Close
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected
Invert selection
Deselect all
Deselect all
Click here to refresh results
Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
A study of the quantitative spectrographic determination of beryllium
(USC Thesis Other)
A study of the quantitative spectrographic determination of beryllium
PDF
Download
Share
Open document
Flip pages
Contact Us
Contact Us
Copy asset link
Request this asset
Transcript (if available)
Content
A STUDY OF THE QUANTITATIVE SPECTROGRAPHIC DETERMINATION OF BERYLLIUM A T h e s is P r e s e n te d to th e F a c u lty o f th e D epartm ent o f C h e m istry U n i v e r s i ty o f S o u th e rn C a l i f o r n i a In P a r t i a l F u l f i l l m e n t o f th e R eq u irem en ts f o r th e D egree M aster o f S c ie n c e by Raymond M a rtin W right J u l y 1941 UMi Number: EP41540 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI EP41540 Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author. ■Dissertation: PsaWishtog Microform Edition © ProQuest LLC, All rjghts reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 G f * D ean Secretary This thesis, written by RAYM OND M. WRIGHT ...................................................................................... . f y n under the direction of h%3.. Faculty Committee, / Q | I and a p p ro ved by all its members, has been v Y presented to and accepted by the Council on Graduate Study and Research in partial fulfill ment of the requirements for the degree of MASTER OF SCIENCE Date J...1941 Faculty C om m ittee Chairman ■ ■ i ;v. “r rf TABLE OP CONTENTS PAGE INTRODUCTION .................................................................................... 1 P urpose o f I n v e s t i g a t i o n . ................................... 1 THEORETICAL CONSIDERATIONS .................................................. 2 APPARATUS ......................................................................................... 6 The S p e c t r o g r a p h ............................................ 6 The D e n s ito m e te r .. . . . . . ......................... . 7 EXPERIMENTAL PROCEDURE ............................................................ 8 EXPERIMENTAL DATA AND R E S U L T S ..............................................11 CONCLUDING REMARKS ................................................................. . 69 C o n c lu sio n s . . . . . . 69 Summary ................................................................................70 BIBLIOGRAPHY .................................................................................... 71 APPENDIX 73 LIST OF TABLES TABLE PAGE I . 3.3% BeO Sample D e n s ito m e te r R e a d in g s, 2651 A° L ine « . 11 I I . 3.3% BeO Sample I n t e n s i t i e s , 2651 A0 L ine . I I I . 4,4% BeO Sample D e n s ito m e te r R e a d in g s, 2651 A0 L ine . . 14 IV. 4,4% BeO Sample I n t e n s i t i e s , 2651 A° L ine . V. 5.5% BeO Sample D e n s ito m e te r R e a d in g s, 2651 A° L ine . . 17 V I. 5.5% BeO Sample I n t e n s i t i e s , 2651 A° L ine . V I I. Unknown Number ! 1 D e n sito m e te r R e a d in g s, 2651 A0 L ine . . 20 V I I I . Unknown Number ! I I n t e n s i t i e s , 2651 A° L ine . IX. Unknovra Number ! I ( D ilu te d 50%) D e n sito m e te r R e a d in g s, 2651 A0 L ine . . 23 X. Unknown Number ! L ( D ilu te d 50%) I n t e n s i t i e s , 2651 A0 L ine . . 24 X I. Unknown Number < 2 D e n s ito m e te r R e a d in g s, 2651 A° L ine . . 26 i i i TABLE PAGE X I I . Unknown Number 2 I n t e n s i t i e s , 2651 A° L ine . . , X I I I . Unknown Number 2 ( D ilu te d 50$) D e n s ito m e te r R e a d in g s, 2651 A0 L ine . . 29 XIV. Unknown Number 2 ( D ilu te d 50$) I n t e n s i t i e s , 2651 A0 L ine . . XV. Unknown Number 3 D e n s ito m e te r R e a d in g s, 2651 A° L ine . . 32 XVI. Unknown Number 3 I n t e n s i t i e s , 2651 A° L ine . . X V II. Unknown Number 3 ( D ilu te d 50$) D e n s ito m e te r R e a d in g s, 2651 A° L ine . . 35 X V III. Unknown Number 3 ( D ilu te d 50$) I n t e n s i t i e s , 2651 A0 L ine . . XIX. 3 .3 $ BeO Sample D e n s ito m e te r R e a d in g s, 3322 A° L in e . . 38 XX. 3 .3 $ BeO Sample I n t e n s i t i e s , 3322 A° L ine . . XXI. 4 .4 $ BeO Sample D e n s ito m e te r R e a d in g s, 3322 A0 L ine . . 41 XX II. 4 .4 $ BeO Sample I n t e n s i t i e s , 3322 A0 L ine . . . X X III. 5 .5 $ BeO Sample D e n s ito m e te r R e a d in g s, 3322 A° L ine . . 44 TABLE PAGE XXIV. 5 .5 $ BeO Sample I n t e n s i t i e s , 3322 A0 L in e . . XXV. Unknown Number 1 D e n s ito m e te r R e a d in g s, 3322 A° L ine . . 47 XXVI. Unknown Number 1 I n t e n s i t i e s , 3322 A0 L ine . . XXVII. Unknown Number 1 ( D ilu te d 50$) D e n s ito m e te r R e a d in g s, 3322 A° L ine . . 50 XXVIII. Unknown Number 1 ( D ilu te d 50$) I n t e n s i t i e s , 3322 A° L ine . . XXIX. Unknown Number 2 D e n s ito m e te r R e a d i n g s ,.3322 A° .L ine . . 53 XXX. Unknown Number 2 I n t e n s i t i e s , 3322 A° L ine . . XXXI. Unknown Number 2 ( D ilu te d 50$) D e n s ito m e te r R e a d in g s, 3322 A0 L ine . . 56 XXXII. Unknown Number 2 ( D ilu te d 50$) I n t e n s i t i e s , 3322 A° L ine . . XXXIII. Unknown Number 3 D e n s ito m e te r R e a d in g s, 3322 A0 L ine . . 59 XXXIV. Unknown Number 3 I n t e n s i t i e s , 3322 A0 L ine . , XXXV. Unknown Number 3 ( D ilu te d 50$) D e n s ito m e te r R e a d in g s, 3322 A0 L ine . . 62 V TABLE PAGE XXXVI. Unknown Number 3 ( D ilu te d 50%) I n t e n s i t i e s , 3322 A0 L i n e .......................................63 XXXVII. R e s u l ts , 2651 A° L i n e ................................................... 67 XXXVIII. R e s u l t s , 3322 A0 L ine ....................................... 68 LIST OP GRAPHS GRAPH PAGE I . 3.3% BeO Sam ple, 2651 A° L i n e .................................13 I I . 4.4% BeO Sam ple, 2651 A0 L i n e .................................16 I I I . 5.5% BeO Sam ple, 2651 A° L i n e .................................19 IV. Unknown Number 1 , 2651 A° L i n e .........................22 V. Unknown Number 1 ( D ilu te d 50%), 2651 A° L i n e ........................... 