines or part of the PV system are on-line, but may
require load shedding in the unlikely event that all PV inverters and the microturbines are
offline. The 3MWh storage capacity was sized such that on a typical summer day the battery,
micro turbines and solar photovoltaics could serve critical load peak-period energy usage in
both day and night.
Figure 8 Simulation of PV and EV in PSS/E
All the machines or distribution generator I added in PSS/E USC microgrid model are shown
below.
26
Master Thesis
Figure 9 All the DGs added in PSS/E USC model
2.5 Winding Transformer
Each transformer to be represented in PSS/E is introduced by reading a transformer data
record block. The transformer data record block can be accessed by clicking on the 2
Winding Transformer tab. The transformer data is collected from KSG report.
2.6 Voltage limitation check
After the modeling of whole USC microgrid system, I try to do the limit checking to see
if there are some voltage problems in the system.
27
Master Thesis
Figure 10 Voltage limitation check
The limit check report comes out as below:
BUSES WITH VOLTAGE GREATER THAN 1.1000:
BUS# X-- NAME --X BASKV AREA V(PU) V(KV) BUS# X-- NAME --X BASKV AREA V(PU) V(KV)
* NONE *
BUSES WITH VOLTAGE LESS THAN 0.9000:
BUS# X-- NAME --X BASKV AREA V(PU) V(KV) BUS# X-- NAME --X BASKV AREA V(PU) V(KV)
45 TCC-480 0.4800 1 0.8505 0.408 120 SSL 0.2080 1 0.6201 0.129
312 PIC-208 0.2080 1 0.8631 0.180
From this report, I find that there are voltage problem at bus 45, 312 and 120. The
switched shunts need to be added to support the voltages in these buses.
28
Master Thesis
2.7 Switched Shunts
Shunts are used in the power system to improve the quality of the electrical supply and
the efficient operation of the power system. There are two types of shunt compensation; shunt
capacitive compensation and shunt inductive compensation.
The shunt capacitive compensation is used to improve the power factor while the shunt
inductive compensation is used to maintain the required voltage level, generally in the case of
a very long transmission line. Switched shunts are simply shunts that have the ability to be
controlled.
The “Switched Shunts” tab in PSS/E lists all of the shunt compensation in the overall
system, both capacitive and inductive, along with all of the pertinent information for the
switched shunts:
Thus according to the voltage limit check report, I connect four shunt capacitors near the
buses with low voltage to support the voltages in these buses.
29
Master Thesis
Figure 11 Shunted capacitor added in PSS/E
Then I do the bus voltage limitation check again and no voltage problem exists any
more.
BUSES WITH VOLTAGE GREATER THAN 1.1000:
BUS# X-- NAME --X BASKV AREA V(PU) V(KV) BUS# X-- NAME --X BASKV AREA V(PU) V(KV)
* NONE *
BUSES WITH VOLTAGE LESS THAN 0.9000:
BUS# X-- NAME --X BASKV AREA V(PU) V(KV) BUS# X-- NAME --X BASKV AREA V(PU) V(KV)
* NONE *
2.8 Combine the .sav file
I build the model of USC microgrid based on the KSG report and Zeming’s data.
Because USC system is really a big system. I build the system in PSS/E feeder by feeder.
And then a big problem is how to connect those .sav file together into one case. I find the
solution is first converting the sav file to raw file in PSS/E. And then save each raw file for
each feeder in PSS/E and configure RAW file to add to working case. Finally I open the raw
file of feeder A to feeder T one by one in one case. The raw files of different feeders are
combined together automatically! I can also convert the raw file including all feeders back to
sav file in PSS/E.
30
Master Thesis
Figure 12 Save RAW file as add to working case
2.9 Combine the .sld file
The .sav file is now combined together as is shown above. I have got the .sav file
including data from all the feeders. Then how to combine the .sld file from separate feeders?
The function of auto draw is used in PSS/E to combine the .sld file in every feeder into
one .sld file representing the whole USC system.
Figure 13 PSS/E Autodraw
Set the select bus of Auto-Draw as 1,113,255,323 and grow N levels as 15. The bus
31
Master Thesis
1,113,255 and 323 is chosen because they are buses representing the four substations in USC
system.
Figure 14 Combine the 19 feeders SLD in one case using autodraw
32
Master Thesis
CHAPTER 3: Load Flow Analysis
Load flow or power flow studies are used to help determine the state of the power
system. Load flow studies determine system voltages, currents, the active and reactive
powers as well as the power factors. These parameters are used to determine system losses,
conductor ampacity ratings, and voltage levels at particular (buses) connection points of the
power system.
Exceeded energy can be stored in the batteries. Again, load modeling is set to constant P
and Q because this is a snapshot run. Convergence tolerances are 0.5% for volt difference,
0.05% for Current Change and 300 as max number of iterations.
I do the power flow analysis based on the way Aarti did last summer. I classify the
scenarios as Case A (Grid Connect Mode) and Case B (Island Mode).
Case A (Grid Connect Mode): The Bus 323 Jefferson-1 is defined as swing bus in
the system.
For the four MTs, there are 5 conditions: 100% (All MTs are in service), 75% (Three
MTs are in service), 50% (Two MTs are in service), 25% (One MT is in service) and 0% (All
MTs are out of service)
For two EV/Battery module, there are 3 conditions: 100% (Two EV/Battery module
connected), 50% (One EV/Battery module connected), 0% (No EV/Battery module
connected)
For PV module, there are 3 conditions: 100% PV (All the PV operate at full capacity),
50% PV (All the PV operate at half capacity) and 0% PV (No PV is in service & Night
Mode).
Thus for case A (Grid Connect Mode), there are 5*3*3=45 load flow scenarios for
Connect Mode.
Case B (Island Mode):
Because in this mode, the utility is cut off. Thus I have to choose another generator
connected bus as swing bus. I choose the bus BIEGLER-1 micro turbine connected bus as
swing bus.
For the three control available MTs, there are 4 conditions: 100% (Three MTs are in
service), 66% (Two MTs are in service), 33% (One MT is in service) and 0% (All MTs are
out of service)
For two EV/Battery, there are 3 conditions: 100% (Two EV/Battery module connected),
50% (One EV/Battery module connected), 0% (No EV/Battery module connected)
For PV module, there are 3 conditions: 100% PV (All the PV operate at full capacity),
50% PV (All the PV operate at half capacity) and 0% PV (No PV is in service & Night
Mode).
Thus for case B (Island Mode), there are 4*3*3=36 load flow scenarios for Island Mode.
33
Master Thesis
Figure 15 The Case Scenario file folders I built to do simulation
Before the load flow analysis, I have to check the number mismatch in sav file. I find
that there is no number mismatch in the sav file. If there are some number mismatches, there
will be some yellow area in PSS/E. For table Case B, there are some number in red color.
That is because in some scenarios in Case B, the swing bus generator BIEGLER-1’s power
output is over the limitation of its micro turbine 1.5 MW. Thus in these red color scenarios, if
the microturbine remain unchanged, there will be voltage drop and frequency problem
because the power output in the system is not enough for critical load.
34
Master Thesis
CASE A
Grid
Connecte
d Mode
DAY Scenario P Q K-MH67
JEFFERSON
-2
BIEGLER-1 BIEGLER-2 PSD-208 PSB
100%MT+100%EV+100%PV 1 17.2 -7.6 1.5 1.5 1.5 1.5 1.5 1.5
75%MT+100%EV+100%PV 2 18.8 -4.8 1.5 1.5 1.5 0 1.5 1.5
50%MT+100%EV+100%PV 3 20.4 -1.9 1.5 0 1.5 0 1.5 1.5
25%MT+100%EV+100%PV 4 22 9.4 1.5 0 0 0 1.5 1.5
0%MT+100%EV+100%PV 5 23.6 21 0 0 0 0 1.5 1.5
100%MT+50%EV+100%PV 6 18.6 -8.1 1.5 1.5 1.5 1.5 1.5 0
75%MT+50%EV+100%PV 7 20.2 -5.4 1.5 1.5 1.5 0 1.5 0
50%MT+50%EV+100%PV 8 21.8 -2.4 1.5 0 1.5 0 1.5 0
25%MT+50%EV+100%PV 9 23.4 8.8 1.5 0 0 0 1.5 0
0%MT+50%EV+100%PV 10 25 20.6 0 0 0 0 1.5 0
100%MT+0%EV+100%PV 11 19.5 -8.8 1.5 1.5 1.5 1.5 0 0
75%MT+0%EV+100%PV 12 21 -6.1 1.5 1.5 1.5 0 0 0
50%MT+0%EV+100%PV 13 22.7 -3.3 1.5 0 1.5 0 0 0
25%MT+0%EV+100%PV 14 24.3 7.9 1.5 0 0 0 0 0
0%MT+0%EV+100%PV 15 25.8 19.1 0 0 0 0 0 0
100%MT+100%EV+50%PV 16 19.1 -8.7 1.5 1.5 1.5 1.5 1.5 1.5
75%MT+100%EV+50%PV 17 20.6 -5.9 1.5 1.5 1.5 0 1.5 1.5
50%MT+100%EV+50%PV 18 22.3 -2.8 1.5 0 1.5 0 1.5 1.5
25%MT+100%EV+50%PV 19 23.9 8.9 1.5 0 0 0 1.5 1.5
0%MT+100%EV+50%PV 20 25.4 20.7 0 0 0 0 1.5 1.5
100%MT+50%EV+50%PV 21 20.5 -9.3 1.5 1.5 1.5 1.5 1.5 0
75%MT+50%EV+50%PV 22 22 -6.4 1.5 1.5 1.5 0 1.5 0
50%MT+50%EV+50%PV 23 23.7 -3.3 1.5 0 1.5 0 1.5 0
25%MT+50%EV+50%PV 24 25.2 8.4 1.5 0 0 0 1.5 0
0%MT+50%EV+50%PV 25 26.8 20.2 0 0 0 0 1.5 0
100%MT+0%EV+50%PV 26 21.5 -10.1 1.5 1.5 1.5 1.5 0 0
75%MT+0%EV+50%PV 27 23.1 -7.2 1.5 1.5 1.5 0 0 0
50%MT+0%EV+50%PV 28 24.7 -4.2 1.5 0 1.5 0 0 0
25%MT+0%EV+50%PV 29 26.3 7.5 1.5 0 0 0 0 0
0%MT+0%EV+50%PV 30 27.8 19.4 0 0 0 0 0 0
CASE A
Grid
Connecte
d Mode
NIGHT Scenario P Q K-MH67
JEFFERSON
-2
BIEGLER-1 BIEGLER-2 PSD-208 PSB
100%MT+100%EV+0%PV 31 20.9 -9.9 1.5 1.5 1.5 1.5 1.5 1.5
75%MT+100%EV+0%PV 32 22.6 -6.9 1.5 1.5 1.5 0 1.5 1.5
50%MT+100%EV+0%PV 33 24.1 -3.7 1.5 0 1.5 0 1.5 1.5
25%MT+100%EV+0%PV 34 25.7 8.5 1.5 0 0 0 1.5 1.5
0%MT+100%EV+0%PV 35 27.3 21 0 0 0 0 1.5 1.5
100%MT+50%EV+0%PV 36 22.4 -10.5 1.5 1.5 1.5 1.5 1.5 0
75%MT+50%EV+0%PV 37 23.9 -7.5 1.5 1.5 1.5 0 1.5 0
50%MT+50%EV+0%PV 38 25.6 -4.3 1.5 0 1.5 0 1.5 0
25%MT+50%EV+0%PV 39 27.1 7.8 1.5 0 0 0 1.5 0
0%MT+50%EV+0%PV 40 28.6 20.2 0 0 0 0 1.5 0
100%MT+0%EV+0%PV 41 23.5 -11.3 1.5 1.5 1.5 1.5 0 0
75%MT+0%EV+0%PV 42 25 -8.3 1.5 1.5 1.5 0 0 0
50%MT+0%EV+0%PV 43 26.7 -5.1 1.5 0 1.5 0 0 0
25%MT+0%EV+0%PV 44 28.2 7 1.5 0 0 0 0 0
0%MT+0%EV+0%PV 45 29.8 19.6 0 0 0 0 0 0
Utility
Utility MT EV
MT EV
35
Master Thesis
CASE A
DAY RRB
FNS/YWC/
STO
ACC BRI DML REG/TRO PTD/ALM OHE-480 STU AHF LVL DCC ADM-N PSA GER DRB PED-480 DEN/IMS IRC-2 PRB ACB-208 LHI/SLH
SHS/OCW/
LJS
HOH-208 LAW
BSR/HRH/
EVK
KAP-480 LRC LPB/SSS
MRF/EDL/
SWC
PSD-208 THH VKC-480 JKP HER M-MH67 WTO PSB
100%MT+100%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
75%MT+100%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
50%MT+100%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
25%MT+100%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
0%MT+100%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
