Close
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected
Invert selection
Deselect all
Deselect all
Click here to refresh results
Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Dynamic fluvial systems and gravel progradation in the Himalayan foreland
(USC Thesis Other)
Dynamic fluvial systems and gravel progradation in the Himalayan foreland
PDF
Download
Share
Open document
Flip pages
Contact Us
Contact Us
Copy asset link
Request this asset
Transcript (if available)
Content
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. Hie quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material bad to be removed, a note w ifi indicate the deletion. Oversize materials (e.g„ maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor. M l 48106-1346 USA 313/761-4700 800:521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. R eproduced with permission of the copyright owner. Further reproduction prohibited without permission. DYNAMIC FLUVIAL SYSTEMS AND GRAVEL PROGRADATION IN THE HIMALAYAN FORELAND by Nicholas Brozovic A Thesis Presented to the FACULTY OF THE GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE (Earth Sciences) August 1996 Copyright 1996 Nicholas Brozovic Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 1381580 UMI Microform 1381580 Copyright 1996, by UMI Company. Ail rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UNIVERSITY O F SOUTHERN CALIFORNIA THE GRADUATE SCHOOL UNIVERSITY PARK LOS ANGELES. CALIFORNIA 9 0 0 0 7 This thesis, written by under the direction of h.i-3.— Thesis Committee, and approved by all its members, has been pre sented to and accepted by the Dean of The Graduate School, in partial fulfillment of the requirements for the degree of MA.STER OF SCIENCE Dean THESIS COMMITTEE Chairman Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Acknowledgements Dr. Douglas Burbank, my thesis advisor, has taught me the difference between doing geology and doing science. His work sets an intellectual and scientific standard for the rest of us. I am grateful to him for the many opportunities to undertake stimulating research he has offered me and for the challenges he has provided. I would like to thank Drs. Steve Lund and Dave Bottjer for their role on my thesis committee. Steve has also helped me to begin to understand the many intricacies of paleomagnetic data. Without Sally Henyey, the time I spent in the paleomagnetism lab would have been far less pleasant and probably a good deal longer. Rene, Cindy, Macy and Annie in the main office have also made my life considerably easier. I was supported by NSF grant EAR-9205501 and NASA grant NAGW-3762 to D. W. Burbank, by a Shell International Petroleum Company Postgraduate Bursary and by a Keck Foundation Fellowship at USC. This study is part of a longer-term collaboration with the Geoscience Research Group, KDMIPE, Oil and Natural Gas Corporation, Dehra Dun. Dr. Jagadish Pandey and his colleagues have been very helpful, and allowed me to study many of their reports and geological maps, as well as giving logistical support. Many people helped me in India and their friendship is at least as important to me as the final product that this thesis represents. I would particularly like to thank Mr. Hameeduddin Mahmood, Miss Zohra Fatima, Mr. Akbar Jalaluddin and family for their hospitality in Delhi. Mr. Joginder Singh not only drove my field vehicle, helped me with sample collection, and explained to all the bemused onlookers exactly what I was doing ("He's looking for oil."), but also greatly improved my Hindi, shared some fine Bagpiper Whiskey and card games, and brought to my attention that the Kangra field-area lay ii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. wholly within a tiger sanctuary (a fact which Doug had forgotten to mention). Mr. Ravindra Sharma of the Sainik Book Depot, Jawalamukhi helped me to understand Himachali traditions and culture, and provided much logistical assistance. I am grateful to Lt. Col. Fateh Bahadur and family for showing me some of the beautiful sites of Jaipur on a flying visit to the Pink City. Mr. Ashok Nehra and Mr. Aman Mahajan treated me like a VIP during my five weeks at the Hotel Matashree, Jwalaji. My friends in Los Angeles and elsewhere have been very important to me, and I greatly appreciate their continuous support: Adam, Dave, Rahul (who has shown me why Britain will never produce a racquetball champion), Julio, Jacqui, Kath, Suman, Slava, Oliver, Tom, Greer, Malcolm, Sanjeev, Kathy, Ann, Matt, Rory, Sam, Whitey, Ken, Nicole, Steve, Keegan and Aaron. I would like to acknowledge the guidance and camaraderie of Andrew and Sarah Meigs, whose help has been invaluable to me during the past three years. I have been fortunate to have such good friends. Glynnis Collins has endured my many travels and traumas and her support and friendship means very much to me. My parents are responsible for my wanderlust, although I am sure that they sometimes wish otherwise, particularly when I have been out of contact for several weeks in some far-flung place. They nurtured my scientific inquisitiveness and encouraged me to come to America. I hope that they are as proud of me as I am of them. 111 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table of Contents Acknowledgements..............................................................................................................ii List of Figures....................................................................................................................... v List of Tables.........................................................................................................................vi Abstract................................................................................................................................. vii Introduction...........................................................................................................................1 General geologic framework............................................................................................... 7 Methodology.........................................................................................................................14 Kangra section...........................................................................................................22 Naiad Khad section.................................................................................................. 32 Jawalamukhi section................................................................................................40 Haritalyangar section...............................................................................................44 Depositional synthesis..........................................................................................................46 Before 11.5 M a ........................................................................................................ 50 11.5-10 M a..............................................................................................................51 10 - 8.7 M a................................................................................................................ 52 8.7-7.2 M a...............................................................................................................53 7.2 Ma and younger.................................................................................................55 Discussion.............................................................................................................................55 Summary............................................................................................................................... 62 Bibliography..........................................................................................................................67 Appendix 1. Tables of Raw Magnetic Data for Kangra and Naiad Khad Sections 76 Kangra D ata..............................................................................................................76 Naiad Khad Data.......................................................................................................I l l Naiad Khad Fold Test Data......................................................................................152 Appendix 2. Tables of Magnetic Susceptibilities for Kangra and Naiad Khad Pilot Studies...........................................................................................................................154 Kangra Section..........................................................................................................154 Naiad Khad Section................................................................................................. 156 Appendix 3. Conglomerate Clast Count Data for the Himachal Pradesh Sections 158 Appendix 4. Kangra and Naiad Khad detailed measured sections................................... 160 Kangra section...........................................................................................................161 Naiad Khad section...................................................................................................166 iv Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. List of Figures Figure 1. Factors controlling foreland basin sedimentation............................................2 Figure 2. General location map......................................................................................... 5 Figure 3. Simplified stratigraphic column for the Eocene to Pliocene medial and distal Himalayan foreland.................................................................................................... 8 Figure 4. General location map of the Himachal Pradesh reentrant................................ 10 Figure 5. Structural cross-section through the Himachal Pradesh reentrant..................11 Figure 6 . Zijderveld plots of inclination and declination data from representative thermally demagnetized samples, and plots of relative intensity and magnetic susceptibility versus temperature........................................................................................ 17 Figure 7. Equal area stereonet plots of in situ and bedding-corrected Class I data for the Kangra and Naiad Khad sections.............................................................................. 19 Figure 8 . Location map of samples and measured section, Kangra..................................23 Figure 9A. Kangra measured section, virtual geomagnetic poles of sample sites, magnetopolarity stratigraphy and correlation to global magnetic polarity timescale of Cande and Kent (1995).....................................................................................................24 Figure 9B. Representative lithofacies for the Kangra section...........................................26 Figure 10. Sedimentological data for the Himachal Pradesh sections..............................28 Figure 11. Location map of samples and measured section, Naiad Khad........................33 Figure 12A. Naiad Khad measured section, virtual geomagnetic poles of sample sites, magnetopolarity stratigraphy and correlation to global magnetic polarity timescale of Cande and Kent (1995).................................................................................... 34 Figure 12B. Representative lithofacies for the Naiad Khad section................................. 36 Figure 13. A) Stratigraphic sections and local magnetic polarity stratigraphies for the Jawalamukhi and Haritalyangar sections. B) Correlation of the Himachal Pradesh local magnetic polarity stratigraphies with the global magnetic polarity timescale (Cande and Kent, 1995)....................................................................................... 41 Figure 14. Temporal and spatial variability of the Nahan sandstone and conglomerate lithofacies within the Himachal Pradesh reentrant....................................47 Figure 15. Depositional synthesis for the Late Miocene Himachal Pradesh reentrant..................................................................................................................................48 v Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 16. Sediment-accumulation curves for the Himachal Pradesh magnetic sections................................................................................................................................... 58 List of Tables Table 1. Fisher statistics, fold, and reversal tests for Class I paleomagnetic data from Kangra and Naiad Khad sections................................................................................ 20 vi Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Abstract The large scale stratigraphy of many terrestrial foreland basins is punctuated by major episodes of gravel progradation. However, the temporal and spatial relationships between gravel progradation and hinterland tectonism and climate change are unclear. The importance of load morphology (particularly thrust reentrants and salients) in localizing depositional systems in three dimensions is poorly understood. Structural reentrants provide windows into older and more proximal parts of the foreland than are usually exposed, and thus provide key insights onto earlier portions of foreland evolution. Our magnetostratigraphic studies show that although the major lithofacies preserved within the Himachal Pradesh structural reentrant in northwestern India are sedimentologically similar to coeval lithofacies in Pakistan, they show a much greater temporal and spatial variability. In the undeformed medial foreland from 11.5 Ma to 7 Ma, major facies boundaries in Himachal Pradesh vary by as much as 2-3 Myr across distances of 20-30 km and are controlled by the interference between a major southeastward-flowing axial river and a major southwestward-flowing transverse river. A thick but highly confined gravel front prograded along the transverse river at 2-3 cm/yr, which seems to have been focused along an extension of the axis of the structural reentrant. This Middle-late Miocene conglomerate facies includes the oldest extensive Siwalik conglomerates yet dated (10 Ma) and implies the development of significant erosional topography along the Main Boundary Thrust prior to 11 Ma. Our studies document extensive syntectonic gravel progradation with conglomerates stretching tens of kilometers into the undeformed foreland during a period of increased subsidence rate and within 1-2 Myr of major thrust initiation. We suggest that the sediment flux into the Siwalik Himalayan foreland was sufficiently high to fill available sediment accommodation space irrespective of changes in the subsidence function. Under such vii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. conditions, gravel progradation is limited by the supply of gravel to the foreland and the ability of fluvial systems to transport it, but not by hinterland tectonism. viii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Introduction The evolution of terrestrial foreland basins is marked by the reorganization of fluvial systems on spatial scales of kilometers to thousands of kilometers at temporal scales ranging from coseismic to millennia. Depositional systems within the foreland adjust in response to changes in at least five factors: ( 1) flexure of the loaded plate, (2 ) incipient deformation at the leading edge of the encroaching load, (3) climate change, (4) hinterland lithologies exposed to erosion and (5) biological factors, particularly anthropogenic influences in the last several thousand years (Figure 1). Although it is conceptually simple to link hinterland tectonism and climate change to foreland sedimentation, both field studies and modelling demonstrate that there is considerable uncertainty in giving genetic interpretations to the variations seen in real and synthetic foreland basins (e.g. Burbank, 1992; DeCelles, 1994; DeCelles etal., 1993; Flemings and Jordan, 1989, 1990; Fraser and DeCelles, 1992; Graham et al., 1986, Paola et al., 1992; Sinclair and Allen, 1992; Sinclair et al., 1991; Waschbusch and Royden, 1992; Watts, 1992). Key problems include the role of lower plate flexural inhomogeneity in controlling lithofacies, the importance of topography (particularly reentrants and salients) in altering load distribution and hence controlling the long-term position of fluvial systems, the temporal and spatial relationships between gravel progradation and tectonism, interactions between competing depositional systems, and the impact of major climatic changes on the sedimentary record (Beaumont et al., 1992; Burbank et al., 1988, 1993; DeCelles, 1988, 1994; DeCelles etal., 1993; Heller and Paola, 1989, 1992; Stem et al., 1992; Waschbusch and Royden, 1992). Moreover, because of the asymmetric development inherent to foreland basins, proximal and distal portions of the foreland generally have different preservation potentials and display strong contrasts in first-order 1 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 1. Factors controlling foreland basin sedimentation. Conceptual figure showing the possible effects on foreland depositional systems of changes in the following factors: flexural rigidity (I A), load distribution (I B), proximal structural disruption (II) and sediment supply (ID, IV, V). Each figure shows a three-dimensional view of a terrestrial foreland basin with hinterland catchments, alluvial fans and transverse and axial drainages represented. The width of the foreland is shown with open stippling. I A) An applied load on a plate with high flexural rigidity will tend to form a broader, shallower depression than a load of the same magnitude on a plate of low flexural rigidity. A tenfold increase in flexural rigidity will narrow the width of the foreland basin by approximately 50%. Thus, facies belts will tend to be narrower and closer to the hinterland on a weak plate. In the absence of other controls, axial drainages will also be closer to the thrust front on a weaker plate than on a stronger plate. The stippled bar in the figure represents increasing flexural rigidity, with higher flexural rigidities in the foreland beneath drainage IT and lower flexural rigidities in the foreland beneath drainage 'A' (Turcotte and Schubert, 1982; Duroy et al., 1989; Watts, 1992). IB) There are very few three dimensional studies of the effects of overthrusting plate topography on lower plate flexural response. Structural reentrants may show increased subsidence along their axes due to constructive interference of the thrust loads, and many reentrants have rivers focused along such axes (drainage ’ A’ ). It is unclear how far such subsidence maxima extend into the undeformed foreland, and of what magnitude these need to be to continue focusing fluvial systems. Similarly, tear faults or lateral ramps may localize rivers (drainage IT) and will also determine local subsidence regimes, possibly affecting other drainages such as 'C' (Visser and Johnson, 1978; Whiting and Thomas, 1994; Stem e ta l, 1992). II) Disruption of fluvial systems within the proximal foreland by fault propagation can lead to complex depositional patterns, even if faulting does not reach the surface. The balance between structural uplift, erodibility of the uplifted material and the ability of the river to readjust its channel profile by incision will determine whether any growing structure diverts a river or not (drainages 'A' and 'C' respectively). Aggradation and ponding are common behind such growing structures. Subsidence rates and paleocurrent directions will show high spatial and temporal variability close to the growing structure, and unconformities and growth strata are common. If the structure is emergent, clast compositions may be dominated by lithologies from within the uplift (drainage 'B'). These may be local basement lithologies or reworked weakly consolidated basinal sediments (Meghraoui et al., 1988; Tailing et al., 1995; Pivnik and Johnson, 1995; Burbank et al., 1996a). HI, IV, V) Sediment supply to a foreland has several key controls: i) climate, ii) hinterland tectonism, ill) hinterland lithology and iv) biological controls (especially anthropogenic influences in modem systems). The effect of climate change on foreland basin sedimentation is notoriously difficult to deconvolve from any tectonic signal, particularly because interactions may be counterintuitive (for example, increased rainfall may lead to hillslope stabilization by vegetation and thus a reduced sediment flux). In the absence of other controls, increased discharge may favor transverse streams prograding into the foreland at the expense of any axial system. Similarly, a large river debouching into the foreland may be able to 'shunt' the axial system into a more distal position (drainage 'A' compared to TT, 'C' and 'D'). Initiation of major hinterland fault systems can vary the sediment supply, both by altering the load regime (see IB above) and by exposing new lithologies with varying erodibilities at the surface. The role of humans in altering sediment flux through deforestation and development is still much debated (Beaumont et al., 1992; Paola etal., 1992; Burbank, 1992; Quade et al., 1989). 2 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. IA Flexural rigidity IB Load distribution II Proximal structural disruption III, IV, V Sediment supply 3 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. controls on sedimentation. Depositional systems in proximal forelands are often primarily influenced by localized tectonism, and both thrusting and strike-slip faulting may play significant roles in drainage evolution (Figure 1; Burbank and Beck, 1989; Pivnik and Johnson, 1995). The proximal sedimentary record is characterized by rapid changes in subsidence rates, paleodrainage reversals, variable clast provenance and progressive unconformities (Burbank etal., 1996a; Tailing et al., 1995; Tandon and Kumar, 1984). In medial to distal settings, flexural downwarping of the lithosphere tends to control depositional patterns over large areas with major sedimentological changes linked to orogen-scale hinterland thrusting (Figure 1; Flemings and Jordan, 1989, 1990; Sinclair et al., 1991). Ongoing convergence will passively carry medial and distal foreland deposits into a more proximal setting, whereas proximal portions of the foreland will be either overthrust or uplifted. If proximal depositional systems are preserved, they may be exposed within thrusts, isolated in piggy-back basins or within structural reentrants or windows. In order to address many of the problems stated above, it is necessary to synthesize data from across the foreland. Correlation among widely separated outcrops requires good time control. Terrestrial deposits are generally marked by a paucity of fossil material of known age, making biostratigraphy difficult. In such areas without fossils or radiometrically dateable volcanic lithologies, magnetostratigraphy can sometimes provide excellent temporal control if sufficiently long, continuous stratigraphic sections can be studied (Burbank et al., 1996b). Over the last twenty years, the northwest Himalayan foreland, particularly in Pakistan, has been the focus of intensive magnetostratigraphic studies and is now one of the best dated terrestrial forelands in the world, as well as being the largest (Figure 2; 4 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 80°E @ Quaternary | Tertiary Q pre-Tertiary ^ ^ M a in Boundary Thrust ^ Major river Brahmaputra Indian craton 2 0 0 km Figure 2. General location map, modified from Gansser(1964). HP = Himachal Pradesh reentrant, J = Jhelum reentrant. Major fault systems are not shown, except for the Main Boundary Thrust (MBT). The eastern and western margins of the MBT are transpressional with a significant strike-slip component of motion. Major Tertiary sedimentary sequences also occur along the Upper Indus and Kathmandu valleys. The names of major rivers are shown italicized. 5 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appel et al., 1991; Burbank and Beck, 1991; Burbank et al., 1986; Burbank et al., 1988; G.D. Johnson etal., 1979, 1983; N.M. Johnson etal., 1982, 1985; Khan etal., 1988, Meigs et al., 1995, Mulder and Burbank, 1993; Raynolds and Johnson, 1985; Tauxe and Opdyke 1982; and many others. For a complete review of Himalayan magnetostratigraphic studies, see Burbank et al, 1996b). Nonetheless, there are still many unresolved questions concerning the evolution of the Himalayan foreland and the hinterland tectonic and climatic signals as recorded in its sediments. The possible links between major climatic events such as Himalayan glaciation, the inferred strengthening of the Asian monsoon at 7-8 Ma, and the major alteration of atmospheric circulation patterns caused by uplift of the Tibetan Plateau are poorly understood, as are the impacts of these changes on denudation rates within the Himalaya and sediment flux to the foreland (Burbank, 1992; Burbank e ta l, 1993; Quade etal., 1989; Raymo and Ruddiman, 1992; Ruddiman and Kutzbach, 1989). The distribution of fluvial systems within the ancient foreland is poorly constrained, particularly the presence and downstream continuity of major axial drainages such as the paleo-Indus river (Burbank and Beck, 1991; Willis, 1993a, b). The timing, partitioning and magnitude of displacement along major Himalayan thrusts and the effect of irregularities in the evolving thrust load on basin subsidence and deposition are poorly known (Macfarlane, 1993; Meigs et al., 1995; Srivastava and Mitra, 1994). The role of basement topography and pre-existing faults in controlling depositional systems and structural style (i.e. thin- versus thick-skinned thrusting) has similarly been little studied (Karunakaran and Rao, 1979; Leathers, 1987; Lillie etal., 1987; Raiverman etal., 1983; Yeats and Lillie, 1991; Yeats et al., 1992). In this study, we present new chronostratigraphic and sedimentologic data from Miocene foreland basin strata exposed within the Himachal Pradesh structural reentrant 6 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. of the Main Boundary Thrust in northwest India (Figure 2). These represent more proximal Miocene deposits than have been studied elsewhere within the Himalayan foreland, and include the oldest extensive Siwalik conglomerates yet dated (10 Ma), suggesting that the Main Boundary Thrust developed significant erosional topography prior to 10 Ma. Although there is no evidence for localized synsedimentary structural disruption, the study area shows extreme spatial and temporal variability in lithofacies which may be linked to the longer-term development of the reentrant. Our studies highlight the uniformity and contemporaneous character of some of the major basinal lithofacies as well as the diachrony of others over distances of kilometers to hundreds of kilometers. General geologic framework India - Asia collision was initiated as early as 65 Ma in the westernmost part of the orogen (Beck et a l, 1995). Ongoing convergence has led to flexural downwarping of the overridden Indian plate, forming the Himalayan molasse basin, the world’s largest terrestrial foreland basin (Figure 2; Burbank et al., 1996b; Watts, 1992). Due to subduction, uplift and erosion, there is a dearth of preserved and exposed Paleogene foreland (Bossart and Ottiger, 1989; Critelli and Garzanti, 1994; Najman et al., 1993). From the early Miocene onwards, however, there is a well exposed, continuous record of detritus shed from the Himalaya. These sediments, deposited in a variety of fluvial regimes in the medial to distal part of the foreland, are known as the Rawalpindi and Siwalik Groups (Figure 3; Shah, 1977). The Siwalik strata traditionally have a tripartite division into the progressively younger Lower, Middle and Upper Siwalik Formations 7 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Pakistani Indian foreland foreland 6 >18 Ma 11 Ma 14 Ma 17 Ma Upper Middle "is g i 2 S o Lower Soan Dhok Pathan Nagri Chinji * o = a J5-3 1 ° os "Boulder Conglomerate" Upper Alternations Lower Alternations Nahan Kasauli Formation Kamlial Murree Eocene limestone Dharamsala Subathu | mudstone sandstone ^ conglomerate Figure 3. Simplified stratigraphic column for the Eocene to Pliocene medial and distal Himalayan foreland. The general lithostratigraphic nomenclature for the Pakistani foreland is based on the Potwar Plateau stratotypes of Shah (1977). In the northwest Indian foreland, nomenclature follows that of Johnson and Vondra (1972). 8 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. (Shah, 1977). These roughly correspond to lithofacies (and have generally been regarded as chronofacies) dominated by siltstone, sandstone and conglomerate, respectively. In northwest India, the Siwalik and Rawalpindi Groups are exposed within the Sub-Himalaya, an active thin-skinned fold-and-thrust belt between 30 and 80 km wide which accommodates some of the convergence between the Eurasian plate and the underthrusting Indian plate (Figures 4 and 5; Lillie et al., 1987; Yeats and Lillie, 1991). The northeastern boundary of the Sub-Himalaya is the Main Boundary Thrust (MBT), an intracontinental megathrust which places the Lesser Himalayan igneous and metamorphic sequences over the molasse basin. The MBT forms the inboard edge of the modern-day Himalayan foreland and the northern limit of the exposed Siwalik foreland basin (Figure 2). The outermost structure in the fold-and-thrust belt is the series of thrusts collectively known as the Himalayan Frontal Fault (HFF), which delineate the present-day boundary between deformed and undeformed foreland. Although the trace of the MBT generally follows the sweeping arc of the Himalaya, it is perturbed by several salients and reentrants. These irregularities form a first-order control on the width of the Sub- Himalayan fold-and-thrust belt and a second-order control on the width of the foreland (the flexural rigidity of the lithosphere is the primary factor in determining foreland width). The Jhelum reentrant and the Himachal Pradesh reentrant have dimensions of -100 km by 50 km (Figures 2 and 4). They preserve older, more proximal sediments than those seen elsewhere in the foreland: Eocene deposits within the Jhelum reentrant, and early Miocene Dharamsala and Eocene Subathu Formations within the Himachal Pradesh reentrant. Several previous studies have considered sedimentation within reentrants of the MBT: the Jhelum reentrant (Raynolds, 1980; Raynolds and Johnson, 1985; Visser and Johnson, 1978), the Himachal Pradesh reentrant (Johnson and Vondra, 1972; Johnson et al., 1983; Meigs et al., 1995) and the Ravi reentrant (Tandon and 9 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Thmst fault .Anticline with plunge direction Synclinc I Magnetic ■ section Jogindemagar. * / 0 - 6 - 12 km Dharamsal; I I I I I I I I tDalhousio *111111 Pathanki Undeformed foreland □ Alluvium H Lower Siwalik 0 Dharmsala / Subathu 0 Upper Siwalik □ Middle Siwalik □ Pre - Tertiary Figure 4. General location map of the Himachal Pradesh reentrant, modified from Raiverman et al. (1990). J = Jawalamukhi, S = Sarkaghat, NK = Naiad Khad, H = Haritalyangar. MBT = Main Boundary Thrust, HFF = Himalayan Frontal Fault, JT = Jawalamukhi thrust, SA = Sarkaghat anticline, PA = Paror anticline, JA = Janauri anticline, LS = Lambagraon syncline. The dashed line shows the line of cross section for Figure 5. The shading represents chronofacies and not lithofacies, and is based on detrital mineral assemblages and magnetostratigraphic time control (Johnson et al., 1983; Raiverman et al., 1990; Meigs et al., 1995; this study). The magnetic sections are named after adjacent towns or rivers. The names of major rivers are italicized. 10 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. HFF Janauri Jawalamukhi Paror MBT l l l l l l ^ ^ ^ ^ * | " > * I * I t i l l I 1 P " ^ _ * * * ^ » • I I | I I I I I I I I l~ I I I I I I I I I I I I i ~ i ~ > » " i " i " i * t " i " i ‘>r i " i " t " » * , i * i " i " > " i " i " i " i * i " i ' >i " i ,> i " r r r i " i * » * i * i " i % « ...................................... > • ■ Middle Siwalik HSubathu Formation F T 1 Crystalline basement | Location of ONGC well Thrust Figure 5. Structural cross-section through the Himachal Pradesh reentrant, after A. J. Meigs (unpublished data) and Yeats and Lillie (1991). HFF = Himalayan Frontal Fault, MBT = Main Boundary Thrust, ONGC = Oil and Natural Gas Corporation. The * shows the location of the Jawalamukhi magnetic section. 11 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Rangaraj, 1979). Within the Jhelum reentrant, excellent magnetostratigraphic time control, a high density of measured sections, and detailed sedimentology have allowed several studies to consider the impact of both the Main Boundary Thrust and more local structures on foreland depositional systems (Burbank et al, 1988; Raynolds, 1980; Raynolds and Johnson, 1985). These studies document syntectonic progradation of gravels away from the rising MBT, focusing of fluvial systems by increased subsidence along the axis of the reentrant, and the competition between coeval axial and transverse drainages. This study focuses on Siwalik Group sediments within the Himachal Pradesh reentrant in northwest India (Figures 4 and 5). The reentrant has a width of 100 km along the length of the MBT, and a maximum indentation of 50 km. The Sub-Himalayan fold- and thrust belt is up to 80 km wide here and shows a progression of structural styles from the MBT to the HFF (Figure 4). Recent structural interpretations have suggested thin- rather than thick-skinned deformation with the decollement level within shales of the Dharmsala Formation (Meigs et al, 1995; Powers and Lillie, 1995; Yeats and Lillie, 1991). A series of arcuate thrusts terminate against the MBT, imbricating sediments of the Dharmsala and Subathu Formations of the Rawalpindi Group. The Paror and Sarkaghat anticlines are plunging structures which expose steeply dipping Dharmsala through Upper Siwalik strata, and are symmetrically arranged on the northern and southern edges of the reentrant, respectively. The Jawalamukhi thrust sheet occupies the center of the reentrant and contains the Lambagraon synciine, a broad shallow structure which exposes Upper Siwalik sediments. Further southwest, outside the bounds of the reentrant, there are a series of linear thrusts and backthrusts, often with hangingwall anticlines. The outermost structure, the Janauri anticline, is an actively growing anticline above the Himalayan Frontal Fault. It has a topographic relief of less than 400 meters 12 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. and although it is composed of weakly consolidated gravels, it has diverted both of the major rivers flowing out of the reentrant (the Sutlej and the Beas) for considerable distances around it (Figure 4). Because no stratigraphic units are traceable across the MBT, there are no reliable figures for displacement along it, which may have been tens of kilometers. Within the Sub-Himalaya, balanced cross-sections show that there has been approximately 13.5 km of shortening at the widest point of the reentrant (Powers and Lillie, 1995). Neotectonic activity within the area is demonstrated by the M8 , 1905 Kangra earthquake which produced uplift to the southeast on the nearby Mohand anticline and in the Dehra Dun area (Yeats and Lillie, 1991). Relevelling has shown that the area south of the MBT rose with respect to the main Himalayan range to the north as a result of the earthquake, which is thought to have occurred within the reentrant on a blind thrust at the top of the basement (Yeats and Lillie, 1991). Several authors have suggested that the MBT is no longer active as a south-vergent thrust fault, but has been reactivated with locally variable senses of surface displacement (Valdiya, 1992; Nakata, 1989). Prior to this study, two magnetostratigraphic sections had been established within the Himachal Pradesh reentrant (Figure 4; Johnson et al., 1983; Meigs etal., 1995). These are both in the hangingwall of the Jawalamukhi thrust, along strike and 50 km apart, at Haritalyangar and Jawalamukhi. The sediments at Haritalyangar have been studied for nearly a century and have yielded important specimens of several early hominoid primates, including Ramapithecus, Gigantopithecus and Sivapithecus (Pilgrim, 1910; Lewis, 1934; Prasad, 1962; Johnson and Vondra, 1972). The establishment of robust time control for these hominoid sites was a major motivation in establishing the magnetostratigraphic section at Haritalyangar (Johnson etal., 1983). The stratigraphy at Haritalyangar was originally interpreted as essentially similar to the Potwar Plateau 13 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. region in Pakistan, and for ten years no further magnetostratigraphic sections were established within the reentrant. Meigs et a/.(1995) documented the magnetostratigraphy of a 3400-m-thick section at Jawalamukhi, distinguished by the occurrence of the oldest conglomerate dated within the Siwalik foreland (8.7 - 7.2 Ma), cropping out in a fairly restricted facies belt and interpreted as a product of middle-late Miocene (>10 Ma) initiation of the MBT. We have established two new magnetostratigraphic sections within the Jawalamukhi thrust sheet: at Kangra, 20 km northwest and along strike of the Jawalamukhi section, and at the Naiad Khad (river), roughly between Jawalamukhi and Haritalyangar but 30 km closer to the MBT (Figure 4). We present a synthesis of sedimentologic and stratigraphic data which, together with the excellent time control, allow a clear understanding of the late Miocene evolution of depositional systems within the medial Siwalik foreland. Moreover, the spatial and temporal facies variations depicted here contrast with the general uniformity of the more distal Miocene foreland preserved in Pakistan, and allow the possible impacts on foreland fluvial systems of the development of the MBT and the Himachal Pradesh reentrant to be evaluated. Methodology Because of heavy vegetation within the Himachal Pradesh reentrant, long, continuous exposures of Siwalik strata are found only along rivers and fresh road cuts. Additionally, faulting within the Jawalamukhi thrust sheet, particularly related to folding in the Sarkaghat area, limits the siting of stratigraphic sections. The sections described in this study at Kangra and the Naiad Khad, together with those previously measured at Haritalyangar and Jawalamukhi (Johnson et al., 1983; Meigs et al., 1995), are among the 14 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. longest continuously exposed sections without major faulting that can be measured within the Siwalik sequence of the reentrant. The new sections at Kangra and the Naiad Khad were measured using a Jacob's staff and Abney level. Lithostratigraphy, paleocurrent directions, conglomerate-clast counts and facies variations were documented at all four sections within the reentrant. Measured paleocurrent indicators included trough and planar cross stratification, furrows, scours, channel margins, parting current lineations and conglomerate clast imbrications. Where necessary, paleocurrent measurements were corrected for the dip of strata and for postdepositional tectonic rotations as indicated by mean paleomagnetic vectors. Conglomerate-clast lithologies were counted over a i m 2 area, with over a hundred clasts per locality. Major lithofacies boundaries were traced along the front of the Jawalamukhi thrust sheet using exposures along rivers and road cuts wherever possible, and binoculars and local topography in areas with poor access. Sampling for magnetic polarity stratigraphies (MPSs) focused on mudstones and siltstones, as other lithologies are usually either too weakly magnetized or too coarse grained to yield a primary depositional remanent magnetism. Oriented hand samples of suitable strata were collected using previously described techniques, with four to six samples collected per site (stratigraphic level). Sample localities were selected to avoid bioturbated or pedogenically mottled sediments. Many of the magnetic samples displayed a pale red to reddish brown coloration which may be due to hematitic pigmentation: the time of origin of this hematite pigmentation relative to the time of sediment deposition is one the major problems of terrestrial red bed magnetostratigraphy (Tauxe and Badgley, 1984). Some studies have suggested that the specular hematite component of NRM in Siwalik red beds is acquired in situ during or shortly after deposition (Tauxe et al., 1980, 1990; Tauxe and Badgley, 1988). Alternatively, detrital 15 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. hematite may have been derived from oxidized earlier foreland sediments (the Dharmsala Formation also has a strong red coloration). The presence of numerous magnetozones with clear normal and reverse polarities in the sections described below suggests that whatever the mechanism for NRM acquisition, it could not have taken place significantly after deposition, so that the results may be used for chronostratigraphy. The natural remanent magnetism (NRM) of the samples was measured on a cryogenic magnetometer at the University of Southern California. Stepwise thermal demagnetization was used to try to isolate the depositional remanent magnetism (DRM). For each of the sections, representative pairs of samples were chosen from many stratigraphic levels, so that the full range of sample lithologies and magnetic behavior were represented. Stepwise thermal demagnetization (measurements at 100°C, 200°C, 300°C, 400°C, 450°C, 500°C, 525°C, 550°C, 575°C, 600°C, 625°C and 650°C) was conducted on these subsets to determine suitable demagnetization levels for the entire sample population. Magnetic susceptibilities were measured after each heating step to determine whether new magnetic minerals were growing at elevated temperatures (this would invalidate the sample data for steps of that temperature and higher). The results indicate that there is a low temperature viscous overprint which is easily removed by thermal demagnetization at temperatures of 100 - 200°C (Figure 6 ). Some of the samples lose all of their NRM by 600°C, while others retain relatively high magnetic intensities, suggesting that both magnetite and hematite are magnetic carriers. Above 200°C, most samples revealed a clear normal or reverse polarity, though the weaker samples began to convert to minerals with higher susceptibilities at temperatures above 300°C, whereas the more strongly magnetized samples generally showed a decline in intensity with a steady magnetization direction throughout the study. On the basis of these results, the remainder of the samples were divided into initially ‘strong’ and 16 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. V NAL019A o. <N o • o KAN021A 0.05 South - North LI -0.06 -0.04 -0.02 o 500 Degrees C 500 Degrees C 0 O 9 • i -1 NAL043B . 2 0 0 0 0 ^ ! - U -1. A „U J ■ k m o o * 3 n w C T J 0 0.01 South - North ■ i W 5 500 Degrees C Figure 6 . Zijderveld plots of inclination (open circles) and declination data (filled circles) from representative thermally demagnetized samples, and plots of relative intensity (filled diamonds) and magnetic susceptibility (open diamonds) versus temperature. The square data points on the Zijderveld plots represent initial measurements. The scale for the Zijderveld plots is A/m. Relative intensity is calculated as inidal sample intensity / sample intensity for that temperature step. Both relative intensity and magnetic susceptibility are dimensionless. A) The site mean direction indicates normal polarity for sample KAN021A (north declination, down inclination), with progressive removal of an overprint at temperatures from 100 - 300°C. B) Sample NAL019A shows a reverse polarity (south declination, up inclination) and a low-temperature overprint which is removed by 100“ C. C) Sample NAL043B is a weak sample which shows a normal polarity at temperatures of up to 300°C, with random inclinations and declinations at higher temperatures. The increasing intensity and magnetic susceptibility above 300*0 suggest the growth of new minerals and obliteration of the original magnetic vector. Measurements from temperature steps higher than 300°C were discarded from the calculation of the polarity of this sample, and are shown joined with a dashed line and grayed. 17 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. initially ‘weak’ samples. A stepwise thermal demagnetization was chosen with temperature steps of 400°C, 450°C and 500°C for initially ‘strong’ samples (J0 > 0.025 A/m). Initially ‘weak’ samples (J0 < 0.025 A/m) were thermally demagnetized first at 200°C, 250°C and 300°C and then at the three higher temperature steps; magnetic susceptibility measurements were made at each higher temperature step to determine that no new mineral growth was taking place. If magnetic susceptibilities changed significantly, indicating mineral growth, data from that temperature step was discarded and no higher temperature steps were measured. After thermal demagnetization, magnetic vectors were corrected for sample orientation and bedding, and the dispersion between the sample magnetic vectors at each site was calculated using Fisher statistics (Fisher, 1953). Following the classification described in Burbank and Johnson (1983), sites which showed a good agreement between all of the samples (Fisher k values > 10) were termed Class I. Sites with unambiguous polarities but with Fisher k < 10 or sites with fewer than three surviving samples were classified as Class II and unambiguous polarity. Sites for which no Fisher k value could be calculated because the sample vectors were too dispersed and ambiguous data were termed Class ID, and discarded from further analysis. The total number of sites in this study was 244, with 1100 samples. These yielded 209 Class I sites (8 6 %), 34 Class H sites and one Class HI site. Reversal and fold tests were applied to data from all of the samples from each Class I site to further evaluate the data quality (Figure 7 and Table 1). Bedding-corrected data for both the Naiad Khad and Kangra sections pass the reversal test of McFadden and McElhinny (1990) at a 95% confidence interval (Table 1). Normal and reverse polarity populations of Class I in situ and bedding-corrected data were used for the fold test (Butler, 1992), and the Fisher (1953) precision parameter (k) was calculated from the mean direction of each population (Figure 7 and Table 1). Due to 18 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. in situ Class I data bedding-corrected Class I data Kangra section in situ Class I data bedding-corrected Class I data Naiad Khad section ,v !