Close
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected
Invert selection
Deselect all
Deselect all
Click here to refresh results
Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Natural ventilation in the high-rise buildings for Taipei
(USC Thesis Other)
Natural ventilation in the high-rise buildings for Taipei
PDF
Download
Share
Open document
Flip pages
Contact Us
Contact Us
Copy asset link
Request this asset
Transcript (if available)
Content
NATURAL VENTILATION IN THE HIGH RISE BUILDINGS FOR TAIPEI by Chung-Hsin Tsai A Thesis Presented to the FACULTY OF THE SCHOOL OF ARCHITECTURE UNIVERSITY OF SOUTHERN CALIFORNIA In Partial Fulfillment of the Requirements of the Degree MASTER OF BUILDING SCIENCE August 2002 Copyright 2002 Chung-Hsin Tsai Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 1414907 UMI UMI Microform 1414907 Copyright 2003 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UNIVERSITY OF SOUTHERN CALIFORNIA The Graduate School University Park LOS ANGELES, CALIFORNIA 90089-1695 This thesis, written by Committee, and approved by all its members, Has been presented to and accepted by The Graduate School, in particular fulfillment of requirements for the degree of ............................-y v s A /- ■ ............... / DeafrrrTGraduate Studies J ) a t e A u g u s t 6 , 2 0 0 2 Under the direction of h. ih Thesis / Chairperson Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Acknowledgements ii I would like to express my gratitude to all those who gave me the possibility to complete this thesis. I would like to thank my thesis advisor, Prof. Pierre Koenig, for his strong guidance, support with my thesis, and patience. I would also like to thank Prof. Marc Schiler for his encouragement, many constructive comments in my thesis, and helpful advice through out my graduate study. I want to thank Prof. Murray Milne for his support on my thesis. I also want to take this opportunity to express my heartfelt thanks to my parents for their concern, encouragement, and support throughout the years, and my sister Chia-Yun Tsai for her help and many constructive suggestions. Last but not least, I am very grateful about the hard work of Miss. Sreemathi Iyer and Mr. Gautam R Shenoy for revising my thesis, I really appreciate it. And to my friends Bo Hung and Quan-Pu Wang, I want to thank you for your support and friendships. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. iii Table of Contents Acknowledgements iii List of Tables v List of Figures vii Abstract xvi 1. Taiwan, Taipei 1 1.1 About Taipei 1 1.2 Energy problems in Taiwan 4 1.3 High-rise in Taipei 5 1.3.1 Background 5 1.3.2 High-rise design in Taipei 5 2. Climate Analysis 7 2.1 Climatic Data 9 2.2 Analysis of Climatic Data 9 2.3 Wind velocity 12 2.4 Wind rose and Analysis 12 3. Thermal comfort by natural ventilation 19 3.1 Natural Ventilation 19 3.2 Humidity 21 3.3 Air movement 22 3.4 Temperature 23 3.5 Human comfort 24 3.6 Vertical distribution of wind 29 4. Case study Ken- Yeang's work (Menara UMNO Tower) 31 4.1 About Ken Yeang and Menara UMNO Tower 31 4.2 Wind Wing Wall 36 4.3 Wind analysis 40 5. Methods o f cooling the high-rise 45 5.1 Hypothesis 45 5.2 Goal 45 5.3 Wind tunnel test 46 5.3.1 Introduction 46 5.3.2 Test model 47 5.3.3 Wind Tunnel test 52 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. iv 6. Result 55 7. Conclusion and Future work 74 Bibliography 76 Appendix A. Daily information of wind velocity and orientation in Taipei from 1989 to 1990 78 Appendix B. The wind tunnel test results from Experiment 1 to 60 90 Appendix C. The Wind Chill Factor performance in each test point from Experiment 1 to 60 151 Appendix D. Tables showing relationship of wind chill ambient temperatures and wind velocity 182 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. List of Tables V Table 2.1. Beauford Scale. 11 Table 3.1. Human responses to a range of air moment 23 Table 4.1. Simulation schedule and result by Ken Yeang 42 Table 6.1. All of wind velocity test results 57 Table A. 1. Daily information of wind velocity and orientation in Taipei (1981) 79 Table A.2. Daily information of wind velocity and orientation in Taipei (1982) 80 Table A.3. Daily information of wind velocity and orientation in Taipei (1983) 81 Table A.4. Daily information of wind velocity and orientation in Taipei (1984) 82 Table A. 5. Daily information of wind velocity and orientation in Taipei (1985) 83 Table A.6. Daily information of wind velocity and orientation in Taipei (1986) 84 Table A.7. Daily information of wind velocity and orientation in Taipei (1987) 85 Table A. 8. Daily information of wind velocity and orientation in Taipei (1988) 86 Table A.9. Daily information of wind velocity and orientation in Taipei (1989) 87 Table A. 10. Daily information of wind velocity and orientation in Taipei (1990) 88 Table D. 1. The wind chill temperature at each of the test points (Under the Lab Temperature) 184 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vi Table D.2. The wind chill temperature at each of the test points (Under the mean Temperature in July in Taipei) \ / 2 0 0 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. List of Figures vii Figure 1.1. Taiwan R.O.C. 1 Figure 1.2. Satellite Map 2 Figure 1.3. Taiwan Map 3 Figure 1.4. Taipei city map and the city grid 3 Figure 1.5. People protest about building the Nuclear Power Plant No. 4 4 Figure 1.6. Taipei City 5 Figure 2.1. Monthly Mean Relative Humidity in Taipei 7 Figure 2.2. Monthly Mean Precipitation in Taipei 8 Figure 2.3. Monthly Mean Precipitation in Taipei 8 Figure 2.4. Monthly Mean wind velocity in Taipei 10 Figure 2.5. Wind Rose (From Jan 1981 to Decl990) and Legend 12 Figure 2.6. Wind Rose in Jan (From 1981 to 1990) 12 Figure 2.7. Wind Rose in Feb (From 1981 to 1990) 13 Figure 2.8. Wind Rose in March (From 1981 to 1990) 13 Figure 2.9. Wind Rose in April (From 1981 to 1990) 14 Figure 2.10. Wind Rose in May (From 1981 to 1990) 14 Figure 2.11. Wind Rose in June (From 1981 to 1990) 15 Figure 2.12. Wind Rose in July (From 1981 to 1990) 15 Figure 2.13. Wind Rose in August (From 1981 to 1990) 16 Figure 2.14. Wind Rose in Sept (From 1981 to 1990) 16 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. viii Figure 2.15. Wind Rose in Oct (From 1981 to 1990) 17 Figure 2.16. Wind Rose in Nov (From 1981 to 1990) 17 Figure 2.17. Wind Rose in Dec (From 1981 to 1990) 18 Figure 3.1. Fleat Balance of the human body interacting with its environment 26 Figure 3.2. Bioclimatic Chart by Olgyay, V. 28 Figure 3.3. Building bioclimatic chart 29 Figure 3.4. Vertical Distribution of Wind 30 Figure 4.1. Menara UMNO tower by Ken Yeang 1 32 Figure 4.2. Menara UMNO tower by Ken Yeang 2 32 Figure 4.3. Plans of Menara UMNO tower by Ken Yeang 33 Figure 4.4. Wind rose and site plan by Ken Yeang 35 Figure 4.5. Wind Wing Wall in UMNO by Ken Yeang 35 Figure 4.6. Typical office floor plan by Ken Yeang 36 Figure 4.7. Details of wind wing wall 1 by Ken Yeang 37 Figure 4.8. Details of wind wing wall 2 by Ken Yeang 38 Figure 4.9. Details of service core by Ken Yeang 39 Figure 4.10. Wind pressure distribution in elevation by Ken Yeang 40 Figure 4.11. Wind pressure distribution around the building for a typical office by Ken Yeang 41 Figure 4.12. Simulation in Case 1 by Ken Yeang 43 Figure 4.13. Simulation in Case 2(repeat) by Ken Yeang 43 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ix Figure 5.1. The plan of the test model by Tsai and Koenig 48 Figure 5.2. The section and elevation of the test model by Tsai and Koenig 49 Figure 5.3. Architecture Wind Tunnel machine at U.S.C. 1 50 Figure 5.4. Architecture Wind Tunnel machine at U.S.C. 2 51 Figure 5.5. The Architecture Wind tunnel and manometer at U.S.C 52 Figure 5.6. The Wind tunnel test 53 Figure 5.7. The regular test sheet 54 Figure 6.1. The relationship between wind velocity and opening size under high wind velocity test 1 61 Figure 6.2. The relationship between wind velocity and opening size under high wind velocity test 2 61 Figure 6.3. The relationship between wind velocity and opening size under high wind velocity test 3 62 Figure 6.4. The relationship between wing wall length and wind velocity 1 62 Figure 6.5. The relationship between wing wall length and wind velocity 2 63 Figure 6.6. The relationship between wing wall length and wind velocity 3 63 Figure 6.7. The comparison wind velocity with wing wall and no wing wall under different openings 1 64 Figure 6.8. The comparison wind velocity with wing wall and no wing wall under different openings 2 64 Figure 6.9. The comparison wind velocity with wing wall and no wing wall under different openings 3 65 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 6.10. The relationship between Wind direction and Wind velocity 65 Figure 6.11. The 8 typical airflow distribution patterns (Experiment 1 and 2) 70 Figure 6.12. The 8 typical airflow distribution patterns (Experiment 19 and 20) 71 Figure 6.13. The 8 typical airflow distribution patterns (Experiment 37 and 38) 72 Figure 6.14. The 8 typical airflow distribution patterns (Experiment 55 and 56) 73 Figure B.l. The wind tunnel test result (Experiment 1) 91 Figure B.2. The wind tunnel test result (Experiment 2) 92 Figure B.3. The wind tunnel test result (Experiment 3) 93 Figure B.4. The wind tunnel test result (Experiment 4) 94 Figure B.5. The wind tunnel test result (Experiment 5) 95 Figure B.6. The wind tunnel test result (Experiment 6) 96 Figure B.7. The wind tunnel test result (Experiment 7) 97 Figure B.8. The wind tunnel test result (Experiment 8) 98 Figure B.9. The wind tunnel test result (Experiment 9) 99 Figure B.10. The wind tunnel test result (Experiment 10) 100 Figure B. 11. The wind tunnel test result (Experiment 11) 101 Figure B .l2. The wind tunnel test result (Experiment 12) 102 Figure B. 13. The wind tunnel test result (Experiment 13) 103 Figure B.14. The wind tunnel test result (Experiment 14) 104 Figure B. 15. The wind tunnel test result (Experiment 15) 105 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. xi Figure B .l6. The wind tunnel test result Experiment 16) 106 Figure B .l7. The wind tunnel test result Experiment 17) 107 Figure B .l8. The wind tunnel test result Experiment 18) 108 Figure B.19. The wind tunnel test result Experiment 19) 109 Figure B.20. The wind tunnel test result Experiment 20) 110 Figure B.21. The wind tunnel test result Experiment 21) 111 Figure B.22. The wind tunnel test result Experiment 22) 112 Figure B.23. The wind tunnel test result Experiment 23) 113 Figure B.24. The wind tunnel test result Experiment 24) 114 Figure B.25. The wind tunnel test result Experiment 25) 115 Figure B.26. The wind tunnel test result Experiment 26) 116 Figure B.27. The wind tunnel test result Experiment 27) 117 Figure B.28. The wind tunnel test result Experiment 28) 118 Figure B.29. The wind tunnel test result Experiment 29) 119 Figure B.30. The wind tunnel test result Experiment 30) 120 Figure B.31. The wind tunnel test result Experiment 31) 121 Figure B.32. The wind tunnel test result Experiment 32) 122 Figure B.33. The wind tunnel test result Experiment 33) 123 Figure B.34. The wind tunnel test result Experiment 34) 124 Figure B.35. The wind tunnel test result Experiment 35) 125 Figure B.36. The wind tunnel test result Experiment 36) 126 Figure B.37. The wind tunnel test result Experiment 37) 127 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure B.38. The wind tunnel test result (Experiment 38) 128 Figure B.39. The wind tunnel test result (Experiment 39) 129 Figure B.40. The wind tunnel test result (Experiment 40) 130 Figure B.41. The wind tunnel test result (Experiment 41) 131 Figure B.42. The wind tunnel test result (Experiment 42) 132 Figure B.43. The wind tunnel test result (Experiment 43) 133 Figure B.44. The wind tunnel test result (Experiment 44) 134 Figure B.45. The wind tunnel test result (Experiment 45) 135 Figure B.46. The wind tunnel test result (Experiment 46) 136 Figure B.47. The wind tunnel test result (Experiment 47) 137 Figure B.48. The wind tunnel test result (Experiment 48) 138 Figure B.49. The wind tunnel test result (Experiment 49) 139 Figure B.50. The wind tunnel test result (Experiment 50) 140 Figure B.51. The wind tunnel test result (Experiment 51) 141 Figure B.52. The wind tunnel test result (Experiment 52) 142 Figure B.53. The wind tunnel test result (Experiment 53) 143 Figure B.54. The wind tunnel test result (Experiment 54) 144 Figure B.55. The wind tunnel test result (Experiment 55) 145 Figure B.56. The wind tunnel test result (Experiment 56) 146 Figure B.57. The wind tunnel test result (Experiment 57) 147 Figure B.58. The wind tunnel test result (Experiment 58) 148 Figure B.59. The wind tunnel test result (Experiment 59) 149 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. X lll Figure B.60. The wind tunnel test result (Experiment 60) 150 Figure C.l. The Wind Chill Factor in each test point (Experiment 1 and 2) 152 Figure C.2. The Wind Chill Factor in each test point (Experiment 3 and 4) 153 Figure C.3. The Wind Chill Factor in each test point (Experiment 5 and 6) 154 Figure C.4. The Wind Chill Factor in each test point (Experiment 7 and 8) 155 Figure C.5. The Wind Chill Factor in each test point (Experiment 9 and 10) 156 Figure C.6. The Wind Chill Factor in each test point (Experiment 11 and 12) 157 Figure C.l. The Wind Chill Factor in each test point (Experiment 13 and 14) 158 Figure C.8. The Wind Chill Factor in each test point (Experiment 15 and 16) 159 Figure C.9. The Wind Chill Factor in each test point (Experiment 17 and 18) 160 Figure C.10. The Wind Chill Factor in each test point (Experiment 19 and 20) 161 Figure C. 11. The Wind Chill Factor in each test point (Experiment 21 and 22) 162 Figure C.12. The Wind Chill Factor in each test point (Experiment 23 and 24) 163 Figure C. 13. The Wind Chill Factor in each test point (Experiment 25 and 26) 164 Figure C.14. The Wind Chill Factor in each test point (Experiment 27 and 28) 165 Figure C .l5. The Wind Chill Factor in each test point (Experiment 29 and 30) 166 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure C.16. The Wind Chill Factor in each test point (Experiment 31 and 32) Figure C.l7. The Wind Chill Factor in each test point (Experiment 33 and 34) Figure C .l8. The Wind Chill Factor in each test point (Experiment 35 and 36) Figure C.19. The Wind Chill Factor in each test point (Experiment 37 and 38) Figure C.20. The Wind Chill Factor in each test point (Experiment 39 and 40) Figure C.21. The Wind Chill Factor in each test point (Experiment 41 and 42) Figure C.22. The Wind Chill Factor in each test point (Experiment 43 and 44) Figure C.23. The Wind Chill Factor in each test point (Experiment 45 and 46) Figure C.24. The Wind Chill Factor in each test point (Experiment 47 and 48) Figure C.25. The Wind Chill Factor in each test point (Experiment 49 and 50) Figure C.26. The Wind Chill Factor in each test point (Experiment 51 and 52) Figure C.27. The Wind Chill Factor in each test point (Experiment 53 and 54) Figure C.28. The Wind Chill Factor in each test point (Experiment 55 and 56) Figure C.29. The Wind Chill Factor in each test point (Experiment 57 and 58) Figure C.30. The Wind Chill Factor in each test point (Experiment 59 and 60) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure D. 1. The limitation in temperature of the wind chill formula Figure D.2. Different Wind Chill Formulae At 40°F Figure D.3. Different Wind Chill Formulae At 70°F Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. xvi Abstract Taipei is a hot-humid city and also has a lot of high-rise buildings. The energy expenses for the buildings are very high. For lowering the energy consumption and keeping the occupant comfort, natural ventilation is the simplest strategy for improving comfort and saving energy. Determining the optimum condition for cooling the high-rise occupants in Taipei is the main objective of this thesis. The concept of a wind wing wall is used in the thesis and it is like a pocket which collects the prevailing winds and admits it into the inside of building. The inlet size and prevailing directions are also considered. At the end of wind tunnel tests, 1/4 wind wing wall length and 20 % opening of inlet are referred, and the inlet of model was laid toward the summer prevailing winds (157.5°). The study also includes some suggestions and iteration schemes at the end. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1. Taiwan, Taipei 1 1.1 About Taipei The Republic of China (Taiwan) is located in the Western Pacific about 160 kilometers (100 miles) off the southeastern coast of the Asiatic Continent. It lies midway between Korea and Japan to the north and Hong Kong and the Philippines to the south. The area of Taiwan is about 36,000 sq. km (14,400 sq.miles) (TBROC, 2002). Taiwan R.O.C Figure 1.1. Taiwan R.O.C. (UT Library, 2002) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. The population of the city is 2,634,686, and the area of the city is 272 km2 (Taipei City Hall, 2002). Therefore, the population density of Taipei City is about 9693 person/ km2 . Monsoon winds blow all the year in Taiwan. Generally, from October to April is the NE monsoon and from May to September is the SW monsoon. The dominant months for the NE monsoon are from October to December and for the SW monsoon are from June to August. Taipei City, the capital of Taiwan, is located in the central Taipei Basin. It is in north Taiwan between latitude 24°67’-25 °12' and longitude 121 °27’ - 121 °39’ . The volcanic mountain range of Dah-Twen and Lin-Koou tableland covers the Taipei Basin. The volcanic range Dah-Twen, causes the NE monsoon winds to blow along with the Chilung River entering Taipei city. Also, because of the Lin-Koou tableland, the SW monsoon dominates in July and August. Dah- Twen Range Lin-Koou Tableland Figure 1.2. Satellite Map (ITRI, 2000) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 3 K e e l u n g d e y ■ TJU FE I ■ Taoyuan ( j i n l f 7 Hsinchu eour Hsiniii u o ly - u iu ic m i T a im cou ftn jtiiiC D u n ly S n lh sf Tatdising city Eteangjma Yunln C h i a i c i t y falnait city • Kaolwiiine o o « n tt r ^ \ T a irf» coimty K A G H S 1 U N C ■ -----------------------^ ^ P in|lung ccuh jy v / u Figure 1.3. Taiwan Map (TBROC, 2002) The important streets (like Chung-Shan N and S Rd and Chung-Hsiao E and W Rd) in Taipei are North - South and East - West following the U.S. Jeffersonian grid. "Iw ' ' ..*% Figure 1.4. Taipei city map and the city grid (Lin, 1998) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1.2 Energy problems in Taiwan Energy deficiency has always been a big problem in a lot of countries, as is true with Taiwan. On October 28th 2000, the Taipei news headlines read “Taipower calmed fears of power shortage” proposals were being made to build a 4th Nuclear power plant. This was opposed by numerous people including the president. These arguments led to an alteration to proposed solutions. Taipei, the city with highest population density in Taiwan, has a lot of high-rise buildings and these buildings consume a lot of energy for their functions. Therefore, lowering energy expense, is an important topic for Taipei City, starting with high-rise buildings. Figure 1.5. People protest about building the Nuclear Power Plant No. 4 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1.3 High-rise in Taipei 1.3.1 Background The population Density of Taipei is about 9,693-persons/ km2 . It is a very high population density city. In Los Angeles, the population density is only about 3,077-persons/ km2 (Demographia, 2000). In order to have more occupants in a limited site, high-rise buildings are very popular in Taipei. Figure 1.6. Taipei City 1.3.2 High-rise design in Taipei Taipei has very limited land. Usually, the principles of design in Taipei are focused on economy of construction. Architects used to ignore the environmental factors like natural ventilation, lighting, to design their structures. However, the Ministry of Interior of Taiwan in 2000 started to promote the green building movement in order to lower energy expense and asked all public building designs to follow the latest green building code in 2002. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Therefore, it will be necessary to take the factors of Taiwan’s environment into consideration in the near future. This thesis aims to identify a way to naturally ventilate high-rise buildings for Taipei, in order to lower energy expenses in Taipei, and introduce a different way of thinking about a high rise architecture. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 2. Climate analysis 2.1 Climatic data All of the following climatic data is gathered by the Central Weather Bureau in Taiwan from 1961 to 1990. The data shows monthly mean value for Temperature, Relative Humidity, and Precipitation in Taipei. Monthly Mean Relative Humidity in Taipei (From 1 9 6 1 4 9 9 0 ) 90 80 70 60 50 40 30 20 10 0 10 12 2 3 4 5 6 7 8 9 Month M eanRH: 80 Figure 2.1. Monthly Mean Relative Humidity in Taipei Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Monthly Mean Temperature in Taipei (From 1961-1990) 1 2 3 4 5 6 7 8 9 10 11 12 Month Total mean temperature 73.32 (F) Figure 2.2. Monthly Mean Precipitation in Taipei Monthly Mean Precipitation in Taipei (From 1961-1990) 8 8 ■ a 3 ‘ S . _ £ 725 6007 11.098 9 185 9177 12.811 4 622 m ¥ ■ % ai4 # Month Total 110.6736 (in) Figure 2.3. Monthly Mean Precipitation in Taipei Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 2.2 Analysis of climatic data The temperature is high in Taipei, especially in summer, and the heat island effect further increases the temperature. It is necessary to cool the buildings to make occupants comfortable. Also, the Relative Humidity is high in Taipei (The mean annual is 80%). Based on the information cited above, Taipei is a typical hot-humid city. Hence, an efficient passive ventilation method is ideal because it can save a lot of energy and make occupants more comfortable. 2.3 Wind velocity All of the following data is gathered by the Central Weather Bureau in Taiwan from 1981 to 1990. The data shows monthly mean wind velocity and the wind rose in Taipei. Furthermore, the daily reports of wind velocity and wind direction from 1981 to 1990 are in Appendix A. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 10 a a. _o " 3 > ■ o a 7 M l 6 ~ 5 I 4 - 3 - 2 ■ 1 f 7.09 M onthly Mean W ind Velocity in Taipei (From 1961 to 1990) 5.8158 5-95 5.63d 5.277 5 . 8 3 8 1818 8 5 3 * R M l r l Month Figure 2.4. Monthly Mean wind velocity in Taipei 7.85 ' + ■ ■ r .■ 11 12 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 1 Beaufort Number Wind (knots) 1 Descriptive term Land observations Sea observations 0 <1 Calm Calm, smoke rises vertically Water calm, mirrorlike (.25 ft. waves) 1 1-3 Light air Wind direction shown by smoke but not by windvanes Ripples with the appearance of scales (.5 to 1 ft. waves) 2 4-6 Light breeze Leaves rustle; wind felt on face; windvanes moved by wind Small wavelets on water; crests have a glassy appearance and do not break. 2-3 ft. 3 7-10 Gentle breeze Leaves and twigs in constant motion; wind extends light flag Large wavelets; crests begin to break; maybe scattered whitecaps. 3.5 to 5 ft. 4 11-16 Moderate breeze Wind raises dust and loose paper; small branches move Moderate waves; fairly frequent whitecaps 6 to 8 ft. 5 17-21 Fresh breeze Small leafed trees begin to sway Moderate, longer waves; many whitecaps; chance of spray. 9.5 to 13 ft. 6 22-27 Strong breeze Large branches in motion; phone lines whistle Large waves form; white foam crests everywhere; probable spray. 13.5 to 19ft. 7 28-33 Moderate gale Whole trees in motion; difficult to walk against wind Sea heaps up; white foam starts to blow in streaks. 18 to 25 ft. 8 34-40 Fresh gale Wind breaks twigs off trees; walking impeded Moderately high waves with crests beginning to break into foam that's blown in white streaks. 23 to 32 ft. 9 41-47 Strong gale Slight damage to buildings occurs; shingles tom off roofs High waves; rolling seas; dense streaks of foam; wave crests begin to topple, tumble and fall over. 29-41 ft. 10 48-55 Whole gale Trees uprooted; considerable structural damage to buildings High waves with overhanging crests; sea is white. 64-72 ft. 11-17 56+ Storm, Hurricane Widespread damage Huge waves; air filled with spray; little visibility. 73 ft. + Table 2.1. Beauford Scale. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 2.4 Wind Rose and analysis 12 , 0 - J. R,0-fc + yL-^+ — fj M.|bH Surface Wind Roses January 1981 To December 1990 JiJb TAIPEI at m Legend Beaufort Number Frequency Percentage 7 or more 4 thru 6 I thru 3 /; / .4$ C L A W \ '■ V I y C L A M t — io J0 3 0 5.1 % 1 3 5 Figure 2.5. Wind Rose (From Jan 1981 to Decl990) and Legend 360' 315' 45 CLAM 270 90 ‘ 225" 180' Figure 2.6. Wind Rose in Jan (From 1981 to 1990) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 13 360’ 31 5 ' 45' 40% > CLAM '' 1 6 .5 % L, t r t < , 270 90 225' 135' 180 Figure 2.7. Wind Rose in Feb (From 1981 to 1990) / ' / / • ' \ X \ • ’ \ \ \ \ \ \ ■ Jj CLAM 7.4 H q 20 30 40% 1 I I \ \ \ W ' , / / / / / \ \ \ . ■' Figure 2.8. Wind Rose in March (From 1981 to 1990) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 2.9. Wind Rose in April (From 1981 to 1990) 360' 2 CUM Z B7»A ; 225" 135 180’ Figure 2.10. Wind Rose in May (From 1981 to 1990) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 15 360' 315' ^ 6 .6 % L. i ~ *■*> s * / \ r i\v / 40% 90 225' 135 180° Figure 2.11. Wind Rose in June (From 1981 to 1990) X 4 5 ’ / / / .y x ./.A \ \ \ ^ Cl ^ CLAM ^ 1 0 2 0 30 <0% ^ , g Q . V \ X , V V ’ 2 2 5 ‘ 13.6 ■ ./■ / / Figure 2.12. Wind Rose in July (From 1981 to 1990) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 16 360 315 45 C L A M K p — 3 g % — ^ k14\9 225 135' Figure 2.13. Wind Rose in August (From 1981 to 1990) i f / ' . "x -'A \ \ 2 7 0 - i i i » r* * ' U - 3 , 3 .4 % L . ! "! w \ \ \ \ '-V / ; \ \ \ x 3 S X / / / Figure 2.14. Wind Rose in Sept (From 1981 to 1990) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 17 360“ 315 10.1 \ 2 7 0 ' 225 135 180' Figure 2.15. Wind Rose in Oct (From 1981 to 1990) 3 6 0 ' 315 45 J CLAM - 1 2.8 % v /> , ■ r * * / 2 7 0 ‘ 90 225 135' 180 Figure 2.16. Wind Rose in Nov (From 1981 to 1990) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 2.17. Wind Rose in Dec (From 1981 to 1990) All of the Wind Rose maps in this thesis are from Central Weather Bureau in Taiwan. Based on the wind roses cited above, the prevailing wind in Taipei is from ENE direction, but in summer, the orientation of prevailing wind is changed to SES because of monsoon change. The wind velocity is high in winter and fall, but in summer, the wind velocity is not high. A simple mechanical system may be needed to help ventilate the building. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 3. Thermal comfort by natural ventilation 19 3.1 Natural Ventilation For better living quality, Architects always try to find different ways to make a comfortable living environment. Natural ventilation is the simplest strategy for improving comfort. From the old Egyptians to the Native Americans, the natural ventilation was an important consideration in their building. Nowadays, although mechanical ventilation or air conditioning systems are very advanced, natural ventilation is still a design goal. A good design should consider natural ventilation. Generally, ventilation means the supply of outdoor air to an indoor space. It is incorrect to define ventilation simply as circulation of air within a space. If a room has no openings, theoretically, there is no ventilation, and natural ventilation is the use of fresh air of sufficient volume and air-change to ventilate enclosed spaces without the use of mechanical means (Yeang, 1996). Air movement can be created in two ways. The first one is by temperature difference. Because hot air rises and cold air sinks, air starts to circulate. The second is pressure difference. The air in a high-pressure zone flows to a low- pressure zone to form an air circulation. Usually, introducing outdoor air into a building by natural ventilation may provide a direct physiological cooling effect even when the indoor air temperature is actually elevated. Furthermore, the higher air speed increases the rate of sweat Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 20 evaporation from the skin, and minimizing the discomfort people feel when their skin is wet (Givoni, 1994). According to Prof. Ken Yeang, natural ventilation is desirable for the following reasons: • for increased comfort in hot humid period, • for health reasons to provide sufficient oxygen and maintain pollutants at agreeable levels, • for better perceptual satisfaction of building occupants, • for energy conservation through the reduction/ elimination of mechanical means of ventilation. Use of natural ventilation during the daytime has three objectives: 1. Cooling of the indoor air as long as outdoor temperatures are lower than the indoor temperatures 2. Cooling of the structure of the building 3. A direct cooling effect over the human body (through convection and evaporation) If the natural ventilation takes place during the nighttime, the objective is to use the thermal mass of the building as intermediate storage medium, which enables us to use, during the day, the coolness stored during the previous night. (This may only be applicable to office buildings where the building is not occupied during the night) (Allard, 1998). Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 21 Modem buildings in noisy polluted city locations tend to be designed such that they totally reject the climate and rely on air-conditioning and artificial lighting. But air-conditioning carries with it high energy and operating costs, and there is growing concern over the quality of indoor environments in air conditioned buildings, and the health of occupants in relation to complaints of “sick building syndrome” and poor indoor air quality (Richards, 2001). Therefore, natural ventilation is a very important concept for modem buildings, especially in high energy cost buildings. 3.2 Humidity Humidity is the amount of water vapor in the air and can be described in different ways, including “ absolute humidity”, and "relative humidity" which is the term used most often in weather information meant for the public. “ Absolute humidity” means the mass of water vapor per unit volume of natural air. It is usually used for facility engineering, like air conditioning, etc. However, absolute humidity can’t show if the air feels dry or moist, as that depends on how much water vapor is in the air compared to how much it can hold. Hence, relative humidity (RH) is more generally used. It can be defined by the ratio of the density of water vapor in air to the maximum density of water vapor that air can contain at that temperature (Benjamin and John, 1992). Prof. Givoni has established certain boundaries of thermal regions that determine the effect of humidity. These regions depend on the overall requirements Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 22 for evaporative cooling, the velocity of the air and the clothing. These ranges are: at air temperatures between 68-77°F, the humidity level does not affect the physiological and sensory responses, and variations in RH between 30% and 85% are most imperceptible. According to Givoni, a feeling of clamminess and dampness are only perceptible when the air is almost saturated. The human perception of humidity becomes more apparent at temperatures above 77°F. The most affected are; skin temperature, skin wetness, and at even higher temperatures, the sweat rate (Givoni, 1976). From the previous chapter (3-1 natural ventilation), we can know natural ventilation is the simplest way to take the moisture off the human skin. 3.3 Air Movement Airflow through a building is dependent upon the forces of wind pressure creating high and low zones; when openings are placed in each of two areas, airflow is induced. (Yeang, 1996). Because of the air movement, the body heat can be transferred by convection and evaporation from the skin. The higher the air velocity, the more body heat is taken away. The exchange of indoor air with fresh outdoor air provides cooling and moving air can also act as a heat-carrying medium (Yeang, 1996). Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 23 Velocity Probable impact Up to 50 fpm Unnoticed 50 to 100 fpm Pleasant 100 to 200 fpm Generally pleasant but causing a constant awareness of air moment. 200 to 300 fpm From slightly drafty to annoyingly drafty Requires corrective measures if work and health are to be kept in high efficiency. Table 3.1 Human responses to a range of air moment (Kukreja, C.P., 1978) Cross-Ventilation offers the optimum situation for natural ventilation. Since cooling is the primary reason for using cross-ventilation, the airflow should be directed to the level of human activity rather than towards the ceiling or above the head. The ceiling should also be at least partly vented, to reduce the mean radiant temperature of the space, but it also does not require of rapid air movement. The location of the outlet and the type of physical mechanism used in the inlet will determine the airflow pattern. 3.4 Temperature Whenever an object is at a temperature different from its surroundings, heat flows from hotter to the colder. Buildings, like bodies, experience heat loss to, and heat gain from, the environment by convection, conduction, and radiation. Convection occurs when molecules of cool air absorb heat from a warm surface, rise, and carry it away (Benjamin and John, 1992). The effect that wind has on our perception of cold is called the wind chill factor. It is usually used for knowing the human’s feeling as wind blows. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 24 Here are 3 formulae for wind chill. Wind Chill (°F) - 35.74 + 0.6215T - 35.75(V016) + 0.4275T(V016) Where: V = the wind speed value in mph T = the temperature in °F Note: Frostbite occurs in 15 minutes or less at wind chill values of -18 or lower (NOAA, 2001). The second Wind Chill formula is: Wind Chill Factor = (3 3 -(10.4 5+10^ - v)(33-T» / 22.04 Where: T: Temperature (°C) V: wind velocity (m/s) The third formula ET = 0.045(7.1766 x jKNOTS + 10.45 - 0.5145 x KNOTS)(Celsius - 33.0) + 33.0 (Sailinglssues, 2002) Where: Knots = wind velocity in nautical miles per hour. 3.5 Human comfort Generally, a comfortable living environment includes two parts: the first part is in aesthetics, psychology, and culture. The second part is in physiology. Here, we are going to discuss the second part. It is the primary objective to cool or heat Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 25 people (making people feel comfortable); buildings are our means to that end. A positive definition of comfort is “ a feeling of well-being” (Benjamin and John, 1992). To regulate our bodily heat loss, we have available three common layers between our body cores and our environment: the first skin, our own; the second skin clothing; the third skin a building (Benjamin and John, 1992). According to Vaughn Bradshaw’s “Building Control systems”, the relationship between the human body’s heat production and its other heat gains and losses can be represented as: Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 26 M=E±R±C±S where: M=MetaboIic rate E=Rate of heat loss by evaporation, respiration, and elimination R=Radiation rate C=Conduction and convection rate S=Body heat storage rate Figure 3.1. Heat Balance of the human body interacting with its environment (Bradshaw, 1985) The rate at which we generate heat (our metabolic rate) depends mostly on our level of muscular activity, partly on what we eat and drink (and when), and partly on where we are in our normal daily cycle. Our heat production is measured in metabolic or met units. Our met is defined as 58.2 w/m2 , or 18.4 Btu/h ft2 ; it is the energy produced per unit of surface area, by a seated person at rest. The more active we are, the more heat we produce, and our own first skin is the most important F U d iitio n Ev*tx>«»»<on M«£*H*C*S Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. regulator of heat flow (Benjamin and John, 1992). Furthermore, if the surrounding temperature is raised, our body will try to increase our blood flow to the skin surface. Then, our skin will perspire, and heat will be lost. This is usually happens in areas with a hot-humid climate. If we stay in a well-ventilated structure, the heat can be brought down by radiation, conduction, and convection. However, evaporation is exclusively a cooling mechanism. It is the predominant factor when ambient temperatures are so high, as in hot-humid conditions, that radiant or convective heat losses can’t occur. Therefore, creating a good ventilation environment is important, because evaporation is important, though difficult in hot-humid climates. Generally, there are two main problems in hot-humid area residences: high solar radiation and high moisture content. Introducing or creating airflow to indoors is the simplest way to improve comfort. According to Hung, Wei-Yu's thesis “Research on the Climate Adaptability of Traditional Dwelling in Taiwan”, he suggested the comfort range, the slash zone in Fig 3.2, for Taiwan is DBT=61°F-81°F, RH=40%-80%. The vertical axis is dry bulb temperature, and the horizontal axis is relative humidity. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 28 i/oo 60 20 too Figure 3.2. Bioclimatic Chart by Olgyay, V. (Wang, 1990) Professor Murray Milne and Baruch Givoni developed the “building bioclimatic chart” to relate climate and design strategies. From the chart, we can use the specific climatic data plotting in the chart, and find out the different design strategies for improving environment comfort. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 29 '> < § = ! Figure 3.3. Building bioclimatic chart (Benjamin and John, 1992) 3.6 Vertical distribution of wind The wind velocity increases with building height. This is a very important part of my study. I set up my wind tunnel test height in the very bottom of a high rise building which is in the worst wind velocity condition. On the other hand, the ground surface also affects the wind velocity. The roughness height is an aerodynamic characteristic of the ground surface. For an identical geostrophic velocity and an identical height above the ground, the average velocity will decrease for an increasing roughness of the ground. The roughness height is thus a function of the nature of the ground and the geometry of existing obstacles (Allard, 1998). Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. OPEMCOUNTft-v x x > 5200 ==? 6 G f a d ttw V**oe*ty 7 ! t _ L Figure 3.4. Vertical Distribution of Wind (Melaragno, 1982) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 4. A Case study of Ken- Yeang - Menara UMNO Tower 31 4.1 About Ken Yeang and Menara UMNO Tower Dr. Ken Yeang is a partner of the architectural company, TR Hamzah and Yeang, in Kuala Lumpur and Penang, Malaysia. He has been working constantly for fifteen years on a series of inventive 'bio-climatic' office towers in the rapidly developing South-Asian countries. One of his large achievements is being able to integrate his ecological principles in commercial office towers (Smart Architecture, 2002). His outstanding work has been reported in many famous international journals, like “Architectural Record”, “the Architectural Review”, and “Progressive Architecture”. He was educated at the Architectural Association in London and got a PhD degree about Environmental issues applied to building design from the University of Cambridge. Menara UMNO tower is a twenty-one-story building and is located on the island of Penang. The tower contains a banking hall, auditorium, and car-parking levels, together with 14 floors of office space above. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 4.1. Menara UMNO tower by Ken Yeang 1 (Powell, 1999) m tn fip ;;;. pi?v- :rr~'f I L r T - " nr~*l i I . I r ,fr l e t {F Figure 4.2. Menara UMNO tower by Ken Yeang 2 (Powell, 1999) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. level 03-05 Figure 4.3. Plans of Menara UMNO tower by Ken Yeang (Richards, 2001) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 34 The site determines the orientation of the tower. It “faces” west with a variety of sun-shading devices to control sunlight penetration at various times of the year. A twenty-one-story solid wall faces east, shielding the building from sunlight until noon. There is duality in the construction of the building’s wall: the west wall facing facade is constructed of high-tech steel, glass and aluminum; the east facing facade - a party wall - is utilitarian concrete. The UMNO building was initially designed to be naturally ventilated. The intention was to generate natural ventilation with a high air-change rate, which creates comfort conditions in the interior through air movement and temperature control (Powell, 1999). Considering the local wind rose and prevailing wind, Dr. Ken Yeang introduced soaring vertical wall-fins, “ Wind Wing Wall”, that “catch” wind to special balcony zones and act as pockets with “air locks” for natural ventilation via openings, and full height sliding doors (Richards, 2001). Dr. Ken Yeang was able to claim that the “Menara UMNO tower” is probably the first high-rise office building using the principle of wing-walls for internal comfort conditions. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 35 figUf* 1 U M N O O f t l t « S » t « a nd th e wind rose for Penang Figure 4.4. Wind rose and site plan by Ken Yeang (Richards, 2001) Figure 4.5. Wind Wing Wall in UMNO by Ken Yeang (Richards, 2001) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 36 4.2 Wind Wing Wall The wing wall is simply a short wall placed perpendicular to an opening in the building (i.e., the orifice leading to the insides of the building), that is used in the combination with the orifice as a device like a pocket to collect and direct the greater range of prevailing winds (where these come from a range of incidences) into the insides of the building. The device can be used to enhance the internal conditions of comfort (e.g. internal air changes, temperature, humidity, etc) (Richards, 2001). In UMNO, the wing walls are oriented to catch the prevailing wind and the windows and balcony doors are adjustable to control wind-induced ventilation. Each floor of office space is open plan with most work places having access to an openable window / door and natural-light. The main openings are in the form of windows and balcony doors located on the south-west and north-east elevation. These allow for cross-ventilation driven by the prevailing wind conditions. Other windows are located along the north-west fagade for user controlled ventilation. Figure 4.6 shows a typical office floor plan with main opening identified (Richards, 2001). X figure 2 Figure 4.6. Typical office floor plan by Ken Yeang (Richards, 2001) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 37 s LEVEL 21 PLAN aiiiiiii ELEVATION A SECTION A-A Figure 4.7. Details of wind wing wall by Ken Yeang 1 (Richards, 2001) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. is® * ■ t - m typical balcony between the wlng-walls to capture incident wind sunshading adjustable shutters to control wind entering interior naturally lit and ventilated stairs vertical landscaping skycoorts tor future expansion nd wlng-wall Figure 4.8. Details of wind wing wall by Ken Yeang 2 (Richards, 2001) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 39 service core d etail legend 1 WwrornoujftiCdtKm Bo* 2 t»>lmwMnun»Mti<>n Riser 3 audio-visual/PA system river- 4 '■ oaii! water riser 5 hose-recl riser 6 hnse-fewi 7 fWMuriiation duet A suircaise 8 ','ledritify junction bo* a hose reei room (consum e <wn) c storage 9 electricity river conduit (main) D male toiiet 10 ctobictty junction box imato) E female toilet 11 Hectrtrity conduit riser iM&EI f rift 12 eh*r )>yity Junction bo* (M&Ei C iin-man’ s lift 13 tiro-hghifiis> cowm»flic4tton conduit M smoke lobby 14 fireman's telephones 1 li’tephonr- room 13 air handling unit 1 hnse-rcel roijrj) 1S MAE Kisers up/return K pressurtvstion duct 17 m handling unit control pane! I elestncat room 1* sanitary riser M stArrea.se 2 19 pressurised shat? N .sir-<on<filiontng joc Figure 4.9. Details of service core by Ken Yeang (Richards, 2001) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 40 4.3 Wind analysis Computational fluid dynamics (CFD) was used to predict the wind pressure for UMNO. From CFD, the surface pressures at openings were obtained. Furthermore, the ventilation rate, internal air movement, and temperature distribution can be predicted by CFD. These predictions were obtained for “stack” (that is, for calm conditions with no wind) and for a range of window opening conditions with wind forces. A CFD model was built for obtaining an estimate of the surface pressure at each opening. The wind rose for the site, shown in Fig 4.4, indicates that a typical wind condition for the site would be a speed of 2.5 m/s (at height of 10m from ground level) and a south-west prevailing wind direction (Richards, 2001). Fig 4.10 talks about the wind flow around the building in the form of air pressure contours. The maximum wind impact on the windward elevation is at about 75% the height of building, which is a general rule for buildings on an open site (Richards, 2001). I € $ 3 U t 7 $ In s e c tio n God ‘ S a k 9 tOm Mss** W r t Figure 4.10. Wind pressure distribution in elevation by Ken Yeang (Richards, 2001) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 41 Fig 4.11 shows wind pressure distribution around the building for a typical office. From the figure, it demonstrates about 6pa of positive pressure on a windward balcony and a negative pressure about 3pa on the downward balconies and side openings. These surface pressure readings can be used in the internal air-flow simulation to gain the wind induced ventilation rates for typical wind conditions. - 4 -i ft ; .& *"-"f Grid Scale f t IChri In p l a n Prrrvvirr (P.i) Figure 4.11. Wind pressure distribution around the building for a typical office by Ken Yeang (Richards, 2001) The internal airflow simulations assumed the external air temperature of 30° C. Internal heat gains, due to people, light and small power, were assumed to be 35w/m2 . The internal airflow simulation were carried out: 1. For a calm day with no wind and ventilation driven by the stack forces generated due to internal external temperature differences. 2. For average wind conditions (2.5 m/s; south-westerly) and a range of window opening configurations. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 42 The situations modeled and summarizing the main result from simulation are shown Table 4.1. (Richards, 2001). The plan of simulation was based on Fig 4.6. C itt 1 A (1.1) i » a « I C(42> I 0 ( 5 ,1 ) ! KO.O) I f c W o l * Stack 2 M r* i Mm4 a m * 5 W M j O*** ] o p en j epm \ opcw i O p e * f O p e n O p trt : O pen C fcw d \ O p e n i O p e n [ O p e n I C5ow*d ; O p e n l l l l i open dmed tosed open : dtnnf Schedule of simulations for stack and wind (areas of opening In Ixraclsats <m2) Cate \ ac/h Average InUernJ ik ; Average Internal afr tempera tur* (*C) speed (m /1) Tabki 1 1 2 S u ck Wkncj \ 0.45 j 1 0 8 1,0 2 4 .0 3 1 ,5 0 1 3 1 ,0 0 4 Summary of results 2 repeat W M | 5 6 13,6 3 1 2 0 3 5 3 W ft* I 15.2 3 3 8 3 0 0 0 .5 7 4 WWyJ \ 7 .9 6 ) 31.4 1 0.34 5 m * j 1 2 6 3 0 5 0 3 Table 4.1 Simulation schedule and result by Ken Yeang (Richards, 2001). Case 4 has only small opening (at X) and has a more controllable ventilation rate of about 6.3 ac/h. Case 2 was repeated with a smaller area of window opening on the upwind door, C (1.5m2 instead of fully open area of 4.2 m2 ). It reduced the ventilation rate considerably. Figure 4.12 shows the result for stack only condition, Case 1. It presents the internal temperature distribution and air speed vector at 1.2m height (Richards, 2001). Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. wind-shutters closed Figure 4.12. Simulation in Case 1 by Ken Yeang (Ivor Richards, 2001). Figure 4.13 shows the internal temperature distribution and air speed vectors respectively for case 2(repeat). AjlJtqm spot! OftfccM) o p # ! 0 * 0 Seat# ifr w ind-shutters ODen Figure 4.13. Simulation in Case 2(repeat) by Ken Yeang (Ivor Richards, 2001) There are some facts about energy consumption for this building 1. The cooling load of the building is 6,000,773 BTU (500RT) 2. The air-conditioning consumption is 126 kwhr/sq ml annum. 3. The total energy consumption of the building is 244 kwhr/sq m/ annum. 4. The energy consumption, if naturally ventilated (i.e. without air-conditioning), is 118 kwhr/sq m/ annum (Richards, 2001). Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 5. Methods of cooling the high-rise 44 5.1 Hypothesis It is possible to cool a high rise building in Taipei with natural ventilation. 5.2 Goal From the previous chapters, we can infer that Taipei is a hot-humid city, and has a lot of high-rise buildings. According the book “Architectural Physical Environment” co-authored by Prof. Lai, Long-Ping, Prof. Hsin-The Lin, and Prof. Chou, Chia-Peng, that relative humidity is above 80% whole year and the cooling degree hours (Based on 22° C) is between 28000-32000 (° C .h). The principles of architectural design in Taipei should focus on dehumidification, and natural ventilation (Lai, Lin, and Chou, 1992). In the chapter 3.1 “Natural Ventilation”, we know natural ventilation is the simplest and most effective strategy to take the undesirable heat and humidity away from buildings, and also it can save a lot energy expense. Dr. Ken-Yeang, a world famous architect built a lot of “bio-climatic” office towers in the rapidly developing South-Asian countries. UMNO Tower, one of his famous cases is located in Penang, that has fairly uniform temperatures ranging from 22° C at night to 32° C during the day throughout the year. Furthermore, the Relative Humidity is high at 85-95% annually (Penang Net Service Sdn Bhd, 1996). Therefore, UMNO Tower has very similar climate conditions to Taipei, and Dr. Ken- Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 45 Yeang successfully used the Wing Wind Wall concept to cool the building and make the indoors comfortable in this case. Therefore, based on this concept, in my research I would like to use the Wind Wing Wall concept as my principle concept and try to find out the optimum conditions for cooling the high-rise occupants in Taipei. 5.3 Wind tunnel test 5.3.1 Introduction There are three determining factors in my wind tunnel tests. They are Prevailing winds, Openings, Wind Wing wall. In the chapter 4.2, we gathered the basic knowledge about a wind wing wall. The wall should work like a pocket to collect prevailing winds into the building. Thus, before we apply the wind wing wall into the test model, it is important to know the orientations of prevailing winds. According to the wind rose maps (from Fig2.4 to Fig2.16), the prevailing winds in Taipei are from ENE (67.5°) and E (90°) directions, but in summer, the orientation of the prevailing wind changes to SES (157.5°). The position of the wing wall should be able to catch these three orientations into the interior. As for openings, from the previous chapter we know cross-ventilation offers the optimum solution for natural ventilation. Therefore, cross-ventilation would be an ideal principle concept for my test model. Instead of choosing a site, I would like to use an abstract site for Taipei, so that I can build a prototype of natural ventilation for any location in Taipei. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 46 The wind velocity increases with building height. This is a very important factor for my study. The height of my wind tunnel test is the lowest among high-rise buildings, which is in the worst wind velocity condition. 5.3.2 Test model According to the assistant manager of Cathay Real Estate development Co, LTD., the largest development company in Taiwan, Architect, Wen-Tse Chen, says that in Taipei, because of earthquakes, high rise buildings under 30 stories are usually built using Reinforced Concrete or Steel Reinforced Concrete structure; However, if the building is over 30 stories, it is usually built of steel. In my thesis, my building type is an office building (UMNO Tower is an office building, too) built using a steel structure. He adds that the area of an office building in Taipei is usually from 200 pin to 400 pin (about 7100 sq ft to 14200 sq ft). Due to the size of wind tunnel machine, 200 pin (7100 sq ft) is the best size for the test. According to Prof. Pierre Koenig’s experience, 60 feet is a reasonable span for steel structure in my study. Therefore, I used 60’ X 120’ (the area is 7200 sq ft) as my case dimension, and there were no columns in my indoor space. I scaled the dimension by 6”: 60’ into my test model. My model size is 6” X 12”. Fig 5.1 and F 5.2 shows the plan, section, and elevation of the model. There are three layers in the model. Each layer is 1” high (actual height is 10’), which is equal to 1 story height in real size. The top and bottom layers are closed, and the middle layer is open to test. For the cross ventilation, the inlet is set on the opposite side of the outlet. I have used three different inlet sizes, 20%, 40%, Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. and 60% opening of wall area in middle layer, for testing the effect of opening size, the indoor wind velocity, and airflow. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 48 Figure 5.1. The plan of the test model by Tsai and Koenig Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 49 £ £ to + * w c J c uj o 1 S1 d '3 ^ o JS 6 4 tii X u £ £ £ £ 0 + * U & t/i c 1 < sz u £ C 1 3 Figure 5.2. The section and elevation of the test model by Tsai and Koenig Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 50 Furthermore, three different wing wall sizes are set for testing the effect of the wing wall length on the indoor wind velocity, and airflow. The length ratios vary as l/4th, l/6th and l/12thof the Southwestern wall. Three orientations of prevailing winds are one of the testing factors. From the last chapter, we know the wind directions from ENE (67.5°), E (90°), and SES (157.5°) as the prevailing winds and I will test the effect of prevailing winds on the indoor wind velocity, and airflow. Four pitot tubes were set in the central of the middle layer for detecting the wind pressure. The test model was built of a 1/16” Plexi-glass in the USC school of Architecture Wood shop. Plexi-glass was used in order to keep the airflow inside smooth, and since it is transparent, people can observe the inside of the model easily. All edges are sanded smooth and glued together. All of the tests were conducted in the School of Architecture Wind-Tunnel which has a dimension 10” (height) X 18” (width) X 3O ’(length) Figure 5.3. Architecture Wind Tunnel machine at U.S.C. 1 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 51 Figure 5.4. Architecture Wind Tunnel machine at U.S.C. 2 5.3.3 Wind Tunnel test First, the model was secured to the base of the tunnel with clear tape. In order to reduce turbulence, it is important to make sure that the tape adheres to the model and the base. From the wind rose maps, we know the wind velocity is high in winter and fall, but in summer, the wind velocity is not high. For better test results, the inlet of the model was laid towards the summer prevailing winds (157.5°), so that the summer wind can blow into the model directly, and all of prevailing winds can be caught by the wing wall. Four pitot tubes on the model were attached to four soft plastic tubes labeled “A”, “B”, “C”, and “D” respectively. Another soft plastic tube was attached at one end to the wind tunnel’s manometer and at the other end to one of the soft plastic tubes. This way, the pressure reading at different points of the model could be read and recorded. The formula for converting the wind pressure to wind velocity is: Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 52 Wind Velocity: V= -\/P/12x62.4 lb/sq. ft/0.00119 = Feet/sec Where: P= Pressure Feet/sec X 60sec/min = Feet /min (Feet/min)/88 = MPH Note: This assumes uniform velocity and no turbulence within the ducts. Figure 5.5. Architecture Wind tunnel and manometer at U.S.C Secondly, the tunnel was turned on under different test factors. The test factors we talked about before are 3 prevailing winds, 3 different openings, and 3 different wing wall lengths. However, each of the prevailing winds was tested for high velocity and low velocity, so the total number of tests was 54(3X3X3X2- 54). During the test it is very important to see if the wing wall is waving. If the wall waves, it means the weight of the wing wall is light, and it is good for the structure. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 53 While the tests were conducted, it was observed that, the wing wall waves. After each of the test, it is important to record the wind pressure readings and convert them into wind velocity using the formula. Other important readings to be recorded are of the local barometer, local relative humidity, local temperature, and static pressure, and test number in a regular test sheet. Figure 5.6. The wind tunnel test Finally, the “Trash test” is necessary for understanding the indoor airflow. The “trash test “ is scattering very little pieces of paper on the middle layer of the model, and it is tested under some typical test factors in the wind tunnel. During the test, we increase air velocity in the wind tunnel gradually, and we can observe how air flows and where the wind dead zones are formed in the model by the little pieces of paper. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. EXPERIMENT NO: SUBJECT: High rise experfmentfor Taipei D ATE: TIME: START: END: BAROMETER: TEMPERATURE: 71 RELATIVE HUMIDITY: STATIC PRESSURE * Figure 5.7. The regular test sheet Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 6. Results 55 Following the test methodology, all test results are shown in Appendix B displaying the readings in wind velocity, wind pressure and indoor air flow patterns. Table 6.1 shows all of the wind velocity readings in each the test points. All of the wind pressure readings are converted to wind velocity using the formula in Chapter 5.3.3. From the table 6.1, we can observe some results about wind velocity. 1. About opening size, in most of the cases (in direction 1(157.5°), 2(90°)), the opening size affects the indoor wind velocity, and during the high wind velocity test, increasing the area of opening would decrease the indoor wind velocity. Generally, a 20% opening has the highest indoor wind velocity, and 60% has the weakest indoor wind velocity performance. However, in direction 3 (67.5°), that relationship doesn’t exist. The difference in opening sizes does not affect the wind velocity. Fig 6.1 to 6.3 show the relationship between wind velocity and opening size under the high wind velocity test. In the low velocity test, the opening size almost doesn’t affect indoor wind velocity. 2. In terms of wing wall length, in most cases (in direction 1(157.5°), 2(90°)) under the high wind velocity tests, the longer wing wall length doesn’t affect indoor wind velocity. However, in direction 3 (67.5°), the longer wing wall length may lower indoor wind velocity. Fig 6.4 to 6.6 show the relationship between wing wall length and wind velocity in direction 3. In low wind velocity test, the wing wall Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 56 length doesn’t affect the indoor wind velocity either. In addition, I did another 6 tests without a wing wall for observing the wind velocity difference between having a wing wall and not having wing wall. The 6 tests examine direction 3, because it has the highest indoor wind velocity. Fig 6.7 to 6.9 show the comparison wind velocity with wing wall and no wing wall under different openings. The results show that there may be a higher wind velocity indoors without a wing wall. 3. In terms of prevailing wind orientations, in the high wind velocity test, wind direction obviously affects indoor wind velocity. From Table 6.1, we can easily find out that direction 3 (67.5°) has the best performance in wind velocity of each test point, direction 2 (90°) has the second highest wind velocity for each test point, and direction 1(157.5°) shows the weakest wind velocity for each test point. Actually, the indoor wind velocity in direction 3 is also higher than outdoor wind velocity. From the Fig 6.10, we can see the relationship between wind direction and wind velocity under the high wind velocity test. The wind velocity in direction 3 (67.5°) is much higher than that of direction 1(157.5°), and direction 2(90°). Additionally, the wind velocity in direction 2 (90°) is a little bit higher than direction 1(157.5°). In the low wind velocity test, wind direction doesn’t affect the indoor wind velocity. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Basic Test factor Wind Velocity ( VIPH) for each test point Test Number Wind Direction Wind Strength Wing Wall Length Opening size Static A B C D 1Direction 1 Lo Velocity 1/12 of south western wall 20 % of the wall 6.37 4.5 4.72 4.5 4.72 2Direction 1 Hi Velocity 1/12 of south western wall 20 % of the wall 19.12 19.01 19.12 19.12 18.58 3Direction 1 Lo Velocity 1/6 of south western wall 20 % of the wall 4.72 4.72 4.72 4.72 4.93 4Direction 1 Hi Velocity 1/6 of south western wall 20 % of the wall 19.38 19.12 19.17 19.22 19.12 5Direction 1 Lo Velocity 1/4 of south western wall 20 % of the wall 4.5 4.5 4.5 4.5 4.72 6Direction 1 Hi Velocity 1/4 of south western wall 20 % of the wall 19.17 19.01 19.21 19.38 19.38 7Direction 1 Lo Velocity 1/12 of south western wall 40 % of the wall 5.52 4.5 4.5 4.5 4.5 8Direction 1 Hi Velocity 1/12 of south western wall 40 % of the wall 19.54 16.37 16.62 16.31 16.25 9Direction 1 Lo Velocity 1/6 of south western wall 40 % of the wall 5.52 4.5 4.5 4.5 4.5 10Direction 1 Hi Velocity 1/6 of south western wall 40 % of the wall 19.43 16.25 16.56 16.62 16.31 1 1Direction 1 Lo Velocity 1/4 of south western wall 40 % of the wall 5.52 4.5 4.5 4.5 4.72 12Direction 1 Hi Velocity 1/4 of south western wall 40 % of the wall 19.54 16.25 16.56 16.56 16.25 13Direction 1 Lo Velocity 1/12 of south western wall 60 % of the wall 4.72 4.27 4.27 4.27 4.27 14Direction 1 Hi Velocity 1/12 of south western wall 60 % of the wall 19.57 14.94 14.74 14.39 13.52 15Direction 1 Lo Velocity 1/6 of south western wall 60 % of the wall 5.52 4.5 4.5 4.5 4.5 16Direction 1 Hi Velocity 1/6 of south western wall 60 % of the wall 19.38 14.32 14.32 14.32 14.32 17Direction 1 Lo Velocity 1/4 of south western wall 60 % of the wall 5.52 4.5 4.5 4.5 4.5 18Direction 1 Hi Velocity 1/4 of south western wall 60 % of the wall 19.38 14.81 14.6 14.32 14.25 Table 6.1. All of wind velocity test results < 1 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 19Direction 2 Lo Velocity 1/12 of south western wall 20 % of the wall 4.93 4.93 5.13 5.52 5.52 20Direction 2 Hi Velocity 1/12 of south western wall 20 % of the wall 19.12 19.06 19.12 19.22 19.06 21 Direction 2 Lo Velocity 1/6 of south western wall 20 % of the wall 5.33 5.7 5.7 5.87 5.7 22 Direction 2 Hi Velocity 1/6 of south western wall 20 % of the wall 18.02 18.85 19.01 19.06 18.69 23 Direction 2 Lo Velocity 1/4 of south western wall 20 % of the wall 4.93 5.52 5.7 5.87 5.87 24 Direction 2 Hi Velocity 1/4 of south western wall 20 % of the wall 17.97 18.58 19.12 19.17 19.01 25 Direction 2 Lo Velocity 1/12 of south western wall 40 % of the wall 4.72 4.72 4.72 4.72 4.72 26Direction 2 Hi Velocity 1/12 of south western wall 40 % of the wall 17.97 16.56 16.86 16.86 16.56 27 Direction 2 Lo Velocity 1/6 of south western wall 40 % of the wall 4.72 4.72 4.72 4.72 4.5 28 Direction 2 Hi Velocity 1/6 of south western wall 40 % of the wall 18.02 16.8 16.8 16.8 16.25 29 Direction 2 Lo Velocity 1/4 of south western wall 40 % of the wall 5.52 4.72 4.72 4.72 4.5 30Direction 2 Hi Velocity 1/4 of south western wall 40 % of the wall 17.97 16.02 16.74 16.86 16.56 31 Direction 2 Lo Velocity 1/12 of south western wall 60 % of the wall 5.31 4.5 4.5 4.5 4.5 32Direction 2 Hi Velocity 1/12 of south western wall 60 % of the wall 18.02 15.61 15.54 15.61 15.28 33 Direction 2 Lo Velocity 1/6 of south western wall 60 % of the wall 5.7 4.5 4.5 4.5 4.5 34Direction 2 Hi Velocity 1/6 of south western wall 60 % of the wall 18.02 15.61 15.58 15.54 15.08 35 Direction 2 Lo Velocity 1/4 of south western wall 60 % of the wall 5.52 4.5 4.5 4.5 4.5 36 Direction 2 Hi Velocity 1/4 of south western wall 60 % of the wall 17.74 15.61 15.61 15.61 15.01 Table 6.1. All of wind velocity test results (continued) 00 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 37 Direction 3 Lo Velocity 1/12 of south western wall 20 % of the wall 5.13 6.53 6.53 6.53 6.53 38 Direction 3 Hi Velocity 1/12 of south western wall 20 % of the wall 18.63 24.68 25.09 25.09 24.68 39Direction 3 Lo Velocity 1/6 of south western wall 20 % of the wall 4.93 6.37 6.37 6.37 6.37 40 Direction 3 Hi Velocity 1/6 of south western wall 20 % of the wall 18.58 23.84 24.27 24.68 24.27 41 Direction 3 Lo Velocity 1/4 of south western wall 20 % of the wall 4.93 6.37 6.37 6.37 6.37 42 Direction 3 Hi Velocity 1/4 of south western wall 20 % of the wall 18.63 23.41 23.84 24.27 23.41 43 Direction 3 Lo Velocity 1/12 of south western wall 40 % of the wall 4.93 6.37 6.37 6.37 6.37 44 Direction 3 Hi Velocity 1/12 of south western wall 40 % of the wall 18.69 24.27 24.68 24.68 24.27 45 Direction 3 Lo Velocity 1/6 of south western wall 40 % of the wall 5.13 6.37 6.37 6.37 6.37 46 Direction 3 Hi Velocity 1/6 of south western wall 40 % of the wall 18.63 23.84 23.84 24.27 23.84 47 Direction 3 Lo Velocity 1/4 of south western wall 40 % of the wall 4.93 6.37 6.37 6.37 6.37 48 Direction 3 Hi Velocity 1/4 of south western wall 40 % of the wall 18.63 23.63 23.63 23.84 23.63 49 Direction 3 Lo Velocity 1/12 of south western wall 60 % of the wall 4.72 6.37 6.37 6.37 6.37 50 Direction 3 Hi Velocity 1/12 of south western wall 60 % of the wall 18.63 25.09 25.69 25.09 24.68 51 Direction 3 Lo Velocity 1/6 of south western wall 60 % of the wall 4.93 6.37 6.37 6.37 6.37 52 Direction 3 Hi Velocity 1/6 of south western wall 60 % of the wall 18.63 24.68 24.68 24.68 24.06 53 Direction 3 Lo Velocity 1/4 of south western wall 60 % of the wall 5.13 6.37 6.37 6.37 6.37 54 Direction 3 Hi Velocity 1/4 of south western wall 60 % of the wall 18.63 23.84 24.06 24.06 23.63 Table 6.1. All of wind velocity test results (continued) L /l v © Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 55 Direction 3 Lo Velocity none 20 % of the wall 4.93 6.68 6.68 6.68 6.68 56 Direction 3 Hi Velocity none 20 % of the wall 18.63 25.49 25.89 26.28 25.89 57Direction 3 Lo Velocity none 40 % of the wall 4.72 6.37 6.37 6.37 6.37 58 Direction 3 Hi Velocity none 40 % of the wall 18.58 24.68 25.49 25.49 25.09 59 Direction 3 Lo Velocity none 60 % of the wall 4.93 6.53 6.53 6.53 6.53 60 Direction 3 Hi Velocity none 60 % of the wall 18.58 25.49 25.89 25.89 25.09 Note: Direction 1 means 157.5°, Direction 2 means 90°, Direction 3 means 67.5° Table 6.1. All of wind velocity test results ON o The relationship between wind velocity and opening size (1/12 length o f south western wall, high velocity, direction 1) ■ 20% opening ■ 40% opening □ 60% opening T est point Figure 6.1. The relationship between wind velocity and opening size under high wind velocity test 1 The relationship between wind velocity and opening size (1/12 length of south western wall, high velocity, direction 2) 25 2 0 Test point ■ 20% opening ■ 40% opening □ 60% opening Figure 6.2. The relationship between wind velocity and opening size under high wind velocity test 2 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 62 The relationship between wind velocity and opening size (1/12 length of south western wall, high velocity, direction 3) 2 1 .6 8 2 4 ‘ tfA 68 ■ 20% opening ■ 40% opening □ 60% opening A B C D T est point Figure 6.3. The relationship between wind velocity and opening size under high wind velocity test 3 The relationship between wing wall length and wind velocity (20% opening size, high velocity, direction 3) ■ 1/12 length o f the wall ■ 1/6 length o f the wall □ 1/4 length o f the wall T est point Figure 6.4. The relationship between wing wall length and wind velocity 1 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. W in d velocity (m ph) W in d velocity (mph) 63 The relationship between wing wall length and wind velocity (40% opening size, high velocity, direction 3) 30 -- 0123.63 L > '1 ... ~4 2 $ 3 0*3.63 El 1/12 length of the wall ■ 1/6 length og the wall □ 1/4 length of the wall A B C D Test point Figure 6.5. The relationship between wing wall length and wind velocity 2 The relationship between wing wall length and wind velocity (60% opening size, high velocity, direction 3) 30 j A B C D Test point Figure 6.6. The relationship between wing wall length and wind velocity 3 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Comparison wind velocity with wing wall and no wing wall (20% opening) 64 30 24 68 2fi 49 25 09 25 89 25 09 28.28 24 68. 25.89 11/12 length of wing wall I no wing wall Test point Figure 6.7. The comparison wind velocity with wing wall and no wing wall under different openings 1 Comparison wind velocity with wing wall and no wing wall (40% opening) i .>724 bl) i 1/12 length of wing wall I no wing wall Test point Figure 6.8. The comparison wind velocity with wing wall and no wing wall under different openings 2 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 65 30 - Comparison wind velocity with wing wall and no wing wall (60% opening) 25 ] < ) '& 89 25.89 23 23.81.— ■ 21,27. 11/12 length of wing wall I no wing wall Test point Figure 6.9. The comparison wind velocity with wing wall and no wing wall under different openings 3 The relationship between W ind direction and W ind velocity (1/12 length o f south western wall, high velocity, 20% opening) 25 2 4 6 8 2 5 0 9 2 5 0 9 19.01 10 06 1 9 .1 2 19.12 1 9 1 2 19 2 2 18 5 8 190® 2 4 68 8 15 - D Direction 1 ■ D irection 2 □ D irection 3 Test point Figure 6.10. The relationship between Wind direction and Wind velocity Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. All wind velocity readings can be converted to wind chill temperature by one of the wind chill formulae. In chapter 3.4, there are three wind chill formulas, and the second formula is used as a reference in this thesis. The results are displayed in Appendix D. The formula is Wind Chill Factor = (33-(10.45+10^- v)(33-T)) / 22.04 Where: T: Temperature (°C) V: wind velocity (m/s) Furthermore, I compared three formulas in wind chill temperature performance and tested second formula under 80°F-90°F. The results are displayed in Appendix D. However, these formulae have some limitations in temperature, and all three don't consider evaporation. Thus, it can’t completely simulate the real situation in Taipei. The indoor airflow distribution is important for this thesis. The “Trash Test” in 5.3 Wind tunnel test assists in illustrating airflow distribution drawings. From the drawings, we can figure out that the wing wall length and opening size don’t affect indoor airflow distribution. From Appendix B, we can find out 8 typical airflow distribution drawings. They are experiments 1,2, 19, 20, 37, 38, 55, 56, and they can be concluded with four parts by prevailing wind directions, Direction 1, Direction 2, Direction 3, Direction 3 without wing wall. Fig 6.5 shows the 8 typical airflow distribution drawings. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 67 In all of the drawings, the wind dead zone shows very often, which means that there is a wind bubble in the area. The bubble will result in no natural ventilation in the area. In direction 1, experiment 1 and 2 have the same test factors, which were tested in 1/12 wing wall length of south western wall, and 20% opening of the wall, but experiment 1 was tested by low wind velocity, and experiment 2 was tested by high wind velocity. Both experiment 1 and 2 have the biggest wind dead zones on the upper floor through the eight typical airflow distribution drawings. It also means in wind direction 1 only about half of the office can have natural ventilation. In addition, experiment 2 has another small dead zone between test point C and D. In direction 2, experiment 19 and 20 have the same test factors, which were tested in 1/12 wing wall length of south western wall, and 20% opening of the wall, but experiment 19 was tested by low wind velocity, and experiment 20 was tested by high wind velocity. Both experiment 19 and 20 have a wind dead zone on the upper left of the floor. In the low wind velocity test, another wind dead zone exists between test point C and D, which is the same location as experiment 2. In the high wind velocity test (experiment 20), the wind goes diagonally through the whole floor, hits the wall near the outlet, and then separates into two wind directions. One gets directed towards the outlet, and the other one keeps circulating in the indoor space. There are two wind dead zones in the test. One mentioned before is in the upper right comer of the Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 68 floor. The second one is located in the same position as in experiment 19, but this one only exists at beginning of the test, and it subsides within a few minutes. In direction 3, experiments 37 and 38 have the same test factors i.e., 1/12 wing wall length of south western wall, and 20% opening of the wall. But, experiment 37 was tested using a low wind velocity, and experiment 38 was tested using a high wind velocity. In experiment 37, there is a big dead zone in the center of the floor. The wind acts like a whirlpool. It goes around the floor, and hits the wall very close the outlet, and then separates into two wind directions. One gets directed towards the outlet, and the other one keeps circulating within the whole space. In experiment 38, the wind dead zone is in the same location as experiment 37, but it is smaller than that of experiment 37. The wind path is similar to the wind path in experiment 20, and the wind dead zone also only exists at the beginning of test and subsides after a few minutes. In direction 3 without wing wall, experiment 55 and 56 have the same test factors, which were tested without wing wall, and 20% opening of the wall, but experiment 55 was tested by low wind velocity, and experiment 56 was tested using a high wind velocity. Both experiment 55 and 56 have two wind dead zones at the center of the floor. Experiment 55 has a bigger one and a small one, and experiment 56 has two small dead zones. In experiment 55, the wind path is like experiment 37. However, in the high wind velocity test, the airflow goes diagonally through the whole floor, hits the wall very close to the outlet, and then separates into two wind directions. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 69 One continues in the same direction, and after a couple of minutes it flows towards the outlet again. The other one blows towards the inside and keeps circulating in the whole indoor space. Based on the information cited above, the direction 1 series has the lowest wind velocity and they almost have a half of the room area is a dead zone, so the direction 1 series results in ineffective natural ventilation. The direction 2 and 3 series have smaller wind dead zones than direction 1 series, but for office use, direction 2 is better than direction 3, because of the locations of wind dead zones, and the size of the wind dead zone (In low velocity test, direction 3 series has big and small wind dead zones in the center, but direction 2 series has two small wind dead zones). Furthermore, if we refer to Dr Ken-Yeang’s UMNO design, we can understand that all public use spaces like elevators, corridors, restrooms.. .etc, are set juxtaposed adjacent to the office, so direction 2 has better airflow distribution performance. However, direction 3 series has higher indoor wind velocity than direction 2 series. Therefore, both series have good natural ventilation effect. The direction 3- without wing wall series, has the highest indoor wind velocity, but the locations of wind dead zones are not very good, and the sizes of wind dead zones are big. Therefore, this series does not result in good natural ventilation. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 70 Direction 1 Low Voledty Opening: 20% of the WaN Wing W al Length: Wall Length: Opening -1:12:1 Static P :-0.02 Wind velocity: 6.37 MPH Wind chill fa c to r-11.089 •■•0.01 : - 0.011 : - 0.01 :- 0.011 :4.S :4.72 :4.5 :4.72 -10.135 1026 -10.135 -1026 x c £ o 3 s * ~ g ~ 7) O £ a a I i IT 3 a s 1 i *n £ m x c 5 * m z o Direction 1 Hi Voledty Opening: 20% of the WaH Wing Waft Length: Wall Length: Opening = 1:12:1 O K i r 3 2 I S 5 ro Static P A B C D -0.18 Wind velocity: 19.12 MPH Wind chill factor -14.514 -0.178 -0.18 -0.18 -0.17 19.01 19.12 19.12 18.58 -14.424 -14.514 -14.514 -14.496 3 o -o JO m c o c 73 f " 1 I F t 1 m 2 09 i s o 1 Figure 6.11. The 8 typical airflow distribution patterns (Experiment 1 and 2) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Direction 2 Low Votecity Opening: 20% of the Wal Wing Wal Length: Wall Length: Opening * 1:12:1 Z m i c s O 3 s 7 3 m 2 2 m vD 5 o 3 m co c o c s § i 2 m m z o Static P: -0.012 Wind velocity: 4.93 MPH A : -0.012 : 4.93 B :-0.013 : 5.13 C : -0.015 : 5.52 D : -0.015 : 5.52 c £ m q £ I ? Direction 2 Hi Voledty Opening: 20% of the Wal Wing Wal Length: W al Length: Opening » 1:12:1 Static P -0.159 Wind velocity: 19.12 MPH A -0.179 : 19.08 B -0.18 : 19.12 C -0.182 : 19.22 D -0.179 : 19.06 c 7 3 m M tn JO i r o o Figure 6.12. The 8 typical airflow distribution patterns (Experiment 19 and 20) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 72 Direction3 Low Voledty Opening: 20% of the W al Wing Wall Length: W al Length: Opening * 1:12:1 n r c i I * o s 8 s i £ m s o § e 00 I 11 *. < o *T» Static P A 8 C D -0.013 Wind velocity: 5.13 MPH -0.021 -0.021 - 0.021 • 0. 021 6.53 6.53 6.53 6.53 Direction 3 Hi Voleclty Opening:20% of the Wall Wing W al Length: Wail Length: Opening = 1:12:1 " T o rn E X c £ -C J - 5 o £ 9 7 > 3 o ■ o 3 3 c 3 i I Fit £ v m I S I nr -o m 2 jfi 3 00 C O ~3~ £ < 0 s c o e e o H Static P A B C D -0.171 Wind velocity -0.3 -0.31 -0.31 -0.3 18.63 MPH 24.68 25.09 25.09 24.68 1 Figure 6.13. The 8 typical airflow distribution patterns (Experiment 37 and 38) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Direction 3 Low Voledty Opening: 20% of the Wall Wing Wall Length: 0 Static P: -0.012 Wind velocity: 4.93 MPH A :-0.022 : 6.68 B :-0.022 :6.68 C : -0.022 : 6.68 D : -0.022 :6,68 2 £ C/1 C/1 I Direction 3 Hi Voledty Opening: 20% of the Wan Wing W al Length: 0 I c £ C / 1 * 0 a £ 5 c 8 i I d £ m StatteP A B C D -0.171 Wind velocity: 18.63 MPH -0.32 -0.33 -0.34 -0.33 25.49 25.89 26.28 25.89 Figure 6.14. The 8 typical airflow distribution patterns (Experiment 55 and 56) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 6. Conclusions and Future work 74 From the wind rose maps, we know that the wind velocity is high in winter and fall, but in summer, the wind velocity is not as high (especially in July, July is the hottest month in the year). The main prevailing wind of summer is direction 1 (157.5°), and the direction 2, and 3 are the minor prevailing wind directions. From the last chapter, we know that direction 1 is ineffective for natural ventilation. Therefore, a simple mechanical system like fans may be needed to improve the indoor air movement. Finding out the optimum condition for cooling the high-rise occupants in Taipei is the main objective for this thesis. Referring to the test results in Appendix B and the last chapter, I would like to use a wind wing wall which is 1/4 of the length of south western wall and 20 % opening of the wall for future iterations. Although in the last chapter, it can be inferred that the wind wing wall length doesn’t help improve wind velocity and airflow distribution, we can still find the optimum condition for wing wall is 1/4 wind wing wall length of the south western wall under the condition of 20 % opening of the wall and direction 1. Furthermore, those conditions can also help in achieving good natural ventilation effects in minor prevailing wind, directions 2 and 3. In addition, the main prevailing wind direction for the rest of the months is direction 3, and the minor prevailing wind direction is direction 2. As I mentioned before, they both can have good natural ventilation effects under those conditions. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. My primary suggestion for future study in this topic is to find out or develop a wind chill formula considering the evaporation rate due to human metabolism and clo (clothing) condition. Moreover, the formula must be validated for higher outdoor temperatures for satisfying the real situation in hot-humid climates. This would allow a more accurate wind chill temperature to evaluate the total cooling effect. There are two more suggestions for future work: 1. For this thesis to materialize in totality, one has to consider a thorough study of the Taipei Local Codes to ensure appropriate implementation. 2. Additional test factors like more wind wing wall lengths and outlet- opening sizes can be tested. This would help in establishing the relationship between wind wing wall length and indoor airflow distribution. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Bibliography 76 Allard, Francis (Editor), 1998, Natural ventilation in buildings, James & James (Science Publishers) Ltd. Bradshaw, Vaughn, 1985, Building Control Systems, John Wiley & Sons, Inc. Demographia, 2000, City o f Los Angeles: Population and Density by Sector. Demographia.com. http://www.demographia.com/db-la-sector.htm Givoni, Baruch, 1994, Passive and low energy cooling o f buildings, John Wiley & Sons, Inc. Givoni, Baruch, 1976, Man, Climate, and Architecture, Applied Science Publishers Ltd. ITRI, 2000, Satellite Map o f Taiwan. http://rs.erl.itri.org.tw/homenage/ntml34.ipg Kukreja, C.P., 1978, Tropical Architecture, McGraw-Hill Book Company. Lai, Long-Ping and Lin, Hsin-The and Chou, Chia-Peng, 1992, Architectural Physical Environment, Liu-Ho Book Co. Lin, Hsin-Zhang (Editor), 1998, National geography illustrated handbook for senior high school\ Nan I Book CO. Melaragno, Michele, 1982, Wind in Architectural and Environmental Design, Van Norstrand Reinhold Company. NOAA, 2001, New wind chill chart. http://www.erh.noaa.gov/er/iln/tables.htm Penang Net Service Sdn Bhd, 1996, Penang Fact. http://www.penang.net.mv/community/tourism/facts.htm Powell, Robert, 1999, Rethinking the skyscraper-the complete architecture o f Ken Yeang, Watson-Guptill Publications, Incorporated. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 7 7 Richards, Ivor, 2001, T.R. Hamzah&Yeang: ecology of the sky, The Images publishing Group Pty Ltd. Sailinglssues, 2002, Wind chill, Sailinglssues.com. http://www.sailingissues.com/windchill.html Smart Architecture, 2002, Introducing Ken Yeang. http://www.smartarch.nl/smartgrid/items/008 yeang.htm Stein, Benjamin and Reynolds, John S., 1992, Mechanical and electrical equipment for buildings 8th edition, John Wiley & Sons, Inc. Taipei City Hall, 2002, Information o f Taipei. http://www.taipei.gov.tw/cgi-bin/classify/index.cgi7class id=A02.B09 TBROC, Tourism Bureau, Ministry of Transportation and Communications, Republic of China, 2002. About Taiwan. http://www.tbroc.gov.tw/tbroc99 3w eng/tour info/user/m2.htm UT Library, 2002, Map of Asia. http://www.lib.utexas.edu/maps/asia.html Wang, Hsi-Cheng, 1990, A Cross-Ventilation study on a building with skip-stop corridors, University Of Southern California Yeang, Ken, 1996, the skyscraper bioclimatically considered, Academic group. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appendix A Daily data of the wind velocity and orientation in Taipei from 1981 to 1990 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 79 Table A.I. Daily information of wind velocity and orientation in Taipei (1981) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 80 • 5 — & 4* tn $ B J $ * » : l/J . 1/3 O i l f t O O i O : 9 : e m < = > t-»• r-* o : i~ o d i d :0 : o r~ ,:en tr»: so : e> • *o en : o>; cn : o s: ot ■ «s ’ "s.: X . 'v ■ x x . x : X > x ■ X ; "x : x i o a o : o i a o : m . t o . o» p - ® : cm co (M 5 * 9 - -S' »n o “ oo *n O S O ■o : m :in in r - O i csi 53 c*- c— " 5-1 : C O - O *: sS * 35 «0 92 o : : 99 c — C M :O C csj S S * -• cs* JO ' - I ' csi - i 2 & c i ( 8 h O O iO O “ <!• -* -• -• -ico n * I ■ C M . C M : 91 ' ■ m O o o o in in tn: m <n m o in O in m O o - o so o o o id c-i : t* * - : so C -* c -^ I-* o o S O c si o ’ :g* s C O ■F C M so ■ U : -S' i-S*: •"f : S O so fr- 95 id 05 05: so 9} o lf9 •99 o : o < T 3 id id cd — cd C M csi C M csi — ■ ■ 9 *; C M : cd :9M o o irt i f t i i f t . o s > ■ o ® • » in 0 o ( r - ^ t— ’: 9-’: ® a < = > o : o r— ' 0 1 s i <o ( s t s c > : o e> a c i o o : n c m 9 3 :9 * 1 -^ o cj 93: ~ ® 4-to «sj 4 - 9 id id 4 4 -9 4 < 6 tn m in m ■ o m 1 8 9 in « - in o o <o in in m ■ m : m o o : 1/5 •n m o O o . C S O L f3 in in tn tn o so C 7 1 9-’ 40 cm C M in C5 t— co d <n d 05 s fr- C O <0 £ : S t— ‘ sO : in « S ’ C -- : t n . C M . r— ' C O § ' : O 05 s> 05 o C5 in’ 93 »n to i> in - r o : 90 90 * o ca I: 93 ■o : cO id j ; id 00 5 M C M 93 eo to . •X 93 in ^ r : X C M N C M: 95 C M -J . «s»: **: 97 99 -rr id -y. 4 id 4 4 : 93 .4 -9 :— C sj id 99 4 - -9 C M — 93 m * * * in : in tn m m o o m m 1.0 m O o m in in to in O m m m o e> 1 /5 •in 1 1 5 in < n m 5 C D.to C O t'— to 05 9 e> csi C O C sj to o a > ■ o 05 t— to 40 £ 9- to i— ' to g 9-’ to : t-J : C O C sj C M : i d . id S O <o to r-‘. to !sj in cm:1- m X to 90 X £ ■5 ■ 93 ■ ■ a i in ■ r—■5? : to : — : 93 O* iir in 40 40 S O B O 93 % X 93 4 93 4 4 4 4 4 93. 93 — 93 csi : 93 93 -T ■ ■ 4: « C M. C si 93 4 93 csi isi id -9 93 — : o . i n i n m o : C > : C s l C M : C M C M C s j tM 0 .1 m m m m . r - ‘ i - ^ c - ’ t * - o t - ’ ( • - ’ o : o ~ ~ o .m m : »n *n; c» to us 60 1 §5 m m o to m in co < csi in i 90 c s i: — cm to cv» ~ : o e» c m 4 cd o ; « m o co-o.oc c m 93: — • t— o — in o> o -9 — 93 cs <o 4 in i isj: — ‘ C 9 — — csi < * # :« « * • Mr 40 -* * !Jsj. C M 4 I — ' 4 : 4 ~ C M . C s * 4 — C si «d -r 5 * 9 : — 4 . 4 -J : in o E3 in m in in m m t- «» O t-’ d c-i c*j C M rr C M C M C- 9-1 -n to 50 F = C S * *- o 3 0 to id 0 5 O O oo 93 csi — “ C S J to ~ ' o o - m m o > n i • t - iM t£ » tO: 05 S O S O ' m — * tn «> m cm o — > : — J. cm . c m sd ed 4 ~ ~ < n » : o — i -xc*i c * » 9 in • e» m in in m »n in tn i - . f - :.«= > - c*i . cm r~* I 3 C l «•» "9 : ■ , : « N N •** N N ■ 0 -0 : 0 o o 00 * t - : o d> w tn r— - - m * o « - » in m -r c*> «*i: « e*i « r i . n ‘ c{ ^ u i io « - ~ in m c m t— Csj : _ : _ "II* < f»l : C O ■ — . 0 * 1 « a x to s t * + J F £ m ■ t n : o in : in o m . •n in :m i/3 eo tn : in in tn . tn m . tn in tn ■ tO :to in to to ■ si - f~ * : C 3 . C M : 4 id 4 4 . t~ * :C S l:fd id t - ■ t" X i c-i i— 4 : 4 4 : r~ o o C M o { v j o to ■ -5* : C M 09 :B O 53 to to eo: m < * n 9 3 :C M : ► O 95 93 « 05 9 3 : ^■ .50: C 3 »n id to ■ ta : to m so O C ' 40 05 : ■ C M - s r > 0 5 05 05 ' to C M 4 4 . C s * ■ 4 4 M * o 4 \ 4 4 4 = 5 4 "9 4 4 : C M id 4 4 C s j 95 9 3 C s * is * ■ : in ■ in ■ - in i o ; m : m to m m o i . C" i"* f " t"*»: t* * » i n <-<o «o s o u s ; o s a cs* r 06 lO -a * ; £ * 9 ' C s i ca.co. % . * . x ; * s.: ■ I : " B * SB :SO *♦• i 1/3 1/3 O : to O i/3 tn m in :m 9- 50 o o o ’ t— ■ t— 4 C M 0 9 C s j * S L ’ T < o "S — 4 m V o in 0 5 93 4 : 95 — 4 id id o SO : m : O 1/3 o : tn < = > o o in m to ■ 1/3 : so 1/3 m - to ■ . in c » : O g 9-’ : S O id g : t~ : O - <o : o ’ lo ■ ■ id C s * o C M S ' m s t=>; o X ' X C M: C S J ' 40 : 93 Sj C M '55' t- 05 . -9 to 9^ M * 93 H i ' O O -o . ^ 90 93 in in ?»: M to 95 asj 9> :4 e». 7 S » 4 4 4 93 4 4 ■4 — • C M c m '- ■ in o ' o >n o o m »n : o o r-^f- 3 ) ( 9 0 31 I >;cn oo N . n * to 0 1 m ‘ ’ B O 50 9sj — i f f s j 5sj U * 5 in 1/3 in in tn : m C O 0 0 in 0 O 0 0 to ■ O . O 0 to to O m csi C sj : C sj csi : C * i csi 0 - 0 0 w 05 O 0 0 3 id 0 05 05 O id 0 O id csi Z : * -• • ■ Z Z.— ? M X 9 3 C M w C M C M C M: -9: ot5 : < 0 rU C M to os in O C M 93 *d id 05 91 93 0 0 id :93 4 :csi C M 4 9 3 4 — 93 — 4 4 93 csj 4 4 csi C s j ! . 0 : « n : o m t n o t~ I— -5 0 : » — ' : O ■ — ------— ■ •-, ■ 05 i: «n to os us i in in o < = > in 0 :tn m o o o m o m o o i o ■ = ? c s j r-I . a ^ r - ^ a . c - t^ o id o r-' o t — ‘ o o i at os « ~ * 40:0* os o os - m <n - os — * cs so cs to cs os ■ c i - M u o w d i n w ' -4--* - n « » i I " B p t- fM « N — « as O B I : c s i c m — ea 4 4 * - * ■ j in • o o : • ^ 5 * * ' — : ■ ~ . < 3 * H — c m m " 5 “ m a a a ^ i s Table A.2. Daily information of wind velocity and orientation in Taipei (1982) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 81 * ■ f r * & on # tnj $ * * * X X * r O r m m 1 0 u v m - m : t o : i I— t~~ t— . (•“ f — ■ t"~ : I ,: SO • «0 -,fO : 40 : SO SOiSOii > ■ ■ «o; un ■ ■ m • tn ■ ■ to . to • in ; m : : f-4 f j : p-f ■ ■ r ~ * ’ • r - * ’ ■ > «©:t® « a : so tn ’ js ta . tjs . ’ - • v : V . > v . • V . : V . : > f'-* i C O 40 : C O O : tO i 40 : tO i «o;«o oi o* co so:V 'o i » lO O t o I >: — • eo t o » a m l 1 0 : 1 0 - 1 0 . 0 1 0 : 0 : 0 : 1 0 I r ^ : N f-' in r-’ ; o * ; o ; r-‘ • i tn : « - m 4 0 to cs a ; n i i : — :ssj •— : e O ' ■ r^ t.cS s o . s ' i O ' . v s o : o s ■ — : — ■ — ~ ■ s o . -s*: c d ■ t o t o t o t o t o tO tO .lO < ffd t - ‘ ■ I* "* : r~ ■ t~ : o i * ! s» to to to in : to to - — •: ui <s to o o d •: C» ' • t— c~ o ■ t— r- t ~ ~ ■ i- 1 - tsr t"~ ■ -sr ■ : to i era o-t « M n n : - •: t '- . 55 , t - ; t— > • J3 j : as 40 : to * 1 < ¥ * 5 e» m o in m I to to m i to i — ‘ o • r-: t-‘ • . f- i- “ : i : _ <0 OS - <0 * 0 : <® ■ « * » > ■ -O : • •: 40 - 5 S ’ f - r~.cn o . oo: cn' o ■ - :w I - i- £* t m its m m m t o t o i fs- : r— . f— ( — f — p- i :m to ts to a » :ts o < I n « l N : 10 • t o : o o o m , ■ t* d t> ; to to : o cd' i ■ m r t? » l ■ o* oo ' o4 n-j to 4 s s c 5 t n co r i I - « O l O - jL. N M N » « J f Table A.3. Daily information of wind velocity and orientation in Taipei (1983) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 82 * *9“ «s * ? S 1 S O n #»n tn : m iniin:.tn; ■ csi. 5 N I :ed S4 50 to i ■ o » C O T f so C s i o :a tn o O ot o ’; Crt; e i o 09 o ’: O : r- • s > . ; t n :to to : : eo =sj ed csi 'O o m tn tn . eo e> oo t~ f4 tp . co . ’i r i « oo ■ o : C S J -4 ■ m i csi . — 1 • ■ «■ > • 4ft t I *4: 04 I 03 < <J» : C O ■ •& ■ %C3*T) ■ i r: tra . *n s=S ; o . o O O : I o ’ o ’ I 0:0 :- o o n -* r ,:Ck J ► :to : o - o to ' i.o ■ > — >0 0 at ■ i co ■ ■ i to ; o ■ i n ■ i n . — ‘ «4 • t o <n* : ■ > • in o : in in tn I : O ’O : C O o ! t— ' t - ~ t~ • «o s o es». «si; r- t - : c s :o - 0 :0 'f - 't — • o o o •' «l:IS S O ' 03 • 03 . 03 : 05 40 0 - 0 03 03 ' I • 03: T O O O ' 90 » : 03 ; lO ■ ■ : • O tft i O : : I : C O . C O < 3 0 to ' ■ t ~ * £ 2 IN * * * at $ ffl- $ in est — > CO TO S'!: t— m < -» oo *9 o o h- ts- I to to < . < ^ i < i i £ 3 % £ > ’ . i t o o ■ < t n ■ ■ t n m u j t o i n t o t o < ssi t~‘ t— ' c — ‘ • r - : csi * •-' , to to to to • to fi» • " W | : < n » t o ■ : TO: to f - ■ I ■ C SI C s* Cs| : C V J ■ < ■ O : O O O to o • T O : J M - T O 03 ' iO i • :tn tn tn to i f — f— ' f — f - i ' t o «n t o i i tn o to • tn i < : t o 1 i -« tr ■ to tn m i . to tO : I : t~ t~ \ I I »n to to : tf t~ t ~ 4 — c*a i — * sm ■ c* *r tz > - "T • *-* i o nr ef> ' • m i m Z ; m i . m l e i ■ & i ■ I f * : * lO t o : O t o t o tO : m I est ■ svt: — : co ':TO «0:«© <0:«0.«0:0»:«0 - • in s ) tn - so • * tf N r a is 0 0 * *• « ■ | w i; > : tn tn t n : tn i : r-’ t— ’: es* • i > to to t o : o* • > r t n : t o . m t o . ‘ i t o 50 50 : C O : i M a * K ff * $ O • O i -5 s3 i I lO lO • tft to . O I . : t-v o I • : -fl* t o • O : OS I < M T > * 'v “ V -S. . ■ % . ■ ■10:00 <» : 00 ■ • ' : C S | : O 04 . : C M ■ > : m * 0 : 0 : ' : t~ * : IO : I > : S M t — » — O ' O* t— ' 0s» C J ' C3 50 ■ m r-’ ■ C O : tft; :< ? s i S 04 : < 5 5 04 o ■ C O ' & t ( i ■ 50 ■ o : o : 03 ; o . :tn : :« . o 05 ■it : ~ csi ““ "" C si ■ “ C -4 •*“ m :0 ; o ; o \& . tn m s tri ;tri ;tn tri ' to t o ' :so :«o n eo o 03 :r- eo A eo . csi O : to m i T O m m m m .n •m tn tn ' r - o fs4 so C O : 03 : t— * C O S O ■ 50 50 -d £ so. o s * t r i ■ m #m i ?4 o - tn . o m ' O :tn :•n tri' 50 < c o tri C O l--- ; C O O B tri co £ 50 — 50 csi T O r 54 50 sO £ C O £ | : — C5 CO 00 0 ' f : I 1 « v l C O — est nf nr - < tn tn o i n : o m . i ! : * — 1 r — in: t - * ” : c s o j i I I0 IS m m 'SO Cl ~. l • C O ■ • 0 : 1 0 C O — 30 I : SO • « S } — ~ C O csi < » : » n : «n o tn m o i i f ’ r»’ o r-^ ,,r> i i ■ co to # ' ® t r * — i I - tn o tn tn m : m > • t - ’ o t - ‘ : esi 1~ I I : (O 03 O' : O < 0 0 ■ < M ■ (M ' ' to t r tn : o» ' o ; I co ■ — ! — I < s» eo to I C O so so 's X \ ' a /? l i f e *1 m jt/l «P b * m Table A.4. Daily information of wind velocity and orientation in Taipei (1984) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 83 * *6- m $ tn ; $ 9 *1 -! $ « a f N 'fiO fs * } o f * 4 > K 4 1 * * » : ° > ’ ■ zl ' ■ H ' _ : i z . I : m i a • : t - t - ■ > , to C S S ‘ 1 ■ ITS ; if> : tf> • m : ir t : O : I : C g l : t— ' : t— ' : t— ' : I— ' i O : I :© '. « © :S £ > :© :C O :0 > :i ' m m i >: 4® cm 1 /3 l/J 1 /3 r - f - t* ' in is co « ! * — :S O : O C M < n n « cm : m n n • » t - M « i sd «d ed co • I ' iO : tfi l/S i ift : fc O l/J : h ■ t£> : $£3 : : e© 10 Ifl O lA 10 t — C M ■ C M 7 0 ■ If? : lO s o : s o : 00 ■ * • I > 1 0 «n m o to to to m m m m . i f t : -. t— " t— © : t~ . t~ * t— * . r~ r~ * - e- . . r— ’. i . t s . t f «o o © co co to in .© ;© :© : ■ *s*. « s » ‘ n n i Ifl 3 1 0 ! 04 c m : cd ■ m m tn in r~ r- p- n : IB O SI C M • •■ V ! « . « ■ O • ’ c i m r r s o i i n © m i o »ft • i o t - i t - i o © :t— m m c m n »n.i i so : co: en i ■ ! C M ■ C O : C M : ■ tO C M t - * * I T S C M ■ cm — i n s o ■ © I C M — — * — : C M 1 . • ■ 5 * ■ © 1 ■ 1*0' CO 1 C O — oi — fO I O * O i co o to co co I :CO 40 : — : C M : P “ 1 /5 :1 • so : o - m * ; so < $ S > o t o i.o «n © i CO eo o : — t o t o OS C M t o tr~ © © © i n . > © © O ' © © : . — SS'C M CO: CO.-I SO O : © . C — < I 0 4 CM C M SO < ■ : a s CM C M C3 I 5M t-i -w * cm t o r - N M I ' : | - SM C M C M . > o © © • i i o © o m o i I © O to < 4 0 O S I < I •*$ C M : • so c*4 • • : 0 ; * 0 i S 3 !2; . = a : • no c m c m O ©: <* o «o «o C M < • o O — 04 04 SO — < I — CO C O - - s:: tr- t - • m 4 - m i 0 : 0 3 1 0 . , S3 o s o . t o t o ; O O © < i « o o c m cm: © o : 9 - ‘ i: © : so : « « 5 : C O > o © ® © < O © O © : < > O ' C M 0 : 0 to o w in o - o to - o . < i —• cm © . © : eo e o . i > o . o to © 1 :: U S S O © ' I I r* io i > o UO I i S ^ ! in in in » o . n i" o >:© © « © t/s ©.>«• ao ao i I — C M CM.© C M C M © S M : > 0 0 . 0 1 >0 0 0 0 1 po r- : — : '■ a * in O ' 40 : I e d co < • so eo i ' S N ; s m in O O O I O 0 :0 I O : os o i - ei:? 5 30 © o ! o o ' • cd • > I tO 'T sft O t* s m o ■ r- : ao. ed' so . c m w Table A.5. Daily information of wind velocity and orientation in Taipei (1985) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 84 al£ 4* * *0- * ■ T JC / - s s * 6 * . ts t : TO: 05 : ' O : o : o ■ o :< f— ooito i e o t o ; d d m eo; c m '1 < n o - 93 9 3 : 2 m 0 ' - < s > - O :o -m 0 m O a i : s » : o ’ : 9?: o * S3: SO: O : d r-’ d 2 : 93 so 05 «n m : — m : O ■ ai : 0 ?% . 0 c4 93 93 • “ — ■ ■ ■ - “ id ' m : 03 o : O O C 3 1 0 • 0 !< S » : O 1 o < J 3 05 :CS : C 3 o . o» to • «P • c» : O ; 0 ; d 05 - d o> O 93 : m ’ S O :• 0 oi id O 99: 91 ■ 99 i»n d sd > o : o !C3 . o a o o : o ' o m o o o -; « 5 » § ? • §i §i: § 1 3 § * §: § • < 5 • § I ! : — — . 1 M . V. ; M . . -V . -V . ■ v, : V V. 'M . “ N . V s - . •» * ,: to > I 91 T O : «# fl0:0:0>-. S»-C^:r-:f- S M T O . C M i ' O o c s ; o o c r o e» to o - to o ’: o : o : o ' o : o to : tri o . o O 'o ’ O : 1 -,a> ■ ■ a> e/t en at o ^ e»: o » o : o c> - • T O : d 9 3 M ? T O K U ) - 91-P^ I C 5 O 93 ■ O ' 0 O '. 0 C 3 ■ 0 ■ 0 O .O ' O O 0 0 ■a 0 . 0 0. O 0 : O 0 0 * — • d : : 0 ;0»: o> d a> s d 05 : © » ! :0» 09 d 05 d 05 d . d 05 d . < 3 5 d 05 d ' 05 o ’ O «3 O : O ■ § 05 C M m I— S M• r - 03 m 03 ■ r - ■ : r— i n • C 9 m : in :05 : O s o9 3 93 09 id :d d d: 09 d 0 4: 93■ m ■d■ t nm m ; -* 9 ~5 d d id — * id 0 . 0 : 0 0 . 0 O . o < so s o : to « : i o t o a o : * S } i n : i n . in • in m tn tn m in to o o . in o o o : o . o o m o 1 d :d , d : -vj sm sm 9 * d d • d o io :!N -.o o : 0 :o:«?> ® cm o ' • & * * * m # b? to ■ s o : * o . ■ — * — — * •— m to ; m > '•K -V , -V , " W . ; -v. . V. t— ? m ; oo c * « ee O! a n i d: t o : d d s m c m 9 » d « t » — ■ to tn ■ tn m o m in in in m i d:d:d d d.d 9 i did 9 » i to : so; T O - T O » m o tn; — — '-* • 'v, : -v , : ■ % . ” >v; *9 “ ao oo• ~ o s 'O . o — a>: so «c i • ^ 9 " C s J d : C M : C * C M ' 95 ' C M ' I O n o a o : • ' O O O O O ' O ' ' o o o o o o ' 95 o O * 95 at - so < d 9J o t— o :— o o |8 0 :ae o to S O 0 3 -S ' S O c m : d « • e - » — 9* 9 3 > to in to m m to m m o m to i : j - t - r— t— r - d h 9 3 : o d 9 3 t I ;»— to o o . o o m in ir> < tri d d d i - • «9 ; O : O < « < 9 1 : - a < s .n s o s i ® w n n i d sm: d d co d id ■ • e <* ■ s S * • * « g W £ ja ta - "rv * 3 • « £ # <» «* lO in : O ' m O !in m in tn m < n in m 0 in tn *n m m T O T O T O T O T O in T O « n m T O T O -9 0 5 - T v i 0 ? 9- d r 9 m d C O ' 2 C M . C Md : m C M ' <S> ■ 9 1 irf 9 4 C M d C M . o » C M m ■ t o C M O d 0 5 C M C M 9 T O : T O C O T O T O 2 d C O e o t- « 3 d d T O id e ift id C M : m P • a- C Ms- m a o d O k ' « o C M ' tri tri T O C O O O d d 0 5 T O d T O 9 0 T O .d ,d d C M — e o *n m C M _ *-* “ C Md d ,d d — — d d d d d C MC Meo: m m : » .( 9: m m m m m : m ■ m m » .n t.3 tn : tO « n tn •n T O T O T O T O T O T O 9 T O T O T O: O 0 ■ m m C M : u s■no S O d to S ' to £ tn : m tn • d :m K d 1 ft N O K T O £ C M 9 1. T O C O in : T O 9 1 0 5 9 1 O 9 . m e d 5 : C O 'M 0 0 m 0 6 0 0 d 0 5: t—3 0 S in :< a •a- £ 9 0 < 3 0 T O s £ in d — — — “ : c o e o C O C O so *~ ■ “ .— — — ~ d T O d 9 3 T O — m m tn in • in' m tn in in in .n •n m m .m m m in T O T O T O T O T O T O in in O T O T O •rl 9 1 S < 5 5 91 . jd m C M to C M d . g d 9 4 d tn C Md d '9 d T O d r~ d T O iri d d : : C M 4 0 ■ 9 3 1 r* 9 3 C M — 9 1 : T O v 9 t o ■ C M : ' t- ' 9 9: 9 9 r^ e o 9 3■O : r- : *9 C M : O :C O 9 3 O : : d d 'T O S O T O d : d t- T O T O 9 1 **: 9 1 d » d 9i — “ — C MS M 9 9 ’ d tn : ■ — 9 4 * d T O T O• T O T O C M :- T O d ; m :o : m in m in m lO: O 0 - in m . 0 ■ i(5 ® m in : tn e » T O T O in .m O O T O T O T O T O T O to- C 9 : 9} 9 3 : S O to ■■to: C Oto 0 0 0 0 d O : « o a o-m O 0 3 to d C O r s d C 9 : d to T O: t o iri e o T O C O : d .e o • S O d T O T O T O C M 9 1 O: : n o; d C M ■ d : O in : O s o: d d C O. « « • O O C O : » < 0 - 3 3 T O T O T O T O 9- e o O d O S O : d d d : C O d d m i ““ d :d ! tri - C O to id C M d C M C M 0 - “ C M d T O e -i m in i 1 ( 9. m in . tn 0 in in in in in in m m m m »n. T O T O in T O T O in T O « n T O: T O O : < 0 t~ ‘ 1 0 1 0 (8 1 0 C O 0 5 9 1 0 5 9 1 C M s < 0 d - 0 d « 0 d C O 9 0 9 1 to d C O : 9 4 :C 3 9 3 so-. to 9 1 S d T O to d d T O d T O T O 0 5 C M d T O 0 : 9 3 id ■ d: « 0 5 d 1 - so S O • ■ r to — 0 5. • o * tn so d C O T O T O O. O O $ e o m V d c m 9 1 C M93 - d to C O — c o ' C M “ -S O : S O d SO- C M -* d d e o c m d N 9; n m m O tn m m m m m m : m m O 1 /3 m m in C S -T O T O T O T O 0 0 T O T O T O s : 9*:r-’ ;d id r-~ d HO < 0 9 3 d d r~ ■ O 91 : « = » d d d d O ;0 d d d :94: s o at <a: ' £>: ° c m : :«. ■ «. ■ . Sa “ * c m : « 0 1 3 1 : T O .«» T O : C B ; 0 5 T O T O T O S O r-' d : so d d ai r'- : 9* d : i-> r- ■in — : a o'O: d C O T O T O 9. —.O at m :d d cd C MS M . oi 9 » 9 9 e s• 9 3. 9 9 — 9 0 » 5 9 1 d; T O N C M9 1 C M :d C O d C M m m ■ U 3 :m m 1 0 to m S 3 - 0 . O in . tn :m 1 ( 5 m m m T O :T O T O •n T O T O tn T O m T O T O T O 0 S : C MC Mw « d m s O: 0 o’ d : d . I d 9 3 d :d- d d d d d " d d ' T O d d d d d d : C M ■ C M L . C O t r C M .e o to — ■ C Mc o C O :0 5 id :C O 1 — f—d id 9- in :IT 1 d C M 0 0 e o C O T O ; **• T *9 C M 0 o c T O 9 1 d d 9i *1' C OC O :d C Me o - d d C O « o 9 1 d d d C O 9 1 e o T O e o T O C M d e o d ' d —■ _ 9 1 0 5 tS> in to r —S O cn. 0 z: 9* so * e p in 1 0 C O ■Ji 20 M' 22 23 a 2 5 T O 9 1 £* S O :0 5 T O I s 3 ^ ■ * « »«; # > w s 2 M * * « « « « — N C O 9 Ifi ii ii si 3 a Table A.6. Daily information of wind velocity and orientation in Taipei (1986) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 85 o lj? * ■fi t s * & tn $ frr» * m * « • + ' !- N : « « ( ■ «/5 <01 > i C - : C M 0 ; CO 03 i n : CO : I hSM.SM:iN:!>isd>«d:'M':! >-.to i n e o : e o : cm o ; • ■ : sm . s * 3 ’ * » • m «o . r - ; oo! e» - o ; • ■ m o o o if}!0 : o o ift:ift t n . t o : o o ® ; i c - t— e* i . 0 0 : 0 S M ' ■ 4 0 ‘ < 0 40:0) • C M • W > • 0 0 lO '80:tft 0 0 . " O ’ I • I lO : lO : O o m . O O 0 - 0 ' • t*« • o < ) 10 40 03 < . . . eo r— oo < M M « C M — : % . ■ "V : V ■ - s : ' , i C M ■ — : t - — : — ! m ‘ — — • o — —: ■ ’ O O . O O O I > e s : e o o —- cm 0 :1 1 «d ed c o e d <d i n e s i. • i O O O :<M: < > : a t ■ C l : <33 ■ O : < >. <s> • t o ' o cf* o * . o oo ! o : o o m : i n *S i * • : O : O : m : UO < i UO : o ' : : r - < i : « U * • O : «0 : CO : < > • 0 1 0 _ _ . _>.d:t^ . - > :0 e> ■ < £ > • < s » ■ o • C O : V O to O O S O S M T)>M O O •o c m ?d isi to ’ eo ■ > - o o o « n o » n o o : O O i o c ? o o ' O o o o $ «h » M M — M M — M ~ • ■ O - . -e r U 7 » - < C M ' C M i« M ' « M : mi. -- C M — :ffM • ■ C M -CO CM: C M > > s » . — <st < > a o :o :o o to eM.o oo i • E — cm co cm co < > O 9 0 0 0 C O 'O O iB O < >. <d -so o . i n < 90 0 0 0 0 0 0 0 » n . o ' s o <a > o oo oe o o oo s> e » : o oa s o : oo i o o m in o > o o o o ® • »n o o : o o o o o m o o in o o o s d : cm o d : s d d :o ' : o M : d 9 cm o o o ^ aoio o os eo — > ■a oe i f f ) " ■ » - • % ’ • > . - ! v 'x . * * . : " v : V . * * ^ v . '" s . N . . * V . > * . . - * % . * V * > v . V , r - t o — * r o e o m t n • c» t n o — ■ * o ' e o o :t-;0 « : » - i cm eo « d c s cm f-I. — — ss!--<n - i « — i'c M *r e d ' —E a o o i • i n . o o o < > tn » — e-: o : « x > < E nt -i — : c m • ■*£ ■ < u v t e v ® - ® : ® i n : o o • o o m o : o ; i Osi : o i : O o ’ : i n : C M : O O : o ' : i d : l-J O ■ o ’ : < tn C M : C M «3» .<53 1 — • : SB • 01 • C J> I ■ _ ■e o .cm : « — :<o sn d:n>e» !N t'< t n o 0:0 o o >n o o : o > ‘ o o o o e— o o o i > oo • t— t— : t— ■ * « r 03 O : C 3 < • — C M S M eu C M • s . " . . . X , . . ' s , . ' s . ■ “ ■ • s . . - N . . . « : » o i » t o . i n s o — o ; -« f:■ o — - in w i n ed r i : c s i > - m ; o o m <P o o i o o m ! ^ !i0 0 t- I I C M O O & 90.90:90 cr> C D < * » • » * : «o • M3 • W : -M * : « « d . >'03 g :BO OJ O O t • i C M . « : 9 0 : O O : O O O .t O O O 1 ft :'M * > :iO '» n 9 0 - f « n:0 I , : S s i : _ ; ^ r S d 't f <*j C M — O O : O < > ■ o c > . o : o : o - . t o - 0:0 t n : o : o : m : ! •: o • o* o > o : e » ! c 4 : o : i n « M i o : o t ^ : i m S v a :cm o : r— ; : a o :i ■ > e n : — :o i i n : cm » n ■ p - cm > o i n f— o o ■ • ' < n : cm — — m : ■ en c m : O ' O : i n : i n : tf3 ■ O - o : O ■ O ! O : O : t*” C M : i*“ ' 45> I a>\ 0 : 0 — : CO I > : t o ■ s n C M :< M : ^ ' ‘: 04 C O C M : C M : mi > I 0-0:00. \ ; \ C N.-V-' - in : o • m in o . < - o : o o m t n o o . o o o § § § m £ S §i:§3-a§ S . — '* a > o M " o o o <n o IfS "9* "«• mi id cm in «j C M C M °" • n ~ m ff CM .. o > C O 3 s * «£ m o o o • t o : o • m : o > < t i . l r i O O CM: O : cm ; o •1 O C M O 0 ■ * : 0 © ■ ® : i o :r^ w o S oo.o0:8O'O;i ■vfilmi H tf sd - > » *0 mi.tr ■ • t n i n m o o : « n i > : |— : C M p - .0 0 :t~ l_ _ _ _ >:c?:0 o as:s o o o ca o . o i JJ M ^ ■ so o-i « . « m < > o o o m r t ifl w i • C M C M S O • C M — • 1 >:c m - co i n < o t - a s o . o ■ o O 00 w < o e o o oo o o 4 3 0 < 0 O Qi 90 Table A.7. Daily information of wind velocity and orientation in Taipei (1987) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 86 Q lj ? ■ # -6 - > o : m ■ m tn ; in • m • «! * , IO . (0 : C O i 40 i (O • ' e -a : o : r- : to ' t - • ; m : m ; m o tn tn i ! ■ c m ■ c m : c m • < n» : c m 3a ■ . «j .- > < * ; iri i-- ■ > : o ■ m : in . o < • ■ O ^ : «ri I i n ; ® : in : m : in in n tn o - i : t-I: t-^ • in • i re n .to to to:«©<M'«o to s o cm i Is- . to - ■ a s ■<s*'» 9 o o ■ m : oo ' t n : ■ i'U'ica erj.TO C C 9-9 in 9 n c o ■ ■ 9-d n i > cm: eo c o i n i n \ %n ■ i n ■ ■ m > ,:Q :tn ;«5 50 : S O . I i — » .can * • .m 9 e o < i -*n in m i.n: oo s o i m o : m m m in m in h t— i-- t-» t— i— i to id : to : to to : • ■ so c m r— so: d»' ca: ; to c m : o : t©: oo'! ■ '9 so •o*.05:03 ^*.oa:*«r eri:< tn in < o - m - «n • i n : ® ■ m in m m in < t - t— t— t— i— r— ci t-J i— ’ r~ i— i ~ . i n o n o te t o :oo• to to to : s o to n .C O t o o ': c m i & at # nr* r - : — e o ca ds m t— i icsiica:— ' cm : — —: — < • 0 - t— 0 : 0 p - ® I s- o I s o s» to 30 .1 « a « ; I S I > - C M : C M C M : — ! ': tn in m o o o m tn • o o i t— ’ t— ': P-": » If i i n p - r - o i n I ' in ■ in ■ m . c — cm < m -a* -9 : oo — : i :(M -m c m ca cm■ — eo • to si a : i n so -9 o . o — v < . : esi o i so e o cm ; cm c a n i:m :« « o a o o a : O ? : 0 < 3 : l/? O S O : — < ? • ? . ^ ^ t~ |w M 3'*S O «} • ' { £ j . — I : — — — < C M s4 to 9 mi . m - i ■ m m - m m g.j — 04 S O C M • I 00:0 0 0 o o o © * a * © » m n e j « - ^ n . C M C M — S O C M ■ 1 — 1 to in m o» ■ < r« 01 r - ; r» m !: *M : eo ; o»: — . ao: ao: »n: o © ■ > m - m : t— > ; 0 :0 . '-s . V. • o • w» o :h- t— a s : m . 9 ■ — ■ C M •. • O * < 0 ' C M ■ 1 I s-' I s-' 1 tO : I/) : tO : I € * - * s S T *■ a 9 I C M : — : C M • >:tO O O 0 3 : — : t o : t o C O .-O :: »: cm to* ■ m • ■ f f l i i n n I— C —: O : I a c e n eo' so: — I to o» • — c l — — ■ : t-» «?> : O • O • O t — to ® :iB 03 a s - s o cm : m . 1 sn ■ — ;i CM .son e o c m 1 < : t o : t o : < 3 > ; es»:. . _ : sm :«0 -: ! 1 1 ; m ; o •» • r - 1 o < : to : to; 0 9 ■ 1 * : c m e o co i 1 /3:145:0.0:0:10 lO ' 1 .0 ® ' O O tO lO • I • C M :t— : O ■ » O: Is -' t— O O 1 G > i t~ - ‘ Is - : I O : «0 : O :< 7 » : 30: tO tO tO O 03 03 i 40 40- 1 m m m in o r~ r - t— e- m I to < 0 to to N O O m m 1 t - r-‘ c— i • in 0 0 o • c m c m • 9 — — 1 ■ cm : m m e n e o a? ” o> o»:c»;«a • f! r Is - — * m: eo If 4* ■ 05 ■ :C M OS I » C 3 £3 0 o m : O I o' o' o' • O ; O ' C M - O I : 03 O O»'03'OS CS't— I - C M S M ' : S s « .. " V 'S . ■ V , s s. X ' C M ' 9 ■ o o » ■ o > in n t • m to f— ao 0 0 — «T S m Table A.8. Daily information of wind velocity and orientation in Taipei (1988) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 87 * at 4- $ Bj * r * 4 ? < # * « l > : tn i C O j t— ; 0 0 ; < inimiinieD;m;mii ;^-jcnUnUO|0’^,;oi:^»';r, -:C'3 so o I — —; to i co Icm: c m ; c m \ * — : co! co: co so ; trii e o <n\&5: e o • tn in ;o ;in ;in :in jin 'in ;in m m . to I in in ; in ; in ■ f-_ ' - ; iri j t~ * i t— • f— ’ ! f— ■ h » : t— i t— t* — ; i r— • t— t— : f— ^toisoieo-iniinico’soitoisoio to;s©;< ‘ v. s, 'v. : 'n , . -•s ; 'v ■ ■ v x : v ' \ ; s ; s . \ ; n : ■ o ; — iniCOiOiOS’eo.iOiavt— m e u p ~ : i in :in.-^:-^:~i04‘Tf:C0:coico'«r'— «i — *; eo: c i; • to i <01 to : c» I t o ■ I i 9 0 N N . I S ^ > : « I o :in tn tn; m m ; m i o m « n m ; m ; i : V , 1 "V ; 'M 's. : \ • m m m. ® l m i • 1 r- r— ■ i— i ® i t — ' i i : ( 0 . 0 : ( 0 : 0 : c o : i i:o in it n io jin :in- ■ i " M * C — : tOj C O i - O ' i O O i • i j co e o co * in : in j • « 4 * : C »: — i — ■ 1 * 1 S O C O :— — cn o-i o o oo. ’ ■ c m : ~ c m c m ; -4 • ; tO : 40: tO ' . t o r— , I m co ■ to; co. - m * i 1 ic : co: so. o>;<© • ; to to > C M ■ —• ; ' —. : < > t— o ic— c m ; iri t— i o o in ■ ! s o ’ • e -i ’ — •. eo! eo; — j e o ’ — • < r ; i n : m i m : «n i n : i n < lO ‘ 4 0 • C O \ I ■ t— . — i to ■ i co i i co c m c m : i :; c m — * - c m : • 0:01 m o ;in o i • O ' O : I — • O it— O l cs. os; in C O j in : 0 0 < m o o o o o ;in uoiin o o o m - o ;o . o . o o’ ; t— , i ■ e o : o o : t— • i : tn • co ■ oo: oo: o o tn : in x> so m ■ ico: so. ovi-eo ® in o to c m c m — s o c m s o s o — o : i n ^ f i ^ « i ?.j: c m c m c m oa c m ;« — c m c m : c m os c m e o tri to tri oj o a o i.— Ii! in o tn o ; o : o m o • cm- — • ■ o o m . i 1 0 : 0 t— . i o o o o in t— : r-— : i 1;r— to o> t o 'i o : i •1 0 0 : 1 0 0 I o , o : m : o : m o m : m T O 1 O i tri i t~ * : O : I “ f i N : ' * ‘ C M C M t o o s t— eo r— - i : « o •— ■ oo — s o sm oo.< cm — : cm cm ' eo : C M I eo i c o : ir i esi e o . < i n o o o ' m : o I m i t o ; m I m m 1 o ; o : m ■ < •0’ , 0 0 ‘ 0 : . • J C M ^ C M * C M | C M ^ C M * * cm : cm ; e o : co i o in o in : i CD ■ t— : O* : 1 • 00 ■ in : r— :' • — — C M O O C M tO : tO : O : O i I : i O | o : o ; t n i n i t n ; i n : i n : o : o ' i n i ' : c — ’; o tri • t— t— I im in itn iin o ii : — 4 : _ . C M ::os|^*'i-o,i«o: — :« o so i i— m i i (O (O N C v l C S l o m m in tn : in < > O : • . C — i C M ! : C M ' I •it— ■ S S S icD iO S itO iC S :'- i j mi m ! o i O O 00;CO:f— in j I '•eoieoi-*}1 co — * cri;' i i tn o in : i , to t o : t o ' t o ; to : < S V s s s ■ — c m ■ • o m m m i oo to t o . to to < \ 'M 's. -v M , -V 'x. ■ -v . M , ^ “ m m M M M . m ! ^ • e O ;-» t,;so;t~:CO:to;® •v;in:CM:aoico;cM so o:eo:<o;f- to in ® o t—:t— i T t* -w 5 ^ so eo• 4 — • :e o cM icM : — c - s l i t u i — ^ « cm e o tri cm cm iri:tri.~'cM i i; t o : to ; to co tn m o . o o : m i tri i m : iri: i r - co • o . to so to i i « : O S : CS 40 : tO ' < ; efc; « ■ £ «■ < ■ .cm eo " M 1 m to t— o 1 to 1 to to : to • I C M C M C M C M C M S m £ m Table A.9. Daily information of wind velocity and orientation in Taipei (1989) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 88 t n $ f r - $ & • tar: ' : C- : OO . 05 : O : ■ .: C4 tO CO < i i n ; i n o ; m . t o > i n i n ; i r v i n . i - c-^ : ii m : m . m . m : i . • * « i « n ^ : < e 0 ;s D ; s© : s £ > c O 'c o ; s a ; « ! # ■ : so ooi eo co co i i : . iri c-i' co i 1 : CO : UO : O CO ■ < ■ . ® e > <30 oj ; oo; — ■ : • ■ iri -4* i e > 4 i f l'if l i w i > lo i n m m i n n . i f l j O i i o m ! i n 1 m ; p-J e— ’ e—; f— i~ - 1 c o - f ~ I o i c** • t~-" i i ' - ' t~» . a o CO CO C 0 .O O C S i9 » :C 0 ;C 0 :C O ':te ■ | co j o o • co, i o CO o> ' ■ t o ' ■ O : OO CO i n m ; o ■ ® ' ■ ' 4*; c o : ”0 - i n i o in o.m .m ® ;® c 4 : o : < o o o < _ 54 — , CO in • o5; in ’ » n ] o 5 j « n ® ! ® . in j o 5 in i S 3 i e ia : C4 a e i i co i a ; in eo — ' e o t o o in so i so Tri i iri so:eo!sD:iri:iri:-«rieO:eo in *« r i V -<t ■ e o C 4 o -j m m o : i o m : m ; m : i n : i n i n m o . e o j i i o r-» s - ' e-- : f - ‘ f T i - x ® : e r i; < . . . ------------— t£> SO c o : 0 3 - O H i m j i n m | m i n ; i n t n i n i ■ t- « ; |m t— r — ' t— ’: 8 -’ f ~ - i so so so s o co : a in in in in i . s o o s o to so so !t— a •: s o • e o ; : co s o s o : o — : i n ; i n e o : — « : s o i o a ; o : o 0 ; ^ • . ^ ' o . o s o s o ; m — ' r - : ; 84 ■ so • ; c o eo • e o ’ eo e o co i t r i ' ir i i ir i -«r i r i ; i r i : i r i : i r i : tr i ir i ir i s o ; c a tr i ir i e o : e o ' o* ir i o* o* -o’ co ' in m o o m o : o : o : o e o - m : m m « n o o m in in « n ® o m o o o i i i> t— ‘ o o 11 * « : o ; o ® : © . © ; f- i t- t '~ r - iri r*^ o o ; r - v o o i ’ i < o o o o o o co < o ■ co n in^cn n ;i 1 : 5 4 i o o •o-: © ■ eoi © • > : so • ^ e o ' eo: e o j e o i 54 O ; SM : ( i e o • m o* m < i S 4154 0 4 e o • • :t— - O ’ e n — so _ o : j o o s- :ec eo « o e o eo:eo:c n i: 8 4 • co c-j c4 <o o o o ) si5 t ^ o s o r ^ « ' 8 o : > • ■ o - o*: so r-^ j si e *i 0 4 o d • , q g ■ ,0 t a - 0 : s s ' e o t— C 4 — © o :in © o '© © © © tn © -© .