Close
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected
Invert selection
Deselect all
Deselect all
Click here to refresh results
Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Infrared-Absorption Studies Of Localized Vibrational-Modes And Lattice-Modes In Germanium - Silicon Alloys
(USC Thesis Other)
Infrared-Absorption Studies Of Localized Vibrational-Modes And Lattice-Modes In Germanium - Silicon Alloys
PDF
Download
Share
Open document
Flip pages
Copy asset link
Request this asset
Request accessible transcript
Transcript (if available)
Content
INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the m ost advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced. 5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received. Xerox University Microfilms 300 North Zeeb Road Ann Arbor, Michigan 48106 .... 74-17,333 C O S A N D , Albert Edm und, 1942- IN FR A R ED A B S O R P T IO N STUDIES O F LOCALIZED VIBRATIONAL M O D E S A N D LATTICE M O D E S IN G ERM ANIUM -SILICO N ALLO YS. University of Southern California, Ph.D., 1974 Physics, solid state I University Microfilms, A X E R O X Com pany, Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED. INFRARED ABSORPTION STUDIES O F LOCALIZED VIBRATIONAL MODES AND L A T TIC E MODES IN GERM ANIUM -SILICON ALLOYS by A lb e rt Edm und Cosand A D is s e rta tio n P re s e n te d to the FA CU LTY O F THE GRADUATE SCHOOL UNIVERSITY O F SOUTHERN CALIFORNIA In P a r tia l F u lfillm en t of the R e q u ire m e n ts fo r the D egree DOCTOR O F PHILOSOPHY E le c tric a l E ngineering Ja n u a ry 1974 UNIVERSITY O F SOUTHERN CALIFORNIA THE GRADUATE SCHOOL. UNIVERSITY PARK LOS ANGELES, CALIFORNIA 9 0 0 0 7 This dissertation, written by _ _ _ _ A lb e rt Edm und C osand under the direction of h .D is se rta tio n Com mittee, and approved by all its members, has been presented to and accepted by The Graduate School, in partial fulfillment of requirements of the degree of D O C T O R OF P H IL O S O P H Y DISSERTATION COMMITTEE Chairman ACKNOW LEDGEM ENT The a u th o r is g re a tly in d eb ted to s e v e r a l people fo r th e ir contributions to th is w o rk . I w ish to p a rtic u la rly thank P ro fe s s o r W .G . S p itze r fo r su g g estin g th is p ro je c t, and fo r guidance and en co u rag em en t in the c o u rse of th is w o rk . P r o f e s s o r J . Sm it contributed g re a tly to m y u n d e rsta n d in g in som e a re a s through c ritic a l d isc u ssio n s, and P ro f e s s o r J .M . W helan w as often of i c o n sid erab le help w ith e x p e rim e n ta l p ro b le m s. A ll of th ese a re to be thanked fo r c r itic a l rea d in g of th is m a n u s c rip t, an d fo r the g re a t : am ount of p atience they have show n. I m u st a ls o thank W orth A llred , • w ithout w hose advice and a s s is ta n c e it m ig h t have b een im p o ssib le to i ; grow the c ry s ta ls u se d in th is study. The a u th o r a lso is g ra te fu l fo r fin a n c ia l su p p o rt fro m the ; N ational Science F oundation in the f o rm of a G rad u ate T ra in e e sh ip , I and to the U. S. C. E le c tro n ic S c ien c es D iv isio n fo r a re s e a rc h j a s s is ta n ts h ip . ii Table of C ontents A cknow ledgem ent L is t of Illu s tra tio n s L is t of T ables I. Introduction and B ackground 1 A. Introduction 1 B. B ackground 3 1. Ge S i1 alloys X J L “ X 2. V ibrational m odes of im p e rfe c t c ry s ta ls 3. L attice dynam ics a . P e rfe c t la ttic e b. Im p e rfe c t la ttic e i. Isotopic im p u rity ii. M ore g e n eral m odels 4. P re v io u s o b se rv atio n s of lo c a liz e d v ib r a tional m odes II. A pproxim ate calcu latio n m ethods fo r lo c a liz e d m o d es 32 A. P rev io u s w ork 32 B. A "new" m ethod 38 1. Sim ple lin e a r chain 2. D iso rd e red lin e a r chain 3. E xtension to th re e d im en sio n s a. F o rm u latio n b. E xam ples i. F o rc e constant ch an g es fo r the B lo ca l m ode ii. Iso topic su b stitu tio n a . C e n tra l-fo rc e m o d e l b. In clu sio n of n o n -c e n tra l fo rc e s 4. C om parison of the Ite ra te d M a trix M u ltip li cation M ethod w ith O ther M ethods in C. C ondition fo r the o c c u rre n c e of a lo c a liz e d m ode th e th re sh o ld value fo r the m a s s d efect E x p e rim e n ta l p ro ced u re A. C ry sta l grow th 1. S i-ric h Ge Si. x 1-x 2. G e -ric h Ge Si. x 1 -x 3. G erm anium B. C om pensation by lith iu m diffusion 1. A lloying of L ith iu m 2. Ge S i. alloys X X “ X 3. G erm anium C. R e sistiv ity and type m e a su re m e n t D. D e term in atio n of com position E . P o lish in g F . In fra re d m e a su re m e n ts In fra re d ab so rp tio n of la ttic e m o d es and the silic o n lo c a l m ode in Ge S i, x 1-x A. V ib ratio n al a b so rp tio n of d e fe cts in th e diam ond type la ttic e B.. P re v io u s e x p e rim e n ta l o b se rv a tio n s C. E x p e rim e n ta l re s u lts and d isc u ssio n 1. Ge S i. w here 0 < x < 0. 12 x 1-x — — 2. Ge S i. w here 0 .8 8 < x < 1 x 1-x — — L o c a liz e d v ib ratio n a l m o d es of B -L i p a irs in S i- r ic h G e-S i a llo y s A. B ackground B. E x p e rim e n ta l C. R e su lts D. D isc u ssio n 155 E . M odels 156 F . L in esh ap e calculation 159 G. B -L i p airin g d istan c e 169 H. S um m ary and conclusions 172 VI. L o ca liz ed v ib ratio n a l m odes of p h o sp h o ru s and of Li p a ire d w ith Ga in germ anium 174 VII. S u m m ary 185 A. C alculation of lo calized v ib ra tio n a l m ode fre q u e n c ie s 185 B. In fra re d ab so rp tio n of la ttic e m o d es and the Si lo ca l m ode 185 C. L o calized v ib ratio n al m odes of B -L i p a ir s in S i-ric h Ge Si. alloys 186 X X ” X D. L o calized v ib ratio n a l m odes of P and L i in Ge 187 R E FE R E N C E S 189 A PPE N D IX 195 v LIST OF ILLUSTRATIONS 1. V ib ratio n al sp e c tra of Ge and Si. 6 2. Sim ple o n e-d im en sio n al m odels fo r la ttic e v ib ra tio n a l s p e c tra . 13 3. P ro p e rtie s of a local m ode in silico n fo r a n iso to p ic im p u rity m odel, as calculated by D aw ber an d E llio tt. 21 4. A p proxim ate d istrib u tio n of lo cal m ode fre q u e n c ie s for lo c a l m o d es of an im p urity of m a s s aM in a random chain of m a s s e s M and 2M. 53 5. C alculated lo cal m ode frequency fo r b o ro n in silic o n | v s . re la tiv e fo rce constant cp^ g i ^ S i g i • ^ : 6. A n atom in a diam ond la ttic e w ith its fo u r n e a r e s t n e ig h b o rs, and th e ir rela tio n sh ip to th e cu b ic a x es of th e c ry s ta l. 64 I 7. A pproxim ations to the phonon d en sity of s ta te s fo r a re a l c ry s ta l. 74 I 8. e . v s . (cu - to )/ui . 76 m in m ax m m m ax j j 9. P h a se d iag ra m fo r the G e-Si sy ste m . 81 10. S teady s ta te d iffu sio n -lim ited grow th fro m a m e lt containing an im p u rity . 84 11. R e sista n c e -h e a te d C zo ch ralsk i grow th s y s te m fo r Ge c ry s ta ls . 92 12. Q u artz c ru c ib le a rra n g e m e n t fo r rap id ly q u en ch in g a sa m p le a fte r Li diffusion. 101 vi L 13. O ptical layout of the double b e a m fa r in fra re d sp e c tro m e te r. 108 14. A b so rp tio n coefficient v s. w avenum ber for S i-ric h Ge S i. alloys at room te m p e ra tu re and liquid X X * * x n itro g e n te m p e ra tu re . 123 J 15. A b so rp tio n coefficient v s. w avenum ber for room te m p e ra tu re Si, and fo r Ge 88 a t room te m p e ra tu re and liq u id n itro g en te m p e ra tu re ; com pared to a b so rp tio n p re d ic te d by D aw ber and E llio tt for a heavy im p u rity (As) in Si. 125 16. cp(z) as c alcu late d by B ellom onte and P ry c e , and fo r Ge in Si. 130 17. O ptical a b so rp tio n co efficien ts p red ic te d by D aw ber and 19 -3 E llio tt fo r 10 cm im p u ritie s of v a rio u s e le m e n ts in group III and group V. 132 18. A b so rp tio n co efficien ts v s. w avenum ber fo r n e u tro n ir r a d ia te d Si and Ge gg • 134 19. A b so rp tio n co efficien t v s. w avenum ber for Ge . 88S i. 12 a t liquid He te m p e ra tu re , liquid ^ te m p e ra tu re , and ro o m te m p e ra tu re , and fo r Ge at liq u id te m p e ra tu re . 135 20. A b so rp tio n co efficien t v s. w avenum ber fo r p u re Ge and Ge ggSi a t room te m p e ra tu re . A rro w s in d ic a te d e n s ity -o f-s ta te s peaks fo r G e. 136 21. A b so rp tio n co efficien t v s. w avenum ber at liquid ^ te m p e ra tu re fo r Ge, Ge qgSi Qg , and Ge ggSi ^ » vii I 22. A b so rp tio n coefficient v s. w avenum ber fo r the Si lo c a l m ode in G e -ric h Ge S i. alloys, a. O bserved X 1 " X a b so rp tio n , b. L ocal m ode band w ith background su b tra c te d . 23. C o n cen tratio n dependence of the in te g ra te d a b so rp tio n s tre n g th fo r the Si lo cal m ode band. 24. A b so rp tio n co efficien t v s. w avenum ber fo r b o ro n doped lith iu m com pensated sam p les at 80°K . A: Si, n o rm a l 7 7 b o ro n , L i. B: Be Q^Si , n o rm a l b o ro n , L i. C: G e. 12S i. 88 ’ 1C > B ’ 6 U - 10 7 25. D iffe re n tia l ab so rp tio n betw een Ge ^ S i gg : B , L i and undoped Ge ^ S i ^ a t liquid He te m p e ra tu re . 26. An ato m in a diam ond la ttic e with its four f ir s t n e ig h b o rs, tw elve second n e ig h b o rs, and a te tra h e d ra l in te r s titia l s ite . 27. L o ca liz ed v ib ra tio n a l m ode absorption of b o ro n in B ” - L i+ p a irs in Ge . 12S i. 88 ‘ 28. A b so rp tio n co efficien t v s. w avenum ber a t liquid n itro g e n te m p e ra tu re fo r doped and pure g e rm a n iu m sa m p le s. 139 140 152 154 157 166 178 v iii LIST O F TABLES C o m p a riso n of lo ca l m ode freq u en cies calculated by tw o d iffe re n t m ethods w ith the e x p erim en tal v a lu e s . In itia l tr ia l v e c to r, and n o rm aliz e d v e c to rs re su ltin g fro m ite ra te d m a trix m u ltip licatio n , for an im p u rity m a s s of 0.1 of the h o st m a s s . L o c a l m odes of a lig h t im p u rity of m a ss a M i n a ra n d o m chain of m a s s M and 2M. D e s c rip tio n of s ite s in a diam ond la ttic e . F re q u e n c y and d isp lac em e n ts fo r th e lo ca l m ode of in Si v s. th e B -S i fo rc e constant. F re q u e n c ie s and d isp lacem en ts fo r local m odes in a diam o n d la ttic e fo r a m odel w ith only c e n tra l fo rc e s . F re q u e n c ie s and d isp lac em e n ts fo r local m odes in a d iam o n d la ttic e fo r a m odel w ith both c e n tra l and no n c e n tr a l fo rc e s . R ecom m ended filte rin g fo r the P e rk in -E lm e r m odel 301 f a r in fra re d sp e c tro m e te r. L o c a liz e d m ode fre q u e n c ie s at 80°K for boron and lith iu m in Si and G e-S i allo y s. D ire c tio n of m o tio n of th e n eig h b o rs of an im p u rity fo r arlO cal m ode v ib ra tio n of the im p u rity along each of th e cubic a x e s. ix 37 48 51 56 63 66 69 109 155 181 CH A PTER I INTRODUCTION AND BACKGROUND A . In tro d u ctio n ; The p re s e n c e of defects in a c ry s ta l m ay m odify the v ib r a - j ; tio n a l s p e c tru m a t the c ry s ta l. Some d efects m ay in tro d u c e I i lo c a liz e d v ib ra tio n a l m odes o utside the bands of fre q u e n c ie s allo w ed I in the u n p e rtu rb e d c ry s ta l; d efects m ay a lso p ro d u ce in -b a n d I ' j re so n a n c e s w hich d ra s tic a lly a lte r the fo rm of som e of the band ! m o d es. The study of th e se m odes can be u se d to obtain in fo rm a tio n j i j on the n a tu re of the d e fe c ts, in te ra c tio n s betw een d e fe c ts, and som e ! of th e p ro p e rtie s of the h o st la ttic e . In p a rtic u la r, sin ce the fre q u e n c ie s of lo c a liz e d v ib ra tio n a l m odes of a d efect a r e v e ry se n - I ! sitiv e to the im m e d ia te en v iro n m en t of the d efect, the stu d y of lo c a liz e d m o d es can be u se d to probe s tru c tu re on a n a to m ic sc a le a ro u n d the d efect. I T his d is s e rta tio n p re s e n ts re s u lts of in fra r e d a b so rp tio n stu d ie s of lo c a liz e d v ib ra tio n a l m odes of lig h t im p u ritie r, and stu d ie s of d e fe ct-in d u ce d in f ra r e d a b so rp tio n of in -b a n d m o d e s. T his c h a p te r c o v e rs g e n e ra l background re le v a n t to the e x p e r im e n ta l w o rk p re s e n te d in C h a p te rs IV, V, and VI. F i r s t , so m e of the p re v io u s w o rk done on Ge Si a llo y s is rev iew ed . The n ext X x " ■ X se c tio n rev iew s the th e o ry of v ib ra tio n a l m o d es of a la ttic e w ith d e fe c ts . The fin a l se c tio n is a b rie f rev iew of p rev io u s o b se rv a tio n s of lo c a liz e d m o d es. C h a p te r II: A pproxim ate c a lcu latio n m ethods fo r lo c a liz e d I m o d e s. P re v io u s a p p ro x im ate calcu latio n s of lo c a l m ode fre q u e n - 1 c ie s and e ig e n v e c to rs a re review ed. A new technique th a t is p a rtic u la rly ap p licab le to com plex d efects is p re s e n te d , and s e v e ra l e x am p le s a re given. The la s t se c tio n of th is c h a p te r c o n s id e rs the re la tio n sh ip betw een the la ttic e d e n s ity -o f-s ta te s n e a r u u and ■ m ax i the m inim um m a s s defect re q u ire d to give a lo c a l m ode. C h ap ter III: E x p e rim e n ta l T echniques. T echniques of s e m i- : co n d u cto r c ry s ta l grow th a re d isc u sse d w ith p a r tic u la r e m p h a sis j on allo y c ry s ta l grow th. D etails a re given of m ethods fo r I ; m e a su rin g co m p o sitio n and hom ogeniety of the c r y s ta ls , fo r sam p le j p re p a ra tio n , and fo r in fra re d a b so rp tio n m e a s u re m e n ts . I C h a p te r IV: In fra re d a b so rp tio n of la ttic e m odes and the ! s ilic o n lo cal m ode in Ge Si a llo y s. In -b an d a b so rp tio n due to a X X “X sin g le-p h o n o n p ro c e s s is o b se rv e d in S i-ric h a llo y s ( x < . 12 ). In G e -ric h allo y s ( x > . 88 ) in fra re d a b so rp tio n of the Si lo c a l m ode i j | is o b se rv e d a s w ell a s in -b an d a b so rp tio n . It is not c le a r fro m the te m p e ra tu re dependence w h eth er the in -b an d a b so rp tio n in the G e- ric h a llo y s is a one-phonon p ro c e ss o r an en h an cem en t of n o rm a l tw o-phonon p ro c e s s e s . C h a p te r V: L o c a liz e d v ib ra tio n a l m odes of b o ro n -lith iu m p a ir s in S i-ric h Ge S i. a llo y s. The e ffect of the a llo y c o m p o sitio n X x -X ! _ -f J on the b o ro n lo c a l m odes of B -L i p a irs in Ge S i, is o b se rv e d r x 1 -x in the ran g e of 0 < x < . 12 . A m odel is p ro p o se d to fit the j o b se rv e d s tru c tu re . The re s u lts su g g est ra n d o m d istrib u tio n of the I ! Ge in the la ttic e . New in fo rm atio n on the p a irin g of d istan c e of : L i and B is obtained. ■ I ‘ f C h a p te r VI: L o calized v ib ra tio n a l m o d es of phosphorus and lith iu m in g erm an iu m . The lo ca liz ed v ib ra tio n a l m odes of iso la te d p h o sp h o ru s and of L i p a ire d w ith Ga in Ge a r e re p o rte d . A nother i band, te n ta tiv e ly a ttrib u te d to the lo cal m ode of P p a ire d w ith Ga, | is a ls o o b se rv e d . C h a p te r VII is a su m m ary of the e n tire d is s e rta tio n . B . B ackground i 1. Ge Si A lloys X X - X j , ■ C ry s ta ls of g erm an iu m and silic o n both have the diam ond i ' | s tr u c tu r e , w ith n e a rly the sam e la ttic e p a ra m e te r; the la ttic e j p a ra m e te r of Ge, 5. 658 X, is about 4% l a r g e r th a n th a t of Si, 5.431 X. The two a re m iscib le in a ll p ro p o rtio n s . The allo y s have the sa m e b a sic la ttic e but any site m ay be o c c u p ie d by e ith e r a Ge o r a Si ato m . No long range o rd e rin g of Ge a n d Si h a s b een found in Ge S i, a llo y s. T h ere is little d ire c t e v id e n c e e ith e r fo r o r x 1 -x 1 a g a in st v e ry sh o rt range o rd e rin g . In s e v e r a l in s ta n c e s , e x p e ri m e n ta l d ata involving lattic e v ib ratio n s in so m e m a n n e r h a s b een in te rp re te d a s im plying sh o rt-ra n g e o rd e r, but m o re re c e n t j th e o re tic a l w o rk on v ib ratio n a l s p e c tra of d is o rd e re d allo y s has ; show n th at the re s u lts do not re q u ire any s h o rt-ra n g e o rd e rin g . ; The study of the boron lo ca l m odes in the S i- r ic h ( x < . 12 ) Ge Si a llo y s w as u n d ertak en w ith the o b jec tiv e of applying the X X - X ; in fo rm a tio n on the lo ca l m ode s p e c tra to the p ro b le m of m e a su rin g j the d istrib u tio n of Ge and Si in the alloy. The G e-S i allo y sy ste m w as f ir s t stu d ied by S to h r and K lem m (1939) who show ed that Ge and Si fo rm e d so lid so lu tio n s throughout the ran g e and d e te rm in e d the phase d ia g ra m . T h e ir phase d ia g ra m ! h a s been a c c e p te d u n til rec en tly , w hen S te in in g e r (1970) published a p h ase d ia g ra m c alcu late d fro m th erm o d y n am ic a rg u m e n ts w hich ! su g g e sts th a t the e x p e rim e n ta l d e te rm in a tio n of the so lid u s is not i a c c u ra te . B oth phase d iag ra m s a re show n in F ig . 9, Chap. Ill; the effectiv e se g re g a tio n co efficien ts th a t w ere o b se rv e d w hile | grow ing the Ge Si c ry s ta ls a re m o re n e a rly in a g re e m e n t w ith i X! X * • X j i the c a lc u la te d phase d iagram . | | M any of the p ro p e rtie s of th e a llo y s v e ry sm o o th ly and I I ! m o n o to n ically w ith com position fro m th o se of p u re Ge to those of i ! j p u re Si. T h ese include p u rely a v e ra g e p r o p e rtie s of the c ry s ta ls su ch a s d e n sity and la ttic e p a ra m e te r, a s w ell a s e le c tr ic a l p ro p e rtie s su ch as band gap and io n iz atio n e n e rg ie s of shallow d o n o rs o r a c c e p to rs . The conduction band m in im a in Si a re along <100> a x es; in Ge they a re at the zone edge in a < 111 > d ire c tio n . The tra n s itio n fro m G e-lik e to S i-lik e co n d u ctio n bands o c c u rs at i about Ge , -Si oc , producing a change in slo p e in the re la tio n sh ip | • 15 • o5 I b etw een band gap and c o m p o sitio n ( Jo h n so n and C h ristia n 1954; j B ra u n stein , M oore and H e rm a n 1957 ). T he tra n s itio n in the j conduction bands is a lso seen in m a g n e to -re s is ta n c e m e a su re m e n ts < ( G licksm an 1955 ). The s tru c tu re of the v a le n c e band h as been | in v e stig a te d by in fra re d a b so rp tio n stu d ie s in p -ty p e alloy i sp e cim en s ( B ra u n stein 1963a ). The s p in -o rb it sp littin g is se en to I v e ry lin e a rly w ith com position, and th e h o le effectiv e m a s s e s v a ry i ! sm oothly. j The v ib ratio n a l s p e c tra of Ge an d Si a re quite s im ila r; the i fre q u e n c ie s of m o st of th e m o d es s c a le a p p ro x im a te ly as j 1 ( M0 ./M _ ) , as is show n in F ig . 1 . The v ib ra tio n a l s p e c tra of i O X G6 | Ge^Si^ ^ allo y s a re q u a lita tiv e ly d iffe re n t, sin ce the d is o rd e r in the | allo y s h as a pronounced e ffect. M any of th e m odes becom e sp a tia lly lo c a liz e d o r q u a si-lo c a liz e d . The p eak s in the d e n s ity -o f-s ta te s ten d to be at freq u e n cie s m o re n e a rly c h a r a c te r is tic of Ge o r Si, . ra th e r than a t an a v e ra g e freq u en cy ( T a y lo r 1967 ). A lloys n e a r the m iddle o f the ran g e hav e la rg e n u m b ers of m odes both n e a r G e-lik e fre q u e n c ie s and S i-lik e fre q u e n c ie s. Such fe a tu re s a re c h a ra c te ris tic of a la rg e n u m b e r of m ix ed c ry s ta l sy s te m s ( Chang and M itra 1968; L u co v sk y , B ro d sk y and B u rste in 1968 ), but u n til it was rec o g n ize d th a t c h a r a c te r is tic freq u e n cie s (/o'* H i ) V £ (a) Si C oot) 1 0— I —r- ~i i i r - i - i —i ' - - - . / - - / ------Tf\ " _i—1 _ _ i—i . i .1 i . P / P . (b) & e C>oo) H.O 9,0 M.O U.O F r e q u e n c y (/& ' * H f ) z 10 .0 F ig u re 1. V ibrational sp e c tra o f Ge an d Si. a , b: D isp ersio n cu rv e s along a (100) d ire c tio n fo r Si (B rockhouse 1959) and Ge (B rockhouse 1958). c, d: Phonon d e n sity -o f-sta te s fo r Si and Ge (Dolling 1966). of both Ge and Si should be p re s e n t, s e v e r a l e x p e rim e n ts th at a re se n sitiv e to the phonon s p e c tra w e re in te r p r e te d as indicating s h o rt-ra n g e o rd erin g in the a llo y s. T h ese include m e a su re m e n ts ; of p h o n o n -assiste d o p tic al tra n s itio n s ( B ra u n ste in , M oore and H e rm a n 1957 ), p h o n o n -a ssiste d e le c tr o n tu n n elin g a c ro s s p -n ju n ctio n s ( Logan, R ow ell and T ru m b o re 1964 ), and tw o-phonon ' la ttic e ab so rp tio n ( B ra u n ste in 1963b ). S ubsequent th e o re tic a l w o rk h a s shown th at no o rd e rin g n eed be in v o lv ed to ex p lain the j o b se rv e d re s u lts ( T ay lo r 1967 ). As a re s u lt of the effect of d is o rd e r on the la ttic e v ib ra tio n s , : Ge Si. allo y s have a f a irly low th e rm a l co nductivity. T h is, along X X "X i w ith a rea so n a b ly high th e rm o e le c tric p o w er and high m eltin g j te m p e ra tu re , h as m ade allo y s in th e c o m p o sitio n ran g e 0. 2 < x < 0 .4 i j u se fu l fo r th e rm o e le c tric g e n e ra to rs fo r p ro d u cin g e le c tr ic a l pow er | ( D ism ukes e t. al. 1964 ). Ge Si a llo y s a r e a lso u se fu l fo r I " 1 3C X ■ * X in fra r e d d e te c to rs. The p rin c ip a l u tility of th e allo y s is th a t the | band gap and the io n izatio n e n e rg ie s of im p u ritie s v a ry sm oothly | i w ith co m position so th a t the w av elen g th of p e a k re sp o n se can be v a rie d by varying the alloy c o m p o sitio n ( M o rto n , Schultz and H ard y 1959 ). 2. V ib ratio n al M odes of Im p e rfe c t C ry sta ls The n o rm al m odes of v ib ra tio n of a p e rfe c tly p e rio d ic c r y s ta l a r e plane w aves; the m odes a r e u n ifo rm in am p litu d e fro m one u n it 8 1 c e ll to a n o th e r, v a ry in g only in p h a se . H ow ever, a ll r e a l c ry s ta ls : have d efects; th ese m ay be la ttic e d efects such as v a c a n c ie s, d islo c a tio n s, etc., o r im p u ritie s , e ith e r in te r s titia l o r s u b s ti tu tio n a l. A defect, w hich b re a k s down the p e rio d ic ity , m ay a lte r the fo rm of the v ib ra tio n a l m o d es, m aking th e m n o n -u n ifo rm in a m p litu d e. Since a ll of the u n p e rtu rb e d m odes of an N -a to m p e rfe c t c r y s ta l have only 1/N of th e ir e n e rg y a t any given s ite , it would : se e m rea so n a b le th a t a defect involving n s ite s w ould have an I e ffe c t on the o rd e r of n /N on the p ro p e rtie s of any one m ode. T his j I : is not n e c e s s a rily tru e ; e x tra o rd in a ry v ib ra tio n a l m odes m ay be | p ro d u ced . T hese m aybe lo c a liz e d m o d e s, w hich have a freq u en cy i | o u tsid e the allow ed bands of fre q u e n c ie s of the n o rm a l la ttic e and ; an am plitude decaying ex p o n en tially w ith d istan c e fro m the defect. I i ! A lso , th e re m ay be m odified in -b a n d m odes w hich have n e a rly the t | sam e freq u e n cie s a s in the u n p e rtu rb e d c ry s ta l, but the am plitude j ■ a t the defect site is an o m alo u sly la rg e fo r th e se m odes in som e range j of fre q u e n c ie s; the d efect am p litu d e v s. freq u e n cy in th is range is I { c h a ra c te riz e d by a re s o n a n c e -lik e peak. T his b e h a v io r is g e n e ra lly r e f e r r e d to a s an in -b a n d re so n a n c e o r a re so n a n c e m ode; the la tte r nam e is le s s a p p ro p ria te sin c e m an y m o d es of the la ttic e a re involved. Both types of e x tra o rd in a ry la ttic e v ib ra tio n s , the lo c a liz e d !m o d es and the in -b a n d re s o n a n c e s , a re of c o n s id e ra b le in te r e s t. In I both c a s e s , the fre q u e n c ie s a re quite se n sitiv e to th e im m ed iate I en v iro n m en t of the d efect. The lo c a l m odes a re p a rtic u la rly u se fu l ! sin ce th e ir fre q u e n c ie s can be c a lc u la te d w ith a f a i r d eg ree of I | a c c u ra c y and c an e a s ily be m e a s u re d e x p e rim e n ta lly . i T hus, the stu d y of lo c a l m odes can be u s e d to probe sy m m e try i • • i of d e fe c ts, p a irin g in te ra c tio n s betw een im p u ritie s , and s im ila r | e ffe c ts. In C h a p te r IV the stu d y of lo c a liz e d m o d es is ap p lied to the p ro b le m of d e te rm in in g o rd e rin g in G e-S i a llo y s. T he in -b an d i ! re so n a n c e s a re of c o n sid e ra b le th e o re tic a l in te r e s t, since c a lc u la te d !fre q u e n c ie s of in -b a n d re so n a n c e s a r e v e ry s e n s itiv e to the d e ta ils | j of the m odels u s e d fo r the la ttic e and fo r the d e fe c t. C o m p ariso n i | betw een th eo ry and e x p e rim e n t can th en p ro v id e a good te s t of the ;th e o ry . In m o s t of the c a s e s involving s e m ic o n d u c to rs , the th e o ry i. does not ag ree w ith the e x p e rim e n t. | L a ttic e D ynam ics T h is se ctio n in clu d es a d isc u ssio n of la ttic e d ynam ics of p e rfe c t c ry s ta ls a s a g e n e ra l b ack g ro u n d an d to define the notation to be u se d , then d is c u s s e s th e g e n e ra l c a se of a la ttic e w ith d e fe cts, and v a rio u s a p p ro x im atio n sc h e m e s fo r c a lc u la tin g lo c a liz e d m ode fre q u e n c ie s. a . P e rfe c t L a ttic e In the h a rm o n ic a p p ro x im atio n , th e c la s s ic a l equations of 10 m otion of an atom in a p e rfe ct c ry s ta l of N u n it c e lls w ith s atom s ; p e r c ell can be w ritte n W . x ' u ' * ' ) = 0 (1) The u ( ! ) a re d isp lacem en ts of a to m s fro m e q u ilib riu m ; th e index u, H ! , ru nning fro m 1 to N, la b e ls the c e ll, K la b e ls one of the s site s in the c e ll, and a , e ith e r x, y, o r z, is a c a rte s ia n com ponent of the ; d isp lacem en t. The $ / ( ! , ! * ) a r e h a rm o n ic fo rce co n stan ts o c , h; p, h ! coupling atom s w ith eq u ilib riu m p o sitio n s and in th e p e rfe c t ■4 *4 ! c ry s ta l the fo rc e constants depend o n ly on (R^~ a n ^ n° t on th e individual values of JL and JL' . T h ese equations a re a s e t of 3sN coupled equ atio n s; th ey can j be decoupled into 3sN independent h a rm o n ic o s c illa to r equations by ; tra n sfo rm in g fro m the co o rd in ates d e s c rib in g individual ato m ic I d isp lacem en ts into th e n o rm al c o o rd in a te s o f th e c ry s ta l. F o r a i p e rfe c tly p erio d ic c ry s ta l, w ith p e rio d ic b o u n d a ry co n d itio n s, the j ! tra n sfo rm a tio n is quite sim p le, sin c e th e n o rm a l m odes hav e the i " ! . . j fo rm of planet- w av es. The 3sN e q u atio n s a r e tra n s fo rm e d into N j se ts of 3s equations by the su b stitu tio n of i I • u(»,xU ) = dj (’ > (2) j*q w here d.