• w • • mean direction 0195 error Figure 7. Equal area stereonet plots of in situ and bedding-corrected Class I data for the Kangra and Naiad Khad sections. Closed circles are samples which show a normal polarity, open circles are samples which show a reverse polarity; mean directions of normal and reverse samples are indicated by shaded boxes encircled by their respective 093 confidence intervals. The data pass the reversal test and fail the fold test at a 95% confidence interval (see text for discussion and Table 1 for data). Mean trends and plunges for the total Class I bedding-corrected data for each section (calculated using the normal samples and projecting the reverse samples through the origin) are 014.3°, 31.3° for the Kangra section and 002.4°, 29.8° for the Naiad Khad section. Note that the Kangra section shows an apparent clockwise vertical axis rotation and that the Naiad Khad section shows no apparent rotation. 19 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. DataSet N k a 9 5 (°) Declination(°) Inclination(°) Kangra section Normal Polarity Samples In situ 244 16.5 2.3 355.8 49.4 Bedding-Corrected 244 17.9 2 .2 1 2 .8 31.7 Reverse Polarity Samples In situ 1 2 0 1 1 .2 4.0 185.0 -48.1 Bedding-Corrected 1 2 0 1 2 .0 3.9 197.4 -30.4 Reversal test (McFadden and McElhinny, 1990): pass if k(becjc ]ing-corrected, reversed) I ^(bedding-corrected, normal) ^ ^[^(reverse)* ^(normal)’ 0.05] 12.0/17.9 = 0.67 < 1.29 (pass) Fold test (Butler, 1992): pass if k^jedding-corrected) f situ) ^ F[0(bed)> situ)' 0.05] N orm al polarity: 17.9/16.5 = 1.08 < 1.24 (fail) Reverse polarity: 12.0/11.2 = 1.04 < 1.35 (fail) Naiad Khad section Normal Polarity Samples In situ 207 10.5 3.2 18.3 23.3 Bedding-Corrected 207 1 2 .6 2.9 358.9 32.5 Reverse Polarity Samples In situ 204 12.1 3.0 198.9 -14.4 Bedding-Corrected 204 12.1 3.0 185.8 -27.1 Reversal test (McFadden and McElhinny, 1990): pass if k^bgdding-corrected, reversed) ^ ^bedding-corrected, norm al) ^ P[n(reverse)’ ^(normal)’ 0.05] 12.1/12.6 = 0 .% < 1.24 (pass) Fold test (Butler, 1992): pass if k(t)e t|( jjn g _ corrected) / k(,„ > Fjn^j^j), n^n situ)' 0.05] N orm al Polarity: 12.6/10.5 = 1.2 < 1.24 (fail) F(207,207,0.10) = 1.09 < 1.2, so the normal sam ples pass the fold test at the 90% confidence level. Reverse Polarity: 12.1/12.1 = 1 < 1.24 (fail) Note: k = best estimate of the Fisher (1953) precision parameter. a M = 95% confidence interval on mean. Bedding correcteddatarestoredtohorizontalattitudeassumingnonplunging, cylindrical folds. Fold test using precision parameters for mean directions of bedding-corrected and in situ data as described in Butler (1992) is a statistical F test. Value for F(n, bedding-corrected, n, in situ, confidence level (95%)) taken from table of F values from a standard statistics textbook. Reversal test using precision parameters for mean directions of normal and reversed bedding-corrected data as described in McFadden and McElhinny (1990) is a statistical F test. Value for F(n, bedding- corrected, n, in situ, confidence level (95%)) taken from table of F values from a standard statistics textbook. Table 1. Fisher statistics, fold, and reversal tests for Class I paleomagnetic data from Kangra and Naiad Khad sections. 20 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. uniform stratal dips throughout the section, both normal and reverse polarity populations of the Kangra data fail the fold test at a 95% confidence interval. The Naiad Khad data also fails the fold test at a 95% confidence interval, but the normal polarity data (the only population which contains samples that are not all from the same dip-panel) passes the fold test at a 90% confidence interval. Moreover, in all cases, the concentration factor of the bedding-corrected data is higher than that of the in situ data, and the presence of both normal and reverse sites grouped in magnetozones suggests that the magnetic vectors measured represent depositional remanence rather than an overprint. Virtual geomagnetic poles (VGPs) and 95% confidence intervals ((X95) for the paleolatitude were calculated for site means of the Class I and II data. The VGP latitude allows magnetozones and a magnetic polarity stratigraphy (MPS) to be established for each section. The (X 9 5 value is a further measure of the uncertainty in site polarity. The MPSs can then be correlated with the global magnetic polarity timescale (MPTS). This study uses the MPTS of Cande and Kent (1995), and recorrelates pre-existing MPSs where older timescales have been used. Several rigorous discussions of the uncertainties involved in using magnetostratigraphic studies for absolute age determinations have been published (Johnson and McGee, 1983; Tailing and Burbank, 1993; Burbank etal., 1996b). Limitations can be divided into two broad categories: physical uncertainties of the data itself, and problems inherent in the study of a continuous (though possibly much more complex) succession using discrete data. Johnson and McGee (1983) recommend a sample density of 20-25 sites / million years within Neogene strata to have a high likelihood of catching all of the recorded reversals with a few sites in each. Even though large portions of the measured sections were dominated by conglomerates, an adequate sample density was maintained, with approximately 25 sites / million years at Kangra and 21 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 35 sites / million years at Naiad Khad. Resampling of single site reversals was undertaken wherever possible to reinforce polarity determinations and minimize the risk of sampling errors or lightning strikes affecting the MPS; the Kangra section contains no single site reversals and the Naiad Khad section contains one. The data quality of both the Himachal Pradesh magnetic polarity stratigraphies is excellent, and gives us confidence in the correlations chosen and in the interpretations of stratigraphic and sedimentologic data we present based on this time control. Kangra section The Kangra section is located at 32° 2’ N, 76° 15’ E, in the hangingwall of the Jawalamukhi thrust sheet (Figures 4 and 8 ). It begins on the Baner Banganga river below the Jawalamukhi - Kangra road bridge. The 2300-meter-thick section is characterized by an overall coarsening upwards with distinct sedimentological boundaries that allow three major lithofacies to be defined, corresponding to the traditional Lower, Middle and Upper Siwalik lithofacies (Figures 3, 9a, b and 10). The major lithologies present in the lower 500 m of the section are interbedded siltstones, mudstones and thin fine-grained sandstones. Well developed red-brown soil horizons with rootlets are common, as are green finely laminated silts. Sandstone thickness is generally 5 m or less, though there are rare multistoried sandstones with an amalgamated thickness of 30-40 m (Figure 9b). Paleocurrent indicators (mostly planar cross bedding) show flow to the southeast (Figure 10). This facies is similar in appearance to the Lower Siwalik Chinji Formation in the Potwar Plateau (Tauxe and Opdyke, 1982; N.M. Johnson etal., 1982, 1985). The interval from 500 m to 2250 m is dominated by thicker sandstones separated by siltstone and clay intervals (Figures 9a, b). The sandstones are often multistoried with 22 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 76‘15’ E 32’04’ N— 32'02’ N- iDaulatpur Kulthx Chounda Dhamehr Baner Khad S. M.S. 76‘15’ E — 32*0474 - 3 2 ’02'N J Bedding Footpath a Sample site form line (normal polarity) River Garli J Named village 0 Sample site Road Conglomerate (reverse polarity) Railway » Chrono- \ Bedding ' ««. stratigraphic 3 3 V suike and boundary dip Figure 8 . Location map of samples and measured section, Kangra. The area is covered by Sheets 52 D/4 and 52 D/ 8 of the 1:63 360 topographic series published by the Survey of India, 1926. L.S. = Lower Siwalik, M.S. = Middle Siwalik, U.S. = Upper Siwalik. Major river names are shown italicized. Bedding form lines and chronostratigraphic boundaries are based on unpublished Oil and Natural Gas Corporation reports, and field mapping. 23 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 9 A. Kangra stratigraphic section including the virtual geomagnetic pole (VGP latitude) determined for each site, the local magnetopolarity stratigraphy (MPS) and the preferred correlation to the global magnetic polarity time scale (MPTS) of Cande and Kent (1995). L.S. = "Lower Siwalik" lithofacies, similar to Chinji lithofacies; M.S. = "Middle Siwalik" lithofacies, here interpreted as the Nahan Sandstone; U.S. = "Upper Siwalik" lithofacies ("Boulder Conglomerate"). A * to the right of the stratigraphic column shows the location of the more detailed representative lithofacies logs shown in Figure 9B. Small circles to the left of the lithostratigraphic column are the sites of paleomagnetic samples. Closed circles on the VGP plot are Class I data (k > 10; Fisher, 1953). Open circles are Class II data (k < 10; Fisher, 1953). 0 9 5 errors for each latitude determination are shown by straight bars through individual sites. Boundaries between each magnetozone are chosen at the stratigraphic mid-point between intervals of constant polarity. Note that the samples from -200 m to -800 m show a long normal polarity interval (magnetozone N2). Chrons 5n.2n and 4An are labelled in italics next to the MPTS. The Kangra MPS is interpreted to span 11.3 Ma to 6.9 Ma. 24 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. & 2500-1 — e y <r -45* VGP latitude 0* S ' ir 1 4>iV V >V > < ? < •< •< • < • ^y y . ^ y .' *■ aJ 2000- 1500- 60 '5J X 1000- 5 0 0 - 0 - 1 1 ______ -1- . 1 ! ------------- A. 4 5 * : l ^ T p — 1 T •V » V * S -S iV \>>s»vw conglomerate sandstone clay / silstone • Class I site (k £ 10) O Class n site (k < 10) 0 9 5 error 25 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 9B. Representative lithofacies for the Kangra section. Locations of each sedimentary log are shown as stars in Figure 9 A, and the interval in which the lithofacies is recognized is shown to the left of the stratigraphic column in Figure 9 A. Each log covers a stratigraphic interval of 50 m and shows stratigraphic height, lithology and grain size variation, sedimentary features and sample locations. Conglomerate-clast counts and imbrication data are given where measured. For conglomerate-clast imbrication measurements, dip and dip direction of flat imbricated pebbles are shown; these vectors were bedding-corrected, rotated for post-depositional vertical-axis rotation, and inverted to give a paleoflow direction. 26 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 2275- "Boulder Conglomerate" ("Upper Siwalik") 2250 90* — CONGLOMERATE-CLAST COUNT 22S0 a Q L IM S 0 45% 15% 22% 13% 5% — CONCLOMHJUT&CLAST IMBRICATIONS 2210 m — 01000 012/37 124/30 073/51 066/22 049/40 015/50 040/45 067/58 065/45 35045 052/21 041/40 142/27 11046 060/24 09044 105/65 074/36 088/55 350/31 •% sandstone decreasing o p w d s O a y d a i conglomerate BEDDING 027/15 •Mockied Fc stauuag •Rate friable B tnoae. oc n aoeal d «y rip-ups •-40*50% sandstone •Locally preserved gray liltsiooe •Sandy lenses ifl conglomerate ic(slr> ttf ciplc^M « g Nahan Sandstone ("Middle Siwalik") 68 • 1750-1 1725- w I7 0 Q j 'c I.r T I 5 l c T p^rw A •Red-brown afcsooe. concretionary layer near base •Enable green fine sandstone •Poorly exposed taesbedded o k / medium sandstone •Gray-green tamWnnr witb occasional H a v in g ' pebbles •Locally tip to 60-70% couglomcrae in lover half •flock gray iirefttorr with cocglorncrac laga up to 2 m thick, large tcalc foroeu (-2-3 m) •bxerfaedded red/btown/greea tButooe •Slacked line sandstone channels, green "Lower Siwalik" 15* 14* 13« 12* 11* 10* 175- 150- •Poorly expoaed red jflwone. local mottling and concretions m «Gray/green mnrtfloar with mod flakes and laminations near top •Gritty red-brown tilt A »M e gieen fine tinrtaone. branching roots A »Pale green tflmone/mpdnonc. finely bedded, lond grucages. tome bioturbarioc. slightly mottled red-brown tf top •Poorly exposed red-brown titao o e / / / *Ftfle gray croaa-bedded sandstooe with raud-rip opt. S J m thick m ‘Very finely bedded mottled pale pink/green modstont £ *1.5 m pile gieea/pink fine sandstone; mottled and Womtbated • •Red-brown gritty sikioae bands exposed above rood a 1 ? ' c •Rnc grey-brown laminated sandstone paaaea into apeckled red-brown rihnonc. completely homogenized by btoctmndon; top I mi* purple sofl with concretiooa, rootlet* and green mottling >c*s|fit3'c|pTcTBi • g Grain size idiir'Wclpictbt t s s i s j i i Sedimentary features U ! j f i l j A T planar cross bedding — bedding trace PP toaboruoo - carbonate cooaetioos { bictorbvioo gravel lag in sandstone X. rootlets sandstone lease in congkxnerme - lamination sihsuoe pocket in cooglomeme coarsening upwards 5 8 # sample the and number 27 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 10. Sedimentological data for the Himachal Pradesh sections. The figure shows simplified lithostratigraphy (patterns follow Figure 9a), paleocurrent directions, mean sandstone thicknesses, percentage of conglomerate and conglomerate-clast counts for the four measured magnetic sections in Himachal Pradesh. Note that the vertical scale varies between sections, but that the vertical scale for all the data within each section is the same. The stratigraphic position and age of several chron boundaries are shown by thick gray lines for each section (base C4r. In = 8.225 Ma, top C5n = 9.92 Ma, base C5n = 10.949 Ma; Cande and Kent, 1995). The base of Chron 5n is shown as a dashed line for the Haritalyangar section to indicate that this is stratigraphically the highest possible boundary because the lowest magnetic sample in the section has a normal polarity. Mean paleocurrent directions are shown by the small arrows (north = up, south = down) and have been corrected for the following postdepositional vertical-axis rotations as shown by the section mean magnetic vectors (a positive angle represents clockwise postdepositional rotation and an anticlockwise correction of the same magnitude): +14° at Kangra, +7° at Haritalyangar, and negligible rotations at Naiad Khad and Jawalamukhi. Black arrows represent mean vectors based on large numbers of paleocurrent indicators; white arrows indicate approximate flow directions where only a few paleocurrent indicators could be measured. The numbers to the right of the arrows indicate the number of paleocurrent measurements used. Paleocurrent directions for the Jawalamukhi section are from A.J. Meigs (unpublished data). The thickness of sandstone beds was averaged over 125 m intervals. Sandstones interpreted as overbank splays were not used and multistoried sandstone units were amalgamated in the calculation. The percentage conglomerate was calculated as the amount of conglomeratic material over a 125 m interval. Conglomerate- clast lithologies were counted over a i m 2 area. The figure shows the relative proportions of each lithology counted, and the stratigraphic height and position of each count. The raw data for the calculations is given in Appendix 3. Conglomerate-clast lithologies: Q = quartzite, L = limestone, IM = igneous and metamorphic, S = sandstone and siltstone, O = other. 28 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Kangra 2500- |P 2 0 0 0 - ? ^ 1 5 0 0 : C / 3 4 ) % 1 0 0 0 - 2 500- o- base 4r. In 8.225 Ma 9.92 Ma 10.949 Ma 0 50 ' 100 m 0 50 100 mean sandstone thickness % conglomerate 2280m 1680m --R I M n Q L IMS O L - Q L IMS O I s m-rn____ Q L IMS O conglom erate clasts 1385m Jawalamukhi 3000 ^2000 C / 3 ft> £ 2 1000 0 J 8.225 Ma 9.92 Ma 10.949 Ma 100 m 0 50 100 mean sandstone thickness % conglomerate 2390m 2070m 1720m JLm. Q L IM S O i-fl ■ — _ Q L IM S O -B-m. Q L IM S O conglomerate clasts Haritalyangar 1600 '=•1200 | 800 .2 u S 400 0 Naiad Khad 8.225 Ma base4r.ln 9.92 Ma base C5n r - - T T !0;949M a 0 50 100 m 0 50 100 mean sandstone thickness % conglomerate 2000 l l 5 0 0 jj 1000 ^ 500 0 50 100 m 0 50 mean sandstone thickness % conglomerate 1630m I _n_ Q L IM S O conglom erate clasts 8.225 Ma 9.92 Ma base C5n 10.949 Ma 2150m Q L IM S O 1915m 1535m 660m J . Q L IMS 0 1 Q L IM S 0 j J L Q L IM S O conglom erate clasts Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. a thickness of up to 45 m (though averaging between 10 and 20 m), and show a 'salt-and- pepper' texture. This texture is characteristic of the Middle Siwalik Nagri Formation in Pakistan and the Nahan Sandstone in India and suggests that this predominantly sandy facies at Kangra is either part of, or corresponds to, the Nahan Sandstone (Figure 10; N.M. Johnson era/., 1982, 1983, 1985). Planar and trough cross-stratification are common, and woody material is uncommonly preserved (Figure 9b). With height, there is a concurrent increase in average grainsize, sandstone thickness and proportion, and the frequency of conglomerate lags. The siltstone intervals are often laminated and have numerous thin (5-50 cm) laterally discontinuous fine sandstone beds, with occasional channel geometries preserved. Red-brown soil horizons with rootlets, bioturbation and common carbonate concretions are well developed throughout the facies, except in the last 150 m where green, gray and lilac clays and laminated silts predominate. Paleocurrent directions within this facies are generally to the south, with a progressive shift to the southwest with height (Figure 10). The change into laterally extensive and continuous clast-supported conglomerate at 2250m is very abrupt. The conglomerates are massive with no fine-grained intervals, although there are common clay rip-ups up to several meters in size near the base of the unit (Figures 9a, b). The conglomerate clasts are well rounded and fairly well sorted, with quartzite accounting for 45% of the clasts. Paleocurrent directions from imbricated clasts indicate flow to the southwest (Figure 10). This facies corresponds to the Upper Siwalik Soan Formation in Pakistan and to the "Boulder Conglomerate" in northwest India (Figure 3; N.M. Johnson etal., 1982, 1983). Five hundred paleomagnetic samples were collected at 113 sites, which on measurement yielded 97 Class I sites (8 6 %), 16 Class II sites and no Class III sites. This 30 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. defines a local magnetic polarity stratigraphy (MPS) with 17 reversals, 18 magnetozones and no single site reversals (Figure 9a). The high sample density of the section and absence of detected major unconformities suggests that the majority of chrons have been sampled and that further sampling would not reveal any significant changes in the MPS (Johnson and McGee, 1983). The key to correlation for many of the MPSs established within the Siwalik foreland to the global magnetic polarity timescale (MPTS; Cande and Kent, 1995) is the presence of a long normal polarity interval in each section which coincides with the thick Nagri Formation sandstone in Pakistan and to the Nahan Sandstone in northwest India (G.D. Johnson et al, 1982; N.M. Johnson et a l, 1982, 1985; Meigs et a l, 1995). This interval has been correlated with Chron 5n.2n (10.949 - 9.92 Ma; Cande and Kent, 1995) on the basis of faunal assemblages and fission-track ages from ash horizons (G.D. Johnson et a l, 1982). In the Kangra section magnetozone N2 is a long normal polarity magnetozone which includes the base of the Nahan lithofacies and has been correlated with Chron 5n.2n (Figure 9a). The remaining magnetozones have been correlated to the MPTS with the assumption that most chrons will have been detected due to the high sample density; hence the Kangra section spans from 11.3 Ma to 6.9 Ma. The slightly lower sample density near the top of the section leads to some uncertainty in the correlation which could yield variations of 0.1-0.2 Myr in the age of the top of the section. Magnetozone N7 of the Kangra MPS has been correlated with a cryptochron immediately above the top of Chron 4An (8.699 Ma) which is described in the MPTS of Cande and Kent (1992); this cryptochron also occurs in the Haritalyangar MPS (see the recorrelation of Meigs et al, 1995). Magnetozone N5 of the Kangra MPS is a short normal polarity magnetozone (2 Class I Sites at a height of 1340 m) which is not represented in any recent global magnetic polarity timescale. However, several other magnetostratigraphic studies in the Himalayan foreland have identified this short normal polarity interval at -9.2 Ma (Tauxe, 1979; Tauxe and Opdyke, 1982). It 31 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. seems likely that this short normal interval represents either a regional or global event of very short duration, which has been fortuitously preserved in some Siwalik sections due to relatively high sediment accumulation rates. Naiad Khad section The Naiad Khad section is located at 31° 46’ N, 76° 43’ E, on the western limb of the Sarkaghat anticline, and in the Jawalamukhi thrust sheet (Figures 4 and 11). It begins below the village of Siathi and follows the Naiad Khad and its tributaries upstream, with a total measured section of 2200 m (Figure 11). There is no exposure between the base of the section and a major fault which cuts across the Naiad Khad about 500 m downstream from the base. Four major lithofacies occur within the section (Figures 12a and b). The dominant lithology in the lower 1000 m of the section is coarse-grained sandstone. These sandstones are multistoried and commonly show 'salt-and-pepper' texture, meter-scale planar cross beds, matrix and clast-supported conglomerate intervals, small channels ( 1 0- 20 m across) and commonly preserved logs. In the lowest 300 m of the section, sandstone thickness varies from less than 5 m to 40 m, with interbeds of green laminated siltstone, gray clay and occasional red-brown silty soil horizons (Figures 10, 12a and b). From 300 m to 900 m, very few strata are finer grained than medium sand, with average sandstone thicknesses increasing to -40 m, though 100-m-thick sandstones are present. The amount of conglomerate also increases up section, with pebble lags and discontinuous bands in the lower portion, as well as gravel-filled channels and 15- to 2 0 - m-thick conglomerate beds in the upper portion. In the uppermost 100 m of the facies, there is a decrease in bed thickness and grainsize, and there are more common red-brown siltstone interbeds. Paleocurrents in this facies are to the SSW in the lower portion, 32 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 31*45’ N J Contour line Garli J1 Named village with elevation Conglomerate Chrono- — stratigraphic boundary ’’’ Footpath a Sample site (normal polarity) 0 Sample site (reverse polarity) 33 \ Bedding A strike and dip \ Fault 2 km J Figure 11. Location map of samples and measured section, Naiad Khad. The area is covered by Sheet 53 A/9 of the 1:50 000 topographic series published by the Survey of India, 1973, from which the contours in the figure have been taken. L.S. = Lower Siwalik, M.S. = Middle Siwalik, U.S. = Upper Siwalik. Major river names are shown italicized. Chronostratigraphic boundaries are based on field mapping. 33 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 12A. Naiad Khad stratigraphic section including the virtual geomagnetic pole (VGP latitude) determined for each site, the local magnetopolarity stratigraphy (MPS) and the preferred correlation to the global magnetic polarity time scale (MPTS) of Cande and Kent (1995). L.S. = "Lower Siwalik" lithofacies, similar to Chinji lithofacies; M.S. 1 = "Middle Siwalik" lithofacies, here interpreted as the Nahan Sandstone; C = "Middle Siwalik conglomerate" lithofacies; M.S. 2 = sandstone of "Middle Siwalik" age but interpreted as unrelated to the Nahan Sandstone; U.S = "Upper Siwalik" lithofacies ("Boulder Conglomerate"). A * to the right of the stratigraphic column shows the location of the more detailed representative lithofacies logs shown in Figure 12B. For other symbols, refer to Figure 9A. The Naiad Khad MPS is interpreted to span 11.8 Ma to 8.3 Ma. 34 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. >6 J ? -SO' n w w s 2000- 1 5 0 0 - e p '3 X 1000- 5 0 0 - 0 - 1 VGP latitude 0* v W W * % « w Masww1 kaSaSiVS*1 conglomerate sandstone clay / silstone Class I site (k 1 10) Class II site (k < 10) 0 9 5 error 35 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. A ge (Ma) Figure 12B. Representative lithofacies for the Naiad Khad section. Locations of each sedimentary log are shown as stars in Figure 12A, and the interval in which the lithofacies is recognized is shown to the left of the stratigraphic column in Figure 1 2A. See Figure 9B for further explanations. No log is shown for the Upper Siwalik "Boulder Conglomerate" lithofacies; it is similar in appearance to both the "Middle Siwalik conglomerate" lithofacies shown and the "Boulder Conglomerate" lithofacies shown in Figure 9B. 36 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 82. 81* 1875 7 9 . 78* 80* 1850 I T r I ^ifrwciplcfbi "Middle Siwalik sandstone 2" . - -J fragments to thio gravel lags •30an larrafuncd gray/lilnc fine sand, sik tad day •Gne to medium sandstone between cooglomente layers •gray sandstone with pebbles •coogloaeme with sandstone units at (base •triy/libc/tatbrow n sfhstone •Ittn in M f t i gfWffi ■ ■■ f —1 •red-brown ufcstoae lesse at m e a n •day lease •conglomerate layen, 1-2 m sandstone storeys •gray sandstone; pebbles in coarse n o d lags •recessive fine sandstone few a n thick, m o a te d to north •red-brown day pocket pteievded < ? 1200- 50« 1175- 25 115L • • T ^ Q c T p T c ^ b i "Middle Siwalik conglomerate" — CONGLOMERATE-CLAST IMBRICATIONS 1205 m — 236/36 219/25 249/62 249/11 277/32 354/27 273/19 226/59 259/21 33 5A M 215/06 359/06 245/61 223/30 240/26 251/26 219/66 •Red-brown d ay pocket •Rare sandy leoaei in massive conglomerate •Pink qoactzite, gneiss aod green saadstooc d a stt common •htbbie lags, day. sihstooe pockets with ftp-ups •Stacked sandsooe channels •Sandstones iniexfmger. occasional mod rip-ups and day laminae B E D D I N G 259/47 i f Nahan Sandstone ("Middle Siwalik") 225 40* 39# 200 •Matrix support conglomerate, mostly gray d ay and sandsooe intraclass. Cross-bedding -SSW •5cm clay band with saody streamers, pebbles •Gneiss, red/green qoartzite, vein quartz, occasional beige rilmone. basalt, granitic clasts •Thin discontinuous gray sihstooe bands •Gray sandstone. slumping, wood fragments •Gray laminated day •ftgplc sod developed to various depths into sandstone below •Pebble lags •Meter-scale cross beds, paleocurrent -W •Discontinuous conglomerate layer fcty? h o te l p ic f l » i * 6 Grain size i cl sir Iro/cjplclb* tu jlljl 1 1 1 11! Hi Sedimentary features / / / planar cross bedding — bedding trace r r soil horizon carbomecoocretions i btotttfbtfioo — gravel lag in sandstone rootlets sandstooe lease in conglomerate - laminatkm sikaooe pocket in conglomente coarsening upwards 6 8 V sample site and number Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. swinging westwards with height (Figure 10). The sedimentological similarity between this lithofacies, the Nagri Formation in Pakistan and the Nahan Sandstone in northwest India suggests that it is part of the Nahan Sandstone lithofacies (Figure 10; N.M. Johnson e ta i, 1982, 1983, 1985). From 1100 to 1700 m, the section is composed of thick, clast-supported, cobble sized conglomerates with thin interbeds of orange-yellow sandstone and red-brown to orange siltstone (Figures 1 2a and b). Conglomerate thickness increases rapidly at the base of the facies from about 10 m to over 100 m, and then decreases to 30 - 40 m in the upper portion of the facies (Figure 10). White and pink quartzites are the dominant clasts, although sandstone clasts are also numerous (Figure 10). Paleocurrents, consisting of clast imbrications, are to the west-southwest (Figure 10). This facies is similar in appearance to the ubiquitous Upper Siwalik "Boulder Conglomerate" and to the "Middle Siwalik conglomerate" described at Jawalamukhi by Meigs et al. (1995); the magnetostratigraphic correlation presented below suggests that it lies within the "traditional" Middle Siwalik sequence and hence is part of the "Middle Siwalik conglomerate" lithofacies. This lithofacies is only recognized at Jawalamukhi and Naiad Khad. From 1700 to 2100 m, there is a finer grained interval, with interbedded green and red-brown siltstones, sands and conglomerates generally 5 -10 m thick (Figures 12a and b). Paleocurrents indicate flow to the west (Figure 10). We suggest that this facies is part of the Middle Siwalik sandstone sequence, though not necessarily related to the other Middle Siwalik sandstones within the reentrant. At 2100 m, the lithology abruptly changes to massive conglomerates, with occasional sandy bands and no finer material (Figures 12a and b). Once again, clast imbrications suggest a westward flow and clast 38 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. compositions are dominated by quartzites (Figure 10). This facies is part of the Upper Siwalik "Boulder Conglomerate" which is found over a large part of the Lambagraon syncline within the Himachal Pradesh reentrant (Figure 4; Johnson and Vondra, 1972). Six hundred paleomagnetic samples were collected at 129 sites, which on measurement yielded 110 Class I sites (85%), 18 Class II sites and 1 Class III site. This defines an MPS with 15 reversals, 16 magnetozones and one single-site reversal (Figure 12a). The very high sample density (particularly in the upper two-thirds of the section) and the absence of detected major unconformities suggest that it is likely that most chrons have been sampled (Johnson and McGee, 1983). Magnetozone N3 is a long normal polarity interval which coincides with the Nahan Sandstone lithofacies and has been correlated with Chron 5n.2n (10.949 - 9.92 Ma; Cande and Kent, 1995). This is the basis for the correlation of the MPS to the MPTS (Cande and Kent, 1995), which dates the section as spanning 11.8 Ma to 8.3 Ma (Figures 12a and 3). An alternative correlation is possible for the Naiad Khad section, with the long normal magnetozone correlated to Chron 4n.2n (7.65-8.072 Ma; Cande and Kent, 1995), and the section spanning 8.4 Ma to 6.5 Ma (Figure 13). This alternative has been rejected because in comparison to the other sections in the reentrant, it gives unrealistically high sediment accumulation rates (a threefold increase in rate over a distance of 30 km, and rates 50% higher than recorded anywhere else in the foreland) and requires a retrogradation of hinterland-sourced facies with time. 39 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Jawalamukhi section The Jawalamukhi section was described by Meigs et al. (1995). It is located at 31° 53’ N, 76° 19’ E, in the hangingwall of the Jawalamukhi thrust sheet (Figure 4). The section follows roadcuts from Sapri to Surani, Chalot, Khundian, Bar and Gharalina. The thickness of the measured section is 3400 m (Figure 13). From the base of the section to a height of 470 m, the section consists of interbedded sandstones and green and red-brown siltstones. Soil horizons are well developed and the siltstones are often bioturbated with rootlets preserved. The sandstones are generally thin (2 to 5 m), with a maximum thickness of about 1 0 m, with the thicker beds occasionally showing planar cross stratification (Figure 10). Paleocurrents indicate flow to the southeast (Figure 10). This lithofacies is sedimentologically similar to the Lower Siwalik Chinji Formation in the Potwar Plateau region (Tauxe and Opdyke, 1982; N.M. Johnson etal., 1982, 1985). From 470 m to 1620 m, the section is dominated by much thicker multistoried sandstones with thicknesses averaging 20 - 30 m but reaching up to 100 m (Figure 10). Pebble lags and thin conglomerate beds are common and composed of well rounded quartzite and other metamorphic and igneous clasts. Trough cross stratification and other paleocurrent indicators show directions to the south, with a shift to the southwest with height (Figure 10). This lithofacies is part of the Middle Siwalik Nahan Sandstone, and corresponds to the Nagri Formation in the Potwar Plateau region (Figures 3 and 10; N.M. Johnson et al., 1982, 1983, 1985). At 1620 m, thick extensive clast-supported conglomerates appear. These have broad scours and coarse stratification with individual stories generally 3 - 10 m thick (Figure 10). There are occasional sandstone interbeds and sandy bands within the 40 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 13. A) Stratigraphic sections and local magnetic polarity stratigraphies (MPSs) for the Jawalamukhi and Haritalyangar sections, after Meigs et al. (1995) and Johnson et al. (1983) respectively. Both MPSs have been recorrelated to the global magnetic polarity timescale (MPTS) of Cande and Kent (1995). These recorrelations produce similar sediment accumulation rates in all four sections within the reentrant, as well as bringing fauna at Haritalyangar (Johnson et al., 1983) into concurrence with similar fauna in Pakistan (e.g. Tauxe, 1979). Note that the vertical scales are different for the Jawalamukhi and Haritalyangar sections, but that the global magnetic polarity timescales used in the correlations have the same vertical scale. For the Jawalamukhi section, lithofacies are: L.S. = "Lower Siwalik", similar to Chinji lithofacies; Ml = "Middle Siwalik", here interpreted as the Nahan Sandstone; C = "Middle Siwalik conglomerate"; M2 = sandstone of "Middle Siwalik" age but interpreted as unrelated to the Nahan Sandstone; U.S = "Upper Siwalik" ("Boulder Conglomerate"). For the Haritalyangar section, lithofacies are: L.S. = "Lower Siwalik", similar to Chinji lithofacies; M.S. = "Middle Siwalik", here interpreted as the Nahan Sandstone; L.A. = "Lower Alternations" of Johnson etal. (1983); U.A. = "Upper Alternations" of Johnson et al. (1983); U.S = "Upper Siwalik" ("Boulder Conglomerate"). B) Correlation of the Himachal Pradesh local magnetic polarity stratigraphies with the global magnetic polarity timescale (Cande and Kent, 1995). th e vertical scale is stratigraphic thickness, so that non-parallelism of time-lines (shown in gray) represents varying sediment accumulation rates between sections. The thick horizontal time-line is the top of Chron 5n.2n (9.92 Ma), and is used as a datum for the magnetic sections. Note that the Kangra, Jawalamukhi and Haritalyangar sections are along strike from each other, whereas the Naiad Khad section is located in a more proximal position in the foreland (Figure 4). The magnetozones denoted by a black diamond in the Kangra and Haritalyangar MPSs (N7 and N6 respectively) have been correlated with a cryptochron immediately above the top of Chron 4An (8.699 Ma) described in Cande and Kent (1992). The magnetozones denoted by a white diamond in the Kangra and Haritalyangar MPSs (N5 and N4 respectively) have been correlated with a very short cryptochron which does not appear in the MPTS but has been described in several magnetic sections in Pakistan (Tauxe, 1979; Tauxe and Opdyke, 1982). 41 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Thickness (m) 2 5 0 0 - •#>/•] N9 1500- 1000- I I A # y V ^ f / : / & u.s. n i6 o o - > ea ■*- I I 1400 1200 ?1000 w J 800 ’ i 600 400 200 0 J conglomerate sandstone clay / silstone & & B < / * s & & 3500 t 3000-- 2 5 0 0 -- • = ■ 2000 + U 1500-- 1000- - 5 0 0 -- 42 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. conglomerate, and rare silty bands. Clasts within the conglomerate include quartzite, igneous and metamorphic lithologies, and limestone (Figure 10). Clast imbrications and cross stratification suggest flow to the southwest (Figure 10). Extensive conglomerate facies such as these do not appear in any other Middle Siwalik sections except at Naiad Khad. This lithofacies has been labelled "Middle Siwalik conglomerate" by Meigs et al. (1995). From 2100 m to 2400 m, there is a finer interval consisting of interbedded conglomerates, sandstones, siltstones and clays (Figure 10). These often occur in fining- upwards sequences 15 - 20 m thick. Paleocurrent indicators are to the southwest (Figure 10). At 2400 m, there is a return to the conglomerate-dominated facies, with very little sandstone and finer material; this facies continues until the top of the measured section. Multistoried conglomerate units between 10 and 150 m thick are separated by thin orange sandstones, siltstones and clays (Figure 10). Conglomerate clast imbrications suggest continued flow to the southwest (Figure 10). This conglomeratic facies is part of the Upper Siwalik "Boulder Conglomerate" described by Johnson and Vondra (1972). Six hundred paleomagnetic samples were collected at 134 sites, which on measurement yielded 70% Class I sites. The data define an MPS with 27 reversals, 28 magnetozones and one single site reversal (Figure 13). Magnetozone N5 is a long normal polarity interval which coincides with deposition of the Nahan Sandstone at Jawalamukhi and has been correlated with Chron 5n. Further correlation with the MPTS (Cande and Kent, 1995) dates the section as spanning 12.3 Ma to 4.7 Ma (Figure 13; Meigs et al., 1995). 43 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Haritalyangar section The stratigraphy of the Haritalyangar area was described by Johnson and Vondra (1972). Twelve hundred meters of a 1600 m section were sampled by Johnson et al. (1983) for magnetostratigraphy; paleomagnetic samples in the lower 400 m of the section were collected by R. A. Beck (described in Meigs et al., 1995). The section is located at 31° 32’ N, 76° 37’ E (Figure 4), and is the south-easternmost section in the hangingwall of the Jawalamukhi thrust sheet. The measured section begins at the Jawalamukhi thrust, following the Makan Khad, the scarp of Hari Mandar Dhar, roadcuts between Dangar and Susnal, and finally the Rohul Khad to Domira (Johnson et al., 1983). Johnson and Vondra (1972) defined four lithofacies for the Haritalyangar section (Figure 13). The lowermost 500 m consists of interbedded sandstones and siltstones of the Nahan sandstone. Multistoried sandstones with average thicknesses of 15-25 m dominate the section, and have a 'salt-and-pepper' texture, with common trough cross bedding, basal scours and occasional pebble lags (Figure 10). Orange to red-brown siltstones and clays are often mottled and soil horizons are generally well developed. Paleocurrents in the Nahan indicate flow to the southeast (Figure 10). The Nahan sandstone is transitional with the overlying "Lower Alternations", which are characterized by a decrease in average sandstone thickness to 10-15 m, with an increase in the proportion of siltstone (Figure 10). The "Lower Alternations" occur from 500 m to 1170 m in the measured section, and are sedimentologically similar to the coeval Dhok Pathan lithofacies in the Potwar Plateau region of Pakistan (G.D. Johnson et al., 1982; N.M. Johnson et al., 1982). They are overlain by the "Upper Alternations", which are similar, though marked by a slight fining in sandstone thicknesses and a change in the composition of pebble lags towards an increased proportion of granitic and gneissic 44 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. material (Johnson et al., 1983). The "Upper Alternations" have been correlated with the upper part of the Dhok Pathan lithofacies of the Potwar Plateau region (G.D. Johnson et al., 1982; N.M. Johnson et al., 1982). Paleocurrents in the Lower and Upper Alternations at Haritalyangar show a shift from the southeast towards the southwest (Figure 10). The top of the "Upper Alternations" is marked by a rapid increase in the amount of gravelly lag material and an abrupt transition into thick, extensive conglomerates of the Upper Siwalik "Boulder Conglomerate" lithofacies (Figures 10 and 13; Johnson and Vondra, 1972). A total of ninety one paleomagnetic sites have been established through the Haritalyangar section (Johnson et al., 1983; Burbank et al., 1996b). The data define an MPS with 14 reversals, 15 magnetozones and three single site reversals (Figure 13). Our preferred correlation with the MPTS dates the section as spanning from 10.5 Ma to 7.6 Ma (Figure 13). This represents a recorrelation of the original Haritalyangar MPS, and implies that the top of the measured section dates from -7.6 Ma (Meigs et al., 1995; Burbank et al., 1996b) rather than -5 Ma as originally suggested by Johnson et al. (1983). A recorrelation of the original data was undertaken for three reasons: (1) newer MPTSs have a more detailed reversal structure during the Late Miocene, changing the most likely correlation (Cande and Kent, 1992, 1995), (2) recorrelation of the Haritalyangar section produces sediment accumulation rates which are similar to those along strike at Jawalamukhi and Kangra (Figure 13) and (3) recorrelation brings the Haritalyangar fauna into concurrence with similar fauna in Pakistan rather than being 1-2 million years younger (Barry et al., 1982; Opdyke et al., 1979). This is also seen at the base of the Haritalyangar section, where faunal data indicate that it correlates with Chron 5n.2n (10.949 - 9.92 Ma). 45 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Magnetozone N6 is a single site reversal with normal polarity (Figure 13). As at Kangra, this has been correlated with a cryptochron immediately above the top of Chron 4An (8.699 Ma) described in the MPTS of Cande and Kent (1992). Magnetozone N4 of the Haritalyangar MPS is a short normal polarity magnetozone at -9.2 Ma (2 Class I Sites at 970-980 m). We interpret this as the same very short normal polarity event as described at Kangra (magnetozone N5) and at several other sections in the Himalayan foreland (Tauxe, 1979; Tauxe and Opdyke, 1982). Depositional synthesis Axial fluvial systems in forelands flow subparallel to the strike of the hinterland. Their position within the foreland is determined by the balance between the subsidence regime and transverse sediment flux (Figure 1). Increased subsidence will tend to draw axial systems into a more proximal position while major sediment-laden transverse rivers debouching into the foreland will push axial systems into a more distal setting. The Miocene sedimentary record within the Himachal Pradesh reentrant preserves the interaction over a period of five million years of a major southeastward-flowing axial system with a major southwestward-flowing transverse system (Figures 10, 14 and 15). Magnetostratigraphic time control allows us to document the dramatic space-time variations in lithofacies produced by interference between the two depositional systems (Figures 14 and 15), and to report the oldest extensive conglomerates yet dated in the Siwalik foreland (10 Ma). 46 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. s Nahan Sandstone s Conglomeratic !S 6 12 Ma 12 Ma S 8 10 6 N 12 Ma 8 10 12 Ma 12 Ma North 0 1 0 km Figure 14. Temporal and spatial variability of the Nahan sandstone and conglomerate lithofacies within the Himachal Pradesh reentrant. The figure shows two fence diagrams where the vertical axis is age (Ma). The relative positions of the magnetic sections measured are shown by the following abbreviations (and see Figured): H = Haritalyangar, J = Jawalamukhi, K = Kangra, NK = Naiad Khad. The thick black vertical lines beneath each section name show the temporal position of the measured sections (e.g.the Kangra section spans from 11.3 Ma to 6.9 Ma). The spatial and temporal distribution of the Nahan Sandstone and conglomerate lithofacies is shown by the gray pattern. Arrows show the paleoflow directions for the time-line they are positioned on and for the section they are adjacent to. Note the orientation of the north arrow: its top is toward the southwest. Black arrows represent mean vectors based on large numbers of paleocurrent indicators; white arrows indicate approximate flow directions where only a few paleocurrent indicators could be measured (see Figure 10). Note the progradation of the "Middle Siwalik conglomerate" shown on the fence portion between Naiad Khad and Jawalamukhi, and also the abrupt boundary of the "Middle Siwalik conglomerate" between Jawalamukhi and Kangra. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 47 Figure 15. Depositional synthesis for the Late Miocene Himachal Pradesh reentrant. The figure shows the position of the major transverse and axial fluvial systems and their flow directions for the following five time periods: A) 12-11 Ma, B) 11-10 Ma, C) 10-9 Ma, D) 9-8 Ma and E) 8-7 Ma. K = Kangra, J = Jawalamukhi, H = Haritalyangar, N = Naiad Khad. Mean paleocurrent directions are shown by the small arrows and have been corrected for die following postdepositional vertical-axis rotations as shown by the section mean magnetic vectors (a positive angle represents clockwise postdepositional rotation and an anticlockwise correction of the same magnitude): +14° at Kangra, +7° at Haritalyangar, and negligible rotations at Naiad Khad and Jawalamukhi. Black arrows represent paleoflow directions based on large numbers of paleocurrent indicators; white arrows indicate approximate paleoflow directions where only a few paleocurrent indicators could be measured. Large uncertainties in the position of die depositional systems are shown with dashed lines. The modern-day position of the Main Boundary Thrust is shown as a geographical marker only; its position in the Late Miocene was probably tens of kilometers further east. 48 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. llM a t \ M ® » * N 1 1 11 -10 Ma © 1 4 ^ 1 - W ^ l lO - 9 M a I m / W * ........ / y 7 y^'.'A f. 3;»v ‘ ' / ./•V rlT l v A v , t f . / r % / % ; § & £ t ;v l M « \ ' ' lx ? \ / N SO km 8 - 7 M a v » V iV « V « > ^ “ “ ■ • • • • • ■ • • • ■ " • - ' iifr.f.i,* r - V 'V j A V * v « V . V . V - V ■ isi-wV* , .*'.Wdfr'.,‘ . • :• :• :* ■ * • < • •> #•:■ ■ - V < /.. * .V v . V . . X T. *. • > • . • * . - - « • • ■ ; • ■ • • •• • w • • • • ► jH iW rJW . N A m : : L V ^ p .