25 V I. Unknown Number 2 , 2651 A° L i n e ............................ 28 V I I . Unknown Number 2 ( D ilu te d 50%), 2651 A° L i n e ................................. 31 V I I I . Unknown Number 3 , 2651 A0 L ine . . . . . 34 IX. Unknown Number 3 ( D ilu te d 50%), 2651 A0 L i n e ................................................................ 37 X. 3.3% BeO Sam ple, 3322 A° L i n e .................................40 X I. 4.4% BeO Sam ple, 3322 A° L i n e .......................... 43 X I I . 5.5% BeO Sam ple, 3322 A° L i n e .................................46 X I I I . Unknown Number 1 , 3322 A° L i n e ............................ 49 XIV. Unknown Number 1 ( D ilu te d 50%), 3322 A° L ine ....................................................52 XV. Unknown Number 2 , 3322 A0 L ine . . . . . 55 XVI. Unknown Number 2 ( D ilu te d 50%), 3322 A° L i n e ................................................................ 58 X V II. Unknown Number 3 , 3322 A0 L i n e ............................ 61 GRAPH PAGE X V III. Unknown Number 3 ( d i l u t e d 50$) 3322 A0 L i n e .................................. 64 XIX. R e s u l t s , 2651 A0 L ine ............................................... 65 XX. R e s u l t s , 3322 A° L i n e .................................................... 66 A STUDY OP THE QUANTITATIVE SPECTROGRAPHIC DETERMINATION OP BERYLLIUM INTRODUCTION P urpose o f I n v e s t i g a t i o n Due to c e r t a i n d i f f i c u l t i e s i n th e s p e c t r o - g r a p h ic a n a l y s i s o f b e r y lliu m by th e i n t e r n a l s ta n d a r d m ethod, i t was d e c id e d to i n v e s t i g a t e th e p o s s i b i l i t i e s o f e x te n d in g th e a c c u ra c y o f th e c o m p ariso n m ethod by a p p r o p r i a te m o d if i c a t io n s o f th e u s u a l p r o c e d u re . The i n t e r n a l s ta n d a r d m ethod in v o lv e s f i n d i n g an e le m e n t w hich h as th e same v o l a t i l i z a t i o n r a t e as t h a t o f b e r y l liu m . Such an e le m e n t w hich w i l l a ls o p roduce s u i t a b l e s p e c t r a l l i n e s o f w a v e le n g th s n e a r th o s e o f b e r y lliu m seems d i f f i c u l t to f i n d . Thus a t t e n t i o n h a s b een tu r n e d to th e p o s s i b i l i t y o f a m o d if i c a t io n o f th e co m pariso n m ethod w ith th e hope o f a t t a i n i n g a f a i r d e g re e o f a c c u ra c y . THEORETICAL CONSIDERATIONS 2 The p ro d u c tio n o f e m itte d l i g h t o f d e f i n i t e f r e q u e n c ie s from e x c i t e d atom s o r m o le c u le s r e s u l t s from th e f a l l i n g o f e l e c t r o n s from h ig h e r e n e rg y l e v e l s to lo w er e n e rg y l e v e l s o f th e atom . These e l e c t r o n s have b een pushed i n t o th e o u t e r o r h ig h e r e n e rg y l e v e l s b y some e x c i t i n g fo r c e w hich may be an a r c , s p a r k , fla m e , o r d is c h a r g e t u b e . I n th e work to be d e s c r i b e d , th e a rc m ethod was u s e d . The i n t e n s i t y o f s p e c t r a l l i n e s v a r i e s o n ly w ith th e mass o f th e r a d i a t i n g m a t e r i a l p ro v id e d a l l o t h e r e x p e rim e n ta l c o n d itio n s a r e . h e l d c o n s t a n t . V a rio u s e le m e n ts p r e s e n t in th e a rc do n o t e m it t h e i r s p e c t r a a t th e same tim e , o r a t a d e f i n i t e and co n s t a n t i n t e n s i t y , b u t show v e ry wide v a r i a t i o n s , d e p en d in g on th e e le m e n ts w hich make up th e sample-*-. The a rc a c t s as th o u g h i t were a m in ia tu r e f u r n a c e , v o l a t i l i z i n g th e s u b s ta n c e s i n i t i n th e o r d e r o f t h e i r r e l a t i v e v ap o r p r e s s u r e s , th e m ost v o l a t i l e coming o f f f i r s t and th e m ost r e f r a c t o r y l a s t . The e f f e c t o f t h i s d i f f e r e n t i a l v o l a t i l i z a t i o n 1 G. R. H a r r is o n , " P r a c t i c a l P o s s i b i l i t i e s in S p e c tro g r a p h ic A n a l y s i s ," M e ta ls and A llo y s . 7 :2 9 0 -6 . 1 9 3 6 . > on q u a n t i t a t i v e p ro c e d u re u s in g i n t e n s i t y m ethods can b e s t be e x p la in e d as f o llo w s : Suppose one sam ple c o n ta in s a g iv e n amount o f a p a r t i c u l a r e le m e n t w hich w i l l v o l a t i l i z e c o m p le te ly in f i f t e e n seco n d s e m i t ti n g a c e r t a i n i n t e n s i t y o f l i g h t . Now, c o n s id e r a second sam ple c o n ta in in g i n a d d i t i o n to t h i s g iv e n e le m e n t, a more v o l a t i l e o n e . T h is v o l a t i l e e le m e n t may ta k e t e n seco nds to v o l a t i l i z e b e f o r e th e g iv e n e le m e n t e m its any l i g h t a t a l l , th e n c o n tin u in g f o r o n ly f i v e seconds o f th e e x p o s u re . Thus i n a f i f t e e n secon d e x p o su re o f e ac h o f th e two sa m p le s, th e i n t e n s i t y o f th e l i n e s p ro d u c e d would n o t be a t a l l c o m p a ra b le . T h e re fo re la r g e e r r o r s may r e s u l t and th e common i n t e n s i t y m ethod does n o t a c h ie v e a h ig h d e g re e o f p r e c i s i o n . I t i s e v id e n t t h a t th e p r i n c i p a l cause o f th e t r o u b l e i s th e tim e f a c t o r . I f a p ro c e d u re in v o lv in g a c o n s i s t e n t r e l a t i o n s h i p i s a d o p te d , th e d i f f i c u l t y sh o u ld d i s a p p e a r . I t seems r e a s o n a b le to suppose t h a t th e t o t a l e n e rg y o f e m is s io n sh o u ld pro v e to be a mea s u re o f th e q u a n t i t y o f an e le m e n t p r e s e n t , n o t i n f l u enced by changes o f c o m p o s itio n . T h is i s th e b a s i s o f th e m ethod d e s c r ib e d i n t h i s p a p e r . The i n t e n s i t y a t any i n t e r v a l o f tim e d t i s a m easure o f th e t o t a l number o f atom s p r e s e n t i n th e 4 a r c d u rin g t h a t i n s t a n t , o th e r c o n d it i o n s b e in g th e same. As th e atom s a re c o n s t a n t l y l e a v in g th e a r c , w h ile new ones ta k e t