Close
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected
Invert selection
Deselect all
Deselect all
Click here to refresh results
Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Synthesis of fluorocarbon hydrocarbon hybrid compounds, a thermodynamic scheme for predicting their physical properties, and an estimation of the basicity of diazene
(USC Thesis Other)
Synthesis of fluorocarbon hydrocarbon hybrid compounds, a thermodynamic scheme for predicting their physical properties, and an estimation of the basicity of diazene
PDF
Download
Share
Open document
Flip pages
Contact Us
Contact Us
Copy asset link
Request this asset
Transcript (if available)
Content
SYNTHESIS OF FLUOROCARBON HYDROCARBON HYBRID COMPOUNDS, A THERMODYNAMIC SCHEME FOR PREDICTING THEIR PHYSICAL PROPERTIES, AND AN ESTIMATION OF THE BASICITY OF DIAZENE by Tobia Fred T erran o v a A T h e s is P re s e n te d t o th e FACULTY OF THE GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In P a r t i a l F u lf il lm e n t o f th e R equirem ents f o r th e Degree MASTER OF SCIENCE (C hem istry) F e b ru a ry 1979 UMI Number: EP41669 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, th ese will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI Dissertation Publishing UMI EP41669 Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 4 8 1 0 6 -1 3 4 6 UNIVERSITY O F S O U T H E R N CALIFORNIA TH E GRADUATE SCHOO L U NIVERSITY PARK LOS AN G ELES. CA LIFO R N IA 9 0 0 0 7 This thesis, •written by Tobia Fred Terranova under the direction of hS.§~..Thesis Committee, and approved by all its members, has been pre sented to and accepted by the Dean of The Graduate School, in partial fulfillment of the requirements for the degree of C ' T i T3 3 3 < 3 6 3 ? D Master o f Science Dean THESIS COMMITTEE DEDICATION This thesis is dedicated to my father* who pointed my head toward the stars3 to my mother who kept me from tripping while I was busy' looking up3 and to T. J. who will play among stars I will never see. "At every crossway on the road that leads to the future3 each progressive spirit is opposed by a thousand men appointed to guard the past," Comte Maurice Maeterlinck ii ACKNOWLEDGMENTS Because s y n th e s is o f th e h y b rid s was co n d u cted in a p r o j e c t form at p a r t l y a t J e t P ro p u ls io n L a b o ra to ry , a number o f p e o p le were in v o lv e d in th e developm ent and c h a r a c t e r i z a t i o n o f th e s e compounds. The s y n t h e t i c s t r a t e g y as w e ll as s y n th e s is o f compounds 4 , 5 , 12 - 24 was p erfo rm ed by Dr. K irby V, S c h e r e r , U n iv e r s ity o f S o u th ern C a l i f o r n i a . S y n th e s is o f compound 9 was perfo rm ed by Edward N- W ashington, JPL, D an iel D, Lawson, JPL, m easured th e O2 s o l u b i l i t i e s o f th e h y b rid s and o u t l i n e d th e groundwork f o r th e therm odynam ic scheme t o p r e d i c t oxygen s o l u b i l i t y and v a p o r p r e s s u r e from th e s t r u c t u r a l fo rm u la o f th e h y b r id s . A ll o th e r p h y s ic a l d a t a , s y n th e s e s , and c h a r a c t e r i z a t i o n s w ere perfo rm ed by t h e a u th o r, I am g r a t e f u l t o th e s e p e o p le and my te a c h e r s f o r t h e i r know ledge, h e lp and gu id an ce d u rin g my a s s o c i a t i o n w ith USC and JPL. TABLE OF CONTENTS Page DEDICATION..................................................................................................................................... i i ACKNOWLEDGMENTS......................................................................... i i i LIST OF TABLES........................................................................................................................... v i LIST OF FIGURES . ........................................................... v i i I . INTRODUCTION .............................................................................................................. 1 I I . BACKGROUND................................................................................................................... 4 A. R a tio n a le f o r th e D esign and S y n th e tic S tr a t e g y o f th e H ybrids ............................................ 4 B. H is to r y and N atu re o f F lu o ro c a rb o n s ......................................... 6 C. F l u o r o o l e f i n s .................................................. 7 D. F lu o rid e Ion and F lu o ro c a rb a n io n s ................................................... 9 I I I . CHEMICAL SYNTHESIS ............................................................................................... 13 A. P r e p a r a tio n o f I n te r m e d ia te P e r f l u o r o o l e f i n s . . . . . 13 1. S y n th e s is o f o c t a f lu o r o is o b u te n e (OFIB) ......................... 13 2. S y n th e s is o f th e dim ers and tr i m e r s o f H F P .......................... 1 9 B, P r e p a r a tio n o f F lu o ro carb o n -H y d ro carb o n H ybrids Compounds .................................................................................... 25 1. S y n th e s is o f th e mixed a lk a n e s and a lk e n e s . . . . . 25 2. S y n th e s is o f a new p e r f l u o r o n i t r o s o compound, i t s a lc o h o l and a l k y l e t h e r s .............................. 35 3. S y n th e s is o f azo compounds and t h e i r r e d u c t io n to hy d razo compounds o r am ines ......................... 43 IV. ESTIMATION OF PHYSICAL PROPERTIES OF FLUORO- CHEMICALS FROM THEIR STRUCTURAL FORMULA ............................................. 52 A. I n t r o d u c t i o n ..........................................................................................................52 B. E s tim a tio n o f th e Energy o f V a p o riz a tio n and M olar Volume by th e Group A d d i t i v i t y Method .................... 52 C. E s tim a tio n o f Vapor P r e s s u r e ......................... 58 D. E s tim a tio n o f Oxygen S o l u b i l i t y ................................................... 61 iv Page V. ESTIMATION OF THE BASICITY OF DIAZENE.................................................. 70 A. Hq A c id ity F u n ctio n and I n d i c a t o r s ............................................. 70 B. UV and NM R as E x p erim en tal Methods o f M easuring B a s ic ity .......................................................................... 74 C. Use o f Model C o m p o u n d s ......................................................................... 76 D. E x p erim en tal P ro ced u re ......................................................................... 77 E. D ata and C a lc u la tio n s ......................................................................... 80 F. R e s u lts and D is c u s sio n ............................................ . 89 APPENDIX: DATA BASE AND CALCULATIONS.FOR.THE GROUP ADDITIVITY PARAMETERS, FLU0R0CARB0N HILDEBRAND RULE, SATO VAPOR . PRESSURE EQUATION AND THE SCATCHARD-HILDEBRAND .G A S , SOLUBILITY EQUATION ............................................................................... 94 REFERENCES ...................................................................................................................................... 128 v LIST OF TABLES T able Page I H ybrid A lkanes and A lkenes ............................................................ 29 I I H ybrid A lcohol and E th e rs .............................................................. 37 I I I Diazonium S a l t s , Azo Compounds and T h e ir R ed u ctio n P ro d u c ts ....................................................................... . . 47 IV Group C o n tr ib u tio n s to th e Energy o f V a p o riz a tio n and M olar Volume a t 2 5 ° C ..................................................................... 57 V C a lc u la te d B o ilin g P o in t and Vapor P re s s u re f o r Some F lu o ro c h e m ic a ls ............................................. 60 VI C a lc u la te d Oxygen S o l u b i l i t y o f F lu o ro c h e m ic a ls . . 66 V II Sample C a lc u la tio n s o f P h y s ic a l P r o p e r ti e s from Chem ical S t r u c t u r e ..................................................................... 68 V III P r o p e r ti e s o f F lu o ro carb o n -H y d ro carb o n H ybrids . . . , 69 IX Raw U.V. D ata o f AIB ............................................................................... 83 X Raw X H NM R D ata o f AIB .......................................................................... 84 XI Raw U.V. D ata o f H I n d i c a t o r o - n i t r o a n i l i n e .................... o — , , 87 XII Raw U.V. D ata o f H m I n d i c a t o r N -( 2 ,4 - D i n i t r o - o p h en y l) P ip e r i d in e .................................................................................... 88 X III XIV Log v s . H f o r AIB from Raw U.V. D a t a .................... & [BJ o Log I-fe-jl v s . H f o r AIB from A d ju ste d NM R D ata . . . 91 92 v:i LIST OF FIGURES F ig u re Page 1 A p p aratu s f o r th e g e n e r a tio n o f o c t a f l u o r o - is o b u te n e from h e x a flu o ro p ro p e n e ...................................................... 17 2 A p p aratu s f o r v ap o r p h ase h y d r o g e n a t i o n ......................................... 34. 298 3 R e la tio n s h ip betw een AH^ and f o r : (A) flu o ro c h e m ic a ls and CB) n o n f lu o r i n a te d l i q u i d s . . . . ^ 298 __ 4 R e la tio n s h ip betw een In ASv and/V^ f o r c y c l i c f\A (o) and open c h a in (a) flu o ro c h e m ic a ls ........................................ vii I I I I . INTRODUCTION The l a r g e r p a r t o f t h i s t h e s i s i s co n c e rn e d w ith th e g e n e r a tio n and r e a c t i v i t y o f p e r f lu o r o c a r b a n io n s p ro d u ced by th e e q u ilib r iu m n u c le o - j p h i l i c a d d i t i o n o f f l u o r i d e io n to s u i t a b l e p e r f l u o r o o l e f i n s in d i p o l a r j i j a p r o t i c s o l v e n t s . These p e r f lu o r o c a r b a n io n s w ere th e n a l k y l a t e d in j ! i |situ w ith h y d ro c a rb o n a lk y l h a l i d e s to pro d u ce flu o ro c a rb o n -h y d ro c a rb o n ' i I [h y b rid compounds where th e flu o ro c a rb o n segm ent i s lin k e d to th e h y d ro - | | ! ;carb o n p o r t i o n o f th e m o lecu le v i a a t e r t i a r y carb o n in th e flu o ro c a rb o n 1 jm o iety . For exam ple, KF R-X (CF3 ) 2C=CF2 ^ = r [ ( C F 3 ) C ] -----------K C F ) C-R ( i ) S o lv . KF R-X (c f3) 2c=c fc f2c f3 ^ = £ { c f3c f2cf2 (c f3) 2c"] -------- S o lv . i c f 3c f 2c f 2 c c f 3) 2c - b i R-X = h y d ro carb o n a lk y l h a l i d e . (2) : i [R eac tio n o f th e p e r f lu o r o c a r b a n io n s w ith a ro m a tic diazonium s a l t s to 1 4 ' pro d u ce azo compounds w hich were s u b s e q u e n tly re d u c e d to hy d razo com- 'pounds o r p rim a ry p e r f l u o r i n a t e d am ines was a l s o e x p lo re d . For exam ple,! CCF3) 3C~ + p J ^ - N i E N BF~ K C F ^ C - N ^ (3) I CCF3)3C-N=N-(g^ (CF3)3C - NH-NH^g> (4) K K i I j°r | VhhC-m2 + H2N~ ® r • i The s y n th e s is o f a new p e r f l u o r o t e r t i a r y a lc o h o l and i t s r e a c t i o n w ith I ja lk y l h a l id e s to p ro d u ce h y b rid e t h e r s was a l s o s tu d ie d . KOH R-X c f 3c f 2c f 2 (c f 3) 2c - oh — — c f 3c f 2c f 2 ccf3 ) 2c - or . (5) A group a d d i t i v i t y sy stem was g e n e ra te d , w hich, when u se d in c o n ju n c tio n w ith a p p r o p r ia te therm odynam ic r e l a t i o n s , makes i t p o s s i b l e to .e s tim a te v ap o r p r e s s u r e , oxygen s o l u b i l i t y , m o lar volum e, en erg y o f v a p o r i z a t i o n , s o l u b i l i t y p a ra m e te r, d e n s i t y , and b o i l i n g p o in t from th e s t r u c t u r a l fo rm u la o f a number o f f lu o ro c a rb o n s and th e h y b r id compounds p re p a re d in t h i s t h e s i s . Throughout th e e f f o r t , s y n t h e t i c s t r a t e g y was g u id e d somewhat by th e in te n d e d p u rp o se f o r th e h y b r id s . They w ere d e sig n e d to be th e flu o ro c h e m ic a l p h ase in a r t i f i c i a l b lo o d f o r m u la tio n s . S p e c i f i c a l l y , th e h y b rid s were d e sig n e d to be lo w -c o s t f l u o r i n e - c o n t a i n i n g compounds w ith oxygen s o l u b i l i t i e s o f a t l e a s t 30 cm3 o f d is s o lv e d oxygen p e r 100 ml o f p u re compound a t 37°C and 760 t o r r 02 p r e s s u r e and to have v ap o r p r e s s u r e s o f l e s s th a n 40 t o r r a t t h a t te m p e ra tu re . Crude c r i t e r i a o f t o x i c i t y were a l s o ta k e n i n t o c o n s id e r a tio n . B ut, i t was p r e c i s e l y th e s e g u id e lin e r e s t r i c t i o n s w hich d e m o n stra te d t h a t n e c e s s i t y i s (b u t i 2 n o t e x c lu s iv e ly ) th e m other o f in v e n tio n , th e in v e n tio n b e in g th e developm ent o f th e scheme to p r e d i c t v ap o r p r e s s u r e and oxygen s o l u b i l i t y from ch em ica l s t r u c t u r e a lo n e . A m p lif ic a tio n o f th e s e g u id e lin e s and th e r o l e f o r t h e h y b rid s i n a r t i f i c i a l b lo o d fo rm u la tio n s can be found in J e t P ro p u ls io n L a b o ra to ry docum ents w hich w ere p re p a re d as an n u al r e p o r t s f o r th e D iv is io n o f Blood D is e a s e s and R esources o f th e N a tio n a l H e a r t, Lung and Blood I n s t i t u t e w hich funded p a r t o f t h i s work on a c o n t r a c t u a l b a s i s [1 ]. F i n a l l y , as p a r t o f a p r o j e c t to p ro d u ce h y d ra z in e d i r e c t l y from th e ele m e n ts by th e r e d u c t io n o f ^ i n s u p e r a c id m edia w ith and v a r io u s m etal c a t a l y s t s , i t was n e c e s s a r y to o b ta in a v a lu e f o r th e b a s i c i t y o f th e p o t e n t i a l in te r m e d ia te d ia z e n e , HN=NH. From th e pkg^+ o f th e h e a t o f fo rm a tio n o f i n f l u o r o s u l f o n i c a c id s o l u t i o n c o u ld be c a l c u l a t e d by th e e q u a tio n o f A r n e tt, e t a l . [ 2 ] , Because d ia z e n e i s to o u n s ta b l e to s tu d y d i r e c t l y i n s o l u t i o n , th e Hq a t h a l f p r o to n a t io n o f th e model compound a z o - M s - is o b u ta n e (AIB) (CH_)_CN=NC(CH_)_, in TFA /dioxane was d e te rm in e d by UV and NM R s t u d i e s . D O D D T h is H q a t h a l f - p r o t o n a t i o n was th e n c o r r e c t e d to com pensate f o r th e s t e r i c and e l e c t r o n i c p r o p e r t i e s o f (CH^j^C- i n AIB v e rs u s H- in d ia z e n e to a r r i v e a t an e s ti m a t e o f th e b a s i c i t y o f d ia z e n e . j I I . BACKGROUND ; i I i t j A. R a tio n a le f o r th e D esign and i ' S y n th e tic S tr a t e g y o f th e H y b rid s 1 The m o tiv a tio n f o r th e s y n th e s is o f th e flu o ro c a rb o n -h y d ro c a rb o n ;h y b r id compounds was to p ro v id e a low c o s t flu o ro c h e m ic a l ph ase f o r e m u ls if ie d a r t i f i c i a l b lo o d f o r m u la tio n s . P r e v io u s ly t e s t e d f l u o r o chem ical p h a se s were u s u a l l y co m m ercially a v a i l a b l e flu o ro c a rb o n s w hich 1 w ere pro d u ced by th e f l u o r i n a t i o n o f h y d ro c a rb o n s by e le c tr o c h e m ic a l means o r c o v a le n t m e ta l f l u o r i d e s . T h is le d to a flu o ro c a rb o n m ix tu re o f carb o n s k e le t o n isom ers a n d /o r t r a c e amounts o f in c o m p le te ly f l u o r i - n a te d p r o d u c t s . P re v io u s t e s t r e s u l t s o f flu o ro c a rb o n compounds c o n ta in in g v a r io u s amounts o f hydrogen showed them a l l to be to x i c to some d e g re e . One common f e a t u r e o f th e s e t o x i c compounds was th e p re s e n c e o f a hydrogen atom b e t a to a f l u o r i n e atom: A p o s s i b l e e x p la n a tio n f o r t h e i r t o x i c i t y was th e p o t e n t i a l f o r HF e l im i n a tio n w hich.w ould l i b e r a t e to x i c amounts o f f l u o r i d e io n i n t o th e b i o l o g i c a l sy stem . To a v o id t h i s p i t f a l l , a l l th e h y b rid s w ere d e sig n e d so t h a t a t e r t i a r y I c arb o n o r h e te ro a to m a t ta c h e d to th e t e r t i a r y carb o n was th e l i n k to i th e h y d ro carb o n p o r t i o n o f th e m o le c u le : c f 3 7 - 3 I ^ 1 CF3- C - CH2- R CF3CF2CF2- C - 0 - C H 2- r CF3 CF3 S in ce th e s y n t h e t i c m ethods d id n o t r e l y on s te p w is e f l u o r i n a t i o n , th e re b y a v o id in g p r o d u c tio n o f compounds d i f f e r i n g in e x t e n t o f f l u o r i n a t i o n , i t was hoped t h a t any s id e p ro d u c ts would be s u f f i c i e n t l y d i f f e r e n t from th e t a r g e t compound so t h a t sim p le and e f f e c t i v e p u r i f i c a t io n te c h n iq u e s c o u ld be u t i l i z e d . The flu o ro c a rb o n segm ents o f th e h y b rid s were p ro d u ced by p r e v io u s l y e s t a b l i s h e d p ro c e d u re s from f l u o r o - o l e f i n s . The e l e c t r o p h i l i c n a t u r e o f th e f l u o r o o l e f i n s was e x p l o ite d to p ro d u c e f lu o r o c a r b a n io n s o r a lc o h o ls w hich w ere s u b s e q u e n tly r e a c te d w ith co m m ercially a v a i l a b l e a l k y l a t i n g a g e n ts to p ro v id e th e h y d ro carb o n p o r t i o n o f th e m o le c u le . The p h y s ic a l p r o p e r t i e s o f th e h y b rid s r o u t i n e l y m easured w ere oxygen s o l u b i l i t y , b o i l i n g o r m e ltin g p o i n t , and d e n s i t y . Vapor p r e s s u r e s w ere e s tim a te d from b o i l i n g p o i n t s . The h y b rid s w ere th e n • i n j e c t e d , e i t h e r n e a t o r e m u ls if ie d w ith P lu r o n ic F68, i n t o th e p e r i t o n e a l c a v i ty o f 20 gram m ice. A b so rp tio n v e r i f i c a t i o n s t u d i e s , as I d e te rm in e d by gas chro m ato g rap h y , and h is to p a th o lo g y s t u d i e s on v a rio u s | o rg an s w ere c o n d u c te d . To t h i s d a te no c l e a r mechanism o f t o x i c i t y o r | organ damage can be p ro p o se d f o r any o f th e h y b rid s t e s t e d . i i I | I B. H is to r y and N a tu re o f F lu o ro c a rb o n s [3] ! The e x c e p tio n a l ch em ical i n e r t n e s s and e x c e l l e n t therm odynam ic - j ; c h a r a c t e r i s t i c s o f th e few flu o ro c a rb o n s s y n th e s iz e d d u rin g th e 1 9 3 0 's J t 's t i m u l a t e d f u r t h e r i n t e r e s t in t h i s u n u su a l c l a s s o f compounds. The i a p p l i c a t i o n o f c h l o r i n a t e d flu o ro c a rb o n s (F reons) as r e f r i g e r a n t s demon- i ; s t r a t e d t h a t , b e s id e s b e in g s c i e n t i f i c c u r i o s i t i e s , f lu o ro c a rb o n s had ' p o t e n t i a l f o r com m ercial a p p l i c a t i o n s . In th e 1940' s , th e i n e r t n e s s o f t f lu o ro c a rb o n s and t o t a l l y f l u o r i n a t e d polym ers was e x p l o ite d to produce l u b r i c a n t s f o r a p p a ra tu s in c o n ta c t w ith f l u o r i n e , UF^ o r r o c k e t f u e l o x id a n ts . The i n c r e a s i n g a c c u m u la tio n o f C-F bonds in polym ers low ers t h e i r c o e f f i c i e n t o f f r i c t i o n and in c r e a s e s t h e i r chem ical i n e r t n e s s , making p o s s i b l e t h e . n o n - s t i c k , T e flo n c o a te d cookw are. The v e ry weak ' in t e r m o l e c u la r i n t e r a c t i o n o f flu o ro c a rb o n s a l s o a c c o u n ts f o r t h e i r h ig h v o l a t i l i t y when compared to h y d ro carb o n s h a v in g th e same number o f c a r bon atom s. Because lo n g f lu o ro c a rb o n c h a in s la c k p o l a r i n t e r a c t i o n s w ith th e s u rro u n d in g medium, flu o ro c a rb o n s c o n ta in in g h y d r o p h il ic groups (-CC^H,-SO^H,-NH^+) a r e v a lu a b le as s u r f a c t a n t s . For t h i s r e a s o n , t e x t i l e s im p reg n ate d w ith flu o ro c a rb o n d e r i v a t i v e s have n o t o n ly w a te r- r e p e l l a n t b u t a l s o o i l - r e p e l l a n t p r o p e r t i e s . T hus, th e i n d u s t r i a l a p p l i c a t i o n s o f f lu o ro c a rb o n s have c r e a te d an i n t e r e s t in c o n v e n ie n t m ethods f o r t h e i r s y n t h e s i s . 6 The im m ediate p r o x im ity o f f l u o r i n e atoms c a u s e s a marked ■ •/. in c r e a s e i n th e e l e c t r o p h i l i c i t y o f c a rb o n i n C=C b o n d s. T hus, a t room te m p e r a tu r e , o c t a f lu o r o is o b u te n e (OFIB) r e a c t s w ith c o m p a ra tiv e ly weak n u c l e o p h ile s l i k e a lc o h o ls [4]: (CF3) 2C=CF2 + ROH —* .