- - V '; SO km 9 - 8 M a -iirfj tl 5 - >% ■ * • • > • * • •/• • * « N m s. . N N< 50 km Location o f named magnetic section Extent o f main paleo-Indus fluvial system Extent o f conglomerate Paleoflow direction Approximate paleoflow direction Inferred flow line 1 \ Trace o f present-day M ain \ Boundary Thrust * SO km 49 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Before 11.5 Ma Before about 11.5 Ma, the Himachal Pradesh sections show consistent sedimentologic patterns (Figure 10). The strata are dominated by thick interbedded siltstones, thin sheet sandstones and mudstones with well developed soil horizons. These are punctuated by channel sandstones making up about 30% of the section, with an average storey thickness of 10 -15 meters. Paleocurrents suggest flow towards the south- southeast, parallel to the trend of the present range front (Figure 10). A more southwestward flow direction and slightly greater sandstone thicknesses at Naiad Khad may indicate the local influence of a transverse tributary to the axial system. This lithofacies is sedimentologically similar to the coeval Chinji Formation stratotype described from the Potwar Plateau in Pakistan (Willis, 1993a and b; Johnson et al., 1988), and typical of the traditional "Lower Siwalik" lithofacies. The Chinji fluvial system is interpreted as a sandy braided river system with silty overbank deposits and is thought to have been a precursor to the modem Indus river, draining southeastwards towards the Gangetic foreland during the middle Miocene (N.M. Johnson et al., 1982; Willis, 1993b; Burbank et al., 1996). The similarity between the Chinji Formation and the Lower Siwalik lithofacies in Himachal Pradesh suggests that both are the deposits of an axial fluvial system flowing southeastwards across the medial to distal Himalayan foreland. Continuity of the system between Pakistan and northwest India has not been demonstrated, but it is likely that the Lower Siwalik deposits in Himachal Pradesh are a downstream continuation of the Chinji fluvial system, 200 km further along the axis of the foreland (Burbank et al., 1996b). 50 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 11.5-10 Ma From about 11.5 Ma onwards, the lithofacies change dramatically (Figures 9a, 10, 12a, 13, 14 and 15). There is an upward coarsening and thickening of channel sandstones, which make up a significantly larger proportion of the strata (as much as 85% at Naiad Khad; Figure 10). These sandstones are highly amalgamated with storey thicknesses up to 15-20 m, common pebble lags, and occasional discontinuous conglomerate beds. Overbank siltstones and mudstones are thin or absent. Paleocurrent directions suggest continued flow towards the southeast, parallel to the present-day trend of the hinterland (Figures 10, 14 and 15). In the Indian foreland this lithofacies is known as the Nahan sandstone (representative of traditional "Middle Siwalik" lithofacies). The correlative Nagri lithofacies in Pakistan is thought to be isochronous and to represent deposits of the paleo-Indus river with a much increased discharge compared to the fluvial system which deposited the Chinji lithofacies in Lower Siwalik time (Burbank et al., 1996b; N.M. Johnson etal., 1982; Johnson etal., 1983; Willis, 1993a). The similarities between the Nagri and Nahan lithofacies suggest that they are either parts of a single large, paleo-Indus fluvial system or separate axial systems with a similar discharge and hydrology (Burbank et al., 1996b). The Kangra section lacks the very high degree of amalgamation seen elsewhere in the Nahan lithofacies, with sandstone accounting for only 50% of the section in this time interval (Figures 9a and 10). However, the similarities in appearance (the distinctive ‘salt and pepper’ texture of the sandstones) and paleocurrents suggest that the strata at Kangra are part of the Nahan, though probably at a position nearer the edge of the fluvial system. The Nahan lithofacies at Naiad Khad shows southwestward flow directions rather than the southeastward directions seen elsewhere within the reentrant (Figures 10, 14 and 15): it is possible that this facies represents the deposits of a large hinterland-sourced transverse tributary flowing into the 51 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. axial system, or a long-lived bend in the axial system (we prefer the former interpretation because of the flow directions and sedimentology of overlying deposits). In the Potwar Plateau region, Nagri deposition continues more or less uniformly until 9.5-9 Ma (using the timescale of Cande and Kent, 1995; N.M. Johnson et al., 1982). In the Himachal Pradesh reentrant, deposition of the Nahan ends diachronously, and locally as early as 10 Ma, with the interference of a major depositional system encroaching from the west. 1 0 -8 .7 Ma Deposition of the Nahan lithofacies at Naiad Khad terminated abruptly at 10 Ma, with a change to a facies dominated by extensive clast-supported conglomerates (Figures 10, 12a, 14 and 15). Conglomerate units are generally 15-30 m thick, but may be up to 100 m thick, and are interbedded with thin sandstones (less than 5 m), siltstones and red clays, which commonly are laterally scoured and removed by overlying conglomerates (Figure 12a). The presence of rather friable clasts of the Rawalpindi and Siwalik Group strata as a major component of clasts at Naiad Khad implies upstream tectonic disruption of the proximal foreland (Figure 10). Igneous and metamorphic conglomerate-clast lithologies and southwestward paleocurrent directions suggest that the conglomeratic facies was a gravel front prograding from hinterland source areas along a major transverse river (Figure 10). The magnetostratigraphically dated conglomerates at the Naiad Khad (10 Ma) section are the oldest extensive Siwalik conglomerates yet dated within the entire Himalayan foreland. They are also among the most proximal Middle Siwalik deposits that have been dated, and are preserved and exposed because of their position within the Himachal Pradesh structural reentrant (Figure 4). Southwestward progradation of the gravel front into the foreland had a profound impact on the existing axial depositional system. Though deposition of the Nahan 52 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. lithofacies continued at Kangra and Jawalamukhi, from about 10 Ma paleocurrents gradually swung to the southwest as the axial river was deflected westwards by the transverse river (Figures 14 and 15). At Haritalyangar, Nahan deposition ended at 9.8 Ma with an abrupt transition into the "Lower Alternations" of Johnson and Vondra (1972). This facies is marked by thinner sandstones and proportionally more siltstone and mudstone than the underlying Nahan lithofacies, together with a shift in paleocurrent directions to the south (Figures 10 and 13). We suggest that westward deflection of the paleo-Indus by the transverse river system caused sediment starvation at Haritalyangar, and we interpret the "Lower Alternations" as the deposits of minor tributaries to the axial fluvial system ("paleo-Indus") flowing in the lee of the transverse river. In Pakistan, this time interval is the older age boundary of the Nagri - Dhok Pathan transition, which has a similar abrupt fining upward to that seen between the Nahan sandstone and "Lower Alternations" at Haritalyangar (N.M. Johnson et al., 1982; Johnson etal., 1983). Thus, although we argue that the Nahan - "Lower Alternations" transition at Haritalyangar is due to the impact of local depositional systems, it is also possible that it is part of a regional effect. 8.7 - 7.2 Ma The conglomerate facies prograded southwestward with time, reaching Jawalamukhi at 8.7 Ma but not appearing at Haritalyangar and Kangra until 7.8 Ma and 7.2 Ma respectively (Figures 14 and 15). Between 10 and 8 Ma, the conglomerate was confined to a swath roughly 30-40 km wide which crops out along the axis of the modern-day structural reentrant (Figure 15). Borehole data from 30 km southwest of Jawalamukhi at Janauri (Figure 5; Oil and Natural Gas Corporation (Dehra Dun), unpublished data) indicates that the conglomerate had not prograded that far into the foreland during this time interval. At the northern margin of the conglomerate 53 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. approximately 10 km north of Jawalamukhi, thick continuous conglomerates pass abruptly into coeval sandstones of the Nahan lithofacies with very little conglomeratic material over a distance of 2 - 3 km (Figure 14). The southern margin of the conglomerate is much more diffuse, and in the area where the Beas river crosses the Jawalamukhi thrust, there are extensive interbedded conglomerates and sandstones, with the proportion of sandstone increasing to the south (Figure 4). It is possible that the southwestward flow of the paleo-Indus effectively 'pinned' the northern margin of the conglomerate, resulting in the sharp boundary observed, whereas the transverse system was less constrained to the south, making the southern boundary of the conglomerate more diffuse. Coeval clast lithologies are different between the Jawalamukhi and Naiad Khad sections (Figure 10), so it is possible that several hinterland-sourced transverse rivers with different catchment lithologies flowed across the gravel braidplain. This is analogous to the modern-day drainage within the reentrant, where the Sutlej and Beas rivers both flow southwestward across the reentrant. Alternatively, the much lower proportion of intrabasinal clasts at Jawalamukhi can be explained by major downstream attrition of these poorly consolidated lithologies. Throughout the reentrant, conglomerate-clast compositions show an increase in the proportion of igneous and metamorphic lithologies and a decrease in the proportion of limestone during this interval (Figure 10). These trends probably reflect the progressive erosion of the Indian passive margin cover followed by its basement within the Lesser Himalaya. At Kangra, paleocurrents directions indicate that flow was towards the southwest, and deposition of Nahan-like sandstones with a general coarsening upward continued throughout the interval, suggesting continuing deflection of the paleo-Indus around the gravel front (Figures 14 and 15). Conglomerate lenses and rare conglomerate beds at Kangra suggest that some reworking of the edges of the conglomerate was taking place. 54 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. At Haritalyangar, the transition from the "Lower Alternations" to the "Upper Alternations" of Johnson and Vondra (1972) also occurred at -8.7 Ma. This transition is marked by a slight fining upward in the section, and by an increase in granitic and gneissic detritus, thought to have been derived from the Himachal Himalaya (Johnson and Vondra, 1972). This may represent an increased influx of transversely sourced material into the local depositional system. 7.2 Ma and younger By 7.2 Ma, Upper Siwalik "Boulder Conglomerate" was being deposited throughout the area of the modern-day Himachal Pradesh reentrant (Figures 14 and 15). Paleocurrents, mostly from clast imbrications, indicate a consistent direction of flow towards the southwest throughout the area (Figures 10 and 15). The Jawalamukhi section shows continued conglomerate deposition until at least 4.7 Ma. Between this date and the present day, this part of the foreland was folded and faulted by encroaching deformation (Figures 4 and 5). Reworked Miocene conglomerate clasts form a major proportion of the clasts within the modem Sutlej and Beas rivers which traverse the reentrant. Discussion Synthesis of data from the Himachal Pradesh reentrant and the remainder of the Siwalik foreland allows us to address several key problems concerning the evolution of both the Himalayan foreland and terrestrial foreland basins in general. In particular, the importance of hinterland tectonism and climate change in initiating and controlling gravel progradation into forelands is poorly understood (Heller and Paola, 1989, 1992; Paola et 55 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. al., 1992; Burbank etal., 1988; DeCelles etal., 1987; DeCelles, 1994). Moreover, the role of three-dimensional variations in local to regional scale subsidence in localizing depositional systems has been little studied (Visser and Johnson, 1979; Burbank et al., 1988; Stem et al., 1992; Whiting and Thomas, 1994). The conglomerates that have been dated in Himachal Pradesh (10 Ma at Naiad Khad and 8.7 Ma at Jawalamukhi) are several million years older than the oldest dated extensive conglomerates found outside of the bounds of the reentrant (4-5 Ma; Burbank and Raynolds, 1988). The age discrepancy is partly a function of the more proximal depositional setting of the sediments preserved within the reentrant. Since there has only been 13.5 km of shortening within the reentrant (Powers and Lillie, 1995), the position of depositional systems with respect to the undeformed foreland and hinterland we see within the reentrant today is approximately the same as if post-depositional deformation was restored. The genetic link between these coarse grained facies and the hinterland suggested by paleocurrents and conglomerate-clast lithologies implies a major hinterland event at around this time (Meigs et al., 1995; Burbank et al., 1996b). Conglomerates within the reentrant all contain significant proportions of pink Deoban Quartzite (Figure 10). This is a lithology that is exposed today in the hangingwall of the Main Boundary Thrust (e.g. near Bilaspur), but not elsewhere within the hinterland (Figure 4). Deoban Quartzite clasts first appear in gravel lags within the reentrant between 11 and 10 Ma, suggesting that significant erosional relief above the MBT first developed at this time. Three hypotheses may be suggested to account for the appearance and progradation of such extensive hinterland-sourced conglomerates at around 10 Ma: (1) Climate change increased the discharge and sediment flux of transverse rivers, causing gravel progradation. (2) A period without major hinterland tectonism led to a decrease in subsidence rates within the foreland and allowed the gravels to prograde post- 56 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. tectonically. (3) Initiation of the Main Boundary Thrust led to significant erosional relief developing above it, and gravels prograded into the foreland syntectonically. In order to evaluate these hypotheses, it is necessary to look at any changes in subsidence rates during this time interval within the reentrant and across the foreland. Sediment-accumulation rates may be taken as a proxy for subsidence rates, with the assumption that the paleodepositional surface was horizontal (Figure 16). Justifications for this assumption are given in Burbank and Beck (1989). Compacted rather than decompacted accumulation rates are used as differential compaction rates are poorly understood in terrestrial basins, and it is likely that lithologies such as conglomerates have undergone little or no compaction. Beginning at around 11.5 to 11 Ma, an accumulation rate increase is seen in sections across the entire Himalayan foreland from Pakistan to Nepal (Meigs et a l, 1995; Burbank et a l, 1996b). An increase of 35-75% is common for sections within the Pakistani foreland, though sections within the Himachal Pradesh reentrant show much smaller increases of 10-25% from 0.4-0.5 km/Ma to 0.5-0.6 km/Ma (Figure 16). This is probably a reflection of the contrast in flexural rigidities between the Indian and Pakistani foreland, with the rigidity estimated in Pakistan (-0.4 x 102 4 Nm; Duroy et a l, 1989) about 10-15 times lower than that in India (-0.7 x 10 Nm; Molnar, 1988). The increase in accumulation rates observed corresponds to an increase in subsidence rate and may be produced either by increasing thrust loading without a change in load locus by -50%, or by shifting loading to a more forelandward position (Figure 1; Turcotte and Schubert, 1982). This latter alternative can be achieved by initiating a major new system of basement-involved thrusts. Meigs et al (1995) suggested that this acceleration in subsidence was caused by middle-late Miocene 57 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 3500 Age(Ma) NK 0.40B 0.52 0.48 0.54C 0.59 0.51 <8.7 10.9-8.7 >10.9 0.39D 0.58 0.40 3000 E JZ 60 "u J C u '£ C u 2 60 •a 2500 2000 1500 Haritalyangar Jawalamukhi Naiad Khad Kangra 1000 500 age (Ma) Figure 16. Sediment-accumulation curves for the Himachal Pradesh magnetic sections. The table shows sediment-accumulation rates in km/Ma (equivalent to mm/yr) between chron boundaries identified in all four sections. The global magnetic polarity timescale of Cande and Kent (1995) was used for the correlation and calculation of sediment- accumulation rates. H = Haritalyangar, J = Jawalamukhi, NK = Naiad Khad, K = Kangra. A * in the table denotes minimum values of accumulation rate due to non-exposure of chron boundaries. The following upper (younger) boundaries were used to calculate rates younger than 8.7 Ma (and generally correspond to the stratigraphically highest chron boundary within any section): A) 7.65 Ma, B) 6.935 Ma, C) 8.225 Ma and D) 6.935 Ma. An alternative, less preferred, correlation is also possible in the upper portion of the Jawalamukhi section (Meigs et al, 1995) which gives a sediment accumulation rate of 0.63 km/Ma from 8.7 - 6.935 Ma. 58 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. initiation of the Main Boundary Thrust (hypothesis 3). The transition from Chinji to Nagri lithofacies in Pakistan and from the Kasauli Formation (equivalent to the Chinji Formation) to the Nahan sandstone in northwest India also occurred between 11.5 and 10.4 Ma (Burbank et al., 1996b; N.M. Johnson etal., 1982; Johnson etal., 1983), and implies an increased paleodischarge of the axial river system (Figures 9a, 10, 11a and 13). In the Potwar Plateau region, this is accompanied by a threefold increase in the abundance of blue-green hornblende derived from the Kohistan terrane in northern Pakistan (Tahirkheli, 1979; Cerveny et al., 1989; Mulder, 1991). Apatite fission-track ages from the hangingwall of the MBT in northwest Pakistan are interpreted to suggest bedrock uplift commencing at ~11 Ma (Meigs et al., 1995) and constitute further independent evidence for the initiation of the MBT at this time over a large portion of the western Himalaya. If the evidence for MBT initiation at — 11.5 Ma is accepted, then gravel progradation in Himachal Pradesh was syntectonic. Although no exact progradation rate can be measured in the Himachal Pradesh reentrant because the Jawalamukhi section is not directly downstream from the Naiad Khad section, a rough estimate of the progradation rate is 2-3 cm/yr (Figure 15). The total displacement along the MBT is unconstrained, but is likely to have been tens of kilometers. Thus, within 1-2 million years from the time of initiation of the MBT, an extensive gravel front had prograded tens of kilometers away from the active thrust front. In most theoretical models and field- based studies of gravel progradation, conglomerates are confined close to the mountain front following loading because of the increase in accommodation space caused by thrust- induced subsidence (Heller and Paola, 1989, 1992; Paola et al., 1992; DeCelles et al., 1987; DeCelles, 1994). The only way in which these models can produce syntectonic gravel progradation is if an increasing sediment flux is the major control on foreland 59 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. deposition (Figure l;Heller and Paola, 1992; Paola et al., 1992). We suggest that the rate of sediment delivery to the Himalayan foreland nearly always exceeds the rate of space creation to store sediments. Excess sediment flows into the Bengal fan, which is the largest accumulation of Cenozoic strata in the world. Because the foreland is always filled above or near capacity, gravel progradation is not constrained solely by the subsidence function, but rather by hinterland erosion and the ability of transverse drainages to transport gravel into the foreland (Figure 1). Gravel progradation has been documented in Pliocene sediments within the Jhelum reentrant, where a progradation rate of 3 cm/yr has been measured (Raynolds, 1980; Raynolds and Johnson, 1985; Burbank et al., 1988). Although there are several obvious similarities between gravel progradation in the Jhelum reentrant and the Himachal Pradesh reentrant, there are also major differences. The Jhelum reentrant sites are near the mouth of the reentrant and may have been in the medial foreland when the conglomerate was deposited. However, gravel progradation in the Jhelum reentrant is inferred to have taken place between 5 and 3 Ma (Burbank et al., 1988); if the MBT began motion at 11.5-11 Ma, then the Jhelum reentrant conglomerate post-dates the initiation of thrusting by 7-8 Myr. Moreover, gravel progradation in the Jhelum reentrant is suggested to have occurred during a time of decreasing subsidence (Burbank et al., 1988; Heller and Paola, 1992). By -7.2 Ma, extensive Upper Siwalik conglomerate facies blanketed the entire area now preserved within the Himachal Pradesh reentrant (Figure 15). Progradation of these conglomerates may have been controlled by a decreasing subsidence rate in the foreland. A slight decrease in subsidence rate starting at 9-8 Ma is seen in most northwest Himalayan magnetic sections (Burbank et al., 1996b). Such a decrease could be produced either by increased loading in a more hinterlandward position or by 60 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. enhanced denudation in the frontal part of the load (Figure 1; Sinclair et al., 1991; Beaumont etal., 1992). Structural and geochronological studies of the Main Central Thrust (MCT) in Nepal suggest a period of motion between 9 and 7 Ma (Hodges et al., 1988; Macfarlane, 1993), and a strengthening of the Asian monsoon has also been suggested at 8-7 Ma (Prell and Kutzbach, 1991; Harrison et al., 1993). Thus, it is possible that the progradation of Middle and Upper Siwalik conglomerate facies was controlled by fundamentally different factors, even though the facies are sedimentologically similar and have similar source areas. Several studies have discussed the effects of thrust belt reentrants on patterns of sedimentation (Visser and Johnson, 1978; Burbank et al., 1988; Whiting and Thomas, 1994). There is a clear association between Miocene facies distributions and the axis of the modem Himachal Pradesh reentrant, with the extensive Upper-late Miocene conglomerates clearly confined to a zone about 40 km wide at Jawalamukhi (Figures 4 and 15). Theoretically, an irregular load on an elastic plate will produce a complex three- dimensional subsidence pattern, in which local differences in subsidence are determined by the wavelength and amplitude of the load irregularity in comparison to the flexural rigidity of the lower plate (Timoshenko, 1940; Timoshenko and Woinowski-Krieger, 1959; Stem et al., 1992; Wessel, 1995). For an arcuate thrust front loading a homogenous lower plate, an axis of relatively increased subsidence is predicted to coincide with the axis of the reentrant (Figure 1). Several studies have reported increased axial subsidence within the bounds of reentrants (Whiting and Thomas, 1994; Raynolds and Johnson, 1985; Burbank et al., 1988). However, all four sections in Himachal Pradesh show very similar accumulation rates (Figure 16), and there is no evidence for an axis of increased subsidence oriented along the axis of the modern-day reentrant between Naiad Khad and Jawalamukhi. Additionally, although it is likely that the reentrant is an 61 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. original feature of the MBT, it is impossible to reconstruct the Miocene hangingwall topography and surface trace of the MBT. Moreover, when displacement along the MBT (probably tens of kilometers) is taken into account, the strata preserved within the reentrant today would have well been outside its bounds during their deposition in the late Miocene. If we accept that the Himachal Pradesh reentrant is an original feature of the MBT and that the MBT has not had a significant component of strike-slip movement in this region, then the "Middle Siwalik Conglomerate" facies preserved at Naiad Khad and Jawalamukhi would have been in line with the axis of the reentrant during the late Miocene. Although accumulation rate curves from the sections (Figure 16) suggest that there was no major increase in axial subsidence at this distance from the reentrant, it is possible that slight differences in accumulation rate (of the order of tens of meters per million years) were enough to confine the transverse fluvial system to an axial position. Differential subsidence of such small magnitude cannot be resolved with magnetostratigraphy. Interestingly, the modern-day Beas river flows along the axis of the modem Himachal Pradesh reentrant (Figure 4). The much larger Sutlej river debouches onto the foreland at the edge of the Himachal Pradesh reentrant, and does not seem to be focused by the reentrant (Figure 4). It is possible that the magnitude of increased axial subsidence within reentrants is large enough to effectively focus small to intermediate discharge transverse rivers, but not large enough to confine major rivers with very large discharges. Summary Structural reentrants provide windows into more interior parts of the foreland than are usually exposed. In the northwest Indian foreland, the trend of large scale lithofacies 62 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. belts indicates that much of the medial part of the Miocene foreland has been overthrust. However, within the Himachal Pradesh reentrant, both the medial foreland and parts of the proximal foreland are exposed, giving key windows on to the history of the Himalaya (Figure 4). The major Siwalik lithofacies present in Himachal Pradesh are sedimentologically similar to those found in Pakistan. However, by using magnetic time lines to correlate between sections, this study has highlighted the extreme temporal and spatial variability of these lithofacies in Himachal Pradesh (Figures 10, 14 and 15). Magnetostratigraphic time control has played a critical role in understanding this variability and its relationship to hinterland evolution: without good time control the extensive Middle Siwalik conglomerates at Jawalamukhi and Naiad Khad were assigned to the Upper Siwalik "Boulder Conglomerate" and their importance was not realized. Prior to -11.5 Ma, the sediments in Himachal Pradesh are dominated by thick sequences of overbank deposits with occasional channel sandstones, with southeasterly paleocurrent directions (Figure 10). This facies is similar to the Lower Siwalik Chinji lithofacies in Pakistan and is thought to represent deposits of either the paleo-Indus river or a similar axial fluvial system (N.M. Johnson et a l, 1982; Willis, 1993b; Burbank et al., 1996). The overlying Nahan lithofacies represents an abrupt coarsening upwards (Figure 10) and a change to fluvial systems with a much increased discharge compared to the Chinji Formation. This transition is roughly coeval across the entire northwest Himalayan foreland, and the Nahan and Nagri lithofacies are thought to represent the sediments of southeast flowing axial rivers, probably the paleo-Indus (Burbank et al., 1996b; N.M. Johnson e ta l, 1982; Johnson e ta l, 1983; Willis, 1993a). From 11 Ma onwards, sediments exposed within the reentrant document the encroachment on the axial river system of a large southwestward flowing transverse river system (Figure 15). 63 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Paleocurrent directions suggest that the paleo-Indus was progressively deflected westwards by the prograding gravel front, which was confined to a narrow belt -40 km wide (Figures 10, 14 and 15). Small rivers with sources wholly within the foreland developed in the lee of the gravel fan where the paleo-Indus had formerly flowed (Figure 15). In the interval from 10 to 7 Ma, major lithofacies boundaries vary by as much as 2-3 Myr across distances of only 20-30 km (Figures 14 and 15). Progradation rates for the conglomerate facies are similar to those reported for a sedimentologically similar Pliocene conglomerate in the Jhelum reentrant (3 cm/yr; Raynolds and Johnson, 1985). By -7.2 Ma, any facies variability was obliterated by widespread deposition of the typical Upper Siwalik "Boulder Conglomerate" lithofacies throughout the reentrant. The age of this widespread blanket of conglomerate (>7 Ma) is much older than either the late Pliocene gravels in the Jhelum reentrant or the formerly assumed Pleistocene age for "Boulder Conglomerate" in the foreland. The age discrepancy may be partly due to the preservation of more proximal sediments within the reentrant than elsewhere. In any case, in the context of the entire foreland, conglomerate influx is highly diachronous, varying by nearly 7 Myr between Naiad Khad and the Jhelum reentrant! The 10 Myr old conglomerates at Naiad Khad are the oldest extensive dated conglomerates found in the Siwalik foreland. They contain a significant proportion of clasts of lithologies found only in the hangingwall of the Main Boundary Thrust today (Deoban Quartzite). Together with sediment-accumulation curves, sandstone heavy mineral compositions and hinterland fission-track dating, these data suggest a change in the position of the hinterland load due to creation of a major new thrust system at about 11.5 Ma: the Main Boundary Thrust (Meigs et al., 1995; Burbank et al., 1996). The Middle Siwalik conglomerates at Naiad Khad and Jawalamukhi are notable not only for 64 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. their age, but also for their thickness (hundreds of meters) and their lateral confinement to a facies belt with relatively abrupt boundaries. The close association of the axis of the modern-day reentrant and the confined belt of Middle-late Miocene conglomerates suggests that there may have been some focusing of the transverse fluvial system by the reentrant in the Miocene (Figure 15). However, sediment accumulation curves show no axis of increased subsidence of Miocene age, as they appear to in Pliocene sediments of the Jhelum reentrant (Raynolds and Johnson, 1985; Burbank e ta i, 1988). The influence of the geometry and topography of reentrants in producing subtle changes in subsidence which apparently focus facies at large distances is still poorly constrained and understood, although such focusing is suggested by the conglomerate outcrop patterns in Himachal Pradesh. The syntectonic progradation of gravels tens of kilometers from an active thrust front is contrary to the predictions of many models of foreland sedimentation, in which increased subsidence due to loading confines gravel facies close to the mountain front (Heller and Paola, 1989, 1992; Paola et al., 1992; DeCelles et al., 1987; DeCelles, 1994). In these models, rapid gravel progradation generally occurs in periods of tectonic quiescence and is a post-tectonic rather than syntectonic phenomenon. It results primarily from erosionally driven uplift of the hinterland and proximal foreland. The high quality of the paleomagnetic data presented in this study allows the Siwalik lithofacies of the Himachal Pradesh reentrant to be placed in a robust temporal framework (Figures 13, 14 and 15). The stratigraphic and sedimentologic data presented show the rapid progradation of a restricted gravel facies belt away from the hinterland (Figure 15) in the Middle Miocene. These conglomerates had prograded into the medial foreland by 10-9 Ma. The time control provided by the magnetostratigraphy, together with sediment-accumulation rates and heavy mineral and fission-track analyses (Meigs et 65 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. a l, 1995; Tahirkheli, 1979; Cerveny et al., 1989; Mulder, 1991) imply that this progradation was coeval with the initiation of the Main Boundary Thrust (prior to 11 Ma). Conversely, the Upper Siwalik progradation of gravel into the foreland may have been associated with a decrease in subsidence rates (Burbank et a l, 1996b). Thus it is possible to argue that two sedimentologically similar stratigraphically adjacent conglomerates prograded during periods of both increasing and decreasing subsidence, and that for these conglomerates, it is impossible to deconvolve a hinterland tectonic signal without other, independent data. We suggest that the flux of sediment into the Himalayan foreland is always sufficiently high to fill available sediment accommodation space. Under such conditions, a localized increase in gravel flux is likely to cause rapid gravel progradation, almost irrespective of changes in the subsidence rate. 66 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Bibliography Appel, E., Rosier, W., and Corvinus, G., 1991, Magnetostratigraphy of the Miocene- Pleistocene Surai Khola Siwaliks in West Nepal: Geophys. J. Int., v. 105, p. 191- 198. Barry, J. C., Lindsay, E. H., and Jacobs, L. L., 1982, A biostratigraphic zonation of the Middle and Upper Siwaliks of the Potwar Plateau of northern Pakistan: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 37, p. 95-130. Beaumont, C., Fullsack, P., and Hamilton, J., 1992, Erosional control of active compressional orogens, in McClay, K. R., ed., Thrust Tectonics: London, Chapman and Hall, p. 1-18. Beck, R. A., Burbank, D. W., Sercombe, W. J., Riley, G. W., Bamdt, J. K., Berry, J. R., Afzal, J., Khan, A. M., Jurgen, H., Metje, J., Cheema, A., Shafique, N. A., Lawrence, R. D., and Khan, M. A., 1995, Stratigraphic evidence for an early collision between northwest India and Asia: Nature, v. 373, p. 55-58. Bossart, P. and Ottiger, R., 1989, Rocks of the Murree Formation in northern Pakistan: Indicators of a descending foreland basin of late Paleocene to middle Eocene age: Eclog. Geol. Helv., v. 82, p. 133-165. Burbank, D. W., 1992, Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin: Nature, v. 357, p. 680-682. Burbank, D. W. and Beck, R. A., 1989, Early Pliocene uplift of the Salt Range: temporal constraints on thrust wedge development, northwest Himalaya, Pakistan, in Malinconico, L. L., Jr. and Lillie, R. J., eds., Tectonics of the Western Himalaya: Geological Society of America Special Paper 232, p. 113-128. Burbank, D. W. and Beck, R. A., 1991, Models of aggradation versus progradation in the Himalayan Foreland: Geologische Rundschau, v. 80,3, p. 623-638. Burbank, D. W., Beck, R. A., and Mulder, T., 1996b. The Himalayan Foreland Basin: in press, in Asian Tectonics: Cambridge, Cambridge University Press. Burbank, D. W., Beck, R. A., Raynolds, R. G. H., Hobbs, R., and Tahirkheli, R. A. K., 1988, Thrusting and gravel progradation in foreland basins: A test of post- thrusting gravel dispersal: Geology, v. 16, p. 1143-1146. Burbank, D. W., Derry, L. A., and France-Lanord, C., 1993, Reduced Himalayan sediment production 8 Myr ago despite an intensified monsoon: Nature, v. 364, p. 48-50. Burbank, D. W. and Johnson, G. D., 1983, The Late Cenozoic chronologic and stratigraphic development of the Kashmir intermontane basin, northwestern Himalaya: Paleogeogr. Paleoclimat. Paleoecol., v. 43, p. 205-235. 67 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Burbank, D. W., Meigs, A. J., and Brozovic, N., 1996a, Interactions of Growing Folds and Coeval Depositional Systems: in press, Basin Research, v. 8 . Burbank, D. W. and Raynolds, R. G. H., 1988, Stratigraphic keys to the timing of thrusting in terrestrial foreland basins: Applications to the northwest Himalaya, in Kleinspehn, K. L. and Paola, C., eds., New Perspectives in Basin Analysis: New York, Springer-Verlag, p. 331-351. Burbank, D. W., Raynolds, R. G. H., and Johnson, G. D., 1986, Late Cenozoic tectonics and sedimentation in the north-western Himalayan foredeep: H Eastern limb of the Northwest Syntaxis and regional synthesis, in Allen, P. and Homewood, P., eds., Foreland Basins: Oxford, Blackwell Scientific Publications, Spec. Pubis. Int. Ass. Sediment. 8 , p. 293-305. Butler, R. F., 1992, Paleomagnetism: magnetic domains to geologic terranes: Boston, Blackwell Scientific Publications, 319 p. Cande, S. C. and Kent, D. V., 1992, A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic: Journal of Geophysical Research, v. 97, B 10, p. 13,917-13,953. Cande, S. C. and Kent, D. V., 1995, Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic: Journal of Geophysical Research, v. 100, B4, p. 6093-6095. Cerveny, P. F., Johnson, N. M., Tahirkheli, R. A. K., and Bonis, N. R., 1989, Tectonic and geomorphic implications of Siwalik Group heavy minerals, Potwar Plateau, Pakistan, in Malinconico, L. L., Jr. and Lillie, R. J., eds., Tectonics of the Western Himalaya: Geological Society of America Special Paper 232, p. 129-136. Critelli, S. and Garzanti, E., 1994, Provenance of the lower Tertiary Murree red beds (Hazara-Kashmir syntaxis, Pakistan) and initial rising of the Himalayas: Sedimentary Geology, v. 89, p. 265-284. DeCelles, P. G., 1988, Lithologic provenance modelling applied to the Late Cretaceous synorogenic Echo Canyon Conglomerate, Utah: A case of multiple source areas: Geology, v. 16, p. 1039-1043. DeCelles, P. G., 1994, Late Cretaceous-Paleocene synorogenic sedimentation and kinematic history of the Sevier thrust belt, northeast Utah and southwest Wyoming: Geological Society of America Bulletin, v. 106, p. 32-56. DeCelles, P. G., Pile, H. T., and Coogan, J. C., 1993, Kinematic history of the Meade Thrust based on provenance of the Bechler Conglomerate at Red Mountain, Idaho, Sevier Thrust Belt: Tectonics, v. 12, 6 , p. 1436-1450. 68 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. DeCelles, P. G., Tolson, R. B., Graham, S. A., Smith, G. A., Ingersoll, R. V., White, J., Schmidt, C. J., Rice, R., Moxon, I., Lemke, L., Handschy, J. W., Folio, M. F., Edwards, D. P., Cavazza, W., Caldwell, M., and Bargar, E., 1987, Laramide thrust-generated alluvial-fan sedimentation, Sphinx Conglomerate, Southwestern Montana: American Association of Petroleum Geologists Bulletin, v. 71,2, p. 135-155. Duroy, Y., Farah, A., and Lillie, R. J., 1989, Subsurface densities and lithospheric flexure of the Himalayan foreland in Pakistan, in Malinconico, L. L., Jr. and Lillie, R. J., eds., Tectonics of the western Himalayas: Geol. Soc. Am. Special Paper 232, p. 217-236. Fisher, R. A., 1953, Dispersion on a sphere: Proceedings of the Royal Society, v. A217, p. 295-305. Flemings, P. B. and Jordan, T. E., 1989, A synthetic stratigraphic model of foreland basin development: Journal of Geophysical Research, v. 94, B4, p. 3851-3866. Flemings, P. B. and Jordan, T. E., 1990, Stratigraphic modelling of foreland basins: Interpreting thrust deformation and lithosphere rheology: Geology, v. 18, p. 430- 434. Fraser, G. S. and DeCelles, P. G., 1992, Geomorphic controls on sediment accumulation at margins of foreland basins: Basin Research, v. 4, 3/4, p. 233-252. Gansser, A., 1964, Geology of the Himalayas: London, Interscience, 289 p. Graham, S. A., Tolson, R. B., DeCelles, P. G., Ingersoll, R. V., Bargar, E., Caldwell, M., Cavazza, W., Edwards, D. P., Folio, M. F., Handschy, J. F„ Lemke, L., Moxon, I., Rice, R., Smith, G. A., and White, J., 1986, Provenance modelling as a technique for analysing source terrane evolution and controls on foreland sedimentation, in Allen, P. and Homewood, P., eds., Foreland Basins: Oxford, Blackwell Scientific Publications, Spec. Pubis. Int. Ass. Sediment. 8 , p. 425-436. Harrison, T. M., Copeland, P., Hall, S. A., Quade, J., Burner, S., Ojha, T. P., and Kidd, W. S. F., 1993, Isotopic preservation of Himalayan/Tibetan uplift, denudation, and climatic histories in the molasse deposits: J. Geol., v. 101, p. 157-175. Heller, P. L. and Paola, C., 1989, The paradox of Lower Cretaceous gravels and the initiation of thrusting in the Sevier orogenic belt, United States Western Interior: Geological Society of America Bulletin, v. 101, p. 864-875. Heller, P. L. and Paola, C., 1992, The large-scale dynamics of grain-size variation in alluvial basins, 2: Application to syntectonic conglomerate: Basin Research, v. 4, 2, p. 91-102. Hodges, K. V., Hubbard, M. S., and Silverberg, D. S., 1988, Metamorphic constraints on the thermal evolution of the central Himalayan Orogen: Philosophical Transactions of the Royal Society of London, v. 326, p. 257-280. 69 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Johnson, G. D., Johnson, N. D., Opdyke, N. D., and Tahirkheli, R. A. K., 1979, Magnetic reversal stratigraphy and sedimentary tectonic history of the Upper Siwalik Group, eastern Salt Range and southwestern Kashmir, in Farrah, A. and DeJong, K.A., eds., Geodynamics of Pakistan: Quetta, Geological Survey of Pakistan, p. 149-165. Johnson, G. D., Opdyke, N. D., Tandon, S. K., and Nanda, A. C., 1983, The magnetic polarity stratigraphy of the Siwalik Group at Haritalyangar (India) and a new last appearance datum for Ramapithecus and Sivapithecus in Asia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 44, p. 223-249. Johnson, G. D. and Vondra, C. F., 1972, Siwalik sediments in a portion of the Punjab reentrant: the sequence at Haritalyangar, District Bilaspur, H.P.: Himalayan Geology, v. 2, p. 118-144. Johnson, G. D., Zeitler, P. K., Naeser, C. W., Johnson, N. M., Summers, D. M., Frost, C. D., Opdyke, N. D., and Tahirkheli, R. A. K., 1982, The occurrence and fission- track ages of Late Neogene and Quaternary volcanic sediments, Siwalik Group, northern Pakistan: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 37, p. 63-93. Johnson, N. M. and McGee, V. E., 1983, Magnetic polarity stratigraphy: Stochastic properties of data, sampling problems and the evaluation of interpretations: Journal of Geophysical Research, v. 8 8 , p. 1213-1221. Johnson, N. M., Opdyke, N. D., Johnson, G. D., Lindsay, E. H., and Tahirkheli, R. A. K., 1982, Magnetic polarity stratigraphy and ages of Siwalik Group rocks of the Potwar Plateau, Pakistan: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 37, p. 17-42. Johnson, N. M., Sheikh, K. A., Dawson-Saunders, E., and McRae, L. E., 1988, The use of magnetic-reversal time lines in stratigraphic analysis: A case study in measuring variability in sedimentation rates, in Kleinspehn, K. L. and Paola, C., eds., New Perspectives in Basin Analysis: New York, Springer-Verlag, p. 189-200. Johnson, N. M., Stix, J., Tauxe, L., Cerveny, P. F., and Tahirkheli, R. A. K., 1985, Paleomagnetic chronology, fluvial processes, and tectonic implications of the Siwalik deposits near Chmji Village, Pakistan: J. Geol., v. 93, p. 27-40. Karunakaran, C. and Rao, A. R., 1979, Status of exploration for hydrocarbon in the Himalayan region-contributions to stratigraphy and structure: Geol. Sur. India Misc. Ihib., v. 41, V, p. 1-66. Khan, M. J., Opdyke, N. D., and Tahirkheli, R. A. K., 1988, Magnetic stratigraphy of the Siwalik Group, Bhittani, Marwat, and Khasor ranges, northwestern Pakistan and the timing of Neogene tectonics of the Trans Indus: J. Geophys. Res., v. 93, p. 11,773-11,790. Leathers, M. R., 1987, Balanced structural cross section of the western salt range and Potwar Plateau, Pakistan [M.Sc.]: Oregon State University. 70 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Lewis, G. E., 1934, Preliminary notice of new man-like apes from India: Am. J. Sci., v. 31, p. 450-452. Lillie, R. J., Johnson, G. D., Yousaf, M., Zamin, A. S. H., and Yeats, R. S., 1987, Structural development within the Himalayan fold-and-thrust belt of Pakistan, in Beaumont, C. and Tankard, A. J., eds., Sedimentary basins and basin-forming mechanisms: Canadian Society of Petroleum Geologists Memoir 12, p. 379-392. Macfarlane, A. M., 1993, Chronology of tectonic events in the crystalline core of the Himalaya, Langtang National Park, central Nepal: Tectonics, v. 12,4, p. 1004- 1025. McFadden, P. L. and McElhinny, M. W., 1990, Classification of the reversal test in paleomagnetism: Geophys. J. Int., v. 103, p. 725-729. Meghraoui, M., Jaegy, R., Lammali, K., and Albarede, F., 1988, Late Holocene earthquake sequences on the El Asnam (Algeria) thrust fault: Earth Planet. Sci. Lett., v. 90, p. 187-203. Meigs, A. J., Burbank, D. W., and Beck, R. A., 1995, Middle-late Miocene (>10 Ma) formation of the Main Boundary thrust in the western Himalaya: Geology, v. 23, 5, p. 423-426. Molnar, P., 1988, A review of geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implications: Phil. Trans. R. Soc. Lond., v. A326, p. 33-88. Mulder, T. J., 1991, Isochronous paleogeographies and stratigraphic evolution of the northwest Himalayan foredeep, 8 .5 -5 Ma, central and eastern Potwar Plateau, Pakistan [M.Sc.]: University of Southern California. Mulder, T. J. and Burbank, D. W., 1993, The impact of incipient uplift on patterns of fluvial deposition: an example from the Salt Range, Northwest Himalayan Foreland, Pakistan, in Marzo, M. and Puigdefabregas, C., eds., Alluvial sedimentation: Oxford, Blackwell Scientific Publications, 17, p. 521-539. Najman, Y., Clift, P., Johnson, M. R. W., and Robertson, A. H. F., 1993, Early stages of foreland basin evolution in the Lesser Himalaya, N India, in Treloar, P. J., and Searle, M. P., eds., Himalayan Tectonics: London, Geological Society of London, Special Publication 74, p. 541-558. Nakata, T., 1989, Active faults of the Himalaya of India and Nepal, in Malinconico, L. L., Jr. and Lillie, R. J., eds., Tectonics of the Western Himalaya: Geol. Soc. Am. Special Paper 232, p. 243-264. Opdyke, N. D., Lindsay, E. H., Johnson, G. D., Johnson, N. M., Tahirkheli, R. A. K., and Mizra, M. A., 1979, Magnetic polarity stratigraphy and vertebrate paleontology of the Upper Siwalik Subgroup of northern Pakistan: Palaeogeog., Palaeoclim., Palaeoecol., v. 27, p. 1-34. 