Close
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected
Invert selection
Deselect all
Deselect all
Click here to refresh results
Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Phase Behavior In A Multicomponent Heteroazeotropic System
(USC Thesis Other)
Phase Behavior In A Multicomponent Heteroazeotropic System
PDF
Download
Share
Open document
Flip pages
Contact Us
Contact Us
Copy asset link
Request this asset
Transcript (if available)
Content
This dissertation has been microfilmed exactly as received 69-19,372 HAYWORTH, Kenneth Earl, 1925- PHASE BEHAVIOR IN A MULTICOMPONENT HETEROAZEOTROPIC SYSTEM. University of Southern California, Ph.D., 1969 Engineering, chemical University Microfilms, Inc., Ann Arbor, Michigan PHASE BEHAVIOR IN A MULTICOMPONENT HETEROAZEOTROPIC SYSTEM by Kenneth Earl Hayworth A Dissertation Presented to the FACULTY OF THE GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY (Chemical Engineering) June 1969 UNIVERSITY O F SOUTHERN CALIFORNIA THE GRADUATE SCHOOL UNIVERSITY PARK LOS ANGELE8, CALIFORNIA 9 0 0 0 7 This dissertation, written by Kenneth, Earl Hayworth under the direction of Dissertation Com mittee, and approved by all its members, has been presented to and accepted by The Gradu ate School, in partial fulfillment of require ments for the degree of D O C T O R OF P H I L O S O P H Y C/ Dean Date____.$£Le„5^969____ DISSERTATION COMMITTEE .... A /) * £ hair m an. ^^ 4 1 4 * 1 * 4 .. ACKNOWLEDGMENTS I wish to express my gratitude to my adviser, Dr. C. J. Robert, for his selfless assistance and infinite patience in this work. I wish to acknowledge the constructive criticisms of my committee members, Dr. J. M. Lenoir and Dr. J. R. Cady. I wish to acknowledge also the efforts of Mr. J. M. Scott, the. laboratory mechanic, and Mr. >f. A. Archer, a personal friend. Without their assistance and suggestions on the mechanical aspects of the equipment, the work would have been much more difficult. I wish to express ray gratitude to Mrs. Ruth Toyama. Her friendship and confidence were reassuring, and her guidance through administrative details was unerring. Finally, I wish to express ray indebtedness to my wife, Mary Jo, and my daughter, Paula. Their sacrifices of time and substance to this work are only exceeded by their tolerance and patience. ii TABLE OF CONTENTS Page SUMMARY................................ 1 INTRODUCTION............. 4 OUTLINE OF EXPERIMENTAL W O R K ....................... 23 EXPERIMENTAL DATA.................................. 27 DISCUSSION OF RESULTS . . . 50 EXTENSION OF DATA........................... 71 SUMMARY OF RESULTS............................... 72 REFERENCES........................................ 75 APPENDICES........................................ 77 Appendix A - Sample Preparation and Experi mental Procedure............... 78 Appendix B - Calibration of Equipment........ 97 Appendix C - Calculation of Sample Composition from Experimentally Determined Data 103 Appendix D - Discussion of Errors..............110 Appendix E - Determination of True Temperature and Pressure of Sample............113 Appendix F - Reduced Experimental Data..........120 Appendix 6 - Purity of Fluids Used..............140 Appendix H - Standard Equipment Used............141 iii LIST OF TABLES Table No. Page I Values of Vapor Critical Pressures and Temperatures of the Pure Components and Their Binaries........................... 8 II Sample Compositions R u n ................. 24 III Pressure-Temperature Relations at the Phase Boundaries of the System Benzene-Cyclohexane- Water at Equal Intervals of Temperature . . 28 IV Pressure-Temperature Relations at the PhaBe Boundaries of the System Benzene-Cyclohexane- Water at Equal Intervals of Pressure .... 40 V Dual Heteroazeotropic Composition Ranges and Maximum Water Solubility for the Systems Studied............. -.-............... 70 i i VI Thermocouple Deviation D a t a .............. 99 VII Sample Calculation of Mixture Composition . 104 VIII Reference Chart for Iron-Constantan . .Thermocouple............................... 114 IX Interpolation Chart for Iron-Constantan Thermocouple ....... ........ .... 115 X Sample Data Reduction Sheet .............. 116 XI Mercury Vapor Pressure Chart for Experimental Range ............. 118 XII Reduced Experimental D a t a .................. 121 iv LIST OF FIGURES Figure No. Page 1. P-T phase Boundaries of the System Benzene- Cyclohexane............................ . 5 2. Critical Temperature Locus of the System Benzene-Cyclohexane ..................... 6 3. Critical Pressure Locus of the System Benzene-Cyclohexane ..................... 6 4. P-T Phase Boundaries of the System Benzene- Water . . . . ........................... 9 5. Selected Isotherms of the System Benzene- Water.................................... 10 6. Selected Isobars of the System Benzene- Water.................................... 11 7. P-T Phase Boundaries of the System Cyclohexane-Water......................... 13 8. Selected Isotherms of the System Cyclohexane-Water ................. 14 9. Selected Isobars of the System Cyclohexane- Water .................................... 15 10. Previously Known T-x Loci of the System Benzene-Cyclohexane-Water................. 18 11. Previously Known P-x Loci of the System Benzene-Cyclohexane-Water................. 19 12. Schematic of Phase Boundaries of Systems Which Exhibit single and Dual Hetero azeotropic Behavior ..... ............. 21 v Figure No. Page 13. Samples Run on the System Benzene- Cyclohexane-Water ................... 25 14. P-T Phase Boundaries of the System (3:1) Benzene:Cyclohexane-Water ........... 51 15. P-T Phase Boundaries of the System (1:1) Benzene-Cyclohexane-Water ........... 52 16. P-T Phase Boundaries of the System (1:3) BenzenekCyclohexane-Water ........... 53 17. Selected Isotherms of the System (3:1) Benzene:Cyclohexane-Water....... 54 18. Selected Isotherms of the System (1:1) Benzene:Cyclohexane-Water .......... 55 19. Selected Isotherms of the System (1:3) Benzene:Cyclohexane-Water....... 56 20. Selected Isobars of the System (3:1) Benzene:Cyclohexane-Water .......... 57 21. Selected Isobars of the System (1:1) Benzene:Cyclohexane-Water .......... 98 22. Selected Isobars of the System (1:3) Benzene:Cyclohexane-Water....... 59 23. Heteroazeotropic Surface of the System Benzene-Cyclohexane-Water in T-x Space . . 61 24. Heteroazeotropic Surface of the^System Benzene-Cyclohexane-Water in P-x Space . . 62 25. Locus of Vaporization Critical Endpoints for the System Benzene-Cyclohexane-Water . 63 26. T-x Space for the System Benzene- Cyclohexane-Water ....................... 64 vi Figure No. Page 27. P-x Space for the System Benzene- Cyclohexane-Water ....................... 66 28. Experimental Tube....................... 80 29. Schematic of Loading Apparatus.......... 82 30. Compressor Bloch Assembly ................ 88 31. Schematic of Assembled Apparatus ..... 90 32. Schematic of Relative Heights of Experimental Apparatus................. 91 33. Mercury Level Indicator.................. 93 34. Pressure Gauge Deviation Chart .......... 98 35. Thermocouple Deviation Chart ............ 101 36. Thermocouple Deviation Nomogram............ 101 37. Vapor Pressure of Components at Loading Temperatures............................. 105 38. Density of Components at Loading Temperatures ......................... 106 39. Typical Chart for Determining Length of Liquid in Component Measuring Capillary for Required Weight of Component in Sample . . 109 vii SUMMARY In recent years interest has developed in determin ing the phase behavior of partially miscibla systems. The Systems studied have been binaries, usually a hydrocarbon and water. Interest in this type of system is logical be cause of the presence of water in conjunction with hydro carbons, either in underground reservoirs or during pro cessing operations. Since most real systems are actually a mixture of different molecular types of hydrocarbons, this study was undertaken to determine the effect of combining two miscible hydrocarbons with water. The literature sup plied the binary boundaries for the ternary system. To study the ternary system of benzene-cyclohexane- water, thirty-five samples were prepared. These thirty- five samples consisted of: pure benzene, pure cyclohexane, three hydrocarbon binaries, three hydrocarbon-water bina ries, and twenty-seven hydrocarbon-water ternaries. The pressure at the liquid and vapor phase boundaries of these samples were determined within the temperature range from 150 to 300%. Along frith a complete numerical tabulation these data are presented graphically as pressure- 1 2 temperature, temperature-compos it ion, and prassure-composI- tion diagrams. These data are also presented pictorially as three dimensional temperature-composition and pressure- composition space plots. In these the loci of the vapor critical points, maximum water solubility, and heteroazeo tropic composition are shown and indicate the shape of the surface for each of these phenomena of the system. On these are also shown the critical vapor locus of the hydro carbon mixtures and the vaporization critical endpoint locus of the hydrocarbon-water mixtures. Up to the three phase critical endpoint all hydro carbon ratios of benzene:cyclohexane mixed with water de velop in a typical manner of partially miscible systems, i.e. the vapor composition at a point of univarance (heter- oazeotrope) lies intermediate to the two liquid composi tions. The three phase critical endpoint locus passes through a temperature minimum at a hydrocarbon mole ratio of benzene:cyclohexane of 24:76 in water. At this hydro carbon ratio the maximum in dual heteroazeotropic composi tion range occurs as does the minimum in the maximum water solubility locus. It is of importance that the minimum in the vaporization critical locus of hydrocarbon mixtures 3 occurs at approximately this same mole ratio, indicating that predictions may be based on the behavior of hydrocar bon mixtures and water from the critical behavior of the hydrocarbon system. Also notable was the masking effect one hydrocarbon has over another, as the cyclohexane ap pears to be the dominant hydrocarbon in this system. This also is noticeable in the pure hydrocarbon vaporization critical locus. INTRODUCTION The benzene-cyclohexane-water system is typical of the fourth case of partially miscible liquid systems as outlined by Rooseboom (17). The fourth case represents systems composed of liquids with very limited miscibility at low temperatures and pressures, and Whose vapor pres sures in the range of the three phase curve are very simi lar. Whereas the work of Kuenen (10) and Rooseboom con- derned itself with binary systems, the extension of their expoiitions cam be made to ternary systems composed of two components which are miscible in all proportions, but which are iiutually partially miscible in the third. The benzene-cyclohexane (9), benzene-water (12), and the cyclohexane-water (3,13) systems have been studied over the entire range of compositions. These data served as boundaries for the investigation of the ternary system. This ternary system represents a prototype of aromatic- naphthene mixtures common in the petrochemical industry. The benzene-cyclohexane system's pressure-tempera- ture phase boundaries are shown in Figure 1, its critical temperature locus in Figure 2, and its critical pressure f r 1 I i : : ! : : : : ; • :!i i !!i! fomi!>erqt^ ' M m 7 locus In Figure 3. The data plotted were generated during this Investigation and differs slightly from thdse reported previously (9) , as shown in Table I. The system's critical temperature vs. composition locus passes through a minimum at approximately 24-25 mole percent benzene, whereas the critical pressure vs. composition locus has only a slight negative deviation from linearity. These loci indicate considerable deviation from ideal solution behavior and the effects of this non-ideal behavior of the hydrocarbon solu tion has considerable influence on the ternary system stud ied. The data points noted on Figure 1, namely A-l through E—1 refer to sample compositions run. A-l is pure benzene, B—1 is 3:1 benzene:cyclohexane by weight, c-1 is 1:1 ben zene: eye lohexane by weight, D-l is 1:3 benzenercyclohexane by weight , and E-l is pure cyclohexane. This method of identification is used throughout the entire reporting of the investigation. The benzene-water system's typical pressure-tempera- ture phase boundaries are shown in Figure. 4, its isotherms j in Figure 5, and its Isobars in Figure 6. These data are i essentially from the literature (12) with the exception of | sample numbers A-4 and A-6 which were run during this in- 8 TABLE I Values of Vapor Critical Pressures and Temperatures of the Pure Components and Their Binaries References System (9) •(12) ( 1 + ) (3) (*) Benzene vapor crit. temp. 289.2 288.7 288.7 289.5 vapor crit. press. 712 710 709 — 713 3:1 Benzene:Cyclohexane vapor crit. temp. 2 8 1 + . 1 * --- - — -— 281+.5 vapor crit. press. 682 -— — — - 67I + 1:1 Benzene:Cyclohexane vapor crit. temp. 281.1+ ---- — -— 281.6 vapor crit. press. 6U5 — — — 6 1 + 6 1:3 Benzene:Cyclohexane vapor crit. temp. 280.3 280.6 vapor crit. press. 617 — — — 620 Cyclohexane vapor crit. temp. 280.9 — —— 281.0 281.0 281.2 vapor crit. press. 59 * * — 597 597 59U Benzene-Water vapor crit. endpt. temp. —--- 268.3 — — 2jS8.3 vapor crit. endpt. press. — - 1361+ -— — - 1361+ max. vater sol. mol } — - 60.2 — — 59.0 Cyclohexane-Water vapor crit. endpt. temp. ---- --- --- 255*7 255*7 vapor crit. endpt. press. — -— — - 1163 1163 max. vater sol. mol % — — — 1+9.3 1 + 1 + . 5 *These Bata PRESSURE-PSIA 9 j | 1800 1600 1400 1200 1000 800 600 400 200 0 s - ■ 1 ■ i : • . t W ATER CONTENT MOLE% 1 WT.% o.o 0 . 0 195 5.3 31.0 9.4 4 2 5 ' 14.6 51.1 19.4 5 7 5 24.0 64.6 29.9 71.0 36.1 8I.B 60.9 VAPO RIZA TIO N CRITICAL ENDPOINT - W A T E R - ■LO C U S O F CRITICAL V APO R POINTS 3 PHASE C U R V E- 160 180 200 220 240 . 260 280 I . . . TEMPERATURE-*C ’ ; ; I • ' / . , Figure 4 . j P -T P h a se B oundaries of. th e S ystem '; . ^ B e n z e n e-W a te r i . , : I . PRESSURE - PSIA 10 VAPORIZATION ' CRITICAL ENDPOINT 1400 268.3*C. LOCUS OF 1 MAXIMUM PRESSURES 2 7 0 *C LOCUS OF CRITICAL VAPOR PRESSURES 268.3 1000 300 600 200*C 400 LOCUS OF r K . HETEROAZEOTROPES 200 LOCUS OF MAXIMUM WATER SOLUBILITY 40 60 COMPOSITION-MOLE % WATER . 100 80 Figure 5. Selected Isotherms of the System Benzene-Water: i “ ' : i- ; : v ; TEM PER A TU R E- 11 LOCUS OF MAXIMUM TEMPERATURES j / I LOCUS OF CRITICAL / VAPOR TEMPERATURES 290 VAPORIZATION CRITICAL ENDPOINT 270 1364 P SIA - 250 o o 230 7 0 0 PSIA 210 5 0 0 PSIA ^ 190 3 0 0 PSIA LOCUS OF MAXIMUM WATER SOLUBILITY LOCUS OF HETEROAZEOTROPES 170 150 100 80 20 40 COMPOSITION- MOLE % WATER 60 Figure 6. Selected. Isobars of the System Benzene-Water f : 12 vestigation in an attempt to verify the heteroazeotropic behavior of the system. Samples. A-6 and A-7 are omitted from Figure 4 as they lie so close to the three phase locus that their inclusion would detract from the phenomena oc curring along this locus. As shown on Figures 5 and 6, this system exhibits a very narrow heteroazeotropic compo sition range in the temperature-pressure range studied, and a heteroazeotropic composition which increases in water content as the temperature and pressure increase to the three phase vaporization critical point. The three phase vaporization critical point is 268.3°C, 1364 psia, and has a water content of approximately 59 mole (25 weight) per cent. The water content of the three phase vaporization critical point found by the isothermal and isobaric cross plots (Figures 5 and 6) differs slightly from that reported previously (12), as shown in Table I. The cyclohexane-water system's typical pressure- temperature phase boundaries are shown in Figure 7, its isotherms in Figure 8, and its isobars in Figure 9. These data are essentially from the literature (3) with the ex cept ion of sample number E-6 which was run during this in- J vest igat ion in an attempt to verify the reported unusual PRESSURE* PSIA 13 1800 1600 1400 1200 1000 .800 600 40 0 i 200 r I o ; — : ■ .......... ' v : F ig u re‘:7 . P-T . P h a s e Boundories o f th e S ystem ! : i i - . . ■ . C yclohexane:W ater, j . TZZ ' " ' . " V * . ' ' V- W ATER CONTENT MOLE % 0.0 5.0 20.4 33.1 43.3 47.2 53.2 66.7 8 1 . 7 90.4 WT.% O X ) 1 . 1 5 Z 9.6 14.1 16.3 19.6 30.0 48.7 6 6 7 VAPO RIZA TIO N CRITICAL ENDPOINT LO CU S OF C R IT IC A L V A PO R POIN TS W A TER PHASE CURVE 200 220 240 TEMPERATURE-*C PRESSURE-PSIA . 14 1400 1200 1000 800 600 400 200 VAPORIZATION CRITICAL ENDPOINT LOCUS OF MAXIMUM PRESSURES 270 *C 2 5 5 .7 *C LOCUS OF CRITICAL VAPOR PRESSURES 2 7 0 *C K 200*C A LOCUS OF HETEROAZEOTROPES LOCUS OF MAXIMUM WATER SOLUBILITY I 20 40 60. 80 COMPOSITION-MOLE% WATER ; Figure 8. Selected. Isotherms of the System Cyciohexane-Water " TEM PERATURE- 15 LOCUS OF MAXIMUM * TEMPERATURES 290 LOCUS OF CRITICAL VAPOR TEMPERATURES VAPORIZATION ____ CRITICAL ENDPOINT 1163 PSIA 250 1000 PSIA o o 230. 210 5 0 0 PSIA 190 3 0 0 PSIA LOCUS OF HETEROAZEOTROPES LOCUS OF MAXIMUM WATER SOLUBILITY 170 150 100 40 60 80 COMPOSITION-MOLE %. WATER 20 Figgre 9. Selected Isobars of the System . Cyclohexane-Water : : ; ; ^ '" : ' 16 heteroazeotropic behavior of the system. Phase boundaries of Samples E-2, E-7 and E-10 have been omitted from Figure 7 for clarity. Sasqale E-6 did verify the unusual dual heteroazeo tropic behavior of the system. This phenomena results in the heteroazeotropic composition locus passing through a maximum, and exists over a composition range starting at the maximum water solubility point. The isothermal and isobaric crossplots of Figures 8 and 9 indicate a composi tion range for this behavior of 44.5 - 48.0 mole percent water (14.7 - 16.5 weight percent) for the cyclohexane- water system. Dual heteroazeotropic behavior has been re ported only once before in the literature (15) for the pro panol-2-wa ter system.