(q) is a n o rm al c o o rd in ate w h ich s p e c ifie s the e x cita tio n of 1 a n o rm a l m ode, and X«u(q» is th e s p a tia l am p litu d e of the O C H n o rm a l m ode 11 ^ ( i i | = |NM |ir i «*, (q )« 'l|q ' S<1 < 3> ; w hich is n o rm a liz e d so th at ! n » y * > i 2 = 1 < 4 ) C C .K J & ! The re s u ltin g se t of 3s e q u atio n s, fo r e ac h of the N v alu es of q in ! -♦ i the f ir s t B rillo u in zone, can be so lv ed fo r the fre q u e n c ie s uu.(q) and J O C K ; the c o rre sp o n d in g e ig e n v e c to rs C T . (q) . The index j, running fro m J j 1 to 3 s, sp e c ifie s a b ra n c h of the phonon sp e c tru m . T he freq u en cy | of th re e of th e b ra n c h e s is z e ro f o r J q J = 0; th e se a r e the acoustic i i j m o d es. T he o th er 3 s -3 b ra n c h e s have n o n -z e ro fre q u e n c ie s when | q | = 0; th e se are th e optic m o d es. In d ire c tio n s of high sy m - j m e try in q -sp a c e the b ra n c h e s m a y be fu rth e r d istin g u ish e d as being I (xh j tr a n s v e rs e o r longitudinal m o d e s. The C T . (q) sp e c ifie s the atom ic l J j — ♦ j d isp la c e m e n ts w ithin a unit c e ll f o r a m ode sp e c ifie d by j and q . Gi fa) (‘ l) = b l i ' fa) a ,h J 3 T h ese e ig e n v ec to rs a r e o rth o g o n al and m ay be n o rm a liz e d so th at JJ ? , i T , 5 , r ,5 = i op v < 6> 3 F o r any given m ode th e d isp la c e m e n ts u ( A ) in two u n it c e lls w ith O C H # p o sitio n s R and R / d iffe r only b y a p hase fa c to r, e*^ J L A W hen the n u m b er of u n it c e lls , N, is v e ry la rg e , as is the case fo r any m a c ro sc o p ic c ry s ta l, the allo w ed v a lu e s of q a re so c lo se ly ! - 12 i sp a ce d th a t q c a n be c o n s id e re d a continuous v a ria b le fo r m any p u rp o se s. The sim p le st exam ple of la ttic e v ib ra tio n s is given by the i m onatom ic lin e a r chain w hich h as only one d eg ree of free d o m p e r i | ato m . The m odes a re plane w av es e*^ ^X -U } fa)*] . eig en v ecto r i fo r e a c h m ode is sim p ly 1. T he re la tio n b etw een freq u e n cy and wave v e c to r is uj(q) = (4 $ /M )^ sin (q a /2 ), w h e re $ is the fo rce constant : and a is the la ttic e spacing. A n o th er sim p le exam ple is the diatom ic i lin e a r chain. Since th is la ttic e h a s two a to m s p e r u n it c e ll the : phonon sp e c tru m h as both a n optic an d an a c o u stic b ra n c h . T h ere [ I a re two tw o-com ponent e ig e n v e c to rs fo r e a c h value of q, specifying j ! j the am p litu d es of the two a to m s . T he r e s u lts a re su m m a riz e d in j F ig . 2. ' T h e re a re no sy ste m s in n a tu re quite as sim p le as lin e a r i i ! c h a in s. The v ib ra tio n a l fre q u e n c ie s of r e a lis tic m o d els of re a l I ! -+ c ry s ta ls , except fo r v alu es of q fo r w hich the eq u atio n s can be sim p lifie d by the use of s y m m e try , a re found th ro u g h tedious c a l- j . c u latio n s b e st done w ith an e le c tro n ic c o m p u te r. b. Im p e rfe c t L a ttic e If th e re a r e any d efects in the c r y s ta l the tra n s la tio n a l sy m m e try of the la ttic e is rem o v e d . T he n o rm a l m odes a re not quite plane w av es, as w as the c a se w ith th e p e rfe c t c ry s ta l, so th e re is g e n e ra lly no sim ple tra n s fo rm a tio n th a t g iv es the n o rm a l c o o rd in - 13 p l - H -OK>dK>iXK>UWK>^- tn p h— 2a —► ! w, U ,-* - u 2 - * - £ c > J [2^3 (-jtr, * ] [2 f/S j [ 2 /V X /2 (b) o £~tjertv ector ( U n H ) ( *>2 ■ \K 2 ♦ w2 2 ja {o,i) (1, 0 ) 5 > - "sta * (m j ’v t ) F ig u re 2. Sim ple o n e -d im en sio n a l m o d e ls fo r la ttic e v ib ratio n a l s p e c tra . a) One dim ensional m o natom ic la ttic e m o d el, w ith only f ir s t * neighbor fo rc e s . b) D isp ersio n cu rv e (uj v s. q) f o r the m o d el in a). c) One dim ensional d iato m ic la ttic e m o d el, w ith only f ir s t neighbor fo rc e s. d) D isp ersio n c u rv e, and e ig e n v ic to rs fo r zone c e n te r and zone edge m odes, fo r the m o d e l in c). _ J • .............................. '.....14' ! a te s . The f i r s t d e ta ile d tre a tm e n t of th e v ib ra tio n a l p ro p e rtie s of i d efects in c ry s ta ls w as given by L ifsc h itz (1943 a ,b ; 1944); th e re I have been a n u m b er of m o re re c e n t p a p e rs extending th is w ork ; (M ontroll and P o tts 1955; D aw ber and E llio tt 1963 a ,b ; M aradudin 1963, 1966) (M arad u d in 's rev iew s both contain e x ten siv e b ib lio - ; g ra p h ie s). T h ese stu d ies h av e show n th a t it is in p rin c ip le p o ssib le j to calcu late the e ig e n freq u e n cies and o th e r p ro p e rtie s of a la ttic e I containing d e fe cts in te r m s of an expansion in th e n o rm a l m odes of | the p e rfe c t la ttic e ; th is n o rm a l m ode expansion is u su ally developed i : in a G re e n 's function fo rm a lis m . In g e n e ra l, such calcu latio n s re q u ire a m o re e x ten siv e know ledge th an is u su a lly a v ailab le of the i m ode fre q u e n c ie s and e ig e n v e c to rs of th e p e rfe c t la ttic e . In som e i sim p le c a se s of in te r e s t, su ch as th e sin g le iso to p ic su b stitu tio n ! | m odel, the e x p re ssio n s beco m e su fficien tly sim p le th a t useful | j re s u lts a re e a sily obtained . T his m ethod of calcu latio n is review ed I h e re ; except as noted, the d e riv a tio n is e sse n tia lly th at of D aw ber i ' , j and E llio tt (1963a). F o r th e c a se th at the d e fe ct is one o r m o re su b stitu tio n a l im p u ritie s , w hich m ay d iffe r fro m th e h o st both in m a s s and fo rc e c o n stan ts, th e equations of m o tio n (Eq. 1) fo r s ite s k , on w hich the m a s s has b een changed to M - AM and the fo rc e co n stan ts H K changed to " A §aH g K • ^ *) b ecom e p, H , I p 15 n The ato m ic d isp la c e m e n ts can be e x p re s s e d as a sum of n o rm al m o d es, as in E q. 2, so th at I (8) w h ere X (£ » ^) is th e am p litu d e of ato m ic d isp lac em e n ts in the Ct K i n o rm a l m ode, and d(f) is the n o rm a l c o o rd in a te fo r th e p e rtu rb e d ! la ttic e . The index f, w hich la b e ls th e m ode, u rn s fro m 1 to 3sN. I F o r each n o rm a l m ode th e equation of m otion is i W ' * 4 ' 4 ' ’ X b k ' V ’ 1 " * - \ - ‘M K W u Z % a K ( i , l ) + (9) ; The changes in th e equation have b een c o llected on the rig h t hand side j i ‘ • j as a d riv in g te r m fo r an o th e rw ise unchanged se t of h a rm o n ic | o s c illa to r eq u atio n s. i | C o n sid er fo r a m o m en t a sim p le h a rm o n ic o s c illa to r w ith an I e x te rn a l d riv in g fo rc e a t a freq u e n cy ou. The equation of m otion is j I 2 - to m x + kx = F(ou) (10) The re sp o n se of th e o s c illa to r is 1 F x " m 2 2 (11) ( 0 o - ( V 2 w h ere iu q = k/m. F o r the c a se of a s e t of coupled o s c illa to rs , the re sp o n se to a d riv in g te r m is s im ila r in fo rm , except th a t the » 16 p o sitio n co o rd in ate m u st be e x p re ss e d a s a su m over th e n o rm a l co o rd in a te s of the o s c illa to rs , and th e d riv in g fo rce on each n o rm a l co o rd in ate is obtained fro m a F o u rie r e x p an sio n in th e n o rm a l co o rd in a te s of the d riv in g te rm . T he G re e n 's function (re sp o n se to d e lta function ex citatio n ) fo r the la ttic e w h ich re la te s th e re sp o n se of the co o rd in ate a n in th e 4th c e ll to an e x c ita tio n of the 0H ' c o o rd in ate of the 4 7 th c e ll is ... . i > < * • (q)Sj ( q ) e g u > ( u / ) = l - r £ - J ----------- 3 -5 -5-------*------------------ (12) a k B k N(M M /)2 q, j u ). (q) - o u n * H j w hich sa tisfie s the equation -W Z M K gw {l,l")+ Z ^ l") (13) * « » T « " e x 'i ' ^ B hh The equations of m o tio n of the n o rm a l m o d es of th e p e rtu rb e d la ttic e can be solved in te rm s of th is G r e e n 's function to give X„„ (£. « = 2 , 2 m B k' I ' Y K - i m B K B K Y * Y H (14) The condition th a t so lu tio n s e x ist to the s e t o f equations is th at th e s e c u la r d e te rm in a n t be z e ro , so th a t th e eig en v alu e equation th a t gives the freq u e n cie s of the p e rtu rb e d la ttic e is p > * > W l u l 1 = 0 (15> w h e re *')+ A W ' U i ')- (16) 17 In the g e n e ra l c a s e , a c o m p lete know ledge of the eig en v ecto rs a ? * (q) and of the re la tio n sh ip betw een u ) and q fo r the p e rfe c t J la ttic e is needed to ev alu ate th is d e te rm in a n t. (1) Iso to p ic Im p u rity in th e D iam ond L a ttic e T h ere a re som e in sta n c e s w h e re th e G re e n 's function m ethod p ro v id es a p ra c tic a l m ethod to e v alu ate th e fre q u e n c ie s of a p e rtu rb e d la ttic e . Of p a rtic u la r in te r e s t in th e p re s e n t w ork is the i diam ond la ttic e . If a su b stitu tio n a l im p u rity in th is c ry s ta l is ap p ro x im ated as an iso to p ic su b stitu tio n , changing only the m a s s but | not the fo rce c o n sta n ts, only th e eq u atio n s of m o tio n for the im p u rity j s ite a re p e rtu rb e d . D aw ber and E llio tt have c o n sid e re d this p ro b lem ! in c o n sid era b le d e ta il. F o r th is c a s e , no G re e n 's functions coupling ; d iffe re n t la ttic e s ite s a r e n e c e s s a ry ; only th e g u l _ /(0) 4 0 a re C t t H j d $ K ; needed. F o r a site w ith cubic o r te tr a h e d r a l sy m m e try , g® _ /(0) 0 , Hi p» H j I 4 0 only if a = 0 ; th e d e te rm in a n t (Eq. 15) th en h a s only the th re e I diagonal te rm s , a il of w hich a r e e q u al. A lso , fo r a cubic c ry s ta l j “ ■ ' * . ; w h e re a ll atom s h av e th e sam e m a s s and eq u iv a le n t s ite s , su ch as Ge o r Si | C T ? ’ H (q) (from Eq. 5) fo r a ll m o d e s , c o n sid e r- J j S ably sim plifying the G re e n 's fu n ctio n . If a m a s s d efect p a ra m e te r M -M ' -AM is defined as e = — ^ ^ , th e eig en v alu e equation (Eq. 15) K H fo r the new la ttic e fre q u e n c ie s b e c o m e s ’ the index f w hich la b e ls th e new m odes ru n s fro m 1 to 3sN. I T he e x te n t to w hich th e m ode is lo c a liz e d can be d eterm in ed by calcu latin g th e m ode in te n s ity a t the im p u rity site . When the ; defect is a sin g le s u b s titu tio n a l im p u rity , w hich we sh all assu m e | to be su b stitu te d on a site in the c e ll a t & = 0, the n o rm aliz a tio n j condition (Eq. 4) fo r th e p e rtu rb e d la ttic e becom es 1 ' a * 1 W f ’ 0) |2 = * ' <18) i If we use the re la tio n s h ip b etw een \ (f* & ) an d Xa ' ( * > ) (IH > pH | given by su b stitu tin g E q. 12 and E q. 16 into E q. 14, we obtain an i i , ,2 j e x p re s s io n fo r J x (f, 0) | T h is c an be sim p lifie d by the use of Eq. 5 an d by the o rth o n o rm a lity of the e 1^ ^ te rm s to obtain, fo r the iso to p ic su b stitu tio n m odel, S I Xa,H(f’ 0) I = M 3sN ^ ? 2 2 " ® (19) jq W . (q) - tt)-(f) J If aj > U > , th e n th e su m m atio n in E q s. 17 and 19 m ay be m a x . . 1 9 1 j stra ig h tfo rw a rd ly c o n v e rte d to in te g ra ls o v e r U ); this sim p lifies a c tu a l n u m e ric a l e v a lu a tio n of th e se e x p re ss io n s . If V (|i) is a i 2 | d en sity of u n p e rtu rb e d s ta te s p e r u n it ran g e of = iu , n o rm alized ; so th a t J V(n) dn = 1 , Eq. 17 c an be w ritte n as l-l m M - 1 + ez' J* .f l i . = o (20) o n - Z ' (w here /Z* = u j i s the fre q u e n c y of the lo ca liz ed m ode, and X j |A im = U ) m ax is th e m ax im u m phonon freq u en cy of the u n p ertu rb ed I j la ttic e . The e x p re s s io n fo r th e am p litu d e of the im p u rity atom s im ila rly b eco m es Ix(°) I2 = ± t e2z ' 2 j ” . c J - 1 (2 1) o ( z ' - | i ) The in te g ra ls in E q . 20 an d E q. 21 w e re ev alu ated by DE fo r the Si lattic e s p e c tru m show n in F ig. 3a. The solutions a re show n in F ig . 3b fo r the fre q u e n c y an d im p u rity am plitude of the th re e -fo ld deg en erate lo c a l m o d e of a n iso to p ic im p u rity v s. the m a s s defect. If U ) is w ith in the ran g e of the ban d m odes the denom inator of the su m has m an y c lo s e ly sp a ce d z e ro e s , so th at the co n v ersio n to an in te g ra l is m o re involved. D aw ber and E llio tt (1963) a rriv e at F ig u re 3. P r o p e r tie s of a lo c a l m ode in silic o n fo r an iso to p ic im p u rity m o d e l, a s c a lc u la te d by D aw ber and E llio tt. a) H isto g ra m of th e d en sity of v ib ra tio n a l m odes p e r unit fre quency in S i, fro m w hich the in te g ra ls w e re evaluated. b) C alcu lated lo c a l m ode p ro p e rtie s : I. R elativ e freq u en cy / - 1 of lo c a liz e d m ode in Si a s a function of m a s s d efect m = (M -M )/M ; II. R e la tiv e am plitude of lo c a liz e d m ode a t the d e fe ct a to m . 21 3, O 100 200 300 400 500 (cm"1) 0.5 E 1 .0 03 0.6 0.2 6 an in te g ra l re p re s e n ta tio n by co n sid erin g in d etail the contributions 2 -4 2 of the te rm s of th e stu n fo r w hich [cu. (q) - id X jls n e a r z e ro . A J m o re in te re s tin g a p p ro a c h , developed by P ro f. J. Sm ith is as follows] T he g e n e ra l a p p ro a c h w ill be to c o n sid e r the effect of a d efect on th e su sc e p tib ility of the la ttic e . In g e n e ra l, a su sc e p tib ility S is the ra tio of a re s p o n se x of a sy s te m to a driving fo rce F. If the to ta l fo rc e on th e sy s te m c o n sists of an e x te rn ally applied fo rc e and an in te rn a l fo rc e F . , the su sc e p tib ility is S = F + F. e i The a p p a re n t su s c e p tib ility as se en by an e x te rn al o b se rv e r, h o w ev er, is S = ~ app F As w as se e n in E q. 9, the u n p e rtu rb e d la ttic e could be re p re s e n te d by a s e t of h a rm o n ic o s c illa to r s , and the change in th e equations of m o tio n in tro d u c e d by a d e fe ct is equivalent to a d riv in g te rm applied to th a t s e t of h a rm o n ic o s c illa to r s . In th e c a se of a sim p le m a s s change w ith no fo rc e c o n stan t change (the iso to p ic su b stitu tio n 2 m odel) th e d riv in g te r m in Eq. 9 b e co m es AM (j6)u> u ( Z ) . F o r t a a n th is s y s te m , th e re s p o n se to an e x te rn a l fo rc e is u = S (F + F . ) = S (F + AM o j2u) (22) 6 . 1 6 so th at th e a p p a re n t su s c e p tib ility is T he s u s c e p tib ility of a sin g le h a rm o n ic o s c illa to r of freq u en cy ii)j is ! s < ” > = H - - T T (24) I U O j - U ) ] | The n o rm a l m o d es of a c r y s ta l la ttic e containing sN atom s a re a | se t of 3sN h a rm o n ic o s c illa to r s . If the n u m b er of m odes a t fre- j Iquency U ) is pfuu.) , the s u s c e p tib ility fo r a driving fo rce on one ! | ato m of an u n p e rtu rb e d silic o n la ttic e is i o o ; c / / \ 1 1 p P(u>.) dm I * * = 3sN M i , 1 , 1 (25) O C . C U ij - U ) |T h is is , h o w e v e r, only the r e a l p a rt S/ of a com plex su sc e p tib ility S = S ' + iS " . S 7 an d S7 7 a re re la te d by the K ra m e rs-K ro n ig re la tio n » S77(u) ) u u d uo S'< “ > ■ I J 2 2 < 26> O U U j - U ) F ro m a c o m p a ris o n of e q u atio n s 25 and 26, we see th a t s ' » - Z B S S ^ <2 7 > We a re now in a p o sitio n to e v alu ate the v ib ra tio n a l p ro p e rtie s of the im p u rity fo r fre q u e n c ie s in the band m ode reg io n . One p ro p e rty of in te r e s t is the e x te n t to w hich the im p u rity m o d ifies the b an d m o d e s. A m e a s u re of th is is the m ode in te n sity 2 2 | u | a t th e im p u rity s ite re la tiv e to the in te n sity |uq | when AM = 0. If we s q u a re Eq. 23, w e obtain u Js F |2 (I - AM(u2S ')2 + (AM u ,2S " ) 2 (28) In th e u n p e rtu rb e d c a se (AM = 0) th e d en o m in ato r is one, so th a t the re la tiv e in te n sity of the m ode b eco m es u u , AM 2 ^ p 1-3535n ‘ " p -r p({ju:i ) d i u 1 U )j - ( ! ) + (29) i T his e x p re s s io n allow s the evaluation of the inband v ib ra tio n a l | in te n sity in te r m s of an in te g ra l o v e r the d en sity of s ta te s r a th e r I th an th e su m m atio n re q u ire d by E q. 17. i | The in f ra r e d a b so rp tio n of th e im p u rity can a lso be obtained i I ; fro m the a p p a re n t su sc e p tib ility . The im p u rity .is a ssu m e d to have a sin g le e le c tro n ic c h a rg e e, coupled to the in cid en t ra d ia tio n field w hich has an e le c tr ic field E(u)). The a b so rb e d pow er is P = = (eE) ulS''p (30) F ro m th is we can obtain the s p e c tra l dependence of the in f ra r e d a b so rp tio n . T he a b so rp tio n c o efficien t a(ou) is p ro p o rtio n a l to th e e x p re s s io n fo r th e a b so rb e d pow er; fro m E q s. 25, 27 and 29 w e can e v alu ate S / / ap p and obtain | a(u)) « P = (eE)2 uj(n/2M) p(uu) (31) AMui 3M sN 6MsN T he a g re e m e n t betw een th e o ry and e x p e rim e n t fo r im p u rity - : in d u c e d inband a b so rp tio n in sem ico n d u cto rs h a s not b een v e ry good ( se e c h a p te r III ). It is not su rp ris in g th at d isc re p a n c ie s should i e x is t, h o w ev er, sin ce the inband ab so rp tio n should be e x p ec te d to be I q u ite s e n s itiv e to the d e ta ils of th e coupling of the im p u rity to th e i I la ttic e , and the iso to p ic su b stitu tio n m odel u se d to d e sc rib e the d im e n sio n a l G re e n ’s fu nction calcu latio n is a t a ll sim p le . H ow ever, c a lc u la tio n s have b een done fo r m o re re a lis tic m odels of d e fe c ts , i E llio tt an d P feu ty have com puted freq u en cies of lo c a liz e d m o d es fo r ! s e v e r a l d e fe cts in silic o n , including a su b stitu tio n a l im p u rity w ith fo rc e c o n sta n t c h an g es, p a ir s of su b stitu tio n a l im p u ritie s w ith a n a d ju s ta b le fo rc e c o n sta n t b etw een them , an iso la te d in te r s titia l im p u rity , and an in te rs titia l-s u b s titu tio n a l p a ir ( L i-B ) w ith fo rc e c o n sta n t ch an g es. T h e ir m o d els a re s till o v e r-s im p lifie d . In o r d e r to keep th e d im e n sio n ality of the p ro b le m w ith in p r a c tic a l j d e fe ct a n d the sin g le v ib ra tin g change m o d el u se d to d e s c rib e th e | in fra r e d a b so rp tio n a r e p o o r enough ap p ro x im atio n s to r e a lity th a t ! it is n o t s u rp ris in g th a t the th e o ry does not fit the e x p e rim e n t. (a) M ore G en eral M odels T h e iso to p ic su b stitu tio n is the only m o d el fo r w hich th e th r e e 26 lim its , th ey have to le a v e out som e of the fo rce co n stan t changes th a t sh o u ld be included in re a lis tic m odels as fo r in sta n c e , th e im p u r ity -la ttic e fo rc e c o n stan ts of im p u rity -im p u rity p a ir s . H o w ev er, th e re s u lts of th e calcu latio n s do give som e in fo rm a tio n on th e s o r t of effects to be expected for som e c a se s of re a l p h y sic a l i n te r e s t. The a p p lica tio n of th e ir re s u lts to the c a se of P -G a p a irs i jin Ge is d isc u sse d in C h a p te r V. C alcu latio n of fre q u e n c ie s of inband m odes fo r r e a lis tic m o d els jof d e fe c ts is a re la tiv e ly m o re difficult p ro b lem . The G re e n 's 2 ■ + 2 -1 fu n ctio n s contain a fa c to r (to. (q) - w ) w hich m ak es th em v e ry J [se n sitiv e to m in u te d e ta ils of the la ttic e sp e c tru m when to is w ithin ian a llo w e d range of fre q u e n c ie s of the u n p e rtu rb e d la ttic e . A p p ro x - i jim ate G re e n 's functions w hich give good re s u lts fo r o u t-o f-b a n d i lo c a l m o d e s do not n e c e s s a r ily give good re s u lts fo r inband [re so n a n c e . ! I i j j 4. P re v io u s O b serv atio n s of L o calized V ib ratio n al M odes ! “ “ “ “ S e v e ra l e x p e rim e n ta l techniques have been used to o b se rv e lo c a liz e d m o d es. The sim p le st and m o st d ire c t m ethod is m e a s u r e m e n t o f in fra re d a b so rp tio n of the frequency of th e lo cal m o d e . T his r e q u ir e s a h o st c r y s ta l w hich is tra n s p a re n t to in fra re d ra d ia tio n a t th a t fre q u e n c y , a condition sa tisfie d by a n u m b er of io n ic and c o v a le n t c ry s ta ls including a lk a li and alk alin e e a rth h a lid e s and i 27 | e le c tric a lly co m p e n sa te d se m ic o n d u c to rs. In frared - re fle c tiv ity j and R am an s c a tte rin g m e a su re m e n ts have a lso been u se d in som e I ! in sta n c e s , p a rtic u la rly fo r high c o n c e n tra tio n s of the d efect giving i j th e lo c a l m ode. A nother m ethod, w hich h a s a lso been u se d w ith ; m e ta ls , is th ro u g h m e a su re m e n ts of p h o n o n -a ssiste d tunneling • p r o c e s s e s . T h is h a s been done both in se m ic o n d u cto r p -n ju n ctio n s t i ( T a y lo r 1967 ) and in su p erco n d u ctin g ju n ctio n s ( C h a n d ra se k h a r ! and A d le r 1968 ). Low freq u e n cy inband re so n a n c e s have b e en se e n | by the above m eth o d s a s w ell a s by n e u tro n s c a tte rin g ( M acintosh ! an d B je rru m -M o lle r 1968 ) and by in d ire c t m ethods su ch as the m e a su re m e n t of the te m p e ra tu re v a ria tio n of sp ecific h e a t o r th e rm a l co n d u ctiv ity a t low te m p e ra tu re s ( P ohl 1968; C u lb ert I an d H ubener 1968 ). j T he f i r s t o b se rv a tio n s of lo c a liz e d v ib ra tio n a l m o d es th a t i j w e re in te rp re te d in te rm s of the concept of a lo c a l m ode being one | of the n o rm a l m o d es of a p e rtu rb e d c ry s ta l w e re of h y d rid e ion im p u ritie s in a lk a li h alid e c ry s ta ls ( S c h a efer I960). In fra re d a b so rp tio n bands of oxygen v ib ra tio n s in Si h a d been id en tifie d p re v io u s ly ( K a is e r, K eck an d L ange 1959 ), but th ey w e re i n te r p re te d in te r m s of a m o le c u la r m odel, tre a tin g the Si la ttic e as being to ta lly rig id , r a th e r th an a s a lo c a liz e d m ode. M e a su re m e n t of the in fra re d a b so rp tio n stre n g th of th e 1107 cm " * oxygen band h a s becom e the sta n d a rd m eth o d of m e a su rin g oxygen c o n ten t of Si. 28 j I A s im ila r oxygen v ib ra tio n is a lso seen in Ge a t 855 cm "* (K a ise r j 1962). | The f ir s t o b se rv a tio n s of lo cal m odes in se m ic o n d u c to rs to ; ] b e in te rp re te d as such w e re th o se of b o ro n in silic o n , done n e a rly j sim u lta n e o u sly by fo u r d ifferen t g ro u p s. S m ith and A n g ress(1 9 6 3 , j : j a ls o A n g re ss e t. a l. 1965) o b serv ed the lo c a l m ode of iso la te d b o ro n ! j ato m s in Si w hich w as com pensated by co u n ter doping w ith p h o sphorus j du rin g grow th of the c ry s ta l follow ed by e le c tro n irr a d ia tio n to I ' I jachieve final co m p en satio n . The o th ers (B alkanski and N a z a re w itz j 1964, 1966; S p itz e r and W aldner 1965; C hrenko e t. a l. 1965) ! jp erfo rm ed th e co m p en satio n by diffusing L i into B -doped c r y s ta ls , jthe L i p a irs w ith th e B and sp lits the lo c a l m ode in to a x ia l and ! I jtra n s v e rs e v ib ra tio n s w ith c o n sid era b ly d iffe re n t fre q u e n c ie s . L i jm odes a r e a ls o o b se rv e d . Since b o ro n and lith iu m each have two |sta b le iso to p e s e a sily o btainable in fa irly p u re fo rm , a ll the lo c a l 'm odes can be unam biguously id en tified as being p rin c ip a lly b o ro n j jor lith iu m v ib ra tio n s by th e ir iso to p e sh ifts. An ex am p le of the in fra re d sp e c tru m of Si containing L i is given in F ig . 