71 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Paola, C., Heller, P. L., and Angevine, C. L., 1992, The large-scale dynamics of grain- size variation in alluvial basins, 1: Theory: Basin Research, v. 4,2, p. 73-90. Pilgrim, G. E., 1910, Preliminary notes on a revised classification of the Tertiary freshwater deposits of India: Rec. Geol. Surv. India, v. 11, 1, p. 63-71. Pivnik, D. A. and Johnson, G. D., 1995, Depositional response to Pliocene-Pleistocene foreland partitioning in northwest Pakistan: Geological Society of America Bulletin, v. 107, 8 , p. 895-922. Powers, P. M. and Lillie, R. J., 1995, Structure and shortening rates of the Himalayan foreland fold-and-thrust belt, northwest India: GS A Abstracts with programs, 1995 Annual Meeting, v. 27, p. 220. Prasad, K. N., 1962, Fossil primates from the Siwalik beds near Haritalyangar, Himachal Pradesh, India: J. Geol. Soc. India, v. 3, p. 86-96. Prell, W. L. and Kutzbach, J. E., 1991, Sensitivity of the Indian monsoon to changes in tectonic (orographic), orbital (solar radiation) and glacial boundary conditions: model-data comparision: EOS, Transactions, v. 72, p. 257-258. Quade, J., Ceding, T. E., and Bowman, J. R., 1989, Development of Asian monsoon revealed by marked ecological shift during latest Miocene in northern Pakistan: Nature, v. 342, p. 163-166. Raiverman, V., Ganju, J. L., Ram Jokhan and Misra, V. N., 1990, Geological map of Himalayan foothills between Ravi and Yamuna rivers, Institute of Petroleum Exploration, ONGC, Dehra Dun, India. Raiverman, V., Kunte, S. V., and Mukheijea, A., 1983, Basin geometry, Cenozoic sedimentation and hydrocarbon in north western Himalaya and Indo-Gangetic plains: Petrol. Asia J., v. p. 67-92. Raymo, M. E. and Ruddiman, W. F., 1992, Tectonic forcing of late Cenozoic climate change: Nature, v. 359, p. 117-122. Raynolds, R. G. H., 1980, The Plio-Pleistocene structural and stratigraphic evolution of the eastern Potwar Plateau, Pakistan [Ph.D.]: Dartmouth College. Raynolds, R. G. H. and Johnson, G. D., 1985, Rates of Neogene depositional and deformational processes, north-west Himalayan foredeep margin, Pakistan, in Snelling, N. J., ed., The chronology of the geological record: Geol. Soc. London Mem. 10, p. 291-311. Ruddiman, W. F. and Kutzbach, J. E., 1989, Forcing of the late Cenozoic northern hemisphere climate by plateau uplift in southeast Asia and the American southwest: J. Geophys. Res., v. 94, p. 18,409-18,427. Shah, S. M. I., 1977, Stratigraphy of Pakistan: Geol. Surv. Pakist. Mem., v. 12, 138 pp. 72 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Sinclair, H. D. and Allen, P. A., 1992, Vertical versus horizontal motions in the Alpine orogenic wedge: stratigraphic response in the foreland basin: Basin Research, v. 4,3/4, p. 215-232. Sinclair, H. D., Coakley, B. J., Allen, P. A., and Watts, A. B., 1991, Simulation of foreland basin stratigraphy using a diffusion model of mountain belt uplift and erosion: an example from the Central Alps, Switzerland: Tectonics, v. 10, 3, p. 599-620. Srivastava, P. and Mitra, G., 1994, Thrust geometries and deep structure of the outer and lesser Himalaya, Kumaon and Garwhal (India): implications for evolution of the Himalayan fold-and-thrust belt: Tectonics, v. 13, p. 89-109. Stem, T. A., Quinlan, G. M., and Holt, W. E., 1992, Basin formation behind an active subduction zone: three-dimensional flexural modelling of Wanganui Basin, New Zealand: Basin Research, v. 4, 3/4, p. 197-214. Tahirkheli, R. A. K., 1979, Geology of Kohistan and adjoining Eurasian and Indo- Pakistan continents, Pakistan: Geol. Bull. Univer. Peshawar Spec. Iss., v. 11, p. 1- 30. Tailing, P. J. and Burbank, D. W., 1993, Assessment of uncertainties in magnetostratigraphic dating of sedimentary strata, in Asissaoiu, A., McNeil, D. F. and Hurley, N. F., eds., Applications of paleomagnetism to sedimentary geology: Tulsa, Soc. Econ. Paleont. Miner. Spec. Publ., 49, p. 59-69. Tailing, P. J., Lawton, T. F., Burbank, D. W., and Hobbs, R. S., 1995, Evolution of latest Cretaceous-Eocene nonmarine deposystems in the Axhandle piggyback basin of central Utah: GSA Bulletin, v. 107, 3, p. 297-315. Tandon, S. K. and Kumar, R„ 1984, Active intra-basinal highs and palaeodrainage reversals in the late orogenic hominoid-bearing Siwalik basin: Nature, v. 308, p. 635-637. Tandon, S. K. and Rangaraj, S., 1979, Sedimentary tectonics of the Siwalik sequence, southeast of the Ravi structural reentrant, in Saklani, P. S., ed., Structural Geology of the Himalaya: New Delhi, Today and Tomorrow's Printers and Publishers, p. 273-283. Tauxe, L., 1979, A new date for Ramapithecus: Nature, v. 282,5737, p. 399-401. Tauxe, L. and Badgley, C., 1984, Transition stratigraphy and the problem of remanence lock-in times in the Siwalik red beds: Geophysical Research Letters, v. 11, 6 , p. 611-613. Tauxe, L. and Badgley, C., 1988, Stratigraphy and remanence acquisition of a paleomagnetic reversal in alluvial Siwalik rocks of Pakistan: Sedimentology, v. 35, p. 697-715. 73 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Tauxe, L., Constable, C., and Stokking, L., 1990, Use of anisotropy to determine the origin of characteristic remanence in the Siwalik red beds of northern Pakistan: J. Geophys. Res., v. 95, p. 4,391-4,404. Tauxe, L., Kent, D. V., and Opdyke, N. D., 1980, Magnetic components contributing to the natural remanent magnetization of Middle Siwalik Red Beds: Earth Planet. Sci. Lett., v. 47, p. 279-284. Tauxe, L. and Opdyke, N. D., 1982, A time framework based on magnetostratigraphy for the Siwalik sediments of the Khaur area, northern Pakistan: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 37, p. 43-61. Timoshenko, S., 1940, Theory of Plates and Shells: New York, McGraw-Hill, 492 p. Timoshenko, S. and Woinowski-Krieger, S., 1959, Theory of Plates and Shells: New York, McGraw-Hill, 462 p. Turcotte, D. L. and Schubert, G., 1982, Geodynamics - Applications of Continuum Physics to Geological Problems: New York, John Wiley & Sons, 450 p. Valdiya, K. S., 1992, The Main Boundary Thrust Zone of the Himalaya, India: Annales Tectonicae, Supplement to Volume VI, p. 54-84. Visser, C. F. and Johnson, G. D., 1978, Tectonic control of Late Pliocene molasse sedimentation in a portion of the Jhelum reentrant, Pakistan: Geologische Rundschau, v. 67, I, p. 15-37. Waschbusch, P. J. and Royden, L. H., 1992, Spatial and temporal evolution of foredeep basins: lateral strength variations and inelastic yielding in continental lithosphere: Basin Research, v. 4, 3/4, p. 179-196. Watts, A. B., 1992, The effective elastic thickness of the lithosphere and the evolution of foreland basins: Basin Research, v. 4, 3/4, p. 169-178. Wessel, P., 1995, Analytical 3-D flexure of semi-infinite elastic plates: EOS, Transactions, American Geophysical Union, 1995 Fall Meeting Abstracts, v.76, p.575. Whiting, B. M. and Thomas, W. A., 1994, Three-dimensional controls on subsidence of a foreland basin associated with a thrust-belt recess: Black Warrior basin, Alabama and Mississippi: Geology, v. 22, 8 , p. 727-730. Willis, B., 1993a, Ancient river systems in the Himalayan foredeep, Chinji Village area, northern Pakistan: Sedimentary Geology, v. 8 8 , p. 1-76. Willis, B., 1993b, Evolution of Miocene fluvial systems in the Himalayan foredeep through a two kilometer-thick succession in northern Pakistan: Sediment. Geol., v. 8 8 , p. 77-121. 74 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Yeats, R. S. and Lillie, R. J., 1991, Contemporary tectonics of the Himalayan frontal fault system: folds, blind thrusts and the 1905 Kangra earthquake: J. Struct. Geol., v. 13, p. 215-225. Yeats, R. S., Nakata, T., Farah, A., Fort, M., Mirza, M. A., Pandey, M. R., and Stein, R. S., 1992, The Himalayan frontal fault system: Annales Tectonicae, v. 6 , p. 85-98. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appendix 1. Tables of Raw Magnetic Data for Kangra and Naiad Khad Sections. Paleomagnetic data in Appendix 1 are sorted by stratigraphic height and include (in bold) the sample, stratigraphic height, inclination and declination of the site virtual geomagnetic pole, and the class (Fisher (1953) k statistic, Class I > 10, Class II < 10), and in sm all type the sample number, the demagnetization treatment type (TR E T ; IN IT = initial measurement and TH ER = thermal demagnetization), the demagnetization treatment level (TR ELEV ; in degrees Celsius), the magnetic intensity (IN T ), in situ inclination and declination (IN C 2, D EC2), and the bedding-corrected inclination and declination (IN C 3, DEC3) for each sample at a given site. Kangra Data Sample Height Inclination Declination Class NAM TRET TRELEV INT INC2 DEC2 INC3 DEC3 KAN001 8.0 0.8 -169.6 1 KAN001A INIT 0.0 0.2116 -13.3 -164.5 6.6 -164.1 KAN001A THER 400.0 0.2016 -18.9 -173.1 -0.2 -171.5 KAN001A THER 450.0 0.1956 -18.2 -172.6 0.6 -171.1 KAN001B INIT 0.0 0.2653 -15.5 -158.7 5.0 -158.3 KAN001B THER 400.0 0.2322 -20.5 -172.5 -1.7 -170.6 KAN001B THER 450.0 0.2230 -18.4 -172.1 0.5 -170.6 KAN001C INIT 0.0 0.2572 -15.2 -158.9 5.3 -158.5 KAN001C THER 400.0 0.2181 -20.8 -169.9 -1.6 -168.2 KAN001C THER 450.0 0.2085 -19.9 -169.4 -0.6 -167.9 KAN001D INIT 0.0 0.2285 -15.1 -154.5 5.6 -154.2 KAN001D THER 400.0 0.1996 -17.5 -170.7 1.5 -169.5 KAN001D THER 450.0 0.1961 -16.5 -169.9 2.7 -168.9 KAN002 10.5 -40.3 -156.1 1 KAN002A INIT 0.0 0.1679 21.1 161.1 32.2 152.0 KAN002A THER 400.0 0.0669 -62.4 -158.1 -41.8 -153.1 KAN002A THER 450.0 0.0651 -60.8 -155.1 -40.0 -151.4 KAN002B INIT 0.0 0.2335 -20.1 -177.9 -2.2 -175.7 KAN002B THER 400.0 0.1822 -47.3 -161.9 -26.9 -157.8 KAN002B THER 450.0 0.1795 -47.5 -162.8 -27.3 -158.4 KAN002C INIT 0.0 0.1574 5.1 -123.3 24.5 -121.1 KAN002C THER 400.0 0.0837 -73.9 -163.3 -53.4 -153.4 KAN002C THER 450.0 0.0830 -73.7 -166.1 -53.4 -154.7 KAN002D INIT 0.0 0.1423 -1.5 -174.2 16.7 -175.6 KAN002D THER 400.0 0.0744 -61.7 -172.6 -42.1 -162.3 KAN002D THER 450.0 0.0732 -60.1 -167.4 -40.2 -159.4 76 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. R eproduced with permission o f the copyright ow ner. Further reproduction prohibited without p erm issio n . OOOOOOOOO Z 0 0 0 0 0 0 0 0 0 0 0 0 000000000 2 r 000000000000 = in 01 01 01 in in in 01 in 2 a. . t * . a a a A A-t* ^ a. S O O O C D 0 3 0 3 > > > o a o a O O O C D C D 0 3 > > > o cn — t H H H — 1H 5 H H H H -1 H H H X X X X X 1 ? X X A_ X X X X X X m m H m m H m m h m m H m m H m m H m m u X X X X X X X X X X X X X o a A A A A A A A A A A A A A O l O O l O O) O O l O O l O O l O O l O 0 O O O O O O O O O O O O O 0 O O O O O 0 O O O O b O O O O O b O b 0 O O O O O MMM 2 8 2 p p p 0 0 0 • 0 3 0 0 0 0 0 0 0 0 0 0 0 p La b i s r o r o 0 2 b 0 0 b b 0 b 0 0 b — A 00 c o -4 A c n r o r o 00 CO CO 00 c n c n o> CO O ) O ) 00 r o -4 O r o c n •1 •a v i O ) c n CO A A c n 0 ) CO r o o> -4 r o 0 CO -4 CO CO 0 CO v i CO -A ro co CO CO CO CO r o A ( S r o r o 0 00 CO t o 0 3 c n 0 0 3 A b t o 0 1 1 1 • 1 1 A CO CO CO CO CO c o r o r o 0 0 o> _A 0 CO 0 -4 00 0 b t o bo A b b La CO I O ) 6> r o 1 r o A 1 CO 1 CO O ) o> 0 O ) 00 A CO CD CO a> c n A V I b b b b 0 L a b b b t o C O ^4^roo>P!!S!??£W0?a>2g3> a>'«i03Oi03Cno>M'jin ^abib)bub'-*(D4iCnu C O 1 1 1 1 1 ro i A * 1 ro 1 _4 1 _A o > ro ro O ) A ro 0 c n c o -4 0 0 O C DCO co _A CO ro v j A v i o> CO b v i b ’ - 4 A b V i V i 0 b ro 0 b b b 0 ro La L g b La -J - 4 UUOIOIU-^UUN coptn-»pa>ppa> bi^cnubto aoooo & A v j o x c o c o c o t o x x t o r o - t x - t c o x r o c o x o o o xrobvi^cobobLALAOA 2 Z Z Z Z Z 2 2 Z 2 Z Z Z 2 2 2 Z Z 2 2 Z Z 2 2 Z 2 2 2 2 Z Z Z Z Z > z z Z Z Z Z z z Z 0 0 O O § 0 0 0 0 0 0 O O 0 0 0 0 CO CO CO CO CO CO CO CO CO a) 03 XX X X X X X O O O O O O O O O Q O O O ___ OOOOOOOOOOOOO2Z c o c o c o c o c o c o c o c o c o c o c o c o c o O > > > > > > > > > > > > > > O Q x x x i E x x x ^ x x x x x x x x x x x x ^ x x x x x x x x x x x x ? m m m H m m m H m m m m m m m m m m m m H m m m m m m m m r n m m m H x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Ul at 0 3 ro ro co ro ro a> o> o> x x x x a a co ro -*> o i x x x x x x A A C o r o - A o a t o 0 0 ) 0 c n f o o ^ o i f o o a i o o p o c n f o o N u i r o o o i o p o o 0 0 0 0 0 0 0 0 0 X 0 X 0 X 0 0 0 0 0 0 0 0 X 0 X 0 X 0 0 0 0 0 0 0 00000000 *0 o o o 0000 o 0000 o © o o o o o o o o o o o ooppooopooooooooooooooooooooooooooA bbbbbbbobbbbbtpbbbbbbbbbbbbbbbbbbbb" 0 O p O 0 b b b ro »A r o x 0 V| t o 0 __4 X 0 cn r o r o - ^ r o c o c o r o A o o c o A c o A A c o c o c o c o r o c o o o c o c o r o c o c o c o r o r o r o r o c o . ^ rOOSIOOO^U^O)OOONl^^(0(OQOOO(00)0)0)0^ (B O U O (O a f^ S ^ •^-^oocncDoofooiO'sjcoco^cooi-^oi-^roaao-vi-^ooiooi^cocoSoi^ r o - ^ r o ^ r o r o - ^ r o - A - ^ f o r o r o r o r o r o f o r o r o - ^ - ^ ^ r o , - * - * - * - 4 - 4 - * - * , - * co (O 0 O ^ ^ O S (O P O ^ j o > Q U O) U p ^ N P O 00 10 U1 O) P (J) ,A CD ^ JO O ^ b b — 4 v i v i 0 t o b t o b i o ‘ A *x b b b b '— t b — t ’ A - ^ b ' o t o o v i b o * a a 01 v j b> ^ A A d D ( O C O - * U U N ( V U 1 U I V I V t 4 4 V I V 1 « ( V W ^ n J - * ( / I U I W V l U ) 4 4 # 4 4 | V * « U A C O O D A A C O C O ( O A r o O D X X O O C O O O O v 4 X C D O > C O O > X r o - 4 A C D X - 4 A C O x P > , — 4 -A 2 v j <0 cn X X X A X X s X X -4 ro - a cn X X X 26 A A ro _A O ro c o x X 0 0 f ° O O v i X c o o> co o >X ro _A X A X X co ro co 0 * 0 0 b 0 La v | b b ro 0 b 0 v i b b X b v i ro v i La A CD b 4 * 1 a i i a co r o 1 1 1 1 1 1 1 « 1 c o c o r o - * - 4 C o a r o o p io o -4 c o -4 0 o > A ro A C o ro c o c o A O c o o > A -* © A ro c o A o > ro < p ® © < o b b b A ’ v jb L A A b b A b b ro b b b ro b b A b b x x b A fo x b x ^ ^ ^ A 1 1 1 1 1 1 1 t 1 1 1 » 1 1 1 1 1 1 1 1 1 1 1 1 1 1 AAAbcocotovixcbxxAAAAAACOCo-4-4-Axxo)XXAAAio-4cb so^^cocooiocoACo^coo^coroo^oicnoooicn^^^scn^copai bbbbbroxrobxroroxvibbbbboAbAvitoA^bb^^cobb KAN005D INIT 0.0 0.4661 -9.1 -134.8 9.6 -134.8 KAN005D THER 400.0 0.4497 -16.9 -135.9 1.8 -135.5 KAN005D THER 450.0 0.4415 -15.1 -136.7 3.6 -136.3 KAN006 91.5 -39.0 •160.3 II KAN006A INIT 0.0 0.0321 -17.7 -108.1 6.3 -108.8 KAN006A THER 200.0 0.0858 -61.5 -144.7 -37.3 -136.6 KAN006A THER 250.0 0.0816 -59.3 -135.7 -34.5 -131.6 KAN006A THER 300.0 0.0829 -59.1 -137.0 -34.4 -132.4 KAN006B INIT 0.0 0.0283 24.3 25.0 2.2 27.9 KAN006B THER 200.0 0.0340 -57.1 104.2 -65.6 149.6 KAN006B THER 250.0 0.0326 -54.5 106.2 -63.1 146.8 KAN006B THER 300.0 0.0349 -61.8 112.5 -64.9 164.6 KAN006C INIT 0.0 0.0292 4.6 179.7 18.2 175.3 KAN006C THER 200.0 0.0525 -41.5 -166.7 -21.4 -157.3 KAN006C THER 250.0 0.0488 -36.9 -177.8 -19.9 -167.6 KAN006C THER 300.0 0.0559 -37.8 -177.4 -20.6 -166.9 KAN006D INIT 0.0 0.0312 9.4 164.6 16.8 158.9 KAN006D THER 200.0 0.0679 -46.3 -178.0 -28.6 -164.0 KAN006D THER 250.0 0.0632 -43.8 -176.7 -26.0 -164.0 KAN006D THER 300.0 0.0630 -48.0 -177.2 -30.0 -162.6 KAN007 99.0 -23.3 -112.7 1 KAN007A INIT 0.0 0.0687 41.8 -40.8 39.5 -18.9 KAN007A THER 400.0 0.0496 -39.5 -154.4 -17.0 -148.4 KAN007A THER 450.0 0.0501 -34.1 -139.3 -9.7 -137.0 KAN007B INIT 0.0 0.0881 47.6 -17.5 35.8 2.6 KAN007B THER 400.0 0.0159 -45.2 -112.4 -20.7 -115.6 KAN007B THER 450.0 0.0196 -38.3 -110.6 -13.9 -113.4 KAN007C INIT 0.0 0.1074 44.0 -18.9 33.0 -0.5 KAN007C THER 400.0 0.0322 -49.8 -86.2 -28.7 -97.6 KAN007C THER 450.0 0.0343 -44.9 -99.0 -21.7 -105.4 KAN007D INIT 0.0 0.0786 52.9 7.4 33.4 22.7 KAN007D THER 400.0 0.0398 -54.7 -61.0 -39.2 -82.9 KAN007D THER 450.0 0.0423 -61.1 -62.0 -44.5 -87.9 KAN008 108.0 29.2 -112.5 II KAN008A INIT 0.0 0.0630 40.1 4.3 22.3 15.3 KAN008A THER 400.0 0.0187 -4.7 -89.8 15.7 -88.3 KAN008A THER 450.0 0.0170 -11.3 -97.9 11.0 -98.0 KAN008B INIT 0.0 0.0933 45.0 -9.1 30.6 7.3 KAN008B THER 400.0 0.0184 29.0 -63.6 38.1 -47.8 KAN008B THER 450.0 0.0183 20.1 -64.7 30.5 -53.7 KAN008C INIT 0.0 0.0245 56.7 -49.6 54.7 -11.8 KAN008C THER 400.0 0.0099 -10.5 -174.8 5.9 -174.1 KAN008C THER 450.0 0.0108 -9.3 -162.3 10.6 -162.4 KAN008D INIT 0.0 0.0779 46.8 25.4 24.1 33.3 KAN008D THER 400.0 0.0119 5.0 -130.3 29.9 -131.1 KAN008D THER 450.0 0.0226 15.8 -129.2 40.8 -130.3 KAN009 112.5 -38.9 -120.9 I KAN009A INIT 0.0 0.0612 -78.3 165.2 -59.1 -146.7 KAN009A THER 200.0 0.0626 -69.4 -109.4 -44.8 -117.3 KAN009A THER 250.0 0.0576 -62.3 -101.2 -38.5 -111.1 KAN009A THER 300.0 0.0473 -70.9 -84.1 -48.7 -106.0 KAN009B INIT 0.0 0.0226 9.6 -138.3 33.8 -140.8 KAN009B THER 200.0 0.0152 -32.0 -127.0 -7.0 -126.7 KAN009B THER 250.0 0.0119 -7.6 -124.1 17.4 -124.1 KAN009B THER 300.0 0.0130 -29.6 -131.1 -4.7 -130.3 KAN009C INIT 0.0 0.0371 -64.6 100.7 -71.0 164.8 78 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN009C THER 200.0 0.0316 -73.2 -149.6 -49.2 -135.6 KAN009C THER 250.0 0.0279 -50.5 -160.8 -28.8 -150.1 KAN009C THER 300.0 0.0211 -86.3 -45.6 -64.1 -116.7 KAN009D INIT 0.0 0.0304 -51.8 -4.7 -57.6 -40.2 KAN009D THER 200.0 0.0304 -70.8 -71.3 -50.7 -100.3 KAN009D THER 250.0 0.0201 -63.3 -93.3 -40.4 -106.9 KAN009D THER 300.0 0.0241 -72.3 -99.5 -48.4 -113.6 KAN010 140.0 8.0 3.9 1 KAN010A INIT 0.0 0.0576 5.3 7.7 -17.1 6.3 KAN010A THER 200.0 0.0384 45.2 -4.3 24.2 6.7 KAN010A THER 250.0 0.0318 66.1 -6.3 44.0 14.8 KAN010A THER 300.0 0.0286 55.9 -14.3 36.4 4.5 KAN010B INIT 0.0 0.0487 1.7 28.6 -23.9 27.7 KAN010B THER 200.0 0.0378 35.7 12.8 11.7 17.3 KAN010B THER 250.0 0.0399 42.8 18.0 18.0 22.7 KAN010B THER 300.0 0.0305 45.5 8.1 22.0 15.9 KAN010C INIT 0.0 0.0189 -2.5 37.9 -28.5 37.8 KAN010C THER 200.0 0.0131 17.3 0.3 -3.7 2.2 KAN010C THER 250.0 0.0123 19.9 22.9 -5.3 23.8 KAN010C THER 300.0 0.0138 17.0 28.7 -8.7 29.0 KAN010D INIT 0.0 0.0151 28.5 -35.2 18.5 -24.6 KAN010D THER 200.0 0.0148 16.7 -12.9 -0.4 -10.1 KAN010D THER 250.0 0.0103 43.9 -1.9 22.3 8.0 KAN010D THER 300.0 0.0105 50.4 13.9 26.0 21.2 KAN011 145.0 30.9 -3.0 1 KAN011A INIT 0.0 0.0531 0.9 -6.5 -17.4 -9.2 KAN011A THER 400.0 0.0319 41.6 -14.8 23.4 -2.5 KAN011A THER 450.0 0.0277 44.3 -29.9 30.6 -12.4 KAN011B INIT 0.0 0.0942 -19.8 -111.3 2.9 -113.3 KAN011B THER 400.0 0.0212 23.5 -43.3 17.3 -33.7 KAN011B THER 450.0 0.0251 25.8 -36.9 16.8 -27.2 KAN011C INIT 0.0 0.0203 43.3 -92.4 55.4 -64.6 KAN011C THER 400.0 0.0366 71.5 12.8 46.6 26.7 KAN011C THER 450.0 0.0372 68.7 5.7 44.6 22.2 KAN011D INIT 0.0 0.0594 24.1 60.2 -0.2 58.1 KAN011D THER 400.0 0.0265 53.2 -7.6 32.4 7.6 KAN011D THER 450.0 0.0251 48.3 1.2 26.0 11.7 KAN012 155.5 16.2 35.2 1 KAN012A INIT 0.0 0.0640 4.6 57.9 -16.9 58.4 KAN012A THER 400.0 0.0423 40.9 21.7 20.3 26.4 KAN012A THER 450.0 0.0384 42.1 23.0 21.3 27.6 KAN012B INIT 0.0 0.1044 17.4 103.9 5.3 100.1 KAN012B THER 400.0 0.0444 35.5 53.4 13.7 52.0 KAN012B THER 450.0 0.0420 34.0 54.1 12.2 52.7 KAN012C INIT 0.0 0.0556 30.2 67.6 9.6 64.7 KAN012C THER 400.0 0.0318 33.4 28.8 12.1 31.2 KAN012C THER 450.0 0.0312 29.3 30.6 7.9 32.4 KAN012D INIT 0.0 0.0522 51.2 61.2 29.8 56.6 KAN012D THER 400.0 0.0376 38.8 27.9 17.6 31.1 KAN012D THER 450.0 0.0353 39.2 27.7 18.0 31.0 KAN013 165.0 -11.2 -165.3 I KAN013A INIT 0.0 0.4216 -24.7 -166.1 -5.5 -163.1 KAN013A THER 400.0 0.3070 -33.0 -168.5 -14.1 -163.5 KAN013A THER 450.0 0.3031 -32.9 -169.7 -14.2 -164.5 KAN013B INIT 0.0 0.4332 -24.4 -169.4 -5.9 -166.1 KAN013B THER 400.0 0.3115 -29.6 -172.7 -11.5 -167.9 79 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN013B THER 450.0 0.3059 -32.9 -172.4 -14.7 -166.8 KAN013C IN IT 0.0 0.4330 -18.8 -169.7 -0.4 -167.6 KAN013C THER 400.0 0.3188 -28.2 -173.0 -10.3 -168.5 KAN013C THER 450.0 0.3154 -28.4 -172.4 -10.4 -167.9 KAN013D INIT 0.0 0.3438 -22.7 -160.9 -2.7 -158.8 KAN013D THER 400.0 0.2737 -28.2 -165.1 -8.8 -161.5 KAN013D THER 450.0 0.2739 -27.8 -164.4 -8.2 -161.1 KAN014 174.0 -19.2 -140.7 1 KAN014A IN IT 0.0 0.2504 -31.5 -145.4 -9.8 -144.0 KAN014A THER 400.0 0.2142 -40.6 -140.2 -18.7 -139.2 KAN014A THER 450.0 0.2101 -41.3 -142.3 -19.4 -140.8 KAN014B IN IT 0.0 0.1953 -14.5 -144.7 7.2 -144.4 KAN014B THER 400.0 0.1684 -38.5 -143.1 -16.7 -141.6 KAN014B THER 450.0 0.1676 -38.2 -142.9 -16.4 -141.5 KAN014C IN IT 0.0 0.3582 -25.1 -141.9 -3.3 -141.2 KAN014C THER 400.0 0.3178 -42.2 -141.8 -20.3 -140.4 KAN014C THER 450.0 0.3144 -41.5 -141.2 -19.6 -139.9 KAN014D INIT 0.0 0.3485 -9.2 -134.4 12.8 -134.4 KAN014D THER 400.0 0.2894 -43.0 -143.7 -21.2 -141.8 KAN014D THER 450.0 0.2875 -43.2 -144.6 -21.5 -142.5 KAN015 183.0 -51.6 -153.0 I KAN015A IN IT 0.0 0.0890 84.1 116.1 60.6 56.5 KAN015A THER 400.0 0.0155 -75.5 146.2 -57.2 -162.0 KAN015A THER 450.0 0.0210 -64.8 165.9 -45.0 -166.2 KAN015B IN IT 0.0 0.0835 85.3 110.7 60.8 53.7 KAN015B THER 400.0 0.0071 -57.2 58.7 -81.1 100.8 KAN015B THER 450.0 0.0063 -66.7 -61.7 -50.1 -98.9 KAN015C INIT 0.0 0.0557 81.9 -17.0 58.4 31.3 KAN015C THER 400.0 0.0114 -56.2 -58.8 -42.9 -87.5 KAN015C THER 450.0 0.0119 -72.4 -68.2 -52.6 -107.7 KAN015D IN IT 0.0 0.0937 82.3 -28.2 59.9 30.1 KAN015D THER 400.0 0.0159 -45.6 161.9 -29.5 179.1 KAN015D THER 450.0 0.0145 -64.8 166.4 -44.8 -165.9 KAN015E IN IT 0.0 0.0282 40.9 -48.1 37.0 -26.0 KANQ15E THER 400.0 0.0146 -64.0 -171.8 -39.9 -155.0 KAN015E THER 450.0 0.0122 -72.5 153.0 -53.9 -163.9 KAN016 195.0 -24.2 176.0 I KAN016A IN IT 0.0 0.0735 -18.9 153.3 -8.9 159.7 KAN016A THER 400.0 0.0722 -41.0 159.6 -26.2 175.1 KAN016A THER 450.0 0.0712 -40.7 151.9 -28.7 169.1 KAN016B INIT 0.0 0.0909 -22.0 167.8 -6.1 173.4 KAN016B THER 400.0 0.0836 -30.7 166.1 -14.7 175.4 KAN016B THER 450.0 0.0807 -30.5 165.0 -14.9 174.4 KAN016C INIT 0.0 0.0791 -36.4 173.6 -17.5 -176.3 KAN016C THER 400.0 0.0665 -50.6 165.4 -32.8 -175.7 KAN016C THER 450.0 0.0661 -51.0 167.1 -32.7 -174.3 KAN016D IN IT 0.0 0.0315 -19.6 163.6 -5.4 168.8 KAN016D THER 400.0 0.0294 -35.8 156.1 -22.9 169.8 KAN016D THER 450.0 0.0289 -33.7 151.1 -22.9 164.7 KAN017 200.0 -21.5 165.2 1 KAN017A IN IT 0.0 0.0166 0.3 101.9 -13.7 104.7 KAN017A THER 200.0 0.0413 -33.9 160.4 -19.2 172.1 KAN017A THER 250.0 0.0415 -29.8 160.1 -15.6 170.0 KAN017A THER 300.0 0.0404 -32.7 166.2 -16.1 176.2 KAN017B INIT 0.0 0.0134 35.4 38.7 8.4 39.6 KAN017B THER 200.0 0.0232 -26.9 141.7 -20.4 153.4 80 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN017B THER 250.0 0.0198 -20.4 140.3 -15.3 149.0 KAN017B THER 300.0 0.0247 -34.1 150.1 -23.3 164.0 KAN017C INIT 0.0 0.0224 0.5 70.4 -23.5 73.0 KAN017C THER 200.0 0.0356 -43.6 145.8 -33.1 166.1 KAN017C THER 250.0 0.0337 -43.2 144.1 -33.5 164.6 KAN017C THER 300.0 0.0351 -47.7 168.0 -29.2 -175.8 KAN017D INIT 0.0 0.0213 •28.8 139.0 -23.2 152.2 KAN017D THER 200.0 0.0463 -26.9 160.7 -12.7 169.2 KAN017D THER 250.0 0.0438 -24.2 154.7 -12.6 163.0 KAN017D THER 300.0 0.0425 -21.2 155.7 -9.5 162.6 KAN018 229.5 26.1 5.8 I KAN018A INIT 0.0 0.1243 45.4 -5.2 25.2 8.0 KAN018A THER 400.0 0.0993 48.2 -5.9 28.0 8.7 KAN018A THER 450.0 0.0957 47.6 -5.6 27.4 8.7 KAN018B INIT 0.0 0.1828 45.5 -3.4 24.8 9.4 KAN018B THER 400.0 0.1538 44.6 -7.8 25.2 5.8 KAN018B THER 450.0 0.1499 44.4 -9.4 25.5 4.6 KAN018C INIT 0.0 0.1068 44.7 8.4 21.3 17.6 KAN018C THER 400.0 0.0875 41.3 -5.2 21.4 6.4 KAN018C THER 450.0 0.0848 39.9 -4.1 19.8 6.7 KAN018D INIT 0.0 0.0667 46.3 -2.4 25.3 10.4 KAN018D THER 400.0 0.0621 47.5 -14.7 29.8 2.3 KAN018D THER 450.0 0.0596 48.7 -16.7 31.5 1.5 KAN019 236.0 31.0 17.4 II KAN019A INIT 0.0 0.2231 -24.2 146.3 -18.7 156.9 KAN019A THER 400.0 0.1104 -34.7 147.2 -27.4 163.2 KAN019A THER 450.0 0.0957 -35.0 145.7 -28.3 162.2 KAN019B INIT 0.0 0.2624 46.7 -12.4 30.3 5.3 KAN019B THER 400.0 0.1804 45.8 -18.9 31.7 0.2 KAN019B THER 450.0 0.1529 47.7 -12.3 31.1 5.9 KAN019C INIT 0.0 0.1997 47.6 0.3 27.4 14.6 KAN019C THER 400.0 0.1204 47.9 -11.0 30.9 6.9 KAN019C THER 450.0 0.1105 47.2 -11.8 30.5 6.0 KAN019D INIT 0.0 0.2175 50.4 4.7 28.8 18.8 KAN019D THER 400.0 0.1156 46.6 -10.9 29.8 6.3 KAN019D THER 450.0 0.1124 48.5 -12.6 31.9 6.1 KAN020 243.5 36.6 16.1 1 KAN020A INIT 0.0 0.1899 51.3 -5.0 32.2 12.8 KAN020A THER 400.0 0.1076 59.3 -4.9 39.3 17.3 KAN020A THER 450.0 0.1020 59.4 -7.1 39.9 16.2 KAN020B INIT 0.0 0.1680 49.3 -10.6 32.0 7.9 KAN020B THER 400.0 0.0838 56.6 -6.0 37.1 15.0 KAN020B THER 450.0 0.0810 52.5 0.1 31.9 16.7 KAN020C INIT 0.0 0.1990 51.7 -9.7 33.8 9.8 KAN020C THER 400.0 0.1063 56.8 0.7 35.6 19.2 KAN020C THER 450.0 0.1061 55.7 5.6 33.6 21.8 KAN020D INIT 0.0 0.1862 46.5 -11.7 29.9 5.6 KAN020D THER 400.0 0.0923 53.3 -6.6 34.4 12.8 KAN020D THER 450.0 0.0908 52.8 -2.9 33.0 14.9 KAN021 253.5 39.6 6.8 I KAN021A INIT 0.0 0.1304 65.0 -27.5 50.0 10.1 KAN021A THER 100.0 0.1318 59.2 -20.7 43.5 8.2 KAN021A THER 200.0 0.1279 57.1 -19.8 41.6 7.1 KAN021A THER 300.0 0.1285 55.6 -21.4 40.8 5.0 KAN021A THER 400.0 0.1143 52.4 -22.6 38.6 1.9 KAN021A THER 450.0 0.1098 54.7 -25.1 41.3 2.0 81 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 5555555555555 555555555555555555555555555 _______________________________________ 2 2 Z Z Z 2 2 2 Z Z Z Z > Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ni IV iu N N IV ™ IVI ™ IU ™ ™ . « [V n K K K K K K K K K K K P n N I O N M N M N N M N N M M M r O N l l O N I N M I O M I O M I O I O N U C O U U U U C O U C O U U U U U U W l U M M M M I U M M M M M f o W —^ 4 —k _* —k —k —k _4 _k _k _k —k _ k _ k _ k _ k _ k _ k _ k _ k _ k —k —k m m m o o o o o o c o o d r o > > > 1 0 o o o o o o g o c d o d > > > ro m ooooooajajajajajajrocD aja> aJiD C D > > > > > > > co ro H H H — 1 H H H H ■7H H X X I X H I X a . H X X H I X m m H m m m m m m m m 33 33 33 X X X X X X X H H H H — *H H H H 1 X A— X X I I H X X m m H m m H m m m m X X X X X X 35 X ro co ro o S l X i X I S I I I I I X I X I I I X ^ i i x i i x i H m m H m m H m m m m m m m m m m m m H m m m m m m m XX 3303 03 03 03 03 03 03 03 03 33 03 03 03 03 03 03 03 03 03 3 3 ro 4 ^ - P * 4 » . 4 * . 4 * . 4 ^ 4 * . 4 > . 4 - ■ £ . cn o 010 cn o cn o cn o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b b b b b b b b b b b b b b o ^ A A A ^ ^ A A cn o cn o ( n o cn o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 4*. w , w , w . w . w . w . -r- -r- — ___ _ cn o cn o cn ro o ^ 4 cn ro o cn o o o o cn to o -nj cn to o p p p p p p o p c n p c n p c n p p p p p p p p c n p c n p c n p o o o b o o o o o o o o o o o o o o o o o o o o o o o A A cn o o o c n t n c n c n c n A A C o r o - * c n r o o ^ 4 c n r o o c n o o o o i f n n trt /n rn n r * i r t r \ r t , o> o> O) cn cn cn cn & 0 0 0 0 0 0 0 0 0 0 O 0 0 0 03 O O 0 0 O O 0 b L a b *0 L a 0 *0 Lk L a La ro Lk La Lk to to to LaLa La to < 0cn 0 0 0 0 A 03 CO cn O ) 0) (O ro to CO m 0 C O C T ) O ) C Oto A ro 0 cn C O _ a C O 9 cn cn ^ A w ■ O C Oro O ^A ro cn CO 0 co cn ro o> o> CO ro A ro < 0 1 0 -0 * N » C O* N i C OA 0 -g co 2 0 cn oo ro VO o 7i b i o o o o o o o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lk Lk Lk ro La Lk ro b b o b *0 b '-* ■ * - * L a L a ’ -** L a 0 * 0 b o b * 0 * 0 cooooo^ cn cn ro-k -k cooD oocoo-^ roco^ ' - • — *------ --- ^4-‘g>oococnro*N4-*Sco^co->icna)ro< O W O S O O S S O O l^ W N O J -^ W O O )-* ! . -k a> ^ © co co • o> to co cn cn ro * nj iOSOCOOMN A cn A -4 -v i ^ 4 cn cn a cn cn cn A A cn CO 0 CO 0 0 0 0 -0 0 3 CO CO p ro b 0 b b 0 0 b b A b 0 b 1 ro * to * cn • 1 CO 1 — A 1 — A 1 -A 1 • o > to 0 0 - N t cn p > A 0 O) A cb 0 o > CO b b b b b La La b b A b b Lk A A A A c o A c o c o c o c n c n c n ^Ca^pfO AOlSpUM A * ro • A O - A to CO CO do 1 co C O ro ro CO ro - A A -* -* cn co O) CO _A C O ro b b b A b b b b b b b L k b b La L k L k t n c n c n c n c n c n c n c n - ^ A c n A c n c n c n c n c n c n o c n o o c n c n c n c n c n t n ^^^roAApUQ(o^(o^AO)^(op|o<opp^^(oro^ ^bbcob^fob^bcn^robA C o^b^fo^cnbA a)^^ 1 1 “ 1 1 1 « 1 t 1 i t i i i i CO 1 0 CO ^ ^ ( • • 4 ^ ^ " * — * — * JO r o p ^ ^ p o p o ^ J T k r o ^ c o p o ^ jU p ^ o j o r o ^ ^ o brobro^fo^bbbb^^b^bo^cobb'-^bo t o t o c o c n c n o c o c o A A A C o c o c o c o StO-^^QOOS©' cn o> * o co -a o co -A-i.-i.-fc_fcro-L-*-fcCo(oco (JlSfO(O(Op)O)O)O3 ^ ^ p 0 b u ib b ^ b ^ is is c n b b A c o c o A C O A A r o - » - i o c o c o c o c o c o c o A A A A c n t n c o c o c o c o c o 00a}(0(O(0O(00)O^Q030)>J<0(0OO^0i(0 ‘ -------- ■ B S * * * * 19'- ................................ (0(n^^(o^6)b<obo6}(0^6)U(ob^b)SSbbbis)bib 00 to ro -a - • > -* -k-fc o s(o a> ss4 p )0 )0 o o o so ^ b s ^ ^ b b o s b i o ^ ^ u s ^ b pi(n^(o©NiNiss4wo b >1 a to ro b b ro b a b b ro ro -*• ro a . -*■ ^ p co u) ui u o (90 a co o p p o p p o cn p> p < 0 co-* < 0 o cn cn ro L a b k> a ’ o b b b cn La n a b b b b o cn b ‘ cn a ro b b b b b KAN091 422.0 37.4 16.6 1 KAN091A INIT 0.0 0.2692 55.7 -9.6 37.4 12.3 KAN091A THER 400.0 0.1776 60.1 -9.0 41.0 15.5 KAN091A THER 450.0 0.1604 59.2 -12.6 41.2 12.9 KAN091B INIT 0.0 0.1715 63.5 7.9 40.3 26.9 KAN091B THER 400.0 0.1161 59.3 3.1 37.4 22.0 KAN091B THER 450.0 0.1054 59.6 4.9 37.3 23.2 KAN091C INIT 0.0 0.1682 48.9 -8.8 31.1 8.9 KAN091C THER 400.0 0.0994 45.8 -9.3 28.5 7.0 KAN091C THER 450.0 0.0970 42.7 -15.1 27.6 1.2 KAN091D INIT 0.0 0.2468 62.9 2.5 40.8 23.6 KAN091D THER 400.0 0.1693 63.9 0.4 42.1 23.1 KAN091D THER 450.0 0.1541 65.2 -0.6 43.5 23.5 KAN092 432.0 41.5 13.8 1 KAN092A INIT 0.0 0.1207 61.4 -15.1 43.7 13.0 KAN092A THER 400.0 0.0743 63.3 -24.7 47.9 9.8 KAN092A THER 450.0 0.0694 63.4 -19.7 46.6 12.3 KAN092B INIT 0.0 0.0814 51.9 -4.3 32.6 13.6 KAN092B THER 400.0 0.0554 62.5 3.3 40.3 23.9 KAN092B THER 450.0 0.0518 61.0 3.1 39.0 22.9 KAN092C INIT 0.0 0.1084 54.9 -8.6 36.4 12.4 KAN092C THER 400.0 0.0711 57.2 -13.2 39.7 11.1 KAN092C THER 450.0 0.0647 58.8 -14.9 41.5 11.2 KAN092D INIT 0.0 0.1186 54.4 -10.5 36.4 10.9 KAN092D THER 400.0 0.0668 55.3 -14.5 38.4 9.0 KAN092D THER 450.0 0.0628 55.0 -14.9 38.2 8.5 KAN093 440.0 63.7 -37.3 I KAN093A INIT 0.0 0.3707 55.0 -72.3 60.4 -28.5 KAN093A THER 400.0 0.2724 50.3 -81.8 61.5 -43.7 KAN093A THER 450.0 0.2539 47.9 -82.4 60.0 -47.5 KAN093B INIT 0.0 0.2248 60.1 -65.6 60.5 -15.9 KAN093B THER 400.0 0.1615 55.7 -77.9 63.3 -31.4 KAN093B THER 450.0 0.1488 54.6 -83.0 64.9 -37.6 KAN093C INIT 0.0 0.2358 64.0 -58.6 59.8 -5.8 KAN093C THER 400.0 0.1638 59.6 -82.2 67.3 -26.7 KAN093C THER 450.0 0.1551 57.7 -80.6 65.7 -29.6 KAN093D INIT 0.0 0.2006 62.3 -58.2 58.7 -8.3 KAN093D THER 400.0 0.1515 59.9 -74.5 64.1 -21.4 KAN093D THER 450.0 0.1340 55.5 -79.0 63.6 -32.7 KAN094 456.5 35.0 13.4 I KAN094A INIT 0.0 0.1307 53.9 -3.8 34.2 14.9 KAN094A THER 400.0 0.0994 54.7 -5.1 35.2 14.5 KAN094A THER 450.0 0.0886 54.0 -5.7 34.8 13.7 KAN094B INIT 0.0 0.2069 48.6 -11.4 31.6 7.0 KAN094B THER 400.0 0.1685 46.4 -14.0 30.6 4.0 KAN094B THER 450.0 0.1568 52.5 -15.3 36.3 6.7 KAN094C INIT 0.0 0.1262 51.0 -5.1 31.9 12.5 KAN094C THER 400.0 0.0911 50.0 -7.6 31.8 10.4 KAN094C THER 450.0 0.0903 49.0 -14.1 32.9 5.4 KAN094D INIT 0.0 0.1525 55.5 -4.3 35.8 15.5 KAN094D THER 400.0 0.1239 57.3 -4.1 37.3 16.6 KAN094D THER 450.0 0.1156 58.0 -7.2 38.7 15.2 KAN094E INIT 0.0 0.1365 56.7 -4.5 36.9 16.0 KAN094E THER 400.0 0.1077 54.1 -8.2 35.6 12.2 KAN094E THER 450.0 0.0973 60.8 -6.6 41.0 17.3 83 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN095 512.0 28.3 3.5 1 KAN095A INIT 0.0 0.1808 46.7 -11.0 29.9 6.3 KAN095A THER 40Q.0 0.1221 41.1 -14.4 26.0 0.9 KAN095A THER 450.0 0.1115 42.6 -13.5 27.0 2.3 KAN095B INIT 0.0 0.1626 49.4 -7.4 31.2 10.2 KAN095B THER 400.0 0.1108 45.3 -9.0 28.0 6.9 KAN095B THER 450.0 0.1042 45.7 -8.4 28.1 7.5 KAN095C INIT 0.0 0.1810 43.7 -15.6 28.7 1.3 KAN095C THER 400.0 0.1283 37.7 -16.2 23.5 -2.2 KAN095C THER 450.0 0.1198 36.6 -16.1 22.6 -2.6 KAN095D INIT 0.0 0.1950 47.6 -12.1 31.0 6.0 KAN095D THER 400.0 0.1449 43.6 -6.2 25.6 8.1 KAN095D THER 450.0 0.1337 45.6 -7.3 27.7 8.3 KAN095E INIT 0.0 0.1532 46.6 -24.4 34.3 -3.2 KAN095E THER 400.0 0.0997 42.1 -27.0 31.5 -7.9 KAN095E THER 450.0 0.0976 42.5 -22.3 30.0 -4.2 KAN096 528.0 20.5 32.2 II KAN096A INIT 0.0 0.1127 49.9 -4.9 30.9 12.1 KAN096A THER 400.0 0.0853 50.4 1.1 29.7 16.4 KAN096A THER 450.0 0.0786 51.3 2.0 30.4 17.4 KAN096B INIT 0.0 0.0972 53.7 -1.4 33.4 16.4 KAN096B THER 400.0 0.0653 58.4 -2.2 37.9 18.4 KAN096B THER 450.0 0.0590 57.7 -3.8 37.6 17.0 KAN096C INIT 0.0 0.0642 44.4 -7.1 26.6 7.9 KAN096C THER 400.0 0.0491 46.9 -7.7 29.0 8.7 KAN096C THER 450.0 0.0438 46.1 -5.9 27.8 9.6 KAN096D INIT 0.0 0.1139 -18.0 -61.6 -6.7 -67.1 KAN096D THER 400.0 0.1015 -21.3 96.3 -38.0 108.8 KAN096D THER 450.0 0.1014 -20.7 96.0 -37.6 108.2 KAN097 547.0 30.6 14.6 I KAN097A INIT 0.0 0.0714 48.1 -21.1 34.4 0.0 KAN097A THER 400.0 0.0600 47.1 -6.1 28.7 9.9 KAN097A THER 450.0 0.0451 43.5 -17.8 29.3 -0.4 KAN097B INIT 0.0 0.0749 53.2 -16.7 37.3 6.3 KAN097B THER 400.0 0.0415 51.1 -12.7 34.2 7.5 KAN097B THER 450.0 0.0405 51.1 -18.4 36.1 3.8 KAN097C INIT 0.0 0.0769 55.2 -1.3 34.7 17.2 KAN097C THER 400.0 0.0514 64.9 1.6 42.8 24.4 KAN097C THER 450.0 0.0499 66.8 12.2 42.7 30.9 KAN097D INIT 0.0 0.1134 40.5 14.7 17.3 22.6 KAN097D THER 400.0 0.0887 37.7 9.4 15.8 17.6 KAN097D THER 450.0 0.0841 34.1 6.7 13.1 14.3 KAN098 554.5 48.0 14.9 1 KAN098A INIT 0.0 0.2717 68.3 -7.9 47.6 22.3 KAN098A THER 400.0 0.1799 66.5 -22.4 49.7 14.1 KAN098A THER 450.0 0.1606 66.1 -19.7 48.7 14.9 KAN098B INIT 0.0 0.2583 57.9 -13.8 40.4 11.2 KAN098B THER 400.0 0.1675 69.5 -7.6 48.5 23.5 KAN098B THER 450.0 0.1561 68.0 -2.5 46.2 24.5 KAN098C INIT 0.0 0.2084 56.0 -22.0 41.3 4.9 KAN098C THER 400.0 0.1472 62.9 -22.8 47.1 10.3 KAN098C THER 450.0 0.1322 60.9 -27.5 46.9 6.0 KAN098D INIT 0.0 0.2516 61.8 -12.0 43.2 15.1 KAN098D THER 400.0 0.1628 63.0 -19.8 46.3 11.9 KAN098D THER 450.0 0.1528 69.0 -21.6 51.3 17.1 84 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN099 565.0 35.9 3.1 1 KAN099A INIT 0.0 0.2685 41.7 -17.7 27.7 -1.2 KAN099A THER 400.0 0.1726 45.4 -29.9 35.4 -7.9 KAN099A THER 450.0 0.1554 45.4 -34.6 37.2 -11.4 KAN099B INIT 0.0 0.2709 59.5 -8.3 40.3 15.5 KAN099B THER 400.0 0.1543 56.1 -14.0 39.0 9.9 KAN099B THER 450.0 0.1394 58.6 -17.2 42.0 9.8 KAN099C INIT 0.0 0.2350 51.6 -25.7 38.9 -0.7 KAN099C THER 400.0 0.1412 58.1 -23.0 43.4 6.0 KAN099C THER 450.0 0.1285 60.6 -19.7 44.4 9.9 KAN099D INIT 0.0 0.1448 45.0 -9.3 27.8 6.6 KAN099D THER 400.0 0.0705 41.8 -9.5 25.0 4.9 KAN099D THER 450.0 0.0659 42.1 -7.9 24.7 6.2 KAN100 583.0 24.0 10.6 I KAN100A INIT 0.0 0.1651 44.8 -1.6 25.3 12.0 KAN100A THER 400.0 0.1308 44.8 -2.2 25.5 11.6 KAN100A THER 450.0 0.1219 42.9 -2.1 23.7 10.9 KAN100B INIT 0.0 0.1558 36.9 0.7 17.3 10.6 KAN100B THER 400.0 0.1012 38.4 -3.4 19.9 8.0 KAN100B THER 450.0 0.0946 40.0 -5.8 22.2 6.8 KAN100C INIT 0.0 0.1581 47.2 -4.8 28.4 10.9 KAN100C THER 400.0 0.1150 45.8 -0.9 26.1 13.0 KAN100C THER 450.0 0.1078 47.1 1.0 26.8 14.9 KAN100D INIT 0.0 0.1548 47.8 -0.7 27.8 14.0 KAN100D THER 400.0 0.1223 43.6 2.0 23.2 14.2 KAN100D THER 450.0 0.1092 42.0 -2.9 23.1 9.9 KAN100E INIT 0.0 0.1596 35.7 2.4 15.7 11.4 KAN100E THER 400.0 0.1273 34.7 2.1 14.9 10.8 KAN100E THER 450.0 0.1203 33.8 2.6 13.9 10.9 KAN 101 608.0 40.0 12.5 I KAN101A INIT 0.0 0.3028 48.6 -2.1 28.9 13.4 KAN101A THER 400.0 0.1513 47.1 -5.3 28.4 10.4 KAN101A THER 450.0 0.1389 47.0 -4.4 28.1 11.1 KAN101B INIT 0.0 0.2239 57.6 -9.8 39.0 13.4 KAN101B THER 400.0 0.1421 56.5 -8.2 37.7 13.7 KAN101B THER 450.0 0.1261 57.3 -8.2 38.4 14.2 KAN101C INIT 0.0 0.2192 61.6 -20.4 45.4 10.4 KAN101C THER 400.0 0.1310 63.8 -15.9 45.9 14.7 KAN101C THER 450.0 0.1189 64.8 -16.8 46.9 15.1 KAN101D INIT 0.0 0.1998 64.9 -44.7 55.3 1.9 KAN101D THER 400.0 0.1192 64.2 -22.5 48.0 11.7 KAN101D THER 450.0 0.1056 68.6 -22.6 51.3 16.2 KAN102 631.0 27.7 11.6 I KAN102A INIT 0.0 0.2200 42.9 -5.5 24.7 8.3 KAN102A THER 400.0 0.1326 45.7 -1.8 26.2 12.3 KAN102A THER 450.0 0.1274 45.4 -1.5 25.8 12.4 KAN102B INIT 0.0 0.1520 41.4 -10.7 25.0 3.8 KAN102B THER 400.0 0.0860 39.7 -4.8 21.6 7.5 KAN102B THER 450.0 0.0705 39.3 -10.5 23.0 2.9 KAN102C INIT 0.0 0.1793 44.2 -4.8 25.7 9.5 KAN102C THER 400.0 0.1115 44.6 -2.8 25.4 11.1 KAN102C THER 450.0 0.0956 45.6 -11.5 29.0 5.3 KAN102D INIT 0.0 0.1656 55.3 -1.1 34.8 17.4 KAN102D THER 400.0 0.1039 57.3 -5.0 37.6 16.1 KAN102D THER 450.0 0.0950 55.8 -8.9 37.3 12.8 85 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN103 676.0 28.8 -0.4 1 KAN103A INIT 0.0 0.1606 41.8 -20.4 28.7 -3.2 KAN103A THER 400.0 0.1147 41.6 -24.1 29.9 -6.0 KAN103A THER 450.0 0.1020 45.1 -22.0 32.2 -2.4 KAN103B INIT 0.0 0.1596 49.3 -23.8 36.4 -1.0 KAN103B THER 400.0 0.1148 47.4 -24.3 34.9 -2.6 KAN103B THER 450.0 0.1005 45.8 -23.5 33.3 -3.1 KAN103C INIT 0.0 0.2980 46.1 -17.0 31.3 1.7 KAN103C THER 400.0 0.2319 44.5 -15.6 29.4 1.8 KAN103C THER 450.0 0.1971 45.9 -13.2 29.8 4.3 KAN103D INIT 0.0 0.9063 37.5 -13.6 22.5 -0.3 KAN103D THER 400.0 0.7922 35.2 -12.1 19.9 -0.1 KAN103D THER 450.0 0.6929 34.9 -12.3 19.6 -0.5 KAN024 714.0 34.1 10.6 I KAN024A INIT 0.0 0.6385 53.3 -20.0 34.0 12.4 KAN024A THER 400.0 0.3969 53.1 -21.4 34.4 11.5 KAN024A THER 450.0 0.3659 53.7 -20.6 34.5 12.4 KAN024B INIT 0.0 0.5652 51.3 -19.5 32.4 11.0 KAN024B THER 400.0 0.3518 51.5 -22.2 33.7 9.7 KAN024B THER 450.0 0.3175 52.3 -21.0 33.8 11.0 KAN024C INIT 0.0 0.6265 52.6 -19.5 33.3 12.1 KAN024C THER 400.0 0.3813 52.5 -19.3 33.1 12.0 KAN024C THER 450.0 0.3641 52.5 -19.1 33.1 12.1 KAN024D INIT 0.0 0.7320 50.2 -20.7 32.1 9.4 KAN024D THER 400.0 0.4555 49.5 -20.4 31.5 9.0 KAN024D THER 450.0 0.4334 48.6 -20.9 31.0 8.0 KAN024E INIT 0.0 0.6110 53.3 -20.3 34.2 12.2 KAN024E THER 400.0 0.3764 52.4 -24.4 35.3 9.3 KAN024E THER 450.0 0.3691 51.9 -24.8 35.2 8.7 KAN025 738.5 39.2 20.3 I KAN025A INIT 0.0 0.1873 60.7 -8.4 35.1 24.1 KAN025A THER 400.0 0.1590 61.1 -17.6 38.5 20.5 KAN025A THER 450.0 0.1502 61.1 -17.4 38.4 20.6 KAN025B INIT 0.0 0.1627 57.9 -6.6 32.3 22.7 KAN025B THER 400.0 0.1366 60.5 -14.2 36.9 21.4 KAN025B THER 450.0 0.1352 60.5 -12.1 36.1 22.3 KAN025C INIT 0.0 0.1319 65.5 -30.2 45.6 20.7 KAN025C THER 400.0 0.1210 63.6 -21.1 41.3 21.6 KAN025C THER 450.0 0.1149 64.7 -19.4 41.4 23.4 KAN025D INIT 0.0 0.1219 59.0 -31.5 42.6 12.7 KAN025D THER 400.0 0.1051 60.5 -23.0 40.0 17.6 KAN025D THER 450.0 0.1042 59.8 -23.0 39.6 17.0 KAN026 751.5 29.7 3.6 1 KAN026A INIT 0.0 0.0806 33.2 -56.6 39.7 -28.4 KAN026A THER 400.0 0.0535 41.5 -43.9 37.9 -11.7 KAN026A THER 450.0 0.0530 43.2 -43.5 38.8 -9.9 KAN026B INIT 0.0 0.0967 47.7 -41.0 40.3 -3.9 KAN026B THER 400.0 0.0514 42.0 -9.7 20.9 10.1 KAN026B THER 450.0 0.0510 45.8 -8.8 23.6 13.1 KAN026C INIT 0.0 0.0901 45.8 -46.0 41.9 -8.7 KAN026C THER 400.0 0.0513 44.2 -21.0 27.9 4.6 KAN026C THER 450.0 0.0498 42.8 -15.9 24.4 6.7 KAN026D INIT 0.0 0.1031 40.3 -14.0 21.5 6.1 KAN026D THER 400.0 0.0638 49.3 -19.4 30.8 9.4 KAN026D THER 450.0 0.0617 50.3 -21.4 32.5 9.1 86 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN027 778.5 19.9 13.7 1 KAN027A INIT 0.0 0.2938 48.6 -15.2 28.5 11.2 KAN027A THER 400.0 0.2611 49.1 -11.9 27.5 13.5 KAN027A THER 450.0 0.2601 48.4 -12.5 27.2 12.6 KAN027B INIT 0.0 0.3096 45.2 -13.5 25.2 9.8 KAN027B THER 400.0 0.2767 45.6 -11.8 24.7 11.1 KAN027B THER 450.0 0.2756 45.2 -11.8 24.4 10.8 KAN027C INIT 0.0 0.2545 40.7 -5.0 17.9 12.3 KAN027C THER 400.0 0.2298 41.2 -1.9 17.0 14.7 KAN027C THER 450.0 0.2309 40.5 -1.7 16.3 14.3 KAN027D INIT 0.0 0.3387 36.7 1.9 11.6 14.8 KAN027D THER 400.0 0.3052 36.0 3.1 10.5 15.3 KAN027D THER 450.0 0.3059 36.2 3.7 10.4 15.8 KAN028 817.0 20.8 67.0 II KAN028A INIT 0.0 0.1000 38.3 -6.8 19.1 10.7 KAN028A THER 400.0 0.0748 39.8 20.8 9.9 30.7 KAN028A THER 450.0 0.0604 32.8 20.3 3.7 27.7 KAN028B INIT 0.0 0.0835 47.4 -47.5 46.2 -7.1 KAN028B THER 400.0 0.0364 62.3 162.4 50.4 106.6 KAN028B THER 450.0 0.0320 84.6 -101.6 59.1 57.9 KAN028C INIT 0.0 0.1006 41.7 -10.1 23.3 10.7 KAN028C THER 400.0 0.0809 52.7 27.1 20.3 39.9 KAN028C THER 450.0 0.0665 50.3 9.4 22.9 28.1 KAN028D INIT 0.0 0.0713 15.3 36.4 -17.6 36.1 KAN028D THER 400.0 0.0519 15.1 106.0 -10.9 105.1 KAN028D THER 450.0 0.0483 27.0 130.3 10.5 119.0 KAN 104 818.0 -11.0 -25.4 1 KAN104A INIT 0.0 0.6653 0.7 -18.9 -5.3 -20.4 KAN104A THER 400.0 0.5704 -4.0 -21.4 -7.7 -25.2 KAN104A THER 450.0 0.5594 -4.4 -21.1 -8.2 -25.2 KAN104A THER 500.0 0.5264 -3.6 -21.1 -7.6 -24.7 KAN104B INIT 0.0 0.6827 -7.9 -17.0 -13.4 -23.9 KAN104B THER 400.0 0.5964 -9.1 -19.3 -13.1 -26.5 KAN104B THER 450.0 0.5818 -9.0 -19.9 -12.6 -27.0 KAN104B THER 500.0 0.5425 -9.0 -19.7 -12.7 -26.8 KAN104C INIT 0.0 0.5020 1.4 -20.2 -4.0 -21.0 KAN104C THER 400.0 0.4467 1.0 -20.3 -4.3 -21.3 KAN104C THER 450.0 0.4326 0.4 -20.9 -4.4 -22.2 KAN104C THER 500.0 0.4028 -0.8 -22.4 -4.5 -24.1 KAN104D INIT 0.0 0.7417 -4.0 -17.0 -10.3 -21.6 KAN104D THER 400.0 0.6645 -5.9 -18.8 -10.7 -24.2 KAN104D THER 450.0 0.6454 -6.4 -20.1 -10.4 -25.6 KAN104D THER 500.0 0.6027 -6.0 -18.8 -10.8 -24.3 KAN104E INIT 0.0 0.6731 -7.0 -16.0 -13.3 -22.5 KAN104E THER 400.0 0.5989 -7.9 -17.9 -12.9 -24.7 KAN104E THER 450.0 0.5851 -9.2 -16.7 -14.6 -24.5 KAN104E THER 500.0 0.5461 -8.6 -19.0 -12.8 -26.0 KAN029 832.0 -20.8 -170.7 1 KAN029A INIT 0.0 0.0419 -34.2 -159.9 -5.0 -152.0 KAN029A THER 100.0 0.0594 -33.5 165.5 -18.9 -177.5 KAN029A THER 200.0 0.0721 -33.9 167.8 -18.1 -175.7 KAN029A THER 300.0 0.0740 -36.0 166.6 -20.4 -175.2 KAN029A THER 400.0 0.0764 -36.3 171.4 -18.3 -171.7 KAN029A THER 450.0 0.0809 -34.3 168.3 -18.1 -175.1 KAN029A THER 500.0 0.0798 -34.3 172.2 -16.3 -172.3 KAN029A THER 525.0 0.0762 -32.8 176.2 -13.2 -170.4 KAN029A THER 550.0 0.0736 -30.2 173.7 -12.2 -173.7 87 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN029A THER 575.0 0.0749 -38.6 175.4 -18.3 -167.6 KAN029A THER 600.0 0.0727 -29.7 171.4 -12.9 -175.7 KAN029A THER 625.0 0.0592 -29.7 170.4 -13.4 -176.4 KAN029A THER 650.0 0.0246 35.2 -169.8 50.3 158.0 KAN029B INIT 0.0 0.0781 -41.9 -147.1 -8.9 -139.8 KAN029B THER 100.0 0.0854 -43.5 -176.3 -19.1 -159.2 KAN029B THER 200.0 0.0927 -43.2 179.7 -20.4 -162.0 KAN029B THER 300.0 0.0982 -42.8 174.1 -22.3 -165.9 KAN029B THER 400.0 0.0973 -46.2 173.5 -25.4 -164.1 KAN029B THER 450.0 0.1004 -43.4 173.1 -23.3 -166.1 KAN029B THER 500.0 0.0886 -44.2 175.6 -22.8 -164.0 KAN029B THER 525.0 0.0921 -41.2 -178.1 -17.8 -161.7 KAN029B THER 550.0 0.0862 -39.9 175.8 -19.2 -166.6 KAN029B THER 575.0 0.0942 -38.6 173.1 -19.4 -169.1 KAN029B THER 600.0 0.0812 -42.9 168.6 -24.9 -169.3 KAN029B THER 625.0 0.0616 -48.2 164.1 -31.0 -168.2 KAN029B THER 650.0 0.0395 -52.1 -173.4 -25.4 -152.5 KAN029C INIT 0.0 0.0271 -39.7 -179.3 -17.0 -163.3 KAN029C THER 200.0 0.0581 -47.7 164.9 -30.2 -168.1 KAN029C THER 250.0 0.0643 -49.2 167.4 -30.3 -165.5 KAN029C THER 300.0 0.0638 -49.0 177.2 -26.1 -160.0 KAN029D INIT 0.0 0.0281 -22.6 -153.9 7.7 -151.2 KAN029D THER 200.0 0.0539 -30.1 164.7 -16.6 179.7 KAN029D THER 250.0 0.0580 -32.1 164.5 -18.3 -179.2 KAN029D THER 300.0 0.0597 -29.2 169.6 -13.3 -177.3 KAN 105 832.0 -35.6 -171.5 I KAN105A INIT 0.0 0.1284 -40.5 157.9 -28.1 -177.8 KAN105A THER 400.0 0.1498 -39.2 156.8 -27.7 -179.5 KAN105A THER 450.0 0.1514 -41.2 157.0 -29.2 -177.9 KAN105A THER 500.0 0.1471 -42.2 157.1 -29.8 -177.1 KAN105B INIT 0.0 0.1919 -42.6 153.1 -32.2 -179.3 KAN105B THER 400.0 0.2153 -45.1 149.9 -35.5 -179.1 KAN105B THER 450.0 0.2187 -43.2 151.8 -33.2 -179.6 KAN105B THER 500.0 0.2118 -43.2 151.6 -33.3 -179.7 KAN105C INIT 0.0 0.1139 -49.9 158.0 -35.0 -170.3 KAN105C THER 400.0 0.1375 -53.6 155.0 -38.8 -168.5 KAN105C THER 450.0 0.1370 -48.4 155.4 -35.1 -173.0 KAN105C THER 500.0 0.1351 -53.1 155.2 -38.4 -168.8 KAN105D INIT 0.0 0.0831 -65.5 168.2 -41.6 -151.0 KAN105D THER 400.0 0.1036 -64.8 162.9 -42.9 -153.7 KAN105D THER 450.0 0.1064 -61.1 163.8 -40.2 -157.1 KAN105D THER 500.0 0.1029 -59.8 162.4 -39.8 -159.0 KAN105E INIT 0.0 0.0588 -78.5 123.4 -57.9 -138.4 KAN105E THER 400.0 0.0753 -76.8 112.9 -60.5 -140.5 KAN105E THER 450.0 0.0715 -77.2 125.4 -57.7 -141.0 KAN105E THER 500.0 0.0707 -79.5 112.9 -59.5 -135.3 KAN030 872.0 31.5 10.0 I KAN030A INIT 0.0 0.1922 46.2 -25.2 33.8 4.7 KAN030A THER 400.0 0.1435 49.2 -31.1 38.8 4.2 KAN030A THER 450.0 0.1446 54.8 -29.5 41.6 10.6 KAN030B INIT 0.0 0.2574 28.8 -23.7 20.0 -7.2 KAN030B THER 400.0 0.1398 30.3 -19.1 18.7 -2.9 KAN030B THER 450.0 0.1425 29.8 -11.6 14.5 2.3 KAN030C INIT 0.0 0.1616 50.7 5.2 24.6 25.8 KAN030C THER 400.0 0.0780 58.8 2.3 32.2 29.4 KAN030C THER 450.0 0.0876 61.4 13.7 31.3 36.7 KAN030D INIT 0.0 0.2116 50.4 1.5 25.7 23.5 88 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN030D THER 400.0 0.1102 49.6 -20.0 33.8 10.6 KAN030D THER 450.0 0.1098 52.2 -23.6 37.2 10.9 KAN031 883.0 33.5 8.9 I KAN031A INIT 0.0 0.1701 48.9 -20.2 28.6 8.6 KAN031A THER 400.0 0.0644 46.4 -41.7 37.8 -5.2 KAN031A THER 450.0 0.0684 52.1 -47.1 44.0 -1.5 KAN031B INIT 0.0 0.1452 51.9 -23.7 32.4 9.2 KAN031B THER 400.0 0.0403 52.7 -11.3 27.7 16.2 KAN031B THER 450.0 0.0493 50.3 -20.9 30.0 9.3 KAN031C INIT 0.0 0.1208 62.5 -20.9 38.2 20.2 KAN031C THER 400.0 0.0427 50.7 -27.4 33.3 6.3 KAN031C THER 450.0 0.0487 55.5 -19.8 33.2 14.2 KAN031D INIT 0.0 0.0859 57.0 -1.3 27.5 24.3 KAN031D THER 400.0 0.0252 57.8 -17.6 33.9 17.2 KAN031D THER 450.0 0.0304 69.1 -34.5 46.4 23.9 KAN032 907.0 31.4 6.1 I KAN032A INIT 0.0 0.2143 52.9 -3.2 24.9 20.6 KAN032A THER 400.0 0.1068 56.5 1.5 26.2 25.4 KAN032A THER 450.0 0.1051 57.0 -4.7 28.7 22.6 KAN032B INIT 0.0 0.1650 53.2 -31.4 36.8 6.7 KAN032B THER 400.0 0.0759 47.5 -35.2 35.1 -0.7 KAN032B THER 450.0 0.0730 50.3 -38.5 38.5 0.5 KAN032C INIT 0.0 0.0895 56.7 -6.3 28.9 21.6 KAN032C THER 400.0 0.0501 40.6 -24.4 24.6 -0.2 KAN032C THER 450.0 0.0490 42.5 -24.4 26.1 1.2 KAN032D INIT 0.0 0.1635 57.4 -14.6 32.4 18.2 KAN032D THER 400.0 0.0899 45.8 -28.7 30.6 1.4 KAN032D THER 450.0 0.0889 44.9 -30.2 30.7 -0.2 KAN033 926.0 16.7 23.9 I KAN033A INIT 0.0 0.4741 47.6 14.0 14.7 27.8 KAN033A THER 400.0 0.3849 48.1 16.0 14.5 29.3 KAN033A THER 450.0 0.3643 48.4 15.1 15.1 28.8 KAN033B INIT 0.0 0.3170 50.6 -1.2 22.3 20.3 KAN033B THER 400.0 0.2417 48.2 -1.6 20.4 18.5 KAN033B THER 450.0 0.2167 49.5 2.0 20.2 21.4 KAN033C INIT 0.0 0.4287 46.8 6.1 16.4 22.4 KAN033C THER 400.0 0.3304 46.3 5.3 16.3 21.7 KAN033C THER 450.0 0.3033 45.8 6.0 15.6 21.9 KAN033D INIT 0.0 0.3796 50.5 5.6 19.8 24.1 KAN033D THER 400.0 0.2946 50.7 4.9 20.3 23.8 KAN033D THER 450.0 0.2584 46.5 7.7 15.7 23.3 KAN 106 988.0 23.7 13.9 I KAN106A INIT 0.0 0.1116 34.6 -18.7 22.4 -2.0 KAN106A THER 400.0 0.0789 66.2 -27.5 49.4 19.8 KAN106A THER 450.0 0.0742 66.7 -27.0 49.5 20.6 KAN106A THER 500.0 0.0686 69.8 -34.3 53.4 22.6 KAN106B INIT 0.0 0.1320 39.4 -2.1 19.5 12.7 KAN106B THER 400.0 0.0681 28.7 5.1 7.3 13.2 KAN106B THER 450.0 0.0613 26.9 6.8 5.0 13.8 KAN106B THER 500.0 0.0603 26.6 5.8 5.2 12.8 KAN106C INIT 0.0 0.1190 38.7 -12.3 23.0 5.1 KAN106C THER 400.0 0.0931 32.1 -11.2 16.9 2.2 KAN106C THER 450.0 0.0904 31.0 -9.5 15.3 2.8 KAN106C THER 500.0 0.0824 29.0 -10.8 14.1 0.8 KAN106D INIT 0.0 0.1478 46.8 -4.1 26.7 15.4 KAN106D THER 400.0 0.1058 45.0 7.7 21.1 22.3 89 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN106D THER 450.0 0.0995 42.9 10.3 18.4 23.2 KAN106D THER 500.0 0.0939 42.2 12.4 17.2 24.4 KAN 107 988.0 21.9 5.6 1 KAN107A INIT 0.0 0.1313 33.5 -17.4 20.9 -1.7 KAN107A THER 400.0 0.1095 31.0 -16.8 18.5 -2.7 KAN107A THER 450.0 0.1060 29.4 -15.1 16.4 -2.4 KAN107A THER 500.0 0.0986 31.0 -13.0 16.8 0.1 KAN107B INIT 0.0 0.1442 42.9 -10.6 25.9 8.8 KAN107B THER 400.0 0.1118 42.2 -8.3 24.3 9.9 KAN107B THER 450.0 0.1072 42.6 -4.1 23.1 13.0 KAN107B THER 500.0 0.0965 41.4 -9.0 23.9 8.9 KAN107C INIT 0.0 0.2111 36.8 -12.6 21.5 3.7 KAN107C THER 400.0 0.1697 34.4 -10.1 18.4 4.2 KAN107C THER 450.0 0.1666 34.6 -9.8 18.5 4.6 KAN107C THER 500.0 0.1617 35.8 -7.8 18.7 6.7 KAN107D INIT 0.0 0.1805 44.7 -15.1 29.1 6.8 KAN107D THER 400.0 0.1334 43.3 -14.6 27.8 6.3 KAN107D THER 450.0 0.1380 44.1 -13.3 27.9 7.7 KAN107D THER 500.0 0.1249 43.7 -14.0 27.9 6.9 KAN034 1018.5 13.7 26.5 II KAN034A INIT 0.0 0.0437 62.4 -14.5 42.7 21.0 KAN034A THER 200.0 0.0317 64.8 -26.6 48.3 18.5 KAN034A THER 250.0 0.0494 58.5 -6.9 37.3 21.5 KAN034A THER 300.0 0.0276 66.4 -38.1 53.1 16.5 KAN034B INIT 0.0 0.0240 29.7 32.8 0.3 36.3 KAN034B THER 200.0 0.0150 -8.4 41.3 -38.8 36.7 KAN034B THER 250.0 0.0138 -14.3 48.1 -45.7 44.2 KAN034B THER 300.0 0.0211 -27.4 51.0 -59.0 45.9 KAN034C INIT 0.0 0.0307 45.7 -7.2 26.9 12.8 KAN034C THER 200.0 0.0200 39.0 -7.7 21.3 8.5 KAN034C THER 250.0 0.0144 46.0 -51.2 47.0 -16.0 KAN034C THER 300.0 0.0148 42.9 64.5 11.1 62.9 KAN034D INIT 0.0 0.0465 49.9 42.9 18.6 47.8 KAN034D THER 200.0 0.0281 48.0 33.7 17.9 41.2 KAN034D THER 250.0 0.0303 44.8 39.9 13.9 44.8 KAN034D THER 300.0 0.0319 34.4 43.9 3.1 46.4 KAN035 1037.0 16.7 22.5 1 KAN035A INIT 0.0 0.1822 47.2 21.6 19.4 32.7 KAN035A THER 400.0 0.1204 50.7 10.1 25.6 26.6 KAN035A THER 450.0 0.1071 47.0 12.2 21.6 26.3 KAN035B INIT 0.0 0.2162 42.7 17.0 16.4 27.9 KAN035B THER 400.0 0.1659 36.0 7.8 12.9 18.4 KAN035B THER 450.0 0.1486 34.0 11.4 9.9 20.3 KAN035C INIT 0.0 0.2078 44.0 21.8 16.4 31.7 KAN035C THER 400.0 