(C F 3) 2CH-CF2OR + (CF3) 2C=CFOR ( 7 ) R e a c tio n a l s o o c c u rs w ith e n a m in e s. E v id e n tly , th e h ig h t o x i c i t y o f OFIB i s due to th e e a se o f i t s r e a c t i o n w ith n u c l e o p h i l i c c e n t e r s [5] and i t i s t h e r e f o r e an alo g o u s in t o x i c i t y to many a l k y l a t i n g a g e n t s . O rg a n o flu o rin e compounds a r e n o t alw ays t o x i c how ever. Indeed c e r t a i n f l u o r i n e - c o n t a i n i n g d e r i v a t i v e s o f e th a n e (CF3CHClBr, C l2CHCF2OCH3 and a n a lo g s) a re v a lu a b le a n e s t h e t i c s , w hich a r e a lm o st f r e e from s id e e f f e c t s and a r e u sed i n p e d i a t r i c s u r g e r y . The a n e s th e t i c p r o p e r t i e s o f th e s e compounds seem to be a s s o c ia t e d w ith t h e i r low p o l a r i t y . A n e s th e s ia i s more pronounced th e g r e a t e r th e s o l u b i l i t y o f th e s u b s ta n c e i n th e n o n - p o la r l i p i d s form ing p a r t o f th e membrane o f th e n e rv e c e l l . The h ig h oxygen s o l u b i l i t y o f o r g a n o f lu o r in e compounds and t h e i r ch em ical i n e r t n e s s make them e x c e l l e n t c a n d id a te s as s u b s t i t u t e s f o r b lo o d . C. F lu o r o o le f in s [3] V in y lic f l u o r i n e atoms i n f l u o r o o l e f i n s i n d u c t i v e l y w ith d raw e l e c t r o n d e n s i t y from th e c arb o n atoms to w hich th e y a r e a t ta c h e d as w e ll as d o n a te e l e c t r o n d e n s it y from t h e i r lo n e p a i r s to th e a n tib o n d in g t t 7 o r b i t a l o f th e C=C bond. A lthough th e it bond i s weakened by t h i s m ix in g , th e in d u c tiv e e f f e c t s tr e n g th e n s th e a component o f th e C=C bond. These e f f e c t s r e s u l t in a s h o r te n in g o f th e d o u b le bond in t e t r a - f lu o r o e t h y le n e (TFE) v e rs u s e th y le n e . F u rth e rm o re , th e o v e r la p o f th e p o r b i t a l s betw een f l u o r i n e s in a te r m in a l =CF? group c a u se s th e mutual X fa ap p ro ach o f th e f l u o r i n e atom s, th e re b y d e c r e a s in g th e FCF a n g le to 109c v e rs u s 118° in e th y le n e [6 ]. Quantum m e ch an ical c a l c u l a t i o n s have shown t h a t th e p o s i t i v e charge on an o l e f i n i c carb o n atom in c r e a s e s as f l u o r i n e atoms a r e a t ta c h e d to i t [7 ], th u s le a d in g t o th e fo llo w in g c o m p a ra tiv e r e a c t i v i t i e s o f f l u o r o o l e f i n s w ith n u c l e o p h i l i c a g e n ts [3 ]: CH =CH {;CH = CHF CH =CF2y CHF=CF2 CF2=CF2 e a s e o f N r e a c t i o n s The r e l a t i v e r e a c t i v i t y o f p e r f l u o r o o e l f i n s w ith n u c l e o p h i l i e s ap p e a rs to r e f l e c t p e r f lu o r o c a r b a n io n s t a b i l i t y [8 ]: c f2=c f2 , c f2=c fc f3 , c f2=c (c f3) 3 e a se o f n u c l e o p h i l i c r e a c t i o n s Because o f th e h ig h e l e c t r o n e g a t i v i t y o f 'f l u o r i n e ( 4 .0 ) , th e te rm in a l =CF2 c o n ta in s th e more e l e c t r o p h i l i c c a rb o n . N u c le o p h ile s a t ta c k i n g t h i s carb o n g e n e ra te a c a rb a n io n on th e n o n - te r m in a l c a rb o n . The t r i - flu o ro m e th y l g ro u p , CF3~, has an e l e c t r o n e g a t i v i t y o f 3.'4 [ 9 ] , th e re b y 8 j i n d u c t i v e l y s t a b i l i z i n g th e c a rb a n io n . C arb an io n fo rm a tio n a t j {would n o t be fa v o re d b e c a u se o f th e d e s t a b a l i z i n g e f f e c t o f f l u o r i n e j j l o n e - p a i r r e p u l s i o n . The p o s s i b i l i t y o f an e x t r a s t a b i l i z i n g m echanism j i - ; i iby CF - due t o h y p e rc o n ju g a tio n seems m inim al [1 0 ]. CNDO c a l c u l a t i o n s ; I O ! ' i I w hich c la im to show p o s s i b l e h y p e rc o n ju g a tio n a r e o f dubious q u a l i t y j 1 ! | [1 1 ,3 ] .. I l D. F lu o rid e Ion and F lu o ro c a rb a n io n s [12] . , The h ig h b a s i c i t y o f anhydrous KF i s d e m o n stra te d by th e fo llo w in g ! r e a c t i o n [1 3 ]: In a p r o t i c m edia, tetraeth y lam m o n iu m f l u o r i d e d ih y d r a te can g e n e ra te th e an io n o f a c e t o n i t r i l e (pKa = 31.3) [14] w hereas trip h e n y lm e th a n e (pKa =32.7) [1 4 ], forms v i r t u a l l y no an io n [1 2 ]. In th e ab sen ce o f s o l v a t i o n Cgas p h a s e ] , th e n u c l e o p h i l i c i t y o f F io n i s c lo s e to t h a t o f OH and NH,, [1 5 ]. The f a c i l e a d d i t i o n o f f l u o r i d e io n to th e e l e c t r o p h i l i c double bond o f p e r f l u o r o o l e f i n s i s e x tre m e ly im p o rta n t in o r g a n o f lu o r in e c h e m is try . Once th e c a rb a n io n i s form ed by f l u o r i d e io n , i t can do t h r e e g e n e ra l t h i n g s : l . a . Lose f l u o r i d e io n ( o le f i n - c a r b a n i o n e q u ilib r iu m ) [12] +F“ (CF3) 2C=CF2 _ .»(CF5) 5C" (8) 9 b. Lose f l u o r i d e io n w ith m ig ra tio n o f th e double bond ( o l e f i n i s o m e r i z a t i o n ) . (CF3 ) 2 CFCF=CFCF3 + F 5 ^ ( C F 3 ) 2CFCFCF2CF3* i ' ( C F 3) 2C=CFCF2CF3 . (9) 2 . a . O lig o m erize [1 6 ]: ;c f3c f=c f2 + f ^ » ( c f3) 2c f~ + c f2=c f c f3'^ E ^ ( C f ) 2c fc f=cfcf (10) b . Codim erize~ [1 7 ]: (c f3) 2c=c f2 + c f3c f=c f2 —£ ^ ( c f3) 3ccf=c f c f3 . (11) 3 . a . R eact w ith an e l e c t r o p h i l e [1 8 ]: (CF ) C=CF •^► (C F ) C~ + +N0-C^Hc^**(CF ) C-N=N-C H (12) j / 3 3 / o b 33 o b b . R eact w ith an a l k y l a t i n g a g e n t [1 9 ]: (CF3) 2C=CF2^ p £ =^ ( C F 3) 3C ' + CH3 I * - ^ ( C F 3) 3C-CH3 . (13) R e p r e s e n ta tiv e o f C la ss 1, th e o b s e r v a tio n o f p e r f lu o r o c a r b a n io n s by 19FMR showed t h a t th e s e s p e c ie s a r e in a s t a t e o f r a p i d ex ch an g e. Thus th e exchange betw een n o n a f l u o r o - t - b u t y l cesium and OFIB in 1 ,2 - d im eth o x y eth an e c a n n o t be made slow i n term s o f th e NM R t'ime s c a l e a t -100°C [2 1 ]: Cs+ Cs+ (CF3) 2C-CF2-F + CF2=C(CF3) ^ g l ( C F 3) 2C=CF2 + CF3-C(CE3) 2 (14) 10 R e p r e s e n ta tiv e o f c l a s s 2, OFIB i s r e p o r te d to d im e riz e in th e p re s e n c e o f CsF [2 0 ]: I i | C sF ,E to0 j i Z I (CF3) 2C=CF2-------------------—► (CF3) 3CCF=C[CF3) 2. C 15) j I A m poule,-30° (90%) j j 16 h r s . | | i |The c l a s s 3 r e a c t i o n s , where th e p e r f lu o r o c a r b a n io n r e a c t s w ith e le c tr o - ! ! , |p h i l e s o r a l k y l a t i n g a g e n t s > a r e th e s u b je c t o f t h i s work and w i l l be < i i d is c u s s e d in th e ch em ical s y n t h e s i s s e c t i o n . The r e a c t i o n s o f flu o r o c a r b a n io n s c a n n o t alw ays be acc o u n te d f o r in .term s o f p u r e ly io n i c mechanisms [1 2 ]. The a b i l i t y o f f lu o r o c a r b a n io n s ' to behave as e l e c t r o n donors u n d e r m ild c o n d itio n s was d e m o n stra te d by an ESR s tu d y on th e r e a c t i o n o f n o n a flu o ro ~ t> b u ty l an io n w ith c h lo ro - tr ip h e n y lm e th a n e : CsF H C W 3 C-C1 * (CF3>2C=CF2 ' ----~ < W 2< k£>-C(CF3’3 + fCF3>3C-H + CC6tis h CC12 * ( 16 ) I n i t i a l l y , th e c o n c e n tr a ti o n o f trip h e n y lm e th y l r a d i c a l in c r e a s e d s h a r p ly and th e n f e l l g r a d u a lly to th e le v e l c o rre s p o n d in g to th e e q u i- ■ lib r iu m : 2 C C 6H 5) 3c ^ = r ( c 6H 5) 3c - S e K X 5 (17) 6 5 Thus th e main r e a c t i o n p ro d u c t i s o b ta in e d as a r e s u l t o f th e 11 re c o m b in a tio n w ith i n a cage o f th e r a d i c a l p a i r form ed v ia e l e c t r o n ! t r a n s f e r : ! ; / ■ \ -C l" (C6H5) 3C-C1 + [C c c f3) 3 ] " ---------------[ cc6h 5) 3c ^ ( c 6h 5) 2c = Q . (18 j + cccf3) 3 ] 1 1 The s id e p ro d u c ts a r e o b ta in e d as a r e s u l t o f e sc a p e o f th e r a d i c a l s ; from th e c a g e . i T h is b r i e f re v ie w o n ly p r e s e n ts n e c e s s a r y p h y s ic a l and chem ical p r o p e r t i e s o f o r g a n o f lu o r in e compounds p e r t i n e n t to u n d e rs ta n d in g th e t h e s i s m a te r ia l to fo llo w . I t i s by no means a com prehensive rev iew o f ■ o rg a n o flu o rin e c h e m is try . 12 : I I I . CHEMICAL SYNTHESIS i I A. P r e p a r a tio n o f I n te r m e d ia te P e r f l u o r o o l e f i n s J I 1. S y n th e s is o f o c t a f lu o r o is o b u te n c (OFIB) | a . D is c u s s io n In 1967, Young and Reed [21] r e p o r t e d an im proved p r e p a r a t i o n o f o c ta f lu o r o is o b u te n e from h e x a flu o ro p ro p e n e (HFP). HFP was u t i l i z e d r a t h e r th a n th e more e x p e n siv e p e r f lu o r o c y c lo b u ta n e and gave h ig h e r |y i e l d s and c o n v e rs io n s th a n o t h e r r e p o r t e d m ethods. I t was a c o n tin u o u s t p ro c e s s s u i t a b l e f o r th e p r e p a r a t i o n o f any q u a n t i t y o f m a t e r i a l . j A lthough th e r e a c t i o n pathw ay may be com plex [2 2 ], i t i s m e re ly th e c o n v e rs io n o f f o u r m o lecu le s o f HFP t o t h r e e o f OFIB. The method was ! j u sed s e v e r a l tim e s on a p p ro x im a te ly one mole s c a l e w ith y i e l d s o f 71-95% and c o n v e rs io n s o f 47-57%. The e x a c t r e s u l t s o b ta in e d depend to some ■ e x t e n t on th e flow r a t e , h ig h e r r a t e s g iv in g h ig h e r c o n v e rs io n s b u t j low er y i e l d s . No d e t a i l e d s tu d y o f th e s id e p ro d u c ts was made. | I 1 j OFIB was p ro d u ced by p a s s in g HFP th ro u g h an unpacked n i c k e l tu b e j j 12" x 1" o v e r a p e r io d o f 24 h o u rs a t 750 ± 10°C . U n re a c te d s t a r t i n g I ! i ■ m a te ria l, p r o d u c t, and s id e p ro d u c ts w ere c o l l e c t e d in a d ry ic e /a c e to n e . ! i | t r a p . F r a c t i o n a t i o n o f th e cru d e p ro d u c t th ro u g h a o n e - f o o t, low- j I te m p e ra tu re column packed w ith m e ta l h e l i c e s g iv e s OFIB o f a t l e a s t I ' i 95% c h ro m a to g ra p h ic p u r i t y . ' i I i ■ 13 ’ A sy stem s i m i l a r to th e one d e s c r ib e d b u t o f much g r e a t e r c a p a c it y was d e s ig n e d and c o n s tr u c t e d by us to o p e r a te in a c o n tin u o u s flow p r o c e s s . The p y r o l y s i s cham ber i s a n ic k e l tu b e m e asu rin g 3 .5 " in d i a m e te r by 14" long to w hich HFP can be s u p p lie d a t a r a t e o f 900 m l/m in p ro d u c in g 50 grams o f OFIB p e r h o u r. A s c ru b b in g to w e r was added to th e sy stem to p r e v e n t th e e sc a p e o f any OFIB d u rin g p y r o l y s i s o f d i s t i l - i l a t i o n . A lso , th e sy stem was mounted in a h ig h v e l o c i t y fume hood f o r j added s a f e t y . At t h i s r a t e and c a p a c it y , th e p y r o l y s i s o f HFP a t 750°C p ro c e e d s w ith a p p ro x im a te ly 40 w eight-% c o n v e rs io n t o OFIB b a se d on | c o l l e c t e d e f f l u e n t . The sy stem was o p e r a te d i n t e r m i t t e n t l y o v e r a i j p e r io d o f one and o n e - h a l f y e a r s and p ro d u ced ro u g h ly 2500 grams o f j OFIB w ith no problem s e x c e p t f o r p e r i o d i c ch an g in g o f th e s c ru b b in g | s o l u t i o n and o c c a s io n a l c le a n in g o f th e o u tp u t l i n e s o f th e f u r n a c e . A j d e t a i l e d d e s c r i p t i o n o f th e system and i t s o p e r a t io n fo llo w s below . i I J b- E x p erim en tal p ro c e d u re f o r th e s y n th e s is o f OFIB j i 750°C j 1 CF -CF=CF — (CFg) 2C=CF2 + CF3-CF=CF2 + o t h e r f l u o r o - (19)' | (HFP) (OFIB) ca rb o n s j ! P y r o ly s is o f h e x a flu o ro p ro p e n e (HFP) a t 750°C i n a n i c k e l tu b e j i i cham ber p ro c e e d s w ith a p p ro x im a te ly 40 w t.-% c o n v e rs io n , b a se d on c o l le c t e d e f f l u e n t , to o c t a f lu o r o is o b u te n e (OFIB) and o th e r low er and ' h ig h e r m o le c u la r w eig h t f lu o r o c a r b o n s . OFIB i s a h ig h l y to x i c m a t e r i a l ' I (10 tim es more d e a d ly th a n p h o sg en e!) w hich sh o u ld be h a n d le d c a u tio u s ly i n a good fume hood. An a p p a ra tu s d e sig n e d f o r th e s a f e p r o d u c tio n o f ! k r e a s o n a b ly p u re OFIB i s d e p ic te d in th e accom panying F ig u re 1. 14 HFP gas e n t e r s th e sy stem from i t s s to r a g e c y l i n d e r (b) a t a flow I i r a t e o f 900 m l/m in, as m easured by a flow m e te r (e) and p a s s e s i n t o a t n ic k e l tu b e p y r o l y s i s cham ber (g) m easu rin g 3h" i n d ia m e te r by 14" lo n g . I |The cham ber, w hich i s eq u ip p ed w ith a th e rm o co u p le w e ll and gas i n l e t I i i (and o u t l e t tu b e s , i s m a in ta in e d a t 750°C by a v a r i a b l e - t a p M arsh all tu b e ! j ' fu rn a c e pow ered by a 20 am pere V a ria c ( v a r i a b l e v o lt a g e tr a n s f o r m e r ) ; i 'c o n n e c te d to a 110 V. a . c . s o u rc e . In c i r c u i t , betw een th e V a ria c and i I fu rn a c e w in d in g s, i s a heavy d u ty r e l a y a c t u a te d by a H oneyw ell te m p e ra t u r e p r o p o r ti o n in g c o n t r o l l e r (f) w hich s e n se s th e te m p e ra tu re in th e p y r o l y s i s chamber v i a th e th e rm o c o u p le . The e f f l u e n t g a s e s , upon I le a v in g th e p y r o l y s i s cham ber, a r e c o o le d th ro u g h a 5 - f o o t c o i l o f . co p p e r tu b in g (h) and p a s s th ro u g h an empty t r a p ( i ) w hich c o l l e c t s f sm a ll amounts o f h ig h b o i l i n g flu o ro c a rb o n s p ro d u ced d u rin g th e p y r o ly - ■ s i s . At t h i s p o i n t , th e e f f l u e n t s p a s s i n t o th e d i s t i l l a t i o n p o r t i o n , o f th e a p p a r a tu s , t r a v e l up a sim p le v a c u u m -ja c k e te d f r a c t i o n a t i n g column (u) and condense o f f a c o l d - f i n g e r ( j ) m a in ta in e d a t -29.2°C by a b o u t 200 ml o f l i q u i d CF2C12 (Freon 1 2 ). The CF2C12 i s p re v e n te d from ' e v a p o r a tin g by a la r g e d ia m e te r t e s t tu b e , ch arg e d W ith d ry i c e / i s o p r o - p a n o l, p o s i t i o n e d in th e c o ld f i n g e r ro u g h ly one in c h above th e l i q u i d l e v e l . OFIB ( b .p . 7°C) co n d en ses on th e c o ld f i n g e r ( j ) and d r i p s down i n t o a 250 ml g ra d u a te d r e c e i v e r (s) e q u ip p ed f o r m a g n etic s t i r r i n g (r) and h e ld a t 0°C by an i c e b a th ( t ) . HFP ( b .p . -29°C) and o th e r low- b o i l i n g f lu o ro c a rb o n s p a s s by th e c o ld f i n g e r ( j ) and c o l l e c t i n a 600 ml s t a i n l e s s s t e e l t r a p (k) m a in ta in e d a t -78°C by a d ry ic e /is o p r o p a n o l b a th c o n ta in e d in a Dewar f l a s k . In th e e v e n t t h a t any gas e sc a p e s th e 15 ! -78°C t r a p (k) i t i s d e t e c te d by an o i l b u b b le r (1) and p a s s e s i n t o a j ; I | s c ru b b in g to w er (rt) . ; 1 I j The s c ru b b in g p o r t i o n o f th e a p p a ra tu s c o n s i s t s o f a 2 - g a llo n j ! i |N algene p l a s t i c r e s e r v o i r (p) f i l l e d w ith is o p ro p a n o l and s e v e r a l e q u i- j : I I v a le n ts o f m onoethanolam ine (a good n u c le o p h ile tow ard th e te rm in a l j i I |d o u b le bond o f f l u o r o o l e f i n s ) w hich i s pumped by a m a g n e tic a ll y - d r i v e n , ' * i ; c o r r o s i o n - r e s i s t a n t , i s o l a t e d cham ber pump (q) to th e to p o f th e s c r u b - j i ; b in g to w er ( n ) . T here th e s o l u t i o n f a l l s on a p e r f o r a t e d T e flo n d is k (o) w hich d i s p e r s e s i t s flow b e f o r e t r a v e l i n g th ro u g h th r e e f e e t o f s t a i n l e s s s t e e l sponge s u p p o rte d by a n o th e r p e r f o r a t e d T e flo n d is k . The - I s o l u t i o n i s th e n r e tu r n e d by g r a v i t y to th e r e s e r v o i r (p) f o r r e c i r c u l a t i o n . A v a lv e a t th e b o tto m o f th e r e s e r v o i r p re c e d in g th e pump I ■ i n l e t i s u sed to c o n t r o l th e pumping r a t e o f th e s c ru b b in g s o l u t i o n w h ile a t r a p (m) p re c e d in g th e e f f l u e n t gas i n l e t o f th e s c ru b b in g tow er ■ c a tc h e s any s c ru b b in g s o l u t i o n in th e e v e n t o f a n e g a tiv e p r e s s u r e suck back (som etim es e n c o u n te re d when th e d ry i c e in t r a p (k) i s re p le n ish e d ). I f any to x i c gas e sc a p e s t r a p ( k ) , i t w i l l e n c o u n te r th e c o u n t e r c u r r e n t s tre a m o f s c ru b b in g s o l u t i o n and r e a c t w ith th e m onoethanolam ine b e f o r e i t h as a chance to e sc a p e from th e to p o f th e to w e r, which i s v e n te d to keep th e whole system n e a r a tm o sp h e ric p r e s s u r e . Any r e s t r i c t i o n o f th e gas flow d e v e lo p in g a b a c k - p r e s s u r e in th e sy stem can be m o n ito re d by th e le v e l o f th e le g s in th e m e r c u r y - f i l l e d U -tube ( c ) . When enough OFIB has been c o l l e c t e d i n th e r e c e i v e r ( s ) , th e f u r n ace i s s h u t o f f and th e sy stem i s p u rg e d w ith a few l i t e r s o f n it r o g e n ( e n te r in g th ro u g h r e g u l a t o r a ) , th e e f f l u e n t gas i n l e t (below 16 L I t r* -j~ f F igure 1: A pparatus f o r th e g e n e ra tio n o f o c ta flu o ro is o b u te n e from h e x a flu o ro p ro p e n e . v LEGEND: FIGURE 1 a . N itro g e n i n l e t b . H e x a flu o ro p ro p e n e ta n k c . M ercury back p r e s s u r e gage d. I n l e t f o r r e c y c l i n g re c o v e re d h e x a flu o ro p ro p e n e from p re v io u s ru n s e . Flow m eter f . T em perature p r o p o r ti o n in g c o n t r o l l e r g . Oven h . C o ils f o r p r e li m i n a r y c o o lin g o f oven e x i t g a se s i . Trap f o r h ig h m o le c u la r w e ig h t p o ly m e ric m a t e r i a l s j . Large t e s t tu b e c o n t a in in g d ry i c e / i s o p r o p a n o l above c o l d - f i n g e r c o n ta in in g F re o n -1 2 , b . p . -29°C k . S t a i n l e s s s t e e l c y l i n d e r in d ry ic e /is o p r o p a n o l b a th f o r c o l l e c t i n g u n r e a c te d h e x a flu o ro p ro p e n e and o t h e r low b o i l i n g v o l a t i l e p r o d u c ts . 1. O il b u b b le r m. B ack-flow t r a p n . G lass column packed w ith s t a i n l e s s s t e e l sponge o . P e r f o r a te d T e flo n p l a t e s p . C o u n te r c u r r e n t s c ru b b in g s o l u t i o n r e s e r v o i r (Is o p ro p y l a l c o h o l, s e v e r a l e q u i v a le n t s o f m onoethanolam ine) q. R e c i r c u l a t i n g pump r . M agnetic s t i r r e r s . G rad u ated r e c e i v e r f o r o c t a f lu o r o is o b u te n e (OFIB) t . W ater b a th @ 0°C u . Vacuum ja c k e te d d i s t i l l a t i o n column 18' f r a c t i o n a t i n g column u) i s clam ped o f f and th e s t a i n l e s s s t e e l t r a p (k) i s v a lv e d o f f and exchanged f o r an empty on e. The la r g e d ia m e te r t e s t tu b e and CF^Cl^ i s removed from th e c o ld f i n g e r , th e i c e i s removed from th e b a th ( t) around th e r e c e i v e r and th e c o l l e c t e d OFIB i s magne t i c a l l y s t i r r e d a t room te m p e ra tu re u n t i l i t h a s d i s t i l l e d i n t o th e trap | i ( k ) . At th e end o f th e d i s t i l l a t i o n , th e t r a p c o n t a in in g th e OFIB (k) j i i s v a lv e d o f f , rem oved, and r u b b e r tu b in g i s p la c e d betw een th e c o ld j | f i n g e r ( j) and o i l b u b b le r (1 ). The e f f l u e n t gas i n l e t (below u) i s opened and th e sy stem a g a in p u rg ed w ith n i t r o g e n to remove any OFIB !re m a in in g i n th e d i s t i l l a t i o n p o r t i o n o f th e a p p a r a tu s . Once th e system I j j has been p u rg e d , th e r e c i r c u l a t i n g pump f o r th e s c ru b b in g s o l u t i o n can j |b e tu r n e d o f f . The whole a p p a ra tu s d e s c r ib e d above was i n s t a l l e d in a { I i I I 3' x 6 ' f l o o r mounted h i g h - v e l o c i t y fume hood w ith h o r i z o n t a l l y s l i d i n g j doors and i s c a p a b le o f p ro d u c in g 50 ml o f OFIB p e r h o u r. 2. S y n th e s is o f th e dim ers and t r i m e r s o f HFP i I a . D is c u s sio n . i I In 1973, T. M artin i, e t a l . r e p o r te d an e f f i c i e n t p r e p a r a t i o n o f th e j HFP dim ers and t r i m e r s [2 3 ]. ' T r i s [ 2 - (2 H -h e x a flu o ro p ro p o x y )e th y l]a m in e , ! I ^(CF^CFHCF2 0 CH2 CH2 )^N , which i s p re p a re d by tr e a tm e n t o f t r i e t h a n o l a m i n e ' Jwith HFP, c a t a l y z e s th e o li g o m e r i z a ti o n o f HFP. In th e p re s e n c e o f 1 ^ tr i e t h y l a m i n e as a d d i t i o n a l b a s e , o n ly tr i m e r s o f th e fo rm u la CgF^g a r e ; i ir e p o r te d ly form ed. W ithout t r i e t h y l a m i n e , th e o lig o m e r iz a tio n le a d s to , dim ers o f th e fo rm u la C ^F,„. o lz I 2 CF CF=CF» am in o eth ^ (CF_) „CFCF=CFCF + (CF ) C=CFCF CF . (20) O i-iT j / " ’ ' N T * 9 “ ^ v ^ LH3 (96%) (3.9%) 19 ! The o v e r a l l y i e l d was r e p o r te d to be g r e a t e r th a n 90% b a se d on HFP. P ro d u c tio n o f th e tr i m e r s le a d s to : a m in o e th e r ,nx, Y 3 2 \ Et N \ 3CF CF=CF — ^C=CFCF (29.7%) 3 Z CH CN (CF ) CF 3 y CF(CF3) 2 (CF3) 2C=C (65.9%) (21) CF3CF3 p ro d u ced in 85% o v e r a l l y i e l d . Presum ably th e a m in o e th e r r e a c t s w ith one m o lecu le o f HFP form ingj a te traalk y lam m o n iu m f l u o r i d e . I t may be t h a t th e s t e r i c b u lk o f t h i s r e a g e n t p r e v e n ts F t r a n s f e r to th e dim er, th u s s to p p in g o lig o m e r iz a - j t i o n . The a d d i t i o n o f t r i e t h y l a m i n e may form a l e s s b u lk y t e t r a a l k y l - ( i i ammonium f l u o r i d e a llo w in g o li g o m e r i z a ti o n to p ro c e e d to th e t r i m e r j s t a g e . J I However, two a tte m p ts a t th e s e r e a c t i o n s d id n o t le a d to any s i g - j n i f i c a n t amount o f dim er o r t r i m e r fo rm a tio n (we v e r i f i e d u se o f th e ; I p r o p e r a m in o e th e r c a t a l y s t by e le m e n ta l a n a l y s i s , 19FMR and 1HMR). j j However, f l u o r i d e io n c a t a ly z e d o li g o m e r i z a ti o n o f HFP was d is c u s s e d i n ’ | th e M a rtin i p a p e r and a re v ie w a r t i c l e by J .A . Young [24] was c i t e d . I \ 1 In t h a t a r t i c l e , Young r e p o r t s t h a t HFP d im e riz e d r e a d i l y e i t h e r w ith of l i w ith o u t s o lv e n t and t r i m e r i z e d f a i r l y e a s i l y w ith o u t s i g n i f i c a n t form a- i l t i o n o f h ig h e r .p o ly m e r s . R e fe re n c e was made to a p a p e r o f Y oung's [25] ► k ; w hich r e p o r te d th e fo rm a tio n o f th e dim er i n o n ly 10 w t.-% y i e l d by I , p a s s in g HFP th ro u g h a h e a te d fu rn a c e a t 320°C w ith NF^ gas and CsF as ' 20’ | c a t a l y s t in th e h o t zone. A nother r e f e r e n c e was made to a U .S. p a t e n t and s t i l l a n o th e r to a Ph.D t h e s i s by M .J.R . F r a t i c e l l i [2 6 ]. D is c u s sio n s w ith p e o p le a t DuPont C e n tra l R e se a rc h , W ilm ington, D elaw are, r e v e a le d t h a t th e method i n F r a t i c e l l i ' s t h e s i s worked w e ll f o r f l u o r i d e io n c a t a ly z e d o li g o m e r i z a ti o n o f HFP. I t i s e s s e n t i a l l y th e method we u sed to p r e p a r e th e dim ers and t r i m e r s . W hile o u r work was in p r o g r e s s , c o n d itio n s f o r th e s y n th e s is o f th e v a r io u s dim ers and| I ! t r i m e r s in >90% is o m e ric p u r i t y was r e p o r t e d [2 7 ]. The s y n th e s e s w ere \ i ! | c o n d u cted on a sm a ll s c a l e in s e a le d tu b e s . For p r o d u c tio n o f th e d im e rs , we condensed HFP o f f a -78°C c o ld f i n g e r i n t o a 15°C s t i r r e d s o l u t i o n o f a c e t o n i t r i l e c o n ta in in g f i n e l y j ground KF as c a t a l y s t . The d im e r iz a tio n o c c u rs r e a d i l y in th e b e g in n in g and g r a d u a l ly slow s (as e v id e n c e d by h eavy r e f l u x o f HFP o f f th e c o ld f i n g e r w ith th e same r a t e o f gas flow as i n i t i a l l y ) , p resu m ab ly as J th e s u r f a c e o f th e KF p a r t i c l e s become d e a c t i v a t e d . S tu d ie s in o th e r i sy stem s [28] i n d i c a t e t h a t th e r e a c t i o n o c c u rs on th e KF s u r f a c e r a t h e r th a n i n s o l u t i o n . The cru d e f lu o ro c a rb o n p h a se c o n s i s t s o f 27% therm o-! : dynamic dim er a n d '73% k i n e t i c dim er and no d e t e c t a b l e amount o f tr i m e r . | The c ru d e m ix tu re can be c o n v e rte d to th e therm odynam ic dim er, [ ky r e f l u x i n a d i p o l a r a p r o t i c s o lv e n t w ith f i n e l y j ground KF as c a t a l y s t . When d im ethylform am ide (DMF) was u sed as s o l - i v e n t , a p p ro x im a te ly 10% o f t h e p r o to n a te d c a r b a n io n , CF3CF2 CF2 (CF^)^CH, j was form ed. T h is p ro b lem was t o t a l l y a l l e v i a t e d by u s in g d im e th y la c e - j tam id e (DMA). ; The q u e s tio n o f where th e p r o to n o r i g i n a t e s i s an i n t e r e s t i n g o ne. , I t s s o u rc e c o u ld e i t h e r be s o l v e n t o r t r a c e s o f w a te r. I t s o r i g i n I o : 2i c o u ld e i t h e r be i n s o l u t i o n o r on th e c a t a l y s t s u r f a c e . The ab sen ce o f p r o to n a te d c a rb a n io n when D M A i s u se d s u g g e s ts i t o r i g i n a t e s from th e s o lv e n t (assum ing DM F and D M A a r e d r i e d e q u a l ly by 4A m o le c u la r s ie v e s ) , The c a rb a n io n i s p ro b a b ly n o t b a s i c enough to a b s t r a c t th e a ld e h y d ic i p r o to n d i r e c t l y in s o l u t i o n and lo s s o f f l u o r i d e io n from th e c arb a n io n ] I to form th e therm odynam ic dim er p ro b a b ly o c c u rs c l o s e to th e c a t a l y s t | ] S u rfa c e . ! | DM F r e a c t i n g w ith th e c a t a l y s t c o u ld p ro d u ce an a c i d i c s p e c ie s on I th e s u r f a c e , KOCFHN(CH^)^, i n w hich th r e e e l e c t r o n e g a t i v e atoms would be a t ta c h e d to th e carb o n b e a r in g th e a c i d i c h y d ro g e n . A f te r d e p ro to - l n a t io n th e s o lv e n t c a rb a n io n form ed c o u ld be s t a b i l i z e d by K io n s .o n th e c a t a l y s t s u r f a c e and t i g h t l y bound to i t by e l e c t r o s t a t i c f o r c e s . i ! Thus, t h i s model s im u lta n e o u s ly e x p l a in s : I I 1) th e ab sen ce o f p r o to n a te d f lu o r o c a r b o n (FC) c a rb a n io n j when D M A i s s o lv e n t; i 7 I { 2) l o c a t i n g th e c a t a l y s t s u r f a c e as th e s i t e o f p r o to n a te d ^ FC c a rb a n io n fo rm a tio n ; and, j i 3) e x p la in in g c a t a l y s t d e a c t i v a t i o n . j ( The fo re g o in g argum ent, how ever, sh o u ld be ta k e n in th e l i g h t t h a t ! ! I i t e x p la in s two e x p e rim e n ta l o b s e r v a tio n s b u t may n o t be th e o n ly a r g u - : i ; ment to encom pass th e s e f a c t s . ; I ] The re c o v e ry o f cru d e therm odynam ic dim er i s 87 w t.