24, C h ap ter V. L o cal m odes of b o ro n p a ire d w ith su b s titu tio n a l do n o rs (P, A s, Sb) in Si have been o b se rv ed by T sev to v e t. a l. (1968) and by N ew m an and S m ith (1968). The b o ro n m o d es a r e s p lit by th e p a ire d d o n o r, but w ith s m a lle r sp littin g th an in th e c a se of L i-B p a irs Inband a b so rp tio n h as a ls o been o b se rv e d in B -doped Si c o m p e n sa te d w ith a su b stitu tio n al donor ( A n g re s s e t. a l. 1965 ), and j a ls o in A l-d o p ed Si ( Devine and Newm an 1970 ) and n e u tro n ir r a d ia te d Si ( B alkanski 1964 ). Some of the fe a tu re s in a b so rp tio n s p e c tra a p p e a r to be c h a ra c te ris tic of the p a r tic u la r im p u ritie s , ; w hile o th e rs a p p e a r to be c h a ra c te ris tic of the S i la ttic e . T his , topic is d isc u sse d in m o re d e ta il in C h a p te r IV. T he lo c a l m ode of c arb o n in Si was r e p o r te d by N ew m an and i W illis (1965), who id en tified it by the iso to p e sh ift. Since C is not , an e le c tr ic a l dopant in Si, th ere is no sim p le m eth o d to m e a su re r its c o n ce n tra tio n . Newm an and W illis c a lib ra te d the a b so rp tio n j b and s tre n g th v s. carb o n c o n cen tratio n by doping w ith ra d io a ctiv e 14 ! C, th u s providing a m ethod of m e a su rin g the am o u n t of s u b s ti- I 12 ; tu tio n a l c a rb o n in Si. U nfortunately, the lo c a l m ode band of C, i | the m o st com m on iso to p e, is at the sam e fre q u e n c y a s the s tro n g e s t ! tw o-phonon band in Si; but even so it p ro v id e s th e e a s ie s t m e a su re I of su b stitu tio n a l c arb o n content of Si. i j T he convenient com pensation tech n iq u es th a t w o rk a t a ll w e ll fo r Si a re m a rg in a l ( L i diffusion ) o r do not w o rk ( e le c tro n o r n e u tro n irra d ia tio n ) fo r Ge. In addition, if Ge is im p e rfe c tly c o m p e n sa te d by L i diffusion it w ill be p -ty p e . T h is m ean s th a t low te m p e ra tu re m e a su re m e n ts w ill be difficult b e c a u se of stro n g a b so rp tio n fro m in te rv a le n c e band tra n s itio n s in p -ty p e Ge ( K a ise r e t. a l. 1953 ). C onsequently, the f i r s t re p o rte d o b se rv a tio n of a 30 i ; I lo c a l m ode in Ge w as th at of the Si lo ca l m ode, o b se rv e d in R am an sc a tte rin g by F eld m an et. a l. (1966). T his lo c a l m ode h a s sin ce been found to be w eakly in fra re d a c tiv e (see C h a p te r. IV). The lo cal m odes of P and of L i p a ire d w ith Ga (see C h a p te r. VI) w e re the f ir s t in Ge fo r w hich in fra re d a b so rp tio n w as re p o rte d . (C osand and S p itz e r 1967). Since then th e lo c a l m odes of b o ro n , both iso lated and in B -L i p a irs have been re p o rte d (N azarew icz and Ju rk o w sk i 1969); th e lo ca l m ode s p e c tra a r e v e ry s im ila r to the c a se of B in Si. :In fra re d a b so rp tio n of lo ca l m odes h as b een ex ten siv ely istu d ies in IH -V se m ic o n d u c to rs. H ayes (1964) f i r s t re p o rte d the i lo c a l m odes of Al and P in GaSb. L o rim e r e t. a l. (1966) re p o rte d th e Al and P lo c a l m odes in GaAs; S m ith e t. a l. (1966) then re p o rte d ithe lo c a l m ode of Al in InSb. Al and P im p u ritie s a r e not e le c tr i c a lly a c tiv e in th e s e c ry s ta ls , and the lo c a l m odes give a convenient i >and se n sitiv e m e a s u re of th e c o n c e n tra tio n s of th e s e im p u ritie s . i 'L o c a l m odes of s e v e ra l im p u ritie s w e re se e n in G aP by S p itze r |e t. a l. (1969) by in fra re d a b so rp tio n and by Hon e t. a l. (1970) in I |R am an s c a tte rin g ; the lo ca l m ode of n itro g e n in G aP w as seen by T hom as and H opfield (1966) as a sideband on th e e m issio n fro m excitons bound to n itro g e n a to m s. L ocal m odes of L i com plexes in GaAs have y ield ed c o n s id e r ab le in fo rm a tio n on th e co n fig u ratio n of and conditions fo r fo rm atio n :of p a irs and o th er d e fe c ts. One of the outstanding exam ples of the u se of lo cal m odes as a p ro b e to study d efects in c ry s ta ls has b een the v a rio u s stu d ies of Si in GaAs . Si is an a m p h o teric dopant; S i^ g is an a c c e p to r and SiQa is a d o n o r. Both sp e c ie s give a lo ca lized m ode, but a t d iffe re n t fre q u e n c ie s, so the stre n g th of the in fra red a b so rp tio n bands d ire c tly g iv es a m e a s u re of th e co ncentration of each sp e cie s (L o rim e r and S p itz e r 1966). T his h as been exploited to m e a s u re re d is trib u tio n of Si betw een th e two types of j s ite s in th e p re s e n c e of L i a t high te m p e ra tu re s (S pitzer and A llred S 1968). A lso, it h as b e en u sed to m e a s u re the tendency of Si to co m p en sate o th e r d o p an ts, e ith e r do n o rs o r a c c e p to rs , during the j (growth of GaAs c ry s ta ls . j At the tim e of th is w ritin g , th e m o st co m p lete sin g le so u rce jof in fo rm atio n on in fra re d a b so rp tio n due to high freq u en cy lo calized m o d e s is th e rev ie w by N ew m an (1969), w hich quite thoroughly |c o v e rs th e w ork th at h as b een done in io n ic and sem ico n d u cto r ic ry s ta ls . P ro b ab ly th e b e s t sin g le s o u rc e on o th e r a sp e c ts of i lo c a liz e d m odes and inband m o d es is L o c a liz e d E x citatio n in Solids, (edited by R. F. W allis, w li ch is the p ro ce ed in g s of the In tern a tio n al | C onverence on L o ca liz ed E x c ita tio n s in Solids held at U. C. Irv in e in S e p tem b er 1967. CH A PTER II A pproxim ate C a lc u la tio n M ethods fo r L o calized M odes A. P re v io u s W ork In p rin c ip le , th e G re e n 's fu n ctio n technique gives an exact : solution fo r the fre q u e n c ie s and e ig e n v e c to rs of a la ttic e w ith a ; defect. In p ra c tic e , e v e n fo r a s sim p le a defect as a substitutional j im purity, the r e s u lts a re not u su a lly v e ry good, both because of | im p erfect know ledge of the la ttic e sp e c tru m of the u n p ertu rb ed 1 j c ry s ta l and b ecau se th e re is g e n e ra lly no reliab le way to p red ic t the I fo rce constant ch an g es a s s o c ia te d w ith a su b stitu tio n a l im purity. j I Thus for the p u rp o se s of in te rp re ta tio n of e x p erim e n tal re s u lts , it i j is useful to c o n sid e r a p p ro x im a te m eth o d s, w hich m ay be com puta- I tionally s im p le r th a n a rig o ro u s c a lc u la tio n of lo calized m ode : freq u en cies. | i Since the in -b a n d m o d es a r e sp a tia lly extended and involve ! m otion of a ll of the a to m s of the la ttic e to about the sam e extent th e re is no good w ay to c a lc u la te th e ir freq u e n cie s and eig en v ecto rs without c o n sid e rin g the e q u atio n s of m otion fo r the e n tire c ry s ta l. H ow ever, fo r lo c a l m o d es th e re a r e sim p le app ro x im atio n m ethods available since the m ode is sp a tia lly lo c a liz e d and only a rela tiv e ly sm a ll num ber of a to m s p a rtic ip a te . As an exam ple, it w ill be shown that o v er 99% of th e e n e rg y of the lo ca l mode of iso lated su b stitu tio n al b o ro n in s ilic o n is co n tain ed in the m otion of the b oron 32 33 and its f ir s t and second n e ig h b o rs. One should th e re fo re expect to be ab le to c a lc u la te th e freq u en cy , given a m odel fo r the fo rce j c o n stan ts, to w ithin 1% by co n sid erin g only the m otion of th e se a to m s. :An a lte rn a tiv e m ethod is to a p p ro x im a te th e G re e n 's function. In th e exam ple above, th e b o ro n ato m and its f i r s t and second n eig h b o rs include a to ta l of 17 ato m s; such a co llectio n of atom s c o n sid e re d by 1 iitse lf can hav e a t m o st 51 d istin c t fre q u e n c ie s. It is th e re fo re p o ssib le to a p p ro x im a te th e G re e n 's functions for th e la ttic e w ith no Im ore than 51 te r m s and obtain th e sa m e re s u lt as is obtained by [C onsidering th e m o tio n of th e d efect and its f ir s t and second j jneighbors. The erro r cau sed by c o n sid e rin g a fin ite defect reg io n con- isistin g of th e d e c e c t and som e su rro u n d in g ato m s h as been d isc u sse d j in th e lite r a tu r e (Dean 1968 a, b). The lo c a l m ode freq u en cy |c alcu lated in a fin ite reg io n is a lo w e r bound for the re s u lt th a t jwould be o b tain ed in an in fin ite la ttic e fo r the sam e m odel of the jdefect and the la ttic e . T hat th is should be so is fa irly obvious, i sin ce allow ing only th e a to m s in th e d efect region to m ove is equivalent to le ttin g th e m a s s of the’ ato m s o u tsid e th e defect reg io n becom e in fin ite . An u p p e r bound can a lso b e obtained, e x p re ss e d in te r m s of th e a m p litu d e of th e e ig e n v e c to r fo r the defect region and the te r m s coupling m otion in sid e the d efect region to the r e s t of the la ttic e . 34 The siz e of the defect reg io n re q u ire d fo r a given a c c u ra c y depends on the d eg ree of lo c a liz a tio n of the m ode. A m ode w ith a : freq u e n cy ju s t b a re ly above the m axim um phonon freq u e n cy of the | u n p e rtu rb e d la ttic e w ill not be highly lo c a liz e d and a fa irly la rg e I d e fe ct re g io n is re q u ire d to ad eq u ately ap p ro x im ate the m ode. A v e ry high freq u e n cy lo c a l m ode m ay be so w ell lo c a liz e d th a t the ' la ttic e h a rd ly p a rtic ip a te s a t a ll, and good re s u lts m ay be ob tain ed j by c o n sid e rin g only the d efect its e lf a s a defect reg io n . C o n sid e rin g I th e se sam e e x tre m e c a s e s in a G re e n 's function c a lcu latio n , a I r a th e r la rg e n u m b er of te rm s m u st be included in the G re e n 's i i | functions to d e sc rib e m odes w ith fre q u e n c ie s close to the fre q u e n c ie s i i of the b and m o d es. F o r,lo c a liz e d m odes w ith fre q u e n c ie s f a r r e - ] I m oved from the band m o d es, none of the te r m s in the G re e n 's j j | function depends v e ry stro n g ly on the u n p e rtu rb e d m ode fre q u e n c ie s | and re a so n a b le re s u lts a re obtained by rep la cin g the su m m atio n o v e r i J the la ttic e m odes in the G re e n 's function by a single te r m of the form I 2 2 1 / ) , w hich is eq u iv alen t to an E in ste in ap p ro x im atio n w h ere e a c h ato m in the la ttic e is an independent o s c illa to r w ith a fre q u e n c y i U ) . o A sim p le m eth o d of th is s o rt th a t is u se fu l fo r p re d ic tin g fre q u e n c ie s of lo c a l m odes in som e c a se s is to a p p ro x im ate the la ttic e sp e c tru m by d elta functions a t the fre q u e n c ie s of the p rin c ip a l p eak s in the d e n s ity -o f-s ta te s of the h o st la ttic e ( S p itz e r 1966 ). In th e iso to p ic su b stitu tio n m odel, th e equation fo r the lo ca l m ode b e co m es Z e w ( ~Z T + ~~Z 2 + ~2 T + ~ ~ 2 T ) + 1 = 0 (3 2 ) \ u,T A “ w u jL A ‘ “) u,L O - tw U )T O ’ 1 " / * The a p p ro p ria te la ttic e freq u e n cie s fo r u se in th is e x p re s s io n can be found fro m fits to th e m ultiphonon in fra re d la ttic e a b so rp tio n (S p itzer 1967). T able 1 shows freq u e n cie s c a lc u la te d by th is 'm ethod fo r a v a rie ty of im p u ritie s in s e v e ra l se m ic o n d u c to rs; th e se iare c o m p a red to the e x p erim e n tally o b se rv ed fre q u e n c ie s. F o r c a s e s such as Ge o r H I-V com pounds w h e re the two m a s s e s a re !n early equal, th e v ib ra tio n a l sp e c tru m of the c ry s ta l, w hen (n o rm alized to the sa m e m axim um phonon freq u en cy , w ill be s im ila r i to th e v ib ra tio n a l sp e c tru m of Si. F o r th e se c ry s ta ls , th e c a lc u la tio n s of D aw ber and E llio tt, w hich give (o u T - c u ) / iv v s. the J j IH 3 .X ITXcLX i I jm a ss d e fe ct e , can be u sed to find to T by re p la c in g m of Si by j Xj 1X12.X i to fo r the h o st being c o n sid ered . T hese v alu es a r e a ls o show n in i m a x I T ab le 1. The d ire c t solu tio n of the equations of m otion fo r a d e fe c t re g io n h as a ls o b een exploited fo r calcu latin g lo cal m ode fre q u e n c ie s. F o r a sim p le d efect such as a sin g le im p u rity on a s ite of high sy m m e try th e equations of m otion can be decoupled th ro u g h u se of su m m e try c o o rd in a te s. T h ere a r e exam ples in th e lite r a tu r e of su ch c a lc u la tio n s fo r d efect regions c o n sistin g of a su b stitu tio n a l 36 Table 1 . Comparison o f l o c a l mode f r e q u e n c ie s c a lc u la t e d by two d i f f e r e n t methods w ith th e e x p e rim en ta l v a l u e s . The " d e n s it y - o f - s t a t e s " column g i v e s v a lu e s i o b ta in ed from th e G reen 's fu n c tio n c a l c u l a t i o n o f Dawber and E l l i o t t (1 9 6 3 b ), s c a le d t o th e proper f o r th e h o s t . The v a lu e s in th e " c h a r a c t e r is t ic fr e q u e n c ie s" column are th o se o b ta in ed from e q u a tio n 1 8 , by u s in g i c h a r a c t e r i s t i c phonon fr e q u e n c ie s o b ta in e d from m u lti- : phonon in fr a r e d a b s o r p tio n , a s g iv e n by S p it z e r ( 1 9 6 7) . TABLE 1 Density Characteristic Impurity Host of States Frequencies Experiment S i 682 cra“^ 662 cnf * 644 cm”l U B Si 664 637 620 12C S i 644 618 608 13C 14 13C S i 625 599 586 C Si 610 584 572 10B Ge 600 583 571 1:lB Ge 582 563 547 Si Ge 387 374 392 P Ge 372 360 343 Al GaAs 374 354 362 P GaAs 368 334 355 Si GaAs 378 349 3 8 4 ,3 9 9 Al InSb 318 298 296 Al GaSb 297 314 P GaSb 323 321 38 im p u rity w ith f ir s t n eig h b o rs in a N aC l la ttic e , ( Ja sw a l 1965 ) w ith f ir s t o r f i r s t and seco n d ( K rish n a , M urthy and H a rid a sa n 1966 ) n eighbors in a zinc blende la ttic e , o r fo r a vacancy and m any sh e lls of n eighbors in Cu ( L and and G oodm an 1962 ). F o r a le s s ; sy m m e tric a l d efect, su ch a s two o r th re e im p u ritie s, it m ay not be I p o ssib le to decouple the eq u atio n s of m otion, and the lo c a l m ode ; freq u en cy m u st be found fro m the 3NX3N sy ste m of equations fo r an JN ato m d efect re g io n . T his m ay be quite unw ieldy; N = 17 fo r a ! su b stitu tio n a l im p u rity and its f i r s t and second neighbors in a ■diamond la ttic e . j B. A M new " m eth o d fo r c a lcu latin g lo cal m ode fre q u e n c ie s i | I and e ig e n v e c to rs . The u se of a la rg e d efect re g io n p re s e n ts m a jo r d iffic u lties if i I lone tr ie s to solve the e n tire s y s te m of eq u atio n s. F o r a sy ste m | w here only one im p u rity p ro d u ce s lo c a liz e d m odes, out of a ll the I j m odes of the d efect re g io n th e r e a re only th re e lo c a liz e d m odes; it I . j is a ssu m e d th a t only th e s e th re e m odes a re re a lly of in te r e s t. T h ese I m odes have the h ig h e st fre q u e n c ie s of any of the m odes of the d efect region; the re m a in in g m o d es, w hich a re the band m o d es, a re u su a lly a t a su b sta n tia lly lo w e r freq u en cy . If the eq u atio n s of m o tio n of the d efect reg io n a re e x p re s s e d in i - - m a trix fo rm , the w ell-k n o w n m eth o d of ite ra te d m u ltip lic a tio n of a v e c to r by a m a trix to find the dom inant eigenvalue of the m a trix (H igm an 1964) can be u sed to c alcu late both th e lo c a l m ode fre q u e n cies and e ig e n v e c to rs. T here is no m ention in the lite r a tu r e o f th is m eth o d having been p rev io u sly applied to lo c a l m o d e p ro b le m s, lit is p a rtic u la rly su ite d fo r calculations of fre q u e n c ie s and e ig e n v e c t o r s of com plex d e fe cts as it m e re ly re q u ire s th a t th e lo ca l m o d es b e w ell s e p a ra te d in frequency fro m the lo w e r-fre q u e n c y band m o d e s . It does not depend on the u se of sy m m e try to red u c e th e co m p lex ity of th e p ro b lem . We w ill th e re fo re c o n s id e r th is i m eth o d in som e d e ta il. T he eig en v alu es X^ and eig en v ecto rs- of an N XN h e rm itia n jm a trix [M ] s a tis fy th e re la tio n sh ip [M ] V. = X.V.. The can b e !c h o sen so th at any N com ponent v e c to r t |f can be w ritte n ij ; = | SO^V. . M ultiplying \|i by [M ] gives If it is d e s ire d , s u c c e s s iv e can be found by u sing a t r i a l v e c to r (33) |If X^ is the la r g e s t eigenvalue and 0 then (34) and (35) o rth o g o n al to th o se a lre a d y found. T his a lso w ill give\s in d ep en d en t 40 V. 'a w ith d eg en erate e ig e n v alu es. T his m ethod is of value in the c a se of lo c a l m odes sin ce th e re a re a few eig e n v alu es of in te re s t, th o se re p re se n tin g the lo ca l m o d es, and they a re su b s ta n tia lly la r g e r th an the r e s t of the e ig e n v alu es, w hich re p re s e n t the band m o d es. The s im p le st m o d el to w hich th is can be a p p lied is the lin e a r c h a in w ith f i r s t neighbor fo rc e c o n sta n ts. The e q u atio n s of m otion : a re - M .u A i . = - ( u. -u. . ) - $*+1 ( u. -u.,, ) i i l- l i l - l l i i + l ' (36) |w h ere u. is the d isp lac em e n t of the ith atom fro m its e q u ilib riu m jposition, and is the fo rc e c o n stan t betw een the ith and jth ato m s i ^ ;( §? = §* ). The equations can be re w ritte n as ^ 1 I 1 i-1 M. $ + § § , i-1 i+1 i+1 2 u - i + w r j — u -, i = w l - l M. l M. l+l i (37) |By defining the NxN m a trix ( i + ^ i ) / M - l - l l+l i M .. = ij / M - l+l l if i = j if j = i - H 1 othe rw ise (38) an d the colum n v e c to r /u 1 \ u . u = (39) i the s e t of equations m ay be w ritte n a s a m a trix eigenvalue eq u atio n ; is o la te d fro m the o th e r m odes its eigenvalue and e ig e n v e c to r can be i : found by ite ra te d m u ltip lic a tio n of a su itab le t r i a l v e c to r U by the ■ m a trix [M ] . | The ra te of co n v erg en ce of th is p ro c e s s depends on the | s e p a ra tio n of the lo c a l m ode freq u e n cy fro m the h ig h e st band m ode i j freq u e n cy and on the num ber of m odes w ith fre q u e n c ie s n e a r the | | m ax im u m band m ode freq u en cy . C onvergence to w a rd the c o rr e c t eig en v alu e is quite rap id . The [M ] U = U ) 2U . (40) I In th is fo rm the p ro b lem is independent of the c h o ices of M. and 1 ' . A s long as th e re is a sin g le h ig h e s t fre q u e n c y m ode fa irly w ell : ra te of co n v erg en ce can be d e te rm in e d b y c o n sid e rin g the a p p ro x i- | m ate e ig e n v e c to r obtained a fte r k+1 ite ra tio n s . F ro m e q .3 ^ , i N I we see th at T his can be expanded to give (42) If we le t 6^ be the differen ce b etw een an e x a c t eig en v alu e X . and the la r g e s t eigenvalue X^ , th en X • X a . ■ x N 6 . 42 (43) o r X. ~ = 1 - 6. / X., N 1 N We can th en w rite £ (4 2k 1 + 1 - i Krl j v 2k 1 + 1 4 ; ( < X . 1 a N/ w hich sim p lifie s to x<k+1> x 2k /a. i l a. 6 . 2X N fb. ] XA T , 1 + S f r , i^N V 2k - . 2 fa. i al_. 4 N / (44) (45) (46) M odes fo r w hich — — is la rg e have v e ry little e ffe c t a fte r k+1 2k b eco m es quite sm a ll. b eco m es a t a ll la rg e , sin ce the te r m f t A 2 The te r m -— in the su m in eq.h-6 can be n e g le c te d a fte r the f ir s t W 6 i . few ite ra tio n s . The te rm s fo r w hich -r— is sm a ll, so th a t r - A N 6. V/N) does not ra p id ly becom e sm a ll, a r e m u ltip lie d by ; th ey have N re la tiv e ly little e ffect on the eig en v alu e. C onvergence to the c o rre c t e ig e n v e c to r is not as fa st; the % -\k . The kth a p p ro x im a tio n to the e r r o r s d e c re a se only as e ig e n v e c to r is 43 V . (k> _ [m ] a N | CM]k * w hich re d u c e s to (47) r(k) _ N N H i*N f . -v 2k - , 2 fX. \ fa.. i v. n ; a, T r + i^ N v > y a. V. i i 1 + £ . 2k , . 2 rX. A /a. i i i i ^ N V Nj i a. NJ (48) A fter the c a lc u la tio n s p re s e n te d h e re had b een co m p leted , it i | w as pointed out by P ro f e s s o r J . Sm it th a t the ite ra tiv e p ro c e d u re i ! could be m o d ified to o b tain f a s te r convergence by su b tra c tin g a | c o n sta n t fro m e ach of the e le m e n ts on the diagonal of the m a trix . If the c o n stan t is ch o sen to be h a lf of the m axim um band m ode e ig en v alu e, the band m ode eig en v alu es of the m odified m a tr ix w ill ran g e fro m to + £ o f the o rig in a l m ax im u m band m ode eig en v alu e. The d ifferen c e b etw een the lo c a l m ode eigenvalue an d the next la r g e s t eigenvalue re m a in s the sa m e , h o w ev er, so th a t the ra tio of th a t d ifferen ce and the m agnitude of the eig en v alu es of the new m a trix is im p ro v ed by a fa c to r of tw o. C o n sid e r the e x p re s s io n w h e re [IT is a.u n it m a trix . If we define u i = X , we o b tain J m ax o ( CM] - - r - [I] ] > j t = °N VN (50) i F ro m th is w e can ev alu ate th e e x p re ssio n fo r th e kth a p p ro x im atio n ' to th e e ig e n v e c to r. x_ ♦ 00 _ - ( c m ] ) [i] 1 * ( y and ob tain V l f (k) - N i + E 2k a. i?fN \ XN " Xo *N (51) (52) F o r the c a se of-a sin g le lo c a l m ode w ith ( freq u en cy ) = X^ and only slig h tly la r g e r th a n X , the u n d e sire d m ode th a t is e lim in a te d i m o st slow ly by the ite ra tiv e p ro c e s s is the one w ith eigenvalue X q . | The am p litu d e of th is m ode d e c re a s e s as r x - x \ k I o o X - * N o T J (53) If we w rite X„T = X + e , th is becom es N o V T + V f 1 2e 1 + t — V K J (54) j Thus we see th a t fo r s m a ll e the m odified ite ra tiv e p ro c e ss i c o n v e rg e s tw ice a s fa s t a s the o rig in a l ite ra tiv e p ro c e s s , w h e re the i a m p litu d e of the sa m e m ode d e c re a s e d as k r N; (55) 1. Sim ple L in e a r C hain The s im p le s t ex am p le is th a t of a single lig h t im p u rity of m a s s aM ( 0 < a < 1 ) in the m iddle of a ch ain of ato m s of m as s M, an d w ith a ll the a to m s c o u p led only by a f ir s t neighbor fo rce c o n sta n t $ . T h is p a rtic u la r e x am p le is so sim ple th at it c an be so lv e d in c lo s e d fo rm ( M o n tro ll, 1955; K itte l 1966 ), but it w ill s e rv e to 46 'illu s tr a te th e m ethod. i C o n sid e r, fo r ex am p le, a c h ain of one h u n d red a to m s, w ith the ! |im p u rity a t th e fiftie th s ite . If the v alu es M = 1 and §= 0. 25 a r e used,j i . ith en u ) = 1 , w h ere u ) is the m ax im u m freq u en cy of the m ax m ax iu n p e rtu rb e d chain. The m a trix b eco m es 48 -.25 .5 -.25 49 -.25 .5 -.25 T t v y f T cn »25 .5 »25 , [ M ] = 50 (56) 51 -.25 .5 -.25 52 -. 