0.1418 39.6 12.7 14.7 23.5 KAN035C THER 450.0 0.1310 38.6 13.2 13.6 23.5 KAN035D INIT 0.0 0.1762 47.7 3.5 24.8 20.8 KAN035D THER 400.0 0.1110 43.1 3.3 20.8 18.4 KAN035D THER 450.0 0.1044 44.6 4.5 21.7 20.0 KAN036 1057.0 29.1 8.9 1 KAN036A INIT 0.0 0.0647 30.7 3.5 9.7 12.8 KAN036A THER 400.0 0.0247 40.4 7.7 17.0 20.2 KAN036A THER 450.0 0.0249 45.7 3.8 23.0 20.0 KAN036B INIT 0.0 0.0516 20.3 6.7 -1.0 10.9 KAN036B THER 400.0 0.0189 55.6 -26.7 42.2 8.5 KAN036B THER 450.0 0.0185 44.3 -33.1 36.8 -5.4 90 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN036C INIT 0.0 0.0833 42.3 9.7 18.1 22.5 KAN036C THER 400.0 0.0460 48.4 1.0 26.3 19.6 KAN036C THER 450.0 0.0438 46.5 -3.3 26.1 15.8 KAN036D INIT 0.0 0.0657 42.7 40.0 11.8 44.6 KAN036D THER 400.0 0.0257 53.6 33.4 23.3 42.4 KAN036D THER 450.0 0.0261 46.7 31.2 17.0 39.1 KAN036E INIT 0.0 0.0525 53.2 14.7 26.6 30.7 KAN036E THER 400.0 0.0256 45.1 -23.9 33.3 1.3 KAN036E THER 450.0 0.0262 42.7 -18.5 28.9 3.3 KAN037 1088.0 -35.5 -121.0 II KAN037A INIT 0.0 0.0413 54.5 -128.9 74.1 -137.9 KAN037A THER 200.0 0.0190 -24.4 -80.5 -8.7 -84.2 KAN037A THER 250.0 0.0167 -28.3 -75.9 -13.4 -81.1 KAN037A THER 300.0 0.0160 -36.4 -82.3 -20.0 -88.6 KAN037B INIT 0.0 0.0086 -14.4 104.0 -27.9 109.8 KAN037B THER 200.0 0.0222 -74.7 93.4 -78.8 -170.8 KAN037B THER 250.0 0.0203 -75.4 105.3 -75.7 -168.3 KAN037B THER 300.0 0.0189 -79.6 109.1 -74.6 -152.4 KAN037C INIT 0.0 0.0712 30.1 -172.3 41.0 175.5 KAN037C THER 200.0 0.0294 -43.4 -156.4 -26.3 -149.0 KAN037C THER 250.0 0.0310 -57.4 -157.5 -40.0 -145.8 KAN037C THER 300.0 0.0308 -56.5 -152.1 -38.4 -142.4 KAN037D INIT 0.0 0.0280 47.6 -137.9 66.1 -150.0 KAN037D THER 200.0 0.0111 -14.7 -128.4 5.1 -128.2 KAN037D THER 250.0 0.0106 -24.2 -120.8 -4.2 -120.8 KAN037D THER 300.0 0.0105 -21.7 -125.9 -1.8 -125.6 KAN038 1103.0 •36.3 -165.4 1 KAN038A INIT 0.0 0.0864 -42.7 151.2 -38.9 168.4 KAN038A THER 400.0 0.0922 -42.6 171.4 -32.7 -175.0 KAN038A THER 450.0 0.0857 -43.9 170.6 -34.1 -175.0 KAN038B INIT 0.0 0.1190 -37.5 144.3 -36.4 159.6 KAN038B THER 400.0 0.1014 -47.0 -175.7 -33.5 -162.9 KAN038B THER 450.0 0.0941 -47.5 -179.3 -34.9 -165.4 KAN038C INIT 0.0 0.1332 -39.3 138.1 -40.2 155.0 KAN038C THER 400.0 0.1009 -49.6 -174.0 -35.6 -160.5 KAN038C THER 450.0 0.0973 -50.5 -172.2 -36.0 -158.8 KAN038D INIT 0.0 0.1341 -41.5 116.3 -49.6 135.4 KAN038D THER 400.0 0.0825 -52.4 -179.5 -39.4 -163.4 KAN038D THER 450.0 0.0788 -52.7 -178.1 -39.4 -162.2 KAN039 1126.0 -7.1 -148.0 I KAN039A INIT 0.0 0.1736 -36.5 -148.1 -18.3 -143.7 KAN039A THER 400.0 0.1394 -25.2 -151.1 -7.6 -148.2 KAN039A THER 450.0 0.1369 -25.4 -153.6 -8.2 -150.4 KAN039B INIT 0.0 0.2193 -40.1 -146.2 -21.7 -141.5 KAN039B THER 100.0 0.1882 -27.8 -149.6 -10.0 -146.5 KAN039B THER 200.0 0.1958 -27.9 -152.4 -10.5 -148.9 KAN039B THER 300.0 0.1913 -27.3 -152.8 -9.9 -149.4 KAN039B THER 400.0 0.1811 -26.3 -153.6 -9.0 -150.3 KAN039B THER 450.0 0.1710 -27.0 -153.0 -9.7 -149.6 KAN039B THER 500.0 0.1716 -26.8 -153.8 -9.6 -150.4 KAN039B THER 525.0 0.1599 -26.6 -152.8 -9.2 -149.5 KAN039B THER 550.0 0.1608 -26.8 -155.3 -9.8 -151.7 KAN039B THER 575.0 0.1485 -26.6 -149.7 -8.8 -146.7 KAN039B THER 600.0 0.1522 -26.9 -158.2 -10.5 -154.2 KAN039B THER 625.0 0.1321 -23.5 -155.5 -6.7 -152.5 KAN039B THER 650.0 0.0753 -28.9 -163.7 -13.5 -158.7 KAN039C INIT 0.0 0.2100 -45.0 -153.5 -27.4 -146.3 91 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN039C THER 100.0 0.1552 -23.2 -147.9 -5.1 -145.6 KAN039C THER 200.0 0.1566 -23.9 -147.3 -5.8 -145.0 KAN039C THER 300.0 0.1475 -24.3 -149.5 -6.4 -147.0 KAN039C THER 400.0 0.1348 -21.2 -149.5 -3.4 -147.5 KAN039C THER 450.0 0.1296 -22.4 -146.1 -4.2 -144.2 KAN039C THER 500.0 0.1259 -24.5 -147.3 -6.3 -144.9 KAN039C THER 525.0 0.1190 -20.6 -147.1 -2.5 -145.3 KAN039C THER 550.0 0.1179 -22.3 -148.7 -4.4 -146.6 KAN039C THER 575.0 0.1173 -22.0 -144.1 -3.4 -142.4 KAN039C THER 600.0 0.1135 -24.4 -147.9 -6.3 -145.5 KAN039C THER 625.0 0.1047 -24.3 -145.7 -5.9 -143.5 KAN039C THER 650.0 0.0692 -21.3 -150.6 -3.7 -148.5 KAN039D INIT 0.0 0.2005 -46.4 -160.0 -29.8 -151.0 KAN039D THER 400.0 0.1585 -26.1 -148.6 -8.2 -145.9 KAN039D THER 450.0 0.1545 -26.8 -149.8 -8.9 -146.8 KAN040 1150.0 -37.8 -164.9 I KAN040A INIT 0.0 0.0877 -39.0 -95.5 -20.4 -101.1 KAN040A THER 400.0 0.0757 -43.5 -168.3 -26.8 -159.1 KAN040A THER 450.0 0.0686 -43.9 -171.1 -27.7 -161.2 KAN040B INIT 0.0 0.1019 -38.8 -145.9 -18.8 -142.2 KAN040B THER 400.0 0.0834 -42.2 -172.0 -26.3 -162.4 KAN040B THER 450.0 0.0714 -43.3 -173.7 -27.7 -163.4 KAN040C INIT 0.0 0.0688 -81.6 142.3 -67.7 -148.5 KAN040C THER 400.0 0.0604 -68.8 164.7 -55.5 -162.8 KAN040C THER 450.0 0.0567 -64.6 165.3 -52.0 -166.4 KAN040D INIT 0.0 0.0835 -62.5 132.1 -59.6 170.9 KAN040D THER 400.0 0.0834 -53.9 171.6 -41.0 -169.8 KAN040D THER 450.0 0.0779 -56.1 169.2 -43.6 -170.2 KAN041 1178.5 -30.4 -166.6 I KAN041A INIT 0.0 0.1006 -15.7 -155.3 2.7 -154.1 KAN041A THER 400.0 0.0413 -47.1 -155.8 -28.2 -148.6 KAN041A THER 450.0 0.0358 -45.8 -161.8 -27.8 -153.5 KAN041B INIT 0.0 0.1443 -44.5 180.0 -30.3 -167.9 KAN041B THER 400.0 0.0661 -35.6 166.5 -25.6 177.6 KAN041B THER 450.0 0.0560 -38.9 166.6 -28.6 179.1 KAN041C INIT 0.0 0.1919 -27.1 -142.5 -6.9 -140.7 KAN041C THER 400.0 0.0635 -37.6 174.5 -25.2 -174.9 KAN041C THER 450.0 0.0574 -42.3 173.9 -29.7 -173.6 KAN041D INIT 0.0 0.1557 -20.2 -166.9 -4.0 -164.0 KAN041D THER 400.0 0.0487 -47.6 -166.0 -30.3 -156.1 KAN041D THER 450.0 0.0417 -50.1 -170.0 -33.4 -158.2 KAN041E INIT 0.0 0.0960 -25.0 -178.2 -11.3 -172.9 KAN041E THER 400.0 0.0235 -53.0 159.4 -43.5 -179.1 KAN041E THER 450.0 0.0215 -60.3 179.2 -45.1 -161.1 KAN042 1217.0 -41.0 -161.5 I KAN042A INIT 0.0 0.0487 -3.9 137.1 -7.9 139.3 KAN042A THER 200.0 0.0497 -52.0 176.0 -39.4 -166.3 KAN042A THER 250.0 0.0509 -54.3 177.9 -41.1 -163.7 KAN042A THER 300.0 0.0494 -55.6 172.4 -43.6 -166.7 KAN042B INIT 0.0 0.0550 1.4 -151.5 19.3 -153.5 KAN042B THER 200.0 0.0332 -50.8 177.7 -37.9 -165.7 KAN042B THER 250.0 0.0339 -50.1 171.0 -39.1 -171.0 KAN042B THER 300.0 0.0345 -49.3 172.1 -38.1 -170.6 KAN042C INIT 0.0 0.0328 -67.0 32.5 -79.9 -32.0 KAN042C THER 200.0 0.0515 -47.8 -147.9 -28.5 -141.3 KAN042C THER 250.0 0.0505 -48.5 -146.3 -28.9 -139.9 KAN042C THER 300.0 0.0532 -47.9 -145.8 -28.3 -139.6 92 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN042D INIT 0.0 0.0296 -54.3 60.9 -75.3 63.3 KAN042D THER 200.0 0.0455 -44.0 -169.9 -28.6 -159.2 KAN042D THER 250.0 0.0448 -46.7 -164.7 -30.1 -154.2 KAN042D THER 300.0 0.0442 -45.8 -161.8 -28.7 -152.3 KAN042E INIT 0.0 0.0518 -44.9 41.9 -64.4 30.2 KAN042E THER 200.0 0.0367 -68.0 -178.6 -52.5 -152.3 KAN042E THER 250.0 0.0375 -67.0 174.2 -53.1 -157.1 KAN042E THER 300.0 0.0349 -65.4 -173.6 -49.3 -151.5 KAN043 1227.0 -4.7 -129.7 II KAN043A INIT 0.0 0.0413 62.5 145.5 54.9 112.2 KAN043A THER 100.0 0.0038 46.3 -153.8 62.0 -173.8 KAN043A THER 200.0 0.0036 -12.1 -117.0 8.8 -117.1 KAN043A THER 300.0 0.0067 -32.5 -94.6 -13.3 -98.3 KAN043A THER 400.0 0.0055 -47.5 -131.7 -26.8 -129.1 KAN043A THER 450.0 0.0078 -18.3 -133.2 2.3 -132.6 KAN043A THER 500.0 0.0053 -41.7 -116.2 -20.7 -117.1 KAN043A THER 525.0 0.0078 -36.9 -125.7 -15.9 -124.9 KAN043A THER 550.0 0.0052 -20.5 -161.9 -4.2 -158.9 KAN043A THER 575.0 0.0135 -25.9 -176.5 -13.0 -170.5 KAN043A THER 600.0 0.0045 -54.7 -125.0 -33.7 -123.8 KAN043A THER 625.0 0.0037 -57.1 109.1 -65.3 145.6 KAN043A THER 650.0 0.0054 8.0 131.8 1.4 130.1 KAN043B INIT 0.0 0.0664 58.0 147.8 52.0 118.3 KAN043B THER 100.0 0.0114 17.4 -177.8 27.8 174.5 KAN043B THER 200.0 0.0101 -11.4 -167.9 3.2 -166.8 KAN043B THER 300.0 0.0150 -19.8 -157.9 -2.7 -155.4 KAN043B THER 400.0 0.0137 -36.9 173.6 -26.1 -175.1 KAN043B THER 450.0 0.0147 -28.8 165.4 -21.1 174.6 KAN043B THER 500.0 0.0142 -16.7 169.5 -8.5 173.9 KAN043B THER 525.0 0.0131 -35.1 -170.4 -20.3 -162.4 KAN043B THER 550.0 0.0131 -35.4 174.8 -24.4 -174.7 KAN043B THER 575.0 0.0172 -32.4 -162.7 -15.9 -156.8 KAN043B THER 600.0 0.0085 -59.4 -174.0 -43.9 -155.4 KAN043B THER 625.0 0.0129 -69.3 157.0 -58.8 -163.6 KAN043B THER 650.0 0.0132 -52.0 103.6 -63.3 132.7 KAN043C INIT 0.0 0.0677 62.4 161.1 59.6 122.3 KAN043C THER 400.0 0.0157 -37.0 -147.7 -17.8 -143.1 KAN043C THER 450.0 0.0169 -40.6 -125.9 -19.6 -124.9 KAN043D INIT 0.0 0.0730 79.9 -42.0 68.6 30.8 KAN043D THER 400.0 0.0107 23.6 6.6 9.9 11.5 KAN043D THER 450.0 0.0062 35.4 -20.9 29.3 -8.0 KAN044 1247.0 25.3 17.9 I KAN044A INIT 0.0 0.2787 38.1 7.8 23.5 17.0 KAN044A THER 400.0 0.2204 38.2 9.1 23.3 18.1 KAN044A THER 450.0 0.2081 37.1 6.7 22.8 15.8 KAN044B INIT 0.0 0.1097 58.1 31.5 38.6 40.8 KAN044B THER 400.0 0.0775 44.1 20.0 26.7 28.6 KAN044B THER 450.0 0.0728 39.0 19.0 22.0 26.4 KAN044C INIT 0.0 0.1057 41.9 3.9 28.1 15.2 KAN044C THER 400.0 0.0674 32.5 3.2 19.4 11.3 KAN044C THER 450.0 0.0632 31.2 1.8 18.5 9.7 KAN044D INIT 0.0 0.1840 46.5 9.3 31.1 21.2 KAN044D THER 400.0 0.1329 44.4 0.8 31.2 13.8 KAN044D THER 450.0 0.1293 44.9 -0.2 32.0 13.2 KAN045 1270.0 36.5 -1.8 I KAN045A INIT 0.0 0.0431 70.1 73.0 49.4 66.3 KAN045A THER 400.0 0.0147 39.9 21.2 22.4 28.4 93 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN045A THER 450.0 0.0106 37.9 16.9 21.3 24.4 KAN045B INIT 0.0 0.0413 71.4 24.7 52.2 41.9 KAN045B THER 400.0 0.0146 49.1 -5.9 37.3 10.8 KAN045B THER 450.0 0.0125 45.5 5.2 31.2 17.6 KAN045C INIT 0.0 0.0499 75.8 -21.7 63.0 26.8 KAN045C THER 400.0 0.0199 39.9 -45.7 41.9 -27.4 KAN045C THER 450.0 0.0164 37.3 -52.4 42.1 -35.2 KAN045D INIT 0.0 0.0463 78.3 96.5 58.9 72.9 KAN045D THER 400.0 0.0158 34.5 -39.3 34.8 -24.6 KAN045D THER 450.0 0.0161 26.4 -27.2 23.2 -17.5 KAN046 1283.0 38.8 8.4 1 KAN046A INIT 0.0 0.1039 67.8 -19.3 56.8 16.5 KAN046A THER 400.0 0.0686 48.4 -5.4 36.5 10.8 KAN046A THER 450.0 0.0650 48.0 -3.8 35.8 11.8 KAN046B INIT 0.0 0.0918 71.4 -72.3 73.8 0.0 KAN046B THER 400.0 0.0483 53.4 -27.6 47.5 -2.7 KAN046B THER 450.0 0.0439 49.0 -27.7 43.7 -6.0 KAN046C INIT 0.0 0.0861 65.1 -19.7 54.9 13.3 KAN046C THER 400.0 0.0570 47.8 -0.4 34.6 14.3 KAN046C THER 450.0 0.0523 49.9 -1.8 36.9 14.3 KAN046D INIT 0.0 0.0632 69.1 -25.8 59.4 14.8 KAN046D THER 400.0 0.0440 47.3 -6.8 35.9 9.2 KAN046D THER 450.0 0.0459 46.7 1.0 33.3 14.9 KAN047 1300.0 -48.4 -86.1 II KAN047A INIT 0.0 0.0650 36.0 11.2 20.8 19.1 KAN047A THER 200.0 0.0211 9.7 -11.4 2.2 -9.3 KAN047A THER 250.0 0.0197 12.1 -18.3 6.8 -14.8 KAN047A THER 300.0 0.0201 7.0 -16.8 1.5 -15.3 KAN047B INIT 0.0 0.0287 28.1 128.6 19.3 120.2 KAN047B THER 200.0 0.0277 -69.6 125.8 -67.5 -178.1 KAN047B THER 250.0 0.0266 -74.7 140.9 -66.0 -161.0 KAN047B THER 300.0 0.0261 -75.0 113.9 -72.8 -166.6 KAN047C INIT 0.0 0.0435 75.8 -105.8 81.8 32.2 KAN047C THER 200.0 0.0159 -17.7 -94.4 1.2 -95.7 KAN047C THER 250.0 0.0162 -25.3 -96.9 -5.9 -99.2 KAN047C THER 300.0 0.0158 -25.7 -109.3 -5.1 -110.5 KAN047D INIT 0.0 0.0290 27.6 -72.3 40.0 -60.8 KAN047D THER 200.0 0.0284 -88.6 -7.9 -69.5 -117.3 KAN047D THER 250.0 0.0286 -86.5 -37.7 -68.3 -111.7 KAN047D THER 300.0 0.0295 -82.7 -105.7 -61.9 -116.9 KAN 108 1300.0 1.4 12.7 II KAN108A INIT 0.0 0.0755 43.8 -22.0 37.3 -4.7 KAN108A THER 400.0 0.0305 8.5 -11.7 1.2 -10.0 KAN108A THER 450.0 0.0240 13.0 6.5 -0.2 8.4 KAN108A THER 500.0 0.0280 7.0 -3.3 -2.9 -2.7 KAN108B INIT 0.0 0.0488 52.8 -19.7 44.5 2.7 KAN108B THER 400.0 0.0123 -1.3 28.3 -19.2 26.2 KAN108B THER 450.0 0.0086 -11.9 44.2 -32.2 41.8 KAN108B THER 500.0 0.0078 1.8 64.4 -19.1 64.7 KAN108C INIT 0.0 0.0465 77.2 -27.0 64.8 27.8 KAN108C THER 400.0 0.0108 37.6 -10.2 28.0 2.0 KAN108C THER 450.0 0.0118 37.1 -15.5 29.2 -2.6 KAN108C THER 500.0 0.0106 21.8 -11.3 13.6 -5.1 KAN108D INIT 0.0 0.0510 37.0 34.1 17.6 38.3 KAN108D THER 400.0 0.0081 14.4 31.0 -4.3 31.9 KAN108D THER 450.0 0.0050 18.6 18.2 2.3 20.7 KAN108D THER 500.0 0.0033 -19.1 -52.2 -10.5 -57.4 94 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN109 1324.0 •32.2 150.9 1 KAN109A INIT 0.0 0.1674 -24.7 143.1 -25.0 152.9 KAN109A THER 400.0 0.1803 -26.9 147.6 -25.5 158.1 KAN109A THER 450.0 0.1729 -24.9 149.1 -23.1 158.5 KAN109A THER 500.0 0.1532 -24.5 145.1 -24.1 154.7 KAN109B INIT 0.0 0.0193 43.4 56.3 22.5 56.8 KAN109B THER 400.0 0.0258 -33.4 140.0 -34.1 154.2 KAN109B THER 450.0 0.0292 -30.0 137.5 -31.9 150.2 KAN109B THER 500.0 0.0269 -31.7 137.5 -33.4 151.0 KAN109C INIT 0.0 0.2377 -36.4 135.6 -38.3 151.8 KAN109C THER 400.0 0.2364 -35.7 137.8 -37.0 153.4 KAN109C THER 450.0 0.2188 -35.9 137.2 -37.4 153.0 KAN109C THER 500.0 0.1959 -36.5 137.1 -37.9 153.3 KAN109D INIT 0.0 0.0168 -9.8 15.4 -24.5 10.7 KAN109D THER 400.0 0.0261 -40.1 114.2 -49.3 133.3 KAN109D THER 450.0 0.0271 -43.6 126.4 -48.0 147.9 KAN109D THER 500.0 0.0242 -29.0 131.6 -33.2 144.2 KAN048 1325.0 -5.9 141.8 II KAN048A INIT 0.0 0.0241 21.6 9.2 7.4 13.3 KAN048A THER 200.0 0.0075 22.3 76.8 2.2 75.5 KAN048A THER 250.0 0.0047 7.8 93.1 -9.6 93.3 KAN048A THER 300.0 0.0052 1.4 131.9 -4.8 132.5 KAN048B INIT 0.0 0.0399 -46.5 110.3 -56.2 134.2 KAN048B THER 200.0 0.0646 -49.2 126.3 -52.9 152.4 KAN048B THER 250.0 0.0675 -48.1 127.7 -51.5 152.7 KAN048B THER 300.0 0.0680 -50.1 134.0 -50.8 160.0 KAN048C INIT 0.0 0.0524 51.0 -24.5 44.4 -2.2 KAN048C THER 200.0 0.0185 79.0 11.9 60.5 42.6 KAN048C THER 250.0 0.0136 88.2 81.2 67.4 60.7 KAN048C THER 300.0 0.0103 68.1 174.9 67.6 120.7 KAN048D INIT 0.0 0.0171 53.2 140.9 45.8 117.4 KAN048D THER 200.0 0.0320 -15.3 136.3 -18.8 142.8 KAN048D THER 250.0 0.0356 -20.1 138.8 -22.4 147.0 KAN048D THER 300.0 0.0379 -19.4 140.2 -21.2 148.0 KAN110 1344.0 28.0 24.4 II KAN110A INIT 0.0 0.0510 67.9 -38.2 61.8 6.6 KAN110A THER 400.0 0.0344 62.9 -23.7 54.1 8.5 KAN110A THER 450.0 0.0242 45.4 -1.6 32.8 12.3 KAN110A THER 500.0 0.0143 53.1 51.1 32.2 53.4 KAN110B INIT 0.0 0.0396 70.3 -40.0 63.9 9.8 KAN110B THER 400.0 0.0147 37.0 83.9 17.6 79.6 KAN110B THER 450.0 0.0143 62.1 72.2 41.4 67.2 KAN110B THER 500.0 0.0134 68.9 115.8 53.1 89.2 KAN110C INIT 0.0 0.0506 20.5 -40.0 22.3 -31.7 KAN110C THER 400.0 0.0243 -0.8 -4.1 -10.1 -5.9 KAN110C THER 450.0 0.0217 13.6 2.5 1.5 4.9 KAN110C THER 500.0 0.0225 1.3 0.8 -9.7 -0.6 KAN110D INIT 0.0 0.0337 47.3 ■41.2 46.8 ■18.2 KAN110D THER 400.0 0.0107 ■82.1 172.5 ■64.8 ■138.3 KAN110D THER 450.0 0.0069 ■28.3 ■171.4 ■14.0 ■165.4 KAN110D THER 500.0 0.0063 -42.3 ■175.5 ■28.3 -164.1 KAN049 1346.0 26.7 •31.8 I KAN049A INIT 0.0 0.0806 47.3 0.7 33.9 14.9 KAN049A THER 400.0 0.0582 28.6 -39.3 29.5 -27.5 KAN049A THER 450.0 0.0538 28.1 -41.0 29.7 -29.3 KAN049B INIT 0.0 0.0612 34.2 -0.9 22.1 8.4 KAN049B THER 400.0 0.0492 18.4 -35.5 18.7 -28.4 95 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN049B THER 450.0 0.0442 19.4 -40.2 21.3 -32.3 KAN049C INIT 0.0 0.0941 48.5 31.7 29.2 38.6 KAN049C THER 400.0 0.0408 24.5 -38.5 25.4 -28.6 KAN049C THER 450.0 0.0386 25.6 -38.3 26.4 -27.9 KAN049D INIT 0.0 0.0703 53.4 -18.3 44.6 4.2 KAN049D THER 400.0 0.0528 24.0 -49.9 29.0 -39.6 KAN049D THER 450.0 0.0511 24.7 -48.1 29.1 -37.6 KAN050 1353.0 -31.8 -147.7 1 KAN050A INIT 0.0 0.4927 -57.4 -155.4 -35.6 -147.2 KAN050A THER 400.0 0.4814 -56.8 -157.5 -35.2 -148.8 KAN050A THER 450.0 0.4674 -57.0 -155.9 -35.3 -147.7 KAN050B INIT 0.0 0.2164 -63.4 -159.0 -41.8 -147.9 KAN050B THER 400.0 0.2204 -60.8 -159.0 -39.3 -148.6 KAN050B THER 450.0 0.2143 -60.0 -160.5 -38.7 -149.8 KAN050C INIT 0.0 0.2194 -59.3 -177.2 -40.6 -160.5 KAN050D INIT 0.0 0.4298 -47.2 -152.4 -25.3 -147.2 KAN050D THER 100.0 0.4489 -45.9 -150.7 -23.8 -146.1 KAN050D THER 200.0 0.4504 -46.7 -150.0 -24.5 -145.5 KAN050D THER 300.0 0.4467 -46.5 -149.8 -24.4 -145.3 KAN050D THER 400.0 0.4273 -47.2 -146.9 -24.8 -143.1 KAN050D THER 450.0 0.4157 -47.8 -149.1 -25.6 -144.6 KAN050D THER 500.0 0.3919 -45.2 -147.1 -22.8 -143.5 KAN050D THER 525.0 0.3855 -44.0 -146.5 -21.6 -143.1 KAN050D THER 550.0 0.3772 -46.4 -149.2 -24.1 -144.9 KAN050D THER 575.0 0.3714 -44.2 -147.7 -21.8 -144.1 KAN050D THER 600.0 0.3528 -44.6 -146.8 -22.2 -143.4 KAN050D THER 625.0 0.3505 -44.3 -147.3 -21.9 -143.8 KAN050D THER 650.0 0.3240 -42.3 -145.5 -19.8 -142.6 KAN050E INIT 0.0 0.5799 -50.3 -157.9 -28.9 -150.6 KAN050E THER 100.0 0.5970 -49.9 -156.4 -28.4 -149.6 KAN050E THER 200.0 0.5991 -49.7 -156.1 -28.2 -149.4 KAN050E THER 300.0 0.5877 -49.5 -155.2 -27.8 -148.8 KAN050E THER 400.0 0.5689 -51.1 -154.8 -29.3 -148.2 KAN050E THER 450.0 0.5511 -49.2 -155.3 -27.5 -148.9 KAN050E THER 500.0 0.5234 -49.4 -154.0 -27.6 -148.0 KAN050E THER 525.0 0.5158 -49.5 -154.6 -27.8 -148.4 KAN050E THER 550.0 0.5064 -49.9 -154.5 -28.1 -148.2 KAN050E THER 575.0 0.4994 -49.6 -154.0 -27.8 -147.9 KAN050E THER 600.0 0.4799 -49.8 -154.0 -28.0 -147.9 KAN050E THER 625.0 0.4647 -49.2 -155.0 -27.5 -148.7 KAN050E THER 650.0 0.4348 -47.5 -153.6 -25.7 -148.0 KAN051 1367.0 -26.4 -157.0 II KAN051A INIT 0.0 0.0362 -8.5 131.1 -15.5 136.5 KAN051A THER 200.0 0.0322 -22.0 162.1 -14.2 170.4 KAN051A THER 250.0 0.0326 -24.5 168.6 -13.8 177.0 KAN051A THER 300.0 0.0322 -25.7 167.6 -15.4 176.7 KAN051B INIT 0.0 0.0267 -48.7 177.1 -32.7 -164.7 KAN051B THER 200.0 0.0326 -43.8 -152.4 -20.6 -144.7 KAN051B THER 250.0 0.0121 -64.3 -170.0 -43.2 -147.7 KAN051B THER 300.0 0.0129 -57.3 -158.9 -34.7 -144.8 KAN051C INIT 0.0 0.0100 -5.0 -18.7 -9.8 -22.1 KAN051C THER 200.0 0.0140 -77.0 -103.5 -51.4 -114.7 KAN051C THER 250.0 0.0176 -72.4 -140.1 -47.0 -129.3 KAN051C THER 300.0 0.0187 -71.9 -138.8 -46.4 -128.9 KAN051D INIT 0.0 0.0310 -17.0 -167.6 1.5 -165.0 KAN051D THER 200.0 0.0306 -16.7 -155.1 5.2 -153.7 KAN051D THER 250.0 0.0304 -22.7 -162.3 -2.5 -158.5 KAN051D THER 300.0 0.0301 -23.3 -165.4 -3.9 -161.1 96 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN052 1377.0 -3.8 -132.7 II KAN052A INIT 0.0 0.0294 -29.3 -11.6 -34.5 -27.7 KAN052A THER 200.0 0.0195 -27.0 -82.1 -6.0 -86.8 KAN052A THER 250.0 0.0181 -35.5 -86.4 -13.2 -92.6 KAN052A THER 300.0 0.0173 -36.4 -91.9 -13.0 -97.3 KAN052B INIT 0.0 0.0388 -21.5 75.8 -46.0 81.8 KAN052B THER 200.0 0.0374 -36.6 -146.0 -12.5 -141.3 KAN052B THER 250.0 0.0439 -37.8 -155.9 -15.5 -149.0 KAN052B THER 300.0 0.0461 -36.2 -157.0 -14.2 -150.3 KAN052C INIT 0.0 0.0386 66.6 140.7 53.1 99.9 KAN052C THER 200.0 0.0263 22.5 -160.2 41.1 -171.8 KAN052C THER 250.0 0.0241 19.6 -165.0 36.8 -175.8 KAN052C THER 300.0 0.0257 9.2 -168.1 26.0 -174.6 KAN052D INIT 0.0 0.0503 26.4 153.3 25.4 140.4 KAN052D THER 200.0 0.0522 -8.6 179.8 5.0 -179.5 KAN052D THER 250.0 0.0517 -13.6 -177.3 1.4 -175.0 KAN052D THER 300.0 0.0541 -14.2 -177.9 0.7 -175.3 KAN052E INIT 0.0 0.0177 16.6 -44.1 20.6 -35.2 KAN052E THER 200.0 0.0203 -6.6 -115.9 19.3 -115.7 KAN052E THER 250.0 0.0152 -10.9 -115.7 15.0 -115.6 KAN052E THER 300.0 0.0162 -11.8 -108.3 13.5 -108.2 KAN053 1394.0 32.6 25.9 I KAN053A INIT 0.0 0.2342 52.1 6.4 33.1 23.4 KAN053A THER 400.0 0.1961 50.3 7.2 31.2 23.1 KAN053A THER 450.0 0.1742 48.7 8.3 29.4 23.1 KAN053B INIT 0.0 0.2586 56.1 10.6 35.7 28.1 KAN053B THER 400.0 0.2212 53.6 12.7 32.9 28.2 KAN053B THER 450.0 0.2004 53.6 11.2 33.3 27.3 KAN053C INIT 0.0 0.2675 53.4 0.2 35.9 20.0 KAN053C THER 400.0 0.2280 51.1 5.1 32.5 22.0 KAN053C THER 450.0 0.2071 52.0 5.5 33.3 22.7 KAN053D INIT 0.0 0.2250 57.2 12.6 36.3 29.9 KAN053D THER 400.0 0.1878 54.9 15.1 33.6 30.4 KAN053D THER 450.0 0.1691 55.1 15.7 33.7 30.8 KAN053E INIT 0.0 0.2331 51.2 26.3 28.0 36.4 KAN053E THER 400.0 0.1943 50.7 27.5 27.3 37.1 KAN053E THER 450.0 0.1739 50.8 29.5 27.1 38.6 KAN054 1422.0 20.4 34.2 1 KAN054A INIT 0.0 0.1657 34.9 50.9 9.1 52.2 KAN054A THER 100.0 0.1661 38.6 52.2 12.7 53.5 KAN054A THER 200.0 0.1630 36.9 54.4 11.0 55.3 KAN054A THER 300.0 0.1579 37.5 53.2 11.6 54.3 KAN054A THER 400.0 0.1533 38.6 53.2 12.7 54.4 KAN054A THER 450.0 0.1468 35.8 56.0 9.8 56.5 KAN054A THER 500.0 0.1380 36.2 54.7 10.3 55.5 KAN054A THER 525.0 0.1344 36.2 56.3 10.2 56.7 KAN054A THER 550.0 0.1362 34.7 54.9 8.7 55.6 KAN054A THER 575.0 0.1202 37.0 60.0 11.0 59.8 KAN054A THER 600.0 0.1238 36.2 56.4 10.2 56.9 KAN054A THER 625.0 0.1215 37.0 55.4 11.1 56.1 KAN054A THER 650.0 0.1136 33.8 53.7 7.9 54.5 KAN054B INIT 0.0 0.1833 44.0 22.9 21.7 31.9 KAN054B THER 100.0 0.1850 45.4 21.1 23.4 30.9 KAN054B THER 200.0 0.1759 45.3 21.6 23.2 31.3 KAN054B THER 300.0 0.1656 44.8 22.0 22.6 31.4 KAN054B THER 400.0 0.1592 43.9 21.7 21.8 30.9 KAN054B THER 450.0 0.1503 44.5 21.6 22.5 31.0 KAN054B THER 500.0 0.1442 43.5 19.8 21.9 29.4 97 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN054B THER 525.0 0.1366 42.8 19.8 21.2 29.2 KAN054B THER 550.0 0.1404 44.0 23.5 21.5 32.3 KAN054B THER 575.0 0.1195 44.8 24.1 22.2 33.0 KAN054B THER 600.0 0.1263 44.0 20.6 22.1 30.1 KAN054B THER 625.0 0.1240 44.0 23.4 21.6 32.3 KAN054B THER 650.0 0.1205 43.9 25.2 21.2 33.6 KAN054C INIT 0.0 0.1670 43.6 30.2 20.0 37.2 KAN054C THER 400.0 0.1528 42.0 25.1 19.3 32.9 KAN054C THER 450.0 0.1444 42.2 26.6 19.3 34.2 KAN054D INIT 0.0 0.1090 48.3 16.2 27.2 28.5 KAN054D THER 400.0 0.0967 42.5 8.8 23.6 20.8 KAN054D THER 450.0 0.0885 43.1 8.2 24.4 20.7 KAN054E INIT 0.0 0.1676 40.8 49.5 15.0 51.6 KAN054E THER 400.0 0.1506 41.1 49.2 15.4 51.4 KAN054E THER 450.0 0.1419 40.8 52.4 14.9 53.8 KAN055 1438.0 39.5 8.3 I KAN055A INIT 0.0 0.0260 51.5 -75.2 62.8 -39.0 KAN055A THER 200.0 0.0393 55.9 -49.6 55.3 -11.8 KAN055A THER 250.0 0.0391 59.5 -38.1 53.5 0.0 KAN055A THER 300.0 0.0349 54.6 -49.2 54.2 -13.1 KAN055B INIT 0.0 0.0526 58.7 -21.4 47.2 9.2 KAN055B THER 200.0 0.0579 51.5 -7.6 36.9 12.9 KAN055B THER 250.0 0.0574 50.8 -6.3 35.9 13.3 KAN055B THER 300.0 0.0536 50.3 -4.6 34.9 14.2 KAN055C INIT 0.0 0.0360 37.7 -38.0 36.1 -18.9 KAN055C THER 200.0 0.0393 44.4 -10.0 31.4 7.1 KAN055C THER 250.0 0.0378 45.9 -15.9 34.7 3.6 KAN055C THER 300.0 0.0377 44.2 -16.1 33.3 2.4 KAN055D INIT 0.0 0.0337 27.0 -43.8 29.3 -30.2 KAN055D THER 200.0 0.0255 54.5 4.4 36.4 22.5 KAN055D THER 250.0 0.0290 48.7 -3.8 33.3 13.9 KAN055D THER 300.0 0.0240 50.7 5.1 32.6 21.1 KAN056 1458.0 25.2 6.2 1 KAN056A INIT 0.0 0.1742 49.8 -14.9 37.8 6.7 KAN056A THER 400.0 0.1814 41.2 -0.8 25.6 12.4 KAN056A THER 450.0 0.1635 41.2 -1.7 25.9 11.8 KAN056B INIT 0.0 0.1723 56.6 -24.8 46.7 5.2 KAN056B THER 400.0 0.1767 35.5 -10.3 23.6 2.5 KAN056B THER 450.0 0.1579 36.3 -10.6 24.3 2.6 KAN056C INIT 0.0 0.1908 44.8 -30.0 38.9 -7.7 KAN056C THER 400.0 0.1968 40.8 -4.0 26.2 9.9 KAN056C THER 450.0 0.1853 40.1 -8.3 27.0 6.2 KAN056D INIT 0.0 0.2235 46.5 -33.0 41.5 -8.8 KAN056D THER 400.0 0.2230 37.8 -8.8 25.1 4.7 KAN056D THER 450.0 0.1986 36.3 -8.6 23.6 4.1 KAN057 1477.0 41.2 23.6 1 KAN057A INIT 0.0 0.2077 60.8 34.9 37.0 44.1 KAN057A THER 400.0 0.1473 63.2 -7.2 46.8 21.2 KAN057A THER 450.0 0.1314 59.8 -12.2 45.3 15.7 KAN057B INIT 0.0 0.2544 61.2 55.4 36.2 56.4 KAN057B THER 400.0 0.1658 64.0 10.2 43.6 31.3 KAN057B THER 450.0 0.1475 63.7 7.4 43.9 29.6 KAN057C INIT 0.0 0.2865 59.1 40.4 34.8 47.1 KAN057C THER 400.0 0.1978 58.5 6.5 39.5 26.0 KAN057C THER 450.0 0.1834 58.2 6.0 39.3 25.6 KAN057D INIT 0.0 0.2420 52.7 35.9 29.0 42.9 98 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN057D THER 400.0 0.1672 50.5 -1.3 34.2 16.6 KAN057D THER 450.0 0.1554 49.3 -2.4 33.4 15.2 KAN058 1491.0 40.2 25.1 I KAN058A INIT 0.0 0.1442 58.4 40.0 34.1 46.7 KAN058A THER 400.0 0.0534 55.2 -0.1 38.1 20.0 KAN058A THER 450.0 0.0489 52.5 1.7 35.2 19.7 KAN058B INIT 0.0 0.1512 60.3 36.7 36.3 45.1 KAN058B THER 400.0 0.0636 58.7 1.0 40.9 22.8 KAN058B THER 450.0 0.0596 60.1 -0.7 42.5 22.7 KAN058C INIT 0.0 0.1755 64.0 39.9 39.7 47.8 KAN058C THER 400.0 0.0717 65.8 1.9 46.9 28.2 KAN058C THER 450.0 0.0674 63.5 6.6 43.9 29.0 KAN058D INIT 0.0 0.1641 56.3 32.5 32.8 41.5 KAN058D THER 400.0 0.0639 47.8 -4.2 32.6 13.2 KAN058D THER 450.0 0.0605 44.2 -1.6 28.6 13.2 KAN058E INIT 0.0 0.1733 57.9 58.4 32.9 58.2 KAN058E THER 400.0 0.0513 62.2 6.8 42.7 28.4 KAN058E THER 450.0 0.0489 59.0 11.6 38.8 29.4 KAN111 1523.0 34.0 -123.1 1 KAN111A INIT 0.0 0.0690 25.0 -115.0 49.8 -112.2 KAN111A THER 400.0 0.0471 7.9 -125.8 32.9 -126.4 KAN111A THER 450.0 0.0425 7.7 -127.6 32.5 -128.6 KAN111A THER 500.0 0.0412 8.0 -126.6 32.9 -127.5 KAN111B INIT 0.0 0.0763 48.9 -97.3 69.3 -71.1 KAN111B THER 400.0 0.0324 -26.9 -112.1 -2.2 -113.2 KAN111B THER 450.0 0.0392 16.7 -113.4 41.4 -111.0 KAN111B THER 500.0 0.0323 23.6 -118.3 48.5 -116.9 KAN111C INIT 0.0 0.0751 31.0 -120.5 56.0 -119.6 KAN111C THER 400.0 0.0532 6.4 -126.6 31.3 -127.4 KAN111C THER 450.0 0.0471 5.0 -121.3 30.0 -121.2 KAN111C THER 500.0 0.0437 5.4 -126.8 30.3 -127.5 KAN111D INIT 0.0 0.1066 32.0 -126.3 56.9 -128.7 KAN111D THER 400.0 0.0736 6.5 -128.7 31.3 -129.8 KAN111D THER 450.0 0.0675 6.6 -129.0 31.4 -130.2 KAN111D THER 500.0 0.0599 10.6 -130.8 35.3 -132.6 KAN059 1523.5 -42.3 -102.0 I KAN059A INIT 0.0 0.0263 69.8 67.1 45.0 62.4 KAN059A THER 200.0 0.0337 -62.5 -74.0 -42.3 -94.3 KAN059A THER 250.0 0.0325 -61.7 -74.5 -41.5 -94.2 KAN059A THER 300.0 0.0309 -63.1 -86.8 -40.7 -101.9 KAN059B INIT 0.0 0.0095 -1.2 -27.8 -2.9 -28.7 KAN059B THER 200.0 0.0145 -71.7 -71.6 -50.9 -99.5 KAN059B THER 250.0 0.0144 -70.9 -83.9 -48.3 -104.3 KAN059B THER 300.0 0.0129 -76.8 -94.0 -52.9 -111.8 KAN059C INIT 0.0 0.0119 84.4 -56.2 66.8 44.9 KAN059C THER 200.0 0.0311 -59.4 -92.9 -36.4 -104.1 KAN059C THER 250.0 0.0303 -62.3 -99.8 -38.3 -109.1 KAN059C THER 300.0 0.0278 -61.6 -108.1 -37.0 -113.8 KAN059D INIT 0.0 0.0180 -40.1 -23.5 -39.1 -44.6 KAN059D THER 200.0 0.0287 -59.0 -89.7 -36.4 -102.0 KAN059D THER 250.0 0.0291 -62.8 -84.2 -40.7 -100.3 KAN059D THER 300.0 0.0274 -61.1 -97.8 -37.4 -107.5 KAN112 1533.0 -37.6 -144.7 I KAN112A INIT 0.0 0.0416 -60.3 -72.9 -40.6 -92.5 KAN112A THER 400.0 0.0408 -61.8 -143.8 -37.8 -134.9 KAN112A THER 450.0 0.0360 -64.5 -143.3 -40.4 -133.9 99 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN112A THER 500.0 0.0357 -65.9 -149.7 -42.4 -136.9 KAN112B INIT 0.0 0.0419 -55.4 -160.0 -33.8 -146.9 KAN112B THER 400.0 0.0560 -45.5 -166.7 -25.9 -155.2 KAN112B THER 450.0 0.0522 -47.9 -163.5 -27.4 -152.0 KAN112B THER 500.0 0.0493 -45.2 -164.9 -25.1 -154.0 KAN112C INIT 0.0 0.0126 -49.9 -139.2 -25.7 -134.2 KAN112D INIT 0.0 0.0244 -48.8 -100.9 -24.9 -106.8 KAN112D THER 400.0 0.0373 -56.2 -159.7 -34.5 -146.4 KAN112D THER 450.0 0.0318 -60.6 -165.0 -39.6 -147.8 KAN112D THER 500.0 0.0279 -61.3 -151.2 -38.2 -139.4 KAN112E INIT 0.0 0.0382 -35.8 132.1 -38.6 151.4 KAN112E THER 400.0 0.0630 -62.7 -164.1 -41.4 -146.2 KAN112E THER 450.0 0.0588 -64.0 -161.1 -42.1 -143.9 KAN112E THER 500.0 0.0564 -60.1 -155.5 -37.5 -142.3 KAN060 1538.0 16.5 20.0 II KAN060A INIT 0.0 0.0322 80.4 84.4 56.4 62.8 KAN060A THER 400.0 0.0028 19.0 -14.9 8.7 -9.1 KAN060A THER 450.0 0.0029 26.9 -57.1 33.1 -42.8 KAN060B INIT 0.0 0.0918 64.5 69.2 39.9 62.5 KAN060B THER 400.0 0.0148 66.2 107.2 46.6 82.1 KAN060B THER 450.0 0.0156 58.3 130.9 46.1 101.6 KAN060C INIT 0.0 0.0702 56.4 34.2 32.3 41.1 KAN060C THER 400.0 0.0143 22.4 7.5 4.3 11.8 KAN060C THER 450.0 0.0134 37.0 -8.0 22.8 4.1 KAN060D INIT 0.0 0.0568 56.2 51.4 31.2 52.3 KAN060D THER 400.0 0.0128 20.1 18.4 -0.7 20.9 KAN060D THER 450.0 0.0085 13.6 13.2 -5.6 14.3 KAN061 1567.0 31.9 34.5 1 KAN061A INIT 0.0 0.3170 58.0 15.5 36.4 29.8 KAN061A THER 400.0 0.2674 55.8 25.6 32.7 35.5 KAN061A THER 450.0 0.2576 53.9 23.6 31.2 33.6 KAN061B INIT 0.0 0.5293 49.6 12.8 28.9 24.8 KAN061B THER 400.0 0.4474 48.8 17.8 27.2 28.0 KAN061B THER 450.0 0.4380 48.2 15.1 27.1 25.9 KAN061C INIT 0.0 0.4664 54.9 18.8 32.9 30.8 KAN061C THER 400.0 0.4051 55.1 25.9 32.1 35.5 KAN061C THER 450.0 0.3895 55.2 23.3 32.5 33.8 KAN061D INIT 0.0 0.4124 55.2 16.2 33.6 29.1 KAN061D THER 400.0 0.3520 54.1 22.4 31.6 32.9 KAN061D THER 450.0 0.3364 53.6 19.8 31.5 31.0 KAN061E INIT 0.0 0.6275 56.2 21.2 33.7 32.7 KAN061E THER 400.0 0.5389 54.1 24.3 31.3 34.1 KAN061E THER 450.0 0.5051 55.0 24.4 32.1 34.4 KAN062 1588.0 -34.2 171.1 I KAN062A INIT 0.0 0.0591 -14.0 124.5 -20.9 132.2 KAN062A THER 400.0 0.0663 -48.2 130.9 -47.7 159.4 KAN062A THER 450.0 0.0614 -50.6 138.9 -46.4 167.5 KAN062B INIT 0.0 0.0311 -25.0 -154.7 -2.8 -151.8 KAN062B THER 400.0 0.0628 -50.1 169.0 -35.5 -171.6 KAN062B THER 450.0 0.0616 -51.2 170.3 -36.1 -170.1 KAN062C INIT 0.0 0.0534 -45.7 138.2 -42.7 162.9 KAN062C THER 400.0 0.0737 -58.2 153.2 -47.3 -176.1 KAN062C THER 450.0 0.0685 -59.1 157.3 -46.7 -172.8 KAN062D INIT 0.0 0.0738 -2.7 138.5 -4.7 140.2 KAN062D THER 400.0 0.0759 -6.4 154.5 -1.4 156.2 KAN062D THER 450.0 0.0738 -5.2 156.9 0.7 157.9 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN063 1604.0 -50.3 -163.7 1 KAN063A INIT 0.0 0.0288 -83.7 -141.7 -58.9 -129.3 KAN063A THER 400.0 0.0512 -81.6 -108.7 -56.9 -121.5 KAN063A THER 450.0 0.0501 -83.8 -112.8 -58.9 -123.2 KAN063B INIT 0.0 0.0513 -85.3 151.2 -64.0 -136.8 KAN063B THER 400.0 0.0835 -78.8 177.9 -57.5 -143.5 KAN063B THER 450.0 0.0824 -79.0 -169.9 -56.3 -139.7 KAN063C INIT 0.0 0.0536 -37.1 124.8 -41.1 145.4 KAN063C THER 400.0 0.0689 -46.6 146.1 -40.4 169.6 KAN063C THER 450.0 0.0593 -43.6 152.5 -35.5 172.5 KAN063D INIT 0.0 0.0957 -46.1 147.9 -39.3 170.7 KAN063D THER 400.0 0.1114 -45.9 163.0 -33.7 -178.3 KAN063D THER 450.0 0.1096 -46.4 155.6 -36.7 176.6 KAN064 1637.0 -42.6 -161.5 I KAN064A INIT 0.0 0.0585 -53.8 176.9 -36.6 -164.1 KAN064A THER 200.0 0.0975 -58.6 159.3 -45.7 -172.0 KAN064A THER 250.0 0.0987 -58.1 158.5 -45.5 -172.9 KAN064A THER 300.0 0.0993 -56.6 158.8 -44.2 -173.9 KAN064B INIT 0.0 0.0304 -17.4 157.6 -10.2 163.6 KAN064B THER 200.0 0.0636 -50.7 163.6 -37.7 -175.0 KAN064B THER 250.0 0.0642 -49.5 164.9 -36.2 -174.8 KAN064B THER 300.0 0.0664 -49.5 163.1 -36.9 -176.0 KAN064C INIT 0.0 0.0335 -70.5 -159.1 -47.4 -141.6 KAN064C THER 200.0 0.0681 -62.0 -158.8 -39.3 -145.2 KAN064C THER 250.0 0.0692 -61.3 -159.5 -38.8 -145.9 KAN064C THER 300.0 0.0716 -60.3 -163.5 -38.5 -148.6 KAN064D INIT 0.0 0.0137 -50.7 5.0 -61.3 -30.1 KAN064D THER 200.0 0.0271 -73.7 175.7 -53.9 -149.9 KAN064D THER 250.0 0.0270 -70.9 -169.2 -49.1 -146.0 KAN064D THER 300.0 0.0311 -69.3 -167.7 -47.4 -146.3 KAN065 1663.0 -26.6 •153.9 I KAN065A INIT 0.0 0.1052 -56.3 -161.7 -34.3 -149.1 KAN065A THER 400.0 0.1103 -49.9 -161.5 -28.1 -151.1 KAN065A THER 450.0 0.1057 -48.8 -165.8 -27.9 -154.5 KAN065B INIT 0.0 0.0634 -44.5 -162.0 -23.0 -153.1 KAN065B THER 400.0 0.0746 -46.0 -168.0 -25.7 -157.1 KAN065B THER 450.0 0.0753 -45.2 -173.7 -26.3 -161.5 KAN065C INIT 0.0 0.0935 -49.3 -150.8 -25.9 -143.7 KAN065C THER 400.0 0.1062 -46.5 -154.4 -23.6 -146.9 KAN065C THER 450.0 0.0997 -45.3 -152.9 -22.2 -146.2 KAN065D INIT 0.0 0.1443 -48.2 -160.6 -26.4 -151.0 KAN065D THER 400.0 0.1494 -47.1 -166.4 -26.4 -155.5 KAN065D THER 450.0 0.1457 -46.0 -167.6 -25.6 -156.7 KAN065E INIT 0.0 0.2225 -48.1 -160.9 -26.3 -151.2 KAN065E THER 100.0 0.2298 -48.8 -160.7 -27.0 -150.8 KAN065E THER 200.0 0.2336 -48.3 -161.2 -26.6 -151.4 KAN065E THER 300.0 0.2307 -48.4 -161.8 -26.7 -151.8 KAN065E THER 400.0 0.2183 -47.8 -161.7 -26.2 -151.9 KAN065E THER 450.0 0.2125 -47.1 -161.6 -25.5 -152.0 KAN065E THER 500.0 0.2010 -47.2 -161.7 -25.6 -152.1 KAN065E THER 525.0 0.1955 -48.1 -162.6 -26.6 -152.5 KAN065E THER 550.0 0.1890 -47.3 -160.8 -25.5 -151.4 KAN065E THER 575.0 0.1758 -49.0 -166.5 -28.3 -154.9 KAN065E THER 600.0 0.1725 -47.2 -160.6 -25.4 -151.3 KAN065E THER 625.0 0.1709 -48.9 -160.3 -27.0 -150.6 KAN065E THER 650.0 0.1625 -48.9 -162.1 -27.3 -151.8 KAN065F INIT 0.0 0.1822 -41.1 -165.9 -20.6 -157.1 KAN065F THER 100.0 0.1921 -39.8 -168.5 -20.0 -159.5 101 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN065F THER 200.0 0.1918 -40.3 -168.2 -20.3 -159.1 KAN065F THER 300.0 0.1900 -40.2 -168.3 -20.2 -159.2 KAN065F THER 400.0 0.1843 -39.3 -168.0 -19.3 -159.2 KAN065F THER 450.0 0.1778 -39.6 -168.9 -19.9 -159.8 KAN065F THER 500.0 0.1676 -39.8 -166.9 -19.6 -158.2 KAN065F THER 525.0 0.1650 -39.9 -169.8 -20.4 -160.5 KAN065F THER 550.0 0.1590 -39.3 -167.2 -19.1 -158.7 KAN065F THER 575.0 0.1558 -40.4 -172.6 -21.5 -162.4 KAN065F THER 600.0 0.1441 -39.2 -169.0 -19.5 -160.1 KAN065F THER 625.0 0.1401 -40.3 -169.4 -20.6 -160.0 KAN065F THER 650.0 0.1378 -39.1 -167.0 -18.9 -158.6 KAN066 1672.5 -24.4 173.3 1 KAN066A INIT 0.0 0.1235 -42.7 155.0 -33.8 173.9 KAN066A THER 400.0 0.1283 -42.6 160.6 -31.7 178.1 KAN066A THER 450.0 0.1179 -40.1 158.4 -30.2 175.0 KAN066B INIT 0.0 0.1241 -36.3 146.8 -31.3 163.5 KAN066B THER 400.0 0.1377 -33.8 154.2 -26.3 168.3 KAN066B THER 450.0 0.1295 -32.7 155.6 -24.7 168.8 KAN066C INIT 0.0 0.1195 -26.1 159.3 -17.3 168.8 KAN066C THER 400.0 0.1228 -28.2 161.0 -18.6 171.2 KAN066C THER 450.0 0.1143 -25.1 160.7 -16.0 169.6 KAN066D INIT 0.0 0.1664 -31.8 164.3 -20.7 175.6 KAN066D THER 400.0 0.1677 -32.0 164.4 -20.8 175.7 KAN066D THER 450.0 0.1600 -32.3 167.0 -20.1 178.0 KAN066E INIT 0.0 0.2093 -24.6 164.0 -14.3 172.2 KAN066E THER 400.0 0.1957 -24.2 165.0 -13.5 172.9 KAN066E THER 450.0 0.1833 -22.6 164.8 -12.1 172.1 KAN067 1697.0 -24.7 -113.3 1 KAN067A INIT 0.0 0.1579 -43.8 -90.4 -22.3 -99.0 KAN067A THER 100.0 0.1626 -49.5 -101.2 -26.1 -108.3 KAN067A THER 200.0 0.1627 -49.8 -101.5 -26.3 -108.6 KAN067A THER 300.0 0.1636 -50.3 -104.5 -26.5 -110.8 KAN067A THER 400.0 0.1584 -49.1 -105.0 -25.3 -110.9 KAN067A THER 450.0 0.1518 -48.5 -108.1 -24.4 -113.1 KAN067A THER 500.0 0.1377 -47.6 -104.3 -23.9 -110.2 KAN067A THER 525.0 0.1428 -48.2 -106.6 -24.2 -112.0 KAN067A THER 550.0 0.1325 -49.9 -103.3 -26.3 -109.9 KAN067A THER 575.0 0.1417 -53.9 -114.6 -29.3 -118.4 KAN067A THER 600.0 0.1187 -49.4 -94.4 -27.0 -103.5 KAN067A THER 625.0 0.1283 -50.9 -105.6 -26.9 -111.7 KAN067A THER 650.0 0.1190 -54.1 -100.5 -30.7 -109.0 KAN067B INIT 0.0 0.1445 -44.4 -89.6 -23.0 -98.5 KAN067B THER 100.0 0.1549 -48.9 -97.3 -26.1 -105.5 KAN067B THER 200.0 0.1531 -50.7 -100.2 -27.4 -107.9 KAN067B THER 300.0 0.1533 -51.0 -100.9 -27.6 -108.5 KAN067B THER 400.0 0.1489 -50.3 -101.5 -26.8 -108.7 KAN067B THER 450.0 0.1451 -50.5 -101.1 -27.1 -108.5 KAN067B THER 500.0 0.1376 -49.1 -105.2 -25.3 -111.1 KAN067B THER 525.0 0.1346 -49.7 -104.5 -25.9 -110.7 KAN067B THER 550.0 0.1282 -51.2 -103.7 -27.5 -110.5 KAN067B THER 575.0 0.1260 -52.2 -116.7 -27.4 -119.6 KAN067B THER 600.0 0.1212 -55.2 -101.7 -31.6 -110.0 KAN067B THER 625.0 0.1173 -49.5 -102.0 -26.1 -108.9 KAN067B THER 650.0 0.1040 -50.7 -100.2 -27.4 -107.9 KAN067C INIT 0.0 0.1580 -45.6 -96.0 -23.0 -103.7 KAN067C THER 400.0 0.1599 -50.4 -108.3 -26.2 -113.6 KAN067C THER 450.0 0.1573 -43.8 -112.1 -19.3 -115.4 KAN067D INIT 0.0 0.0902 -53.6 -94.7 -31.0 -104.9 102 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN067D THER 400.0 0.1012 -55.9 -123.5 -30.9 -124.3 KAN067D THER 450.0 0.0897 -52.3 -111.3 -27.9 -115.9 KAN068 1748.5 •34.9 -173.7 I KAN068A INIT 0.0 0.0813 -37.4 156.8 -28.4 172.2 KAN068A THER 400.0 0.1090 -33.0 158.4 -23.9 171.3 KAN068A THER 450.0 0.1038 -27.2 149.9 -22.0 161.3 KAN068B INIT 0.0 0.1013 -76.3 119.0 -67.4 -159.8 KAN068B THER 400.0 0.1064 -63.3 155.8 -50.4 -169.7 KAN068B THER 450.0 0.0904 -56.4 145.9 -48.4 177.7 KAN068C INIT 0.0 0.0449 -57.7 157.4 -45.5 -173.9 KAN068C THER 400.0 0.0549 -50.6 164.7 -37.3 -174.2 KAN068C THER 450.0 0.0463 -53.4 168.4 -38.5 -170.0 KAN068D INIT 0.0 0.0278 -24.0 123.5 -30.2 136.2 KAN068D THER 400.0 0.0529 -45.5 -172.9 -26.4 -160.8 KAN068D THER 450.0 0.0477 -28.0 -180.0 -11.9 -172.8 KAN069 1770.0 •40.0 •160.0 I KAN069A INIT 0.0 0.1845 -66.3 -168.7 -45.5 -149.9 KAN069A THER 400.0 0.2019 -64.4 -170.1 -43.9 -151.7 KAN069A THER 450.0 0.2000 -60.3 -169.6 -40.0 -153.4 KAN069B INIT 0.0 0.1501 -56.2 176.6 -39.1 -164.2 KAN069B THER 400.0 0.1570 -57.6 171.6 -41.6 -166.5 KAN069B THER 450.0 0.1436 -53.4 170.6 -38.1 -169.7 KAN069C INIT 0.0 0.1692 -58.2 -173.9 -38.9 -157.1 KAN069C THER 400.0 0.1665 -55.1 -178.1 -36.9 -161.3 KAN069C THER 450.0 0.1645 -55.2 -176.3 -36.6 -160.0 KAN069D INIT 0.0 0.1269 -65.0 -166.5 -43.9 -149.4 KAN069D THER 400.0 0.1281 -55.6 -176.8 -37.0 -160.2 KAN069D THER 450.0 0.1184 -52.8 -176.2 -34.3 -161.0 KAN070 1790.0 29.9 16.8 I KAN070A INIT 0.0 0.1561 50.3 2.9 32.2 17.2 KAN070A INIT 0.0 0.1548 43.5 -4.2 27.7 9.1 KAN070A THER 400.0 0.0762 41.2 -2.1 25.0 9.8 KAN070A THER 450.0 0.0750 37.9 -4.9 22.7 6.2 KAN070B INIT 0.0 0.1672 50.7 2.3 32.7 17.0 KAN070B THER 400.0 0.0782 51.9 3.1 33.7 18.1 KAN070B THER 450.0 0.0736 56.0 0.9 37.9 18.5 KAN070C INIT 0.0 0.1869 51.2 1.1 33.5 16.4 KAN070C THER 400.0 0.0916 47.6 8.3 28.4 20.0 KAN070C THER 450.0 0.0865 54.5 4.1 35.8 19.9 KAN070D INIT 0.0 0.1747 50.6 1.4 32.9 16.3 KAN070D THER 400.0 0.0864 51.1 5.6 32.3 19.5 KAN070D THER 450.0 0.0809 55.1 5.5 36.1 21.1 KAN071 1802.0 40.4 1.7 I KAN071A INIT 0.0 0.0641 71.6 -12.9 54.3 22.6 KAN071A THER 400.0 0.0208 80.9 -60.7 67.9 29.1 KAN071A THER 450.0 0.0210 60.1 -160.2 74.5 149.1 KAN071B INIT 0.0 0.0466 57.8 6.5 38.4 23.0 KAN071B THER 400.0 0.0190 54.6 30.9 31.7 37.8 KAN071B THER 450.0 0.0162 60.0 41.2 36.2 45.3 KAN071C INIT 0.0 0.0792 48.5 -0.4 31.4 14.1 KAN071C THER 400.0 0.0328 50.9 -16.2 37.9 4.1 KAN071C THER 450.0 0.0282 39.7 -22.9 30.2 -7.2 KAN071D INIT 0.0 0.0586 32.0 -26.1 24.4 -13.6 KAN071D THER 400.0 0.0291 18.8 -40.5 18.1 -32.4 KAN071D THER 450.0 0.0213 33.9 -42.3 32.3 -26.4 KAN071E INIT 0.0 0.0806 52.7 -21.5 41.0 1.6 103 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN071E THER 400.0 0.0346 54.4 -19.8 42.0 3.9 KAN071E THER 450.0 0.0300 59.4 -33.2 50.3 -0.5 KAN072 1832.0 27.3 13.7 1 KAN072A INIT 0.0 0.0819 42.9 -4.3 27.1 8.7 KAN072A THER 400.0 0.0512 53.3 -4.5 36.8 13.6 KAN072A THER 450.0 0.0484 58.1 -4.9 41.1 16.0 KAN072B INIT 0.0 0.0646 26.9 2.1 10.3 8.1 KAN072B THER 400.0 0.0417 18.8 -7.0 5.5 -2.6 KAN072B THER 450.0 0.0382 16.5 -17.8 7.1 -13.1 KAN072C INIT 0.0 0.0847 66.2 -2.1 47.7 22.9 KAN072C THER 400.0 0.0449 63.1 9.8 42.7 27.6 KAN072C THER 450.0 0.0414 58.0 11.8 37.6 26.4 KAN072D INIT 0.0 0.0669 48.6 14.4 28.2 24.8 KAN072D THER 400.0 0.0403 41.7 11.1 22.2 20.2 KAN072D THER 450.0 0.0409 45.6 8.4 26.6 19.4 KAN073 1849.0 6.1 33.3 1 KAN073A INIT 0.0 0.2810 27.4 26.4 5.4 29.3 KAN073A THER 100.0 0.2642 26.4 27.7 4.3 30.3 KAN073A THER 200.0 0.2476 26.6 29.0 4.3 31.5 KAN073A THER 300.0 0.2426 26.1 30.8 3.5 33.0 KAN073A THER 400.0 0.2296 26.3 29.9 3.9 32.2 KAN073A THER 450.0 0.2211 26.7 30.3 4.1 32.7 KAN073A THER 500.0 0.2053 26.4 29.7 4.0 32.0 KAN073A THER 525.0 0.1966 27.2 33.3 4.3 35.4 KAN073A THER 550.0 0.1959 26.2 30.2 3.7 32.5 KAN073A THER 575.0 0.1699 29.4 32.9 6.5 35.3 KAN073A THER 600.0 0.1729 25.3 34.2 2.4 36.0 KAN073A THER 625.0 0.1566 25.8 32.8 3.0 34.8 KAN073A THER 650.0 0.1544 25.4 31.3 2.7 33.3 KAN073B INIT 0.0 0.2462 29.7 27.7 7.5 30.9 KAN073B THER 100.0 0.2290 28.0 29.1 5.6 31.8 KAN073B THER 200.0 0.2161 27.5 29.1 5.1 31.7 KAN073B THER 300.0 0.2099 28.6 28.1 6.3 31.0 KAN073B THER 400.0 0.1989 28.2 31.1 5.5 33.6 KAN073B THER 450.0 0.1910 29.3 30.0 6.8 32.8 KAN073B THER 500.0 0.1777 29.0 34.2 6.0 36.4 KAN073B THER 525.0 0.1682 30.2 33.9 7.2 36.3 KAN073B THER 550.0 0.1638 29.0 31.9 6.3 34.4 KAN073B THER 575.0 0.1483 31.0 31.0 8.3 33.9 KAN073B THER 600.0 0.1424 28.4 26.8 6.3 29.8 KAN073B THER 625.0 0.1426 24.9 30.6 2.3 32.7 KAN073B THER 650.0 0.1254 27.1 31.9 4.4 34.1 KAN073C INIT 0.0 0.2313 23.8 25.9 2.0 28.2 KAN073C THER 400.0 0.1858 22.8 29.3 0.4 31.1 KAN073C THER 450.0 0.1794 22.8 31.0 0.2 32.7 KAN073D INIT 0.0 0.2888 40.7 31.4 17.9 35.7 KAN073D THER 400.0 0.2416 37.6 32.7 14.7 36.3 KAN073D THER 450.0 0.2323 38.3 31.5 15.5 35.4 KAN073E INIT 0.0 0.4084 28.9 39.4 5.4 40.9 KAN074 1858.0 28.2 -1.5 1 KAN074A INIT 0.0 0.8626 29.6 -11.2 16.9 -2.2 KAN074A THER 400.0 0.7405 26.2 -13.4 14.5 -5.4 KAN074A THER 450.0 0.7090 26.2 -13.0 14.4 -5.1 KAN074B INIT 0.0 0.7148 30.3 -2.9 15.0 5.0 KAN074B THER 400.0 0.6112 27.0 -2.8 11.9 3.9 KAN074B THER 450.0 0.5879 26.7 -4.1 12.0 2.7 KAN074C INIT 0.0 0.6861 48.1 -3.2 31.6 11.9 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN074C THER 400.0 0.5781 45.7 -2.3 29.2 11.5 KAN074C THER 450.0 0.5523 45.1 -3.0 28.8 10.7 KAN074D INIT 0.0 0.6510 47.8 -15.2 34.9 3.0 KAN074D THER 400.0 0.5418 44.2 -22.2 33.9 -4.2 KAN074D THER 450.0 0.5155 44.1 -21.7 33.6 -3.9 KAN074E INIT 0.0 0.6408 48.1 -27.0 38.9 -5.4 KAN074E THER 400.0 0.5326 43.4 -27.1 34.8 -8.4 KAN074E THER 450.0 0.5058 44.0 -26.9 35.3 -7.9 KAN075 1870.0 42.0 9.1 1 KAN075A INIT 0.0 0.1106 13.2 166.1 21.8 158.9 KAN075A THER 400.0 0.0499 53.0 -8.8 37.6 10.5 KAN075A THER 450.0 0.0448 54.2 -12.8 39.8 8.5 KAN075B INIT 0.0 0.1152 46.0 -15.9 33.4 1.5 KAN075B THER 400.0 0.0386 56.3 -18.4 43.1 6.2 KAN075B THER 450.0 0.0352 59.0 -17.1 45.1 9.0 KAN075C INIT 0.0 0.1163 46.1 -13.9 32.9 3.1 KAN075C THER 400.0 0.0403 60.7 -15.6 46.1 11.3 KAN075C THER 450.0 0.0337 61.2 -15.2 46.5 11.9 KAN075D INIT 0.0 0.1071 44.4 -13.4 31.2 2.5 KAN075D THER 400.0 0.0368 54.2 -2.7 37.1 15.2 KAN075D THER 450.0 0.0323 51.0 -11.6 36.6 7.4 KAN076 1885.0 43.3 17.9 1 KAN076A INIT 0.0 0.1845 58.3 -8.7 42.3 13.7 KAN076A THER 400.0 0.0833 63.3 -15.7 48.3 13.4 KAN076A THER 450.0 0.0762 65.4 -16.5 50.3 14.8 KAN076B INIT 0.0 0.1919 50.1 -13.9 36.5 5.3 KAN076B THER 400.0 0.1017 49.1 -11.4 34.8 6.5 KAN076B THER 450.0 0.0840 48.4 -15.0 35.3 3.5 KAN076C INIT 0.0 0.1706 65.8 -23.4 52.3 11.6 KAN076C THER 400.0 0.0898 66.6 -5.0 48.6 21.7 KAN076C THER 450.0 0.0808 69.4 6.0 49.1 29.3 KAN076D INIT 0.0 0.1320 63.1 17.8 41.5 32.2 KAN076D THER 400.0 0.0828 61.4 16.5 40.1 30.7 KAN076D THER 450.0 0.0681 63.9 15.1 42.6 31.0 KAN077 1901.5 47.0 4.8 I KAN077A INIT 0.0 0.3716 49.8 -99.9 68.3 -72.5 KAN077A THER 400.0 0.2353 51.9 -92.4 67.4 -59.0 KAN077A THER 450.0 0.2014 52.1 -95.6 68.7 -63.0 KAN077B INIT 0.0 0.2494 58.2 -3.7 41.0 16.8 KAN077B THER 400.0 0.1606 52.6 1.1 34.8 17.0 KAN077B THER 450.0 0.1456 51.5 3.7 33.1 18.3 KAN077C INIT 0.0 0.2836 53.8 -2.5 36.7 15.1 KAN077C THER 400.0 0.2059 52.0 -2.8 35.2 14.1 KAN077C THER 450.0 0.1850 50.6 -2.2 33.7 13.8 KAN077D INIT 0.0 0.2451 55.6 -6.0 39.2 13.8 KAN077D THER 400.0 0.1720 54.5 -14.2 40.5 7.8 KAN077D THER 450.0 0.1606 56.9 -7.4 40.7 13.7 KAN078 1916.0 31.8 9.2 1 KAN078A INIT 0.0 0.2211 47.4 -9.2 32.7 7.2 KAN078A THER 400.0 0.1778 44.9 -10.1 30.6 5.3 KAN078A THER 450.0 0.1648 44.4 -11.1 30.5 4.3 KAN078B INIT 0.0 0.1453 49.5 -8.6 34.4 8.7 KAN078B THER 400.0 0.1055 47.7 -11.1 33.5 6.0 KAN078B THER 450.0 0.0992 44.9 -13.0 31.6 3.1 KAN078C INIT 0.0 0.2560 48.1 -2.5 31.5 12.4 KAN078C THER 400.0 0.1849 48.3 -3.4 31.9 11.8 105 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN078C THER 450.0 0.1758 48.2 -3.6 31.9 11.7 KAN078D INIT 0.0 0.2947 51.5 0.7 33.9 16.2 KAN078D THER 400.0 0.2197 48.2 -0.6 31.1 13.8 KAN078D THER 450.0 0.2074 48.5 -1.0 31.5 13.6 KAN079 1951.5 30.9 6.5 I KAN079A INIT 0.0 0.1350 58.3 -19.1 45.1 7.2 KAN079A THER 400.0 0.0859 50.6 -18.0 38.2 2.7 KAN079A THER 450.0 0.0798 51.2 -17.8 38.6 3.2 KAN079B INIT 0.0 0.2116 47.8 -12.5 34.0 5.0 KAN079B THER 400.0 0.1519 42.5 -11.8 28.9 2.9 KAN079B THER 450.0 0.1419 42.2 -11.8 28.8 2.7 KAN079C INIT 0.0 0.1959 45.7 -7.3 30.6 7.8 KAN079C THER 400.0 0.1468 43.5 -3.2 27.5 9.9 KAN079C THER 450.0 0.1363 45.3 -5.3 29.6 9.1 KAN079D INIT 0.0 0.1963 46.7 6.8 27.9 18.6 KAN079D THER 400.0 0.1450 43.5 0.5 26.5 12.6 KAN079D THER 450.0 0.1330 43.0 -2.0 26.6 10.5 KAN080 1967.0 33.2 37.8 1 KAN080A INIT 0.0 0.0893 47.3 32.0 24.4 37.3 KAN080A THER 400.0 0.0386 28.5 64.0 4.9 62.6 KAN080A THER 450.0 0.0070 -0.8 74.0 -22.9 76.0 KAN080B INIT 0.0 0.0928 46.9 30.8 24.1 36.3 KAN080B THER 400.0 0.0532 63.6 20.9 41.6 34.2 KAN080B THER 450.0 0.0430 35.6 65.5 12.1 63.2 KAN080C INIT 0.0 0.1089 45.6 -7.7 30.6 7.4 KAN080C THER 400.0 0.0453 53.8 -1.1 36.4 16.1 KAN080C THER 450.0 0.0324 30.7 -7.6 16.8 1.3 KAN080D INIT 0.0 0.0771 56.6 -20.8 44.2 4.9 KAN080D THER 400.0 0.0286 65.3 15.5 43.9 31.8 KAN080D THER 450.0 0.0370 58.0 -51.9 55.7 -14.1 KAN081A INIT 0.0 0.0110 8.1 159.2 14.3 154.5 KAN081 2001.0 -38.2 -157.9 I KAN081A THER 200.0 0.0405 -41.2 169.5 -27.4 -176.7 KAN081A THER 250.0 0.0448 -39.7 168.6 -26.3 -178.1 KAN081A THER 300.0 0.0522 -41.9 -174.9 -23.8 -164.4 KAN081B INIT 0.0 0.0210 50.1 -60.7 53.3 -29.7 KAN081B THER 200.0 0.0244 -37.2 -154.6 -15.2 -149.7 KAN081B THER 250.0 0.0254 -35.5 -159.9 -14.4 -154.4 KAN081B THER 300.0 0.0248 -38.8 -164.9 -18.6 -157.6 KAN081C INIT 0.0 0.1173 -83.5 119.4 -67.7 -144.0 KAN081C THER 200.0 0.1384 -78.1 154.6 -61.1 -152.6 KAN081C THER 250.0 0.1381 -77.2 162.2 -59.3 -152.0 KAN081C THER 300.0 0.1369 -76.9 158.3 -59.7 -153.6 KAN081D INIT 0.0 0.0295 -50.8 36.5 -72.9 16.9 KAN081D THER 200.0 0.0588 -73.5 168.6 -55.5 -154.7 KAN081D THER 250.0 0.0606 -71.6 171.9 -53.4 -155.3 KAN081D THER 300.0 0.0618 -70.1 -178.9 -50.5 -152.6 KAN081E INIT 0.0 0.0555 62.6 34.3 39.2 41.6 KAN081E THER 200.0 0.0196 22.8 178.2 35.1 166.6 KAN081E THER 250.0 0.0206 16.4 179.5 29.7 170.9 KAN081E THER 300.0 0.0185 10.3 -176.0 25.5 177.9 KAN082 2092.5 -27.8 171.0 II KAN082A INIT 0.0 0.4258 -47.9 156.4 -37.3 166.3 KAN082A THER 400.0 0.2118 -42.9 157.0 -32.4 165.3 KAN082A THER 450.0 0.1985 -43.2 156.6 -32.8 165.1 KAN082B INIT 0.0 0.2361 -66.9 -147.6 -52.0 -149.5 106 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN082B THER 400.0 0.1344 -75.5 177.9 -61.4 -167.8 KAN082B THER 450.0 0.0697 27.0 -140.7 41.6 -138.3 KAN082C INIT 0.0 0.3670 -30.8 149.1 -22.1 155.2 KAN082C THER 400.0 0.2888 -19.8 149.9 -11.3 153.4 KAN082C THER 450.0 0.2790 -21.8 148.5 -13.4 152.5 KAN082D INIT 0.0 0.1708 -31.2 -179.1 -17.6 -176.2 KAN082D THER 400.0 0.1119 -17.8 -178.3 -4.2 -177.1 KAN082D THER 450.0 0.1160 -16.4 175.8 -3.5 177.1 KAN083 2105.5 28.3 26.2 1 KAN083A INIT 0.0 0.0410 19.7 39.3 5.0 38.7 KAN083A THER 400.0 0.0061 43.8 39.2 29.1 37.1 KAN083A THER 450.0 0.0083 56.6 134.4 58.1 110.8 KAN083B INIT 0.0 0.0830 20.2 27.9 5.2 27.9 KAN083B THER 400.0 0.0347 17.9 39.6 3.2 39.0 KAN083B THER 450.0 0.0312 18.2 45.5 3.9 44.6 KAN083C INIT 0.0 0.0772 19.0 19.9 4.1 20.3 KAN083C THER 400.0 0.0248 44.2 13.1 29.6 15.6 KAN083C THER 450.0 0.0159 52.1 24.9 37.1 25.4 KAN083D INIT 0.0 0.0801 22.2 29.5 7.2 29.3 KAN083D THER 400.0 0.0350 37.7 33.1 22.7 32.3 KAN083D THER 450.0 0.0301 34.0 41.2 19.4 39.5 KAN083E INIT 0.0 0.0708 22.6 27.1 7.6 27.1 KAN083E THER 400.0 0.0305 45.6 17.4 30.7 19.2 KAN083E THER 450.0 0.0266 36.9 16.3 22.1 17.8 KAN113 2105.8 35.3 19.6 II KAN113A INIT 0.0 0.0851 53.9 10.5 35.7 19.1 KAN113A THER 400.0 0.0286 72.3 165.5 72.9 97.1 KAN113A THER 450.0 0.0244 64.5 143.0 61.8 102.5 KAN113A THER 500.0 0.0239 67.6 162.1 69.8 108.7 KAN113B INIT 0.0 0.0855 59.7 -4.1 43.4 11.1 KAN113B THER 400.0 0.0211 29.5 0.7 13.5 5.5 KAN113B THER 450.0 0.0192 30.2 9.8 12.6 13.5 KAN113B THER 500.0 0.0136 -3.7 18.4 -22.2 16.7 KAN113C INIT 0.0 0.0579 55.9 8.1 38.0 17.9 KAN113C THER 400.0 0.0172 30.4 17.8 11.7 20.6 KAN113C THER 450.0 0.0121 45.9 -2.7 30.0 7.0 KAN113C THER 500.0 0.0096 53.0 33.1 33.1 35.1 KAN113D INIT 0.0 0.0647 71.1 34.5 51.2 37.2 KAN113E INIT 0.0 0.0711 59.7 43.8 39.7 42.5 KAN113E THER 400.0 0.0256 36.7 20.1 17.7 23.3 KAN113E THER 450.0 0.0222 38.2 2.0 21.7 8.6 KAN113E THER 500.0 0.0159 34.3 -4.5 19.1 2.2 KAN084 2164.5 •38.4 -132.5 I KAN084A INIT 0.0 0.0457 -41.4 -86.8 -34.1 -97.1 KAN084A THER 400.0 0.0361 -47.6 -122.6 -34.3 -128.7 KAN084A THER 450.0 0.0364 -49.8 -121.6 -36.5 -128.3 KAN084B INIT 0.0 0.0496 -39.4 -85.0 -32.5 -94.8 KAN084B THER 400.0 0.0351 -50.9 -90.7 -42.3 -103.9 KAN084B THER 450.0 0.0352 -49.7 -98.4 -39.8 -109.7 KAN084C INIT 0.0 0.0240 -36.0 -105.7 -25.2 -111.9 KAN084D INIT 0.0 0.0684 -47.7 -141.8 -32.9 -144.0 KAN084D THER 100.0 0.0682 -43.2 -140.4 -28.5 -142.6 KAN084D THER 200.0 0.0677 -44.6 -142.0 -29.8 -144.0 KAN084D THER 300.0 0.0702 -43.7 -140.7 -28.9 -142.9 KAN084D THER 400.0 0.0719 -43.0 -144.3 -28.2 -145.8 KAN084D THER 450.0 0.0680 -41.9 -146.0 -27.0 -147.2 KAN084D THER 500.0 0.0643 -38.0 -141.9 -23.3 -143.5 107 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN084D THER 525.0 0.0620 -44.5 -139.1 -29.9 -141.6 KAN084D THER 