-% b a se d on th e I t s t a r t i n g k i n e t i c dim er. The w e ig h t lo s s a p p e a rs a t t r i b u t a b l e to th e i 1 e f f i c i e n c y o f th e r e f l u x c o n d e n se r and i s n o t due to f l u o r i d e io n j | c a t a ly z e d d e p o ly m e riz a tio n . O v e r a ll, th e method i s v e ry e f f i c i e n t and i I c o n v e n ie n t. P ro d u c tio n o f th e tr i m e r s o f HFP in v o lv e s co n d e n sin g HFP gas o f f a c o ld f i n g e r i n t o a s t i r r e d m ix tu re o f DM F and KF a t room te m p e r a tu r e . The r e a c t i o n i s s l i g h t l y e x o th e rm ic and f l u c t u a t e s betw een 25-50°C . The lo w er f lu o ro c a rb o n l a y e r i s w ashed, d r i e d , and d i s t i l l e d , th e f r a c t i o n b o i l i n g betw een 108-112°C i s c o l l e c t e d . Roughly 63 w t.-% o f th e c ru d e m ix tu re i s t r i m e r s , 37 w t.-% b e in g d im e rs . A p p a re n tly , HFP o li g o m e r i z a ti o n s to p s a t d im e r iz a tio n when CH^CN i s th e s o lv e n t and p ro c e e d s on to t r i m e r i z a t i o n when DM F i s u sed b e c a u se o f th e i n s o l u b i l i t y o f th e dim ers in CH^CN [2 7 ]. b. E x p erim en tal p ro c e d u re f o r th e s y n t h e s i s o f p e r f lu o r o - 2 - m e th y l- 2 - p r o p e n e KF CF -CF=CF (CF ) CF-CF=CF-CF (22) 5 CH -C=N, 15°C I t T h i r ty grams o f d ry p o ta s s iu m f l u o r i d e and 524 m l. o f s p e c t r o s - j c o p ic g rad e a c e t o n i t r i l e w ere p la c e d in a t h r e e - l i t e r ro u n d -b o tto m e d J th r e e - n e c k e d f l a s k eq u ip p ed w ith a gas i n l e t tu b e , d r y - ic e / i s o p r o p a n o l j c o ld f i n g e r , th e rm o m eter, e x i t tu b e co n n e c te d to a c a lc iu m c h l o r i d e j d ry in g to w er and m a g n etic s t i r r i n g . The c o n te n ts o f th e f l a s k were j s t i r r e d as HFP was p a s s e d i n t o th e f l a s k a t such a r a t e t h a t a t h i n ! s tre a m c o n tin u o u s ly d r a in e d o f f th e c o ld f i n g e r . At f i r s t , th e p o t : te m p e ra tu re was allo w e d to r i s e to 50°C, b u t f o r most o f th e r e a c t i o n th e p o t was k e p t betw een 10 and 15°C by means o f a d r y - ic e / i s o p r o p a n o l ; b a t h . HFP was added u n t i l a s u f f i c i e n t low er FC l a y e r form ed. R e flu x from th e c o l d - f i n g e r s to p p e d as soon as th e HFP flow was s h u t o f f . The 23! The m ix tu re was allo w e d to s t i r o v e r n ig h t a t room te m p e r a tu r e , p r o t e c t e d from m o is tu re . The c l e a r lo w er l a y e r was s e p a r a t e d by d e c a n t a t i o n , i d r ie d o v e r MgSO^ and f i l t e r e d . G ross y i e l d o f th e o lig o m e r was 2430 gram s. 19F-NMR shows ro u g h ly 27% therm odynam ic dim er, 73% k i n e t i c dim er and no d e t e c t a b l e amount o f t r i m e r [2 9 ]. KF (CF ) CF-CF=CF-CF (CF ) C=CF-CF CF . (23) DMA, REFLUX T h i r ty grams o f d ry p o ta s s iu m f l u o r i d e , 250 ml. o f d ry d im e th y l- a c e ta m id e (DMA) and 2430 grams o f cru d e k i n e t i c dim er were p la c e d in a [ i t h r e e - l i t e r ro u n d -b o tto m ed s in g le - n e c k e d f l a s k eq u ip p ed w ith an e f f i - ' i c i e n t r e f l u x c o n d e n s e r, m ag n etic s t i r r i n g and a h e a t i n g m a n tle . The | c o n te n ts were s t i r r e d a t r e f l u x f o r 15 days a t w hich tim e an 19F-NMR I showed th e is o m e r iz a t io n to be co m p lete [2 9 ]. Two th o u s a n d , one h u n d red i and e le v e n grams (85 w t.-% ) o f therm odynam ic dim er was c o l l e c t e d by ' d i s t i l l a t i o n (51-60°C) from th e is o m e r iz a tio n m ix tu re . I i i c . E x p erim en tal p ro c e d u re f o r th e s y n th e s is j i p f th e HFP tr i m e r s i | I I kf ; I CF -CF=CF C F t r i m e r s . ( 2 4 ) j 1 DM F., R.T. ! : j F i f t y grams o f d ry p o ta s s iu m f l u o r i d e (KF) and 200 m l. o f b e n z e n e - 1 ' I d r ie d dim ethylform am ide (DMF) w ere p la c e d in a t h r e e - l i t e r round-bottom ed i ' th r e e - n e c k e d f l a s k eq u ip p ed w ith a gas i n l e t tu b e , d r y - i c e / a c e t o n e c o ld ; f i n g e r , th erm o m eter and m a g n e tic s t i r r i n g . HFP gas ( b .p . -29°C) was a d m itte d to th e p o t a t such a r a t e t h a t a t h i n s te a d y s tre a m o f m a te r ia l condensed o f f th e c o ld f i n g e r i n t o th e s t i r r e d KF/DMF m ix tu re . The r e a c t i o n was s l i g h t l y ex o th e rm ic b u t no e f f o r t was made to m oderate th e te m p e ra tu re w hich f l u c t u a t e d betw een 25-50°C . A f t e r a p p ro x im a te ly 1.5 l i t e r s o f lo w er flu o ro c a rb o n la y e r was ac c u m u la te d , th e HFP flow was s to p p e d and th e p o t a llo w e d to s t i r f o r a few more h o u rs . The p o t j c o n te n ts w ere th e n d e c a n te d , le a v in g b e h in d th e m a jo r it y o f KF, washed j I w ith 1 .5 l i t e r s o f w a te r and d r ie d o v e r MgSO. . The cru d e f lu o ro c a rb o n | 4 | m ix tu re was th e n d i s t i l l e d th ro u g h a 60 cm vacuum ja c k e te d f r a c t i o n a t i n g j column w ith s t a i n l e s s s t e e l mesh p a c k in g . 665 grams (2 .2 2 m oles) o f I I l( "6^12 c* 4mers b o i l i n g betw een 48-60°C and 1115 grams (2 .4 8 m oles) o f j Cn F t r i m e r s b o i l i n g betw een 108-112°C w ere c o l l e c t e d . ' y l o ~ i i ! I i J B. P r e p a r a t io n o f F lu o ro c a rb o n -H y d ro c a rb o n j H y b rid Compounds J ! 1. S y n th e s is o f mixed a lk a n e s and alk eries I I I ja. D is c u s s io n j ! In 1972, I .L . K nunyants, e t a l . r e p o r te d th e r e a c t i o n o f th e j j \ I p e r f lu o r o - t - b u t y l a n io n , (CF ) C , w ith s a t u r a t e d and u n s a tu r a t e d a l k y l t j s . I h a l i d e s [3 0 ], i i i i CsF ; i (CF_) „C_ + R -X --------- ^ -(C F _ )_ C -R + CsX 3 3 3 3 (25) i i : RX=CH3 (CH )-2CH2B r, C H jI, CH2=CHCH2I , BrCH2CH2CN. 25 In t h e i r p r e p a r a t i o n , 0 .1 mole o f OFIB was p a s s e d i n t o a v ig o r o u s ly s t i r r e d m ix tu re o f 0 .1 mole CsF and 40 m l. o f d ig ly m e. The r e a c t i o n j was th e n h e a te d f o r 2 h o u rs a t 40°G. To t h i s s o l u t i o n was th e n added j 0 .1 M o f a l k y l h a l i d e . The r e a c t i o n o f th e io d id e s was ru n a t room te m p e r a tu r e , w h ile th e c h l o r i d e s and b rom ides w ere h e a te d t o 50-60°C and th e p ro d u c t o b ta in e d by d i s t i l l a t i o n . W hile o u r work was i n p r o - i i g r e s s , r e a c t i o n o f th e c a rb a n io n o f th e HFP therm odynam ic dim er w ith a b e n z y l h a l i d e was a l s o r e p o r te d by Knunyants [3 1 ]: CsF c f 3c f 2c f 2 (c f 3 ) 2c - + c 6h 5c h 2x — ^ . c f 3c f 2c f 2 (c f 3 ) 2c c h 2c 6h 5 + , I (90%) CsX . (26) In o u r w ork, we b a s i c a l l y e x te n d e d th e s e c o n c e p ts to p ro d u c e a ( i ! [v a r ie ty o f compounds t h a t w ere o f i n t e r e s t b e c a u se o f v a p o r p r e s s u r e , I ! i |Oxygen s o l u b i l i t y and p o t e n t i a l n o n - t o x i c i t y f o r u se as th e f l u o r o - Ichem ical p h a se o f a r t i f i c i a l b lo o d s u b s t i t u t e s . W e d e c id e d to t r y o u r j I i ■ reactio n s in d i p o l a r - a p r o t i c (D-A) s o lv e n t s r a t h e r th a n e t h e r s b e c a u se | [the e t h e r s r e q u i r e d c le a n up to remove K ydroxyliC ' p ro to n s w h ich , i f i f p r e s e n t , would consume g e n e ra te d FC c a r b a n io n . DM F and DM A w ere th e | f 's o lv e n ts m ost u se d and r e q u ir e d o n ly d ry in g o v e r 4A m o le c u la r s i e v e s . I I A ls o , i t was hoped t h a t s in c e a n io n s a r e r a t h e r p o o r ly s o lv a t e d i n d ip o -: l a r a p r o t i c s o lv e n t s and a r e t h e r e f o r e r a t h e r r e a c t i v e , t h a t a more i naked FC c a rb a n io n would be b e n e f i c i a l i n r e a c t i o n w ith u n a c t iv a t e d ja lk y l h a l i d e s . D-A s o lv e n t s have lo o s e r s t r u c t u r e s th a n p o l a r p r o t i c | s o lv e n t s and t h e r e f o r e la r g e p o l a r s p e c i e s , l i k e I , a r e more s o l v a t e d , s [thereby a i d i n g th e r e a c t i o n o f s a t u r a t e d h y d ro c a rb o n io d id e s [3 2 ]. The , 26 1 jFC c a rb a n io n can be c o n s id e re d a r e l a t i v e l y n o n - p o la r i z a b l e a n io n and th e h a l i d e o f th e a l k y l h a l i d e s as a more p o l a r i z a b l e s p e c i e s . T h e re f o r e one can im agine a t r a n s i t i o n s t a t e l i k e : ^ / Y - C------------ X Y = FC c a rb a n io n I C-X = a l k y l h a l i d e w here bond b r e a k in g i s ahead o f bond fo rm in g . Thus s o l v a t i o n o f th e l a l i d e X sh o u ld h e lp s t a b i l i z e th e t r a n s i t i o n s t a t e . T ab le I c o n ta in s a l i s t o f r e a c t a n t s , s o l v e n t s , p ro d u c t y i e l d s and p h y sic a l p r o p e r t i e s o f th e h y b r id a lk a n e s and a lk e n e s we s y n th e s iz e d , as ■ i w e ll as I . R . , 1HMR,19FMR, a n d .E l , :A n a l, d a ta f o r th e s e compounds. j F u r th e r v e r s a t i l i t y o f th e (CF ) C a n io n can be found in a rev ie w a r t i - j I o o I c l e by B.L. D y atk in [3 3 ]. J S An e a r l y a tte m p t a t th e low p r e s s u r e c a t a l y t i c h y d ro g e n a tio n o f a p re v io u s ly r e p o r te d h y b r id a lk e n e [3 0 ], (CF^)gCCF^CF^CF^, was u n s u c c e s s f u l in p ro d u c in g (CFg)^CCH^Cl^CH^. The r e d u c tio n s w ere c a r r i e d o u t in a I P a a r s h a k e r a t 50 p . s . i . o f H„ p r e s s u r e w ith 5% Pd/C in d i e t h y l e t h e r ; 5%' 1 1 . i Pd/C in d i e t h y l e t h e r w ith IIOAc; 5% Rh/C i n HOAc; PtO_ i n HOAc; and R a -N i] I z I I ' w ith 5% Pd/C i n HOAc. A ll a tte m p ts p ro v e d f r u i t l e s s . Each tim e a re d u c t i o n was deemed a f a i l u r e , a few ml o f 1 -h e p te n e was added to th e h y d r o - * i ; g e n a tio n m ix tu re . U ptake o f H~ co n firm e d t h a t th e c a t a l y s t was n o t i i * p o is o n e d b u t r a t h e r th e o l e f i n was r e s i s t a n t to r e d u c t io n u n d er th e con- ' j 1 d i t i o n s em ployed. ' ' However, c a t a l y t i c h y d ro g e n a tio n o f a l l th e o l e f i n s l i s t e d in T able t 1 was a c c o m p lish e d by v a p o r p h a se h y d ro g e n a tio n , th u s a llo w in g th e u se 27 o f a c t i v a t e d a lk y l h a l i d e s , e . g . , a l l y l b ro m id e , and p ro v id in g a h ig h y i e l d r o u te to th e h y b r id a l k a n e s . In t h i s p r o c e s s , a m ix tu re o f o l e f i n v a p o r and H^ gas i s p a s s e d o v e r Pd/Chrom absorb c a t a l y s t pack ed i n t o t h e i n n e r c o i l o f a r e f l u x c o n d e n se r p ro d u c in g re d u c e d m a te r ia l a t a r a t e o f ro u g h ly one gram p e r h o u r. I t i s u n c l e a r why one p ro c e s s sh o u ld f a i l and th e o th e r s u c c e e d . The d i f f e r e n c e s betw een th e two m ethods a r e : 1. p re s e n c e o r ab sen ce o f s o lv e n t ; 2. d i f f e r e n c e i n c a t a l y s t s u p p o r t; 3. p h a se o f o l e f i n ; 4. te m p e ra tu re ; 5. c o n c e n tr a ti o n ; an d , 6. p r e s s u r e . P o in ts 2, 4, and 5 seem l i k e l y as t h e re a s o n s f o r th e s u c c e s s o f one method o v e r t h e o t h e r , w ith 2 and 4 most l i k e l y . However, s o l u t i o n p h ase h y d ro g e n a tio n was n o t t r i e d u s in g Pd/Chrom absorb a s c a t a l y s t n o r was e l e v a t e d te m p e ra tu re em ployed w ith Pd/C c a t a l y s t . I t c o u ld be e i t h e r o r b o th o f th e s e f a c t o r s in co m b in a tio n t h a t make v a p o r p h a se h y d ro g e n a tio n s u c c e s s f u l in o u r c a s e . S in c e s o l u t i o n ph ase h y d ro g e n a t i o n i s th e more c o n v e n ie n t m ethod, th e s e two e x p e rim e n ts have m e r it b u t w ere n e v e r c a r r i e d o u t f o r tim e re a s o n s (o u r v a p o r p h ase a p p a ra tu s was s e t up and w o r k in g ) . A g e n e r a l p r e p a r a t i o n o f th e h y b r id a lk a n e s and a lk e n e s and a l s o a g e n e ra l p r e p a r a t i o n and d e s c r i p t i o n o f th e a p p a ra tu s f o r th e v a p o r p h ase h y d ro g e n a tio n o f th e o l e f i n s f o llo w s . 28 f H t— * ? H o /— \ t— * f H f t + - > f t f t 2 S h * L O • • o O s < M 6 e + - > ft J '— > V _ / C L , \o C T l O C M 0 0 to C M C M O L O v £ > p H C M 0 0 to • o X I"' C M to to L O o to r-- r H 1 C O C M to C O to X i *0 r — 1 r H r H r H r H 1 r H r H p H p H t-" T 3 • r H ft L O t'- C M 0 0 L O C M o o X o r H to \D O 0 0 C M < 1 > o \ ® C M C M X 0 0 to H t L O p H to r H X to 0 0 X X to • H v '— * / ■ > - r H r H H H H C M + - > ft ft <r ft ft < £ < < < X X s 2 S 2 s 2 s 2 2 s X X X X 0 ft a ft Q Q ft ft ft Q ft q q X IS X H r3 * r H o i n t f l < u e » H 0 C M A t h C M X C O r H P Q x to u 2 to < ' C M x to sc C O C M2 2 • • • S C i i X C J .2 X C M o 2 6 a a to 'O C M2 C MX x C MC J ft ■ u 2 C M C M o o o X G c S C X S C C * — s X X C M C M C M2 t— s 2 C M u f H H X o 2 2 2 to x C J 2 2 X O C M2 o p C X X C M X -p I I I I I I X m C MC J 2 u C M2 C MC O C J C J X X c / 1 P c S C X sc X X o C M C M C M 2 2 o C M X a > n S 0 2 2 2 w x C J 2 2 X 2 C M2 p — s T 3 o £ O b A C M C M C M C M C M C MC J 2 o C M 2 C M o X X X C M a j O c t ! sc sc sc X X S C C M C M C M2 2 H * to X p * f - l 0 c _ > 2 u x x C J 2 2 X 2 p H 2 X * \ * • N X p H n S a t u f- l J h * H « H U C J 2 o P C J P C J C M C M C Mp H < . X CQ C Q C Q X 2 C Q L H I — I P Q P Q V _ _ > X X X C J i 2 n d • r H * X I S C . . C M ft X to to X to 2 C M X ft ( I cc 2 y — N X to ► J C Mx 2 C M to to C M X p a sc sc 2 X X X X < 2 to u 2 C J C J X C M H I I x I I C M C M V-- / C MX sc X sc o X X X X 2 ' 2 to 2 C J C J X o C M C M C M to to C M2 C M to C M C M C M C M sc X sc sc 2 X 2 2 X X X X X 2 X u C J C J u C M O 2 C J C J C J X X C M < M 2 x 2 C M C M C M C M 2 C M2 C J C J C J X X S C I — — 1 C M C M C M3 3 2 2 r— n 2 r " ~ i C M C M C M C M C M C M 2 I I t— * I— \ C J 2 2 C MO C Mt— * f— ^ /— \ / • — v t3 I I X to to to C M C M C MX C M 2 to to to to to to S 3 sc 2 X X ft o 2 i - - - - 1 u 2 2 ft P V X X X X 3 2 C Mx X 2 C J 2 C M C M2 C M2 C J C J C J X X o ( M sc V — ' C M C M2 X C M2 w ^ ' s — / ' • — s '_ / '_ / f t sc 2 ( M C M C M 3 3 2 2 o 2 2 C M C M C M C M C M C M W 2 2 X X ft C J 2 2 o 2 2 ft X X X X X o 2 c o x x C J C J 2 to to 2 to 2 C J C J C J X X 2 C O , - - -* C M C M C M to to /— % to / — \ C M C M C M C M C M C M t— v to X X ft / — 1 f— s to to r~\ C O ft X X X X X C O ft x X C J to C O f t U h to f t 2 C J C J C J X X ft 2 to to to ft ft 2 C J f t 2 to to to to to to 2 til X ft 2 2 v _ / 2 v — ' ft X X X X X v — / X X C J v — s f tH ' 1 L — ' 2 C J C J C J X X o t r - l C M to L O X ) X 0 0 < y > O * H C M to L O 2 r H r H iH p H r H p H r H p H 29 TABLE I: (continued) No. R eaction Time (h rs) i f g/cm3 02Sol. cm3/100cm3 ISF NM R';< j> * ppm CFC13= 0 ,(+ )u p fie ld N M R 5 ppm 1 12 1.442 48.0 67.0. 2 .8 , 3 .5 , 4.1 2 12 6 7 .2 ^ 2 .8 , 5.7 3 14 1.500 40.9 6 4 .0 , 8 1 .5 ,1 0 8 .4 ,1 2 5 .1 2 .9 , 5 .1 , 5 .3 , 5.8 4 350 1.542 6 3 .2 , 8 1 .1 ,1 0 7 .4 ,1 2 4 .0 . 1.8 , 3 .0 , 5.1 5 24 1.529 6 4 .1 , 8 1 .3 ,1 0 7 .6 ,1 2 3 .8 1 .6 , 1 .7 , 2 .9 , 5.5 6 12 1.490 34.4 6 6 .9.; 1 .2 , 2 .9 , 4.1 7 2.5 1.393 41.2 67.2 ^ 0 .9 , 1 .4 , 1 .9 , 3.1 8 12 — '3578 67.4.o 2.0 9 12 — — — — 67 .3 , 1.7 10 180 1.458 67.4 1.1 11 340 — 12 18 63 .8 , 8 1 .1 ,1 0 8 .2 ,1 2 3 .9 1 .1 , 3 .1 , 4.1 13 1 1.667 6 7 .2 , 8 1 .3 ,1 1 1 .4 ,1 2 4 .5 2.8 14 l g / h r 1.522 46.7 64.5, 8 1 .2 ,1 0 8 .0 ,1 2 4 .2 1 .0 , 1 .7 , 2.0 15 lg / h r 1.453 43.6 67 .6 , 8 1 .1 ,1 0 8 .0 ,1 2 4 .0 1 .0 , 1 .1 , 2.1 16 l g / h r 1.466 46.6 64.2, 8 1 .3 ,1 0 8 .0 ,1 2 4 .2 0 .9 , 1 .1 , 1 .5 , 2.1 17 280 1.530 44.3 64 .5 , 8 1 .3 ,1 0 8 .5 ,1 2 4 .0 1 .2 , 3 .5 , 4.0 TABLE I: (concluded) Elem ental A nalysis C a lc u la te d (%) Found (%) 1 1340, 1260, 1130, 1020, •980, 740, 720, 685 P re v io u sly R eported [30] 2 1280, 1180, 1120, 1060, 740, 730, 720 C: 29.29, H: 1.23 C: 29.19, H: 1.38 3 1250, 890, 740, 720, C: 30.02, H: 1.40 C: 29.43, H: 1.54 4 1450, 1240, 880, 745, 730, 700 C: 32.10, H: 1.89 C: 31.94, H: 2.00 5 2990, 1240, 950, 735, 705., C: 32.10, H: 1.89 C: 32.22, H: 2.01 6 2990, 1780, 1280, 1180, 1000, 720, 680 P re v io u sly R eported [30] 7 2990, 1280, 1240, 1130, 990, 740, 710 P re v io u sly R eported [30] 8 1280, 1240, 1100, 1070, 930, 730, 710 C: 27.52, H: 1.26 C: 27.64, H: 1.35 9 1260, 1120, 1080, 960, 730, 710 . C: 30.73, H: 1.98 C: 31.17, H: 1.99 10 2950, 1270, 1100, 960, 940, 730, 710 C: 32.89, H: 3.11 11 Not is o la te d 12 3000, 1760, 1240, 735, 705, C: 29.57, H: 1.74 C: 29.84, H: 1.92 13 1450, 1240, 1175, 1075, 930, 730, 705 C: 25.17, H: 0.91 14 3000, 1250, 970, 750, 735, 700 C: 29.85 H: 1.95 C: 29.73, H: 1.97 15 2950, 1460, 1240, 980, 875, 735, 700 C: 31.93, H: 2.41 C: 31.9 5 , H: 2.44 16 2990, 1250, 1120, 830, 735, 700 C: 31.93, H: 2.41 C: 31.92, H: 2.80 17 2990, 1240, 740, 710/; C: 28.59, H: 1.87 C: 28.08, H: 2.06 1. 5 grams Nal added as c a t a l y s t . 2. 5 grams o f 1 8 -C ro w n -6 /a c e to n itrile complex added as c a t a l y s t . b . E x p e rim e n ta l p ro c e d u re f o r th e s y n t h e s i s o f th e p e r f l u o r o - t - b u t y l a l k y l h y b r id s fCF^) A lkyl h a l i d e , a 10% e x c e ss o f d r i e d p o ta s s iu m f l u o r i d e , and m ole c u l a r s i e v e - d r i e d s o lv e n t (DMF o r DM A) a r e p la c e d i n a th r e e - n e c k e d f l a s k e q u ip p ed w ith a gas i n l e t tu b e , th e rm o m eter, d r y - i c e / i s o p r o p a n o l c o ld f i n g e r and m a g n etic s t i r r i n g . A s l i g h t s to c h i o m e t r i c e x c e ss o f OFIB i s slo w ly added to th e v ig o r o u s ly s t i r r e d r e a c t i o n m ix tu re by co n d e n s a tio n o f f th e c o ld f i n g e r . In c a s e s w here th e r e a c t i o n i s e x o th e r m ic, th e r e a c t i o n i s k e p t below 40°C (OFIB b . p . = 7 ° C ). At th e end o f t h e OFIB a d d i t i o n , th e c o l d - f i n g e r i s k e p t w e ll c h a rg e d w ith d r y - i c e and a CaCl^ d ry in g tu b e i s r e p la c e d f o r th e gas i n l e t tu b e . The m ixture i s a llo w e d to s t i r o v e r n ig h t (n o t n e c e s s a r y i n a l l c a s e s ) a f t e r w hich th e e x t e n t o f r e a c t i o n can be d e te rm in e d by 19FMR o r G.C. At th e end o f r e a c t i o n p r o g r e s s , th e c o n te n ts o f th e p o t a r e washed w ith w a te r and th e lo w er flu o r o c a r b o n p h a se s e p a r a t e d , d r i e d w ith MgSO^ and g r a v i t y f i l t e r e d . D i s t i l l a t i o n o f th e p r o d u c t w i l l y i e l d a c c e p ta b ly p u re m a t e r i a l , b u t i n some c a s e s , p r e p a r a t i v e gas chrom atography (1 cm x 150 cm 20% FFAP o r 20% DEGS on Chromabsorb P a t 100°C w ith a He flow o f 100 m l/m in) i s n e c e s s a r y . N ote: KF i s d r i e d in a vacuum oven a t 150°C o v e r n ig h t , ground in a b a l l m i l l , r e d r i e d , and s t o r e d i n an a i r - t i g h t c o n t a in e r . c . E x p e rim e n ta l p ro c e d u re f o r th e s y n t h e s i s o f th e p e r f l u o r o - £ - h e x y l a l k y l h y b r id s CF^CF^CF^(CF^)^C-R A lk y l h a l i d e , a 10% s to c h i o m e t r i c e x c e ss o f d r i e d KF, a sto c h io m e t r i c amount o f p e r f lu o r o - 2 - m e th y l- 2 - p e n te n e , and d ry s o lv e n t a r e p la c e d 32 i n a ro u n d -b o tto m e d s in g le - n e c k f l a s k eq u ip p ed f o r m ag n etic s t i r r i n g . The f l a s k i s th e n s to p p e re d w ith a C a C ^ d ry in g tu b e and th e c o n te n ts s t i r r e d v i g o r o u s ly . At c o n v e n ie n t i n t e r v a l s , th e s t i r r i n g i s s to p p e d and a sam ple o f th e lo w er flu o ro c a rb o n p h ase can be exam ined by 19FMR o r G.C. to d e te rm in e r e a c t i o n p r o g r e s s . The p ro d u c t i s th e n i s o l a t e d and p u r i f i e d as in th e p e r f l u o r o - £ - b u t y l a l k y l h y b r id p r e p a r a t i o n . d . E x p e rim e n ta l p ro c e d u re f o r th e v a p o r-p h a s e 1 c a t a l y t i c h y d ro g e n a tio n o f th e h y b r id o l e f i n s H2 R„CH„CH=CHR — R„CH„CH_CH„R (27; F 2 CAT_ F 2 2 2 T h i r t y g o f Chromosorb P (40 mesh) was s l u r r i e d in 10% aqueous ; h y d r o c h lo r ic a c i d and h e a te d on th e steam b a th f o r c a . one h o u r, th e n washed by d e c a n ta t io n w ith d i s t i l l e d w a te r . T his p ro c e d u re was r e p e a te d tw ic e . Then 50 ml o f conc. h y d r o c h lo r i c a c id and 1 .0 g o f PdCl^ was added and t h e m ix tu re was ta k e n to d ry n e ss on th e r o t a r y e v a p o r a to r u n d e r a s p i r a t o r p r e s s u r e , u s in g a steam b a th as th e h e a t s o u rc e . 