25 .5 -.25 F o r the in itia l t r i a l v e c to r , le t a ll the com ponents \|r = 0, e x ce p t = 1 . F o r a v e ry lig h t im p u rity m a s s , such a s a = 0. 1, the lo c a l | m ode fre q u e n c y is c o n sid e ra b ly la r g e r th an w , and c o n v erg en c e is IXlctX quite ra p id . T able 2 show s the fre q u e n c ie s and e ig e n v e c to rs fo r s u c c e s s iv e ite ra tio n s fo r a = 0. 1, co m p a rin g th e m to th e e x a c t v alu es o b tain ed fro m the e x p re s s io n s given by K itte l ( 1966 ). C a lc u la tio n of the fre q u e n c y fo r v alu es of a b etw een 0. 1 and 1. 0 in ste p s of 0. 1 u sin g 100a ite ra tio n s gave the c o rr e c t freq u en cy to at le a s t five sig n ific a n t d ig its ex cep t fo r a = 1. 0, fo r w hich th e re is no lo c a l m o d e. 2. D iso rd e re d L in e a r C hain A n ex am p le fo r w hich the ite ra tiv e calcu latio n m eth o d is m o re T able 2 . I n i t i a l t r i a l v e c t o r , and n orm alized v e c t o r s r e s u l t i n g from th e i t e r a t e d m atrix m u lt i p l i c a t i o n f o r an impurity mass of 0.1 of the host mass. The resulting « a p p roxim ation t o th e freq u en cy a t each s t e p i s a l s o g iv e n . The e x a c t r e s u l t s i n th e l a s t column are c a lc u la t e d from th e c lo s e d form e x p r e s s io n s g iv e n by K i t t e l (1 9 6 6 ). TA BLE 2 N u m b er of Ite ra tio n s : In itia l T ria l E x act R esu lt F req u en cy 2.23886 2.29157 2.29391 2.29416 2.29416 w H 2 W o c J & co ■ B A • H d u V o •H •» ^ 0 } O a. 45 0 0 0 0 -.0 0 0 0 0 0 -.0 0 0 0 0 0 46 0 0 0 0 .000008 .000008 47 0 0 0 -.0 0 0 1 1 3 -.000145 -. 000145 48 0 0 .002374 .002707 .002762 .002762 49 0 -.049875 -.0 5 2 2 3 8 -.0 5 2 4 5 6 -.052486 -.0 5 2 4 8 6 50 1.000000 .997509 .997262 .997238 .997235 .997235 51 0 -.0 4 9 8 7 5 -.0 5 2 2 3 8 -.0 5 2 4 5 6 -.052486 -.052486 52 0 0 .002374 .002707 .002762 .002762 53 0 0 0 -.0 0 0 1 1 3 -.0 0 0 1 4 5 -.0 0 0 1 4 5 54 0 0 0 0 .000008 .000008 55 0 0 0 0 -.0 0 0 0 0 0 -.0 0 0 0 0 0 49 a p p ro p ria te is the c a lc u la tio n of the freq u en cy of the lo ca l m ode of a lig h t im p u rity in a d is o rd e re d la ttic e . C o n sid e r, fo r in sta n c e , a lin e a r chain w ith a lig h t im p u rity of m a s s oM (0 < a < 1) as in th e p rev io u s exam ple, except th a t th e "u n p e rtu rb e d " chain contains a random m ix tu re of ato m s of m a s s e s M and 2M. T h ere is no closed fo rm solu tio n fo r th is p ro b le m . The lo ca l m ode freq u en cy depends on the con fig u ratio n of th e n e ig h b o rs of th e im p u rity as w ell as on |th e im p u rity m a s s , so th a t fo r a given im p u rity m a s s th e re m ay be m any d iffe re n t lo ca l m o d e fre q u e n c ie s. To a p p ro x im a te ly o b tain th e d istrib u tio n of fre q u e n c ie s fo r an iim p u rity of a given m a s s , th e lo c a l m ode freq u en cy w as evaluated jfor each p o sitio n in a ran d o m chain. By using s e v e ra l sh o rt chains i ra th e r than a sin g le long one, the com putation tim e fo r a given jnum ber of s ite s can b e re d u c e d c o n sid e ra b ly . R esu lts a re shown fo r ia to ta l of 99 s ite s ; th e c a lc u la tio n s w e re done by using th re e chains r jof 33 ato m s each . The im p u rity w as su b stitu ted on a site in a chain and the freq u en cy ev alu ated fo r s e v e ra l v alu es of a betw een a = 0. 1 and a - 0. 6. T his w as re p e a te d fo r each s ite , w ith p erio d ic boundary conditions being u se d to avoid effects of the ends of the c h a in s. The r e s u lts , given in T ab le 3 and F ig u re 4, c le a rly show the in c re a s in g se n sitiv ity of the lo c a liz e d m ode to its en v iro n m en t a s a is in c re a s e d and the m ode b e co m es le s s lo c a liz e d . In T able 3 the 50 Table 3 . Atomic d is p la c e m e n ts f o r a o n e-d im en sio n a l l o c a l mode o f a l i g h t im p u rity o f mass m in a c h a in o f m asses m and 2m. D isp la cem en ts o f th e l i g h t atom and i t s i f i r s t f i v e n e ig h b o rs t o e i t h e r s id e are shown f o r = 0 . 1 , !o . 3» and 0 .6 f o r th r e e d i f f e r e n t c o n f ig u r a t io n s o f n e ig h b o r s . The c o n f ig u r a t io n o f n e ig h b o r s o f th e l i g h t im p u rity jis i l l u s t r a t e d w ith open c i r c l e s f o r atom s o f mass m and jshaded c i r c l e s f o r atoms o f mass 2m. The c i r c l e w ith an X i jin d ic a te s th e im p u rity s i t e . ! a Frequency C o n fig u r a t io n 0.1 0.3 0.6 4.559 2.747 2.110 Displacements 000 .000 .002 000 .000 .0 1 5 000 .003 .034 001 .0 1 4 .068 025 .076 .133 998 o 00 OS • .847 053 .183 .437 002 .0 3 4 .2 2 5 000 .006 .1 1 5 000 .001 .0 5 7 000 .000 .0 2 4 u r a t io n TABLE 3 0 .1 0 .3 0 .6 4 .5 5 9 2 .7 4 7 2 . I0i D isp la cem en ts .000 .000 .002 .000 .000 .016 .000 .003 .0 3 5 .001 .0 1 4 .071 .0 2 5 .076 .136 .9 9 8 , .978 .866 .053 .183 .434 rs o o . .033 .190 .000 .003 .0 2 8 .000 .000 .0 0 4 .000 .000 .002 Config u r a t io n 0.1 0.3 0.6 4 .5 5 9 2 .7 4 5 2 .0 8 8 Displacements .000 .000 .003 .000 .000 .019 .000 .003 .041 .001 .0 1 4 .079 .0 2 5 .076 .145 .998 x-i 00 Os • 0895 .053 .180 .407 .001 .0 1 4 .0 6 5 .000 .0 0 3 .0 2 9 .000 .000 .005 .000 .000 .002 52 F ig u re 4. A p proxim ate d istrib u tio n of lo ca l m ode fre q u e n c ie s fo r lo c a l m odes of an im p u rity of m a s s M in a ra n d o m ch ain of m a s s e s M and 2M, obtained fro m a to tal of 99 s ite s . The d istrib u tio n of freq u e n cie s w as calcu lated by su b stitu tin g the im p u rity on each site in tu rn . The "ran d o m c h ain s u sed in this c a lcu latio n happened to contain 20 s ite s w ith tw o lig h t f ir s t n e ig h b o rs, 25 site s w ith two heavy f ir s t n e ig h b o rs, and 54 site s w ith one lig h t and one heavy f ir s t n e ig h b o r. S im ila r deviations fro m a p u rely uniform d istrib u tio n o c c u r a lso for second and fu rth e r neighbors, so the freq u e n cy d istrib u tio n show n h e re only q u alitativ ely re p re s e n ts th a t o f lo c a l m o d es in an in fin ite random chain. I I 53 FREQUENCY i a=o.l 4.52 4.60 i n 3.35 3.25 u. a =0.3 2.67 2.81 d =0.4 250 2.40 <t= 0.5 224 i a = 0.6 2.20 i 2.10 2.00 i 54 j fre q u e n c ie s and d isp la c e m e n ts obtained fo r differen t values of a a re show n fo r th re e d efect site co n fig u ratio n s w hich differ only in i secon d an d fu r th e r n e ig h b o rs. F o r a = 0 .1 , the m ode is quite w ell | lo c a liz e d , and a ll th re e s ite s give the sam e frequency. F o r a = 0 .3 , i j the m ode is le s s w ell lo c a liz e d and the s ite s differing in second | n e ig h b o rs y ie ld d iffe re n t fre q u e n c ie s. F o r a= 0. 6, the lo ca l m ode involves c o n sid e ra b le m o tio n of m any n eig h b o rs, and the th re e s ite s I a ll give d iffe re n t fre q u e n c ie s. The d istrib u tio n of freq u e n cie s i ; ob tain ed fo r a ll 99 s ite s th a t w e re c o n sid e re d is shown in F ig u re 4, i w h e re th e n u m b er of m odes a t a given freq u en cy is plotted v s . I I fre q u e n c y fo r v a lu e s of a fro m 0. 1 to 0. 6 . F o r a = 0. 1 the m ode | is se n sitiv e only to its two f i r s t n eig h b o rs; th re e d istin c t i i \ j fre q u e n c ie s a r e se e n , re s u ltin g fro m s ite s fo r w hich the f ir s t I I I n e ig h b o rs a re both lig h t, one lig h t and one heavy, o r both heavy. I ! F o r la r g e r v a lu e s of a the c o n fig u ratio n of second and fu rth e r ! I | n e ig h b o rs b e co m es im p o rta n t and m any d ifferen t freq u e n cie s re s u lt. 3. E x te n sio n to T h ree D im ensions a . F o rm u la tio n T he ite ra tiv e c a lc u la tio n m ethod can be re a d ily ex ten d ed to m o re c o m p lic a te d s y s te m s , su c h a s the diam ond la ttic e . T his is of in te r e s t sin c e th e re h a s b een c o n sid e ra b le e x p e rim e n ta l study of lo c a l m odes of im p u ritie s and im p u rity co m p lex es in se m ic o n d u cto rs w ith the diam ond s tru c tu re o r the c lo s e ly -re la te d zincblende s tru c tu re . An exam ple w ill be given in C h a p te r V of the ap p lica tio n of th is technique to the case of a B-Lii p a ir in Si w h e re the B has a Ge second n eighbor; th is is a r a th e r co m p licated p ro b le m to tr e a t by I any o th e r m ethod. F o r a m odel of th e la ttic e w h e re only s h o rt-ra n g e in te ra c tio n s jare included, m o st of th e m a tr ix ele m e n ts a r e z e ro . F o r efficient u se of th e ite ra tiv e c a lc u la tio n m eth o d , it is d e s ira b le to index the m a tr ix e lem en ts so th a t th e n o n -z e ro m a trix ele m e n ts a r e grouped i ito g eth er in so m e sim p le m a n n e r. R e p rese n tin g th e m a trix in the iform of a conventional tw o -d im e n sio n a l a r r a y is e x tre m e ly i linefficient fo r the c a se being c o n sid e re d , as th e n o n -z e ro elem en ts jwould be p re tty w ell s c a tte re d th roughout an a r r a y th a t is m o re than 198% z e ro s . If m o re th a n two in d ic es a r e u sed to sp ecify a m a trix I e le m e n t, a notation th a t is m uch m o re a p p ro p ria te to the diam ond la t- | itice can be developed. i | The silico n (diam ond) la ttic e is f. c. c. w ith two ato m s p e r i | rh o m b o h ed ral p rim itiv e c e ll. The p rim itiv e tra n s la tio n s a r e in [1 1 0 ] d ire c tio n s. A s ite in th e la ttic e can b e sp e cified by (ji, m , n, k) w h ere th e in te g e rs Z , m , n give th e p rim itiv e tra n s la tio n s fro m the o rig in to the c e ll, and H sp e c ifie s one of the two s ite s in th e c e ll. A c a rte s ia n com ponent of th e d isp la c e m e n t of any atom can then be w ritte n a s u a (^> n, K), w h e re a = x , y, o r z. 56 T able 4 S ite N e a re s t N eighbors D irec tio n to N eighbor A ,m , n, 1 [III] A + l,m ,n , 1 [1 11] A ,m , n, 2 i A ,m +1, n, 1 [111 ] A ,m ,n + l, 1 [111 ] A, m , n, 2 [111] A - l ,m ,n ,2 [111] I A , m , n, 1 _ A ,m - l ,n , 2 [111] | A , m , n» 1,2 [1 1 1 ] | I If a g e n e ra liz e d diam ond la ttic e not n e c e s s a rily having the sam e ! m a s s a t each site is c o n sid e re d , fo r h a rm o n ic tim e dependence, and I | c o n sid erin g only f i r s t n eig h b o r c e n tra l f o rc e s , th e equations of ! m o tio n fo r an ato m on the s ite A ,m , n, h , w ith m a s s M (A ,m , n, h ) a re i 2 * ♦ A m n n w U Amnn j -M (u u = V -§*'m' nV k Vl jin h v l / A m n n Amnh Amh H )• r^ m n n I * A /m /n /H/ Amnn (57) The sum on th e rig h t hand sid e extends o v e r th e fo u r n eig h b o rs of , . , . x 'm 'n V , A J& 'm 'n'n'. th e s ite A ,m , n, h . The fo rc e co n stan t is $ j f a i r i K ’ a Amnx, 18 a unit v e c to r in th e d ire c tio n of the n e ig h b o r. It is m o re convenient to sim p lify the n o tatio n , re fe rrin g to a n e ig h b o r X /m /n /H/ by an index i , so the equations becom e ■ M „ iw^u.. = ^ - $. {(u. - u.)» (58) Amnn Amnn 1 Amnn i i 1 57 D efining (59) ; and u . = — u „ _ , op j& m nK p a com ponent of eq. b eco m es (60) im n n a Amnn (61) T his is the d e s ire d fo rm of the m a trix eigenvalue equation, w ritte n ; in a co m p act fo rm containing only the n o n -z e ro e le m e n ts of the i w hich the t r i a l v e c to r is not orthogonal ). S u ccessiv e ite ra tio n w ill d efects su ch a s im p u rity p a ir s , it is n e c e s s a ry to know w hat the e ig e n v e c to rs of the lo c a l m odes look lik e . To get the e ig e n v e c to rs fro m a G re e n 's function c a lc u la tio n re q u ire s ev alu atin g G re e n 's functions coupling d iffe re n t s ite s , w hich is som ew hat co m p lica te d . The ite ra tiv e c a lc u la tio n m eth o d is quite convenient h e r e , sin ce it g e n e ra te s an e ig e n v e c to r in the p ro c e s s of c a lc u la tin g the lo c a l m ode j m a trix . If the u. a a re com ponents of a tr ia l e ig e n v e c to r, the le ft ! Ip | side of the equation w ill y ield com ponents of a v e c to r w hich is ' c lo s e r to the dom inant e ig e n v e c to r ( o r the h ig h est e ig e n v e c to r to I give c lo s e r ap p ro x im atio n s to the eig e n v ec to r. b. E xam ple s To have a good in tu itiv e u n d erstan d in g of lo c a liz e d v ib ra tio n a l m o d es, p a rtic u la rly of the e ffe c ts that a re o b se rv e d fro m com plex 5 8 fre q u e n c y . Since the c a lc u la tio n is fea sib le fo r ra th e r la rg e defect ! re g io n s , m odes th a t a re not too w ell lo calized can be c o n sid ere d , although c o n v erg en ce b eco m es a p ro b lem if the m ode freq u en cy is not v e ry h igh. As an ex am p le, it is p o ssib le to solve fo r the e ig e n - : v e c to r of a lo c a liz e d v ib ra tio n a l m ode of a light im p u rity and then see how it a c q u ire s m o re of the c h a r a c te r of th e z o n e -c e n te r optic : m odes a s the im p u rity is m ade h e a v ie r and the m ode b ecom es le s s lo c a liz e d . Once the c a lc u la tio n is s e t up fo r the lo ca liz ed m ode of I | a lig h t im p u rity , the e ffect of fo rc e co n stan t changes on both the i j fre q u e n c y an d e ig e n v e c to r of a lo c a liz e d m ode can e a s ily be d e te r- 1 I i m in e d , sin c e changing a m a s s o r a fo rce co n stan t does not in c re a s e i i j th e d iffic u lty of th e c a lc u la tio n . i. F o rc e co n stan t changes fo r the j i B lo c a l m ode | I F o r the f i r s t ex am p le, we w ill co n sid er the effects of fo rce I | c o n stan t ch an g es in a m o d el fo r the b o ro n lo cal m ode in Si. F o r the Si la ttic e , u se only f i r s t n eig h b o r c e n tra l fo rce co n stan ts betw een the a to m s. F o r su ch a m o d el the m ax im u m freq u en cy of the u n p e rtu rb e d la ttic e is uj = (8 /3 )§ /M If the m a s s e s a re se t eq u al to m a x u n ity a n d th e fo rc e c o n sta n ts to 0 .3 7 5 , the freq u e n cie s obtained fo r th e lo c a l m o d es w ill a u to m a tic a lly be sc a le d re la tiv e to the m ax im u m phonon fre q u e n c y of th e u n p e rtu rb e d la ttic e . The b oron is r e p r e s e n te d by changing th e m a s s on one of the site s to . 357 (. 392) fo r j...................................................... ~ .................................................................. ’........ 59 11 : ( B). The fo rc e c o n sta n ts coupling th is site to its n eighbors w ere I ! m ade ad ju sta b le . A F o r tr a n p ro g ra m w as w ritte n to p e rfo rm the calcu latio n fo r I a 5 x 5 x 5 a r r a y of p rim itiv e c e lls . The b o ro n site w as in the c e n te r I c e ll of the a r r a y on th e f i r s t su b la ttic e . A tom s a t the su rfa c e s of the j a r r a y w ere c o n s id e re d to be bound to non-m oving ato m s outside the | j a rr a y . The in itia l t r i a l v e c to r w as a d isp lac em e n t only of the i im p u rity . The fre q u e n c ie s and e ig e n v e c to rs w ere c a lc u la te d for ! | s e v e ra l v alu es of B -S i fo rc e c o n sta n ts, ranging fro m 1. 5 to 0.45 of i | a S i-S i force c o n sta n t. F o u rte e n ite ra tio n s w e re u se d fo r the in itia l | calcu latio n w ith th e la r g e s t fo rc e co n stan t s ta rtin g w ith b o ro n m otion i j only fo r the in itia l t r i a l v e c to r. W hen the fo rc e co n stan t w as ! changed the e ig e n v e c to r fro m the p rev io u s c a lcu latio n w as u sed as I the in itia l t r i a l r a th e r th an s ta rtin g ag ain fro m only an im p u rity m otion; nine ite r a tio n s w e re m ade a fte r e ac h change in the force I . c o n stan ts. | The c a lc u la te d lo c a l m ode fre q u e n c ie s a re show n in F ig u re 5, along w ith the r e s u lts of a G re e n 's function c a lcu latio n by E llio tt an d P feu ty for the dependence of the b o ro n lo c a l m ode freq u e n cy on the f ir s t neighbor c e n tr a l fo rc e c o n stan t. The ite ra tiv e calcu latio n gives a m uch la r g e r v a ria tio n of the lo c a l m ode freq u e n cy fo r a given change in the fo rc e c o n sta n t.th a n does the G re e n 's function calcu latio n . A n im p o rta n t d iffe re n c e b etw een the two calcu latio n s is 60 F ig u re 5. C alcu lated lo c a l.m o d e freq u en cy for b o ro n in Si v s. re la tiv e fo rce c o n stan t, ^ g^/ g^ g^ . T he cu rv e s ( -------- ) and ( ----------- ) a r e the r e s u lt fo r and of the ite ra tiv e c a lcu latio n using a f i r s t n eig h b o r c e n tra l fo rce m odel fo r the la ttic e : ( ............) and ( ..................... ) a r e the re s u lts for **B and l^B obtained by E llio tt and P feu ty fro m a G re e n 's function calcu latio n . 61 I 1 \ \ \ \ \ \ \ 0.5 i • l 5 ' ■ - ’ \ . . . ' i i \ [ ‘ " 62 th a t the G re e n ’s function c a lc u la tio n im p lic itly co n tain s a m o d el fo r the Si la ttic e th a t in clu d es c e n tra l and n o n -c e n tra l fo rce co n stan ts ; fo r s e v e ra l sh e lls of n eigh bors and only the f ir s t neighbor fo rce c o n sta n t is v a rie d , w hile in the calcu latio n re p o rte d h e re the la ttic e i m o d el h as been r e s tric te d to f i r s t neighbor c e n tra l fo rc e s , so th a t th e to ta l coupling of the b o ro n to the la ttic e is being v a rie d . The d isp lac em e n ts c a lc u la te d fo r the b o ro n and its f ir s t ; n e ig h b o rs fo r s e v e ra l v alu es of the B -S i fo rce co n stan t a re show n j in T able 5; it is in te re s tin g to note th at the v a ria tio n w ith freq u e n cy : of the ra tio of im p u rity d isp la c e m e n t to f ir s t neighbor d isp la c e m e n t ; in th is c a se is su b sta n tia lly d ifferen t fro m the case w here the fre q u e n c y is changed by changing the m a ss of the im p u rity . In a | sim p le iso to p ic su b stitu tio n m o d el th is ra tio d e c re a s e s ra p id ly as i ! th e im p u rity m a ss is in c re a s e d and the lo ca l m ode freq u en cy ) a p p ro a c h e s u j , but fo r th is c a se the ra tio changes v e ry little I T lc L 2 C o v e r a w ide range of fre q u e n c ie s. i j ii. Isotopic S ubstitution i In the c a se of an iso to p ic su b stitu tio n , w h ere the im p u rity -S i fo rc e c o n sta n ts a re the sam e a s the S i-S i fo rc e c o n sta n ts, the lo c a l m ode should m erg e into the h ig h est freq u en cy band m ode in the lim it th a t the im p u rity m a s s a p p ro a ch e s the h o st m a s s and the lo c a l m ode fre q u e n c y a p p ro a ch e s the m ax im u m in -b an d freq u en cy . F ig u re 6 show s an a to m w ith its fo u r n eig h b o rs, along w ith the 11 T able 5 . Frequency and d isp la c e m e n ts f o r th e l o c a l mode o f B in S i v s . the B -S l fo r c e c o n s t a n t . N orm alized B -S i Force C onstant N orm alized Frequency D isp la cem en ts ( x , y , and z components) Boron Im p u rity F i r s t 1 N eighbors 2 (s e e F igu re 3 6) 1.50 1 .5 8 5 .9^0 0 0 - .0 9 8 - .0 9 8 - .0 9 8 - .0 9 8 .098 .0 9 8 - .0 9 8 - .0 9 8 .098 - .0 9 8 .098 - .0 9 8 1 .2 0 1.^21 .937 0 0 - .1 0 0 - .1 0 0 - .1 0 0 - .1 0 0 .100 .100 - .1 0 0 - .1 0 0 .100 - .1 0 0 .100 - .1 0 0 0 .9 0 1 .2 3 6 .931 0 0 - .1 0 3 - .1 0 3 - .1 0 3 - .1 0 3 .103 .10 3 - .1 0 3 - .1 0 3 .1 0 3 - .1 0 3 .10 3 - .1 0 3 0.6 0 1.026 .897 0 0 - .1 1 1 - .1 1 3 - .1 1 3 - .1 1 1 .1 1 3 .1 1 3 - .1 1 1 - .1 1 3 .1 1 3 - .1 1 1 .113 - .1 1 3 X F ig u re 6. Atom in a diam ond la ttic e w ith its four n e a re s t n e ig h b o rs, and th e ir re la tio n sh ip to th e cubic axes of the c ry s ta l. The d ire c tio n s of th e bonds fro m th e c e n tra l atom to the v a rio u s n eig h b o rs a r e [ i l l ] to 1, [ i ll ] to 2, [ f l l ] to 3, [ I I I ] to 4. I.............. ’.................. * .............. • 65 ! | cubic ax es of the diam ond s tru c tu re . The h ig h est freq u en cy band i m ode in a diam ond la ttic e is e s s e n tia lly a rig id v ib ra tio n of the ; ! ! two su b la ttic e s a g a in st e ac h o th e r. If the d isp lac em e n t of the c e n te r j i i a to m is along the x a x is , the d isp la c e m e n ts of its neighbors a re a lso I along the x a x is but in the opposite d ire c tio n . If the c e n te r a to m is 1 I a lig h t im p u rity giving a h ig h freq u e n cy lo c a liz e d m ode w ell above J i I i ; the m ax im u m band m ode freq u e n cy the d isp lacem en t of the n e ig h b o rs i I w ill be m o re n e a rly along the bonds b etw een the im p u rity and the I i ! n eighb ors r a th e r th an a n ti- p a r a lle l to the im p u rity m otion as w ith ! the band m o d e. i I a . C e n tra l F o rc e M odel I J The e ig e n v e c to rs and fre q u e n c ie s w ere c alc u la te d fo r s e v e ra l I i lvalues of im p u rity m a s s by u sin g a la ttic e w ith only f i r s t neighbor ! c e n tra l fo r c e s . The c a lc u la tio n w as done w ith a 5 X 5 x 5 a r r a y of ! t ip rim itiv e c e lls a s p re v io u sly d e sc rib e d , w ith the exception th a t i j p e rio d ic b o u n d ary conditions w ere u se d so a s not to c o n stra in the e ig e n v e c to r to z e ro a t the s u rfa c e s of the a r r a y . The d isp lac em e n ts of the im p u rity and its f i r s t n eighbors fo r a n in itia l im p u rity d isp lac em e n t along the x a x is a re given in T able 6 ', along w ith the fre q u e n c ie s. F o r th is c a s e , ev en a s the im p u rity becom es n e a rly as m a ssiv e a s a h o s t ato m , the im p u rity d isp lac em e n ts re m a in n e a rly along the bond d ire c tio n s-a n d the lo ca l m ode does not begin to re se m b le the h ig h e s t freq u e n cy band m ode; as w ill be shown, T able 6 . L ocal mode o f a l i g h t im p u rity i n a diamond l a t t i c e , f o r a model o f th e l a t t i c e w ith o n ly f i r s t n eig h b o r c e n t r a l fo r c e c o n s t a n t s . The freq u en cy and th e d isp la c e m e n ts o f th e im p u rity and i t s f i r s t n e ig h b o rs are g iv e n f o r s e v e r a l v a lu e s o f th e im p u rity m ass. N orm alized Im p u rity Mass N orm alized Frequency D isp la cem en ts ( x , y , and z components) Im p u rity F ir s 1 t N eighbors 2 (s e e F igu r 3 e 6) .3 1 . ^ 0 .960 0 0 - .0 7 8 - .0 7 8 - .0 7 8 - .0 7 8 .0 7 8 .078 1 1 . . . 0 0 0 0 0 0 0 00 C O C O 00 0 0 0 . . . 1 1 .5 1 .1 9 5 .890 0 0 - .1 2 7 - .1 2 7 - .1 2 7 - .1 2 7 .127 .127 - .1 2 7 .1 2 7 - .1 2 7 - .1 2 7 - .1 2 7 .127 • 7 1.081 .783 0 0 - .1 6 6 - .1 6 7 - .1 6 7 - .1 6 6 .167 .167 - .1 6 6 .167 - .1 6 7 - .1 6 6 - .1 6 7 .167 .9 1.0 2 0 .653 0 , 0 - .1 8 5 - .1 9 2 - .1 9 2 - .1 8 5 .192 .192 - .1 8 5 .192 - .1 9 2 - .1 8 5 - .1 9 2 .192 •95 1 .0 0 9 .625 0 0 - .1 8 6 - .1 9 6 - .1 9 6 - .1 8 6 .196 .196 - .1 8 6 .196 - .1 9 6 - .1 8 6 - .1 9 6 .196 how ever, th is fe a tu re depends stro n g ly on the p a rtic u la r fo rc e co n stan t m o d el. b. Inclusion of N o n -C en tral F o rc e s If c a lc u la tio n s a r e to be m ade for lo c a l m odes w ith fre q u e n c ie s n e a r th e m ax im u m u n p ertu rb ed phonon freq u en cy , the I m odel fo r th e u n p e rtu rb e d la ttic e should be fa irly good. The c e n tra l fo rc e -o n ly m o d el is not a p a rtic u la rly good d e scrip tio n of th e Si la ttic e ; n o n -c e n tra l fo rc e s should a ls o be included. j The s im p le s t fo rm fo r adding n o n -c e n tra l fo rc e s to E q. 58 |is to f ir s t c o n sid e r th e c a se w h ere the c e n tra l and n o n -c e n tra l fo rc e i co n stan ts a r e e q u al. The fo rc e on an atom (Jt>, m , n, k) cau sed by a re la tiv e d isp la c e m e n t (u . -u .) is in the d ire c tio n of the re la tiv e r j&mnH i t d isp la c e m e n t fo r th is high sy m m e try , ra th e r than along f. a s w as j :the c a s e w ith only a c e n tra l fo rc e constant. A fo rc e of th is s o r t i jplus a c e n tra l fo rc e can be u se d to e x p re ss the to ta l fo rc e w hen the ! c e n tra l and n o n -c e n tra l fo rc e constants a re not equal. E quation 58 i j can thus be re w ritte n as i 4 " ^ jG m n n 1 0 U i m n n ~ “ 0-p ) fu_ g t n n x “ u ^ X ri + P * i 3i > ’ w h e re p is the ra tio of n o n -c e n tra l to c e n tra l fo rc e c o n sta n ts. F o r Ge o r Si, p is about 0. 3 (P h illip s 1970). e . 