100%MT+50%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
75%MT+50%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
50%MT+50%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
25%MT+50%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
0%MT+50%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
100%MT+0%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
75%MT+0%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
50%MT+0%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
25%MT+0%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
0%MT+0%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
100%MT+100%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
75%MT+100%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
50%MT+100%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
25%MT+100%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
0%MT+100%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
100%MT+50%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
75%MT+50%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
50%MT+50%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
25%MT+50%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
0%MT+50%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
100%MT+0%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
75%MT+0%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
50%MT+0%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
25%MT+0%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
0%MT+0%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
CASE A
NIGHT RRB
FNS/YWC/
STO
ACC BRI DML REG/TRO PTD/ALM OHE-480 STU AHF LVL DCC ADM-N PSA GER DRB PED-480 DEN/IMS IRC-2 PRB ACB-208 LHI/SLH
SHS/OCW/
LJS
HOH-208 LAW
BSR/HRH/
EVK
KAP-480 LRC LPB/SSS
MRF/EDL/
SWC
PSD-208 THH VKC-480 JKP HER M-MH67 WTO PSB
100%MT+100%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75%MT+100%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50%MT+100%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25%MT+100%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0%MT+100%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100%MT+50%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75%MT+50%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50%MT+50%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25%MT+50%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0%MT+50%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100%MT+0%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75%MT+0%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50%MT+0%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25%MT+0%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0%MT+0%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PV
PV
36
Master Thesis
CASE B
Island
Mode
with
only
critical
load
DAY Scenario P Q K-MH67 BIEGLER-2 PSD-208 PSB
100%MT+100%EV+100%PV 46 -2.7 4.7 1.5 1.5 1.5 1.5
67%MT+100%EV+100%PV 47 -1.2 4 1.5 0 1.5 1.5
33%MT+100%EV+100%PV 48 0.3 4 1.5 0 1.5 1.5
0%MT+100%EV+100%PV 49 1.8 7 0 0 1.5 1.5
100%MT+50%EV+100%PV 50 -1.3 3.6 1.5 1.5 1.5 0
67%MT+50%EV+100%PV 51 0.2 3 1.5 0 1.5 0
33%MT+50%EV+100%PV 52 1.7 3 1.5 0 1.5 0
0%MT+50%EV+100%PV 53 3.2 6.5 0 0 1.5 0
100%MT+0%EV+100%PV 54 -0.4 2.9 1.5 1.5 0 0
67%MT+0%EV+100%PV 55 1.1 2.3 1.5 0 0 0
33%MT+0%EV+100%PV 56 2.6 2.1 1.5 0 0 0
0%MT+0%EV+100%PV 57 4.1 5.2 0 0 0 0
100%MT+100%EV+50%PV 58 -0.9 3.6 1.5 1.5 1.5 1.5
67%MT+100%EV+50%PV 59 0.6 3.1 1.5 0 1.5 1.5
33%MT+100%EV+50%PV 60 2.1 3.2 1.5 0 1.5 1.5
0%MT+100%EV+50%PV 61 3.6 6.8 0 0 1.5 1.5
100%MT+50%EV+50%PV 62 0.5 2.6 1.5 1.5 1.5 0
67%MT+50%EV+50%PV 63 2 2.1 1.5 0 1.5 0
33%MT+50%EV+50%PV 64 3.5 2.3 1.5 0 1.5 0
0%MT+50%EV+50%PV 65 5 6.3 0 0 1.5 0
100%MT+0%EV+50%PV 66 1.5 1.9 1.5 1.5 0 0
67%MT+0%EV+50%PV 67 3 1.4 1.5 0 0 0
33%MT+0%EV+50%PV 68 4.5 1.4 1.5 0 0 0
0%MT+0%EV+50%PV 69 6 5.2 0 0 0 0
CASE B
Island
Mode
with
only
critical
load
NIGHT Scenario P Q K-MH67 BIEGLER-2 PSD-208 PSB
100%MT+100%EV+0%PV 70 0.9 2.6 1.5 1.5 1.5 1.5
67%MT+100%EV+0%PV 71 2.4 2.2 1.5 0 1.5 1.5
33%MT+100%EV+0%PV 72 3.9 2.5 1.5 0 1.5 1.5
0%MT+100%EV+0%PV 73 5.4 6.7 0 0 1.5 1.5
100%MT+50%EV+0%PV 74 2.3 1.6 1.5 1.5 1.5 0
67%MT+50%EV+0%PV 75 3.8 1.2 1.5 0 1.5 0
33%MT+50%EV+0%PV 76 5.4 1.6 1.5 0 1.5 0
0%MT+50%EV+0%PV 77 6.9 6.2 0 0 1.5 0
100%MT+0%EV+0%PV 78 3.4 0.8 1.5 1.5 0 0
67%MT+0%EV+0%PV 79 4.9 0.4 1.5 0 0 0
33%MT+0%EV+0%PV 80 6.4 0.7 1.5 0 0 0
0%MT+0%EV+0%PV 81 7.9 5.2 0 0 0 0 0
0
1.5
1.5
0
0
1.5
1.5
0
JEFFERSON-2
1.5
1.5
0
0
1.5
1.5
0
0
0
0
1.5
1.5
0
1.5
0
0
1.5
1.5
Swing bus with
MT(BIEGLER-1)
MT EV
Swing bus with
MT(BIEGLER-1)
JEFFERSON-2
1.5
1.5
0
0
1.5
1.5
0
0
1.5
MT EV
37
Master Thesis
CASE B
DAY RRB
FNS/YWC/
STO
ACC BRI DML REG/TRO PTD/ALM OHE-480 STU AHF LVL DCC ADM-N PSA GER DRB PED-480 DEN/IMS IRC-2 PRB ACB-208 LHI/SLH
SHS/OCW/
LJS
HOH-208 LAW
BSR/HRH/
EVK
KAP-480 LRC LPB/SSS
MRF/EDL/
SWC
PSD-208 THH VKC-480 JKP HER M-MH67 WTO PSB
100%MT+100%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
67%MT+100%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
33%MT+100%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
0%MT+100%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
100%MT+50%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
67%MT+50%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
33%MT+50%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
0%MT+50%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
100%MT+0%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
67%MT+0%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
33%MT+0%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
0%MT+0%EV+100%PV 0.088 0.088 0.088 0.088 0.084 0.088 0.084 0.012 0.085 0.088 0.088 0.088 0.088 0.034 0.12 0.12 0.268 0.285 0.12 0.084 0.028 0.028 0.028 0.088 0.18 0.168 0.108 0.02 0.088 0.088 0.34 0.088 0.128 0.088 0.156 0.088 0.012 0.012
100%MT+100%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
67%MT+100%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
33%MT+100%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
0%MT+100%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
100%MT+50%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
67%MT+50%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
33%MT+50%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
0%MT+50%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
100%MT+0%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
67%MT+0%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
33%MT+0%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
0%MT+0%EV+50%PV 0.044 0.044 0.044 0.044 0.042 0.044 0.042 0.006 0.0425 0.044 0.044 0.044 0.044 0.017 0.06 0.06 0.134 0.1425 0.06 0.042 0.014 0.014 0.014 0.044 0.09 0.084 0.054 0.01 0.044 0.044 0.17 0.044 0.064 0.044 0.078 0.044 0.006 0.006
CASE B
NIGHT RRB
FNS/YWC/
STO
ACC BRI DML REG/TRO PTD/ALM OHE-480 STU AHF LVL DCC ADM-N PSA GER DRB PED-480 DEN/IMS IRC-2 PRB ACB-208 LHI/SLH
SHS/OCW/
LJS
HOH-208 LAW
BSR/HRH/
EVK
KAP-480 LRC LPB/SSS
MRF/EDL/
SWC
PSD-208 THH VKC-480 JKP HER M-MH67 WTO PSB
100%MT+100%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
67%MT+100%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33%MT+100%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0%MT+100%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100%MT+50%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
67%MT+50%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33%MT+50%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0%MT+50%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100%MT+0%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
67%MT+0%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33%MT+0%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0%MT+0%EV+0%PV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PV
PV
38
Master Thesis
Table 6 Table of Power Flow Case Scenario Result
I will choose four scenario in the load flow table to show how the load flow results come
out.
3.1 Case A Day Mode Scenario 6
CASE A
Grid
Connected
Mode
Utility MT EV
DAY Scenario P Q
K-
MH67
JEFFERSON-
2
BIEGLER-
1
BIEGLER-
2
PSD-
208
PSB
100%MT+50%EV+100%PV 6 18.6
-
8.1
1.5 1.5 1.5 1.5 1.5 0
In this scenario, all the PVs are connected in full capacity and only EV at PSB is
disconnected.
Load Flow Result:
Power flow data changed for machine "EV" at bus 354 [PSB 0.4800]:
X--ORIGINAL--X X-NEW VALUE--X DATA ITEM
1 0 STAT
ITER DELTAP BUS DELTAQ BUS DELTA/V/ BUS DELTAANG
BUS
0 0.0150( 354 ) 0.0029( 354 )
0.11460( 120 ) 0.16846( 354 )
1 0.0006( 353 ) 0.0012( 354 )
0.04880( 120 ) 0.02410( 120 )
2 0.0002( 120 ) 0.0001( 120 )
Reached tolerance in 2 iterations
Largest mismatch: 0.02 MW 0.01 Mvar 0.02 MVA at bus 120 [SSL 0.2080]
System total absolute mismatch: 0.03 MVA
SWING BUS SUMMARY:
BUS# X-- NAME --X BASKV PGEN PMAX PMIN QGEN QMAX QMIN
323 JEFFERSON-1 4.8000 18.6 9999.0 -9999.0 -8.1 9999.0 -9999.0
3.2 Case A Night Mode Scenario 45
CASE A
Grid
Connected
Mode
Utility MT EV
39
Master Thesis
NIGHT Scenario P Q
K-
MH67
JEFFERSON-
2
BIEGLER-
1
BIEGLER-
2
PSD-
208
PSB
0%MT+0%EV+0%PV 45 29.8 19.6 0 0 0 0 0 0
All the PVs, EVs and MTs are cut off in scenario 45.
Figure 16 Setting for Case Scenario 45
40
Master Thesis
Load Flow Result:
ITER DELTAP BUS DELTAQ BUS DELTA/V/ BUS DELTAANG
BUS
0.0 0.0110( 45 ) 0.0062( 45 )
0.00000( ) 0.26339( 120 )
0.5 0.0299( 251 ) 0.0091( 45 )
0.32758( 120 ) 0.00000( )
1.0 0.0497( 251 ) 0.0013( 120 )
0.00000( ) 0.08401( 120 )
1.5 0.0526( 251 ) 0.0137( 251 )
0.14396( 120 ) 0.00000( )
2.0 0.0308( 121 ) 0.0003( 120 )
0.00000( ) 0.01460( 120 )
2.5 0.0300( 121 ) 0.0037( 251 )
0.02094( 120 ) 0.00000( )
3.0 0.0091( 121 ) 0.0002( 119 )
0.00000( ) 0.00779( 120 )
3.5 0.0091( 121 ) 0.0011( 121 )
0.01252( 120 ) 0.00000( )
4.0 0.0008( 135 ) 0.0001( 119 )
Reached tolerance in 4 iterations
Largest mismatch: 0.08 MW 0.00 Mvar 0.08 MVA at bus 135 [M-MH44 4.8000]
System total absolute mismatch: 0.67 MVA
SWING BUS SUMMARY:
BUS# X-- NAME --X BASKV PGEN PMAX PMIN QGEN QMAX QMIN
323 JEFFERSON-1 4.8000 29.7 9999.0 -9999.0 19.5 9999.0 -9999.0
3.3 Case B Day Mode Scenario 66
CASE B
Island Mode
with only
critical load
Swing bus with
MT(BIEGLER-1)
MT EV
DAY Scenario P Q
K-
MH67
JEFFERSON-
2
BIEGLER-
2
PSD-
208
PSB
100%MT+0%EV+50%PV 66 1.5 1.9 1.5 1.5 1.5 0 0
EVs at PSD and PSB are not connected.
Ordering network...