12.6 g o f th e P d C l^ - tr e a te d s u p p o rt was p ack ed i n t o th e in n e r c o i l o f a r e f l u x c o n d e n s e r. The c o i l was h e a te d by steam from a f l a s k o f b o i l i n g w a te r w h ile hydrogen was p a s s e d th ro u g h vS.t TOO - 150 cc/m in u n t i l th e c o l o r o f Chromosorb tu r n e d from o ran g e to d ark g ray (ab o u t 0 .5 h o u r ) . F or r e d u c t io n o f a v o l a t i l e l i q u i d s u b s t r a t e , th e column was p r e ceded by an e v a p o r a to r h a v in g a g la s s f r i t f o r th e h y d rogen to b u b b le th ro u g h , a th erm o m eter w e ll to m o n ito r th e te m p e ra tu re o f th e l i q u i d , and a h e a t s o u rc e . F o llo w in g th e column was a t r a p c o o le d i n a d ry i c e - 3 3 REFLUX CONDENSER THERMOMETER WELL INNER COIL PACKED WITH Pd-ON-CHROMOSOI HEAT LAMP TO FLOWMETER DRY-ICE COOLED TRAP / MATERIAL TO \ / B E HYDROGENATED — BOILING WATER -MICRO-METERING VALVE F igure 2: A pparatus f o r vapor phase h y d ro g en atio n . is o p ro p a n o l b a th and a s o a p -b u b b le flo w m e te r. (See F ig u re 2 .) With o l e f i n s , th e e v a p o r a to r was h e ld a t 80 - 85° and th e h y d ro gen flow s e t a t a b o u t 135 c c /m in . T hroughput was a p p ro x im a te ly one g ra m /h o u r. When u n r e a c te d o l e f i n a p p e a re d i n th e c o n d e n s a te , as d e t e r m ined by PMR, th e c a t a l y s t was r e p la c e d . One c h a rg e was s u f f i c i e n t to re d u c e a t l e a s t 100 g o f d i s t i l l e d o l e f i n . 2. S y n th e s is o f a new p e r f l u o r o n i t r o s o compound, i t s a lc o h o l and a l k y l e t h e r s a . D is c u s sio n The KF c a t a ly z e d r e a c t i o n o f OFIB w ith FN=0 was f i r s t r e p o r t e d by I .L . K nunyants i n 1960 [3 4 ]: FN0,KF,R.T. CCF,)0C=CF 1 ,1 . J* (C F„)7C-N=0 . (28) ^ 3 '2 Ampoule, 24 h r s . 3 '3 The r e a c t i o n was r e p o r t e d t o be q u a n t i t a t i v e . In 1962, A ndreades r e p o r te d th e same r e a c t i o n , w ith o u t KF, p ro c e e d in g in 90% y i e l d [3 5 ]. In 1967, Knunyants r e p o r t e d a s e r i e s o f e x p e rim e n ts e l u c i d a t i n g th e mechanism o f FN=0 a d d i t i o n to HFP and OFIB as n u c l e o p h i l i c a d d i t i o n o f F form ing th e c a rb a n io n w hich th e n r e a c t s w ith FN=0 [3 6 ]: KF (CF5) 2O C F 2 ^ ( C F ) C~ + F N = 0 - ^ ( C F 3) 3C-N=0 + F ' . (29) F u r th e r s t u d i e s [37] r e v e a le d t h a t h e a t i n g th e n i t r o s o compound in th e p re s e n c e o f N20^ o x id iz e d i t to th e n i t r i t e e s t e r w hich c o u ld th e n 35 b e h y d ro ly z e d to th e a lc o h o l: N 0 ^ ,6 5 °C H S 0 4 (CF ) C-N=0...........4 » (CF ) C-0N=0 —■ ■ ■ » » (CF„) C-OH . (30) 6 h r s . , Ampoule I t was l a t e r d is c o v e r e d t h a t d i r e c t tr e a tm e n t o f OFIB w ith KF and N„0„ 2 4 c o u ld p ro d u ce th e n i t r o s o compound o r th e n i t r i t e e s t e r when a 5 f o l d e x c e ss o f 1^0^ was u se d [3 6 ]: 5 eq.N 204 (CF3) 3C-0N=0 (CF^C-OH rrn r r c KF / 20 h r s . , 100°C 2 4 CCF3)2c=CF2-^< soiv. (31) \ l eg.N 2 0 4 ^ (CF3) 3C-N=0 24 h r s . , R.T. s o lv . In o u r s t u d i e s , we found t h a t (CF3) 2C=CFCF2CF3 can r e a c t w ith e i t h e r C1N=0 o r N2®4 an < i KF in D M A to p ro d u ce p e r f lu o r o - 2 - m e t h y l - 2 - n i t r o s o p e n t a n e : KF,C1N=0 o r N O (CF„)_C=CFCF0CF„ v r CF_CF0CF_(CF_)oC-N=0 (32) DM A, -20°C 5 1 1 5 1 w hich h a s a r o y a l b lu e c o l o r . I f an e x c e ss o f N204 i s u s e d , th e n i t r o - s o a lk a n e i s o x id iz e d t o th e n i t r i t e (y e llo w ) . When C1N=0 i s u s e d , th e n i t r o s o a l k a n e can be o x id iz e d by a slow s tre a m o f 0 2 to p ro d u ce th e n i t r i t e : 0 ? c f3c f2c f 2 (c f 3) 2c - n=o c f 3c f 2cf ( c f3) 2c - on=o (33) o r N204 , R .T. • w hich i s a y e llo w l i q u i d . A lth o u g h n o t c o n firm ed by a n a l y s i s , we 36 TABLE I I : Hybrid A lcohol and E th ers No. Compound Reagent S olvent R eaction tim e (h rs) Y ield b .p .°C 730 t o r r / 3 g/cm 18 c f3c f2c f2 (c f3) 2cno C1NO D M A 1 98 73 1.702 19 c f3c f2c f2 (c f3) 2coh o2/ koh h20 3 65 93 ' 1.770 20 c f3c f2c f2 (c f3) 2coch3 (ch3o) 2so2 D M SO 15 75 97 1.617 21 CF3CF2CF2 (CF ) 2C0CH2CH3 ich2ch3 D M SO 41 84 109 1.571 22 CF3CF2CF2 (CF3) 2COCH2CH2CH3 ICH2CH2CH3 D M SO 66 79 125 1.507 23 CF3CF2CF2.(CF3) 2C0CH (CH ) 2 ICH(CH3) 2 D M SO 113 58 121 1.531 24 CF3CF2CF2 (CF ) 2C0CH2CH CH CH ICH2CH2CH2CH3 D M SO 72 84 138 1.473 TABLE II: (continued) No. °2 501 3 cm /100 cm A ® F NM R < j> * ppm 3 CFC13=0 (+) U p field X H N M R 6 ppm IR cm-1 18 decomp. 6 3 .4 ,8 1 .3 ,1 1 0 .1 ,1 2 5 .4 16 20,1240,1120,830,740,720 19 47.9 7 3 .1 ,8 1 .5 ,1 1 6 .4 ,1 2 5 .5 3.4 3600,1240, 970,830,740,720 20 48.1 6 7 .8 ,8 1 .3 ,1 1 3 .7 ,1 2 5 .3 3.8 3000,1250,1005,970,830,740,725,720 21 49.9 6 7 .8 ,8 1 .4 ,1 1 4 .1 ,1 2 5 .0 1 .4 , 4.1 3000,1245, 960,830,740,730,720 22 45.8 6 7 .6 ,8 1 .4 ,1 1 3 .7 ,1 2 4 .8 1 .0 , 1 .7 , 4.0 3000,1250, 970,830,740,730,720 23 6 7 .6 ,8 1 .4 ,1 1 4 .6 ,1 2 4 .5 1 .3 , 4.5 3000,1250, 970,835,740,725,720 24 6 7 .6 ,8 1 .5 ,1 1 3 .9 ,1 2 5 .1 1 .0 , 1 .6 , 4.1 3000,1250,1175,980,830,740,725,720 00 TABLE: II (confilyded) Elem ental A nalysis C a lc u la te d (%) Found (%) 18 C :2 0 .6 5 , H :0.00 19 C :21.45, H :0 .30 C :21.19, H :0 .49 20 C :24.02, H :0 .86 C :21.76, H:0.97 21 C: 26.39, H: 1.38 C :25.95, H :1.56 22 C :28.59, H: 1.87 C:2 8 .4 9 , H.-2.03 23 C :28.59, H :1.87 C :28.42, H :1.89 24 C :30.63, H-.2.31 C :30.47, H:2.25 04 ID b e l i e v e i t to be th e n i t r i t e s in c e (CF3) 2CF-0N=0 [34] and (CF^)3C-0N=0 [35] a r e a l s o y e llo w l i q u i d s . H y d ro ly s is o f th e n i t r i t e in aqueous b a se fo llo w e d by a c i d i f i c a t i o n p ro d u c e s th e a l c o h o l : KOH H SO. CF CF CF (CF ) C-0N=0 ----- ► — CF CF CF (CF ) C-OH . (34) H O H O (65%) T rea tm e n t o f th e a lc o h o l w ith KOH i n DM SO y i e l d s th e p o ta s s iu m s a l t which can th e n be t r e a t e d i,n-situ w ith a number o f a l k y l a t i n g a g e n ts to p ro d u c e h y b r id e t h e r s in h ig h y i e l d : K O H c f 3c f2c f2 (c f3) 2c - oh c f 3c f2c f2 (c f3) 2c- ok (35) R-X CF CF CF (CF ) C-OK — CF CF?CF (CF ) C-OR + KX . (36) *■ DM SO 5 T ab le I I i s a c o m p ila tio n o f th e s t a r t i n g m a t e r i a l s , s o l v e n t , y ie ld s and p r o p e r t i e s o f some o f th e e t h e r s t h a t hav e been p ro d u ced in t h i s way. b . E x p e rim e n ta l p ro c e d u re f o r th e s y n t h e s i s o f p e r f l u o r o - 2 - m e th y l- 2 - n itr o s o p e n ta n e , i t s n i t r i t e ester:.-and a lc o h o l . KF,C1N0 0 H 0 + (CF ) X=CFCF CF ----------------t- C .F -N=0 t-C F. ,-0N 0 — t-C.F. _0H (37) ' 3 2 . . 2 3 2q° 6 13 r p ° 6 13 D rie d KF, 58 g (1 .0 m o l), 550 ml D M A and 2 0 1 .3 g (0.671 mol) o f p e r f lu o r o - 2 - m e th y l- 2 - p e n te n e w ere com bined and s t i r r e d m a g n e tic a lly i n 40 a one L 3 N f l a s k e q u ip p ed w ith a c o ld f i n g e r c o n d e n s e r, therm om eter w e ll , and d ry in g tu b e . The m ix tu re was c o o le d to -2 0 ° in a d ry i c e - is o p ro p a n o l b a t h , and n i t r o s y l c h l o r i d e was p a s s e d i n , k e e p in g th e tem p e r a t u r e below - 5 ° , u n t i l a g re e n c o l o r p e r s i s t e d ( th e r e a c t i o n p ro d u c t form s a c l e a r b lu e low er l a y e r , and th e p re s e n c e o f e x c e s s y ellow -brow n N0C1 c a u se s th e m ix tu re to a p p e a r g r e e n ) . An 19FMR s p e c tru m o f th e b lu e lo w er l a y e r showed c o m p lete consum ption o f s t a r t i n g m a t e r i a l . The r e a c t i o n m ix tu re was p o u red i n t o a 2 L s e p a r a t o r y fu n n e l c o n t a in in g 30 g o f b o r ic a c i d i n c a . one l i t e r o f i c e w a te r . The b lu e n i t r o s o com pound was drawn o f f and w ith o u t f u r t h e r p u r i f i c a t i o n , p la c e d in a 250 mL 3 N f l a s k eq u ip p ed w ith a c o ld f i n g e r c o n d e n se r and o x id iz e d w ith a slow s tre a m o f oxygen. The b lu e c o l o r tu r n e d g re e n , th e n y e llo w w ith i n 30 m in u te s . The o x id a tio n i s e x o th e rm ic . The c ru d e y e llo w n i t r i t e e s t e r was p o u red i n t o 800 ml o f w a te r and s t i r r e d u n t i l gas e v o l u tio n c e a se d (NO + NO 2 ) , th e n made s t r o n g l y b a s i c by a d d i t i o n o f 60 g KOH p e l l e t s . I n s o lu b le m a t e r i a l (4 0 .8 g) was removed by d i r e c t steam d i s t i l l a t i o n ; d i s t i l l a t i o n was sto p p e d when th e d i s t i l l a t e r a n c l e a r o f i n s o l u b l e m a t e r i a l . The r e s i d u a l aqueous s o l u t i o n was c o o le d and a c i d i f i e d w ith s u l f u r i c a c i d . The low er l a y e r w hich form ed was s e p a r a t e d , mixed wih 75 ml o f 96% H2S04 , and th e m ix tu re d i s t i l l e d a t a s p i r a t o r p r e s s u r e i n t o a d ry ic e - c o o l e d r e c e i v e r . Y ie ld 145.5 g (64.5%) o f c o l o r l e s s a l c o h o l, p u re by 19FMR. P r e p a r a t io n u s in g A m ix tu re o f 500 ml DMA, 50 g d ry KF3(i86’mol) andiJd.,.3 g o l e f i n (.5 7 1 mol) i n a one L 3 -n eck f l a s k was s t i r r e d a t 4 - 7°C ( e x te r n a l i c e - s a l t b a th ) w h ile 109 g N^O^ (1 .1 8 m oles) was 41 s lo w ly d i s t i l l e d in a s l i g h t flow o f 0^. A -28°C ( b o i l i n g CF^Cl^) c o ld f i n g e r was u se d to m inim ize e sc a p e o f NO^. The a d d i t i o n was in te r r u p te d w henever th e p o t te m p e ra tu re re a c h e d + 7°. Im m ed iately a f t e r th e a d d i- 1 9 t i o n , th e r e a c t i o n m ix tu re was deep b lu e ; FMR e x a m in a tio n o f th e low er flu o ro c h e m ic a l p h a s e showed co m p lete consum ption o f s t a r t i n g o l e f i n and a s i n g l e p re d o m in a te p r o d u c t '(presum ably. CF„GF^.CF^. (CF„~)CN0, q u i n t e t a t $*=63.7). The r e a c t i o n m ix tu re was l e f t warm s lo w ly t o room te m p e ra tu re w ith s t i r r i n g . A f te r 18 h o u rs th e b lu e c o l o r had d is a p p e a re d and th e low er p h a se was l i g h t y e llo w ,^ M R o f CF2 CF2 CF2 (C F^) 2 CONO, q u i n t e t a t $ *= 68.5. c . E x p e rim e n ta l p ro c e d u re f o r t h e s y n th e s is o f th e e t h e r s o f p e r f lu o r o - 2 - m e th y l- 2 - p e n ta n o l 1) KOH CF3CF2CF2 f f F3 h C- OH 2) R - f CF5CF2CF;, (CF3) 2C-0R (38) P e r f lu o r o - 2 - m e th y l- 2 - p e n ta n o l and a 10% e x c e ss o f KOH p e l l e t s a re added to 150 ml o f s o lv e n t in a round bottom ed f l a s k eq u ip p ed w ith m a g n etic s t i r r i n g . A f te r most o f th e KOH d i s s o l v e s , a 10% e x c e ss o f th e a l k y l h a l i d e i s a d d ed , th e f l a s k s to p p e r e d and allo w e d to s t i r . At 1 9 ; ' th e end o f th e r e a c t i o n (d e te rm in e d by/"FMR) th e c o n te n ts a r e p o u red i n t o 300 ml o f ^ 0 . The c ru d e lo w er l a y e r i s s e p a r a t e d and d r i e d o v er KOH. D i s t i l l a t i o n o f th e c ru d e p ro d u c t y i e l d s r e a s o n a b ly p u re m a te r ia l, A n a l y t i c a l l y p u re sam ples can b e o b ta in e d by p r e p a r a t i v e gas ch ro m a to grap h y . 42 3. S y n th e s is o f azo compounds and t h e i r r e d u c t io n to h y d razo compounds o r am ines D is c u s s io n In 1972, I .L . K nunyants, e t a l . [38] r e p o r t e d th e r e a c t i o n o f th e p e r f l u o r o - £ - b u t y l a n io n , ( C F ^ ) , w ith ben zen e d iazonium c h l o r i d e to p ro d u ce th e azo compound, (C F g ^ C -^ N C ^ H ^ . I t was p re p a re d b ^ roslpw ly. ad d in g th e diazo n iu m s a l t to a s l u r r y o f CsF o r KF and th e f l u o r o - o l e f i n i n DMF. The r e a c t i o n s w ere n o t i c e a b l y e x o th e rm ic . The r e a c t i o n a ls o worked w ith HFP and p e r f l u o r o c y c l o b u t e n e : KF, DM F <CV 2 C- CF2 ' C .H N ,C 1 » " (C1W - N=N- C6H5 • (39) 6 5 2 I t was o u r d e s i r e to d ev elo p a c o n v e n ie n t s y n th e s is o f p e r f l u o r o - t - b u t y l am ine, ( C F ^ ) b y r e d u c t io n o f th e N=N bond in a s u i t a b l e azo compound, w hich le d us to e x p lo re th e s y n th e s is o f t h i s c l a s s o f h y b r id compounds. A p r e v io u s l y p u b lis h e d s y n t h e t i c r o u t e to (CF^^C-NH^ by I . L . Knunyants [39] s t a r t e d w ith c a t a l y t i c h y d ro g e n a tio n o f th e n i t r o s o compound: H , 100 A tm ., CH OH (CF ) C -N =0------ « -I..(CF ) C-NH-OH (40) Pd/C, 10 h r s . , A u to c la v e ,o70. \ 0 / 'o) b u t o n ly y ie l d e d th e h y d ro x y la m in e . More v ig o ro u s h y d ro g e n a tio n c o n d i t i o n s (Ra-Ni s p l i t th e C-N bond) as w e ll as r e d u c t io n a tte m p ts u s in g 43 Zn d u s t in r e f l u x i n g HOAc a l s o f a i l e d . . T rea tm e n t o f th e h y d ro x y lam in e in an a u to c la v e a t 160°C w ith HI and r e d p h o sp h o ru s f o r 15 h r s . f i n a l l y p ro d u ced (C F ^ ^ C -N ^ i n 48% y i e l d . r e d P,HI (CP ) C-NH-OH — — — CCF3) 3c - m 2 . 1 6 0 ., A u to c la v e v J C48%) A lthough K nunyants d id n o t r e p o r t any a tte m p te d r e d u c t io n o f (CF ) _C-N=N-ChH , we have found t h a t c e r t a i n azo compounds can be 5 5 o 5 re d u c e d to pro d u ce (CF_),C-NH„. 5 5 Z R ___ NaN02 R NH2 HBF /H 0 ,0 °C m BF4 (42) (A) 4 2 (B) R R KF ■ N E N BF4 + (CF3) 2C=CF2 dma> _10 o - c — 3 * N=N-C(CF3), (431 (B) (C) (D) =N-C(CF3) 3 Zn/Hg,HC1 ^ + (CIV 3C- NH2 ^ R ___ R VHg, HOAc (D) (A) (E) 44 Our s y n t h e s i s o f p e r f l u o r o - t - b u t y l amine (E) i s a c h ie v e d by a th re e - t i c amine (A) w ith NaM^ in HBF^/H^O a t 0°C (th e BF~ s a l t s a r e more s t a b l e th a n th e Cl s a l t s ) . The d iazonium s a l t s a r e th e n co u p le d w ith th e c a rb a n io n form ed from OFIB (C) when t r e a t e d w ith KF a t -10°C in D M A and p ro d u c e s an azo compound (D ). The N=N bond o f th e azo compound i s th e n re d u c e d u n d er Clemmensen c o n d itio n s to pro d u ce th e d e s i r e d amine (E) w hich i s d i s t i l l e d from th e r e d u c t io n m ix tu re . D i a z o t i z a t i o n and c o u p lin g a r e f a c i l e p r o c e s s e s w hich p ro c e e d in h ig h y i e l d . The c ru x o f th e pro b lem , how ever, i s r e d u c t io n o f th e azo lin k a g e (-N=N~). The f a c i l i t y o f t h e r e d u c t io n seems t o depend upon th e n a t u r e o f th e arom a t i c p o r t i o n o f th e azo compound. To d a t e , we have t r i e d f i v e r e d u c t io n c o n d i tio n s : 1. T iC l3/HCl(g)/HOA c; 2. Zn/Hg-HCl(g)/HOAc; 3. Zn/Hg-HCl(aq)/HOAc; 4 . Zn/Hg-H Cl(g)/CH 3CH2C02H; and, 5 . A1/HC1(g)/HOAc; and we have t r i e d to re d u c e f i v e d i f f e r e n t a ro m a tic azo compounds p r o duced from th e f o llo w in g am ines: s te p p ro c e s s w hich s t a r t s by th e d i a z o t i z a t i o n o f a s u b s t i t u t e d arom a- 3. 2 . 4. 45 5. N H , co2h 2 R ed u ctio n method 2 a p p e a rs to be th e most p o t e n t and i t s a p p l i c a t i o n to th e azo compounds p ro d u c e d from th e l i s t e d a ro m a tic am ines h a s p ro d u ced v a r io u s r e s u l t s . The azo compound p ro d u c e d from amine 1 re d u c e s f a i r l y c l e a n l y to th e h y d razo s t a g e , Ar-NH-NH-C(CF ) , , and on to NH-NH bond c le a v a g e to th e d e s ir e d amine ( E ) . However, s in c e OSHA (O c c u p a tio n a l S a f e ty and H e a lth A d m in is tr a tio n ) h a s p la c e d amine 1 on i t s c a rc in o g e n l i s t and h a s r e s t r i c t e d i t s u s e , we have en d eav o red to f i n d a n o th e r am ine t h a t w i l l pro d u ce an azo compound s u i t a b l e f o r th e r e d u c t i o n . The azo compound p ro d u ced from amine 2 w i l l re d u c e , w ith o u t p a s s in g th ro u g h a n ' T\MR o b s e rv a b le h y d razo i n t e r m e d i a t e , to th e d e s i r e d amine (E) b u t th e y i e l d i s much low er due t o accom panying N-C bond c le a v a g e to p ro d u ce H-CCCF^)^. The azo compounds from am ines 3, 4 and 5 a l l re d u c e r a p i d l y to th e h y d razo s ta g e b u t r e d u c t io n w i l l p ro c e e d no f u r t h e r . Once a u s e f u l s y n t h e t i c r o u te to ( C F ^ ^ C -N ^ was found, we had p la n n e d a l k y l a t i n g i t s am ide: D ir e c t a l k y l a t i o n o f th e amine i s p ro b a b ly n o t p o s s i b l e b e c a u se i t i s 19 KH (CF5) 5C-NH2 — .(C F 5) 3C-NH + RX-»- S o lv . (CF3) 3C-NHR + (CF3) 3C-NR2 . (45) 46 TABLE I I I : Diazonium S a l t s , Azo Compounds and T h eir R eduction P roducts No. Compound Y ield ■ (%) m.p.°C 1 9F N M R cj)*ppm CFC13= 0 ,(+) u p f ie ld * 1 1 N M R 6ppm 25 6-C1rtH -N*BF~ 96 10 7 2 4 26 p-CH ^Cg^-N^BF^ 91 -- 27 ° - CH3°2CC6H4 -N2BF4 91 - - 4 .2 , 8.9 28 e-C10H7-N,NC(CF3) 3 75 82 29 £-CH 0C6H N=NC(CF )-^ 91 67.3 3 .9 , 7.5 30 o-CH302CC6H4-N=NC(CF ) 3 92 66.9 31 o- ho2cc6h4- n=n c(c f3) 3 90 66.3 7 .9 ,1 2 .3 32 t CF3) 3CNH2 75 56 ( b .p .) 72.7 1.8 33 o-CH 02CC6H -NHNHC(CE ) 3 85 6919 3 .8 , 3 .9 , 7.6 34 o- ho2cc6h4- nhnhc(cf3) 3 85 6914 p r a c t i c a l l y d ev o id o f b a s i c p r o p e r t i e s [3 9 ]. I t f a i l s to r e a c t w ith b en zo y l c h l o r i d e and i t s s a l t s o n ly e x i s t i n th e p re s e n c e o f c o n c e n tr a te d m in e ra l a c i d s . I t form s a c r y s t a l l i n e s u l f a t e i n conc. H^SO^ w hich i s s o lu b le in e x c e ss a c i d b u t s l i g h t d i l u t i o n o f th e s o l u t i o n r e v e r t s i t back to th e f r e e am ine. T ab le I I I i s a c o m p ila tio n o f th e s t a r t i n g m a t e r i a l s , r e a g e n ts and p r o p e r t i e s o f th e compounds we have p ro d u c e d . b . E x p e rim e n ta l p ro c e d u re f o r th e s y n th e s is o f th e d ia zo n iu m s a l t s In to a 4 l i t e r b e a k e r eq u ip p ed w ith an i c e - s a l t b a th and m e ch an ical s t i r r i n g was p la c e d 0 .5 m oles o f a ro m a tic amine d i s s o lv e d i n 100 ml o f w a te r and 200 ml o f 48% HBF^. The r e a c t i o n m ix tu re was s t i r r e d and co o le d to -5°C w h ile 0.5 1 m oles o f NaNO^ d is s o lv e d i n 80 ml o f w a te r was added d ro p w is e . The p o t te m p e ra tu re was h e l d betw een -5 to 0°C th ro u g h o u t th e r e a c t i o n (by ad d in g i c e d i r e c t l y to th e p o t ) . A f te r th e a d d i t i o n was c o m p le te , th e p o t was s t i r r e d f o r f i v e a d d i t i o n a l m in u te s . The f l o c c u l e n t d ia zo n iu m s a l t was vacuum f i l t e r e d on a Buchner f u n n e l. The p ro d u c t was w ashed w ith 100 ml o f 5% HBF^ and 100 ml o f anhydrous m e th a n o l. Then th e p ro d u c t was washed w ith anhydrous Et^O u n t i l th e w ashings w ere c l e a r and d r i e d on th e B uchner fu n n e l f o r one h o u r. F i n a l l y , th e p r o d u c t was a llo w e d to a i r d ry o v e r n ig h t on f i l t e r p a p e r . 48 C v - E x p e rim e n ta l p ro c e d u re f o r th e s y n th e s is o f th e azo compounds To a o n e - l i t e r , ro u n d -b o tto m ed , th r e e - n e c k e d f l a s k e q u ip p ed w ith mag n e t i c s t i r r i n g , an o u te r d ry ic e / i s o p r o p a n o l b a t h , th e rm o m eter, gas i n l e t v a lv e , and a d ry i c e - is o p r o p a n o l c o ld f i n g e r was added 250 ml o f 4A m o le c u la r s i e v e - d r i e d DMA. A sm all N2 flow was s t a r t e d and 0 .3 4 m oles o f o v e n -d rie d b a l l m ille d KF was added and v ig o r o u s ly s t i r r e d to m a in ta in i t in s u s p e n s io n . The p o t was c o o le d to -15°C and 0 .2 5 m oles o f d iazo n iu m s a l t added and s t i r r e d v ig o r o u s ly enough to keep e v e r y t h i n g in s u s p e n s io n . 0 .3 0 m oles o f OFIB was a llo w ed t o condense o f f th e c o ld f i n g e r i n t o th e p o t o v e r a 15 m in. p e r i o d . The p o t was s t i r r e d f o r a n o th e r 15 m in. a f t e r w hich th e o u t e r c o o lin g b a th was rem oved. The c o ld f i n g e r was a llo w e d to e x h a u s t i t s e l f and th e p o t was s t i r r e d o v e r n ig h t w ith a sm a ll flo w . A h o t w a te r b a th was p la c e d a ro u n d th e p o t to d r iv e o f f any d is s o lv e d OFIB and th e N2 flow was s to p p e d . The c o n te n ts o f th e p o t w ere w ashed i n t o a 2 l i t e r E rlenm eyer w ith 1 l i t e r o f l^O . They a r e th e n t r a n s f e r r e d to a s e p a r a t o r y fu n n e l and e x t r a c t e d s i x tim e s w ith 100 ml o f E t 2 0 . The E t20 e x t r a c t s a r e th e n washed 2 tim e s w ith 5% KOH, 3N H2 S0^ and s a t u r a t e d NaCl s o l u t i o n . The s o l u t i o n i s th e n d r ie d o v e r 30 grams o f CaCl2 g r a v i t y f i l t e r e d and th e n d i s t i l l e d o f f (do n o t d i s t i l l to d r y n e s s ) . F in a l t r a c e s o f s o lv e n t a r e removed by r o t a r y e v a p o r a tio n a t a s p i r a t o r p r e s s u r e . P ure sam ples were o b ta in e d by column chro m ato g rap h y on S i l i c a Gel u s in g 20% d i e t h y l e t h e r in h e x a n e s . 49 d. E x p e rim e n ta l p ro c e d u re f o r th e r e d u c t io n o f azo compounds ( i ) Clemmensen R ed u c tio n : A c e tic a c id (150 m l), 0 .1 7 m oles o f azo compound.-,and 0 .2 0 m oles o f Zn/Hg were p la c e d i n a 500 m l. ro u n d -b o tto m ed , th r e e - n e c k e d f l a s k eq u ip p ed w ith m a g n e tic s t i r r i n g , th e rm o m e te r, gas i n l e t and o u t l e t tu b e s . The e x i t tu b e was c o n n e c te d t o a 0°C w a te r t r a p ( in v e r t e d fu n n e l in a b e a k e r o f w a t e r ) . HC1 gas was th e n b u b b led th ro u g h th e s t i r r e d p o t c o n t e n ts . 19F NM R s p e c t r a o f th e p o t w ere • ta k e n p e r i o d i c a l l y to d e te rm in e t h e p r o g r e s s and e x t e n t o f r e d u c t io n . E x tra Zn/Hg was added as n e e d e d . Compounds 28 and 29 were re d u c e d to (CF^^CNH^ w ith o u t p a s s in g th ro u g h an NM R o b s e rv a b le h y d razo compound. Compounds 30 and 31 would o n ly re d u c e t o th e h y d razo s ta g e w ith l e s s th a n 15% p ro d u c tio n o f am ine. A ll t h e azo compounds p ro d u ced v a ry in g am ounts o f (C F^^C -H (<j>*=66.7), p resu m ab ly by N-C h o m o ly tic bond c le a v a g e g e n e r a tin g p e r f l u o r o - t - b u t y l r a d i c a l . Where th e amine i s o b ta in e d , i t i s i s o l a t e d by d i s t i l l a t i o n from the v is c o u s p o t c o n te n ts a t a s p i r a t o r vacuum i n t o a -78°C c o o le d r e c e i v e r . I t i s th e n washed w ith w a te r, s e p a r a t e d , d r ie d o v e r MgSC>4 and d i s t i l l e d . I s o l a t i o n o f th e h y d razo compounds c o n s i s t s o f d e c a n tin g th e p o t co n t e n t s (minus any Zn/Hg re m a in in g ) i n t o a 250 ml s e p a r a t o r y f u n n e l. 50 ml o f w a te r i s added to re d u c e v i s c o s i t y and 1 0 0 ml o f e t h e r i s added f o r e x t r a c t i o n . The e t h e r l a y e r i s s e p a r a t e d , t r e a t e d w ith NaHCO^ u n t i l gas e v o l u tio n c e a s e s , washed w ith 2-50 ml p o r t i o n s o f w a te r , d rie d o v e r MgSO^ and removed by r o t a r y e v a p o r a tio n . The h y d razo compounds can th e n be c le a n e d by column ch ro m ato g rap h y on S i l i c a Gel u s in g 5% d i e t h y l e t h e r i n h e x a n e s. 50 ( i i ) O th e r r e d u c t io n a tte m p ts : (a) R ed u c tio n o f compound 29 was a tte m p te d a s ' i n ( i ) u s in g H0AC/CH^CH2 C02H s o lv e n t m ix tu re a t 0°C to i n c r e a s e HC1 gas s o l u b i l i t y . A f te r 53 h o u r s , 29 was c o n v e rte d to 63% amine and 35% (CF^j^CH. (b) A1/HC1(g)/HOAC d id n o t su c c e e d in s i g n i f i c a n t l y re d u c in g compound 29. (c) TiCl^/Zn/HCl(g)/HO AC was u se d to g e n e r a te T iC lg in situ as th e re d u c in g a g e n t. 20 ml o f HOAC, 0.012 m oles o f T iC l^ , and 0.027 m oles o f Zn/Hg w ere p la c e d in a 50 ml. ro u n d -b o tto m e d , th r e e - n e c k e d f l a s k eq u ip p ed w ith gas i n l e t and o u t l e t tu b e s and m a g n e tic s t i r r i n g . HC1 gas was b u b b le d th ro u g h u n t i l t h e p o t tu r n e d b l u e - v i o l e t (due to T i C l ^ ) • 0 . 