h e i r p l a c e , th e i n t e n s i t y i n t e g r a t e d o v e r th e tim e o f e m is s io n w i l l be a m easure of th e number o f atom s t h a t have p a s s e d th ro u g h d u rin g t h a t tim e . I f th e i n t e r v a l i s ta k e n from th e i n s t a n t o f s t r i k i n g th e a r c u n t i l a l l th e sam ple h a s b u rn e d o u t , th e number o f atom s t h a t have been e x c i t e d w i l l be th e same a s th e number c o n ta in e d i n th e sam ple. T h e re fo re th e i n t e g r a t e d i n t e n s i t y , S I d t , i s a m easure o f th e number o f atom s in th e sa m p le , o r o f th e mass o f th e e le m e n t i n th e sam ple2 . The e q u a tio n e x p re s s in g t h i s c o n d itio n i s m = G J I d t w here m i s th e mass o f th e e le m e n t in th e sam ple and C i s a p r o p o r t i o n a l i t y c o n s t a n t . I f sam ples o f th e same w e ig h t a re u s e d , th e m asses w i l l be p r o p o r t io n a l to th e p e r c e n ta g e s , and th e e q u a tio n may be m o d ifie d to q = C / I d t where q i s th e p e rc e n ta g e o f th e e le m e n t i n th e sam p le. 2 M o rris S l a v in , " Q u a n ti t a t i v e A n a ly s is B ased on S p e c tr a l E n e rg y ," I n d u s t r i a l and E n g in e e rin g Chem i s t r y , A n a l y ti c a l E d i t i o n , 10:407^X 1, 1938. 5 S in ce th e f i lm re s p o n s e i s n o t l i n e a r , b u t lo g a r i t h m i c , th e f o llo w in g e q u a tio n when g ra p h e d sh o u ld p rod uce a s t r a i g h t l i n e : lo g q : C | I d t . A n o th er f a c t o r i n f lu e n c i n g th e e n e rg y e m itte d f o r a g iv e n mass s h o u ld be m en tio n ed h e r e . E x c i t a t i o n i s d i r e c t l y in f lu e n c e d by th e c u r r e n t p a s s in g th ro u g h th e a r c . A l a r g e r c u r r e n t w i l l cau se more e x c i t a t i o n s among a g iv e n number o f ato m s, and i f t h i s i s to be c a p a b le o f r e p e t i t i o n from one expo su re t o a n o th e r , th e c u r r e n t m ust be c o n s ta n t f o r any s e r i e s o f com parable t e s t s . 6 APPARATUS The S p e c tro g ra p h The s p e c tr o g r a p h u se d was b u i l t b y th e A p p lie d R e se a rc h L a b o r a to r i e s i n Los A n g e le s. The in s tru m e n t i s a m o d ifie d Rowland ty p e and i s s u p p lie d w ith an o r i g i n a l concave g r a t i n g 3 . The r u l i n g s , 4 8 ,0 0 0 in num ber, c o v e r an a r e a one by two i n c h e s , th u s g iv in g 2 4 ,0 0 0 l i n e s p e r in c h . The g r a t i n g h a s a d i s p e r s i o n o f seven Angstrom u n i t s p e r m i l l im e te r i n th e f i r s t o r d e r , and a t h e o r e t i c a l r e s o l v in g power o f 4 8 ,0 0 0 , w hich means t h a t a t 4800 Angstrom u n i t s , two l i n e s 0 .1 Angstrom a p a r t a re r e s o l v a b l e . A c t u a l ly , due to a f i n i t e s l i t w id th , t h i s f i g u r e can n e v e r q u i te be a c h ie v e d . Each sp e c tro g ra m i s t h i r t y - t w o c e n tim e te r s lo n g and i s p h o to g ra p h e d on s ta n d a r d t h i r t y - f i v e m i l l i m e t e r m o tio n p i c t u r e f i l m . By means o f a mov a b le cam era a rra n g e m e n t i t i s p o s s i b l e to have as many as t e n s p e c t r a s id e by s id e on th e same f i l m . The in s tru m e n t i s a ls o p ro v id e d w ith a c o m b in a tio n a d j u s t a b l e r o t a t i n g s e c t o r and a lo g a r ith m ic s te p s e c t o r . 3 E . C. C. B a ly , S p e c tro s c o p y ( t h i r d e d i t i o n ) New Y ork: Longmans, G reen and Company, L t d . , 1924. 7 The D e n s ito m e te r A c o m b in a tio n p r o j e c t i o n c o m p a rato r and p h o to e l e c t r i c d e n s ito m e te r i s u se d f o r m easurem ents on th e s p e c tro g ra m s produced# By means o f th e c o m p a ra to r, th e unknown sp ectru m t o g e t h e r w ith a s ta n d a r d f o r co m p arison i s p r o j e c t e d on a s c r e e n and th e unknown com pared w ith th e s t a n d a r d . By means o f th e d e n s i t o m e te r , th e r e l a t i v e i n t e n s i t i e s o f l i n e s may be r e a d . I t h as a s l i t .0005 in c h w id e . The sp e ctru m on th e f i l m i s scanned w ith th e a i d o f a synchrom m s m otor w ith th e l i g h t th ro u g h th e s l i t f a l l i n g on a tu b e ty p e p h o t o - e l e c t r i c c e l l . The r e s u l t i n g c u r r e n t i s r e a d d i r e c t l y on a l a r g e m e te r w hich.m ay be a d ju s te d f o r s e n s i t i v i t y . EXPERIMENTAL PROCEDURE 8 The sam ple to be a n a ly z e d was f i r s t p u l v e r i z e d and th e n ground w ith m o rta r and p e s t l e to. a t l e a s t 100 m esh. The carb o n e l e c t r o d e s were d r i l l e d , p o in te d , and p u t i n t o p la c e i n t h e i r h o l d e r s . T h is may be done by s p re a d in g th e jaws o f th e h o l d e r s b y i n s e r t i n g a screw d r i v e r b etw een th e p ro n g s a s h o r t d i s t a n c e from th e g ro o v e s w hich clamp th e c arb o n s in p la c e and t u r n in g i t v e ry s l i g h t l y . The c arb o n to be p la c e d i n th e u p p e r h o ld e r was u n t r e a t e d ; a sh a llo w h o le was d r i l l e d i n t o th e end o f th e lo w er o n e, w hich was u se d to h o ld th e sam p le. I t was th e n p o in te d as shown i n F ig u re 1 . The h o le c o u ld be made a s s h a llo w as d e s i r e d b y sim p ly f i l i n g th e end away and p o i n ti n g i t a g a in . B lan k D r i l l e d P o in te d F ig u re 1 As soon a s th e s e c a rb o n s were i n p l a c e , and 9 th e f i v e m illig r a m sam ple, w hich h a d h e en a c c u r a t e l y w eig h ed , in tr o d u c e d i n t o th e lo w e r o n e , th e power s u p p ly was tu r n e d on, and an a r c was fo rm ed . The f i lm was exposed i n th e fo llo w in g m anner: The a rc was a llo w e d to ru n f o r 150 seco n d s t o t a l tim e . E v ery f i f t e e n seco n d s th e cam era was r a c k e d down o n e - t e n t h th e w id th o f th e f i l m . Thus t h e r e were te n s e p a r a t e s p e c t r a o b ta in e d . T h is gave an a c c u r a te r e c o r d o f th e e le m e n ts and th e am ounts w hich had b e e n v o l a t i l i z e d d u rin g e v e ry f i f t e e n seco n d p e r i o d . In 150 secon ds th e sam ple was c o m p le te ly b u rn e d o u t . The f i lm was rem oved from th e cam era, d e v e lo p e d ^ , f i x e d 4 , w ashed, and d r i e d . A n a ly ses w ere made o f 3 .3 $ BeO, 4 .4 $ BeO, and 5 .5 $ BeO, and from th e s e r e s u l t s , th e p e rc e n ta g e s BeO o f some unknowns w ere d e te rm in e d . The c a l c u l a t i o n s were made a s f o llo w s : The f ilm s were p la c e d in th e p r o j e c t i o n c o m p a ra to r, and th e d e f l e c t i o n s p ro d u c e d by th e l i n e s on th e f i lm were r e a d on th e d e n s ito m e te r 5 . On c l e a r f i lm th e 4 The fo rm u la e f o r th e s e may be fo u n d i n th e A ppendix. 