Diagonals = 390 Off-diagonals = 585 Maximum size = 816
41
Master Thesis
ITER DELTAP BUS DELTAQ BUS DELTA/V/ BUS DELTAANG
BUS
0.0 0.0150( 324 ) 0.0062( 45 )
0.00000( ) 0.14865( 45 )
0.5 0.0105( 44 ) 0.0091( 45 )
0.13134( 45 ) 0.00000( )
1.0 0.0154( 44 ) 0.0008( 45 )
0.00000( ) 0.01150( 268 )
1.5 0.0098( 44 ) 0.0069( 44 )
0.01671( 45 ) 0.00000( )
2.0 0.0025( 44 ) 0.0004( 296 )
0.00000( ) 0.00217( 268 )
2.5 0.0017( 44 ) 0.0012( 44 )
0.00362( 296 ) 0.00000( )
3.0 0.0008( 295 ) 0.0004( 296 )
Reached tolerance in 3 iterations
Largest mismatch: -0.08 MW -0.00 Mvar 0.08 MVA at bus 295 [T100-P 4.8000]
System total absolute mismatch: 0.51 MVA
SWING BUS SUMMARY:
BUS# X-- NAME --X BASKV PGEN PMAX PMIN QGEN QMAX QMIN
1 BIEGLER-1 4.8000 1.5 9999.0 -9999.0 1.8 9999.0 -9999.0
3.4 Case B Night Mode Scenario 70
CASE B
Island
Mode with only
critical load
Swing bus
with
MT(BIEGLER-1)
MT EV
NIGHT Scenario P Q
K-
MH67
JEFFERSON-
2
BIEGLER-
2
PSD-
208
PSB
100%MT+100%EV+0%PV 70 0.9 2.6 1.5 1.5 1.5 1.5 1.5
Ordering network...
Diagonals = 390 Off-diagonals = 585 Maximum size = 816
ITER DELTAP BUS DELTAQ BUS DELTA/V/ BUS DELTAANG
BUS
42
Master Thesis
0.0 0.0150( 354 ) 0.0062( 45 )
0.00000( ) 0.58815( 268 )
0.5 0.0108( 44 ) 0.0091( 45 )
0.13169( 45 ) 0.00000( )
1.0 0.0171( 269 ) 0.0008( 45 )
0.00000( ) 0.07933( 268 )
1.5 0.0153( 269 ) 0.0071( 44 )
0.01667( 45 ) 0.00000( )
2.0 0.0029( 269 ) 0.0001( 45 )
0.00000( ) 0.00898( 268 )
2.5 0.0026( 269 ) 0.0011( 44 )
0.00199( 45 ) 0.00000( )
3.0 0.0004( 170 ) 0.0000( 45 )
Reached tolerance in 3 iterations
Largest mismatch: -0.04 MW 0.00 Mvar 0.04 MVA at bus 170 [S-MH18 4.8000]
System total absolute mismatch: 0.64 MVA
SWING BUS SUMMARY:
BUS# X-- NAME --X BASKV PGEN PMAX PMIN QGEN QMAX QMIN
1 BIEGLER-1 4.8000 0.9 9999.0 -9999.0 2.6 9999.0 -9999.0
43
Master Thesis
CHAPTER 4: Dynamic Analysis
The integration of distributed generation technologies into distribution networks creates
a number of technical issues. In order to analyze a grid and examine the impacts of
distributed power penetration, considerations such as the dynamic behavior of powers
systems need to be taken into account. Besides, this kind of study is very important to ensure
the network´s secure operation under fault incidents.
The WECC Disturbance-Performance Parameters are shown in the figure below. It
applies equally to either a system with all elements in service, or a system with one element
removed and the system adjusted. As an example in applying the WECC Disturbance-
Performance, a disturbance in one system shall not cause a transient voltage dip in another
system that is greater than 20% for more than 20 cycles at load buses, or exceed 25% at load
buses or 30% at non-load buses at any time other than during the fault. What is more, when
the power system operates at steady state after recovering from the fault, the post fault bus
voltage should reach or approach the initial value. Fig 17 shows the WECC/NERC voltage
performance parameters.
44
Master Thesis
Figure 17 Dynamic Figure Standard from WECC-NERC
The dynamic response of inertial and non-inertial DGs is different. The response of
inertial DGs (rotary machine based) will be slower compared to the non-inertial DGs
(converter interfaced). For example, a gas turbine generator and a hydro generator are inertial
sources since they include synchronous generators with their rotating inertial masses. Thus, a
finite time is required to change output power of an inertial DG. On the other hand, the DGs
connected through converters such as PVs, fuel cells and batteries are non-inertial and they
can respond to change real and reactive power output very quickly. This mismatch in
response rate can create power and frequency fluctuations in an islanded microgrid where no
single dominant energy source is present.
Therefore, the control and power management strategies are vital for an islanded
microgrid in the presence of few different types of DGs. The frequency and voltage in an
islanded microgrid should be maintained within predefined limits. The frequency variations
are very small in strong grids; however, large variations can occur in islanded grids. Thus
power management strategies are vital for an islanded microgrid in the presence of few small
DG units, where no single dominant energy source is present to supply the energy
requirement. Also, fast and flexible power control strategies are necessary to damp out
transient power oscillations in an islanded microgrid where no infinite source available.
Incorrect dynamic parameters can lead the grid vulnerable. Now I will introduce the
Dynamic Model and Module Parameters I use in USC microgrid dynamic analysis.
4.1 EV/Battery
I use CBEST: the EPRI battery energy storage FACTS model to simulate the dynamic
analysis as EV/Battery module. The logic diagram and parameter explanation for CBEST can
be found in PSS/E User Guide.
Dyr grammar for CBEST: IBUS, ’CBEST’, ID, CON(J) to CON(J+11)
The EPRI CBEST battery model was developed with EPRI sponsorship via RP2123-27.
It simulates the dynamic characteristics of a battery. As in the case of SMES devices,
45
Master Thesis
batteries can be used to improve first-swing (transient) stability, provide damping, and/or
limit frequency excursions. Like in the EPRI CSMEST model case, judicious selection of
external signals is required to model battery performance in any of these functions.
A voltage-source converter is the natural choice for a battery energy system. Power into
and out of the battery is controlled by adjusting battery terminal voltage. The converter
design provides some degree of independence between dc voltage and synthesized voltage
behind converter reactance. This allows independent control of active and reactive powers.
The active power path in the EPRI CBEST model simulates power limitations into and
out of the battery as well as ac current limitations at the converter. The model assumes that
the battery rating is large enough to cover all energy demands that occur during the
simulation.
CONs Value Description
J 1 P MAX (pu on MBASE)
J+1 1.1 O UTE FF, output efficiency ( ≥ 1)
J+2 0.9 I NPE FF, input efficiency ( ≤ 1)
J+3 1.09(May change in dynamic
analysis)
I ACMAX (pu)
J+4 10 K AVR , A VR gain
J+5 0.1 T 1, A VR time constant (sec)
J+6 0.1 T 2, A VR time constant (sec)
J+7 0.1 T 3, A VR time constant (sec) (>0)
J+8 0.1 T 4, A VR time constant (sec)
J+9 9999 V MAX, A VR speed limit (pu)
J+10 -9999 V MIN, A VR speed limit (pu) (<0)
J+11 0.1(May change in dynamic
analysis)
DROOP (pu)
Table 7 CBEST Model Parameters
4.2 Photovoltaic Plant
The PSS®E Solar PV Unit dynamic stability model was developed to simulate
performance of a photovoltaic (PV) plant connected to the grid via a power converter. The
model is largely based on the generic type 4 wind model, WT4, with the added ability to
simulate output changes due to solar irradiation.
The reason for using the Type 4 wind power model is PV plants are connected to the grid
using the same technology used by Type 4 wind farm. From the point of DC-link to the grid
connection, both PV and Type 4 wind technology use similar control and inverter technology
to inject power to the grid.
The PV Generic Model comprises the following modules: power converter/generator
46
Master Thesis
module, electrical control module, linear model of a panel's output curve, and linear solar
irradiance profile. The logic diagram and parameter explanation for PV Module can be found
in PSS/E User Guide.
Figure 18 Relationship within PV module
4.2.1 PVGU1
PVGU1 means User written generator model to represent photovoltaic (PV) systems
Dyr grammar for PVGU1: IBUS 'USRMDL' ID 'PVGU1' 101 1 0 9 3 3 CON(J) to
CON(J+8) /
CONs Value Description
J 0.02 TIqCmd, Converter time constant
for IQcmd, second
J+1 0.02 TIpCmd, Converter time constant
for IPcmd, second
J+2 0.4 VLVPL1, Low voltage power logic
(LVPL) voltage 1, pu
J+3 0.9 VLVPL2, LVPL voltage 2, pu
J+4 1.11 GLVPL gain
J+5 1.2 VHVRCR, High voltage reactive
current (HVRC) logic voltage, pu
J+6 2.0 CURHVRCR, max. reactive
current at VHVRCR, pu
J+7 2.0 Rip_LVPL, Rate of LVACR active
current change
J+8 0.02 T_LVPL, voltage sensor for
LVACR time constants
Table 8 PVGU1 Model Parameters
4.2.2 PVEU1
PVEU1 means Electrical Control Model for PV Converter
Dyr grammar for PVEU1: IBUS ' USRMDL' ID 'PVEU1' 102 0 4 24 10 4 ICON(M)
to ICON(M+3) CON(J) to CON(J+23) /
47
Master Thesis
ICONs Value Description
M 0 Remote bus # for
voltage control; 0 for local
control
M+1 0 PFAFLG: 1 if PF fast
control enabled 0 if PF fast
control disabled
M+2 1 VARFLG: 1 if Qord is
provided by WindVar 0 if
Qord is not provided by
WindVar if
VARFLG=PFAFLG=0 then
Qord is provided as a
Qref=const
M+3 0 PQFLAG: P/Q priority
flag: 0 - Q priority, 1- P
priority
CONs Value Description
J 0.15 Tw, Filter time constant in
voltage regulator (sec(
J+1 18 Kpv, Proportionalgain in voltage
regulator(pu)
J+2 5 Kiv, Integrator gain in voltage
regulator (pu)
J+3 0.05 Kpp, Proportional gain in torque
regulator (pu)
J+4 0.1 Kip, Integrator gain in torque
regulator (pu
J+5 0 Kf, rate feedback gain (pu)
J+6 0.08 Tf, rate feedback time constant
(sec.)
J+7 0.47 Qmx, Max limit in voltage
regulator (pu)
J+8 -0.47 Qmn, Min limit in voltage
regulator (pu)
J+9 1.1 IPmax, Max active current limit
(pu)
J+10 0 Trv, voltage sensor time constant
(sec.)
J+11 0.5 dPMX, maximum power order
rate (pu)
48
Master Thesis
J+12 -0.5 dPMN, minimum power order
rate (pu)
J+13 0.05 Tpower, Power reference filter
time constant, sec.
J+14 0.1 KQi, volt/Mvar gain
J+15 0.9 Vmincl, min. voltage limit
J+16 1.1 Vmaxcl, max. voltage limit
J+17 120 KVi, Int. volt/Term. voltage gain
J+18 0.05 Tv, Lag in WindVar controller
(sec)
J+19 0.05 Tp, Pelec filter in fast PF
controller (sec)
J+20 1.7 ImaxTD, Converter current limit
(pu)
J+21 1.11 Iphl, Hard active current limit
(pu)
J+22 1.11 Iqhl, Hard reactive
current limit (pu)
J+23 10.0 PMX, Max power from PV
plant, MW
Table 9 PVEU1 Model Parameters
Four possible configurations for PVEU1:
1.Current North American configuration with WindVAR:
VARFLG=1, PFAFLG=0, KQi small (e.g., KQi = 0.1)
2.Current North American configuration without WindVAR:
VARFLG=0, PFAFLG=0, KQi very small (e.g., KQi = 0.001)
3.European (PFA control) with WindVAR:
VARFLG=1, PFAFLG=0, KQi large (e.g., KQi = 0.5), KVi large
4.European (PFA control) without WindVAR:
VARFLG=0, PFAFLG=1, Specify desired PFA, KQi large (e.g., KQi = 0.5), KVi large
4.2.3 PANELU1
PANELU1 means user written model to represent the linearized model of PV panel’s
output curve.
PV panel’s output varies with Irradiance, temperature, terminal voltage (set by MPPT).