0 1 1 m oles o f compound 29 w ere added. A f te r 37 m in ., s t a r t i n g m a t e r i a l ($*=66.7) and an u n id e n t i f i e d d o u b le t ($*=69.1) w ere p r e s e n t . A f te r 4 h o u rs from a d d i t i o n o f th e azo compound, th e d o u b le t was s t i l l p r e s e n t and a new s i n g l e t ($*=71.2) was re m a in in g . T h is i s a low s h i f t f o r (CF,j)gCNH2 ($*= 72.7) and w h eth er i t i s due to th e p r e v io u s l y u n o b se rv e d h y d razo compound o r was a co nsequence o f s o lv e n t e f f e c t s on th e s h i f t o f th e amine was n e v e r e s t a b l i s h e d by f u r t h e r e x p e r im e n ts . N othing was s u c c e s s f u l l y i s o l a t e d from th e v is c o u s p o t m ix tu re . 51 IV. ESTIMATION OF PHYSICAL PROPERTIES OF FLUOROCHEMICALS FROM THEIR STRUCTURAL FORMULA A. I n tr o d u c t io n As one p a r t o f a program a t JPL p r i n c i p a l l y co n c e rn e d w ith th e s y n t h e s i s and t e s t i n g o f new f lu o r o c h e m ic a ls , i t became n e c e s s a r y to e s ti m a t e oxygen s o l u b i l i t y and v a p o r p r e s s u r e to o p tim iz e s e l e c t i o n o f compounds f o r s y n t h e s i s . P re v io u s t h e o r e t i c a l fram eworks f o r e s t i m a t in g th e s e p a ra m e te rs worked w e ll f o r h y d ro c a rb o n s , b u t s e r i o u s l y u n d e r e s tim a te d oxygen s o l u b i l i t y f o r f lu o r o c a r b o n s . By g e n e r a tin g a group a d d i t i v i t y sy ste m , i t i s p o s s i b l e to e s t i m a t e , from s t r u c t u r a l fo rm u la a lo n e , th e en erg y o f v a p o r i z a t i o n and th e m o lar volume o f a number o f f l u o r o c a r b o n s . U sing th e s e two p a ra m e te rs w ith a p p r o p r i a t e l y m o d ifie d therm odynam ic p r i n c i p l e s , i t i s p o s s i b l e to p r e d i c t th e b o i l i n g p o i n t , d e n s i t y , s o l u b i l i t y p a ra m e te r, v a p o r p r e s s u r e , and oxygen s o l u b i l i t y o f a number o f f lu o r o c h e m ic a ls . E s tim a tio n o f t h e E nergy o f V a p o r iz a tio n and M olar Volume by th e Group A d d i t i v i t y Method A number o f group a d d i t i v i t y m ethods a l r e a d y e x i s t i n th e l i t e r a t u r e w hich assume t h a t m o le c u la r p r o p e r t i e s can be p a r t i t i o n e d among th e i n d i v i d u a l f u n c t i o n a l g roups and s t r u c t u r a l com ponents o f a m o le c u le . T hus, sim p ly by summing th e group p a r a m e te r s , i t i s p o s s i b l e to e s tim a te m o le c u la r p r o p e r t i e s from ch em ica l s t r u c t u r e a lo n e . An e x t e n s i v e group 52 a d d i t i v i t y sy stem f o r e s t i m a t i n g b o th th e e n e rg y o f v a p o r i z a t i o n 298 (AE^ ) and m o lar volume (V) o f o r g a n ic l i q u i d s h a s b een d e v e lo p e d by F edors [4 0 ]. Based upon e x a m in a tio n o f a l a r g e amount o f d a t a on sim p le l i q u i d s , he assumed t h a t : AE = EAe. (46) v . 1 l V = ZAv (47) l x w here th e Ae^ and th e Av^ are. th e ato m ic o r group c o n t r i b u t i o n s to th e e n e rg y o f v a p o r i z a t i o n and m o lar volume a t 25°C. The d e v i a tio n s b etw een th e e x p e r im e n ta lly m easured v a lu e s and th o s e e s tim a te d by t h i s method f o r a number o f l i q u i d s w ere found to be l e s s th a n 1 0 p e r c e n t . The group c o n t r i b u t i o n s g iv e n by F e d o rs, a lth o u g h e x t e n s i v e , in c lu d e o n ly th e p a ra m e te rs CF^- and -CF^- f o r f lu o r o c h e m ic a ls . In o r d e r to g e n e r a te a more e x te n s iv e group a d d i t i v i t y sy stem f o r f lu o r o c h e m ic a ls , i t was n e c e s s a r y t o f in d o r be a b le to e s ti m a t e th e 298 298 e n e rg y o f v a p o r i z a t i o n (AEv ) o r th e h e a t o f v a p o r i z a t i o n (AH^ ) f o r a number o f s t r u c t u r a l l y d iv e r s e f lu o r o c a r b o n s . Our s e a r c h o f th e 298 l i t e r a t u r e u n c o v ere d a d e q u a te AHv o r v a p o r p r e s s u r e / t e m p e r a t u r e d a ta f o r o n ly 19 p e r f l u r o c h e m i c a l s , b u t e x t e n s i v e b o i l i n g p o i n t and d e n s i t y d a ta was fo u n d . However, th e fo llo w in g e m p ir ic a l r e l a t i o n s h i p p ro p o sed by H ild e b ra n d and S c o tt [41] r e l a t e s th e h e a t o f v a p o r i z a t i o n o f non a s s o c i a t e d l i q u i d s a t 25°C to th e b o i l i n g p o i n t (T°K) a t one a tm o sp h ere: 53 AH 2 9 8 = 0.020T 2 + 2 3 .7 T, - 2950 (48) v b b 298 th u s making i t p o s s i b l e to c a l c u l a t e AHy f o r a la r g e number o f com pounds from b o i l i n g p o i n t d a t a . When Eq.48 was t e s t e d on th e 19 p e r - 298 f lu o ro c h e m ic a ls f o r w hich AH^ was known, th e c a l c u l a t e d and e x p e r i m e n tal v a lu e s w ere o f t e n i n d is a g re e m e n t by s e v e r a l hu n d red c a l o r i e s . S u b s e q u e n tly , i t was b ro u g h t to o u r a t t e n t i o n [42] t h a t no flu o ro c h e m i- c a l d a ta w ere in c lu d e d i n c a l c u l a t i n g th e c o n s ta n t s i n Eq. 48. U sing th e d a t a c o l l e c t e d by u s , (se e A ppendix) th e f o llo w in g r e l a t i o n f o r p e r f lu o r o c h e m ic a ls e n s u e s : AH 2 9 8 = 0.0724 T 2 - 17.17 T, + 5309 (49) v b b o r i n term s o f t h e b o i l i n g p o i n t : 7 0 Q J, 1 7 .1 7 + [2 9 4 .9 - 0.2896 (5309 - AH ^ ° ) ] 2 T, °K = ------------------------------------------------------- - ----------- . (50) 0.1448 E q u a tio n 49 i s b a s e d on l e a s t - s q u a r e s com puter cu rv e f i t f o r th e 298 19 l i q u i d p e r f lu o r o c h e m ic a ls whose AH^ and b o i l i n g p o i n t v a lu e s w ere found in th e l i t e r a t u r e o r c a l c u l a t e d by us from v a p o r p r e s s u r e / te m p e ra tu re d a t a . The p e r f l u o r i n a t e d compounds in c lu d e e le v e n s t r a i g h t and b ra n c h e d a l k a n e s , one d im e th ly c y c lo b u ta n e r i n g , one c y c lo p e n ta n e , two c y c lo h e x a n e s , d e c a l i n , a m ethyl d e c a l i n and two t e r t i a r y am ines. F ig u re 3 i s a p l o t o f E q s . 48 and 49. As can be s e e n , p e r f lu o r o c h e m i c a l s have h ig h e r h e a t s o f v a p o r i z a t i o n th a n h y d ro c a rb o n s o f th e same 54 A H CAL/M OLE 13,000 12,000 11,000 ! 0,000 9,000 ,000 7,000 6,000 5,000 3,000 200 300 350 250 450 500 VK 298 F ig u re 3-: R e l a ti o n s h i p betw een AH^ and f o r : (A) f lu o r o c h e m ic a ls and (B) n o n f l u o r i n a t e d l i q u i d s . b o i l i n g p o i n t . T h is i s e s p e c i a l l y t r u e o f th o s e w ith b o i l i n g p o in t s below 300°K, a f t e r w hich p e r f lu o r o c h e m ic a ls p a r a l l e l n o n - f l u o r i n a t e d l i q u i d s f a i r l y c l o s e l y . With th e a ssu m p tio n t h a t Eq.49 i s a good f i r s t a p p ro x im a tio n to 298 e s t i m a t i n g AH^ f o r p e r f lu o r o c h e m ic a ls (Eq.48 i s r e p o r t e d t o be good 298 t o w ith i n ±5% f o r h y d r o c a r b o n s ) , we c a l c u l a t e d AH^ f o r a la r g e number o f such compounds from t h e i r l i t e r a t u r e b o i l i n g p o i n t s . For exam ple, by ta k in g th e b o i l i n g p o i n t s f o r p e r f lu o r o b u t a n e and p e rflu o ro - 298 p e n ta n e , one can c a l c u l a t e t h e i r in d i v id u a l AH w hich can be u sed to 298 c a l c u l a t e AE from : v AE 2 9 8 = AH 2 9 8 - RT . C51) V V 298 The d i f f e r e n c e betw een th e two AE v a lu e s i s an e s ti m a t e o f th e v group c o n t r i b u t i o n o f a -CF^- to th e e n e rg y o f v a p o r i z a t i o n . By u s in g th e b o i l i n g p o in t s f o r s t r a i g h t c h a in flu o ro c a rb o n s from C ^ - C ^ , 1 0 v a lu e s f o r Ae^ o f a -CF^- w ere c a l c u l a t e d , w hich w ere th e n a v e ra g e d . A ls o , from th e d e n s i t y d a t a , th e m o lar volum es w ere c a l c u l a t e d from : M W = m o le c u la r w e ig h t; D = d e n s i t y and th e Av. f o r -CF„- c a l c u l a t e d i n a s i m i l a r way. T ab le I V c o n ta in s a l 2 l i s t o f flu o ro c h e m ic a l group a d d i t i v i t y v a lu e s c a l c u l a t e d i n t h i s w ork, 56 TABLE IV Group C o n tr ib u tio n s to th e E nergy o f V a p o r iz a tio n and M olar Volume a t 25°C Group A 2 9 8 1 / Ae^ c a l/m o le 3 Av. cm /m ole l c v 1933 5 4 .8 1 n ■n I 783 23.1 -CFH- 422 1 8 .6 -CF- t -396 -1 5 .0 -C- ( P e r f lu o r o ) t -N- ( P e r f lu o r o 3° Amine) -1515 -914 -3 8 .3 -1 6 .3 - 0 - ( P e r f lu o r o E th e r) 8 19.0 R in g : 5 atoms 2023 37.7 R ing: 6 atoms 2272 39.9 CH3- 1125 33.5 - ch2- 1180 16.1 -CH- 1 820 - 1 . 0 -HC= 1030 13.5 f -C- f 350 -1 9 .2 - 0 - 800 3 .8 57 as w e ll as some h y d ro c a rb o n v a lu e s p u b lis h e d by F edors [4 0 ]. For th e By summing th e in d i v i d u a l group p a r a m e te r s , o b ta in e d by i n s p e c t i o n o f th e s t r u c t u r a l fo rm u la o f a compound, th e en e rg y o f v a p o r iz a t i o n and m olar volume can be e s tim a te d b e f o r e i t i s s y n th e s iz e d . A lso , re a s o n a b le e s ti m a t e o f th e b o i l i n g p o i n t may be made. S i m i l a r l y , th e d e n s it y o f the-com pound can be e s tim a te d from th e m o lar volume by Eq. 5 2 ., The p r e d ip t e d and r e p o r te d b o i l i n g p o i n t s f o r a number o f p e r f lu o ro c h e m ic a ls a r e p r e s e n te d in T ab le V . . C. E s tim a tio n o f Vapor P r e s s u r e M a te r ia l t h a t have v a p o r p r e s s u r e s o v e r a b o u t 40 t o r r a t 37°C te n d to have a d v e rs e p h y s i o l o g i c a l e f f e c t s when u se d a s th e gas c a r r y in g p h a se o f a r t i f i c i a l b lo o d s u b s t i t u t e f o r m u la tio n s . T h e re fo re i t i s d e s i r a b l e to have some method o f p r e d i c t i n g th e v a p o r p r e s s u r e b e f o r e s y n th e s is i s a tte m p te d . From H ild e b r a n d ’s g e n e ra l r u l e t h a t compounds have e q u a l e n t r o p i e s o f v a p o r i z a t i o n a t e q u al m o lar volum es o f t h e i r v a p o r [4 3 ], th e e n tro p y o f v a p o r i z a t i o n f o r n o n - p o la r l i q u i d s can be p r e d i c t e d from a r e l a t i o n d e v e lo p e d by K. S ato [4 4 ]: d a ta b a se and th e c a l c u l a t i o n s o f th e in d i v i d u a l Ae. and A v ., se e th e l x A ppendix. by c a l c u l a t i n g AH 298 from Eq. 51 and u s in g t h i s v a lu e i n Eq. 50 , a v (53) 58 In term s o f th e v a p o r p r e s s u r e (P i n t o r r ) , Eq. 53 becom es: A H TrV p = T (— — )^ (54) aRT w here T i s th e te m p e ra tu re i n °K a t w hich th e v a p o r p r e s s u r e i s d e s ir e d and R i s th e gas c o n s ta n t i n c a l mole 1 °K Thus, Eq. 54 p ro v id e s a u s e f u l way o f e s t i m a t i n g th e v a p o r p r e s s u r e o f a n o n - p o la r l i q u i d from i t s h e a t o f v a p o r i z a t i o n when th e c o n s ta n t s a and 3 a r e known. S ato o r i g i n a l l y c a l c u l a t e d a and 3 from v a p o r p r e s s u r e /te m p e r a t u r e d a t a f o r 1 0 n o n - p o la r l i q u i d s c o n t a in in g h y d ro g e n . New v a lu e s o f a and 3 f o r p e r f lu o r o c h e m ic a ls have b een c a l c u l a t e d f o r th e same p ro c e d u re i n t h i s w ork. By p l o t t i n g dP/dT v s . P/T from v a p o r p r e s s u r e / t e m p e r a t u r e d a t a , a fa m ily o f o v e r la p p in g c u rv e s was g e n e r a te d . The d e v i a t i o n s o f th e v a p o r from i d e a l i t y w ere c o r r e c t e d f o r by f i t t i n g th e d a ta f o r each s u b s ta n c e to an e q u a tio n o f th e form : dP P ,3 (55) dT ^T and th e n ta k in g th e a v e ra g e o f th e a and 3 v a l u e s . U sing th e s e new c o n s t a n t s , th e v a p o r p r e s s u r e o f p e r f lu o r o c h e m ic a ls c a l c u l a t e d from Eq. 5 4 m atches t h e i r l i t e r a t u r e v a p o r p r e s s u r e much more c l o s e l y th a n when S a t o 's o r i g i n a l a and 3 v a lu e s a r e u s e d . S a t o 's c o n s ta n t s and o u r v a lu e s f o r p e r f lu o r o c h e m ic a ls a r e : N o n -p o la r l i q u i d s : a = 1 1 .8 8 2 2 , 3 = 0.8810 P e r f lu o r o c h e m ic a ls : a = 1 2 .2 4 9 7 , 3 = 0.8846 59 TABLE V C a lc u la te d B o ilin g P o in t and V apor P r e s s u r e f o r Some F lu o ro c h e m ic a ls Compound ( 1 ) CALCD. AH 298 V (2 ) CALCD. B . P . °C 760 t o r r (4) LIT. B .P.°C 760 t o r r (3) CALCD. V .P. @25°C (4) LIT. V .P. @/T°C c f 3 c f 2 c f 2 c f 2 c f 3 6807 32 29 519 646/25 c f 3 c f 2 c f 2 c f 2 c f 2 c f 3 7590 59 57 2 0 2 220/25 < D - 8316 81 76 92 106/25 03; 1 10608 141 142 1 1 . 1 6 .6 /2 5 00( 11362 158 160 6 . 1 2 .1 /2 5 CF3 CHF[OCF2 CF(CF3 ) 3 2F 8782 94 104 57 5 6 /3 7 .'5 (CF3 ) 2 CFO(CF2 ) 5 CF3 9918 124 1 2 1 19.9 3 9 /3 7 .5 [ ( c f 3 ) 2 c f o c f 2 c f 2 ] 2 10680 142 \ 135 10.5 1 3 /3 7 .5 CF3 CHF[0CF2 CF(CF3) ] 3F 1 1 1 1 0 152 152 7 .4 1 0 /3 7 .5 CF3 CHF[OCF2 CF(CF3) ] 4F 13438 2 0 1 . 194 1 .4 1 .9 /3 7 .5 [CCF3 ) 2 CF0CCF2 ) 4 ] 2 13812 208 199 1 . 1 '3 /3 7 .5 CF3 CHF[0CF2 CF(CF3) ] s F 15766 244 224 0 .4 0 .4 / 3 7 .5 ( c f 3 c f 2 c f 2 c f 2) 3n 12524 183 174 2 . 6 2 .5 /3 7 .5 1. From th e v a lu e s i n T ab le IV. 2. From Eq. (50),. 3. From Eq. (54) u s in g th e a and 3 v a lu e s f o r p e r f lu o r o c h e m ic a ls . 4. From R ef. [4 9 ], For th e d a ta b a s e and th e c a l c u l a t i o n s o f a and 3, s e e th e A ppendix. 298 Thus, by e s t i m a t i n g AE^ o f a p e r f lu o r o c h e m ic a l from th e group 298 a d d i t i v i t y v a lu e s in T ab le IV, c a l c u l a t i n g i t s AH^ w ith E q / . 51, and u s in g Eq.54 w ith th e a and 3 c o n s ta n t s f o r p e r f lu o r o c h e m ic a ls , th e v a p o r p r e s s u r e o f th e compound can be e s tim a te d b e f o r e i t i s s y n th e s i z e d . A l t e r n a t i v e l y , i f th e b o i l i n g p o i n t o f t h e compound i s known, 298 i t s AH^ can be e s tim a te d from Eq. 49 and i t s v a p o r p r e s s u r e p r e d i c t e d from Eq. 54. T able V a l s o c o n ta in s v ap o r p r e s s u r e s o f some p e r f l u o r o c h e m ic a ls c a l c u l a t e d from Eq. 54 and c o rre s p o n d in g e x p e r im e n ta lly m easured v a l u e s . I t i s b e l ie v e d t h a t th e a c c u ra c y o f v a p o r p r e s s u r e s p r e d i c t e d by t h i s method i s s u f f i c i e n t l y r e l i a b l e to make d e c i s i o n s on th e u t i l i t y o f new p e r f lu o r o c h e m ic a ls as a r t i f i c i a l b lo o d c o n s t i t u e n t s b e f o r e th e y a r e s y n th e s iz e d . D. E s tim a tio n o f Oxygen S o l u b i l i t y In s e l e c t i n g g a s - c a r r y i n g m a t e r i a l s f o r a r t i f i c i a l b lo o d fo rm u la t i o n s , ' i t i s d e s i r a b l e to have a method o f making e s ti m a t e s o f oxygen an d , to a l e s s e r d e g re e , o f ca rb o n d io x id e and n i t r o g e n s o l u b i l i t y in c a n d id a te m a t e r i a l s . I t i s p o s s i b l e , u s in g r e g u l a r s o l u t i o n th e o ry as d e v e lo p e d by H ild e b ra n d and o t h e r s , to make u s e f u l p r e d i c t i o n s o f th e s o l u b i l i t y o f a number o f g a se s in a w ide ra n g e o f s o l v e n t s . T here a r e two e q u a tio n s b a s e d on r e g u l a r s o l u t i o n th e o r y t h a t a r e f r e q u e n t l y u se d to c a l c u l a t e gas s o l u b i l i t i e s [4 5 ]. The f i r s t i s : . 0.4343V 7 (6 1 - 6 - ) 2 - l o g x2 = - l o g x2 + ----------- ^ --------------- (56) 61 where th e s u b s c r i p t s 1 r e f e r s t o th e s o lv e n t and 2 r e f e r s to th e s o lu te . R i s th e gas c o n s ta n t (c a l m ole- 1 °K 1) , T(°K) i s th e te m p e ra tu re a t w hich th e gas s o l u b i l i t y i s t o be e s ti m a t e d , i s th e p a r t i a l m olar volume o f th e gas in t h e s o l v e n t , < 5 i s th e s o l u b i l i t y p a ra m e te r d e f in e d a s : H -R tV 5 / E \ ~ ) ■ ( t -J <57) and x* i s th e ideal gas s o l u b i l i t y c a l c u l a t e d from : 0 ' Tb ) . AH lo g x 2 = 7 T 574 (58) w here 'A H i s th e h e a t o f v a p o r i z a t i o n o f th e gas a t th e b o i l i n g point- T T^, and T i s th e te m p e ra tu re a t w hich th e gas s o l u b i l i t y i s to be d e t e r m ined. E q u a tio n 56 g iv e s th e b e s t r e s u l t s when gas and s o lv e n t m ole c u le s a r e s i m i l a r i n s i z e . For s o l u t i o n s w here t h e m o le c u le s d i f f e r g r e a t l y in s i z e , a c o r r e c t i o n o f th e F lo ry -H u g g in s ty p e b a s e d upon th e r a t i o o f m o lar volum es i s in tr o d u c e d w hich a l t e r s Eq. 56 to [4 6 ]: , 0.4343V ( 6 - 6 ) 2 / v ‘ log X2 = -l0gX2 + ~ ------- + l 0 g \ v ^ / (59) V2 + 0 .4 3 4 3 | 1 - ~ In term s o f n a t u r a l lo g s , Eq. 59 i s : 62 2 In x 2 (60) RT The a p p l i c a t i o n o f E qs.56 and 59 h as b een d e s c r ib e d by G jald b aek i n a number o f p u b l i c a t i o n s [4 7 ]. The p e r t i n e n t c o n s ta n t s f o r Eq. 60 when c a l c u l a t i n g oxygen s o l u b i l i t y a r e : The v a lu e o f = 46 m l/m ole f o r oxygen i s th e m easured v a lu e o b ta in e d by H o r i u t i [48] i n benzene and i s th e v a lu e n o rm a lly u s e d . However, H o r i u t i ’s m easurem ents o f th e p a r t i a l m o lar volume o f oxygen i n o th e r s o lv e n t s have shown t h a t t h i s q u a n t i t y depends on th e s o l v e n t and v a r i e s from 56 m l/m ole i n d i e t h y l e t h e r to 31 m l/m ole i n w a te r , w h ile in p u re l i q u i d oxygen a t t h e b o i l i n g p o i n t i t i s 28 m l/m o le. When V was changed so t h a t v a lu e s o f oxygen s o l u b i l i t y c a l c u l a t e d from Eq. 60 a g re e f o r 24 l i q u i d f lu o r o c a r b o n s r e p o r te d by C la rk [49], i t was found t h a t V,, v a r i e s o v er th e ra n g e o f 30-50 m l/m o le. I t can be se e n from F ig u re 4 t h a t a re a s o n a b le c o r r e l a t i o n e x i s t s betw een c a l c u l a t e d v a lu e s o f f o r th e s e compounds and lo g a rith m s o f t h e i r en tro p ies; o f v a p o r i z a t i o n a t 25°C, i f th e c y c l i c s t r u c t u r e s a r e t r e a t e d s e p a r a t e l y , The e q u a tio n s o f th e l e a s t - s q u a r e s f i t f o r th e d a t a and t h e i r c o r r e l a t i o n c o e f f i c i e n t s a r e : x* = 17.638 x 10 = 46 m l/m o le; and 6 ^ = 5 .7 0 (ca l/c m ^ ) 63 50.0 47.5 45.0 42.5 C O 40.0 i> 37.5 35.0 32.5 31.0, 3.00 3.25 3.50 4.25 4.50 3.75 In AS298 298 — F ig u re 4: R e l a ti o n s h i p betw een and f o r c y c l i c (o) and open c h a in (□) f lu o r o c h e m ic a ls . 64 Open c h a in com pounds: ?QQ ? V- = -1 9 .8 5 + 15.90 In AS r = 0.8999 (61) 2 ■ v C y c lic compounds: -298 2 V2 = -1 0 0 .1 5 + 39.90 ln-vA.Sv r = -0 .8 9 1 0 (62) For th e d a ta b a s e o f E q s . 61 and 6 2 , se e th e A ppendix. By u s in g Eq. 61 o r 62 i n c o n ju n c tio n w ith Eq. 6 0 , i t i s p o s s i b l e to p r e d i c t th e oxygen s o l u b i l i t y o f 22 compounds to ±4 ml and 14 o f th e s e to w ith i n ±2 ml o f t h e i r e x p e r im e n ta lly d e te rm in e d v a l u e s . S in c e E qs. '61'.and 62 a r e e m p ir ic a l and we h av e n o t m easured th e p a r t i a l m o lar volume o f oxygen in th e s e s o l v e n t s , no p h y s i c a l i n t e r p r e t a t i o n o f t h i s r e l a t i o n s h i p i s a tte m p te d . Some compounds w ith t h e i r c a l c u l a t e d oxygen s o l u b i l i t y and c o rre s p o n d in g e x p e r im e n ta lly m easured v a lu e s a r e p r e s e n te d i n T ab le V I. T h e r e f o re , to e s ti m a t e th e s o l u b i l i t y o f oxygen i n a flu o ro c h e m i- 298 c a l from i t s s t r u c t u r e a lo n e , AE and V a r e e s tim a te d from T able IV. v 298 < 5 ^ i s c a l c u l a t e d from Eq. 5 7 , AH^ i s c a l c u l a t e d from Eq. 5 1 , and AS (= AH ^ * V t ) th e n d e te rm in e d . From AS and e i t h e r Eq. 61 o r v v v 6 2 , v2 i s e s ti m a t e d . Then, u s in g th e e s ti m a t e d 6 ^, V2 , V^ and th e co n s t a n t s x 2 and § 2 in Eq. 6 0 , th e mole f r a c t i o n o f oxygen x2 i s o b ta in e d . 3 T his can be c o n v e rte d to cm o f 02/1 0 0 ml o f l i q u i d a t 25°C by: _ 100 V x • 24465 cm 0 „ / 1 0 0 ml o f l i q u i d = ^ 65 TABLE VI C a lc u la te d Oxygen S o l u b i l i t y o f F luorochem icals Compound V p / C V 5 4 3 AH2 9 8 V -v ’ 5 6 . 'AS 2 9 8 . V ^ c a l c . 8 0 2 so lu b . c a l c d / l i t . & 76.3 1.788 8,150 195.7 6 . 2 1 27.34 31.85 5 8 .1 /5 7 .2 CFjCHF[OCF2 CF(CF3) ] 2F 104.4 1.656 9,1-47 272.9 5.60 30.68 34.59 5 2 .4 /5 5 .7 CF3 CCF2^7Br 140.5 1.890 10,595 264.0 6.16 35.54 36.92 4 9 .1 /5 2 .7 (CF3 ) 2 CF(CF2 ) 4 C1 108 1.77 9,283 228.2 6.17 31.14 35.82' 5 2 .7 /5 2 .7 (CF3 ) 2 CFO(CF2 ) 5 CF3 1 2 1 1.721 9,789 292.9 5.60 32.83 35.66 5 0 .6 /5 2 .5 U U s / 1 0 2 1.783 9,057 233.3 6 . 0 2 30.38 36.06 5 1 .3 /5 2 .2 (CF3 ) 2 CF(CF2) 4Br 1 2 0 1.977 9,749 227.1 6.35 32.70 35.60 5 1 .1 /5 1 .4 CF3 CHF[0CF2 CF(CF3 ) 1 3F 152 1.738 11,096 355.6 5.43 37.22 37.66 4 7 .0 /4 7 .3 (CF3 ) 2 CF(CF2 ) 6 C1 151 1.83 11,051 275.4 6.16 37.07 37.59 4 8 .0 /4 5 .6 [CCF3 ) 2 CF0(CF2 ) 4 - ] 2 199 1.820 13,342 423.1 5.49 44.75 40.59 4 3 .2 /4 1 .8 ( / Y f ) 160 1.972 11,455 259.6 6.47 38.42 45.43 3 9 .9 /3 8 .4 s A / CF3 CHF[OCF2 CF(CF3) ] 9F 399 1.848 26,477 __j 873,4 5.44 A it 2T9 88.80 8 / 0 0 0 1C 51.48 3 2 .9 /3 3 .3 o f c a \ Os Os 3: L i t. b .p . and Eq. (4 9 ), 5: AH 2 9 8 and Eq. v n AS V298 'V and Eqs. (61) o r (62).