- The three phase vaporization critical point for the cyclohexane-water system is 255.7°C, 1163 psia, and has a water content of approximately 44.5 mole (14.7 weight) per cent. The water content of the three phase vaporization critical point determined in this study differs slightly ! from that reported previously (3), as shown in Table I. The previously known loci of critical vapor points, | , . . - j maximum water solubility, and heteroazeotropic compositions 17 of the three binary systems Which bound the benzene-cyclo- hexane-water ays tan ara shown in Figures 10 and 11. Fig ure 10 shows the known loci in tenperature-cosposition space, and Figure 11 shows the known loci in pressure-com- position space. Only the hydrocarbon-rich (by weight) re gion is shown. The symbols used have the following lean ing: K ' - critical point of pure hydrocarbon or mixture of hydrocarbons K'1 - three phase vaporization critical endpoint L' - locus of maxisum water solubility L'' - locus of tastltafcoazeotropic compositions L''' - locus of critical vapor points subscript a - benzene-water Subscript e - cyclohexane-water The isotherms and isobars selected to show the pres- sur e-conpos it ion and tenperature-cosposition behavior of the systems as shown in Figures 5, 6, 8 and 9 have been chosen so that the systems may be easily compared. The isotherms chosen were 200, 230, 250, the critical vapori- i zation endpoint tenperature, and 270°c. The isobars cho- j sen were 300, 500, 700, 1000, and the critical vaporization) 18 BENZENE WATER © KAY B HISS0NG(9) A REBERT 8 KAY (14) O HAYWORTH (3) CYCLOHEXANE C0MP09ITI0N-M0L% Figure 10. Previously Known T-x Loci of the System Benzene- Cyclohexane-Water OKAY a HISSONG (9) AREBERT a KAY (14) O HAYWORTH (3|) 8 CYCLOHEXANE COMPOSITION-MOL % Figure II. Previously Known P-x Loci of the System Benzene-Cyclohexane-Water 20 endpoint pressure ell In psia. These values are used also In later presentations of results for the ternary system. The unusual behavior of the eyelohexane-water system is also noted in the P-T phase boundaries. Figure 12-A shows the P-T behavior of the benzene-water system, and Figure 12-B shows the behavior of the cyclohexane-water system. On these diagrams the typical phase boundaries are shown schematically from 0 percent water (line 1) to 0 per cent hydrocarbon (line 5). In such systems as benzene- water, the envelop develops in a normal manner. The lower water content compositions such as boundary '2, has its three phase maximum temperature and pressure (3 pm), moves along a two phase bubble point locus which passes through a vapor-liquid maximum pressure point (VL-Pm) , then proceeds through its critical vaporization point (VC), then through the vapor-liquid maximum temperature point (VL-Tm)i;~and finally along the two phase dew point locus. Hear the maximum water solubility such as boundary 3, the three phase maximum approaches the vaporization critical end point, and the dew point locus parallels the three phase locus. Within the composition range close to but less than! I the maximum water solubility, the dew point line will touch / PgRATllRE fiQAZEQTROBlC .BEHAVIOR R^TURE . i .. ZEOTiROPIC :BEHAVIOR. Fjigure 12. jSchelmatiQ of PKosg; Boundarjies cif Syjstems W Exhibit; S ngle: and; Qiid: Heterdazfiotropici Betia 22 the—three phase locus resulting in a single heteroazeo- tronic point for a given composition. For compositions greater than the maximum solubility of water, the dew point line does not approach the three phase line (line 4). In systems such as cyclohexane-water, the behavior at low water concentrations is quite similar (boundary 2). But as the maximum water solubility is approached the be havior is quite different. For mixtures containing the maximum water solubility or slightly less, the dew point locus rexiains considerably away from the three phase locus as shown by boundary 3. At compositions slightly higher than the maximum water solubility, the dew point line miss es the three phase critical endpoint, but touches the three phase locus at a lower temperature and pressure, which is at a heteroazeotropic point. Each composition between the maximum water solubility and the maximum heteroazeotropic water content will exhibit an upper and lower heteroazeo tropic point as shown by composition 4. This dual hetero- azedtropic behavior causes the heteroazeotropic composition locus to pass through a maximum. OUTLINE OF EXPERIMENTAL WORK Since the hydrocarbon-rich region in terns of weight percentages of the system was studied, the composition of the minimum in the critical locus of the miscible hydrocar bons was used as a guide for hydrocarbon solution concen tration selection. This minimum occurred at approximately 85 weight percent benzene; therefore, the logical choice for hydrocarbon solution compositions were: 1:3, 1:1, 3:1 benzene:cyclohexane. This gave three completely miscible hydrocarbon mixtures each mixed with water to be studied in the same Sumner as the binary systems of benzene-water and cyclohexane-water. The benzene-cyclohexane-water sys tem reported herein then consists of essentially five systems: Series A benzene-water Series B (3:1) benzene:cyclohexane-water Series C (1:1) benzene: cyclohexane-water Series D (1:3) benzene:cyclohexane-water Series E cyclohexane-water The samples used to study the system are presented in Table II and are positioned in Figure 13. To survey the 23 24 TABLE II Sample Compositions Run Weight Percent Mole Percent Sample Benzene Cyclohexane Water Benzene Cyclohexane Water A-l 100.0 _ _ _ _ 100.0 A - 1 + 8 5 . 1 + --- 1 1 + . 6 5 7 . 1 + —— _ — 1 + 2.6 A-6 76.0 --- 2 1 + . 0 1 + 2.2 --- 57.8 B-l 75.1 2 1 + . 9 76.5 23.5 B-la 75.6 2k. h --- 76.9 23.1 --- B-2 71. U 23.9 1 + . 8 62.5 1 9 . 1 + 18.1 B-3 67.5 22.5 10.0 51.3 15.8 32.9 B - 1 + 63.7 21.3 15.1 1 + 2.8 13.3 1 + 3 . 9 B-5 61.7 1 9 . 1 + 18.9 38.1 11.2 50.7 B-6 60.0 19.7 20.3 36.1 11.0 52.9 B-7 56.7 18.9 2 1 +.1 + 31.5 9.8 58.8 B-8 1 + 5 .6 1 1 + . 6 39.8 19.7 5.9 7 1 + . 5 C-l 50.1 1+ 9 . 9 51.9 1 + 8.1 C-la 1 +9.8 50.2 --- 51.7 1 + 8 . 3 --- C-2 Vr-5 1 + 7 . 7 1 + . 8 1 + 2.2 39.3 18.5 C-3 1 + 5 . 2 1 + 5 . 2 9.6 35.1 32.6 32.3 C-U 1 +3 .8 1+3.8 12. 1 + 31.7 2 9 . 1 + 38.9 C-5 1 + 3 .0 1 + 3 . 0 l l+ .o 30.0 27.8 1 + 2.2 C-6 1 + 2.1 1 + 2. 1 + 15.5 28.3 26.5 1 + 5 . 2 C-T 1 + 1 . 5 1 + 2.2 16.3 27.5 25.9 1 + 6.6 C-6 C-9 3 7 . 1 + 37.6 (20) 25.0 20.7 19.3 (53) 60.0 C-10 C-ll 30.0 29.8 (28.3) 1 + 0.2 13.0 11.9 ( 6 1 + ) 75.1 D-l 25.0 75.0 26.1 + 73.6 D-la 2 1 +.1 + 75.6 25.8 7 1 + . 2 --- D-2 23.8 71.5 1 + . 7 21.5 59.9 18.6 D-3 22.6 67.7 9.8 17.7 1 + 9 . 2 33.1 D - l * 22.1 66.2 11.7 16. 1 + 1 + 5 . 8 37.8 D-5 21.0 65.1 + 13.6 1I +.9 1 + 3 . 2 1 + 1 . 9 d-6 21.2 6 1 + . 0 1 1 + . 9 l i t . 6 1 + 0 . 9 1 + 1 + . 5 D-7 20.7 63.5 15.8 l l + . O 39.8 1 +6 .3 D-8 20.2 63.2 16.6 13.U 38.9 1 + 7 . 6 D-9 20.8 62.2 17.0 13.7 38.0 1 + 8 . 3 D-10 18.7 56.2 25.1 10. 1 + 29.0 60.6 D-ll 1 1 + . 7 1 + 5 . 6 39.7 6. 1 + 18.5 75.1 E-l ____ 100.0 106.0 E-6 --- 8I +.0 16.0 52.8 1 + 7 . 2 25 WATER 80, 80 E SERIES A SERIES B SERIES 6 0 6 0 D SERIES .40 40 C SERIES 20 20 8 0 CYCLOHEXANE 20 40 60 MOLE PERCENT BENZENE Figure 13. Samples Run on the System Benzene - Cyclohexane-Water 26 required surfaces and loci, the water compositions of 5, 10, 15, 25, and 40 weight percents were run for each hydro carbon ratio. With the plots of isotherms and isobars which were possible from the smoothed data of pressure- temperature phase boundaries, it was possible to choose the additional compositions required to more accurately deter mine the maximum water solubility and heteroazeotropic be havior of the systems. The experimental method used was essentially that of Young (19), and Kay (8) , as modified by Rebert and Kay (14). The phenomena observed and the data taken were bubble points, dew points, and the critical point for each compo sition studied. EXPERIMENTAL DATA The pressure at the liquid and vapor phase bounda ries of thirty-five samples of benzene, benzene-water, ben- zene-cyclohexane-water, cyclohexane-water, and cyclohexane were determined within the temperature range of 150 to 300°c. The smoothed data for increments of 5°C of tempera ture are presented in Table III, and for increments of 100 psi of pressure are presented in Table If. Also included for reference are the smoothed data for the benzene-water and cyclohexane-water systems reported previously (12,13,3). The following pattern was followed for each series presented in Tables III and If. The three phase locus is traced from low temperature and pressure up to the vapori zation critical endpoint (VC). This locus is common.to all mixtures of given hydrocarbon ratio and water content below the values indicated as the maximum three phase temperature and pressure (3 pm). This locus is also common to all mix tures of given hydrocarbon ratio whose water content ex ceeds the maximum water solubility. Next the vapor-liquid phase boundary of the pure hydrocarbon or water-free hydro carbon solution is traced from low temperature and pressure 28 TABLE III Pressure-Temperature Relations at the Phase Boundaries of the System Benzene-Cyclohexane-Water at Equal Intervals of Temperature Temp. Press. Temp. Press. Temp. Press. °C psia °C psia °C psia A Series A-2 19*5 moljS vatert A-3 (oon’ t.) Benzene-Water 200* All Comp. 3 Phaset 205* 210* 180 295 215* 185 326 220* 190 360 225* 195 395 230* 200 1 * 3 8 235* 205 1 * 8 1 * 2j * 0* 210 531 2U5* 215 580 250* 220 633 255 225 691 260 230 752 265 235 816 270 2U0 885 272 2U5 960 273 250 1038 273.2 255 1123 273 260 1212 272.2 265 1307 271 268.3 1 3 6 1 * VC 270.3 268 265 A-l Pure Benzene 260 255 150 8 1 * 250 160 10U 2U5 170 126 2l * 0 180 152 235 190 182 230 200 212 227.5 210 2U6 220 286 230 330 A-3 31.0 2k0 378 250 1 * 3 3 195* 260 1 * 9 1 200* 270 557 205* 280 632 210* 289.5 713 VC 215* 29b 220* 1 * 8 2 320 225* 5 2 1 * 351 230* 568 383 235* 617 1 * 1 8 2 1 * 0 668 1 * 5 U 2 1 * 5 7 2 1 * 1 * 9 5 250 785 53 6 255 850 582 260 919 63U 265 99 6 687 270 1116 7^5 271.0 1170 VL-Tm 809 270.5 1190 879 269.7 1207 VC 963 269.5 1211 101U 269 1217 1055 268.5 1220 VL-Pm 1085 VL-Tm 268 1219 1100 265 1193 1127 VC 260 1136 l l l * 7 255 1075 1150 VL-Pm 250 1011 11 1 * 0 2 1 * 5 952 1115 21*2.5 9 2 l * 3 pm 1057 1003 A - l * 1 * 2 . 6 952 mol2 vater 900 326 850 190* 797 195* 357 7 1 * 5 200* 390 1 r 720 3 pm 205* 1 * 2 6 210* 1 * 6 5 215* 505 molj* vater't 220 5U7 225 592 313 230 638 3 l » l 235 693 373 2 1 * 0 7 5 1 * 1 * 0 7 2 1 * 5 818 1 * 1 * 1 * 250 887 01 (M a d a * h 0) t o £ * > 4 t ) t d > H rH UNCO IAVO O IftlTkOOVO J-OI riPlOnnOHJ’WO HJOO«t-r|VOHt-nO t--* CJOOvOvOjOnt- n j- umavovo t-eoco ovo Hi-lcvid iavo t — H H H H r H H H H « 1 H H I o\ ■HovocvjcocorHvot-cotAocvivocococvj OIOVOHIA OV-3" O lAriro 1 AP1H OvCO t-o (0 (0 (0 4 ^ 4 IAVO VD t— t-CO 0\0 0 rl«f0 r-C « — i rH rH rC 9 ************ _ _ CJ CO I r t O l A O l T v O l n O l A O l A O l A O t A O l A O l A O l r t o i o\ o o h H cvj c\ i in m-d- -d ia iavo vo t — t-oo oo ov ov HCVJCVJCVJCVJCVJCVJCVJCVJCVJCVJCJCVJCVJCVJCVJCVJCVJCVJCVJCVJ CO C \ **************** _ IAOIAOIT vO I A O I A O I A O I A O I A O I A O o H H cvi cm m m.d-d iaiavovo t-t-co eo o\ CVJCVJCVJCVJCVJCVJCVJCVICVJCUCVJCVJCVJCVJCVJCVJCVJCVJ a o o H w H I to at a "H «i a U P i P i I o o *4 V I d > H rH i CO ia vo -5 : « t c o w > C V J VO .d IA Q CO CO r H t — CO -d lAOMAffit- t —-d CV|lAOvtna5cvjt-COCO-drHCOlACOrHOOvVO ia iavo vo t —co coovorioiwm r H r H r H r H r H CO • (A O IA O IA O IA O IA O IA O IA O (A O IA CO C O O v O v O O r H r H C V J C V J C O C O - d - d l A IA VO VO VO HrHHCVJCVJCVJCVJCVJCVICVJCVJCVJCVlCVJCVJCVJCVJCVJ O t s > H rH £ VO - d VO «£ rH t - IACO CO rH CO t —VO C \ C O -d t - O CO O VO C V J C V J C M IA Ov CO CO CO CO CO Ov tA CViOCO t - l A I A - d IA t - C O O O tO jf J IA (A VO vo t— C O O V O V O rH C V JO O -d lA rH rH rH rH rH rH ********* _ _ O IA O IA O IA O IA O IA O IA O IA O IA O tA O O V O v O O H r H C V J C V J C O C O -d - d IA IA VO VO f - t - C O rHrHCVJOJCVICVICVJCVJCVJOJCVJCVJCVlCVJCVICVJCVJCVJOJ m d a - h v a >4 Pt £ £ £ CO 00 Ov OO CO -d O t-CO CO CO o VO-d lAOVOCOCOt— IAOVO OV OrHCVlCVJCVJCVJCVJCVJrHrH H H H H H H r H H H H U o > H rH O 0 > & CO O O rH VO CO CO IA rH CO C V J CO G \ IA CO rH CO 0 0 C V J IA Ol O © VO O CO Ok C V J IACO OJ VO O IA Ov IA O VO CO O CO VO IA IA Q W f U C O H O t — 08 CO 00 CO-3- -3" IA IA IAVO t—t —CO OvOXO rH C V J COCOCOCOCOCOCOCM HrHHHHrHHHHrlH I O o a o o 4 : r l O H A O O O l - IA O IA t-co t— 1—vo ^'oco IAVO VOVOVOVOV0VOV0V0 IA CVJCVJCVICVJCVJCVJCVJCVJCVJCVJCVJ rH IA LA IACO VO IA ************ • • • O l A O I A O I A O I A O l A O l A O l A O I A O l A t —t— I—t— t —VOIACO CO CO OV OV O O rH rH C V J C V J CO C O ^d . d IA IAVO VO VO VO VO VO VO VO VO VO rHrHHrHCVJCVJCVJCVJCVJCVJCVJCVJCVJCVICVJCVJCVJCVJCVJCVJCVICVJCVJCVJCVJCVJ 30 TABLE III (con't.) Temp. Press. Temp. Press. °C psia °C psia A-9 (con*•t.) B-l (con’ t.) 295 1I + 9I + 200 212 300 1616 210 2l * l * 305 17^7 220 2 8 1 * 230 329 2 1 * 0 378 B Series 250 1 * 3 5 3:1 Benz,.:Cycloh. 260 1 * 9 6 270 562 All Comp,, 3 Phase 280 633 2 8 1 * . 5 6 71 + VC 150 162 155 179 160 199 B-2 18.1 mol> water 165 222 170 2 1 * 6 190* 231 175 272 195* 252 180 301 200* 275 185 333 205* 299 190 367 210* 325 195 1 + 0 1 * 215* 352 200 1 * 1 + 5 220* 381 205 1 * 8 8 225* 1 * 1 1 210 535 230* 1 * 1 * 3 215 587 235* 1 * 7 6 220 6 1 * 3 2l + 0* . 512 225 701 2 1 * 5 * 551 230 763 250* 59U 235 828 255 6 1 + 3 2k0 900 260 697 2U5 979 265 759 250 1063 270 831 255 1152 272 868 260 1 2 1 * 5 273 893 260.1 + 1253 VC 2 7 1 + 929 27*».2 9 1 * 5 VL-Tm 2 7 l + 958 B-l 0 mol/S vater 273 982 272.9 985 VC 150 92 272 999 160 109 270.8 1006 VL-Pm 170 130 270 1005 180 155 269 1002 190 182 265 981 Temp. Press. °C psYa B-2 (con’ t.) 260 9 1 * 8 255 911 250 873 2 l + 5 831 2 1 * 0 789 235 7 l * 7 230 707 225 667 220 628 215.9 596 3 pm B-3 32.9 mol/C vater 190* 287 195* 312 200* 3 l * 2 205* 376 210* 1 * 1 1 215* 1 * 5 0 220* 1 * 8 9 225* 529 230* 572 235* 616 2l + 0* 663 2l+ 5* 713 250* 765 855* 825 260 898 265 999 2 66 1031 267 1089 VL-Tm 266 1 11*0 265.8 l l ! » l » VC 265 1157 263.9 1161* VL-Pm 263 1161 262 1156 260 l ll *l 255 1087 250 1032 2 1 * 5 976 2 1 * 1 * . 6 973 3 pm 31 Temp. Press. °C psia B - l * 1 * 3 . 9 mol^ vater 185* 313 190* 3 1 * 1 * 195* 377 200* 1 * 1 3 205* 1 * 5 2 210* 1 * 9 2 215* 533 220* 577 225* 622 230* 671 235* 72U 2l * 0 783 2 1 * 5 853 250 929 255 1016 258 1080 260 111 *7 261 1205 261.1 1215 VL-Tm 261 1219 260.7 1229 VC 260.3 1235 VL-Pm 260 1 23 1* 259.1 1226 3 pm B-5 50.7 m o l / i f vater 185 319 190 355 195 395 200 1 * 3 7 205 1 * 8 2 210 531 215 585 215.9 596 H'ze 220 639 225 693 230 751 235 813 2f c 0 8 8 1 * 2 l » 5 961 250 101*3 TABLE III (con't.) Temp. Press. °C psia B-5 (con't.) 255 1135 259 1227 H'ze 260 1238 265 1331 270 l l » 6l 27I * 1661* B-6 52.9 molJJ vater 185* 305 190* 3 l * 3 195* 383 200* 1 * 2 5 205* 1 * 7 0 210* 520 215* 573 220 627 225 685 230 7 1 * 7 235 812 2 1 * 0 8 8 1 * 2 l * 5 961 250 1 0 1 * 3 255 1131 260 1222 265 1320 270 1 1* 33 275 1576 278 1708 B-7 58.8 moljf vater 190* 319 195* 355 200* 395 205* 1 * 3 9 210* 1 * 8 5 215* 5 3 1 * 220* 585 225* 638 230* 69b Temp. Press. °C psia B-7 (eon't.) 235* 755 2 1 * 0* 819 2l*5* 893 250* 976 255* 1061* 260 1157 265 1260 270 1368 275 1U87 280 1627 283 1737 B-8 7I + . 5 nol/ 6 vater 190* 270 195* 302 200* 336 205* 371 210* 1 * 0 8 215* 1 * 1 * 9 220* 1 * 9 1 225* 537 230* 586 235* 6 1 * 1 2 1 * 0* 698 21* 5* 758 250* 821 255 891 260 968 265 1055 270 1150 275 1 2 5 1 * 280 1365 285 l l + 8 3 290 1603 *95 1732 32 TABLE III (con't.) Temp. Press. Temp. Press. Temp. Press. °C psia °C psia °C psia C Series C-l (con't.) C-3 32.3 mol# vater 1:1 Benz.:Cycloh. 275 59^ 190* 299 All Comp.1 3 Phase 280 633 195* 3323 281.6 6 1 * 6 VC 200* 351 150 158 205* 379 155 177 210* 1 + 1 1 160 198 C-2 18.5 mol# vater 215* 1 * 1 * 6 165 221 220* 1 * 8 U 170 2U5 200* 283 225 526 175 272 205* 306 230 570 180 302 210* 331 235 618 185 333 225* 356 2 l + 0 669 190 368 220* 3 8 1 * 2 l * 5 730 195 1 * 0 8 225* 1 * 1 3 250 798 200 1 * 5 0 230* 1 * 1 * 5 255 878 205 U95 235* U79 260 982 210 5^3 2l * 0* 517 262 1053 215 593 2 l * 5 559 262.2 1080 VL-Tm 220 6 1 * 7 250 606 262 1101+ 225 705 255 658 260.7 1137 VC 230 767 260 718 260 1 11+ 8 235 835 265 789 258.9 1155 VL-Pm 2l + 0 910 268 8 1 * 5 258 115^ 2 l + 5 991 270 897 257 1150 250 1075 270.1* 925 VL-Tm 255 1136 255 1161* 270 957 250.7 1089 3 pm 257 1201 VC 269.3 970 VC 268 989 267 998 C - l * 3 8 , . 9 mol# vater C-l 0 mol# vater 265.5 1001 VL-Pm 265 1000 185* 3 0 l * 150 92 260 976 190* 329 160 109 255 9 1 * 1 * 195* 356 170 129 250 909 200 386 180 153 2 l * 5 872 205 1 * 1 9 190 181 2l * 0 832 bio U57 200 211 235 790 215 1 * 9 8 210 2l * l * 230 7U9 220 5U3 220 281* 228.7 725 3 pm 225 590 230 328 230 6 1 * 1 2 1 * 0 377 235 696 250 1 * 3 1 2 1 * 0 757 260 1 * 9 2 2 l * 5 827 270 558 250 906 33 TABLE III (con't.) Temp. Press. Temp. Press. Temp. Press. °C psia °C psia °C psia C - l * (con’ t.) C-6 (con't.) C-8 (53 mol} 8 water) 255 1002 195 392 185* 311 257 1050 200 1 * 2 8 190* 3 1 * 7 259 1112 205 1 * 6 9 195* 386 259.5 11H5 VL-Tm 210 5 1 1 * 200* 1 * 2 7 259 1167 215 560 205* 1 * 7 3 258 1186 VC 220 609 210* 521 256.9 1198 VL-Pm 225 661 215* 570 256.7 1196 3 pm 230 717 220* 623 235 779 225* 679 2 1 * 0 852 230* 738 C-5 * * 2 . 2 mol55 water 2 1 * 5 933 235 802 250 1021* 2 1 * 0 872 169.3* 2kl H'ze 255 1151 2 1 * 5 950 170* 2UU 255.7 1178 H'ze 250 1033 175 26k 260 1 2 5 1 * 255 1119 180 287 265 1361 260 1209 185 310 270 1500 265 1313 190 336 270 l l * 3 2 195 36U 275 1559 200 395 C-7 1 * 6 . 6 mol% water 280 1719 205 1 * 3 0 210 470 180 298 215 5lU 185 330 C-9 60 moljf water 220 560 187 3 1 * 6 H'ze 225 610 190 362 190* 319 230 663 195 397 195* 356 235 720 200 1 * 3 5 200* 395 2U0 783 205 1 * 7 7 ao5* 1 * 3 6 2U5 857 210 522 210* 1 * 8 0 250 9U2 215 569 215* 526 255 1051 220 619 220* 575 257 1120 225 672 225* 628 257.1 * 1160 VL-Tm 230 729 230* 685 257 1190 235 7 9 1 * 235* 7 1 * 5 256.8 1191* VC 2l * 0 869 2 1 * 0 809 256.7 1197 3 pm 2 l * 5 952 2 l * 5 880 250 1 0 1 * 1 * 250 960 253 1109 255 101* 1 * C-6 1 *5 .2 mol/ 8 vater 25U.U 1153 H'ze 260 1133 255 1162 265 1230 182* 3lU H'ze 260 1250 270 1339 185* 329 265 1355 275 1U65 190* 358 270 1 1 * 8 6 280 1605 T ABLE I I I Ceon't * co o > • 1 a a vo o w. a - h t — C M r H « a invo O U P < m e 0 < • - p S 3 o o vo vo • CO r H 8 * o r H • in o C M • o 1 t-co 1 E H a C M C M « I o > * co c o - d - i»oicot-t-<no\o m t- ov t —vo cj o ovco >H-?H^»wwcoHmu\ co © cm in t — o <nt-o ia o v - a - ocociiAOj-irtt-co o\o\eo\o cn o\vp cm o copKncon^^^uMninvo t-t-coco oiovoiovovoiovoiovoicocoeoco vo t — OlAOlTvOinOlAOlAOlTvO lAt-CO 0\C0 l-l-M) U\ ( * 1 O U\ O IAO IACU OOrtriOIClCnn^t^ in U\ VO VO VO VO VO VO VO VO VO VO VO VO IAU\-» CO CO CMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM i « 1 8 CO CO CO & C l Ov CM in CM CO CO * * * O IAO OV OV o H H O l n « J a i n « i a U P< e * o io * H P a * » e a ? & m co • • a h p a 4 f i oo u > VO IAVO CO C O r l r l C O C O t - t —O P O V O l - O O ' f i Ov Ol H uM-ovH^r t— o covo o ov co ov-a- o vo co o co t — t— HrHrHCMCMCMCOCO CO^t in UVVO t — t —co Ov Ov O rH ri r H o i r v o u v o u v o m o u v o u v o u v o w o i A O u v o i A L T V IfvVO VO t - I —COCO OV Ov O O rH H CM CM CO CO-4- U \ i n HrHrHHrHrHrHrHrHrHCMCMCMCMCMCMCMCMCMCMCMCM h 1 8 r H I a OvVO oo o r H CMOOCOrHCOOCMOvrH ITV CO rH-S' CO CM t- CM t--st rH H CM CM CM CO CO-^ -S’ I T V O O O O O O O O O O O O O i n VO t - c o OV O rH C M C O -» i n v o t - HrHrHrHHCMCMCMCMCMCMCMCM > « ® 1 ? n > • > H a 4 movvovo t— cm ovovovo ovovmcooo invo H coinoco t— o -a- covoCMt—vocgcot—OvO in vH H O COt-rH WO-3- O inH t--s- CM O OvOvOV Q OvCMVOOvCOODCMt-CMCO-3-rHCOVO-?CO-3--d- n h cn co coj* - - 4 - mm vo vo t-t-eo ovo o o j ■ cm oo m c o - a - - a - in invo vo t —co co OvOt-jCMCO I ! e vo L T V O * * * • • * * « * H * * * * * » * • • _ _ o H oinoinoinoinoinoinoinoino H inoinoinoinoinoinoinoinoino O '• » Ov Ov O O rH H CM CM CO C O ininvovo t- I OvO O rli-HCM CM C O C O -4 --* in invo vo t — t-co O rHi-HCMCMCMCMCUCMCMCMCMCMCMCMCMCMCM O rHCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM 35 TABLE III (con't.) Trap. Press. Temp. Press. Temp. Press. °C psia °C psia °C psia D-3 (con't.) D - l * (con*t.) D-6 1 * 1 * . 