© .in m © • G3 o ; t— ’ o eri ■ cri o " o ir i r - o • o ’ : o o < oo s o . .c o o o oo w so S 3 — o o t- • oo."» » m f- I t — — — CO —• — — — CO 04 — C M — — N ! so o- co-so.f-oo o > —: o o c- o o ■ j e o tri m :in :' o i n m o i o t o t o i o : o i n : o m ® > c - c— r~ > i n co i n eo oo i > o a o o o 1 o o ® o o ’ O O 00 C S { — > in ® _ > r— ‘ i ■ t * O l ffl i hesjoo co:f- < o n eo — 04 oo m ® m oo m ij84:eo C 4 — — csi e ri:^ 84 C4,04 04 eo C 4 C 4 “ •** < = > * s « « s 5 st m # * s J s s s e 41 ^ ' * * * ? a a a e t s i m V > m ; ® . e » i o : t n i n . t n t n ® i n « i o oo n i ® t n t n i o i n i n i n o o ® t~ t-’ c ~ ’ c - ^ c -’ < r i ® I i : ® e— : c— : ® • ® e * j '® . ® r — ■ ® : t —: t —: f— cm m Is - 8 - . . __ — - — — — —, go gQ yg o e : 5 ® : 5 0 .5 0 o i — : ® ■ s o t o t o t— t o co to t o t o s a oo . — : — M M : : C M _< * N 03 J s< a S ’ ? o L W3 N N N , M ’ - oo e » : — : < i C 4 • 84 < 1 03 50 S 3 3 04 ' ■ o * iri oi e o m ; o m i Im o ’ f - t . m t n o m ' m ; w i so t o oo i I i -tj-: oo -rf : t o ; ■ ■ m i n i n t n ' • t o i n co ■ 1 r ~ ! ® i n . a> t o ; • ■ ssj l s o c o -rr m : i < o t n i n m . o . t n o m o co ; s o : s o ! — : oo — • ■ t o co s o :tM s o o> t o i n O — < co — -o*:co co• eo;® ; iri o so C 4 m in; C4: in tri : i ■ e o — ■ co o so — i n o o o » sm m to i ~ — s o i t f e o ’ e v i r i 8 4 c m co iri e o 8 4 c o ’ V 03 to 84 tO'.tO'tO f - CO: < •v. ^ ^ \ -v. -v. \ • m S 3 ® ® '— in co in < > in o m in in ® m in m i r~-‘ s o c m ’ : c m * ' i r i r— ’ : r— ’ r i i i S O c O c O C O — S O C O C O 1 v i v . \ N S 3 * ! S N X X X X ■ ■ sO iC O jC O '® oo eo — co — o o : ' ^ i : co; co: co': ori' csi. eo; tri m - — : to iri t— O ® : ' to 0 3 : C3 < # p in ® o tn m in in in i i- : cri t r i i - ' 8-" r - ’ p J < io oo a o o o . o a ' i n i o t i i n Ifi 84 — 84 > i in in o o . o o ;m w :in m tn tn in m < ■ « ij* —; c o 54 - 8-4 i ■ t o t n e o ; i ! co’ — -4 " ' ■ e o — m s « * t i Table A. 10. Daily information of wind velocity and orientation in Taipei (1990) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 89 The data shown above is from Central Weather Bureau, Taiwan and displays the daily data of the wind velocity and orientation in Taipei from 1981 to 1990. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appendix B The wind tunnel test results from Experiment 1 to 60 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. EXPERIMENT NO; Tsai, Chung-Hsin SUBJECT: High rise experiment/or Taipei DATE: 4/10/2002 TIME: START: END: BAROMETER: 29.95 TEMPERATURE: 71"F RELATIVE HUMIDITY: 83% STATIC PRESSURE: C M I I 3 5 5 3 I ? ■ sf f as ® O _ | C M _ rail l i | I q J3 o 3s o -.o A T t £ jg ? 5 a 2 c * 5 o in f 2 " < # m /' m t > S 5 5 5 5 9 9 9 9 9 D L ...................... O c o < c o o o / I / Figure B. 1. The wind tunnel test result (Experiment 1) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 92 EXPERIMENT NO: £ Tsai, Chung-Hsin s u b j e c t : High rise experlmentfor Taipei 3ATE: 4/10/2002 TIME: START: END: BAROMETER: 29.95 TEMPERATURE: T IT RELATIVE HUMIDITY: 83% STATIC PRESSURE: 00 N / O J N T * I I 2 n zi 31 I s S P L I ■si, sS § o _j C M m I l f l 11 I f O 3C O J ? 2 S ’t 'f g ’T C N I T — T- < J > in T f m in 2 "t * ♦ ' 'T it* ^ r* <»i i i T S £ 1 ■o c I 2 5 2 2 8 cri a> o> c» co w 00 h- C O 00 K n ^ r: T » - 9 9 9 9 9 » « « • •• •• * • C L 1 to < 00 O Q / V Figure B.2. The wind tunnel test result (Experiment 2) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 93 EXPERIMENT NO: 3 Tsai, Chung-Hsin SUBJECT: High rise experimentfbr Taipei DATE: 4/10/2002 TIME: START: END: BAROMETER: 29.95 TEMPERATURE: 71"F RELATIVE HUMIDITY: 83% STATIC PRESSURE: t o 9 e 0 - 3 S I I ? i f 8 5 ■ 2 5 to < 0 to to C; ^ S O o o o ° t: o T J I | ^ 't* 't % I 4 P " * * ■ " * (M O O 0 0 o S > 9< ?99 f t ............. £ s « < m o a Figure B.3. The wind tunnel test result (Experiment 3) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. :XPER1MENT NO; 4 Tsai, Chung-Hsin s u b j e c t : High rise experimentfbr Taipei DATE: 4/10/2002 TIME; START; END: BAROMETER: 29.95 TEMPERATURE; 71*F RELATIVE HUMIDITY: 83% STATIC PRESSURE: <n o (b D C c & O 1 3 5 1 ® 5 TJ ^ •B f as § O J3 T- - “I J i t I I § e 5 £ § § § 8 5 I | T" ▼ “ I •8 T J C X CL 0) 0) 0)0 0) § S a o o a e o ^ h o r r 9 99 4 9 C L ............... I 55 < 03 o o 4 / Figure B.4. The wind tunnel test result (Experiment 4) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 95 EXPERIMENT NO: 5 Tsai, Chung-Hsin SUBJECT: High rise experimentfbr Taipei 3ATE: 4/10/2002 TIME: START: END: BAROMETER: 29.95 TEMPERATURE: 71*F RELATIVE HUMIDITY: 83% STATIC PRESSURE: Q 1 1 □ > c 1 - 3 1 3 i l ■sf, f as I N g c 3 I i If S j O s ^ ^ ^ « ffi ? o 5 5 o * ^ ir* 52 v* * . T • 1 § X Q . ^ C M in to 1 0 m r > - ^ ^ > • g § T * 0 0 0 0 0 9 9 9 9 9 Q L ........... 0 1 w < m o o * Figure B.5. The wind tunnel test result (Experiment 5) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 96 EXPERIMENT NO: £ Tsai, Chung-Hsin SUBJECTS High rise experimentfbr Taipei DATE: 4/10/2002 TiME: START: END: JAROMETER: 29.95 TEMPERATURE: 71°F RELATIVE HUMIDITY: 83% STATIC PRESSURE: W O : S 2 1 — 1 * M w 51 * 6 p i l p i t b '£ O 5 T t ■ » 1 T V T T 1 ? 1 2 L s 0 ) 0 10 ) 0 ) 0 ) 5 s s s & ir* ▼ “ r*- ^ 9 9 9 9 9 a ............. 0 1 (ft < to o o 4 / Figure B.6. The wind tunnel test result (Experiment 6) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 97 EXPERIMENT NO: J Tsai, Chung-Hsin SUBJECT’ High rise experimentfor Taipei DATE: 4/10/2002 TIME: START: END: JAROMETER: 29.95 TEMPERATURE: 71*F RELATIVE HUMIDITY: 83% STATIC PRESSURE: CM D » c c & o & C % & * 8 a? § M f — C O i 11* i * i f Q j O J O O O T A A I 1 ■ o i X 0. 3 to ia in to •ri tr ^ s to 0 o o o o 9 9 9 99 & ............. 1 CO < CD O Q Figure B.7. The wind tunnel test result (Experiment 7) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 98 EXPERIMENT NO: g Tsai, Chung-Hsin SUBJECT! High rise experimentfor Taipei DATE: 4/10/2002 TIME: START: END: 3AROMETER: 29.95 TEMPERATURE: 71°F RELATIVE HUMIDITY: 83% STATIC PRESSURE: C M c 4 I f I ? “ S f . ■1 l > ax § • i t t r 1 2 % & 1 § £ s S S C M i - U > n < p on O ) E O C O <o C O Figure B.8. The wind tunnel test result (Experiment 8) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 99 EXPERIMENT NO: ^ Tsai, Chung-Hsin SUBJECT: High rise experimentfbr Taipei DATE: 4/10/2002 TIME: START: END: BAROMETER: 29.95 TEMPERATURE: 71°F RELATIVE HUMIDITY'. 83% S T A T IC P R E SSU R E : t o I I ra 8. o £ ra c = J3 5 - I ? § i l f l l i l t S j O S S S g g s ° ? 5 5 o • t t ^ € 2 5 x £ L 2 r > i in ^ in m in in - ■ v in 5 5 5 5 5 { ? 9 ? 9 9 61 ” ........ 1 < CO O Q 4 / Figure B.9. The wind tunnel test result (Experiment 9) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 100 EXPERIMENT NO: JQ Tsai, Chung-Hsin SUBJECTS High rise experimentfor Taipei DATE: 4/10/2002 TIME: START: END: 3AROMETER: 29.95 TEMPERATURE: 71"F RELATIVE HUMIDITY: 83% STATIC PRESSURE: to ii o c ‘ 2 J Z a, c 1.3 2 a t o 2 5 ■ ■ o & as % S * < * • * • jg n ", = I j .!* § 5x02 c n c o X o. 2 lO (D o <o <d e ID > T3 r r ^ ^ r * 9 9 3 9 s? d .'................. n to < c p o o / V Figure B.10. The wind tunnel test result (Experiment 10) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 10 1 EXPERIMENT NO: Tsai, Chung-Hsin SUBJECT! High Use experimentfbr Taipei DATE: 4/10/2002- TIME: START: END: BAROMETER: 29.95 TEMPERATURE: 71'F RELATIVE HUMIDITY: 83% STATIC PRESSURE: o » c c s. o c 7 5 3 « j ! •St ^ g » Q I • * f a , f l o > c l > 5 I 02 o _ ^ T - r ^ r ? d e > o • T T V V X Q . 2 C M i n m i n s in Tf ^ Tf T t IO *- <— ' I — ^ 0 o o p o ■ 9 9 9 9 9 d :............. 1 w < m o o V Figure B.ll. The wind tunnel test result (Experiment 11) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 102 EXPERIMENT NO: ]_ £ Tsai, Chung-Hsin SUBJECT: High rise experimentfor Taipei DATE: 4/10/2002 TIME: START: END: 3AROMETER: 29.95 TEMPERATURE: 71 °F RELATIVE HUMIDITY: 83% STATIC PRESSURE: § b > c ' c © C L O i= = .3 c a “ J 5 r e I ? T i t i i f l O ) c C v 4 0 0 LO o o C O C O o p ■ § £ ■ 5 T3 C 5 x 0. S o> <d c o cd cd r- r- t- r* r- ................ '8 5 "O C § q ? in uj co co co co co T“ T ™ T1 * ▼ “ T" 99999 al o £ OT < CO O Q * Figure B.12. The wind tunnel test result (Experiment 12 ) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 103 EXPERIMENT NO: 1 2 Tsai, Chung-Hsin SUBJECT; High rise experimentfbr Taipei DATE: 4/10/2002 TIME: START: END: BAROMETER: 29.95 TEMPERATURE: 71°F R E L A T I V E HUMIDITY: 83% S T A T IC P R E S S U R E : T " iS i ^ S 1 a a I ................ .{0 T 3 I £ s £ * 4 r— h- k » K oj pi c q nf't ^ ? 9 9 9 9 & ; " “ ” '■ I co < m o o * Figure B.13. The wind tunnel test result (Experiment 13 ) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 104 EXPERIMENT NO: Tsai, Chung-Hsin SUBJECT! High rise experimentfbr Taipei >ATE: 4/10/2002 TIME: START: END: BAROMETER: 29.95 TEMPERATURE: 71*F R E L A T I V E H U M I D I T Y : 83% S T A T IC P R E S S U R E : ro 6i i i C D c = ® l l I * i f s? § 2 ? ® sat l l f l f 3 £ ? o x o l O l N ? t o *0 « 1 1 e — r- « — . ., , -a 1 X CL 2 iq o » iS . « o u > a i r j - * t 0 > K £ 1 tO '-O O ® T * ^ - T » ' ▼ " O 9 9 9 9 9 „ .. S co < m o o Figure B.14. The wind tunnel test result (Experiment 14) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 105 EXPERIMENT NO: ^ Tsai, Chung-Hsin SUBJECT; High rise experimentfbr Taipei DATE: 4/10/2002 TIME: START: END: BAROMETER: 29.95 TEMPERATURE: 71°F R E L A T I V E H U M ID IT Y ! 83% S T A T IC P R E S S U R E : 00 CU to I I « = ! 5 i I ? f s R § o j to 5 f l a 5 o 5 n i* r * i 3 " * x 0- s tR ioioin \ xr '* * * m xr 9 9 9 9 9 (0 < D O Q Figure B.15. The wind tunnel test result (Experiment 15) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 106 EXPERIMENT NO: ]_ £, Tsai, Chung-Hsin SUBJECT: High rise experimentfor Taipei DATE: 4/10/2002 TIME: START: END: JAROMETER: 29.95 TEMPERATURE: 71°F R E L A T I V E H U M ID IT Y : 83% STATIC PRESSURE: C O R ] to I I O ) c c s. o £ C D _ § 1 = 5 C O C f l ) 1 t ) p c O ) 2 > 8.1= 5 i o 5 £ $ 3 3 3 ® in in in to co co co cd ■ § £ • 5 ■ o X 0- 5 C O C M C M C M C M C O C O C O C O C O 0> • '0 * x f X * ^ ................ 1 § T ? c 3 O 5 O O T - T - T — T “ T “ 9 9 9 9 9 d : ............. o g £ c o < m o o 4/ Figure B.16. The wind tunnel test result (Experiment 16) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 107 EXPERIMENT NO: YJ Tsai, Chung-Hsin SUBJECT*. High rise experimentfbr Taipei DATE: 4/10/2002 TIME: START: END: 3AROMETER: 29.95 TEMPERATURE: 7 1 T RELATIVE HUMIDITY: 83% STATIC PRESSURE: n g> c Q . O J = 1 “ I ? • s i O I I : 2 a. 2 fflinw inm I in o q S o 5 9 9 9 9 9 o . ................ (o < ca o a h i Figure B.17. The wind tunnel test result (Experiment 17) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 108 EXPERIMENT NO: IQ Tsai, Chung-Hsin SUBJECT: High rise experimentfor Taipei DATE: 4/10/2002 TIME: START: END: BAROMETER: 29.95 TEMPERATURE: 71B F R E L A T I V E H U M ID IT Y : 83% STATIC PRESSURE: n CD C c ffl CL O J= o > c _ f f l to — * 5 1 f f l § £ ^ O O ) v P C 3 ^ < D O Jj r- ^,«D _ 5 o 0)5 •2 © .= 5 Ofl c o S > § .= != b if O 5 ■ § JS 0 T > C 1 s » * - q cm ir> oo cq 5 5 to ej cr i t } - ' t t t T T — T - T ~ « r * f 5 * o c § a ! ................. o j§ CO < f f l O Q o o m t - o o o / V Figure B. 18. The wind tunnel test result (Experiment 18) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 109 EXPERIMENT NO: ^ Tsai, Chung-Hsin SUBJECT: High rise experlmentfor Taipei DATE: 4/17/2002 TIME: START: END: 3AROMETER: 29.87 TEMPERATURE: 74.9’F R E L A T I V E H U M ID IT Y : 41% STATIC PRESSURE: C M I I I f S I I ? f a * i o S i | * § 2 £ s M M - in ir i in c m cm w in in 0 O O o o 9 9 9 9 9 C L " ' ' “ 1 < m o q / V Figure B.19. The wind tunnel test result (Experiment 19) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 110 EXPERIMENT NO: g Q T™ , Chung-Hsin SUBJECT: High rise experimentfbr Tllpei DATE: 4/17/2002 TIME: START: END: iAROMETER: 29.87 TEMPERATURE: 74.9*F R E L A T I V E H U M ID IT Y : 41% STATIC PRESSURE: « 2 r,< ® w o ® o> 5 00 8 ^ < T » ^ 9 9 9 9 9 o l " ” “ ■ ■ s 6 CO < « o o Figure B.20. The wind tunnel test result (Experiment 20) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. I l l EXPERIMENT NO: £1 Tsai, Chung-Hsin SUBJECT! High rise experimentfor Taipei DATE: 4/17/2002 TIME: START: END: BAROMETER: 29,87 TEMPERATURE: 7 4 .9 ^ R E L A T IV E H U M I D IT Y : 41% STATIC P R E S S U R E in d < D T " b) I o sg * } s O T I ? •si * § 1 1 S S L ) ^ c o » ® > I ? e .3 o s CM s in in in m in i I M- < £ > (O N . C O •£- .v rr-'▼ - 00 o q o 9 9 9 9 9 C L ............................. 1 w < c q o o Figure B.21. The wind tunnel test result (Experiment 21) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 112 EXPERIMENT NO: 2 2 Tsai, Chung-Hsin SUBJECT* High rise experlmentfor Taipei JATE: 4/17/2002 TIME: START: END: 3AROMETER: 29.87 TEMPERATURE: 74.9*F R E L A T I V E H U M ID IT Y ! 41% S T A T IC P R E SSU R E : n d CD c E JC 1? 5 = > ig < 8 g: 53 jj * s t ^ i | f f I y o c o > l l l l v x Q . s S S 5 S S c o o o a i d CO M £ EP 5 * S * (O S fw S N 9 9 9 9 9 d l............. I J8 to < m o o Figure B.22. The wind tunnel test result (Experiment 22) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 11 3 EXPERIMENT NO; ^ 3 Tsai, Chung-Hsin SUBJECTS High rise experim enter Taipei 3ATE: 4/17/2002 TIME: START; END: 3AROMETER: 29.87 TEMPERATURE 74.9*F R E L A T I V E H U M ID IT Y : 41% S T A T IC P R E S S U R E : 2 r * I I S 5 1 5 o B f as § O _J = si Is If o i o s CL 2 S 3 , . R N C O C O f S ! » “ k s 0 0 0 5 5 9 9 9 0 0 < ffl O Q / V Figure B.23. The wind tunnel test result (Experiment 23) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 114 EXPERIMENT NO: 2 4 Tsai, Chung-Hsin SUBJECT; High rise experimentfor Taipei DATE: 4/17/2002 TIME: START: END: JAROMETER: 29.87 TEMPERATURE: 74.9*F R E L A T I V E H U M ID IT Y : 41% S T A T IC P R E S SU R E : C M sg j3 5 1 ■ s f * § P S i o x o f 1 2 S CO N N 1- t » lO i- ! -r; O n . o> a ai S N § 5 K 5 5 5 5 5 6 .......... i CO < CD O O Figure B.24. The wind tunnel test result (Experiment 24) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 115 EXPERIMENT NO: 2 5 Tsai, Chung-Hsin SUBJECT! High rise experimentfor Taipei DATE: 4/17/2002 TIME: START: END: BAROMETER: 29.87 TEMPERATURE: 7 4 .9 T R E L A T I V E H U M ID IT Y : 41% S T A T IC P R E S SU R E : CM 'c & O !l «pjl < M t* ^ _ S i fit C o Ml x CL 2 '* ^ ? I o o o p o 9 9 9 9 9 d :............. » < CD O Q * Figure B.25. The wind tunnel test result (Experiment 25) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 116 E X P E R IM E N T N O : Tsai, Chung-Hsin S U B J E C T * H igh rise experim entfor T aipei D A T E : 4/17/2002 T IM E : S T A R T : E N D : 3 A R O M E T E R : 29.87 T E M P E R A T U R E : 74.9T R E L A T I V E H U M ID IT Y : 41% S T A T IC P R E S SU R E : * “ V H O : Figure B.26. The wind tunnel test result (Experiment 26) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 117 EXPERIMENT NO: 2 ~ J Tsai, Chung-Hsin SUBJECT! High rise experimentfor Taipei DATE: 4/17/2002 TIME: START: END: iAROMETER: 29.87 TEMPERATURE 74.9*F R E L A T I V E H U M I D IT Y ! 41% S T A T IC P R E S S U R E : < 0 I I & c o — * 3 ffl r“ ■sf f s ? g S i 1 1 if a 5 o 5 x Q . 2 N N l S l M ■ s r ^ rr ^ V oooq o 9 9 9 9 9 c o < m o o / V Figure B.27. The wind tunnel test result (Experiment 27) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 118 EXPERIMENT NO* 2 8 Tsai, Chung-Hsin SUBJECT* High rise experimentfor Taipei DATE: 4/17/2002 TIME: START: END: 1AROMETER: 29.87 TEMPERATURE: 74.9°F R E L A T I V E H U M ID IT Y : 41% S T A T IC P R E S S U R E : C V I X Q . s S eo co o n to co to «6 co OH A OH (0 (O (i) ( * ) S O V * ^ T * 9 9 9 9 9 61............. M 3 C O < C D O Q Figure B.28. The wind tunnel test result (Experiment 28) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 119 EXPERIMENT NO: 2 9 Tsai, Chung-Hsin SUBJECT: High risa experimentfor Taipei 3ATE: 4/17/2002 TIME: START: END: JAROMETER: 29.87 TEMPERATURE: 74.9*F R E L A T I V E H U M ID IT Y : 41% S T A T IC PR ESSU R E O J O J f 8. o £ 1 J .. • s f ^ § S t P I s o o o o o 9 9 9 9 9 a ............. t o < m o o Figure B.29. The wind tunnel test result (Experiment 29) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 120 E X P E R IM E N T N O : 3Q Tsai, Chung-Hsin SU B JE C T : H igh rise experim entfor T aipei O A T E : 4/17/2002 - T IM E : S T A R T : • E N D : J A R O M E T E R : 29.87 T E M P E R A T U R E : 74.9'F R E L A T I V E H U M ID IT Y ! 41% S T A T IC P R E S S U R E : me t * * at sS-g ■a* § I i l l | f 0 X 0 $ 1 a 2 StSiSSS? K ( d t o < d < d I 8 8 8 * < f 8 i * t - ^ T " r * 9 9 9 9 9 <O<£0 OQ Figure B.30. The wind tunnel test result (Experiment 30) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 121 EXPERIMENT NO: 3 1 Tsai, Chung-Hsin SUBJECT: High rise experimentfor Taipei DATE: 4/17/2002 TIME: START: END: JAROMETER: 29.87 TEMPERATURE: 74.9T R E L A T I V E H U M ID IT Y : 41% S T A T IC P R E SSU R E : ( S i it o > I 8 L O T 8 r! ■ 5 ’ S i t . a? £ c m i l § M I p i o 5 o Z X a. 2 n in m m m o o o o o 3 9 9 9 9 O L ” 0 1 < 0 < c o o a * Figure B.31. The wind tunnel test result (Experiment 31) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 122 iXPERIMENT NO: 3 2 Tsai, Chung-Hsin SUBJECT! High rise experimentfor Taipei DATE: 4/17/2002 TIME: START: END: BAROMETER: 29.87 TEMPERATURE: 74.9*F R E L A T I V E H U M ID IT Y ! 41% S T A T IC P R E S SU R E : i i a > c O -C S 3 J JJ l i 2 ? § • P f l I I I f Q X O > X CL 2 q £ ® « to in in g o in (0 CM i - W t - v * T " * “ 9 9 9 ^ 9 d.'............. 0 1 c o < f f l o a * Figure B.32. The wind tunnel test result (Experiment 32) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 123 EXPERIMENT NO: 3 3 Tsai, Chung-Hsin SUBJECT: High rise experimentfor Taipei DATE: 4/17/2002 TIME: START: END: JAROMETER: 29.87 TEMPERATURE: 74.9’ F R E L A T I V E H U M I D IT Y : 41% S T A T IC P R E S SU R E : to T - II g l - P ‘ s f . P a I I f f i | | J o > CM ,! a Q IO U> tA t o tO ' f ^ t 1 to o 5 5 o o 9 9 9 9 9 ( L ................... tt>"< C O O O Figure B.33. The wind tunnel test result (Experiment 33) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 2 4 EXPERIMENT NO: 3 4 Tsai, Chung-Hsin SUBJECT! High rise experimentfor Taipei DATE: 4/10/2002 TIME: START: END: BAROMETER: 29.87 TEMPERATURE: 74.9°F R E L A T I V E H U M ID IT Y : 41% S T A T IC P R E S S U R E : T - II SS JJ} 5 1 8 5 33 '-1 •s % # I ^ IS** Q t O f X Q . s S 5 S S S to in in in S o n <0 C M v* r - ir- T " T» 9 9 9 9 9 0 L ......... 1 < c o o o Figure B.34. The wind tunnel test result (Experiment 34) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 125 EXPERIMENT NO: 3 5 Tsai, Chung-Hsin SUBJECT: High rise experimentfor Taipei DATE: 4/17/2002 TIME: START: END: J A R O M E T E R : 29.87 T E M P E R A T U R E : 74.9T R E L A T I V E H U M ID IT Y : 41% S T A T IC P R E S S U R E : n □ > 8. o — 1 3 - * 5 1 0 5 £ J C M f 5 - I * f | X X a. 2 S iq u > t o i n « 1 ^ c § to V T » T * . ▼ * * “ 0 o o o o <?9 9 9 9 0 1 ................ I W <O O Q Figure B.35. The wind tunnel test result (Experiment 35) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 126 EXPERIMENT NO: 3 £ Tsai, Chung-Hsin SUBJECT: High rise experimentfor Taipei ) A 1 E : 4/17/2002 TIME: START: END: BAROMETER: 29.87 TEMPERATURE: 74.9*F R E L A T I V E H U M ID IT Y : 41% S T A T IC P R E S S U R E : C M T “ I I £ + s l: 's i . M m f i § I ^ ▼ - * » N (O ( p (D O rJ in uj in •o I i n C M C M C M £ ^ ifm If* 9 9 9 9 9 a ............. .3 co < m o q Figure B.36. The wind tunnel test result (Experiment 36) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 127 EXPERIMENT NO: 2 " ~ j Tsa‘> Chung-Hsin SUBJECT!) High rise experimentfor Taipei DATE: 4/17/2002 TIME? START: END: B A R O M E T E R : 29.87 T E M P E R A T U R E : 74.9T R E L A T I V E H U M ID IT Y ) 41% S T A T IC P R E SSU R E : N I I g I 8 1 3 ,s i» f * $ a s X e x . s 2 8 .8 5 ? S U> CO < 0 CO < 0 > 1 £ s § § § § 9 9 9 9 S * d )............. O T <00OQ * Figure B.37. The wind tunnel test result (Experiment 37) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 2 8 EXPERIMENT NO: 3 Q Tsai, Chung-Hsin SUBJECT! High rise experimentfor Taipei 3ATE: 4/17/2002 TIME: START: END: BAROMETER: 29.87 TEMPERATURE: 74.9#F R E L A T IV E H U M ID IT Y : 41% S T A T IC P R E SSU R E : i i ? 1 & ( D = = J3 f l > < ■ sf < * > >,M — sits M If Q l O S I s SSgSS « d St io 50 C M C M C M C M i T ” ^ n c o n n 9 9 9 9 9 C L .................. W < CD O Q l \ l Figure B.38. The wind tunnel test result (Experiment 38) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 129 EXPERIMENT NO: 39 Tsa, rhllIU,_H < !in SUBJECT; High rise experimentfor Taipei DATE: 4/17/2002 TIME: START: END: BAROMETER: 29.87 TEMPERATURE: 74.9°F R E L A T IV E H U M ID IT Y ; 41% S T A T IC P R E S SU R E : to o C D 8. x Q . 2 S fw N K C O lo c o C O s 't f CD CO C O CO SSSSS 9 ^ 9 9 9 a.'............. to < f f l O a Figure B.39. The wind tunnel test result (Experiment 39) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 130 EXPERIMENT NO: 4 Q Tsai, Chung-Hsin SUBJECT: High rise experimentfor Taipei DATE: 4/17/2002 TIME: START: END:- 3AROMETER: 29.87 TEMPERATURE: 74.9*F R E L A T I V E H U M ID IT Y : 41% S T A T IC P R E SSU R E : 1 0 d C O 1 3 » T & I ? H 4 Z s e § o _ J i 111 l i l t 0 1 0 5 < n a > c I 5 S ? 3 8 . . . . . . 9 9 9 9 9 Q . ' " I » <C0 O Q 4 / Figure B.40. The wind tunnel test result (Experiment 40) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. E X P E R IM E N T N O : 4 \ ^ r h lin (J .H sin S U B JE C T ; H igh rise experim entfor T aipei D A T E : 4/17/2002 T I M E : S T A R T : E N D : J A R O M E T E R : 29.87 T E M P E R A T U R E : 74.9'F R E L A T I V E H U M I D I T Y : 41% S T A T IC P R E S S U R E : W O l ” 1 * 1 o i n n n r t CO CO <0 C D 9 9 9 9 9 co < m o o Figure B.41. The wind tunnel test result (Experiment 41) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 132 EXPERIMENT NO: 2 Tsai, Chung-Hsin s u b j e c t : High rise experimentfor Taipei DATE: 4/17/2002 TIME: START: END: JAROMETER: 29.87 TEMPERATURE: 74.9’ F R E L A T I V E H U M I D IT Y : 41% S T A T IC P R E S S U R E : n C D C f c 5*5 * 4 ^ i c o S = | l f I X a. s C O r* K r " <D ^ « & C M «* 00 O C O ^ C O > ■ N c| O l N ? = sq S 5 ^ S m 9 9 9 9 9 OL............. w < a o a Figure B.42. The wind tunnel test result (Experiment 42) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 133 EXPERIMENT NO: 4 3 Tsai, Chung-Hsin SUBJECT: High rise experim enter Taipei DATE: 4/17/2002 TIME: START: END: 3ARQMETER: 29,87 TEMPERATURE: 74.9°F R E L A T IV E H U M ID IT Y : 41% STATIC PRESSURE: C M CM I I C » & O i l 5 C O a > 5 £ .. S i CO T C D x & O J < 0 C O CO CO ■ M - < d CD CO CO S S S 3 8 9 9 9 9 9 C L ...................... 0 1 « < m o o Figure B.43. The wind tunnel test result (Experiment 43) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 134 EXPERIMENT NO: 4 4 Tsai, Chung-Hsin SUBJECTS High rise experimentfor Taipei DATE: 4/17/2002 TIME: START: END: JAROMETER: 29.87 TEMPERATURE: 74.9#F R E L A T I V E H U M I D IT Y : 41% S T A T IC P R E S S U R E : CSI li E J J S . o > « i t a f? | ~ S-* i s f l g > ® e O X o i s f c js s s * 5 1 9 9 9 9 9 fl.'............. 1 C O < C O O Q /V Figure B.44. The wind tunnel test result (Experiment 44) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 135 EXPERIMENT NO: 45 Tsai, Chung-Hsin SUBJECT: High rise experimentfor Taipei DATE: 4/17/2002 TIME: START: END: J A R O M E T E R : 29.87 T E M P E R A T U R E : 74.9*F R E L A T IV E H U M ID IT Y : 41% S T A T IC P R E SSU R E : to c < p < l O ) .a C -5 1 1 1 5 * „ O J | > - i ? £ s 3 o 5 £ s C O N K N h - * r-t tO W « « 10 < d <0 < 6 c d > ■ o I SSSSS 9 9 9 9 9 * < ** ■» * • ■ * C L to < C D O O 4/ Figure B.45. The wind tunnel test result (Experiment 45) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 136 EXPERIMENT NO: 4 £ Tsai,Chung-Hsin SUBJECT! High rise experimentfor Taipei DATE 4/17/2002 TIME: START: END: BAROMETER: 29.87 TEMPERATURE 74.9*F R E L A T I V E H U M I D IT Y ! 41% S T A T IC P R E S S U R E : C O n a t & O 5» co a 5 tS 3 ' * • % £ o ot a* § co £.9, a f = | g | o x O S X C L S S 3 c n 3 s s s s i a s 9 9 9 9 9 dl " •’ “ “ 0 1 C O < 00 O o 4/ Figure B.46. The wind tunnel test result (Experiment 46) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 137 EXPERIMENT NO: 4 7 Tsai, Chung-Hsin SUBJECT: High rise experimentfor Taipei DATE: 4/17/2002 TIME: START: END:- 3AROMETER: 29.87 TEMPERATURE: 74.9Q F R E L A T I V E H U M ID IT Y : 41% S T A T IC P R E S S U R E : C B c 1 * £ a c — ® 73^ 5 1 3 I ? ■ s f * s s * it s > f » S j f c a i o l S N- (v- S N . C O C O C O C O (O C D (O <d § i S S S S S 9 9 9 9 9 & ............. :•§ W < CD O Q Figure B.47. The wind tunnel test result (Experiment 47) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 138 EXPERIMENT NO; 4 8 Tsai, Chung-Hsin SUBJECT! High rise experimentfor Taipei 3ATE: 4/17/2002 TIME: START: END: JAROMETER: 29.87 TEMPERATURE: 74.9°F R E L A T I V E H U M ID IT Y : 41% S T A T IC P R E S SU R E : CD c & 1 * £ 1 # S < * > = I I P l f O £ o $ s s s s s r £ S f > - ! £ > 9 9 9 9 9 w < m o Q /V Figure B.48. The wind tunnel test result (Experiment 48) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 139 EXPERIMENT NO: 4 9 Tsai> Chung-Hsin SUBJECT: High rise experimentfor Taipei DATE:-4/17/2002 TIME: START: END: BAROMETER: 29.87 TEMPERATURE: 74.9*F R E L A T I V E H U M I D IT Y : 41% S T A T IC P R E S S U R E : $2 CM T * I I I 1 CO •sf s? S 1 1 II O 5 X Q. s ft ft ft ft *r <0 td «j > I i m s s 9 9 9 9 9 C L " ’ ■ o « < 0QOQ 4/ Figure B.49. The wind tunnel test result (Experiment 49) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 140 EXPERIMENT NO: 5 Q Tsai, Chung-Hsin SUBJECTS High rise experimentfor Taipei DATE: -4/17/2002 TIME? START: END: 3AROMETER: 29.87 TEMPERATURE: 74.9‘F R E L A T I V E H U M ID IT Y : 41% S T A T IC P R E S S U R E : C O T “ < N e » c a z ! o 5 ^ la l _ 3 ( • ) ’Q ® s s “ o S 's > "E o c S3o x 0. s S S S g S co in in uS rf CM CM CM CM 9 9 9 9 9 to < C O O Q Figure B.50. The wind tunnel test result (Experiment 50) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 141 EXPERIMENT NO: 5 1 Tsai, Chung-Hsin SUBJECT! High rise experimentfor Taipei DATE: 4/17/2002 TIME: START: END: BAROMETER: 29-87 TEMPERATURE: 74.9°F R E L A T I V E H U M ID IT Y : 41% STATIC PRESSURE: < 0 T - I I □ 9 C = J ■si 4 - 8 5 n “ 3 ® s c 3 5 Hi® 0 S 3 3 S O ' S o 1 g i - i Q j O S I N K E i K CO CO CO CO ^ (O C O to <0 s § i tN I o p 9 9 9 9<? &:............. ^ a g g j g C O < C O O Q / V Figure B.51. The wind tunnel test result (Experiment 51) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 142 EXPERIMENT NO: 5 £ Tsai, Chung-Hsin SUBJECTS High rise experimentfor Taipei 3ATE: 4/10/2002 TIME: START: END: 3AROMETER: 29.87 TEMPERATURE: 74.9’F RELATIVE HUMIDITY: 41% S T A T IC P R E S SU R E : < 0 0 5 = J3 5 _ ■Bf o 5 CO > .t t > — S ' i W i P ~ - 5 if 0 5 ra e X 0. s s s s s s — ’ a s 2 3 a a * I t <0 m « S 9 9 9 9 9 a.*............. O .