- and (63) .T a b le V II p r e s e n t s a sam ple c a l c u l a t i o n o f a l l th e p h y s ic a l p r o p e r t i e s d is c u s s e d above f o r p e r f lu o r o m e th y l d e c a l in . T ab le V I I I 5 shows;V c a l c u l a t e d and m easured p h y s ic a l p r o p e r t i e s o f some f lu o r o c a r b o n -h y d r o - c a rb o n h y b r id compounds p r e p a r e d in o u r own r e s e a r c h e f f o r t s . Because th e s e compounds have h ig h hyd ro g en c o n t e n t, th e agreem ent betw een c a l c u l a t e d and m easured p h y s ic a l p r o p e r t i e s i s n o t q u i t e so good as th o s e f o r t o t a l l y f l u o r i n a t e d m a t e r i a l s . 67 TABLE ' VII Sample C a l c u la t io n s o f P h y s ic a l P r o p e r t i e s from Chem ical S t r u c t u r e From T ab le IV An 29§ ,,298 3 , , AE^ c a l/m o le V cm /m ole 1 7 X CF2 = 5481 161.7 3 x CF = -1188 - 4 5 .0 F C F J ! x CFs = 1933 5 4 .8 2 x 6 atom r i n g =' 4544 7 9.8 T o ta l 10770 2 5 1 .3 1 , 2 . 3. 4. 5. 6 . 7. AE 298 v 298 = 10,770 c a l/m o le = 2 5 1 .3 cm3/m ole < 5 ^ = 6 .5 5 from Eq. (57) AH 298 v = AE 298 + RT = 10,770 + 592 = 11,362 c a l/m o le Tb °K = 431 o r 158°C from Eq. (50) ° r ■ P t o r r = 2 .0 4 from Eq. (52) 6 .1 from E q.(54) u s in g p e r f lu o r o c h e m ic a l a , $ v a lu e s 8 . AS 298 AH 298 v 298.15 = 38.11 c a l/m o le -° K V, 4 5 .1 1 cm /m o le from Eq. (62) 10. Mole f r a c t i o n o f d is s o lv e d 0^ a t 25°C: X2 = 4.111 x 10 -3 from Eq. (60). 3 3 cm 0 /1 0 0 cm o f l i q u i d = 4 0 .0 from Eq. (63), 68 TABLE V III: P ro p e rtie s o f Fluorocarbon-H ydrocarbon H ybrids V h 298 V 2 255 3 4 t ° r ^ *b L c m ^ /lO O cm3 c a lc /fo u n d c a lc /fo u n d c a lc /fo u n d c f 3 c f 2 c f 2 ( c f 3 ) 2 cch 2 ch2 c h 3 9927 238,0 1 .5 2 /1 .5 2 124/121 ' 4 6 .5 /4 6 .7 c f 3 c f 2 c f 2 ccf3 ) 2 cch 2 ch2 ch 2 ch 3 11,107 254.1 1 .4 8 /1 .4 7 152/138 4 1 .3 /4 6 .6 CF3 CF2 GF2 (CF3 ) 2 CCH2 CH(CH3 ) 2 10,692 254.4 1 .4 8 /1 .4 5 143/132' 4 3 .1 /4 3 .6 CF3 CF2 CF2 CCF3 ) 2 COCH3 8367 209.6 1 .6 7 /1 .6 2 83/97 56 .3 /4 8 '.I CF- CF2 CF2 (CF ) 2 COCH2 CH3 9547 225.7 1 .6 1 /1 .5 7 115/109 4 8 .4 /4 9 ,9 CF3 CF2 CF2 (CF ) 2 C0CH2 CH2 CH3 10,727 241.8 1 .5 6 /1 .5 1 144/125 4 2 .6 /4 5 .8 (c f 3 ) 3 cch 2 ch 2 c ( c f 3 ) 3 11,520 284.4 1 .6 4 /s o lid 1 6 1 /s o lid 4 0 .2 /- (CF3 ) 3 CCH2 CH2 CH2 C(CF3 ) 3 12,700 300.5 1 .6 0 /s o lid 1 8 6 /s o lid 3 6 .7 /3 5 .8 (CF ) 3 CCH2 CH=CHCH2 C(CF ) 13,580 311.4 1 .5 8 /s o lid 2 0 4 /s o lid 3 4 .3 /- (CF3 ) 3 CCH2 CH2 CH2 CH2 CH2 C(CF3) 3 15,060 332.7 1 .5 3 /s o lid 2 3 1 /s o lid 3 1 .1 /- CF3 CF2 CF2 (CF3) 2COH 8728 182.3 - / l . 77 -/9 3 - /4 4 .3 CF3 CF2 CF2 (CF3 ) 2 CN=0 8040 205.1 - / l . 70 -173 -/decomp. O' 1: From Table IV. 2: From Eq. (52). 3: From Eq. (50). 4: From Eq. (60), (62), arid (63) (The h y b rid s a re s im i la r to th e c y c lic flu o ro ch e m ic als in t h e i r O2 s o l u b i l i t y b e h a v io r ) . V. ESTIMATION OF THE BASICITY OF DIAZENE A. HQ A c id ity F u n c tio n and I n d i c a t o r s [SO] The s im p l e s t r e v e r s i b l e o r g a n ic r e a c t i o n i s th e B ronsted-L ow ry c o n c e p t o f a c id s and b a s e s . S in c e th e e q u i lib r i u m i s exam ined i n a s o lv e n t (SH) a l l th e s p e c ie s a r e s o l v a t e d . T h e r e f o re , th e e q u i lib r i u m may be r e p r e s e n t e d a s : HX + SH 5 S S X + SH2 (64) w here any c h a rg e s have b een n e g l e c te d . The a c i d i t y c o n s ta n t o f th e a c i d HX i s d e f in e d as th e e q u i l i b riu m c o n s ta n t o f [64) when s t u d i e d in d i l u t e s o l u t i o n . Under th e s e c o n d i tio n s th e a c t i v i t y o f th e s o l v e n t can be c o n s id e r e d c o n s ta n t and can b e ig n o r e d . Thus can be fo rm u la te d a s : K = & X &SH2 (65) a aHX w here a_ r e p r e s e n t s th e a c t i v i t y o f th e s p e c ie s in v o lv e d . The a c i d i t y c o n s t a n t , K , i s r e l a t e d to th e i o n i z a t i o n c o n s ta n t K. by: 3 . X K.K v - 1 d a (6 6 ) a 1+K. 1 70 where HX + SH T7 X SH_ (Io n P a ir ) (67) K x_SH2 T * X~ + SH2 ^F r e e I o n s ) ( 6 8 ') T h is r e l a t i o n s h i p r e l i e s on a r e d e f i n i t i o n o f as an o v e r a l l d is s o -f. c i a t i o n c o n s t a n t , i n w hich a ^ i n Eq. ( 6 5) i s s u b s t i t u t e d by . a „ „ + a v - u + . K. i s l a r g e l y in f lu e n c e d by th e s t r u c t u r e o f th e com- n X X b n 2 1 pound b e in g s t u d i e d , and depends m a in ly on th e d i e l e c t r i c c o n s ta n t o f th e s o l v e n t . The two commonest c l a s s e s o f a c i d a r e th e n e u t r a l a c id HA and th e p o s i t i v e l y c h a rg e d a c i d BH+ . The i o n i z a t i o n o f HA ( E q .'6 9 c r e a t e s io n s and i s more s e n s i t i v e to changes i n th e d i e l e c t r i c c o n s ta n t , w hereas BH (Eq. 7 0 ) i s r e l a t i v e l y i n s e n s i t i v e to t h i s s in c e th e p r o to n t r a n s f e r does n o t in v o lv e work in s e p a r a t i n g c h a rg e s . HA + SH 'Tm “ 9H* + A” ( 6 9 ) BH+ + SH S iE rS H * + B (7 0) For o u r s tu d y o f AIB, ( C H ^ ) ^ C ^ N t^ C H ^ ) w e a r e co n c e rn e d w ith th e e q u i lib r i u m in Eq. 70 . The m ost u s e f u l s o lv e n t f o r th e i n v e s t i g a t i o n o f a c i d i t i e s i s w a te r , and u se i s made in t h a t s o l v e n t o f th e pH s c a l e which i s d e f in e d as pH = - l o g ( a H^0 +) ( 7 1 ) 71 f o r th e pH ra n g e o f 2 -1 2 . T h is a llo w s th e commonly met d e f i n i t i o n o f pKa w hich i s som etim es c a l l e d th e H e n d e rs o n -H a ss e lb a lc h e q u a tio n : pKa = - l o g K a = pH + lo g ( ^ ) (72) However, th e pH s c a l e p o s s e s s e s c e r t a i n r e s t r i c t i o n s which l i m i t i t s u s e f u ln e s s to th e ra n g e l < p H < 1 3 . The pH s c a l e has been ex te n d e d a t e i t h e r end by a c i d i t y f u n c - ' t i o n s , w hich a r e d e r iv e d from th e p K ^'s o f compounds t h a t io n i z e o u t s i d e th e pH r a n g e . E q u a tio n (65) can be r e w r i t t e n as Eq. (73) in w hich y i s an a c t i v i t y c o e f f i c i e n t . The a c i d i t y f u n c ti o n H^ (where x r e f e r s to th e c h a rg e ty p e o f th e b a se ) i s th e n d e f in e d by Eq. (74) m / Tx: \ _ , rxi K “ [HX] ( YH x a SH2) _ h x [HX] (73) a Hx = - l o g h x = pKa - lo g (74) Com parison o f Eq. (74) w ith Eq. (72) shows t h a t th e a c t i v i t y c o e f f i c i e n t r a t i o , T . t V/ Y v , ^ a s been n e g l e c te d . F or H t o b e a u n iq u e m easure o f HX X X a c i d i t y , h m ust be in d e p e n d e n t o f t h e n a t u r e o f th e a c i d HX. In o t h e r X w ords, Yuv/Yv m ust be c o n s t a n t . T his r e q u ir e m e n t, known as H am m ett's H a a a c t i v i t y c o e f f i c i e n t p o s t u l a t e , i s now known n o t be h o ld g e n e r a l l y , and a s e r i e s o f a c i d i t y f u n c ti o n s have b een c r e a te d - b a se d on i n d i c a t o r s o f s i m i l a r s t r u c t u r e i n w hich th e a c t i v i t y c o e f f i c i e n t r a t i o i s c o n s ta n t o n ly f o r a p a r t i c u l a r s t r u c t u r a l ty p e . 72 The a c i d i t y c o n s ta n t as d e f in e d by Eq. (65) o r (72) i s th e rm o d y n a m ic a lly s i g n i f i c a n t b e c a u se i t i s r e l a t e d to th e f r e e en e rg y o f th e i o n i z a t i o n r e a c t i o n , AG° = -RT In K . However, K c a n n o t be m easured a a d i r e c t l y s in c e m ost p h y s ic a l m ethods p r o v id e in f o r m a tio n on c o n c e n tr a t i o n r a t h e r th a n a c t i v i t y r a t i o s . I f a c t i v i t y c o r r e c t i o n s a r e ig n o re d , th e n th e e r r o r in v o lv e d f o r a 0 . 0 1 M s o l u t i o n o f a 1 : 1 e l e c t r o l y t e would be o f th e o r d e r o f 0.05 pK u n i t . U s u a lly , i f e i t h e r th e a c i d o r b a se i s n e u t r a l , th e n i t s a c t i v i t y c o e f f i c i e n t may be ig n o r e d . T h is i s th e c a s e in o u r s tu d y . I f a therm odynam ic a c i d i t y c o n s ta n t i s to be o b ta in e d , th e a c i d i t y f u n c ti o n u se d must be a p p r o p r i a t e f o r th e com- % pound u n d e r s tu d y . Thus Hq a t th e h a l f - n e u t r a l i z a t i o n p o i n t (Hq ) i s an a d e q u a te e x p r e s s io n o f t h e therm odynam ic pK o f a compound b e h a v in g cl as a Hammett b a s e . U n f o r tu n a te ly , m ost compounds do n o t fo llo w Hq , so th e a p p a r e n t pK on t h a t s c a l e h as no therm odynam ic s i g n i f i c a n c e . I t cl m e re ly i n d i c a t e s th e s t r e n g t h o f a c i d r e q u i r e d f o r h a l f - p r o t o n a t i o n . Such r e s u l t s a r e b e s t c o n s id e re d v a lu e s o f H a t h a l f - n e u t r a l i z a t i o n o r a t h e r th a n a c i d i t y c o n s t a n t s . The n e e d f o r v a r io u s a c i d i t y e x p r e s s io n s a r i s e s b e c a u se o f th e d i f f e r i n g s o l v a t i o n re q u ire m e n ts o f c o n ju g a te a c i d - b a s e p a i r s w ith d i s s i m i l a r s t r u c t u r e s . For th e p r o t o n a t i o n o f a compound to be a c c u r a t e l y d e s c r ib e d by H , th e a c t i v i t y c o e f f i c i e n t b e h a v io r o f th e com- X pound s t u d i e d must be th e same as th e i n d i c a t o r s u sed to e s t a b l i s h th e THXl s c a l e . M oreover, lo g ■ v s . H^ s h o u ld be a s t r a i g h t l i n e o f s lo p e - 1 . 0 0 . 73 Hammett’s Hq s c a l e f o r t h e p r o t o n a t i o n o f n e u t r a l b a s e s i s w e ll e s t a b l i s h e d in a v a r i e t y o f a c i d s as th e most u s e f u l s i n g l e a c i d i t y f u n c ti o n , and b a s e s w hich fo llo w H a r e c a l l e d Hammett b a s e s . The ■ o s c a l e u s e s a s e r i e s o f p rim a ry n i t r o a n i l i n e s as i n d i c a t o r s . A lthough Hq may h av e no therm odynam ic m eaning, i t does rank b a s e s in an o r d e r o f p r o t o n a t i o n , and t h i s i s o f t e n th e o r d e r o f g r e a t e s t p r a c t i c a l s i g n i f i c a n c e . rHxi P lo ts o f lo g -pf] v s . Hq a r e o f te n l i n e a r b u t w ith s lo p e s a p p r e c ia b ly d i f f e r e n t from th e -1 .0 0 r e q u i r e d f o r Hammett b a s e s . The s lo p e s sh o u ld be r o u t i n e l y l i s t e d b e c a u se th e d iv e rg e n c e o f a b a s e from H i s a v a lu a b le p ie c e o f in f o r m a tio n . In s p e c tr o s c o p i c work a ran g e roYl o f lo g pj] ±^ - u su a l l y a l l t h a t can be r e l i e d upon b e c a u se e x p e rim e n ta l e r r o r s r a p i d l y i n c r e a s e o u ts id e t h i s ra n g e . Even i f th e p r o p e r a c i d i t y f u n c ti o n H f o r a group o f compounds D C i s known w ith c o n f id e n c e , i t i s s t i l l w o rth w h ile q u o tin g th e s lo p e s o f THxi 1 ^ - l ° g Tyi v s * h a lo n g w ith th e v a lu e s o f H 2. I f th e s lo p e s a r e in L A J X X % th e ra n g e - 1 . 0 0 ± 0 .0 5 , t h e e x p e rim e n ta l H^ v a lu e can b e ta k e n as a good e s ti m a t e o f th e therm odynam ic a c i d i t y c o n s t a n t , p ro v id e d t h a t Yijv/Y v I s c o n s t a n t . O u ts id e t h i s ra n g e , th e r e s u l t s a r e o n ly r e g a rd e d H a X as ap p ro x im a te and t h e i r therm odynam ic s i g n i f i c a n c e i s q u e s ti o n a b le . B. UV and NM R as E x p e rim e n ta l Methods o f M easuring B a s i c i t y [50] In g e n e r a l, any p h y s i c a l p r o p e r ty w hich v a r i e s w ith p r o t o n a t i o n may p ro v id e a method f o r m e asu rin g a c i d i t y c o n s t a n t s . The u l t r a v i o l e t m ethod r e l i e s on s p e c t r a l changes due e n t i r e l y to p r o t o n a t i o n o r 74 d e p r o to n a tio n , so t h a t th e r a t i o o f th e s e two s p e c ie s can be c a l c u l a t e d . T h e re fo re , d e te r m in a tio n s m ust be p e rfo rm e d o v e r a ra n g e o f 1 .5 pH u n i t s o r so in o r d e r to d e t e c t d e c o m p o sitio n o r d e v i a t i o n s from B e e r 's law. F a i l u r e o f th e s p e c t r a l c u rv e s t o i n t e r s e c t a t an i s o b e s t i c p o i n t u s u a l l y i n d i c a t e s medium e f f e c t s on th e s p e c t r a , d e c o m p o sitio n , th e p re s e n c e o f i m p u r i t i e s , o r more th a n one i o n i z a t i o n p r o c e s s . H aving d e te rm in e d th e r a t i o o f p r o to n a t e d and u n p ro to n a te d s p e c i e s , th e n e x t s te p i s a c a l c u l a t i o n o f th e a c i d i t y c o n s ta n t u s in g th e most a p p r o p r ia te m easure o f a c i d i t y . In g e n e r a l, th e m ost a p p r o p r i a t e a c i d i t y f u n c ti o n i s one u s in g i n d i c a t o r s c l o s e l y r e l a t e d to th e compound u n d er s tu d y . U n f o r tu n a te ly , s t r u c t u r a l s i m i l a r i t y may n o t be a s u f f i c i e n t g u id e . Thus d i f f e r i n g s o l v a t i o n re q u ire m e n ts make Hq f o r p rim a ry a n i l i n e s more p o s i t i v e th a n H * ' 1 f o r t e r t i a r y a n i l i n e s . Assuming t h a t medium e f f e c t s o c a n be h an d led a d e q u a te ly and s u i t a b l e v a lu e s f o r th e a c i d i t i e s o f s o l u t i o n s can be o b ta in e d , a v a r i e t y o f m ethods f o r th e tr e a tm e n t o f d a t a o b ta in e d from s p e c tr o s c o p i c m easurem ents have been d e v e lo p e d . Our tr e a tm e n t o f th e d a t a w i l l be d is c u s s e d i n a l a t e r s e c t i o n . The u t i l i t y o f 1HM R in e q u ilib r iu m s t u d i e s i s more li m it e d th a n UV. I t i s o b v io u s ly u s e f u l in d e c id in g th e s i t e o f p r o t o n a t i o n o f a b a s e . S tu d ie s in s u p e r a c id a re e a s i l y p e rfo rm e d u s in g t h i s te c h n iq u e . At norm al te m p e r a tu r e s , o b s e r v a tio n s m ust be made on non ex ch an g in g p ro to n s whose ch em ical s h i f t s a r e in f lu e n d e d by p r o t o n a t i o n . For s u c c e s s , a s i g n i f i c a n t d i f f e r e n c e i s needed betw een th e ch em ical s h i f t s o f th e p r o to n a te d and u n p ro to n a te d s p e c i e s , and t h i s m ust be s e p a r a b le from th e medium e f f e c t s t h a t can in f l u e n c e ch em ical s h i f t s . 75 Some a d v a n ta g e s o f NM R i s t h a t th e method i s r a p id t o p e rfo rm and i s n o t i n f l u e n c e d ‘to an a p p r e c ia b le e x t e n t by i m p u r i t i e s . Thus some d e c o m p o sitio n o f th e compound s t u d i e d d u rin g th e e x p e rim e n t w i l l n o t i n v a l i d a t e r e s u l t s . U n f o r tu n a te ly , th e method i s n o t v e ry s e n s i t i v e and r e s u l t s a r e p ro b a b ly a c c u r a te to o n ly 0 .3 pK u n i t , a lth o u g h g r e a t e r a c c u ra c y may cl o c c a s i o n a l l y be a c h ie v e d . The method i s o f t e n s u i t a b l e f o r weak a c id s and weak b a s e s t h a t a r e n o t am enable to s p e c tr o p h o to m e tr ic s tu d y . U n f o r tu n a te ly , h ig h co n c e n t r a t i o n s (c a . 0 .1 M ) a re r e q u i r e d , and t h i s l i m i t s th e te c h n iq u e somewhat: f i r s t l y b e c a u se o f s o l u b i l i t y problem s and s e c o n d ly b e c a u se a c t i v i t y c o r r e c t i o n s a r e d i f f i c u l t , e s p e c i a l l y i f an i n t e r n a l s ta n d a r d i s p r e s e n t . P e rfo rm in g m easurem ents a t h ig h e r f r e q u e n c i e s , o r u s in g F o u r ie r tr a n s f o r m te c h n iq u e s sh o u ld be h e l p f u l in re d u c in g c o n c e n tr a t i o n s to more u s e f u l l e v e l s . The s im p l e s t a p p ro ac h f o r t r e a t i n g th e d a ta i s to p l o t th e changes i n ch em ica l s h i f t a g a i n s t pH, o r a s u i t a b l e a c i d i t y f u n c t i o n , and to ta k e th e pH a t th e i n f l e c t i o n p o in t as a m easure o f th e pKa v a lu e . C. Use o f Model Compounds B ecause d ia z e n e , HN=NH, i s an u n s t a b l e s p e c ie s [5 3 ], no d i r e c t s p e c tr o s c o p i c m easurem ents o f i t s p r o to n a t i o n - d e p r o t o n a t i o n b e h a v io r can be made w ith o u t i n t e r f e r e n c e from d e c o m p o sitio n o r d e c o m p o sitio n p r o d u c ts . T h e re fo re we have chosen E -a z o b is is o b u ta n e [A IB ), (CHg)gCN=NC(CH3)y as a model f o r d ia z e n e b e c a u se o f i t s sym m etry, 76 e a se o f p r e p a r a t i o n and s t a b i l i t y to w ard s ta u to m e rism . The s y n th e s is o f AIB h a s been p r e v io u s l y r e p o r t e d [54] and was fo llo w e d w ith o u t m o d i f ic a t io n . % Once t h e Hq o f AIB was d e te rm in e d i t was n e c e s s a r y to c o r r e c t f o r th e s t e r i c and e l e c t r o n i c d i f f e r e n c e s betw een th e t- b u t y l gro u p , (C H p^C -, i n AIB and h y d ro g e n , H -, in d ia z e n e . The b a s i c i t y o f d ia z e n e was c o r r e c t e d by s u b t r a c t i n g 1 .4 3 f o r th e d i f f e r e n c e in th e pKgH+ o f t- b u ty a m in e , 10.68 [55] v e r s u s ammonia, 9 .2 5 , and 0 .5 9 f o r th e d i f f e r e n c e in th e pKDU+ o f 2 - t - b u t y l - p y r i d i n e , 5 .7 6 [56] v s . p y r i d i n e , dH 5 .1 7 [5 6 ]. These compounds s h o u ld a d e q u a te ly model t h e i n d u c tiv e and s t e r i c e f f e c t o f th e two t - b u t y l groups and th e t r a n s m is s i o n o f th e azo lin k a g e . D. E x p e rim e n ta l P ro c e d u re S p e c tro s c o p ic s t u d i e s o f th e b a s i c i t y o f AIB i n d i o x a n e - t r i f l u o r o - a c e t i c a c i d (TFA) m ix tu re s w ere co n d u c te d on a V a ria n T-60 NM R a t p ro b e te m p e ra tu re (32°C) and a Beckman A cta M VI UV a t room te m p e ra tu re (2 3 °C ). A n a ly t ic a l g ra d e d io x a n e was p u r i f i e d by r e f l u x f o r 12 h r s i n th e p re s e n c e o f aqueous HC1, n e u t r a l i z e d w ith KOH u n d e r an ^ atm o sp h e re , th e n d e c a n te d and r e f l u x e d w ith Na m e ta l f o r a n o th e r 10 h r s . The d io x - a n e J was th e n d i s t i l l e d from th e sodium , ru n th ro u g h a s h o r t column o f a c t i v a t e d a lu m in a and s t o r e d o v e r m o le c u la r s ie v e s [5 7 ]. TFA was d i s t i l l e d from 96% to remove any t r a c e s o f w a te r . For b o th t h e NM R and UV s t u d i e s , s to c k s o l u t i o n s o f v a ry in g v 77 a c i d i t y w ere p r e p a r e d by m ix in g TFA /dioxane in d i f f e r e n t w eight-% p r o p o r t i o n s on an a n a l y t i c a l b a la n c e and s t o r i n g them i n a i r t i g h t co n t a i n e r s (10 ml v o lu m e tr ic f l a s k s ) . For th e NM R s tu d y , a s o l u t i o n o f AIB w ith cy c lo h e x a n e and TMS as c h em ical s h i f t s ta n d a r d s was p r e p a r e d . S in c e th e r a t i o o f p ro to n s in each compound i s 1 8 :1 2 :1 2 , t h e s o l u t i o n was p r e p a r e d in th e same m o lar r a t i o so t h a t p eak s o f a p p ro x im a te ly e q u a l h e i g h t f o r each compound would be o b ta in e d i n th e s p e c t r a . An NM R sp e c tru m o f n e a t cy clo h ex an e TMS w ith i n t e r n a l TMS was ta k e n to d e te rm in e i t s ch em ica l s h i f t , < S „ = C6 H1 2 1 .4 7 ppm. For t h e s p e c t r a u sed to c a l c u l a t e raw p r o t o n a t i o n to d e p r o to n a tio n r a t i o s , a 0 .0 2 ml a l i q u o t o f th e above AIB s o l u t i o n w ith i t s i n t e r n a l s ta n d a r d s was m easured i n t o a s ta n d a r d NM R tu b e u s in g a H am ilton m i c r o l i t e r s y r in g e e q u ip p ed w ith a Chaney a d a p to r . Then, 0 .5 ml o f a s to c k TFA /dioxane s o l u t i o n o f known c o m p o sitio n was added. The NM R sp e c tru m o f t h i s sam ple was re c o rd e d a t 500, 250 and 100 Hz sweep w id th s w ith a sweep tim e o f 250 seco n d s on p r e c a l i b r a t e d c h a r t p a p e r . T his p ro c e d u re was r e p e a te d f o r AIB u s in g d i f f e r e n t TFA /dioxane s to c k s o l u t i o n s sp a n n in g a c o m p o sitio n ra n g e o f 0 - 100 wt-% TFA. The ch em ical s h i f t s o f AIB and cy c lo h e x a n e a l l r e l a t i v e to TMS a t th e t h r e e sweep w id th s w ere c o n s ta n t to 0 .0 2 ppm. T h e r e f o re , th e d a ta f o r AIB in each TFA /dioxane m ix tu re w ere b a s e d on th e 100 Hz s p e c t r a w ith an assumed p r e c i s i o n o f 0.0 2 ppm. For th e UV s tu d y o f AIB, a s ta n d a r d 0 .9 6 1 0 ± 0.0005 M s o l u t i o n o f AIB in d io x a n e was p r e p a r e d . Then 0 .0 5 0 0 + 0.0005 ml o f t h i s s o l u t i o n was i n j e c t e d (u s in g a H am ilto n m i c r o l i t e r s y r in g e w ith a Chaney ad ap to r) 78 i n t o a 5 ml v o lu m e tr ic f l a s k and made to th e mark w ith a TFA /dioxane s o l u t i o n o f known c o m p o sitio n . The sam ple was ru n in 1 cm m atched c e l l s v s . t h e same s o l v e n t . T his p ro c e d u re was r e p e a te d f o r AIB u s in g d i f f e r e n t TFA /dioxane s o l u t i o n s v a r y in g o v e r a co m p o sitio n ra n g e o f 0 - 100 wt-% TFA. A bsorbences w ere d i g i t a l l y d is p la y e d to th r e e decim al p la c e s and m achine e r r o r was l i s t e d by th e m a n u fa c tu re r as .±'0.003 f o r an a b so rb a n c e 1 ; 0 00. The most commonly u se d s o lv e n t f o r a c i d i t y s t u d i e s i s I^S O ^/l^O . Because we a n t i c i p a t e d s o l u b i l i t y p r o blem s w ith AIB i n t h i s s o lv e n t ( e s p e c i a l l y f o r th e NM R s tu d y w here th e c o n c e n tr a ti o n would be h ig h ) we d e c id e d to t r y TFA /dioxane. We found t h i s s o lv e n t m ix tu re to have good o p t i c a l tr a n s p a r e n c y i n th e UV a r e a o f i n t e r e s t as w e ll as a s u f f i c i e n t l y d i f f e r e n t p r o to n ch em ical s h i f t so t h a t AIB c o u ld b e c l e a r l y o b s e rv e d . S in c e TFA /dioxane s o lv e n t m ix tu re s h av e n o t b een u se d in a c i d i t y s t u d i e s b e f o r e , i t was n e c e s s a r y to d e te rm in e th e H o f th e s e m ix tu r e s . A UV s tu d y u s in g o - n i t r o a n i l i n e o (pKD „+ = -0 .2 9 ) [58] was done to e s t a b l i s h t h i s . A 0.0189 M s o l u t i o n BH o f i n d i c a t o r was p r e p a r e d i n a 10 ml v o lu m e tric f l a s k . Then 0 .0 5 ml a l i q u o t s o f t h i s s to c k s o l u t i o n w ere p la c e d i n a 5 ml v o lu m e tr ic f l a s k and made to th e mark w ith t h e same TFA /dioxane s o l u t i o n s u sed f o r th e AIB s tu d y . A liq u o ts o f th e s e s o l u t i o n s w ere th e n u se d as sam ples v s . s o lv e n t and t h e i r UV s p e c t r a re c o r d e d . A s tu d y o f th e H m i n d i c a t o r N - ( 2 ,4 - D in itr o p h e n y l) P i p e r i d i n e i n TFA /dioxane was s i m i l a r l y made [ 5 8 ,5 9 ]. 