5 The l i n e s u se d were th e 2651 A° s i n g l e t and th e 3322 A° d o u b le t, th e d o u b le t b e in g r e a d as a s i n g l e l i n e on th e d e n s ito m e te r . 10 d e n s ito m e te r was a d j u s t e d to r e a d 100, w h ile on a v e ry i n te n s e l i n e i t w ould r e a d 0 . These v a lu e s w i l l be fo u n d in th e t a b l e s u n d e r D e n s ito m e te r R e a d in g s. These f i g u r e s s u b t r a c t e d from 100 w i l l g iv e th e r e l a t i v e i n t e n s i t i e s o f th e l i n e s , and w i l l be fou n d in th e t a b l e s u n d e r t h a t h e a d in g . Adding th e in d iv id u a l i n t e n s i t i e s w i l l g iv e th e a r e a u n d e r th e t i m e - i n t e n s i t y cu rv e i n a r b i t r a r y u n i t s . These a re r e p r e s e n te d by th e g r a p h s . I f now, t h i s a r e a be p l o t t e d a g a i n s t th e l o g a r ith m o f th e p e rc e n ta g e c o m p o s itio n , a s t r a i g h t l i n e r e s u l t s . Prom th e t h r e e known v a lu e s t h i s s t r a i g h t l i n e was p l o t t e d , and th e p e r c e n ta g e s c o rre s p o n d in g to th e a re a s fou n d f o r th e unknowns w ere r e a d b y i n t e r p o l a t i o n . Table I 3 .3 $ BeO Sample 2651 k° L ine T r i a l D e n s ito m e te r R eadings P o s i t i o n of L in e on F ilm 1 2 3 4 5 6 7 8 9 10 1 100 100 1 4 .5 100 1 0 .2 6 2 . 5 100 100 100 100 2 100 100 9 .0 1 0 .2 100 100 100 100 100 100 3 100 2 0 .7 2 0 .2 100 100 100 100 100 100 100 4 100 4 7 .0 7 .7 1 1 .0 100 100 100 100 100 100 5 100 1 7 .5 7 .0 100 100 100 100 100 100 100 6 100 1 9 .5 9 .0 2 4 .5 100 100 100 100 100 100 7 100 2 3 .5 8 .0 1 7 .8 9 5 .0 100 100 100 100 100 H V - 1 Table II 3,3% BeO Sample 2651 A0 L ine T r i a l I n t e n s i t i e s A reas 1 2 P o s i t i o n o f 3 4 5 L in e on 6 F ilm 7 8 9 10 • 1 0 0 8 5 .5 0 8 9 . 8 3 7 .5 0 0 0 0 2 1 2 .8 2 0 0 9 1 .0 8 9 .8 0 0 0 0 0 0 1 8 0 .8 3 0 7 9 .3 7 9 .8 0 0 0 0 0 0 0 15 9 .1 4 0 5 3 .0 9 2 .3 8 9 .0 0 0 0 0 0 0 2 3 4 .3 5 0 8 2 .5 9 3 .0 0 0 0 0 0 0 0 1 7 5 .5 6 0 8 0 .5 9 1 .0 7 5 .5 0 0 0 0 0 0 2 4 7 .0 7 0 7 6 .5 9 2 .0 8 2 .2 5 . 0 0 0 0 0 0 2 5 5 .7 Average Area 209.3 13 Graph I 3.3% BeO - 2651 A0 100 90 80 * 70 60 50 40 30 20 10 0 C L. je ss15 m ilu e r. ,.3»G h l E S 45 60 75 90 105 120 135 150 Time T ■ 2 S3- .1 i t t • ) >; -I *ri £ •d> r' ' Table I I I 4 .4 $ BeO Sample 2651 A0 L ine T r i a l D e n s ito m e te r R eadings P o s i t i o n o f L ine on F ilm 1 2 3 4 5 6 7 8 9 10 1 100 100 8 .5 7 .0 4 8 .0 100 100 100 100 100 2 100 1 5 .1 7 .3 2 5 .0 100 100 100 100 100 100 3 100 3 2 .2 8 .0 1 1 .0 6 0 .0 100 100 100 100 100 4 100 2 3 .2 6 .5 2 8 .6 100 100 100 100 100 100 5 8 2 .0 5 0 .3 5 .1 9 .5 8 2 .5 8 5 . 3 100 100 100 100 6 100 2 5 .0 1 3 .8 1 5 .7 8 9 .9 100 100 100 100 100 Table IV 4 .4 $ BeO Sample 2651 A0 L ine T r i a l I n t e n s i t i e s A reas 1 2 P o s i t i o n o f L ine on 3 4 5 6 F ilm 7 8 9 10 1 0 0 9 1 .5 9 3 .0 5 2 .0 0 0 0 0 0 2 3 6 .5 2 0 8 4 .9 9 2 .7 7 5 .0 0 0 0 0 0 0 25 2 .6 3 0 6 7 .8 9 2 .0 8 9 .0 4 0 .0 0 0 0 0 0 2 8 8 .8 4 0 7 6 .8 9 3 .5 7 1 .4 0 0 0 0 0 0 2 4 1 .7 5 1 8 .0 4 9 .7 9 4 .9 9 0 .5 1 7 .5 1 4 .7 0 0 0 0 2 8 5 .3 6 0 7 5 .0 8 6 .2 8 4 .3 1 0 .1 0 0 0 0 0 2 7 5 .6 Average Area 263.4 i-* O i 100 90 80 70 60 50 40 30 20 10 0 16 Graph I I 4 .4 ^ BeO - 2651'A ° ‘ ■ * . - - - - .... '" i k 2 k r 1 r - , _____ _____ . + . ” i-- - f t h~ + ■ £ .hai-- r JL - - - - + i -+• i» o . 6 4 0 5 . j e s s 15 m i l l e r . l o SO 'E i - e s 45 60 75 90 105 120 135 150 Time Table V 5 .5 $ BeO Sample 2651 A0 L ine T r i a l D e n s ito m e te r R eadings P o s i t i o n o f L ine on F ilm 1 2 3 4 5 6 7 8 9 10 1 100 1 1 .7 6 .2 4 2 .0 8 8 .0 100 100 100 100 100 2 7 3 .5 1 3 .5 6 .2 3 5 .0 9 1 .5 100 100 100 100 100 3 100 1 5 .9 7 .5 2 4 .0 4 4 .2 100 100 100 100 100 4 100 1 8 .5 6 .3 1 3 .3 3 6 .0 100 100 100 100 100 5 100 1 4 .0 4 .8 1 7 .8 8 0 .0 100 100 100 100 100 6 100 2 2 .0 7 .0 9 .7 4 6 .7 100 100 100 100 100 7 100 1 4 .8 5 .0 9 .8 3 8 .8 8 2 . 4 100 100 100 100 Table VI 5 .5 $ BeO Sam ple 2651 A° L in e T r i a l I n t e n s i t i e s A re a s P o s i t i o n o f L in e on F ilm 1 2 3 4 5 6 7 8 9 10 1 0 8 8 .3 9 3 .8 5 8 .0 1 2 .0 0 0 0 0 0 2 5 2 .1 2 2 6 .5 8 6 .5 9 3 .8 6 5 .0 8 .5 0 0 0 0 0 2 8 0 .3 3 0 8 4 .1 9 2 .5 7 6 .0 5 5 .8 0 0 0 0 0 3 0 8 .4 4 0 8 1 .5 9 3 .7 8 6 .7 6 4 .0 0 0 0 0 0 3 2 5 .9 5 0 8 6 .0 9 5 .2 8 2 .2 2 0 .0 0 0 0 0 0 2 8 3 .4 6 0 7 8 .0 9 3 .0 9 0 .3 5 3 .3 0 0 0 0 0 3 1 4 .6 7 0 8 5 .2 9 5 .0 9 0 .2 6 1 .2 1 7 .6 0 0 0 0 3 4 9 .2 Average Area 302.0 Graph I I I 19 5,5% BeO - 2651 A0 90 80 70 60 50 40 30 20 10 60 75 90 105 120 135 150 G405. JESSl MILLER. 10! Time Table VII Unknown Number 1 2651 A0 L in e T r i a l D e n s ito m e te r R e a d in g s P o s i t i o n o f L in e on F ilm 1 2 3 4 5 6 7 8 9 10 1 100 1 5 .0 8 .3 3 9 .0 4 3 .4 5 9 .8 100 100 100 100 2 100 6 7 .5 9 .8 9 .4 7 7 .0 6 3 .0 100 100 100 100 3 9 2 .0 1 3 .7 6 .0 4 2 .0 3 2 .8 100 100 100 100 100 4 7 7 .0 2 2 .0 6 .8 2 7 .2 4 5 .0 9 4 .7 7 3 .7 100 100 100 5 9 3 .5 1 3 .5 8 .2 2 2 .9 100 7 5 .0 100 100 100 100 Table V III Unknown Number 1 2651 A0 L in e T r i a l I n t e n s i t i e s A reas P o s i t i o n o f L in e on F ilm 1 2 3 4 5 6 7 8 9 10 1 0 8 5 .0 9 1 .7 6 1 .0 5 6 .6 4 0 .2 0 0 0 0 3 3 4 .5 2 0 3 2 .5 9 0 .2 9 0 .6 2 3 .0 3 7 .0 0 0 0 0 2 7 3 .3 3 8 .0 8 6 .3 9 4 .0 5 8 .0 6 7 .2 0 0 0 0 0 3 1 3 .5 4 2 3 .0 7 8 .0 9 3 .2 7 2 .8 5 5 .0 5 .3 2 6 .3 0 0 0 3 5 3 .6 5 6 .5 8 6 .5 9 1 .8 7 7 .1 0 2 5 .0 0 0 0 0 2 8 6 .9 A verage A rea 3 1 2 .4 to 22 100 G raph IV Unknown No* 1 - 2651 A0 . _ i d I iri d \ - -<J T " -UV 4- -•r-i- 1 — J "C - 4 - j ^ 1- . ■f 1 . * -r. \ 90 80 70 60 50 40 30 20 10 0 O n o . 