3 (62) 68 | T he e ig e n v e c to rs and freq u e n cie s of the lo cal m ode fo r an ; iso to p ic s u b s titu tio n w e re c alcu late d including n o n -c e n tra l f ir s t j 'n eig h b o r f o r c e s . The fre q u e n c ie s and the d isp lac em e n ts of the ;im p u rity an d its f ir s t n eig h b o rs a r e shown in T able 7. The re s u lts a r e s im ila r to th e c e n tra l-fo rc e -o n ly c a se , but th e re a re s e v e ra l |obvious d iffe re n c e s . The m otion of th e neighbors is n e v e r d ire c tly along the im p u rity -n e ig h b o r bonds, as was the c a se w ith only c e n tra l I fo rc e s , but alw ays h a s a com ponent a n ti-p a ra lle l to the m otion of j jthe im p u rity . T his a n ti-p a r a lle l com ponent a p p e a rs to a p p ro a ch a j fixed fra c tio n of the d isp la c e m e n t of the neig h b o rs as th e lo c a l m ode !freq u en cy b e c o m e s la rg e . As the lo c a l m ode frequency b eco m es j | s m a lle r, a p p ro a c h in g the m ax im u m u n p e rtu rb e d la ttic e freq u e n cy , jthe a n ti- p a r a lle l com ponent b eco m es la rg e r, so th e lo ca l m ode |m e rg e s sm o o th ly into th e h ig h e st freq u en cy band m ode. A nother fe a tu re is th a t a g r e a te r d iffe re n c e in m a s s betw een the im p u rity and h o s t is re q u ire d to p ro d u ce a lo ca l m ode w hen the n o n -c e n tra l fo rc e s a r e in clu d ed . In th e c e n tra l-fo rc e -o n ly m odel, th e re is a w ell i s e p a ra te d lo c a l m ode w hen the im p u rity m a ss is 0. 95 of a h o st m a s s , b u t, when n o n -c e n tra l fo rc e s a r e included, th e lo c a l m ode h as a lm o st m e rg e d in to th e band m o d es when th e im p u rity m a s s is 0. 90 of a h o st m a s s . The re a s o n fo r the d iffe re n c e in the re s u lt of the lo c a l m ode c a lc u la tio n s w ith and w ithout n o n -c e n tra l fo rc e s is th a t th e diam ond la ttic e is s h e a r -u n s ta b le if th e re a re no n o n -c e n tra l fo rc e s w hen T able 7 . L ocal mode fr e q u e n c y , and im p u rity and f i r s t n eig h b o r d is p la c e m e n ts , f o r a l i g h t s u b s t i t u t i o n a l im p u rity in a diamond l a t t i c e . The l a t t i c e model in c lu d e s f i r s t n eig h b o r c e n t r a l and n o n -c e n tr a l fo r c e c o n s t a n t s . N orm alized Im p urity Mass’ N orm alised Frequency D isp la cem en ts (x , y , and z components) Im purity F i r s t 1 N eighbors 2 (s e e F igu re 3 6) 4 .3 1 .3 7 1 .977 0 0 - .0 9 1 - .0 3 9 - .0 3 9 - .0 9 1 .039 .039 - .0 9 1 .039 - .0 3 9 - .0 9 1 - .0 3 9 .039 .5 1 .1 1 8 .912 0 0 - .1 7 0 - .0 6 7 - .0 6 7 - .1 7 0 .067? .067 - .1 7 0 .067 - .0 6 7 - .1 7 0 - .0 6 7 .067 .7 1 .0 1 2 .701 0 0 - .2 4 1 - .0 7 1 - .0 7 1 - .2 4 1 .071 .071 - .2 4 1 .071 - .0 7 1 - .2 4 1 - .0 7 1 .071 .75 1 .0 0 2 .560 0 0 CMN- O- C\1 C M O O . . . I l l - .2 2 9 .057 .057 - .2 2 9 .057 - .0 5 7 - .2 2 9 - .0 5 7 .057 * T h is c a s e had n ot y e t converged w e ll a f t e r 25 i t e r a t i o n s s t a r t i n g w ith th e e ig e n v e c to r o b ta in ed f o r M * = 0 .7 a s a t r i a l v e c t o r . ; 70 | ■ only f i r s t neighbor fo rc e s a re c o n sid e re d . If the n o n -c e n tra l fo rc e s i I a re left out, the tra n s v e rs e a co u stic m odes of the la ttic e w ill have ; z e ro freq u e n cy . The c o rre sp o n d in g tra n s v e r s e o p tic m o d es w ill a ll have freq u e n cy u ) . The re s u lt is a la rg e d en sity of s ta te s a t u ) , 7 m ax ® 7 m ax w hich, as is show n in se c tio n C of th is c h a p te r, allow s a lo c a l m ode to e x is t fo r an in fin ite s im a l m a ss defect. A lso, as the m a s s defect ! is m ade s m a ll and the lo c a l m ode freq u en cy a p p ro a ch e s the m ax im u m I i band m ode freq u e n cy , the lo c a l m ode e ig e n v e c to r w ould be e x p ec te d j to re s e m b le the h ig h est freq u en cy la ttic e m ode. F o r the c a se of 1 n o n -c e n tra l fo rc e s only, the tra n s v e rs e optic m odes fo r a ll q have i i freq u e n cy u o , w h e re a s only the z o n e -c e n te r optic m ode h a s th is { rxictx | freq u e n cy if n o n -c e n tra l fo rc e s a re included. T his acco u n ts fo r the i | d ifferen c e in the lo cal m ode e ig e n v ec to r in the two c a s e s . 4. C o m p ariso n of the Ite ra te d M a trix M u ltip li- j c atio n M ethod w ith O th er M ethods ! ' " ~ ~ ~ ”” ~ ~ ~ ~ I j The ite ra tiv e calcu latio n m ethod th at h as been developed h e re p ro v id e s a convenient com putational technique fo r finding both the fre q u e n c ie s and e ig e n v e c to rs of lo c a liz e d v ib ra tio n a l m odes fro m the eq u atio n s of m otion fo r the defect and a reg io n of th e la ttic e su rro u n d in g the d efect. Unlike o th e r calcu latio n s u sin g a defect re g io n th a t have a p p e a re d in the lite ra tu r e , th is m eth o d can be u se d to solve fo r ju s t the local-.m odes, ignoring the band m o d es, and does not depend on the u se of sy m m e try to red u ce the co m p lex ity of the .................................................................7i ; p ro b le m . T his m eth o d m ak es fe a sib le the c a lcu latio n of e ig e n v e c to rs of th e lo c a l m odes o v e r extended reg io n s, w hich is of c o n sid e ra b le lv alu e in obtaining an in tu itiv e g ra sp of the effects of in te ra c tio n s of I d e fe c ts on lo c a l m ode fre q u e n c ie s. G re e n 's function c a lc u la tio n s l w ill, in p rin c ip le , give e ig e n v e c to rs fo r lo c a l m o d es, but it p ra c tic e the re q u ire d G re e n 's functions a re not e a s ily e v alu ated , a s they : re q u ire a d e ta ile d know ledge of the d isp e rsio n c u rv e s an d e ig e n v e c t o r s of the h o st la ttic e . V arious ap p ro x im ate G re e n 's function I c a lc u la tio n c a lc u la tio n s ca.n give the freq u e n cie s but not the | e ig e n v e c to rs . I The p rin c ip a l lim ita tio n of the m ethod is in the fo rc e c o n stan t ! im o d e lu s e d to d e s c rib e the la ttic e . The calcu latio n is g re a tly i ‘sim p lifie d , p a rtic u la rly in th re e d im en sio n s, if only f i r s t neig h b o r I I in te ra c tio n s betw een ato m s a re included. T his does not give a p a rtic u la rly good d e s c rip tio n of m o st c ry s ta ls . F o rc e c o n sta n ts |co u p lin g seco n d an d fu rth e r n eighbors a re sim p le to in clu d e, but j s e rio u s ly in c re a s e the co m p u tatio n al tim e involved. Anothe r lim ita tio n , w hich is not u su a lly too s e rio u s , is th at the co n v erg en ce is v e ry slow if the lo c a l m ode freq u en cy is clo se to the m ax im u m band m ode freq u e n cy . C. C ondition fo r the O ccurence of a L o c a liz e d M ode: The T h re sh o ld V alue fo r the M ass D efect A high freq u e n cy lo c a liz e d m ode m ay re s u lt fro m th e s u b s ti- 72 tu tio n of an a to m of lig h te r m a ss fo r one of the a to m s of the h o st c ry s ta l. H ow ever, even in the case th at the fo rc e c o n sta n ts a re not . changed, th e re is g e n e ra lly som e m in im u m value of the m a s s defect i I e = ( M -M ' )/M th a t is re q u ire d b efo re a lo c a l m ode w ill a p p e a r. S e v e ra l a u th o rs have m ade c alcu latio n s of lo ca l m ode fre q u e n c ie s in ; Si, and have o b tain ed values fo r e . ran g in g fro m 0. 075 ( D aw ber, j m in o o \ i 1963b ) to 0 .2 5 ( A n g re ss, 1964 ), depending on the e s tim a te d la ttic e I s p e c tru m fo r the u n p e rtu rb e d Si la ttic e . i The m in im u m value of the m a ss d efect can be found fro m j E q. 11 by le ttin g the lo c a l m ode freq u en cy ap p ro ach the m ax im u m i | la ttic e freq u e n cy . One obtains ! - 1 i e . =--------------------------------------- m m 2 U ) m ax fflm ax ! » U ) - U ) ; 0 m ax | I w h e re the in te g ra l h as b een w ritte n in te rm s of fre q u e n c ie s, r a th e r ! th an the sq u a re d fre q u e n c ie s u se d in E q. 16. It h as b een noted by L ifs c h itz ( 1956 ) th a t th is in te g ra l is fin ite fo r a r e a lis tic d e n sity - o f -s ta te s g(u)) fo r a th re e d im en sio n al c ry s ta l, but d iv e rg e s fo r the o n e -d im e n sio n c a se so th a t a lo c a liz e d m ode m ay o c c u r fo r a r b itr a r ily s m a ll e . The b e h a v io r of the in te g ra l depends v e ry stro n g ly on the n a tu re of g(uu) n e a r u u , sin ce the d e n o m in ato r of ° ° m ax the in te g ra l goes to z e ro at u ) . Some in sig h t into the re la tio n sh ip mEX b etw een the phonon s p e c tru m of the h o st and Sm ^n can be g ain ed by / <**> 73 c o n sid e rin g rea so n a b le m o d els of g(u)) n e a r id i ° m ax In the v ic in ity of U ) , g(uj) g e n e ra lly h a s the fo rm g(uu) = rnsix iA ( 0) - U ) )^ , w h ere the co n stan t A is a m e a s u re of how ra p id ly ' m ax g(uj) in c r e a s e s as u j is d e c re a se d . A m e a su re of the dependence of i : e . o n the e x te n t to w hich the sta te s a re bunched n e a r the top of : m m £ ;the phonon s p e c tru m can be obtained by a ssu m in g g(uu) = A(ou -uu) m2>x i fo r id . < u j < u u and g(uj) = 0 fo r 0 < u u < u ) . a s show n in F ig . 7. mxn — — m ax ° — m in ! Dim | The g(uu) is th en n o rm a liz e d to C g(u>) d(uu) = 1 by se ttin g 0 _ 3. A = ■ § • ( U ) -(A ) . ) 2 . The in te g ra l in E q. 63 b eco m es 2 ' m ax m m ' 5 i I D i m ax . A I ' V 1 ^ / ( J U 2 2 m in u ) - I D m ax (64) 1 T his can be s e p a ra te d into U ) ( A ) m ax i m ax x ( u ) -a) )*duu r ( id -u) )^duu ' — 1 m ax f ( V a x - ^ , f J ( U ) + U U ) J 2 ( J U J ( U ) + U U ) J U J -U J m ax ' m ax m ax u j U ) . mxn mxn and re d u c e d to (65) ’ ^ m ax^ m in ^ , V a x ’ V i n r (x+2V a x ) d x + r j x J X J 2u) J x ) -g m a x *' J x a 2 u u m ax The re s u ltin g value one o btains is ( 66) 8 3 € . = ■ ? C mxn 3 [ i n f r § - ] (67) . * " > '■ N 3 3 cr> u w mln m a x C J ^mln max (a) (b) F ig u re 7. A pproxim ations to the phonon d e n sity of s ta te s fo r a re a l c ry s ta l. a) P a ra b o la b) P a ra b o la and d e lta function. w h ere 2 1 j, ^min ~ z 1 ------- - S-1 <68> V, m a x The re s u lt show n in F ig . 8 is th at the th re s h o ld e fo r a lo ca l m ode to a p p e a r is z e ro if g(uu) is bunched up n e a r u u , and m&x in c re a s e s as g(co) is s p re a d out so th at it is s m a lle r in the v icin ity of u u m ax The d e n s ity -o f-s ta te s of any r e a l c y rs ta l is not w ell a p p ro x i m a te d by the p a ra b o lic fo rm of the above ex am p le, a s can be se en 1 by c o m p a riso n w ith the c u rv e s in F ig . 1, w hich have b een d e riv e d ! fro m e x p e rim e n ta l m e a su re m e n ts of d isp e rsio n c u rv e s . F o r Si o r i Ge, the d e n s ity -o f-s ta te s does s ta r t fro m the top w ith a s m a ll I I p a ra b o lic p a rt, but then h a s a pronounced peaked s tru c tu re . A j b e tte r ap p ro x im atio n th an a sim ple p a ra b o la fo r g(uu), b ut w hich is i s till sim p le enough to w ork w ith, is ! - - h j g(uu) = a f (u a -uu . ) 2(u u - u u ) + p 6 (u u . ) (69) & * m ax m m m ax r m m ' ' I fo r u u . < u u < u u , and g(uu) = 0 fo r u u < u u . . m m — — m ax m m To m a in ta in the n o rm a liz a tio n of g(uu) , a + ( 3 = 1. F o r p = 1, 2 ^m in g(uu) = 6 (u u . ) so th a t e . = 1 ------ ------ as is show n by the so lid line ' m m m m -2 m ax in F ig u re 8. Sm in ^o r function is alw ays la r g e r th an th a t given by th e p a ra b o lic g(uu) . If we le t be the value o b tain ed w ith the (2) p a ra b o lic g(uu) (a = l) and f^a-t obtained w ith the 6 -fu n ctio n 76 F ig u re 8. e v s. ( u j v - «J _ _ * _ ) / . Solid c u rv e is fo r m in m ax m in m ax g(ou) = 6(a,m in ) . D ashed curve is fo r the p a ra b o lic g(«j) . 0.8 0.6 min 0.4 0.2 Q2 0 0.4 L0 0.6 0.8 o j - c j , max min CJ max I ; (P=l) , th en the in -b etw e en c a se s a re given by -1 77 m m a s '1'. e(2> m m m m (70) t _ j E ven b e tte r ap p ro x im atio n s can be d ev ised w hich do not have so | m uch ten d en cy to o v e r-e m p h a siz e the h ig h e r fre q u e n c y s ta te s , but ! th ey w ould not re a lly add anything new to the q u a lita tiv e re s u lts ! a lre a d y o b tain ed . A s m a ll o r v an ish in g value fo r e . is a s s o c ia te d w ith a i m m I d e n s ity -o f-s ta te s th a t is stro n g ly peaked n e a r u u o r fin ite at J m ax i u ) : la rg e v a lu e s of e . re s u lt w hen th e re a re v e ry few sta te s ! m ax m m n e a r u u m ax | CH A PTER III I E x p e rim e n ta l P ro c e e d u re s The e x p e rim e n ta l w o rk involved in th is r e s e a r c h in clu d ed i ; grow th of c ry s ta ls of sp e c ifie d com position, c h a ra c te riz a tio n of the i i c ry s ta ls w ith re g a r d to co m p o sitio n and hom ogeniety , p re p a ra tio n of ; sa m p le s fro m the c ry s ta ls , and in fra re d tra n s m is s io n m e a s u re m e n ts ! of th e sa m p le s. A. C ry s ta l G row th The c ry s ta ls u se d in th is study w ere a ll grow n fro m a m e lt, j j e ith e r by the C z o c h ra lsk i technique o r the v e rtic a l B rid g e m a n j tec h n iq u e . F o r the stu d ies th a t w ere done, p o ly c ry sta llin e sa m p le s | a re su ita b le ; som e of the ingots w e re single c ry s ta ls and o th e rs j j p o ly c ry s ta llin e . The p rin c ip a l re q u ire m e n t fo r the sa m p le s w as j i th a t th ey be hom ogenous and be grow n w ith a sp e cified co m p o sitio n 1 an d sp e c ifie d doping le v e l. | In g e n e ra l, a doped c ry s ta l w ill not have the sa m e c o m p o sitio n a s th e m e lt fro m w hich it is grow n. As a m e lt is so lid ifie d , im p u ritie s m ay be e ith e r p re fe re n tia lly in clu d ed in o r ex clu d ed fro m th e so lid . If, a t e q u ilib riu m , an im p u rity h a s a c o n c e n tra tio n C s in th e so lid w hen the c o n c e n tra tio n in the liq u id is C^, th e n C g/C ^ = kQ is defined a s the e q u ilib riu m d istrib u tio n co efficien t. An im p u rity th a t r a is e s the m e ltin g te m p e ra tu re h as k > 1; one th a t lo w e rs the o m e ltin g te m p e ra tu re h a s k < 1. T his can be illu s tr a te d b y the phase ° 78 79 1 i d ia g ra m fo r the Ge Si allo y sy ste m in F ig u re 9. A t low Si X X • * X c o n c e n tra tio n s, c o n sid e rin g Si to be the so lu te o r im p u rity , the ; d istrib u tio n c o efficien t of Si in Ge is about 4 o r 5; a t low Ge concen- : tra tio n s the d istrib u tio n co efficien t of Ge in Si is about 0. 2 - 0. 4. In p ra c tic e , c ry s ta ls do not grow at e q u ilib riu m , an d k in etic e ffe c ts m ay be im p o rta n t. In any sy ste m w ith a n o n -z e ro ra te of ! so lid ific a tio n , a c o n c e n tra tio n g rad ie n t of the so lu te is g e n e ra te d a t ; the in te rfa c e if the d istrib u tio n co efficien t is not u n ity , sin ce the ; so lu te is e ith e r re je c te d into the m elt o r se le c tiv e ly re m o v e d fro m ; the m e lt a t the grow th in te rfa c e . T his c o n stitu te s a n e t flux of solute I e ith e r into o r out of the in te rfa c e . In the b o u n d ary la y e r of the m e lt | a d ja c e n t to the in te rfa c e , th e re is little m ix in g w ith the bulk of the i 1 i m e lt. The so lu te is tra n s p o rte d by diffusion, so th is flux re q u ire s i | a c o n c e n tra tio n g ra d ie n t of solute in the m e lt a d ja ce n t to the in te rfa c e , i ' I One r e s u lt of the c o n c e n tra tio n g ra d ie n t is th a t the o b se rv e d i ra tio of solute c o n c e n tra tio n s in the so lid an d the m e lt w ill d iffe r I fro m the e q u ilib riu m d istrib u tio n co efficien t, as the so lid liq u id in te rfa c e h as a d iffe re n t so lu te c o n ce n tra tio n fro m the a v e ra g e o v e r the m e lt. A nother is th a t th e c o n ce n tra tio n g ra d ie n t of so lu te gives r is e to a v a ria tio n of the fre e z in g te m p e ra tu re in the m e lt su ch th a t the fre e z in g te m p e ra tu re of the m e lt in c re a s e s w ith d ista n c e f ro m the in te rfa c e . S upercooling of the m e lt, c a lle d c o n stitu tio n a l s u p e r co o lin g , m ay th e n o c c u r if the te m p e ra tu re g ra d ie n t of the in te rfa c e 80 F ig u re 9. a. P h a se d iag ra m for the G e-S i sy ste m . The liq u id u s c u rv e is th a t d eterm in ed e x p erim e n tally by S tb h r and K lem m . T he dash ed lin e is the solidus cu rv e c a lcu late d by S te in in g e r fro m the e x p e rim e n ta l liquidus; the points a r e the e x p e rim e n ta l v a lu e s fo r the solidus d eterm in ed by S tb h r and K lem m . b. Si in Ge; a n exam ple of an im p u rity w hich r a is e s th e m eltin g te m p e ra tu re . The d istrib u tio n c o efficien t fo r Si in Ge is g r e a te r than unity. c. Ge in Si; an im p u rity w hich lo w e rs the m e ltin g te m p e ra tu re . T he d istrib u tio n coefficient of Ge in Si is le s s than unity. 81 1300 o o _ £ 1200 3 5 E 1100 a. 2 UJ H 1000 900 .20 .40 ,60 .80 Ge Si ATOM FRACTION Si (a) Si in Ge Ge in Si % <l (b) (c) 82 I is not s te e p e r th an the g ra d ie n t of the fre e z in g te m p e ra tu re of the j m e lt. B oth of th e se phenom ena a re illu s tra te d in F ig u re 10. In the grow th of doped se m ic o n d u cto r c ry s ta ls , changes in the ; 7 i I i ) effectiv e d istrib u tio n co efficien t of dopants m ay be se e n a s the grow th ra te is v a rie d . F lu c tu a tio n s in the grow th ra te , su ch as th o se j w hich m ay a r is e fro m te m p e ra tu re v a ria tio n s , m ay give ris e to in - ' hom ogenous doping. i If c o n stitu tio n a l su p e rco o lin g o c c u rs , the grow th in te rfa c e | g e n e ra lly b eco m es u n sta b le , re s u ltin g in uneven grow th w hich e n tra p s . | p o rtio n s of th e m e lt an d p ro d u ce s an inhom ogenous so lid . D ism ukes ; and E k stro m ( D ism ukes 1965 ) have in v e stig a te d the conditions fo r i | j hom ogenous grow th of Ge Si a llo y s. T hey show th a t a sim p le I <X X “• X i ! m o d el fo r d iffu sio n -c o n tro lle d grow th g iv es a re la tio n sh ip betw een j the grow th ra te R an d te m p e ra tu re g ra d ie n t G to avoid c o n stitu tio n a l su p e rc o o lin g . The re la tio n sh ip is G /R > m (C -C )/D , i t S . w h ere C . an d C a re the c o n c e n tra tio n s of Ge in the liq u id and so lid , i i t s m is the slope of the liq u id u s c u rv e a t C , and D is th e diffusion i t c o efficien t of Ge in the .m elt. T h e ir e x p e rim e n ta l d ata fo r grow th I conditions giving hom ogenous ingots is fit re a so n a b ly w ell a ssu m in g 4 2 - 1 a c o n stan t D of 1. 3 x 1.0 cm sec fo r the e n tire range of m e lt o co m p o sitio n . F o r a te m p e ra tu re g ra d ie n t of about 50 C /c m , th is re q u ire s grow th r a te s le s s th an one inch p e r day fo r Ge Si. allo y s X X " X w ith 0. 4 < x < 0. 7; la r g e r ra tio s of grow th ra te to te m p e ra tu re : F ig u re 10. S teady sta te d iffu sio n -lim ited grow th fro m a m e lt containing an im p u rity . : a. If k Q < 1, the im p u rity is re je c te d fro m the so lid a t the in te rfa c e . ; b. If k > 1, the im p u rity is e x tra c te d fro m the m e lt a t the ! in te rfa c e . T he re s u ltin g im p u rity g ra d ie n t gives an im p u rity c o n c e n tra tio n a t the in te rfa c e th at is d iffe re n t fro m C j , i i the a v e ra g e o v e r the m e lt. The effective d istrib u tio n co ef- i fic ie n t b e co m es ( C . / C . )k . ; ' 1 1 ' o | c. T he im p u rity g ra d ie n t p ro d u ce s a free zin g te m p e ra tu re j g ra d ie n t in the m e lt, such th at the fre e z in g te m p e ra tu re in c re a s e s w ith d ista n c e fro m the in te rfa c e . If the te m p e ra tu re I | g ra d ie n t in the m e lt is le s s than the c ritic a l valu e, p a r t of the j I m e lt a d ja c e n t to the in te rfa c e is su p erco o led ( show n by the i shaded re g io n ) and the in te rfa c e is u n sta b le . D ISTA N C E SOLID— 4 — MELT F R E E Z I N G T E M P E R A T U R E \ V A \ A* i o XI -1 vvV „—-O > > 1 — / " xp- 1 P 4 O ' \ XI V -H : V ' \ o IMPURITY IMPURITY C O N C E N T R A T I O N C O N C E N T R A T I O N 0 0 j ^ I i 85 1 g ra d ie n t a re allo w ed fo r a llo y s com posed m o stly of one of the | c o n s titu e n ts . Stable te m p e ra tu re c o n tro l at the grow th in te rfa c e is n e c e s s a ry fo r hom ogenous grow th of a llo y s, sin ce a d e c re a se in te m p e ra tu re w ill cau se a te m p o ra ry in c re a s e in the grow th ra te w hich m ay be ! j enough to c au se c o n stitu tio n a l su p erco o lin g to o c c u r. As w as 'm e n tio n e d above, te m p e ra tu re changes m ay a lso re s u lt in inhom o- 1 genous doping. T h ere a re s e v e ra l c a u se s fo r te m p e ra tu re v a ria tio n s jin c ry s ta l grow th s y s te m s . One is la c k of a good te m p e ra tu re se n sin g land c o n tro l s y s te m fo r the c ry s ta l-g ro w th fu rn a c e . A nother, w hich j |is im p o rta n t in C z o c h ra lsk i grow th sy ste m s w h ere the ingot is t ! j ro ta te d a s it is grow n, is a la c k of a x ia l sy m m e try in the te m p e ra tu re I p ro file . If th e re is th is la c k of sy m m e try , then p a rts of the ingot |a re a lte rn a te ly h e a te d and cooled as it is ro ta te d . C onvection I I c u rr e n ts , e ith e r in the a tm o sp h e re a ro u n d the c ry s ta l o r w ithin the j jm e lt, can p ro d u ce te m p e ra tu re flu ctu atio n s th a t c a n a ffect grow th. ! jit is to be noted th a t slow d rifts in te m p e ra tu re a r e u su a lly of little consequence a s r e g a rd s h om ogeneity of the c ry s ta ls , but ra p id flu ctu atio n s a re to be av o id ed w h en ev er p o ssib le . 1. S i-R ic h Ge Si, x 1-x E x cep t fo r one ingot containing 2% Ge, obtained fro m B ell T elephone L a b o r a to rie s , the Ge Si ingots w ith x < 0. 12 w ere X X “ X grow n in an in d u ctio n h e a te d C z o c h ra lsk i p u lle r m a n u fa c tu re d by 86 'L e p e l H igh F re q u e n c y L a b o ra to rie s . The m elt w as contained in a !fu sed q u a rtz c ru c ib le w hich in tu rn w as inside a g rap h ite s u s c e p to r. iT he te m p e r a tu re c o n tro l sy ste m w as a L eeds and N o rth ru p | "R ayotube" ra d ia tio n s e n s o r focused on the bottom s u rfa c e of th e !g ra p h ite s u s c e p to r to se n se its te m p e ra tu re . The R ayotube output w as c o m p a red to a s e t v o ltag e, and the d ifferen ce w as u se d to d riv e ja L eed s N o rth ru p "M -L in e" th re e -a c tio n c o n tro lle r. The c o n tro lle r | jin tu rn o p e ra te d an SCR c irc u it to c o n tro l the c u rre n t through th e t js a tu ra b le r e a c to r in th e r. f. g e n e ra to r. The in g o ts w e re on < 111 > j Si se e d s; th e se e d w as ro ta te d at 20-60 rpm during g row th. M ost |of th e a llo y in g o ts w e re grow n a t a ra te of 0.25 in c h /h r, w ith so m e i jp o rtio n s having b e e n grow n as slow as 0. 1 in c h /h r. The o rig in a l jm o to r in th e p u lle r w as re p la c e d w ith a g e ared m o to r to allow th e |slo w pulling r a te s u se d . | E v a p o ra tio n of oxides fro m th e m e lt w as a p ro b le m b e c a u se of th e len g th of tim e involved in pulling a c ry s ta l a t 0. 25 in c h /h r. If th e rim of th e q u a rtz c ru c ib le stu c k up above th e g ra p h ite s u s c e p to r as m uch a s 0. 1 in ch , it w ould be cool enough th at th e oxide w ould co n d en se on th e in sid e edge of th e rim . E ventually, a th in la y e r of oxide w ould c o lle c t, extending inw ard fro m the rim of the c ru c ib le and blocking th e v iew of th e grow th in te rfa c e . T his could be p re v e n te d by c u ttin g off the c ru c ib le .so that it p ro tru d e d only slig h tly above th e top of th e su s c e p to r; if th e cru cib le w as c u t down below 87 'th e top edge of th e s u s c e p to r the m elt would be carb o n doped. It I 'w as found th a t th e seed b ecam e coated w ith oxide th a t in te r f e r e d | w ith w etting of th e se e d by the m e lt if it w as left e x p o sed above the 'c ru c ib le du rin g th e in itia l p erio d of m eltin g and te m p e ra tu re a d ju s t m e n t. A p iece of alu m in u m tubing was m ounted in sid e th e p u lle r on Ithe b o tto m of th e pulling rod gland, such that the se ed an d se e d | chuck could be r e tr a c te d into th e tubing. This w as su fficie n t to keep j jthe se ed cle an u n til it w as put into the m e lt. i The s ta rtin g m a te ria ls w e re polycrystallirie in tr in s ic g ra d e j g e rm a n iu m obtained fro m E a g le -P ic h e r In d u stries and h ig h p u rity i i | poly c ry s ta llin e silic o n obtained fro m W acker C hem ical C om pany. | T he seed and th e p ie c e s of Si and Ge w e re w ashed w ith tric h lo ro - j eth y len e to rem o v e any g re a s e o r wax, rin se d in a c e to n e o r m e th a n o l, land th en etch ed in C P4, a 5:3:3 m ix tu re of HNO,, H F, and HA c. i 5 I I T he Si w as etched b e fo re th e Ge; a clean-looking, shiny s u rfa c e I w as not obtain ed on th e Si if the solution had been u se d f i r s t to e tc h th e G e. T he etching w as follow ed by se v e ra l rin s e s in d eio n ized w a te r. The q u a rtz c ru c ib le w as cleaned in the sa m e w ay as th e Si and G e. F o r th e b o ro n doped c ry s ta ls , finely pow dered e le m e n ta l b o ro n w as added to th e c ru c ib le w ith th e Si and Ge b efo re m e ltin g . The n o rm a l b o ro n w as 99. 