User enters maximum Pdc (per unitized) for different irradiance levels as cons. For each time
step, reads irradiance level, outputs linearized power order
Dyr grammar for PANELU1: IBUS 'USRMDL' ID 'PANELU1' 103 0 0 5 0 1
49
Master Thesis
CON(J) to CON(J+4) /
CONs Value Description
J 0.16 PDCMAX200, maximum power of
panel at an irradiance of 200 W/m2, pu
on PDCMAX1000 base
J+1 0.38 PDCMAX400, maximum power of
panel at an irradiance of 400 W/m2, pu
on PDCMAX1000 base
J+2 0.59 PDCMAX600, maximum power of
panel at an irradiance of 600 W/m2, pu
on PDCMAX1000 base
J+3 0.85 PDCMAX800, maximum power of
panel at an irradiance of 800 W/m2, pu
on PDCMAX1000 base
J+4 1 PDCMAX1000, maximum power
of panel at an irradiance of 1000 W/m2,
pu on PDCMAX1000 base
Table 10 PANELU1 Model Parameters
4.2.4 IRRADU1
IRRADU1 means User written model to represent the linearized model of PV panel’s
solar irradiance profile. Standard Model that allows user to vary the amount of solar
irradiance. User enters up to ~10 data points (time(s), irradiance (W/m2)) as cons Initializes
based on steady state P/Pmax. For each time step, outputs linearized irradiance level
Dyr grammar for IRRADU1: IBUS 'USRMDL' ID 'IRRADU1' 104 0 1 20 0 1
ICON(M), CON(J) to CON(J+19) /
ICONs Value Description
M 1 In Service Flag, 1: model is in-
service 0: model is OFF
CONs Value Description
J 5 TIME1, Time of first data point,
sec
J+1 1000 IRRADIANCE1, Irradiance at first
data point, W/m2
J+2 10 TIME2, Time of second data point,
sec
J+3 900 IRRADIANCE2, Irradiance at
second data point, W/m2
J+4 15 TIME3, Time of third data point,
sec
50
Master Thesis
J+5 850 IRRADIANCE3, Irradiance at third
data point, W/m2
J+6 20 TIME4, Time of forth data point,
sec
J+7 800 IRRADIANCE4, Irradiance at
forth data point, W/m2
J+8 25 TIME5, Time of fith data point, sec
J+9 700 IRRADIANCE5, Irradiance at fith
data point, W/m2
J+10 30 TIME6, Time of sixth data point,
sec
J+11 600 IRRADIANCE6, Irradiance at
sixth data point, W/m2
J+12 35 TIME7, Time of seventh data
point, sec
J+13 700 IRRADIANCE7, Irradiance at
seventh data point, W/m2
J+14 0 TIME8, Time of eigth data point,
sec
J+15 0 IRRADIANCE8, Irradiance at
eigth at point, W/m2
J+16 0 TIME9, Time of ninth data point,
sec
J+17 0 IRRADIANCE9, Irradiance at
ninth data point, W/m2
J+18 0 TIME10, Time of tenth data point,
sec
J+19 0 IRRADIANCE10, Irradiance at
tenth data point, W/m2
Table 11 IRRADU1 Model Parameters
I use 7 data points to linear my IRRADU1 Model as below.
51
Master Thesis
Figure 19 Irradence Model Line Chart
4.3 Micro Turbine and Utility
4.3.1 GENROU
GENROU means the Round Rotor Generator Model (Quadratic Saturation). GENROU
model represents a round rotor synchronous generator with quadratic saturation in both axis.
Dyr grammar for GENROU: IBUS, ’GENROU’, ID, CON(J) to CON(J+13) /
CONs Value Description
J 8.96 T’ do (>0) (sec)
J+1 0.034 T’ do (>0) (sec)
J+2 0.31 T’ qo (>0) (sec)
J+3 0.05 T” qo (>0) (sec)
J+4 4.728 H, Inertia
J+5 0 D,Speeding damping
J+6 0.73 X d
J+7 0.7 X q
J+8 0.304 X’ d
J+9 0.484 X’ q
0
200
400
600
800
1000
1200
5 10 15 20 25 30 35
Irradence, W/m2
Time
Irradence Model
52
Master Thesis
J+10 0.2 X” d=X” q
J+11 0.15 X I
J+12 0.03 S(1.0)
J+13 0.4 S(1.2)
Table 12 GENROU Model Parameters
The value of X”d entered on GENSAL, GENROU, and GENDCO data sheets must be
identical to the imaginary part of ZSORCE, which is entered in the power flow. The value of
ZSORCE is, similarly, the sub transient impedance of one 5-MVA generator expressed with
respect to a 5-MVA base. If the ZSORCE is not equal to X”d, there will be yellow area in
PSS/E.
The logic diagram and parameter explanation for GENROU can be found in PSS/E User
Guide.
4.3.2 IEEET1
IEEET1 means 1968 IEEE type 1 excitation system model
Excitation control systems are responsible for the voltage regulation of the power
network. These systems should maintain the machine terminal voltages between specified
and workable limits. Outside these limits, particularly for long periods, these voltages
adversely affect the performance of the generator, possibly harming it. The excitation
systems accomplish this regulation by controlling the generator input voltage. These systems
also assure the stability of the voltage.
Dyr grammar for IEEET1: IBUS, ’IEEET1’, ID, CON(J) to CON(J+13) /
CON S Value Description
J 8.96 T R(sec)
J+1 0.034 K A
J+2 0.31 T A(sec)
J+3 0.05 V RMAX or zero
J+4 4.72 V RMIN
J+5 0 K E or zero
J+6 0.73 T E(>0)(sec)
53
Master Thesis
J+7 0.7 K F
J+8 0.304 T F(>0)(sec)
J+9 0.4845 Switch
J+10 0.200 E 1
J+11 0.1500 S E (E 1)
J+12 0.03 E 2
J+13 0.4 S E(E 2)
Table 13 IEEET1 Model Parameters
Figure 20 Logic Diagram of IEEET1
4.3.3 GAST
I choose Model GAST as Governor Control Systems for Microturbines when doing
Dynamic Analysis.
The frequency of a power system is a global quantity and should remain nearly constant,
typically of nominal frequency, for the stable operation of the network. The frequency control
of the system ensures the constancy of speed of the synchronous (and induction) motors,
which is particularly important for the satisfactory performance of the generating units. The
frequency regulation is closely related with the balance between production and consumption
of active power. Therefore, a change in power demand at a certain point of the network is
reflected throughout the system by an adjustment of the frequency. Governor control
systems ensure that generators satisfy the changes in demand so that the active power
balance is maintained.
Each microturbine generation unit is provided with a speed governor, which assures the
called primary control. When load demand changes, the generated active power vary, leading
to mismatches between mechanical and active powers, which result in variations on the speed
of the machine. The governor measures the rotating speed of the unit and compares it with
the reference. Based on the resultant error, the admission valves or gates will open or close in
order to increase or decrease the mechanical power so that the mismatch gradually
disappears.
54
Master Thesis
A gas turbine usually consists in a compressor, a combustion chamber and a turbine
operating under the Brayton cycle. It can operate in both open and closed systems, being that
the first one is the most currently used.
Figure 21 Gas Turbine Scheme
Gas Turbine model in PSS/E:
GAST Gas turbine governor model
‐Simple model. This is the model I choose in PSS/E dynamic analysis.
•GAST2A Gas turbine governor model
‐Similar to the Rowen model
•GASTWD Gas turbine governor model
‐Suitable for Woodward governors
Dyr grammar for GAST: IBUS, ’GAST’, ID, CON(J) to CON(J+8) /
CONs Value Description
J 0.05 R
J+1 0.4 T 1 (>0) (sec)
J+2 0.1 T 2(>0) (sec)
J+3 3.0 T 3 (>0) (sec)
J+4 1.0 Ambient temperature load limit
AT
J+5 2.0 K T
J+6 0.95 V MAX
J+7 0 V MIN
J+8 0 D turb
Table 14 GAST Model Parameters
55
Master Thesis
Figure 22 Logic Diagram of GAST
4.3.4 PSS2A
PSS2A means 1992 IEEE type PSS2A dual-input signal stabilizer model. Model PSS2A
is a dual-input stabilizer. This model can represent a variety of stabilizers with inputs of
power, speed, or frequency. For each of the two inputs, two washouts can be represented
along with a transducer time constant. The indices N and M allow a ramp-tracking or simpler
filter characteristic to be represented. Phase compensation is provided by the two lead-lag or
lag-lead blocks
Dyr grammar for PSS2A: IBUS, ’PSS2A’, ID, ICON(M) to ICON(M+5), CON(J) to
CON(J+16) /
CONs Value Description
J 2 T w1(>0)
J+1 2 T w2
J+2 0 T 6
J+3 2 T w3(>0)
J+4 4 T w4
J+5 2 T 7
J+6 0.4 K S2
J+7 1 K S3
J+8 0.5 T 8
56
Master Thesis
J+9 0.1 T 9(>0)
J+10 30 K S1
J+11 0.15 T 1
J+12 0.03 T 2
J+13 0.15 T 3
J+14 0.03 T 4
J+15 0.1 V STMAX
J+16 -0.1 V STMIN
ICONs Value Description
M 1 ICS1, first stabilizer input code: 1
rotor speed deviation (pu)
2 bus frequency deviation (pu)
3 generator electrical power on
MBASE base (pu)
4 generator accelerating power (pu)
5 bus voltage (pu)
6 derivative of pu bus voltage
M+1 0 REMBUS1, first remote bus number
M+2 3 ICS2, second stabilizer input code:
1 rotor speed deviation (pu)
2 bus frequency deviation (pu)
3 generator electrical power on
MBASE base (pu)
4 generator accelerating power (pu)
5 bus voltage (pu)
6 derivative of pu bus voltage
M+3 0 REMBUS2, second remote bus number
M+4 5 M, ramp tracking filter
M+5 1 N, ramp tracking filter
Table 15 PSS2A Model Parameters
The logic diagram and parameter explanation for PSS2A can be found in PSS/E User
Guide.
4.3.5 GENCLS
GENCLS means Constant Internal Voltage Generator Model
Because the swing generator (Bus 323 Jefferson-1) is not a true 'infinite' machine, it
57
Master Thesis
is better to use a classical model, with no excitation model. Thus, model GENCLS is
used for swing bus.
GENCLS is the classical constant voltage behind transient reactance generator model.
Setting the type code of the terminal bus to 1, or the generator status flag to zero, removes the
unit from service.
GENCLS initializes EFD(I) to the initial condition value of E’q for the generator. After
being initialized in STRT, EFD(I) for GENCLS models should not be changed during a run.
It is not valid to use an excitation system to vary EFD in conjunction with the GENCLS
model.
IBUS, ’GENCLS’, ID, CON(J) and CON(J+1) /
CONs Value Description
J 20.0 H, Inertia1
J+1 0.1 D, Damping constant
Table 16 GENCLS Model Parameters
Then let me introduce the dynamic analysis simulation cases and results below.
Figure 23 The three file folders/cases I built to do dynamic analysis in Day/Night
4.4 Connect to Island Mode At Night
First I have to run the power flow in the connect mode at night. The P and Q value at
machine EV at bus PSB is as below. Then I can calculate the power factor of EV module and
set the value in dyr CBEST.
PSB EV:
58
Master Thesis
Figure 24 PSB-EV Parameter Editor
power factor =
𝑃𝑃 � 𝑃𝑃 2
+ 𝑄𝑄 2
=
1.5
√1.5
2
+ 0.6477
2
= 0.918
Iacmax=Pmax/Power Factor=1/0.918=1.09
Droop = 0.05/Iacmax=0.046
Figure 25 Dynamic Setting for CBEST in Night Mode
59
Master Thesis
Then I cut off all the PV module in the system to simulate system at night. And connect
the four MTs, CBEST EV/battery modules and the Utility in the system. Then load the .dyr file
and do dynamic analysis. Several steps or disturbance are done during dynamic period. The
dyr file is shown in appendix.
1. From 0s-10s, all the PV is not connected and all the MT, EV/battery module and Utility
is connected in the system. The load is full load.
2. At 10s, one fault happens at utility machine bus Bus Jefferson-1. And the fault last
about 5 cycles=0.083s
3. At 10.083s, the fault is clear at bus Jefferson-1. Then the utility machine UT is
disconnected from the system.
4. Then the non-critical load bus is disconnected. Now the system turns into the island
mode at night. The system is running with only critical load and with four MT and two
CBEST EV/battery module.
60
Master Thesis
Figure 26 Machine Settings when dynamic analysis at night
I use the PSS/E program automation function to run the dynamic analysis procedures at
night mode above. The coding of python is attached in appendix.
Figure 27 Program Automation
The dynamic result of several selected bus voltages are shown below.