79 E. Data and Calculations F or th e UV s tu d y , th e a b s o rb a n c e o f u n p ro to n a te d AIB was re c o rd e d D _ T a t X= 367 nm (A,^., = 0.131 i n 100% d io x a n e f o r a 9.61 x 10 M s o l u t i o n , 3o / e = 1 3 .6 ) and th e a b so rb a n c e o f p r o to n a t e d AIB was re c o rd e d a t X = 295 nm (A ^g^•= 1.009 in 100% TFA f o r a 9.6 1 x 10 \ l s o l u t i o n , e = 104). The a b so rb a n c e o f th e u n p ro to n a te d s p e c ie s had a r e s i d u a l a b s o rb a n c e a t B X = 295 o f & 2 9 5 ~ w h ile th e p r o to n a t e d s p e c ie s had a r e s i d u a l BH+ ab so rb a n c e a t X= 367 o f A_,_ = 0 .0 2 0 . From th e s e m easurem ents th e mole So i V f r a c t i o n o f th e two s p e c ie s can be o b ta in e d from th e f o llo w in g e q u a tio n : CA ® q_ in x% TFA)-- (A® in 0% TFA) Xbh+ = _ 1 9 | ------------------------------295--------------------- (75) (A®gS in 100% TFA) - ( A ^ i n 0% TFA) o r in o u r c a s e : RH+ (A“" in x% TFA) - 0.096 x + = (76) -0 .9 1 2 where [BH+1 _ X BH+ [B] ' U -X BH+) r e p r e s e n t s th e r a t i o o f p r o to n a te d t o u n p ro to n a te d s p e c ie s . For th e H i n d i c a t o r o - n i t r o a n i l i n e , t h e a b s o rb a n c e o f th e o — u n p ro to n a te d s p e c ie s was re c o rd e d a t X = 397 nm ~ 1.024 i n 100% -4 d io x a n e f o r a 1.8 9 x 10 M s o l u t i o n , e = 5417) w h ile th e a b so rb a n c e o f th e p r o to n a t e d s p e c ie s was n o t o b s e r v a b le . In 100% TFA th e r e s i d u a l a b so rb a n c e o f th e i n d i c a t o r ( a n d /o r s o lv e n t ) was A ^j^ = O'.010. From th e s e m easurem ents, th e mole f r a c t i o n o f p r o to n a te d i n d i c a t o r was 80 calculated by: XBH+ ( A * ^ in 0% TFA) - ( A ™ in x% TFA) ( A ^ in 0% TFA) - ( A ^ ° in 100% TFA) (78) o r m o u r c a s e : 1 .0 2 4 - (A^J? in x% TFA) X BH+ - - - - - - - - - - - - - 5 2 2 - - - - - - - - - - - - - - ™ 1.014 from w hich was c a l c u l a t e d a s w ith AIB. IhJ For th e H r ' ' i n d i c a t o r N -( 2 , 4 - d i n i tr o p h e n y l) p i p e r i d i n e , th e ab so rb a n c e o f th e u n p ro to n a te d s p e c ie s was re c o rd e d a t X = 374 nm (A^y^ = 0.964 i n 100% d io x a n e f o r a 6 .2 2 x ' 10 s o l u t i o n , e = 15,498) w h ile th e a b so rb a n c e o f th e p r o to n a t e d s p e c ie s was n o t o b s e r v a b le . In 100% TFA th e r e s i d u a l a b s o rb a n c e o f t h e " i n d i c a t o r (a n d /o r s o lv e n t) was A jy^ = 0 .0 5 7 . The mole f r a c t i o n o f p r o to n a te d i n d i c a t o r was c a l c u l a t e d by: 0 .9 6 4 - (A ^j? in x% TFA) x + = -------------------±L5. --------------------- (80) BH 0.907 from w hich was c a l c u l a t e d . L » J 81 For th e NM R s tu d y , th e 1H ch em ical s h i f t o f %0.1 M AIB was m easured v s . cy c lo h e x a n e CC^H^) as i n t e r n a l s ta n d a r d (a lo n g w ith TMS as a double check on s o lv e n t e f f e c t s ) in TFA /dioxane s o l u t i o n s o f v a ry in g a c i d i t y . P r o to n a tio n o f th e azo lin k a g e a f f e c t s t h e re s o n a n c e o f th e t - b u t y l p ro to n s c a u s in g a s h i f t to lo w er f i e l d . Rapid exchange o f th e p ro to n s betw een a l l AIB m o le c u le s c a u s e s an a v e ra g in g o f th e o b se rv e d ch em ica l s h i f t to l i e betw een th e re s o n a n c e s o f th e u n p r o to n a te d and p r o to n a t e d fo rm s. P r o to n a tio n e x p e rim e n ts i n CF^SO^H p ro d u ce two re s o n a n c e s due to a d o ubly p r o to n a te d AIB. T h is le a d s us to b e l i e v e t h a t even i n 100% TFA th e p re s e n c e o f th e d o ubly p r o to n a te d s p e c ie s i s n e g l i g i b l e w h ile m o n o p ro to n atio n i s v i r t u a l l y c o m p le te . C6H12 U n p ro to n ate d AIB i n 100% d io x an e a p p e a rs a t SAjg = - 0 .3 0 7 r e l a t i v e to cy clo h e x a n e and m ono p ro to n ated AIB in 100% TFA a p p e a rs a t C6H12 5 . td = 0.241 r e l a t i v e to c y c lo h e x a n e . T h e r e f o re , i n s o l u t i o n s o f AId x% TFA 0% TFA v a ry in g a c i d i t y , th e s h i f t d i f f e r e n c e 6 ATD - 6 »Td r e p r e s e n t s A lb Alb * .1, * ^ J ATn u - 1 ,100% TFA -x% TFA th e amount o f u n p ro to n a te d AIB w h ile ~ ^AIB r e p r e s e n t s th e amount o f p r o to n a t e d AIB. Thus th e r a t i o o f BH+ to B can be c a l c u l a t e d from : 100% TFA x% TFA [BH 1 = 6 AIB ~ AIB (81) ,x% TFA 0 ^ 6AIB “ 6AIB A f te r th e UV s tu d y was c o n d u c te d , we w ere f a i r l y c o n f id e n t t h a t AIB was n o t p r o to n a te d i n 40% TFA and was f u l l y m o n o p ro to n ated i n 90% TFA. So, 40% TFA th e ch em ical s h i f t s in th e s e c o m p o s itio n s , 6a j B = - 0 .2 9 8 and 82 TABLE IX: Raw UV Data of AIB Wt. -% TFA BH+ 295 % BH+ [BH+] [B] • , [BH+] 105 [B] 1, [BH+] g [B] 2 1 [BH+] logJT B r 0 0.00 0.096 0 .0 0 0.0000 4 9 .9 5 0.098 0.22 0.0022 -2 .6 5 8 0 -1 .9 5 8 7 55.11 0.184 9 .65 0.1068 -0 .9 7 1 4 -1 .3 4 2 8 -0 .9 8 0 8 6 0 .0 5 0.317 24.23 0.3198 -0 .4 9 5 1 -0 .7 5 3 1 -0 .4 9 9 7 6 2 .5 0 0.411 34.54 0.5276 -0 .2 7 7 7 -0 .4 6 0 7 -0 .2 6 1 0 6 4 .9 6 0.537 4 8 .3 6 0.9363 -0 .0 2 8 6 -0 .1 6 7 1 -0 .0 2 1 4 6 7 .4 6 0 .660 61.84 1.6207 0.2097 0.1313 0.2220 70.02 0. 787 75. 77 3.1267 0.4951 0.4369 0.4714 74.95 0.916 89.91 8.9130 0.9500 1.0254 0.9515 8 0 .4 9 0.971 95.94 23.6486 1.3738 1.6866 91.04 1.015 100.77 00.00 1.008 100.00 L in e a r R e g re s s io n D a ta : I log— - = = C%TFA)a]L + a Q 1> a Q = -7 .9 2 0 9 a. = 0.1194 r = 0.9232 2 ) = -6 .3 4 8 2 a x = 0.0974 r 2 = 0.9995 l o g f e J = 0 .0 0 0 f o r 66.36% TFA LB J log* M = [BJ 0 .0 0 0 f o r 65.18% TFA 83 TABLE X: Raw 1H NM R D ata o f AIB x% TFA CAH 19 n 6 12 AIB (A) r.X% AIB ' r.6% AIB (B) .100% AIB “ Xx% A TR 1 ..................... A A+B (% BH^) i A lo g F 21 A lo g j 3 1 A lo g g 0 0 .0 -0 .3 0 7 0.000 0.548 2 0 .0 -0 .3 1 0 -0 .0 0 3 0.551 3 9.9 -0 .2 9 8 0.009 0.539 1.6 4 -1 .7 7 7 5 0 .7 -0 .2 7 2 0.035 0.513 6 .3 9 -1 .1 6 6 5 5.1 -0 .2 4 9 0 .0 5 8 0 .490 10.58 -0 .9 2 7 -0 .9 4 5 7 6 0 .0 -0 .1 9 7 0 .1 1 0 0.438 20.07 -0 .6 0 0 -0 .5 3 3 1 -0 .6 3 7 1 6 3.1 -0 .1 3 4 0 .1 7 3 0.375 31.57 -0 .3 3 6 -0 .2 7 2 0 -0 .3 2 1 3 6 5 .0 -0 .0 8 2 0.225 0 .3 2 3 41.06 -0 .1 5 7 -0 .1 1 2 0 -0 .1 2 7 7 6 6 .0 -0 .0 4 7 0 .2 6 0 0 .288 47.45 -0 .0 4 4 -0 .0 2 7 8 -0 .0 2 5 9 6 7 .0 -0 .0 1 0 0.297 0.251 54.20 0 .0 7 3 0.0564 0.0760 6 8 .4 0 .0 3 2 0.339 0.209 6 1 .8 6 0 .2 1 0 0.1 7 4 3 0.2186 7 0 .0 0 .0 8 7 0 .3 9 4 0.154 71.90 0 .4 0 8 0.3091 0 .3816 7 2 .7 0.144 0.451 0 .0 9 7 8 2 .3 0 0 .6 6 7 0.5365 0.6567 7 5 .3 0 .1 6 9 0 .4 7 6 0.072 ' 86.86 0.820 0.7554 7 9.9 0.188 0 .495 0.053 "90.33 0 .9 7 0 1.1428 90.1 0.209 0 .5 1 6 0.032 9 4 .1 6 1.208 100.0 0.241 0 .548 0.000 100.00 84 TABLE X: (c o n tin u e d ) ; 'r - ? > * A d ju s te d -D a ta ; ; I '} : 4. A lQg b 5 A lQg b 39.9 -0 .2 9 8 0 . 0 0 0 0.507 0 .0 0 5 0 .7 -0 .2 7 2 0 .026 0.481 5 .1 3 -1 .2 6 7 -1 .4 1 2 0 5 5 .1 -0 .2 4 9 0 .049 0.458 9.6 6 -0 .9 7 1 -0 .9 8 8 3 6 0 .0 -0 .1 9 7 0.101 0.406 19.92 -0 .6 0 4 -0 .5 1 6 4 -0 .6 6 4 2 6 3 .1 -0 .1 3 4 0.164 0 .3 4 3 32.35 -0 .3 2 1 -0 .2 1 7 9 -0 .3 0 9 5 6 5 .0 -0 .0 8 2 0 .2 1 6 0.291 4 2 .6 0 -0 .1 2 9 -0 .0 3 4 9 -0 .0 9 2 1 6 6 .0 -0 .0 4 7 0.251 0.256 49.51 -0 .0 0 9 0.0614 0.0 2 2 3 6 7 .0 -0 .0 1 0 0.288 0.219 56.80 0.119 0.1577 0.1367 6 8 .4 0 .0 3 2 0 .330 0 .1 7 7 6 5.09 0.271 0.2925 0.2969 7 0 .0 0 .0 8 7 0.385 0.122 75.94 0.499 0.4466 0 .4 8 0 0 7 2 .7 0 .1 4 4 0 .4 4 2 0 .065 87.18 0 .8 3 3 0.7066 0.7889 7 5 .3 0.169 0 .4 6 7 0.040 92.11 1 .067 0.9570 79.9 0 .1 8 8 0.486 0.021 95.86 1.364 1.400 90.1 0.209 0 .5 0 7 0 . 0 0 0 100.00 XC-) I n d i c a t e s u p f i e l d s h i f t o f AIB from cy clo h ex an e A L in e a r R e g re s s io n D ata : lo g — = a . D 1 (% TFA) + a o 2 a o = -5 .5 8 5 8 a l = 0.0842 lo g = 0 . 0 0 0 D f o r 66.33% TFA r 2 = 0.9791 85 3 a = -6 .7 4 9 6 0 a . = 0.1019 lo g §■ = 0 .0 0 0 f o r 66.25% TFA 1 B r 2 = 0.9968 4 a = -6 .2 9 4 6 o a = -7 .5 2 9 7 o r 2 = 0.9936 a, = 0.0 9 6 3 lo g ~ = 0 .0 0 0 f o r 65.36% TFA 1 B r 2 = 0.9875 a x = 0.1144 lo g I = 0 .0 0 0 f o r 65.81% TFA 6 T h is - d a ta was a d j u s t e d b a s e d on th e UV d a ta w hich shows AIB i s n o t p r o to n a te d i n 40% TFA and s h o u ld be c o m p le te ly p r o to n a t e d in 90% TFA. 86 TABLE XI: Raw UV Data of HQ Indicator o - Nitroaniline Wt. - % ab 397 [BH+] l o r [ BH+l 210 J BH+] 3 l o n [BH+] TFA %BH [B] g [B] l0 g [B] l0g [B] 0 .0 0 1.024 0 .0 0 0.0000 10.74 1.016 0 .7 9 0.0080 -2 .0 9 9 5 1.8095 1 7.90 1 .014 0 .9 9 0.0100 -2 .0 0 1 7 1.7117 30.03 0.993 3 .0 6 0.0315 -1 .5 0 1 2 1.2112 42.31 0.971 5 .2 3 0.0552 -1 .2 5 8 4 0.9684 55.06 0.882 1 4.00 0.1628 -0 .7 8 8 2 0.4982 -1 .0 8 3 6 60.92 0 .8 1 0 2 1 .1 0 0.2675 -0 .5 7 2 7 0.2827 -0 .5 3 7 8 -0 .6 8 1 4 62.86 0.783 23.77 0.3118 -0 .5 0 6 2 0.2162 -0 .3 5 7 1 -0 .4 8 3 2 64.95 0.715 30.47 0.4383 -0 .3 5 8 2 0.0682 -0 .1 6 2 4 -0 .2 6 9 7 67.55 0.563 4 5 .4 6 0.8336 -0 .0 7 9 0 -0 .2 1 1 0 0.0797 -0 .0 0 4 1 69.67 0.394 6 2 .1 3 1.6406 0.2150 -0 .5 0 5 0 0.2772 0.2125 72.56 0 .2 2 0 7 9 .2 9 3.8286 0.5830 -0 .8 7 3 0 0.5464 0.5077 75.73 0.083 9 2.80 12.8904 1.1103 -1 .4 0 0 3 0.8416 100.00 0.010 100.00 13 pKa = H0 * lo g - I f f y l H0 = -0.29 - l o g ^ TBH 1 L in e a r R e g re s s io n D ata: lo g --fDv = a i (%TFA) + a, 2) a Q = 3) a Q = a l 2 r = L w -6.2119 0.0931 iog. Ijg 1 = 0.000 a t 66.69% TFA L BJ 0.9144 -6.9047 0.1022 log ^VpT~ = 0.000 a t 67.59% TFA L BJ 0.9691 87 TABLE XII: Raw UV Data of H Indicator o N -( 2 , 4 - D i n it r o p h e n y l) P ip e r i d in e w t . - % TFA A 374 %BH+ , [BH+] l o g l i B r 1 I ’ ' H t t r . 0 2 1 [BH+] lo g [B] 0 .0 0 0 .9 6 4 0 .0 0 5 5 .0 9 0.828 14.99 -0 .7 5 3 5 0.3735 -0 .8 1 9 8 5 7 .5 6 0.691 3 0 .1 0 -0 .3 6 5 9 -0 .0 1 4 1 -0 .3 4 4 1 6 0.32 0.455 5 6.12 0.1068 -0 .4 8 6 8 0.1873 6 2.52 0.251 78.61 0.5653 -0 .9 4 5 3 0.6 1 1 0 6 5 .0 6 0.113 93.83 1.1817 -1 .5 6 1 7 1.1001 100.00 0.057 100.00 'it rBH+l 1) Hq = - 0 .3 8 - l o g - t | | j i 2) a = -1 1 .4 2 7 9 J o a 2 = 0.1926 r 2 ■ = 0.9913 88 90% TFA + = 0 .2 0 9 , w ere u sed as th e end p o in t s to c a l c u l a t e th e [BH ] / [B] r a t i o s . S h i f t s below and above th e s e c o m p o sitio n s w ere assum ed due to s o lv e n t e f f e c t s . For th e NM R and UV s t u d i e s , T ab les IX th ro u g h X IV c o n ta in th e rBH+i e x p e rim e n ta l d a ta and c a l c u l a t e d v a lu e s o f th e wtr% TFA v s . lo g fw-r r e l a t i o n f o r AIB as w e ll as th e H„ and H,M i n d i c a t o r s . L in e a r o o r e g r e s s i o n s o f th e d a ta w ere c a l c u l a t e d on a H e w le tt-P a c k a rd HP-25 hand c a l c u l a t o r . The s lo p e , i n t e r c e p t , c o r r e l a t i o n c o e f f i c i e n t , and F BH+1 l° g —rbi v a lu e s o v e r th e c o r r e l a t i o n ra n g e f o r th e b e s t s t r a i g h t l i n e LBJ th ro u g h th e d a ta a r e r e p o r t e d . F. R e s u lts and D is c u s s io n An i n i t i a l g r a p h ic a l a n a l y s i s o f th e e x p e rim e n ta l d a ta showed t h a t AIB p a r a l l e l s th e H s c a l e b e t t e r th a n H!?I . T h e re fo re AIB i s c o n s i- r o o d e re d to be an Hq Hammett b a s e in TFA /dioxane. From th e raw UV d a ta , AIB i s 50% p r o to n a te d in 6 5 .2 wt-% TFA. From th e a d j u s t e d NM R d a t a , 50% p r o to n a t io n o c c u rs i n 6 5 .8 wt-% TFA. The Hq o f th e s e two com posi t i o n s can be d e te rm in e d by com bining th e e q u a tio n f o r th e b e s t ' s t r a i g h t l i n e o f th e H i n d i c a t o r : o lo g = 0.1022 (wt-% TFA) - 6.9 0 4 7 (82) I1 1 ! w ith th e d e f i n i t i o n o f H : o H = - 0 .2 9 - lo g - E J (83) o [B] 89 to give: Hq = - 0 .2 9 - 0.1022 (wt-% TFA) + 6.9 0 4 7 (84) T h e r f o r e , th e Hq a t h a l £ - p r o t o n a t i o n , Hq , o f AIB as d e te rm in e d by th e UV s tu d y i s -0 .0 5 and a s d e te rm in e d by th e NM R s tu d y i s - 0 .1 1 . To d e te rm in e how w e ll AIB b eh av es as a Hammett b a s e , H o f th e ° + TBH 1 v a r io u s T FA /dioxane m ix tu re s was c a l c u l a t e d from Eq. (8 4 ). Log 1 ■ * in th e s e s o l u t i o n s as c a l c u l a t e d from th e raw UV and a d j u s t e d NM R d a t a was com pared v s . Hq . See T ab les XI IB:'and XIV.. For an a c c u r a te th e rm o - r gj_j+ 1 dynamic d e s c r i p t i o n o f th e a c i d i t y o f AIB, th e s lo p e o f lo g ■ rr,v v s . L8J Hq sh o u ld be - 1 . 0 0 ± 0 . 0 5 . The s lo p e o f th e NM R d a ta was -0 .9 6 3 and th e s lo p e o f th e UV d a ta was - 1 .0 4 9 . T h e re fo re AIB p a r a l l e l s UQ c l o s e l y r BH+ l enough to be a b le to e s ti m a t e m e an in g fu l L ^ J r a t i o s . The UV and NM R s t u d i e s y i e l d H ^ f o r AIB as -0 .0 5 and -0 .1 1 o V r e s p e c t i v e l y . To e s ti m a t e th e Hq f o r d ia z e n e , c o r r e c t i o n s f o r th e d i f f e r e n t s t e r i c and e l e c t r o n i c e f f e c t s o f (CH^)^C- v s . H- on th e azo lin k a g e m ust be made (s e e S e c tio n C ) . A pp ly in g th e s e c o r r e c t i o n s 3- y i e l d s th e f o llo w in g Hq f o r d ia z e n e : by UV -0 .0 5 - 1 .4 3 - 0 .5 9 = - 2 .0 7 by NM R -0 .1 1 - 1 .4 3 - 0 .5 9 = - 2 .1 3 . In summary, AIB b eh av es as a Hammett b a s e i n TFA /dioxane s o lv e n t m ix tu r e s . AIB p a r a l l e l s Hq s u f f i c i e n t l y w e ll to o b t a i n therm o- 90 TABLE XIII L° g v s . H f o r AIB from Raw UV D ata [B] o wt-% TFA % BH+ H o i [BH+] l0 g [B] ‘ lo g t BH+1 g [B] 55.11 9 .65 0.9825 -0 .9 8 0 8 -1 .0 7 7 2 60.05 24.23 0.4776 -0 .4 9 9 7 -0 .5 4 7 6 6 2 .5 0 34.54 0.2272 -0 .2 6 1 0 -0 .2 8 5 0 6 4 .9 6 48.36 -0 .0 2 4 2 -0 .0 2 1 4 -0 .0 2 1 3 6 7.46 61.84 -0 .2 7 9 7 ■ 0.2220 0.2467 70.02 75.77 -0 .5 4 1 3 0.4714 0.5210 74.95 89.91 -1 .0 4 5 2 0.9515 1.0496 xL in e a r r e g r e s s i o n d a ta lo g [BH+] _ [B] a,H + a 1 o 0 a = - o 0.0 4 6 7 h - » I I 1 1.0489 r 2 = 0.9995 [ BH+1 1 0 8 [B] = 0 .0 0 0 a t H = 0 - 0 .0 4 91 TABLE XIV TBH+1 Log m r v s . H f o r AIB o from A d ju s te d NM R D ata wt-% TFA % BH+ H o lo g [BH+1 AOg [B] ii t BH+] lGg [B] 5 5 .1 9 .6 6 0 .9 8 4 -0 .9 7 1 -1 .0 3 2 6 0 .0 19.92 0 .4 8 3 -0 .6 0 4 -0 .5 4 9 63 .1 32.35 0 .166 -0 .3 2 1 -0 .2 4 4 6 5 .0 42.60 -0 .0 2 8 -0 .1 2 9 -0 .0 5 7 6 6 .0 49.51 -0 .1 3 1 -0 .0 0 9 0 .042 6 7 .0 5 6 .8 0 -0 .2 3 3 0 .119 0 .1 4 0 6 8 .4 65.09 -0 .3 7 6 0.271 0.278 70.0 75.94 -0 .5 3 9 0.499 0.435 7 2 .7 87.18 -0 .8 1 5 0 .8 3 3 0 .700 7 5 .3 92.11 -1 .0 8 1 1.067 0 .957 1 L in e a r R e g re s s io n Data [BH+] g [B] = a.H + a 1 o o a 0 = -0 .0 8 4 3 a l = -0 .9 6 2 9 r 2 = 0.9886 lo g [BH+1 10g [B] = 0 .0 0 0 a t H = - 0 .0 8 o 92 rBH+i \ d y n a m ic a lly m e an in g fu l r a t i o s . Hq o f AIB i s -0 .0 5 as d ete rm in e d I k by UV and -0 .1 1 by NMR. The d is c r e p a n c y i n Hq i s due to in h e r e n t e r r o r in each m ethod. S o lv e n t e f f e c t s on chem ical s h i f t and a c t i v i t y e f f e c t s due to h ig h c o n c e n tr a ti o n s o f AIB and i n t e r n a l s ta n d a r d s p e r tu r b th e NM R d e t e r m in a tio n . THE UV s tu d y i s in f l u e n c e d by th e v a ry in g o v e rla p betw een BH+ and B a b so rb e n c e s as w e ll as th e p o s s i b i l i t y t h a t e, f o r th e s e s p e c ie s , may n o t be c o n s ta n t in d i f f e r e n t s o lv e n t m ix tu r e s . TBH?1 + However, s in c e d. -2 J . . was d e te rm in e d o n ly from th e BH a b s o rb e n c e , L BJ v a r i a b l e o v e rla p betw een p r o to n a te d and u n p ro to n a te d AIB i s p ro b a b ly i n s i g n i f i c a n t , e s p e c i a l l y s in c e B h as a much lo w er e th a n BH+ . O v e r a ll, th e UV method seems m ost e r r o r f r e e and H = -0 .0 5 f o r AIB ’ o i s p ro b a b ly th e b e t t e r v a l u e . U sing c o r r e c t i o n s f o r s t e r i c and e l e c - t r o n i c e f f e c t s , th e H q o f d ia z e n e i s e s tim a te d to be - 2 . 1 . A lthough th e s e model c o r r e c t i o n s a r e somewhat a r b i t r a r y , th e y r e p r e s e n t th e p r o t o n a t i o n o f d o ubly bonded n i t r o g e n a lo n g w ith th e s t e r i c and e l e c t r o n i c p re s e n c e o f a £ - b u ty l g ro u p . W e b e l i e v e t h i s i s somewhat b e t t e r th a n u s in g azobenzene m odels i n w hich t t c o n ju g a tio n may d e l o c a l i z e c h a rg e to some e x t e n t o v e r th e e n t i r e m o lecu le r a t h e r th a n c o n fin e i t to j u s t th e azo lin k a g e . 93 APPENDIX DATA BASE AND CALCULATIONS FOR THE GROUP ADDITIVITY PARAMETERS, FLUOROCARBON HILDEBRAND RULE, SATO VAPOR PRESSURE EQUATION AND THE SCATCHARD-HILDEBRAND GAS SOLUBILITY EQUATION A. The C o n s ta n ts in th e F lu o ro c a rb o n H ild e b ra n d R ule: AH' 298 0.0724 T, 2 - 17.17 T, + 5309 b b (49) v Where p o s s i b l e , l i t e r a t u r e v a p o r p r e s s u r e /te m p e r a t u r e d a ta was u s e d . A l i n e a r r e g r e s s i o n o f InP v s . 1/T f o r th e d a t a p o i n t s o f each compound 2 was done on a Hewlett-Packard HP-25 hand c a l c u l a t o r . r _ r e p r e s e n t s th e c o r r e l a t i o n o f th e d a t a to a s t r a i g h t l i n e , a_ i s th e i n t e r c e p t o f t h a t l i n e and b^ i s th e s lo p e . T h e re fo re AHv = ;-bR, where R i s th e gas c o n s t a n t in c a l/m o le - deg K. Where no v a p o r p r e s s u r e /te m p e r a t u r e d a t a was fo u n d , i f th e h e a t o f v a p o r iz a ti o n a t th e b o i l i n g p o in t and th e c r i t i c a l te m p e ra tu re were known, th e Watson r e l a t i o n : AH v 298 (84) was u se d to e s ti m a t e AH 298 v 94 PERFLUOROPROPANE bp = 236.60°K n T°K PmmHg 1 181.77 24.71 2 195.12 72.38 3 211.79 209.56 4 217.74 293.95 5 224.28 417.09 6 229.76 546.87 7 235.26 713.33 8 237.34 798.62 9 298.16 7995.18 2 r = .999690, a = 1 7 .9 6 0 4 , b = -2 6 7 5 .6 3 A H 298 = V 2675.63 X 1.987 = 5316i.5 c a l/m o le R ef. [60] . PERFLUORO-n-PENTANE bp = 3 0 2 .2 1 °K n T°K PmmHg 1 294.25 558.38 2 297.19 628.37 3 297.59 635.40 4 302.32 764.92 5 303.00 783.75 2 r = .999849, a = 1 8 .0 9 0 9 , b = -3 4 6 2 .1 6 AH 298 = V 3462.16 X 1.987 = 6879 c a l/m o le Ref. [60]. 95 PERFLUORO-2-METHYLBUTANE bp = 303.19°K n T°K PmmHg 1 282.81 377.47 2 301.84 723.52 3 305.28 819.23 2 r = .999991, a = 17.8 8 7 6 , b = -3 4 1 2 .3 4 AH V 3412.34 X 1.987 = 6780 .32 c a l/m o le R ef. [6 0 ]. PERFLUORO-ii-HEXANE bp = 3 3 0 .31°K n_______________ T^K______________PmmHg_________ 1 282.77 107.31 2 291.52 163.39 3 307.07 322.34 r 2 = .999989, a = 1 8 .5 6 9 4 , b = -3 9 2 8 .3 4 AH = 3928.34 X 1.987 = 7805.61 c a l/m o le V 330 T = 4 5 1 , AH 0 = 6741 ± 54 c v From Watson R e la tio n : 298 ,4 5 1 -2 9 8 .2 . 0. 38 . AHy = C 4 5 i _ 3 3 o ^ i ) (6741) = 7373 c a l/m o le R ef. [6 0 ]. 96 PERFLUORO-2-METHYLP ENTANE bp = 330. 81°K n T°K PmmHg 1 288.39 139.55 2 293.74 178.66 3 298.86 226.15 4 301.28 284.75 5 307.88 330.00 2 r = .999928, a = 18.5 6 4 3 , b = -3 9 2 9 .3 4 AH V = 3929.34 X 1.987 = 7807. 60 c a l/m o le From Watson R e l a ti o n : T c 7?n q = 4 5 2 .7 AH = 6703 ± V 30 AH 2 9 8 V r452 . 7 -298. 2 , .38rrnnrr^ = ( . _ „ _ o . . 8 ) (6703) = 7335 c a l/m o le R ef. [60] PERFLUORO-3-METHYLPENTANE bp = 3 3 1 .52°K n T°K PmmHg 1 288.55 139.79 2 294.27 181.83 3 300.78 241.02 4 308.67 331.42 2 r = .999919, a = 18.1 8 3 6 , b = -38 2 0 .5 4 1 1 1 1 E > H <3 3820.54 X 1.987 = 7591.41 c a l/m o le 331 5 450, AH = 6702 ± 41 A „ 298 ^450-298. 2, 0 . 3 8 „ ™ o, AH^ = ( 4 5 0 3 3 'i"~ 5 ^ C6702J = 7363 c a l/m o le PERFLUORO-2, 3-DIMETHYLBUTANE bp = 332.93°K n T°K PmmHg 1 288.90 131.92 2 293.41 162.07 3 296.91 191.09 4 300.26 219.11 5 303.97 256.50 6 308.78 310.84 2 r = .999807, a = 1 8 .2 0 6 5 , b = 3848.46 AH V = 3848.46 X 1.987 = 7647. 89 c a l/m o le T c 332 9 = 463, AH = 6924 V ± 33 AH 298 V ,463 -2 9 8 .2 ^ . 3 8 ^ n o ^ ' 4 6 3 -3 3 2 .9 (6924) = 7575 c a l/m o le R e f. [6 0 ]. PERFLUOROCYCLOPENTANE bp = 2 9 5 .65°K n T°K PmmHg 1 285.60 516.07 2 290.56 627.66 3 296:83 792.94 2 r = .999975, a = 1 7 .5 9 6 3 , b = -3 2 4 1 .3 6 AH = V 3241.36 X 1.987 - 6440.58 c a l/m o le R ef. [6 0 ]. 98 PERFLUOROCYCLOHEXANE bp = 3 2 5 .85°K n T°K PmmHg 1 350.32 1765.48 2 378.36 3585.68 3 395.00 5359.52 r 2 = .999630, a = 1 7 .2 5 5 4 , b = -3 4 2 7 .3 3 AH = 3427.33 X V 1.987 = 6810 .09 c a l/m o le T h is d a t a p o i n t d e l e a te d b e c a u se C,F i s a s o l i d ?QR a t 298°K, t h e r e f o r e , AH i s > ’ v o f th e s u p e rc o o le d l i q u i d ! R ef. [6 0 ]. PERFLUORO-1, 2-DIMETHYLCYCLOBUTANE bp = 3 1 7 .65°K n T°K PMMHg 1 289.51 256.71 2 299.85 394.31 3 304.26 466.61 4 309.06 561.48 r 2 = .999970, a = 1 7 .8 9 7 8 , b = -3 5 7 5 .1 9 AH = 3575.19 X 1.987 = 7103 .91 c a l/m o le V R ef. [6 0 ]. 99 298 AH ESTIMATED BY W ATSON RELATION v T - 298 0 .3 8 T « ah/ 98 = ( c . ) AHV b K R ef. [61] c b AH and T from R ef. [62] . v c c f3- c f2 - c f2- c f2 - c f3 xn? T = 422°K AH = 6250 c v AH 298 v CF3-CF2 -CF2-CF2 -CF2 -CF3 T = 451°K AH = 6828 c v AH 298 v 0 - 515°K 349 T = 485 K AH = 7175 c v 375 v 7920 AH 298 AH 298 v f F T = 565°K AH 415 = 8372 c v 586°K AH 433 AH 298 v AH 298 v 6328 c a l/m o le 7465 c a l/m o le 8098 c a l/m o le 9,355 c a l/m o le 10,871 c a l/m o le 11,720 c a l/m o le 100 HEAT OF VAPORIZATION DATA SUM M ARY jF lu o ro c a rb o n !CF4 !CV CF3 |CF3 - CF2 - CF3 ;CF3-CCF2) 2- c f 3 ;CF3 - ( CF2 V CF3 c f3- ( c f2) 4 - c f3 , CF2-(CF2)5-CF3 CF2 - ( c f 2) 6 - CF3 CF3 - t CF2 ^ 7 -CF3 (CF3) 2CFCF2CF3 (CF3) 2CFCF2CF2CF3 b .p .° K AH 298.2 R efe re n c e 236.6 271.0 302.2 330.3 355.5 376.7 398.5 303.2 330.8 5317 5580 5996 @ 250°K 6879 6565 6676 @ 300°K 7805 7793 @ 293°K 8686 8240 8894 9476 6780 6560 7808 7740 60 63 64 60 65 66 60 67 77 63 68 69 60 65 60 65 (CF3CF2) 2CFCF3 331.5 7591 60 (CF3) 2CFCF(CF3) 2 332.9 7647 60 r ^ Fio 295.7 6441 60 6275 65 101 HEAT OF VAPORIZATION DATA SUMMARY (continued) AH 2 9 8 •2 T lu o ro c a rb o n b .p .-°K v R e fe re n c e | * ^ *f 12 317.7 7104 F14 349.5 7830 O ' 16 0 0 375 9355 (CF3CF2CF2) 3N 403.2 9710 60 63 8110 78 8098 62 62 415 10,871 62 433 11,720 62 (CF3CF2) 3N 343.6 7940 70 70 102 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 DATA POINTS FOR FLUOROCARBON HILDEBRAND RULE xCTb °K) 236.6 271.0 295.7 302.2 303.2 317.7 330.3 330.8 331.5 332.9 343.6 349.5 355.5 375.0 376.7 398.5 403.2 y(AHv 298) 5317 5996 6441 6676 6560 7104 7793 7740 7591 7647 7940 8098 8686 9355 8894 9476 9710 Compound CV CV CF3 C F 3 - ( C F 2 ) 2 -C F 3 o - 10 CV < CF2 V CF3 (CV 2 CFCF3 12 CF3 - ( CF2 V CF3 (CF3) 2CFCF2CF2CF3 (CF3CF2) 2CFCF3 ( c f3o2c f c f ( c f3) 2 14 CF -(C F 9) CF CF3-CCF2 V CF3 CV < CF2 V CF3 CCF3CF2CF2) 3N 103 X(V K) yCAHv 298) Compound 18 415.0 10,871 19 433.0 11,720 Best curve f i t o f th e d a ta exp ressed as a polynom ial o f form 2 y = Ax + Bx + C A = 0.072405424 B =-17.171864 C = 5308.8753 0 O » a > « 104 B. Group C o n trib u tio n s to th e Energy o f V a p o riz a tio n and Molar Value a t 25°C For a l l o f th e flu o ro c a rb o n s l i s t e d , l i t e r a t u r e b o i l i n g p o in t s were 298 used in th e Fluorocarbon H ildebrand r u l e (E q .