99% b o ro n obtained fro m U nited M in e ra l and C h em ical C o rp o ra tio n . B oron iso to p icly enriched to 96. 5% w as ob tain ed fro m O ak R idge N ational L a b o ra to rie s . 88 S ilicon is se le c tiv e ly rem o v ed fro m the m e lt a s it so lid ifie s, I so th a t the Ge c o n c e n tra tio n in c re a s e s along the ingot. The volum e 3 ; of the m e lt w as u su a lly about 20-25 cm , the d ia m e te rs of the | p u lled ingots w ere le s s th an 2 cm , and no m ore than o n e -th ird of the ; m e lt w as fro z e n . F ro m th e se d ata and th e o b se rv e d d istrib u tio n I c o e ffic ie n t of about 0 .4 fo r Ge in Si, the m axim um v a ria tio n of the Ge c o n c e n tra tio n in a sp ecim en 2 m m th ic k should be only about . 02 ! of th e Ge content, o r about . 25% Ge in th e Ge 10Si 00 c r y s ta ls . In i ( 1 2 t oo | fa c t, m o st of the sa m p le s w ere th in n er th an 2 m m and cut fro m | se c tio n s of the ingot le s s th an 2 cm in d ia m e te r, so th a t v a ria tio n j of c o m p o sitio n w ithin a sam ple w as not a p ro b lem . i 2. G e-R ich Ge Si, ! x 1 -x ! M ost of the G e -ric h Ge Si sam p les w e re cut fro m ingots j X ± **x I th a t h a d been grow n m any y e a rs ago at B e ll T elephone L a b o ra to rie s ; | the d e ta ils of th e ir grow th is not known. They w ere grow n in a ! h o riz o n ta l boat by e ith e r a zo n e-lev e lin g o r g ra d ie n t-fre e z e i I te c h n iq u e . The ingots containing m ore th an 10% Si w e re c ra c k e d , in d ic a tin g th at th e re is pro b ab ly co n sid erab le in te rn a l s tr a in . The c a r r i e r c o n ce n tra tio n s w ere a ll low enough th at th e re w as no s ig n i fic a n t in fra re d a b so rp tio n due to fre e c a r r i e r s . One ingot w ith a m ax im u m Si content of 12% w as grow n du rin g the p re s e n t study so th at the re s u lts obtained fro m it could be c o m p a re d to the re s u lts given by the B ell Telephone L a b o ra to rie s 89 s a m p le s. F o r a v a rie ty of re a so n s the ingot w as grow n by the v e rtic a l B rid g em an tech n iq u e, w h ere the m e lt is en clo sed in an elongated c ru c ib le w hich is lo w ered fro m a hot zone of a fu rn a c e in to a c o o le r zone. S o lid ificatio n begins at the bottom of th e c ru c ib le and p ro c e e d s to w ard th e to p . The sy ste m h as th e advantage of being ; sim p le enough in o p e ra tio n th a t it can be le ft unattended, so th at ■ v e ry slow grow th ra te s can be used o v e r long tim e s . The te m p e r- | a tu re g ra d ie n ts a r e such th a t th e re a r e no convection c u rre n ts to i c a u se te m p e ra tu re flu ctu atio n s. A nother fe a tu re w hen th is m ethod I |is u se d w ith G e -ric h Ge S i, is th a t th e re is som e g ra v ity s e g r e - j X JL “ X gation of the m e lt, so the f ir s t p a rt to fre e z e h as a h ig h e r Ge ; c o n c e n tra tio n than th e a v e ra g e fo r the m e lt; th is som ew hat d e c re a s e s th e ra p id change in co m p o sitio n along th e ingot th a t re s u lts fro m the ■ la r g e d istrib u tio n co efficien t of Si in Ge. The p rin c ip a l d isad v an tag e i ! of th e B rid g em an m ethod is th a t the m e lt is so lid ified in sid e a rig id j j c ru c ib le ; m o st se m ic o n d u c to rs, including Ge and Si, expand on j fre e z in g so th a t a rig id c ru c ib le m ay in tro d u ce s tra in into the c ry s ta l. T he ingot w as grow n in a q u a rtz c ru c ib le , m ad e fro m a p iece of 1 cm i. d. fused q u a rtz tubing w ith th e b o tto m end ta p e re d to a p o in t. The Ge and Si w e re etched as d e sc rib e d in th e p rev io u s se c tio n and se a le d in to th e c ru c ib le u n d er vacuum . The ingot w as fro ze n a t about one inch p e r day in a 10 C /cm tem p era tu re gradient. j j The m e lt co n tain ed about 5 a t % S i. The phase d ia g ra m of S to h r and l ; K lem m (1939) gives a so lid co m p o sitio n in eq u ilib riu m w ith a 5 a t % j m e lt a s 20 a t % Si; the re c e n tly c a lcu late d phase d ia g ra m of i ! S te in in g e r (1970) gives the e q u ilib riu m so lid as about 15%. The f i r s t ; p a rt of the m e lt to fre e z e co n tain ed about 12 at % Si; th is value i in clu d es the e ffe c ts of g ra v ity se g re g a tio n and a n o n -z e ro grow th | r a te , but ten d s to. su p p o rt the c a lc u la te d phase d ia g ra m , i The ingot w as p o ly c ry s ta llin e . The su rface a d ja c e n t to the i s lic e cu t fo r IR m e a su re m e n ts w as etch ed w ith C P 4 ( 5 HNO^: 3 H F: j 3 HAc ). M uch of the su rfa c e show ed no evidence fo r inhom ogeneity i I u n d e r e x am in a tio n th ro u g h a 30X m ic ro sc o p e; p a rt of the su rfa c e | show ed evenly sp a ce d c o n c e n tric rin g s w hich a p p ea re d to be a ! c ro s s - s e c tio n th ro u g h grow th s tria e d e sc rib e d by D ism ukes and i E k s tro m (1965) a s c h a ra c te ris tic of hom ogenous grow th of G e-S i a llo y s. T h ere w e re som e sm a ll a re a s th at etched aw ay v e ry ra p id ly ; th e se m ay have b een reg io n s of inhom o ge nous grow th. The c r ite r ia of D ism ukes and E k stro m would reco m m en d a s te e p e r te m p e ra tu re g ra d ie n t, a t le a s t 2 5 °C /cm , but th e ir grow th s y s te m w as le s s fav o ra b le b e ca u se of convection-induced flu ctu atio n s; the grow th conditions u se d h e re a p p a re n tly w ere m a rg in a lly sta b le . 3. G erm an iu m The p rin c ip a l d ifficu lty in the m e a su re m e n t of in fra re d iabsoption lo c a liz e d v ib ra tio n a l m odes of e le c tric a lly activ e ; im p u ritie s in Ge is th a t of e le c tr ic a l co m p en satio n to rem ove ;fre e c a r r i e r a b so rp tio n . L ith iu m diffusion can be u se d to com pen- jsa te p-type g e rm a n iu m , but w o rk s only if the c a r r i e r co n ce n tra tio n 1 8 - 3 is le s s th an about 5 x 10 cm " and w o rk s w ell only fo r c a r r i e r 1 8 - 3 I c o n ce n tra tio n s le s s th a n 1x10 cm " . F o r the dopant c o n c e n tra - 18 20 3 Itions com m only u s e d in lo c a l m ode stu d ies ( 1 0 - 10 c m ” ) it is ■ necessary to grow fa irly w ell co m p en sated c ry s ta ls . To o b se rv e the p h o sp horus lo c a l m ode in Ge, galliu m was I jused to co m p en sate the p h o sp h o ru s. P h o sp h o ru s and g alliu m have I n e a rly the sam e d is trib u tio n co efficien t ( k = 0. 080 fo r P , 0. 087 j o jfor Ga ) so th a t the re la tiv e c o n c e n tra tio n v a rie s slow ly as the m e lt | |is so lid ifie d . T h is dopant p a ir is a lso v e ry convenient, since an j iin itia l 1:1 c o n c e n tra tio n ra tio can e a s ily be ach iev ed by doping w ith j |g a lliu m phosphide. The c ry s ta ls w e re grow n by the C z o c h ra lsk i m ethod in a re s is ta n c e h e a te d p u lle r. The b a sic fra m e w o rk and pulling m e c h a n ism is a c o m p lic a te d sy s te m of w ire s and pulleys w ith no n a m e p late; ru m o r ( A llre d 1970 ) a ttrib u te s its m an u factu re to A llen - Jo n e s E le c tro n ic s C o rp o ra tio n . The p u lle r w as m odified so th at its fin a l c o n fig u ra tio n w as a s show n in F ig . 11. The V ycor tube w as, u n fo rtu n ately , slig h tly too s m a ll to a c c e p t a sta n d a rd tw o -in ch d ia m e te r q u a rtz c ru c ib le , so the c ru c ib le s h ad to be sh ru n k by the 92 TO VACUUM PUMP AND HYDROGEN SUPPLY TO POLLING AND S E E D ROTATING MECHANISM t BUSHING M E T A L FLANGE O-RING S E A L TU B E FOR COOLING WATER T E F L O N EPOXY STA IN L E SS S T E E L ROD GRAPHITE SEED CHUCK / Ge S E E D Ge NGOT VYCOR TUBE KANTHAL HEATING QUARTZ CRUCIBLE FIBERFRAX MELT INSULATING BLOCK FROM „ TEMPERATURE CONTROLLER C H R O M E L - ! ALUMEL THERMOCOUPLE! TO j T EM PERATURE i CONTROLLER j F i g u r e 11. R e s i s t a n c e h e a t e d C z o c h r a l s k i g r o w t h s y s t e m f o r G e c r y s t a l s . 93 • g la ssb lo w e r. ^ ■ C o m m e rcia l hy d ro g en , c le an e d up w ith a " D e-O xo " c a ta ly tic p u rifie r follow ed by a cold tr a p cooled w ith liq u id n itro g e n , w as jused a s an a tm o sp h e re . A ty p ic a l c ry c ib le c h arg e w as about 50 gm of Ge. In itially , a < 111> se e d w as used; the doping w as not v e ry hom ogenous, pro b ab ly b e ca u se of the fo rm a tio n of a fa c e t on the bottom of the ingot. W ith a se e d o rie n te d a p p ro x im a te ly along a ;<311> a x is, the doping w as m o re n e a rly hom ogenous. P u llin g ra te s ran g ed fro m 1 to 6 c m /h r . The seedcw as ro ta te d a t 15 rp m . The f i r s t good G aP doped c r y s ta l had 60 m g of G aP added to :53 g. of Ge giving [G a ] = [ P ] = 3 .6 x lO ^ c m ^ in the m elt; th is 18 -3 i should give [ P ] 2. 9 X 10 cm a t the top of the ingot. The ingot I iwas not p e rfe c tly hom ogenous but did co n tain p-type reg io n th a t could be co m p en sated by L i diffusion. A gallium doped c ry s ta l t J m o stly co m p en sated w ith a rs e n ic and antim ony w as grow n by doping i . . I w ith GaAs and e le m e n ta l Sb. Two ingots w ere grow n w hich w ere | m ore h eav ily doped w ith G aP. The f i r s t w as e n tire ly p-type and none of it could be co m p e n sa te d w ith L i; a p p a re n tly phosphorus w as being lo s t fro m the m e lt by e v a p o ra tio n . The second one w as doped by adding 10 m g of In P and 106 m g of G aP to 49 gm of Ge. The In P effec tiv e ly only adds p hosphorus to the ingot being grow n sin ce the d i s t r i bution co efficien t of In is quite s m a ll ( < 0. 001 ). The ex act d e g re e of c o m p e n sa tio n obtained during grow th is 7 Inot know n. The s lic e s th at could be c o m p letely c o m p e n sa te d by i L i diffu sio n had re s is tiv itie s of 0. 02 to about 0. 06 fi - cm ; fo r sin g ly doped p -ty p e Ge th ese re s is tiv itie s c o rre s p o n d to c a r r i e r 1 7 - 3 : c o n c e n tra tio n s of 1 - 5 x 10 cm . H ow ever, in h ig h ly co m p en sa te d m a te r ia l the m o b ility should be lo w e r, so the c a r r i e r ! c o n c e n tra tio n m ay be h ig h er fo r a given re s is tiv ity . An a tte m p t to grow an alum inum doped c ry s ta l in the sam e i p u lle r w as u n su c c e ss fu l because a la rg e am ount of s la g , p ro b ab ly ; an oxide of alum inum , fo rm ed on the su rfa c e of the m e lt and | in te r fe r e d w ith seed in g and grow th. A p p aren tly , the alu m in u m I re a c te d w ith the q u a rtz cru cib le o r w ith re s id u a l oxygen in the i j s y s te m . | S e v e ra l a tte m p ts w ere m ade to grow b o ro n doped Ge by u sin g | the B rid g e m a n m eth o d w ith ap p aratu s s im ila r to th a t u s e d fo r G e- j | ric h G e-S i a llo y s. G re a t difficulty w as e n c o u n te re d in rep ro d u c ib ly i I doping w ith b o ron, a p p aren tly b ecau se m o lte n Ge does not re a d ily i w et b o ro n . In one e x tre m e exam ple, a la rg e lum p of b o ro n w as put in th e c ru c ib le w ith the Ge. The lum p ended up em b ed d ed in the 18 -3 ingot, but the c a r r i e r co n cen tratio n w as only about 5 x 10 cm im m e d ia te ly a d ja ce n t to the b oron and c o n sid e ra b ly lo w e r e ls e w h e re . B . C om pensation by L ithium D iffusion L ith iu m is a shallow donor in both Si and Ge; its so lid so lu b ility depends quite stro n g ly on the am ount of o th e r im p u ritie s 95; p re s e n t. The L i sits in an in te r s titia l s ite . It can ionize a cc o rd in g • f * — to L i -* L i + e ; the e q u ilib riu m fo r th is re a c tio n , and thus the ' re la tiv e c o n c e n tra tio n s of n e u tra l and io n ized L i, is c o n tro lle d by the F e r m i le v e l, w hich is the c h e m ic a l p o ten tial fo r e le c tro n s . The to ta l c o n c e n tra tio n of L i is the sum of the co n ce n tra tio n s of n e u tra l L i and io n iz ed L i. The c o n c e n tra tio n of the n e u tra l L i is d e te rm in e d by an e q u ilib riu m w ith a n e x te rn a l p h a se , ty p ic ally a n allo y of L i w ith the Ge o r Si. Thus the to ta l so lu b ility of L i in e q u ilib riu m w ith an e x te r n al p h ase depends on the F e rm i le v e l, w hich in tu rn depends on the c o n c e n tra tio n of o th e r im p u ritie s . A q u an titativ e tre a tm e n t of the above a rg u m e n t by R eiss e t. a l. in w hich it is a ssu m e d th a t the only o th e r im p u rity is an a c c e p te r A gives the so lu b ility as -n+ A ~ . f ^ D = ---------------------------------------------- - + . 1 + y / l + ( 2n./D + ) I 1 + t / 1 +(2n /D +)2 + < Do > 2 } * • (71) + + w h e re D is the re s u ltin g so lu b ility fo r the io n ized donor, Dq is the io n iz ed donor so lu b ility in the ab sen ce of any o th e r dopants, A~ is the io n iz e d a c c e p to r c o n c e n tra tio n , and n ., w hich depends on te m p e ra tu re , is th e in trin s ic e le c tro n co n ce n tra tio n . F o r any doping 17 20 -3 le v e ls com m only u se d fo r lo c a l m ode stu d ies ( 1 0 - 10 cm ) the lim itin g c a se of A" n^ is ap p ro a ch e d at room tem po r a - + tu re fo r lith iu m d o n o rs, so D » A . L i diffuses quite re a d ily into Si and Ge, so th is e q u ilib riu m is a tta in e d fa irly e a sily . D iffusion I of L i donors th u s gives an e a s y m ethod of co m p en satin g a piece of ip -ty p e m a te ria l, sin c e the L i so lu b ility is c o n tro lle d by the doping i I lev e l. In p ra c tic e , th is w o rk s quite w ell a t any doping le v e l fo r Si. 2 0 - 3 S am ples doped to 10 cm w ith b o ro n w hich c o rre sp o n d s to a - 3 ; re s is tiv ity p < 10 fi- cm , c a n be co m p e n sa te d to a re s is tiv ity of I s e v e ra l h u n d red Q- c m o r m o re by L i diffusion. The com pensation is m o re c o m p lica te d in Ge, as the in c re a s e of n^ w ith te m p e ra tu re j is su ch as to in tro d u c e a m in im u m in L i so lu b ility a t te m p e ra tu re s of i Q i 100-200 C; the diffusion is u su a lly done above th is te m p e ra tu re and i I the sam p le m u st be ra p id ly quenched to avoid p re c ip ita tio n of L i i | d u rin g cooling. It is d ifficu lt to a c h ie v e r co m p en satio n to the degree j re q u ire d to rem o v e in f r a r e d fre e c a r r i e r a b so rp tio n in Ge w hen the 1 7 - 3 in itia l doping le v e l is m o re th a n a few tim e 10 cm , although it 18 -3 ih as been done a t a c c e p to r c o n c e n tra tio n s of up to 5 X 10 cm i | !( N azarew icz 1969 ). ! The L i diffusion is done by alloying a la y e r of L i to the su rfa ce of the sa m p le , p lacin g the sa m p le in a c ru c ib le along w ith g ra n u la r SiC to su p p o rt the sam p le aw ay fro m the w a lls of the c ru c ib le , and th en h e atin g the c ru c ib le in a tube fu rn a c e , u su a lly w ith an arg o n a tm o sp h e re , at the d e s ire d te m p e ra tu re fo r the d e s ire d length of tim e . A fter the diffusion, the sam p le co u ld be e ith e r slow ly cooled by m e re ly pushing the c ru c ib le to the end of the fu rn a c e , o r it could j be quenched, u su a lly w ith m in e ra l o il. F o r low diffusion te m p e r a tu r e s ( 400-500°C ) a q u a rtz c ru c ib le is su ita b le ; a t h ig h e r j : te m p e ra tu re s , w here the lith iu m h as an a p p re c ia b le v a p o r p r e s s u re , m olybdenum c ru c ib le s w ith clo se fittin g lid s w e re u se d . F o r diffusion te m p e ra tu re s above 850°C , it w as found d e sira b le w ith the ! la r g e r m olybdenum c ru c ib le s ( in sid e d im en sio n s 1 .1 " d ia m e te r by 1. 2M o r 2. 5" length ) to p r e - s a tu r a te the SiC packing w ith L i by ; p lacin g sm a ll lum ps of L i in sid e a g a in st the sid e s of the c ru c ib le and i o I h eatin g it to 900-1000 C fo r 20-30 m in u te s. T h is se e m e d to red u ce j I the lo ss of L i fro m the su rfa c e of the sa m p le . A fte r the sam p les j w e re cooled th ey w ere im m e rs e d in w a te r. The rem a in in g allo y i ! la y e r would re a c t w ith the w a te r to p ro d u ce h y d ro g en b u b b les. If the ! sam p le did not " fiz z ," . the alloy la y e r h a d b e en lo s t by e v ap o ratio n | ! o r oxidation, and g e n e ra lly the sam p le w as not co m p en sated . | | 1. A lloying of L ith iu m i | L i w as allo y ed onto the su rfa c e of the sa m p le s on a sm a ll s tr ip i J h e a te r in an a rg o n a tm o sp h e re . A s m a ll am ount of L i in the fo rm of j a su sp en sio n of fine p a rtic le s in m in e ra l o il w as s p re a d on one s u rfa c e of the sam p le; the sam p le w as th e n h e a te d u n til the L i re a c te d v isib ly w ith the su rfa c e ( 4 0 0 -5 0 0 °C fo r Ge, 500-600°C fo r Si ). A fter the sam ple had cooled, the allo y in g p ro c e d u re w as re p e a te d on the opposite side of the sa m p le . One d ifficu lty th a t w as i 98 | often e n co u n tere d w as th a t the L i w ould m e lt and fo rm into b a lls on the su rfa c e of the sam p le b efo re it a llo y ed w ith the sam p le; w hen it fin a lly did re a c t, the b a lls w ould c re a te deep p its of a llo y in the ' su rfa c e . The p ro g lem could be avoided to som e ex ten t by lapping ; the sam p le w ith 600 m e s h SiC b e fo re allo y in g . The n a tu ra l lith iu m ; w as a c o m m e rc ia lly p re p a re d su sp e n sio n w ith p a rtic le siz e < . 001 6 in ch , obtained fro m U nited M in e ra l and-C hem ical C om pany. The L i 6 | su sp en sio n w as p re p a re d fro m L i m e ta l, obtained fro m O ak Ridge N atio n al L a b o ra to rie s , by m ixing lum ps of the m e ta l to g e th e r w ith | o il in a b le n d e r. 2. Ge Si. A lloys x 1-x 3 j I A ttem p ts to co m p en sate b o ro n -d o p ed Ge Si w ith L i by usin g I X — 3 C | the s ta n d a rd tech n iq u e, w o rk ed p o o rly fo r allo y s w ith x 0. 06 and v e ry p o o rly o r not a t a ll fo r allo y s w ith x » 0. 12. If a sa m p le w as a llo y ed h e a v ily enough th a t th e re w ould be su fficien t L i a c tiv ity at the end of the diffusion to re a c t w ith w a te r, th e re w ould be tin y veins ( ty p ic a lly , a few te n th s of a m illim e te r a c ro s s ) of L i a llo y p h ase running th ro u g h o u t the sa m p le . T his w as tru e fo r diffu sio n te m p e r a tu r e s ranging fro m 400 to 900°C . D iffusion fo r s h o r te r tim e s o r w ith le s s L i p re s e n t did not y ield w e ll-c o m p e n sa te d sa m p le s. O c ca sio n al sa m p le s w hich w e re fa irly w e ll-c o m p e n sa te d and not too badly a tta c k e d by the L i could be ob tain ed by u sin g a fa irly s m a ll am ount of L i on the sa m p le in a c ru c ib le p r e - s a tu r a te d w ith L i, an d w ith O 99 idiffusion te m p e ra tu re s above 700 C. It w as found th a t w e ll-c o m p e n sa te d sam p les could be |c o n s is te n tly p ro d u ced by a two step diffusion p ro c e s s . In the f ir s t diffusion, a v e ry lig h t coating of L i w as used, so th a t a fte r a th re e - h o u r diffusion a t 850-950°C , th e re w ould not be enough su rfa c e L i a c tiv ity to re a c t w ith w a te r. T y pically, the re s is tiv ity of the sam p le i w ould in c re a s e fro m an in itia l value of about . 006 -c m to . 01 - ,. 1 Q- cm , in d ic atin g a sig n ific an t am ount of co m p en satio n . A fter th is , th e sa m p le could be re -a llo y e d w ith L i, w ith a s heavy a co atin g as w ould be u se d fo r L i diffusion of Si, and d iffused ag ain a t | 800-900°C . Good c o m p en satio n ( p > 500 fi- c m ) w ould re s u lt. The i jre a s o n fo r the su c c e s s of th is p ro c e d u re is not u n d ersto o d ; a p p a re n t l y som e s o r t of an n ealin g tak e s place w hen only a s m a ll am ount of L i j is p re s e n t. | 3. G erm an iu m j A t ro o m te m p e ra tu re and below th e so lu b ility of L i in p -ty p e ! jGe is c o n tro lle d a lm o s t e n tire ly by the net a c c e p to r c o n c e n tra tio n 15 -3 ( N -N ) if th is is g r e a te r th a n about 10 cm . A t h ig h e r X X X J o te m p e ra tu re s ( 100-200 C ) the in trin s ic c a r r i e r c o n ce n tra tio n in c re a s e s enough to becom e im p o rta n t and the so lu b ility m ay be le s s th a n ( R e is s 1956 ). A t the te m p e ra tu re s u su a lly u se d fo r d iffu sio n ( 400°C ) the L i so lu b ility is ag ain g r e a te r th an N .- N —. To X X J J • o b tain good co m p e n sa tio n , sa m p le s m u s t be quenched rap id ly fro m i . 1°° j the diffusion te m p e ra tu re to p re v e n t p re c ip ita tio n of the L i. Some sa m p le s to be quenched w e re diffused in m olybdenum j c ru c ib le s, but ra p id ly rem oving the lid fro m a hot c ru c ib le is ! difficult. Since the Ge sa m p le s a re n o rm a lly diffused at 550°C or I le s s , the L i v a p o r p r e s s u r e is low enough th a t q u a rtz c ru c ib le s a re ! not rap id ly a tta c k e d . A q u a rtz c ru c ib le and h o ld e r th at can be rap id ly rem o v ed f ro m the fu rn a c e and e m p tie d w e re m ade a s shown j in F ig. 12. F o r ra p id quenching, its co n tan ts w e re dum ped into a i b e a k e r of oil w ith in a few seco n d s of being rem o v e d fro m the fu rn ac e. I A piece of 1 /4 " m e s h w ire s c re e n w as p la c e d in the b e a k e r to catch j the sam p le, but allow the hot SiC su rro u n d in g the sam ple to fa ll to I | the bo tto m of the b e a k e r, thus allow ing the sam p le to cool f a s te r . I i i It w as d ifficu lt to c o m p en sate Ge w ell enough to allow IR I i i | tra n s m is s io n m e a s u re m e n ts if the in itia l re s is tiv ity w as le s s than t ! ! . 02 Q- cm . H o w ev er, N a z a re w ic z and Ju rk o w sk i ( 1969 ) did, w ith j | difficulty, co m p e n sa te an d m ake IR m e a s u re m e n ts on sam p les w ith an in itia l r e s is tiv ity of only . 005 Q -cm . To o b se rv e the p h o sp h o ru s lo ca l m ode in Ge, it was n e c e s s a ry I Jto o v e r-c o m p e n sa te th e p h o sp h o ru s w ith g a lliu m during grow th, since L i diffusion c an only co m p en sate p -ty p e m a te ria l. Sam ples fro m the P and Ga doped in g o ts w ere s e le c te d fo r being u n ifo rm ly p-type w ith a r e s is tiv ity > . 02 fi-cm . T h ese w e re allo y ed w ith L i, diffused a t 500 o r 550°C fo r 15-25 h o u rs , and th en quenched to room 101 INNER CRUCIBLE OUTER CRUCIBLE WITH HANDLE S AM PLE 8 0 M E S H SIC F ig u re 12. Q uartz c ru c ib le a rra n g e m e n t fo r rap id ly quenching sam p les a fte r L i d iffusion. The h andle extends to th e end of the fu rn ac e tube. te m p e ra tu re . The sam p le w ould u su a lly be u n ifo rm ly n-type a fte r i ‘ quenching but would becom e high re s is tiv ity p -ty p e a fte r a few h o u rs i to a few days a t room te m p e ra tu re . The sa m p le s w e re s to re d in | liq u id n itro g e n to p rev en t fu rth e r change. C a re w as tak e n not to ; h e a t the sa m p le s during lapping and p o lish in g . None of the sa m p le s : w as co m p en sated w ell enough to rem ove a ll m e a s u re a b le fre e : c a r r i e r a b so rp tio n . I C. R e sistiv ity and Type M e asu rem en t R e sistiv ity of sa m p le s w as m e a s u re d w ith a fo u r-p o in t probe i sy s te m , by u sin g a D um as fo u r-p o in t p ro b e h e a d m o d el P 8 -8 5 w ith ; . 