5 mol? vater 205* 382 257 1111 VL-Tm l60* 195 H'ze 210* 1 * 1 5 256.5 1 11 *6 165* 215 215* 1 * 1 * 9 256 1157 170* 237 220* 1 * 8 7 255.7 1162 VC 175* 262 225* 529 255.3 1166 VL-Pm 180* 289 230* 575 255.1 1165 3 pm 185* 318 235* 62k 190* 3 1 * 9 2k0 677 195* 382 2U5 735 D-5 Ul.9 mol? vater 200* 1 * 1 5 250 802 205* 1 * 5 3 255 890 152.5* 165 H'ze 210* 1 * 9 5 258 959 155* 173 215* 5 1 * 0 260 1026 160* 190 220* 588 260.3 1060 VL-Tm 165* 210 225* 639 260 1090 170 231 230* 697 259 1118 175 255 235 765 258 1135 VC 180 281 2 1 * 0 8 1 * 2 257 111 *6 185 308 2 l * 5 928 256 1150 190 337. 250 1 0 1 * 0 255.5 1151 VL-Pm 195 368 252.5 1119 H'ze 255 1151 200 1 * 0 1 255 1 1 5 1 * 2 5 1 * . 1 111*9 3 pm 205 1 * 3 7 260 12 1 * 0 210 1 * 7 5 ‘ ' 2 6 5 1 3 1 * 7 215 519 270 1 1 * 7 7 D - l * 37.8 mol? water 220 5 6 1 * 225 . 611* 185* 291 230 671 D-7 1*6. 3 mol? vater 190* 317 235 733 195* 3 1 * 5 2 1 * 0 8 01* 166.3* 22k. H .'z e 200* 377 2U5 887 170* 2 > * 1 205* 1 * 1 0 250 987 175* 265 210* 1 * 1 * 6 253 1066 180* 293 215* 1 * 8 1 * 2 5 1 * - 1101 185* 322 220* 527 25U.8 1159 H'ze 190* 3 5 * * : 225* 575 255 1162 195* 387 230* 625 260 1250 200* l * 2l * 235 680 265 1363 205 1 * 6 1 * ; 2l » 0 7 * * 1 270 1500 210 508 2U5 811 215 55U 250 996 220 606 255 1012 225 661 1256 101*7 230 729 1256.5 1071 235 788 36 Temp. Press. °C psia DOT (con't.) 2 1 * 0 863 2 l * 5 952 2U9.7 1068 H'ze 250 1072 255 11U9 260 1237 265 13UU 270 1VT7 D-8 U7.6 aoljf water 171.5* 251 H'ze 175* 268 I8O1 29T 185 328 190 361 195 397 200 H35 205 U77 210 523 215 572 220 625 225 6 8 1 * 230 7U8 235 819 2 1 * 0 898 2U2.8 95^ H'ze 2U5 985 250 1063 255 llU5 260 12 31+ 265 1337 270 l l * 5 6 1-9 * * 8.3 moljf vater 180 285 185 318 190 353 195 391 200 U33 TABLE III (con't.) Teap. Press. Temp. Press. °C psia °C psia D-9 (con*t.) D-ll (con't.) 205 H7T 200* 292 210 523 205* 327 215 572 210* 36L 220 625 215* 1 * 0 1 * 225 6 8 1 * 220* 1 * 1 * 7 230 7U8 225* 1 * 9 7 235 821 230* 550 238.8 890 H'ze 235* 608 2l * 0 906 2l * 0* 668 2 1 * 5 980 2 1 * 5 * 732 250 1059 250* 799 255 111*3 255* 871 260 1232 860* 9 1 * 8 265 1335 265« 1030 270 IU5U 270 1115 275 1205 280 1305 D-10 60.6 nol% vater 285 11*18 190* 283 195* 311 E Series 200* 3k2 Cyclohexane-Wat 205* 377 210* 1 * 1 8 All Comp.. 3 Pha 215* 1 * 6 5 220* 518 150 156 225* 577 155 173 230* 6 1 * 0 160 192 235* 708 165 213 2U0* 780 170 237 2 l » 5 * 856 175 263 250* 937 180 291 255 1023 ■ ' 185 323 260 1109 190 357 265 1199 195 39^ 270 1293 200 1 * 3 3 275* 1398 205 1 * 7 6 210 523 215 573 D-ll 75*1 aolX vater 220 628 225 687 190* 235 230 751 195* 262 235 818 37 TABLE III (con't.) Teap. Press. Teap. Press. Temp, Press. °C psia °C psia °C psia E Series All Camp. E-2 (con't.) E-3 20. 3 moljt water* 3 Phase (con't.) 2 l * 5 397 205* 275 2l * 0 890 250 1 * 2 6 210* 300 2 l * 5 971 255 1 * 5 6 215* 327 230 1057 260 1 * 8 7 220* 357 255 i l l * 8 265 522 225* 388 255.7 1163 VC 270 559 230*— 1 * 2 3 275 602 235* 1 * 6 2 277 621 2 1 * 0 503 E-l Pure Cyclohexane 278 631 2 l * 5 5 » * 7 279 6 > * 3 250 595 150 77 279. ^ 652 VL-Tm 255 6 1 * 7 160 93 279.2 658 VC 260 707 170 n 2 279 6 6 1 * 265 782 180 136 278.5 668 VL-Pm 267 82l * 190 166 278 667 268 850 200 197 277 665 269.1 905 VL-Tm 210 231 275 657 268 9 5 1 * 220 267 270 6 3 1 * 267.2 976 VC 230 308 265 608 267 980 2 1 * 0 352 260 $79 265 1009 250 1 * 0 1 255 553 261* 1018 260 U55 250 528 263 1021* 270 515 2 1 * 5 505 261.9 1025 VL-Pm 275 5 1 * 8 2 1 * 0 1 * 8 3 260 1023 281.2 5 91* VC 235 1 * 6 1 255 1007 230 1 * 1 * 2 250 982 225 1 * 2 2 2 1 * 5 • 952 E-2 5 mol£ vater* 220 1 * 0 3 2l»3.1 9l * 0 3 pm 215 385 175 127 210 367 180 l l * 0 205 350 E - l * 3 3 , ,0 mol£ water* 185 15U 200 333 190 169 195 317 195* 280 195 185 190 302 200* 307 200 201 185 287 205* 337 205 218 180 272 210* 369 210 237 175 259 215* 1 * 0 2 215 257 173.5 255 3 pm 220 1 * 3 8 220 277 225 1 * 7 8 225 297 230 5 2 1 * 230 319 235 571 235 3 1 * 5 2l * 0 622 2l * 0 369 2 1 * 5 678 00 to m 4 • irl • n b Pi u © 1 H * 3 8 HlAHOtOtnno^COHVO^^OICOMOVOCU Ov CU VO O y ^ r CO CO CO - 3 rH b - J 1 H O l t— b— b— t — Ov Ol CO CO ( 0 1 .3 - 3 i n i n VO t — b —CO 0 \ C \ O r ) OJ C O J- rH rH rl H rl ■fc 41 1 3 > H rH § 0 rH U\ r-i Ov CVI OO t—CO I T V VO OO I T V VO CO CO in in t— O CO t — o in Ov .3 Ov in rH t—-3- rH Ov b- in i r \ 01 co co CO-3' .3 -3 in invo t— b —co Ov ov o r - j c v j r o o vo vo 00 I w oinoinoinomoinoinoinoinoino OvOvOOHrHCVlCVICO CO-S'-si- in invo vo b — b- CO rH rH C U O lC llO lQ H C llO lO lC llO lO lO IC llO lO lO IO I CO Ov I W inoinomoinoinoinoinoinoino OvOOHHOlCI coco-3-3 in in vo vo t — b-co r H O l O I O I O l C U O I O l O l O l O l O I C U O I C H O I O I O l a o a m a m - r l <i a U P i f g o o vo o n i l © N w -3 Ov CO COCO Ov-3 cooocoocot-riococo mco b—CO C V I VO O in iH b— CO rH -3- 00 vo in-3- CO CO .3 CO co in invo vo t—co coeoovOrHCvico.3in rl H H H rl rl CO vo h « I S > H rH s cvi CO in cvitnotnoinotno invo o i n o m o t n o m ovOvooHrHcvicvicoco co .3-3 m invo vo b- t— H rH c v i OlOlOlOlOlOlOlCliOlOlOlCUOlOlCaOl cviincvicvimHiHCO ov.3 H H invp H H Ov rj co ocot-Hmoinovocoo b—-3 c v i «H O Qv «H CO co co co-3--3- in invo vo t —co co ov o i - i c v i cvi-3r uv rl rl rl H rl rl in o in o in o in o in o inoinoino in o m co OV OV O O rH rH Ol CVI CO 00-3- -3 in invo VO b* b- rHrHHOlOIOlOlCUOlOICVlCUOlOlOlOIOIOlOl • W 8 « rl 0 * f l f f t ft* • H» § • V <1 1° -3 I o > I s H b—-3 covo UV0 0 3 OvWb- -3 rH b” Ol in CO Ov rH CO-3 UV3 b — CO CO CvOvOOrlrlHrjrj rH rH rH rH rH rH rH CO CO Ov O m CO O rl CVI rl O © b —vo -3 in in invo vo vo vo vo in in in in CVIOIOIOIOIOICVIOIOICMOIOI u © 1 3 > w rH 3 CO CO -3 in t A s £ b-OVO t- o > C V lrH C V lb-int— C O C O V O -3 C O V O g v O rH C O rH in o v co co c o o v in co co H J-eo i co co co-3-3 j3 in invo vo b—co Ov o O H H c v i vo vo O H H H HHHiH in ov b- *•****«*•*« _ • • • inoinoinoinoinoinoino co.3- in in in in coovOvoOrHrHCvicvicoco-3-3ininininininin r H r H H O l O I O l O l O l O l O l O l O l O I C V I O l O l O I O l O l C V I u I S > 3 O l in t-co O l CO * * S in o CO OV rH rH H T A B L E I I I (con't. 01 n « I S H a si H c u v p co cu -4 - c o p v c u c o h t-: u > c o cv^ o 0 •h o o \ cu vo o - a - co co c - < n eo u \ h oo u \ co «n a g « (n t n ^ iauwovo n o ® o\ o h u\ . o 0\ rl rl ft O * * « * * * _ B O H inouiouioinoinouioiAoino S o I o «-4 H oi cvi co c o . ^ trxuwo vo t-t-co Eh W CMCvicvicvicucvicuoicvicvicucvicvicvicMCvj 40 TABLE IV Press. psia Pressure-Temperature Relations at the Phase Boundaries of the System Benzene-Cyclohexane-Water at Equal Intervals of Pressure Temp. °C A Series Benzene-Water All Comp. 3 Phase* 300 180.9 1 * 0 0 195. 1 * 500 206.7 600 216.8 700 225.8 800 233.7 900 21*0.9 1000 21*7.5 1100 253.7 1200 259.3 1300 2 6U.6 1361* 268.3 A-l Pure Benzene 200 196.1 250 210.9 300 223.3 350 2 3 * * . 2 1 * 0 0 2UU.0 1 * 5 0 253.1 500 261.5 550 269.0 575 272.5. 600 275.9 625 279.1 650 282.2 675 285.2 700 288.1 713 289.5 vc A-2 19.5 molf water* 300* 201.2 Press. Temp. Press. Temp. psia °C psia °C A-2 (con't.) A-3 (conjt.) 1 * 0 0 * 217.7 1215 269.3 500* 231.8 1220 268.5 VL-Pm 600* 21*1.7 1215 267.5 700* 251.2 1200 265.6 800* 259.3 1100 256.9 900 266.5 1000 21*9.1 1000 271.6 9 2 l * 2l*2.5 3 pm 1025 272.3 1050 272.9 1075 273.2 VL-tfm A - l * 1 * 2 . . 6 mol/C vater 1100 273.0 1115 272.7 300* 185.1* 1127 272.2 VC 1 * 00* 201.1* 11 1 * 0 271.5 500* 21U.1* 1150 270.3 VL-Pm 600 225.9 1125 266.0 700 235.5 1100 263.6 800 21*3.6 1000 25U.7 900 250.9 900 21*5.1 1000 257.3 800 235.2 1100 262.7 720 227-5 3 pm 1200 266.7 1230 267.6 1265 268.1 VL-Tm A-3 31.0 moljf watert 1280 267.9 vc 1287 267.5 VL-Pm 300* 192.6 1280 266.2 *06* 209.0 1250 263.3 500* 222.3 1200 260.1 * 600* 233.1* 1100 253.8 3 pm 700* 21*2.9 800 251.2 900 258.7 A-5 51 .1 mol% water* 1000 265.2 1100 269.6 300* 181.8 1150 270.8 1 * 0 0 * 196.9 1170 271.0 VL-Tm 500* 209.1* 1185 270.7 600* 220.1 1207 269.7 vc 700* 229.3 41 TABLE IV (con't.) Press. Temp. Press. Temp. psia °C psia °C A-5 (con, ' t . ) A-7 (con't.) 800* 237.5 1200 262s 3 900 244.8 1300 267.6 1000 251.1 1400 272.6 1100 257.1 1500 277.1 1200 262.5 1600 281.1 1300 266.9 1650 - 282.7 1322 267.5 1334 267.8 VC-Tm 1340 267.6 VL-Pm A—8 71 • 0 mol? vater+ 1330 267.0 1320 266.2 300* 192.6 1300 265.0 400* 207.1 1278 263.5 3 pm 500* 218.4 600* 228.6 700* 237.3 A—6 57*8 mol? vater 800* 244.9 900* 252.3 300 181.5 1000 258.7 1 * 0 0 195.7 1100 264.8 500 207.2 1200 270.3 600 217.1 1300 275.4 700 226.1 1400 280.3 800 233.9 1500 284.8 886 . 240.0 H'ze 1600 288.8 900 241.0 1700 292.5 1000 247.7 1100 253.9 1200 259.5 A-9 81.8 mol? vater* 1300 265.0 1361* 268.3 VC-3 pm 300* 204.8 400* 218.9 500* 230.3 A-7 64.6 mol? vater* 600* 240.1 700* 248.7 300* 186.8 800* 256.1 400* 200.5 900* 263.0 500* 211,8 1000* 269.4 600* 221.6 1100* 275.3 700* 230.3 1200* 280.8 800 238.0 1300 286.1 900 244.8 1400 290.8 1000 250.8 1500 295.2 1100 256.7 1600 299.3 PreBB. psia Temp. °C A-9 (con't.) 1700 303.2 B Series 3:1 Benz,. :Cycloh. All Comp,. 3 Phase 200 160.1 300 179.8 400 194.5 500 206.3 600 216.2 700 224.9 800 232.9 900 240.0 1000 246.3 1100 252.1 1200 257.6 1253 260.4 VC B-l 0 mol? vater 100 155.0 150 178.0 200 196.2 250 211.6 300 223.7 350 234.4 400 244.0 450 252.6 500 260.6 550 268.3 600 275.5 650 282.1 674 284.5 VC B-2 18.1 mol? vater 300* 4oo* 205.2 223.2 TABLE I V (con't.) C M * r o o a o • o a d w 0 a in { & O «H « • h <n cu 5v T o o o o ir v vo H • — I U « i i CO t rv vo l m noHiftWHo^(ncoo\o«\t-ov «•••••••••••*•• a t-CO »-\04 H t-McO Jffl W 1A N eo OvO ft W <naa tn irvvo vo t-t-t- rH«-ICM©l©l©ICMCMCMCMCMCU©ICMCM o o o o o o o o o o o o o o o OOOOOOOOOOOOOOO toa irv\3 *-a5 Ok o H cu coa invo t- n lH H H H H H H & n > § vo • a vo I « c v i vo in a invo 4 4 0 H ova trv h ri • • • • • • • • • • • • • a * t - O r | H O C O I A r l t * C I V O H I A O V « CO O H CU CO CO-4- UM/VVOVO t— t “ t—CO f-JCMCUCUCUCUCUCUCUCUCUCUCUCUCU ******••• OOOOOOOOOOOOOOO o o o o o o o o o o o o o o o coa invo t-co ov o « - 4 cu coa irvvo » — rlH H H H H H H • CL 8 o So 9 E* +» 9 •h 8 O a ri a vH o a CO ft n «H VO a a C M C M o <0 o t- o ov r l h 9 IS > H H O 0 VO CM a pS ) & s ► > ft co V O C M O t - C O C U C M H t - H O V r t O I— CO- 4 H • • • • • • • • • • • • • • • • • C l C O r l < M W H ( 0 4 C O O O H H O O O \ O l co Ov >H CM n a a trv irv vo vo vo vo vo vo irv irv r-trHCUCUCUCUCUCUCUCUCUCUCUCUCUCUCU • * * * o o o o o o o o OOOOOOCMOOtnOh OOOOUVOrlCMNnnCM CO ^ vo ^ CO OV g ^ ^ CM CM CM ©j ©| OJ ©} u 0 1 s o t r v t rv A « M » o M » <nb-ovov<nvoooacMOHcoir\o • •••••••••••••• ©1 trv vo irvvo i n a H t - t n c o Ov O coco co ov o »-i H cu c o a a tn in in v p vo vo Hf-ICUCUCUCUCUCUCUCUCUCUttCUCU o o o v o o o o o o o o t —o o o OOOOVOOOOOOOCMWOO co-a irv irvvo c —co ov o cm ©j g «oa ■ ri ■ * r t • a £ * CM »A S £ 8 ^ 2 £ -a-t-CMOHCMcocMOvov ovco irv co ov irv co cu a ov COOOCO«-|rOP04COCMHOC04COCO>-i OVVO t r v co irvvo vo t— t— t— t— t— t— t " t — vo vo irv in a m H H CMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM oooooootrvotrvovoooooooovo ooooinocuavocoooocoaooooov acwo t —co coovovovovovo o o ovovovco t—vo in H H H u o n > a •H s Ov • CM CO CO I « I o > I b-VO-4* (nt-OH OvO-* O Ov t—CO b-Ovb-OvOJ • • • • • • • • • • • • • • « • • • * cm co «h co co co o cm in vo t—vo vo in a co cu ovvo ovo cm co a invovovovovovovovovovovo in m i-ICMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM o o o o o o o o o o o o o a o a o o o oooooQotnotnovocuavovovpao C0ainV0t-a50v0vgggrHr^f^r|jH|-Jf^Jr^ TABLE I V (con't to * 8 * * U $ CO fo° -7 E H + > m § o n 0 1 o a p P, * w CO I O i - i C M b - o c M H ^ b - c o o v o - ? n \ o t— «•••••••••••••• OVOOCMCMCMrHOOvCOb- in tO rH O irv u\vo vo vo vo to vo i r v t r v i r v irv irv i r v t r v CMCMCMCMCMCMCMCMCMCMCMCMCMCMCM o o o o o o o t —oirvoooocrv o o o irv co o Cl co irv in irv-a- c m o co C D O v O O O r l r j r j H r j H p j H H O r l H H H H H H r i H r i f H r l H a a I S > H H I C O C M -? I o * S 3 > cocMCMOtOrHb-ovb-CMincoovovoovt— • •••••••••••••••• .? cm irvvo irv co ov-? co Ov Ov Ovco co t—vo vo cooHCi (O^ .? irv irv irv irv irv irv trvirv i r v i r v HCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM O O O O O O O _ _ _ _ _ _ ooomoovpocovo OOOOOOOOOCM-?VO t-« OV Ov Ov tn^r irvvo t-COOVO^^^c-j^r-JH^rH h a n > H H a C M C M irv I o a H m « .? co c o • • • Ov CM O VO CO O HrtCM * CM O O -st O O CM IO-? 1." ~ ■ 4 a *rl a a U Pi P i a o o H I O o > CO CM to OvCO vo • ••••• -ttOrlflO irv «H -? irvvo vo t —co CM CM CM CM CM CM O O O O O V O O irv o irvo J- .? j? in invo vo h « S > 3 i n • c o H C M I O * S 3 g I CO H COCO t-J C m v o C M H - t Ol <*>H Ovin^VO O v n ^ © O v t-H t - cocm t-Ov® in co oooovovb- t—vo m-? to cm ov in co vo vo o cu co .? in vo vo b-1- t-vo vo vb vo vo vo vo vo vp in in.? co cm CMCMCMCMCMCMCMCMCMCMCMQICMCMCMCMCMCMOICMCMCMCMCM g g $ o o o o o o o o i n o o i n o m o r H O i n o m o o o t n o o o o o o in o cm in i— t— ov ov o o o ov ov b- in o o cm to.? in vo t-co co ovovovovovovovo o o ovovovovovao t— H H H *4 a 1 H a to £ to I a co toco c m vo — • • — — O CO ri to C M Ov O CM -CO-st rH C M C M C M C M • * * * O O O O O O O O O O to.^- invo t— u o a 4 ■H a Pi I P 4 1 H 1 CO a H C O co <4 CO Ov O -St rH-? VO Ov-? in H in Ov b- • • • • • • • • • • • • • • I rtOHHOOuvrit-CMSHUVOvn Ov o cm co? j - invo vo t— t —co co co ov HCMCMCMCMCMCMCICMCMCMCMCMCMCM O O O O O O O O O O O O O O O O O O O 0.0 000000.0 00 tn-sr mvo t-oo ov o «h cm to-? mvo b- rlH H riH rlrlH \ ■§ ri O a a © a T J i§ a to H • • O rH a 3 f i to i H 3 > ? co o invo vo -st -st m-st o • • • • • • • • « • • o ov-? in icv? cm ov m h t— VO t- Ov O rH CM to CO-? m UV H rl H CM Ol C V I CM CM CM CM CM § O O O O O O O O O H Q O O O O O O O O O CM CO-? mvo t-CO OVO rl '9 u a > o b- in in t— in UVCO VO rH CO.? W mt-ovri CM to rH H rH rH CM CM CM O O O O O O oinoinoin rH H CM CM CO tO TABLE I V (con't.) * !o° a ri a « a U Pi C * h « > H © - = t VO o r H I O W H O O t* irv-3- VO H CM H Ovtnj l- v on h co o irv o ©OrlOin44 irvvo vo t — HCMCMCMCMCMCMCMCMCMCM « • « * * _ o o o o o o o o o o o o o o o o o o o o o o cn-a- irvvo i —co ovo hcjoi rH H rl ri U 0 l a > H rH § irv t- i o rxnnvo^coaxnooovirvo vopcMCMHcoirvCMCocos-CMt- o\H c m c o - a - - 3 - trvvovo t—1—co co r-IOJCMCMCMCMCMCMOlCMCMCMCM «**• _ ___ OOPPPOOPPOPPP OOOOOOOOOOOOO co-a irvvo c —oo ov o H cm oo_3 i r v HHrHrlHH • 8 H O a n « f l m co O H C s & CO O CO CM H Ovirv4»Ht • «.«««•. rH O V4t V O ITU* C M Ov VOb-OvOHOICOCO iHr-irHCMCMCMCMCM OOOOOOOO o o o o o o o o cm co4# irvvo t-co Ov I o o a ri a -rl • a * Pi p o o I o © M « Ov I co irv co trv H t— CM -3 t - C M VO O . a - a trvtrviAVOvo t— CMCMCMCMCMCMCMCM OOOCMOOOO oopirvg>g>oo OV P r H rH C M CO_3 rl r l r i H H irv r H © 1 C O irv CO I o _3-COO\COCOCOCOO Ov in-4- t - t - • •• ••• ••• ••r i* cnvo t - t - v o - a H co co o v -a co c m co o v o H c m j irv trvvovo t— HHCMCMCMCMCMCMCMCMCMCMCM ooooopoooopop OOOOOOOOOOOOO coa irvvo r —co ov o rH cm ioj; in H rlH H rlri l a > H rH g O vo u rHt-CMCOCMCOCO^CMirvCMirvCO t-O CM CM H Ovvo CM c o COCO CM VO c o o H cm co co^r irv irvvo vo t-t- HCMCMCMCMCMCMCMCMCMCMCMCM • « « « * __ OOOOOOOOOOOOO OOOOOOOOOOOOO oo_3 irvxB t-co ov o r-j c m tn .a ia H ri H ri H H § £ o > I? o EC -P 8 a r i « a -H © a irv JF p 'v Pi O JtOtOrilOOvlOO t —-3 CO t — • « • • • » • • • • * • mj- cn rH t- cm vo t-1- t-vo vo H cm coa -3 irv irv i r v irv in irv i r v CMCMCMCMCMCMCMCMCMCMCMCM ooooooooirvoat- OOPOOPPCMVOCOOvOv irvvo t-co ClOHrjHH rjri rl rl ri ri H n H U © > i CM irv vo I u « N W « N K CMPCMaHininOCOat-PCMVOP • •••••••••••a** o c m vo co ovcovocnco co tn c — c m vo o oo co ov o iH c m c o a - 3- trv trv trvvovo t— rHiHHCMCMCMCMCMCMCMCMCMCMCMCM ocnoooooooocopooo OtHOPPOOPP O t— POPP ■■ coa irvvo t —co o v p h h c u coa irv ri H rH rl rH rH ri cn P i © ri > H rH VO • vo a I o © M a» n a O a vo rH m in S t-irv t —co t — i r v CO OV O rH CM CO H H H CM CM CM CM o i n o p p p o O a O O O O O co co-3- irvvo t— co in to ° fi o • a co a) —* • 0 a £ s J.* > m cn h • o U \ I A irv tn C M O I vo in H H i — I H *4 H rH I C \ H -# in l « • « M N w w invo irvovowx) joo t-iAOffl oij- iao • * • • . • • • • • • • • • • • • CMCMcnovCMcncMovino-#-#1-w vo o invo cooiHWtn cn-# i n i r v i f t invo vo t — HHHHCMCMCMCMCMCMCMCMCMCMCMCM inoooooooggoovoooo voooooooooooinogoo H c m cn-# invo t —c o c\o H r j P j MJf i n « I s > § in 0 -# - # vo 0 N W » o c n ovcovo c m c m cn-# vo o inco ovH t- ■ •••>••••••••••' OHHt-OHOt-COCOCMCMt-tMb-O vo vo co o v « - < cm c n cn-# -# in in invo vo t — HHHHCMCMCMCMCMCMCMCMCMCMCMOI i n o o o o o o o o o o o v g g g o O v O O O O O O O O O O i - I O O O O rH C M cn-# invo t-co OlOHrjOj l»J# i n a o o a I 0 • • a H O — c o . f c t - p V o • u GO 0 —<■ C M c n in t— 0 0 C O C M c n c n C M C M O m in O co CQ u 0 Is > cn M vo CO VO VO rl Cvtnt—.# H-# CM t— Ov O rl in rl ot— HCMOIOlint-OlOOO OlCOCOVO in-# ov o cm cn# -# in in tnvo vo vo in i n i n m i n i n H C M C M C M W C M WCMCMCMCMCMCMCMCMCMCMCM cn cn cn 8 888 8 8 8£8 8 S 8 8 § £ & £ § c n .# tn v o b -o o O V O V O O O O U 0 s > rH I CO s -# A £ o > co in ovvo t— cn cm vo hoio ov <n t— #00 • ' • • • • • • • • • • vo cnvo t-vo# ©-# vovo t—vo vo in coOHCMcn-#ininininininintn rHCMCMCMCMCMCMCMCMCMCMOlCMCM O O O O O O O O O O C M O O C M o o o o o o o o m o H t n tnvo cn^rmvo t-co ovo 0 3 3 3 3 3 l o° « 0 a ft I o • rH? 3S O a 0 f t >4 Pi 0 . . 3 w £ Q cn o > t-m.# • • • m h in .# m m C M C M C M o o H O O t- OHH H n rl >4 0 1 W H i a > vo rH co owo co ov © men cnvo 000000000000 vo ovvo iH-# ininincnrHco O in t— Ov h cm cn# invo t — t —co HHHCMCMCMCMCMCMCMCMCM 000000000000 o t n o t n o t n o t n o i n o c M H H C M C M t n c n - # - # in in v o vo u 0 3 rH s VO 0 co rl C M A s > £ £ £ rtco o incnco t-oiO t-vo o cm © vo rH ov cn «•••»•••«•!