•gj ■ 3 CO < CD O Q Figure B.52. The wind tunnel test result (Experiment 52) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 143 E X P E R IM E N T N O ; 5 3 T s a i, C h u n g -H sin S U B JE C T : H igh rise experim entfor T aipei > A T E : 4/17/2002 T I M E : S T A R T : E N D : 3 A R O M E T E R : 29.87 T E M P E R A T U R E : 74.9°F R E L A T I V E H U M ID IT Y : 41% S T A T IC P R E S SU R E : * “ w o cu - C H ■ o f I I i c o f i l 1 |* I ° < / - S C D G • o / L > q / i 1 s 2 & ts fe fe w c o c o C O K O C D C O C O c d 5 8 0 S S 9 9 9 9 9 CL 0 1 C O < SO O Q / 4/ Figure B.53. The wind tunnel test result (Experiment 53) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 144 EXPERIMENT NO: 5 4 Tsai, Chung-Hsin s u b j e c t : High rise experimentfor Taipei DATE: 4/17/2002 TIME: START: END; BAROMETER: 29.87 TEMPERATURE: 74.9’F RELATIVE HUMIDITY: 41% STATIC PRESSURE: « S'® 1 “ 1 g i '■ is 1 Q . s ft] 9 9 9 9 9 < m o □ H Figure B.54. The wind tunnel test result (Experiment 54) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 145 EXPERIMENT NO: 5 5 Tsai, Chung-Hsin SUBJECT: High rise experimentfor Taipei DATE: 4/24/2002 TIME: START: END: 3AROMETER: 29.95 TEMPERATURE: 69'F RELATIVE HUMIDITY: 63% STATIC PRESSURE: I I ? . zz J tz f s? § o 1 | §..!= 5 S o 3 s s s s s « o <0 <0 c o 0 o § § § 9 9 9 9 9 £ . . . . . . . . 1 W < 00 O Q * Figure B.55. The wind tunnel test result (Experiment 55) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 146 EXPERIMENT NO; 5 £ Tsai, Chung-Hsin SUBJECT: High rlsa experimentfor Taipei DATE; 4/24/2002 TIME; START: END; iAROMETER: 29.95 TEMPERATURE; 69'F RELATIVE HUMIDITY: 63% STATIC PRESSURE: n § I a > o S % “ Sfe i f I = > o i o 5 3 1 Q . s 8 3 8 $ 3 5 = 8 8 8 8 9 9 9 9 9 dl £ J3 « < C D O Q 4/ Figure B.56. The wind tunnel test result (Experiment 56) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 147 EXPERIMENT NO: 5 7 Tsai, Chung-Hsin SUBJECT! High rise experimentfor Taipei DATE: 4/24/2002 TIME: START: END: BAROMETER: 29.95 TEMPERATURE: 69*F R E L A T I V E H U M ID IT Y : 63% STATIC PRESSURE: 19 $ t sS § ° -J a s S ' S ! 1 I J a D » o l £ 5 S S o & « £ X T C O <0 C O C D 0 4 0SS8S 9 9 9 9 9 0l .................... tn < m o o Figure B.57. The wind tunnel test result (Experiment 57) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 148 EXPERIMENT NO: 5 8 Tsai, Chung-Hsin SUBJECT* High rise experimentfor Taipei DATE: 4/24/2002 TIME: START: END: 3AROMETER: 29.95 TEMPERATURE: 69°F R E L A T IV E H U M ID IT Y : 63% STATIC PRESSURE: I s i 3 5 § Q C*» B E I l f l l i I t 5 If O 5 z 0. s § “O c § 9 9 9 9 9 £ ............. I iS W < C D O Q Figure B.58. The wind tunnel test result (Experiment 58) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 149 EXPERIMENT NO: ^ 9 Tsai, Chung-Hsin SUBJECT* High rise experimentfor Taipei DATE: 4/24/2002 TIME: START: END:- 3AROMETER: 29.95 TEMPERATURE: 6 9 T RELATIVE HUMIDITY: 63% STATIC PRESSURE: •si f a * S J. £ S 3 o5 I Q - 2 8 3 883 cd cb co to f ^ ^ r - ^ f 5 8 8 8 8 3 9 9 9 9 o:" ........ co < a o o Figure B .59. The w ind tunnel test result (Experim ent 59) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 150 EXPERIMENT NO: Tsai,Chung-Hsin SUBJECT: High rise experimentfor Taipei DATE: 4/24/2002 TIM E: START: END: BAROMETER: 29.95 TEMPERATURE: 69°F RELATIVE HUMIDITY: 63% S T A T IC PR E SSU R E $?. ■sf ■ sp c 0) l i t I 1 1 1 ? t o X & e o ? s s s ■n i#i i n i n CO 5 ® inw uj > § 9 9 9 9 9 C L ...................... 0 1 cp<caoa 4/ Figure B.60. The wind tunnel test result (Experiment 60) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 151 Appendix C The Wind Chill Factor performance in each test point from Experiment 1 to 60 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 152 W ind chill factor inT aipei (test 1) O cQ -Q Static- A p o in t Direction 1 Low velocity 20% opening 1/12 wind wing wall length T est point Wind chill factor inTapa (test 2) o o o :• Static A B Direction 1 Hi velocity 20% opening 1/12 wind wing wall length Test point Figure C. 1. The Wind Chill Factor in each test point (Experiment 1 and 2) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 153 Wind chill factor inTaipei (test 3) 0 i i i i -1 -2 Static A B C 0 o -3 Direction 1 -4 Low velocity 45 -5 20% opening = -6 1/6 wind wing wall length O -7 -8 -9 -10 ♦---------♦---------4---------4-------- + -11 L “ " " ..................... .................... Test point Wind chill factor inTa'pei (test 4) __ o - + — * o . t o O Static . point B Direction 1 Hi velocity 20% opening 1/6 wind wing wall length Test point Figure C.2. The Wind Chill Factor in each test point (Experiment 3 and 4) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 154 Wind chill factor inTapei (test 5) .c O o i-------- -1 -2 Static B o -3 o -4 -5 -6 -7 -8 -9 -10 -11 point Test point Direction 1 Low velocity 20% opening 1/4 wind wing wall length Wind chill factor inTaipei (test 6) o - * — * o .C O O S td ic A point B C D -4--------- 4 Direction 1 Hi velocity 20% opening 1/4 wind wing wall length Test point Figure C.3. The Wind Chill Factor in each test point (Experiment 5 and 6) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 155 Wind chill factor inTaipei (test 7) 0 -1 -2 ° ~A o -4 £ i 6 -8 1 2 Stdtic A point B D Direction 1 Low velocity 40% opening 1/12 wind wing wall length Test point Wind chill factor inTaipei (test 8) Test point Direction 1 Hi velocity 40% opening 1/12 wind wing wall length Figure C.4. The Wind Chill Factor in each test point (Experiment 7 and 8) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 156 Wind chill factor inTaipei (test 9) o .C O O - H -2 -3 -4 [ -5 r -6 -7 -8 -9 -10 -11 r -12 Static point B Test point Direction 1 Low velocity 40% opening 1/6 wind wing wall length Wind chill factor inTapei (test 10) o o .C O O I- Static point B C D Direction 1 Hi velocity 40% opening 1/6 wind wing wall length Test point Figure C.5. The Wind Chill Factor in each test point (Experiment 9 and 10) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 157 Wind chill factor inTaipei (test 11) 0 -1 -2 s i o 7 co -5 ^ -6 s 3 -i8 -11 -12 Static point A B C D Test point Direction 1 Low velocity 40% opening 1/4 wind wing wall length Wind chill factor inTaipei (test 12) o 4-» o C O Static A B Direction 1 Hi velocity 40% opening 1/4 wind wing wall length Test point Figure C.6. The Wind Chill Factor in each test point (Experiment 11 and 12) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 158 Wind chill factor ihTapei (test 13) o o .CD o 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -1 1 Static A B C point D Test point Direction 1 Low velocity 60% opening 1/12 wind wing wall length Wind chill factor ihTapei (test 14) o ■ q .CD O Static point B Direction 1 Hi velocity 60% opening 1/12 wind wing wall length Test point Figure C.7. The Wind Chill Factor in each test point (Experiment 13 and 14) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 159 Wind chill factor iriTaipei (test 15) o o .03 0 te -1 -2 -3 I -4 1 -5 -6 I -7 O -8 -9 -10 -11 -12 Static A B C D -• *- Test point Direction 1 Low velocity 60% opening 1/6 wind wing wall length Wind chill factor ihTapei (test 16) o o .03 JZ O Static A point B D Direction 1 Hi velocity 60% opening 1/6 wind wing wall length Test point Figure C.8. The Wind Chill Factor in each test point (Experiment 15 and 16) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Wind chill factor inTaipei (test 17) 0 i i i i -1 -2 Static A B C D 5 3 Direction 1 o co -5 Low velocity = -6 60% opening -7 1/4 wind wing wall length O -8 -9 -10 .____— «----------• ----------«---------- * -11 -12 Test point Wind chill factor inTaipei (test 18) £ o o .C O o Static A point B Direction 1 Hi velocity 60% opening 1/4 wind wing wall length Test point Figure C.9. The Wind Chill Factor in each test point (Experiment 17 and 18) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 161 Wind chill factor inTaipei (test 19) 0 -1 i i I i Static 1— o -2 point Direction 2 o a -3 Low velocity -4 20% opening IE O -0 1/12 wind wing wall length -6 - ( -8 V------------ --------- » -9 Test point Wind chill factor inTaipei (test 20) 0 -1 -2 -3 o -4 o -5 -6 -7 -8 -9 -10 -11 -12 -13 O Static point A B D Test point Direction 2 Hi velocity 20% opening 1/12 wind wing wall length Figure C. 10. The Wind Chill Factor in each test point (Experiment 19 and 20) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 162 Wind chill factor inTaipei (test 2 1 ) x: O o -1 -2 -3 -4 -5 -6 -7 -8 -9 Static point B T est point D Direction 2 Low velocity 20% opening 1/6 wind wing wall length Wind chill factor inTaipei (test 22) 0 -1 -2 -3 o ■ 4 -» o -4 -5 a -6 — -7 s z -8 O -9 -10 -11 -12 -13 Static point B D Test point Direction 2 Hi velocity 20% opening 1/6 wind wing wall length Figure C. 11. The Wind Chill Factor in each test point (Experiment 21 and 22) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 163 Wind chill factor inTaipei (test 23) 0 1---------1---------1---------- L----- A ' Static A B C D a ^ P0^ a -4 Test point Direction 2 Low velocity 20% opening 1/4 wind wing wall length Wind chill factor inTaipei (test 24) o - ♦ — < o .CD o 0 4 4 Static point B D Direction 2 Hi velocity 20% opening 1/4 wind wing wall length Test point Figure C.12. The Wind Chill Factor in each test point (Experiment 23 and 24) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 164 Wind chill factor inTaipei (test 25) 0 I I I ! -1 o Static A B C D -Z. O Q • + ■ ? -o Direction 2 o co _4 Low velocity M — * T 40% opening _ -5 1/12 wind wing wall length O -6 -7 -8 ♦---------- ♦---------- ♦---------- *---------- ¥ -9 Test point Wind chill factor inTaipei (test 26) 0 -1 i i i ifiM jjM PV -2 Static A B C D O - t — » -3 -4 Direction 2 o C O -5 m Hi velocity 4— -6 40% opening I E -7 1/12 wind wing wall length O -8 -9 -10 — — — — — —— — — ------------ — 1 -11 -12 j 1 ► I <► i 1 r r j Ijilli i 1 — ♦ Test point Figure C.13. The Wind Chill Factor in each test point (Experiment 25 and 26) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 165 Wind chill factor inTaipei (test 2 7 ) 0 -1 -2 3 -3 | -4 g -6 Static A B point -7 + -8 -9 1 T est point Direction 2 Low velocity 40% opening 1/6 wind wing wall length Wind chill factor inTaipei (test 28) 0 -1 i i i i r \ -2 Direction 2 Hi velocity o -3 o -4 3 -5 40% opening — -b 1/6 wind wing wall length JC O -7 -8 -9 -10 -11 -12 Test point Figure C. 14. The Wind Chill Factor in each test point (Experiment 27 and 28) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 166 W ind chill factor inTaipei (test 2 9 ) 0-1------------ ' Static ^ '2 point 2 -3 " 1 -4 = -5 - 6 -6 \ ------- -7 o ! i ■ B B — f- Direction 2 Low velocity 40% opening 1/4 wind wing wall length 1 L ~ -y ............ T e st point Wind chill factor inTaipei (test 30) 0 -1 -2 o ^ o ^ C O - o r = -6 Z -7 O -8 -9 -10 -11 -12 Ststic A B Test point Direction 2 Hi velocity 40% opening 1/4 wind wing wall length Figure C.15. The Wind Chill Factor in each test point (Experiment 29 and 30) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 167 W ind chill factor inTaipei (test 3 1 ) o .co ■ C O 0 1 ! 1 ! ------- "1 ’ Static A B C D -3 ^ I B -5 -6 -7 -8 -9 T e st point Direction 2 Low velocity 60% opening 1/12 wind wing wall length Wind chill factor inTaipei (test 32) o o .C O 0 -1 -2 -3 -4 -5 -6 Z -7 O -8 -9 -10 -11 -12 Static point A B C Test point Direction 2 Hi velocity 60% opening 1/12 wind wing wall length Figure C. 16. The Wind Chill Factor in each test point (Experiment 31 and 32) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 168 W ind chill factor inTaipei (test 3 3 ) 0 -1 -2 5 "3 I -4 = -5 6 -6 -7 -8 -9 T e st point Static point B Direction 2 Low velocity 60% opening 1/6 wind wing wall length Wind chill factor inTa'pei (test 34) 0 -1 -2 Static A B C D 5 i o "7 Direction 2 co -5 /j Hi velocity — -o = "7 60% opening -C - 1 O -8 1/6 wind wing wall length -9 -10 -11 ___________ ♦-----------*-----------♦ -12 Test point Figure C.17. The Wind Chill Factor in each test point (Experiment 33 and 34) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 169 W ind chill factor inTaipei (test 35) 0 -1 -2 S -3 i -4 = -5 § -6 -7 -8 -9 Static point B T e st point Direction 2 Low velocity 60% opening 1/4 wind wing wall length Wind chill factor inTapei (test 36) r\ I 1 I 1 u / ......' .......... _2 Static A B C D o i p x r t t o " O - -6 z -7 -10 1 ^ ^ — -11 ■ ♦—--------- ♦ ♦ ■ ■ ■ ---------♦ i n i Direction 2 Hi velocity 60% opening 1/4 wind wing wall length -12 — — Test point Figure C.18. The Wind Chill Factor in each test point (Experiment 35 and 36) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 170 W ind chill factor inTaipei (test 3 7 ) .c O 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 ■10 Static point _ . i 1 . . A B C D Direction 3 Low velocity 20% opening 1/12 wind wing wall length T e st point Wind chill factor inTaipei (test 38) Direction 3 Hi velocity 20% opening 1/12 wind wing wall length Test point Figure C. 19. The Wind Chill Factor in each test point (Experiment 37 and 38) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 171 W ind chill factor inTaipei (test 3 9 ) 0 -1 -2 1_ o -3 '4 - * o -4 £ -5 IE -6 o -7 -8 -9 -1 0 Static point B T e st point Direction 3 Low velocity 20% opening 1/6 wind wing wall length Wind chill factor inTaipei (test 40) 0 -1 -2 -3 o o -4 -5 £ -6 = -7 'j c. -8 O -9 -10 -11 -12 -13 B C D point Test point Direction 3 Hi velocity 20% opening 1/6 wind wing wall length Figure C.20. The Wind Chill Factor in each test point (Experiment 39 and 40) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 172 Wind chill factor inTaipei (test 41 ) 0 -1 -2 o -3 0 -4 *= -5 1 -6 O -7 -8 -9 -10 Static point B Direction 3 Low velocity 20% opening 1/4 wind wing wall length T est point Wind chill factor inTaipei (test 42) 0 -1 -2 -3 o -4 o -5 a -6 — -7 _c o -8 -9 -10 -11 -12 -13 Static A point B Direction 3 Hi velocity 20% opening 1/4 wind wing wall length Test point Figure C.21. The Wind Chill Factor in each test point (Experiment 41 and 42) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 173 Wind chill factor inTaipei (test 4 3 ) 0 I i ............ | -1 o Static A B L _ o o £ - z -3 -4 point -5 IE O -6 -7 -8 -9 ^ 4-------— ♦ - -10 T est point Direction 3 Low velocity 40% opening 1/12 wind wing wall length Wind chill factor inTaipei (test 44) o a .03 s z O Direction 3 Hi velocity 40% opening 1/12 wind wing wall length Test point Figure C.22. The Wind Chill Factor in each test point (Experiment 43 and 44) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 174 Wind chill factor inTaipei (test 45 ) 0 Static _ D 1 _ \ point Direction 3 o - 4 — * -o Low velocity o C O -4 40% opening -5 m tm iim 1/6 wind wing wall !E -6 h ------- — length O -7 -8 \ — -9 — «----------- •----------- •-----------♦ -1 0 ------- T est point Wind chill factor inTaipei (test 46) .C O O 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 Test point Direction 3 Hi velocity 40% opening 1/6 wind wing wall length Figure C.23. The Wind Chill Factor in each test point (Experiment 45 and 46) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 175 Wind chill factor inTaipei (test 47) o o .co 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 Static point B Test point Direction 3 Low velocity 40% opening 1/4 wind wing wall length Wind chill factor inTa'pei (test 48) o o .C O O 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 Static point A B Direction 3 Hi velocity 40% opening 1/4 wind wing wall length Test point Figure C.24. The Wind Chill Factor in each test point (Experiment 47 and 48) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 176 Wind chill factor inTaipei (test 4 9 ) 0 l.^ “1 Static A B 1 _ o 3 : Point o £ -4 -5 \ ------------ — -6 O -7 -8 ■ -9 * — ♦- -10 T est point Direction 3 Low velocity 60% opening 1/12 wind wing wall length Wind chill factor inTaipei (test 50) o - * — * o . T O s z O 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 Static point B D y i S T s r Direction 3 Hi velocity 60% opening 1/12 wind wing wall length Test point Figure C.25. The Wind Chill Factor in each test point (Experiment 49 and 50) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 177 W ind chill factor inTaipei (test 51) o o .03 x: O 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 Static point B Direction 3 Low velocity 60% opening 1/6 wind wing wall length T e st point Wind chill factor inTaipei (test 52) o o .03 o 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 r -12 ■ -13 - Static point B Direction 3 Hi velocity 60% opening 1/6 wind wing wall length Test point Figure C.26. The Wind Chill Factor in each test point (Experiment 51 and 52) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 178 W ind chill factor inTaipei (test 53) o -*— * o .03 .C O point 0 - - Static -2 -3 -4 -5 -6 -7 -8 -9 -10 A B C D T e st point Direction 3 Low velocity 60% opening 1/4 wind wing wall length Wind chill factor inTaipei (test 54) o - * — * o .C O O 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 Static point 1 B Direction 3 Hi velocity 60% opening 1/4 wind wing wall length Test point Figure C.27. The Wind Chill Factor in each test point (Experiment 53 and 54) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 179 Wind chill factor inTaipei (test 55) o .ra o r -1 I -2 r -3 ' -4 h -5 ■ -6 h -7 r 1 -8 o 1 2 3 4 Static point B C D Direction 3 Low velocity 20% opening 0 wind wing wall length Test point Wind chill factor inTaipei (test 56) o - * — * o .C O O Static A M S B c ■ ■ ■ point - -1 Direction 3 Hi velocity 20% opening 0 wind wing wall length Test point Figure C.28. The Wind Chill Factor in each test point (Experiment 55 and 56) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 180 W ind chill factor inTaipei (test 57) 0 -1 -2 -3 0 "c 1 t = -7 h 'sz - 8 - O -9 • - 1 0 -i Static point B Direction 3 Low velocity 40% opening 0 wind wing wall length T e st point Wind chill factor inTaipei (test 58) o o .C O O I- Static point A Direction 3 Hi velocity 40% opening 0 wind wing wall length Test point Figure C.29. The Wind Chill Factor in each test point (Experiment 57 and 58) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 181 W ind chill factor inTaipei (test 5 9 ) o o .co o 0 - -1 -2 -3 -4 ■ -5 ■ -6 - -7 - - 8 f -9 -10 -11 -12 - -13 . 1 4 J* Static point B Direction 3 Low velocity 60% opening 0 wind wing wall length T e st point Wind chill fa cta inTaipei (test 60) o o .C O _ c _ • O -• Static A point B 1 Test point Direction 3 Hi velocity 60% opening 0 wind wing wall length Figure C.30. The Wind Chill Factor in each test point (Experiment 59 and 60) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 182 Appendix D Tables showing relationship of wind chill to ambient temperatures and wind velocity Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table D.l shows the wind chill temperature at each of the test points. The Wind Chill formula is Wind Chill Factor = (33-(10.45+10^- v)(33-T)) / 22.04 Where: T: Temperature (°C) V: wind velocity (m/s) The temperature shown in the Table D.l is the Lab Temperature while I operating the wind tunnel tests in the Lab. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. T est point Temp (°F) Temp(°C) Wind V (mph) Wind V (m/s) Wind chill factor New Temp(°C) New Temp (°F) 1-S 71 2 1 .6 6 6 6 6 6 7 6 .3 7 2 .8 4 7 6 5 0 1 1 -1 1 .0 8 9 3 7 2 0 1 1 9 .2 6 3 9 6 9 4 6 6 .6 7 5 1 4 4 9 1 1-A 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 1-B 71 2 1 .6 6 6 6 6 6 7 4 .7 2 2 .1 1 0 0 3 2 7 3 -1 0 .2 6 0 7 5 6 8 9 1 9 .4 4 3 5 0 2 6 7 6 6 .9 9 8 3 0 4 8 1 1-C 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 1-D 71 2 1 .6 6 6 6 6 6 7 4 .7 2 2 .1 1 0 0 3 2 7 3 -1 0 .2 6 0 7 5 6 8 9 1 9 .4 4 3 5 0 2 6 7 6 6 .9 9 8 3 0 4 8 1 2-S 71 2 1 .6 6 6 6 6 6 7 1 9 .1 2 8 .5 4 7 4 2 0 7 3 -1 4 .5 1 4 6 8 1 6 6 1 8 .5 2 1 8 1 8 9 7 6 5 .3 3 9 2 7 4 1 5 2-A 71 2 1 .6 6 6 6 6 6 7 1 8 .5 8 8 .3 0 6 0 1 8 6 8 -1 4 .4 2 4 9 9 9 2 4 1 8 .5 4 1 2 5 0 1 6 6 5 .3 7 4 2 5 0 3 2-B 71 2 1 .6 6 6 6 6 6 7 1 9 .1 2 8 .5 4 7 4 2 0 7 3 -1 4 .5 1 4 6 8 1 6 6 1 8 .5 2 1 8 1 8 9 7 6 5 .3 3 9 2 7 4 1 5 2-C 71 2 1 .6 6 6 6 6 6 7 1 9 .1 2 8 .5 4 7 4 2 0 7 3 -1 4 .5 1 4 6 8 1 6 6 1 8 .5 2 1 8 1 8 9 7 6 5 .3 3 9 2 7 4 1 5 2-D 71 2 1 .6 6 6 6 6 6 7 19.01 8 .4 9 8 2 4 6 2 4 -1 4 .4 9 6 6 6 0 3 7 1 8 .5 2 5 7 2 3 5 9 6 5 .3 4 6 3 0 2 4 5 3-S 71 2 1 .6 6 6 6 6 6 7 4 .7 2 2 .1 1 0 0 3 2 7 3 -1 0 .2 6 0 7 5 6 8 9 1 9 .4 4 3 5 0 2 6 7 6 6 .9 9 8 3 0 4 8 1 3-A 71 2 1 .6 6 6 6 6 6 7 4 .7 2 2 .1 1 0 0 3 2 7 3 -1 0 .2 6 0 7 5 6 8 9 1 9 .4 4 3 5 0 2 6 7 6 6 .9 9 8 3 0 4 8 1 3-B 71 2 1 .6 6 6 6 6 6 7 4 .7 2 2 .1 1 0 0 3 2 7 3 -1 0 .2 6 0 7 5 6 8 9 1 9 .4 4 3 5 0 2 6 7 6 6 .9 9 8 3 0 4 8 1 3-C 71 2 1 .6 6 6 6 6 6 7 4 .7 2 2 .1 1 0 0 3 2 7 3 -1 0 .2 6 0 7 5 6 8 9 1 9 .4 4 3 5 0 2 6 7 6 6 .9 9 8 3 0 4 8 1 3-D 71 2 1 .6 6 6 6 6 6 7 4 .9 3 2 .2 0 3 9 1 1 3 1 -1 0 .3 7 6 8 3 9 1 4 1 9 .4 1 8 3 5 1 5 2 6 6 .9 5 3 0 3 2 7 3 4-S 71 2 1 .6 6 6 6 6 6 7 1 9 .3 8 8 .6 6 3 6 5 1 3 5 -1 4 .5 5 6 7 8 4 8 5 1 8 .5 1 2 6 9 6 6 2 6 5 .3 2 2 8 5 3 9 1 4-A 71 2 1 .6 6 6 6 6 6 7 1 9 .1 2 8 .5 4 7 4 2 0 7 3 -1 4 .5 1 4 6 8 1 6 6 1 8 .5 2 1 8 1 8 9 7 6 5 .3 3 9 2 7 4 1 5 4-B 71 2 1 .6 6 6 6 6 6 7 1 9 .1 7 8 .5 6 9 7 7 2 7 8 -1 4 .5 2 2 8 3 1 9 7 1 8 .5 2 0 0 5 3 0 7 6 5 .3 3 6 0 9 5 5 3 4-C 71 2 1 .6 6 6 6 6 6 7 1 9 .2 2 8 .5 9 2 1 2 4 8 2 -1 4 .5 3 0 9 5 6 6 8 1 8 .5 1 8 2 9 2 7 2 6 5 .3 3 2 9 2 6 9 4-D 71 2 1 .6 6 6 6 6 6 7 1 9 .1 2 8 .5 4 7 4 2 0 7 3 -1 4 .5 1 4 6 8 1 6 6 1 8 .5 2 1 8 1 8 9 7 6 5 .3 3 9 2 7 4 1 5 Table D.l. The wind chill temperature at each of the test points (Under the Lab Temperature) 00 4 ^ Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 5-S 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 5-A 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 5-B 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 5-C 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 5-D 71 2 1 .6 6 6 6 6 6 7 4 .7 2 2 .1 1 0 0 3 2 7 3 -1 0 .2 6 0 7 5 6 8 9 1 9 .4 4 3 5 0 2 6 7 6 6 .9 9 8 3 0 4 8 1 6-S 71 2 1 .6 6 6 6 6 6 7 1 9 .1 7 8 .5 6 9 7 7 2 7 8 -1 4 .5 2 2 8 3 1 9 7 1 8 .5 2 0 0 5 3 0 7 6 5 .3 3 6 0 9 5 5 3 6-A 71 2 1 .6 6 6 6 6 6 7 19.01 8 .4 9 8 2 4 6 2 4 -1 4 .4 9 6 6 6 0 3 7 1 8 .5 2 5 7 2 3 5 9 6 5 .3 4 6 3 0 2 4 5 6-B 71 2 1 .6 6 6 6 6 6 7 19.21 8 .5 8 7 6 5 4 4 1 -1 4 .5 2 9 3 3 3 7 8 1 8 .5 1 8 6 4 4 3 5 6 5 .3 3 3 5 5 9 8 3 6-C 71 2 1 .6 6 6 6 6 6 7 1 9 .3 8 8 .6 6 3 6 5 1 3 5 -1 4 .5 5 6 7 8 4 8 5 1 8 .5 1 2 6 9 6 6 2 6 5 .3 2 2 8 5 3 9 1 6-D 71 2 1 .6 6 6 6 6 6 7 1 9 .3 8 8 .6 6 3 6 5 1 3 5 -1 4 .5 5 6 7 8 4 8 5 1 8 .5 1 2 6 9 6 6 2 6 5 .3 2 2 8 5 3 9 1 7-S 71 2 1 .6 6 6 6 6 6 7 5 .5 2 2 .4 6 7 6 6 5 4 -1 0 .6 8 5 0 9 8 7 7 1 9 .3 5 1 5 6 1 9 3 6 6 .8 3 2 8 1 1 4 8 7-A 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 7-B 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 7-C 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 7-D 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 8-S 71 2 1 .6 6 6 6 6 6 7 1 9 .5 4 8 .7 3 5 1 7 7 8 8 -1 4 .5 8 2 3 5 5 1 1 1 8 .5 0 7 1 5 6 3 9 6 5 .3 1 2 8 8 1 5 1 8-A 71 2 1 .6 6 6 6 6 6 7 1 6 .3 7 7 .3 1 8 0 5 8 4 4 -1 4 .0 2 3 7 5 9 2 1 1 8 .6 2 8 1 8 5 5 6 5 .5 3 0 7 3 3 9 1 8-B 71 2 1 .6 6 6 6 6 6 7 1 6 .6 2 7 .4 2 9 8 1 8 6 5 -1 4 .0 7 2 1 0 7 5 5 1 8 .6 1 7 7 1 0 0 3 6 5 .5 1 1 8 7 8 0 6 8-C 71 2 1 .6 6 6 6 6 6 7 16.31 7 .2 9 1 2 3 5 9 9 -1 4 .0 1 2 0 3 5 6 1 1 8 .6 3 0 7 2 5 6 2 6 5 .5 3 5 3 0 6 1 1 8-D 71 2 1 .6 6 6 6 6 6 7 1 6 .2 5 7 .2 6 4 4 1 3 5 4 -1 4 .0 0 0 2 6 5 0 4 1 8 .6 3 3 2 7 5 9 1 6 5 .5 3 9 8 9 6 6 4 Table D. 1. The wind chill temperature at each of the test points (Under the Lab Temperature) (Continued) 0 0 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 9-S 71 2 1 .6 6 6 6 6 6 7 5 .5 2 2 .4 6 7 6 6 5 4 -1 0 .6 8 5 0 9 8 7 7 1 9 .3 5 1 5 6 1 9 3 6 6 .8 3 2 8 1 1 4 8 9-A 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 9-B 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 9-C 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 9-D 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 10-S 71 2 1 .6 6 6 6 6 6 7 1 9 .4 3 8 .6 8 6 0 0 3 3 9 -1 4 .5 6 4 8 0 3 1 1 1 8 .5 1 0 9 5 9 3 3 6 5 .3 1 9 7 2 6 7 9 10-A 71 2 1 .6 6 6 6 6 6 7 1 6 .2 5 7 .2 6 4 4 1 3 5 4 -1 4 .0 0 0 2 6 5 0 4 1 8 .6 3 3 2 7 5 9 1 6 5 .5 3 9 8 9 6 6 4 10-B 71 2 1 .6 6 6 6 6 6 7 1 6 .5 6 7 .4 0 2 9 9 6 2 -1 4 .0 6 0 5 7 6 9 4 1 8 .6 2 0 2 0 8 3 3 6 5 .5 1 6 3 7 4 9 9 10-C 71 2 1 .6 6 6 6 6 6 7 1 6 .6 2 7 .4 2 9 8 1 8 6 5 -1 4 .0 7 2 1 0 7 5 5 1 8 .6 1 7 7 1 0 0 3 6 5 .5 1 1 8 7 8 0 6 10-D 71 2 1 .6 6 6 6 6 6 7 16.31 7 .2 9 1 2 3 5 9 9 -1 4 .0 1 2 0 3 5 6 1 1 8 .6 3 0 7 2 5 6 2 6 5 .5 3 5 3 0 6 1 1 11-S 71 2 1 .6 6 6 6 6 6 7 5 .5 2 2 .4 6 7 6 6 5 4 -1 0 .6 8 5 0 9 8 7 7 1 9 .3 5 1 5 6 1 9 3 6 6 .8 3 2 8 1 1 4 8 11-A 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 11-B 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 11-C 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 11-D 71 2 1 .6 6 6 6 6 6 7 4 .7 2 2 .1 1 0 0 3 2 7 3 -1 0 .2 6 0 7 5 6 8 9 1 9 .4 4 3 5 0 2 6 7 6 6 .9 9 8 3 0 4 8 1 12-S 71 2 1 .6 6 6 6 6 6 7 1 9 .5 4 8 .7 3 5 1 7 7 8 8 -1 4 .5 8 2 3 5 5 1 1 1 8 .5 0 7 1 5 6 3 9 6 5 .3 1 2 8 8 1 5 1 12-A 71 2 1 .6 6 6 6 6 6 7 1 6 .2 5 7 .2 6 4 4 1 3 5 4 -1 4 .0 0 0 2 6 5 0 4 1 8 .6 3 3 2 7 5 9 1 6 5 .5 3 9 8 9 6 6 4 12-B 71 2 1 .6 6 6 6 6 6 7 1 6 .5 6 7 .4 0 2 9 9 6 2 -1 4 .0 6 0 5 7 6 9 4 1 8 .6 2 0 2 0 8 3 3 6 5 .5 1 6 3 7 4 9 9 12-C 71 2 1 .6 6 6 6 6 6 7 1 6 .5 6 7 .4 0 2 9 9 6 2 -1 4 .0 6 0 5 7 6 9 4 1 8 .6 2 0 2 0 8 3 3 6 5 .5 1 6 3 7 4 9 9 12-D 71 2 1 .6 6 6 6 6 6 7 1 6 .2 5 7 .2 6 4 4 1 3 5 4 -1 4 .0 0 0 2 6 5 0 4 1 8 .6 3 3 2 7 5 9 1 6 5 .5 3 9 8 9 6 6 4 Table D.l. The wind chill temperature at each of the test points (Under the Lab Temperature) (Continued) 00 ON Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 13-S 71 2 1 .6 6 6 6 6 6 7 4 .7 2 2 .1 1 0 0 3 2 7 3 -1 0 .2 6 0 7 5 6 8 9 1 9 .4 4 3 5 0 2 6 7 6 6 .9 9 8 3 0 4 8 1 13-A 71 2 1 .6 6 6 6 6 6 7 4 .2 7 1 .9 0 8 8 6 4 3 6 -9 .9 9 9 2 1 7 2 8 8 1 9 .5 0 0 1 6 9 5 9 6 7 .1 0 0 3 0 5 2 6 13-B 71 2 1 .6 6 6 6 6 6 7 4 .2 7 1 .9 0 8 8 6 4 3 6 -9 .9 9 9 2 1 7 2 8 8 1 9 .5 0 0 1 6 9 5 9 6 7 .1 0 0 3 0 5 2 6 13-C 71 2 1 .6 6 6 6 6 6 7 4 .2 7 1 .9 0 8 8 6 4 3 6 -9 .9 9 9 2 1 7 2 8 8 1 9 .5 0 0 1 6 9 5 9 6 7 .1 0 0 3 0 5 2 6 13-D 71 2 1 .6 6 6 6 6 6 7 4 .2 7 1 .9 0 8 8 6 4 3 6 -9 .9 9 9 2 1 7 2 8 8 1 9 .5 0 0 1 6 9 5 9 6 7 .1 0 0 3 0 5 2 6 14-S 71 2 1 .6 6 6 6 6 6 7 1 9 .5 9 8 .7 5 7 5 2 9 9 3 -1 4 .5 9 0 2 9 3 4 2 1 8 .5 0 5 4 3 6 4 3 6 5 .3 0 9 7 8 5 5 7 14-A 71 2 1 .6 6 6 6 6 6 7 1 4 .9 4 6 .6 7 8 7 9 0 0 5 -1 3 .7 3 1 0 2 2 5 8 1 8 .6 9 1 6 1 1 7 7 6 5 .6 4 4 9 0 1 1 9 14-B 71 2 1 .6 6 6 6 6 6 7 1 4 .7 4 6 .5 8 9 3 8 1 8 8 -1 3 .6 8 7 7 4 8 3 7 1 8 .7 0 0 9 8 7 8 5 6 5 .6 6 1 7 7 8 1 4 14-C 71 2 1 .6 6 6 6 6 6 7 1 4 .3 9 6 .4 3 2 9 1 7 5 9 -1 3 .6 1 0 5 4 8 9 7 1 8 .7 1 7 7 1 4 3 9 6 5 .6 9 1 8 8 5 9 14-D 71 2 1 .6 6 6 6 6 6 7 1 3 .5 2 6 .0 4 3 9 9 2 0 7 -1 3 .4 1 0 1 3 8 4 3 1 8 .7 6 1 1 3 6 6 7 6 5 .7 7 0 0 4 6 0 1 15-S 71 2 1 .6 6 6 6 6 6 7 5 .5 2 2 .4 6 7 6 6 5 4 -1 0 .6 8 5 0 9 8 7 7 1 9 .3 5 1 5 6 1 9 3 6 6 .8 3 2 8 1 1 4 8 15-A 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 15-B 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 15-C 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 15-D 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 16-S 71 2 1 .6 6 6 6 6 6 7 1 9 .3 8 8 .6 6 3 6 5 1 3 5 -1 4 .5 5 6 7 8 4 8 5 1 8 .5 1 2 6 9 6 6 2 6 5 .3 2 2 8 5 3 9 1 16-A 71 2 1 .6 6 6 6 6 6 7 1 4 .3 2 6 .4 0 1 6 2 4 7 3 -1 3 .5 9 4 8 7 9 8 4 1 8 .7 2 1 1 0 9 3 7 6 5 .6 9 7 9 9 6 8 6 16-B 71 2 1 .6 6 6 6 6 6 7 1 4 .3 2 6 .4 0 1 6 2 4 7 3 -1 3 .5 9 4 8 7 9 8 4 1 8 .7 2 1 1 0 9 3 7 6 5 .6 9 7 9 9 6 8 6 16-C 71 2 1 .6 6 6 6 6 6 7 1 4 .3 2 6 .4 0 1 6 2 4 7 3 -1 3 .5 9 4 8 7 9 8 4 1 8 .7 2 1 1 0 9 3 7 6 5 .6 9 7 9 9 6 8 6 16-D 71 2 1 .6 6 6 6 6 6 7 1 4 .3 2 6 .4 0 1 6 2 4 7 3 -1 3 .5 9 4 8 7 9 8 4 1 8 .7 2 1 1 0 9 3 7 6 5 .6 9 7 9 9 6 8 6 Table D.l. The wind chill temperature at each of the test points (Under the Lab Temperature) (Continued) 0 0 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 17-S 71 2 1 .6 6 6 6 6 6 7 5 .5 2 2 .4 6 7 6 6 5 4 -1 0 .6 8 5 0 9 8 7 7 1 9 .3 5 1 5 6 1 9 3 6 6 .8 3 2 8 1 1 4 8 17-A 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 17-B 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 17-C 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 17-D 71 2 1 .6 6 6 6 6 6 7 4 .5 2 .0 1 1 6 8 3 7 5 -1 0 .1 3 5 1 7 5 4 5 1 9 .4 7 0 7 1 1 9 9 6 7 .0 4 7 2 8 1 5 8 18-S 71 2 1 .6 6 6 6 6 6 7 1 9 .3 8 8 .6 6 3 6 5 1 3 5 -1 4 .5 5 6 7 8 4 8 5 1 8 .5 1 2 6 9 6 6 2 6 