025" probe spacing ( Dum as In st. Co. , C o sta M esa, C alif. ), an j ad ju sta b le c u rre n t so u rc e and a H e w le tt-P a c k a rd m o d el 425 DC I i Im ic ro v o lt-a m m e te r. The fo u r p ro b e p o in ts a re ev en ly sp aced in a i j i ! s tra ig h t lin e; c u rre n t is a p p lied b etw een th e o u te r two p ro b es and the ! voltage betw een the in n e r p ro b es m e a s u re d . The re la tio n sh ip betw een | | the m e a s u re d tr a n s fe r r e s is ta n c e Y /I and th e re s is tiv ity depends on jthe sam p le g eo m etry and is given in the lite r a tu r e f o r s e v e ra l i j g e o m e trie s ( Sm its 1958 ). F o r the lim itin g c a se of a th in infinite I sh e e t of th ic k n e ss t, p 4. 5 V /tl if th e p ro b e sp a cin g is g re a te r th an about 2t. F o r a se m i-in fin ite sam p le ( d im en sio n s m uch V g r e a te r th an the probe spacing ) p = n a y , w h ere a is the probe sp acin g . C onductivity type is d e te rm in e d by a h o t-p o in t p ro b e, c o n s is - .103 : tin g of a s m a ll so ld e rin g iro n and a g alv an o m eter. The sam p le is ! co n n ected to one side of the g alv an o m eter; the o th e r side is * co n n ected to the so ld e rin g iro n tip , w hich is th en p la c e d in c o n tact | w ith the sa m p le . The conductivity type at the point of c o n tact of the ; h o t p ro b e d e te rm in e s the sig n of the th e rm o e le c tric p o w er an d thus ! th e d ire c tio n of c u rre n t flow through the g a lv a n o m e ter, w hen, a s is | the c a se h e re , the th e rm o e le c tric pow er of the m e ta l hot p ro b e is j sm a ll. i ; D. D e te rm in a tio n of C om position T he d e n sity and la ttic e p a ra m e te r of Ge Si a llo y s v a ry X X " X j a lm o s t lin e a rly w ith x fro m the values fo r p u re Ge to th o se of ! I p u re Si. The deviations a re s m a ll but have b een ta b u la te d | ( D ism ukes 1964 ), so th a t e ith e r d en sity of la ttic e p a ra m e te r ! I I m e a s u re m e n ts p ro v id e a u se fu l m ethod of d e te rm in in g co m p o sitio n i of Ge Si a llo y s. | X X " X D ensity m e a s u re m e n t is the sim p le st technique. The sam p le is w eighed in a ir , and th en w eighed in w a te r by suspending it on a fine w ire in a b e a k e r of w a te r to w hich a tra c e of so ap w as ad d ed to a id in w etting the sa m p le . The sp ecific g rav ity is th e n ( w eight in a i r ) / [ ( w eight in a ir ) - ( w eight in w a te r ) ] . Since the d e n sity of w a te r depends on te m p e ra tu re and d isso lv ed im p u ritie s , the m e a s u re m e n t is sta n d a rd iz e d by m e a su rin g the sp e c ific g ra v ity of a p ie c e of p u re Ge o r Si. An a n a ly tic a l balance w ith a s e n s itiv ity of 104] i 1 mg w as u se d fo r m o st of the m e a s u re m e n ts . F o r the s m a lle s t ; i ! sa m p le s ( 0. 1 X 0 .7 x 1 .5 c m ) the se n sitiv ity of the m e a su re m e n t ; is not v e ry high; it is only about + . 01 fo r x. In m o st c a s e s , la r g e r ■ ( | sa m p le s w ere u se d , so th a t the s e n sitiv ity w as . 003 o r b e tte r. Some ! m e a s u re m e n ts w e re done w ith a b alan ce w ith a re so lu tio n of 0. 1 m g. I H ere it w as found th a t the d e g re e to w hich the w a te r w et the w ire ; a ffe cte d the m e a su re m e n t, so e ffe ctiv ely , the s e n sitiv ity was only I about 0. 3 m g. i t X -ra y d iffra c tio n m e a s u re m e n ts w e re m ade on som e of the ; G e -ric h sa m p le s w h e re it w as su sp e c te d th at the co m p o sitio n of the | ingot w as v a ry in g ra p id ly thus m aking it u n d e sira b le to u se la rg e ! J sa m p le s. The x - r a y m e a su re m e n t a ls o w ill check the hom ogeneity i I of the allo y , sin ce a n inhom ogenous allo y w ill give b ro ad en ed d if- | fra c tio n lin e s . F o r th e se m e a s u re m e n ts , th in s lic e s w ere cut fro m I j the ingots a d ja c e n t to the s lic e s u se d fo r the in f ra r e d m e a su re m e n ts . ! i | The sa m p le s w e re ground to a pow der and m ixed w ith.pow dered Ge a s a re fe re n c e . The m ix ed pow der w as s p re a d on a g la ss m ic ro scope slid e and h e ld in place w ith a dilute so lu tio n of Duco cem en t in a c e to n e . M e a su re m e n ts w e re th en m ade of the d iffra c tio n peaks of seve r a l h ig h -an g le re fle c tio n s by u sin g C uK ra d ia tio n . The 0 1 a n g u la r s e p a ra tio n s b etw een the allo y lin e s and the lin es fro m pure Ge w e re u se d to d e te rm in e the la ttic e p a ra m e te r of the alloy. It w as u su a lly n e c e s s a ry to a d ju st the m ic ro sc o p e slid e in the sam ple I 105 ! h o ld e r to obtain about eq u al in te n sitie s fro m the Ge and the allo y . ! The sam e technique w as u se d to c o m p a re la ttic e p a ra m e te rs 2 0 - 3 ! of pure Si, Si doped to about 4x10 cm w ith b o ro n , and som e of I the sam e B -doped Si th a t h a d b een lith iu m d iffused. T hese ; m e a su re m e n ts w ere m ade to d e te rm in e how m u ch of the la ttic e ; s tr a in in tro d u c ed by b o ro n w as rem o v e d by lith iu m diffusion. E . P o lish in g S am ples w ere ground to the d e s ire d th ic k n e ss by grin d in g the ; sam p le w ith a w a te r s lu r r y of 600 m e sh SiC g rin d in g pow der on a t i g la ss p la te . ! The sam p le w as h e ld by m ounting it on the end of a so lid b r a s s I J Q | c y lin d e r w ith sa lo l ( phenyl s a lic y la te ), w hich m e lts a t about 40 C. I I j The b r a s s plug w as h e ld in a s ta in le s s s te e l sle e v e w hich could'be j a d ju ste d to p ro tru d e beyond the end of th e b r a s s plug by the d e s ire d I i j th ic k n e ss of the sa m p le . The g rin d in g w as follow ed by lapping i ' j a g a in st a g la ss plate w ith 1200 m e sh a b ra s iv e s lu r r y to rem o v e j about . 002" and by 3200 m e sh s lu r r y to rem ove a n o th e r . 001". The sa m p le , s till m ounted in the p o lish in g jig , w as th en p o lish ed w ith 600 m e sh SiC on a se lv y t ( co tto n ) p o lish in g clo th on a ro ta tin g w heel. The cloth w as u su a lly dam pened w ith w a te r and liq u id d e te rg e n t, although so m e tim e s ju s t w a te r w as u se d . The slig h t h aze of s c ra tc h e s le ft by p o lish in g w ith 600 m e sh a b ra s iv e could m o stly be rem o v ed by a fin al p o lish w ith 1200 m e s h a b ra s iv e . 106 F . In fra re d M e asu rem en ts The in fra re d tra n s m is s io n m e a su re m e n ts w e re m ade by using g ra tin g s p e c tro m e te rs . A ll m e a su re m e n ts below 250 c m - * and i som e in th e ran g e 20 - 670 c m - * w e re m ade on a P e rk in -E lm e r m o d el 301 double b e am s p e c tro m e te r. The re s t of the m e a s u re - im e n ts w e re m ad e on a sin g le b e a m sp e c tro m e te r designed and b u ilt by P r o f e s s o r W. G. S p itz e r, u tilizin g a P e rk in -E lm e r m odel 210B ; m o n o c h ro m a to r. In th e 301 double b e am sy ste m , the two beam s a r e chopped ! out of p h a se , com bined w ith a b eam s p litte r, and fed th ro u g h th e | m o n o c h ro m a to r to a sin g le G olay d e te c to r. The am p lified output of i • 'th e d e te c to r is ru n into two s e p a ra te synchronous re c tif ie r s , each one in p h a se w ith one of th e c h o p p ers. T hus, two independent I outputs a r e obtained, one fro m the sam pling b eam (I ) and one j • j fro m th e re fe re n c e b e a m (I ). The tra n s m is s io n of a sp e cim en j ! in th e sam p lin g b e a m is given by the ra tio I T /I . The c o n stru c tio n ! ° of th e s p e c tro m e te r p re s e n ts som e d ifficu lties in m aking a c c u ra te h ig h -re s o lu tio n m e a s u re m e n ts . To keep the sig n a l-to -n o is e ra tio m o re o r le s s c o n stan t d u rin g a sc an , a se rv o -m e c h a n ism v a rie s th e m o n o c h ro m a to r s lit w idth to keep the output of the IQ channel c o n sta n t. T his c a u se s th e re so lu tio n to v a ry co n sid era b ly th ro u g h a sc a n . The G olay d e te c to r is quite se n sitiv e to m ec h an ica l v ib ra tio n s ; the ch o p p er and synchronous re c tifie r a sse m b ly p ro - 107 I duces a c o n sid e ra b le am ount of v ib ra tio n , w hich re s u lts in a co n stan t false sig n al in both 1,^. and I q c h a n n e ls. A t high a m p lifie r gain se ttin g s, the fa ls e sig n a l m ay be not sm a ll c o m p a red to the d e sire d signal; th is c an c a u s e p ro b le m s. The in d ic ate d tra n s m is s io n is then ( I— + c )/( I + c ). The c o n stan t fa lse sig n als v a ry w ith 11 0 6 ' gain, so the in d ic a te d tr a n s m is s io n b eco m es a function of gain in ! the constant I m o d e. The in d ic a te d tra n s m is s io n v a rie s w ith the o ! I b eam in te n sity if th e s p e c tro m e te r is ru n w ith co n stan t s lits , j T hese d ifficu lties a r e not b o th e rso m e a t lo w er gain se ttin g s u se d fo r I lo w -re so lu tio n m e a s u re m e n ts , and can in g e n e ra l be avoided by j I m aking sin g le -b e a m m e a s u re m e n ts . | The 301 s p e c tr o m e te r h a s the sam p lin g p o sitio n a t a focal i i point betw een the s o u rc e and the m o n o c h ro m a to r. F ilte rin g to I | rem ove h ig h e r o r d e r ra d ia tio n fro m the g ra tin g s is done w ith | | re s tra h le n p la te s , s c a t t e r p la te s , o r w ire g rid s u se d as re fle c tio n i I j f ilte r s , c ry s ta l c h o p p e rs , and, in som e w avelength ra n g e s, t r a n s m issio n f ilte r s . T h e o p tic a l lay o u t is show n in F ig u re 13; recom m ended f ilte r in g is given in T able 8. The re c o m m e n d e d filte rin g w as g e n e ra lly used; but in som e c a se s w here s e v e r a l sc a n s w e re to be m ade in a p a rtic u la r w ave length ran g e, s lig h tly d iffe re n t filte rin g w as u se d to avoid f ilte r changes d u rin g the s c a n . F o r e x am p le, a N aF re fle c tio n f ilte r w as u se d o v er the ran g e 425 - 350 cm V the P e rk in -E lm e r re c o m - source area bea m combining a rea I deti detector chopper grating monochromator F ig u re 13. O ptical layout of the double b e am f a r in fra re d sp e c tro p h o to m e te r. Table 8 . Recommended filtering for the Perkin-Elmer Model 301 far infrared spectrometer. W avelength or F req u en cy Sange M 2 and M 2* on F i l t e r Wheel F l and F l' M 4 - Chopper and M 4 -* M10 on F i l t e r W heel F2 Ml 2 F3 F i l t e r W heel M onochromator G r a tin g B la z e R u lin g 1 s t L/mm o r d e r 665-4-OOcnT1 1 5 -2 5 P o s . 1 M irror BaP2 F in e S c a t t e r P la t e L iF P o s . 1 F in e - S c a t t e r P la t e Open P o s. 2 444cm” 1 4-0 2 2 .5 ^ 0 0 -320cm- 1 2 5 - 3 1 .3 P o s . 2 NaF SaP2 F in e S c a t t e r P la t e L iF P o s . 1 F in e S c a t t e r P la t e Open P o s . 2 4-4-4-cm ” 1 4-0 2 2 .5 £ h c c Q " J - i J 3* 9 320-220cm “ 1 3 1 .3 -4 -5 -5 P o s. 2 NaF BaP2 F in e S c a t t e r P la t e BaF_ P o s f 2 F in e S c a t t e r P la t e Open P o s . 2 222cm” 1 20 4-5 4 CO o £ o C D 2 2 0 -l7 0 cm “ 1 4 -5 .5 -5 9 P o s . 3 NaCl BaF2 i F in e S c a t t e r P la t e BaF £ Pos • 2 F in e S c a t t e r P la t e Open P o s. 2 222cm” 1 20 J*5 T a b le 8 — C on tin u ed 170-130cm '': L 5 9 -7 7 P in e S c a t t e r P la t e P o s. k C sl C oarse S c a t t e r P la t e KC1 P o s. 3 C oarse S c a t t e r P la t e Open P o s. 2 111cm"1 10 90 130-98cm _1 7 7 -1 0 2 P in e S c a t t e r P la t e P o s . ^ C sl C oarse S c a t t e r P la t e KBr P o s. C oarse S c a t t e r P la t e Open P o s . 2 111cm"1 10 90 98-80CHT1 1 0 2 -1 2 5 P in e S c a t t e r P la t e P o s. k C sl C oarse S c a t t e r P la t e CsBr P o s. 5 C oarse S c a t t e r P la t e Open P o s . 2 111cm"1 10 90 8O-69C 1 1 1 " 1 1 2 5 -1^ 5 C oarse S c a t t e r P la t e P o s . 5 C sl C oarse S c a t t e r P la t e CsBr P o s . 5 C oarse S c a t t e r P la t e Open P o s . 2 55.5cm 1 5 180 6 9 -^ lcm ” ^ 1^5-2^0 C oarse S c a t t e r P la t e P o s . 5 C sl C oarse S c a t t e r P la t e KRS-5 P o s. 6 C oarse S c a t t e r P la t e P o ly e th y le n e F i l t e r #1 P o s . k 55.5cm 1 5 180 o H g A rc S ou rce -1 11 J j m ended filte rin g is a m ir r o r above 400 cm and the N aF fro m ■ 400 to 333 cm"’*. O cca sio n ally , the g lo b ar so u rc e w as u se d in th e1 I 100 - 170 cm * range in ste a d of the Hg a rc so u rc e . No changes in i the o b se rv e d sp e c tra re s u lte d fro m th e se su b stitu tio n s. Low te m p e ra tu re m e a su re m e n ts w ith the 301 w e re m ade w ith j th e sam p le m ounted on a co p p er cold fin g e r in the vacuum space of ; a g la ss d ew ar. The d ew ar u s e d plyethylene w indow s; an eq u al j th ic k n e ss of polyethylene w as put in the re fe re n c e b eam fo r double b e a m m e a s u re m e n ts , i , j The single b e a m s p e c tro m e te r h as the sam p lin g a r e a a fte r I th e m o n o ch ro m ato r. It u se s a g lo b ar so u rc e and th erm o co u p le ! I | d e te c to r. M u ltila y er tr a n s m is s io n f ilte r s m a n u fa c tu re d by P e rk in - i ! E lm e r C om pany a re u se d to rem ove h ig h e r o rd e r ra d ia tio n fro m the i | g ra tin g s. A m e ta l d ew ar equipped w ith C s l windows is u se d fo r ! j liq u id n itro g e n te m p e ra tu re m e a s u re m e n ts . A flexible bellow s and i pivot allow s the n itro g e n r e s e r v o ir and co ld fin g e r a sse m b ly to be I m oved, so th at the sa m p le , m ounted on the c o p p er cold fin g e r, can be m oved in o r out of th e o p tic al path. A m e ta l d ew ar m an u fa ctu red by S u lfrian C ry o g en ics In c o rp o ra te d is u se d fo r liq u id h e liu m te m p e ra tu re m e a s u re m e n ts . T he d ew ar h a s a ro ta ry jo in t so th at the sa m p le , m ounted on a c o p p e r cold fin g e r, can be m oved in o r out of the o p tic al path. It is equipped w ith K RS-5 w indow s. The liq u id n itro g e n te m p e ra tu re d e w ars on both s p e c tro m e te rs 112 I lea k ed enough th at the in su latio n p ro v id ed by the vacuum could be s e rio u s ly d e g ra d ed during a ru n if th ey w ere not continuously I pum ped. B oth IR s p e c tro m e te rs a re som ew hat se n sitiv e to the v ib ra tio n p ro d u ced by a m ec h an ica l pum p, so a V a ria n " V a c so rb " i s o rp tio n pum p w as u sed . T hese pum ps have an ad d itio n al advantage, ; in th a t th ey do not have any b a c k stre a m in g oil v a p o rs th a t m ay co at ! the sam p le o r the windows w ith oil. M e a su re m e n ts on the single b e am s p e c tro m e te r w ere m o stly j tak en a t a re so lu tio n of 0. 5 - 1 .0 cm \ The m e a su re m e n ts on the ; 301 d o u b le-b e am s p e c tro m e te r w ere tak en at re so lu tio n s of 2 to ! 5 cm *. The p o o re r re so lu tio n w as obtained a t s h o rte r w av elen g th s, I I ; w h ere s m a lle r s lit w idths should have been u se d . H ow ever, the | I G olay c e ll is a p p a re n tly le s s effic ie n t at sm a ll slit w idths w hen only i i j a s m a ll fra c tio n of its ta r g e t is filled . j The a b so rp tio n co efficien t (a) w as d e te rm in e d fro m the tra ils - | m is s io n (T) and the sam ple th ick n ess (x) w ith the re la tio n sh ip T = i ( 1-R )^e aX/( 1-R ^ e ). F o r the G e-Si allo y s the re fle c tiv ity (R) w as tak en a s eq u al to the re fle c tiv ity of the pure m a jo r c o n s ti tuent; a s long as ax is not too sm a ll, th is w ill not in tro d u ce m uch e r r o r into the v alu es c a lc u la te d fo r a , and the re la tiv e v alu es fo r a w ill be quite good. . The e r r o r in the d ifferen ce in a b so rp tio n coefficients, is d [ ( a1- a 2) x ] a p p ro x im a te ly — ^ ------------ AR . F ro m the e x p re s s io n fo r T, I fo r w hich one o b tain s j ^ e -2a,]X e -2a 2x dR ( a r 0C 2) x = 2R . . 2 -2 a xx . . 2 -2 a 2x ( 1-R e 1 ) ( 1 -R e * ) i F o r a w o rst c a se e s tim a te , a ssu m e th a t the v a ria tio n in i re fle c tiv ity is s im ila r to the v a ria tio n in band gap, w ith a lm o st h a lf of the to a l change o c c u rin g b etw een 0 and 15% Si; a Ge Q O Si • oo .12 | allo y w ould th en hav e R = . 346 a s c o m p a re d to . 36 for. Ge, I ! | T y pically, the s m a lle s t value of a x e n c o u n te re d would be 0. 2 . F o r I i th ese n u m b er, A( ) x < . 007, w hich c o rre sp o n d s to | . I Z — • A( a i ~a 2 ) 5 °* 1 c m - 1 . i Some d iffe re n tia l tr a n s m is s io n m e a su re m e n ts w ere m ade on t I i | the s in g le -b e a m s p e c tr o m e te r. T h ese w e re done by m aking a sc a n ! | f ir s t w ith one sa m p le in the b eam , th en w ith the o th er, then taking j jthe ra tio of the re c o rd e d in te n s itie s . If the sa m p le s a re the sam e ! th ic k n ess and ax is not too sm a ll, the d ifferen c e in ab so rp tio n co efficien ts is o b tain ed to a good a p p ro x im atio n fro m ( a^-a^) x = jfc n ( I2 / I1 ). • CH A PTER IV In fra re d A b so rp tio n of L a ttic e M odes and th e S ilicon L o c a l M ode in Ge Si, x 1 -x T his c h a p te r p re s e n ts a stu d y th ro u g h the u se of in fra re d ! I a b so rp tio n m e a su re m e n ts of som e a s p e c ts of the la ttic e dynam ics of I Ge S i1 alloys in the range 0 < x < 0. 12 an d 0. 88 < x < 1. The X i “X " 1 ' 1 in fra re d a b so rp tio n of undoped Ge Si show s fe a tu re s not se en in X X mX ; e ith e r Ge o r Si; som e of th e se fe a tu re s a p p e a r to be c h a ra c te ris tic | ! of single-phonon p ro c e s s e s . The in te r e s t in the phonons of such | i I a llo y s has been g re a tly in c re a s e d b ecau se of the th e o rie s developed I fo r lo c a liz e d m ode and band m ode a b so rp tio n . The th e o re c tic a l | d isc u ssio n s of C h a p te r I and II c a n be re la te d to the in fra re d i . . . j a b so rp tio n fo r c a s e s w h e re the la ttic e s y s te m is one of a n e a rly pure 1 I m a te ria l and the im p u ritie s can be tr e a te d a s is o la te d point d efects. j | In the p re s e n t w ork, th e se th e o rie s should apply if the value of x is I I . su fficien tly clo se to e ith e r z e ro o r one. W hile in fra re d la ttic e a b so rp tio n in Ge Si allo y s h as been X J. — X p re v io u sly m e a su re d , the study w as not su ffic ie n tly d e ta ile d to p e rm it a co m p reh en siv e c o m p a riso n w ith c u rr e n t th e o rie s . In the w o rk shown h e re , in fra re d a b so rp tio n m e a s u re m e n ts a t d ifferen t te m p e ra tu re s fo r allo y s w ith x < 0.12 and x > 0 . 88 a re re p o rte d fo r a freq u en cy range of 100 < v < 700 c m "* . T his fre q u e n c y ran g e is su fficien t to en co m p ass m o s t of the sin g le phonon e n e rg y range fo r both x = 0 and x = 1 as w ell as m uch of the o b se rv e d tw o-phonon : a b so rp tio n in th e se c a s e s . The m e a su re m e n ts show the a b so rp tio n due to the lo c a liz e d v ib ra tio n a l m ode of th e is o la te d su b stitu tio n a l I Si in a p red o m in an tly Ge la ttic e . The freq u en cy is clo se to th at c alc u la te d w ith Eq. 32. The a b so rp tio n c ro s s - s e c tio n is sm a ll, ; in d icatin g th at th e a p p a re n t c h a rg e s a s s o c ia te d w ith th e Si a r e a j s m a ll fra c tio n of an e le c tro n c h a rg e . In th e S i-ric h m a te ria ls I (sm a ll x) a b so rp tio n bands a r e o b se rv e d w hich a p p e a r to c o r r e s - I i pond to a sin g le phonon d e n s ity -o f-s ta te s sp e c tru m ra th e r th an th e | ! th e o re tic a lly p re d ic te d band m ode a b so rp tio n . T e m p e ra tu re i ; dependence m e a su re m e n ts in d icate th a t th e a b so rp tio n is of the sin g le i , | phonon v a rie ty . T hese la tte r re s u lts a r e q u a lita tiv e ly s im ila r to >those re p o rte d fo r n e u tro n -irra d ia te d S i. S am ples w hich a r e G e -ric h i show , in addition to th e Si lo ca l m ode, an en h an cem en t of so m e of I ; th e tw o-phonon bands p re s e n t in p u re G e. It is not c le a r fro m the I ! te m p e ra tu re dependence w h eth er th e in c re a s e in a b so rp tio n is of the sin g le-p h o n o n o r tw o-phonon type. The a b so rp tio n in th is c a se does ! not c o rre sp o n d to peaks in the sin g le-p h o n o n d e n s ity -o f-s ta te s sp e c tru m fo r Ge. A. V ib ratio n al A b so rp tio n of D efects in th e D iam ond Type L a ttic e We have d isc u sse d the influ ence of d efects on th e v ib ra tio n a l m odes of the p e rfe c t d iam ond-type la ttic e in C h a p te rs I and II. Of p a rtic u la r in te r e s t h e re is the d isc u ssio n of d e fect-in d u ced in f r a r e d ' a b so rp tio n in the freq u en cy range of the band m odes; i . e . , a t ! fre q u e n c ie s le s s th an (« . D aw ber and E llio tt ( h e r e a f te r DE ) ^ m ax ; c o n sid e re d the m odel of an isotopic su b stitu tio n ( no fo rc e c o n sta n t changes ) of an im p u rity of d ifferen t m ass w ith an io n ic c h a rg e e, p laced a t the c e n te r of an u n ch arg ed la ttic e . F o r th is m o d el, DE ; give the a b so rp tio n co efficien t as 2 2 ! oc(cu) = - 3 ^ I X(f, 0) I2S(oj) , (74) j I w h ere D is the defect d en sity , T ) is the re fra c tiv e index, A is a lo c a l 2 2 j fie ld te r m , — = A, and S(uu) is the d e n s ity -o f-s ta te s p e r u n it • 2 2 1 freq u en cy . The S(uu) is re la te d to v(uu ) by S(uu) = 6sNu)V(uj ), w h ere | I s is the n u m b er of a to m s /u n it c e ll and 3sN is the to ta l n u m b e r of I m o d es. The sq u a re of the absolute value of the im p u rity a m p litu d e j ( X(f, 0 ) J , w here f la b e ls the m ode and 0 the im p u rity p o sitio n , i I is given by I x '£’ °> I2 ■ m W ("2 « W < z > + [ 1 - z ^ 0 ] 2 ) • • (75) T his e x p re s s io n is s im ila r to Eq. 21 , w hich applies to the lo c a l m ode. Some of the q u alitativ e c h a ra c te ris tic s of b an d m ode a b s o r p tio n a re deducible by in sp e ctio n of th ese e x p re ssio n s. F o r e-*0, n I M ^ M , | X(f, 0 ) J — an d o c(u o ) -♦ S(uj) . Thus f o r an im p u rity of the sam e m a s s as the h o st ato m it re p la c e s , the a b s o rp tio n should have the sam e a p p earan ce as S(o j). The d e n sity -o f-sta te s h a s fo u r 117' i m ain peaks ( Jo h n so n 1965 ) roughly c o rre sp o n d in g to the d en sity | m ax im a of the TO, LO , LA and TA b ra n c h e s of the phonon sp e c tru m . ! The TO and TA peaks a re p a rtic u la rly pronounced fo r both Si and Ge b ecau se of the fla tn e s s of th e se b ra n c h e s o v e r m uch of the zone. F o r ■ e -* 1 (M 7« M) o r fo r e -* la rg e negative value (M7» M ) , the f ir s t 2 ; te r m in the d en o m in ato r of | X(f, 0) j should dom inate w henever 2 2 2 4 Z v (Z) is la rg e . Since Z = u ) » the high freq u e n cy a b so rp tio n n e a r TO is e x p ec te d to be m uch w e a k e r th an the low freq u e n cy peak n e a r ! TA(uu_r. 500 c m - * and (JO ,-* ~ 130 cm * in Si). In th o se freq u en cy X U 1 A . ; 2 I reg io n s w h ere V (z) is s m a ll the seco n d te r m in the d en o m in ato r of i | X(f, 0) | ^ m ay have a m a jo r e ffe c t on a . W h e n l-e Z ■ V^ (*K = q; I we have a re so n a n c e co n d itio n w h ere the a b so rp tio n m ay be larg e i i I even though S(uo) is not la rg e . i 2 | It is a p p a re n t th a t the a ssu m e d S(u j) o r v(u) ) m ay have a m a jo r ! ! e ffect on the c a lc u la te d n u m b er of re so n a n c e s and th e ir fre q u e n c ie s. I ! B ellom onte an d P ry c e ( 1968 ) c a lc u la te d the band m ode a b so rp tio n j | fo r b o ro n im p u ritie s in the Si la ttic e and u se d a d e n s ity -o f-s ta te s i I i I e s tim a te d fro m the c r itic a l point a n a ly sis of L oudon and Johnson (1966) w ith the n e u tro n d iffra c tio n d ata of D olling (1963). T his d e n s ity -o f-s ta te s d iffe rs sig n ific a n tly fro m th o se of A n g re ss, Goodwin and Sm ith (1965) o r Jo h n so n (1965) and w ith it, B ellom onte and P ry c e p re d ic t a n e a r-re s o n a n c e a b so rp tio n n e a r 225 c m - * w hich is not p re d ic te d by o th e r c a lc u la tio n s. T his p re d ic tio n w as in a g re e m e n t w ith the o b se rv a tio n of A n g re ss, e t. a l. of a sm a ll sh a rp peak n e a r 227 cm "^ . B ellom onte and P ry c e point out th e se n sitiv ity I of th e ir calcu latio n s to th e v(ji) function. I ; i : I In a ll of th e above d isc u ssio n it h as b een a ssu m e d th a t th e fo rce I co n stan ts a r e unchanged by the su b stitu tio n of th e im p u rity and th at ! th e ch arg e m o d el is one of an ionic o r s ta tic c h arg e e on the im p u rity . ! The la c k of v a lid ity of th e f i r s t a ssu m p tio n w ill c e rta in ly a ffect th e I c a lc u la tio n s, ho w ev er, u n le ss th e changes a re m a jo r ones they a re not expected to a lte r the g e n e ra l n a tu re of th e c o n clu sio n s. M ore I re c e n t calcu latio n s (E llio tt and P feu ty 1967, P feuty 1968) have taken j both fo rc e co n stan t changes and d e fe ct p a irin g into account in | p red ic tin g lo c a l m ode fre q u e n c ie s. | The a ssu m p tio n th at the to ta l coupling of th e rad ia tio n field to ! th e phonons, including th e lo ca l m o d e, a r is e s fro m the s ta tic c h arg e i | e c a rrie d by th e im p u rity is a s e rio u s one fo r the p re s e n t c a s e . Since | Si im p u ritie s in Ge a r e not ex p ected to have an ionic c h a rg e the ! a b so rp tio n a t th e lo c a l m ode freq u e n cy should b e z e ro . The in a d e quacy of th is a ssu m p tio n is vividly d e m o n stra te d (Newman and W illis 1965, N ew m an and S m ith 1969) by th e a b so rp tio n of carb o n in Si at th e C lo ca l m ode freq u en cy . A gain C is not expected to have a sta tic c h arg e y e t th e a b o srp tio n by C is a p p ro x im a te ly five tim e s stro n g e r than th at by B ” in co m p en sated Si w h e re th e b o ro n is an ionized a c c e p to r. In a s e r ie s of th e o re tic a l p a p e rs L eig h and S zig eti (1967a, A X 7 ; b, 1968 ) have pointed out th at the a p p a re n t c h a rg e is d e te rm in e d 1 la rg e ly by sh o rt range effects in v alen cy c ry s ta ls , and the s ta tic ; ch arg e c a r r ie d by the im p u rity m ay play a re la tiv e ly m in o r ro le in , the a b so rp tio n . B. P re v io u s E x p e rim e n ta l O b serv a tio n s T h ere have been s e v e ra l o b se rv atio n s ( N ew m an and S m ith 1969, B alkanski and N azarew icz 1966, W ald ner, H ille r and S p itz e r | 1965, C osand and S p itzer 1967, N azarew icz and Ju rk o w sk i 1969 ) I of in fra re d a b so rp tio n a ttrib u te d to lo c a liz e d v ib ratio n a l: m odes of i im p u ritie s in Si and Ge. As p rev io u sly m entioned, h o w ev er, the t | ; lo ca l m ode of Si in Ge h as been re p o rte d only in R am an sc a tte rin g I | e x p e rim e n ts. A R am an line a ttrib u te d to the Si lo c a l m ode w as j j o b se rv e d by F e ld m a n et.. a l. (1966) fo r w hich V = 389 to 402 c m " ' as ; x = 0. 