6 4 0 5 , jxssl5 h i l l e r . t{ 3 0 s E i.E s 45 60 75 90 ' 105 120 135 150 T im e Table IX Unknown Number 1 (D ilu ted 50$) 2651 A 0 Line T r i a l D e n s ito m e te r R e a d in g s P o s i t i o n o f L in e on F ilm 1 2 3 4 5 6 7 8 9 10 1 100 100 1 2 .5 1 2 .5 100 100 100 100 100 100 2 100 5 2 .3 2 1 .9 2 2 .0 100 100 100 100 100 100 3 7 5 .8 3 3 .0 4 4 .3 3 9 .5 100 100 100 100 100 100 4 100 100 2 2 .8 8 .4 3 5 .0 100 100 100 100 100 5 100 100 2 4 .5 9 .2 6 2 .0 100 100 100 100 100 Table X Unknown Number 1 (D ilu ted 50%) 2651 A° Line T r i a l I n t e n s i t i e s A re as P o s i t i o n o f L in e on F ilm 1 2 3 4 5 6 7 8 9 10 1 0 0 8 7 .5 8 7 .5 0 0 0 0 0 0 1 7 5 .0 2 0 4 7 .7 7 8 .1 7 8 .0 0 0 0 0 0 0 2 0 3 .8 3 2 4 .2 6 6 .7 5 5 .7 6 0 .5 0 0 0 0 0 0 2 0 7 .1 4 0 0 7 7 .2 9 1 .6 6 5 .0 0 0 0 0 0 2 3 3 .8 5 0 0 7 5 .5 9 0 .8 3 8 .0 0 0 0 0 0 2 0 4 .3 A verage A rea 2 0 4 .8 0 25 G raph V 100 Unknown N o. 1 - 2651 A° ( D ilu te d 50$ - — - — - - tf i ■ ir !p! 4 i i- __ . _ •*) Jrl- 4 [)-- i Ip 4| . - i -1- 1 1 __ t I 1 I ■L. 1 i x . X . i < - - +-*- X . - - X . -14- * j 90 80 70 60 50 40 30 20 10 0 0 15 30 w NO. 6 4 0 5 . J E S S S T iS ? M ILLER . LOS^AWGE 45 60 75 90 105 120 135 150 Time Table XI Unknown Humber 2 2651 A0 Line T r i a l D e n s ito m e te r R e a d in g s P o s i t i o n o f L in e on F ilm 1 2 3 4 5 6 7 8 9 10 1 6 7 .3 1 0 .7 7 .4 1 2 .0 2 2 .5 8 8 .0 4 4 .9 100 100 100 2 6 6 .0 1 2 .2 6 .0 7 .0 7 0 .0 3 1 .9 100 100 100 100 3 9 4 .8 1 4 .0 7 .7 9 .5 1 6 .7 6 5 .7 8 0 .0 100 100 100 4 8 7 .5 1 2 .5 7 .0 1 4 .0 7 6 .0 5 3 .3 4 3 .3 100 100 100 Table XII Unknown Number 2 2651 A0 L in e T r i a l I n t e n s i t i e s A re a s 1 2 3 P o s i t i o n o f 4 5 L in e on F ilm 6 7 8 9 10 1 3 2 .7 8 9 .3 9 2 .6 8 8 .0 7 7 .5 1 2 .0 5 5 .1 0 0 0 4 4 7 .2 2 3 4 .0 8 7 .5 9 4 .0 9 3 .0 3 0 .0 6 8 .1 0 0 0 0 4 0 6 .6 3 5 .2 8 6 .0 9 2 .3 9 0 .5 8 3 .3 3 4 .3 2 0 .0 0 0 0 4 1 2 .0 4 1 2 .5 8 7 .5 9 3 .0 8 6 .0 2 4 .0 4 6 .7 6 6 .7 0 0 0 4 1 6 .4 A verage A rea 4 2 1 .1 co -3 28 G raph VI Unknown WO. 2 - 2651 A0 100 90 a: 80 70 60 50 40 30 1 0 0 0 15 30 45 NO. 6 4 0 5 . J E S S E RAY M ILLER . LOS A N G E L E S 60 75 90 105 120 135 150 Time ^ Table X III Unknown Number 2 (D ilu ted 50$) 2651 A0 Line T r i a l D e n s ito m e te r R e ad in g s P o s i t i o n o f L in e on F ilm 1 2 3 4 5 6 7 8 9 10 1 100 2 6 .5 1 6 .8 1 0 .1 5 0 .2 100 100 100 100 100 2 100 100 1 3 .3 1 0 .2 100 100 6 1 .5 100 100 100 3 100 2 1 .7 1 1 .3 1 8 .6 6 7 .8 6 5 .5 6 8 .7 100 100 100 4 100 4 0 .7 1 1 .6 1 2 .5 8 0 .0 5 4 .2 8 5 .2 100 100 100 5 100 4 0 .0 1 2 .4 1 3 .2 4 9 .7 8 8 .0 100 100 100 100 Table XIV Unknown Number 2 (D ilu ted 50%) 2651 A0 Line T r i a l I n t e n s i t i e s A reas P o s i t i o n o f L in e on F ilm 1 2 3 4 5 6 7 8 9 10 1 0 7 3 .5 8 3 .2 8 9 .9 4 9 .8 0 0 0 0 0 2 9 6 .4 2 0 0 8 6 .7 8 9 .8 0 0 3 8 .5 0 0 0 2 1 5 .0 3 0 7 8 .3 8 8 .7 8 1 .4 3 2 .2 3 4 .5 3 1 .3 0 0 0 3 4 6 .4 4 0 5 9 .3 8 8 .4 8 7 .5 2 0 .0 4 5 .8 1 4 .8 0 0 0 3 1 5 .8 5 0 6 0 .0 8 7 .6 8 6 .8 5 0 .3 1 2 ,0 0 0 0 0 2 9 6 .7 A verage A rea 2 9 4 ,1 31 G raph V II 100 90 80 70 60 50 40 30 20 10 Unknown No. 2 - 2651 A ( D ilu te d 50$) a S 3 0 0 15 30 45 60 75 90 105 120 135 150 N C , 6 * 0 5 . J E S S E RAY M I l l E R , LOS A N G E t C S O . W Time Table X V Unknown Number 3 2651 A° L in e T r i a l D e n s ito m e te r R e a d in g s P o s i t i o n o f L in e on F ilm 1 2 3 4 5 6 7 8 9 10 1 100 9 .2 4 .9 6 .0 8 2 .5 6 3 .6 8 0 .0 100 100 100 2 8 8 .0 1 4 .0 5 .5 6 .8 3 7 .0 4 7 .8 9 3 .2 100 100 100 3 8 2 .0 1 0 .3 5 .0 7 .9 7 1 .6 5 0 .9 9 1 .0 100 100 100 4 4 1 .0 9 .3 4 .7 1 0 .4 9 3 .6 4 1 .2 100 100 100 100 Table XVI Unknown Humber 3 2651 A0 L in e T r i a l I n t e n s i t i e s A reas P o s i t i o n o f L in e on F ilm 1 2 3 4 5 6 7 8 9 10 1 0 9 0 .8 9 5 .1 9 4 .0 1 7 .5 3 6 .4 2 0 .0 0 0 0 3 5 3 .8 2 1 2 .0 8 6 .0 9 4 .5 9 3 .2 6 3 .0 5 2 .2 6 .8 0 0 0 4 0 7 .7 3 1 8 .0 8 9 .7 9 5 ,0 9 2 .1 2 8 .4 4 9 .1 9 .0 0 0 0 3 8 1 .3 4 5 9 .0 9 0 .7 8 5 .3 8 9 .6 6 .4 5 8 .8 0 0 0 0 3 8 9 .8 A verage A rea 3 8 3 .2 .uu 90 80 70 60 50 40 30 20 10 0 Graph V III 34 Unknown N o ..'3 2651 A0 is:: m. 15 30 45 JO. 5 4 0 5 . JESSE RAT MILLER. LOS ANGELES 60 75 90 105 120 135 .50 Time Table XVII Unknown Number 3 (D ilu ted 50%) 2651 A0 Line T r i a l D e n s ito m e te r R e a d in g s P o s i t i o n o f L in e on F ilm 1 2 3 4 5 6 7 8 9 10 1 100 100 9 .3 7 .5 8 9 .5 7 9 .7 100 100 100 100 2 100 100 9 .3 7 .0 9 3 .7 8 4 .5 9 3 .0 100 100 100 3 100 9 1 .6 9 .6 1 2 .5 6 0 .1 9 2 .0 100 100 100 100 4 100 100 1 3 .2 6 .0 5 6 .5 7 5 .0 100 100 100 100 Table XVIII Unknown Number 3 . (D ilu ted 50%) 2651 A° Line T r i a l I n t e n s i t i e s A re a s P o s i t i o n o f L in e on F ilm 1 2 3 4 5 6 7 8 9 10 1 0 0 9 0 .7 9 2 .5 1 0 .5 2 0 .3 0 0 0 0 2 1 4 .0 2 0 0 9 0 .7 9 3 .0 6 .3 1 5 .5 7 .0 0 0 0 2 1 2 .5 3 0 8 .4 9 0 .4 8 7 .5 3 9 .9 8 .0 0 0 0 0 2 3 4 .2 4 0 0 8 6 .8 9 4 .0 4 3 .5 2 5 .0 0 0 0 0 2 4 9 .3 A verage A rea 2 2 7 .5 o * o> 37 G raph IX 100 Unknown No. 3 - 2651 A° ( D ilu te d 50$) 90 O r e l t i t 7 1 " -- 80 70 60 50 40 30 20 j± 10 ■ 0 I — H I H 4 -H H 4+ I4 I-I - 1 - H H - l - l 111 i H - i U I I I 45 60 75 90 105 120 135 150 Time ^ Table XIX 3.3% BeO Sam ple 3322 A0 L in e T r i a l D e n s ito m e te r R e a d in g s P o s i t i o n o f L in e on F ilm 1 2 3 4 5 6 7 8 9 10 1 100 100 6 .0 7 1 .2 4 .2 4 7 . 