VOLT, bus pu voltages (complex):
Figure 28 Voltage at bus BIEGLER-1 at night mode
61
Master Thesis
Figure 29 Voltage at bus BIEGLER-2 at night mode
Figure 30 Voltage at bus JEFFERSON-2 at night mode
The voltage recovery depends on system strength
–The amount of Q support (Gen, SVC…)
62
Master Thesis
–The amount of Q consumption (Load, transmission impedance..)
BSFREQ, bus pu frequency deviations.
Figure 31 Frequency at Bus PSD-208 at night mode
FLOW(P)
Figure 32 Power Flow at Bus 323 at night mode
63
Master Thesis
4.5 Connect to Island Mode In Daytime
First revise the parameters in CBEST module in the same way as mentioned above.
Figure 33 PSB-EV Parameter Editor
power factor =
𝑃𝑃 � 𝑃𝑃 2
+ 𝑄𝑄 2
=
1.5
√1.5
2
+ 0.2261
2
= 0.989
Iacmax=Pmax/Power Factor=1/0.989=1.01
Droop = 0.05/Iacmax=0.049
Figure 34 Dynamic Setting for CBEST in Day Mode
Then I run the dynamic analysis in day mode.
64
Master Thesis
4.5.1 Half PVs are connected to the system
Suppose the PVs connected to the system are running at its half capacity. And then
connect the four MTs and the Utility in the system. Then load the .dyr file and do dynamic
analysis. Several steps or disturbance are done during dynamic period.
From 0s-10s, there are PV, MT, CBEST EV/battery module and the utility connected to
the system. The load is full load. This is kind of connect mode at day.
At 10s, one fault happens at utility machine bus Bus Jefferson-1. And the fault last about
5 cycles=0.083s
At 10.083s, the fault is clear at bus Jefferson-1. Then the utility machine UT is
disconnected from the system.
Then all of the non-critical load bus is disconnected and PVs are kept. Now the system
turns into the island mode at day. The system is running with only critical load and with half
PVs, four MT and two CBEST EV/battery module. Continue to run the system dynamic
analysis to 25s.
I use the PSS/E program automation function to run the dynamic analysis procedures at
day mode above. The coding of python is attached in appendix.
The dynamic result of bus voltages in this scenario are shown below.
VOLT, bus pu voltages (complex)
Figure 35 Voltage at bus JEFFERSON-2 at day mode half PV
65
Master Thesis
Figure 36 Voltage at bus 324 K-MH67 at day mode half PV
4.5.2 All PVs are connected to the system
All the PVs are connected to the system at its peak capacity. And then connect the four
MTs and the Utility in the system. Then load the .dyr file and do dynamic analysis. Several
steps or disturbance are done during dynamic period.
From 0s-10s, there are PV, MT, CBEST EV/battery module and the utility connected to
the system. The load is full load. This is kind of connect mode at day.
At 10s, one fault happens at utility machine bus Bus Jefferson-1. And the fault last about
5 cycles=0.083s
At 10.083s, the fault is clear at bus Jefferson-1. Then the utility machine UT is
disconnected from the system.
Then all of the non-critical load bus is disconnected and PV is kept. Now the system
turns into the island mode at day. The system is running with only critical load and with all
the PVs, four MT and two CBEST EV/battery module. Continue to run the system dynamic
analysis to 25s.
I use the PSS/E program automation function to run the dynamic analysis procedures at
day mode above. The coding of python is attached in appendix.
The dynamic result of bus voltages in this scenario are shown below.
VOLT, bus pu voltages (complex)
66
Master Thesis
Figure 37 Voltage at bus JEFFERSON-2 at day mode all PVs
Figure 38 Voltage at bus 324 K-MH67 at day mode all PVs
There is some little oscillations in both voltage and frequency when connect the PV
module into system and do dynamic analysis. The more PVs connected, the more often
67
Master Thesis
oscillation is. Actually, it is reasonable.
There is an increasing introduction of renewable energy generation into power grids, like
photo-voltaic (PV) generations, which causes control and operation problems to the utilities
since the networks have not been pre-designed to take into account these distributed or
intermittent generations. The electricity from PV is difficult to predict and mainly dependent
on weather conditions. Furthermore, they are usually connected to grid through power
electronic converter, and this also presents a significant difference from conventional
generators. As the penetration of the solar PV plant in-creases, its impact on the stability and
operation of the grid will be greater.
Additionally, since traditional feeders are commonly designed for radial unidirectional
power flows, it is expected that some of the most significant impacts occur for large PV
penetration levels.
4.6 Test Case Results
After conducting the dynamic simulation according to the test cases above, the output
file (*.out) can be obtained and get the all buses voltage plots. The bus 225 JEFFERSON-2
voltage will be observed below.
According to the WECC/NERC criteria in the beginning of this Capture, the maximum
voltage dip and the ratio of final voltage and initial voltage of bus 225 voltage are recorded.
The figures of JEFFERSON-2 dynamic analysis have been shown above in all the three
cases.
Case EV/Battery MT PV Vdipmax(%) Vrec(%)
Connect to
Island Mode at
night
2*1.5MW 4*1.5MW 0 2.5% 100%
Connect to
Island mode
daytime with
half PVs
2*1.5MW 4*1.5MW 1.91MW 0.6% 99.7%
Connect to
Island mode
daytime with all
the PVs
2*1.5MW 4*1.5MW 3.82MW 0.5% 99.5%
Table 17 Dynamic Test Case Results at Bus 225 Jefferson-2
68
Master Thesis
CHAPTER 5: Future work
The USC microgrid protection design and analysis need to be done in the future. One of
the major technical challenges associated with a wide deployment of microgrids is the design
of its protection system.
It is necessary to protect a Microgrid in both operations against all types of potential
fault, e.g. (overcurrent, overvoltage, undervoltage, overfrequency and underfrequency). The
philosophy for overcurrent protection remains the same for both operating modes. In
reference, the relay protection implemented in a simple microgrid with sources in series is
shown in Figure 38.
Figure 39 A simplified Microgrid diagram with relay protection
Protection must respond both to the utility grid system and to microgrid faults. If the
fault is on the utility grid, the desired response is to isolate the microgrid from the main
utility as rapidly as necessary to protect the microgrid loads. The speed of isolation is
dependent on the specific customer’s loads on the microgrid, but it probably requires the
development and installation of suitable electronic static switches. Electrically operated
circuit breakers in combination with directional over-current protection is another possible
option. If the fault is within the microgrid, the protection system isolates the smallest possible
section of the distribution feeder to eliminate the fault. A further segmentation of the
microgrid during the isolated operation, that is, a creation of multiple islands or sub-
microgrids, must be supported by microsources and load controllers.
For dynamic analysis involved protection design, there are two protection model for
dynamic analysis for PV. They are listed as below:
PV Voltage Protection: VTGDCA/VTGTPA
PV Frequency Protection: FRQDCA/FRQTPA
69
Master Thesis
CHAPTER 6: Conclusions
As the integration of large and commercial scale PVs, EVs and MTs on the distribution
level, such systems can have considerable effect on the operation and protection of the
microgrid system. This work investigates the main technical impacts of USC microgrid
involved with PV generations, MT and EV/Battery. A case study by using the PSS/E
software in the USC microgrid system is implemented to study the steady-state and dynamic
characteristics for the microgrid systems. From the simulation results, several system
disturbances, such as change of solar irradiance, fault and tripping of Utility generation and
non-critical load, and three-phase short circuit fault are discussed.
The test case result indicates that the current USC system and the conceptual plan built
by Mengna can operate both static state and dynamic stably when connecting PV, micro
turbines and EV/Batteries to the grid. The renewable energy connected to the system can not
only save the fossil fuel, but also can increase the reliability of the system when the system is
forced to be island mode.
The case studies presented in this thesis are useful in making decisions on the level of
modeling and it is also a useful attempt to evaluate the microgrid dynamic and steady-state
performance.
70
Master Thesis
REFERENCES
[1] Control Of USC Microgrid In Islanded Mode, Aarti Gurav, USC Direct Research report in summer
2014
[2] USC Microgrid Development Conceptual Plan, Mengna Ding, USC Master Thesis in 2014
[3] Impact of Electric Vehicle Infrastructure on the University of Southern California Microgrid Based on
Smart Grid Regional Demonstration Project – Los Angeles, Zeming Jiang, Laith Shalalfeh,
Mohammed J. Beshir
[4] USC FMS: http://facilities.usc.edu/, ftp://fmsdevwin.usc.edu/Files/Electrical_Dashboard/
[5] Power Systems Analysis Short Circuit Study Of University of Southern California University Park
Campus, KOCHER SCHIRRA GOHARIZI Consulting Engineers, Inc.
[6] PSSE Documentation User Guide, PTI SIEMENS
[7] Book: Microgrids Architectures and Control, NIKOS HATZIARGYRIOU, WILEY,2013
[8] Book: PSS/E Power System Analysis and Simulation, Xindong Liu, Yuanliang Huang, Longhan Xie,
Publishing House Of Electronics Industry, 2012
[9] Microgrids, Nikos Hatziargyriou, Hiroshi Asano, Reza Iravani, and Chris Marnay, IEEE power &
energy magazine, July/august 2007
[10] Dynamic Behavior Analysis of Distributed Generation in an Off-Grid Network with Power System
Simulator for Engineering (PSS/E), Konstantina Mentesidi1 and Monica Aguado, ENERGYCON
2014 • May 13-16, 2014 • Dubrovnik, Croatia
[11] WECC-NERC Planning Standards, Western Electricity Coordinating Council, REVISED
SEPTEMBER 2007
[12] Accommodating High PV Penetration on the Distribution System of Kinmen Island, Yuan-Kang Wu,
Shao-Hong Tsai, Ming-Yan Zou, Energy and Power Engineering, 2013, 5, 209-214
[13] Solar PV Plant Model Validation for Grid Integration Studies, Sachin Soni, Master Thesis of
ARIZONA STATE UNIVERSITY, May 2014
[14] PPT: 2nd Generation Models for Modeling of Renewable Sources (Wind & PV) in PSS®E, Presented
by Jay Senthil and Yuriy Kazachkov, Siemens PTI, Renewable Energy Modeling task Force
(REMTF) Workshop, Salt Lake City, June 17, 2014
[15] Mitigation of the Wind Generation Integration Related Power Quality Issues by Energy Storage,
Kyung Soo KOOK, Yilu LIU, Stan ATCITTY, Electrical Power Quality and Utilisation, Journal Vol.