••••••» -# cn co o ov cm in t-ovco t—t— incn©co CMin 8 cm cn in invo vovovovovovovovovo in in_# CMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM « 0 ©goo o o o o c n -# tn v o § 00000(00040 in©inocnint—ovOvOv t-1—co co ov ov ov ov ov ov ov o o o o co in o Ov Ov Ov < 0 o M fi <n * s u > Ov-a co in in o t-vo t--a t- • •••••••••• rlrluvt- t-VO tn O vo CM I T V vocoovOrHCM«n-a-ainin rHrHi-HCMCMCMCMCMCMCMCM o o o o o o o o o o c n o o o o o o o o o o vo cm t n - a irv v o t - c o o \ o h h H * H H 0 > 1 « r l I w o s > ovOvcovocMinco«-»t-tncM • •••••••••« tn_a otrvcoovovovt-trv(H vo co o rH cm irvvo t — co rHrHCMCMCMCMCMCMCMCMCM O O O O O O O O O O - ^ o t r v o i r v o i r v o t r v o t r v o v *HrHCMCMcncn-a_amtntn fa 4 > 1 a t r v CM I W VO t— t r v - ! ! - I- CM trv rH Ov OV «••••••••• rtnovtn trvvo tn-a h co vo CO OV rH CM tn-3- trv VO vo rHHrHCMCMCMCMCMCMCM O O O O O O O O O O O irvotrvotrvotrvotrv rH rH CM CM cn COj! irvtTv 0 o o w EH > H o o a c S a * * H & a o o Ov 4 « N » vo co vo cn tn cn-a co co • •••••••■ cn CO OvVO CM CO cn t— rH cn cn m-a trv irvvo vo t — CMCMCMCMCMCMCMCMCM O O O O O O O O O S OvOOOOOOO CO Ov O rH CM trv rH rH rH rH rH rH fa « I S > H rH S VO • o vo o rH I a rH Ov-=r OV-4- cnt-t— UVrH-4- rH • • • • • • • • • • • • • cn t —co vo -a Ht-tnovtnotnov ovo H cm cn-a-a trv irvvo t-t-t- rHCMCMCMCMCMCMCMCMCMCMCMCM «««*«** * O O O O O O O O O O O O O O O O O O O O O O O O O O cn_a invo t —co ovo H cm cn-a- t r v rH r - i rH rH rH rH fa t ) Ifl > H rH I t r v rH I « CMirvcncnirvoovCMrHt-t-CMcn • ••••••••*••• H trv-a cm ovo cn o\-a ov-a co o H cm cn-a trv trvvovo t — t —co co CMCMCMCMCMCMCMCMCMCMOJCMCM « « * « * * * • O O O O O O O O O O O O O O O O O O O O O O O O O O m_a trvvo t-co ov o rH cm cn-a trv H H H H r I H h h h 0 « 0 Of* 0 • H> N H -P M N 4J • » 0 3 • • V > w w -> w W > H cn cn co rH-a tn ov cm cm t-dvo H cn ov ' H trv trvtrv tn t- cn t- H co H cm cm cn t — t- cn H trv t — cn —a ••••••••••••••• rH ••••••••••••••• rH ••••• ,o Q vo hvo ovovco ia. cm t-ovHco cnt-o q h o «£>f»rv£> n o avo wcocnt- h Q w vo t- t-vo Jo B vocoovOrHCMcn-a-a-aininvovot— a t—coovoHCMtn-a-a-atrvirvvovot— M co ov o h cm wo n h h h n w w w w w w w c m w o i c m HHHCMCMCMCMCMCMCMCMCMCMCMCM " H H CM CM CM cn vo cn • • • vo t- ‘ S • -a -a -a n d 0 « « 0 « 0 ft 0 a <h - a o o o o o o o o c o o o o o o w t o o o o o o o - a g o o o o g 2 2 2 2 2 on t- c m o o o o o o o o v o o o o o o co a o o o o o o o n o o o o o o ov 2 2 2 . 2 2 U p< I cm tn -a trvvo t —oo ov o o ri cm cn -a trv i cm tn.a tnvo t — co ov ov o h cm <n-a t r v 1 tn-a trvvo t- ft H H rlH H H H C l rl rH rH rH rl H ft I 0 Pi rl 00 0 0 W O OvCO 8 o 0 O rl Ei 4* d o CM CM 0 o tt * a - r f O O o a vo O O £ Pi 1 pa iavo Cl H t o s HOIVOCOOCOin^HH 0000000000 t--a voot— CMcocncocM cm tn cn-a- -a- L T V irvvo vo t — o o o o o o o o o o o o-a- o o o o o o o t — cocoovOiHcvicn-a-uv H rl H rl H H U Cl a > x t-inovtn-a ovo-a-a o o rnt- i CM • cn uv I w -a co ov ov t —-a cm co -a o irv ov cn co ov o rl cm cn-a -a trvvo vo vo t- r-trlCMCMCMCMCMCMCMCMCMCMCM O O O O O O O O O O O O O O O O O O O O O O O O O O cn-a irvvo t-co ovo hcm cn-a i r v rl rl rl rl rl rl U C l 3 H 1 VO vo CO p& -acMVOOCMt-oirvcMirv 0000000000 r - t irvvo vo -a H Ov irv H vo ov o h cm cn.a -a irvvo vo H CM CM CM CM CM CM CM CM CM * * • ■ _ o o o o o o o o o o o o o o o o o o o o cn_a mvo c —co ovi d o o 1 I I o o u <6 ■ «H c i a u Cl 1 w H S cn cn -a w i £ cn t— t--a o v o v o o o r i c o t —o o v irv H c n o v cn cn o v 000000000000000000 * co-a t— t—vo_a vo ovO hcmhoovoovovo tn.a Ov H CM cn-a irv irv uvvo vo vo vo vo inirtirvirvirvirv rlCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM ooooooooooirvoo irv-a owot- ooooooirvoirvocnirvocMcnirvirv irv-a COa UVVO t—CO COOiOlOOOrlrjrJrlrjrjH Hrlrlrlrlrlrlrlrlrl U c 1 H » “l I tn cn -a in A sn o > co cn ov irvvo co-a vo rl cm ovt- • «•••••••••• irv cn irvvo in cm co cm-a in in in co o rl cm cn-a-a in in m in in rICMCMCMCMCMCMCMCMCMCMCM • • • * • . _ OOOOOOQOOOHin ooooooootrvovovq cn-a invo t-co oiooHriH rl rl rl rl rl U 0 i g CM VO 0 M M cnvo c n t — 0 0 0 0 C M Ov C M VO COCO OVOV rl rl rl rl • o o -a o o trvt-o cn cn cn-a o o ■ 0 B "rl S B P< Pi § O CM £ S £ cn coco-a cm co in o mvo -a ovr-iCMr-t-a in 0000000000000**0 _a co ov cm co co t — cn tn-a cn cm ov in ov cn t-1— t— t— t— t-1— t-vo in-a cn h o co t— CMCMCMCMCMCMCMCMCMCMCMCMCMCMHrl OOCMCOVOCOinOOOOOOOQin o-ainmvovovomomoinomoin vovovovovovovovovo in in-a -a cn tn cm p 0 Is > H S tn cn cn i pa I a > <S i cn O t—vo i n m O v O O i H O V r l C M C O t - OvVO invo r l 0000000000000000000 o vo ov o ovtrvco O v ovco co t— irvtnricocnovcn ri c m cn m invo vo vo vo vo vo vo vo vo vo in m -a -a CMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM 0 0 0 oooo ___ ooOo6omoocMmt-o _____ cn -a mvo t—cocoovovovovovpooopovov r l H r l r l r l o o o m o o v o o o m o o o p - - — — CM CM CM O CO. 48 TABLE IV (con't.) Press. Temp, psia °C E-8 (con't.) 1300 271*5 1U00 276.1 1500 280.3 E-9 81.7 mol/t water* 300* 199*8 1*00* 213.9 500* 225.3 600 235.1 700 2U3.8 800 251.7 900 258.9 1000 265.5 1100 271.7 1200 277*2 1300 282.2 lU oo 286.7 1500 290.8 E-10 90.5 nol* 300* 206.3 1* 00* 219.7 500* 231.1* 600 21*2.1 700 251.0 800 258.8 900 266.1 1000 273.0 1100 279.1* 1200 285.2 1300 290.6 11 * 0 0 295.7 49 up to the vaporization critical point (VC). Next, the vapor-liquid phase boundary for each fixed concentration of hydrocarbonnand water is traced out starting with low temp erature and pressure dew points, passing through any heter- oazeotropic points (H'ze), the maximum temperature for the coexistence of vapor and liquid (VL-Tm), the vaporization critical point (VC), the maximum pressure for the coexist ence of vapor and liquid (VL-Pm), and joins the three phase locus at the maximum three phase temperature and pressure (3 pm). The samples of each series are presented in the order of increasing mole percent water. The compositions marked by a dagger (f) are from the literature. The values in the tables marked by an as terisk are extrapolated values. Minor changes in the ex trapolated values from the literature have been made. The experimental data corrected for equipment devi ations are given in Appendix F. DISCUSSION OF RESULTS The results of the investigation are presented in a series of figures. These figures are the pressure-tempera ture phase boundaries, the isothermal and isobaric cross plots, and the system's unique surfaces and loci in temper ature-compos it ion and pressure-composition space. Figures 14, 15, and 16 are the smoothed pressure- temperature plots of the basic data on which the individual continuous curves represent the phase boundaries of a mix ture of fixed overall composition. Figures 17, 18, and 19 are the isothermal crossplots. Figures 20, 21, and 22 are the isobaric crossplots. By alternately working between the continuous curves of the pressure-temperature plots and the correpponding isothermal and isobaric crossplots, it was possible to extend the dew point curves to temperatures and pressures beyond the volumetric limitations of the ex perimental apparatus. These extrapolated values are indi cated by dashed lines on the pressure-temperature plots. The locus of critical vapor points is shown on the pres- sure-temperattire plots. The loci of maximum temperature and of maximum pressure for the coexistence of vapor and i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 . . ..... • ............... PRESSURE-PSIA . 51 WATER CONTENT b* 2 i e . i — B-3 ‘ 32.9 B-4 43.9 B-s sar B-6 52.9 • B-7 58.8 ~ B-B 74.5 1800 *7 B-6 203 24.4 ; 39.B 1600 1400 VAPORIZATION CRITICAL ENDPOINT-^ 1200 LOCUS OF C R ITIC A L V A PO R POINTS 3 PHASE CURVE' 1000 •W A T E R B-3 800 / / 600 B - l 400 200 280 260 180 200 220 TEMPERATURE--C 240 Figure 14.. P - T P h a se '. B oundaries ! of th e System (3:1) Benzene;Cyclohexane*’W ater , i PRESSURE-PSIA 52 600 400 200 W atER CONTENT MOLE* WT.% (53.0) ( 20. 0) (20.3) (64.0) VAPORIZATION CRITICAL ENDPOINT LOCUS OF CRITICAL VAPOR POINTS 3 PHASE C U R V E W A T E R 1800 - 1600 - 1400 1200 1000 800 160 200 220 240 TEMPERATURE- “C Figure 15. P-T Phase Boundaries of the System (1:1) Benzene :Cyclohexane-Water- i i - * PRESSURE-PSIA 53 1800 i I ! | 1600 I i . 1400 i i j | 1200 i !000 800 600 400 200 0 j • I..”-: , i 1 ’ ‘ ‘ I . .............. . Figure 16. P-T P h a se B oundaries of the System (1:3) Benzene:Cyclohexane-Water : WATER CONTENT ' MOLE% WT.1% 0.0 D-7 4 6 3 — D-8 47.6 D-9 48.3 D-IO 60.6 0*11 -75.1 39.7 -0-9 VAPORIZATION CRITICAL ENDPOINT . D -IO / —0-11 /LOCUS OF ' CRITICAL VAPOR ^-POINTS . 3 PHASE CURVE- •WATER 280 200 260 160 TEMPERATURE-°C PRESSURE-PSIA 54 VAPORiZATIOM r CRITICAL ENDPOINT 1400 270*C LOCUS OF. I ' MAXIMUM PRESSURES 260.4 *C 1200 LOCUS OF CRITICAL VAPOR P R E S S U R E S --^ 250*C 1000 800 600 200*C 400 • ! LOCUS OF N HETEROAZEO- TROPES LOCUS OF MAXMUM WATER SOLUBILITY 200 1 0 N ■ • go m 100 60 80 20 40 COMPOSITION-MOLE % WATER Figure 17. Selected Isotherms of the System (3: i) Benzene:Cyclohexane-Watert t j PR ESSU R E-PSIA 55 1400 1200 1000 800 600 400 200 VAPORIZATION CRITICAL ENDPOINT LOCUS OF MAXIMUM PRESSURES LOCUS OF CRITICAL VAPOR PRESSURES 250*C r 230*C 200*C LOCUS OF HETEROAZEOTROPES LOCUS OF M AXIM UM WATER SOLUBILITY 20 4 0 60 , - . . 80 COMPOSITION-MOLE % WATER ' , Figure 18. Selected Isotherms of the System (l:l)Benzene:Cyclohexane-Water 100 P R E S S U R E -P S IA 56 1400 1200 1000 800 600 400 200 I; I I I VAPORIZATION CRITICAL ENDPOINT 270*C LOCUS OF , , , MAXIMUM PRESSURES \ 255.4*C LOCUS OF CRITICAL VAPOR PRESSURES 2 7 0 *C \ 230«C 200*C LOCUS OF MAXIMUM WATER SOLUBILITY LOCUS OF HETEROAZEOTROPES 20 40 60 80 COMPOSITION-MOllE% WATER Figure 19. Selected Isotherms of the System (1:3) Benzene:Cyclohexane - Water TEM PERATURE- 57 LOCUS OF - MAXIMUM--------------- TEMPERATURES ‘ 290 LOCUS OF CRITICAL VAPOR TEMPERATURES VAPORIZATION1 CRITICAL EN DPO IN T^ 270 1253 PSIA1 250 o 230 7 0 0 PSIA 210 5 0 0 PSIA 190 3 0 0 PSIA. LOCUS OF MAXIMUM WATER SOLUBILITY HETEROAZEOTROPES 170 03 00 150 20 40 60 COMPOSITION-MOLE% W /frER 100 80 Figure 20. Selected Isobars of the System • (3 :1 ) Benzene: Cyclohexane-Water ~ TEM PERATURE- 58 LOCUS OF MAXIMUM TEMPERATURES 290 LOCUS OF CRITICAL VAPOR TEMPERATURES I VAPORIZATION ! CRITICAL ENDPOINT 270 PSIA / 1201 250 1000 PSIA o 230 7 0 0 PSIA 210 PSIA 500 190 3 0 0 PSIA LOCUS OF MAXIMUM WATER SOLUBILITY LOCUS OF 4 HETEROAZEOTROPES 170 o o 150 100 20 40 60 COMPOSITION* MOLE % WATER Figure 21. Selected Isobars of . the System (1:1) Benzene:Cyclohexane- Water TEM PERA TU RE- 59 LOCUS OF MAXIMUM ' TEMPERATURES 290 LOCUS OF CRITICAL VAPOR TEMPERATURES [VAPORIZATION CRITICAL ENDPOINT 270 1171 PSIA 250 1000 PSIA o 230 7 0 0 PSIA 2 10 PSIA 5 0 0 190 3 0 0 PSIA ?— LOCUS OF o> HETEROAZEOTROPES LOCUS OF MAXIMUM WATER SOLUBILITY 170 150 100 40 COMPOSITION- MOLE % WATER 80 60 20 Figure 22. Selected Isobars of the System (1:3) Benzene:CyclohexGne-Water 60 liquid could have been shown on the pressure-temperature plots, but were omitted for clarity. Figure 23 is a two dimensional plot of the hetero- azeotropic surface in temperature-compos it ion space (i.e. variable equilibrium pressure). Figure 24 is for the same surface in pressure-composition space. Experimentally de termined points from the smoothed pressure-temperature plots are indicated by open circles and the balance of the surface contours were determined from the isothermal and isobaric crossplots. Figure 25 is a pressure-temperature plot of the lo cus of the vaporization critical endpoints. Samples which contain either the maximum or more of soluble water will exhibit the critical phenomena at the same temperature and pressure. For this reason the critical points of all sam ples which exceeded the maximum water solubility are shown and the best curve representing the locus has been drawn. For reference the rectange of precision (see Appendix D) is shown and has the dimension of +2.0 psi and +0.1 °C. Figure 26 is the temperature-composition space of the system showing the surfaces of maximum water solubili- ty (L')« the surface of heteroazeotroplc compositions HiQZt .. ............................................; ! t : i : : : i t t 5 f ^ i 3 | o l r z 5 £ 3 | i : I .ItiluiS! Illim ubudliti i ^^NCliiSCdWO^ C9 03 009 13H 001 006 to; 096 SIN 39 PRESSURE-PSIA 63 1400 A-6 1350 1300 1250 B -6 C-ll C-9 1200 C -6 C -7 c-e RECTANGLE OF > PRECISION ‘ — D -9 JizL D-8 D-5- H z S . 0-10 E - 6 ‘ 250 255 260 TEMPERATURE-°C 270 265 Figure 25. . Locus of Vaporization Critical Endpoints for the System: Benzene:Cyclohexane-Water TEMPER ATURE-*C 290 270 i 250 230 210 190 170 BENZENE A SERIES c K LOCUS K LOCUS 64 B SERIES WATER C SERIES D SERIES E SERIES CYCLOHEXANE COMPOSITION-MOL % Figure 2 6 . T-x Space for the System B enzene - Cyclohexane - Water 65 (L’*), the surface of critical vaporization points (L‘''), the locus of critical points of the hydrocarbon mixtures (K*), and the locus of three phase critical endpoints (K' *). Figure 27 is the pressure-composition space with the same loci and surfaces shown on Figure 26. Several interesting features of the system can be observed on the above mentioned figures (Figures 1-9 and 14-27). From the pressure-temperature plots (Figures 1, 4, 14, 15, 16) the surface of critical vapor points passes through a transition from the concave shape of the benzene- water system (Figure 4), which actually passes through a temperature minimum, to the convex shape of the cyclohex- ane-water system (Figure 7). This transition occurs be tween the hydrocarbon ratios of pure benzene and 73.6 mole percent benzene and 26.4 mole percent cyclohexane as the convex shape has developed for that hydrocarbon ratio (Figure 14). Similar changes occur in the surface of max imum temperature for coexistence of vapor and liquid, and the surface of maximum pressure for coexistence of vapor and liquid. These loci and surfaces have not been included1 j on the ]pressure~temperature plots or the temperature-com pos it ion and pressure-composition plots because their in- j COMPOSmON-MOL% Figure 2 7 . P-x Space for the System Benzene - Cyclohexane-Water 67 elusion on those plots at the reduced scale necessary for inclusion would have detracted frosi the infornation shown. These loci are presented on their respective isothermal and isobaric crossplots as they are necessary boundary con ditions for certain isotherms and isobars. Another feature of the system is the behavior of the bubble point line as it leaves the three phase locus identified as the three phase maximum point (3 pm). The transition here is from three phase behavior to two phase behavior. The benzene-water system (Figure 4) shows a re latively small change in slope of the bubble point locus after the transition. This change in slope after the transition becomes progressively greater as the hydrocar bon solution becomes richer in cyclohexane. This effect actually passes through a maximum with the D series where the mole ratio of bensene to cyclohexane is approximately 24x76. Not only is the behavior immediately following the three phase to two phase transition changing, but the phe nomena near and at the maximum pressure for coexistence of vapor and liquid (VL-Pm) passes through a reversal. In the benzene-water system this point is a rather sharp max- ! imum with rapid changes of slope for all water compositions! 68 above 15 mole percent. The cyclohexane-water system does not have this sharpness, and again, the phenomena actually passes through a maximum with the D series. This Is not detectable on the pressure-temperature plots because of their restricted size, but referring to the experimental data In Appendix E, the data for sample D-3 Which contains 33.1 mole percent water shows a maximum pressure for vapor and liquid coexistence of 1151 psia over a temperature range of 254.9 to 255.9°C. This type of behavior at the maximum pressure is necessary for systems Which are going to develop dual heteroazeotropic behavior as noted earlier (Figure 12). Because Figures 17 through 22 are actually constant hydrocarbon ratio planes within the ternary system, iso thermal lines across the two phase regions do not indicate the composition of the phases in equilibrium at that tem perature. The composition of such equilibrium phases must be determined experimentally by withdrawing a sample of the phases In equilibrium and analyzing the samples. Such a procedure was not possible with the experimental i apparatus used. Also, since this investigation was limited to the water soluble region of the system, the locus of maximum hydrocarbon solubility in water was not determined. Table V presents the dual heteroazeotropic composi tion ranges and maximum water solubility for the systems studied. 70 TABLE V Dual Heteroazeotropic Composition Ranges and Maximum Water Solubility for the Systems Studied System A B C D E Hydrocarbon Ratio Weight Ratio Mole Ratio Benz:Cycloh. Benz:Cycloh. Benzene 3:1 1:1 1:3 Cyclohexane Benzene 7k:26 1*8:52 2U:76 Cyclohexane Dual Heteroazeo* tropic Range Mole Percent 1*9.8 - 51.6 1 * 1 * .3 - 1*8.7 1 *1.0 - 1 *8.2 UU.l* - 1*7.5 Maximum Water Solubility Mole Percent 5 9.0 1*9.8 1 * 1 * . 3 1 *1.0 1* 1*.1* EXTENSION OF DATA Because of the fixed working volume of the experi mental tube, there existed a minimum temperature and pres sure for each mixture at Which the entire saeple could be vaporised. Consequently, the determination of dew points was limited for all samples. The data were extrapolated by careful interpolation between the pressure-temperature phase boundaries and the isothermal and isobaric crossplots made from the former. As sample preparation improved, smaller sample sizes were possible, which resulted in lower dew point determinations. These made possible rather ac curate extrapolations of previous larger sized samples by the method above. 