5 .3 2 2 8 5 3 9 1 18-A 71 2 1 .6 6 6 6 6 6 7 14.81 6 .6 2 0 6 7 4 7 4 -1 3 .7 0 2 9 6 2 8 2 1 8 .6 9 7 6 9 1 3 9 6 5 .6 5 5 8 4 4 5 18-B 71 2 1 .6 6 6 6 6 6 7 14.6 6 .5 2 6 7 9 6 1 7 -1 3 .6 5 7 0 9 5 6 5 1 8 .7 0 7 6 2 9 2 8 6 5 .6 7 3 7 3 2 7 18-C 71 2 1 .6 6 6 6 6 6 7 1 4 .3 2 6 .4 0 1 6 2 4 7 3 -1 3 .5 9 4 8 7 9 8 4 1 8 .7 2 1 1 0 9 3 7 6 5 .6 9 7 9 9 6 8 6 18-D 71 2 1 .6 6 6 6 6 6 7 1 4 .2 5 6 .3 7 0 3 3 1 8 8 -1 3 .5 7 9 1 3 2 9 9 1 8 .7 2 4 5 2 1 1 9 6 5 .7 0 4 1 3 8 1 3 19-S 74.9 2 3 .8 3 3 3 3 3 3 4 .9 3 2 .2 0 3 9 1 1 3 1 -8 .1 0 6 7 8 7 3 9 8 2 1 .9 0 1 2 1 5 6 7 7 1 .4 2 2 1 8 8 2 1 19-A 74.9 2 3 .8 3 3 3 3 3 3 4 .9 3 2 .2 0 3 9 1 1 3 1 -8 .1 0 6 7 8 7 3 9 8 2 1 .9 0 1 2 1 5 6 7 7 1 .4 2 2 1 8 8 2 1 19-B 74.9 2 3 .8 3 3 3 3 3 3 5 .1 3 2 .2 9 3 3 1 9 4 8 -8 .1 9 3 5 9 8 5 3 1 2 1 .8 8 0 5 2 5 6 8 7 1 .3 8 4 9 4 6 2 3 19-C 74.9 2 3 .8 3 3 3 3 3 3 5 .5 2 2 .4 6 7 6 6 5 4 -8 .3 5 6 1 1 5 0 3 8 2 1 .8 4 1 7 9 2 5 8 7 1 .3 1 5 2 2 6 6 5 19-D 74.9 2 3 .8 3 3 3 3 3 3 5 .5 2 2 .4 6 7 6 6 5 4 -8 .3 5 6 1 1 5 0 3 8 2 1 .8 4 1 7 9 2 5 8 7 1 .3 1 5 2 2 6 6 5 20-S 74.9 2 3 .8 3 3 3 3 3 3 17 .9 7 8 .0 3 3 3 2 3 7 8 -1 1 .2 9 6 0 4 2 9 6 2 1 .1 4 1 1 0 9 7 6 7 0 .0 5 3 9 9 7 5 7 20-A 74.9 2 3 .8 3 3 3 3 3 3 19 .0 6 8 .5 2 0 5 9 8 2 8 -1 1 .4 4 5 6 3 3 7 5 2 1 .1 0 5 4 5 7 2 9 6 9 .9 8 9 8 2 3 1 2 20-B 74.9 2 3 .8 3 3 3 3 3 3 19 .1 2 8 .5 4 7 4 2 0 7 3 -1 1 .4 5 3 5 7 1 7 9 2 1 .1 0 3 5 6 5 3 9 6 9 .9 8 6 4 1 7 7 20-C 74.9 2 3 .8 3 3 3 3 3 3 19 .2 2 8 .5 9 2 1 2 4 8 2 -1 1 .4 6 6 7 3 5 4 2 1 .1 0 0 4 2 8 0 6 6 9 .9 8 0 7 7 0 5 1 20-D 74.9 2 3 .8 3 3 3 3 3 3 1 9 .0 6 8 .5 2 0 5 9 8 2 8 -1 1 .4 4 5 6 3 3 7 5 2 1 .1 0 5 4 5 7 2 9 6 9 .9 8 9 8 2 3 1 2 Table D.l. The wind chill temperature at each of the test points (Under the Lab Temperature) (Continued) o o 00 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 21-S 74.9 2 3 .8 3 3 3 3 3 3 5 .3 3 2 .3 8 2 7 2 7 6 4 -8 .2 7 8 0 1 5 2 2 4 2 1 .8 6 0 4 0 6 3 7 7 1 .3 4 8 7 3 1 4 7 21-A 74.9 2 3 .8 3 3 3 3 3 3 5 .7 2 .5 4 8 1 3 2 7 5 -8 .4 2 8 3 1 7 0 4 4 2 1 .8 2 4 5 8 4 4 4 7 1 .2 8 4 2 5 1 9 9 21-B 74.9 2 3 .8 3 3 3 3 3 3 5 .7 2 .5 4 8 1 3 2 7 5 -8 .4 2 8 3 1 7 0 4 4 2 1 .8 2 4 5 8 4 4 4 7 1 .2 8 4 2 5 1 9 9 21-C 74.9 2 3 .8 3 3 3 3 3 3 5 .8 7 2 .6 2 4 1 2 9 6 9 -8 .4 9 4 9 8 6 2 3 8 2 1 .8 0 8 6 9 4 9 5 7 1 .2 5 5 6 5 0 9 21-D 74.9 2 3 .8 3 3 3 3 3 3 5 .7 2 .5 4 8 1 3 2 7 5 -8 .4 2 8 3 1 7 0 4 4 2 1 .8 2 4 5 8 4 4 4 7 1 .2 8 4 2 5 1 9 9 22-S 74.9 2 3 .8 3 3 3 3 3 3 1 8 .0 2 8 .0 5 5 6 7 5 8 2 -1 1 .3 0 3 1 3 4 9 5 2 1 .1 3 9 4 1 9 5 7 0 .0 5 0 9 5 5 1 1 22-A 74.9 2 3 .8 3 3 3 3 3 3 1 8 .8 5 8 .4 2 6 7 1 9 7 1 -1 1 .4 1 7 6 1 2 8 1 2 1 .1 1 2 1 3 5 6 1 7 0 .0 0 1 8 4 4 1 22-B 74.9 2 3 .8 3 3 3 3 3 3 19.01 8 .4 9 8 2 4 6 2 4 -1 1 .4 3 8 9 9 5 7 5 2 1 .1 0 7 0 3 9 3 5 6 9 .9 9 2 6 7 0 8 3 22-C 74.9 2 3 .8 3 3 3 3 3 3 1 9 .0 6 8 .5 2 0 5 9 8 2 8 -1 1 .4 4 5 6 3 3 7 5 2 1 .1 0 5 4 5 7 2 9 6 9 .9 8 9 8 2 3 1 2 22-D 74.9 2 3 .8 3 3 3 3 3 3 1 8 .6 9 8 .3 5 5 1 9 3 1 8 -1 1 .3 9 6 0 1 2 4 1 2 1 .1 1 7 2 8 3 7 1 7 0 .0 1 1 1 1 0 6 8 23-S 74.9 2 3 .8 3 3 3 3 3 3 4 .9 3 2 .2 0 3 9 1 1 3 1 -8 .1 0 6 7 8 7 3 9 8 2 1 .9 0 1 2 1 5 6 7 7 1 .4 2 2 1 8 8 2 1 23-A 74.9 2 3 .8 3 3 3 3 3 3 5 .5 2 2 .4 6 7 6 6 5 4 -8 .3 5 6 1 1 5 0 3 8 2 1 .8 4 1 7 9 2 5 8 7 1 .3 1 5 2 2 6 6 5 23-B 74.9 2 3 .8 3 3 3 3 3 3 5 .7 2 .5 4 8 1 3 2 7 5 -8 .4 2 8 3 1 7 0 4 4 2 1 .8 2 4 5 8 4 4 4 7 1 .2 8 4 2 5 1 9 9 23-C 74.9 2 3 .8 3 3 3 3 3 3 5 .8 7 2 .6 2 4 1 2 9 6 9 -8 .4 9 4 9 8 6 2 3 8 2 1 .8 0 8 6 9 4 9 5 7 1 .2 5 5 6 5 0 9 23-D 74.9 2 3 .8 3 3 3 3 3 3 5 .8 7 2 .6 2 4 1 2 9 6 9 -8 .4 9 4 9 8 6 2 3 8 2 1 .8 0 8 6 9 4 9 5 7 1 .2 5 5 6 5 0 9 24-S 74.9 2 3 .8 3 3 3 3 3 3 1 7 .9 7 8 .0 3 3 3 2 3 7 8 -1 1 .2 9 6 0 4 2 9 6 2 1 .1 4 1 1 0 9 7 6 7 0 .0 5 3 9 9 7 5 7 24-A 74.9 2 3 .8 3 3 3 3 3 3 1 8 .5 8 8 .3 0 6 0 1 8 6 8 -1 1 .3 8 1 0 3 4 5 4 2 1 .1 2 0 8 5 3 4 4 7 0 .0 1 7 5 3 6 1 8 24-B 74.9 2 3 .8 3 3 3 3 3 3 1 9 .1 2 8 .5 4 7 4 2 0 7 3 -1 1 .4 5 3 5 7 1 7 9 2 1 .1 0 3 5 6 5 3 9 6 9 .9 8 6 4 1 7 7 24-C 74.9 2 3 .8 3 3 3 3 3 3 1 9 .1 7 8 .5 6 9 7 7 2 7 8 -1 1 .4 6 0 1 6 3 9 5 2 1 .1 0 1 9 9 4 2 6 6 9 .9 8 3 5 8 9 6 7 24-D 74.9 2 3 .8 3 3 3 3 3 3 19.01 8 .4 9 8 2 4 6 2 4 -1 1 .4 3 8 9 9 5 7 5 2 1 .1 0 7 0 3 9 3 5 6 9 .9 9 2 6 7 0 8 3 Table D.l. The wind chill temperature at each of the test points (Under the Lab Temperature) (Continued) o o V O Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 25-S 74.9 2 3 .8 3 3 3 3 3 3 4 .7 2 2 .1 1 0 0 3 2 7 3 -8 .0 1 2 8 9 7 3 4 2 1 .9 2 3 5 9 2 8 7 1 .4 6 2 4 6 7 0 4 25-A 74.9 2 3 .8 3 3 3 3 3 3 4 .7 2 2 .1 1 0 0 3 2 7 3 -8 .0 1 2 8 9 7 3 4 2 1 .9 2 3 5 9 2 8 7 1 .4 6 2 4 6 7 0 4 25-B 74.9 2 3 .8 3 3 3 3 3 3 4 .7 2 2 .1 1 0 0 3 2 7 3 -8 .0 1 2 8 9 7 3 4 2 1 .9 2 3 5 9 2 8 7 1 .4 6 2 4 6 7 0 4 25-C 74.9 2 3 .8 3 3 3 3 3 3 4 .7 2 2 .1 1 0 0 3 2 7 3 -8 .0 1 2 8 9 7 3 4 2 1 .9 2 3 5 9 2 8 7 1 .4 6 2 4 6 7 0 4 25-D 74.9 2 3 .8 3 3 3 3 3 3 4 .7 2 2 .1 1 0 0 3 2 7 3 -8 .0 1 2 8 9 7 3 4 2 1 .9 2 3 5 9 2 8 7 1 .4 6 2 4 6 7 0 4 26-S 74.9 2 3 .8 3 3 3 3 3 3 1 7 .9 7 8 .0 3 3 3 2 3 7 8 -1 1 .2 9 6 0 4 2 9 6 2 1 .1 4 1 1 0 9 7 6 7 0 .0 5 3 9 9 7 5 7 26-A 74.9 2 3 .8 3 3 3 3 3 3 1 6 .5 6 7 .4 0 2 9 9 6 2 -1 1 .0 8 6 2 8 1 2 2 1 .1 9 1 1 0 2 9 8 7 0 .1 4 3 9 8 5 3 6 26-B 74.9 2 3 .8 3 3 3 3 3 3 1 6 .8 6 7 .5 3 7 1 0 8 4 5 -1 1 .1 3 2 5 4 4 9 6 2 1 .1 8 0 0 7 6 7 8 7 0 .1 2 4 1 3 8 2 1 26-C 74.9 2 3 .8 3 3 3 3 3 3 1 6 .8 6 7 .5 3 7 1 0 8 4 5 -1 1 .1 3 2 5 4 4 9 6 2 1 .1 8 0 0 7 6 7 8 7 0 .1 2 4 1 3 8 2 1 26-D 74.9 2 3 .8 3 3 3 3 3 3 1 6 .5 6 7 .4 0 2 9 9 6 2 -1 1 .0 8 6 2 8 1 2 2 1 .1 9 1 1 0 2 9 8 7 0 .1 4 3 9 8 5 3 6 27-S 74.9 2 3 .8 3 3 3 3 3 3 4 .7 2 2 .1 1 0 0 3 2 7 3 -8 .0 1 2 8 9 7 3 4 2 1 .9 2 3 5 9 2 8 7 1 .4 6 2 4 6 7 0 4 27-A 74.9 2 3 .8 3 3 3 3 3 3 4 .7 2 2 .1 1 0 0 3 2 7 3 -8 .0 1 2 8 9 7 3 4 2 1 .9 2 3 5 9 2 8 7 1 .4 6 2 4 6 7 0 4 27-B 74.9 2 3 .8 3 3 3 3 3 3 4 .7 2 2 .1 1 0 0 3 2 7 3 -8 .0 1 2 8 9 7 3 4 2 1 .9 2 3 5 9 2 8 7 1 .4 6 2 4 6 7 0 4 27-C 74.9 2 3 .8 3 3 3 3 3 3 4 .7 2 2 .1 1 0 0 3 2 7 3 -8 .0 1 2 8 9 7 3 4 2 1 .9 2 3 5 9 2 8 7 1 .4 6 2 4 6 7 0 4 27-D 74.9 2 3 .8 3 3 3 3 3 3 4 .5 2 .0 1 1 6 8 3 7 5 -7 .9 1 1 3 2 4 1 1 4 2 1 .9 4 7 8 0 1 0 9 7 1 .5 0 6 0 4 1 9 6 28-S 74.9 2 3 .8 3 3 3 3 3 3 1 8 .0 2 8 .0 5 5 6 7 5 8 2 -1 1 .3 0 3 1 3 4 9 5 2 1 .1 3 9 4 1 9 5 7 0 .0 5 0 9 5 5 1 1 28-A 74.9 2 3 .8 3 3 3 3 3 3 16.8 7 .5 1 0 2 8 6 -1 1 .1 2 3 3 6 5 2 9 2 1 .1 8 2 2 6 4 6 1 7 0 .1 2 8 0 7 6 2 9 28-B 74.9 2 3 .8 3 3 3 3 3 3 16.8 7 .5 1 0 2 8 6 -1 1 .1 2 3 3 6 5 2 9 2 1 .1 8 2 2 6 4 6 1 7 0 .1 2 8 0 7 6 2 9 28-C 74.9 2 3 .8 3 3 3 3 3 3 1 6 .8 7 .5 1 0 2 8 6 -1 1 .1 2 3 3 6 5 2 9 2 1 .1 8 2 2 6 4 6 1 7 0 .1 2 8 0 7 6 2 9 28-D 74.9 2 3 .8 3 3 3 3 3 3 1 6 .2 5 7 .2 6 4 4 1 3 5 4 -1 1 .0 3 7 4 9 9 5 2 2 1 .2 0 2 7 2 9 2 8 7 0 .1 6 4 9 1 2 7 1 Table D.l. The wind chill temperature at each of the test points (Under the Lab Temperature) (Continued) Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 29-S 74.9 2 3 .8 3 3 3 3 3 3 5 .3 3 2 .3 8 2 7 2 7 6 4 -8 .2 7 8 0 1 5 2 2 4 2 1 .8 6 0 4 0 6 3 7 7 1 .3 4 8 7 3 1 4 7 29-A 74.9 2 3 .8 3 3 3 3 3 3 4 .7 2 2 .1 1 0 0 3 2 7 3 -8 .0 1 2 8 9 7 3 4 2 1 .9 2 3 5 9 2 8 7 1 .4 6 2 4 6 7 0 4 29-B 74.9 2 3 .8 3 3 3 3 3 3 4 .7 2 2 .1 1 0 0 3 2 7 3 -8 .0 1 2 8 9 7 3 4 2 1 .9 2 3 5 9 2 8 7 1 .4 6 2 4 6 7 0 4 29-C 74.9 2 3 .8 3 3 3 3 3 3 4 .7 2 2 .1 1 0 0 3 2 7 3 -8 .0 1 2 8 9 7 3 4 2 1 .9 2 3 5 9 2 8 7 1 .4 6 2 4 6 7 0 4 29-D 74.9 2 3 .8 3 3 3 3 3 3 4 .5 2 .0 1 1 6 8 3 7 5 -7 .9 1 1 3 2 4 1 1 4 2 1 .9 4 7 8 0 1 0 9 7 1 .5 0 6 0 4 1 9 6 30-S 74.9 2 3 .8 3 3 3 3 3 3 1 7 .9 7 8 .0 3 3 3 2 3 7 8 -1 1 .2 9 6 0 4 2 9 6 2 1 .1 4 1 1 0 9 7 6 7 0 .0 5 3 9 9 7 5 7 30-A 74.9 2 3 .8 3 3 3 3 3 3 1 6 .0 2 7 .1 6 1 5 9 4 1 5 -1 1 .0 0 0 6 4 9 1 6 2 1 .2 1 1 5 1 1 9 5 7 0 .1 8 0 7 2 1 5 1 30-B 74.9 2 3 .8 3 3 3 3 3 3 1 6 .7 4 7 .4 8 3 4 6 3 5 5 -1 1 .1 1 4 1 4 9 2 8 2 1 .1 8 4 4 6 1 0 9 7 0 .1 3 2 0 2 9 9 6 30-C 74.9 2 3 .8 3 3 3 3 3 3 1 6 .8 6 7 .5 3 7 1 0 8 4 5 -1 1 .1 3 2 5 4 4 9 6 2 1 .1 8 0 0 7 6 7 8 7 0 .1 2 4 1 3 8 2 1 30-D 74.9 2 3 .8 3 3 3 3 3 3 1 6 .5 6 7 .4 0 2 9 9 6 2 -1 1 .0 8 6 2 8 1 2 2 1 .1 9 1 1 0 2 9 8 7 0 .1 4 3 9 8 5 3 6 31-S 74.9 2 3 .8 3 3 3 3 3 3 5 .3 3 2 .3 8 2 7 2 7 6 4 -8 .2 7 8 0 1 5 2 2 4 2 1 .8 6 0 4 0 6 3 7 7 1 .3 4 8 7 3 1 4 7 31-A 74.9 2 3 .8 3 3 3 3 3 3 4 .5 2 .0 1 1 6 8 3 7 5 -7 .9 1 1 3 2 4 1 1 4 2 1 .9 4 7 8 0 1 0 9 7 1 .5 0 6 0 4 1 9 6 31-B 74.9 2 3 .8 3 3 3 3 3 3 4 .5 2 .0 1 1 6 8 3 7 5 -7 .9 1 1 3 2 4 1 1 4 2 1 .9 4 7 8 0 1 0 9 7 1 .5 0 6 0 4 1 9 6 31-C 74.9 2 3 .8 3 3 3 3 3 3 4 .5 2 .0 1 1 6 8 3 7 5 -7 .9 1 1 3 2 4 1 1 4 2 1 .9 4 7 8 0 1 0 9 7 1 .5 0 6 0 4 1 9 6 31-D 74.9 2 3 .8 3 3 3 3 3 3 4 .5 2 .0 1 1 6 8 3 7 5 -7 .9 1 1 3 2 4 1 1 4 2 1 .9 4 7 8 0 1 0 9 7 1 .5 0 6 0 4 1 9 6 32-S 74.9 2 3 .8 3 3 3 3 3 3 1 8 .0 2 8 .0 5 5 6 7 5 8 2 -1 1 .3 0 3 1 3 4 9 5 2 1 .1 3 9 4 1 9 5 7 0 .0 5 0 9 5 5 1 1 32-A 74.9 2 3 .8 3 3 3 3 3 3 15.61 6 .9 7 8 3 0 7 4 1 -1 0 .9 3 3 5 2 8 6 7 2 1 .2 2 7 5 0 9 7 0 .2 0 9 5 1 6 2 32-B 74.9 2 3 .8 3 3 3 3 3 3 1 5 .5 4 6 .9 4 7 0 1 4 5 5 -1 0 .9 2 1 8 8 1 7 3 2 1 .2 3 0 2 8 4 8 5 7 0 .2 1 4 5 1 2 7 4 32-C 74.9 2 3 .8 3 3 3 3 3 3 15.61 6 .9 7 8 3 0 7 4 1 -1 0 .9 3 3 5 2 8 6 7 2 1 .2 2 7 5 0 9 7 0 .2 0 9 5 1 6 2 32-D 74.9 2 3 .8 3 3 3 3 3 3 1 5 .2 8 6 .8 3 0 7 8 3 9 3 -1 0 .8 7 8 1 3 1 8 2 1 .2 4 0 7 1 1 9 2 7 0 .2 3 3 2 8 1 4 6 Table D. 1. The wind chill temperature at each of the test points (Under the Lab Temperature) (Continued) Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 33-S 74.9 2 3 .8 3 3 3 3 3 3 5 .7 2 .5 4 8 1 3 2 7 5 -8 .4 2 8 3 1 7 0 4 4 2 1 .8 2 4 5 8 4 4 4 7 1 .2 8 4 2 5 1 9 9 33-A 74.9 2 3 .8 3 3 3 3 3 3 4 .5 2 .0 1 1 6 8 3 7 5 -7 .9 1 1 3 2 4 1 1 4 2 1 .9 4 7 8 0 1 0 9 7 1 .5 0 6 0 4 1 9 6 33-B 74.9 2 3 .8 3 3 3 3 3 3 4 .5 2 .0 1 1 6 8 3 7 5 -7 .9 1 1 3 2 4 1 1 4 2 1 .9 4 7 8 0 1 0 9 7 1 .5 0 6 0 4 1 9 6 33-C 74.9 2 3 .8 3 3 3 3 3 3 4 .5 2 .0 1 1 6 8 3 7 5 -7 .9 1 1 3 2 4 1 1 4 2 1 .9 4 7 8 0 1 0 9 7 1 .5 0 6 0 4 1 9 6 33-D 74.9 2 3 .8 3 3 3 3 3 3 4 .5 2 .0 1 1 6 8 3 7 5 -7 .9 1 1 3 2 4 1 1 4 2 1 .9 4 7 8 0 1 0 9 7 1 .5 0 6 0 4 1 9 6 34-S 74.9 2 3 .8 3 3 3 3 3 3 1 8 .0 2 8 .0 5 5 6 7 5 8 2 -1 1 .3 0 3 1 3 4 9 5 2 1 .1 3 9 4 1 9 5 7 0 .0 5 0 9 5 5 1 1 34-A 74.9 2 3 .8 3 3 3 3 3 3 15.61 6 .9 7 8 3 0 7 4 1 -1 0 .9 3 3 5 2 8 6 7 2 1 .2 2 7 5 0 9 7 0 .2 0 9 5 1 6 2 34-B 74.9 2 3 .8 3 3 3 3 3 3 15 .5 8 6 .9 6 4 8 9 6 1 8 -1 0 .9 2 8 5 4 3 9 1 2 1 .2 2 8 6 9 7 0 4 7 0 .2 1 1 6 5 4 6 6 34-C 74.9 2 3 .8 3 3 3 3 3 3 1 5 .5 4 6 .9 4 7 0 1 4 5 5 -1 0 .9 2 1 8 8 1 7 3 2 1 .2 3 0 2 8 4 8 5 7 0 .2 1 4 5 1 2 7 4 34-D 74.9 2 3 .8 3 3 3 3 3 3 15 .0 8 6 .7 4 1 3 7 5 7 7 -1 0 .8 4 3 9 4 3 6 1 2 1 .2 4 8 8 6 0 1 1 7 0 .2 4 7 9 4 8 1 9 35-S 74.9 2 3 .8 3 3 3 3 3 3 5 .5 2 2 .4 6 7 6 6 5 4 -8 .3 5 6 1 1 5 0 3 8 2 1 .8 4 1 7 9 2 5 8 7 1 .3 1 5 2 2 6 6 5 35-A 74.9 2 3 .8 3 3 3 3 3 3 4 .5 2 .0 1 1 6 8 3 7 5 -7 .9 1 1 3 2 4 1 1 4 2 1 .9 4 7 8 0 1 0 9 7 1 .5 0 6 0 4 1 9 6 35-B 74.9 2 3 .8 3 3 3 3 3 3 4 .5 2 .0 1 1 6 8 3 7 5 -7 .9 1 1 3 2 4 1 1 4 2 1 .9 4 7 8 0 1 0 9 7 1 .5 0 6 0 4 1 9 6 35-C 74.9 2 3 .8 3 3 3 3 3 3 4 .5 2 .0 1 1 6 8 3 7 5 -7 .9 1 1 3 2 4 1 1 4 2 1 .9 4 7 8 0 1 0 9 7 1 .5 0 6 0 4 1 9 6 35-D 74.9 2 3 .8 3 3 3 3 3 3 4 .5 2 .0 1 1 6 8 3 7 5 -7 .9 1 1 3 2 4 1 1 4 2 1 .9 4 7 8 0 1 0 9 7 1 .5 0 6 0 4 1 9 6 36-S 74.9 2 3 .8 3 3 3 3 3 3 1 7 .7 4 7 .9 3 0 5 0 4 3 8 -1 1 .2 6 3 1 2 4 4 4 2 1 .1 4 8 9 5 5 3 4 7 0 .0 6 8 1 1 9 6 1 3 6-A 74.9 2 3 .8 3 3 3 3 3 3 15.61 6 .9 7 8 3 0 7 4 1 -1 0 .9 3 3 5 2 8 6 7 2 1 .2 2 7 5 0 9 7 0 .2 0 9 5 1 6 2 36-B 74.9 2 3 .8 3 3 3 3 3 3 15.61 6 .9 7 8 3 0 7 4 1 -1 0 .9 3 3 5 2 8 6 7 2 1 .2 2 7 5 0 9 7 0 .2 0 9 5 1 6 2 36-C 74.9 2 3 .8 3 3 3 3 3 3 15.61 6 .9 7 8 3 0 7 4 1 -1 0 .9 3 3 5 2 8 6 7 2 1 .2 2 7 5 0 9 7 0 .2 0 9 5 1 6 2 36-D 74.9 2 3 .8 3 3 3 3 3 3 15.01 6 .7 1 0 0 8 2 9 1 -1 0 .8 3 1 8 6 6 0 4 2 1 .2 5 1 7 3 8 5 9 7 0 .2 5 3 1 2 9 4 7 Table D.l. The wind chill temperature at each of the test points (Under the Lab Temperature) (Continued) V O ts ) Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 37-S 74.9 2 3 .8 3 3 3 3 3 3 5 .1 3 2 .2 9 3 3 1 9 4 8 -8 .1 9 3 5 9 8 5 3 1 2 1 .8 8 0 5 2 5 6 8 7 1 .3 8 4 9 4 6 2 3 37-A 74.9 2 3 .8 3 3 3 3 3 3 6 .5 3 2 .9 1 9 1 7 6 6 4 -8 .7 4 0 9 4 9 6 6 2 1 .7 5 0 0 7 3 6 6 7 1 .1 5 0 1 3 2 6 37-B 74.9 2 3 .8 3 3 3 3 3 3 6 .5 3 2 .9 1 9 1 7 6 6 4 -8 .7 4 0 9 4 9 6 6 2 1 .7 5 0 0 7 3 6 6 7 1 .1 5 0 1 3 2 6 37-C 74.9 2 3 .8 3 3 3 3 3 3 6 .5 3 2 .9 1 9 1 7 6 6 4 -8 .7 4 0 9 4 9 6 6 2 1 .7 5 0 0 7 3 6 6 7 1 .1 5 0 1 3 2 6 37-D 74.9 2 3 .8 3 3 3 3 3 3 6 .5 3 2 .9 1 9 1 7 6 6 4 -8 .7 4 0 9 4 9 6 6 2 1 .7 5 0 0 7 3 6 6 7 1 .1 5 0 1 3 2 6 38-S 74.9 2 3 .8 3 3 3 3 3 3 1 8 .6 3 8 .3 2 8 3 7 0 7 3 -1 1 .3 8 7 8 5 5 6 3 2 1 .1 1 9 2 2 7 7 4 7 0 .0 1 4 6 0 9 9 4 3 8-A 74.9 2 3 .8 3 3 3 3 3 3 2 4 .6 8 1 1 .0 3 2 9 6 7 8 -1 2 .0 7 5 1 0 5 1 5 2 0 .9 5 5 4 3 3 2 7 6 9 .7 1 9 7 7 9 8 9 38-B 74.9 2 3 .8 3 3 3 3 3 3 2 5 .0 9 1 1 .2 1 6 2 5 4 5 -1 2 .1 1 3 1 5 2 1 6 2 0 .9 4 6 3 6 5 4 6 9 .7 0 3 4 5 7 7 3 38-C 74.9 2 3 .8 3 3 3 3 3 3 2 5 .0 9 1 1 .2 1 6 2 5 4 5 -1 2 .1 1 3 1 5 2 1 6 2 0 .9 4 6 3 6 5 4 6 9 .7 0 3 4 5 7 7 3 38-D 74.9 2 3 .8 3 3 3 3 3 3 2 4 .6 8 1 1 .0 3 2 9 6 7 8 -1 2 .0 7 5 1 0 5 1 5 2 0 .9 5 5 4 3 3 2 7 6 9 .7 1 9 7 7 9 8 9 39-S 74.9 2 3 .8 3 3 3 3 3 3 4 .9 3 2 .2 0 3 9 1 1 3 1 -8 .1 0 6 7 8 7 3 9 8 2 1 .9 0 1 2 1 5 6 7 7 1 .4 2 2 1 8 8 2 1 39-A 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 39-B 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 39-C 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 39-D 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 40-S 74.9 2 3 .8 3 3 3 3 3 3 1 8 .5 8 8 .3 0 6 0 1 8 6 8 -1 1 .3 8 1 0 3 4 5 4 2 1 .1 2 0 8 5 3 4 4 7 0 .0 1 7 5 3 6 1 8 40-A 74.9 2 3 .8 3 3 3 3 3 3 2 3 .8 4 1 0 .6 5 7 4 5 3 5 -1 1 .9 9 4 1 5 1 6 2 0 .9 7 4 7 2 7 2 6 9 .7 5 4 5 0 8 9 6 40-B 74.9 2 3 .8 3 3 3 3 3 3 2 4 .2 7 1 0 .8 4 9 6 8 1 -1 2 .0 3 6 1 0 4 9 1 2 0 .9 6 4 7 2 8 3 3 6 9 .7 3 6 5 1 0 9 9 40-C 74.9 2 3 .8 3 3 3 3 3 3 2 4 .2 8 1 0 .8 5 4 1 5 1 4 -1 2 .0 3 7 0 6 7 6 7 2 0 .9 6 4 4 9 8 8 7 6 9 .7 3 6 0 9 7 9 7 40-D 74.9 2 3 .8 3 3 3 3 3 3 2 4 .2 7 1 0 .8 4 9 6 8 1 -1 2 .0 3 6 1 0 4 9 1 2 0 .9 6 4 7 2 8 3 3 6 9 .7 3 6 5 1 0 9 9 Table D. 1. The wind chill temperature at each o f the test points (Under the Lab Temperature) (Continued) V O Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 41-S 74.9 2 3 .8 3 3 3 3 3 3 4 .9 3 2 .2 0 3 9 1 1 3 1 -8 .1 0 6 7 8 7 3 9 8 2 1 .9 0 1 2 1 5 6 7 7 1 .4 2 2 1 8 8 2 1 41-A 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 41-B 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 41-C 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 41-D 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 42-S 74.9 2 3 .8 3 3 3 3 3 3 1 8 .6 3 8 .3 2 8 3 7 0 7 3 -1 1 .3 8 7 8 5 5 6 3 2 1 .1 1 9 2 2 7 7 4 7 0 .0 1 4 6 0 9 9 4 42-A 74.9 2 3 .8 3 3 3 3 3 3 23.41 1 0 .4 6 5 2 2 5 9 -1 1 .9 5 1 0 9 3 8 6 2 0 .9 8 4 9 8 9 3 6 9 .7 7 2 9 8 0 7 3 42-B 74.9 2 3 .8 3 3 3 3 3 3 2 3 .8 4 1 0 .6 5 7 4 5 3 5 -1 1 .9 9 4 1 5 1 6 2 0 .9 7 4 7 2 7 2 6 9 .7 5 4 5 0 8 9 6 42-C 74.9 2 3 .8 3 3 3 3 3 3 2 4 .2 7 1 0 .8 4 9 6 8 1 -1 2 .0 3 6 1 0 4 9 1 2 0 .9 6 4 7 2 8 3 3 6 9 .7 3 6 5 1 0 9 9 42-D 74.9 2 3 .8 3 3 3 3 3 3 23.41 1 0 .4 6 5 2 2 5 9 -1 1 .9 5 1 0 9 3 8 6 2 0 .9 8 4 9 8 9 3 6 9 .7 7 2 9 8 0 7 3 43-S 74.9 2 3 .8 3 3 3 3 3 3 4 .9 3 2 .2 0 3 9 1 1 3 1 -8 .1 0 6 7 8 7 3 9 8 2 1 .9 0 1 2 1 5 6 7 7 1 .4 2 2 1 8 8 2 1 43-A 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 43-B 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 43-C 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 43-D 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 44-S 74.9 2 3 .8 3 3 3 3 3 3 1 8 .6 9 8 .3 5 5 1 9 3 1 8 -1 1 .3 9 6 0 1 2 4 1 2 1 .1 1 7 2 8 3 7 1 7 0 .0 1 1 1 1 0 6 8 44-A 74.9 2 3 .8 3 3 3 3 3 3 2 4 .2 7 1 0 .8 4 9 6 8 1 -1 2 .0 3 6 1 0 4 9 1 2 0 .9 6 4 7 2 8 3 3 6 9 .7 3 6 5 1 0 9 9 44-B 74.9 2 3 .8 3 3 3 3 3 3 2 4 .6 8 1 1 .0 3 2 9 6 7 8 -1 2 .0 7 5 1 0 5 1 5 2 0 .9 5 5 4 3 3 2 7 6 9 .7 1 9 7 7 9 8 9 44-C 74.9 2 3 .8 3 3 3 3 3 3 2 4 .6 8 1 1 .0 3 2 9 6 7 8 -1 2 .0 7 5 1 0 5 1 5 2 0 .9 5 5 4 3 3 2 7 6 9 .7 1 9 7 7 9 8 9 44-D 74.9 2 3 .8 3 3 3 3 3 3 2 4 .2 7 1 0 .8 4 9 6 8 1 -1 2 .0 3 6 1 0 4 9 1 2 0 .9 6 4 7 2 8 3 3 6 9 .7 3 6 5 1 0 9 9 Table D.l. The wind chill temperature at each o f the test points (Under the Lab Temperature) (Continued) 'O Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 45-S 74.9 2 3 .8 3 3 3 3 3 3 5 .1 3 2 .2 9 3 3 1 9 4 8 -8 .1 9 3 5 9 8 5 3 1 2 1 .8 8 0 5 2 5 6 8 7 1 .3 8 4 9 4 6 2 3 45-A 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 45-B 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 45-C 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 45-D 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 46-S 74.9 2 3 .8 3 3 3 3 3 3 1 8 .6 3 8 .3 2 8 3 7 0 7 3 -1 1 .3 8 7 8 5 5 6 3 2 1 .1 1 9 2 2 7 7 4 7 0 .0 1 4 6 0 9 9 4 46-A 74.9 2 3 .8 3 3 3 3 3 3 2 3 .8 4 1 0 .6 5 7 4 5 3 5 -1 1 .9 9 4 1 5 1 6 2 0 .9 7 4 7 2 7 2 6 9 .7 5 4 5 0 8 9 6 46-B 74.9 2 3 .8 3 3 3 3 3 3 2 3 .8 4 1 0 .6 5 7 4 5 3 5 -1 1 .9 9 4 1 5 1 6 2 0 .9 7 4 7 2 7 2 6 9 .7 5 4 5 0 8 9 6 46-C 74.9 2 3 .8 3 3 3 3 3 3 2 4 .2 7 1 0 .8 4 9 6 8 1 -1 2 .0 3 6 1 0 4 9 1 2 0 .9 6 4 7 2 8 3 3 6 9 .7 3 6 5 1 0 9 9 46-D 74.9 2 3 .8 3 3 3 3 3 3 2 3 .8 4 1 0 .6 5 7 4 5 3 5 -1 1 .9 9 4 1 5 1 6 2 0 .9 7 4 7 2 7 2 6 9 .7 5 4 5 0 8 9 6 47-S 74.9 2 3 .8 3 3 3 3 3 3 4 .9 3 2 .2 0 3 9 1 1 3 1 -8 .1 0 6 7 8 7 3 9 8 2 1 .9 0 1 2 1 5 6 7 7 1 .4 2 2 1 8 8 2 1 47-A 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 47-B 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 47-C 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 47-D 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 48-S 74.9 2 3 .8 3 3 3 3 3 3 1 8 .6 3 8 .3 2 8 3 7 0 7 3 -1 1 .3 8 7 8 5 5 6 3 2 1 .1 1 9 2 2 7 7 4 7 0 .0 1 4 6 0 9 9 4 48-A 74.9 2 3 .8 3 3 3 3 3 3 2 3 .6 3 1 0 .5 6 3 5 7 4 9 -1 1 .9 7 3 2 6 3 2 4 2 0 .9 7 9 7 0 5 5 9 6 9 .7 6 3 4 7 0 0 7 48-B 74.9 2 3 .8 3 3 3 3 3 3 2 3 .6 3 1 0 .5 6 3 5 7 4 9 -1 1 .9 7 3 2 6 3 2 4 2 0 .9 7 9 7 0 5 5 9 6 9 .7 6 3 4 7 0 0 7 48-C 74.9 2 3 .8 3 3 3 3 3 3 2 3 .8 4 1 0 .6 5 7 4 5 3 5 -1 1 .9 9 4 1 5 1 6 2 0 .9 7 4 7 2 7 2 6 9 .7 5 4 5 0 8 9 6 48-D 74.9 2 3 .8 3 3 3 3 3 3 2 3 .6 3 1 0 .5 6 3 5 7 4 9 -1 1 .9 7 3 2 6 3 2 4 2 0 .9 7 9 7 0 5 5 9 6 9 .7 6 3 4 7 0 0 7 Table D.l. The wind chill temperature at each o f the test points (Under the Lab Temperature) (Continued) vo L /t Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 49-S 74.9 2 3 .8 3 3 3 3 3 3 4 .7 2 2 .1 1 0 0 3 2 7 3 -8 .0 1 2 8 9 7 3 4 2 1 .9 2 3 5 9 2 8 7 1 .4 6 2 4 6 7 0 4 49-A 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 49-B 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 49-C 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 49-D 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 50-S 74.9 2 3 .8 3 3 3 3 3 3 1 8 .6 3 8 .3 2 8 3 7 0 7 3 -1 1 .3 8 7 8 5 5 6 3 2 1 .1 1 9 2 2 7 7 4 7 0 .0 1 4 6 0 9 9 4 50-A 74.9 2 3 .8 3 3 3 3 3 3 2 5 .0 9 1 1 .2 1 6 2 5 4 5 -1 2 .1 1 3 1 5 2 1 6 2 0 .9 4 6 3 6 5 4 6 9 .7 0 3 4 5 7 7 3 50-B 74.9 2 3 .8 3 3 3 3 3 3 2 5 .6 9 1 1 .4 8 4 4 7 9 -1 2 .1 6 7 1 6 0 6 9 2 0 .9 3 3 4 9 3 3 7 6 9 .6 8 0 2 8 8 0 6 50-C 74.9 2 3 .8 3 3 3 3 3 3 2 5 .0 9 1 1 .2 1 6 2 5 4 5 -1 2 .1 1 3 1 5 2 1 6 2 0 .9 4 6 3 6 5 4 6 9 .7 0 3 4 5 7 7 3 50-D 74.9 2 3 .8 3 3 3 3 3 3 2 4 .6 8 1 1 .0 3 2 9 6 7 8 -1 2 .0 7 5 1 0 5 1 5 2 0 .9 5 5 4 3 3 2 7 6 9 .7 1 9 7 7 9 8 9 51-S 74.9 2 3 .8 3 3 3 3 3 3 4 .9 3 2 .2 0 3 9 1 1 3 1 -8 .1 0 6 7 8 7 3 9 8 2 1 .9 0 1 2 1 5 6 7 7 1 .4 2 2 1 8 8 2 1 51-A 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 51-B 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 51-C 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 51-D 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 52-S 74.9 2 3 .8 3 3 3 3 3 3 1 8 .6 3 8 .3 2 8 3 7 0 7 3 -1 1 .3 8 7 8 5 5 6 3 2 1 .1 1 9 2 2 7 7 4 7 0 .0 1 4 6 0 9 9 4 52-A 74.9 2 3 .8 3 3 3 3 3 3 2 4 .6 8 1 1 .0 3 2 9 6 7 8 -1 2 .0 7 5 1 0 5 1 5 2 0 .9 5 5 4 3 3 2 7 6 9 .7 1 9 7 7 9 8 9 52-B 74.9 2 3 .8 3 3 3 3 3 3 2 4 .6 8 1 1 .0 3 2 9 6 7 8 -1 2 .0 7 5 1 0 5 1 5 2 0 .9 5 5 4 3 3 2 7 6 9 .7 1 9 7 7 9 8 9 52-C 74.9 2 3 .8 3 3 3 3 3 3 2 4 .6 8 1 1 .0 3 2 9 6 7 8 -1 2 .0 7 5 1 0 5 1 5 2 0 .9 5 5 4 3 3 2 7 6 9 .7 1 9 7 7 9 8 9 52-D 74.9 2 3 .8 3 3 3 3 3 3 2 4 .0 6 1 0 .7 5 5 8 0 2 5 -1 2 .0 1 5 7 5 2 1 9 2 0 .9 6 9 5 7 9 0 6 6 9 .7 4 5 2 4 2 3 1 Table D.l. The wind chill temperature at each o f the test points (Under the Lab Temperature) (Continued) V O O n Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 53-S 74.9 2 3 .8 3 3 3 3 3 3 5 .1 3 2 .2 9 3 3 1 9 4 8 -8 .1 9 3 5 9 8 5 3 1 2 1 .8 8 0 5 2 5 6 8 7 1 .3 8 4 9 4 6 2 3 53-A 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 53-B 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 53-C 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 53-D 74.9 2 3 .8 3 3 3 3 3 3 6 .3 7 2 .8 4 7 6 5 0 1 1 -8 .6 8 3 1 0 0 7 5 2 1 .7 6 3 8 6 0 9 9 7 1 .1 7 4 9 4 9 7 8 54-S 74.9 2 3 .8 3 3 3 3 3 3 1 8 .6 3 8 .3 2 8 3 7 0 7 3 -1 1 .3 8 7 8 5 5 6 3 2 1 .1 1 9 2 2 7 7 4 7 0 .0 1 4 6 0 9 9 4 54-A 74.9 2 3 .8 3 3 3 3 3 3 2 3 .8 4 1 0 .6 5 7 4 5 3 5 -1 1 .9 9 4 1 5 1 6 2 0 .9 7 4 7 2 7 2 6 9 .7 5 4 5 0 8 9 6 54-B 74.9 2 3 .8 3 3 3 3 3 3 2 4 .0 6 1 0 .7 5 5 8 0 2 5 -1 2 .0 1 5 7 5 2 1 9 2 0 .9 6 9 5 7 9 0 6 6 9 .7 4 5 2 4 2 3 1 54-C 74.9 2 3 .8 3 3 3 3 3 3 2 4 .0 6 1 0 .7 5 5 8 0 2 5 -1 2 .0 1 5 7 5 2 1 9 2 0 .9 6 9 5 7 9 0 6 6 9 .7 4 5 2 4 2 3 1 54-D 74.9 2 3 .8 3 3 3 3 3 3 2 3 .6 3 1 0 .5 6 3 5 7 4 9 -1 1 .9 7 3 2 6 3 2 4 2 0 .9 7 9 7 0 5 5 9 6 9 .7 6 3 4 7 0 0 7 55-S 69 2 0 .5 5 5 5 5 5 6 4 .9 3 2 .2 0 3 9 1 1 3 1 -1 1 .5 4 0 9 6 8 2 4 1 8 .1 8 3 2 4 5 4 2 6 4 .7 2 9 8 4 1 7 5 55-A 69 2 0 .5 5 5 5 5 5 6 6 .6 8 2 .9 8 6 2 3 2 7 7 -1 2 .4 7 4 2 0 1 1 9 1 7 .9 9 1 4 1 4 2 6 4 .3 8 4 5 4 5 5 6 55-B 69 2 0 .5 5 5 5 5 5 6 6 .6 8 2 .9 8 6 2 3 2 7 7 -1 2 .4 7 4 2 0 1 1 9 1 7 .9 9 1 4 1 4 2 6 4 .3 8 4 5 4 5 5 6 55-C 69 2 0 .5 5 5 5 5 5 6 6 .6 8 2 .9 8 6 2 3 2 7 7 -1 2 .4 7 4 2 0 1 1 9 1 7 .9 9 1 4 1 4 2 6 4 .3 8 4 5 4 5 5 6 55-D 69 2 0 .5 5 5 5 5 5 6 6 .6 8 2 .9 8 6 2 3 2 7 7 -1 2 .4 7 4 2 0 1 1 9 1 7 .9 9 1 4 1 4 2 6 4 .3 8 4 5 4 5 5 6 56-S 69 2 0 .5 5 5 5 5 5 6 1 8 .6 3 8 .3 2 8 3 7 0 7 3 -1 5 .9 9 5 2 6 6 9 3 1 7 .2 6 7 6 3 9 5 8 6 3 .0 8 1 7 5 1 2 4 56-A 69 2 0 .5 5 5 5 5 5 6 25.49 1 1 .3 9 5 0 7 0 8 -1 7 .0 2 9 0 8 6 8 8 1 7 .0 5 5 1 3 2 1 4 6 2 .6 9 9 2 3 7 8 5 56-B 69 2 0 .5 5 5 5 5 5 6 25.89 1 1 .5 7 3 8 8 7 2 -1 7 .0 7 7 0 8 8 3 7 1 7 .0 4 5 2 6 5 1 7 6 2 .6 8 1 4 7 7 3 56-C 69 2 0 .5 5 5 5 5 5 6 26.28 1 1 .7 4 8 2 3 3 1 -1 7 .1 2 2 7 8 5 8 5 1 7 .0 3 5 8 7 1 8 6 2 .6 6 4 5 6 9 2 3 56-D 69 2 0 .5 5 5 5 5 5 6 25.89 1 1 .5 7 3 8 8 7 2 -1 7 .0 7 7 0 8 8 3 7 1 7 .0 4 5 2 6 5 1 7 6 2 .6 8 1 4 7 7 3 Table D. 1. The wind chill temperature at each of the test points (Under the Lab Temperature) (Continued) v © < i Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 57-S 69 2 0 .5 5 5 5 5 5 6 4.93 2 .2 0 3 9 1 1 3 1 -1 1 .5 4 0 9 6 8 2 4 1 8 .1 8 3 2 4 5 4 2 6 4 .7 2 9 8 4 1 7 5 57-A 69 2 0 .5 5 5 5 5 5 6 6.37 2 .8 4 7 6 5 0 1 1 -1 2 .3 2 3 3 5 7 2 8 1 8 .0 2 2 4 2 1 6 4 .4 4 0 3 5 7 8 1 57-B 69 2 0 .5 5 5 5 5 5 6 6.37 2 .8 4 7 6 5 0 1 1 -1 2 .3 2 3 3 5 7 2 8 1 8 .0 2 2 4 2 1 6 4 .4 4 0 3 5 7 8 1 57-C 69 2 0 .5 5 5 5 5 5 6 6.37 2 .8 4 7 6 5 0 1 1 -1 2 .3 2 3 3 5 7 2 8 1 8 .0 2 2 4 2 1 6 4 .4 4 0 3 5 7 8 1 57-D 69 2 0 .5 5 5 5 5 5 6 6.37 2 .8 4 7 6 5 0 1 1 -1 2 .3 2 3 3 5 7 2 8 1 8 .0 2 2 4 2 1 6 4 .4 4 0 3 5 7 8 1 58-S 69 2 0 .5 5 5 5 5 5 6 18.58 8 .3 0 6 0 1 8 6 8 -1 5 .9 8 6 0 0 6 7 8 1 7 .2 6 9 5 4 3 0 5 6 3 .0 8 5 1 7 7 4 9 5 8-A 69 2 0 .5 5 5 5 5 5 6 24.68 1 1 .0 3 2 9 6 7 8 -1 6 .9 2 8 2 6 0 2 2 1 7 .0 7 5 8 5 7 6 2 6 2 .7 3 6 5 4 3 7 2 58-B 69 2 0 .5 5 5 5 5 5 6 25.49 1 1 .3 9 5 0 7 0 8 -1 7 .0 2 9 0 8 6 8 8 1 7 .0 5 5 1 3 2 1 4 6 2 .6 9 9 2 3 7 8 5 58-C 69 2 0 .5 5 5 5 5 5 6 25.49 1 1 .3 9 5 0 7 0 8 -1 7 .0 2 9 0 8 6 8 8 1 7 .0 5 5 1 3 2 1 4 6 2 .6 9 9 2 3 7 8 5 58-D 69 2 0 .5 5 5 5 5 5 6 25.09 1 1 .2 1 6 2 5 4 5 -1 6 .9 7 9 9 1 1 9 1 1 7 .0 6 5 2 4 0 3 3 6 2 .7 1 7 4 3 2 5 9 59-S 69 2 0 .5 5 5 5 5 5 6 4.93 2 .2 0 3 9 1 1 3 1 -1 1 .5 4 0 9 6 8 2 4 1 8 .1 8 3 2 4 5 4 2 6 4 .7 2 9 8 4 1 7 5 5 9-A 69 2 0 .5 5 5 5 5 5 6 6.53 2 .9 1 9 1 7 6 6 4 -1 2 .4 0 1 8 9 1 5 6 1 8 .0 0 6 2 7 7 8 5 6 4 .4 1 1 3 0 0 1 2 59-B 69 2 0 .5 5 5 5 5 5 6 6.53 2 .9 1 9 1 7 6 6 4 -1 2 .4 0 1 8 9 1 5 6 1 8 .0 0 6 2 7 7 8 5 6 4 .4 1 1 3 0 0 1 2 59-C 69 2 0 .5 5 5 5 5 5 6 6.53 2 .9 1 9 1 7 6 6 4 -1 2 .4 0 1 8 9 1 5 6 1 8 .0 0 6 2 7 7 8 5 6 4 .4 1 1 3 0 0 1 2 59-D 69 2 0 .5 5 5 5 5 5 6 6.53 2 .9 1 9 1 7 6 6 4 -1 2 .4 0 1 8 9 1 5 6 1 8 .0 0 6 2 7 7 8 5 6 4 .4 1 1 3 0 0 1 2 60-S 69 2 0 .5 5 5 5 5 5 6 18.58 8 .3 0 6 0 1 8 6 8 -1 5 .9 8 6 0 0 6 7 8 1 7 .2 6 9 5 4 3 0 5 6 3 .0 8 5 1 7 7 4 9 60-A 69 2 0 .5 5 5 5 5 5 6 25.49 1 1 .3 9 5 0 7 0 8 -1 7 .0 2 9 0 8 6 8 8 1 7 .0 5 5 1 3 2 1 4 6 2 .6 9 9 2 3 7 8 5 60-B 69 2 0 .5 5 5 5 5 5 6 25.89 1 1 .5 7 3 8 8 7 2 -1 7 .0 7 7 0 8 8 3 7 1 7 .0 4 5 2 6 5 1 7 6 2 .6 8 1 4 7 7 3 60-C 69 2 0 .5 5 5 5 5 5 6 25.89 1 1 .5 7 3 8 8 7 2 -1 7 .0 7 7 0 8 8 3 7 1 7 .0 4 5 2 6 5 1 7 6 2 .6 8 1 4 7 7 3 60-D 69 2 0 .5 5 5 5 5 5 6 25.09 1 1 .2 1 6 2 5 4 5 -1 6 .9 7 9 9 1 1 9 1 1 7 .0 6 5 2 4 0 3 3 6 2 .7 1 7 4 3 2 5 9 Table D. 1. The wind chill temperature at each o f the test points (Under the Lab Temperature) V O 00 The Table D.2 given below uses the mean Temperature for Taipei in July. I then refereed to the psychometric chart mentioned in Chapter 3.5 to determine the suggested design strategy, based on the calculated wind chill temperature. It was observed that we still need natural ventilation after all the tests. It can be inferred that in July, nighttime flushing and a closed environment and a closed environment during the day are advised. It may still be necessary to supply a backup air conditioning system. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. Test Point Temp (°F) Temp(°C) Wind V (mph) Wind V (m/s) Wind chill factor chill temp (°C) chill temp (°F ) Design Strategies by climate 1-S 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 1-A 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 1-B 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 1-C 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 1-D 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 2-S 84.2 29 19.12 8.547420733 -4.15400209 27.7953394 82.03161091 NATURAL VENTILATION 2-A 84.2 29 18.58 8.306018683 -4.122349471 27.8045187 82.04813358 NATURAL VENTILATION 2-B 84.2 29 19.12 8.547420733 -4.15400209 27.7953394 82.03161091 NATURAL VENTILATION 2-C 84.2 29 19.12 8.547420733 -4.15400209 27.7953394 82.03161091 NATURAL VENTILATION 2-D 84.2 29 19.01 8.498246242 -4.147641635 27.7971839 82.03493107 NATURAL VENTILATION 3-S 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 3-A 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 3-B 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 3-C 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 3-D 84.2 29 4.93 2.203911308 -2.693587083 28.2188597 82.79394754 NATURAL VENTILATION 4-S 84.2 29 19.38 8.66365135 -4.168862038 27.79103 82.02385402 NATURAL VENTILATION 4-A 84.2 29 19.12 8.547420733 -4.15400209 27.7953394 82.03161091 NATURAL VENTILATION 4-B 84.2 29 19.17 8.569772775 -4.156878669 27.7945052 82.03010933 NATURAL VENTILATION 4-C 84.2 29 19.22 8.592124817 -4.159746212 27.7936736 82.02861248 NATURAL VENTILATION 4-D 84.2 29 19.12 8.547420733 -4.15400209 27.7953394 82.03161091 NATURAL VENTILATION Table D.2. The wind chill temperature at each of the test points (Under the mean Temperature in July in Taipei) 200 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 5-S 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 5-A 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 5-B 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 5-C 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 5-D 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 6 -S 84.2 29 19.17 8.569772775 -4.156878669 27.7945052 82.03010933 NATURAL VENTILATION 6 -A 84.2 29 19.01 8.498246242 -4.147641635 27.7971839 82.03493107 NATURAL VENTILATION 6 -B 84.2 29 19.21 8.587654408 -4.159173425 27.7938397 82.02891147 NATURAL VENTILATION 6 -C 84.2 29 19.38 8.66365135 -4.168862038 27.79103 82.02385402 NATURAL VENTILATION 6 -D 84.2 29 19.38 8.66365135 -4.168862038 27.79103 82.02385402 NATURAL VENTILATION 7-S 84.2 29 5.52 2.4676654 -2.802384598 28.1873085 82.73715524 NATURAL VENTILATION 1-A 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 7-B 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 1-C 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 7-D 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 8 -S 84.2 29 19.54 8.735177883 -4.177886835 27.7884128 82.01914307 NATURAL VENTILATION 8 -A 84.2 29 16.37 7.318058442 -3.980735342 27.8455868 82.12205615 NATURAL VENTILATION 8 -B 84.2 29 16.62 7.42981865 -3.997799462 27.8406382 82.11314868 NATURAL VENTILATION 8 -C 84.2 29 16.31 7.291235992 -3.976597602 27.8467867 82.12421605 NATURAL VENTILATION 8 -D 84.2 29 16.25 7.264413542 -3.972443281 27.8479914 82.12638461 NATURAL VENTILATION Table D.2. The wind chill temperature at each of the test points (Under the mean Temperature in July in Taipei)(Continued) 201 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 9-S 84.2 29 5.52 2.4676654 -2.802384598 28.1873085 82.73715524 NATURAL VENTILATION 9-A 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 9-B 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 9-C 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 9-D 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 10-S 84.2 29 19.43 8.686003392 -4.171692013 27.7902093 82.02237677 NATURAL VENTILATION 10-A 84.2 29 16.25 7.264413542 -3.972443281 27.8479914 82.12638461 NATURAL VENTILATION 10-B 84.2 29 16.56 7.4029962 -3.993729834 27.8418183 82.11527303 NATURAL VENTILATION 10-C 84.2 29 16.62 7.42981865 -3.997799462 27.8406382 82.11314868 NATURAL VENTILATION 10-D 84.2 29 16.31 7.291235992 -3.976597602 27.8467867 82.12421605 NATURAL VENTILATION 11-S 84.2 29 5.52 2.4676654 -2.802384598 28.1873085 82.73715524 NATURAL VENTILATION 11-A 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 11-B 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 11-C 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 11-D 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 12-S 84.2 29 19.54 8.735177883 -4.177886835 27.7884128 82.01914307 NATURAL VENTILATION 12-A 84.2 29 16.25 7.264413542 -3.972443281 27.8479914 82.12638461 NATURAL VENTILATION 12-B 84.2 29 16.56 7.4029962 -3.993729834 27.8418183 82.11527303 NATURAL VENTILATION 12-C 84.2 29 16.56 7.4029962 -3.993729834 27.8418183 82.11527303 NATURAL VENTILATION 12-D 84.2 29 16.25 7.264413542 -3.972443281 27.8479914 82.12638461 NATURAL VENTILATION Table D.2. The wind chill temperature at each o f the test points (Under the mean Temperature in July in Taipei)(Continued) 202 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 13-S 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 13-A 84.2 29 4.27 1.908864358 -2.560308781 28.2575105 82.86351882 NATURAL VENTILATION 13-B 84.2 29 4.27 1.908864358 -2.560308781 28.2575105 82.86351882 NATURAL VENTILATION 13-C 84.2 29 4.27 1.908864358 -2.560308781 28.2575105 82.86351882 NATURAL VENTILATION 13-D 84.2 29 4.27 1.908864358 -2.560308781 28.2575105 82.86351882 NATURAL VENTILATION 14-S 84.2 29 19.59 8.757529925 -4.180688593 27.7876003 82.01768055 NATURAL VENTILATION 14-A 84.2 29 14.94 6.67879005 -3.877416532 27.8755492 82.17598857 NATURAL VENTILATION 14-B 84.2 29 14.74 6.589381883 -3.86214328 27.8799784 82.18396121 NATURAL VENTILATION 14-C 84.2 29 14.39 6.432917592 -3.834896434 27.88788 82.19818406 NATURAL VENTILATION 14-D 84.2 29 13.52 6.043992067 -3.764163301 27.9083926 82.23510676 NATURAL VENTILATION 15-S 84.2 29 5.52 2.4676654 -2.802384598 28.1873085 82.73715524 NATURAL VENTILATION 15-A 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 15-B 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 15-C 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 15-D 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 16-S 84.2 29 19.38 8.66365135 -4.168862038 27.79103 82.02385402 NATURAL VENTILATION 16-A 84.2 29 14.32 6.401624733 -3.829366153 27.8894838 82.20107087 NATURAL VENTILATION 16-B 84.2 29 14.32 6.401624733 -3.829366153 27.8894838 82.20107087 NATURAL VENTILATION 16-C 84.2 29 14.32 6.401624733 -3.829366153 27.8894838 82.20107087 NATURAL VENTILATION 16-D 84.2 29 14.32 6.401624733 -3.829366153 27.8894838 82.20107087 NATURAL VENTILATION Table D.2. The wind chill temperature at each o f the test points (Under the mean Temperature in July in Taipei)(Continued) 203 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 17-S 84.2 29 5.52 2.4676654 -2.802384598 28.1873085 82.73715524 NATURAL VENTILATION 17-A 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 17-B 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 17-C 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 17-D 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 18-S 84.2 29 19.38 8.66365135 -4.168862038 27.79103 82.02385402 NATURAL VENTILATION 18-A 84.2 29 14.81 6.620674742 -3.867513088 27.8784212 82.18115817 NATURAL VENTILATION 18-B 84.2 29 14.6 6.526796167 -3.851324675 27.8831158 82.18960852 NATURAL VENTILATION 18-C 84.2 29 14.32 6.401624733 -3.829366153 27.8894838 82.20107087 NATURAL VENTILATION 18-D 84.2 29 14.25 6.370331875 -3.823808442 27.8910956 82.20397199 NATURAL VENTILATION 19-S 84.2 29 4.93 2.203911308 -2.693587083 28.2188597 82.79394754 NATURAL VENTILATION 19-A 84.2 29 4.93 2.203911308 -2.693587083 28.2188597 82.79394754 NATURAL VENTILATION 19-B 84.2 29 5.13 2.293319475 -2.731468305 28.2078742 82.77417355 NATURAL VENTILATION 19-C 84.2 29 5.52 2.4676654 -2.802384598 28.1873085 82.73715524 NATURAL VENTILATION 19-D 84.2 29 5.52 2.4676654 -2.802384598 28.1873085 82.73715524 NATURAL VENTILATION 20-S 84.2 29 17.97 8.033323775 -4.085262236 27.815274 82.06749311 NATURAL VENTILATION 20-A 84.2 29 19.06 8.520598283 -4.150538218 27.7963439 82.03341905 NATURAL VENTILATION 20-B 84.2 29 19.12 8.547420733 -4.15400209 27.7953394 82.03161091 NATURAL VENTILATION 20-C 84.2 29 19.22 8.592124817 -4.159746212 27.7936736 82.02861248 NATURAL VENTILATION 20-D 84.2 29 19.06 8.520598283 -4.150538218 27.7963439 82.03341905 NATURAL VENTILATION Table D.2. The wind chill temperature at each o f the test points (Under the mean Temperature in July in Taipei)(Continued) 204 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 21-S 84.2 29 5.33 2.382727642 -2.76830468 28.1971916 82.75494496 NATURAL VENTILATION 21-A 84.2 29 5.7 2.54813275 -2.833890928 28.1781716 82.72070894 NATURAL VENTILATION 21-B 84.2 29 5.7 2.54813275 -2.833890928 28.1781716 82.72070894 NATURAL VENTILATION 21-C 84.2 29 5.87 2.624129692 -2.86298294 28.1697349 82.70552291 NATURAL VENTILATION 21-D 84.2 29 5.7 2.54813275 -2.833890928 28.1781716 82.72070894 NATURAL VENTILATION 22-S 84.2 29 18.02 8.055675817 -4.088356924 27.8143765 82.06587769 NATURAL VENTILATION 22-A 84.2 29 18.85 8.426719708 -4.1383109 27.7998898 82.03980171 NATURAL VENTILATION 22-B 84.2 29 19.01 8.498246242 -4.147641635 27.7971839 82.03493107 NATURAL VENTILATION 22-C 84.2 29 19.06 8.520598283 -4.150538218 27.7963439 82.03341905 NATURAL VENTILATION 22-D 84.2 29 18.69 8.355193175 -4.128885271 27.8026233 82.04472189 NATURAL VENTILATION 23-S 84.2 29 4.93 2.203911308 -2.693587083 28.2188597 82.79394754 NATURAL VENTILATION 23-A 84.2 29 5.52 2.4676654 -2.802384598 28.1873085 82.73715524 NATURAL VENTILATION 23-B 84.2 29 5.7 2.54813275 -2.833890928 28.1781716 82.72070894 NATURAL VENTILATION 23-C 84.2 29 5.87 2.624129692 -2.86298294 28.1697349 82.70552291 NATURAL VENTILATION 23-D 84.2 29 5.87 2.624129692 -2.86298294 28.1697349 82.70552291 NATURAL VENTILATION 24-S 84.2 29 17.97 8.033323775 -4.085262236 27.815274 82.06749311 NATURAL VENTILATION 24-A 84.2 29 18.58 8.306018683 -4.122349471 27.8045187 82.04813358 NATURAL VENTILATION 24-B 84.2 29 19.12 8.547420733 -4.15400209 27.7953394 82.03161091 NATURAL VENTILATION 24-C 84.2 29 19.17 8.569772775 -4.156878669 27.7945052 82.03010933 NATURAL VENTILATION 24-D 84.2 29 19.01 8.498246242 -4.147641635 27.7971839 82.03493107 NATURAL VENTILATION Table D.2. The wind chill temperature at each of the test points (Under the mean Temperature in July in Taipei)(Continued) 205 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 25-S 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 25-A 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 25-B 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 25-C 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 25-D 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 26-S 84.2 29 17.97 8.033323775 -4.085262236 27.815274 82.06749311 NATURAL VENTILATION 26-A 84.2 29 16.56 7.4029962 -3.993729834 27.8418183 82.11527303 NATURAL VENTILATION 26-B 84.2 29 16.86 7.53710845 -4.013917655 27.8359639 82.10473498 NATURAL VENTILATION 26-C 84.2 29 16.86 7.53710845 -4.013917655 27.8359639 82.10473498 NATURAL VENTILATION 26-D 84.2 29 16.56 7.4029962 -3.993729834 27.8418183 82.11527303 NATURAL VENTILATION 27-S 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 27-A 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 27-B 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 27-C 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 27-D 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 28-S 84.2 29 18.02 8.055675817 -4.088356924 27.8143765 82.06587769 NATURAL VENTILATION 28-A 84.2 29 16.8 7.510286 -4.009911982 27.8371255 82.10682595 NATURAL VENTILATION 28-B 84.2 29 16.8 7.510286 -4.009911982 27.8371255 82.10682595 NATURAL VENTILATION 28-C 84.2 29 16.8 7.510286 -4.009911982 27.8371255 82.10682595 NATURAL VENTILATION 28-D 84.2 29 16.25 7.264413542 -3.972443281 27.8479914 82.12638461 NATURAL VENTILATION Table D.2. The wind chill temperature at each o f the test points (Under the mean Temperature in July in Taipei)(Continued) 206 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 29-S 84.2 29 5.33 2.382727642 -2.76830468 28.1971916 82.75494496 NATURAL VENTILATION 29-A 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 29-B 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 29-C 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 29-D 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 30-S 84.2 29 17.97 8.033323775 -4.085262236 27.815274 82.06749311 NATURAL VENTILATION 30-A 84.2 29 16.02 7.16159415 -3.956363124 27.8526547 82.13477845 NATURAL VENTILATION 30-B 84.2 29 16.74 7.48346355 -4.005890449 27.8382918 82.10892519 NATURAL VENTILATION 30-C 84.2 29 16.86 7.53710845 -4.013917655 27.8359639 82.10473498 NATURAL VENTILATION 30-D 84.2 29 16.56 7.4029962 -3.993729834 27.8418183 82.11527303 NATURAL VENTILATION 31-S 84.2 29 5.33 2.382727642 -2.76830468 28.1971916 82.75494496 NATURAL VENTILATION 31-A 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 31-B 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 31-C 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 31-D 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 32-S 84.2 29 18.02 8.055675817 -4.088356924 27.8143765 82.06587769 NATURAL VENTILATION 32-A 84.2 29 15.61 6.978307408 -3.927074183 27.8611485 82.15006728 NATURAL VENTILATION 32-B 84.2 29 15.54 6.94701455 -3.921991881 27.8626224 82.15272024 NATURAL VENTILATION 32-C 84.2 29 15.61 6.978307408 -3.927074183 27.8611485 82.15006728 NATURAL VENTILATION 32-D 84.2 29 15.28 6.830783933 -3.902901004 27.8681587 82.16268568 NATURAL VENTILATION Table D.2. The wind chill temperature at each o f the test points (Under the mean Temperature in July in Taipei)(Continued) 207 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 33-S 84.2 29 5.7 2.54813275 -2.833890928 28.1781716 82.72070894 NATURAL VENTILATION 33-A 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 33-B 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 33-C 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 33-D 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 34-S 84.2 29 18.02 8.055675817 -4.088356924 27.8143765 82.06587769 NATURAL VENTILATION 34-A 84.2 29 15.61 6.978307408 -3.927074183 27.8611485 82.15006728 NATURAL VENTILATION 34-B 84.2 29 15.58 6.964896183 -3.924899014 27.8617793 82.15120271 NATURAL VENTILATION 34-C 84.2 29 15.54 6.94701455 -3.921991881 27.8626224 82.15272024 NATURAL VENTILATION 34-D 84.2 29 15.08 6.741375767 -3.887982522 27.8724851 82.17047312 NATURAL VENTILATION 35-S 84.2 29 5.52 2.4676654 -2.802384598 28.1873085 82.73715524 NATURAL VENTILATION 35-A 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 35-B 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 35-C 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 35-D 84.2 29 4.5 2.01168375 -2.608294013 28.2435947 82.83847052 NATURAL VENTILATION 36-S 84.2 29 17.74 7.930504383 -4.070897793 27.8194396 82.07499135 NATURAL VENTILATION 36-A 84.2 29 15.61 6.978307408 -3.927074183 27.8611485 82.15006728 NATURAL VENTILATION 36-B 84.2 29 15.61 6.978307408 -3.927074183 27.8611485 82.15006728 NATURAL VENTILATION 36-C 84.2 29 15.61 6.978307408 -3.927074183 27.8611485 82.15006728 NATURAL VENTILATION 36-D 84.2 29 15.01 6.710082908 -3.882712308 27.8740134 82.17322418 NATURAL VENTILATION Table D.2. The wind chill temperature at each of the test points (Under the mean Temperature in July in Taipei)(Continued) 208 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 37-S 84.2 29 5.13 2.293319475 -2.731468305 28.2078742 82.77417355 NATURAL VENTILATION 37-A 84.2 29 6.53 2.919176642 -2.970312434 28.1386094 82.64949691 NATURAL VENTILATION 37-B 84.2 29 6.53 2.919176642 -2.970312434 28.1386094 82.64949691 NATURAL VENTILATION 37-C 84.2 29 6.53 2.919176642 -2.970312434 28.1386094 82.64949691 NATURAL VENTILATION 37-D 84.2 29 6.53 2.919176642 -2.970312434 28.1386094 82.64949691 NATURAL VENTILATION 38-S 84.2 29 18.63 8.328370725 -4.125325946 27.8036555 82.04657986 NATURAL VENTILATION 38-A 84.2 29 24.68 11.03296777 -4.425216648 27.7166872 81.89003691 NATURAL VENTILATION 38-B 84.2 29 25.09 11.21625451 -4.441818977 27.7118725 81.88137049 NATURAL VENTILATION 38-C 84.2 29 25.09 11.21625451 -4.441818977 27.7118725 81.88137049 NATURAL VENTILATION 38-D 84.2 29 24.68 11.03296777 -4.425216648 27.7166872 81.89003691 NATURAL VENTILATION 39-S 84.2 29 4.93 2.203911308 -2.693587083 28.2188597 82.79394754 NATURAL VENTILATION 39-A 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 39-B 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 39-C 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 39-D 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 40-S 84.2 29 18.58 8.306018683 -4.122349471 27.8045187 82.04813358 NATURAL VENTILATION 40-A 84.2 29 23.84 10.65745347 -4.389891461 27.7269315 81.90847666 NATURAL VENTILATION 40-B 84.2 29 24.27 10.84968103 -4.408198361 27.7216225 81.89892046 NATURAL VENTILATION 40-C 84.2 29 24.28 10.85415143 -4.408618472 27.7215006 81.89870116 NATURAL VENTILATION 40-D 84.2 29 24.27 10.84968103 -4.408198361 27.7216225 81.89892046 NATURAL VENTILATION Table D.2. The wind chill temperature at each of the test points (Under the mean Temperature in July in Taipei)(Continued) 209 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 41-S 84.2 29 4.93 2.203911308 -2.693587083 28.2188597 82.79394754 NATURAL VENTILATION 41-A 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 41-B 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 41-C 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 41-D 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 42-S 84.2 29 18.63 8.328370725 -4.125325946 27.8036555 82.04657986 NATURAL VENTILATION 42-A 84.2 29 23.41 10.46522591 -4.371102631 27.7323802 81.91828443 NATURAL VENTILATION 42-B 84.2 29 23.84 10.65745347 -4.389891461 27.7269315 81.90847666 NATURAL VENTILATION 42-C 84.2 29 24.27 10.84968103 -4.408198361 27.7216225 81.89892046 NATURAL VENTILATION 42-D 84.2 29 23.41 10.46522591 -4.371102631 27.7323802 81.91828443 NATURAL VENTILATION 43-S 84.2 29 4.93 2.203911308 -2.693587083 28.2188597 82.79394754 NATURAL VENTILATION 43-A 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 43-B 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 43-C 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 43-D 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 44-S 84.2 29 18.69 8.355193175 -4.128885271 27.8026233 82.04472189 NATURAL VENTILATION 44-A 84.2 29 24.27 10.84968103 -4.408198361 27.7216225 81.89892046 NATURAL VENTILATION 44-B 84.2 29 24.68 11.03296777 -4.425216648 27.7166872 81.89003691 NATURAL VENTILATION 44-C 84.2 29 24.68 11.03296777 -4.425216648 27.7166872 81.89003691 NATURAL VENTILATION 44-D 84.2 29 24.27 10.84968103 -4.408198361 27.7216225 81.89892046 NATURAL VENTILATION Table D.2. The wind chill temperature at each o f the test points (Under the mean Temperature in July in Taipei)(Continued) 210 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 45-S 84.2 29 5.13 2.293319475 -2.731468305 28.2078742 82.77417355 NATURAL VENTILATION 45-A 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 45-B 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 45-C 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 45-D 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 46-S 84.2 29 18.63 8.328370725 -4.125325946 27.8036555 82.04657986 NATURAL VENTILATION 46-A 84.2 29 23.84 10.65745347 -4.389891461 27.7269315 81.90847666 NATURAL VENTILATION 46-B 84.2 29 23.84 10.65745347 -4.389891461 27.7269315 81.90847666 NATURAL VENTILATION 46-C 84.2 29 24.27 10.84968103 -4.408198361 27.7216225 81.89892046 NATURAL VENTILATION 46-D 84.2 29 23.84 10.65745347 -4.389891461 27.7269315 81.90847666 NATURAL VENTILATION 47-S 84.2 29 4.93 2.203911308 -2.693587083 28.2188597 82.79394754 NATURAL VENTILATION 47-A 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 47-B 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 47-C 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 47-D 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 48-S 84.2 29 18.63 8.328370725 -4.125325946 27.8036555 82.04657986 NATURAL VENTILATION 48-A 84.2 29 23.63 10.56357489 -4.380776542 27.7295748 81.91323465 NATURAL VENTILATION 48-B 84.2 29 23.63 10.56357489 -4.380776542 27.7295748 81.91323465 NATURAL VENTILATION 48-C 84.2 29 23.84 10.65745347 -4.389891461 27.7269315 81.90847666 NATURAL VENTILATION 48-D 84.2 29 23.63 10.56357489 -4.380776542 27.7295748 81.91323465 NATURAL VENTILATION Table D.2. The wind chill temperature at each o f the test points (Under the mean Temperature in July in Taipei)(Continued) 211 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 49-S 84.2 29 4.72 2.110032733 -2.652616876 28.2307411 82.81533399 NATURAL VENTILATION 49-A 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 49-B 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 49-C 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 49-D 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 50-S 84.2 29 18.63 8.328370725 -4.125325946 27.8036555 82.04657986 NATURAL VENTILATION 50-A 84.2 29 25.09 11.21625451 -4.441818977 27.7118725 81.88137049 NATURAL VENTILATION 50-B 84.2 29 25.69 11.48447901 -4.465386339 27.705038 81.86906833 NATURAL VENTILATION 50-C 84.2 29 25.09 11.21625451 -4.441818977 27.7118725 81.88137049 NATURAL VENTILATION 50-D 84.2 29 24.68 11.03296777 -4.425216648 27.7166872 81.89003691 NATURAL VENTILATION 51-S 84.2 29 4.93 2.203911308 -2.693587083 28.2188597 82.79394754 NATURAL VENTILATION 51-A 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 51-B 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 51-C 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 51-D 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 52-S 84.2 29 18.63 8.328370725 -4.125325946 27.8036555 82.04657986 NATURAL VENTILATION 52-A 84.2 29 24.68 11.03296777 -4.425216648 27.7166872 81.89003691 NATURAL VENTILATION 52-B 84.2 29 24.68 11.03296777 -4.425216648 27.7166872 81.89003691 NATURAL VENTILATION 52-C 84.2 29 24.68 11.03296777 -4.425216648 27.7166872 81.89003691 NATURAL VENTILATION 52-D 84.2 29 24.06 10.75580245 -4.399317174 27.724198 81.90355643 NATURAL VENTILATION Table D.2. The wind chill temperature at each o f the test points (Under the mean Temperature in July in Taipei)(Continued) 212 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 53-S 84.2 29 5.13 2.293319475 -2.731468305 28.2078742 82.77417355 NATURAL VENTILATION 53-A 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 53-B 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 53-C 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 53-D 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 54-S 84.2 29 18.63 8.328370725 -4.125325946 27.8036555 82.04657986 NATURAL VENTILATION 54-A 84.2 29 23.84 10.65745347 -4.389891461 27.7269315 81.90847666 NATURAL VENTILATION 54-B 84.2 29 24.06 10.75580245 -4.399317174 27.724198 81.90355643 NATURAL VENTILATION 54-C 84.2 29 24.06 10.75580245 -4.399317174 27.724198 81.90355643 NATURAL VENTILATION 54-D 84.2 29 23.63 10.56357489 -4.380776542 27.7295748 81.91323465 NATURAL VENTILATION 55-S 84.2 29 4.93 2.203911308 -2.693587083 28.2188597 82.79394754 NATURAL VENTILATION 55-A 84.2 29 6.68 2.986232767 -2.993554815 28.1318691 82.63736439 NATURAL VENTILATION 55-B 84.2 29 6.68 2.986232767 -2.993554815 28.1318691 82.63736439 NATURAL VENTILATION 55-C 84.2 29 6.68 2.986232767 -2.993554815 28.1318691 82.63736439 NATURAL VENTILATION 55-D 84.2 29 6.68 2.986232767 -2.993554815 28.1318691 82.63736439 NATURAL VENTILATION 56-S 84.2 29 18.63 8.328370725 -4.125325946 27.8036555 82.04657986 NATURAL VENTILATION 56-A 84.2 29 25.49 11.39507084 -4.457625217 27.7072887 81.87311964 NATURAL VENTILATION 56-B 84.2 29 25.89 11.57388718 -4.473054267 27.7028143 81.86506567 NATURAL VENTILATION 56-C 84.2 29 26.28 11.7482331 -4.487742743 27.6985546 81.85739829 NATURAL VENTILATION 56-D 84.2 29 25.89 11.57388718 -4.473054267 27.7028143 81.86506567 NATURAL VENTILATION Table D.2. The wind chill temperature at each of the test points (Under the mean Temperature in July in Taipei)(Continued) 213 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 57-S 84.2 29 4.93 2.203911308 -2.693587083 28.2188597 82.79394754 NATURAL VENTILATION 57-A 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 57-B 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 57-C 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 57-D 84.2 29 6.37 2.847650108 -2.945069273 28.1459299 82.66267384 NATURAL VENTILATION 58-S 84.2 29 18.58 8.306018683 -4.122349471 27.8045187 82.04813358 NATURAL VENTILATION 5 8-A 84.2 29 24.68 11.03296777 -4.425216648 27.7166872 81.89003691 NATURAL VENTILATION 58-B 84.2 29 25.49 11.39507084 -4.457625217 27.7072887 81.87311964 NATURAL VENTILATION 58-C 84.2 29 25.49 11.39507084 -4.457625217 27.7072887 81.87311964 NATURAL VENTILATION 58-D 84.2 29 25.09 11.21625451 -4.441818977 27.7118725 81.88137049 NATURAL VENTILATION 59-S 84.2 29 4.93 2.203911308 -2.693587083 28.2188597 82.79394754 NATURAL VENTILATION 5 9-A 84.2 29 6.53 2.919176642 -2.970312434 28.1386094 82.64949691 NATURAL VENTILATION 59-B 84.2 29 6.53 2.919176642 -2.970312434 28.1386094 82.64949691 NATURAL VENTILATION 59-C 84.2 29 6.53 2.919176642 -2.970312434 28.1386094 82.64949691 NATURAL VENTILATION 59-D 84.2 29 6.53 2.919176642 -2.970312434 28.1386094 82.64949691 NATURAL VENTILATION 60-S 84.2 29 18.58 8.306018683 -4.122349471 27.8045187 82.04813358 NATURAL VENTILATION 60-A 84.2 29 25.49 11.39507084 -4.457625217 27.7072887 81.87311964 NATURAL VENTILATION 60-B 84.2 29 25.89 11.57388718 -4.473054267 27.7028143 81.86506567 NATURAL VENTILATION 60-C 84.2 29 25.89 11.57388718 -4.473054267 27.7028143 81.86506567 NATURAL VENTILATION 60-D 84.2 29 25.09 11.21625451 -4.441818977 27.7118725 81.88137049 NATURAL VENTILATION Table D.2. The wind chill temperature at each o f the test points (Under the mean Temperature in July in Taipei) 214 In the following graphs, I also tested the limitation in temperature of the following formula (From 80 to 90°F). The chart displays that 8 8°F is the max limiting temperature for beneficial effects from wind chill. In addition, I tested three wind chill formulae in 40°F and 80°F. One of the formulae, Wind Chill (°F) = 35.74 + 0.6215T - 35.75(V016)+ 0.4275T(V016) Where: V = the wind speed value in mph T = the temperature in °F does not work above 80°F. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. 2 1 0 O 24 25 26 27 28 29 30 ■ 2 ~+ ■ 3 -4 •5 •6 •7 ■ 8 -9 Wind Velocity (from 1-30mph) Figure D .l. The limitation in temperature of the wind chill formula (Wind Chill Factor = (33-(10.45+10^V - v)(33-T)) / 22.04) 216 Reproduced w ith permission o f th e copyright owner. Further reproduction prohibited without permission. Different Wind Chill Formula At 40.F FORMULA 1: (33-(10.45+10W-V)(33-T))/22.04 FORMULA 2:0.045(7.1766*vKNOTS+10.45-0.5145*KNOTS)(CELSIUS-33.0)+33.0 FORMULA 3: 35.74 + 0.6215T - 35.75(V0.16)+ 0.4275T(V0.16) LL o 40 CD C L E CD 1 — 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 252627 28 29 30 W ind Speed(M PH) Figure D.2. Different Wind Chill Formulae At 40°F — Formula3 Formula2 Form ulal 217 218 O Z2 irs i i : i t i j a: o' o L O o h - o c o o < N o co C D eg o o eg n . eg co eg io eg • * r eg co eg eg eg eg o eg O ) o o e- T — C O m • g - T — co eg T — T — T — o T — C 7 > 0 0 N- C O C O ■ g - co eg a P-. T 3 < U < L > G U V £ P H O O < D c d O P - H 3 u -d .g £ a < u l-H < g - H m Q D P •SP £ (J 0)3mjBJ3dui9i inqo prn^ Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Linked assets
University of Southern California Dissertations and Theses
Conceptually similar
PDF
Maximizing natural ventilation by design in low-rise residential buildings using wind catchers in the hot arid climate of United Arab Emirates
PDF
Lateral design analysis: Web application. Design for wind and seismic forces in buildings
PDF
Bracing systems for tall buildings: A comparative study
PDF
Sustainable building materials adviser: A Web-based tool for architects
PDF
WebArc: Control and monitoring of building systems over the Web
PDF
Thermbuilder: A Web-based teaching tool to study thermal processes in buildings
PDF
Lighting design assessment tool for an elderly living environment
PDF
Mahoney Tables plus a tool for sketch design recommendations for a building
PDF
The user's guide to the 1997 Uniform Building Code
PDF
Underwater farming colonies: A new space for human habitation
PDF
A proposed wood frame system for the Philippines
PDF
Online portfolio repository for students of architecture
PDF
Guidelines for building bamboo-reinforced masonry in earthquake-prone areas in India
PDF
Wind design of fabric structures: Determination of gust factors for fabric structures
PDF
VRSolar: An exploration in Web based interactive architectural teaching
PDF
SolCAD: Three-dimensional spatial design tool to generate solar envelope
PDF
Vaastu-Shilpa Shastra
PDF
The thermal energy performance study of the Freeman House
PDF
Acoustics of the Bing Theater, USC: Computer simulation for acoustical improvements
PDF
Variable reverberation in performance spaces: Passive and active acoustic systems
Asset Metadata
Creator
Tsai, Chung-Hsin
(author)
Core Title
Natural ventilation in the high-rise buildings for Taipei
Degree
Master of Building Science / Master in Biomedical Sciences
Degree Program
Building Science
Publisher
University of Southern California
(original),
University of Southern California. Libraries
(digital)
Tag
Architecture,OAI-PMH Harvest
Language
English
Contributor
Digitized by ProQuest
(provenance)
Permanent Link (DOI)
https://doi.org/10.25549/usctheses-c16-304586
Unique identifier
UC11337899
Identifier
1414907.pdf (filename),usctheses-c16-304586 (legacy record id)
Legacy Identifier
1414907.pdf
Dmrecord
304586
Document Type
Thesis
Rights
Tsai, Chung-Hsin
Type
texts
Source
University of Southern California
(contributing entity),
University of Southern California Dissertations and Theses
(collection)
Access Conditions
The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law. Electronic access is being provided by the USC Libraries in agreement with the au...
Repository Name
University of Southern California Digital Library
Repository Location
USC Digital Library, University of Southern California, University Park Campus, Los Angeles, California 90089, USA