X//1 No. 21 2006
[16] Microgrid Modeling, Planning and Operation, Wencong Su, Master Thesis of Virginia Polytechnic
Institute and State University, November 18th, 2009
[17] PPT: PSS®E Wind and Solar Models, Presented by Yuriy Kazachkov, Siemens PTI,
UWIG/EnerNex/DOE Workshop NYISO, Rensselaer, NY July 5-6, 2011
[18] PPT: PSS®E Wind and Solar Models. Case Studies Of Wind Park Modeling, Presented by Yuriy
Kazachkov, Siemens PTI, UWIG/EnerNex/DOE Workshop, MISO, St. Paul, MN, August 16-17,
2011
[19] PPT: Solar PV and Stability Issues and Concerns, John Adams, ERCOT
[20] Study of Photovoltaic Integration Impact on System Stability Using Custom Model of PV Arrays
Integrated with PSS/E, T. Alquthami, H. Ravindra, M. O. Faruque, M. Steurer and T. Baldwin,
71
Master Thesis
BIBLIOGRAPHY
[1] Microgrids Architectures and Control, NIKOS HATZIARGYRIOU, WILEY,2013
[2] PSS/E Power System Analysis and Simulation, Xindong Liu, Yuanliang Huang, Longhan Xie,
Publishing House Of Electronics Industry, 2012
72
Master Thesis
APPENDIX
- 1 -
Master Thesis
A. FEEDER A-T in PSS/E
FEEDER A
Name Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model KW KVAR KW KVAR KW KVAR
RRB Y-PQ 47 26 47 26 47 26
BKS-HSH-STO-YWCA Y-PQ 159 90 159 90 159 90
ACC Y-PQ 62 35 62 35 62 35
BRI Y-PQ 56 32 56 32 56 32
DML Y-PQ 207 117 207 117 207 117
DMT/REG/TRO Y-PQ 71 40 71 40 71 40
PTD/ALM Y-PQ 31 17 31 17 31 17
- 2 -
Master Thesis
FEEDER B
Name
Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model KW KVAR KW KVAR KW KVAR
UPV Y-PQ 37 21 37 21 37 21
TCC Y-PQ 216 122 216 122 216 122
TCC-Chiller Y-PQ 365 207 365 207 365 207
- 3 -
Master Thesis
FEEDER C
Name Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model KW KVAR KW KVAR KW KVAR
OHE Y-PQ 63 35 63 35 63 35
OHE Y-PQ 35 20 35 20 35 20
UPV Y-PQ 37 21 37 21 37 21
HED/PCE Y-PQ 40 23 40 23 40 23
BHE Y-PQ 45 26 45 26 45 26
VHE Y-PQ 183 103 183 103 183 103
VHE Y-PQ 115 65 115 65 115 65
- 4 -
Master Thesis
FEEDER D
Name Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model KW KVAR KW KVAR KW KVAR
SSC/SSL Y-PQ 261 148 261 148 261 148
PKX Y-PQ 30 17 30 17 30 17
PKS Y-PQ 18 10 18 10 18 10
GER Y-PQ 115 65 115 65 115 65
PSA Y-PQ 52 29 52 29 52 29
- 5 -
Master Thesis
FEEDER E
Name Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model KW KVAR KW KVAR KW KVAR
PED Y-PQ 153 87 153 87 153 87
PED Y-PQ 88 50 88 50 88 50
DEN Y-PQ 299 169 299 169 299 169
DEN Y-PQ 131 74 131 74 131 74
DEN Y-PQ 80 45 80 45 80 45
- 6 -
Master Thesis
FEEDER F
Name Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model KW KVAR KW KVAR KW KVAR
PHE Y-PQ 63 35 63 35 63 35
SAL Y-PQ 48 27 48 27 48 27
IRC Y-PQ 165 94 165 94 165 94
EEB Y-PQ 145 82 145 82 145 82
WAH Y-PQ 95 54 95 54 95 54
PRB Y-PQ 72 41 72 41 72 41
- 7 -
Master Thesis
FEEDER G
Name Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model KW KVAR KW KVAR KW KVAR
SGM Y-PQ 107 60 107 60 107 60
SGM Y-PQ 173 98 173 98 173 98
RTH Y-PQ 52 29 52 29 52 29
RTH Y-PQ 141 80 141 80 141 80
EEB Y-PQ 145 82 145 82 145 82
- 8 -
Master Thesis
FEEDER H
Name
Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model KW KVAR KW KVAR KW KVAR
LHI Y-PQ 36 20 36 20 36 20
LHI/SLH Y-PQ 57 32 57 32 57 32
ACB/LJS Y-PQ 73 41 73 41 73 41
ACB/LJS Y-PQ 65 37 65 37 65 37
SHS/OCW/CEM Y-PQ 21 12 21 12 21 12
SHS/OCW/CEM Y-PQ 43 24 43 24 43 24
MHP Y-PQ 13 8 13 8 13 8
HOH Y-PQ 85 48 85 48 85 48
LAW Y-PQ 330 187 330 187 330 187
BSR/EVK/COL/HRH/URH Y-PQ 144 81 144 81 144 81
- 9 -
Master Thesis
FEEDER I
Name Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model KW KVAR KW KVAR KW KVAR
ZHS Y-PQ 107 60 107 60 107 60
AHF Y-PQ 150 85 150 85 150 85
STU Y-PQ 52 29 52 29 52 29
LVL Y-PQ 267 151 267 151 267 151
DCC Y-PQ 75 42 75 42 75 42
NCT Y-PQ 37 21 37 21 37 21
HNB Y-PQ 105 59 105 59 105 59
ADM(N) Y-PQ 32 18 32 18 32 18
ADM(S) Y-PQ 26 15 26 15 26 15
ADM(C) Y-PQ 56 31 56 31 56 31
- 10 -
Master Thesis
FEEDER J
Name Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model KW KVAR KW KVAR KW KVAR
GFS Y-PQ 141 80 141 80 141 80
HRC/CWO/CWT Y-PQ 32 18 32 18 32 18
RRI Y-PQ 148 84 148 84 148 84
RRI Y-PQ 189 107 189 107 189 107
DRC Y-PQ 14 8 14 8 14 8
BDF Y-PQ 119 67 119 67 119 67
MTS Y-PQ 48 27 48 27 48 27
KAP Y-PQ 87 49 87 49 87 49
KAP Y-PQ 27 15 27 15 27 15
FPM Y-PQ 24 14 24 14 24 14
MAC/KAB/FPF Y-PQ 249 141 249 141 249 141
LRC Y-PQ 28 16 28 16 28 16
ESH Y-PQ 348 197 348 197 348 197
- 11 -
Master Thesis
FEEDER K
Name
Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model KW KVAR KW KVAR KW KVAR
SHC/URC/CLH Y-PQ 58 33 58 33 58 33
DEN Y-PQ 299 169 299 169 299 169
DEN Y-PQ 131 74 131 74 131 74
DEN Y-PQ 80 45 80 45 80 45
BIT Y-PQ 52 29 52 29 52 29
ASC Y-PQ 65 37 65 37 65 37
ASC Y-PQ 61 35 61 35 61 35
PED Y-PQ 153 87 153 87 153 87
PED Y-PQ 88 50 88 50 88 50
ADM(N) Y-PQ 32 18 32 18 32 18
ADM(S) Y-PQ 26 15 26 15 26 15
ADM© Y-PQ 56 31 56 31 56 31
- 12 -
Master Thesis
FEEDER L
Name Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model KW KVAR KW KVAR KW KVAR
JEF Y-PQ 31 17 31 17 31 17
MCC Y-PQ 40 23 40 23 40 23
WTO Y-PQ 105 60 105 60 105 60
KOH Y-PQ 99 56 99 56 99 56
FLT Y-PQ 161 91 161 91 161 91
PSB Y-PQ 25 14 25 14 25 14
ESH Y-PQ 348 197 348 197 348 197
- 13 -
Master Thesis
FEEDER M
Name Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model KW KVAR KW KVAR KW KVAR
KAP Y-PQ 87 49 87 49 87 49
KAP Y-PQ 27 15 27 15 27 15
DRB Y-PQ 116 66 116 66 116 66
SCD/TTL Y-PQ 37 21 37 21 37 21
GER Y-PQ 115 65 115 65 115 65
RTH Y-PQ 52 29 52 29 52 29
RTH Y-PQ 141 80 141 80 141 80
SSC/SSL Y-PQ 261 148 261 148 261 148
IRC Y-PQ 165 94 165 94 165 94
PRB Y-PQ 72 41 72 41 72 41
- 14 -
Master Thesis
FEEDER N
Name Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model KW KVAR KW KVAR KW KVAR
CSS/SSS/LPB/CTV Y-PQ 36 21 36 21 36 21
CSS/SSS/LPB/CTV Y-PQ 30 17 30 17 30 17
LVL Y-PQ 267 151 267 151 267 151
MRF/SWC/EDL Y-PQ 71 40 71 40 71 40
PSD Y-PQ 7 4 7 4 7 4
PSD Y-PQ 54 30 54 30 54 30
DCC Y-PQ 75 42 75 42 75 42
- 15 -
Master Thesis
FEEDER P
Name Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model KW KVAR KW KVAR KW KVAR
JEP/AHN Y-PQ 8 5 8 5 8 5
THH Y-PQ 155 88 155 88 155 88
WHP Y-PQ 133 75 133 75 133 75
WPH/SOS/CAS Y-PQ 35 20 35 20 35 20
VKC Y-PQ 56 32 56 32 56 32
VKC-Chiller Y-PQ 67 38 67 38 67 38
PSX Y-PQ 39 22 39 22 39 22
BSR/EVK/COL/HRH/URH Y-PQ 144 81 144 81 144 81
DML Y-PQ 207 117 207 117 207 117
JKP Y-PQ 73 41 73 41 73 41
DMT/REG/TRO Y-PQ 71 40 71 40 71 40
PTD/ALM Y-PQ 31 17 31 17 31 17
- 16 -
Master Thesis
FEEDER Q
Name Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model KW KVAR KW KVAR KW KVAR
SCB Y-PQ 24 14 24 14 24 14
SCA Y-PQ 107 60 107 60 107 60
SCC Y-PQ 20 11 20 11 20 11
SCE Y-PQ 12 7 12 7 12 7
SCX Y-PQ 15 8 15 8 15 8
SCI Y-PQ 261 148 261 148 261 148
ASB Y-PQ 131 74 131 74 131 74
MAC/KAB/FPF Y-PQ 249 141 249 141 249 141
LRC Y-PQ 28 16 28 16 28 16
HER Y-PQ 119 67 119 67 119 67
LTS/CFH/CFX0. Y-PQ 33 19 33 19 33 19
- 17 -
Master Thesis
FEEDER R
Name Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model KW KVAR KW KVAR KW KVAR
SGM Y-PQ 107 60 107 60 107 60
SGM Y-PQ 173 98 173 98 173 98
RRI Y-PQ 148 84 148 84 148 84
RRI Y-PQ 189 107 189 107 189 107
- 18 -
Master Thesis
FEEDER S
Name
Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model KW KVAR KW KVAR KW KVAR
HNB Y-PQ 105 59 105 59 105 59
VHE Y-PQ 183 103 183 103 183 103
VHE Y-PQ 115 65 115 65 115 65
LHI Y-PQ 36 20 36 20 36 20
LHI/SLH Y-PQ 57 32 57 32 57 32
PHE Y-PQ 63 35 63 35 63 35
ACB/LJS Y-PQ 73 41 73 41 73 41
ACB/LJS Y-PQ 65 37 65 37 65 37
SHS/OCW/CEM Y-PQ 21 12 21 12 21 12
SHS/OCW/CEM Y-PQ 43 24 43 24 43 24
HAR Y-PQ 48 27 48 27 48 27
- 19 -
Master Thesis
FEEDER T
Name Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model KW KVAR KW KVAR KW KVAR
RHM/MUS Y-PQ 55 31 55 31 55 31
BMH Y-PQ 26 15 26 15 26 15
AHF Y-PQ 150 85 150 85 150 85
TCC Y-PQ 216 122 216 122 216 122
ZHS Y-PQ 107 60 107 60 107 60
- 20 -
Master Thesis
B. .dyr file
323 'GENCLS' UT 20.0 0.1 /
1 'GENROU' MT 6.0000 0.034 0.53500 0.50000E-01
2.5600 0.0000 2.2395 2.1610 0.29950
0.49225 0.22500 0.15000 0.03 0.4 /
1 'IEEET1' MT 0.0000 20.000 0.20000 3.0000
-3.0000 1.0000 0.31400 0.63000E-01 0.35000
0.0000 2.8000 0.30338 3.7300 1.2884 /
113 'GENROU' MT 6.0000 0.034 0.53500 0.50000E-01
2.5600 0.0000 2.2395 2.1610 0.29950
0.49225 0.22500 0.15000 0.03 0.4 /
113 'IEEET1' MT 0.0000 20.000 0.20000 3.0000
-3.0000 1.0000 0.31400 0.63000E-01 0.35000
0.0000 2.8000 0.30338 3.7300 1.2884 /
255 'GENROU' MT 6.0000 0.034 0.53500 0.50000E-01
2.5600 0.0000 2.2395 2.1610 0.29950
0.49225 0.22500 0.15000 0.03 0.4 /
255 'IEEET1' MT 0.0000 20.000 0.20000 3.0000
-3.0000 1.0000 0.31400 0.63000E-01 0.35000
0.0000 2.8000 0.30338 3.7300 1.2884 /
324 'GENROU' MT 6.0000 0.034 0.53500 0.50000E-01
2.5600 0.0000 2.2395 2.1610 0.29950
0.49225 0.22500 0.15000 0.03 0.4 /
324 'IEEET1' MT 0.0000 20.000 0.20000 3.0000
-3.0000 1.0000 0.31400 0.63000E-01 0.35000
0.0000 2.8000 0.30338 3.7300 1.2884 /
354 'CBEST' EV 1.0000 1.1000 0.9000 1
10.0000 0.1 0.1 0.1
0.1 9999 -9999 0.1000 /
268 'CBEST' EV 1.0000 1.1000 0.9000 1
10.0000 0.1 0.1 0.1
0.1 9999 -9999 0.1000 /
6 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
- 21 -
Master Thesis
6 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 0.5 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
6 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
6 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
9 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
9 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 0.5 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
9 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
9 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
16 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
16 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 0.5 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
- 22 -
Master Thesis
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
16 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
16 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
18 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
18 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 0.5 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
18 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
18 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
25 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
25 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 0.5 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
25 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
25 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
- 23 -
Master Thesis
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
27 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
27 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 0.5 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
27 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
27 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
30 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
30 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 0.5 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
30 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
30 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
35 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
- 24 -
Master Thesis
35 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
35 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
35 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
47 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
47 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
47 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
47 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
85 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
85 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
- 25 -
Master Thesis
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
85 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
85 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
90 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
90 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
90 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
90 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
97 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
97 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
97 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
97 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
- 26 -
Master Thesis