71 SUMMARY OF RESULTS The benzene-cyclohexane-water system has now been outlined throughout the entire hydrocarbon range and slightly beyond the maximum solubility range of water. Phase boundaries for water compositions other than those experimentally determined in the five systems reported can be quite accurately generated by using information from the isothermal and isobaric crossplots. Hydrocarbon ratios other than those used in this study may be generated with reasonable accuracy by working with the t emperature-compo- sition and pressure-composition space diagrams. Varpori- zation critical endpoints and maximum water solubility for the entire range of hydrocarbon ratios have been determined and need only plots of temperature and pressure vs. hydro carbon ratio, mole percent or weight percent. This study has shown that when a multicomponent system composed of several components which are miscible in all proportions is mixed with another component which is partially miscible with each of the several original com ponents when conbined with each of them singularly as a binary system, the resulting phase behavior of this multi- 72 component system will bs intermediate to the phase bounda ries of the several binary systems. The molecular struc ture of the several miscible components will exert their individual characteristics on the solubility relations, and interaction of certain molecules with others may force some of the system's critical loci to pass through maximums or minimuiBS. This was found to be true of the maximum water solubility in the system studied whose locus passed through a minimum. Also brought out in this study was the importance of the critical phenomena of the miscible system in predicting the occurrence of maximum or minimum behavior in the parti ally miscible system. The critical temperature locus of the benzene-cyclohexane system passes through a minimum at a mole ratio of 24t76 benzene (cyclohexane. The minimum water solubility, the maximum dual heteroazeotropic compo sition range, and the minimum critical vaporization end point of the ternary occur at this hydrocarbon mole ratio. Also the fact that the addition of less than 25 weight per cent cyclohexane to the benzene changes the shape of the locus of critical vapor points from the concave of the ben zene to the convex of the hydrocarbon mixture, and 74 |indicates that the cyclohexane exerts a greater influence on the system than the benzene. (Figure 25 also shows the influence of the cyclohexane on the system as the addition of as much as 50 weight percent benzene has a minor effect on the critical vaporization endpoint pressure and tempera ture. All of these phenomena could have been suggested from the critical phenomena of the miscible system. REFERENCES 1. Bottomby, 6. A., and I. H. Cooper, Nature 193, 268 (1962). 2. Francis, A. W., Liquid-Liquid Equilibrium. Inter science Publishers, New York (1963). 3. Hayworth, K. E., M. S. Thesis, Univ. Southern California, Los Angeles (1962). 4. International Critical Tables, Critical Point Data, Vol. 3, 233 (1933). 5. Ibid., Density, Vol. 3, 29 (1933). 6. Ibid., Vapor Pressure, Vol. 3, 222 (1933). 7. Katz, D. L., and M. J. Razaz, Bibliography for Physi cal Behavior of Hydrocarbons Under Pressure and Related Phenomena, J. W. Edwards, Inc., Ann Arbor (1946). 8. Kay, W. B., Ind. Eng. Chem., 30. 459 (1938). 9. Kay, W. B., and D. His song, API 32nd Mid-Year Meeting (1967). 10. Kuenen, J. D., verdanpfunq und Verflussigung von Gemiach. Johann Anbrosius Barth, Leipzig (1906). 11. Palatnik, L. A., and A. I. Landau, Phase Equilibria in MuIticoaroonent Svsteas. Holt, Rinehart, and Winston, Inc., New York (1964). 12. Rebert, C. J., Ph. D. Dissertation, The Ohio State University (1955). 13. Rebert, C. J., and K. E. Hayworth, AlChE J. 13, 118 (1967). 75 76 14. Rebert, C. J., and W. B. Kay, AIChE J. 5, 258 (,1959). 15. Redlich, O., and A. T. Kister, and C. E. Turnquist, AIChE Syn. Sar. 48, 2, 49 (1952). 16. Ricci, J. E., The Phase Rula and Heterogeneous Bgulll- brla. D. Van Nostrand Co., Inc., Naur York (1951). 17. Rooseboom, H. W. B., Dla Hataroqanan Glaichqewichte vom Standounkte der Phasenlehre. Part 2. S vs tana ait Zwei Flussiqen Phases. Friedrich Viewig und Sohn, Braunschweig (1918). 18. Saverns, W. H., Jr., A. Sasonska, R. H. Perry, and R. L. Pigford, AIChE J. I, 401 (1955). 19. Young, S., Stoichioaatrv. Longmans Green and Co., New York (1918). APPENDICES 77 APPENDIX A Sample Preparation and Experimental Procedure General Essentially, two separate apparatuses are used in conducting this research. In one it is possible to prepare a totally degassed sample of known composition of two or more components. In the jother, it is possible to take the prepared sample and subject it to varying temperatures and pressures, independently of each other. The equipment and procedures were basically those developed by Young (19) and Kay (8); and used, after modi fication by Rebert (12). Further modifications were made to facilitate the loading of the sample tube, and to allow for the prep aeration of three component samples. The method consists of confining a known b u s s of sample in a quartz capillary tube with mercury. This capillary is then held in a specially built well so that pressure may be applied to the sample through the mercury. The capillary is sur rounded by a thermostat in Which a liquid may be boiled. The condensing vapors transfer heat to the sample. By varying the pressure within the thermostat, the boiling i 78 79 point of the liquid is changed; hence, the condensing va por and sample temperature are changed. The thermostat is only partially silvered, allowing the operator to observe the state of the sample. By varying the pressure at a given temperature, the bubble point and the dew point can be established. In this manner the phase boundaries can be traced. Experimental Tube The experimental tubes used were made of fused sili ca with dimensions approximately those shown in Figure 28. The tube was constructed with a thickened collar to fit: * the mounting assembly in the compressor block. Attached to the loading end of the capillary tube was a male tapered joint for mounting the sample tube on the loading appara tus. Loading Sample Tube When measuring the phase boundaries of a mixture of two or more fluids, the purity of the fluids used and the accurate measurement of the amount of each component pre sent is of utmost importance. The purity of the fluids used is discussed in Appendix E. 80 QUARTZ PRECISION BORE CAPILLARY TUBE 2 mm I. D.. 8 mm 0. D. 600mm 100mm QUARTZ MALE TAPERED JOINT Figure 2 8 . Experimental Tube 81 The success of the Whole investigation depends on i the accuracy and repeatability of any method used for mak ing the samples. The following paragraphs describe the apparatus and sequence of operation used for collecting and measuring the sample components. The overall sequence of operations is as follows: 1. Degas all fluids. a. Transfer a known amount of each fluid to the sample tube. 3. Trap the sample with a stem of mercury. 4. Remove sample tube from loading apparatus and transfer to the compressor block. The loading apparatus is shown schematically in Figure 29. - Essentially it is a vacuum still in which it is possible to degas the experimental flhids, and also trans fer known amounts of each fluid by distillation. The loading is started by assembling the loading ap paratus. Water is placed in bulb 18, the hydrocarbons in bulbs 20 and 21, and mercury in bulb 16. The sample tube 'assembly 13, 14, and 15 is attached making sure the stain less steel stirring ball has been placed in the sample tube. The cold trap, bulb 23, is attached and the acetone- TRANSFER MANIFOLD* 10 A .4<i S 19 9 A- 7 < 20 2 1 22 23 25 3= 26 27 30 31 32 33 28 TO VACUUM PUMP Figure 29. Schematic of Loading Apparatus o o N 83 dry Ice bath, 33, is placed around It. The vacuum pump, 28, and the mercury diffusion pump, 25, are started. All valves are opened except those leading to the experimental fluids. The system is pumped down for several hours until it is at a sufficiently low poressure to carry out the dis tillation (10“4 mm Hg). During the pumping down of the apparatus the degassing of the fluids is accomplished. For the mercury in bulb 16, this consists of gently tapping the bulb to dislodge gas pockets trapped below the mercury surface. For the water in bulb 18, this consists of freez ing, pumping Iddwn, and remelting. This is continued until no gas is expelled during the freezing operation. For the hydrocarbons, this consists of distillation of the hydro carbon, from bulb 20 to tube 19 (or 21 to 22) with valve 4 closed and valve 6 opened (or 5 closed and 7 opened). Af ter a transfer from one bulb to the other, the hydrocarbon is kept in a solid state by placing the dry ice-acetone bath, 31, (or 32) around it, and valve 4 (or 5) is opened to the vacuum to draw off the released gases, then closed again. This type of operation is carried out several times assuring the removal of all non-condensables. After I degassing the hydrocarbons are kept in the solid state by 84 an acetone-dry ice bath to minimize sample contamination by stop cock grease. With all fluids degassed, the next step is to trans fer a known quantity of each to the sample tube. The mea surement of the amount of each component transferred is done with the fine capillary tube, 17. The calibration of tube 17 is covered in Appendix B. The method of selecting the amount of each components is covered in Appendix C. To transfer a fluid to the measuring capillary, all valves are closed except 2, 3 and the valve leading to the fluid being transferred. After bringing the fluid to be transferred to room temperature, a quantity of the fluid is transferred to the neck of the measuring capillary by diffusion. A temperature gradient is supplied by cooling the neck of the capillary measuring tube with an ice cube. (If transfer by this method is not rapid, the vacuum within the system is not high enough and the system must be checked for leaks.) When a sufficient quantity of fluid has been collected in the neck of the measuring tube, valve 2 and the valve to the fluid being transferred are closed. The fluid collected is then coaxed to the bottom of the measuring capillary by gently tapping and cooling the sides i i 85 with an Ice cube. The fluid mist seat itself on the bot tom of the inside of this tube or the entire stick of fluid will be lost during the next operation. The amount of the fluid required has been determined before starting, and this has been converted into a given length of fluid in the measuring capillary tube (see Ap pendix C). In the transferring operation, a surplus of fluid is transferred; so, it is necessary next to draw off the excess. A water bath, 30, kept at approximately 8 to 12°C is placed around the measuring capillary. The cathe- tometer is brought into position, and a reading of the bot tom of the inside of the measuring capillary is estab& lished. Next, the setting of the cathetometer for the de sired length of fluid is made and the excess to be drawn dff is noted. The transfer manifold has two valves, num bers 3 and 9, to help control this operation. With all valves closed except 3 and 9, the transfer manifold is cleared of residual vapor, ^ith practice, excess fluid can be removed from the measuring capillary by vapor trans fer to the transfer manifold and the rquired length of fluid in the measuring capillary can be obtained within +0.005 cm. This is of great importance When investigating 86 ternary or higher systems. When the desired length of fluid has been reached, valves 3 and 9 are again opened (with valve 2 closed) and the transfer manifold Is allowed to evacuate itself Into the cold trap, 23. The water bath Is then removed from the measuring capillary. To transfer the measured quantity of fluid to the sample tube, valves 3 and 9 are closed after the transfer manifold has been evacuated; an acetone-dry ice bath, 29, is placed at the end of the sample tube, and valves 1 and 2 are opened. Under such a temperature gradient the liquid portion of the measured sample disappears rapidly. How ever, to assure the maximum deposition of the material as a solid at the bottom of the sample tube, at least an hour should be allowed. After this time has elapsed, valve 1 is closed, and valves 3, 9, and 10 are opened'to again eva cuate the transfer manifold. The above procedure is followed for each component, successively transferring them to the sample tube. When all components are in the sanqple tube, mercury is poured into the sample tube from the mercury bulb, 16. Sufficient mercury is poured into the tube to completely fill it. The vacuum is broken by removing the mercury bulb from the sys- 87 ten and tha sample tuba la than removed from the apparatus. : During this oparation it is important to hasp tha sample frozen as it is lightar than tha mercury. Tha sample is now raady to ba placad in tha conprassor block. Compressor Block Tha conprassor block was a nild steal cylinder ma chined with a well and internal shoulder to receive tha experimental tuba and support the mounting assembly. Fig ure 30 shows the compressor block in cross-section, com pletely assembled. The assembly labeled (A) supplied tha bain mechani cal support for tha experimental tuba by seating on tha shoulder provided in tha conprassor block. This also served to align tha experimental tuba. Whan pressure was applied to tha sample, tha leather washer backed up by the first teflon retaining washer, rubber stopper, second tef lon gr staining washer, steel washer, and steel retaining head, kept the amperimental tube in place. When assembling the apparatus, the well with assembly (A) in place was • ■ filled with mercury. The sample tube was carefully placed j | An the well and forced through the hole in the tube sup- | port packing until the thickened collar on the sample tube I 88 N n < \ / Z TO MERCURY COMPRESSOR CYLINDER AND LEVEL INDICATOR STEEL RETAINING HEAD STEEL GLAND STEEL WASHER TEFLON SEAL j RUBBER SEAL PACKING I TEFLON SEAL LEATHER GLASS RETAINING WASHER RUBBER TUBE ! SUPPORT PACKING TEEL SUPPORT SHELL SAMPLE TUBE MERCURY RESERVIOR STEEL CYLINDER STEEL BASE Figure 90. Compressor Block Assembly 89 rested on the packing. The excess mercury was then drawn off and the balance of the retaining elements were insert ed into the well, one at a tine. When all the retaining elements were in place, the steel retaining head was turned down causing the steel gland and washers to conpress the rubber packings, which served to make the rubber-steel and : rubber-guartz seals mercury tight. With this arrangement, proper alignment of the sample tube was assured, and no shearing stresses were applied to the experimental tube. Complete Data Collecting Apparatus Figure 31 is a schematic diagram of the entire ap paratus as assembled for use. Figure 32 is a schematic showing the relative heights of the various pieces of equipment for determining the true pressure on the sample. The data to be taken on such a system consists of a series of pressures and temperatures. The equipment con- ; sistS of two elements, one of which varies the pressure, and the other Which varies the temperature. Pressure was applied to the sample hydraulically by means of mercury and oil compressor pistons. The hydrafe- ; lie head on the sample was determined as shown in Figure I ' ! I 32. The mercury level was held constant by adjusting the j 0 VACUUM PUMP / EXTERNAL MAGNET CONDENSER — VACUUM MANOMETER 3=0=3 3 = 0 = 3 THERMOCOUPLE LEADS 90 BULBS FOR MINUTE PRESSURE VARIATION WITHIN THERMOSTAT SAMPLE TUBE STIRRING MAGNET VACUUM RESERVOIR ( 2 - 3 GALLON BOTTLES) X37XZ7 BOILER RESISTANCE HEATER COMPRESSOR BLOCK i— X DEAD WEIGHT GAUGE TESTER •INTERNAL MAGNET SUPPORT WIRE CARRIER (STEEL) •THERMOCOUPLE JACKET OIL COMPRESSOR SAMPLE PRESSURE GAUGE WIRE HANGERS FOR STIRRING MAGNET 6- MERCURY LEVEL INDICATOR — THERMOSTAT MERCURY COMPRESSOR Figure 3 f . Schematic of Assembled Apparatus EXPERIMENTAL TUBE PRESSURE GAUGE COMPRESSOR BLOCK \ MERCURY LEVEL INDICATOR HEIGHT OF MERCURY COLUMN IN ■ EXPERIMENTAL TUBE (VARIABLE) 85 cm 9 cm REFERENCE PLANE Figure 32. Schematic of Relotive Heights of Experimental Apparatus 92 level in the mercury level indicating cylinder. (For de tails of this indicator, see Figure 33.) The mercury level was observable by means of a single probe which made con tact with the mercury, and was connected to a flashlight bulb and transformer. It was not possible to add or remove mercury after mounting the sample tube in the compressor block, so care had to be taken to assure the level could be adjusted by simply adding oil. The pressure in the system was indicated by a Bour don pressure gauge with a range of 0 to 5000 psi. The gauge was calibrated periodically and found to be within the claimed accuracy of +0.1% of the full scale reading. Although the smallest scale division was 5 psi, repeated calibration indicated that gauge reading accuracy of +1 psi was possible. A dead weight tester was an integral part of the system to calibrate the gauge. In Figure 31, the experimental tube is shown sur rounded by the vapor thermostat. Heat was supplied to the sample by means of a condensing vapor. The pressure with- : in the vapor thermostat was controllable? therefore, the temperature of the condensing vapor was controllable. Arrangements were made to enable the extraction or addition! t i ELECTRICAL PROBE' TO VALVE TO RELEASE AIR AND/OR EXCESS OIL MERCURY-OIL INTERFACE MERCURY IN Figure 33. Mercury Level Indicator 94 of air In minute amounts, so that the temperature coaid ba varlad slightly Whan nacassary. During tha course of this invastigation, it was nacassary to usa two boiling fluids, naphthalane and benzophanona. Tha temperature was determined by means of an iron- constant an thermocouple in conjunction with a potentiometer and galvanometer which could readily detect a temperature change of 0.02°C. The temperature maintained within the thermostat and indicated by the thermocouple was estimated to have the conservative accuracy of +0.5°C. The calibra tion of the thermocouple system is described in Appendix B. To hasten the attainment of equilibrium, the sample was stirred by means of a 400 series Stainless Steel ball inside the experimental tube. This ball was moved within the sample by means of a small cylindrical permanent mag net which surrounded the sample tube. This magnet was hung inside of the vapor thermostat on stainless steel wires which were suspended from a steel carrier. This steel carrier was itself moved by a cylindrical permanent magnet outside the system. In order to observe the phase changes taking place 95 within the sample tube, a light was mounted directly behind the tube. This l i g h t was connected to a variac so that the intensity of the light could be changed. To check critical phenomena, a small, movable light source was used to ob serve both transmitted and incident light effects. Experimental Procedure with the data collecting apparatus completely as sembled, the experimental procedure could begin. A limit ing condition on this equipment was the lowest boiling point, under vacuum and without bumping, that could be ob tained with the boiling fluid. With naphthalene, the low est temperature obtainable was 120°C, and the highest was 215°C. With benzophenone, they were 195°C and 305°C. With the proper boiling fluid in the boiler for the temperature range to be studied, the pressure in the vapor thermostat was lowered to an appropriate level. The heater was then turned on and the variac adjusted so that the liq uid in the boiler boiled off at a constant rate sufficient to cause condensation to occur at the upper end of the thermostat. Since there was no pressure gradient within the thermostat , —t-he temperature was constant and cons is- i | tent after steady state conditions had been attained. The 96 tine element during initial warm-up was very important. The sample, being encased in a quartz capillarty tube with 3 ran thick walls, naturally took longer to come to an equi librium condition than the thermocouple encased in a glass tube with approximately 1 mm thick walls. Even with the stirring mechanism it was noted that for temperature chhnges of 5°C, a time interval of at least 40 minutes was necessary to attain equilibrium. To ensure an equilibrium reading, the following procedure was followedt 1. at start-up, allowed approximately 90 minutes to elapse before making first reading. For a 1°C change, allowed approximately 20 minutes to elapse, and for a 10°C change allowed approxi mately 60 minutes. 