550.0 0.0563 -38.4 -139.2 -23.7 -141.3 KAN084D THER 575.0 0.0442 -52.6 -154.4 -37.6 -154.1 KAN084D THER 600.0 0.0548 -42.2 -128.4 -28.3 -132.5 KAN084D THER 625.0 0.0492 -45.2 -131.9 -31.0 -135.8 KAN084D THER 650.0 0.0462 -36.9 -128.0 -23.1 -131.4 KAN084E INIT 0.0 0.0571 -57.3 -144.0 -42.4 -146.4 KAN084E THER 100.0 0.0541 -55.3 -140.4 -40.6 -143.6 KAN084E THER 200.0 0.0569 -55.1 -145.5 -40.2 -147.4 KAN084E THER 300.0 0.0603 -57.1 -143.1 -42.3 -145.8 KAN084E THER 400.0 0.0593 -59.5 -132.8 -45.1 -138.6 KAN084E THER 450.0 0.0573 -61.4 -139.1 -46.7 -143.3 KAN084E THER 500.0 0.0585 -58.4 -145.4 -43.5 -147.6 KAN084E THER 525.0 0.0505 -65.9 -156.7 -50.9 -155.4 KAN084E THER 550.0 0.0460 -56.0 -135.9 -41.5 -140.3 KAN084E THER 575.0 0.0370 -54.2 176.3 -40.8 -176.2 KAN084E THER 600.0 0.0391 -48.3 -162.0 -33.5 -160.2 KAN084E THER 625.0 0.0407 -71.8 -118.8 -58.3 -133.5 KAN084E THER 650.0 0.0331 -50.2 -128.2 -36.3 -133.6 KAN085 2174.5 •45.8 -176.1 1 KAN085A INIT 0.0 0.0225 -47.1 159.4 -36.1 168.6 KAN085A THER 200.0 0.0237 -52.7 -179.9 -38.9 -173.7 KAN085A THER 250.0 0.0252 -54.8 173.9 -41.6 -177.9 KAN085A THER 300.0 0.0178 -58.4 -171.9 -44.0 -166.6 KAN085B INIT 0.0 0.0174 -50.8 -159.9 -35.9 -158.3 KAN085B THER 200.0 0.0166 -53.3 -170.9 -38.8 -166.6 KAN085B THER 250.0 0.0179 -45.3 -156.6 -30.4 -155.9 KAN085B THER 300.0 0.0138 -54.8 -164.7 -40.1 -161.8 KAN085C INIT 0.0 0.0174 -64.3 -175.9 -50.1 -168.2 KAN085C THER 200.0 0.0179 -86.9 -131.9 -72.1 -149.4 KAN085C THER 250.0 0.0185 -87.0 162.6 -72.8 -160.0 KAN085C THER 300.0 0.0203 -67.9 -164.7 -53.1 -160.3 KAN085D INIT 0.0 0.0161 -48.6 -135.9 -34.2 -139.4 KAN085D THER 200.0 0.0140 -66.3 133.3 -58.8 158.9 KAN085D THER 250.0 0.0133 -44.1 118.9 -41.7 132.8 KAN085D THER 300.0 0.0140 -43.5 135.9 -37.2 147.6 KAN086 2196.0 48.3 32.0 1 KAN086A INIT 0.0 0.0542 61.5 20.0 46.5 22.2 KAN086A THER 100.0 0.0513 59.7 22.9 44.7 24.1 KAN086A THER 200.0 0.0391 58.7 31.0 43.7 29.8 KAN086A THER 300.0 0.0296 60.4 17.6 45.5 20.4 KAN086A THER 400.0 0.0191 61.2 37.4 46.4 34.3 KAN086A THER 450.0 0.0219 61.1 43.2 46.5 38.3 KAN086A THER 500.0 0.0183 56.6 32.2 41.6 30.9 KAN086A THER 525.0 0.0123 83.0 56.1 68.6 36.4 KAN086A THER 550.0 0.0203 44.7 35.3 29.8 33.8 KAN086A THER 575.0 0.0041 -54.4 141.3 -46.3 156.8 KAN086A THER 600.0 0.0092 45.8 17.4 30.9 19.2 KAN086A THER 625.0 0.0224 48.8 17.5 34.0 19.5 KAN086A THER 650.0 0.0172 45.4 1.5 31.6 6.2 KAN086B INIT 0.0 0.0553 57.5 6.6 43.2 12.1 KAN086B THER 100.0 0.0514 54.2 5.0 40.0 10.4 KAN086B THER 200.0 0.0385 53.5 3.9 39.4 9.4 KAN086B THER 300.0 0.0217 57.9 16.0 43.1 19.0 KAN086B THER 400.0 0.0205 52.8 -5.9 39.6 1.8 KAN086B THER 450.0 0.0199 38.6 16.2 23.9 17.8 KAN086B THER 500.0 0.0233 43.4 -11.9 31.2 -5.3 KAN086B THER 525.0 0.0139 58.5 20.1 43.5 22.0 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN086B THER 550.0 0.0304 45.0 42.3 30.4 39.5 KAN086B THER 575.0 0.0144 24.0 140.3 29.1 133.2 KAN086B THER 600.0 0.0174 58.1 96.1 50.5 77.8 KAN086B THER 625.0 0.0238 53.4 56.2 39.8 49.3 KAN086B THER 650.0 0.0162 65.9 45.6 51.4 39.0 KAN086C INIT 0.0 0.0980 63.6 24.4 48.6 25.2 KAN086C THER 400.0 0.0294 57.3 85.6 47.7 70.3 KAN086C THER 450.0 0.0279 55.9 84.8 46.3 70.4 KAN086D INIT 0.0 0.1090 67.1 28.2 52.1 27.8 KAN086D THER 400.0 0.0217 63.8 27.2 48.8 27.1 KAN086D THER 450.0 0.0203 67.5 42.2 52.8 36.6 KAN087 2215.5 46.5 55.7 1 KAN087A INIT 0.0 0.2016 64.8 75.3 53.2 59.1 KAN087A THER 400.0 0.0873 46.2 88.6 37.7 77.4 KAN087A THER 450.0 0.0784 44.4 93.8 37.1 82.4 KAN087B INIT 0.0 0.3458 71.3 47.2 56.8 38.7 KAN087B THER 400.0 0.0777 68.0 61.8 54.7 48.7 KAN087B THER 450.0 0.0629 76.1 88.7 65.3 57.3 KAN087C INIT 0.0 0.1197 66.7 13.7 52.0 18.5 KAN087C THER 400.0 0.0369 50.1 37.5 35.3 35.2 KAN087C THER 450.0 0.0266 55.7 42.5 41.1 38.5 KAN087D INIT 0.0 0.1805 67.2 22.0 52.3 23.8 KAN087D THER 400.0 0.0594 64.3 79.0 53.3 61.8 KAN087D THER 450.0 0.0505 67.4 88.6 57.6 66.1 KAN088 2224.0 20.8 6.8 1 KAN088A INIT 0.0 0.5853 47.6 -1.7 34.0 4.0 KAN088A THER 400.0 0.1468 46.9 1.1 33.1 6.1 KAN088A THER 450.0 0.1345 46.1 -2.9 32.8 2.8 KAN088B INIT 0.0 0.6594 40.1 15.0 25.3 16.9 KAN088B THER 400.0 0.1853 34.5 16.0 19.8 17.4 KAN088B THER 450.0 0.1680 35.6 16.7 20.8 18.1 KAN088C INIT 0.0 0.6614 40.2 2.1 26.3 5.9 KAN088C THER 400.0 0.2067 32.1 -6.5 19.3 -2.7 KAN088C THER 450.0 0.1846 33.7 -7.7 21.1 -3.5 KAN088D INIT 0.0 0.6340 32.1 3.1 18.3 5.8 KAN088D THER 400.0 0.2592 24.4 4.8 10.5 6.5 KAN088D THER 450.0 0.2265 24.5 6.6 10.4 8.2 KAN089 2228.0 16.9 24.0 1 KAN089A INIT 0.0 0.3023 38.6 22.7 23.7 23.4 KAN089A THER 100.0 0.2913 38.8 23.8 23.8 24.3 KAN089A THER 200.0 0.2676 38.2 23.7 23.2 24.2 KAN089A THER 300.0 0.2549 40.5 24.5 25.5 24.9 KAN089A THER 400.0 0.2455 38.5 26.5 23.5 26.5 KAN089A THER 450.0 0.2445 37.5 27.1 22.5 27.1 KAN089A THER 500.0 0.2304 40.2 30.0 25.2 29.5 KAN089A THER 525.0 0.2212 36.9 25.1 21.9 25.3 KAN089A THER 550.0 0.2148 39.5 26.6 24.5 26.6 KAN089A THER 575.0 0.2021 37.6 25.0 22.6 25.3 KAN089A THER 600.0 0.1836 36.4 31.7 21.4 31.0 KAN089A THER 625.0 0.0084 18.4 111.2 16.3 106.5 KAN089A THER 650.0 0.0094 26.9 100.5 21.8 94.0 KAN089B INIT 0.0 0.1980 44.6 16.7 29.8 18.5 KAN089B THER 100.0 0.1875 43.1 19.0 28.3 20.3 KAN089B THER 200.0 0.1689 42.5 18.7 27.6 20.1 KAN089B THER 300.0 0.1612 40.9 19.0 26.0 20.2 KAN089B THER 400.0 0.1572 41.3 19.5 26.4 20.7 KAN089B THER 450.0 0.1480 40.2 19.4 25.3 20.6 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KAN089B THER 500.0 0.1379 40.3 17.9 25.5 19.3 KAN089B THER 525.0 0.1339 40.9 17.6 26.1 19.1 KAN089B THER 550.0 0.1257 40.0 19.3 25.2 20.5 KAN089B THER 575.0 0.1141 41.1 18.4 26.3 19.8 KAN089B THER 600.0 0.1001 39.6 21.3 24.6 22.2 KAN089B THER 625.0 0.0063 -21.0 151.6 -12.1 155.2 KAN089B THER 650.0 0.0163 46.5 96.0 39.5 83.4 KAN089C INIT 0.0 0.3437 23.3 23.1 8.3 23.4 KAN089C THER 400.0 0.3154 20.3 25.0 5.3 25.2 KAN089C THER 450.0 0.3065 20.0 24.7 5.0 24.8 KAN089D INIT 0.0 0.3079 32.0 21.3 17.0 22.0 KAN089D THER 400.0 0.2803 29.7 21.8 14.7 22.3 KAN089D THER 450.0 0.2722 29.6 23.2 14.6 23.5 KAN090 2244.0 29.9 27.9 I KAN090A INIT 0.0 0.8985 42.2 20.9 27.3 21.9 KAN090A THER 400.0 0.8528 41.8 23.3 26.8 23.9 KAN090A THER 450.0 0.8351 40.8 24.0 25.8 24.5 KAN090B INIT 0.0 1.0130 50.2 26.2 35.2 26.4 KAN090B THER 400.0 0.9597 51.6 26.8 36.6 26.8 KAN090B THER 450.0 0.9509 51.9 25.5 36.9 25.8 KAN090C INIT 0.0 1.0984 44.8 33.8 29.9 32.5 KAN090C THER 400.0 1.0450 44.1 34.5 29.2 33.2 KAN090C THER 450.0 0.5798 63.6 107.3 57.7 82.3 KAN090C THER 450.0 1.0316 44.3 35.4 29.4 33.9 KAN090D INIT 0.0 1.3159 40.4 27.4 25.4 27.4 KAN090D THER 400.0 1.2714 41.9 27.9 26.9 27.7 KAN090D THER 450.0 1.2534 41.5 28.4 26.5 28.2 110 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Naiad Khad Data Sample Height Inclination Declination Class NAM TRET TRELEV INT INC2 DEC2 INC3 DEC3 NAL103 1.5 -31.1 173.1 1 NAL103A INIT 0.0 0.4199 -15.4 -180.0 -14.0 173.6 NAL103A THER 400.0 0.3782 -24.2 177.7 -21.1 167.6 NAL103A THER 450.0 0.3096 -24.9 177.9 -21.7 167.5 NAL103B INIT 0.0 0.0824 3.8 178.6 4.1 -179.8 NAL103B THER 400.0 0.0702 -28.6 -169.1 -30.3 177.2 NAL103B THER 450.0 0.0540 -31.6 -170.7 -32.3 174.1 NAL103C INIT 0.0 0.1614 -25.6 174.6 -21.1 164.3 NAL103C THER 400.0 0.1436 -36.9 -173.9 -35.6 168.2 NAL103C THER 450.0 0.1170 -33.7 -176.2 -32.0 168.1 NAL103D INIT 0.0 0.1379 -16.5 173.3 -12.3 167.1 NAL103D THER 400.0 0.1357 -33.1 -162.9 -36.8 -179.8 NAL103D THER 450.0 0.1145 -31.0 -160.1 -36.1 -175.9 NAL102 2.5 -26.4 174.0 1 NAL102A INIT 0.0 0.3057 -18.4 -161.1 -24.4 -170.4 NAL102A THER 400.0 0.2456 -26.1 -173.5 -26.3 174.5 NAL102A THER 450.0 0.2139 -25.5 -176.8 -24.5 171.9 NAL102B INIT 0.0 0.1128 -47.3 -146.7 -55.4 -175.9 NAL102B THER 400.0 0.1095 -30.8 -179.3 -28.2 167.0 NAL102B THER 450.0 0.0995 -28.1 174.7 -23.4 163.2 NAL102C INIT 0.0 0.2438 -24.0 -164.1 -28.3 -175.9 NAL102C THER 400.0 0.2141 -29.5 -170.0 -30.7 175.9 NAL102C THER 450.0 0.1754 -31.5 -171.9 -31.7 173.1 NAL102D INIT 0.0 0.2844 -34.8 -162.4 -38.5 179.6 NAL102D THER 400.0 0.2434 -28.4 -175.5 -27.5 171.5 NAL102D THER 450.0 0.2119 -29.4 -176.3 -28.1 170.3 NAL102E INIT 0.0 0.3126 -9.3 -171.1 -12.1 -175.6 NAL102E THER 400.0 0.2531 -21.7 -176.4 -21.2 174.0 NAL102E THER 450.0 0.2048 -24.3 178.4 -21.4 168.2 NAL030 3.0 -23.2 170.6 1 NAL030A INIT 0.0 0.0419 7.9 -164.2 0.9 -162.4 NAL030A THER 400.0 0.0523 -29.5 -164.0 -33.2 -178.7 NAL030A THER 450.0 0.0645 -31.2 -171.4 -31.7 173.6 NAL030B INIT 0.0 0.0629 -8.0 174.9 -5.3 172.1 NAL030B THER 400.0 0.0621 -27.3 -178.9 -25.2 169.1 NAL030B THER 450.0 0.0567 -22.8 -178.7 -21.2 171.5 NAL030C INIT 0.0 0.1508 -13.1 174.5 -9.7 169.7 NAL030C THER 400.0 0.1430 -22.7 178.2 -20.0 168.8 NAL030C THER 450.0 0.1571 -22.8 178.4 -20.1 168.8 NAL030D INIT 0.0 0.0643 -10.4 163.3 -2.8 160.7 NAL030D THER 400.0 0.0759 -33.6 172.4 -27.4 158.5 NAL030D THER 450.0 0.0694 -25.2 -175.5 -24.7 173.1 NAL030E INIT 0.0 0.1571 -37.1 172.4 -30.6 156.6 NAL030E THER 400.0 0.1416 -28.8 176.8 -24.9 164.6 NAL030E THER 450.0 0.1622 -21.9 175.3 -18.1 166.6 NAL104 8.0 -4.5 155.5 1 NAL104A INIT 0.0 0.0336 7.4 81.0 31.0 79.5 NAL104A THER 200.0 0.0485 -21.3 139.0 -4.8 134.9 NAL104A THER 400.0 0.0471 -12.6 146.9 1.0 144.8 ill Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL104A THER 450.0 0.0453 -11.4 149.1 1.4 147.3 NAL104B INIT 0.0 0.0637 23.8 131.1 40.4 142.2 NAL104B THER 200.0 0.0696 -0.5 148.7 11.8 150.7 NAL104B THER 400.0 0.0632 -0.5 153.0 10.2 154.9 NAL104B THER 450.0 0.0633 -9.0 153.7 2.0 152.4 NAL104C INIT 0.0 0.0566 23.8 177.9 22.5 -171.7 NAL104C THER 200.0 0.0557 1.4 167.4 6.3 169.0 NAL104C THER 400.0 0.0406 -6.9 167.7 -1.3 166.0 NAL104C THER 450.0 0.0440 -2.7 158.6 6.0 159.2 NAL104D INIT 0.0 0.0222 32.1 19.8 37.0 3.3 NAL104D THER 200.0 0.0056 -25.3 127.0 -5.5 123.1 NAL104D THER 400.0 0.0090 -28.7 -160.9 -33.7 -175.4 NAL104D THER 450.0 0.0109 -31.5 177.8 -27.7 164.1 NAL105 10.0 -37.2 174.2 II NAL105A INIT 0.0 0.0080 12.2 -107.4 -10.8 -107.3 NAL105A THER 200.0 0.0154 -27.8 -141.8 -40.4 -156.0 NAL105A THER 400.0 0.0184 -31.3 -163.5 -35.0 -179.3 NAL105A THER 450.0 0.0227 -37.6 -167.6 -38.8 173.2 NAL105B INIT 0.0 0.0208 -60.1 86.8 -36.1 88.0 NAL105B THER 200.0 0.0138 -63.1 133.2 -42.9 115.0 NAL105B THER 400.0 0.0104 -83.1 154.3 -62.3 103.5 NAL105B THER 450.0 0.0106 -83.1 -112.9 -72.2 98.9 NAL105C INIT 0.0 0.0228 39.7 94.7 63.6 98.2 NAL105C THER 200.0 0.0110 20.1 133.6 36.2 143.4 NAL105C THER 400.0 0.0075 20.7 116.1 41.6 123.4 NAL105C THER 450.0 0.0068 2.1 140.1 17.1 143.3 NAL105D INIT 0.0 0.0424 28.2 -108.8 5.3 -106.5 NAL105D THER 200.0 0.0145 10.0 -122.6 -10.3 -122.7 NAL105D THER 400.0 0.0075 -0.8 -144.4 -14.5 -147.1 NAL105D THER 450.0 0.0076 -1.2 -124.1 -20.8 -126.9 NAL031 10.5 65.0 -41.4 1 NAL031A INIT 0.0 0.0461 55.8 168.9 53.1 -156.7 NAL031A THER 200.0 0.0136 54.0 -168.5 43.7 -142.8 NAL031A THER 250.0 0.0111 63.7 -166.6 51.0 -133.2 NAL031A THER 300.0 0.0101 50.2 -170.4 41.2 -147.0 NAL031B INIT 0.0 0.0659 59.0 162.3 57.8 -157.3 NAL031B THER 200.0 0.0315 52.8 153.9 56.7 -171.5 NAL031B THER 250.0 0.0296 53.9 155.3 56.9 -169.0 NAL031B THER 300.0 0.0257 50.8 146.0 58.4 179.1 NAL031C INIT 0.0 0.0219 83.9 163.3 67.0 -105.2 NAL031C THER 200.0 0.0138 24.6 21.7 31.2 9.2 NAL031C THER 250.0 0.0153 22.4 20.1 28.5 8.8 NAL031C THER 300.0 0.0133 15.1 15.0 19.8 7.5 NAL031D INIT 0.0 0.0251 39.2 -29.8 24.9 -42.1 NAL031D THER 200.0 0.0118 7.5 -19.3 -0.8 -20.7 NAL031D THER 250.0 0.0114 20.8 -10.2 14.9 -17.8 NAL031D THER 300.0 0.0124 14.8 -3.9 11.9 -9.7 NAL032 19.0 -34.4 162.4 I NAL032A INIT 0.0 0.1329 -39.4 175.1 -33.6 157.5 NAL032A THER 400.0 0.1219 -37.4 178.7 -33.2 161.7 NAL032A THER 450.0 0.1171 -37.8 179.3 -33.8 161.9 NAL032B INIT 0.0 0.1879 -38.4 178.5 -34.0 160.9 NAL032B THER 400.0 0.1655 -38.7 -179.7 -35.0 162.1 NAL032B THER 450.0 0.1567 -37.8 176.8 -32.8 159.9 NAL032C INIT 0.0 0.1701 -41.7 -179.3 -37.7 160.6 NAL032C THER 400.0 0.1536 -39.8 178.5 -35.2 160.0 112 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL032C THER 450.0 0.1455 -39.9 180.0 -35.8 161.2 NAL032D INIT 0.0 0.1673 -33.5 -176.6 -31.6 167.9 NAL032D THER 400.0 0.1470 -40.2 -177.2 -37.2 163.4 NAL032D THER 450.0 0.1367 -34.2 -180.0 -30.9 164.5 NAL032E INIT 0.0 0.1643 -34.3 -178.6 -31.5 165.6 NAL032E THER 400.0 0.1464 -34.5 -179.5 -31.4 164.8 NAL032E THER 450.0 0.1404 -33.4 -178.1 -30.9 166.6 NAL033 22.0 -11.6 -176.3 1 NAL033A INIT 0.0 0.0592 7.0 -158.1 -2.3 -157.2 NAL033A THER 400.0 0.0485 -10.6 -168.2 -14.5 -173.6 NAL033A THER 450.0 0.0498 -12.9 -161.6 -19.2 -168.4 NAL033B INIT 0.0 0.0658 -12.7 -166.6 -17.0 -173.0 NAL033B THER 400.0 0.0553 -20.5 -175.3 -20.5 175.6 NAL033B THER 450.0 0.0534 -12.3 -174.8 -13.3 179.7 NAL033C INIT 0.0 0.1267 2.6 -172.5 -0.7 -172.1 NAL033C THER 400.0 0.0919 1.4 -172.2 -1.9 -172.3 NAL033C THER 450.0 0.0885 0.6 -167.4 -4.6 -168.2 NAL033D INIT 0.0 0.0877 0.0 -163.3 -6.7 -164.6 NAL033D THER 400.0 0.0801 -6.7 -172.1 -9.3 -175.5 NAL033D THER 450.0 0.0776 3.8 -171.3 -0.1 -170.5 NAL034 107.0 -12.1 -152.4 1 NAL034A INIT 0.0 0.0952 3.7 -150.4 -9.7 -151.6 NAL034A THER 400.0 0.0861 -4.8 -161.2 -13.5 -165.1 NAL034A THER 450.0 0.0786 -3.4 -164.2 -10.9 -167.3 NAL034B INIT 0.0 0.1011 12.3 -149.0 -2.2 -147.2 NAL034B THER 400.0 0.0886 1.4 -156.8 -9.4 -158.4 NAL034B THER 450.0 0.0862 4.5 -156.2 -6.8 -156.7 NAL034C INIT 0.0 0.1057 13.2 -138.9 -4.5 -137.5 NAL034C THER 400.0 0.0959 6.2 -144.7 -9.4 -145.3 NAL034C THER 450.0 0.0835 5.7 -146.9 -9.1 -147.5 NAL034D INIT 0.0 0.1256 11.6 -130.0 -8.5 -129.6 NAL034D THER 400.0 0.1110 1.8 -138.6 -15.5 -140.8 NAL034D THER 450.0 0.1065 4.1 -138.4 -13.3 -139.9 NAL035 117.0 -18.7 176.1 1 NAL035A INIT 0.0 0.0921 -1.3 -169.0 -14.7 -172.9 NAL035A THER 400.0 0.0959 -5.3 -173.0 -16.4 -178.5 NAL035A THER 450.0 0.0914 -5.7 -174.9 -15.9 179.6 NAL035B INIT 0.0 0.1500 -2.3 178.9 -9.9 175.7 NAL035B THER 400.0 0.1454 -8.2 175.7 -13.4 169.9 NAL035B THER 450.0 0.1405 -7.3 174.8 -12.2 169.6 NAL035C INIT 0.0 0.0476 -15.3 -172.2 -25.5 177.0 NAL035C THER 400.0 0.0632 -21.6 -170.9 -31.6 174.6 NAL035C THER 450.0 0.0573 -22.5 -173.5 -31.1 171.6 NAL035D INIT 0.0 0.1623 -0.5 -175.7 -10.9 -178.6 NAL035D THER 400.0 0.1633 -4.0 -177.4 -13.2 178.2 NAL035D THER 450.0 0.1563 -2.1 -176.8 -11.8 179.6 NAL036 128.0 -38.0 -170.2 1 NAL036A INIT 0.0 0.0414 -6.8 -159.7 -23.8 -166.7 NAL036A THER 200.0 0.0458 -18.2 -165.2 -31.4 -178.1 NAL036A THER 250.0 0.0458 -17.9 -163.3 -32.0 -176.0 NAL036A THER 300.0 0.0456 -17.2 -165.4 -30.4 -177.7 NAL036B INIT 0.0 0.0523 -6.9 -167.2 -20.5 -173.9 NAL036B THER 200.0 0.0592 -16.4 -167.5 -28.7 -179.2 NAL036B THER 250.0 0.0597 -15.7 -167.4 -28.2 -178.7 113 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL036B THER 300.0 0.0606 -17.0 -168.2 -28.9 179.7 NAL036C INIT 0.0 0.0399 -7.1 -143.9 -30.2 -150.6 NAL036C THER 200.0 0.0456 -24.2 -148.3 -44.3 -164.1 NAL036C THER 250.0 0.0444 -24.5 -148.4 -44.4 -164.5 NAL036C THER 300.0 0.0468 -24.0 -150.4 -43.1 -166.4 NAL036D INIT 0.0 0.0382 -13.6 -153.0 -32.8 -163.2 NAL036D THER 200.0 0.0472 -27.5 -156.7 -43.3 -175.6 NAL036D THER 250.0 0.0454 -26.3 -156.9 -42.2 -174.9 NAL036D THER 300.0 0.0485 -26.1 -157.5 -41.8 -175.4 NAL036E INIT 0.0 0.0391 -6.8 -128.9 -34.3 -133.6 NAL036E THER 200.0 0.0401 -17.6 -136.1 -42.7 -146.1 NAL036E THER 250.0 0.0415 -15.4 -134.2 -41.2 -142.8 NAL036E THER 300.0 0.0408 -17.8 -137.0 -42.6 -147.3 NAL037 167.5 31.3 4.6 1 NAL037A INIT 0.0 0.1398 20.9 25.9 38.8 11.5 NAL037A THER 400.0 0.0793 27.6 20.1 42.0 1.1 NAL037A THER 450.0 0.0644 -0.4 36.7 23.4 32.8 NAL037B INIT 0.0 0.1571 21.3 22.2 37.5 7.4 NAL037B THER 400.0 0.1052 16.1 16.7 30.4 5.0 NAL037B THER 450.0 0.0840 3.3 27.9 23.7 22.5 NAL037C INIT 0.0 0.1041 25.0 20.4 39.9 3.2 NAL037C THER 400.0 0.0612 16.8 13.8 29.7 1.8 NAL037C THER 450.0 0.0819 -8.0 33.4 15.1 32.2 NAL037D INIT 0.0 0.1319 19.8 20.1 35.3 6.2 NAL037D THER 400.0 0.0685 7.5 17.0 23.0 9.8 NAL037D THER 450.0 0.0789 20.6 27.0 39.1 12.9 NAL038 167.5 31.4 6.9 I NAL038A INIT 0.0 0.1387 22.8 18.6 37.2 2.9 NAL038A THER 400.0 0.0642 14.2 21.9 31.1 11.2 NAL038A THER 450.0 0.0592 13.8 25.6 32.3 15.2 NAL038B INIT 0.0 0.0974 21.6 25.7 39.3 11.0 NAL038B THER 400.0 0.0532 18.9 15.5 32.3 2.2 NAL038B THER 450.0 0.0491 21.2 24.9 38.7 10.3 NAL038C INIT 0.0 0.0854 23.7 24.8 40.8 8.6 NAL038C THER 400.0 0.0438 14.1 12.8 26.9 2.3 NAL038C THER 450.0 0.0386 24.4 11.5 35.1 -5.0 NAL038D INIT 0.0 0.1342 17.3 21.2 33.6 8.7 NAL038D THER 400.0 0.0746 12.5 21.2 29.3 11.4 NAL038D THER 450.0 0.0574 13.9 24.7 32.1 14.2 NAL038E INIT 0.0 0.1206 26.9 20.7 41.6 2.2 NAL038E THER 400.0 0.0596 21.1 22.2 37.3 7.6 NAL038E THER 450.0 0.0529 30.5 20.9 44.7 -0.2 NAL039 205.0 •25.3 ■173.4 II NAL039A INIT 0.0 0.0091 61.8 -157.1 37.4 -130.6 NAL039A THER 100.0 0.0081 36.4 -163.1 17.7 -149.3 NAL039A THER 200.0 0.0045 12.9 -144.0 -10.8 -143.6 NAL039A THER 300.0 0.0042 -8.5 -173.1 -16.7 179.8 NAL039A THER 400.0 0.0030 33.9 -111.5 2.3 -109.7 NAL039A THER 450.0 0.0020 4.4 -67.1 -21.9 -64.2 NAL039A THER 500.0 0.0035 52.6 -4.2 45.4 -41.8 NAL039A THER 525.0 0.0039 21.6 -127.3 -7.4 -125.5 NAL039A THER 550.0 0.0037 51.3 -124.3 21.0 -116.4 NAL039A THER 575.0 0.0027 10.0 -45.4 -8.5 -45.7 NAL039A THER 600.0 0.0016 -2.2 -161.4 -17.1 -166.4 NAL039A THER 625.0 0.0033 44.8 -23.8 30.9 -47.2 NAL039A THER 650.0 0.0059 53.5 -83.2 22.4 -89.7 114 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL039B INIT 0.0 0.0065 52.2 -155.8 28.9 -135.9 NAL039B THER 100.0 0.0043 4.2 -168.9 -7.9 -169.9 NAL039B THER 200.0 0.0035 -10.1 -159.8 -24.7 -169.1 NAL039B THER 300.0 0.0031 -12.2 -165.1 -24.0 -175.1 NAL039B THER 400.0 0.0027 -2.1 167.9 -1.2 166.9 NAL039B THER 450.0 0.0024 -21.8 173.8 -20.8 160.9 NAL039B THER 500.0 0.0028 -43.8 -30.4 -45.6 2.4 NAL039B THER 525.0 0.0046 -4.5 -150.5 -24.2 -157.2 NAL039B THER 550.0 0.0056 21.5 -146.0 -2.1 -142.2 NAL039B THER 575.0 0.0040 41.0 -120.7 10.4 -116.0 NAL039B THER 600.0 0.0024 14.4 -158.7 -3.6 -156.1 NAL039B THER 625.0 0.0031 -40.3 166.0 -31.8 142.7 NAL039B THER 650.0 0.0022 -75.7 98.1 -44.3 85.5 NAL039C INIT 0.0 0.0034 27.5 -160.8 8.9 -151.9 NAL039C THER 200.0 0.0033 -4.9 -158.0 -21.1 -164.6 NAL039C THER 250.0 0.0034 12.3 -156.1 -6.7 -154.8 NAL039C THER 300.0 0.0019 14.3 -171.2 2.0 -166.8 NAL039D INIT 0.0 0.0041 51.8 -120.6 21.0 -113.9 NAL039D THER 200.0 0.0035 -37.5 180.0 -36.6 154.9 NAL039D THER 250.0 0.0042 4.9 -167.1 -8.1 -168.0 NAL039D THER 300.0 0.0035 -3.2 -164.6 -16.4 -169.8 NAL039E INIT 0.0 0.0031 31.1 -46.5 10.1 -55.9 NAL039E THER 200.0 0.0048 -44.9 161.5 -33.3 136.2 NAL039E THER 250.0 0.0038 -7.6 -143.0 -30.2 -151.1 NAL039E THER 300.0 0.0025 -53.4 -124.6 -76.0 178.2 NAL040 210.5 -24.7 177.9 1 NAL040A INIT 0.0 0.0137 -1.1 -172.1 -10.9 -175.4 NAL040A THER 200.0 0.0160 -8.2 177.9 -11.7 172.1 NAL040A THER 250.0 0.0133 -15.4 171.6 -14.4 162.9 NAL040A THER 300.0 0.0109 -22.4 -173.8 -27.9 171.0 NAL040B INIT 0.0 0.0136 12.8 -165.9 -1.8 -163.1 NAL040B THER 200.0 0.0123 0.9 -146.1 -21.1 -150.3 NAL040B THER 250.0 0.0117 13.4 -168.5 -0.1 -165.0 NAL040B THER 300.0 0.0133 3.0 -129.7 -24.9 -132.9 NAL040C INIT 0.0 0.0144 -17.4 30.6 4.7 33.2 NAL040C THER 200.0 0.0136 1.0 -166.1 -12.0 -169.0 NAL040C THER 250.0 0.0117 7.5 166.8 7.5 171.2 NAL040C THER 300.0 0.0091 1.9 -152.3 -17.6 -156.0 NAL040D INIT 0.0 0.0171 -19.4 158.9 -11.2 150.2 NAL040D THER 200.0 0.0197 -35.3 171.7 -30.7 150.5 NAL040D THER 250.0 0.0178 -18.9 140.9 -2.2 135.6 NAL040D THER 300.0 0.0169 -32.7 172.1 -28.8 152.6 NAL040E INIT 0.0 0.0126 5.7 -156.6 -12.4 -158.2 NAL040E THER 100.0 0.0105 -5.4 -154.3 -23.2 -161.4 NAL040E THER 200.0 0.0122 -12.3 -161.0 -26.1 -171.3 NAL040E THER 300.0 0.0115 -12.4 -176.0 -18.4 175.1 NAL04OE THER 400.0 0.0068 -12.5 -171.5 -20.9 179.0 NAL040E THER 450.0 0.0063 -19.7 -136.3 -43.9 -150.0 NAL04QE THER 500.0 0.0156 -33.6 -135.0 -56.6 -158.9 NAL040E THER 525.0 0.0091 12.0 -32.1 -0.6 -35.1 NAL040E THER 550.0 0.0226 -35.5 154.6 -22.6 137.7 NAL040E THER 575.0 0.0205 49.7 53.6 73.0 7.1 NAL040E THER 600.0 0.0074 2.0 -123.2 -27.4 -126.2 NAL040E THER 625.0 0.0789 -43.7 149.7 -27.3 129.2 NAL040E THER 650.0 0.0396 -36.0 -177.0 -37.0 158.5 NAL040F INIT 0.0 0.0086 -2.5 -163.8 -16.2 -168.7 NAL040F THER 100.0 0.0104 -11.5 -173.1 -19.2 178.1 NAL040F THER 200.0 0.0137 -23.6 -177.1 -27.2 167.4 NAL04OF THER 300.0 0.0119 -22.2 -173.6 -27.8 171.2 115 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. z z z z z z z z z z z z > > > > > > > > > > > > 8§8o>0)§9oS§9§)§>0>09 o o o o o o a > c o n j > > > > 1 “ o O ) z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r P ooooooooooooooooooooooooooooooooooo^ ..................................................................................................... ................................................ -A _A «A -A m m m 000000030DIIiaoa3a3tDDDCDCDCDa)a)>>>>>>>>>>>>>^ z z z z z z z z z > > > > > > > > > 5 5 5 5 5 5 5 5 5 s i i s s s i i s • n u D n i n n i n n 3J 3J 3) 3) 3) 3) 3) 3) ro U l o in to (Jl o © i m u m mmmmmmmmm 3) 3) 3 3 3) 3) 3) 3) 3) 3) 4* 4> - 4» - 4* 4* 4*. 4* 4 > - 010 aio 010 c n o 0 0 0 0 0 0 0 0 0 0 0 0 '0 o '0 o o '0 o '0 o '0 o b cno 610 a i o a i r o o ^ i a i f o o a i o o o o ai ro © ^ ai ro © cn © © o o 0 0 0 0 o 0 0 0 o o w o ui o w o p o o o o o o p o cn © in o o o o o o o o o o o o o 0 o o *0 o o o o o *0 *0 o o o o o o o o 0 o o o o o o 'o b b o><no>cncncncnAACOfo a t r o o ^ c n i o o c n o o o o ooaxncnuK n^^uro- ( n r o p s c n r o o o i o o o o oxDOxncnuiwf ^ aiw psoiw ocno o u i o p o o i o o o b b b b b b b b ' o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ^ ^ ^ 0 0 0 0 0 0 ............ . _> -4 C O - < 4 (0 c n o o c n c n c n - ^ in o o T O O o o o a i ^O D CO fO X kA CO .. . c n -s jc o c n c o c o c o -s ic o 1 ro a> 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 O 0 O 0 0 0 b b 0 0 O 0 0 0 b o o b 0 b b b O b O 0 0 a i O! -si -4 00 C O cn a i cn G O A A cn cn cn 0 in -4 -s | 00 00 C O C O 00 10 o> 8 cn C O 0> C O 00 w 5 0 5 8 o r o o> -4 ro C O ro (O ro >1 0 o> cn 0) -a -* o> * > 4 ro o> a 00 _ a O) C O C O ro S ro 00 ro -sj a a > o < a> -si <0 ro co © < 0 0 0 0 0 0 0 0 0 ^>00000000 W ^J nIC*)-* O O O Qippro^tggtog in a in ^4 ^4 < in cn cn rb cn a ro C O A a 0 0 ■ b b C O C O '-4 b 00 ’ •4 fo A cn A 2 co S i 00 A 0 2 3 cn 0 * - s i b — k -4 go 0 to O ’ •si o > 00 -4 ••i o> -si -s| •si -si -si o> 00 -sj 00 -s | 3 -4 ■sj ^4 -si cn cn cn cn -si •4 -si *s| -si -s| -si -si -s| -si O) cn cn 0 0 A ro cn C O ro C O 00 a> C O 00 p A 0 _ A -si -si C O A cn cn A cn A A ro C O o> C O ’ cn b C O b b b fo 1 a * 0 0 fo b b ’ — * ■ ’ 0 C O fo -s| b b b b b -si A b fo b fo ’ O b '00 ’ 0 ’ 00 *0 fo -si -s | C O _ A ro , C O -si A <0 •si -si C O -sj -si -si -si cn cn cn 2 cn cn cn cn cn •si cn CD cn 0 0 C O -si ro 0 00 -si cn C O — * A 10 0 C O C O 00 p > ro C O C O 0 C O cn * - a O A * - s J C O •si ’ -si b b fo * A fo * 0 1 b b 0 fo b fo b -a CD b fo •si b b cn cn cn cn cn cn C D a C O C O ro b b a fo b A 00 o I « I I ( I « I b b A A C o - * r o c o - « > AG5-t-*in-4&©cn *A o b ‘ oo fo b *-t o oaiaouoKOS o b> h b 00 K> b a s t O I O f O f O f O f O C O C O • ( O t O I co © ai-si^ 4cofooro-4ai-A b b o b b b b b ) A ^ b b ro a A A a CO a a 2 C O a C O CO C O CO C O C O ro to C O A C O CO CO C O CO C O CO C O 2 0 9 09 cn cn •4 ro CO cn C O 0 ^i cn A cn ro 09 cn C O O C O 0 0 C O C O 00 -si p cn cn b b b b fo b b b b b 1a a b 0 b 14 0 b b b b O b b 1a 1 a 1a b 1 ^ I4 0 9 b 0 9 1 « 1 01 . -*U(0 -^ A 6 ) (O O ) O ) O ) IV )O ) ^Afo^o^bbb ON i\9 0) 09 0 9 09 09 0 9 0 9 £ 1 00 0 0 09 C O 0 9 09 O to £ 0 9 0 cn 09 <0 b b b C O b b 0 b b OD O D <0'N io)6)(O Q D 'N i< ooD O D <oa>a> a)CB a>a>'N iN '')& & a> O D Q E >'N j< p p p p p ^ p ^ ^ ^ p p p p p p U ^ O p N p p p p ^ S p ; b ^ ^ s i b b b ^ b b f O A b b b A b ’A A b ^ r o b b b b ^ b b b b b b b - A b 00 *«) -J 0 co - • 3 09 cn 0 b b (D U 100 1 © C O O) C O 0> ppp^(ouoo(n b ^ b b *A b ’ -*• to ’ -* NAL107 250.5 -33.4 174.0 I NAL107A INIT 0.0 0.1856 -23.7 -150.5 -36.4 -171.6 NAL107A THER 400.0 0.1597 -26.1 -163.8 -30.1 175.7 NAL107A THER 450.0 0.1386 -24.8 -166.1 -27.9 174.9 NAL107B INIT 0.0 0.1509 -27.0 -134.7 -48.1 -159.7 NAL107B THER 400.0 0.1209 -39.6 -152.0 -46.6 172.1 NAL107B THER 450.0 0.1029 -36.8 -152.9 -44.3 174.4 NAL107C INIT 0.0 0.0926 33.3 -155.4 13.3 -141.3 NAL107C THER 400.0 0.0760 -22.1 -161.8 -28.3 -179.7 NAL107C THER 450.0 0.0633 -25.0 -166.0 -28.0 174.9 NAL107D INIT 0.0 0.0751 32.0 -149.0 9.2 -137.4 NAL107D THER 400.0 0.0577 -23.5 -159.0 -31.1 -178.5 NAL107D THER 450.0 0.0468 -30.7 -164.2 -33.3 171.7 NAL042 304.0 -31.7 179.6 I NAL042A INIT 0.0 0.0863 -23.6 -153.3 -34.6 -173.9 NAL042A THER 400.0 0.0777 -19.7 -152.3 -32.2 -170.0 NAL042A THER 450.0 0.0726 -18.7 -153.3 -30.8 -170.2 NAL042B INIT 0.0 0.0715 -41.8 7.5 -28.2 32.9 NAL042B THER 400.0 0.0566 -21.7 -155.1 -32.1 -173.9 NAL042B THER 450.0 0.0535 -21.7 -159.0 -29.7 -177.1 NAL042C INIT 0.0 0.0731 -20.9 -146.9 -36.3 -166.2 NAL042C THER 400.0 0.0499 -24.3 -154.4 -34.4 -175.4 NAL042C THER 450.0 0.0484 -25.9 -154.7 -35.4 -176.9 NAL042D INIT 0.0 0.0844 -32.6 -26.6 -41.1 1.7 NAL042D THER 400.0 0.0733 -35.4 -164.6 -36.3 167.4 NAL042D THER 450.0 0.0743 -34.2 -164.9 -35.3 168.3 NAL042E INIT 0.0 0.1118 -27.8 -170.3 -27.5 169.5 NAL042E THER 400.0 0.0914 -23.8 -168.7 -25.5 173.7 NAL042E THER 450.0 0.0906 -24.2 -168.5 -25.9 173.5 NAL109 304.0 -47.3 -162.8 I NAL109A INIT 0.0 0.1524 -25.4 -136.5 -45.8 -160.0 NAL109A THER 400.0 0.1095 -34.3 -136.8 -52.3 -169.4 NAL109A THER 450.0 0.0918 -33.3 -136.1 -51.9 -167.6 NAL109B INIT 0.0 0.2151 •8.6 -129.3 -35.4 -140.3 NAL109B THER 400.0 0.1490 -19.3 -135.7 -41.4 -154.2 NAL109B THER 450.0 0.1249 -18.9 -136.4 -40.6 -154.5 NAL109C INIT 0.0 0.1726 -23.9 -132.2 -47.0 -154.2 NAL109C THER 400.0 0.1489 -24.3 -136.0 -45.2 -158.5 NAL109C THER 450.0 0.1241 -23.6 -131.8 -47.0 -153.5 NAL109D INIT 0.0 0.1832 -41.0 -147.7 -50.1 173.4 NAL109D THER 400.0 0.1798 -33.0 -140.2 -49.3 -171.1 NAL109D THER 450.0 0.1611 -31.1 -143.5 -46.0 -172.1 NAL108 304.5 -30.5 -172.6 1 NAL108A INIT 0.0 0.1109 -26.8 -157.8 -34.3 179.9 NAL108A THER 400.0 0.1019 -30.1 -159.8 -35.5 175.5 NAL108A THER 450.0 0.0955 -29.7 -160.9 -34.5 175.1 NAL108B INIT 0.0 0.1076 7.4 -150.1 -11.2 -151.2 NAL108B THER 400.0 0.0898 3.9 -153.0 -12.6 -155.6 NAL108B THER 450.0 0.0807 5.3 -153.5 -11.1 -155.3 NAL108C INIT 0.0 0.0467 -22.4 -150.4 -35.4 -170.4 NAL108C THER 400.0 0.0433 -26.2 -158.8 -33.3 179.6 NAL108C THER 450.0 0.0370 -27.9 -162.1 -32.5 175.6 NAL108D INIT 0.0 0.0652 -16.7 -150.5 -30.9 -166.3 NAL108D THER 400.0 0.0655 -26.1 -149.8 -38.5 -172.9 NAL108D THER 450.0 0.0557 -24.9 -144.8 -40.6 -167.5 117 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL043 331.0 26.8 -6.7 I NAL043A INIT 0.0 0.0111 35.8 22.5 40.8 -8.0 NAL043A THER 100.0 0.0058 36.1 27.6 44.1 -4.4 NAL043A THER 200.0 0.0044 44.3 45.0 59.5 -1.8 NAL043A THER 300.0 0.0032 37.3 25.6 43.7 -7.2 NAL043A THER 400.0 0.0024 24.0 -17.2 9.3 -27.9 NAL043A THER 450.0 0.0012 23.1 -107.0 -12.5 -106.0 NAL043A THER 500.0 0.0028 -4.9 -132.5 -30.7 -141.5 NAL043A THER 525.0 0.0025 23.6 -165.5 10.5 -154.5 NAL043A THER 550.0 0.0045 -38.0 -78.5 -73.0 -57.3 NAL043A THER 575.0 0.0037 -42.2 100.9 -5.7 98.1 NAL043A THER 600.0 0.0024 7.9 -1.4 5.4 -5.9 NAL043A THER 625.0 0.0057 -35.7 -54.8 -59.9 -20.9 NAL043A THER 650.0 0.0021 -66.6 71.8 -30.4 81.8 NAL043B INIT 0.0 0.0127 33.5 9.3 31.5 -15.3 NAL043B THER 100.0 0.0081 30.7 9.0 29.2 -13.2 NAL043B THER 200.0 0.0062 22.4 22.7 31.3 3.7 NAL043B THER 300.0 0.0032 21.0 11.2 23.3 -4.4 NAL043B THER 400.0 0.0051 30.0 28.8 40.6 2.4 NAL043B THER 450.0 0.0021 7.9 69.2 41.9 61.8 NAL043B THER 500.0 0.0050 -23.0 -179.1 -18.7 166.4 NAL043B THER 525.0 0.0097 30.9 100.4 66.6 113.0 NAL043B THER 550.0 0.0060 -22.9 -145.6 -38.6 -166.6 NAL043B THER 575.0 0.0094 6.9 103.1 42.7 107.8 NAL043B THER 600.0 0.0034 38.7 117.8 66.2 154.4 NAL043B THER 625.0 0.0059 -28.9 -112.3 -60.9 -133.0 NAL043B THER 650.0 0.0097 -36.8 -124.1 -61.3 -159.3 NAL043C INIT 0.0 0.0158 37.2 9.5 34.2 -18.2 NAL043C THER 200.0 0.0086 51.6 -5.5 36.2 -40.1 NAL043C THER 250.0 0.0087 14.5 16.9 21.7 4.6 NAL043C THER 300.0 0.0028 52.1 -29.8 26.5 -53.4 NAL043D INIT 0.0 0.0092 25.6 -3.3 18.3 -18.5 NAL043D THER 200.0 0.0050 4.7 42.1 27.9 33.2 NAL043D THER 250.0 0.0055 47.0 -5.0 33.2 -35.7 NAL043D THER 300.0 0.0065 17.8 38.1 36.7 20.8 NAL043E INIT 0.0 0.0186 10.0 -3.6 5.8 -8.8 NAL043E THER 200.0 0.0087 14.2 -6.8 7.3 -13.9 NAL043E THER 250.0 0.0093 12.9 18.9 21.7 7.3 NAL043E THER 300.0 0.0085 10.7 32.0 27.5 20.0 NAL110 332.5 -51.9 -83.9 1 NAL110A INIT 0.0 0.0855 -10.6 -91.0 -47.5 -91.4 NAL110A THER 200.0 0.0841 -13.8 -90.2 -50.8 -90.3 NAL110A THER 400.0 0.0767 -13.0 -90.6 -50.0 -90.9 NAL110A THER 450.0 0.0665 -11.2 -97.4 -47.8 -100.9 NAL110B INIT 0.0 0.0510 -22.7 -101.7 -58.4 -110.9 NAL110B THER 200.0 0.0577 -25.8 -97.1 -62.3 -103.9 NAL110B THER 400.0 0.0585 -30.1 -91.3 -67.1 -92.9 NAL110B THER 450.0 0.0499 -14.5 -103.2 -50.1 -110.1 NAL110C INIT 0.0 0.0413 75.0 -47.5 41.0 -76.6 NAL110C THER 200.0 0.0171 45.2 -109.1 9.5 -103.5 NAL110C THER 400.0 0.0169 9.7 -59.5 -22.2 -57.3 NAL110C THER 450.0 0.0377 -52.3 -178.8 -39.7 142.7 NAL110D INIT 0.0 0.0424 -2.0 -127.3 -30.4 -134.6 NAL110D THER 200.0 0.0395 -36.1 -135.9 -54.0 -170.7 NAL110D THER 400.0 0.0250 -23.8 -104.5 -58.8 -116.2 NAL110D THER 450.0 0.0469 50.9 175.1 40.7 -146.0 118 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL044 349.0 -14.0 -175.2 II NAL044A INIT 0.0 0.0113 12.5 -149.1 -7.5 -147.6 NAL044A THER 200.0 0.0115 2.8 -144.4 -18.1 -148.6 NAL044A THER 250.0 0.0058 52.5 -64.4 17.7 -74.0 NAL044A THER 300.0 0.0038 75.0 -91.0 38.0 -90.3 NAL044B INIT 0.0 0.0081 4.0 -163.2 -6.8 -164.1 NAL044B THER 200.0 0.0063 •28.6 167.1 -15.4 152.5 NAL044B THER 250.0 0.0081 29.1 -161.6 12.9 -148.3 NAL044B THER 300.0 0.0062 -29.0 177.4 -21.3 159.7 NAL044C INIT 0.0 0.0131 40.5 -170.9 26.5 -147.0 NAL044C THER 200.0 0.0109 31.2 -161.3 14.4 -146.8 NAL044C THER 250.0 0.0080 -59.0 -162.2 -51.2 141.6 NAL044C THER 300.0 0.0059 -22.9 -157.7 -31.4 -177.0 NAL044D INIT 0.0 0.0088 -34.5 -151.7 -43.4 177.7 NAL044D THER 200.0 0.0110 -35.5 -176.2 -29.7 159.4 NAL044D THER 250.0 0.0099 -13.1 177.8 -9.1 170.3 NAL044D THER 300.0 0.0086 -23.6 161.5 -8.4 151.4 NAL044E INIT 0.0 0.0057 -19.7 44.5 7.4 47.3 NAL044F INIT 0.0 0.0043 12.0 162.0 20.3 172.9 NAL111 349.0 31.5 -154.7 II NAL111A INIT 0.0 0.0025 34.2 -175.1 24.0 -154.4 NAL111A THER 200.0 0.0024 44.5 -144.0 17.9 -127.3 NAL111A THER 400.0 0.0041 -2.4 -129.6 -29.8 -137.2 NAL111A THER 450.0 0.0096 49.9 -150.7 24.9 -128.3 NAL111B INIT 0.0 0.0094 -2.4 146.8 17.2 151.1 NAL111B THER 200.0 0.0035 6.9 167.8 12.8 174.4 NAL111B THER 400.0 0.0017 -1.9 153.2 14.2 156.9 NAL111B THER 450.0 0.0111 -11.1 167.5 -1.5 163.4 NAL111C INIT 0.0 0.0131 5.3 -163.0 -5.8 -163.2 NAL111C THER 200.0 0.0119 -4.8 -176.7 -5.8 179.7 NAL111C THER 400.0 0.0116 3.1 -179.0 1.9 -177.3 NAL111C THER 450.0 0.0370 66.2 179.9 47.0 -126.3 NAL111D INIT 0.0 0.0074 13.6 -158.6 -1.4 -154.8 NAL111D THER 200.0 0.0073 -35.2 -172.0 -31.9 162.4 NAL111D THER 400.0 0.0047 -46.9 -160.3 -46.2 158.3 NAL111D THER 450.0 0.0091 43.3 165.7 41.0 -159.1 NAL045 450.0 42.0 -104.9 II NAL046A INIT 0.0 0.0151 49.0 -116.5 14.4 -107.6 NAL045A THER 200.0 0.0091 41.1 -151.2 17.9 -133.9 NAL045A THER 250.0 0.0038 57.9 -142.2 28.7 -118.6 NAL045A THER 300.0 0.0044 -2.8 68.1 31.2 64.2 NAL045B INIT 0.0 0.0135 81.4 85.7 61.6 -88.7 NAL045B THER 200.0 0.0120 29.9 120.3 58.1 145.8 NAL045B THER 250.0 0.0096 12.1 116.0 44.1 126.7 NAL045B THER 300.0 0.0093 -5.6 95.9 31.2 96.9 NAL045C INIT 0.0 0.0175 58.1 -67.0 22.7 -77.1 NAL045C THER 200.0 0.0128 73.2 -120.9 37.9 -100.9 NAL045C THER 250.0 0.0149 47.4 -132.6 16.7 -118.6 NAL045C THER 300.0 0.0089 69.7 -117.0 34.2 -101.0 NAL045D INIT 0.0 0.0121 30.9 -7.2 20.2 -24.9 NAL045D THER 200.0 0.0043 54.2 -40.7 24.8 -60.8 NAL045D THER 250.0 0.0030 31.3 -72.4 -4.3 -75.0 NAL045D THER 300.0 0.0065 -4.9 -69.7 -39.1 -63.6 NAL045E INIT 0.0 0.0395 69.5 -55.6 35.1 -76.0 NAL045E THER 200.0 0.0272 64.0 -83.8 27.1 -86.9 NAL045E THER 250.0 0.0277 59.3 -92.7 22.3 -91.5 NAL045E THER 300.0 0.0204 47.1 -100.2 10.5 -97.1 119 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL112 450.0 •24.5 18.3 II NAL112A INIT 0.0 0.0507 46.9 -50.9 15.3 -63.5 NAL112A THER 200.0 0.0229 24.1 -39.2 -1.2 -45.0 NAL112A THER 400.0 0.0275 -11.7 -21.5 -22.2 -10.3 NAL112A THER 450.0 0.0359 -0.2 -38.7 -22.3 -32.5 NAL112B INIT 0.0 0.0366 49.5 -23.7 26.7 -48.2 NAL112B THER 200.0 0.0214 50.1 -45.9 19.6 -61.7 NAL112B THER 400.0 0.0316 58.1 -49.9 25.8 -67.8 NAL112B THER 450.0 0.0218 59.8 -52.7 26.7 -70.0 NAL112C INIT 0.0 0.0264 0.5 28.1 16.9 22.8 NAL112C THER 200.0 0.0180 -35.4 72.5 0.3 75.8 NAL112C THER 400.0 0.0184 -52.5 65.8 -17.4 74.9 NAL112C THER 450.0 0.0157 -52.9 56.9 -19.4 69.5 NAL112D INIT 0.0 0.0126 -2.7 1.0 -1.5 2.4 NAL112D THER 200.0 0.0117 -60.1 18.8 -36.6 54.0 NAL112D THER 400.0 0.0131 -67.8 25.5 -39.9 63.5 NAL112D THER 450.0 0.0069 -59.5 56.1 -25.8 71.7 NAL113 45.0 7.6 -96.5 II NAL113A INIT 0.0 0.0769 46.4 -38.2 18.8 -55.1 NAL113A THER 200.0 0.0406 43.2 -32.0 18.3 -49.3 NAL113A THER 400.0 0.0382 47.6 -39.2 19.5 -56.3 NAL113A THER 450.0 0.0352 40.5 -36.4 14.3 -50.8 NAL113B INIT 0.0 0.0266 48.1 -30.2 23.1 -51.2 NAL113B THER 200.0 0.0152 42.1 -84.0 5.3 -85.5 NAL113B THER 400.0 0.0140 26.9 -97.0 -9.9 -96.3 NAL113B THER 450.0 0.0105 56.9 -75.4 20.5 -81.6 NAL113C INIT 0.0 0.0323 35.0 -168.0 20.8 -149.0 NAL113C THER 200.0 0.0438 14.2 177.0 13.1 -173.7 NAL113C THER 400.0 0.0395 11.3 167.7 16.4 177.1 NAL113C THER 450.0 0.0414 11.1 166.9 16.7 176.3 NAL113D INIT 0.0 0.0280 35.8 -88.2 -1.1 -88.6 NAL113D THER 200.0 0.0173 22.1 -93.0 -14.9 -92.8 NAL113D THER 400.0 0.0211 17.8 -91.7 -19.2 -91.7 NAL113D THER 450.0 0.0222 20.5 -99.4 -16.1 -99.1 NAL046 482.0 10.3 -144.7 I NAL046A INIT 0.0 0.0896 35.7 -157.0 15.9 -141.1 NAL046A THER 400.0 0.0704 35.3 -154.1 14.3 -139.3 NAL046A THER 450.0 0.0643 38.0 -155.4 17.1 -138.6 NAL046B INIT 0.0 0.0475 24.5 -155.2 5.8 -146.2 NAL046B THER 400.0 0.0370 28.5 -157.9 10.5 -145.9 NAL046B THER 450.0 0.0384 30.0 -149.9 7.9 -139.1 NAL046C INIT 0.0 0.1164 26.3 -157.1 8.2 -146.5 NAL046C THER 400.0 0.0958 24.2 -158.8 7.4 -149.1 NAL046C THER 450.0 0.0923 24.2 -159.1 7.6 -149.3 NAL046D INIT 0.0 0.2065 28.1 -156.9 9.6 -145.4 NAL046D THER 400.0 0.1808 28.1 -155.5 9.0 -144.3 NAL046D THER 450.0 0.1630 27.5 -156.6 9.0 -145.6 NAL114 482.0 11.0 -149.4 I NAL114A INIT 0.0 0.1883 26.5 -149.4 4.7 -140.6 NAL114A THER 400.0 0.1691 28.3 -155.6 9.2 -144.3 NAL114A THER 450.0 0.1611 29.3 -154.1 9.3 -142.7 NAL114B INIT 0.0 0.3105 30.1 -164.1 14.9 -149.5 NAL114B THER 400.0 0.2680 27.7 -163.6 12.7 -150.6 NAL114B THER 450.0 0.2528 28.2 -165.7 14.2 -151.8 NAL114C INIT 0.0 0.2207 30.1 -162.3 14.0 -148.1 NAL114C THER 400.0 0.1961 26.1 -165.4 12.4 -152.8 120 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL114C THER 450.0 0.1880 27.2 -168.4 15.0 -154.4 NAL114D INIT 0.0 0.1397 35.3 -157.4 15.8 -141.6 NAL114D THER 400.0 0.1188 25.6 -160.9 9.6 -149.8 NAL114D THER 450.0 0.1189 28.6 -158.8 11.0 -146.6 NAL047 530.5 25.3 7.0 1 NAL047A INIT 0.0 0.1605 17.7 23.5 30.7 6.7 NAL047A THER 400.0 0.1133 11.7 26.4 27.7 13.5 NAL047A THER 450.0 0.1007 10.8 28.5 28.2 15.9 NAL047B INIT 0.0 0.2648 14.8 19.8 26.2 5.7 NAL047B THER 400.0 0.2059 13.7 14.9 22.3 2.3 NAL047B THER 450.0 0.1995 13.2 17.0 23.3 4.4 NAL047C INIT 0.0 0.1779 9.2 22.2 23.2 11.4 NAL047C THER 400.0 0.1361 11.5 25.0 26.7 12.4 NAL047C THER 450.0 0.1284 12.9 26.1 28.4 12.4 NAL047D INIT 0.0 0.1996 10.6 14.8 19.9 4.3 NAL047D THER 400.0 0.1397 13.1 22.5 26.5 9.1 NAL047D THER 450.0 0.1299 13.2 21.6 26.0 8.3 NAL047E INIT 0.0 0.1038 14.7 23.1 28.1 8.5 NAL047E THER 400.0 0.0702 18.3 6.6 20.8 -7.5 NAL047E THER 450.0 0.0690 16.2 7.8 19.9 -5.0 NAL048 589.0 26.7 -5.9 I NAL048A INIT 0.0 0.1658 21.0 13.6 27.1 -3.9 NAL048A THER 400.0 0.1293 19.3 11.6 24.6 -4.2 NAL048A THER 450.0 0.1259 17.4 14.7 25.1 -0.4 NAL048B INIT 0.0 0.1861 24.7 11.5 28.6 -8.3 NAL048B THER 400.0 0.1567 21.1 12.7 26.7 -4.7 NAL048B THER 450.0 0.1544 19.8 13.2 26.0 -3.3 NAL048C INIT 0.0 0.1617 24.8 10.6 28.1 -9.0 NAL048C THER 400.0 0.1256 22.7 12.6 27.8 -5.9 NAL048C THER 450.0 0.1202 22.0 12.2 27.1 -5.7 NAL048D INIT 0.0 0.1767 20.1 18.8 29.6 1.0 NAL048D THER 400.0 0.1350 20.5 16.6 28.6 -1.2 NAL048D THER 450.0 0.1289 19.8 15.8 27.6 -1.2 NAL048E INIT 0.0 0.1617 19.1 13.0 25.4 -2.9 NAL048E THER 400.0 0.1202 25.2 5.4 25.3 -13.2 NAL048E THER 450.0 0.1215 23.1 3.5 22.5 -13.2 NAL001 638.0 30.5 -9.0 I NAL001A INIT 0.0 0.1492 32.0 26.7 41.4 -9.6 NAL001A THER 400.0 0.1144 20.8 21.0 30.6 -2.0 NAL001A THER 450.0 0.1010 22.0 20.8 31.2 -3.3 NAL001B INIT 0.0 0.1225 36.2 32.7 47.8 -11.0 NAL001B THER 400.0 0.0882 28.9 22.9 36.9 -8.5 NAL001B THER 450.0 0.0828 28.7 23.2 37.0 -8.2 NAL001C INIT 0.0 0.1370 40.8 16.2 38.6 -25.0 NAL001C THER 400.0 0.0928 26.2 5.5 23.0 -16.9 NAL001C THER 450.0 0.0885 26.1 4.1 22.0 -17.6 NAL001D INIT 0.0 0.1061 38.1 25.3 43.5 -17.4 NAL001D THER 400.0 0.0768 22.6 13.0 26.1 -9.1 NAL001D THER 450.0 0.0720 21.8 10.3 23.6 -10.1 NAL001E INIT 0.0 0.0915 32.2 29.2 43.2 -8.2 NAL001E THER 400.0 0.0636 27.3 21.8 35.2 -7.6 NAL001E THER 450.0 0.0605 20.6 19.1 29.1 -3.3 121 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL002 651.0 15.9 -0.2 I NAL002A INIT 0.0 0.1669 -6.6 17.7 9.3 16.7 NAL002A THER 400.0 0.1450 -9.1 15.7 6.1 16.9 NAL002A THER 450.0 0.1401 -10.4 13.6 3.7 16.3 NAL002B INIT 0.0 0.1259 18.0 19.2 27.6 -0.9 NAL002B THER 400.0 0.1021 14.2 16.7 23.2 0.4 NAL002B THER 450.0 0.0950 13.6 15.9 22.2 0.4 NAL002C INIT 0.0 0.1083 23.5 -2.2 16.0 -19.5 NAL002C THER 400.0 0.0829 23.9 0.5 18.1 -18.1 NAL002C THER 450.0 0.0757 22.4 -0.5 16.4 -17.6 NAL0020 INIT 0.0 0.2182 19.4 14.9 25.3 -5.1 NAL002D THER 400.0 0.1895 15.7 12.8 21.4 -3.5 NAL002D THER 450.0 0.1783 14.0 12.6 20.1 -2.2 NAL002E INIT 0.0 0.1983 16.0 16.6 24.3 -1.0 NAL002E THER 400.0 0.1735 9.3 12.5 16.8 1.3 NAL002E THER 450.0 0.1663 8.5 11.7 15.7 1.4 NAL003 659.0 59.5 55.9 II NAL003A INIT 0.0 0.1056 27.6 44.0 51.3 8.1 NAL003A THER 400.0 0.0837 19.5 50.6 50.4 24.1 NAL003A THER 450.0 0.0782 22.4 51.0 52.7 21.2 NAL003B INIT 0.0 0.0774 41.9 44.8 58.7 -13.4 NAL003B THER 400.0 0.0635 31.0 50.0 57.5 8.7 NAL003B THER 450.0 0.0578 32.1 50.3 58.4 7.2 NAL003C INIT 0.0 0.2276 7.5 72.7 51.1 63.3 NAL003C THER 400.0 0.1936 4.5 74.5 48.8 67.4 NAL003C THER 450.0 0.1838 5.4 73.4 49.3 65.4 NAL003D INIT 0.0 0.1357 10.2 66.9 51.6 53.3 NAL003D THER 400.0 0.1127 7.4 68.5 49.6 57.2 NAL003D THER 450.0 0.1078 7.2 68.8 49.6 57.8 NAL003E INIT 0.0 0.1225 18.5 115.2 55.8 138.5 NAL003E THER 400.0 0.1039 15.4 114.6 53.6 134.6 NAL003E THER 450.0 0.1004 15.6 115.4 53.3 135.9 NAL004 680.0 26.8 -15.0 I NAL004A INIT 0.0 0.0454 54.4 -23.4 24.3 -55.5 NAL004A THER 200.0 0.0273 56.7 25.6 49.8 -43.1 NAL004A THER 250.0 0.0261 55.0 22.9 47.9 -41.0 NAL004A THER 300.0 0.0227 53.5 38.0 56.5 -36.4 NAL004B INIT 0.0 0.0431 43.0 -30.0 13.1 -50.4 NAL004B THER 200.0 0.0291 39.5 -2.2 26.1 -32.8 NAL004B THER 250.0 0.0260 40.0 10.4 34.4 -27.0 NAL004B THER 300.0 0.0204 35.9 14.2 34.8 -20.8 NAL004C INIT 0.0 0.0387 9.0 9.1 14.2 -0.9 NAL004C THER 200.0 0.0301 8.1 14.0 17.1 3.3 NAL004C THER 250.0 0.0253 5.4 12.1 13.9 3.9 NAL004C THER 300.0 0.0213 7.0 6.4 10.9 -1.3 NAL004D INIT 0.0 0.0408 12.4 7.5 15.3 -4.6 NAL004D THER 200.0 0.0322 11.5 10.4 16.8 -1.8 NAL004D THER 250.0 0.0311 14.9 7.5 17.0 -6.5 NAL004D THER 300.0 0.0214 15.0 6.3 16.2 -7.3 NAL004E INIT 0.0 0.0403 14.3 11.8 19.7 -3.1 NAL004E THER 200.0 0.0305 17.4 5.5 17.3 -9.7 NAL004E THER 250.0 0.0280 20.7 2.4 17.3 -14.3 NAL004E THER 300.0 0.0169 16.9 -1.6 12.0 -14.1 NAL005 774.0 33.7 -4.7 I NAL005A INIT 0.0 0.0644 29.7 16.2 32.6 -13.4 NAL005A THER 200.0 0.0613 23.8 16.8 29.5 -7.7 122 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Z Z Z Z 2 Z > > > > > s 1 I I I f ™ O O O O O |— o o o o o J-* 00 0 0 0 0 CD 0 0 S c 03 > > > > O 03 Z Z Z Z Z Z Z Z Z Z 2 2 2 Z Z Z > > > > > > > > > > > > > > > s r r r r r r r r r r r r r r r & O O O O O O O O O O O O O O O r” o o o o o o o o o o o o o o o j - , m m m o a o o a o c D c r c D > > > p s m s H m m m H 3 3 3 H H ^ 9 H — i — 9 — 1H — 9 -t H -9 H — ♦ X X X X X X X X X X m m H m m —<m m H m m H m m 3D3D X X X X X X X X 0 0 0> a> In co to oo C O ro (O 0 cn 0 p 0 0 0 *0 *0 *0 b £ 4*4* 4*4* 4* 4* A -U _. O 0 ) 0 0 ) 0 0 ) 0 0 ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o o o o b b b o o © b O O O O O W 0 0 0 0 0 “ 10 o -*• -* 10 in W (O W O lO wl - s | *s4 * n4 C O o o o p p p p p p p p p p o p 0 0 0 ^ ^ * ^0 0 ^ 0 0 0 0 ^ ^ , 0>0)C0l0(0S(0(DI\)Ul0>CD(DOU) S s 4 c n o < o c n t o a > © a i < n o > - * o o c n A O )>j(O A o>j(nA ioa)0}-«o C i > ro ro 1 0 ^4 0 C O C O ro cn b C O b ^ P O ^ C O T O r * *-* lo bo ro - o C O _a _a ro ro ro 4* C D 4* a * - n I b b b cn 0 0 to co co co 10(0 00 b > A ’ -s i ro ro _a ro ro ro ro o> 00 0 cn * 0 •si 0 — k «k b fo b to fo fo CO io ai to ro ro ro ro ro ro o> cn cn * 4* o> 0 as 00 ro b * 0 0 4* CO CO * 4* CO 0 io 0 0 -s) ro ro CO CO CO CO CO CO CO CO ro CO o> cn cn s j •si o> as u £ 0 1 * — * * — k ro CO b A •sj CO b> £ £ to u> 1 0 3 ■* 1 O i p <n A C O b ro © b fo-^rocncococncocno^cococnaa A b ^ b b r o r o r o b b ^ A b o b Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z > > > > > > > > > > > > > > > s oooooooooSooooor §>S>§>§>cs§><S)o>ei>§>§>§>8>§>§>c3 m m m o o a o o o a j o 3 a 3 > > > o O) Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z r ~ r r r - r - r - r ~ i — r - r - r - r - r - r - r _ r - r - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 uiuiuiuiuioiuiuiuiuiuiuiuiuiuiui m m n u n a o o o o o o o o o n i n i -1— 1-^— 1— 1-^— 1— 1-7 30 30 30 30 30 30 30 30 30 30 H— 1H HHH H — 1— 1 ^ 9 H— rH X X X X X X X X X X X X mmmHmmm-t mmmHmmm X X X X X X X X X X X X "J 0 0 ■u cn 4k 4k 4k 4k. 4k 4k 4k 4k 4k 4k c n o cn o cn o cn o cn o p o o o p o p p p p p o p p o o o o o o o o o 0 0 0 0 0 0 C O ro to C O to 0 cn 0 0 cn 0 0 0 0 0 0 0 *0 b *0 *0 *0 *0 *0 ro to C O to ro cn 0 0 cn 0 0 0 0 0 0 0 *0 *0 *0 0 0 © is 0 0 0 p p 0 0 0 0 0 0 0 0 0 ro fo 1 a 1a 1 a 0 0 b 1a ro ro A A cn cn c o •aA C O cn cn cn * s » 5 1 0 8 cn C O cn cn 0 0 ro 8 4* cn o > 0 s *st C O -* cn cn A cn •s4 ro ro C O 0 0 cn cn u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4k4kCncnocoo>4k-^roroco-^roN>ro . — 1 j s i to r ^ • - - - m s - k U it o s im - k s it o a J k S - 11,- ^ ^ o a i - ' c n o i a o o i o i s i M s J - . s d ) ro ro ro ro ro ro ro 1 0 ro 1 0 ro C O ro ro ro to ro 0 1 p ■ " 4 4k p s4 0 1 os co 0 1 s « l to 4k 4k u < 0 0 1 in is ■si ’ -k cs ro £ is 4k io ’ ■si io io is ’ ■si is ^ - ‘-‘-‘-‘wcjco^krowrojk $>u! 0 !optoppis{0 (ou ro w ro sIM ffl o 4 k ro to 00 4k ro io U 6 ) U U U O ) IU U coisrororoJkoro A 4k 4k 4k a . £ cn cn £5 5 1 - k - ^ - k - k 6 i s i ^ b i ^ ( n u b o ) j o ^ « u u i o s 8 C O cn C O o> C O 0) C O C O C O C O C O C O 0 i o ( o ro 0 C O to cn C O p 53 C O o> C O k ^ A C O 0 fo C Dfo ’ -si 'cn C O 4h fo 4* i o C O 0> ’ s j a fo b b b b b fo b b fo A A cn 4» C O C O C O C O to C O C O 4^ 4t to ro C O 4^ s j o> •si 0 ro C O G O C O S j ro "sj co 0 > -0 o> G O C O 09 09 co 0 b b b b 0 0 o> b ro b b b A 0 b b b b b b •s| * 1 • • * • ro _ A to ro to (O co 4t to to C O C O O) 0 a> 09 -* 4^ 0 cn ik 4 ^ . 