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
101 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
101 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
101 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
101 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
131 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
131 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
131 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
131 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
133 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
- 27 -
Master Thesis
133 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
133 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
133 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
136 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
136 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
136 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
136 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
141 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
141 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
- 28 -
Master Thesis
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
141 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
141 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
161 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
161 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
161 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
161 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
174 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
174 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
174 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
174 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
- 29 -
Master Thesis
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
178 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
178 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
178 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
178 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
182 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
182 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
182 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
182 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
188 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
- 30 -
Master Thesis
188 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
188 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
188 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
194 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
194 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
194 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
194 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
204 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
204 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
- 31 -
Master Thesis
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
204 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
204 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
205 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
205 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
205 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
205 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
213 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
213 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
213 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
213 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
- 32 -
Master Thesis
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
239 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
239 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
239 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
239 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
244 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
244 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
244 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
244 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
258 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
- 33 -
Master Thesis
258 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
258 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
258 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
264 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
264 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
264 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
264 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
268 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
268 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
- 34 -
Master Thesis
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
268 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
268 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
275 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
275 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
275 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
275 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
288 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
288 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
288 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
288 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
- 35 -
Master Thesis
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
296 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
296 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
296 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
296 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
309 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
309 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
309 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
309 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
335 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
- 36 -
Master Thesis
335 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
335 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
335 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
345 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
345 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
345 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
345 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
354 'USRMDL' PV 'PVGU1' 101 1 0 9 3 3
0.20000E-01 0.20000E-01 0.40000 0.90000
1.1100 1.2000 2.0000 2.0000 0.20000E-01 /
354 'USRMDL' PV 'PVEU1' 102 0 4 24 10 4
0 0 1 0
0.15000 18.000 5.0000 0.50000E-01 0.10000
0.0000 0.80000E-01 0.47000 -0.47000 1.1000
0.0000 0.50000 -0.50000 0.50000E-01 0.10000
0.90000 1.1000 120.00 0.50000E-01
- 37 -
Master Thesis
0.50000E-01
1.7000 1.1100 1.1100 10.0 /
354 'USRMDL' PV 'PANELU1' 103 0 0 5 0 1
0.16 0.38 0.59 0.85 1 /
354 'USRMDL' PV 'IRRADU1' 104 0 1 20 0 1
1
5 1000 10 900 15 850 20 800 25 700
30 600 35 700 0 0 0 0 0 0 /
- 38 -
Master Thesis
C. Python Code For Dynamic Analysis
Connect to Island Mode Night.dyr:
Pyson
# File:"D:\Connect to Island Mode Night\Connect to Island Mode Night.py", generated on SUN, MAR 22 2015 5:31, release
33.04.00
psspy.case(r"""D:\Connect to Island Mode Night\ALL FEEDER.sav""")
psspy.fdns([0,0,0,1,1,1,99,0])
psspy.cong(0)
psspy.conl(0,1,1,[0,0],[ 100.0,0.0,0.0, 100.0])
psspy.conl(0,1,2,[0,0],[ 100.0,0.0,0.0, 100.0])
psspy.conl(0,1,3,[0,0],[ 100.0,0.0,0.0, 100.0])
psspy.ordr(0)
psspy.fact()
psspy.tysl(0)
psspy.dyre_new([1,1,1,1],r"""D:\Connect to Island Mode Night\Connect to Island Mode Night.dyr""","","","")
psspy.bsys(1,0,[0.0,0.0],0,[],7,[1,113,255,268,323,324,354],0,[],0,[])
psspy.chsb(1,0,[1,43,33,1,14,0])
psspy.bsys(1,0,[0.0,0.0],0,[],7,[1,113,255,268,323,324,354],0,[],0,[])
psspy.chsb(1,0,[15,57,40,1,15,0])
psspy.bsys(1,0,[0.0,0.0],0,[],7,[1,113,255,268,323,324,354],0,[],0,[])
psspy.chsb(1,0,[17,59,46,1,12,0])
psspy.strt(0,r"""D:\Connect to Island Mode Night\Connect to Island.out""")
psspy.run(0, 10.0,1,1,0)
psspy.dist_bus_fault(323,1, 4.8,[0.0,-0.2E+10])
psspy.run(0, 10.083,1,1,0)
psspy.dist_clear_fault(1)
psspy.dist_machine_trip(323,r"""UT""")
psspy.dist_bus_trip(6)
psspy.dist_bus_trip(9)
psspy.dist_bus_trip(16)
psspy.dist_bus_trip(18)
psspy.dist_bus_trip(25)
psspy.dist_bus_trip(35)
psspy.dist_bus_trip(36)
psspy.dist_bus_trip(38)
psspy.dist_bus_trip(47)
psspy.dist_bus_trip(52)
psspy.dist_bus_trip(54)
psspy.dist_bus_trip(56)
psspy.dist_bus_trip(59)
psspy.dist_bus_trip(60)
psspy.dist_bus_trip(61)
- 39 -
Master Thesis
psspy.dist_bus_trip(69)
psspy.dist_bus_trip(71)
psspy.dist_bus_trip(79)
psspy.dist_bus_trip(90)
psspy.dist_bus_trip(97)
psspy.dist_bus_trip(101)
psspy.dist_bus_trip(103)
psspy.dist_bus_trip(104)
psspy.dist_bus_trip(111)
psspy.dist_bus_trip(114)
psspy.dist_bus_trip(120)
psspy.dist_bus_trip(122)
psspy.dist_bus_trip(124)
psspy.dist_bus_trip(133)
psspy.dist_bus_trip(136)
psspy.dist_bus_trip(138)
psspy.dist_bus_trip(140)
psspy.dist_bus_trip(141)
psspy.dist_bus_trip(148)
psspy.dist_bus_trip(149)
psspy.dist_bus_trip(160)
psspy.dist_bus_trip(165)
psspy.dist_bus_trip(168)
psspy.dist_bus_trip(171)
psspy.dist_bus_trip(181)
psspy.dist_bus_trip(182)
psspy.dist_bus_trip(185)
psspy.dist_bus_trip(188)
psspy.dist_bus_trip(193)
psspy.dist_bus_trip(194)
psspy.dist_bus_trip(196)
psspy.dist_bus_trip(203)
psspy.dist_bus_trip(204)
psspy.dist_bus_trip(205)
psspy.dist_bus_trip(220)
psspy.dist_bus_trip(222)
psspy.dist_bus_trip(227)
psspy.dist_bus_trip(229)
psspy.dist_bus_trip(236)
psspy.dist_bus_trip(239)
psspy.dist_bus_trip(240)
psspy.dist_bus_trip(246)
- 40 -
Master Thesis
psspy.dist_bus_trip(252)
psspy.dist_bus_trip(253)
psspy.dist_bus_trip(254)
psspy.dist_bus_trip(257)
psspy.dist_bus_trip(258)
psspy.dist_bus_trip(264)
psspy.dist_bus_trip(267)
psspy.dist_bus_trip(275)
psspy.dist_bus_trip(276)
psspy.dist_bus_trip(280)
psspy.dist_bus_trip(281)
psspy.dist_bus_trip(283)
psspy.dist_bus_trip(288)
psspy.dist_bus_trip(293)
psspy.dist_bus_trip(296)
psspy.dist_bus_trip(298)
psspy.dist_bus_trip(303)
psspy.dist_bus_trip(309)
psspy.dist_bus_trip(311)
psspy.dist_bus_trip(312)
psspy.dist_bus_trip(329)
psspy.dist_bus_trip(333)
psspy.dist_bus_trip(334)
psspy.dist_bus_trip(335)
psspy.dist_bus_trip(347)
psspy.dist_bus_trip(377)
psspy.dist_bus_trip(387)
psspy.dist_bus_trip(391)
psspy.run(0, 25.0,1,1,0)
pssplot.newplotbook()
pssplot.insertpage()
pssplot.setselectedpage(0)
pssplot.openchandatafile(r"""D:\Connect to Island Mode Night\Connect to Island.out""")
pssplot.dragdropplotdata(r"""Connect to Island""",r"""1 - VOLT 1 [BIEGLER-1 4.8000]""")
pssplot.dragdropplotdata(r"""Connect to Island""",r"""3 - VOLT 113 [BIEGLER-2 4.8000]""")
pssplot.dragdropplotdata(r"""Connect to Island""",r"""5 - VOLT 255 [JEFFERSON-2 4.8000]""")
pssplot.dragdropplotdata(r"""Connect to Island""",r"""7 - VOLT 268 [PSD-208 0.2080]""")
pssplot.dragdropplotdata(r"""Connect to Island""",r"""9 - VOLT 323 [JEFFERSON-1 4.8000]""")
pssplot.dragdropplotdata(r"""Connect to Island""",r"""11 - VOLT 324 [K-MH67 4.8000]""")
pssplot.dragdropplotdata(r"""Connect to Island""",r"""13 - VOLT 354 [PSB 0.4800]""")
pssplot.dragdropplotdata(r"""Connect to Island""",r"""17 - FREQ 1 [BIEGLER-1 4.8000]""")
pssplot.dragdropplotdata(r"""Connect to Island""",r"""18 - FREQ 113 [BIEGLER-2 4.8000]""")
- 41 -
Master Thesis
pssplot.dragdropplotdata(r"""Connect to Island""",r"""19 - FREQ 255 [JEFFERSON-2 4.8000]""")
pssplot.dragdropplotdata(r"""Connect to Island""",r"""20 - FREQ 268 [PSD-208 0.2080]""")
pssplot.dragdropplotdata(r"""Connect to Island""",r"""21 - FREQ 323 [JEFFERSON-1 4.8000]""")
pssplot.dragdropplotdata(r"""Connect to Island""",r"""22 - FREQ 324 [K-MH67 4.8000]""")
pssplot.dragdropplotdata(r"""Connect to Island""",r"""23 - FREQ 354 [PSB 0.4800]""")
pssplot.setselectedplot(0)
pssplot.setselectedplot(0)
- 42 -
Master Thesis
Connect to Island Mode Day.dyr :
In the case of connecting to island day mode, because I have to cut the non-critical load in the
system and keep the PV . And for some buses the non-critical load and PV are connected to the
same bus. Thus to solve this problem, I build some extra buses number from 383 to 414 for
those non critical load connected with PV. And connect the PV and the non-critical load in
separate buses. In this case, I cut off the non-critical load according to the bus number below.
For those non critical load not connected with PV , the bus number is remain unchanged.
For example, I build a new bus 397 DML-LOAD for the load at DML.