2. After waiting the required time, pressure and temperature readings were taken. 3. Data correction calculations were made. (This took approximately 5 minutes.) 4. Pressure and temperature readings were checked before resetting for a new temperature. APPENDIX B Calibration of Equipment Pressure gauge The Bourdon pressure gauge was calibrated against a dead weight tester up to a pressure of 2000 psig in incre ments of 100 psi prior to running each sample. The results of the calibration are summarized in the form of a devia tion chart (figure 34). Thermocouple A thermocouple made from 24-gauge iron and const an- tan wire with fiber glass insulation was standardized against condensing water, naphthalene, and benzophenone using a melting ice reference junction. The results of the standardization are summarized in Table VI. To convert from millivolts to temperature, Tables VIII and IX of Ap pendix D were used. These were prepared from the table given by Rebert (12). The deviation of the true BMP of the thermocouple from the standard chart vs EM7 was prepared in the form of a nomograph to facilitate reading. This nomograph was pre- 97 . 1 E 99 TABLE VI Thermocouple Deviation Data Eq emf Thermo couple Substance mv Condensing Water 5.238 Condensing Naphthalene 11.7^ Condensing Benzophenone 16.990 Barometric True Pressure Temperature mm Hg °C 75.51 99.82 75.^5 217.6U 75.73 305.73 Ec emf Chart Deviation mv Eo"Ec 5.235 +0.003 11.732 +0.012 16.626 - 0.036 100 pared from the graph of the deviations shown in Figure 35. The nomograph is shown in Figure 36. Sample Measuring Tube The precision-bore capillary tube that was used for measuring the quantity of each component in a sample mix ture was calibrated to determine its volume as a function of its length fron the tip. Measurements were made of the length and temperature of known masses of mercury in the tube and of the height of the mercury meniscus. To the calculated volume of mercury was added a volume compliment of the mercury meniscus based on the assumption that the meniscus was a segment of a sphere. For convenience in subsequent use, these data were reduced to the form of a linear equation by application of the method of least squares with the following results V - 0.004675 L - 0.000114 wheret V is the volume in cc L is the length in cm The total volume of the sample measuring capillary including the volume up to the closed valve was determined 101 :rl: ill JilijiiJG ill; iill 5iii iiJ: Jiii ,E iliRE/ X)ING ±inV illi ..... ■ ; ; ; ; ; ; ; : ; ; i l i S i P I S irt : • f DEVIATION-mv ■K0I2 + .0 0 5 tT JT T u JT 9 1 0 I I 12 1 3 14 THERMOCOUPLE READING-mv Figure 36. Thermocouple Deviation Nomogram ! by filling the volttme with Mercury, to be 5.99 cc. 102 This volume was found APPENDIX C Calculation of Saapla Composition from Experimentally Determined Data Proa the measurements aada on tha individual compo nents, tha actual conpoait ion of tha saapla was calculated in a nanner shown in Table VII for saapla D-9. Tha indi vidual itaas in tha table have the following significance: 1. Tha taaparatura of tha water bath surrounding tha saapla measuring capillary tuba. 2. Tha vapor pressure of tha individual components at tha taaparatura of tha bath (Figure 37). 3. The density of the liquid of the individual com ponents at tha taaparatura of tha bath (Figure 38). 4. Cathatoaatar reading of top of the liquid level in capillary. 5. Cathatoaatar reading of bottom of liquid in capillary. 6. Difference of itaas 4 and 5 giving tha length of; liquid in capillary. 7. Tha calculated volume of liquid. TABLE VII Sample Calculation of Mixture Composition Sample D-9 Benzene Cyclohexane Water 1. Bath temperature °C 11.6 10.6 7.8 2. Vapor pressure mm Hg 1*9.70 1*9.00 7.80 3. Liquid density gm/cc 0.88760 0.78750 0.9999 i * . Meniscus level cm 79.261* 81.172 79.31*1* 5. Tube tip cm 78.735 78.762 78.737 6. Liquid length mm 5.29 21*.10 6.07 7. Liquid volune cc (xlO^) 23.59 111.53 27.21* 8. Moles vapor gm moles (xio*5 ) 1.678 1.662 0.267 9. Weight vapor gm (xl()3) 1.311 1.397 0.01*8 10. Weight liquid gm (xlO1 * ) 20.9U 87.83 27.21* 11. Moles liquid gm moles (xlO**) U.359 12.096 15.1*00 12. Total weight comp, gm (xlO^) 3.1*05 10.180 2.772 13. Sample weight gm (xlO^) — 16.357 --- ------- l l * . Composition weight percent 20.8 62.2 17.0 15. Total moles comp, moles (xlO^) 1*.359 12.096 15.1*00 16. Sample moles moles (xlO ) -------- — 31.855 --- ------ iT. Composition mole percent 13.7 38.0 1*8.3 ret;OHEx ATIsR e.86 I f 107 8. The calculated number of gram-moles of component contained in the remainder of the volume of the measuring tube assembly at its saturation vapor pressure and temperature assuming ideal gas be- 9 havior. 9. The weight of the vapor portion of component. 10. The weight of the liquid portion of component. 11. The moles of liquid portion of component. 12. Total weight of component. Sum of 9 and 10. 13. Total sample weight. 14. Composition weight percent. 15. Total moles of components. Sum of 8 and 11. 16. Total moles in sample. 17. Composition mole percent. During thh actual preparation of a multicomponent sample, it would be too tedious to determine the above for each component as it was being added to the sample. Since the sample measuring capillary is a constant volume tube, it was possible to calculate the component weight for a given length at a given temperature. These were plotted with temperature as the parameter on a scale of 0.05 inch to 0.005 cm of length of liquid in the sample measuring 'tuba and 0.05 inch to 0.00002 gms of total sanpla. An ex- anple of these charts is shown as Figure 39 on a such smaller scale. With these charts, the rapid determination of the correct liquid stem of the component to give the required weight of the component for the particular sample was possible. Since the temperature parameters chosen were 8, 10, 12, 14, and 16°C, interpolation was required between the lines. This necessitated the calculation of the true composition by the method previously described and shown in Table VII. Actual calculations confirmed the value of the charts because the true compositions were within the limits of accuracy of the method, when compared to the composition arrived at by the charts. MwtwHg usuoduibo 600 ! r APPENDIX D Discussion of Errors In Appendix C, the calibration of the equipment was described. The experimental accuracy of the actual mea surement of temperature is believed to be within +0.05°C, and that of pressure +1 psi. However, the combination of experimental accuracy of the actual measurements plus the ability to recognize the phase boundary precisely result in wider tolerances. Because of the method used to deter mine the boundary (See Appendix B), the temperature toler ance possibly increased to +0.1°C (except in the vicinity of the critical) and the ppessure tolerance varied depend ing on which portion of the boundary was being investigat ed. Along the bubble point portion, the accuracy (as shown by smoothed data) was within the ability to read the gauge, i.e. +1 psi, Whereas the accuracy along the dew point line was at times as high as +5 psi. The accuracy along the dew point line was also a function of the pres- ; sure difference between the bubble point and dew point at ;constant temperature. The greatest accuracy occurred at high temperature and pressure for both bubble points and I ... _ ______.......... 110..........._ ... __ Ill 1 i upper retrograde condensation point a. The accuracy of cri tical point determination was aleo a function of the water content of the sample. Because near critical phenomena identified by opalescence occurred over an extended area on the pressure-temperature plane, picking the precise point proved extremely difficult. These errors are opera tors ' errors and in the middle ranges of water solubility could amount to +0.2°C with a corresponding pressure change. In these cases the position of the boundary of the pressure-temperature plane is accurate to the preci sion of the various gauges, but the exact location of the critical along that boundary has the mentioned inaccuracy. The accuracy of the measurement of the composition of the samples was proven by the construction of the iso thermal and isobaric crossplots. The ability to make sam ples of given hydrocarbon ratios and water content required to trace out the heteroazeotropic surface also attested to ; the accuracy of sample preparation. Out of the thirty- i four samples run, only samples C-8 and C-10 had to be moved ; from their calculated water contents because of their lack j I of consistency with the bulk of the data. Even with these j . . , - v . . , .... . ! samples, the hydrocarbon ratios were correct as proven by 1 1 2 their critical points, and only the water content was in error. The precision of the samples was easily within +0.1 weight percent of their calculated values. To smooth the data, the pressure-temperature phase boundary points were plotted on rectangular coordinate paper with scales chosen commensurate with the accuracy of the original data. On these graphs the pressure was re presented by a scale of 1 mm to 2 psi and temperature by a scale of 1 mm to :0.2°C. On the crossplots of isobars and Isotherms, the pressure was represented by a scale of 0.05 inch to 5 psi, and the temperature by 0.05 inch to 0.4°c, and the. composition by a scale of 0.05 inch to 0.5 mole percent. APPENDZX E Determination of True Temperature and Pressure of Sample For each observed point, the EMF of the thermo couple, the pressure reading of the gauge, the level of the mercury column in the experimental tube, and the phase boundary being observed were recorded. A model data cor rection sheet was devised and interpolation charts (Tables VIII and ig) prepared, in order to simplify the application of corrections to those basic data. Shown in Table X is a sample of this data on which the primary measurements are indicated by asterisks. The significance of the items in Table X are as followst *1. The EMF generated by the thermocouple. 2. The deviation of the actual EMF of the thermo couple from the reference nomograph (Appendix B, Figure 36), as determined by standardization. 3. The value of the corrected EMF. 4. The value of the temperature as indicated to the nearest 0.1 millivolt (from Table VIII). TABLE V I I I Reference Chart for Iron-Constantan Thermocouple Millivolts vs °C Ave. T/ j ■V 0.0 0.1 0.2 0.3 O.b 0.5 0.6 0.7 0.8 0.9 T/0.1 wr 0 0.00 2.02 b.Ob 6.05 8.05 10.05 12.0b lb.02 16.00 17.97 2.00 1 19.9>» 21.90 23.86 25.81 27.76 29.70 31.6b 33.58 35.51 37.bb 1.9b 2 39.36 bl.28 b3.19 b5.10 b7.01 b8.91 50.81 52.71 5b. 60 56.b9 1.90 3 58.38 60.26 62. 1b 6b. 02 65.89 67.76 69.63 71.50 73.36 65.22 1.87 b 77.08 78*93 80.78 82.63 8b<b8 86.33 86.17 90.01 91.85 93.69 1.85 5 95.53 97.37 99.20 101.03 102.86 10b. 69 106.52 108.35 110.18 112.01 1.83 6 113.83 115.65 117.b7 119.29 121.11 128293 12b.75 126.57 128.39 130.21 1.82 7 132.03 133.85 135.67 137.b9 139.30 lbl.ll lb2.92 lbb.73 lb6.5b lb8.35 1.81 8 150.16 151.97 153.78 155.59 157.bO 159.21 161.02 162.83 l6b.6b 166.b5 1.81 9 168.26 170.07 171.88 173.69 175.50 177.31 179.12 180.93 182.7b I8b.55 1.81 10 186.36 188.17 189.98 191.79 193.60 195.bl 197.22 199.03 200.8b 202.65 1.81 U 20b.b6 206.26 208.06 209.86 211.66 213.b6 215.26 217.06 218.86 220.66 1.80 12 222.b6 22b.26 226.06 227.86 229.66 231.b6 233.26 235.06 236.86 238.66 1.80 13 2b0.b6 2b2.26 2l*b.06 21*5.86 2b7.66 2 1 *9.1*6 251.26 253.06 25b.86 256.66 1.80 lb 258.b6 260.26 262.06 263.86 265.66 267.b6 269.26 271.07 272.86 27b.66 < 1.80 15 276.1*6 278.26 280.06 281.86 283.66 285.b6 287.26 289.06 290.86 292.66 1.80 16 29b. 1 * 6 296.26 298.06 299.86 301.66 303.b6 305.26 307,06 308.86 310.66 1.80 17 312.1*6 31b. 26 316.06 317.86 319.66 321.1*6 323.26 325.06 326.86 328.66 1.80 18 330.1*6 332.26 33b.06 335.8.6 337.66 339.b6 3bl.26 3b3.06 3bb.86 3b6.66 1.80 19 3b8. l *6 350.26 352.06 353.86 355.66 . 357.b6 359-26 361.06 362.86 36b.66 1.80 20 366.1*6 368.25 370.0b 371.83 373.62 375.bl 377.20 378.99 380.78 382.57 1.79 | _ j M A TABLE IX Interpolation Chart for Iron Constantan Thermocouple for T of 1.80°C/0.1 wr mr 0.000 0.001 0.002 0.003 0.00b 0.005 0.006 0.007 0.008 0.009 0.00 0.02 o.oi* 0.05 0.07 0.09 0.11 0.13 0. 1b 0.16 0.01 0.18 0.20 0.22 0.23 0.25 0.27 0.29 0.31 0.32 0.3b 0.02 0.36 0.38 0.1 * 0 Ob.l 0.b3 0.1*5 0.1*7 0.1*9 0.50 0.52 0.03 0.5** 0.56 0.58 0.59 0.61 0.63 O.65 0.67 0.68 0.70 0.0b 0.72 0.7b 0.76 0.77 0.79 0.81 0.83 0.85 0.86 0.88 0.05 0.90 0.92 0.9l* 0.95 0.97 0.99 1.01 1.03 l.OU 1.06 0.06 1.08 1.10 1.12 1.13 1.15 i.17 1.19 1.21 1.22 1.2b 0.07 1.26 1.28 1.30 ' 1.31 1.33 1.35 1.37 1.39 1.1 * 0 l.b2 0.08 l.bb 1.1 * 6 1.1 * 8 1.1*9 1.51 1.53 1.55 1.57 1.58 1.60 0.09 1.6$ 1.6U 1.66 1.67 1.69 1.71 1.73 1.75 1.76 1.78 0.10 1.80 115 116 1ABLE X Sample Data Seduction Sheet Data Reduction on Sample D-9 Observation Number 1107 Temperature correction: •1. Observed EMF (mv) 13.7^13 2. - Correction (mv) -(-0.0078) 3. True EMF (mv) 13.7^91 1 * . Temperature to nearest 0.1 mv (°C) 253.06 5. Interpolated temperature increment (°C) 0.88 6. Temperature (°C) 253.91 * Pressure correction: t t 7> Relative mercury head (im) 7M 8. - Reference correction (m) -(+90) 9. Hydrostatic head (mm) 651 * 10. Hydrostatic head (psi) 12.65 11. Mercury vapor pressure (psi) 1.60 12. Total negative correction (psi) lU.25 *13. Gauge reading (psi) 11U8 l l * . - Correction (psi)" -(+2.5) 15* Gauge pressure (psig) lll»5.5 16. Barometric pressure (psi) -lU.59 17. Absolute pressure at gauge (psia) 1160.09 18. + Total negative correction (psi) +(-lU.25) 19* Absolute sample pressure (psia) UU5.8U 20. Phase boundary observed bubble point 117 5. The interpolated fraction of tho temperature to tha nearest 0.001 millivolt (froa Table IX). 6. Tha true temperature of tha sample. *7. Tha height of tha aercury aaniecus in tha ex- periaental tube above an arbitrary datua plana near tha base of tha compressor block (Appendix A, Figure 32). 8. A constant correction for the difference in hy drostatic head between the datua plane near the base of the compressor block and the center of the Bourdon tube in the pressure gauge. 9. The contribution to the pressure indicated on the gauge by the hydrostatic head in na Hg. Sum of 7 and 8. 10. Saae as 9 except in psi. 11. The contribution to the pressure indicated on the gauge by the vapor pressure of aercury in the experimental tube (Table XI). 12. Total negative correction for hydrostatic head and vapor pressure of aercury. Sub of 10 and 11. *13. Actual gauge reading. TABLE XI Mercury Vapor Pressure Chart for Experimental Range psla vs-°C fc 150 160 0 0.06 0.08 1 2 3 1 * 5 6 7 8 9 170 0.12 0.12 0.13 0.13 O.lU O.lU 0.15 0.15 0.16 0.16 180 0.17 0.18 0.18 0.19 0.20 0.21 0.21 0.22 0.23 0.23 190 0.2U 0.25 0.26 0.27 0.28 0.28 0.29 0.30 0.31 0.32 200 0.33 0.35 0.36 0.37 0.39 0.1 * 0 0.1 * 1 0.1 * 2 0.1 * 1 * 0.1*5 210 0.1 * 6 0.U8 0.1*9 0.51 0.52 0.5! * 0>-56 0.57 0.59 0.60 220 0.62 0.61* 0.66 0.68 0.70 0.73 0.75 0.77 0.79 0.81 230 0.83 0.86 0.88 0.91 0.93 0.96 0.99 1.01 1.0U 1.06 2k0 1.09 1.12 1.15 1.19 1.22 1.25 1.29 1.32 1.35 1.39 250 1.1*3 1.1*7 1.52 1.56 1.60 1.65 1.69 1.73 1.78 1.82 260 1.86 1.91 1.96 2.02 2.07 2.12 2.18 2.23 2.28 2.33 270 2.38 2.1*5 2.51 2.58 2.61* 2.71 2.77 2.8U 2.90 2.97 2M 3.03 3.11 3.19 3.27 3.3U 3.1*1 3.1*9 3.57 3.65 3.73 290 3.82 3.91 U.00 U.10 U.19 U.28 U.38 1 * . 1 * 7 U.56 ‘ U.66 300 l*.75 l*.87 M 9 5.10 5.22 5.3U 5.1*5 5.56 5.68 5.80 310 5.92 6,05 6.19 6.32 6.1 * 6 6.59 6.72 6.86 6.99 7.12 320 7.25 7.1*1 7.57 7.73 7.89 8.05 8.21 8.37 8.53 8.69 330 8.85 9.01* 9.23 9.1*2 9.61 9.80 9.99 10.18 10.37 UR 56 3^0 10.75 10.97 11.20 11.1 * 2 11.61* 11.87 12.09 12.31 12.51* ‘ 12.76 350 360 12.98 15.50 13.23 13.1*8 13.71* 13.99 ll*.2l * 1 1*. 50 lU.75 15.00 15.25 M CD 119 14. 15. 16. 17. 18. 19. *20. The deviation of the actual pressure of the system from the pressure deviation chart (Ap pendix B, Figure 34). True gauge pressure. Barometric pressure. Absolute pressure of the gauge. Total negative correction. Sum of 10 and 11. Absolute sample pressure. Boundary observed. APPENDIX F Reduced Bxperimental Data Data on Phase Boundary Relations The data on the phase boundaries for samples of fixed composition are presented in Table XII as they were originally observed and corrected for known deviations of the measuring instruments. Recorded are the observation number, the corrected temperature and the corrected pressure. The data are arranged in such an order that the three phase curve is traced out, followed by the bubble point line, and final ly, the dew point line. The Critical point is indicated by (vc) next to the observation number. 1 2 1 TABLE XII Reduced Experimental Data Observ. Temp. Number °C Data on Benzene 579 195.7 198 580 215.8 269 581 231.5 337 582 2UU.3 U02 583 256.5 U68 58U 267.3 538 59U 272.6 579 585 277.3 611 586 279. u 628 587 281.2 6U3 592 281.6 6U9 588 285.0 673 589 287.7 69U 590 488.8 708 591 VC 289.5 713 593 281.6 6U6 595 272.6 577 Data on Sample A-U Benzene-Water' Benzene 85. u vt* 57.* nol* Water lU.6 vt% U2.6 moljf 833 201.7 UU8 83U 221.6 6U5 835 23U.8 811 836 2U5.0 952 857 2U7.7 99U 858 2U9.6 102U 859 251.6 1056 837 253.2 108U 860 255.* 1117 861 257.0 llUl 838 260.0 1186 839 263. u 123U 8U0 266.5 1276 8U2 267.6 1281 8U1 VC 267.9 127U 8U3 267.6 1225 Observ. Temp. Press. Number °C psia Data on Sample A-U (con't.) 8UU 266.9 1206 8U5 266.5 1188 8U6 265.2 1152 8U7 262.1 1083 8U8 258.8 1020 8U9 255.1 957 850 251.2 897 851 2*7.1 837 852 2U2.6 780 853 237.5 715 85U 231.0 650 855 226.6 597 856 218.1 518 Data on Sample A-6 Benzene-Water Benzene 76.0 vt* U2.2 mol£ Water 2U.0 vt* 57.8 mol0 862 201.6 UU8 88U 202. U U55 86U 213.8 56U 863 220.9 636 865 229.3 737 866 2U0.3 886 867 2U9.U 1022 868 256.8 11U8 869 263. u 1270 870 265.1 1301 871 266.6 1330 872 267.9 135U 873 268.1 1359 87U VC 268.6 1368 875 267.9 1355 876 265.1 1298 877 261.9 1238 878 256.8 11U5 879 2U9.2 1017 880 238.1 856 Press. psia TABLE XII Observ. Temp. Preaa. Humber °C paia Data on Saaple A-6 (con't.) 881 228.3 727 882 213.1 55U 883 202.2 U51 Data on Saaple B-l 3:1 Benzene:Cyclohexane by vt Benzene 75.1 vt* 76.5 aol* Cycloh. 