4 ^ 0 cn 00 0)0K»UCJ10)OM010)4k0)-‘ ( r M - ‘ N A L005A T H E R 250.0 0.0590 25.0 15 .3 29.2 -9.8 N A L005A T H E R 300.0 0.0524 21.4 18.1 28.9 -4.6 NAL008B THER 200.0 0.0206 4.2 19.8 22.7 9.6 NAL008B THER 250.0 0.0147 2.0 28.9 26.9 18.9 NAL008B THER 300.0 0.0089 -13.5 48.6 23.7 46.3 NAL008C INIT 0.0 0.0295 36.0 19.0 43.4 -19.7 NAL008C THER 200.0 0.0185 32.7 23.5 44.7 -13.0 NAL008C THER 250.0 0.0179 37.0 19.5 44.2 -20.6 NAL008C THER 300.0 0.0133 31.6 22.3 43.2 -12.6 NAL008D INIT 0.0 0.0296 38.6 7.3 37.0 -29.2 NAL008D THER 200.0 0.0134 21.8 30.1 42.3 3.7 NAL008D THER 250.0 0.0117 22.8 29.5 42.6 2.2 NAL008D THER 300.0 0.0066 17.7 105.3 55.3 124.5 NAL008E INIT 0.0 0.0211 32.4 9.6 34.9 -21.6 NAL008E THER 200.0 0.0101 19.9 9.7 27.0 -10.3 NAL008E THER 250.0 0.0080 25.8 -1.5 23.2 -22.7 NAL008E THER 300.0 0.0078 4.9 5.2 13.4 -2.2 NAL009 879.5 42.2 8.1 1 NAL009A INIT 0.0 0.4408 21.0 34.9 45.0 8.8 NAL009A THER 400.0 0.3962 21.7 34.9 45.6 8.1 NAL009A THER 450.0 0.3770 19.0 34.2 43.2 10.1 NAL009B INIT 0.0 0.3689 20.9 31.0 42.4 5.5 NAL009B THER 400.0 0.3295 20.2 30.5 41.5 5.7 NAL009B THER 450.0 0.3110 18.8 30.4 40.4 6.9 NAL009C INIT 0.0 0.4570 22.7 32.0 44.3 4.6 NAL009C THER 400.0 0.4093 19.6 32.3 42.3 7.8 NAL009C THER 450.0 0.3858 19.1 32.5 42.1 8.5 NAL009D INIT 0.0 0.5540 20.9 33.3 43.9 7.5 NAL009D THER 400.0 0.5050 20.3 33.2 43.4 7.9 NAL009D THER 450.0 0.4775 20.0 33.2 43.2 8.3 NAL009E INIT 0.0 0.4342 21.3 31.2 42.8 5.2 NAL009E THER 400.0 0.3926 19.9 31.7 42.1 7.0 NAL009E THER 450.0 0.3750 20.1 31.7 42.2 6.8 NAL010 921.0 30.6 -3.2 I NAL010A INIT 0.0 0.1896 25.1 16.7 35.9 -7.2 NAL010A THER 400.0 0.1665 21.9 15.4 32.8 -5.6 NAL010A THER 450.0 0.1529 23.4 15.6 34.0 -6.6 NAL010B INIT 0.0 0.2398 21.8 17.9 34.3 -3.5 NAL010B THER 400.0 0.2086 21.7 17.8 34.1 -3.4 NAL010B THER 450.0 0.1920 21.1 17.6 33.6 -3.1 NAL010C INIT 0.0 0.5627 10.3 14.4 23.5 2.4 NAL010C THER 400.0 0.5014 8.9 13.9 22.1 2.9 NAL010C THER 450.0 0.4627 8.9 13.9 22.1 2.9 NAL010D INIT 0.0 0.1697 21.6 13.0 31.0 -7.2 NAL010D THER 400.0 0.1347 21.4 14.5 31.8 -5.8 NAL010D THER 450.0 0.1227 20.4 14.2 31.0 -5.3 NAL010E INIT 0.0 0.2054 24.5 12.2 32.6 -10.2 NAL010E THER 400.0 0.1611 20.9 15.1 31.9 -4.9 NAL010E THER 450.0 0.1491 20.8 17.3 33.2 -3.1 NAL011 941.0 49.0 8.9 I NAL011A INIT 0.0 0.2504 27.9 43.4 54.6 14.7 NAL011A THER 400.0 0.2067 28.9 45.2 56.3 15.7 NAL011A THER 450.0 0.1908 29.3 44.1 56.0 13.8 NAL011B INIT 0.0 0.2160 26.9 40.5 52.1 12.6 NAL011B THER 400.0 0.1480 25.7 41.7 51.9 15.2 NAL011B THER 450.0 0.1346 26.2 40.8 51.7 13.6 NAL011C INIT 0.0 0.3090 29.9 28.1 46.5 -2.6 NAL011C THER 400.0 0.2277 24.0 28.8 42.8 4.0 124 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAI011C T H E R 450.0 0.2031 25.4 28.6 43.7 2.4 N A L011D I N I T 0 .0 0.3039 30.5 29.6 47.9 -1.9 N A L011D T H E R 400.0 0.2299 22.1 29.2 41.7 6.0 CO oh'.T-t'-^QoomoQOcoiOQor^m ^ d r - ' d a i w N S N i r i o d i o d o i d 7 * CM r - * • * O / ' t - wo-r-^-cocM^tcMOincoin od^irico^odr^t^f-* uiooN y - CM CM y - CM CM y - coeocO'xto>'tooTt^-oo>o>0)ooN. gwcdcvicooioncsi^fN^iriiriiD ^COeOTr^tCT^fCOOTrtCM CM CTCOCT oincqtocaco^totoOTrcM diri^cvit^oJdoj^coTO^ir inrtTi-Ttcoco^tcon-ininio o> t- c o N - O r . ( B U > I D N N » - 0 ) ( O I D U ) ^ N O ) in T^a»T^*cD*ci'&eiuioc6c6yt'& ,V W t - C M T - * - T - C M N T - i - N r - y- y- O > a > o > c o » - c o i n o < i n » - c \ i c 9 i n o a i c n m t o d a i t ^ - r ^ t ^ B o c o T l-tO C O C O C O 'q -C M C M C O C O C O tO CM o> h** * - CO GO O 0 CM 0 CO CO CO Y “ CO GO C M © CO O 00 0 0 IO 1 ^ 0 0 Y“ C M C M y - CO CO CM C M y- CM CM 81 0 0 0 0 CM 0 0 O ) O o> CM IO IO y— Y — C M C M C M S o i g o n « o « n N i o o i o Q N o < o c\j g > o > «o co o> o oo < o y- _ iSuj^o)t£)cooju5o>cor-.r^5>Ko) M i o c o o i a i N a ? o a < o n o ’■ n o f f i M o i n t o i n 't M n j o s i o Wr-ioO'tococMoswiDu) c m u5 T-T- o o o o o o o o o a o o J c 4 '- '- iT -r.qr-oociT -r- o p| o o o’ o o o’ 0 0 0 0 0 0 o’ o' 0 ^ d o ’d d d d o ' d d d d d o in i f o o o o q q o o o o o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i in 010 010 o in i f i f i f i f i f i f i f O in ^ i f o o q q o o o o o o o o d d o d d d o o d d d o o m o in p in o in i f i f ^ T t 5 I t i f i f C O ( 0 o > N o > X U J X V - X X X X X X X X X X ^_iuuji_ujuj^_ajuj(-ujuif-uitu ^ X X ^ X X ^ X X ^ X X ^ X X C CG C X X X X X X m Hi 1- Hi Hi b Ul LU(- in U J X X 7 I X X 1 5 X X H ) - e h- h- F- i - S 1 - H C M a < < < m c o f l a o o o a a a u j u i u j * - a CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM t - ^ 1 — T“ 1 — y— i— 1 — y— y— y— y— I— . — ▼ — o. — J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 < S<<<<<<<<<<<<<<< z Z z z z z z z z z z z z z z z z $ 2 <<<CQCQCQOOOQQQ Q C O C O C O C O C O C O C O C O C O C O C O C O - l o o o o o o o o o o o o 1 1 f 1 f 1 f r r i r i < < < < < < < < < < < < 2 Z Z Z Z Z Z Z Z Z Z Z Z <0 in 00 O IO O) CO CO t o CO CO GO CO GO CO 00 CO y- in O C M o> ▼ * CM i d y~ CD i d M1 GO O) o> o> 0 5 0 5 o> CO C M o> 0 0 t o o> N - CO y - t o i n CO r^- C M CO O ) Y~ O ) i d c d c d c d 0 0 K c d 0 0Mr c d t d i d c d o i GO CM CM CM CO CM CO CO CM C M C M C M C M CM C M C M CO CM CM CO i n y- CO i n CO i n T — c q CM C M CO C M CO 05 i n T - c d i d c d C M c d i n M* c d 8i K c d C M y-1 C M CM C M CO C M CO CM C M C M C M CM CM C M C M C M C M C M O ^ T “ 0 ( O C O © P ) ^ C \ i W N N U ) 0 ) N W t - co i-^ ^ ^ o c o o o o ii-^ o c v ic N ic r ic d io I I I I I I I I I Q O C M C O O > O O K I O i- < C M C M C O C O C O t - i d)T-cocMWcoo*ro)»-incMf''r-f'-cMi ▼ “ i n c M o o i n c o c o w i n i n o c o i n o K c O ' ( O CM CO N- - N o o u i n w i S i n i n O c b i n o S © ^ ^ CMCMCMCOCMCMCOCMCMCOCOCMM-M'COCMCMCM 000000000000000000 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 d 0 0 d d d d 0 d d d d 0 0 to 0 m 0 0 in 0 in * T f T f r t T t O o > h - o > X X X X X X X X X X X X Hi HJ H HJ Ui t U J UJ H U J UJ H U J Ul H U J in X X X X X X X X rr X X rr X X H H H »- 1- h- H H t—h- H F- <<<CQCQCQOOOQQQLUUJUJU.U.U. a i f i f i f < i f i f i f Y - < i f i f i f i f i f i r i f i f i f ^ t * T“ t “ r— t“ t- * p“ r — r— r " y™ y“ t* t" r " ^ _l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ( f r < r 1 r 1 1 < < < < < < < < < < < < < < < < < < z z z z z z z z z z z z z z z z z z z Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL015 1004.5 36.3 9.1 I NAL015A INIT 0.0 0.1523 17.5 28.5 42.2 5.8 NAL015A THER 100.0 0.1431 17.2 26.5 40.7 4.3 NAL015A THER 200.0 0.1393 15.7 25.9 39.2 5.0 NAL015A THER 300.0 0.1311 13.8 26.0 37.9 6.8 NAL015A THER 400.0 0.1176 13.5 26.2 37.8 7.2 NAL015A THER 450.0 0.1091 10.6 26.6 35.9 9.9 NAL015A THER 500.0 0.0998 12.1 25.4 36.2 7.6 NAL015A THER 525.0 0.0963 10.6 24.1 34.2 7.6 NAL015A THER 550.0 0.0916 10.8 28.0 36.9 11.1 NAL015A THER 575.0 0.0870 9.1 25.4 33.9 10.0 NAL015A THER 600.0 0.0919 9.4 26.7 35.0 11.0 NAL015A THER 625.0 0.0121 -8.6 15.3 13.8 13.4 NAL015A THER 650.0 0.0050 55.2 71.8 80.5 -93.7 NAL015B INIT 0.0 0.2559 17.3 30.6 43.5 8.0 NAL015B THER 100.0 0.2433 14.9 27.6 39.7 7.3 NAL015B THER 200.0 0.2374 15.0 30.2 41.5 9.7 NAL015B THER 300.0 0.2279 14.2 29.9 40.7 10.1 NAL015B THER 400.0 0.2044 13.7 29.5 40.1 10.1 NAL015B THER 450.0 0.1884 14.1 29.1 40.1 9.4 NAL015B THER 500.0 0.1730 12.3 29.6 39.0 11.4 NAL015B THER 525.0 0.1649 13.0 29.9 39.8 11.1 NAL015B THER 550.0 0.1617 11.3 30.0 38.5 12.6 NAL015B THER 575.0 0.1565 11.0 28.3 37.2 11.2 NAL015B THER 600.0 0.1568 13.1 27.8 38.5 9.0 NAL015B THER 625.0 0.0636 10.4 27.1 36.0 10.6 NAL015B THER 650.0 0.0039 -16.8 -71.3 -49.6 -50.0 NAL015C INIT 0.0 0.1284 16.7 24.1 38.8 2.6 NAL015C THER 400.0 0.1093 11.0 28.0 37.0 10.9 NAL015C THER 450.0 0.0816 19.4 25.8 41.9 1.5 NAL015D INIT 0.0 0.1876 12.4 16.4 30.6 -0.4 NAL015D THER 400.0 0.1577 7.1 21.7 30.1 8.2 NAL015D THER 450.0 0.1409 9.2 20.6 31.0 5.6 NAL015E INIT 0.0 0.2059 4.5 14.3 23.3 3.8 NAL016 1011.5 13.2 7.5 1 NAL016A INIT 0.0 0.0448 5.1 12.3 18.6 2.7 NAL016A THER 200.0 0.0473 -6.1 18.8 14.7 15.6 NAL016A THER 250.0 0.0476 -4.4 11.1 10.8 8.6 NAL016A THER 300.0 0.0472 -7.4 12.4 9.5 11.6 NAL016B INIT 0.0 0.0213 7.5 23.6 28.0 9.9 NAL016B THER 200.0 0.0291 -15.3 35.3 16.9 34.8 NAL016B THER 250.0 0.0286 -14.7 30.3 14.7 30.2 NAL016B THER 300.0 0.0294 -18.7 30.1 11.3 32.4 NAL016C INIT 0.0 0.0362 -1.6 -8.7 -1.0 -7.7 NAL016C THER 200.0 0.0372 -12.9 -10.1 -9.9 -0.6 NAL016C THER 250.0 0.0369 -17.5 -12.9 -15.0 1.0 NAL016C THER 300.0 0.0389 -11.4 -9.2 -8.2 -1.1 NAL016D INIT 0.0 0.0681 9.4 20.1 27.0 5.5 NAL016D THER 200.0 0.0706 1.2 23.0 22.9 13.9 NAL016D THER 250.0 0.0696 1.4 22.9 23.0 13.8 NAL016D THER 300.0 0.0684 2.8 21.7 23.3 11.8 NAL016E INIT 0.0 0.0422 37.3 7.1 35.7 -28.6 NAL016E THER 200.0 0.0439 29.5 10.9 33.9 -18.7 NAL016E THER 250.0 0.0432 29.9 3.8 29.3 -23.3 NAL016E THER 300.0 0.0438 25.8 4.3 27.0 -19.5 126 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL017 1013.0 46.1 -12.2 1 NAL017A INIT 0.0 0.0618 38.7 31.8 53.4 -16.9 NAL017A THER 400.0 0.0622 33.6 29.2 49.1 -11.4 NAL017A THER 450.0 0.0558 32.7 28.2 47.9 -10.9 NAL017B INIT 0.0 0.0560 32.2 17.9 40.4 -16.9 NAL017B THER 400.0 0.0552 29.6 18.7 39.4 -13.7 NAL017B THER 450.0 0.0527 29.4 17.5 38.5 -14.2 NAL017C INIT 0.0 0.0566 43.2 18.2 46.1 -30.0 NAL017C THER 400.0 0.0513 38.0 21.0 45.6 -22.0 NAL017C THER 450.0 0.0490 37.3 21.3 45.4 -20.9 NAL017D INIT 0.0 0.1122 32.5 35.8 53.1 -5.1 NAL017D THER 400.0 0.0988 30.0 37.3 52.7 -0.5 NAL017D THER 450.0 0.0917 29.7 35.9 51.6 -1.3 NAL018 1030.5 41.4 -2.2 1 NAL018A INIT 0.0 0.1294 43.0 34.2 56.7 -22.6 NAL018A THER 400.0 0.1053 32.1 30.4 49.1 -8.7 NAL018A THER 450.0 0.1015 32.1 27.7 47.2 -10.4 NAL018B INIT 0.0 0.1654 6.0 28.8 30.3 15.4 NAL018B THER 400.0 0.1376 3.4 26.6 26.9 15.5 NAL018B THER 450.0 0.1302 1.7 27.8 26.4 17.7 NAL018C INIT 0.0 0.1488 41.7 27.7 51.8 -23.5 NAL018C THER 400.0 0.1223 36.5 31.1 51.9 -14.0 NAL018C THER 450.0 0.1094 35.4 31.6 51.7 -12.1 NAL018D INIT 0.0 0.1318 25.4 16.7 35.5 -10.9 NAL018D THER 400.0 0.1076 22.8 18.6 35.2 -7.0 NAL018D THER 450.0 0.0985 24.1 16.8 34.7 -9.5 NAL019 1048.0 -34.4 179.0 I NAL019A INIT 0.0 0.1009 30.0 -120.9 -12.4 -118.3 NAL019A THER 100.0 0.0663 -13.2 -163.1 -27.5 -180.0 NAL019A THER 200.0 0.0655 -14.3 -164.8 -27.1 177.8 NAL019A THER 300.0 0.0625 -16.5 -166.3 -27.6 175.0 NAL019A THER 400.0 0.0578 -18.2 -166.1 -28.9 173.6 NAL019A THER 450.0 0.0553 -18.0 -167.0 -28.1 173.1 NAL019A THER 500.0 0.0524 -17.2 -167.2 -27.4 173.7 NAL019A THER 525.0 0.0495 -16.9 -166.9 -27.4 174.1 NAL019A THER 550.0 0.0451 -17.7 -164.3 -29.7 175.4 NAL019A THER 575.0 0.0425 -15.6 -167.1 -26.4 175.1 NAL019A THER 600.0 0.0418 -20.7 -168.1 -29.1 170.1 NAL019A THER 625.0 0.0332 -12.4 -162.5 -27.4 -178.9 NAL019A THER 650.0 0.0008 -6.8 43.6 28.3 37.7 NAL019B INIT 0.0 0.0848 17.5 -134.8 -19.5 -135.3 NAL019B THER 100.0 0.0756 -17.3 -150.5 -39.0 -173.3 NAL019B THER 200.0 0.0741 -18.7 -150.3 -40.2 -174.5 NAL019B THER 300.0 0.0720 -19.6 -150.0 -41.0 -175.0 NAL019B THER 400.0 0.0669 -18.9 -149.1 -41.2 -173.5 NAL019B THER 450.0 0.0658 -17.4 -147.5 -41.2 -170.8 NAL019B THER 500.0 0.0584 -14.8 -148.1 -39.0 -168.9 NAL019B THER 525.0 0.0536 -13.1 -149.7 •36.7 -168.9 NAL019B THER 550.0 0.0505 -14.3 -150.7 -36.8 -170.9 NAL019B THER 575.0 0.0514 -13.2 -150.7 -36.0 -169.8 NAL019B THER 600.0 0.0512 -13.3 -151.9 -35.2 -171.0 NAL019B THER 625.0 0.0473 -14.3 -154.0 -34.6 -173.6 NAL019B THER 650.0 0.0083 -5.3 -145.5 -33.4 -158.9 NAL019C INIT 0.0 0.1202 12.3 -155.0 -13.6 -155.5 NAL019C THER 400.0 0.0835 -18.2 -163.3 -30.8 175.7 NAL019C THER 450.0 0.0792 -19.8 -165.1 -30.6 173.0 NAL019D INIT 0.0 0.0843 -1.9 179.8 -7.6 175.9 127 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL019D THER 400.0 0.0551 -18.4 -155.6 -36.3 -178.5 NAL019D THER 450.0 0.0506 -20.0 -155.2 -37.7 -179.7 NAL020 1053.5 -30.1 -170.6 I NAL020A INIT 0.0 0.0351 11.1 -143.9 -20.8 -146.8 NAL020A THER 200.0 0.0269 -5.0 -141.4 -35.6 -154.7 NAL020A THER 250.0 0.0269 -2.9 -143.3 -32.7 -155.0 NAL020A THER 300.0 0.0241 -6.6 -144.0 -35.3 -158.4 NAL020B INIT 0.0 0.0174 18.1 -174.8 3.2 -166.4 NAL020B THER 200.0 0.0094 -30.6 175.7 -24.2 151.1 NAL020B THER 250.0 0.0102 -11.8 -176.3 -17.3 171.4 NAL020B THER 300.0 0.0096 -26.2 175.3 -21.1 154.6 NAL020C INIT 0.0 0.0333 12.3 -152.0 -15.3 -153.0 NAL020C THER 200.0 0.0240 -2.0 -155.7 -24.3 -165.5 NAL020C THER 250.0 0.0262 -0.4 -157.6 -21.9 -166.0 NAL020C THER 300.0 0.0224 -5.7 -159.7 -24.5 -171.5 NAL020D INIT 0.0 0.0524 10.1 -122.5 -30.9 -126.2 NAL020D THER 200.0 0.0415 -8.0 -134.7 -41.9 -149.8 NAL020D THER 250.0 0.0412 -7.2 -139.6 -38.4 -154.5 NAL020D THER 300.0 0.0390 -9.0 -140.9 -39.1 -157.2 NAL020E INIT 0.0 0.0476 -18.3 -144.3 -44.0 -168.6 NAL020E THER 200.0 0.0492 -25.7 -161.1 -37.2 170.4 NAL020E THER 250.0 0.0510 -23.1 -160.4 -36.1 173.5 NAL020E THER 300.0 0.0495 -26.1 -163.4 -35.8 168.4 NAL021 1063.0 42.1 -6.1 1 NAL021A IN IT 0.0 0.0888 23.8 25.1 40.4 -3.1 NAL021A THER 400.0 0.0657 13.6 21.2 30.8 3.1 NAL021A THER 450.0 0.0630 12.4 18.9 28.4 2.2 NAL021B INIT 0.0 0.1216 25.8 27.9 43.7 -3.1 NAL021B THER 400.0 0.0874 23.5 23.2 38.9 -4.3 NAL021B THER 450.0 0.0841 25.1 24.3 40.7 -5.1 NAL021C INIT 0.0 0.0795 31.6 34.7 51.9 -4.8 NAL021C THER 400.0 0.0569 31.5 34.2 51.4 -5.0 NAL021C THER 450.0 0.0530 29.6 34.7 50.7 -2.2 NAL021D INIT 0.0 0.0804 35.8 25.5 47.6 -16.5 NAL021D THER 400.0 0.0614 37.5 22.1 46.1 -20.7 NAL021D THER 450.0 0.0560 35.9 19.1 43.2 -20.5 NAL022 1090.0 36.7 8.1 1 NAL022A INIT 0.0 0.2536 19.1 17.7 32.1 -4.4 NAL022A THER 400.0 0.2092 14.0 15.3 26.9 -1.8 NAL022A THER 450.0 0.1921 14.8 17.3 29.0 -1.0 NAL022B INIT 0.0 0.2212 16.2 18.1 30.5 -1.5 NAL022B THER 400.0 0.1844 14.2 16.5 27.9 -1.1 NAL022B THER 450.0 0.1666 13.9 16.4 27.7 -0.9 NAL022C INIT 0.0 0.2632 24.2 23.2 39.3 -5.0 NAL022C THER 400.0 0.2149 20.9 21.2 35.7 -3.3 NAL022C THER 450.0 0.1997 20.1 21.2 35.3 -2.6 NAL022D INIT 0.0 0.2859 15.1 36.9 42.4 15.4 NAL022D THER 400.0 0.2446 13.5 39.3 42.7 19.3 NAL022D THER 450.0 0.2149 12.4 39.6 42.1 20.6 NAL022E INIT 0.0 0.2098 15.1 45.3 47.6 24.3 NAL022E THER 400.0 0.1760 12.9 49.3 48.1 30.9 NAL022E THER 450.0 0.1570 11.1 48.0 45.9 30.8 128 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL023 1100.0 32.1 -10.2 1 NAL023A INIT 0.0 0.0599 34.7 4.6 33.4 -29.6 NAL023A THER 400.0 0.0449 36.9 -4.5 28.4 -36.4 NAL023A THER 450.0 0.0395 37.5 -5.7 28.0 -37.6 NAL023B INIT 0.0 0.0818 37.9 27.6 51.2 -21.4 NAL023B THER 400.0 0.0629 34.4 24.4 47.3 -18.4 NAL023B THER 450.0 0.0544 35.6 28.5 50.8 -17.7 NAL023C INIT 0.0 0.0711 21.5 34.1 47.1 4.5 NAL023C THER 400.0 0.0518 11.8 33.3 39.7 13.3 NAL023C THER 450.0 0.0515 13.5 38.6 44.5 16.9 NAL023D INIT 0.0 0.0464 7.5 9.1 19.8 -2.7 NAL023D THER 400.0 0.0348 -10.0 1.9 2.4 5.1 NAL023D THER 450.0 0.0318 -15.0 6.0 1.7 11.5 NAL023E INIT 0.0 0.0551 24.0 10.6 31.5 -15.6 NAL023E THER 400.0 0.0354 26.8 13.7 35.5 -16.3 NAL023E THER 450.0 0.0356 28.7 11.9 35.2 -19.3 NAL024 1116.5 11.0 9.2 II NAL024A INIT 0.0 0.0395 4.9 2.3 13.1 -5.4 NAL024A THER 200.0 0.0505 -1.5 19.4 20.7 11.9 NAL024A THER 250.0 0.0489 1.8 21.2 24.2 10.9 NAL024A THER 300.0 0.0441 4.1 17.6 23.4 6.4 NAL024B INIT 0.0 0.0179 16.9 -1.8 18.1 -17.5 NAL024B THER 200.0 0.0256 8.8 21.6 29.6 5.8 NAL024B THER 250.0 0.0265 17.6 19.0 33.7 -3.8 NAL024B THER 300.0 0.0315 14.9 29.0 39.0 6.6 NAL024C INIT 0.0 0.0301 -33.1 -87.4 -75.4 -49.5 NAL024C THER 200.0 0.0218 -51.9 -67.7 -66.0 22.4 NAL024C THER 250.0 0.0207 -49.7 -71.7 -68.9 17.7 NAL024C THER 300.0 0.0174 -52.0 -57.4 -59.7 21.7 NAL024D INIT 0.0 0.0581 5.4 16.0 23.3 4.2 NAL024D THER 200.0 0.0523 5.5 19.3 25.7 6.6 NAL024D THER 250.0 0.0513 8.4 17.5 26.4 2.9 NAL024D THER 300.0 0.0473 5.4 20.0 26.0 7.2 NAL049 1138.0 21.0 -34.8 II NAL049A INIT 0.0 0.0339 62.4 -1.0 41.5 -63.4 NAL049A THER 200.0 0.0282 63.6 -2.3 41.3 -65.3 NAL049A THER 250.0 0.0197 72.5 38.0 54.7 -81.0 NAL049A THER 300.0 0.0153 53.3 29.0 55.9 -46.4 NAL049B INIT 0.0 0.0143 27.7 16.2 37.8 -15.7 NAL049B THER 200.0 0.0090 10.5 -6.7 10.3 -15.8 NAL049B THER 250.0 0.0114 55.6 36.9 60.4 -51.0 NAL049B THER 300.0 0.0119 50.3 21.3 50.8 -42.5 NAL049C INIT 0.0 0.0088 -27.5 -131.0 -61.3 -168.2 NAL049C THER 200.0 0.0121 -0.2 -100.3 -47.2 -100.0 NAL049C THER 250.0 0.0084 0.2 -66.3 -36.8 -55.7 NAL049C THER 300.0 0.0128 6.3 -66.6 -31.7 -59.8 NAL049D INIT 0.0 0.0266 28.8 -22.1 11.9 -39.5 NAL049D THER 200.0 0.0307 18.5 -0.6 20.0 -18.0 NAL049D THER 250.0 0.0286 13.5 2.9 19.3 -11.6 NAL049D THER 300.0 0.0324 0.7 8.3 14.5 2.0 NAL115 1165.0 -19.8 -174.5 1 NAL115A INIT 0.0 0.1434 5.5 -163.0 -16.0 -167.2 NAL115A THER 200.0 0.1408 -6.0 -166.2 -22.1 -178.0 NAL115A THER 400.0 0.1265 -8.2 -165.4 -24.2 -179.1 NAL115A THER 450.0 0.1180 -10.7 -165.9 -25.5 178.4 NAL115B INIT 0.0 0.0708 14.6 -153.2 -15.2 -153.4 129 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL115B THER 200.0 0.0593 0.8 -160.2 -21.4 -168.3 NAL115B THER 400.0 0.0507 0.7 -161.9 -20.3 -169.6 NAL115B THER 450.0 0.0339 -15.3 -155.3 -36.3 -177.3 NAL115C INIT 0.0 0.0679 -15.3 -176.6 -20.8 167.2 NAL115C THER 200.0 0.0731 -18.6 -170.5 -27.5 168.6 NAL115C THER 400.0 0.0641 -20.4 -170.9 -28.3 166.7 NAL115C THER 450.0 0.0598 -20.4 -169.1 -29.6 167.9 NAL115D INIT 0.0 0.0303 54.7 138.8 50.3 -152.4 NAL115D THER 200.0 0.0280 16.5 154.1 21.9 171.5 NAL115D THER 400.0 0.0191 7.9 154.6 15.9 165.0 NAL115D THER 450.0 0.0211 5.4 151.1 16.7 160.6 NAL115E INIT 0.0 0.0385 54.0 144.6 46.9 -152.5 NAL115E THER 200.0 0.0302 21.5 160.4 20.6 179.7 NAL115E THER 400.0 0.0248 20.0 -164.1 -4.4 -158.2 NAL115E THER 450.0 0.0226 3.6 159.8 9.2 165.4 NAL115F INIT 0.0 0.0457 65.6 145.8 47.7 -135.4 NAL115F THER 200.0 0.0208 49.1 174.5 28.0 -148.5 NAL115F THER 400.0 0.0177 15.2 -174.3 -1.4 -168.6 NAL115F THER 450.0 0.0234 1.3 140.6 21.3 149.7 NAL025 1166.0 •22.9 177.6 1 NAL025A INIT 0.0 0.0686 7.5 -160.9 -16.0 -164.1 NAL025A THER 100.0 0.0633 -0.6 -165.0 -19.1 -173.1 NAL025A THER 200.0 0.0645 -5.4 -167.3 -20.9 -178.4 NAL025A THER 300.0 0.0592 -5.7 -168.4 -20.3 -179.4 NAL025A THER 400.0 0.0542 -8.7 -168.6 -22.3 178.1 NAL025A THER 450.0 0.0488 -9.5 -171.5 -20.7 175.4 NAL025A THER 500.0 0.0443 -12.3 -166.1 -26.5 177.0 NAL025A THER 525.0 0.0431 -15.3 -171.3 -24.7 170.8 NAL025A THER 550.0 0.0406 -12.2 -172.1 -22.0 172.8 NAL025A THER 575.0 0.0363 -21.4 -169.1 -30.2 167.0 NAL025A THER 600.0 0.0392 -18.7 -169.9 -27.9 168.9 NAL025A THER 625.0 0.0281 -24.1 -173.5 -28.7 161.7 NAL025A THER 650.0 0.0265 -20.7 -170.9 -28.4 166.5 NAL025B INIT 0.0 0.1004 11.7 -174.2 -4.0 -171.0 NAL025B THER 100.0 0.0891 7.8 -173.8 -7.0 -173.4 NAL025B THER 200.0 0.0878 5.1 -176.7 -6.8 -177.4 NAL025B THER 300.0 0.0840 3.0 -176.6 -8.4 -178.9 NAL025B THER 400.0 0.0761 0.9 -179.7 -7.6 177.4 NAL025B THER 450.0 0.0701 -0.2 178.9 -7.3 175.6 NAL025B THER 500.0 0.0657 2.4 -178.6 -7.4 179.3 NAL025B THER 525.0 0.0610 -1.8 178.4 -8.1 174.1 NAL025B THER 550.0 0.0591 3.0 177.1 -3.9 176.7 NAL025B THER 575.0 0.0512 -4.7 176.5 -8.7 170.6 NAL025B THER 600.0 0.0540 -3.8 175.9 -7.6 170.9 NAL025B THER 625.0 0.0446 -3.6 170.7 -3.7 167.5 NAL025B THER 650.0 0.0248 -24.4 164.0 -12.9 147.6 NAL025C INIT 0.0 0.1393 -12.5 -155.1 -34.5 -174.6 NAL025C THER 400.0 0.1115 -14.6 -156.5 -35.0 -177.7 NAL025C THER 450.0 0.1001 -16.8 -163.0 -31.7 175.5 NAL025D INIT 0.0 0.1225 -14.2 -148.4 -40.3 -170.5 NAL025D THER 400.0 0.0997 -12.9 -155.7 -34.3 -175.5 NAL025D THER 450.0 0.0921 -11.0 -157.8 -31.5 -175.6 NAL050 1183.5 60.8 -27.2 1 NAL050A INIT 0.0 0.0573 37.7 41.0 60.8 -13.6 NAL050A THER 400.0 0.0463 47.8 48.3 68.0 -34.2 NAL050A THER 450.0 0.0409 46.9 51.4 70.2 -32.0 NAL050B INIT 0.0 0.0975 27.1 38.1 53.4 1.1 NAL050B THER 400.0 0.0676 27.7 42.8 57.1 4.7 130 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL050B THER 450.0 0.0642 31.1 44.3 60.2 0.8 NAL050C INIT 0.0 0.1031 29.6 37.0 54.0 -3.3 NAL050C THER 400.0 0.0718 34.3 35.3 55.2 -11.5 NAL050C THER 450.0 0.0660 33.9 36.7 56.1 -9.9 NAL050D INIT 0.0 0.0457 48.2 22.7 51.2 -38.9 NAL050D THER 400.0 0.0343 42.8 19.0 47.0 -32.3 NAL050D THER 450.0 0.0283 49.7 15.1 46.8 -43.0 NAL050E INIT 0.0 0.0704 64.2 37.4 58.5 -67.4 NAL050E THER 400.0 0.0577 64.9 52.1 63.4 -75.7 NAL050E THER 450.0 0.0497 66.0 49.1 61.7 -75.7 NAL026 1213.0 33.9 -12.5 I NAL026A INIT 0.0 0.2738 22.9 14.0 33.4 -12.4 NAL026A THER 400.0 0.2033 20.0 16.1 33.2 -8.1 NAL026A THER 450.0 0.1849 19.5 17.0 33.5 -7.1 NAL026B INIT 0.0 0.2667 28.8 15.6 38.0 -17.2 NAL026B THER 400.0 0.1977 25.7 14.3 35.2 -14.8 NAL026B THER 450.0 0.1819 28.2 16.4 38.3 -16.1 NAL026C INIT 0.0 0.1375 23.7 11.7 32.2 -14.6 NAL026C THER 400.0 0.1083 20.9 10.7 29.7 -12.6 NAL026C THER 450.0 0.0978 21.3 12.0 30.9 -12.1 NAL026D INIT 0.0 0.2946 27.7 12.4 35.0 -18.1 NAL026D THER 400.0 0.2086 26.7 16.1 37.2 -14.6 NAL026D THER 450.0 0.1910 27.5 15.9 37.5 -15.6 NAL027 1213.0 52.5 -18.2 II NAL027A INIT 0.0 0.0454 40.0 36.0 58.0 -20.6 NAL027A THER 200.0 0.0342 46.5 48.0 67.8 -30.9 NAL027A THER 250.0 0.0328 50.8 48.5 67.9 -42.3 NAL027A THER 300.0 0.0346 53.2 41.3 63.2 -46.6 NAL027B INIT 0.0 0.0570 38.3 17.2 43.9 -27.1 NAL027B THER 200.0 0.0464 33.4 17.9 42.1 -20.9 NAL027B THER 250.0 0.0447 35.1 18.8 43.6 -22.5 NAL027B THER 300.0 0.0474 36.4 14.7 41.3 -26.1 NAL027C INIT 0.0 0.0469 29.4 -1.2 26.3 -27.7 NAL027C THER 200.0 0.0431 21.1 -2.0 20.6 -21.0 NAL027C THER 250.0 0.0477 26.3 0.2 25.4 -24.1 NAL027C THER 300.0 0.0551 21.2 0.4 22.4 -19.6 NAL027D INIT 0.0 0.0200 51.3 95.8 76.0 -149.1 NAL027D THER 200.0 0.0185 45.4 125.8 56.8 -170.3 NAL027D THER 250.0 0.0206 44.9 138.7 48.0 -167.0 NAL027D THER 300.0 0.0148 49.3 143.2 46.4 -159.4 NAL027E INIT 0.0 0.0705 6.9 16.7 24.8 3.4 NAL027E THER 200.0 0.0652 0.5 16.8 20.3 8.4 NAL027E THER 250.0 0.0657 2.0 20.3 23.8 10.0 NAL027E THER 300.0 0.0630 -0.1 17.0 20.0 9.0 NAL029 1244.5 •24.9 -156.5 1 NAL029A INIT 0.0 0.0378 55.8 -110.3 9.1 -106.3 NAL029A THER 200.0 0.0325 28.0 -130.8 -13.9 -127.8 NAL029A THER 250.0 0.0346 27.3 -123.8 -16.6 -122.1 NAL029A THER 300.0 0.0349 24.8 -122.2 -19.5 -121.4 NAL029B INIT 0.0 0.0339 12.5 -155.2 -15.7 -156.4 NAL029B THER 200.0 0.0448 -2.7 -157.3 -25.9 -168.5 NAL029B THER 250.0 0.0437 -7.2 -160.3 -27.1 -174.4 NAL029B THER 300.0 0.0447 -6.5 -160.2 -26.7 -173.8 NAL029C INIT 0.0 0.0503 -0.7 -162.0 -21.2 -170.8 NAL029C THER 200.0 0.0576 -10.1 -158.6 -30.4 -175.4 NAL029C THER 250.0 0.0566 -7.6 -160.8 -27.0 -175.1 131 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL029C THER 300.0 0.0570 -9.5 -159.0 -29.6 -175.3 NAL029D INIT 0.0 0.1211 1.6 28.8 29.1 17.4 NAL028 1266.0 27.9 168.9 II NAL028A INIT 0.0 0.0228 49.5 75.3 83.0 -80.7 NAL028A THER 200.0 0.0202 8.4 122.6 38.6 139.8 NAL028A THER 250.0 0.0207 10.9 121.8 41.0 141.1 NAL028A THER 300.0 0.0168 -10.9 129.4 19.2 132.2 NALQ28B INIT 0.0 0.0242 31.6 118.3 57.1 162.0 NAL028B THER 200.0 0.0260 -1.0 141.5 19.0 148.8 NAL028B THER 250.0 0.0234 2.3 143.1 20.3 152.4 NAL028B THER 300.0 0.0211 3.2 140.5 22.8 151.1 NAL028C INIT 0.0 0.0268 75.6 -67.2 30.6 -91.8 NAL028C THER 200.0 0.0156 37.0 -157.1 4.8 -142.7 NAL028C THER 250.0 0.0163 40.6 -171.3 14.9 -148.6 NAL028C THER 300.0 0.0158 18.7 -168.3 -2.8 -162.1 NAL028D INIT 0.0 0.0338 41.9 132.0 51.5 -173.9 NAL028D THER 200.0 0.0369 18.4 149.4 26.6 169.9 NAL028D THER 250.0 0.0362 15.2 148.7 25.1 166.6 NAL028D THER 300.0 0.0373 18.4 148.7 27.1 169.4 NAL051 1325.0 17.3 -60.5 II NAL051B INIT 0.0 0.0575 18.7 0.9 21.2 -17.2 NAL051B THER 400.0 0.0615 22.9 6.8 28.2 -17.0 NAL051B THER 450.0 0.0627 -3.7 10.4 12.8 6.6 NAL051B THER 500.0 0.0464 -4.8 10.4 12.1 7.4 NAL051C INIT 0.0 0.0191 36.0 -15.8 20.6 -41.6 NAL051C THER 400.0 0.0174 25.0 -8.1 18.7 -28.0 NAL051C THER 450.0 0.0197 21.5 -38.9 -3.9 -45.5 NAL051C THER 500.0 0.0104 -8.0 3.6 5.0 4.8 NAL051D INIT 0.0 0.0480 73.9 -12.2 40.6 -79.6 NAL051D THER 400.0 0.0281 81.8 -91.2 34.9 -99.3 NAL051D THER 450.0 0.0262 73.8 -143.2 30.2 -113.5 NAL051D THER 500.0 0.0231 87.2 -65.2 40.7 -98.9 NAL051E INIT 0.0 0.0440 50.1 -15.6 29.0 -54.0 NAL051E THER 400.0 0.0170 14.7 -105.0 -32.2 -105.6 NAL051E THER 450.0 0.0179 -13.0 -101.1 -60.0 -101.2 NAL051E THER 500.0 0.0184 -9.2 -99.6 -56.2 -98.5 NAL052 1325.5 -20.4 -172.2 II NAL052A INIT 0.0 0.0232 39.5 170.6 24.7 -159.1 NAL052A THER 400.0 0.0184 38.0 172.1 22.9 -159.7 NAL052A THER 450.0 0.0204 30.9 167.3 21.6 -168.4 NAL052A THER 500.0 0.0183 35.5 173.4 20.5 -161.0 NAL052B INIT 0.0 0.0354 -3118 179.2 -28.0 150.3 NAL052B THER 400.0 0.0399 -28.3 172.3 -21.1 149.5 NAL052B THER 450.0 0.0435 -21.9 162.5 -10.3 148.5 NAL052B THER 500.0 0.0404 -19.2 162.1 -8.1 150.3 NAL052C INIT 0.0 0.0611 14.2 -179.8 1.7 -173.0 NAL052C THER 400.0 0.0589 11.3 -170.4 -6.8 -168.6 NAL052C THER 450.0 0.0460 18.6 -175.5 1.8 -167.0 NAL052C THER 500.0 0.0479 15.7 176.7 5.1 -174.3 NAL052D INIT 0.0 0.0451 15.6 -158.1 -11.5 -156.6 NAL052D THER 400.0 0.0433 11.7 -156.0 -15.8 -157.5 NAL052D THER 450.0 0.0407 24.8 -152.0 -7.6 -146.3 NAL052D THER 500.0 0.0389 21.1 -154.2 -9.4 -150.2 NAL052E INIT 0.0 0.1433 -1.6 -29.6 -14.6 -22.8 NAL052E THER 400.0 0.0411 -32.6 -98.8 -79.4 -90.9 NAL052E THER 450.0 0.0371 -33.9 -130.4 -65.4 -179.2 132 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL052E THER 500.0 0.0370 -34.3 -137.0 -60.8 174.2 NAL052F INIT 0.0 0.0699 -2.6 -143.0 -35.0 -155.7 NAL052F THER 400.0 0.0640 0.8 -143.2 -32.2 -153.5 NAL052F THER 450.0 0.0494 -4.4 -139.1 -38.8 -153.0 NAL052F THER 500.0 0.0495 -9.2 -143.0 -40.2 -160.8 NAL053 1346.0 -17.7 -158.7 1 NAL053A INIT 0.0 0.0849 -16.9 -174.5 -7.4 175.5 NAL053A THER 400.0 0.0755 -23.1 -175.4 -11.2 170.4 NAL053A THER 450.0 0.0605 -20.9 -174.2 -10.4 172.8 NAL053A THER 500.0 0.0604 -19.5 -171.9 -11.1 175.3 NAL053B INIT 0.0 0.0518 2.1 -145.3 -14.3 -150.0 NAL053B THER 400.0 0.0466 -5.0 -149.6 -16.5 -158.3 NAL053B THER 450.0 0.0294 5.2 -147.3 -10.7 -149.4 NAL053B THER 500.0 0.0313 -3.0 -147.1 -16.8 -155.0 NAL053C INIT 0.0 0.0456 16.8 -149.8 -0.4 -143.4 NAL053C THER 400.0 0.0342 12.5 -146.3 -5.9 -143.8 NAL053C THER 450.0 0.0255 33.4 -139.5 6.2 -125.6 NAL053C THER 500.0 0.0220 23.0 -139.9 -1.8 -132.3 NAL053D IN IT 0.0 0.0507 0.3 -132.0 -24.3 -140.6 NAL053D THER 400.0 0.0439 -7.5 -126.9 -33.6 -141.7 NAL053D THER 450.0 0.0260 -8.0 -131.6 -30.9 -146.2 NAL053D THER 500.0 0.0228 -6.0 -128.5 -31.4 -142.1 NAL054 1346.0 5.0 -148.0 I NAL054A IN IT 0.0 0.0160 -48.5 -131.2 -54.1 166.9 NAL054A THER 400.0 0.0161 -34.5 -122.6 -54.6 -166.6 NAL054A THER 450.0 0.0188 23.1 -151.4 5.3 -140.3 NAL054A THER 500.0 0.0166 21.8 -159.0 9.2 -146.3 NAL054B INIT 0.0 0.0257 21.6 -115.1 -15.4 -113.6 NAL054B THER 400.0 0.0280 15.5 -145.9 -3.8 -141.5 NAL054B THER 450.0 0.0234 25.9 -143.4 2.5 -132.9 NAL054B THER 500.0 0.0231 26.2 -145.3 3.8 -134.1 NAL054C IN IT 0.0 0.0316 27.8 174.1 31.5 -158.8 NAL054C THER 400.0 0.0341 28.4 -179.3 27.3 -154.0 NAL054C THER 450.0 0.0242 24.5 166.4 34.9 -166.9 NAL054C THER 500.0 0.0244 23.5 172.8 29.7 -163.4 NAL054D INIT 0.0 0.0358 27.7 179.1 27.9 -155.6 NAL054D THER 400.0 0.0307 32.5 -171.3 24.5 -145.7 NAL054D THER 450.0 0.0277 38.4 -178.4 32.6 -144.3 NAL054D THER 500.0 0.0266 38.2 178.1 34.8 -146.3 NAL054E IN IT 0.0 0.0800 6.6 -135.8 -17.0 -139.6 NAL054E THER 400.0 0.0918 -8.6 -139.5 -26.1 -153.4 NAL054E THER 450.0 0.0803 -2.5 -138.0 -22.6 -147.6 NAL054E THER 500.0 0.0764 -4.9 -139.2 -23.6 -150.3 NAL116 1380.0 -24.3 -164.6 1 NAL116A IN IT 0.0 0.2914 -12.7 -145.3 -24.9 -161.0 NAL116A THER 400.0 0.2412 -19.3 -151.2 -25.2 -170.6 NAL116A THER 450.0 0.2110 -18.9 -151.2 -25.0 -170.3 NAL116B IN IT 0.0 0.1997 -14.7 -134.6 -33.8 -154.3 NAL116B THER 400.0 0.1702 -16.2 -140.4 -30.8 -160.1 NAL116B THER 450.0 0.1478 -13.4 -139.8 -29.3 -157.4 NAL116C IN IT 0.0 0.2095 -10.2 -146.8 -22.1 -160.1 NAL116C THER 400.0 0.1756 -18.4 -150.8 -24.9 -169.6 NAL116C THER 450.0 0.1643 -18.3 -153.3 -23.1 -171.3 NAL116D IN IT 0.0 0.0925 -10.4 -152.2 -18.5 -164.3 NAL116D THER 400.0 0.0746 -6.0 -140.2 -23.7 -151.9 NAL116D THER 450.0 0.0690 -7.8 -148.3 -19.4 -159.4 133 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL117 1380.0 -18.9 -162.9 1 NAL117A INIT 0.0 0.1474 -3.6 -152.0 -13.9 -159.1 NAL117A THER 400.0 0.1334 -8.9 -155.4 -15.2 -165.5 NAL117A THER 450.0 0.1185 -9.2 -155.1 -15.6 -165.5 NAL117B INIT 0.0 0.2086 2.1 -155.9 -7.1 -157.9 NAL117B THER 400.0 0.1522 -3.8 -160.6 -7.9 -165.5 NAL117B THER 450.0 0.1315 -0.6 -162.0 -4.7 -164.2 NAL117C INIT 0.0 0.1340 -18.3 -138.3 -33.7 -160.4 NAL117C THER 400.0 0.1232 -20.7 -136.4 -36.6 -161.1 NAL117C THER 450.0 0.1040 -19.4 -141.7 -32.0 -163.9 NAL117D INIT 0.0 0.1850 -6.1 -142.7 -22.0 -153.9 NAL117D THER 400.0 0.1666 -11.5 -146.2 -23.5 -160.7 NAL117D THER 450.0 0.1537 -9.4 -144.6 -23.1 -157.9 NAL055 1400.0 38.8 -77.2 1 NAL055A INIT 0.0 0.1888 59.2 -85.2 14.4 -81.8 NAL055A THER 400.0 0.1558 53.6 -76.9 8.6 -77.4 NAL055A THER 450.0 0.1312 56.5 -82.3 11.6 -80.4 NAL055A THER 500.0 0.1286 58.5 -81.7 13.6 -80.0 NAL055B INIT 0.0 0.2391 71.3 63.1 57.8 -55.8 NAL055B THER 400.0 0.1854 72.6 46.1 52.5 -53.9 NAL055B THER 450.0 0.1594 78.1 61.6 53.4 -65.0 NAL055B THER 500.0 0.1596 78.6 57.8 52.5 -64.9 NAL055D INIT 0.0 0.2307 85.3 120.2 49.5 -80.3 NAL055D THER 400.0 0.1773 86.8 161.2 46.6 -82.0 NAL055D THER 450.0 0.1687 85.2 149.2 48.1 -83.2 NAL055D THER 500.0 0.1719 84.2 147.7 48.9 -84.3 NAL056 1400.0 38.9 -4.7 II NAL056A INIT 0.0 0.0854 40.6 10.8 26.7 -19.8 NAL056A THER 400.0 0.0558 32.8 11.7 22.3 -12.7 NAL056A THER 450.0 0.0502 36.9 7.2 22.1 -18.6 NAL056A THER 500.0 0.0491 40.1 7.2 24.2 -21.3 NAL056B INIT 0.0 0.0566 -16.0 90.1 28.0 89.0 NAL056B THER 400.0 0.0282 -14.3 93.9 30.3 92.9 NAL056B THER 450.0 0.0204 -6.7 91.4 37.4 88.7 NAL056B THER 500.0 0.0205 -8.6 89.5 35.3 86.8 NAL056C INIT 0.0 0.0222 82.9 -149.2 42.3 -87.1 NAL056C THER 400.0 0.0172 57.1 -61.2 13.0 -68.7 NAL056C THER 450.0 0.0193 49.8 -17.3 18.5 -41.6 NAL056C THER 500.0 0.0160 58.1 -31.5 20.1 -53.9 NAL118 1425.0 19.9 -87.5 I NAL118A INIT 0.0 0.0390 75.9 -79.3 30.9 -78.4 NAL118A THER 200.0 0.0394 69.0 -48.4 26.1 -66.6 NAL118A THER 400.0 0.0345 62.5 -40.7 21.5 -60.5 NAL118A THER 450.0 0.0365 64.0 -27.2 26.0 -55.8 NAL118B INIT 0.0 0.0291 38.3 -175.1 30.5 -142.6 NAL118B THER 200.0 0.0255 52.2 -147.0 23.8 -116.8 NAL118B THER 400.0 0.0236 37.4 -130.2 4.9 -117.1 NAL118B THER 450.0 0.0209 42.0 -138.9 12.6 -119.7 NAL118C INIT 0.0 0.0117 54.3 -107.8 12.5 -95.3 NAL118C THER 200.0 0.0184 40.5 -82.8 -4.4 -81.6 NAL118C THER 400.0 0.0150 57.1 -98.6 13.5 -89.3 NAL118C THER 450.0 0.0130 58.7 -118.1 18.8 -98.7 NAL118D INIT 0.0 0.0105 52.5 -26.9 16.9 -48.3 NAL118D THER 200.0 0.0090 76.6 -6.8 39.4 -61.5 NAL118D THER 400.0 0.0060 79.7 -89.9 34.9 -80.6 NAL118D THER 450.0 0.0035 70.6 103.8 64.4 -79.4 13 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL119 1425.0 32.7 -66.6 II NAL119A INIT 0.0 0.0407 55.4 -0.9 29.5 -38.6 NAL119A THER 200.0 0.0317 50.2 -17.9 18.5 -42.2 NAL119A THER 400.0 0.0260 51.3 -30.9 14.6 -49.8 NAL119A THER 450.0 0.0237 44.4 -28.4 9.6 -44.5 NAL119B INIT 0.0 0.0293 45.5 58.2 59.6 -4.8 NAL119B THER 200.0 0.0171 51.3 62.5 63.3 -16.0 NAL119B THER 400.0 0.0165 64.6 -65.7 20.0 -72.4 NAL119B THER 450.0 0.0156 60.3 -68.5 15.6 -73.2 NAL119C INIT 0.0 0.0183 57.0 -124.1 19.0 -102.5 NAL119C THER 200.0 0.0117 43.2 -140.6 14.3 -119.9 NAL119C THER 400.0 0.0097 -6.1 -123.2 -34.8 -137.3 NAL119C THER 450.0 0.0078 -33.2 -113.1 -60.6 -156.6 NAL119D INIT 0.0 0.0244 59.4 -36.6 19.8 -57.0 NAL119D THER 200.0 0.0161 58.3 -52.5 15.5 -64.4 NAL119D THER 400.0 0.0130 40.6 -52.3 -1.3 -58.8 NAL119D THER 450.0 0.0101 48.2 -53.4 5.7 -61.8 NAL120 1442.0 -3.4 13.4 I NAL120A INIT 0.0 0.0639 45.6 -6.0 20.6 -32.7 NAL120A THER 200.0 0.0400 19.1 -5.3 1.9 -13.5 NAL120A THER 400.0 0.0336 21.8 -16.7 -3.1 -23.4 NAL120A THER 450.0 0.0288 17.8 -20.2 -8.2 -23.5 NAL120B INIT 0.0 0.0419 1.4 18.0 5.2 15.2 NAL120B THER 200.0 0.0336 -21.3 27.1 -4.9 37.5 NAL120B THER 400.0 0.0285 -22.6 26.6 -6.1 38.0 NAL120B THER 450.0 0.0252 -24.6 24.7 -8.8 38.1 NAL120C INIT 0.0 0.0327 45.9 19.1 34.7 -20.9 NAL120C THER 200.0 0.0152 -8.6 19.6 -0.8 23.4 NAL120C THER 400.0 0.0180 -1.1 5.4 -5.5 8.1 NAL120C THER 450.0 0.0138 -2.6 3.3 -8.0 7.6 NAL120D INIT 0.0 0.0644 25.0 -4.4 6.7 -16.9 NAL120D THER 200.0 0.0458 -2.1 1.5 -8.9 6.0 NAL120D THER 400.0 0.0375 -6.2 -3.2 -15.1 5.6 NAL120D THER 450.0 0.0322 -5.1 -3.3 -14.4 4.7 NAL121 1442.0 -20.4 -5.9 1 NAL121A INIT 0.0 0.0480 29.2 -2.3 11.1 -18.4 NAL121A THER 200.0 0.0431 -4.2 -8.3 -17.3 0.3 NAL121A THER 400.0 0.0370 -4.7 -11.1 -19.5 -1.4 NAL121A THER 450.0 0.0327 -1.5 -14.3 -19.3 -6.2 NAL121B INIT 0.0 0.0314 23.0 -16.6 -2.0 -24.0 NAL121B THER 200.0 0.0247 16.5 -19.2 -8.7 -22.0 NAL121B THER 400.0 0.0172 18.5 -36.6 -16.1 -37.2 NAL121B THER 450.0 0.0210 13.4 -38.8 -21.7 -36.6 NAL121C INIT 0.0 0.0435 -0.7 -24.5 -25.4 -15.2 NAL121C THER 200.0 0.0497 -8.3 -14.5 -24.5 -1.4 NAL121C THER 400.0 0.0387 -9.2 -13.6 -24.5 0.1 NAL121C THER 450.0 0.0351 -10.5 -15.1 -26.5 0.0 NAL121D INIT 0.0 0.0510 -0.7 -18.4 -21.5 -10.0 NAL121D THER 200.0 0.0489 -13.3 -17.0 -29.8 0.7 NAL121D THER 400.0 0.0413 -15.7 -12.4 -28.3 6.1 NAL121D THER 450.0 0.0377 -15.2 -14.9 -29.6 3.8 NAL122 1454.0 30.6 -22.9 I NAL122A INIT 0.0 0.1174 37.9 44.9 47.5 0.8 NAL122A THER 200.0 0.1038 34.1 35.7 39.2 0.0 NAL122A THER 400.0 0.0752 32.9 40.3 41.7 4.1 NAL122A THER 450.0 0.0701 32.5 41.0 42.0 4.9 135 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL122B INIT 0.0 0.0200 62.7 -2.9 33.0 -46.0 NAL122B THER 200.0 0.0124 71.8 -11.1 35.8 -57.2 NAL122B THER 400.0 0.0073 75.0 -44.0 32.1 -68.2 NAL122B THER 450.0 0.0088 69.8 -32.3 29.5 -61.5 NAL122C INIT 0.0 0.0471 30.5 19.8 26.2 -6.0 NAL122C THER 200.0 0.0258 33.7 6.1 19.3 -16.7 NAL122C THER 400.0 0.0144 44.6 24.9 37.5 -17.0 NAL122C THER 450.0 0.0129 40.9 43.2 47.7 -4.1 NAL122E INIT 0.0 0.0341 45.1 12.3 30.2 -23.2 NAL122E THER 200.0 0.0272 37.3 6.4 22.0 -19.4 NAL122E THER 400.0 0.0206 33.8 8.6 21.1 -15.3 NAL122E THER 450.0 0.0190 35.6 14.9 26.1 -13.2 NAL125 1521.0 >32.3 150.3 I NAL125A INIT 0.0 0.0456 -25.0 -139.3 -37.3 -167.3 NAL125A THER 400.0 0.0346 -54.1 -154.1 -42.2 152.3 NAL125A THER 450.0 0.0361 -52.4 -161.9 -37.3 151.6 NAL125B INIT 0.0 0.0542 -22.8 -154.1 -25.5 -175.4 NAL125B THER 400.0 0.0480 -37.8 -171.8 -23.4 161.2 NAL125B THER 450.0 0.0447 -39.9 -174.4 -23.2 158.0 NAL125C INIT 0.0 0.0645 -67.7 154.2 -29.3 122.1 NAL125C THER 400.0 0.0525 -65.5 173.1 -33.3 130.0 NAL125C THER 450.0 0.0516 -62.9 169.5 -30.4 131.2 NAL125D INIT 0.0 0.0899 -29.5 -166.5 -21.3 171.1 NAL125D THER 400.0 0.0625 -46.0 -157.1 -37.0 160.6 NAL125D THER 450.0 0.0612 -45.8 -158.3 -36.2 160.3 NAL126 1521.0 -22.1 159.6 I NAL126A INIT 0.0 0.0890 -30.5 -176.6 -15.5 164.2 NAL126A THER 400.0 0.0544 -36.0 -175.9 -19.7 160.4 NAL126A THER 450.0 0.0545 -30.9 -169.2 -20.5 168.4 NAL126B INIT 0.0 0.0704 -23.1 -161.4 -20.6 179.5 NAL126B THER 400.0 0.0573 -30.9 -172.2 -18.6 166.6 NAL126B THER 450.0 0.0580 -33.4 -173.3 -19.6 163.9 NAL126C INIT 0.0 0.0661 -51.9 -161.0 -37.5 152.6 NAL126C THER 400.0 0.0595 -51.1 -175.9 -29.3 147.5 NAL126C THER 450.0 0.0567 -54.6 -176.7 -30.9 144.0 NAL126D INIT 0.0 0.0798 -25.7 -170.0 -16.5 171.9 NAL126D THER 400.0 0.0620 -34.4 -173.3 -20.2 163.1 NAL126D THER 450.0 0.0602 -34.4 -175.2 -19.0 162.0 NAL127 1535.0 16.5 -165.0 I NAL127A INIT 0.0 0.0763 15.8 -177.9 18.0 -163.4 NAL127A THER 400.0 0.0513 21.2 167.4 32.1 -169.3 NAL127A THER 450.0 0.0486 17.4 165.1 31.1 -174.3 NAL127B INIT 0.0 0.0810 -14.6 -161.7 -14.7 -174.2 NAL127B THER 400.0 0.0569 0.7 164.5 19.6 172.3 NAL127B THER 450.0 0.0538 0.9 161.1 22.0 169.7 NAL127C INIT 0.0 0.0510 -39.9 -129.1 -52.6 -178.7 NAL127C THER 400.0 0.0368 3.2 169.6 18.0 178.0 NAL127C THER 450.0 0.0403 6.4 164.3 23.9 176.3 NAL127D INIT 0.0 0.1142 10.8 -149.2 -5.2 -147.0 NAL127D THER 400.0 0.0682 16.9 -152.7 1.5 -145.4 NAL127D THER 450.0 0.0612 17.6 -149.1 -0.3 -142.4 NAL127E INIT 0.0 0.0860 13.8 -165.6 8.0 -156.5 NAL127E THER 400.0 0.0512 13.4 -169.5 10.5 -159.5 NAL127E THER 450.0 0.0404 17.1 -174.9 16.8 -160.4 136 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL124 1554 29.0 -156.4 II NAL124A INIT 0.0 0.0470 88.0 -16.5 44.0 -75.5 NAL124A THER 200.0 0.0305 81.0 -40.3 37.7 -71.1 NAL124A THER 400.0 0.0248 64.9 -105.6 22.0 -90.2 NAL124A THER 450.0 0.0221 65.0 -130.6 27.3 -100.2 NAL124B INIT 0.0 0.0278 -4.0 164.2 16.2 168.9 NAL124B THER 200.0 0.0294 -10.5 169.5 7.9 168.5 NAL124B THER 400.0 0.0182 -38.5 169.0 -12.9 149.7 NAL124B THER 450.0 0.0305 -29.7 167.2 -5.3 154.3 NAL124C INIT 0.0 0.0350 80.0 3.8 42.7 -64.4 NAL124C THER 200.0 0.0253 80.8 13.4 44.5 -65.0 NAL124C THER 400.0 0.0233 58.5 -40.3 18.1 -58.4 NAL124C THER 450.0 0.0157 65.0 -39.6 24.0 -61.3 NAL124D INIT 0.0 0.0453 35.9 142.4 58.3 -170.3 NAL124D THER 200.0 0.0380 25.6 155.6 43.2 -173.7 NAL124D THER 400.0 0.0352 23.8 171.8 30.6 -163.9 NAL124D THER 450.0 0.0362 24.9 171.9 31.2 -162.8 NAL124E INIT 0.0 0.0552 57.7 121.5 72.5 -114.4 NAL124E THER 200.0 0.0482 46.6 146.5 59.4 -149.0 NAL124E THER 400.0 0.0400 42.3 179.1 36.4 -141.5 NAL124E THER 450.0 0.0408 39.8 171.6 39.9 -148.0 NAL123 1555.5 35.2 -125.0 I NAL123A INIT 0.0 0.0380 64.6 116.5 68.8 -95.3 NAL123A THER 200.0 0.0279 59.6 149.1 58.6 -123.4 NAL123A THER 400.0 0.0238 64.3 163.7 51.5 -115.8 NAL123A THER 450.0 0.0177 56.9 145.6 60.7 -128.2 NAL123B INIT 0.0 0.0411 66.4 158.7 53.4 -112.2 NAL123B THER 200.0 0.0335 41.0 174.1 38.9 -145.4 NAL123B THER 400.0 0.0356 50.3 -169.8 34.0 -128.3 NAL123B THER 450.0 0.0388 31.9 -172.6 24.9 -147.0 NAL123C INIT 0.0 0.0245 72.1 98.0 62.9 -75.3 NAL123C THER 200.0 0.0140 47.6 159.3 51.3 -142.9 NAL123C THER 400.0 0.0140 20.2 179.2 23.0 -162.0 NAL123C THER 450.0 0.0080 29.4 -156.0 12.7 -138.8 NAL123D INIT 0.0 0.0463 73.2 172.5 48.2 -102.1 NAL123D THER 200.0 0.0412 44.0 -170.0 30.6 -134.6 NAL123D THER 400.0 0.0397 33.6 -177.1 29.0 -148.1 NAL123D THER 450.0 0.0357 28.0 -177.4 25.7 -153.2 NAL123E IN IT 0.0 0.0528 73.5 -23.8 34.1 -61.9 NAL123E THER 200.0 0.0392 79.9 -130.7 38.4 -88.2 NAL123E THER 400.0 0.0215 57.4 -133.2 22.2 -106.5 NAL123E THER 450.0 0.0242 71.2 -149.1 36.5 -100.3 NAL128 1605.0 -43.0 -174.8 I NAL128A IN IT 0.0 0.0634 -28.5 -118.2 -54.3 -154.4 NAL128A THER 200.0 0.0493 -38.4 -128.2 -52.5 -176.1 NAL128A THER 400.0 0.0266 -17.6 -166.4 -13.4 -179.6 NAL128A THER 450.0 0.0180 -39.2 -137.1 -46.8 178.0 NAL128B IN IT 0.0 0.0549 -20.3 -138.8 -34.7 -162.5 NAL128B THER 200.0 0.0414 -14.4 -133.7 -34.2 -153.2 NAL128B THER 400.0 0.0220 19.7 -117.4 -16.0 -116.4 NAL128B THER 450.0 0.0202 12.0 -115.4 -23.7 -118.5 NAL128C IN IT 0.0 0.0506 -25.5 -128.2 -45.5 -159.5 NAL128C THER 200.0 0.0468 -33.3 -128.3 -50.0 -169.0 NAL128C THER 400.0 0.0407 -38.9 -134.2 -48.6 179.9 NAL128C THER 450.0 0.0371 -38.6 -132.5 -49.7 -178.7 NAL128D IN IT 0.0 0.0311 -41.4 -163.5 -30.6 162.3 NAL128D THER 200.0 0.0311 -41.9 -165.1 -30.0 161.1 137 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL128D THER 400.0 0.0207 -30.0 -165.9 -22.1 171.0 NAL128D THER 450.0 0.0203 -37.2 -158.9 -31.2 168.7 NAL128E INIT 0.0 0.0405 -35.3 155.1 -3.6 142.8 NAL128E THER 200.0 0.0462 -31.3 156.6 -1.0 146.1 NAL128E THER 400.0 0.0397 -22.9 163.9 1.8 156.4 NAL128E THER 450.0 0.0376 -20.8 160.9 5.2 155.5 NAL128F INIT 0.0 0.0253 -38.5 -31.4 -55.1 17.9 NAL128F THER 200.0 0.0236 -73.1 -17.7 -51.1 78.2 NAL128F THER 400.0 0.0207 -69.1 21.9 -38.1 75.5 NAL128F THER 450.0 0.0173 -76.8 -77.9 -58.2 101.9 NAL129 1606.0 -24.2 -179.6 I NAL129A INIT 0.0 0.0919 -29.6 -126.5 -49.2 -162.9 NAL129A THER 400.0 0.0596 -16.2 -152.8 -22.1 -169.2 NAL129A THER 450.0 0.0595 -16.7 -150.6 -24.0 -168.0 NAL129B INIT 0.0 0.0718 -23.7 -149.1 -29.6 -172.9 NAL129B THER 400.0 0.0525 -28.2 -171.9 -16.9 168.8 NAL129B THER 450.0 0.0513 -28.0 -170.5 -17.7 169.8 NAL129C INIT 0.0 0.0646 -22.8 -141.7 -34.2 -166.9 NAL129C THER 400.0 0.0394 -12.2 -153.9 -18.5 -166.8 NAL129C THER 450.0 0.0364 -11.1 -153.9 -17.8 -166.0 NAL129D INIT 0.0 0.0638 -30.7 -97.7 -69.0 -131.8 NAL129D THER 400.0 0.0374 -3.2 -153.9 -12.2 -160.3 NAL129D THER 450.0 0.0389 -2.3 -151.7 -13.1 -158.0 NAL.129E INIT 0.0 0.1109 -46.9 -131.8 -53.3 169.2 NAL129E THER 400.0 0.0592 -41.8 -153.2 -37.3 167.0 NAL129E THER 450.0 0.0533 -46.1 -157.3 -36.9 160.5 NAL057 1634.0 52.7 -2.8 I NAL057A INIT 0.0 0.0837 43.6 43.3 48.9 -7.7 NAL057A THER 400.0 0.0409 30.1 49.0 46.3 13.1 NAL057A THER 450.0 0.0305 36.7 24.5 33.0 -9.0 NAL057A THER 500.0 0.0267 36.0 45.7 47.2 3.7 NAL057B INIT 0.0 0.0781 51.9 48.6 54.7 -18.8 NAL057B THER 400.0 0.0312 39.6 72.9 68.0 15.8 NAL057B THER 450.0 0.0214 49.1 63.7 63.9 -11.0 NAL057B THER 500.0 0.0238 34.2 81.3 70.8 39.1 NAL057C INIT 0.0 0.0713 52.9 48.4 54.8 -20.6 NAL057C THER 400.0 0.0326 54.0 54.2 58.3 -22.0 NAL057C THER 450.0 0.0235 79.6 -33.9 37.1 -68.9 NAL057C THER 500.0 0.0259 79.9 59.5 52.0 -66.9 NAL057D INIT 0.0 0.0782 46.7 24.7 38.4 -19.4 NAL057D THER 400.0 0.0407 39.6 23.6 34.1 -12.3 NAL057D THER 450.0 0.0362 41.4 23.8 35.2 -14.1 NAL057D THER 500.0 0.0339 39.5 26.3 35.8 -10.9 NAL058 1634.0 29.3 -35.9 1 NAL058A INIT 0.0 0.0417 63.1 63.8 61.9 -41.6 NAL058A THER 400.0 0.0266 53.2 34.9 46.9 -24.0 NAL058A THER 450.0 0.0236 56.3 10.6 35.4 -35.2 NAL058A THER 500.0 0.0224 55.5 24.8 42.2 -29.8 NAL058B INIT 0.0 0.0484 59.7 74.0 67.7 -39.2 NAL058B THER 400.0 0.0262 54.4 68.9 66.9 -23.9 NAL058B THER 450.0 0.0150 66.6 2.9 37.2 -48.5 NAL058B THER 500.0 0.0169 58.6 44.3 53.2 -30.8 NAL058C INIT 0.0 0.3161 38.2 146.4 56.6 -163.8 NAL058C THER 400.0 0.0425 43.9 99.9 88.1 48.2 NAL058C THER 450.0 0.0208 72.7 59.7 56.1 -57.0 NAL058C THER 500.0 0.0273 70.2 113.5 64.1 -86.9 138 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL058D INIT 0.0 0.0604 54.0 37.5 48.7 -24.6 NAL058D THER 400.0 0.0343 43.8 31.9 41.6 -13.0 NAL058D THER 450.0 0.0180 45.3 2.3 24.8 -28.2 NAL058D THER 500.0 0.0242 51.1 17.2 36.2 -27.2 NAL058E INIT 0.0 0.0521 51.9 31.8 44.7 -23.1 NAL058E THER 400.0 0.0310 30.8 15.0 23.2 -9.1 NAL058E THER 450.0 0.0228 44.8 -8.1 19.0 -33.2 NAL058E THER 500.0 0.0208 43.8 0.1 22.6 -28.1 NAL059 1668.0 •24.0 -5.7 1 NAL059A INIT 0.0 0.1113 11.1 -16.4 -11.2 -16.3 NAL059A THER 400.0 0.1012 0.3 -16.6 -19.5 -9.2 NAL059A THER 450.0 0.1236 -25.2 11.4 -17.9 30.0 NAL059A THER 500.0 0.0823 -20.9 -3.9 -25.7 16.5 NAL059B INIT 0.0 0.0821 -8.1 -16.8 -25.9 -3.3 NAL059B THER 400.0 0.0668 -15.8 -23.6 -36.1 -2.6 NAL059B THER 450.0 0.0552 -21.5 -35.0 -47.7 -7.3 NAL059B THER 500.0 0.0586 -23.3 -32.5 -47.3 -2.9 NAL059C INIT 0.0 0.1010 14.5 -11.8 -5.6 -15.1 NAL059C THER 400.0 0.1004 -0.2 -11.3 -16.4 -4.8 NAL059C THER 450.0 0.0824 2.8 -10.5 -13.6 -6.3 NAL059C THER 500.0 0.0867 -15.7 -20.0 -33.5 0.3 NAL060A INIT 0.0 0.1864 23.6 -4.7 5.5 -16.2 NAL060 1668.0 ■3.7 -9.1 1 NAL060A THER 400.0 0.1369 18.5 -1.2 4.1 -10.2 NAL060A THER 450.0 0.1184 22.2 2.7 9.3 -10.2 NAL060A THER 500.0 0.1087 17.7 14.0 13.9 0.6 NAL060B INIT 0.0 0.1802 20.6 -7.7 1.5 -16.1 NAL060B THER 400.0 0.1305 23.3 -5.3 4.9 -16.3 NAL060B THER 450.0 0.1098 32.1 -12.1 7.5 -26.7 NAL060B THER 500.0 0.0936 20.5 5.2 9.8 -7.3 NAL060C INIT 0.0 0.1567 21.2 -5.8 3.1 -15.3 NAL060C THER 400.0 0.1242 16.5 -9.6 -2.8 -14.8 NAL060C THER 450.0 0.1174 25.4 -17.1 -0.4 -25.9 NAL060C THER 500.0 0.0974 25.7 -2.4 8.6 -16.1 NAL060D INIT 0.0 0.0537 10.0 -6.7 -5.7 -8.3 NAL060D THER 400.0 0.0461 -10.5 -7.2 -20.9 5.9 NAL060D THER 450.0 0.0320 -16.6 -7.7 -25.5 10.3 NAL060D THER 500.0 0.0365 -30.0 -7.1 -33.6 22.6 NAL061 1689.0 35.1 3.2 1 NAL061A INIT 0.0 0.0594 25.3 34.6 33.2 8.1 NAL061A THER 400.0 0.0423 10.4 42.0 28.4 26.5 NAL061A THER 450.0 0.0307 20.6 35.6 30.9 13.1 NAL061A THER 500.0 0.0380 21.7 36.2 32.0 12.5 NAL061B INIT 0.0 0.0575 41.5 37.7 44.3 -7.6 NAL061B THER 400.0 0.0420 33.2 36.5 39.3 1.4 NAL061B THER 450.0 0.0294 40.2 33.6 40.9 -8.0 NAL061B THER 500.0 0.0332 38.4 38.8 43.6 -3.1 NAL061C INIT 0.0 0.0740 46.7 13.1 31.6 -24.4 NAL061C THER 400.0 0.0568 32.0 30.1 34.1 -1.1 NAL061C THER 450.0 0.0368 30.4 27.6 31.4 -1.2 NAL061C THER 500.0 0.0398 36.2 29.7 36.2 -5.6 NAL061D INIT 0.0 0.0534 32.8 25.6 31.5 -4.6 NAL061D THER 400.0 0.0380 27.2 22.4 25.9 -1.5 NAL061D THER 450.0 0.0211 21.5 21.8 21.8 2.8 NAL061D THER 500.0 0.0314 22.4 29.6 27.8 7.3 139 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL062 1689.0 29.2 9.7 I NAL062A INIT 0.0 0.0413 15.7 24.0 19.5 9.0 NAL062A THER 200.0 0.0324 15.0 37.1 28.2 19.0 NAL062A THER 400.0 0.0237 6.0 43.7 26.3 31.2 NAL062A THER 450.0 0.0220 -0.5 55.8 28.9 46.5 NAL062A THER 500.0 0.0299 10.8 38.2 26.0 23.1 NAL062B INIT 0.0 0.0877 23.5 33.7 31.5 9.2 NAL062B THER 200.0 0.0677 23.2 40.2 35.8 14.0 NAL062B THER 400.0 0.0806 36.5 28.7 35.8 -6.5 NAL062B THER 450.0 0.0511 36.5 49.9 50.4 5.6 NAL062B THER 500.0 0.0543 10.4 59.3 39.7 41.8 NAL062C INIT 0.0 0.0727 27.4 36.0 35.5 7.0 NAL062C THER 200.0 0.0684 24.0 32.7 31.1 8.0 NAL062C THER 400.0 0.0552 29.6 32.0 34.0 2.4 NAL062C THER 450.0 0.0553 30.5 31.3 34.1 1.1 NAL062C THER 500.0 0.0484 29.8 31.2 33.6 1.6 NAL062D INIT 0.0 0.0579 18.6 36.5 30.3 15.5 NAL062D THER 200.0 0.0544 13.4 32.0 23.5 16.5 NAL062D THER 400.0 0.0426 18.0 30.4 25.6 11.6 NAL062D THER 450.0 0.0424 15.6 31.6 24.8 14.4 NAL062D THER 500.0 0.0404 18.9 32.4 27.5 12.3 NAL062E INIT 0.0 0.0601 29.3 29.0 31.8 0.8 NAL062E THER 200.0 0.0556 25.7 23.5 25.7 0.5 NAL062E THER 400.0 0.0410 35.1 30.3 36.1 -4.2 NAL062E THER 450.0 0.0412 34.7 32.5 37.3 -2.5 NAL062E THER 500.0 0.0377 38.0 30.5 37.7 -7.1 NAL063 1722.0 -32.9 -15.3 II NAL063A INIT 0.0 0.0289 16.5 -27.1 -13.1 -28.2 NAL063A THER 200.0 0.0145 -13.4 -48.3 -49.5 -30.0 NAL063A THER 400.0 0.0111 -29.7 -67.0 -72.4 -44.7 NAL063A THER 450.0 0.0137 -33.6 -66.5 -75.6 -36.3 NAL063A THER 500.0 0.0106 -33.3 -51.6 -66.6 -8.8 NAL063B INIT 0.0 0.0225 -3.1 -59.1 -45.0 -50.8 NAL063B THER 200.0 0.0205 -19.1 -28.4 -41.6 -3.7 NAL063B THER 400.0 0.0094 -15.8 -5.4 -23.3 11.3 NAL063B THER 450.0 0.0096 -32.9 -5.8 -34.4 26.2 NAL063B THER 500.0 0.0097 -27.8 11.4 -19.7 32.0 NAL063C INIT 0.0 0.0419 36.5 21.2 30.8 -10.6 NAL063C THER 200.0 0.0296 20.6 24.2 22.9 5.2 NAL063C THER 400.0 0.0205 6.0 17.2 7.9 11.4 NAL063C THER 450.0 0.0201 -5.9 26.2 5.7 26.2 NAL063C THER 500.0 0.0126 13.1 34.4 25.0 18.5 NAL063D INIT 0.0 0.0436 26.0 -133.6 -2.8 -126.0 NAL063D THER 200.0 0.0421 7.2 -132.2 -18.7 -136.2 NAL063D THER 400.0 0.0351 7.8 -130.8 -19.1 -134.7 NAL063D THER 450.0 0.0305 -3.2 -131.4 -27.5 -142.6 NAL063D THER 500.0 0.0331 8.8 -125.7 -21.2 -129.6 NAL063E INIT 0.0 0.0780 -0.5 -44.9 -36.7 -35.0 NAL063E THER 200.0 0.0631 -9.5 -56.7 -50.1 -44.1 NAL063E THER 400.0 0.0448 -5.3 -45.5 -41.2 -32.6 NAL063E THER 450.0 0.0484 -7.8 -45.4 -43.4 -30.8 NAL063E THER 500.0 0.0433 -7.5 -43.2 -41.9 -28.5 NAL064 1722.0 25.1 -7.0 II NAL064A INIT 0.0 0.0795 18.7 28.3 24.5 9.5 NAL064A THER 200.0 0.0624 14.2 37.2 27.8 19.7 NAL064A THER 400.0 0.0411 15.9 41.8 32.2 21.8 NAL064A THER 450.0 0.0423 16.3 41.1 31.9 20.9 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL064A THER 500.0 0.0386 14.5 44.2 32.8 24.9 NAL064C INIT 0.0 0.0286 19.1 -86.0 -25.5 -86.4 NAL064C THER 200.0 0.0235 18.4 -100.7 -23.3 -101.5 NAL064C THER 400.0 0.0064 71.9 -25.3 32.7 -61.0 NAL064C THER 450.0 0.0078 63.1 -120.2 23.2 -97.3 NAL064C THER 500.0 0.0059 26.1 -131.8 -3.6 -124.5 NAL064D INIT 0.0 0.1599 77.0 -97.0 32.6 -83.0 NAL064D THER 200.0 0.1539 77.8 -103.2 33.8 -84.2 NAL064D THER 400.0 0.1311 87.0 -85.0 42.0 -78.5 NAL064D THER 450.0 0.1379 62.6 -134.8 26.7 -103.6 NAL064D THER 500.0 0.1288 61.8 -145.4 29.6 -108.1 NAL064E INIT 0.0 0.0487 20.3 45.9 38.0 21.1 NAL064E THER 200.0 0.0429 -4.1 54.4 25.2 47.6 NAL064E THER 400.0 0.0329 -7.3 50.4 20.2 46.1 NAL064E THER 450.0 0.0312 -11.2 45.0 13.9 44.0 NAL064E THER 500.0 0.0298 -4.9 45.0 18.9 40.0 NAL064F INIT 0.0 0.0234 20.2 -20.2 -6.3 -24.9 NAL064F THER 200.0 0.0181 7.3 -41.3 -28.2 -35.8 NAL064F THER 400.0 0.0173 8.4 -42.9 -28.0 -37.9 NAL064F THER 450.0 0.0150 0.5 -48.9 -37.7 -40.1 NAL064F THER 500.0 0.0178 4.8 -25.7 -21.9 -19.8 NAL065 1738.5 2.1 -8.8 II NAL065A INIT 0.0 0.0322 0.3 26.4 10.4 22.1 NAL065A THER 200.0 0.0215 -2.9 21.0 4.3 20.5 NAL065A THER 400.0 0.0147 -22.4 56.1 10.7 59.5 NAL065A THER 450.0 0.0165 -30.0 45.5 -0.9 55.7 NAL065A THER 500.0 0.0115 -55.7 66.4 -15.1 82.2 NAL065B INIT 0.0 0.0238 25.7 -4.1 7.5 -17.2 NAL065B THER 200.0 0.0187 20.9 16.1 17.4 -0.4 NAL065B THER 400.0 0.0227 39.9 2.5 21.4 -23.7 NAL065B THER 450.0 0.0174 41.2 16.0 30.2 -17.7 NAL065B THER 500.0 0.0216 49.6 -7.6 22.6 -36.6 NAL065C INIT 0.0 0.0429 35.1 -22.1 4.7 -35.2 NAL065C THER 200.0 0.0386 28.8 -17.0 2.3 -27.9 NAL065C THER 400.0 0.0251 40.8 -38.2 2.9 -49.0 NAL065C THER 450.0 0.0278 40.2 -16.2 11.6 -34.6 NAL065C THER 500.0 0.0208 53.1 -17.2 21.0 -43.8 NAL065D INIT 0.0 0.0552 53.8 -107.3 11.9 -95.2 NAL065D THER 200.0 0.0412 21.5 128.1 58.2 153.0 NAL065D THER 400.0 0.0504 -28.2 52.1 3.9 59.5 NAL065D THER 450.0 0.0449 5.1 -31.7 -25.1 -25.4 NAL065D THER 500.0 0.0473 -32.9 61.8 4.0 69.1 NAL065E INIT 0.0 0.0379 26.2 -26.8 -4.9 -33.5 NAL065E THER 200.0 0.0294 13.5 -28.0 -16.1 -27.2 NAL065E THER 400.0 0.0391 41.1 -36.6 3.8 -48.1 NAL065E THER 450.0 0.0381 36.5 -34.4 0.5 -44.3 NAL065E THER 500.0 0.0289 63.6 3.6 36.0 -45.1 NAL066 1766.0 46.2 23.8 II NAL066A INIT 0.0 0.0897 -11.2 -2.5 -3.2 2.7 NAL066A THER 200.0 0.0955 -19.3 1.6 -7.0 10.9 NAL066A THER 400.0 0.0954 -19.0 -0.4 -7.9 9.3 NAL066A THER 450.0 0.0982 -23.1 2.0 -9.7 13.7 NAL066A THER 500.0 0.0969 -14.5 1.3 -3.4 7.6 NAL066B INIT 0.0 0.0306 62.5 -55.4 28.2 -79.0 NAL066B THER 200.0 0.0240 56.9 -37.4 29.0 -67.0 NAL066B THER 400.0 0.0072 37.5 -95.3 -2.3 -96.4 NAL066B THER 450.0 0.0204 35.5 -18.8 22.0 -40.6 NAL066B THER 500.0 0.0156 49.1 74.8 87.1 6.2 141 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL066C INIT 0.0 0.0170 82.7 -24.1 47.9 -90.4 NAL066C THER 200.0 0.0119 58.3 41.9 67.1 -46.6 NAL066C THER 400.0 0.0097 55.0 29.6 60.1 -40.0 NAL066C THER 450.0 0.0136 51.9 -16.2 34.5 -52.8 NAL066C THER 500.0 0.0130 52.3 13.1 50.1 -40.6 NAL066D INIT 0.0 0.0253 31.7 165.2 26.0 -171.9 NAL066D THER 200.0 0.0176 25.9 147.3 33.3 170.8 NAL066D THER 400.0 0.0133 2.9 115.1 33.8 124.2 NAL066D THER 450.0 0.0162 31.9 -147.6 1.7 -139.1 NAL066D THER 500.0 0.0118 -32.4 86.3 7.3 85.2 NAL067 1766.0 41.0 -47.7 II NAL067A INIT 0.0 0.0207 68.9 -20.4 42.6 -72.1 NAL067A THER 200.0 0.0182 62.3 -13.4 41.7 -62.6 NAL067A THER 400.0 0.0183 76.9 -1.4 50.4 -80.4 NAL067A THER 450.0 0.0157 71.7 110.3 64.1 -122.9 NAL067A THER 500.0 0.0200 66.2 30.7 60.9 -62.8 NAL067B INIT 0.0 0.0185 46.0 -13.3 32.2 -45.9 NAL067B THER 200.0 0.0156 35.0 -0.9 32.1 -28.7 NAL067B THER 400.0 0.0073 -8.4 51.8 27.0 48.5 NAL067B THER 450.0 0.0075 14.4 -1.6 17.0 -13.3 NAL067B THER 500.0 0.0106 -6.1 4.2 5.0 4.6 NAL067C INIT 0.0 0.0370 38.9 14.2 44.0 -23.0 NAL067C THER 200.0 0.0320 34.9 19.8 45.1 -14.7 NAL067C THER 400.0 0.0228 43.1 16.9 48.0 -26.4 NAL067C THER 450.0 0.0270 12.3 48.5 44.8 34.7 NAL067C THER 500.0 0.0218 45.9 59.8 76.6 -0.8 NAL067D INIT 0.0 0.0449 49.8 -95.7 9.9 -97.5 NAL067D THER 200.0 0.0355 45.3 -92.0 5.7 -94.7 NAL067D THER 400.0 0.0188 19.0 17.4 32.6 -1.7 NAL067D THER 450.0 0.0165 53.8 -50.7 22.1 -71.7 NAL067D THER 500.0 0.0172 25.2 76.6 65.1 73.9 NAL067E INIT 0.0 0.0343 59.6 5.2 48.7 -53.6 NAL067E THER 200.0 0.0265 55.1 31.5 61.3 -39.7 NAL067E THER 400.0 0.0258 77.9 -64.6 39.8 -91.7 NAL067E THER 450.0 0.0178 35.7 73.6 75.2 61.4 NAL067E THER 500.0 0.0308 53.9 -48.2 23.0 -70.3 NAL067F INIT 0.0 0.5775 -35.8 -157.0 -47.7 166.6 NAL067F THER 200.0 0.4749 -32.8 -157.1 -45.8 169.8 NAL067F THER 400.0 0.0175 -9.6 -139.8 -38.4 -153.1 NAL067F THER 450.0 0.0166 -7.5 -143.2 -34.9 -155.3 NAL067F THER 500.0 0.0074 -3.5 -121.5 -40.3 -128.3 NAL068 1783.0 36.8 10.8 I NAL068A INIT 0.0 0.0375 21.8 35.2 45.7 12.1 NAL068A THER 200.0 0.0309 8.7 16.4 24.1 5.0 NAL068A THER 400.0 0.0295 13.6 -4.9 14.3 -15.3 NAL068A THER 450.0 0.0263 12.5 -17.3 5.5 -23.8 NAL068A THER 500.0 