3 8 4 .0 100 100 100 2 100 100 3 .0 4 .0 100 100 100 100 100 100 3 100 1 1 .5 8 .7 100 7 8 .0 100 100 100 100 100 4 100 2 8 .0 2 .9 4 .3 100 100 100 100 100 100 5 9 4 .0 1 0 .1 2 .3 9 3 .3 100 100 100 100 100 100 6 100 1 6 .7 2 .9 1 5 .0 9 6 .0 100 100 100 100 100 7 100 1 4 .2 2 .7 1 0 .0 6 8 .3 100 100 100 100 100 T a b le XX 3*3% BeO Sam ple 3322 A0 L in e T r i a l I n t e n s i t i e s A reas P o s i t i o n o f L in e on F ilm 1 2 3 4 5 6 7 8 9 10 1 0 0 9 4 .0 2 8 .8 9 5 .8 5 2 .7 1 6 .0 0 0 0 2 8 7 .3 2 0 0 9 7 .0 9 6 .0 0 0 0 0 0 0 1 9 3 .0 3 0 8 8 .5 9 1 .3 0 2 2 .0 0 0 0 0 0 1 9 9 .8 4 0 7 2 .0 9 7 .1 9 5 .7 0 0 0 0 0 0 2 6 4 .8 5 6 .0 8 9 .9 9 7 .7 6 .7 0 0 0 0 0 0 2 0 0 .3 6 0 8 3 .3 9 7 .1 8 5 .0 4 .0 0 0 0 0 0 2 6 9 .4 7 0 8 5 .8 9 7 .3 9 0 .0 3 1 .7 0 0 0 0 0 3 0 4 .8 Average Area 245.6 40 100 90 80 70 60 50 40 30 20 10 G raph X 3 .3 $ Beo - 3322 A0 - — -fr b -4 T * T 1 -i=->- __ -•H u < c* i f 1 . - 0 0 15 30 45 NO. 6 4 0 5 . JESSE RAY MILLER. LOS ANSELES 60 75 90 105 120 135 150 Time Table XXI 4 .4 % BeO Sam ple 3322 A° L in e T r i a l D e n s ito m e te r R e a d in g s P o s i t i o n o f L in e Dn F ilm 1 2 3 4 5 6 7 8 9 10 1 100 9 5 .5 2 .7 2 .5 3 5 .5 8 6 .5 100 100 100 100 2 100 5 .2 2 .2 1 5 .8 8 2 .5 100 100 100 100 100 3 100 1 6 .7 2 .8 3 .5 5 2 .6 6 9 .5 100 100 100 100 4 100 1 2 .5 2 .1 1 7 .5 8 5 .0 100 100 100 100 100 5 6 8 .3 2 8 .3 1 .7 3 .3 6 7 .3 5 5 .0 100 100 100 100 6 6 4 .8 2 3 .2 7 .5 2 1 .4 4 1 .3 100 100 100 100 100 Table XXII 4 .4 $ BeO Sam ple 3322 A0 L in e T r i a l I n t e n s i t i e s . A re a s P o s i t i b n o f L in e on F ilm 1 2 3 4 5 6 7 8 9 10 1 0 4 .5 9 7 .3 9 7 .5 6 4 .5 1 3 .5 0 0 0 0 2 7 7 .3 2 0 9 4 .8 9 7 .8 8 4 .2 1 7 .5 0 0 0 0 0 2 9 4 .3 3 0 8 3 .3 9 7 .2 9 6 .5 4 7 .4 3 0 .5 0 0 0 0 3 5 4 .9 4 0 8 7 .5 9 7 .9 8 2 .5 1 5 .0 0 0 0 0 0 2 8 2 .9 5 3 1 .7 7 1 .7 9 8 .3 9 6 .7 3 2 .7 4 5 .0 0 0 0 0 3 7 6 .1 6 3 5 .2 7 6 .8 9 2 .5 7 8 .6 5 8 .7 0 0 0 0 0 3 4 1 .8 Average Area 321.2 co 100 90 80 70 60 50 40 30 20 10 ‘ 0 G raph XI 43 4*4$ BeO - 3322 AC T - - -k ma j - n r 4 fl - » • T > i J 4J n ;( > -h - i L T 1 --- • I 1 i.. 1 - U . N O . C 4 0 5 . j e s s ! M I L L E R . L o5 iQ g e I E S 4 5 60 75 90 Time 105 120 135 150 Table XXIII 5.5 $ BeO Sample 3322 A0 L in e T r i a l D e n s ito m e te r R e a d in g s P o s i t i o n o f L in e on F ilm 1 2 3 4 5 6 7 8 9 10 1 100 3 .3 1 .8 2 4 .2 7 3 .0 100 10 0 100 100 100 2 5 7 .0 5 .2 1 .7 1 9 .5 8 4 .0 7 7 .0 100 100 100 100 3 8 2 .5 5 .3 2 .1 1 0 .2 3 0 .8 100 100 100 100 100 4 8 4 .0 9 .2 2 .0 4 .2 2 5 .7 8 2 .5 100 100 100 100 5 100 4 .3 1 .3 7 .5 6 6 .0 100 100 100 100 100 6 100 9 .3 2 .2 3 .2 3 1 .3 100 100 100 100 100 7 100 5 .8 1 .7 3 .5 2 8 .3 6 6 .0 9 2 .0 100 100 100 Table XXIV 5 .5 $ BeO Sample 3322 A° L ine T r i a l I n t e n s i t i e s A reas P o s i t i o n o f L ine on F ilm 1 2 3 4 5 6 7 8 9 10 1 0 9 6 .7 9 8 .2 7 5 .8 2 7 .0 0 0 0 0 0 2 9 7 .7 2 4 3 .0 9 4 .8 9 8 .3 8 0 .5 1 6 .0 2 3 .0 0 0 0 0 3 55 .6 3 1 7 .5 9 4 .7 9 7 .9 8 9 .8 6 9 .2 0 0 0 0 0 3 6 9 .1 4 1 6 .0 9 0 .8 9 8 .0 9 5 .8 7 4 .3 1 7 .5 0 0 0 0 3 9 2 .4 5 0 9 5 .7 9 8 .7 9 2 .5 3 4 .0 0 0 0 0 0 320 .9 6 0 8 0 .7 9 7 .8 9 6 .8 6 8 .7 0 0 0 0 0 3 4 4 .0 7 0 9 4 .2 9 8 .3 9 6 .5 7 1 .7 34*0 8 .0 0 0 0 4 0 2 .7 Average Area 354.6 100 90 80 70 60 50 40 30 20 10 0 46 Graph' XII 5.5% BeO - 3322 Ac 3b 51 re r r r r r n~ t t 5 40 5. JE SSE’ 15 M IL L E R . LO 30 E L E S . 45 60 75 90 105 120 135 150 Time Table X X V Unknown Number 1 3322 A0 L ine T r i a l D e n sito m e te r R eadings P o s i t i o n o f L ine on F ilm 1 2 3 4 5 6 7 8 9 10 1 100 5 .5 2 .8 2 7 .2 7 7 .0 2 9 .9 4 4 .3 100 100 100 2 100 5 2 .8 3 .8 4 .5 6 0 .2 5 1 .5 100 100 100 100 3 8 0 .5 5 .9 4 .7 2 5 .7 2 2 .7 7 8 .5 100 100 100 100 4 6 6 .0 1 2 .5 2 ,3 1 5 .7 2 7 .8 7 2 .7 4 7 .5 100 100 100 5 8 9 .5 5 .5 3 .7 1 5 .7 8 6 .5 6 4 .0 100 100 100 100 Table XXVI Unknown Number 1 3322 A0 L ine T r i a l I n t e n s i t i e s A reas P o s i t i o n o f L ine on F ilm 1 2 3 4 5 6 7 8 9 10 1 0 9 4 .5 9 7 .2 7 2 .8 2 3 .0 7 0 .1 5 5 .7 0 0 0 4 1 3 .3 2 0 4 7 .2 9 6 .2 9 5 .5 3 9 .8 4 8 .5 0 0 0 0 3 2 7 .2 3 1 9 .5 94 .1 9 5 .3 7 4 .3 7 7 .3 2 1 .5 0 0 0 0 3 8 2 .0 4 3 4 .0 8 7 .5 9 7 .7 8 4 .3 7 2 .2 2 7 .3 5 2 .5 0 0 0 4 5 5 .5 5 1 0 .5 9 4 .5 9 6 .3 8 4 .3 1 3 .5 3 6 .0 0 0 0 0 3 3 5 .1 A verage A rea 382 .6 C D 49 Graph X III 100 90 80 70 60 50 40 30 20 Unknown Uo. 1 - 3322 A0 ‘ fit? m < D 10 0 0 15 30 45 NO. 6 4 0 5 . J E S S E RAY M ILLER , LOS A N G E L E S 60 75 90 105 120 135 150 Time Table XXVII Unknown Number 1 (D ilu ted 50% ) 3322 A° Line T r i a l D e n sito m e te r R eadings P o s i t i o n o f L ine on F ilm 1 2 3 4 5 6 7 8 9 10 1 100 . 100 6 .5 4 .0 7 3 .5 100 100 100 100 100 2 100 3 0 .0 1 2 .1 1 3 .3 100 100 100 100 100 100 3 100 100 1 1 .2 5 .3 7 7 .3 100 100 100 100 100 4 100 100 1 5 .2 5 .7 2 7 .5 100 100 100 100 100 5 100 100 13 .4 6 .8 5 1 .5 8 6 .6 100 100 100 100 Table XXVIII Unknown Number 1 (D ilu ted 50$) 3322 A° Line T r i a l I n t e n s i t i e s A reas P o s i t i o n o f L ine on F ilm 1 2 3 4 5 6 7 8 9 10 1 0 0 9 3 .5 9 6 .0 2 6 .5 0 0 0 0 0 2 1 6 .0 2 0 7 0 .0 8 7 .9 8 6 .7 0 0 0 0 0 0 2 44 .6 3 0 0 8 8 .8 9 4 .7 2 2 .7 0 0 0 0 0 2 0 6 .2 4 0 0 8 4 .8 9 4 .3 7 2 .5 0 0 0 0 0 2 5 1 .6 5 0 0 8 6 .6 9 3 .2 4 8 .5 1 3 .4 0 0 0 0 2 4 1 .7 A verage Area 2 3 2 .0 Graph XIV 52 100 Unknown h o . 1 - 3322 A0 ( D ilu te d 50$) 90 80 70 60 50 40 30 20 10 Are sc ffl < D 0 0 15 30 45 60 75 90 105 120 135 150 NO. 6 4 0 5 . J E S S E RAY M IL L E R . L O S A N S E L E S V Time Table XXIX Unknown Number 2 3322 A0 L ine T r i a l D e n s ito m e te r R eadings P o s i t i o n o f L ine on F ilm 1 2 3 4 5 6 7 8 9 10 1 5 8 .6 4 .6 1 .8 4 .3 1 4 .2 7 5 .8 2 3 .3 100 7 9 .0 100 2 5 6 .5 5 .2 2 .6 3 .5 5 8 .2 2 0 .3 100 100 100 100 3 8 6 .5 8 .0 2 .9 4 .9 7 .3 5 2 .5 5 5 .2 100 100 100 4 7 3 .8 8 .0 5 .3 4 .5 6 4 .0 4 0 .0 2 1 .5 8 4 .0 100 100 Table X X X Unknown Number 2 3322 A0 Line T r i a l I n t e n s i t i e s A reas P o s i t i o n o f L ine on F ilm 1 2 3 4 5 6 7 8 9 10 1 4 1 .4 9 5 .4 9 8 .2 9 5 .7 8 5 .8 2 4 .2 7 6 .7 0 2 1 .0 0 538 .4 2 4 4 .5 9 4 .8 9 7 .4 9 6 .5 4 1 .8 7 9 .7 0 0 0 0 4 5 4 .7 3 1 3 .5 9 2 .0 9 7 .1 9 5 .1 9 2 .7 4 7 .5 4 4 .8 0 0 0 4 8 2 .7 4 2 6 .2 9 2 .0 9 4 .7 9 5 .5 3 6 .0 6 0 .0 7 8 .5 1 6 .0 0 0 4 9 8 .8 A verage Area 4 9 3 .7 100 90 80 70 60 50 40 30 20 10 0 Graph