2U.9 vt* 23.5 aol* Water 0.0 vt* 0.0 aol* 509 196.2 200 510 208.3 238 511 222.2 29U 512 232.6 3Ul 513 2U0.6 381 5lU 2U9.5 U31 515 257.0 U7U 516 265.lt 529 517 272.1 576 518 278.1 623 519 282.5 656 520 283.6 663 521 28U.0 667 522 28U.2 668 532 28U.lt 672 53U VC 28U.5 . 67U 523 28U.6 673 533 28U.U 672 531 28U.1 668 530 283.6 66U 529 283.0 660 528 282.6 656 527 27U.7 586 526 259.3 U87 52U «38.7 370 525 227.5 318 1 2 2 (con't.) Observ. Trap. Press. Nuaber °C psia Data on Saaple B-la 3:1 Benzene: Cyclohexane by vt. Benzene 75.6 vt* 76.9 aol* Cyeloh. 2U.U vt* 23.1 aol* Water 0.0 vt* 0.0 aol* 1061 1U9.8 91 1062 158.9 107, 1063 167.1 12b 106U 17U.0 1U0 1065 182.5 161 10 66 189.0 180 Data on Simple B-2 3:1 BenzenetCyclobexane by vt. Benzene 71.U vt* 62.5 aol* Cycloh. 23.9 vt* 19. u aol* Water U.8 vt* 18.1 aol* 360 30*. $ U75 361 21k.6 582 Ull 215. U 591 UlO 215.6 605 U 09 218.1 6lU U08 219.0 620 U07 220.0 628 U 06 221.0 637 U05 222. U 6U7 362 223.3 655 363 230.1 708 36U 237.3 7 66 365 2b2.b 808 366 2U6.9 8U 5 367 250.7 878 368 25U.U 908 U o U 256.3 919 369 258.U 93U 370 261.6 959 371 263. u 980 372 267. u 995 373 269.8 1005 387 269.9 1006 388 270.2 1006 389 270.5 1006 n C M r-4 a 2 ■ - r l « • U P< t~ o i c m in c m cnvo o \ H o \ w ^ cnco c - h -3 «£<?>:* !£>2>SR£!?2l £?•£. ov c m -3 co w J ’J -S' irv in v o vo vo in in i n -3 cncMvoinooCMVOoncooio t— 0\OOOHrlHr|rlp)HHHHHHHHHPOQO\0>OvO\OvO»® .................................HrlrirlrirlHrlHH •H rH rH H H H tfc • > p I I o a s § o cr» I « €) r - 4 O W O V O W n c o W f f l UVrl O v N O v O IACO t - l f t O I O k r l ^ O M O - # * « # • • • • • • • • • • • • • • • • • • • • • • * • • • KOiO^SOOririCin UMA U\VO V0VOVOVO^^CIOlrlOCO - 3 . 3 ^ 1 n i n S ^ S v o 'S 'k '^ ^ S vo vo vo vovp vo vo vo vo vo vo vo vo vou> in CMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMC1CMCMCMCMCMCMCMCMCMCMCM C O § 2 1 o ► m ,k * m v o t—oo ovvo o h cm cn in n w c o o o v h v o ^ m v o t - e o c \ c i on cm cm cm -S' c n m i n i n i n . 3 co-3"^ ^ cn . 3 on j 1 ^ u \ i A u \ t f \ v \ u \ CMCMCMCMCMCMOIWCMWCMCMCMCMCMCMCMCMCMCMCMCMCIWOICMCMCMCM SS S 5 £-s s a ©co cn ov S 3 * * * 2 cm cn on H J r 4 £ > t- cn t - i & Hlftt-O 1-0 o V O in t — C O O O t - o v o © o o rl rl H p i CO VO CM cn H CM • • • • • • notOHH CM - 3 . 3 irv U M fv C M C M C M C M C M C M « cn ri i n - o v o C M H C O 2 M a a « • °jjg« . • *838 MH 11 p« < “ a cn -3 irvvp oo co Si . . V O ovovco tt A I o o VO VO irv- 3 C M O O v U V r - I V O C M t - H r t o o o o q o c o c o c o t— t— vo vo uv i pm o v £ - - a r r t £ 21 S .Ja.H J O O O O O O O v O lO a O v O v O v O v O v I OvCOcOCOCO t— t— t— t— VO VO H H H H H H c m on m ov t— H - 3 irv-3 m t - H Ov t— -3 H Ov irv C M O irv S3 O o CM © iH f CO s 2 3 a CO H o n irv C — o v v o O v O W - 3 t - 0 \ i H W 3 0 v H H O V O ITvVO - 3 o v c n • ••••••••©••••••• •••••• • • • o H H H H H C M C M c n c n c n c n on-3 -3 on cm cm h Ov r ^ - 3 cm o c~vo ►_»— fwj—fr—t— t-o-i- c—v o v o v o v d v o irv irv CMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM > o H cm c n - 3 i n - 3 j n v p t - e o o v o H w to ^ r £ : 2 > 2 2J O v O v O v O v O v O v ( - I — t — t - 1— CO CO CO OO CO CO CD O v O v O v O O O m c n c n c n c n c n c n c n c n c n c n c n c n c n c n c n c n c n c n c n c n cn -3 -3 -3 cn o H p | r l £838 o cnco ov (J • • • 2 H in C M MUVHCO I O'W.W.Vt in in o t o t-CM O S 3 V O C M rH CO « M o S Si . 2*83$ 1 > H g o 3 a m & & » H P 1 3 o n - 3 O O V O H ocovoocMuvint-ov t— t - cO Ov Ov Ov Ov Ov Ov v o v o i n c M v o - 3 t — o v e n « • • • • • • • • U V H t-O rMCncn-3VO C M ( 0 ( 0 3 3 3 3 3 3 CMCMCMCMCMCMCMCMCM • CO Ov | CM CM - I CM CM CM CM cn-3 „ cn cn cn CM CM CM CM 124 TABLE XII (con't.) Observ. Temp. Press. Observ. Temp. Press. Nuaber °C psia Number °C psia Data on Sasqple B-k (con't.) Data on Sample B-5 3:1 Benzene:Cyclohexane by vt. 108 251.2 1090 Benzene 61.6 vt#'/ 38.1 mol* 98 251.7 109k Cycloh. 19.k vt* 11.2 mol* 99 252.6 1112 Water 18.9 vt* 50.7 mol* 107 252.7 1115 118 253.9 1130 121k 15k.1 176 106 25k. 2 1135 1215 162.9 212 100 25k. 3 llkk 1216 170.3 2k6 92 25k. 8 1150 1217 178.1 290 119 255.5 1158 1218 185.9 339 105 256.3 1172 1211 197. k k22 101 256.3 1182 1182 202. k k67 120 256.6 1178 1171 207.0 51k 10k 256.8 1181 1183 208.5 52k 103 257. k 119k 1213 21k. 0 575 121 258.1 1208 117k 216.2 610 102 258.3 1211 115k 216.8 605 87 258.5 1222 118k 218.3 620 122 259.0 1227 1175 22k. k 697 109 259. k 1230 1185 225.6 705 110 259.7 123k 1156 228.9 7k6 89 260.2 1235 1178 231.3 781 111 260.3 1235 1186 232.0 786 112 260.6 123k 1179 237.0 856 113 260.7 1235 1187 237.7 863 Ilk 260.7 1229 1158 2k0.k 903 115 VC 260.8 1226 1180 2k2.2 933 117 260.9 1202 1181 2k£vk 1001 116 260.8 1188 1188 2l*9.2 1050 90 260.3 1160 1160 2k9.k 101*6 91 259.6 1132 II89 252.7 1109 93 255.3 1021 1190 256.5 1178 95 251.3 961 1162 256.9 1179 123 2k7.9 891 116k 258.7 122k 12k 2k3.k 833 1191 260.0 12kk 125 239.1 768 1166 260.1 121*8 1192 260.k 12k7 1193 VC 260.5 1250 1169 vc 260.6 1253 1206 27k.1 1677 1205 271.1 153k 120k 269. k lkl*9 1203 265.9 1350 1202 26k. k 1279 125 TABLE Xll (con't.) ObBerv. Temp. Press. Observ. Temp. Press. Number °C psia Number °C psia Data on Saaple B-5 (con't.) Data on Saaple B-6 (con't.) 1201 261.5 1263 776 260.3 12h9 1170 261. h 1265 783 VC 260.3 1251 1200 261. h 1260 781 278.8 1776 1199 261.3 1255 780 276.5 1633 1198 261.1 1253 779 271.8 lh77 1197 261.0 1250 778 266.2 13h7 1196 260.9 12h8 777 260.2 1227 1168 260.8 1252 78h 256.6 1158 1195 260.8 1250 785 253.0 109h 119h 260.7 12h3 786 2h8.9 102h 1167 260.1 12h6 787 2hh.6 9h9 1165 258.7 1221 788 239.5 877 1163 256.9 117h 789 23h.3 801 1161 2h9.5 1035 790 228*2 721 1159 2h0.h 890 79h 220.1 62h 1177 231.2 765 1157 229.0 735 1176 22h.5 689 Data on Saaple B-7 1207 218.0 6lh 3:1 Benzene:Cyclohexane T o y vt. 1155 216.8 60h - v Benzene 56.7 vt* 31.5 aol* 1173 216.3 603 Cycloh. 18.9 vt* 9.8 aol* 1208 213. h 567 Vfcter 2h.h vt* 58.8 aol* 1172 -207.1 507 1209 207.0 502 28 226.2 716 1210 202.2 h56 36 232.3 791 1212 197.7 hl7 29 237.3 863 1220 185.0 319 37 2h2.2 936 30 2h7.2 1013 Data on Saaple B-6 by vt. 3:1 Benzene: Cyclohexane Benzene 60.0 vt* 36.1 aol* Cycloh. 19.7 vt* 11.0 aol* Water 20.3 vt* 52.9 aol* JE92_ 203.1 h8l 38 31 39 32 hO h6 U7 hi 250.7 25h.8 258.1 258.2 258.9 259.0 259.5 259.7 793 220.0 653 h8 259.9 772 223.3 683 h2 259.9 791 228.2 7h6 h9 260.2 773 235.1 836 h3 260.2 T7h flh5.5 992 50 260.5 775 253.5 112k 51 VC 260.7 782 260.1 12h7 55 283.1 1072 llh6 1213 1209 1228 1219 1233 1239 1 2 3 6 12h6 12h6 125h 1250 125h 17hh TABLE XII Observ. Team. Press. Buaber °C psia Data on Sample B-7 (con't.) 5* 279.1 1598 53 271*. 2 ll*70 35 272.8 l l*26 52 260.7 1361 3 1 * 267.9 1311 H5 261*. 5 1 2 l * l * 33 261.5 1189 1 * 1 * 261.2 1177 57 257.9 1111 56 2 1 * 7 . 1 * 933 Data on Sample B-8 3:1 Benzene:Cyclohexane by vt. Benzene 1*5.6 vt? 19.7 mol? Cycloh. 1U.6 vt? 5.9 mol? Water 39.8 vt? 71*.5 mol? 755 202.9 1 * 7 0 756 221.3 657 757 23U.3 820 758 2 l » l * . 9 979 760 253.3 1121* 763 260.1 * 1252 771 296.0 1758 770 290.5 l6ll* 769 285.0 1»*77 768 280.9 1381* 767 276.5 1290 766 271.9 1189 765 266.1 * 1081 762 260.1 * 969 761 253.1* 869 759 2 l * l * . 9 7U7. ' Lata on Sample C-l 1:1 Benzene:Cyclohexane by vt. Benzene 50.1 vt? 51.9 mol? Cycloh. U9.9 vt? 1*8.1 aol? Water 0.0 vt? 0.0 aol? 51*8 198.2 206 5 l * 9 21U.6 282 126 (con't.) 0b8erv. Temp. Preas. Humber °C pala Data on Saaple C-l (con't.) 550 229.7 327 551 21*3.0 393 552 255.2 1*62 553 266.1 * 5 3 1 * 5 5 1 * 276.7 607 555 279.0 62 1 * 557 279.6 631 558 280.2 631* 559 280.6 637 560 281.2 61* 2 561 VC 281.6 61*6 556 279.0 622 562 267.0 535 563 25U.8 1*60 Data on Saaple C-la 1:1 Benzene:Cyclohexane by vt. Benzene 1*9.8 vt? 51.7 mol? Cycloh. 50.2 vt? 1*8.3 mol? Water 0.0 vt? 0.0 mol? 111*9 153.1 97 1150 161.8 112 1151 169.7 128 1152 176.0 ll*3 1153 181*. 8 166 Data on Sample C-2 1:1 BenzeneVCyclohexane by vt, Benzene 1*7.5 vt? 1*2.2 mol? Cycloh. 1*7.7 vt? 39.3 mol? Water 1*.8 vt? 18.5 mol? 1 * 5 6 208.9 532 1 * 1 9 210.1 5 1 * 2 1 * 1 2 216.7 612 1 * 2 0 219.3 61 * 0 1 * 2 1 220.3 651 1 * 2 2 221.3 662 1* 2 3 222.1 673 1 * 2 1 * 223.3 686 127 Observ. Tenp. Huaber °C Dftta on Saaple C-2 (con't.) 1 + 1 3 221+.0 691 1 + 2 5 22U.1+ 698 1 + 2 6 225.6 712 1+27 226.7 725 1 + 2 8 227.8 732 1 + 2 9 228.9 7l + 0 1 + 3 0 229.9 7l»9 1 + l U 231.6 763 1 + 1 5 23*. 1 + 811 1+16 2 1 + 2 . 1 + 853 1 + 1 7 2>+6.9 888 1+ 1 8 251.1 917 1 + 3 1 251.6 921 1 + 3 2 255.3 9lfo 1 + 3 3 258.8 96> 1 + 3 1 + 262.0 988 1 + 3 5 261+.9 998 1 + 3 6 - 265.3 1001 1 + 3 7 265.7 999 1 + 3 8 266.2 999 U39 266.6 999 1 + 1 + 0 267.0 998 1 + 1 + 1 267.3 996 1 + 1 + 2 267.8 993 1 + 1 + 3 268.3 985 1 + 1 + 1 + 268.8 981 1 + 1 + 5 269.0 977 1 + 1 + 6 VC 269.3 970 1 + 1 + 7 269.6 965 1 + 1 + 8 270.1 952 1 + 1 + 9 270.3 9l » 5 1 +50 270.3 902 1 +51 269.8 885 1 + 5 2 269.2 869 1+ 5 3 268.3 851 1 + 5 1 + 267.1 625 1 * 5 5 261+.8 787 1+60 259.1 708 1+ 5 9 256.0 665 1 + 6 U 253.0 633 1 + 5 8 252.0 618 1 * 5 7 21+8.1 532 1 +63 21+7.6 582 Observ. Tenp. Press. Hwber °C psia Data on Saaple C-2 (con't.) l + 6 l 21+3.7 5l+7 1 + 6 2 2U2.1+ 535 Data on Saaple C-3 1:1 Benzene:Cyelohexane by vt. Benzene 1+5.2 vt* 35*1 aol* Cycloh. 1+5.2 vt* 32.6 mol* Water 9.6 vt* 32.3 aol* 309 219.0 61+0 260 231.0 781 261 237.1 870 262 21+2.0 9^3 263 21+7.0 1022 279 21+8.8 1057 280 21+9.2 1063 281 250.0 1077 282 250.6 r , 108U 2 6 1 + 250.7 1087 283 250.9 1090 2 8 1 + 251.3 1095 285 251.7 1102 286 252.1 1106 287 252.1+ 1110 288 252.8 UlU 289 253.2 1118 290 253.6 1121 291 253.9 1125 292 25U.3 1128 265 251+.5 1137 293 25U.7 1131 29I + 255.0 .1131+ 295 255.2 1137 296 . 255.9 ~ - 111+3 297 1 256.6 111+7 298 257'. f 1151 299 257.8 1153 266 • 258.6 1157 267 258.9 1162 268 259.2 1155 269 259.5 1153 270 259-8 1150 TABLE XII (con't.) Press, psia 0 \0 \0 \0 \0 \0 \0 s 0 \0 \0 \0 \u iu iu iv n Houowoioraiooo'o'ow O r H U I O l O W 03— 4 |-» o v o 09-1 ox ro fo to ro ro fO fo ro ro to fo ro to to H vnvnvnvnvnvnvnvnvnvn *r-tr ut i-* vo -4 0\o v o \o \ own u i v i w v o h o u i ^ • •••••••••••«•• o x o oo vn u > o x o « ro u > o o u > to ro ^ r I KPPPPPPPPPS-o^v,.- i o'O 'O 'O 'oosos— j onio — 4 to -a xo to I H O O V W O V I O H r V } ^ W W O X B ( f r i t ) a h* n n &SSo • ® B 8 H a co m rrp to U > W (I • « • • • - p - 03 00 0 M HWHO I U> M O u>u>u>u>u>u>tou>iou>roto(o roto to O O 0 0 0 0 -4 0 -4 0 — 4-4 — 4— 4— 4—4 H t o u <rvn O N 03— 4 O x C O — 4 X J 1 r u to K - * < o to roforororo ro to ro io ro io ro ro fo to to to ro io . i o u u r r v n v i \ n o \ o \ o \ o \ a \ o \ o \ o \ o \ o v o \ xovntxjxow— 4t-*vncoo o h h h m h h h o o u> to u> 00X0 H * • • • XO S’ gggs h* H H ^ oovowooroxnH ro-too-iro-tto H H H H M H r x n vn o\-4 —4 os oo xo x o x o o o o h h m x nH X O O X O O \H -4\nC »-4H O #'O H K > V lO M H -4 C \X O C M *) — J -4 QXfl U) to VI O s 9 § CO 1 sr o t u» o 8 93 Is s? o o I S? B » kissk C\— 4 vo X O vn vo xo 03 gssttrg S f O B H r f • hm .. m oxox9 io\ o\ oxoxo\ o\ o\ o\ ovoxoxo\ o\ oxoxo\ oxo\ oxo\ oxo\ o\ o\ oxoxoxqx M M W M M M M H H H H P O r r w U ) H U ) U ) » - * O U ) L 0 O U ) M H O U > O o w n • f co rv> t-* o vo 03 — 4 o w n x o h o x o o p - 4 o x w o o v n t - j w to P o x u v n § • B N a co < a < o MHHH vo xo oo on H * “ - 4 H • • • • x o XO U) ox - 4 *T*ji 1 X 3 xo O vn o 03 03 «r\0 O O O O M SSS&O H M M O I ho-o-b e « ^ w u> a B • • • •• >Q # g* vn ■ P'lOU) H to - 4 o B • • • p to 03 o a ggg4T H H H w & a § 03 H iotororotoiororororotorororororororofotororororotorocofototo xo o H fx3UJ-P"^"vnvnvnvnvnvn\nvnvnvnxnvnvn\nvnvnvnvnvnvnvnxnvnvn 00— 4 O D O N P" H O N H ■ P 'xn — 4 03 03X0 xo X O GSO>0t>(9aa00-4-4*4-4-4-4*4*4 M X f l U i a i r O W O O - J M P W M M O S O X V f l W H U) O — 4 — 4 C N O N 4ru> to H s * 0 1 ■ p" o B f i t o go’ * * Is ^ 53 o o I to vn O N — 4 — J— 4 0303030303X0X0X0 O xo X O X O p p ! _ _ ■ | ■ | _ i u> n*xn on ox-4 ooxo xo o o o o f - 4 U ) U> O 0 0 - 4 -P ~ IO -4 IX ) 0XXO ODl _ _____ vnxou) 0x03*-* totoxo o P'xn vo H —4 —4 t o P"—4 o v n v f l v j i ao ouxn t o o*\n • b * ? a • p a 9 a H M 129 TABLE XII Coon't.) Observ. Temp. Press. Huaber °C psia Data on Sample C-5 (con't.) 1263 2l»1.7 962 1261* 2k2.k 956 1262 2U6.8 101*8 1260 2U7.3 10l*2 1269 251.2 1095 1261 253.6 1153 1270 25U.7 1159 1289 255.5 1175 1290 255.8 1181 1271 256.1 1186 1291 256.2 1188 1272 256.3 1191 1292 256.1* 1193 1273 256.6 1195 1293 256.7 1197 127U VC 256.8 1193 129U VC 256.8 1191* 1295 257.0 1190 1275 257.1 1187 1296 257.2 1187 1276 257.U 1178 1297 257.5 1178 1277 257.1* lll*7 1288 256.2 1086 1287 25U.O 1031 1286 251.2 965 1268 250.8 970 1259 2U6.5 909 1283 2l*2.3 816 1267 21*2.1 816 1281* 23U.1 706 1266 232.1 695 1283 225.7 617 1282 216.6 528 1281 206.7 1 * 1 * 3 1280 195.9 369 1300 187.5 3lU 1301 185.0 300 Observ. Temp. Press. Humber °C psia Data on Sample C-6 1:1 Benzene:Cyclohexane by vt. Benzene 1*2.1 vt* 26.3 mol* Cycloh. 1 * 2 . 1 * vt* 26.5 aol* Water 15.5 vt* 1*5.2 mol* 1250 150.8 161 1251 160.7 201 1252 168.1 * 237 1253 175.2 273 1251* 180.8 307 12f5 188.1 35 1 * 1256 19U . I * 1 * 0 2 121*3 202.6 1* 7 3 121*9 2^2.6 803 1230 238.3 882 1235 2 5 l * * l * 1170 1236 VC 257.1 1199 121*0 272s5 1603 1239 266.5 1393 1238 260.9 1266 1237 257.1 1197 1233 255.1* 1166 121*1 251.6 1072 1232 21*7.3 972 121*2 2U3.5 911 1231 288.3 827 121*8 232.5 71*8 121*7 226.0 672 121(6 219.0 600 121*5 210.7 520 1 2 1 * 1 * 202.7 1 * 1 * 9 1257 19l*.5 389 1258 187.6 3kk Data on Sample C-7 1:1 Benzene:Cyclohexane by vt. Benzene 1*1.5 vt* 27.5 aol* Cycloh. 1*2.2 vt* 25>9 «ol* Water 16.3 vt* 1*6.6 aol* 1322 181.1 311 1321* 185.9 3U1 1316 198.7 1 * 3 6 I o n H ■ 0 a « r l o a o o ► u h r J 0| fN 0 11 0 0 § B P 0 o # % H a a 0 0 i ■ «d 0 a U Pi § o oo I o 0 H P i c o a o 0 3 a (3 O o I o 0 H l o * C Q * fl • * 2 * 5 29 3 ow o mvo t-ococM voocom u \ ^ vot-ovoNOvocncuoococo i—a-t— o c o h -3- ov ov-3 <ooio>H<nif\Ok«nvgov(*ii-iAOk«<oci w c o n C O O v OO OOH rlHH t-VO I 1 N . 3 - ^ n o i C l r | rH OO O vC O COl-t- H H rlH H rlH rlH H H H H H H H ririrlH I T k V O COOidHOCOVOV0-3HOUNCOCM Ov-3 d d lA t-O V U N V O C O O co cvi vo co r-i H < 0 in vo vo ov t - in c m o i t - m n o i - j o vo co vo co o co _ 3 -3 j - in in in m in u \ t - t - t - t - v o vo vo vo in i n in m - 3 cn cn m cn O J C M C M C M C M C M C M C M C M C M C M C M C M C M C M C M C M C M C M C M C M C M C M C M C M C M C M O ► cm o H H o cm o o_3 vo t— o ic o t - v o in -3 - cn cm OlOpWCiPPPpPHdrjHHrjrlri j ? a s i • t- co o 3 0 0 0 o ovo C M id V O 0 O V 43 I Q H H H id ff-0-VO O • •000 • b-fcin n cn cn cm ca 0 N d a o ~ H C M C U C M C M C M C M C M < M C U < M < M C M C M C M C M C M UNO O V C O H -3 U N C O p H g g ovO>c\ov H H H H £ ■ 2 H * • • Q H 82* Nrl 0 d S&S _ _______ t— H t — t— - 3 C O -3 C M O v UN C M H U N Ovvo U N -3 C M c n H vo t— H O v o I— o v o v i n o v o v o v c o v o - 3 c o u n v o u n u n - 3 v o cm t— v o i n - 3 - 3 .3 - 3 - 3 c n c n h Q p v c o - - h h i n c o cm d r j i j r j o o v o t t - v o i n j - j - c n c n c n c n c n c n o n c n c n c n c o S o cm cm d d id d id d d d d id C O C O b- C O C M v o -it C M vo ‘ t - --------------- ------- *3 O v t— co o w t - H J - H t f i H W cn t— -3 co in h co in t— ov Ov-3 H ov ov in-3- O v m co m c o r n i n in t —vo vo in m m i n u v j - cn cn cm id o o v o v S S c o c o c o c o c O c o c o o o c d t— t — c m c m c m c m c m c m c m c m c m c m c m c m c m c m c m c m c m c m h h h h h h h h h h h h h h h O v U N V O tr C M V O C M V O V O U N .J 3 C M U N Q y C V | C M O j - •Ig-VgVg U N U N C M H C O C O cnco O O cn cn H H u o > > H cm m - 3 cn o O v t - v o i n - 3 C M H o o vco t - o v c o t - v o t - v o U N in . 3 c j H cn o cn tfriaaaasssssssisisidaasta&RSSsisssaRS H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H in t— ovovcn m cn o cn O H C O -3- C M Q v V O mvo t - 1 - O v O o H •d id id eoocncMCMovcno • ••••••I t—m i n o H in 0 . 3 8 id C l M d -3 U N U N C M C M C M C M C M C M C M OvOCCHOvCMOCn vo t— IN t— U N t— vo t* I * co (O cn I O U N O Id o 8 d o 09 0 CM 8 Z&u 0 • 0 •2 H U 0 • * 0 O H > C M H -3 U N o v o id U N vo t-CO C O -3 O C O U N '0 0 0 0 vo O C O V O H cn cn cn C M C M C M C M ov f vo co H H H H 131 TABLE XIX (oon't.) Observ. Tup • Press. Observ. Temp. Press. luaber °c psia Humber °C psia Data on Sample C-9 (con't.) Data on 3 0 e rt 1 C O (con't.} 61 255.6 119** 6 1 * 5 255.9 1181 62 255.9 1196 61*6 256.1* 1193 TU VC 256.3 1199 61*7 256.8 1198 83 285.2 1782 61*8 VC 256.9 1202 68 283.2 168U 661 298.9 1799 82 281.2 1639 66 0 295.7 1703 67 279.3 1582 659 291.0 1602 81 276.9 1522 658 286.5 1 1 * 8 1 * 66 21k. 9 lkk6 657 283.0 11(03 80 272.1 1U06 656 277.0 1293 65 268.1 1332 655 273.3 1201 79 266.9 1270 651* 267.9 1102 6 1 * 263.8 1209 653 263.2 1001* 78 259.2 1118 6U9 256.9 916 63 256.3 1070 650 253.0 858 77 252.1 995 651 21*3.5 727 76 2U6.5 901 652 237.5 652 75 238.0 771 Data on Saaple D-l Data on Maple C-10 1:3 Bensene i f Cyclohexane by vt, 1:1 Bensene:Cyclohexane by vt. Benzene 25.0 vt* 26.1* aol* Water 1 [28.3 vt* 6 1 * mol*) Cycloh. 75.0 vt* 73.6 aol* Water 0.0 vt* 0.0 aol* 1221 217.1 611 1229 VC 257.0 1199 535 197.1* 202 1228 267.9 1251 536 211*. 9 261 1227 261.8 1130 537 230.3 325 1226 257.6 1053 538 21*3.5 388 1225 251.6 950 539 256.0 » * 5 5 1221* 21*0.1 780 5 1 * 0 267.0 523 1223 228.7 633 51*1 277.1 592 5 1 * 2 279.3 608 51*3 VC 280.6 620 Data on Saaple C-ll 5 1 * 1 * 279.3 608 1:1 Bensene(Cyclohexane by vt. 5 » * 5 277.0 591 Bensene 30.0 vt* 13.0 aol* 5 1 * 6 272.0 556 Cycloh. 29*8 vt* 11.9 «>1* 5 » * 7 265.1* 512 Water 1*0.2 vt* 75.1 aol* 6 1 * 2 219.0 636 61*3 236.1 855 6 1 * 1 * 21*8.3 1 0 1 * 1 * 132 TABLE XII (con't.) Observ. Teap. Press. Wuaber °C psia Data on Saaple D-la 1:3 Benzene\Cyclohexane by vt Benzene 2 1 * . 1 * vt* 25.8 aol* Cycloh. 75.6 vt* 7>*.2 mol* Water 0.0 vt* 0.0 aol* 1067 150.5 89 1068 160.1 106 1069 168.1 122 1070 rfl*. 9 139 1071 182.7 160 1072 189.8 177 1073 19U.6 191 Data on Saaple D-2 1:3 Benzene:Cyclohexane by vt Bensene 23.8 vt* 21.5 aol* Cycloh. 71.5 vt* 59.9 mol* Water l *.7 vt* 18.6 mol* ? 0 l * 19H. 8 1* 0 2 1 * 6 9 205.3 1*93 1 * 6 6 216.5 601* 1 * 6 7 2 2 l * . l * 697 505 228.1* 7l*U 1* 6 8 231.1* 7 8 1 * 906 233.0 803 507 23l*.2 817 508 235.9 831 U69 239.7 860 1 * 7 0 21*6.7 911 1*71 253.0 951 1 * 7 5 256.8 973 1* 7 2 258.0 980 1* 7 6 2f8.6 981 U77 259.1 983 1*78 * 260.2 987 1 * 7 9 261.3 991 1 * 6 0 262.2 99k U73 263.2 995 1 * 8 1 261*71' 993 1*82 265.1 991 1*83 266.0 981* 1 * 8 1 * 266.8 975 Observ. Teap. Press. Xuaber °C psia Data on Saaple D-2 (con't.) 1 * 8 5 267.0 970 1 * 8 6 267.2 965 1 * 8 7 267.5 960 1 * 71 * VC 267.6 958 1 * 8 8 267.7 955 1 * 8 9 268.2 9 « * 5 1 * 9 0 268.6 930 1 * 9 1 268.6 872 1 * 9 2 268.2 856 1 * 9 3 267.0 830 1 * 9 U 265.2 790 1 * 9 5 261.9 7U0 1 * 9 6 258.1* 691 1 * 9 7 255.0 651 1 * 9 8 251.2 613 1 * 9 9 21*7.8 572 500 21*2.7 531 501 237.6 1 * 9 0 502 232.2 U51 * 503 225.6 1 * 0 1 Data on glnple D-3 1:3 Benzene:Cyclohexane by vt. Benzene 22.6 vt* 17.7 mol* Cycloh. 