(49)) to c a l c u l a t e AHv fhe energy o f v a p o r iz a tio n was determ ined from: 298 298 AE = AH - RT (51) v v ' 298 The d if f e r e n c e between homologs o f AE^ was determ ined and th e n averaged to g e t th e group c o n t r i b u ti o n to th e energy o f v a p o r iz a ti o n a t 298°K. The d e n s it y o f a number o f flu o ro c a rb o n s was o b ta in e d from th e l i t e r a t u r e . The molar volume o f each compound was c a l c u la te d by: V = ~ | U (52) Df where V i s th e m olar volume, M.W. i s th e m o lecu la r w eight o f th e compound 25 and i s i t s r e p o r te d d e n s it y l The d i f f e r e n c e in V between homologous compounds c o n ta in in g th e same group was c a l c u l a t e d and a l l o f th e se d if f e r e n c e s were then averaged. This average r e p r e s e n t s th e contribu-. tio n to th e m olar volume f o r th e groups. 105 AE 298 CONTRIBUTION BY ,CF„- v 3 Compound CV CF2 -CF3 CF, ;cf3- C V |CF, ; cf3- ICF_- CF3- ; CF3- ! CF3- ! cf3- ; cf3" CF2>2-CF3 Cp2) 3 -CF3 cf2) 4- cf3 cf2) 5 -CF3 CF2V CF3 CF2 V CF3 c f 2) 8- CF3 Cf 2) 9- CF3 CF2 ^ 1 0 'CF3 C V irC F 3 CF2>14-CF3 b . p . °C -37.5 -1 .3 29.3 57.2 82.3 103.5 125.3 144.2 160.8 178 194.5 239 AE 298 4,691 5,399 6,146 6,945 7,761 8,521 9,370 10,162 10,900 11,707 12,521 14,913 CF, 1954.0 1916.5 1898.5 1906.5 1923.0 1911.5 1944.5 1949.0 1926.5 1938.5 1954.0 1975.5 Avg. = 1933±34 298 AEv CF3 = 1933 cal/m o le r AE 298 CONTRIBUTION BY -CF-- v 2 Compound CV CF3 CF3 -CF2 -CF3 CF3-(CF2) 2-CF3 CF3 - ( CF2) 3 - CF3 !CF3-CCF2 )4-CF3 CF3-CCF2) 5- CF3 CF3-CCF2) 6- CF3 CF3-CCF2)7-CF3 b .p .°C -7 8 .8 -3 7 .5 -1 .3 29.3 57.2 82.3 103.5 125.3 CF3-(CF2) g-CF3 144.2 cf3- ccf2) 9- cf3 CF3 - ( cf2) io- CF3 i !cF3-(C F2) n -CF3 ! CV (CF2 ) l 4 - CF3 298 l E CF- = 783 cal/m o le v 2 Re£: [61]. 160.8 178 194.5 239 AE 298 4,115 4,691 5,399 6,146 6,945 7,761 8,521 9,370 10,162 10,900 11,707 12,521 14,913 -CFn- 708 747 799 816 760 849 792 738 807 814 Avg. = 783±75 107 AE 298 CONTRIBUTION.BY.tCHF- v Compound ' b .p .°C AE 298 v CF3CHF[OCF2CF(CF3) ] 2F 104.4 8,554 CF3CHF[OCF2CF(CF3) ] 3F 152 10,504 CF3CHF[OCF2CF(CF3) ] 4F 194 12,496 CF3CHF[OCF2CF(CF3) ] 5F 224 14,075 R e f : [68]. Avg. -CHF- 786 408 72 (-677) = 422 108 298 AE CONTRIBUTION BY -CF v Compound (CF3) 2CF-CF3 (CF3) 2CF-CF2CF3 (CF3) 2CFCF(CF3) 2 (CF3) 2CFCF2CF2CF3 CF3CF2CF2CFCF2CF3 CF, b ^ _ ! c -0 .3 30.0 58.2 57.7 81.5 C cf3cf3) 2cfcf2cf2cf3 103 (CF3) 2CF(CF2) 4CF(CF3) 2 144.1 298 AE v -CF = -396 cal/m o le Ref: [61]. AE 298 v 5,422 6,166 6,977 6,962 7,734 8,503 10,158 Avg. -CF -376.9 -416.5 -377.6 -403.5 -413.9 -428.4 -353 -396±43 i 298 AE CONTRIBUTION BY -C- v Compound (CF3) 3C-CF(CF3) 2 (CF3] 3C-CF2CF(CF2] 2 298 AE -C- = -1515 cal/m o le v Ref: [62]. b . p . °C 82 104 AE 298 v 7,751 8,540 -CF- -1512 -1518 Avg. = -151513 109 298 AE CONTRIBUTION BY -N- v Compound (cf 3) 3n b .p .°C -6 .5 AE 298 5,286 -N- (-513) (cf3) 2ncf2cf3 21 5,931 (-651) (CF3CW 70 7,351 ■797 (CF3CF2) 2NCF2CF2CF3 93 8,137 -794 (cf3cf2c f2) 2ncf2cf3 111 8,806 -908 (CF3CF2) 2N(CF2) 3CF3 113 8,883 -831 (CF3CF2CF2) 3n 130 (CF3CF2CF2) 2NCF2CF(CF3) 2 147 [(CF3CF2) 2NCF2- ] 2 155 (Cf 3CF2Cf 2CF2) 3N 177 [c f3 ccf2) 4 ] 3n 214.5 9,562 10,284 10,638 11,659 13,562 -935 -967 -896 -1187 (-1633) C CF3 (CF2) 5] 3n 258 298 AE -N- = -914 cal/m o le v 16,024 (-1520) Avg. = -9141273 Ref. [63] 110 r Compound (cf3cf2) 2o C cf3cf2cf2) 20 (CF3CF2CF2CF2) 20 cf3 ccf2) 5ocf3 [CF3 C C F2}5] 20 (CF30CF2- ) 2 (CF3CF20CF2CF2) 20 298 AEv -0 - = 8 cal/m o le AE 298 CONTRIBUTION BY -0- v b .p .°C 10 56 101 81 179 13 97 AE 298 v 5,660 6,909 8,428 7,717 11,756 5,732 8,281 228 -89 -136 -64 60 150 -94 Avg. = 8±220 Ref. [63] . Ill RING CONTRIBUTIONS Compound b .p .°C AE V -29.5 4832 o- 5 5543 :□ -5 5319 E > 23.6 5998 1 Z X 71.7 7406 E X ' 75.0 7515 0 51 6759 0- 76 7548 < ^ - 102.0 8465 < 4 101.8 8458 0- 100.7 8417 124.9 9354 125 9358 < E X 123.4 9294 Ring 2483 2440 2187 2083 1923 2063 2061 2096 2259 2252 2182 2394 2398 2305 112 Compound b .p .° C AE 298 V Ring i < E ^ 145 10,197 2058 < Z X E > 179 11,756 2359 < E y * < E > 190.5 12,321 2250 222.5 14,158 2386 237 14,801 2316 y — \ 256.5 15,934 2491 I m 101.5 8,447 2183 FUSED SYSTEMS 70.6 117.1 141 161.1 161.0 173.4 190 205.5 7,370 9,043 10,025 10,914 10,910 11,487 12,296 13,087 RING: 5 atom RING: 6 atom Ref: [71]. 2023 cal/m o le 2272 cal/m o le 2124 (2 -5 1s) (4354) 2277 (2 - 6\s) 2344 ( 2 - 6 's) 2342 ( 2 - 6 's ) (6807) (6833) 2280 ( 3 - 6 's ) 113 MOLAR VOLUME CONTRIBUTIONS COMPOUND CV C IW F3 cf3 ccf2) 3cf3 CF3 CCF2)4CF3 jCF3CCF2) 5CF3 Icf3 cc f 2) 6c f 3 i !cf3 C c f237cf3 M.W. D 25 V 238.03 1.527 155.9 288.04 1.604 179.6 338.04 1.672 202.2 388.05 1.728 224.6 438.06 1.776 246.7 488.07 1.798 271.5 -CF 2 ~ = 23.1 cm /mole CF3- = 5 4 . 8 cm /mole -Cp2- 23.7 22.6 22.4 22.1 24.8 23.1 -CF (CF3) 2CFCF2CF3 288.04 1.651 174.5 -1 3 .0 ! j (CF-) ~CF(CF0) -.CF,, 338.04 1.747 193.5 -17 .1 1 3 2 2 2 3 ^1570- ! 3 -CF = -1 5 .0 cm /mole CF3- 54.9 55.2 54.9 54.6 54.1 54.9 54.8 REF, 64 64 64 64 63 63 64 64 114 COMPOUND M.W. D 25 C cf3) 3c c f(cf3) 2 -CHF = 18.6 cm /mole 388.05 1.754 V -CHF- CF3CHF[0CF.2CF(CF3) ] 2F 452 1.656 273 16.3 CF3CHF[0CF2CFCCF3) ] 3F 618 1.738 355.6 17.0 CF3CHF[0CF2CF(CF3) ] 4F 784 1.770 442.9 22.4 18.6 221.2 -3 7 .9 (CF3) 3CCF2CF(CF3) 2 438.06 1.800 243.4 -3 8 .7 -38.3 !tCF3 CCV 3 ] 2° [CF3 (CF2) 5] 20 (CF3CF20CF2CF2) 20 -C- = -3 8 .3 cm /mole 454.06 1.71 654.09 1.803 486.06 1.617 -0 - = 19.0 cm'Vmole -0- 265.5 17.3 362.8 22.2 300.6 17.5 19.0 REF. 66 66 66 62 62 63 63 63 115 D25 COMPOUND M.W. 4 V -N- REF, (CF3CF2) 3N 371.05 1.86 199.5 -34.2 63 (CF3CF2) 2NCCF2) 2CF3 421.06 1.764 238.7 -18.1 63 (CF3CF2CF2) 2NCF2CF3 471.07 1.794 262.6 -1 7 .3 63 (CF3CF2) 2NCCF2) 3CF3 471.07 1.792 262.9 -1 7 .0 63 (CF3CF2CF2) 3N 521.07 1.822 286.0 -1 7 .0 63 (CF3CF2CF2) 2NCF2CF(CF3) 2 571.08 1.84 310.4 -9 .3 63 [(CF3CF2) 2NCF2- ] 2 604.09 1.858 325.1 -1 6 .4 63 (CF3CF2CF2CF2) 3N 671.10 1.872 358.5 -1 3 .8 63 [CF3 (CF2D4] 3N 821.12 1.923 427.0 -1 4 .6 63 [CF3 (CF2) 5] 3N 971.15 1.922 505.3 -5 .6 63 -1 6 .3 -N- = -1 6 .3 cm3/mole 116 COMPOUND M.W. D^5 V RING REF G > 250.04 1.648 151.7 36.2 75 350.06 1.7660 198.2 34.5 63 350.06 1.7707 197.7 42.4 63 37.7 3 5 atom r in g = 37.7 cm /mole < E > - 00 0 / p 350.06 1.858 188.4 33.1 73 400.06 1.897 210.0 38.9 73 450.07 1.948 231.0 42.3 73 500.08 1.959 255.3 43.5 73 462.08 1.979 233.5 39.4 73 512.09 2.001 255.9 42.2 73 39.9 3 6 atom r in g = 39.9 cm /mole 117 SUMMARY OF GROUP CONTRIBUTIONS GROUP CF, 298 AE,. ca l/m o le 3 , , v V cm /mole 1933 54.8 - cf2- 783 23.1 -CHF- -CF 422 -396 18.6 -1 5 .0 i-C- -1515 -38.3 -0- (P e rflu o ro Ether) -N- (P e rflu o ro 3° Amine) RING: 5 atom jRING: 6 atom I -914 2023 2272 19.0 ■16.3 37.7 39.9 118 C. C a lc u la tio n o f th e C onstants a and 8 f o r th e Sato Vapor P re ssu re Equation The vapor p re s s u r e /te m p e r a tu r e d a ta f o r a number o f flu ro c a rb o n s P dP was o b ta in e d from th e l i t e r a t u r e [60]. The v a lu e s y and g y were c a l c u la te d as in th e fo llo w in g example: Liquid P e rflu o ro -n -p e n ta n e P HP Temp. (°K) V.P. (mm Hg) y | y 221.17 9.28 226.36 14.00 240.16 36.49 (14.0 0 + 9 .2 8 )/2 (14.00-9.28) (226.36+221.17 )/2 (226.36-221.17) (36.49+14.00)72 (36.49-14.00) (240.16+226.36)72 (240.16-226.36) p In t h i s way, th e p o in t y i s a t th e c e n t e r o f th e i n t e r v a l used to d e te r- dP P mine -r^-. Using a H ew lett-Packard HP-25 c a l c u l a t o r , th e v a lu e s o f — and i dl 1 dP dP P 8 g y were f i t to a power curve o f th e form g y = a(y ) fo r each f lu o r o - carbon. The average v alu e o f th e a ' s and 8 's were th e n used in th e I 2 d e r i v a t i o n o f th e Sato vapor p r e s s u r e e q u a tio n , r i s th e c o r r e l a t i o n (c o e ffic ie n t f o r th e f i t o f th e curve to th e d a ta . 119 CF 3 (CF2 ^ 3 CF3 p T 11.64 225.77 25,25 233.26 52,22 245.41 90.64 160.56 263.21 255.29 265.84 276.23 360.41 283.42 434.63 287.94 512.74 292.00 593.38 295.72 631.89 297.39 700.16 .744.34 299.96 302.66 dP dT 4.72 5.19 22.49 13.80 31.46 10.50 45.38 94.45 110.86 9.25 11.85 8.94 83.53 5.43 64.92 3.62 91.29 4.50 69.99 2.94 7.03 0.40 129.52 18.83 4.73 0.68 a = 12.0629 3 = 0,8801 r 2 = 0 . 9931 (CF 3 ) 2 c f c f 2 c f 3 P T 21.18 232.32 51.35 244.49 97.50 257.15 170.70 280.01 530.50 267.42 ,278.20 292.33 771.38 303.56 dP dT 10.76 7.32 49.58 17.12 42.72■ 8 . 2 0 103.68 114.93 386.05 12.34 9.22 19.03 95.71 3.44 a = 12.1837 g = 0.8893 r 2 = 0. 9994 CF3 (CF2 )4 CF3 P T 28.61 259.03 39.72 264.66 77.06 275.23 135.35 242.87 351.59 287.15 299.30 309.16 416.35 313.46 485.02 317.53 574.02 322.11 695.36 327.60 802.44 331.97 dP DT 8.07 5.20 14.16 6.06 60.51 15.08 56.08 158.95 58 8.75 15.55 4 .49 .17 71.04 4.44 66.29 3.69 111.72 130. 5.48 5. 95 83.22 50 3.24 a = 12.2264, 3 = O ', 8971, r 2 = 0.9984 1 2 0 (CF 3 ) 2CF C CF2>2CF3 p 32.17 60.17 86.12 117.75 159.11 202.41 255.45 307.38 T 260.24 271.52 278.61 284.56 291.07 296.30 301.57 306.08 352.18 309.48 381.55 311.59 407.72 313.32 468.94 316.96 572.03 322.40 667.32 326.94 746.80 330.26 dP dT 23.72 12.61 32.27 9.95 19.64 4.23 43.61 7.67 39711 5.35 47.49 5.12 58.60 5.42 45.25 3.60 44.35 3.20 14.40 1.01 37.94 2.45 84.50 4.83 121.67 6.06 68.92 3.01 90.03 3.64 a = 12.3392, 0 = 0.8770, 2 r = 0.9987 (CF 3CF2>2CFCF3 P 28.92 37.29 45.41 66.13 93.46 123.02 160.81 211.43 T 258.74 263.17 266.44 273.17 280.14 285.67 291.41 297.53 286.22 304.73 367.71 311.17 451.51 316.47 542.93 321.58 647.65 326.63 744.88 330.80 dP dT 12.93 7.18 3.82 1.68 12.41 4.85 29.04 8.62 25.61 5.31 33.52 5.76 42.05 5.72 59.19 6.51 90.40 7.89 72.58 4.99 95.01 5.62 87.83 4.59 121.61 5.51 72.85 2.84 a = 12 .2941, 0 = 078788, r 2 = 0.9994 121 42. 31 266.34' 237.81 302.12 :19.12 8.01 37.39 3.71 a = 24.62 245.38 255.19 286.41 9.41 5.54 63.05 6.20 a = [ Ccf3D2c f ] 2 58.35 272.51 71.22 276.42 90.13 280.94 117.29 286.31 147.00 291.16 176.58 295.16 205.10 298.59 283.67 306.38 344.97 311.27 417.86 316.18 501.37 320.96 598.50 325.84 702.17 330.51 12.96 4.33 12.78 3.49 25.04 5.56 29.27 5.18 30.15 4.51 29.02 3.50 28.02 3.35 54.34 4.81 68.26 4.97 77.52 4.86 89.49 4.69 104.78 5.08 102.56 4.25 12.3680, 8 = 0.8967, r = 0.9984 39.91 63.53 12 84.09 252.65 260.89 266.25 106.03 270.61 132.82 169.43 275.17 280.15 325.51 430.46 514.05 616.91 ‘ 722.37 294.68 302.06' 306.66 311.50 315.97 21.18 8.99 26.06 7.50 15.05 3.22 28.83 5.50 24.76 3.62 48.46 6.33 137.60 10.34 72.30 4.41 94.87 4.80 110.85 4.87 100.07 4.08 12.2737, 8 = 0.8729, r = 0.9986 122 Summary of Fluorocarbon a and 3 Values COMPOUND a 3 CF3(CF2)3 CF3 (cf 3) 2cfcf 2cf3 CIV CV 4 CF3 (cf 3) 2c f (g f 2) 2g f 3 (c f3cf 2) 2cf cf3 [Cc f3) 2c f- ] 2 -F12 Average 12.0629 12.1837 12.2264 12.3392 12.2941 12.3680 12.2737 12.2497 ±0.1036 0.8801 0.8893 0.8971 0.8770 0.8788 0.8967 078729 0.8846 ±0.0098 0.9931 0.9994 0.9984 0.9987 0.9994 0.9984 0.9986 123 D e riv a tio n o f th e Sato Vapor P re s su re Equation 1. dP _ ,P- s dT T 2. AH v = AVV 4L T dT 3. AVv = V - VQ (V » V „ , th e r e f o r e n e g le c t V ) g J o g X - x, 4. AH jn v = V ( ) T g dT 5. Assume gas i s i d e a l : V = g P 6 . AH D T v _ RT ,dP. T P '-dT'1 7. AH dP _ v fP. dT " RT T 8 . AHv P P 8 From 1 and 7: RT (? ) = a ( T) 9. AHv _ rP 8 rP , - l 0 ^ V rjiJ LrpJ 10. AH 3-1 v _ ^ RT a T 11. AH ^-r- D r v . 3-1 P aRTJ T 12. AH ^ p = T( V) 8 aRT 124 298 D. C o r r e la tio n f o r th e Entropy of V a p o riz a tio n (AS __)_ _ and th e P a r t i a l Molar Volume (V,,) o f D issolved Oxygen in Fluorocarbons The measured s o l u b i l i t y o f oxygen in a number o f flu o ro c a rb o n s o l v e n ts has been r e p o rte d in th e l i t e r a t u r e [49]. From Eq. (60) and th e r e p o r te d v a lu e s o f 0^ s o l u b i l i t y , o f in each flu o ro c a rb o n could 298 be e stim a te d . AEv was e s tim a te d f o r th e s e compounds from th e group 298 a d d i t i v i t y c o n s ta n ts developed in t h i s t h e s i s . AS was th e n estim a- 298 te d from AE v a lu e s in Table IV and: v .„298 a„298 orio AH AE + RT Ao298 v v v ■ - T — = T--------- (85) where R i s th e gas c o n s ta n t in c a l/m o le -°K and T = 298.15°K. 298 — The e s tim a te d AS^ and V, f o r th e re p o r te d flu o ro c a rb o n s was f i t to a lo g a rith m ic curve: 298 V2 = A + B ln(ASv ) (86) on a H ew lett-Packard HP-25 c a l c u l a t o r . I t was found t h a t a b e t t e r f i t o f th e d a ta could be o b ta in e d by t r e a t i n g th e c y c l i c and open chain flu o ro c a rb o n s s e p a r a te ly . 125 OPEN CHAIN FLUOROCARBONS COMPOUND *AS 298 V *V2 CFgCHF[0CF2CF(CF3) ] 2F 30.68 34.60 CF3 (CF2) 7Br 35,54 36.94 (cf3) 2c f (cf2) 4ci 31.14 34.83 (cf3) 2cfoccf2) 6f 32,83 35.68 cf3 ccf2) 6cf3 30.44 34.47 CF3CFBrCF2Br 26.95 32.54 (CF3) 2CF(CF2) 4Br 32.70 35.61 [Ccf3) 2cfcfocf2cf2] 2 34.75 36.58 CV CF2>7CF3 32.57 35.55 CFj CHF[0CF2CF(CF3) ] 3F 37.22 37.67 (CF3) 2CF(CF2) 6C1 37.07 37.61 CF3CHF[0CF2CF(CF3) ] 4F 43.90 40.30 [(CF3) 2CF0(CF2) 4] 2 44.75 40.60 CF3CHF[0CF2 (CF3) ] 5F 49.19 42.11 CF3CHF[0CF2 (CF3) ] 9F 88.81 51.50 r 2 = 0.8999 A = -19.85 B = 15.90 *E stim ated v a lu e s 126 CYCLIC FLUOROCARBONS 298 *AS. COMPOUND 27.34 31.85 36.05 30.38 27.93 32.70 42.07 35.32 35.75 42.55 41.17 48.18 20 38.42 45.42 0.8910 -100.15 39.90 E stim ated v a lu e s 127 REFERENCES 1. J . Moacanin, K. S c h e re r, A. Toronto, D. Lawson, T. Terranova, L. A s tle and S. Harvey, Synthesis and Biological Screening of Novel Hybrid Fluorocarbon Hydrocarbon Compounds for Use as Artificial Blood Substitutes3 JPL P u b lic a tio n 77-80, 1977. Second annual report- in p re s s . 2. Edward M. A rn e tt, Edward J . M itc h e ll, and J . I . S . R . Murty, J . Am. Chero. Soc., 96, 3875 (1974). 3. I. L. Knunyants and V. R. P oliskchuk, Russ. Chem. Rev. , 4 4 , 339 (1975). 4. I. L. Knunyants, L. S. German, and B. L. D yatkin, I z v . Akad. Nauk, SSSR, O td. Khim. Nauk, 1353 (1956). 5. E. W. Cook and J . S. P ie rc e , N a tu re , 242, 337 (1973). 6. N icolaos E p i o tis , J_. Am. Chem. Soc. , 95 , 3087 (1973). 7. W . L. J o l l y and W . B. P erry , J . Am. Chem. Soc. , 95 , 5442 (1973). 8. R. D. Chambers and R. H. Mobbs, Adv. in F lu o rin e Chem. , 4, 50 (1965). 9. P e te r R. W ells, P ro g , in Phys. O rg. Chem. , 6, 127 (1968). 10. David H o ltz, P rog. in Phys. Org. Chem. , 8, 1 (1971). 11. N. P. Borisova, L. I. Bokacheva and V. E. L 'v o v s k ii, Zuhr. S t r u k t . Khim. , 14, 353 (1973). 12. I. L. Knunyants and V. R. P olishchuk, R uss. Chem. Rev. , 45 , 574 (1976). 128 13. I. L. Knunyants, 0. V. K il'd i s h e v a and E. G. Bykhovskaya, Dokl. Akad. Nauk SSSR, | 7 , 49 (1947). 14. W . S. Matthews, J . E. Bares, J . E. Bartraess, F. G. Bordwell, F. J . C o rn fo rth , G. E. D rucker, Z. M argolin, R. J . McCallum, G. J . McCollum and N. R. V anier, J_. Am. Chem. Soc. , 97, 7006 (1975); pK a's determ ined in DMSO. 15. L. B. Young, E. Lee-Ruff and D. K. Bohme, Chem. Comm., 35_ (1973). 16. Wojciech Dmowski, W illiam T. Flowers and Robert N. H aszeldine, iLr F lu o rin e Chem. 9_, 94 (1977). 17. J . A. Young and M. H. B ennett, J_. Org. Chem. , 4 2 , 4055 (1977); K. V. S ch erer and T. F. Terranova, J . F lu o rin e Chem. , in p r e s s . 18. B. L. D yatkin, L. G. Zhuravkova, B. I. Martynov, S. R. S t e r l i n and I. L. Knunyants, Chem. Comm. , 618 (1972). 19. N. I. D elyagina, E. Ya. Pervova and I'. L. Knunyants, I z v e s t . Akad. Nauk SSSR, S e r v . Khim. , £1, 326 (1972). 20. D. L. M ill e r , Chem. A b s ., 69, 76598 (1969). 21. J . A. Young and T. M. Reed, J . O rg. Chem. , 3 2 , 1682 (1967). 22. B. A tkinson and V. A. A tkinson, J . Chem. S oc. , 2086 (1957). 23. S. P. H alasz, F. Kluge and T. M a rtin i, Chem. B er2, 106, 2950 (1973). 24. J . A. Young, F lu o rin e Chem. Rev. , 1_, 359 (.9 6 7 ). 25. J . A. Young, J_. Am. Chem. Soc. , 82, 5831 (1960). 26. M. J . R. F r a t i c e l l i , D i s s e r t a t i o n Abs., 26, 3045 (1965). 27. Wojciech Dmowski, W . T. Flowers and R. N. H a szeld in e, J_. F lu o rin e Chem. , 9, 94 (1977). 28. J . A. Young and M. H. B en n ett, J_. O rg. Chem. , 42, 4055 (1977). 129 29. C. Schumann and F. Cavagna, J_. Magn. Resonance, 18, 172 (1975). 30. N. I. D elyagina, E. Ya. Pervova and I. L. Knunyants, I z v e s t . Akad. Nauk SSSR, S e r . . Khim. , 21, 326 (1972). 31. K. N. Makarov, I. L. G e rv its and I. L. Knunyants, J . F lu o rin e Chem. , 1£, 157 (1977). 32. R. W . A lder, R. Baker and J . M. Brown, Mechanism in Organic Chemistry3 pp. 43 and 197, W ile y - I n te rs c ie n c e , New York, 1971. 33. B. L. D yatkin, N. I. D elyagina and S. R. S t e r l i n , Russ. Chem. Rev. , 45, 607 (1976). 34. I. L. Knunyants, E. G. Bykhovskaya, V. N. F ro sin and Ya. M. K is e l, Doklady Akad. Nauk SSSR, 132, 455 (1960). 35. S. Andreadas, J). O rg. Chem. , 27, 4163 (1962). 36. B. L. D yatkin, E. P. Mochalina, R. A. Bekker, S. R. S t e r l i n and I. L. Knunyants, T e tra h e d ro n , 23, 4291 (1967). 37. I. L. Knunyants and B. L. D yatkin, I z v e s t . Akad. Nauk SSSR, S e r . Khim. , 863 (1964). 38. B. L. D yatkin, L. G. Zhuravkova, B. I. Martynov, S. R. S t e r l i n and I. L. Knunyants, Chem. Comm. , 618 (1972). 39. I. L. Knunyants, B. L. Dyatkin and E. P. M ochalina, I z v e s t . Akad. Nauk SSSR, S e rv . Khim. , 1056 (1965). 40. R. F. Fedors, Polymer E ngineering and S cie n ce, 14, 147 (1974). I b i d . 14, 472 (1974). 41. J . H. H ildebrand and R. L. S c o tt, The Solubitity of NoneZectroZyteSj Reinhold P u b lish in g , New York, 3rd E d itio n , 1950. 42. P r iv a te Communication from P ro f. R. L. S c o tt, UCLA. 130 43. J . H. H ildebrand and R. L. S c o tt, op. c i t . , p. 77. 44. K. S ato, Kagaku K ik a i, 14, 270 (1 9 5 0 ).. S. Hamada, Y. Kudo and M. Kawano, B u l l . Chem. Soc. J a p a n , 4 8 , 719 (1975). 45. E. S. Thomsen and J . C. G jaldbaek, A c ta . Chem. Scan. , 17, 127 (1963). 46. J . C. G jaldbaek and J . H. H ildebrand, J . Am. Chem. Soc. , 71, 3147 (1947) . 47. J . C. G jaldbaek, Acta Chem. Scand. , 6_, 623 (1952). A. Lannung and J. C. G jaldbaek, Acta Chem. Sand., 14, 1124 (1960). E. S. Thomsen and J . D. G jaldbaek, Acta Chem. Scand. , 17, 127 (1963)^ 48. J . H. H ildebrand and R. L. S c o tt , op. c i t . , 247. 49. E. P. W esseler, R. I l t i s and L. C. C lark , J_. F lu o rin e Chem. , 9_, 137 (1977). Also Im p erial Sm elting, I.S .C . Chemical D iv is io n , T echnical B u ll e ti n : Medical A p p lic a tio n s o f F lu te c Fluorocarbon Liquids (1974). 50. R. F. Cookson, Chem. Rev. , 74, 5 (1974). 51. Ref. 33 in Chem. Rev. 74, 5 (1974). 52. Ref. 112 in Chem. Rev. , 74, 5 (1974). 53. H. Wiberg, G. F is c h e r and H. Bachuber, Chem. B er. , 107, 1456 (1974); a ls o R. A. Back and C. W i lli s , Can. J . o f Chem. , 52, 2513 (1974). 54. H. Z o llin g e r, Azo and Diazo Chemistry, I n te r s c i e n c e P u b lis h e r s , New York, N.Y. (1961) pp. 328. 55. H. B. H etzer, R. A. Robinson and R. G. B ates, J_. Phys. Chem., 66 , 2696 (1962). 56. H. C. Brown and X. R. Mihm, J . Am, Chem. S o c., 77, 1723 (1955). 131 57. L. F. F ie s e r and M. F i e s e r , Reagents in Organic Synthesis, John Wiley and Sons, New York, 1967. 58. C. H. R ochester, Acidity Functions, Academic P re s s, London, 1970. 59. E. Lellmann and W . G e lle r, " S y n th e sis o f N -( 2 . 4 -D in itro p h e n y l) P y r id in e ," Chem. B er. , 21, 2281 (1888). 60. G. A. Crowder, Z. L. T ay lo r, T. M. Reed I I I , and J . A. Young, J . Chem. and Eng. Data, 12, 481-485 (1967). 61. Robert F. Fedors, Ref. f o r Watson R e la tio n , Polym er,Eng, and S c i ., 14, 147-153 (1974). 62. Ref. f o r H f o i l i n g p o in t ^ . njg£ Chemicals In fo rm atio n Sheet v c on F l u t e c s ." 63. R.. D. Fbwler, J. M. Hamilton, J r . , J • S. Casper, C. E. Weber, W . B. Buford I I I , and H. C. Anderson, In d . Eng. Chem. , 59, 375 (1947). 64. J . H. Simons and J . W . M a u s te lle r, _J. Chem. Phys., 20, 1516 (1952). 65. E. J . Barber and George H. Cady, J^. Phys. Chem. 6 0 , 504 (1956). 66. J . H. Simons and R. D. Dunlap, J_. Chem. Phys. , 18 , 335 (1950. 67. V. E. S t i l e s and G. H. Cady, J . Am. Chem. S oc. , 7±, 3771 (1952). 68. J . H. Simons and J . B. Hickman, J.. Phys. Chem. , 56, 420 (1952). 69. From Vapor P ressu re /T em p eratu re Data o f T. M. Reed I I I in : Fluorine Chemistry, Ed. by J . H. Simons, pp. 138. 70. R. N. H azeldine, J_. Chem. Soc. , 102 (1951). 71. H. H. Anderson, J_. Chem. and Eng. D a ta , 10, 156 (1965). 72. J . H. Simons, Ed. Fluorine Chemistry, VolV.l,' pp. 452. 73. J . H. Simons, Ed. Fluorine Chemistry, Vol. 2, pp. 405. 74. J . H. Simons, Ed. Fluorine Chemistry, Vol. 5, pp. 159. 75. J . H. Simons, Ed. Fluorine Chemistry, Vol. 2, pp. 271. 132 7 6 . L. C. Clark J r . , J . F lu o rin e Chem., 9, 1 3 7 ( 1 9 7 7 ) . 7 7 . J . H. Simons, Ed., Fluorine Chemistry, Vol. 5 , p p . 1 7 7 . 00 J . H. Simons, Ed., Fluorine Chemistry, Vol. 5 , p p . 1 7 8 . 133
Linked assets
University of Southern California Dissertations and Theses
Conceptually similar
PDF
Some physical properties of quaternary mixtures of organic compounds
PDF
The synthesis and testing of some alkyl substituted thyroxine analogs
PDF
The determination of the dielectric constant and dipole moment of Ethyl salicylate
PDF
Synthesis of some new analogs of thyroxine
PDF
An experimental investigation of the interchange of carbon monoxide and cyanide ion in zerovalent nickel compounds
PDF
The synthesis of polyalkylnaphthalenes
PDF
The relationship between absorption isotherms and contact angles
PDF
The preparation and properties of some derivatives of amino-borine
PDF
Synthesis of the amino aldehydes from glycine, tyrosine, and lysine
PDF
The rheological properties of mixed soap systems.
PDF
The molecular structures of two independent anions: The nitrido-tetrachloro-osmate (VI) and the tetracarbonyl cobaltate (-I)
PDF
The synthesis of 4- substituted thianaphthenes
PDF
Kinetic and mechanistic studies of the redox reaction of Pt(CN) 4XYn in aqueous solution
PDF
The synthesis of certain alpha nitro sulfides
PDF
The alcohol cleavage of a triphosphine
PDF
The construction and use of a strong electromagnet in certain chemical studies
PDF
Diffusion and thermal diffusion in liquid mixtures
PDF
An investigation of the oxidation of sucrose to oxalic acid by the acid and electrolytic methods
PDF
Synthesis and reduction of 4-methyl-4-nitro-3-phenyl-1-(4-pyridyl)-1-pentanone
PDF
The synthesis of 1,2-dihydrocyclopenta (cd) fluoranthene
Asset Metadata
Creator
Terranova, Tobia Fred
(author)
Core Title
Synthesis of fluorocarbon hydrocarbon hybrid compounds, a thermodynamic scheme for predicting their physical properties, and an estimation of the basicity of diazene
Degree
Master of Science
Degree Program
Chemistry
Publisher
University of Southern California
(original),
University of Southern California. Libraries
(digital)
Tag
chemistry, physical,OAI-PMH Harvest
Language
English
Contributor
Digitized by ProQuest
(provenance)
Permanent Link (DOI)
https://doi.org/10.25549/usctheses-c17-797810
Unique identifier
UC11348830
Identifier
EP41669.pdf (filename),usctheses-c17-797810 (legacy record id)
Legacy Identifier
EP41669.pdf
Dmrecord
797810
Document Type
Thesis
Rights
Terranova, Tobia Fred
Type
texts
Source
University of Southern California
(contributing entity),
University of Southern California Dissertations and Theses
(collection)
Access Conditions
The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law. Electronic access is being provided by the USC Libraries in agreement with the au...
Repository Name
University of Southern California Digital Library
Repository Location
USC Digital Library, University of Southern California, University Park Campus, Los Angeles, California 90089, USA
Tags
chemistry, physical