X V 55 Unknown No. 2 - 3322 A0 Are « :7 l p- «- £ : :<p: 15 .30. >. G405. JESSE RAY MILLER. LOS ANGELES 45 60 75 Time 90 105 120 135 150 Table XXXI Unknown Number 2 (D ilu ted 50$) 3322 A0 Line T r i a l D e n sito m e te r R eadings P o s i t i o n o f L ine on F ilm 1 2 3 4 5 6 7 8 9 10 1 100 1 4 .9 7 .7 5 .4 3 5 .4 8 7 .0 8 0 .0 100 100 100 2 9 0 .5 8 2 .0 6 .5 5 .2 7 1 .8 8 8 .0 5 0 .0 100 100 100 3 100 1 2 .5 8 .8 1 3 .2 5 4 .5 4 5 .5 5 0 .3 100 100 100 4 100 2 4 .8 6 .5 7 .0 6 4 .7 3 9 .2 6 0 .0 100 100 100 5 100 3 6 .0 7 .5 6 .8 3 5 .0 6 6 .0 8 6 .5 100 100 100 Table XXXII Unknown Number 2 (D ilu ted 50$) 3322 A0 Line T r i a l I n t e n s i t i e s A reas 1 2 3 P o s i t i o n o f 4 5 L ine on F ilm 6 7 8 9 10 1 0 8 5 .1 9 2 .3 9 4 .6 64 .6 1 3 .0 2 0 .0 0 0 0 3 6 9 .6 2 9 .5 1 8 .0 9 3 .5 94 .8 2 8 .2 1 2 .0 5 0 .0 0 0 0 3 0 6 .0 3 0 8 7 .5 9 1 .2 8 6 .8 4 5 .5 5 4 .5 4 9 .7 0 0 0 4 1 5 .2 4 0 7 5 .2 9 3 .5 9 3 .0 3 5 .3 6 0 .8 4 0 .0 0 0 0 3 9 7 .8 5 0 6 4 .0 9 2 .5 9 3 .2 6 5 .0 3 4 .0 1 3 .5 0 0 0 3 6 2 .2 Average A rea 3 7 0 .1 O l 58 Graph XVI 100 Unknown No. 2 - 3322 A ( D ilu te d 50%) - -- T T *yi : 4% : - z . z rr s L rJ _ - -- » -- - - - - 0 , rK 4 -\ ■ f i , i ) 4 - jJ j i - -M - -H i 90 80 70 60 50 40 30 20 10 0 Q NO. 0 4 0 5 . JESSE 45 60 75 90 .105 120 135 150 Time Table XXXIII Unknown Number 3 3322 A0 L ine T r i a l D e n sito m e te r R eadings P o s i t i o n o f L ine on F ilm 1 2 3 4 5 6 7 8 9 10 1 100 2 .1 2 .3 2 .1 6 9 .2 4 6 .7 5 7 .5 100 100 100 2 8 3 .2 6 .0 2 .0 1 .9 2 3 .3 2 9 .0 7 7 .2 100 100 100 3 6 2 .2 5 .7 2 .2 4 .1 4 2 .9 5 7 .1 7 1 .2 100 100 100 4 2 5 .0 ,4 .7 2 .1 7 .2 6 9 .8 2 5 .0 100 100 100 100 Table XXXIV Unknown Number 3 3322 A0 L ine T r i a l I n t e n s i t i e s A reas P o s i t i o n o f L in e on F ilm 1 2 3 4 5 6 7 8 9 10 1 0 9 7 .9 9 7 .7 9 7 .9 3 0 .8 5 3 .3 4 2 .5 0 0 0 4 1 9 .9 2 1 6 .8 9 4 .0 9 8 .0 9 8 .1 7 6 .7 7 1 .0 2 2 ,8 0 0 0 4 7 7 .4 3 3 7 .8 9 4 .3 9 7 .8 9 5 ,9 5 7 .1 4 2 .9 2 8 .8 0 0 0 4 5 3 .6 4 7 5 .0 9 5 .3 9 7 .9 9 2 .8 3 0 .2 7 5 .0 0 0 0 0 4 6 6 .2 A verage A rea 4 5 4 .3 o > o 100 90 80 70 60 50 40 30 20 10 0 61 G raph XVII Unknown No• 3 - 3322 A0 ::tb - - + * - :ap: - - W h -P NO. 0 4 0 5 . J E S s S T u t f MILLER. L0& A Re EL ES 45 60 75 90 . 105 120 135 150 Time Table X X X V Unknown Number 3 (D ilu ted 50$) 3322 A° Line T r i a l D e n sito m e te r R ead ing s P o s i t i o n o f L ine on F ilm 1 2 3 4 5 6 7 8 9 10 1 100 100 4 .2 3 .5 7 3 .4 6 0 .0 100 100 100 100 . 2 100 8 8 .6 3 .6 3 .2 8 5 .7 7 0 .3 7 9 .6 100 100 100 3 100 8 7 .5 4 .7 3 .0 4 6 .5 8 3 .0 100 100 100 100 4 100 100 6 .0 2 .9 3 9 .0 5 6 .8 100 100 100 100 Table XXXVI Unknown Number 3 (D ilu ted 50$) 3322 A0 Line T r i a l I n t e n s i t i e s A reas 1 2 3 P o s i t i o n o f 4 5 L ine on 6 F ilm 7 8 9 10 1 0 0 9 5 .8 9 6 .5 2 6 .6 4 0 .0 0 0 0 0 2 5 8 .9 2 0 1 1 .4 9 6 .4 9 6 .8 1 4 .3 2 9 .7 2 0 .4 0 0 0 2 6 9 .0 3 0 1 2 .5 9 5 .3 9 7 .0 5 3 .5 1 7 .0 0 0 0 0 2 7 4 .8 4 0 0 9 4 .0 9 7 .1 6 1 .0 4 3 .8 0 0 0 0 2 9 5 .5 Average A rea 2 7 4 .7 o > 100 90 80 70 60 50 40 30 20 10 0 Graph XVIII 64 Unknown No. 3 ( D ilu te d 50#) - 3322 A 1 --J - 1 - e sc • • ~ <3 r Fr I; f p 1 ■ > fjV p n - + - _ JL JO. € 4 0 5 . JE SSE 15 30 45 E RAY M ILLER . LOS A N G E L E S 60 75 90 105 120 135 150 Time Graph XIX R e s u lts - 2651 A0 L ine 65 100 7 -P •H P i O V *. 1.0 0.1 Book S to rcrtM s Angel V A rea 6095 933503 Graph X X R e s u lts - 5322 A L ine 100 66 10, :==: l.o, 0.1 350 375 400 425 450 475 500 525 Stoh:, An; A rea 86 67 T ab le XXXVII 2651 A0 Line Known A rea u n d e r % BeO Curve C a lc u la te d % BeO A verage % BeO A c tu a l % BeO 3 .3 2 0 9 .3 ----- 3 .3 . 3 .3 4 .4 2 6 3 .4 ----- 4 .4 4 .4 5 .5 3 0 2 .0 ----- 5 .5 5 .5 Unknown No. 1 No. 1 ( d i l . 50%) 3 1 2 .4 2 0 4 .8 5 .9 3 .2 6 .1 5 .3 No. 2 No. 2 ( d i l . 50%) 4 2 1 .1 2 9 4 .1 1 0 .6 5 .2 1 0 .5 10“ No. 3 No. 3 ( d i l . 50%) 3 8 2 .2 2 2 7 .5 8 .6 3 .6 7 .9 8 .0 6 8 T ab le XXXVIII 3322 A° L ine Known A rea u n d e r % BeO Curve C a lc u la te d % BeO A verage % BeO A c tu a l % BeO 3 .3 2 4 5 .6 ------ 3 .3 3 .3 4 .4 3 2 1 .2 ------ 4 .4 4 .4 5 .5 3 5 4 .6 ------ 5 .5 5 .5 Unknown No. 1 No. 1 ( d i l . 50%) 3 8 2 .6 2 3 2 .0 6 .3 3 .1 6 .2 5 .3 No. 2 No. 2 ( d i l . 50$) 4 9 3 .7 3 7 0 .1 1 0 .9 6 .0 1 1 .4 10“ No. 3 No. 3 ( d i l . 50%) 4 5 4 .3 2 7 4 .7 8 .9 3 .8 8 .2 8 .0 CONCLUDING REMARKS 69 C o n c lu sio n s Prom th e r e s u l t s o f t h i s i n v e s t i g a t i o n , i t a p p e a rs t h a t th e m ethod o u t l i n e d i s c a p a b le o f p ro d u c in g a f a i r d e g re e o f a c c u ra c y . W ith f u r t h e r m o d if i c a t io n s th e m ethod h o ld s p ro m ise o f much g r e a t e r a c c u ra c y to be a t t a i n e d . Prom th e r e s u l t s as l i s t e d i n T a b le s XXXVII and XXXVIII, i t can be seen t h a t th e s i n g l e l i n e o f 2651 A° i s more r e l i a b l e th a n th e 3322 A0 d o u b l e t . An e x a m in a tio n o f th e d a ta shows t h a t th e i n d i v i d u a l a r e a s c a l c u l a t e d from th e 3322 A° l i n e d e v ia te d from th e a v e ra g e a r e a b y a much g r e a t e r amount th a n d id th o s e c a l c u l a t e d from th e 2651 A° l i n e . 