67*7 vt* h9.2 mol* Water 9.8 vt* 33.1 mol* 6 1 * 2 758 892 956 i 989 1037 I 1093 1131* : 111*0 | 111*3 i 111*6 i lll*9 i 1150 ! 1150 1151 318 219.9 319 229.1* 313 239.1 320 21*3.1 3 1 1 * 21*5.0 321 21*7.8 315 250.8 32£ 213.3 323 253.6 3 2 1 * 253.7 325 25U.0 326 25l*.l 327 25»*.3 328 25>*.6 329 25U.9 133 TABLE XII (con't.) XJUMJ& A X J . vcon ) Observ. Temp. Press. Observ. Temp. Press. Number °C psia Number °C psia Data on Sample D-3 (con't.) Data on Sample D - l * (con't.) 330 255.2 1151 706 228.2 7 * » 8 331 255.3 1151 727 23l*.3 829 332 255.7 1151 707 239.7 911 333 255.9 1151 728 2 1 * 1 * . 5 982 33U 256.1 1150 708 2l*9.1 1063 316 256.3 lll *8 729 252.2 1111* 335 2f6v l * 11U9 709 253.0 1139 336 256.7 lll *9 733 253.2 1137 337 257.1 11>*6 730 253.3 1137 338 257A 111 43 7 3 l * 253.6 l l l * l * 339 257.6 nl*l 735 - 253.9 1151 3U0 257.7 1138 731 2 5 1 * . 3 1 1 5 1 * 3Ul 257.8 1136 736 2 5 1 * . 3 1158 3U2 VC 258.0 1135 710 25U. 6 1169 3U3 VC 258.2 1133 737 25U.7 1 1 6 1 * 317 258.2 1126 738 255.0 1166 258.7 . 1123 739 255.0 1168 359 258.9 1121 7 1 * 0 255.1 1169 358 259.1 1116 711 255.2 n66 357 259.3 1110 71*1 VC 255.2 1170 356 259.7 110U 71*2 VC 255.2 n69 355 259.9 1096 732 VC 255.3 1167 3 5 * » 260.2 1080 712 255.5 n6U 353 260.2 1 0 l * 5 7 1 * 3 255.5 n68 352 260.0 1026 7 l * l * 255.6 1165 351 259. b 999 713 255.7 1159 350 258.7 979 7lU 255.8 1158 3U9 257.9 95U 7 » * 5 256.0 1159 3U8 256.1 911 715 256.0 1151 3U7 25*».l 873 7U6 256.1* 1152 3U6 252.3 8U0 716 256.6 11U0 3U5 250.0 798 7U7 256.7 111*1 7^8 256.8 1130 717 257.0 U21 Data on Sample D - l * 7^9 256.8 1096 1:3 Benzene:Cyclohexane by vt. 750 255.6 1031 Benzene 22.1 vt* 16. 1 * mol* 718 255.1 1010 Cycloh. 66.2 vt* 1*5.8 mol* 751 253.5 976 Water 11.7 vt* 37.8 mol* 719 251.3 935 752 250.0 896 723 201.5 1 * 6 5 - 720 21*7.7 85I * 705 212.1 5 6 1 * 753 21*5.9 825 72U 220.3 65I + 721 2U5.I 811 134 TABLE XII (con't.) Observ. Temp. Press. Observ. Temp. Press, Number °C psia Number °C psia Data on Saaple D - l * (con't.) Data on Sample D-5 (con't.) 722 21+0.2 7UU 1375 226.5 631 726 231+.3 668 1371+ 218.1 5 > + 7 725 220.3 530 1373 210.1 1 + 7 6 75U 203.1 377 1371 205.6 1 + 1 + 2 1372 I99.6 398 1392 187.6 323 Data on Sample D-5 1391 181.1+ 289 1:3 Benzene?Cyclohexane by vt. 1390 175.2 256 Benzene 21.0 vt* 1U.9 aol* 1393 170.6 235 Cycloh. 65.U vt* *+3.2 mol* Water 13.6 vt* 1+1.9 mol* Data on Sample D-6 139U 170.6 21+6 1:3 Benzene:Cyclohexane by vt, 1389 175.2 272 Benzene 21.2 vt* 11+.6 mol* 1370 205.5 I + 9I + Cycloh. 6U.0 vt* 1+0.9 mol* 1355 253.3 1130 Water lU.9 vt* 1 * 1 + . 5 mol* 1356 253.7 1138 1357 25*+.l 111+6 126 221+.7 697 1358 25H.5 1153 l l + O 238s5 880 1359 25^.9 1160 131 2 1 + 3 . 1 + 960 1360 255.1 1163 163 2 1 + 1 + . 0 9 7 1 + 1361 255.2 1166 1 6 1 + 21+5.2 987 1362 255.2 1166 165 21+6.6 1010 1363 255.3 1168 127 2»+7.5 1029 1361+ VC 255.3 1170 166 21+8.0 1037 1388 273.5 1620 167 21+9.8 1068 1387 271.0 1532 130 250.7 1066 1386 268.2 1 1 + 1 + 7 168 251.2 1096 1369 265.8 1379 186 252.6 .1123 1368 262.2 1291 132 252.8 1122 1367 258.8 1226 129 252.7 1123 1366 256.8 1187 169 252.8 1121+ 1365 255.3 1163 133 253.5 1135 1385 25^.7 111+8 170 253.9 111+5 1381+ 25^.6 1133 1 3 1 + 251+.1 111+7 1383 25fc.2 1109 135 251+.5 1155 1382 253.8 1092 136 25I +.6 1157 1381 253.U 1079 171 25I +.6 1160 1380 253.0 1066 137 251+.7 U62 1379 252.3 1 0 1 + 1 + 172 255.0 1161+ 1378 21+7.5 935 138 VC 255.1 1163 1377 239.7 799 173 VC 255.2 1165 1376 232.6 703 15U 278.0 1766 m W « 4 4> H U \ U \ O H N S C I V O V O V O \ O J ' O C O U \ r < t - r l O \ 0 \ V O U \ M M l f t t A H V O ^ ^ V O < O O v 0 1 0 ( * ) i n H n «ri 3 H H K vo i n c i c o n w i n u \ u \ \ o t * c o o \ r f - » u w o v o t - c \ w e o l A i n f t i O H ' a ^ « H o o O i i f t f t w v o 0 ■ H r l H ^ \ O O O O v O O O O O O O O O H r l r t H H r | v q i A ( n W r | q q q q q 0 0 5 q O \ O V t —v o - » g pi ^ g o O H H H H H r ( H r ) r l H i - i H r l H r i H H H n H H p | r t H r | r ( r l H r l 0 0 0(0 S « • • -0 OvVO r* cn J- 0 • t — x t Hco c v i ininHvoco o irvovo ovo Hirvco H^t-Ovin(nu\ou\ov\Hcov\H Ov^vo co wen t i • »*#•••••«•*•••••••••••••••••••••••••• u Q «H +» +» +» WOrf JVOl-l“COOvO\OOH(OJ4^«MftVOHVOOWHOOOvOvCOl-t-\OVO-»UjHlA o o l a 3 O Cl V\UMAUMAU\U\U\U\C-b-\OVO noio E4 0 >» OlOIOlOIOIOlCUCVICMCVlCMClOIOIOIOICJOlOIOICMOlOIOlOICUOlOIClOICMCVIOIOieiOIOIOl iHOt-u\a • • • oofflin S3 CVIVO «-< C O 0 M • S3 S3 0 • U t s ® a g - § - § a H J - 4 X _ _ u a A 0 H r l 0 L T V VO I— CO C M ITVCO «H t—VO c n C M Qv 00-3" U W O t - O C U H O O v N O H ^ W 0 O 0—VO J t f f l O V r l O O v rn fl 4> cn S3 o - P O v O v O v O v O O O O r l H H H O O I W Q I M M « i n ( n n C I O I r l H r l H H O Q O O Q O v O I « H g 3 0 • • 0 >» 0 t — t — t “ t —CO OO OO OO OO CO OO OO OO OO OO CO CO OO OO OO OO OO OO OO OO OO OO OO CO OO OO CD CO OO f c “CO CO oo k annuls Kl • MOuwovoHirvciirvMvoQC-vocoovt-noiNcnnirv^vooc-iA^oiooriovvQvo^ovo 3 M 0 V O t - O V W I A O v W f f l l f V U V l A n M W H r l r l H H O v O v O t - f ffl 0 * 4 \ O U V J t j n w « H r l r i r l H H r l r | H H r j H O O O q p O O q q q O v O v O v O v O v 0 0 0 t “ * I r - S3 O o vo A oo-* o\ m-* c v i co iah o t-vo- 4 * o co uMAcncvi o\t—cn«-ico Ov i r v co vo u\^t cn t — o c u hciuma r o • « • • • • « • • • • # • • • # • # • • • • •• •• •• •• •• •• •• •• o trvcnocoirvcMoovo i r \ i r \ - 0 mmmcvinwwMHHHHOooovovco t-t-vo vo trvtnw ov® o - v * > - t — b-vo vo vo in in v\ « / \ u \ inuvin ia cn e r v e n iawia i r v mirv umtv^s- - 0 - .0 -0 j* j* -0 -0 .0 j* cn cn £4 H CU C l C M C l C M C M CU C l C M C M C M C M C M C M C l C M C M C M C l C M C M C l C M C M C M C M CU C l CU C M C M C M C M C M C M C M C V I C M S Mi ► u 8 0,0 0 cn c v i H o ovoo t-vo ov^iacicoovicho^ H<n« OJt-govooo\c-g(n^h-vo w i t v u v h ■ g 4 1 m u\ u\ u \-0. 0 - 0 - 0 c n t —-0 vo t-t-co co a 5 co vo co 00 vo.0 t —o\ u\ inco i ac o.0 t —co i n . 0 * > - u\-0 ,0 9 0 rl H rl H H rlH H rlrlH H H H H rlH H rlH H H H H H H H H H rtrC H H H rlrtH H ok a | _ i H u u u u u u u u H H H H H H OO'O'OOOOVOOOOOVOO'OVOVOVOXO'OVOVOVOVOVD'OVOVOVOVOVOVO'OOOOOOO M M v n v i H H H v i O O O O v i o - l owo 0 \'0 -jv ) n—4 V O V O cocooooonrgp— 4-^vn vn vn yj yi vn vn nr to vn o ^ * u co -) nr to o o vn — 4 vo S o ov o vn vo to ro H 5 — 4 f to oo O vo ov vn nr to W H O rorororororororororororororororororororororowrorororororoM r r r r r r r r r r w w w w w w u w u r o r o t o r o r o r o h h h o o v o v o o v t a w r o r o H H O v o - j - j o v n r n * u > P o c o -4 v n r r n o o o v r o v o — 4 L U H a v r o o o v r o v n u J v n o o o O H - J v n H O v n u J v n o v o n r v o -4 t o v t r o H t o o o c o — 4 - l u i r o M I O o v o o o o o — 4 o v o v v n v n m o o v o r o j r -4 o o HHH O O o v o v o v o v o v o v o v o o o c o o o o o o o o o a o —4 — 4 — 4 — 4 —4 — 4 — 4 o v o v o v v n v n v n c h o v r o u i o w n r w u > h v o o o O v v n ............................ — ■ • * ‘ ' ~ v o r o w o o h n r v n r o r o — 4 v n t o — 4 v n _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . n r t o t o r o r o r o h r u i O O O O V tO O O V lO O V O O V tO O V M — 4 1 0 0 0 V H ' Q O o O v v n o v — J t o a v H * t o v n O V O t o t o 6 b v n c o O v n o r o cTO B Ucf O H M P H O • W * 5 2 8 • OOP • M O CO h ovro p ■ OvU) o o ■ ft • • •• IQ o • p - u > H M 00(A) ft f t f t f t p -4 V O nr® ggg£ H H H •d ■ |i ■ ? X M SSSSSS<oSSSSSSSS<oSSSSSSS-oSSSx>S-o -oSSSSSSSSSvoioio Huiu hu) -p"vn nr h &rtr i-» nr h p vn h ro ro ro ro ro ro vn ro ro to ovwovovuuww nr^-nrnr nr ov ov cv ro -4 oo vivo o r H H l o u ov nr—J ooto vo ro H o a) ov—1 oo oo vo o H H M nrro u> n-vn vn ov—4 oo vo vn too < o rororororororororororororororororororororororororororororororororororororororororororo n ‘ 4 m , n * n ' n ' n r n r n ' n ' n ' n ' n ' n ' n ' n ’ n , n ^ n r n r n ' n * v n v n v n v n v n v n v n v n v n v n v n o v o v o v o v — 4 — 4 — 4 v n v n v n r o r o r o r o r o u > U ) i A ) ( A > u > ( A ) ( A > n r v n o v o v — 4 00 o o 00 v o v o o o o H M t o n " v n v n v n —4 o r o o v v o r o v n o s v n v n r o ««99tfft9ftftftftftftftftftftftftftftftftftftftftftftftftftftft*ft*****ft H r o n -— 4 — 4 o h * r o t o v n o o v o r o v n v o o H r o H r H f o # — i n ' o i o o n r — 4 n ' O v o n r H H O o o o H O -4 0 & P s c n 1 S ' y 00 I o°l o § p p p p p p p p p p p p p p p p p p p p p p p p p p p p '©VOVOVOVOVOVOVOVOVOVOVOVOVOOOOOOOOOOOOOHHHHHHHMWU) nrvn OV-4 H H H u > n r n r n - v n v n v n o w n o v o v o v — 4 v o H H t o t o n r n - v n o v — 4 -4 o o v o h h u i n r v n o v v o n - p — 1 t o H h r o -4 a \ w -4 0 V n V O H v n t O O O v n * 0 0 —4 H H r o t O M O v r o — 4 f O H O —4 0 — 4 0 — 4 0 o v o n r M t o t o H v n v o K ) v o n ' i - * v o o o s ■ « H> ■ P P H t o OV 137 TABLE XII (con't.) Observ. Temp. Press. Observ. Temp. Press. Humber °C psia Number °C psia Data on Saaple D-8 (con't.) Data on Saaple D-9 (con't.) 1036 2U1.8 928 107b 201.0 b58 1009 2U1.5 922 1127 202.0 1*61 956 2l * l . U 927 112b 206. b 501 1006 21*0.3 902 1076 218.6 635 1005 239.1 88b 1129 229.0 756 1002 237.7 860 1078 23b. 8 833 951 237.1 857 llb7 238.9 896 1001 236.3 836 llbO 2b0.0 912 97b 23*1.6 813 llb5 2bb.b 979 966 23b. 1 827 llb3 251.1 1093 998 232.9 790 1107 253.9 llb6 969 231.0 771 llbl 25b.2 1151 997 230.7 756 1108 25b.5 1153 971 228.5 730 1109 25b. 6 1160 99b 227. b 712 1110 255.2 1169 973 225.3 690 1111 VC 255.5 1173 993 22b. 7 679 1089 279.9 1766 990 221.7 6 1 * 2 1088 277.6 1679 989 218.9 611* 1087 27b. 0 156b 986 216.1 58b 1086 270.3 lb6b 985 212.6 5b8 1085 266.1 1367 982 209.1 513 108b 261.0 12 66 981 205.5 b79 1083 256.8 1181 978 201.3 bb5 llb2 25b. 3 1131 977 199.1 b27 1082 253.2 1115 1057 19b. 3 391 llbb 251.2 1082 1056 191.1 368 1081 2b8.3 103b 1058 187.5 3b3 llb6 2bb.6 975 1059 183.0 31b 1080 2b2.8 9b6 1060 179.0 289 1106 2b0.5 91b llb8 239.1 889 1139 238.b 873 Data on Sample D-9 1105 238.3 881 1:3 Benzene:Cyclohexane by vt. 1138 237. b 860 Benzene 20.8 vt# 13.7 mol# 110b 237.3 866 Cycloh. 62.2 vt# 38.0 mol# 1137 236.5 8b7 Vater 17.0 vt# b8.3 mol# * 1103 236.5 8 1 * 9 1079 235.2 82b 1112 151.5 162 1136 235.1 828 1113 160. b 197 1135 83b.3 817 111b 168.0 233 1098 23b.0 8lb 1115 17b.7 268 1100 233.5 806 1116 180.5 30b 113b 233.3 802 138 TABLE XII (con’ t.) Observ. Temp. Press. Vusiber °C psia Data on Sample D-9 (con't.) 1099 232.8 800 1133 232.2 787 1102 231.8 781* 1101 231.5 779 1132 231.1* 770 1097 230.9 775 1131 229.9 71*6 1130 229.2 737 1096 227.8 730 1090 226.1 706 1095 225.0 691 1091 222.3 655 1077 218.8 622 1092 217.0 597 1093 213.1* 562 1128 209.8 521 109b 209.1* 523 1125 206.5 1 * 9 1 1123 206.2 1 * 8 9 1122 202.1 U53 1126 202.0 U53 1075 201.1* 1 * 5 5 1121 197.9 1 * 1 5 1120 192.9 376 1119 187.3 333 1118 181.1* 292 1117 180.7 293 Data on Sample D-10 1:3 BenzeneVCyclohexane by vt. Benzene 18.7 vt* 10.1* mol* Cycloh. $6.2 vt* 29*0 mol* Water 25.1 vt* 60.6 mol* 6 221.1 653 7 231.0 778 12 231**9 829 8 2l»0.3 911* 9 2U8.7 1#W 16 21*9.6 1066 17 252.1 1108 13 253.7 1135 Observ. Temp. Press Number °C psia Data on Saaple D-10 (con't.) 18 253.8 1138 10 25**.3 111*9 lU 251*. 5 1152 19 VC 255.3 1165 15 VC 255.1* 116* 2 1 * 273.7 1361 27 271.7 1 3 1 * 1 * 23 270.0 1287 26 267.5 1256 22 265.7 1207 21 262.1* 1155 25 260.6 1121 20 259.2 1103 11 255.9 1038 Data on Sample D-ll 1:3 Benzene:Cyclohexane by vt Benzene 11*.7 vt* 6. 1 * mol* Cycloh. 1*5.6 vt* 18.5 mol* Water 39.7 vt* 75.1 mol* 691 21*6.8 1018 692 25 l * . 1 * 11*1* 70U 298.9 1783 703 295.5 1691 695 29! * . 1 1661 702 292.1 1602 69U 290.6 1578 701 288.8 1519 700 281*. 9 11*13 699 280.8 1325 693 280.2 1307 698 276.3 1231 697 271.6 1133 696 267.2 1069 — 139 TABLE XII (con/t.) ! Observ. Team. Press. Observ. Temp. Press. Nuaber °C psia Nuaber °C psia Data on Saaple E-6 Data on Sample E-6 (con't.) Cycloh. 8U.0 v t j f 52.8 aoljt Water 16.0 vt% 1*7 .2 aol* 906 2 l * i * . 3 952 909 2l*3.U 9 > * 1 939 186.9 335 910 21*2.3 922 938 190.2 358 911 2 1 * 1 . 1 * 910 9 2 ( 5 192.7 375 912 21*0.3 891 933 196.2 1 * 0 0 913 238.6 866 932 202. 1 * 1 * 5 3 916 837.1 8 1 * 5 929 207.9 503 917 235.2 819 885 212.0 5 l * 3 920 231.3 7 5 » * 928 213.5 559 922 226.8 700 925 217.9 608 923 221.9 637 92U 222.0 65 6 926 218.2 593 921 226.7 712 927 213.H 5U3 886 228.2 727 . 930 208.2 1 * 9 2 919 231.2 765 931 202.3 1 * 1 * 3 918 235.5 8 2 ) * 9 3 1 * 196.1* 398 915 237.0 8 1 * 5 936 193.1 376 9 l l * 238.7 870 9U3 189.9 352 887 2 1 * 0 . 1 * 898 937 169.8 3 1 * 3 908 2U3.3 9*7 9 1 * 2 188.8 3 1 * 3 907 2Uh. 3 961 9Ul 187.6 333 9 0 l » 2U5.3 977 9U0 187.1* 335 903 21*6.3 995 900 2U6.8 1008 899 2h7.H 1013 Data on Cyclohexane 896 2 1 * 8 . 1 * 1031 888 2U9.9 1058 5 6 1 * 199.2 195 891 255.1 1151 565 2 1 1 * . 7 2 l * 7 892 255.u 1158 566 230.1* 309 893 VC 855.7 1163 567 2 < * 1 * . 0 371 9 * * 7 280.9 1 781* 568 256.0 1 * 3 3 9U6 276.5 1630 576 266.2 1 * 9 5 9 » * 5 271.9 l l * 9 l * 577 266.6 1 * 9 6 9Uh 266.6 1368 569 267.0 1 * 9 6 895 266.5 1336 570 277.2 565 8 9 * » 260.2 1216 571 279.3 581 890 255.5 1123 572 279.9 5 8 1 * i 889 250.0 10l*3 573 VC 281.2 5 9 l * 897 21*8.6 1018 5 7 1 * 276.0 556 ; 898 2l»7.U 1001 578 266.6 1 * 9 3 ! 901 21*6.9 996 575 266.1 1 * 9 2 i 902 21*6.2 982 i 905 2l*5.U 969 APPENDIX 6 Purity of Fluids Ussd Wat art The water used was Deionized Hi Purity Water Re agent from Van Waters and Rogers, Lot No. 1030. Previous investigations (13) had proven the naximum deviation from standard values (4) was approximately +.0.5%. Benzenes The benzene used was prepared in the laboratory by taking a portion of the center cut of a distillation of five liters of Thiophene Free Analytic Reagent Grade Ben zene from Malllnkrodt Chemical Works. The column used was a laboratory still with 48 trays with a reflux ratio of approximately 50s 1. The observed critical pressure and temperature was 713 psia and 289.5°C. Literature values (4,9,12) range from 709-712 psia and 288.7-289.2°C. Cyclohexanes The cyclohexane used was purchased from the Phillips Petroleum Company. It was their Research Grade, Lot No. 1261, 99.98 mol% pure. The impurity by GLC analy sis was 2,4,dimethylpentane. The observed, critical pres- | sure and temperature was 594 psia and 281.2°C. Literature lvalues (3,4,9) range from 594-597 psia and 280.9-281.2°C. APPENDIX H Standard Equipnent Used \ The following equipnent la standard and was conner- cially available: 1. Cathetoneter. 100 cm vertical scale. Braun Chemical Co., Los Angeles, Calif. 2. Condensing vapor jacket. Greiner Glassblowing Laboratories, Los Angeles, Calif. 3. Dead weight gauge tester. Range 0 to 5000 psi. Ashcroft Portable Dead Weight Tester, Model #1305-B-50, Manning, Maxwell and Moore, Inc., Strafford, Conn. 4. Diffusion pump. Greiner glassblowing Labora tories, Los Angeles, Calif. 5. Fused quarts capillary tube. 2 ft. long, 2 mm bore, 8 mn O.D., Cleveland Quartz Works, Cleveland, Ohio. 6. Galvanometer. Model #2420. Leeds and Northrop Co., Philadelphia, Pa. 7. McLeod gauge, 22 ml capacity. Greiner Glass- blowing Laboratories, Los Angeles, Calif. 141 142 8. Oil compressor piston. Range 0 to 15,000 pel, hydraulic pressure generator. Catalog #46- 9315. American Instrument Co., Inc., Silver Spring, Md. 9. Pllaflex liquid mold compound. Fry Plastics International, Los Angeles, Calif. 10. potentiometer, Model #7552. Leeds and Northrup Co., Philadelphia, Pa. 11. Pressure gauge. 16 Inch dial, 100 graduations, range 0 to 5000 psla. Heise Bourdon Tube Laboratories, Newton, Conn. 12. Stainless steel (440) 1/16" diameter ball bear ings. Hartford Precision Balls, The Maltby Co., Los Angeles, Calif. 13. Vacuum pump, catalog #1405. W. M. Welch Scientific Co., Chicago, 111. The following equipment were custom-made locally: 1. Mild steel pressure vessel with retaining head and internal gland. Acme Machine Works, Inc., Hawthorne* Calif. 2. Mercury level indicator. Chemical Engineering 143 Machine Shop, University of Southern California, Los Angeles, Calif. 3. Upper magnet carrier and machined rubber pack ings. W. A. Archer, Glendale, Calif.
Linked assets
University of Southern California Dissertations and Theses
Conceptually similar
PDF
A Study Of The Behavior Of Thixotropic Fluids
PDF
An Experimental Investigation Of Heat Conduction Through Liquid-Liquid Phase Boundaries
PDF
Investigations On The Flow Behavior Of Disperse Systems
PDF
The Separation Of Multicomponent Mixtures In Thermally-Coupled Distillation Systems
PDF
Absorption And Scattering Of Thermal Radiation By A Cloud Of Small Particles
PDF
Radiative Transfer Through Plane-Parallel Clouds Of Small Particles
PDF
Vapor-Liquid Equilibria For The Benzene - N-Octane System Near The Regionof The Critical-Locus
PDF
The phase behavior of cyclohexane-rich mixtures with water
PDF
Prediction Of Enthalpy Of Saturated Paraffin Hydrocarbon Mixtures
PDF
Mechanistic Study Of Air Pollution
PDF
Thermal Conductivity Of Binary Liquid Mixtures
PDF
Dental Enamel Electrochemistry
PDF
The Generation Of Predictor Equations By Recursive Linear Regression
PDF
Removal And Separation Of Particles (In Solid Organic Chemicals And Metals) By Crystallization
PDF
Perovskite Structure Rare-Earth Transition-Metal-Oxide Catalysts
PDF
Predicting The Enthalpy Of Saturated Hydrocarbon Mixtures
PDF
Thermal Conductivity Of Liquids
PDF
Anelasticity In Copper And Aluminum Subjected To Neutron-Irradiation And Fatigue
PDF
Flow Studies With An Improved Diffraction Grating Interferometer And A New Color Schlieren Method For Quantitative Analysis
PDF
Nucleation And Solubility Of Monosodium-Urate In Relation To Gouty Arthritis
Asset Metadata
Creator
Hayworth, Kenneth Earl
(author)
Core Title
Phase Behavior In A Multicomponent Heteroazeotropic System
Degree
Doctor of Philosophy
Degree Program
Chemical Engineering
Publisher
University of Southern California
(original),
University of Southern California. Libraries
(digital)
Tag
engineering, chemical,OAI-PMH Harvest
Format
dissertations
(aat)
Language
English
Contributor
Digitized by ProQuest
(provenance)
Advisor
Rebert, Charles J. (
committee chair
), Cady, James R. (
committee member
), Lenoir, John M. (
committee member
)
Permanent Link (DOI)
https://doi.org/10.25549/usctheses-c18-711628
Unique identifier
UC11361283
Identifier
6919372.pdf (filename),usctheses-c18-711628 (legacy record id)
Legacy Identifier
6919372.pdf
Dmrecord
711628
Document Type
Dissertation
Format
dissertations (aat)
Rights
Hayworth, Kenneth Earl
Type
texts
Source
University of Southern California
(contributing entity),
University of Southern California Dissertations and Theses
(collection)
Access Conditions
The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law. Electronic access is being provided by the USC Libraries in agreement with the au...
Repository Name
University of Southern California Digital Library
Repository Location
USC Digital Library, University of Southern California, University Park Campus, Los Angeles, California 90089, USA
Tags
engineering, chemical