0.0220 6.6 -10.3 5.5 -14.7 NAL068B INIT 0.0 0.0387 15.3 49.9 48.1 34.5 NAL068B THER 200.0 0.0318 3.8 36.8 31.7 27.0 NAL068B THER 400.0 0.0205 17.1 0.8 20.5 -13.3 NAL068B THER 450.0 0.0208 15.1 3.3 20.7 -10.0 NAL068B THER 500.0 0.0174 30.6 -11.2 22.9 -32.0 NAL068C INIT 0.0 0.0515 34.1 29.2 50.6 -6.6 NAL068C THER 200.0 0.0445 14.5 33.2 38.8 16.2 NAL068C THER 400.0 0.0405 17.7 28.7 38.6 9.2 NAL068C THER 450.0 0.0398 20.4 23.5 37.5 2.4 NAL068C THER 500.0 0.0377 17.1 27.9 37.7 9.0 NAL068D INIT 0.0 0.0242 -20.0 37.4 11.0 39.6 14 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL068D THER 200.0 0.0143 11.5 -52.1 -15.2 -51.1 NAL068D THER 400.0 0.0150 7.1 -23.5 -2.5 -25.2 NAL068D THER 450.0 0.0116 10.3 -25.6 -1.3 -28.7 NAL068D THER 500.0 0.0094 27.7 -35.1 7.1 -46.5 NAL068E INIT 0.0 0.0455 41.2 23.7 51.3 -19.8 NAL068E THER 200.0 0.0215 34.6 27.2 49.7 -8.8 NAL068E THER 400.0 0.0105 25.5 -24.4 11.2 -37.5 NAL068E THER 450.0 0.0061 64.2 -79.8 25.4 -91.0 NAL068E THER 500.0 0.0129 28.4 16.5 38.7 -10.6 NAL069 1783.0 33.9 -1.2 I NAL069A INIT 0.0 0.0505 30.8 4.8 32.8 -21.3 NAL069A THER 200.0 0.0308 19.4 -9.6 15.6 -22.7 NAL069A THER 400.0 0.0214 18.8 -10.5 14.6 -22.9 NAL069A THER 450.0 0.0253 19.8 -6.7 17.7 -20.9 NAL069A THER 500.0 0.0175 18.8 -17.3 10.4 -28.0 NAL069B INIT 0.0 0.0741 23.3 35.2 46.8 10.7 NAL069B THER 200.0 0.0613 18.8 29.3 39.8 8.9 NAL069B THER 400.0 0.0312 3.9 27.7 27.0 18.2 NAL069B THER 450.0 0.0330 2.5 27.1 25.4 18.5 NAL069B THER 500.0 0.0340 3.2 37.0 31.3 27.6 NAL069C INIT 0.0 0.0420 9.6 42.4 39.5 29.3 NAL069C THER 200.0 0.0299 2.2 9.0 14.4 3.1 NAL069C THER 400.0 0.0357 -5.8 -2.8 0.8 -0.9 NAL069C THER 450.0 0.0383 -15.4 0.4 -4.7 7.5 NAL069C THER 500.0 0.0307 -6.5 9.3 7.8 8.9 NAL069D INIT 0.0 0.0633 27.3 36.4 50.5 7.9 NAL069D THER 200.0 0.0415 12.5 39.4 40.5 24.1 NAL069D THER 400.0 0.0305 -22.5 45.7 11.7 47.8 NAL069D THER 450.0 0.0352 -1.6 41.5 29.2 34.8 NAL069D THER 500.0 0.0278 -29.2 43.2 4.7 48.2 NAL069E INIT 0.0 0.0429 35.0 13.6 41.2 -19.3 NAL069E THER 200.0 0.0343 24.2 14.3 34.4 -8.6 NAL069E THER 400.0 0.0245 41.5 25.6 52.6 -18.9 NAL069E THER 450.0 0.0220 40.7 14.5 45.2 -24.9 NAL069E THER 500.0 0.0201 38.4 21.9 48.5 -17.3 NAL070 1804.0 13.9 •56.6 I NAL070A INIT 0.0 0.0372 64.2 127.3 61.2 -143.4 NAL070A THER 200.0 0.0071 21.4 -103.6 -18.5 -103.6 NAL070A THER 400.0 0.0238 22.2 -32.4 4.2 -41.2 NAL070A THER 450.0 0.0403 25.8 -26.1 10.5 -38.9 NAL070A THER 500.0 0.0105 46.2 8.7 44.6 -34.6 NAL070B INIT 0.0 0.0569 81.5 99.7 57.8 -106.6 NAL070B THER 200.0 0.0135 43.7 -13.7 30.5 -44.1 NAL070B THER 400.0 0.0424 61.6 -40.1 31.6 -71.8 NAL070B THER 450.0 0.0098 68.4 -61.1 32.0 -84.8 NAL070B THER 500.0 0.0505 68.4 -79.5 29.4 -92.1 NAL070C INIT 0.0 0.0254 15.3 -71.5 -19.7 -70.7 NAL070C THER 200.0 0.0265 29.0 -81.1 -9.1 -83.4 NAL070C THER 400.0 0.0402 41.1 -65.8 6.2 -75.1 NAL070C THER 450.0 0.0336 59.5 -70.1 22.3 -84.6 NAL070C THER 500.0 0.0417 34.7 -10.4 26.2 -34.6 NAL070D INIT 0.0 0.0300 34.1 139.6 43.7 172.9 NAL070D THER 200.0 0.0215 44.4 -177.5 25.4 -151.3 NAL070D THER 400.0 0.0254 13.9 -5.9 13.9 -16.2 NAL070D THER 450.0 0.0125 72.6 -126.5 33.9 -109.9 NAL070D THER 500.0 0.0380 62.5 -47.2 30.3 -75.4 NAL070E INIT 0.0 0.0150 48.5 50.0 71.1 -17.7 NAL070E THER 200.0 0.0077 20.0 19.0 34.4 -1.2 143 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL070E THER 400.0 0.0050 27.6 -26.4 11.8 -40.3 NAL070E THER 450.0 0.0049 45.3 15.6 48.3 -29.9 NAL070E THER 500.0 0.0097 -27.1 -7.0 -18.0 10.0 NAL071 1804.1 -4.0 -82.4 II NAL071A INIT 0.0 0.0227 42.4 -167.4 19.0 -146.7 NAL071A THER 200.0 0.0083 78.4 -61.2 40.7 -91.3 NAL071A THER 400.0 0.0031 18.2 0.3 21.1 -14.6 NAL071A THER 450.0 0.0037 -1.7 41.1 29.0 34.4 NAL071B INIT 0.0 0.0379 0.9 -84.0 -37.0 -79.5 NAL071B THER 200.0 0.0356 11.8 -84.8 -26.6 -83.2 NAL071B THER 400.0 0.0191 -0.6 -91.7 -39.9 -88.8 NAL071B THER 450.0 0.0199 0.7 -91.5 -38.6 -88.8 NAL071C INIT 0.0 0.0239 24.2 -92.8 -15.5 -93.2 NAL071C THER 200.0 0.0286 21.2 -86.1 -17.6 -86.5 NAL071C THER 400.0 0.0140 4.3 -98.1 -35.6 -97.5 NAL071C THER 450.0 0.0161 21.7 -91.3 -17.8 -91.6 NAL071D INIT 0.0 0.0128 35.9 -63.6 2.0 -71.5 NAL071D THER 200.0 0.0207 25.6 -67.8 -8.8 -71.0 NAL071D THER 400.0 0.0135 6.7 -32.1 -8.0 -31.7 NAL071D THER 450.0 0.0226 35.5 -60.4 2.8 -69.0 NAL072 1815.0 43.9 -5.0 I NAL072A INIT 0.0 0.0488 31.3 38.0 58.2 7.2 NAL072A THER 400.0 0.0335 18.5 23.4 39.9 4.0 NAL072A THER 450.0 0.0344 20.9 28.3 44.6 7.0 NAL072B INIT 0.0 0.0640 41.1 24.2 56.0 -20.1 NAL072B THER 400.0 0.0406 28.1 16.3 42.7 -10.9 NAL072B THER 450.0 0.0393 28.1 18.6 44.2 -8.9 NAL072C INIT 0.0 0.0871 35.7 10.5 44.2 -23.3 NAL072C THER 400.0 0.0535 30.9 8.3 39.7 -20.1 NAL072C THER 450.0 0.0504 30.8 9.2 40.2 -19.3 NAL072D INIT 0.0 0.0544 35.4 17.7 48.5 -17.6 NAL072D THER 400.0 0.0415 24.9 33.8 50.9 9.3 NAL072D THER 450.0 0.0402 24.9 37.9 53.2 14.1 NAL073 1815.0 45.5 -0.2 1 NAL073A INIT 0.0 0.0519 -10.0 32.5 20.1 30.2 NAL073A THER 400.0 0.0304 15.6 43.9 48.1 29.3 NAL073A THER 450.0 0.0270 19.4 36.1 47.6 16.8 NAL073B INIT 0.0 0.0777 11.7 32.3 39.1 18.2 NAL073B THER 400.0 0.0422 18.3 23.7 39.9 4.5 NAL073B THER 450.0 0.0417 15.8 23.1 37.6 5.8 NAL073C INIT 0.0 0.0618 39.1 33.4 60.7 -9.3 NAL073C THER 400.0 0.0472 34.7 27.4 54.2 -8.4 NAL073C THER 450.0 0.0449 35.0 34.4 58.7 -2.0 NAL073D INIT 0.0 0.0675 31.9 27.2 52.2 -5.2 NAL073D THER 400.0 0.0463 23.5 22.4 43.1 -1.2 NAL073D THER 450.0 0.0428 28.3 18.4 44.2 -9.4 NAL073E INIT 0.0 0.0773 28.8 27.6 50.2 -1.3 NAL073E THER 400.0 0.0550 22.8 25.5 44.5 2.5 NAL073E THER 450.0 0.0467 25.6 20.2 43.3 -5.2 NAL074 1824.0 -2.7 -7.6 1 NAL074A INIT 0.0 0.1232 -5.0 -6.0 3.6 -5.5 NAL074B INIT 0.0 0.1222 3.8 -8.9 8.7 -13.4 NAL074B THER 400.0 0.0263 -10.0 -11.7 -3.8 -6.8 NAL074B THER 450.0 0.0282 -14.6 -12.0 -7.6 -4.1 14 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL074C INIT 0.0 0.1259 8.3 -7.9 12.8 -15.4 NAL074C THER 400.0 0.0913 6.2 -18.5 4.5 -22.3 NAL074C THER 450.0 0.0878 6.7 -20.6 3.6 -24.3 NAL074D INIT 0.0 0.0863 -4.4 8.6 12.8 5.9 NAL074D THER 400.0 0.0601 -22.0 -3.9 -8.6 6.5 NAL074D THER 450.0 0.0508 -21.9 -2.6 -7.8 7.5 NAL075 1824.0 1.9 -15.0 1 NAL075A INIT 0.0 0.0579 12.2 -7.9 15.8 -18.0 NAL075A THER 400.0 0.0524 -10.7 -3.5 0.7 -0.1 NAL075A THER 450.0 0.0440 -7.4 -1.3 4.5 -0.3 NAL075B INIT 0.0 0.1009 33.6 -17.0 26.1 -40.1 NAL075B THER 400.0 0.0625 -0.9 -8.3 5.4 -9.9 NAL075B THER 450.0 0.0600 -2.8 -10.2 2.7 -10.2 NAL075C INIT 0.0 0.1226 0.4 -31.2 -7.9 -28.6 NAL075C THER 400.0 0.1051 -5.8 -18.3 -4.7 -14.6 NAL075C THER 450.0 0.0971 -6.5 -18.1 -5.1 -14.0 NAL075D INIT 0.0 0.0982 -13.2 -33.8 -20.2 -21.8 NAL075D THER 400.0 0.0897 -4.5 -9.7 1.7 -8.7 NAL075D THER 450.0 0.0780 -6.9 -9.7 -0.2 -7.2 NAL075E INIT 0.0 0.0917 -12.9 -26.4 -15.2 -16.2 NAL075E THER 400.0 0.0569 9.4 -21.7 5.0 -26.7 NAL075E THER 450.0 0.0521 10.6 -21.6 6.0 -27.5 NAL076 1836.5 -22.1 -161.8 1 NAL076A INIT 0.0 0.0396 31.5 -148.6 -0.1 -141.7 NAL076A THER 400.0 0.0240 45.2 -150.5 13.0 -137.2 NAL076A THER 450.0 0.0166 32.4 -113.6 -6.5 -112.7 NAL076B INIT 0.0 0.0501 -1.6 -165.3 -21.2 -172.5 NAL076B THER 400.0 0.0263 -26.2 -157.1 -45.5 176.8 NAL076B THER 450.0 0.0215 -14.2 -160.2 -34.3 -176.1 NAL076C INIT 0.0 0.0565 8.1 -128.8 -28.2 -131.5 NAL076C THER 400.0 0.0323 11.4 -156.4 -14.8 -157.3 NAL076C THER 450.0 0.0309 9.8 -142.2 -22.4 -144.9 NAL076D INIT 0.0 0.0565 9.5 -128.0 -27.1 -130.2 NAL076D THER 400.0 0.0174 8.7 -162.0 -14.4 -163.6 NAL076D THER 450.0 0.0146 47.4 -123.4 9.3 -118.5 NAL076E INIT 0.0 0.0606 1.3 -150.3 -26.6 -156.9 NAL076E THER 400.0 0.0348 16.8 -150.4 -12.7 -149.4 NAL076E THER 450.0 0.0224 24.9 -117.6 -13.6 -117.0 NAL077 1837.0 -29.5 -165.2 1 NAL077A INIT 0.0 0.0813 -8.5 -147.1 -36.7 -159.1 NAL077A THER 400.0 0.0674 -3.8 -156.3 -27.9 -165.5 NAL077A THER 450.0 0.0613 2.1 -149.3 -26.4 -155.4 NAL077B INIT 0.0 0.1397 -9.5 -153.0 -34.6 -165.9 NAL077B THER 400.0 0.1150 -11.7 -154.8 -35.4 -169.1 NAL077B THER 450.0 0.1088 -8.7 -154.8 -32.9 -167.2 NAL077C INIT 0.0 0.1321 -1.2 -153.6 -27.2 -161.4 NAL077C THER 400.0 0.1117 2.5 -155.9 -22.8 -161.6 NAL077C THER 450.0 0.0985 6.0 -147.2 -23.9 -151.4 NAL077D INIT 0.0 0.1446 -5.6 -157.0 -29.1 -167.3 NAL077D THER 400.0 0.1144 -6.8 -153.8 -31.8 -164.9 NAL077D THER 450.0 0.1147 -11.7 -153.1 -36.3 -167.4 145 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL080 1855.5 -37.0 -174.4 1 NAL080A INIT 0.0 0.4250 -20.6 -155.1 -42.4 -176.2 NAL080A THER 400.0 0.3292 -21.4 -156.3 -42.3 -178.1 NAL080A THER 450.0 0.3062 -20.4 -156.7 -41.3 -177.6 NAL080B INIT 0.0 0.7109 -12.7 -158.9 -34.0 -173.9 NAL080B THER 400.0 0.5956 -12.6 -159.5 -33.5 -174.3 NAL080B THER 450.0 0.5554 -12.0 -158.1 -33.8 -172.6 NAL080C INIT 0.0 0.5344 -16.4 -155.7 -38.8 -173.4 NAL080C THER 400.0 0.4346 -16.6 -154.7 -39.4 -172.6 NAL080C THER 450.0 0.4112 -14.1 -157.1 -36.1 -173.1 NAL080D INIT 0.0 0.2839 -13.8 -159.2 -34.6 -174.9 NAL080D THER 400.0 0.2159 -15.9 -158.9 -36.5 -176.2 NAL080D THER 450.0 0.2026 -15.3 -157.8 -36.6 -174.7 NAL078 1857.0 -77.2 174.6 1 NAL078A INIT 0.0 0.3065 -43.1 -121.7 -77.8 -163.1 NAL078A THER 400.0 0.2403 -45.2 -129.9 -74.3 175.3 NAL078A THER 450.0 0.2146 -46.6 -127.5 -76.5 173.2 NAL078B INIT 0.0 0.3593 -53.4 -122.4 -80.9 141.3 NAL078B THER 400.0 0.2932 -50.4 -125.8 -78.7 158.1 NAL078B THER 450.0 0.2677 -54.3 -125.3 -79.0 137.5 NAL078C INIT 0.0 0.3827 -44.8 -121.6 -79.0 -169.0 NAL078C THER 400.0 0.3021 -45.9 -121.6 -79.6 -173.7 NAL078C THER 450.0 0.2801 -46.2 -122.1 -79.6 -176.3 NAL078D INIT 0.0 0.3597 -46.9 -123.7 -79.0 177.7 NAL078D THER 400.0 0.2831 -48.4 -125.3 -78.5 168.5 NAL078D THER 450.0 0.2599 -47.1 -125.3 -78.0 174.4 NAL078E INIT 0.0 0.1605 -46.4 -125.9 -77.3 176.5 NAL078E THER 400.0 0.1211 -46.9 -130.2 -74.9 169.2 NAL078E THER 450.0 0.1113 -46.5 -130.9 -74.3 169.8 NAL079 1859.5 -29.9 -166.3 1 NAL079A INIT 0.0 0.1153 -7.4 -164.0 -26.7 -174.9 NAL079A THER 400.0 0.0917 -11.4 -153.7 -35.8 -167.9 NAL079A THER 450.0 0.0904 -8.5 -154.3 -33.0 -166.5 NAL079B INIT 0.0 0.0772 2.7 -158.3 -21.4 -163.6 NAL079B THER 400.0 0.0668 -3.4 -148.3 -31.7 -157.4 NAL079B THER 450.0 0.0670 -1.2 -149.6 -29.1 -157.4 NAL079C INIT 0.0 0.0804 -5.1 -159.9 -27.1 -169.7 NAL079C THER 400.0 0.0623 -12.9 -157.0 -35.2 -172.2 NAL079C THER 450.0 0.0520 -12.1 -154.6 -35.8 -169.2 NAL079D INIT 0.0 0.1463 0.1 -173.5 -15.0 -178.5 NAL079D THER 400.0 0.1130 -1.8 -164.7 -21.8 -172.0 NAL079D THER 450.0 0.1110 -1.5 -165.0 -21.3 -172.1 NAL081 1878.0 -10.0 169.7 1 NAL081A INIT 0.0 0.0574 3.2 -179.4 -9.0 178.6 NAL081A THER 400.0 0.0419 -1.4 175.5 -9.5 171.7 NAL081A THER 450.0 0.0466 1.1 -177.1 -12.1 179.2 NAL081B INIT 0.0 0.0996 -4.0 -168.9 -21.1 -177.1 NAL081B THER 400.0 0.0864 -4.1 178.1 -13.3 172.0 NAL081B THER 450.0 0.0876 -0.6 -175.0 -14.7 179.9 NAL081C INIT 0.0 0.0980 12.4 -176.5 -3.4 -173.6 NAL081C THER 400.0 0.0781 3.6 176.8 -6.4 175.8 NAL081C THER 450.0 0.0690 4.6 -174.9 -10.6 -176.8 NAL081D INIT 0.0 0.0881 -6.3 -174.9 -19.3 176.4 NAL081D THER 400.0 0.0912 -10.2 166.5 -10.7 159.0 NAL081D THER 450.0 0.0814 -7.5 168.6 -9.9 162.4 14 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL082 1878.3 •22.3 -170.0 I NAL082A INIT 0.0 0.1373 11.1 -151.5 -17.4 -153.0 NAL082A THER 400.0 0.1305 -1.4 -161.1 -23.4 -168.5 NAL082A THER 450.0 0.1230 -0.6 -160.7 -22.9 -167.8 NAL082B INIT 0.0 0.1374 4.1 -157.4 -20.7 -162.1 NAL082B THER 400.0 0.1234 -3.8 -161.4 -25.2 -170.3 NAL082B THER 450.0 0.1152 -0.9 -159.3 -23.9 -166.6 NAL082C INIT 0.0 0.0976 8.5 -156.9 -17.1 -159.2 NAL082C THER 400.0 0.1039 -0.2 -168.0 -18.5 -174.0 NAL082C THER 450.0 0.0954 -0.4 -163.1 -21.5 -169.8 NAL082D IN IT 0.0 0.1019 17.2 -173.8 -1.0 -168.6 NAL082D THER 400.0 0.0916 23.1 -175.3 4.7 -166.3 NAL082D THER 450.0 0.0934 21.4 -179.2 5.4 -170.3 NAL082E INIT 0.0 0.1542 3.2 -162.0 -19.1 -166.7 NAL082E THER 400.0 0.1350 -2.2 -168.5 -19.8 -175.6 NAL082E THER 450.0 0.1289 -3.1 -168.1 -20.8 -175.8 NAL082F IN IT 0.0 0.0713 0.1 -172.1 -15.9 -177.3 NAL082F THER 400.0 0.0551 -19.9 177.7 -25.2 160.9 NAL082F THER 450.0 0.0559 -20.9 170.9 -21.6 155.1 NAL083 1894.0 -33.8 -172.3 1 NAL083A IN IT 0.0 0.1660 -9.4 -138.6 -41.4 -150.0 NAL083A THER 400.0 0.1582 -14.3 -149.1 -40.6 -165.1 NAL083A THER 450.0 0.1468 -13.1 -147.7 -40.3 -162.8 NAL083B IN IT 0.0 0.0790 9.3 -163.6 -13.0 -164.7 NAL083B THER 400.0 0.0879 -15.0 -164.7 -32.3 179.2 NAL083B THER 450.0 0.0721 -22.2 -168.3 -35.6 170.4 NAL083C IN IT 0.0 0.1174 13.2 -137.0 -21.0 -138.4 NAL083C THER 400.0 0.0911 -1.8 -149.0 -30.0 -157.2 NAL083C THER 450.0 0.0849 -0.8 -143.9 -31.4 -151.4 NAL083D IN IT 0.0 0.1677 2.8 -155.0 -23.0 -160.5 NAL083D THER 400.0 0.1267 -2.3 -158.3 -25.6 -166.5 NAL083D THER 450.0 0.1167 -3.1 -159.6 -25.6 -168.2 NAL083E INIT 0.0 0.2448 -15.7 -163.8 -33.4 179.4 NAL083E THER 400.0 0.2068 -15.8 -159.6 -36.0 -176.7 NAL083E THER 450.0 0.1938 -15.7 -158.6 -36.5 -175.8 NAL084 1896.0 -38.0 172.0 1 NAL084A IN IT 0.0 0.2110 -15.9 -158.0 -37.0 -175.3 NAL084A THER 400.0 0.1628 -20.1 -163.8 -36.8 176.0 NAL084A THER 450.0 0.1454 -20.2 -164.5 -36.4 175.3 NAL084B INIT 0.0 0.1516 -23.2 -148.4 -48.3 -171.6 NAL084B THER 400.0 0.1139 -26.9 -159.4 -44.6 174.0 NAL084B THER 450.0 0.1019 -25.6 -161.5 -42.4 173.3 NAL084C INIT 0.0 0.1983 -23.8 -150.0 -47.8 -173.8 NAL084C THER 400.0 0.1419 -16.5 -157.9 -37.5 -175.7 NAL084C THER 450.0 0.1102 -27.9 -164.6 -42.0 168.5 NAL084D INIT 0.0 0.2258 -17.9 -161.7 -36.4 179.7 NAL084D THER 400.0 0.1615 -19.7 -170.8 -32.2 170.2 NAL084D THER 450.0 0.1431 -18.6 -171.1 -31.2 170.9 NAL085 1911.0 III NAL085A IN IT 0.0 0.0616 19.6 157.9 17.6 171.6 NAL085A THER 200.0 0.0610 8.0 164.6 4.6 169.0 NAL085A THER 400.0 0.0523 3.6 168.5 -1.3 169.3 NAL085A THER 450.0 0.0487 6.6 168.1 1.3 170.9 NAL085B IN IT 0.0 0.0574 -31.0 52.5 6.2 55.2 NAL085B THER 200.0 0.0471 -45.7 53.1 -8.1 58.8 NAL085B THER 400.0 0.0417 -43.3 46.7 -6.9 53.8 147 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL085B THER 450.0 0.0363 -45.2 40.5 -10.0 50.1 NAL085C INIT 0.0 0.0337 32.2 62.5 69.9 48.0 NAL085C THER 200.0 0.0368 14.1 38.6 44.3 23.7 NAL085C THER 400.0 0.0328 17.8 48.0 51.7 33.3 NAL085C THER 450.0 0.0275 4.6 48.8 39.7 41.3 NAL085D INIT 0.0 0.2059 -12.4 -138.4 -44.2 -151.5 NAL085D THER 200.0 0.1964 -17.0 -138.4 -48.2 -154.6 NAL085D THER 400.0 0.2016 -16.1 -139.1 -47.1 -154.9 NAL085D THER 450.0 0.1982 -15.4 -138.0 -47.1 -153.0 NAL086 1913.5 -27.3 -125.3 1 NAL086A INIT 0.0 0.2056 10.0 -122.6 -24.9 -123.8 NAL086A THER 400.0 0.1820 7.7 -120.5 -27.5 -121.8 NAL086A THER 450.0 0.1724 8.0 -119.6 -27.4 -120.8 NAL086B INIT 0.0 0.1899 7.1 -127.9 -26.8 -130.1 NAL086B THER 400.0 0.1618 3.7 -127.5 -30.3 -130.5 NAL086B THER 450.0 0.1506 2.6 -127.3 -31.4 -130.5 NAL086C INIT 0.0 0.1657 -7.7 -133.4 -39.7 -141.1 NAL086C THER 400.0 0.1540 -8.3 -130.9 -41.0 -138.2 NAL086C THER 450.0 0.1410 -9.6 -130.7 -42.3 -138.6 NAL086D INIT 0.0 0.2271 12.9 -119.7 -22.5 -120.3 NAL086D THER 400.0 0.1937 7.9 -118.2 -27.6 -119.3 NAL086D THER 450.0 0.1845 7.3 -117.6 -28.3 -118.7 NAL086E INIT 0.0 0.2049 15.1 -124.5 -19.6 -124.9 NAL086E THER 400.0 0.1959 10.4 -128.0 -23.6 -129.4 NAL086E THER 450.0 0.1687 15.3 -126.1 -19.1 -126.4 NAL087 1919.0 -42.7 97.2 II NAL087A INIT 0.0 0.0467 48.5 108.6 66.1 163.3 NAL087A THER 200.0 0.0117 -33.4 128.7 -10.6 116.9 NAL087A THER 400.0 0.0137 -67.7 152.0 -45.5 103.4 NAL087A THER 450.0 0.0136 -68.2 179.0 -55.0 108.9 NAL087B INIT 0.0 0.0182 64.4 61.4 78.5 -87.8 NAL087B THER 200.0 0.0146 -29.7 98.1 3.1 94.4 NAL087B THER 400.0 0.0149 -27.3 102.4 4.2 98.6 NAL087B THER 450.0 0.0152 -23.6 110.8 5.1 107.1 NAL087C INIT 0.0 0.0559 -31.5 46.8 2.0 50.5 NAL087C THER 200.0 0.0765 -59.8 57.1 -24.4 63.4 NAL087C THER 400.0 0.0809 -59.7 68.3 -23.7 69.5 NAL087C THER 450.0 0.0803 -61.3 69.2 -25.3 70.0 NAL087D INIT 0.0 0.0428 36.8 -162.5 11.8 -150.1 NAL087D THER 200.0 0.0337 8.6 -180.0 -4.0 -178.6 NAL087D THER 400.0 0.0330 6.8 -177.5 -6.8 -177.4 NAL087D THER 450.0 0.0347 8.9 179.3 -3.3 -179.0 NAL087E INIT 0.0 0.0794 -31.1 61.2 4.4 62.6 NAL087E THER 200.0 0.0705 -53.4 57.9 -17.9 62.9 NAL087E THER 400.0 0.0686 -55.3 56.3 -19.9 62.2 NAL087E THER 450.0 0.0680 -56.5 59.5 -20.9 64.2 NAL087F INIT 0.0 0.0137 43.7 -113.0 7.7 -111.9 NAL087F THER 200.0 0.0162 -53.8 -113.3 -87.5 163.1 NAL087F THER 400.0 0.0208 -69.0 -113.6 -74.8 77.3 NAL087F THER 450.0 0.0180 -69.2 -117.3 -74.3 81.8 NAL088 1923.0 -33.4 175.8 1 NAL088A INIT 0.0 0.0500 16.4 -167.8 -3.6 -164.3 NAL088A THER 400.0 0.0324 -1.5 -162.4 -21.8 -168.8 NAL088A THER 450.0 0.0306 -2.6 -165.9 -20.9 -172.6 NAL088B INIT 0.0 0.1319 -14.6 -164.8 -31.6 -178.9 NAL088B THER 400.0 0.1112 -22.3 -165.0 -37.7 175.3 148 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL088B THER 450.0 0.1022 -23.0 -164.6 -38.5 175.1 NAL088C INIT 0.0 0.0889 -9.5 -168.4 -25.4 -178.9 NAL088C THER 400.0 0.0723 -26.0 -166.9 -39.5 170.5 NAL088C THER 450.0 0.0654 -25.4 -168.2 -38.2 170.0 NAL088D INIT 0.0 0.1222 -10.9 -171.0 -25.1 177.8 NAL088D THER 400.0 0.0975 -21.7 -170.4 -34.1 170.9 NAL088D THER 450.0 0.0885 -23.5 -171.1 -35.1 168.9 NAL089 1924.5 -17.3 -168.3 1 NAL089A INIT 0.0 0.0394 24.2 -145.7 -5.7 -142.2 NAL089A THER 400.0 0.0675 7.3 -161.7 -14.5 -163.6 NAL089A THER 450.0 0.0667 7.4 -162.1 -14.2 -163.9 NAL089B INIT 0.0 0.0777 10.5 -99.9 -25.0 -99.1 NAL089B THER 400.0 0.0542 -7.8 -135.4 -39.1 -143.6 NAL089B THER 450.0 0.0520 -15.4 -134.5 -46.6 -146.2 NAL089C INIT 0.0 0.0795 25.2 -115.9 -10.6 -115.4 NAL089C THER 400.0 0.0540 3.4 -155.9 -20.7 -160.1 NAL089C THER 450.0 0.0518 -1.1 -155.1 -25.0 -161.6 NAL089D INIT 0.0 0.0728 17.7 -145.2 -11.9 -144.0 NAL089D THER 400.0 0.0658 -0.3 -169.4 -17.1 -174.5 NAL089D THER 450.0 0.0627 -1.2 -169.6 -17.8 -175.2 NAL089E INIT 0.0 0.0616 19.2 -141.5 -11.7 -140.2 NAL089E THER 400-0 0.0351 -2.7 -178.3 -14.2 176.4 NAL089E THER 450.0 0.0443 5.5 -170.3 -11.7 -172.0 NAL090 1934.0 -28.6 174.1 I NAL090A INIT 0.0 0.1160 -40.0 164.6 -33.3 137.0 NAL090A THER 400.0 0.0968 -22.9 178.8 -28.7 160.9 NAL090A THER 450.0 0.0902 -23.0 179.4 -29.1 161.4 NAL090B INIT 0.0 0.0780 -16.7 -154.4 -38.9 -170.3 NAL090B THER 400.0 0.0857 -16.8 -158.1 -37.0 -174.0 NAL090B THER 450.0 0.0785 -18.3 -159.7 -37.4 -176.7 NAL090C INIT 0.0 0.1452 -44.1 175.4 -41.9 140.1 NAL090C THER 400.0 0.1140 -32.4 -171.4 -41.6 161.2 NAL090C THER 450.0 0.1067 -31.5 -169.3 -42.1 163.6 NAL090D INIT 0.0 0.1177 3.7 -156.1 -20.3 -160.2 NAL090D THER 400.0 0.1075 -5.4 -168.8 -21.7 -176.9 NAL090D THER 450.0 0.1013 -5.6 -168.1 -22.3 -176.3 NAL090E INIT 0.0 0.1379 -11.7 -178.2 -21.7 171.0 NAL090E THER 400.0 0.1279 -16.8 -178.8 -25.3 167.1 NAL090E THER 450.0 0.1198 -18.3 178.3 -24.9 163.8 NAL091 1934.5 -36.2 -168.9 1 NAL091A INIT 0.0 0.0928 -4.8 -156.5 -27.7 -165.0 NAL091A THER 400.0 0.0937 -12.9 -153.9 -35.9 -167.1 NAL091A THER 450.0 0.0853 -13.5 -154.5 -36.1 -168.2 NIAL091B INIT 0.0 0.1162 -3.4 -158.4 -25.4 -166.1 NAL091B THER 400.0 0.0969 -18.4 -152.5 -41.3 -169.4 NAL091B THER 450.0 0.1140 -8.9 -148.5 -35.0 -159.1 NAL091C INIT 0.0 0.0925 -10.3 -165.0 -27.9 -176.3 NAL091C THER 400.0 0.0907 -16.9 -161.3 -35.4 -177.2 NAL091C THER 450.0 0.0853 -18.6 -164.4 -35.1 178.6 NAL091D INIT 0.0 0.1085 -10.6 -158.6 -31.6 -170.4 NAL.091D THER 400.0 0.1290 -7.1 -152.3 -31.7 -162.1 NAL091D THER 450.0 0.1293 -8.2 -151.3 -33.1 -161.7 149 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL092 1948.0 -37.1 -164.4 1 NAL092A INIT 0.0 0.0394 25.7 -147.9 -3.5 -143.5 NAL092A THER 400.0 0.0490 -23.4 -152.2 -45.6 -172.9 NAL092A THER 450.0 0.0554 -21.2 -152.5 -43.6 -171.5 NAL092B INIT 0.0 0.0682 22.4 -138.9 -9.3 -136.8 NAL092B THER 400.0 0.0430 8.2 -145.5 -20.6 -148.0 NAL092B THER 450.0 0.0424 10.4 -145.6 -18.6 -147.2 NAL092C INIT 0.0 0.0522 15.0 -146.4 -14.0 -146.2 NAL092C THER 400.0 0.0321 -13.2 -154.9 -35.7 -168.4 NAL092C THER 450.0 0.0357 -12.4 -153.7 -35.6 -166.6 NAL092D INIT 0.0 0.0944 -7.3 -146.8 -34.3 -156.4 NAL0920 THER 400.0 0.0693 -22.3 -152.8 -44.4 -172.7 NAL092D THER 450.0 0.0701 -21.1 -153.9 -42.8 -172.9 NAL093 1949.0 •34.4 178.5 I NAL093A INIT 0.0 0.1215 -10.5 -162.5 -29.4 -174.1 NAL093A THER 400.0 0.0825 -24.2 -165.9 -38.7 172.9 NAL093A THER 450.0 0.0841 -27.5 -167.1 -40.5 169.2 NAL093B INIT 0.0 0.1845 -7.2 -169.4 -22.9 -178.5 NAL093B THER 400.0 0.1354 -15.1 -163.6 -32.6 -178.2 NAL093B THER 450.0 0.1342 -15.2 -163.6 -32.7 -178.2 NAL093C INIT 0.0 0.3660 -13.9 -165.6 -30.5 -179.2 NAL093C THER 400.0 0.2632 -18.8 -162.4 -36.3 -179.6 NAL093C THER 450.0 0.2678 -19.2 -163.3 -36.2 179.2 NAL093D INIT 0.0 0.1275 -7.2 -163.6 -26.1 -173.1 NAL093D THER 400.0 0.0807 -11.5 -166.1 -28.3 -178.2 NAL093D THER 450.0 0.0771 -15.8 -163.7 -33.2 -178.8 NAL093E INIT 0.0 0.1806 -17.1 -165.0 -33.5 179.2 NAL093E THER 400.0 0.1116 -14.3 -167.6 -29.8 178.7 NAL093E THER 450.0 0.1124 -13.5 -168.1 -28.9 178.7 NAL094 1986.0 -49.3 -60.8 1 NAL094A INIT 0.0 0.1196 -4.6 -93.8 -36.1 -89.9 NAL094A THER 400.0 0.0491 -20.5 -93.1 -51.4 -84.2 NAL094A THER 450.0 0.0492 -20.0 -97.9 -52.0 -91.4 NAL094B INIT 0.0 0.0706 11.2 -56.6 -8.9 -57.2 NAL094B THER 400.0 0.0389 1.3 -62.7 -20.4 -58.3 NAL094B THER 450.0 0.0385 4.4 -64.2 -18.3 -61.2 NAL094C INIT 0.0 0.1196 -18.9 -72.0 -42.6 -57.6 NAL094C THER 400.0 0.0764 -35.0 -64.8 -52.7 -36.5 NAL094C THER 450.0 0.0742 -36.5 -64.3 -53.6 -34.4 NAL094D INIT 0.0 0.1565 -23.6 -78.8 -49.7 -62.8 NAL094D THER 400.0 0.0737 -38.0 -90.4 -67.0 -67.3 NAL094D THER 450.0 0.0722 -36.1 -91.4 -65.7 -71.3 NAL095 1986.1 -65.1 -77.1 1 NAL095A INIT 0.0 0.2277 -32.2 -90.0 -61.7 -72.4 NAL095A THER 400.0 0.0958 -36.3 -69.4 -56.0 -40.0 NAL095A THER 450.0 0.0871 -40.0 -91.5 -69.2 -66.8 NAL095B INIT 0.0 0.1932 -10.9 -98.1 -43.0 -94.0 NAL095B THER 400.0 0.1498 -34.6 -91.4 -64.3 -72.7 NAL095B THER 450.0 0.1424 -34.8 -94.9 -65.6 -78.8 NAL095C INIT 0.0 0.1452 -17.5 -100.0 -49.8 -95.1 NAL095C THER 400.0 0.0913 -32.9 -91.6 -62.8 -74.6 NAL095C THER 450.0 0.0891 -32.1 -88.5 -61.1 -70.1 NAL095D INIT 0.0 0.2163 -25.2 -92.1 -55.7 -80.5 NAL095D THER 400.0 0.1123 -34.7 -99.0 -66.5 -86.8 NAL095D THER 450.0 0.1073 -31.0 -100.1 -63.1 -91.0 150 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL096 2006.5 -49.3 175.1 1 NAL096A INIT 0.0 0.0284 -4.3 -156.4 -26.0 -163.4 NAL096A THER 200.0 0.0448 -15.8 -158.8 -35.0 -172.0 NAL096A THER 400.0 0.0333 -16.9 -156.0 -37.3 -169.9 NAL096A THER 450.0 0.0316 -23.6 -162.7 -39.7 178.8 NAL096B INIT 0.0 0.0265 -22.3 -143.8 -47.5 -159.6 NAL096B THER 200.0 0.0418 -33.1 -159.4 -49.0 174.1 NAL096B THER 400.0 0.0374 -33.4 -159.9 -49.0 173.4 NAL096B THER 450.0 0.0373 -32.1 -165.9 -44.8 168.8 NAL096C INIT 0.0 0.0404 -26.0 -143.9 -50.7 -162.3 NAL096C THER 200.0 0.0491 -35.5 -155.5 -53.0 175.6 NAL096C THER 400.0 0.0356 -39.1 -158.9 -53.8 168.2 NAL096C THER 450.0 0.0361 -35.9 -155.4 -53.3 175.4 NAL096D INIT 0.0 0.0622 -26.5 -156.2 -45.4 -176.9 NAL096D THER 200.0 0.0510 -34.7 -153.3 -53.4 178.8 NAL096D THER 400.0 0.0393 -37.4 -151.8 -56.3 177.3 NAL096D THER 450.0 0.0389 -39.4 -149.2 -59.2 177.7 NAL097 2007.5 •45.5 166.7 1 NAL097A INIT 0.0 0.0464 -11.4 -132.0 -41.4 -139.3 NAL097A THER 400.0 0.0473 -38.2 -153.5 -56.0 174.6 NAL097A THER 450.0 0.0473 -38.0 -150.8 -57.3 177.8 NAL097B INIT 0.0 0.0645 -19.5 -143.5 -45.1 -157.5 NAL097B THER 400.0 0.0626 -34.9 -170.5 -44.4 162.1 NAL097B THER 450.0 0.0537 -37.5 -165.5 -49.1 164.0 NAL097C INIT 0.0 0.1598 -7.3 175.8 -14.7 169.4 NAL097C THER 400.0 0.1019 -25.0 -175.8 -33.8 165.6 NAL097C THER 450.0 0.1018 -24.3 -174.7 -33.8 167.1 NAL097D INIT 0.0 0.1372 -5.1 170.5 -10.0 166.1 NAL097D THER 400.0 0.0792 -35.4 -165.4 -47.5 166.3 NAL097D THER 450.0 0.0761 -36.3 -161.4 -50.4 169.0 NAL098 2064.0 58.2 -24.1 1 NAL098A INIT 0.0 0.0820 64.9 17.3 64.1 -59.5 NAL098A THER 400.0 0.0272 46.2 31.6 64.2 -11.8 NAL098A THER 450.0 0.0292 41.4 26.9 58.5 -9.0 NAL098B INIT 0.0 0.0851 69.8 -18.3 52.4 -75.5 NAL098B THER 400.0 0.0440 43.3 33.3 63.2 -5.0 NAL098B THER 450.0 0.0302 28.6 15.1 42.5 -7.2 NAL098C INIT 0.0 0.1164 64.5 9.2 60.6 -59.9 NAL098C THER 400.0 0.0515 47.8 16.8 57.2 -27.1 NAL098C THER 450.0 0.0539 47.9 14.3 55.9 -29.0 NAL098D INIT 0.0 0.1648 57.8 26.7 67.1 -40.4 NAL098D THER 400.0 0.0660 52.5 24.4 63.8 -29.7 NAL098D THER 450.0 0.0642 50.7 19.3 60.2 -29.8 NAL098E INIT 0.0 0.0778 36.2 -27.6 25.9 -47.2 NAL098E THER 400.0 0.0309 42.9 3.7 47.0 -30.5 NAL098E THER 450.0 0.0342 36.2 0.0 40.2 -26.8 NAL099 2065.5 25.7 13.8 I NAL099A INIT 0.0 0.0216 21.5 15.7 37.1 -1.3 NAL099A THER 200.0 0.0171 -12.6 8.9 4.2 11.0 NAL099A THER 400.0 0.0201 -5.6 23.8 17.0 21.3 NAL099A THER 450.0 0.0180 -4.7 21.9 17.1 19.1 NAL099B INIT 0.0 0.0469 54.6 -6.3 49.4 -50.3 NAL099B THER 200.0 0.0357 34.8 0.1 39.2 -25.5 NAL099B THER 400.0 0.0208 20.9 28.2 42.8 12.1 NAL099B THER 450.0 0.0191 35.6 33.5 57.6 5.5 NAL099C INIT 0.0 0.0374 -6.5 179.9 -16.2 173.4 151 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NAL099C THER 200.0 0.0301 -25.8 177.1 -30.6 159.0 NAL099C THER 400.0 0.0144 -76.8 43.9 -44.8 61.8 NAL099C THER 450.0 0.0147 -68.1 75.3 -35.1 72.4 NAL099D INIT 0.0 0.0422 -14.1 -19.2 -11.4 -11.5 NAL099D THER 200.0 0.0313 -20.6 -22.9 -18.8 -10.8 NAL099D THER 400.0 0.0203 4.0 4.7 16.6 -1.0 NAL099D THER 450.0 0.0218 -1.5 4.3 11.7 1.6 NAL099E INIT 0.0 0.0249 34.1 -19.7 28.2 -40.1 NAL099E THER 200.0 0.0233 14.5 20.9 33.8 8.4 NAL099E THER 400.0 0.0225 1.3 28.3 25.1 22.7 NAL099E THER 450.0 0.0233 -0.8 15.9 17.9 11.6 NAL100 2085.0 64.1 -14.6 1 NAL100A INIT 0.0 0.2304 50.6 22.7 62.0 -27.4 NAL100A THER 400.0 0.1563 45.7 28.9 62.5 -13.5 NAL100A THER 450.0 0.1573 46.4 30.3 63.7 -13.4 NAL100B INIT 0.0 0.1343 49.7 28.8 64.8 -21.0 NAL100B THER 400.0 0.0909 46.9 42.7 70.5 -0.4 NAL100B THER 450.0 0.0932 46.5 41.1 69.5 -1.7 NAL100C INIT 0.0 0.1769 53.9 31.2 68.1 -28.4 NAL100C THER 400.0 0.1195 49.7 26.9 63.7 -22.5 NAL100C THER 450.0 0.1181 46.4 25.3 61.0 -18.1 NAL100D INIT 0.0 0.1872 47.3 22.7 60.1 -21.7 NAL100D THER 400.0 0.1231 46.9 35.0 66.5 -9.6 NAL100D THER 450.0 0.1232 48.6 39.4 69.9 -8.6 NAL100E INIT 0.0 0.1526 50.5 8.9 54.6 -36.3 NAL100E THER 400.0 0.0972 45.8 30.2 63.3 -12.4 NAL100E THER 450.0 0.0980 46.6 31.5 64.4 -12.7 NAL101 2085.0 65.2 -12.9 1 NAL101A INIT 0.0 0.2521 62.7 25.2 67.3 -53.2 NAL101A THER 400.0 0.1675 54.4 22.8 63.8 -34.5 NAL101A THER 450.0 0.1414 45.9 31.4 64.0 -11.5 NAL101B INIT 0.0 0.2079 50.4 14.5 57.4 -32.6 NAL101B THER 400.0 0.1386 47.5 27.5 62.8 -18.0 NAL101B THER 450.0 0.1414 47.7 27.3 62.8 -18.5 NAL101C INIT 0.0 0.1624 55.9 22.1 64.0 -38.1 NAL101C THER 400.0 0.0974 46.9 37.5 67.8 -6.9 NAL101C THER 450.0 0.0990 48.5 43.0 71.8 -3.7 NAL101D INIT 0.0 0.1671 38.5 3.4 43.7 -26.2 NAL101D THER 400.0 0.1528 45.8 26.5 61.3 -16.1 NAL101D THER 450.0 0.1339 45.8 27.8 61.9 -14.8 Naiad Khad Fold Test Data Sample Height Inclination Declination Class NAM TRET TRELEV INT INC2 DEC2 INC3 DEC3 NAL-FT1 35.6 24.1 I NALFT1A INIT 0.0 0.2036 78.9 -73.4 33.1 23.5 NALFT1A THER 400.0 0.1238 78.4 •83.9 35.2 23.7 NALFT1A THER 450.0 0.1202 79.7 -79.6 34.0 24.8 NALFT1B INIT 0.0 0.1734 83.7 -60.5 30.5 28.7 NALFT1B THER 400.0 0.1017 80.1 -87.9 35.2 25.9 NALFT1B THER 450.0 0.0939 79.7 -92.3 36.0 26.0 NALFT1C INIT 0.0 0.2241 80.3 -78.8 33.6 25.4 15 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NALFT1C THER 400.0 0.1480 75.5 -91.9 38.1 21.4 NALFT1C THER 450.0 0.1445 78.6 -84.6 35.3 24.0 NALFT1D INIT 0.0 0.1294 76.6 -66.3 32.0 20.6 NALFT1D THER 400.0 0.0826 70.9 -83.4 37.7 14.9 NALFT1D THER 450.0 0.0798 70.9 -90.7 39.9 16.0 NALFT1E INIT 0.0 0.1979 65.6 -76.5 36.3 7.7 NALFT1E THER 400.0 0.1430 72.7 -82.4 36.8 17.0 NALFT1E THER 450.0 0.1197 75.7 -110.0 41.5 25.4 NALFT1F INIT 0.0 0.2105 71.8 -70.2 33.4 15.0 NALFT1F THER 400.0 0.1369 76.2 -77.2 34.6 20.5 NALFT1F THER 450.0 0.1294 76.3 -87.8 36.9 21.7 NAL-FT2 31.0 19.3 I NALFT2A INIT 0.0 0.2100 75.9 -50.2 28.1 20.0 NALFT2A THER 400.0 0.1767 77.0 -76.4 34.2 21.4 NALFT2A THER 450.0 0.1778 74.0 -79.5 35.7 18.2 NALFT2B INIT 0.0 0.2119 73.9 -41.0 25.2 18.6 NALFT2B THER 400.0 0.1757 75.4 -43.7 26.4 19.9 NALFT2B THER 450.0 0.1714 73.6 -45.6 26.4 17.9 NALFT2C INIT 0.0 0.2113 74.8 -73.4 33.9 18.7 NALFT2C THER 400.0 0.1774 75.1 -73.2 33.8 19.0 NALFT2C THER 450.0 0.1705 74.9 -74.3 34.1 18.8 NALFT2D INIT 0.0 0.2477 74.0 -58.3 29.9 17.5 NALFT2D THER 400.0 0.2128 73.4 -56.9 29.5 16.9 NALFT2D THER 450.0 0.2058 74.9 -61.7 30.9 18.5 NALFT2E INIT 0.0 0.1702 75.1 -72.6 33.7 19.0 NALFT2E THER 400.0 0.1442 71.3 -83.5 37.6 15.4 NALFT2E THER 450.0 0.1354 72.5 -79.8 36.2 16.4 153 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appendix 2. Tables of Magnetic Susceptibilities for Kangra and Naiad Khad Pilot Studies. Magnetic susceptibility data in Appendix 2 are sorted by section and sample. For each temperature step used in the pilot study, repeat measurements of the magnetic susceptibility were made after the NRM for that temperature step was measured. Pairs of samples from each site (stratigraphic level) were used in the pilot study. The column headings show the temperature steps used, with repeat measurements denoted by 'A', 'B' and 'C'. A large increase in the magnetic susceptibility with temperature may suggest the growth of new minerals. Kangra Section Sample InitA InitB InitC 100 A 100 B 100 C 200A 200B KAN003A 9.2 9.2 9.1 9 9 9 8.9 KANO03B 9.2 9.3 9.2 9.2 9.2 9.3 KAN021A 7.2 7.3 7.4 7.3 7.2 7 KAN021B 8.6 8.8 8.7 8.4 8.5 8.5 8.5 KAN029A 5.2 5.2 5 5 5.1 5 5 KAN029B 5.5 5.5 5.5 5.5 5.4 5.5 KAN039B 9.7 9.8 9.6 9.3 9.8 9.7 9.6 9.6 KAN039C 8.5 8.4 8.4 8.3 8.2 8.4 8.5 KAN043A 5.2 5.2 5.3 5.3 5.2 5.3 KAN043B 6.7 6.9 6.9 6.6 6.8 6.9 6.7 6.8 KAN050D 7.8 7.9 8 7.9 7.8 7.9 7.9 KANO50E 8.3 8.3 8.1 8.3 8.4 8.3 8.2 KAN054A 12.3 12.2 12 12.6 12.5 12.5 12.4 KAN054B 13.3 13.4 13.4 13.6 13.5 13.3 13.4 KAN065E 11.9 11.9 12 11.8 11.8 11.8 11.9 KAN065F 12.6 12.6 12.8 12.8 12.6 12.6 KAN067A 7.6 7.6 7.6 7.7 7.7 7.7 7.7 KAN067B 7.9 7.7 7.8 7.5 7.7 7.7 7.8 7.7 KAN073A 8.8 8.7 8.7 8.8 8.8 8.8 KAN073B 7.8 7.6 7.7 7.8 7.7 7.7 7.8 7.8 KAN084D 11.6 11.8 11.7 11.7 11.7 11.7 11.6 KAN084E 11 11 10.8 10.9 11.2 11.2 KAN086A 11.7 11.9 11.8 11.7 11.8 11.9 11.9 KAN086B 12.1 12.3 12.3 12.4 12.2 12.2 12.5 12.4 KAN089A 8.8 8.8 8.6 8.8 8.7 8.7 8.8 KAN089B 9.3 9.4 9.5 9.3 9.4 9.4 9.3 154 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Sample 300A 300B 300C 400A 400B 400C 450A 450B KAN003A 8.8 8.8 8.6 8.5 8.5 8.5 KANO03B 9 9 8.7 8.8 8.6 8.6 KAN021A 7.1 7.1 6.5 6.5 6.2 6.1 KAN021B 8.4 8.6 8.4 7.7 7.6 7.5 7.4 KAN029A 4.9 4.9 4.5 4.6 4.4 4.4 KAN029B 5.1 5.1 4.8 5 4.9 4.7 4.7 KAN039B 8.5 8.5 8.4 8.4 9.6 9.7 KAN039C 7.5 7.4 7.3 7.5 7.4 8.4 8.6 KAN043A 4.7 4.6 4.7 4.8 5.2 5.2 KAN043B 5.9 5.8 5.7 5.9 5.9 6.5 6.3 KANO50D 7.3 7.5 7.4 7.2 7.1 7.6 7.7 KAN050E 7.9 8 7.7 7.7 8 8.1 KAN054A 11.7 11.7 11.2 11.3 12.1 12 KAN054B 12.9 12.8 12.4 12.3 12.9 12.8 KAN065E 11.4 11.4 10.8 10.8 10.9 10.9 KAN065F 12.1 12.2 11.4 11.6 11.4 11.7 11.6 KAN067A 7.4 7.5 7.3 7.3 7.8 7.7 KAN067B 7.5 7.5 7.3 7.2 7.6 7.6 KAN073A 8.7 8.6 8.1 8.2 8.2 8.3 KAN073B 7.7 7.8 7.4 7.4 7.4 7.5 KAN084D 11.6 11.6 11.8 11.7 13.5 13.5 KAN084E 11 11 11.6 11.7 13.9 13.7 KAN086A 11.8 11.6 11.7 12.4 12.5 13.9 14.1 KAN086B 12 12 14.3 14.3 14.6 14.9 KAN089A 8.5 8.6 13.4 13.4 17.4 17.6 KAN089B 9.3 9.3 12.6 12.7 12.7 12.6 Sample 500A 500B 500C 525A 525B 525C 550A 550B KAN003A 9.5 9.6 9.3 9.5 8.7 8.5 KANO03B 9.6 9.5 9.6 9.7 8.7 8.9 KAN021A 7.9 7.8 9 8.9 7.6 7.6 KAN021B 9 9.3 9 10.3 10.4 9.1 9.2 KAN029A 4.9 4.9 4.4 4.6 4.4 4.3 KAN029B 5.3 5.3 4.9 4.9 4.7 4.7 KAN039B 10.2 10.3 8.9 8.8 8.5 8.6 KAN039C 8.5 8.6 7.6 7.7 7.7 7.5 KAN043A 4.8 5 4.9 4.7 4.7 4.7 4.6 KAN043B 6 6 5.7 5.8 5.6 5.7 KANO50D 8 8 7.7 7.6 7.6 7.6 KANO50E 8.8 8.9 8.5 8.6 8.1 8.1 KAN054A 12.9 12.8 12.2 12.6 12.6 12.2 12.3 KAN054B 14.5 14.2 14.2 13.8 13.8 13.5 13.3 KAN065E 12.8 12.9 12.7 12.7 12.4 12.8 KAN065F 14.1 14.3 14.3 13.5 13.7 12.9 13.2 KAN067A 8.4 8.6 8.6 8.3 8.4 8.1 8.2 KAN067B 8.4 8.4 8.4 8.4 8.3 8.2 KAN073A 9.3 9.3 9.5 9.7 9.3 9.7 KAN073B 8.3 8.3 8.8 8.9 8.5 8.5 KAN084D 15.9 15.8 13.9 14 12.8 12.8 KAN084E 15.6 15.5 14 13.9 12.6 12.8 KAN086A 15.2 15.1 13 13 11.7 12 KAN086B 13.8 13.7 12.9 12.8 11.7 11.7 KAN089A 14.2 14 13.9 13.8 13.7 12.3 12.1 KAN089B 9.6 9.6 9.5 9.6 8 7.9 450C 8.5 6.2 14.8 17.4 550C 8.5 12.6 13.3 9.4 11.7 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Sample 575A 575B 575C 600A 600B 625A 625B 650A 650B KAN003A 8.4 8.6 8.1 8.3 7.8 8 7.5 7.7 KAN003B 8.6 8.5 8.2 8.2 8 8 7.9 8.1 KAN021A 6.8 7.1 7 6.5 6.5 6.1 6.1 6.1 6.1 KAN021B 8.3 8.1 7.6 7.6 7.3 7.2 6.9 7 KAN029A 4.1 4 4.2 4.2 4.2 4.2 4.4 4.3 KAN029B 4.3 4.1 4.1 4.1 4.2 4.2 4.2 4.2 KAN039B 7.6 7.7 7.7 7.7 7.5 7.6 7.6 7.5 KAN039C 6.8 7.1 6.9 6.9 6.6 6.8 6.6 6.7 KAN043A 4.2 4.3 4.3 4.3 4.3 4.3 4.5 4.6 KAN043B 5.3 5.3 5.1 5.2 5.3 5.5 5.3 5.3 KANO50D 6.9 6.8 6.7 6.6 6.6 6.6 6.7 6.5 KANO50E 7.2 7.2 7.1 7.3 6.9 7 7.3 7 KAN054A 10.8 10.8 10.3 10.2 9.9 9.8 9.7 9.9 KAN054B 11.6 11.6 11.1 11.1 10.8 10.7 10.6 10.6 KAN065E 10.6 10.6 9.7 9.8 9.3 9.4 8.9 8.9 KAN065F 11.2 11 10.2 10.3 10.1 9.9 9.6 9.5 KAN067A 7.7 7.4 7.4 7.2 7.3 7.3 7.3 7.2 7.3 KAN067B 7.3 7.3 7 7 7 7.1 7 7 KAN073A 8.2 8.8 8.5 8.4 8.3 8.3 8.2 8.2 8.2 KAN073B 7.9 7.9 7.4 7.4 7.1 7.4 7.6 7.3 KAN084D 11.5 11.4 10.2 10.3 10.1 10.1 9.8 9.8 KAN084E 11.3 11.5 10 10.1 9.7 9.8 9.4 9.4 KAN086A 10.8 10.8 9.7 9.6 9.3 9.3 9.1 9 KAN086B 10.8 10.8 9.6 9.6 9.4 9.5 9 9 KAN089A 12.3 12.1 11.3 11 9.4 9.4 6.5 6.7 KAN089B 7.7 7.9 7.1 7.2 7 7 6.7 6.5 Naiad Khad Section Sample Init A Init B Init C 100 A 100 B 100 c 200A 200B 200C NAL015A 9.20 9.20 9 9.1 9.3 9.2 NAL015B 10.20 10.20 10.3 10 10.1 10.1 10.3 10.2 NAL019A 9.10 9.20 9 9.2 9.2 9.3 9.2 NAL019B 8.30 8.40 8.2 8.4 8.4 8.4 8.4 NAL025A 9.00 9.20 9.20 9.2 9.3 9.2 9.1 9 NAL025B 9.90 9.80 9.7 9.9 9.9 9.7 9.7 NAL039A 9.20 9.30 9.2 9.3 9.2 9.2 NAL039B 10.20 10.20 10 10.2 10.2 10.2 10.3 NAL040E 12.70 12.80 13.1 13.1 12.7 12.9 13 NAL040F 11.40 11.50 11.4 11.4 11.3 11.4 11.5 NAL041A 12.80 12.70 12.7 12.9 12.7 12.7 12.8 12.8 NAL041B 11.80 11.90 11.9 12.1 12 11.8 11.8 NAL043A 13.70 13.40 13.40 13.5 13.4 13.4 13.4 NAL043B 12.00 12.30 11.90 12.1 12.1 12.1 12.2 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Sample 300A 300B 300C 400A 400B 400C 450A 450B 450C NAL015A 8.8 8.9 8.5 8.5 9.2 9.2 9.1 NAL015B 10 9.7 10 9.4 9.6 9.7 9.9 9.9 9.7 NAL019A 8.3 8.2 7.5 7.7 7.6 7.6 7.5 7.6 NAL019B 7.5 7.4 7 7.1 7.1 6.9 6.9 NAL025A 8.6 8.7 8.1 8.3 8.1 8 8.2 8.2 NAL025B 9.3 9.2 8.8 9 8.9 8.9 8.7 8.8 NAL039A 9 9.2 10.3 10.6 10.4 13.5 13.7 13.4 NAL039B 10 10.1 11.4 11.4 14.6 14.9 14.6 NAL040E 13 13 17.6 17.6 35.2 35.3 35.3 NAL040F 12.2 11.9 11.9 14.3 14.2 27.9 27.9 NAL041A 12.5 12.5 11.6 11.6 11.4 11.3 11.5 NAL041B 11.7 11.7 11.1 11.1 10.6 10.6 10.8 NAL043A 13.9 14.1 14.1 16 16 18.8 19 18.8 NAL043B 12.9 13.1 13 14.3 14.3 18.3 18 18.4 Sample 500A 500B 500C 525A 525B 525C 550A 550B 550C NAL015A 10.5 10.6 9.2 9.3 8.3 8.5 NAL015B 11.8 11.8 10.8 10.9 9.7 9.8 NAL019A 9.4 9.4 8.4 8.4 7.8 7.6 NAL019B 8.7 8.6 7.7 7.7 7 7 NAL025A 8.3 8.2 8.2 8.2 7.6 7.9 NAL025B 8.9 9 8.8 8.9 8.5 8.5 NAL039A 17 17.2 17.2 16.3 16.6 16.2 14.7 14.8 NAL039B 19.3 19.3 19.2 18.7 18.7 17.2 17.6 17.4 NAL040E 46.7 46.6 58.7 58.7 74.1 74.1 NAL040F 36.5 36.5 45.8 45.7 60.3 60.3 NAL041A 14.3 14.3 18.3 18.4 17.2 17.3 NAL041B 13.2 13 13.1 15.8 15.7 15 15.4 14.9 NAL043A 26.6 26.6 25.7 25.8 24.3 24.3 NAL043B 23.3 23.7 23.3 23.3 23.2 21.4 21.4 Sample 575A 575B 575C 600A 600B 625A 625B 650A 650B NAL015A 7.8 7.9 7.6 7.6 7.4 7.5 7.6 7.5 NAL015B 8.8 9 8.7 8.7 8.2 8.2 8.2 8.1 NAL019A 7 7.1 6.9 6.9 6.6 6.7 7 7 NAL019B 6.6 6.6 6.2 6.3 6.2 6.2 6.5 6.2 NAL025A 7.1 7.1 6.9 7 6.8 6.8 7 7 NAL025B 7.8 7.9 7.6 7.6 7.4 7.5 7.6 7.5 NAL039A 12.7 12.7 11.7 11.9 10.8 10.9 10 9.7 NAL039B 14.7 14.7 13.3 13.3 12.4 12.6 11.3 11.5 NAL040E 86.9 86.9 94.7 94.7 97.2 97.4 93.2 93.2 NAL040F 74.4 74.5 88.1 88.2 99 99 108 107.3 NAL041A 13.5 13.8 13.5 11.4 11.4 11.1 11.1 10.3 10.3 NAL041B 12.6 12.9 12.8 11.3 11.4 11 11.2 10.5 10.7 NAL043A 22.1 22.5 22.2 18.7 19 18.2 18.3 17.5 17.6 NAL043B 20.7 20.3 20.2 15.6 15.5 14.9 15 13.9 13.8 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appendix 3. Conglomerate Clast Count Data for the Himachal Pradesh Sections. Appendix 3 contains the raw data for the conglomerate clast counts presented in Figure 13. Clast lithologies were counted over a lm 2 area and divided into the following groups: Quartzite (Q), Limestone (L), Igneous and Metamorphic (IM), Sandstone and Siltstone (S) and Other (O). The data are sorted by stratigraphic section and by height, with percentages shown below the number of clasts counted for each column, except where only an approximate composition could be obtained, where percentages only are shown. Kangra Section Height Q L IM S O Total 1385m 78 54 9 14 4 =159 49% 34% 6 % 9% 2 % = 1 0 0 % 1680m 108 19 1 0 14 3 =154 70% 1 2 % 7% 9% 2 % = 1 0 0 % 2280m 29 1 0 14 8 3 =64 45% 15% 2 2 % 13% 5% = 1 0 0 % Naiad Khad Section Height Q L IM S O Total 660m 47 4 13 23 4 =91 50% 5% 15% 25% 5% = 1 0 0 % 1535m 85 3 19 60 0 =167 51% 2 % 1 1 % 36% 0 % = 1 0 0 % 1915m 83 1 1 46 0 =131 63% 1 % 1% 35% 0 % = 1 0 0 % 2150m 45% 13% 25% 17% 0 % = 1 0 0 % 158 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Haritalyangar Section Height Q L IM 1600m 45% 10% Jawalamukhi Section Height Q L IM 1720m 93 29 58% 18% 2070m 1 0 1 26 64% 17% 2390m 43 8 49% 9% S O Total 35% 0 % 1 0 % = 1 0 0 % S O Total 2 2 7 1 0 =161 14% 4% 6 % = 1 0 0 % 2 0 7 3 =157 13% 4$ 2 % = 1 0 0 % 19 1 1 7 = 8 8 2 1 % 13% 8 % = 1 0 0 % Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appendix 4. Kangra and Naiad Khad detailed measured sections. The thickness of the stratigraphic sections is given in meters. Each section is read from the bottom of the left column to the top of the right column on a given page on a given page. A key for the sections is presented below. A gap in the section indicates no exposure. j S j B S S conglomerate sandstone clay / siltstone g p s / ? 7 7 grainsize = parallel lamination ^ wavy lamination y coarsening upwards / / / planar cross-bedding trough cross-bedding bioturbation HT soil horizon X rootlets furrow / channel margin (bidirectional indicator) furrow / channel margin (unidirectional indicator) pci parting-current lineation i measured conglomerate-clast imbrications conglomerate-clast count 160 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. KANGRA SECTION Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 25 • 24 • 103 • 102 • 101 • 100* 99 • 98 • 97 • 96 • 95 • 725- 700- 675- 650- 625- 600- 575 - 550- 525 - " N rA (T P =A r r — / / / p p A P P A 1 1 c P P P P A - J a = a / / / 500 J 106.107 • • 975 950- 33 • 925- 3 2 * 31 • 30 • 900- 875- 850- 29,105 • • 825- 104 a 28 ■ 800- 27 • 775- 26 • 750 J rr iH 162 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 44 • 4 3 * 1225 i 42 • 1200 FPA rr rrA 41 • 1175 40 • U50 • 3 9 * H 2 5 - C A 38 • 1100 - 37 • 1075 - 36 • 1050- 35 • 1025 - 34 ' 1000 J f W ? 581 5 7 * 1475- 5 6 * 1450- 5 5 * 5 4 * 1425- 5 3 * 1400- 52 • 1375- 5 1 * 5 0 * 4 9 m 110* 1350- 109* 1325 47,108 • • 1300 4 6 * 1275- 45 • 1250 J r r A A ~ \ r r ^ . rr rr & / / / rr A / / / A - { * - ^ - A uvA / A / r f V rr rr / / / A 163 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 68 • 1725 - 1700 67 • 1675 - 66 • 65 • 1650 - 64 1625- 63 • 1600 - 62 61 1575 - 1550 - 60 • 112 • 59 j 111 * 1525 - E S S S k 1 c FP — ^ i ’ - / y / A r r r r x rr A 1500 J 1975 - 80 7 9 • 1950 - 1925 - 78 7 7 * 1 9 0 0 - 1875 - 1850 - 76 • 75 • 74 • 73 • 72 • 1825 H 7 1 • 1800 70 • 1775 - 69 • 1750 J C FP FT { = pcl A rr rr c. / W 7 164 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 2250 t 9 0 * 8 9 * 8 8 * 87 • 8 6* 2225- 2200 - 85 • 2175- 8 4 * 2150- 2125- 113« 83 • 2100 82i 2075 2050 2025- 81 * 2000 - I rr A == 2375 i 2350- 2325- 2300 2275- 2250 J /f^ yyy.* ^ yyyy.* A y y y y : '^ y y y y .1 ^yyyy. * '^ y y y y ; /f^ yyy.* ^yyyy. * ^yyyy. * ^ y y y . y . * ^yyyy. * ^yyyy. * ^yyyy. * ^yyyy. * 165 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 41 • 225 - 40 • 39 • 200 175 - 38 37 • • 150 - 36 • 35 • 34 • 125 - 100 - 75- 5 0 - 33 9 32 • 25- i° 5 i3 o i * # 102 103 • * 0 NALAD KHAD SECTION m B m A f t 1 ~ A A p ^ C { A 114 46 475- 112 113 4 5 # • *450 425 400- 375 111 44 • «350 1 10 * 4 3 * 325- 108 m 109 4 21 • 300- 275- 106 107 • *250 J i* v v % V < r< s*2< i [7 1 Si & L a t. M W ■ BS HHEf H 9B B ' l i l n I f P w B p fe if / W 7 166 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 4 « 3 * 2 * 1* 4 8 * 47 • 725- 700- 675- 650- 625- 600- 575 - 550- 525 - 500 •% VVVV% ■lVVVV> rr ' ■v- s - y- v- v 14 • 13 • 12 • 11 • 10 • 975- 950- 925- 900- 9 • 8 • 875- 850 7 # 825- 800- 775- 750 J 1 A i V 'V * v* V » j' A t z s s s i C T p V I-- . i i M M / |»S»%«S*S* ■tVVVNj m j a m A'i't'A’i j l r f l J t , * ! M •V»V»V«V» » A A I A 167 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 29 • 1225 26 27 • • 1200 H 5 0 * 1175 - 25 • 115 1150- 4 9 * 1125 - 24i 239 1100 22 • 1075- 21 • 20 9 19 0 1050 18 ' 1025- 17 • 16 • 1 5 # 1000 J W w A a !> 5>?>iV >1 ■ a .W W v ^ y y y y .a f i*S*MS*vS rt>ty.V,'a A » ? > * > • > ■ > • > A a ^y.a w < W w w • a >1>a >1>a > • a > a » a » < ? < ? < ? < ? < ? * ^ y y y y /' » iV ,V V V > ' ^ y y y y ? ' •s-V .sw s i w i w ^>iisiiE£r i"S"S"S«S«S #■ # •* •# •* •■ / y y y y ? • m v v w # •# •# •# ■ # •< SetiigStic WjWKWw /y y y .'^ .1 ^ ■IMMMVV < ? < ? # ? # ? < ? * i* S * S » S \S * S « ^y.a ^ y y > #J#j#f#J#f4 ^ y y y .a ^> s s s s m ivW W #•#•#•#•#• touiais Ka ^ ? ^ ?^ ?^ .a / / / V «S«V lSlS*^ ///_ if 1475- 122* 1450 120 121 • • 118 119* §42 5 - A 55 56 • 9400 - 116 117 • • 1375 1350 53 54 • • 5 1 * 1325 1300- 1275- 28 • A ~ " 1250 J f i & k ft ■ vW w ' ^ N a s a s a \ a ^ y y y y . dN a% »N a\aS p y y y y .' |S«S»S«S»^ ' y y y y j iS »S »S «S »^ A p p y y w •S aS a\a% a% » £ # Z # Z # Z # ? / B& 8& & EM!<fWy 4 «W 8W 3 W sW sW y y y y y p y .w y .a j > S aS a\*S *N 4 ?yy?^yy A a S « S « S a N « i ?yyyy.*5 fy y y y y iS a S a \a \a % d ? y .y y y y • ■s<vs-V W H S 3 j S * % a \ « S * V y y y y . ' « A a S iS i% * S < k w w - iSaSi%«%a%< > « S « S » S * S ' f y y y y . * • S « S « % * S a V ? 7 w W ' i S « S iS * > * V ^y y y y / « p y y y y . * « i S a % a \a % a % < 'J W W y y y y . * ' riS a % a % a % a V ■ S a S a ^ a % a % « ■ S a^aS a% aV ' y y y y . * ' ■ y y y y t * > S a % a % a % a V yyJw pyyyy; « B w w * V 168 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 6 5 * 63 64 • A 725 ' 1700 - 61 62 • • 1675 • 59 60 • • 1650- 57 58 • • 1625 - 129# 128* 1600 - 1575 - 1550 - 127# 125 126 • A 525 " 1500 J 'V*y»v"5v 5J7J7J5J3 + S + £ + 2 f S ! * :> v j + £ fS + £ + S i i« S » S » S * V H ■ V % aS »S ^ <c<sVM ra i« S « S » S * S H iiS»S»VV ^ y y j f i«>«A »S»si i * > * S t S « y i* S « S a _ S » S l i«S*S«S»V ''.'■.WV ^ y y y .'! ! a a a a i^W 1 7S*1 is^aSaSvN *1 ••S a S a S a V " * >a^iV «V «V 9 5 # 9 4 * 1975 - 9 3 1950 9 2 * 91 # 9 0 * 89 • 1925 88 • 8 7 * 8 6 * 8 5 * 1900 84# 83* 8 2 # 81 * 1875 79 • 78 i 80 1850 - 77 • 76 74 7 5 .4 P 25 72 73 • • 7 1 • 7 0 1800 6 8 69 • • 1775 6 6 67 • • 1750 J *vv%^ . •\ * s « s * v ijM SjVV lAAAft' i n j i * i ' ■ ■ /.• A /y y sm e L , X ■•ViTOlV a y y y y y i* S " S « S « N * y y y y y |» S » S » S * S * ■ ■ r j r j r j r fas a ^ ■ ffW W 169 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 2250 n 2225- 2200 - 2175- 2150- 2125- 210 0 - 100 101* 2075- 99 § 98* 2050- 2025- 97 * 96* 2000 J __ _ _ __ I 4VV% % V>‘ w y y y . ' i ■ •" •• S -S -S -V ■ v \.a w ' tia iW il A = 'F T 8 3 ^ * .V .V V % i / J S ' Z 170 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Linked assets
University of Southern California Dissertations and Theses
Conceptually similar
PDF
Groundwater modeling and geochemical tracer (CFC-12 and tritium) distribution in the Abalone Cove landslide, Palos Verdes, California
PDF
Early Jurassic reef eclipse: Paleoecology and sclerochronology of the "Lithiotis" facies bivalves
PDF
Barnacles as mudstickers? The paleobiology, paleoecology, and stratigraphic significance of Tamiosoma gregaria in the Pancho Rico Formation, Salinas Valley, California
PDF
Biotic recovery from the end-Permian mass extinction: Analysis of biofabric trends in the Lower Triassic Virgin Limestone, southern Nevada
PDF
Active deformation at Canyonlands National Park: Distribution of displacements across the grabens using spaceborne geodesy
PDF
A tectonic model for the formation of the gridded plains on Guinevere Planitia, Venus: Implications for the thickness of the elastic lithosphere
PDF
Helicoplacoid echinoderms: Paleoecology of Cambrian soft substrate immobile suspension feeders
PDF
Grain-size and Fourier grain-shape sorting of ooids from the Lee Stocking Island area, Exuma Cays, Bahamas
PDF
Geology and structural evolution of the southern Shadow Mountains, San Bernardino County, California
PDF
Determination of paleoearthquake age and slip per event data, and Late Pleistocene-Holocene slip rates on a blind-thrust fault: Application of a new methodology to the Puente Hills thrust fault,...
PDF
Evolutionary paleoecology and taphonomy of the earliest animals: Evidence from the Neoproterozoic and Cambrian of southwest China
PDF
A proxy for reconstructing histories of carbon oxidation in the Northeast Pacific using the carbon isotopic composition of benthic foraminifera
PDF
Lateral variability in predation and taphonomic characteristics of turritelline gastropod assemblages from Middle Eocene - Lower Oligocene strata of the Gulf Coastal Plain, United States
PDF
Characterization of geochemical and lithologic variations in Milankovitch cycles: Green River Formation, Wyoming
PDF
Contact aureole rheology: New constraints from fieldwork in selected Cordilleran aureoles and from numerical modeling
PDF
Cyclostratigraphy and chronology of the Albian stage (Piobbico core, Italy)
PDF
Changing characteristics of deformation, sedimentation, and magmatism as a result of island arc -continent collision
PDF
An evaluation of boat wake energy attenuation by a tule stand on the Sacramento River
PDF
A case study comparing measured and simulated acoustical environments: Acoustical improvements of Verle Annis Gallery
PDF
Anthropogenic alterations of fluvial sediment supply to the San Pedro Littoral Cell of California
Asset Metadata
Creator
Brozovic, Nicholas
(author)
Core Title
Dynamic fluvial systems and gravel progradation in the Himalayan foreland
School
Graduate School
Degree
Master of Science
Degree Program
Earth Sciences
Publisher
University of Southern California
(original),
University of Southern California. Libraries
(digital)
Tag
Geology,OAI-PMH Harvest,Physical geography
Language
English
Contributor
Digitized by ProQuest
(provenance)
Advisor
Burbank, Douglas (
committee chair
), Bottjer, David (
committee member
), Lund, Steve (
committee member
)
Permanent Link (DOI)
https://doi.org/10.25549/usctheses-c16-4017
Unique identifier
UC11336923
Identifier
1381580.pdf (filename),usctheses-c16-4017 (legacy record id)
Legacy Identifier
1381580.pdf
Dmrecord
4017
Document Type
Thesis
Rights
Brozovic, Nicholas
Type
texts
Source
University of Southern California
(contributing entity),
University of Southern California Dissertations and Theses
(collection)
Access Conditions
The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law. Electronic access is being provided by the USC Libraries in agreement with the au...
Repository Name
University of Southern California Digital Library
Repository Location
USC Digital Library, University of Southern California, University Park Campus, Los Angeles, California 90089, USA