70 Summary A new m o d i f i c a t i o n o f th e co m p ariso n m ethod o f th e q u a n t i t a t i v e s p e c tr o g r a p h ic a n a l y s i s o f b e r y l liu m h a s b e en i n v e s t i g a t e d . The c o n c lu s io n t h a t th e 2651 A ngstrom l i n e o f b e r y lliu m i s to be p r e f e r r e d to th e 3322 A ngstrom d o u b le t seems to be j u s t i f i e d by th e e x p e r im e n ta l r e s u l t s th r o u g h o u t. The m ethod e li m in a te s th e d i f f i c u l t i e s i n h e r e n t in th e u se o f an i n t e r n a l s ta n d a r d : F in d in g a s u i t a b l e p a i r o f l i n e s f o r one c o n c e n tr a ti o n ra n g e and a n o th e r p a i r f o r a n o th e r r a n g e , and th e n e c e s s i t y t h a t b o th o f th e s e m e ta ls v o l a t i l i z e a t th e same r a t e and d u rin g th e same p o r t i o n o f th e e x p o s u re . I t h a s been shown t h a t c o n d it i o n s can be h e ld c o n s ta n t enough from one ru n t o a n o th e r so t h a t quan t i t a t i v e r e s u l t s can be o b ta in e d w hich compare f a v o r a b ly w ith th e n o t to o s a t i s f a c t o r y c h e m ic a l m ethod o f a n a l y s i s f o r b e r y l l iu m . BIBLIOGRAPHY 71 Books B a ly , E . C. C ., S p e c tro s c o p y ( t h i r d e d i t i o n ) . New Y ork: Longmans, G reen and Company, L t d . , 1924. B rode, W allace R eed, C hem ical S p e c tr o s c o p y . New York: J . Y /iley and Sons', 1039. D a n i e l s , P . , M athews, J . H ., and W illia m s , J . W., E x p e rim e n ta l P h y s ic a l C h e m istry (se c o n d e d i t i o n ) . New Y ork: M cG raw -H ill iBook Company, 1934. F o r s y th e , W. E . , M easurem ent o f R a d ia n t E n e rg y . New Y ork: M cG raw -H ill Book Company, 1937. H u ll, G. P . , An E le m e n ta ry Srarvey o f Modern P h y s i c s . New Y o rk :- The M acm illan Company, 193V. L ange, N. A ., Handbook o f C h e m istry (se c o n d e d i t i o n ) . Sandusky: Handbook P u b l i s h e r s , I n c . , 1937. M eggers, W. P . , and S c r ib n e r , B. P . , In d ex to th e L i t e r a t u r e on S p e c tro c h e m ic a l A n a ly s is ,~~I920- 1 9 3 7 . A m erican S ocT ety f o r T e s tin g M a t e r i a l s , 1939. N e b l e t te , C. B ., P h o to g ra p h y , I t s P r i n c i p l e s and P r a c t i c e (se co n d ed itio n )"^ Bevi Y o rk : D• Van N o s tra n d , 1930. R ic h tm e y e r, P . K ., I n t r o d u c t i o n to Modern P h y s ic s (se co n d e d Itio n T I New Y ork: M cG raw -H ill Book Company, 1934. R o b e rts o n , J . K ., I n t r o d u c t i o n to P h y s ic a l O p tic s (se co n d e d i t i o n ) . New Y ork: D. van" N o s tra n d , 1935. S tro n g , Jo h n , P ro c e d u re s in E x p e rim e n ta l P h y s ic s . New Y ork: P re n tic e -H a T F , 1939. 72 O th e rs A p p lie d R e se a rc h L a b o r a to r ie s B u l l e t i n , " S p e c tr o - C hem ical A n a l y s i s ." Los A n g e le s, 1939. H a r r is o n , G. R . , " P r a c t i c a l P o s s i b i l i t i e s i n S p e c - t r o g r a p h i c A n a l y s i s ," M e ta ls and A llo y s , 7 :2 9 0 -6 , 1936. S l a v in , M o rris , " Q u a n ti t a t i v e A n a ly s is B ased on S pec t r a l E n e r g y ," I n d u s t r i a l and E n g in e e rin g C h e m is try , A n a l y ti c a l E d itT o n , 1 0 :4 0 7 -1 1 , 1938. 73 APPENDIX Two-m inute D e v elo p e r Form ula W ater . . . . . . . . . . . . . . . 490 m l. E l o n ..................................................................... 3 gm. Sodium S u l f i t e 90 gm. H y d r o q u i n o n e .................................................. 5 .5 gm. Sodium C arb o n ate . . 90 gm. P o ta ssiu m Bromide 1 .5 gm. To makb 1000 m l. F i x e r Form ula W a t e r ..................................................................... 1000 m l. Hypo . ............................................................ 340 gm. Sodium S u l f i t e 15 gm. 28$ A c e tic A c i d ............................................. 45 m l. P o ta ssiu m Alum .................... 1 5 gm. To make 1000 m l.
Linked assets
University of Southern California Dissertations and Theses
Conceptually similar
PDF
A study of the possibilities of volumetric microchemical analysis
PDF
An investigation of the application of 3-aminophthalhydrazide to the forensic detection of blood stains
PDF
Comparative methods of casein extraction
PDF
Critical comparison of the quantative methods for determination of alcohol in brain
PDF
A critical study of the 8-hydro-oxyquinoline method for the determination of beryllium
PDF
Basic studies in the analytical chemistry of beryllium
PDF
A study of the molybdate of cerium as a means of separation from the other rare earths
PDF
Critical study of sources of error in recognized analytical chemical procedures
PDF
A study of the reactions of phosphorus pentachloride with trimethylamine
PDF
Complex compounds of trimethylamine oxide
PDF
Addition compounds of trimethylphosphine oxide
PDF
A method of determining molecular weights of vapors by effusion
PDF
A critical study of the methods for the quantitative determination of beryllium
PDF
A critical study of the Gooch and Havens hydrochloric acid-ether method for the quantitative separation of beryllium and aluminum
PDF
A study of some sulfates and double sulfates of beryllium
PDF
The extraction of titanium dioxide from its ores
PDF
An investigation of hydrogen overvoltage of alloys of chromium and nickel
PDF
Addition compounds of trimethylamine with boron fluoride and its methyl derivatives.
PDF
The separation of lanthanum from other rare-earths
PDF
An experimental investigation of the interchange of carbon monoxide and cyanide ion in zerovalent nickel compounds
Asset Metadata
Creator
Wright, R. M (author)
Core Title
A study of the quantitative spectrographic determination of beryllium
Degree
Master of Science
Degree Program
Chemistry
Publisher
University of Southern California
(original),
University of Southern California. Libraries
(digital)
Tag
chemistry, analytical,OAI-PMH Harvest
Language
English
Contributor
Digitized by ProQuest
(provenance)
Advisor
Brinton, Paul H.M.P. (
committee chair
), [illegible] (
committee member
), Burg, Anton B. (
committee member
)
Permanent Link (DOI)
https://doi.org/10.25549/usctheses-c17-789424
Unique identifier
UC11347961
Identifier
EP41540.pdf (filename),usctheses-c17-789424 (legacy record id)
Legacy Identifier
EP41540.pdf
Dmrecord
789424
Document Type
Thesis
Rights
Wright, R. M.
Type
texts
Source
University of Southern California
(contributing entity),
University of Southern California Dissertations and Theses
(collection)
Access Conditions
The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law. Electronic access is being provided by the USC Libraries in agreement with the au...
Repository Name
University of Southern California Digital Library
Repository Location
USC Digital Library, University of Southern California, University Park Campus, Los Angeles, California 90089, USA
Tags
chemistry, analytical