Non Critical Load
393 RRB-LOAD 0.4800 138 SCD 0.2080 254 UCC-480(2) 0.4800
394 FNS/YWC/STO-LOAD 0.4800 140 PED-208 0.2080 257 CTV 0.4800
395 ACC-LOAD 0.2080 141 PED-480 0.4800 408 LPB/SSS-LOAD 0.2080
396 BRI-LOAD 0.2080 148 SGM-2 0.4800 409 MRF/EDL/SWC-LOAD 0.4800
397 DML-LOAD 0.4800 149 SGM-1 0.4800 267 PSD-480 0.4800
398 OHE-480-LOAD 0.4800 160 DEN-208 0.2080 410 THH-LOAD 0.4800
36 OHE208 0.2080 165 WAH 0.4800 276 JEP/AHN 0.2080
399 STU-LOAD 0.4800 168 PHE 0.4800 280 WPH/SOS/CAS20.4800
52 COM/BKS 0.4800 171 SAL 0.4800 281 WPH/SOS/CAS10.2080
54 VHE-208 0.2080 181 ACB-480 0.4800 283 VKC-208 0.2080
56 VHE-480-2 0.4800 403 ACB-208-LOAD 0.2080 411 VKC-480-LOAD 0.4800
59 HED/PCE 0.4800 185 LHI 0.4800 293 RGL 0.2080
60 VHE-480-1 0.4800 404 LHI/SLH-LOAD 0.4800 412 JKP-LOAD 0.4800
61 RTH-208 0.2080 193 SHS/OCW/LJS20.4800 298 BMH 0.2080
69 EEB 0.4800 405 SHS/OCW/LJS-LOAD10.2080 303 POA/PPB/PPG+0.2080
71 RTH-480 0.4800 196 MHP 0.2080 413 HER-LOAD 0.4800
79 ZHS 0.4800 203 HOH-480 0.4800 311 PIC-480 0.4800
- 43 -
Master Thesis
90 LVL 0.4800 406 HOH-208-LOAD 0.2080 312 PIC-208 0.2080
97 DCC 0.4800 407 LAW-LOAD 0.4800 329 ASI 0.2080
400 ADM-N-LOAD 0.4800 220 GFS 0.4800 333 ASC-1 0.4800
103 ADM-C 0.4800 222 HRC/CWO/CWT 0.4800 334 ASC-2 0.4800
104 ADM-S 0.4800 227 BDF 0.4800 414 BIT-LOAD 0.2080
111 SSC-480 0.4800 229 DRC 0.2080 347 JEF 0.2080
114 BHE 0.2080 236 MTS 0.4800 38 PSB 0.4800
120 SSL 0.2080 239 KAP-480 0.4800 377 HAR 0.4800
122 SSC-208-2 0.2080 240 KAP-208 0.2080 387 RHM/MUS 0.4800
124 SSC-208-1 0.2080 246 MAC 0.4800 391 NCT 0.2080
401 GER-LOAD 4.8000 252 UCC-208 0.2080
402 DRB-LOAD 0.4800 253 UCC-480(1) 0.4800
# File:"D:\Connect to Island Mode Day\Connect to Island Mode Day.py", generated on MON, MAR 23 2015 5:57, release
33.04.00
psspy.case(r"""D:\Connect to Island Mode Day\ALL FEEDER.sav""")
psspy.fdns([0,0,0,1,1,1,99,0])
psspy.cong(0)
psspy.conl(0,1,1,[0,0],[ 100.0,0.0,0.0, 100.0])
psspy.conl(0,1,2,[0,0],[ 100.0,0.0,0.0, 100.0])
psspy.conl(0,1,3,[0,0],[ 100.0,0.0,0.0, 100.0])
psspy.ordr(0)
psspy.fact()
psspy.tysl(0)
psspy.dyre_new([1,1,1,1],r"""D:\Connect to Island Mode Day\USC.dyr""","","","")
psspy.bsys(1,0,[0.0,0.0],0,[],7,[1,113,255,268,323,324,354],0,[],0,[])
psspy.chsb(1,0,[1,385,223,1,13,0])
psspy.bsys(1,0,[0.0,0.0],0,[],7,[1,113,255,268,323,324,354],0,[],0,[])
psspy.chsb(1,0,[8,392,230,1,12,0])
psspy.bsys(1,0,[0.0,0.0],0,[],7,[1,113,255,268,323,324,354],0,[],0,[])
psspy.chsb(1,0,[15,392,230,1,15,0])
psspy.strt(0,r"""D:\Connect to Island Mode Day\Connect to Island Mode Day.out""")
psspy.run(0, 10.0,1,1,0)
psspy.dist_bus_fault(323,1, 4.8,[0.0,-0.2E+10])
psspy.run(0, 10.083,1,1,0)
psspy.dist_clear_fault(1)
psspy.dist_machine_trip(323,r"""UT""")
- 44 -
Master Thesis
psspy.dist_bus_trip(393)
psspy.dist_bus_trip(394)
psspy.dist_bus_trip(395)
psspy.dist_bus_trip(396)
psspy.dist_bus_trip(397)
psspy.dist_bus_trip(398)
psspy.dist_bus_trip(36)
psspy.dist_bus_trip(399)
psspy.dist_bus_trip(52)
psspy.dist_bus_trip(54)
psspy.dist_bus_trip(56)
psspy.dist_bus_trip(59)
psspy.dist_bus_trip(60)
psspy.dist_bus_trip(61)
psspy.dist_bus_trip(69)
psspy.dist_bus_trip(71)
psspy.dist_bus_trip(79)
psspy.dist_bus_trip(90)
psspy.dist_bus_trip(97)
psspy.dist_bus_trip(400)
psspy.dist_bus_trip(103)
psspy.dist_bus_trip(104)
psspy.dist_bus_trip(111)
psspy.dist_bus_trip(114)
psspy.dist_bus_trip(120)
psspy.dist_bus_trip(122)
psspy.dist_bus_trip(124)
psspy.dist_bus_trip(401)
psspy.dist_bus_trip(402)
psspy.dist_bus_trip(138)
psspy.dist_bus_trip(140)
psspy.dist_bus_trip(141)
psspy.dist_bus_trip(148)
psspy.dist_bus_trip(149)
psspy.dist_bus_trip(160)
psspy.dist_bus_trip(165)
psspy.dist_bus_trip(168)
psspy.dist_bus_trip(171)
psspy.dist_bus_trip(181)
psspy.dist_bus_trip(403)
psspy.dist_bus_trip(185)
- 45 -
Master Thesis
psspy.dist_bus_trip(404)
psspy.dist_bus_trip(193)
psspy.dist_bus_trip(405)
psspy.dist_bus_trip(196)
psspy.dist_bus_trip(203)
psspy.dist_bus_trip(406)
psspy.dist_bus_trip(407)
psspy.dist_bus_trip(220)
psspy.dist_bus_trip(222)
psspy.dist_bus_trip(227)
psspy.dist_bus_trip(229)
psspy.dist_bus_trip(236)
psspy.dist_bus_trip(239)
psspy.dist_bus_trip(240)
psspy.dist_bus_trip(246)
psspy.dist_bus_trip(252)
psspy.dist_bus_trip(253)
psspy.dist_bus_trip(254)
psspy.dist_bus_trip(257)
psspy.dist_bus_trip(408)
psspy.dist_bus_trip(409)
psspy.dist_bus_trip(267)
psspy.dist_bus_trip(410)
psspy.dist_bus_trip(276)
psspy.dist_bus_trip(280)
psspy.dist_bus_trip(281)
psspy.dist_bus_trip(283)
psspy.dist_bus_trip(411)
psspy.dist_bus_trip(293)
psspy.dist_bus_trip(412)
psspy.dist_bus_trip(298)
psspy.dist_bus_trip(303)
psspy.dist_bus_trip(413)
psspy.dist_bus_trip(311)
psspy.dist_bus_trip(312)
psspy.dist_bus_trip(329)
psspy.dist_bus_trip(333)
psspy.dist_bus_trip(334)
psspy.dist_bus_trip(414)
psspy.dist_bus_trip(347)
psspy.dist_bus_trip(38)
- 46 -
Master Thesis
psspy.dist_bus_trip(377)
psspy.dist_bus_trip(387)
psspy.dist_bus_trip(391)
psspy.run(0, 25.0,1,1,0)
pssplot.newplotbook()
pssplot.insertpage()
pssplot.setselectedpage(0)
pssplot.openchandatafile(r"""D:\Connect to Island Mode Day\Connect to Island Mode Day.out""")
pssplot.dragdropplotdata(r"""Connect to Island Mode Day""",r"""1 - VOLT 1 [BIEGLER-1 4.8000]""")
pssplot.setselectedplot(0)
pssplot.setselectedplot(0)
pssplot.dragdropplotdata(r"""Connect to Island Mode Day""",r"""2 - VOLT 113 [BIEGLER-2 4.8000]""")
pssplot.dragdropplotdata(r"""Connect to Island Mode Day""",r"""3 - VOLT 255 [JEFFERSON-2 4.8000]""")
pssplot.dragdropplotdata(r"""Connect to Island Mode Day""",r"""4 - VOLT 268 [PSD-208 0.2080]""")
pssplot.dragdropplotdata(r"""Connect to Island Mode Day""",r"""5 - VOLT 323 [JEFFERSON-1 4.8000]""")
pssplot.dragdropplotdata(r"""Connect to Island Mode Day""",r"""6 - VOLT 324 [K-MH67 4.8000]""")
pssplot.setselectedpage(1)
pssplot.insertpage()
pssplot.dragdropplotdata(r"""Connect to Island Mode Day""",r"""9 - FREQ 113 [BIEGLER-2 4.8000]""")
pssplot.dragdropplotdata(r"""Connect to Island Mode Day""",r"""10 - FREQ 255 [JEFFERSON-2 4.8000]""")
pssplot.dragdropplotdata(r"""Connect to Island Mode Day""",r"""11 - FREQ 268 [PSD-208 0.2080]""")
pssplot.dragdropplotdata(r"""Connect to Island Mode Day""",r"""12 - FREQ 323 [JEFFERSON-1 4.8000]""")
pssplot.dragdropplotdata(r"""Connect to Island Mode Day""",r"""13 - FREQ 324 [K-MH67 4.8000]""")
- 47 -
Abstract (if available)
Abstract
In the thesis, the following three parts are discussed: 1. Build the actual USC model in PSS/E. This includes the modeling of all the 19 feeders, 392 buses, 112 transformers, 112 loads and all the other components in power grid. I build all of them, check the data number to see if there is mismatch and do voltage limitation check to ensure the model is correctly built. 2. Add the PV, Battery/EV and MT model according to Mengna's microgrid conceptual plan. Then I do the power flow analysis in different case scenarios in both day/night mode and connect/island mode. The full peak load is considered in the connect mode. And only the critical load is considered in island mode. 81 scenarios of power flow are discussed and simulated in PSS/E. 3. Dynamic analysis from Connect Mode to Island Mode in both day and night conditions. The coding of Python and .dyr file will be used in dynamic analysis.
Linked assets
University of Southern California Dissertations and Theses
Conceptually similar
PDF
System stability effect of large scale of EV and renewable energy deployment
PDF
USC microgrid development conceptual plan
PDF
An adaptive distance protection scheme for power systems with SFCL
PDF
Impacts of high solar penetration on power transmission systems
PDF
Electric vehicle integration into the distribution grid: impact, control and forecast
PDF
Utility – customer interface strategy and user application for electric vehicles and distributed generation management
PDF
Distribution system reliability analysis for smart grid applications
PDF
A new hot-spot temperature model and methodology to determine the loss of insulation life in distribution transformers
PDF
Coherently interacting dynamics in the neuromuscular system
PDF
The dynamic interaction of synchronous condensers, SVC, STATCOM and superconducting magnetic energy storage on electric vehicles
PDF
Predictive real-time assessment for power grid monitoring and situational awareness using synchrophasors with partial PMU observability
PDF
Curvature analysis of the power grid: congestion, congestion management, and line tripping cascade anticipation
PDF
Developing frameworks to quantify the operational and environmental performance of energy systems within the context of climate change
PDF
Understanding dynamics of cyber-physical systems: mathematical models, control algorithms and hardware incarnations
PDF
Dynamic power sharing for self-reconfigurable modular robots
PDF
Energy aware integrated circuits for communication and biomedical applications
PDF
The development of a mathematical model of a hybrid airship
PDF
Modeling and optimization of energy-efficient and delay-constrained video sharing servers
PDF
Smart buildings: employing modern technology to create an integrated, data-driven, intelligent, self-optimizing, human-centered, building automation system
PDF
A joint framework of design, control, and applications of energy generation and energy storage systems
Asset Metadata
Creator
Jing, Zejia
(author)
Core Title
USC microgrid assessment study
School
Viterbi School of Engineering
Degree
Master of Science
Degree Program
Electrical Engineering
Publication Date
04/28/2015
Defense Date
03/23/2015
Publisher
University of Southern California
(original),
University of Southern California. Libraries
(digital)
Tag
dynamic analysis,microgrid,OAI-PMH Harvest,power system,PSS/E,renewable energy,USC
Format
application/pdf
(imt)
Language
English
Contributor
Electronically uploaded by the author
(provenance)
Advisor
Beshir, Mohammed J. (
committee chair
), Jonckheere, Edmond A. (
committee member
), Maby, Edward W. (
committee member
)
Creator Email
jzejia1@vt.edu
Permanent Link (DOI)
https://doi.org/10.25549/usctheses-c3-563134
Unique identifier
UC11302122
Identifier
etd-JingZejia-3417.pdf (filename),usctheses-c3-563134 (legacy record id)
Legacy Identifier
etd-JingZejia-3417.pdf
Dmrecord
563134
Document Type
Thesis
Format
application/pdf (imt)
Rights
Jing, Zejia
Type
texts
Source
University of Southern California
(contributing entity),
University of Southern California Dissertations and Theses
(collection)
Access Conditions
The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law. Electronic access is being provided by the USC Libraries in agreement with the a...
Repository Name
University of Southern California Digital Library
Repository Location
USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Tags
dynamic analysis
microgrid
power system
PSS/E
renewable energy