99 to 0. 67 in Ge Si, allo y s. At x < 0. 95 lin e s w e re a ls o I x 1 -x 1 — j o b se rv e d fo r 448 and 476 cm "* both of w hich a r e above the top of the | . I phonon s p e c tru m of u n p e rtu rb e d Ge. T hey w e re in te rp re te d a s the i ; ! R am an activ e m odes of S i-S i n e a re s t neig h b o r p a ir s , w hich have sy m m e try . In sa m p le s of sm a ll x ( S i-ric h ), P a r k e r e t .a l . o b se rv e d a t le a s t th re e peaks in the R am an s p e c tra w hich lie below the Si o p tic a l m ode line n e a r 520 cm * and a re a ssu m e d to be re so n a n t o r n e a r - r e sonant m o d es. By o b serv in g the R am an lin e s a s x v a rie s a c ro s s the fu ll ran g e, the follow ing c o rre la tio n s w e re o b se rv ed : 120 (Ge S i. ) ' x 1-x ' S m a ll x L a rg e x Si o p tical.m o d e “► Si p a ir bands in Ge c ry s ta l I j L o w est freq u en cy re so n a n t ■ + Ge o p tical m ode j m ode I -1 ~ 400 cm re so n a n t m ode -» Si lo cal m ode | | U n fo rtu n ate ly , the re p o rt of th e w o rk at sm a ll x did not give two of f ’th e th r e e re so n a n t m ode fre q u e n c ie s, j A v a rie ty of d e fe cts have been shown to p ro d u ce band m ode | a b so rp tio n in Si. T h ese include both su b stitu tio n al and in te r s titia l j I im p u ritie s and dam age in tro d u c ed by e le c tro n o r n e u tro n ir ra d ia tio n , i A n g re ss e t. a l. (1965, 1968) have o b serv ed band m ode a b so rp tio n in s a m p le s containing b o ro n and a su b stitu tio n a l donor, e ith e r P , A s, o r Sb, w ith th e fin al co m p en satio n achieved by e le c tro n irr a d ia tio n , and in a P -d o p e d sa m p le co m p en sated by n e u tro n irra d ia tio n . The m o s t p ro m in e n t band, a t 441 cm "^ , was a ttrib u te d to a p h o sp h o ru s re s o n a n c e m ode. T h e re w e re a n u m b er of w eak er b an d s; so m e w e re a ttrib u te d to B, A s, o r P re s o n a n c e s . O thers a t 491, 468, 423, 347 331, and 315 cm""* w e re a s s o c ia te d w ith sp e cific im p u ritie s , but o c c u re d n e a r c ritic a l poin ts o r reg io n s of high d e n s ity -o f-s ta te s and w e re a ttrib u te d to a c tiv a tio n of la ttic e m odes by the im p u ritie s . T hey found th a t th e a b so rp tio n due to b o ro n a g re e d fa irly w ell w ith th e c a lc u la tio n of D aw ber and E llio tt (1963b) fo r in -b an d a b so rp tio n , but th a t th e r e w as little a g re e m e n t betw een the p re d ic te d and o b se rv e d • s p e c tra fo r P o r A s. Devine and N ew m an (1970) stu d ied the in -b a n d j a b so rp tio n of A1 in Si w hich w as co m p en sated e ith e r by L i diffusion j o r e le c tro n irra d ia tio n . The L i co m p en sated sam p les show a L i I v ib ra tio n a t 520 cm * and two new bands a t 469 c m * an d 431 c m S | it is su g g e ste d th a t th ey m ay be A1 reso n an c e m odes of L i^ -A l" p a ir s . | No o th e r s h a rp fe a tu re s a re se e n in the L i-c o m p e n sa te d sa m p le s. In the e le c tro n ir r a d ia te d sa m p le s the com pensation is + + j p rim a rily due to th e fo rm a tio n of A1 in te r s titia ls , m o st of w hich j a re p a ire d w ith su b stitu tio n a l A l; o th e r ra d ia tio n dam age m ay a lso j j be p re s e n t. S e v e ra l bands a re o b se rv e d , som e of w hich o c c u r a t th e j ! fre q u e n c ie s of c r itic a l points d e n s ity -o f-s ta te s m ax im a in the Si i I | phonon s p e c tru m . T h ese include a la rg e peak of about 480 cm " i and s m a lle r peaks a t 419, 335, 235, 212, and 150 c m ” *. Two j a d d itio n al p eak s a r e o b se rv e d w hich cannot be a s s o c ia te d w ith any ob- i i j vious fe a tu re s of the phonon s tru c tu re ; th ey su g g est th a t the one a t i i -1 ++ j 242 cm m ay be a reso n an c e m ode of in te r s titia l A l and the o th e r 1 - 1 | a t 455 c m , m a y be a reso n an c e m ode of su b stitu tio n a l A l. j D am age fro m fa s t n e u tro n irra d ia tio n of Si ( B alkanski 1964, A n g re ss e t,a L 1963 ) p ro d u ces a b so rp tio n peaks a t som e of the sam e fre q u e n c ie s a s a re o b se rv e d fo r the doped sp e cim en s. In p a rtic u la r, a la rg e b and n e a r 480 c m s m a lle r bands n e a r 415 cm * and 340 cm \ an d a b ro a d band w ith som e s tru c tu re betw een 100 and 200 cm * a re se e n . The o v e ra ll shape of the a b so rp tio n b e a rs 122 ■ c o n sid e ra b le re s e m b la n c e to the Si d e n s ity -o f-s ta te s . It m ay be noted th a t d iffe re n t m e a s u re m e n ts of the a b so rp tio n of neutron ; ir r a d ia te d Si d iffe r in so m e d e ta ils; B alk an sk i show s a band a t about i 250 cm - * quite clo se to th e 242 cm * band re p o rte d in e le c tro n - i | irr a d ia te d A l-doped Si. T he prev io u s a b so rp tio n m e a su re m e n ts w hich have a d ire c t b e a rin g on the p re s e n t w o rk a r e th o se of B ra u n ste in (1963b) on the | a b so rp tio n in Ge S i1 a llo y s. This w o rk c o n sists of a study of the j tw o-phonon a b so rp tio n and its a n a ly sis to deduce c h a ra c te ris tic ] i phonon e n e rg ie s fo r th e a llo y s. Two new a b so rp tio n bands, not p re - i I ! se n t in e ith e r the x = 0 o r x = 1 m a te ria ls , a r e o b serv ed . F o r sm all i ! -1 -1 jx , a band is found n e a r 485 cm and fo r la rg e x, one n e a r 214 cm . i i | T h ere w as no evidence fo r a b so rp tio n by a Si lo ca l m ode. Both new j bands w e re a ttrib u te d to tw o-phonon p ro c e s s e s . T he te m p e ra tu re I _ i dependence of the 485 cm band w as c o n siste n t w ith a tw o-phonon I p ro c e s s , and it w as a ls o a ssu m e d th a t c ry s ta l sy m m etry would still fo rb id th e p re s e n c e o f a lin e a r e le c tric m o m en t. T his assum ption is b ased on a s ta tic c h a rg e m o d el and th e inadequacy of th is m odel h a s a lre a d y b e en m en tio n ed . C. E x p e rim e n ta l R e su lts and D isc u ssio n 1. Ge S i. w h e re 0 < x < 0. 12 x 1 -x — — In F ig u re s 14 and 15 th e m e a su re m e n t of the in fra re d a b so rp tio n of sa m p le s w ith x = 0 . 02 and x = 0 . 1 2 is given for both 8 7- 6 _ 5 E o 3 3- 2 - * * * * o\ x O O V . - X V V v V * * „ * N , * ° ° ..X X * x x x x x x ‘ x ^ x x " ° x O o*xxx 3 # P % O O O o yO O oo® ® ® ® ® ® a O o A O • dO O X X XX X * o o +° %°o0 oo o 00-00° °° + 4- o ° X 0 0 X > o o x. + " T • +.+ ++-H-+* ^ n - + + x x X X '« o + •• + + + + ++ • • • • • * ,++++ • • • • -* H -+ + + » • H i* * * ' O o J - 350 4 0 0 4 5 0 5 00 . 550 v ( cm"') 600 650 700 F ig u re 14. A b so rp tio n c o efficien t v s. w avenum ber for S i-ric h GexS ij allo y s a t room te m p e ra tu re and liquid n itro g e n te m p e ra tu re . Ge 12^ 8 8 ^ : x = 0 = ^N T ; Ge Q 2 * S i qg : + = R T , o = LN T . 124 F ig u re 15. A b so rp tio n co efficien t v s. w avenum ber for room te m p e ra tu re Si, (+); and fo r Ge 12® * 88 a * " roorn te m p e ra tu re i (x) and liquid n itro g e n te m p e ra tu re (o). D ashed cu rv e is ; a b so rp tio n p re d ic te d by D aw ber and E llio tt fo r a heavy im p u rity (As) in Si. The solid a rro w s in d ic ate p o sitio n s of p eak s in the l | v ib ra tio n a l d e n s ity -o f-s ta te s of Si ( F ig u re 1 ) and p o sitio n s of i 1 re so n a n c e and n e a r re so n a n c e m o d es a s c alcu lated by M aradudin. x " x X + X \ V » c 2 v o o 0 XxxXx X C 9 v ^ V o „ 4 / ' ^ X o O 0 0 0 0 0 O W 0 CP0 ° % 3 ° . o x 0 ° * ° r „ o % o + o X o? ° ° o „ *> ° o O ® o v X vXXXXXX X X O o O O O ® o X X X X X X X X X X xX x X » < X X X X x + 0 xxX ++ v + + + o o f - y r a r b i t r a r y a s c a l e + +++ + + i \ + + + + + / \ + / \ . + + '+ + ___ - i _____------------------------------------------------- i __________ i __________ 10 100 200 300 400 500 600 . v ( c m - 1 ) 700 1 y A! 300°K and ~ 80°K and c o n tra ste d w ith th a t fo r p u re Si (x=0). The in tro d u c tio n of Ge h a s pro d u ced a nu m b er of ch an g es in the a b so rp tio n I ; s p e c tru m . In p a rtic u la r, pronounced a b so rp tio n b ands a re in tro d u c ed i n e a r 485, 405, and 125 cm "* in both the 300°K an d 80°K c u rv e s . In ! ad d itio n , a sh o u ld e r in the a b so rp tio n is o b se rv e d n e a r 2 0 0 cm *. i The dependence of the a b so rp tio n of the two h ig h e r freq u e n cy bands i 1 on the c o n c e n tra tio n of Ge is show n in F ig . 14. In F ig . 15 th e re is ; a b ro a d band, extending fro m about 220 to 340 c m " * , s e e n only in the \ 80°K c u rv e . T hat sam ple w as p-type w ith a r e s is tiv ity of about 10 ; ficm ; b o ro n w as the m o st lik e ly contam inant. The b and c o v e rs the j | fre q u e n c y ran g e of the s e v e ra l a b so rp tio n bands o b s e rv e d fo r tr a n s i- f j tio n s b etw een e le c tro n ic s ta te s of h o les bound to b o ro n a c c e p to rs in i | Si. The in te g ra te d a b so rp tio n is a p p ro x im a te ly th a t w hich is ! | o b se rv e d at 80°K in Si doped to the sam e re s is tiv ity . Thus it is j ■ i c o n s is te n t to a ssu m e th a t th is band is due to in h o m o g en eo u sly | b ro a d e n e d le v e ls of hbles bound to b o ro n a c c e p to rs . 1 ! ■ ’ - 1 | The sh a rp band n e a r 516 cm " in the x = 0. 02 sa m p le as w ell a s the b ro a d e r sm a ll bands n e a r the sam e fre q u e n c y in the o th e r tw o sa m p le s a re a ttrib u te d to the p re se n c e of oxygen. Since a ll of th e se sa m p le s w ere grow n fro m q u a rtz c ru c ib le s , the a p p e a ra n c e of th is b an d w as not unexpected. A ll th re e sa m p le s a ls o show ed the c o rre sp o n d in g high freq u en cy oxygen band n e a r 1106 c m *. The a b so rp tio n bands in d icate a d e c re a sin g oxygen c o n te n t w ith in c re a s in g 127 Ge co n ten t in ingots grow n u n d er a p p ro x im a te ly the sam e conditions I I of c ry s ta l ro ta tio n and p u ll ra te . T h is d e c re a s e m ay be la rg e ly the re s u lt of thw lo w er grow th te m p e ra tu re of the ingots w ith la r g e r g e rm a n iu m content. The m ain bands n e a r 485 to 405 cm * c le a rly show a s u b s ta n tia l in c re a s e w ith in c re a s in g x. The 485 cm~* band is in a g re e m e n t w ith the p rev io u s re s u lts of B ra u n ste in (1963b). The band n e a r 508 cm * m en tio n ed by B ra u n ste in fo r sa m p le s of low x is not o b se rv e d in th e se sa m p le s. If p re s e n t it m ight be o b sc u re d by the stro n g band a t 485 cm~* and the oxygen band. The la rg e band n e a r 600 cm * in the x = 0. 012 allo y is the j j eq u iv alen t of the band n e a r 610 cm * in the pu re Si(x=0) sa m p le . T his I j is a tw o-phonon band a ttrib u te d to the sim u lta n eo u s e x c ita tio n of a j j tr a n s v e r s e optic and a tr a n s v e r s e a c o u stic phonon. The te m p e ra tu re | dependence in the tra n s itio n p ro b ab ility co m es fro m the fa c to r | | (n,j.Q +l)(n1 j 1 ^ + l) - n ^ n ^ w hich m u ltip lie s the m a trix e le m e n ts i I b etw een the in itia l and fin a l s ta te s . The n 's a re the B ose fa c to rs fo r < the phonons; the phonon e n e rg ie s a re a p p ro x im a te ly th o se of the peaks in the d e n s ity -o f-s ta te s a ris in g fro m the TO and TA b ra n c h e s . T h e re is c o n sid era b le d isc u ssio n of th e se points in the lite ra tu r e (S p itze r 1967 ). The 600 cm * band in the x = 0 . 012 sa m p le show s a te m p e ra tu re dependence w hich is s im ila r, although som ew hat le s s th a n th e tw o- a(300°K ) 128 j phonon band in p u re Si. F o r p u re Si, the ■ '^ g Q oj ^ 1 9 w hile in ! the x = 0. 12 c a se , —- 999 -I9 ., ~ 1 . 5. The a v a lu e s a r e the peak a(80°K ) v alu es of the b ands. T his te m p e ra tu re b e h av io r m ay be c o n tra s te d ; to th a t of the new bands of the alloy a t 125, 405, and 485 cm *. The i new bands a re m uch le s s te m p e ra tu re dependent; .ffl. ~ l . o a(80°K ) : to 1 .2 depending upon the band c o n sid ere d . The te m p e ra tu re I I dependent fa c to r is even c lo s e r to 1. 0 if one a s s u m e s th a t the new I bands a re su p e rim p o se d on a fe a tu re le s s , te m p e ra tu re -d e p e n d e n t ; b ack g ro u n d a b so rp tio n d e te rm in e d by e x tra p o la tin g a c r o s s the b ase I of the band. It is re a d ily a p p a re n t fro m F ig s . 14 and 15 that “ b a c k g r o u n d 3 0 |)oK 1 . 0 fo r a ll th re e new b an d s, w hich w ould a ““background g0° K | be the c a se if th e se w ere single phonon b an d s. The te m p e ra tu re | dependence of the background is th en a p p ro x im a te ly 1 .3 - 1 .5 . As i I I p re v io u sly in d icated , P a r k e r e t. a l. ( 1969 ) re c e n tly re p o rte d the I I j o b se rv a tio n of th re e peaks below the top of the Si phonon s p e c tru m in I the R am an s p e c tra of S i-ric h allo y s. One of the p eak s lie s n e a r 400 cm * and m ay be the sam e m ode re sp o n sib le fo r o u r 405 cm * band. The fre q u e n c ie s of the o th e r two R am an p eak s w e re not given. The fre q u e n c ie s of reso n an c ec an d v n e a r-re so n a n ce m odes fo r Ge in Si have been c a lc u la te d b y M aradudin (1966) an d th e ir fre q u e n c ie s a re in d ic ate d by the dashed a rro w s of F ig . 15. The d a sh ed a rro w s n e a r 453 and 490 cm "* indicate reso n an ce m o d es w hile the o th e rs 129 | a r e n e a r-re s o n a n c e s . In the p re s e n t c a se , the bands we o b se rv e show som e a g re e m e n t w ith the c alcu late d p o sitio n s ( d a sh e d a rro w s ) I in F ig . 15. T hese c alcu latio n s u se d a d e n s ity -o f-s ta te s c u rv e fo r ' p u re Si c a lc u la te d by M aradudin and the c o m p a riso n s a re w ith : e x p e rim e n ta l c u rv e s fo r allo y s w ith s e v e ra l p e rc e n t G e. H ow ever, i the o b se rv e d bands do not show any la rg e freq u e n cy sh ifts b etw een ; 2% and 12% Ge. The c a lc u la te d fre q u e n c ie s of in -b an d re s o n a n c e s , h o w e v er, I i a re v e ry se n sitiv e to e x a c t d e ta ils of S(u)) th at one u s e s to c h a r a c te r - i ; iz e the pure m a te ria l. The calcu latio n s of B ellom onte an d P ry c e 1 I ‘ ( (1969) can be ap p lied to the case of Ge in Si. F ig u re 16 show s th e ir I hm ax . | p lo t of §(Z) = f — , on w hich the c u rv e 1 /eZ h a s b een | d Z -^ | draw n fo r e= -1 .5 8 , the a p p ro p ria te value fo r Ge in Si. The i t j in te rs e c tio n s of the two c u rv e s a re solutions of E q. 11. T h e ir data t p re d ic ts re so n a n c e m o d es a t 480 and 455 cm~* and a n e a r-re s o n a n c e a t 120 c m ’ \ a s c o m p a re d to the values of 490, 453, and 125 cm~* th a t M a ra d u d in 's c a lc u la tio n p re d ic ts . T h e-n ear re s o n a n c e s in M a ra d u d in 's c a lc u la tio n a t 330 and 385 cm * a r e re p la c e d by re so n a n c e s a t 350 and 370 cm *. In the o b se rv e d in f r a r e d a b so rp tio n th e only s tru c tu re n e a r th e se fre q u e n c ie s is one band a t 405 cm *. In one of th e ir p a p e rs (1963b), DE c a lc u la te th e in -b a n d a b so rp tio n to be ex p ected fo r s e v e ra l im p u rity m a s s e s in silic o n ; a com m o n fe a tu re fo r heavy im p u ritie s is the a lm o st to ta l la c k of ♦fe), l /e z (cm*) 130 +6 +4 +2 400' .300 iOO 200 100 -2 -4 F ig u re 16. I. (z) a s c alcu lated by B ellom onte and P ry c e . II. 1 / e z fo r Ge in Si (e = -1 . 58 ). _ 1 ' J L j J L t j a b so rp tio n n e a r 500 cm " , the p o sitio n of the stro n g TO peak in j ! • i i ? f j !S(u)). T his is the p re d ic te d re s u lt d isc u sse d p re v io u sly ( E q. 75 ) J iw here M / » M . The a b so rp tio n c a lc u la te d fro m E q. 74 is illu s tra te d j b y the d a sh ed c u rv e in F ig . 15 fo r su b stitu tio n a l a rs e n ic im p u ritie s i in Si. A rse n ic h as a m a s s clo se to th a t of Ge and both a re m o re th an tw ice th a t of Si. The o b se rv e d bands do not a p p e a r to c o rre sp o n d I to the p re d ic te d a b so rp tio n ex cep t p o ssib ly th at a low freq u e n cy band I is o b se rv e d . In p a r tic u la r, the c a lc u la te d c u rv e does not show the i -1 | m a jo r band n e a r 485 cm I In sp e ctio n of the DE c a lc u la te d band m ode a b so rp tio n s p e c tra , show n in F ig . 17, show s th a t the bands of F ig . 15 have a stro n g i | re s e m b la n c e to th o se c a lc u la te d fo r su b stitu tio n a l im p u ritie s w ith jm a s s e s c lo se to th a t o £ S i. As we have pointed out, in th e se c a se s i j jthe c a lc u la te d c u rv e s a re s im ila r to the S(uo) c u rv e . The p o sitio n s I . i of the fo u r m a jo r p eak s in S(uu) fo r Si a re given in F ig . 15 by the so lid a rro w s . A ll th re e of the new bands a re v e ry c lo se to peak p o sitio n s. H ow ever, th e re does not a p p e a r to be any a b so rp tio n p eak a s s o c ia te d w ith th e d e n s ity -o f-s ta te s p eak n e a r 340 c m "* . The e n tire re g io n fro m 215 c m * to 390 cm * a p p e a rs to be devoid of any fe a tu re s th a t could be a ttrib u te d to v ib ra tio n a l a b so rp tio n , w h e rea s s e v e ra l bands w e re found in th is reg io n fo r o th e r dopants ( A n g re ss Goodwin, and Sm ith 1968, D evine and N ew m an 1970). A c o m p a ris o n of th e p re s e n t m e a su re m e n ts w ith th o se re p o rte d 132 025 100 200 300 400 500 V (cm-1 ) ~ e 0.75 u 0.50 0.25 100 200 300 4 0 0 500 2 /(crrf *) F ig u re 17. O ptical a b so rp tio n co efficien ts p re d ic te d by DE for 1 9 - 3 10 cm im p u ritie s of v a rio u s elem en ts in group III and group V. a. F u ll c u rv e , b o ro n ; th is cu rv e is an a v e ra g e of the two curves fo r and w eighted a cc o rd in g to th e ir abundances. F o r ^ B , = 0 .6 4 3 ; fo r ^*B, = 0 .6 0 8 . B roken cu rv e , p h o s p horus; = -0 .1 0 3 . D otted c u rv e , antim ony; = -3 . 334. b . C ontinuous c u rv e , alu m inum ; = 0 .0 3 9 . B roken cu rv e , a rs e n ic ; = -1 .6 6 6 . D otted c u rv e , b ism u th ; = -6 .4 3 9 . 1 ____ J L O O fo r n e u tro n -irra d ia te d Si is show n in F ig . 18. The c u rv e fo r the i n e u tro n -irra d ia te d c a se is th a t of B alk an sk i (1964). W hile the c u rv e s d iffer in d e ta il, th e re a re s e v e ra l obvious s im ila r itie s . The o rig in of the a b so rp tio n in the ir r a d ia tio n c a se h as been a ttrib u te d to the in tro d u ctio n of d is o rd e r w hich p e rm its coupling of the ra d ia tio n field to phonons of a ll w ave v e c to r v a lu e s. In the p r io r d isc u ssio n it w as t ; noted th a t A n g re ss e t. a l. o b se rv e d in -b a n d a b so rp tio n n e a r 490 and j 404 cm * in B and P doped Si. T h e re fo re , the o rig in of the a b so rp - | tion in a ll of th e se c a s e s m ay be s im ila r and re fle c t S(yj) fe a tu re s as I w ell as the c h a r a c te r is tic s of the d efect involved. A som ew hat i ' !analogous c a se to the a b so rp tio n se e n n e a r d e n s ity -o f-s ta te s peaks | is se en in R am an s c a tte rin g fro m GaAs . ( S tra h m and M c- jW h o rter 1969 ). L in e s a re se e n a t fre q u e n c ie s of zone-edge o p tical j ■ : phonons of G aP; th e a llo y in g of As into G aP h as allow ed s c a tte rin g i ■ ;fro m m odes th a t a r e n o rm a lly R a m a n -in a c tiv e . 2. Ge Si, w h ere 0. 88 < x < 1 x 1 -x — — j ! The a b so rp tio n in a n allo y sam p le w h ere x = 0. 88 is show n in F ig . 19 fo r th re e d iffe re n t te m p e ra tu re s an d c o m p a re d w ith the a b so rp tio n of p u re G e. C o m p a riso n s of the a b so rp tio n of Ge ggSi ^ and pu re Ge a t long w av elen g th s a re show n in F ig s . 20 and 21 fo r ro o m te m p e ra tu re and liq u id n itro g e n te m p e ra tu re . One of the m o re s trik in g fe a tu re s of F ig . 19 is the new band n e a r 390 cm T his ban d is not o b se rv e d in p u re Ge but w as one of X = 0.12 a neutron irradiated 5 '-\ 100 200 300 400 450 500 550 V (cm"') F ig u re 18. A b so rp tio n c o efficien t v s. w avenum ber for n e u tro n irra d ia te d Si and Ge. 12Sl. 88 24 liquid He te m p e ra tu re (------ ) liquid N^, te m p e ra tu re ( ) room te m p e ra tu re ( — — ) Ge a t liquid N_ te m p e ra tu re (••••) 20 5 12 o o o < 4 200 300 250 350 Wavenumbers (cm’ 1) 400 450 500 F ig u re 19. A b so rp tio n co efficien t v s. w avenum ber for Ge 88^ . 12 liquid He te m p e ra tu re , liq u id N£ te m p e ra tu re , and ro o m te m p e ra tu re , and for Ge a t liq u id N2 te m p e ra tu re . acm 1 0 ' 150 J - I L. Ge..Si .,103 .88 .12 i_______t 200 250 300 -I v cm i i i 1 1 ...i 350 4 0 0 F ig u re 20. A b so rp tio n co efficien t v s . w avenum ber for p u re Ge and Ge^ ggSi room te m p e ra tu re . A rro w s in d ic ate d e n s ity -o f-s ta te s p eak s fo r Ge. U > O' } I 1 i I ! 5 I 1 5 0 200 250 300 350 400 ‘ ' 1/ cm" F ig u re 21. A b so rp tio n co efficien t v s . w avenum ber © ft liquid N te m p e ra tu re fo r G e, Ge q5Si and Ge Si ^ .88 .12 i i i 95 137 r ” ............. .. . . . . . . . . . . . . . . :.................... '.. ......... iss" th o se o b se rv e d in the R am an e ffe c t fo r Ge Si. allo y s w hen x > 0. 75. 3 C X -X l ~ U J i It is the band a ttrib u te d to the lo c a liz e d v ib ra tio n a l m ode of Si im p u ritie s . The o b se rv e d freq u e n cy of 390 c m * is c lo se to 394 cm * w hich is p re d ic te d fro m the th e o ry of DE fo r iso la te d , su b stitu tio n a l Si in the Ge la ttic e . The la tte r c a lc u la tio n s w e re done o rig in a lly fo r the Si la ttic e but they can be extended d ire c tly to the Ge la ttic e sim p ly I by a re -n o rm a liz a tio n of the m ax im u m phonon freq u e n cy . The ju stific a tio n of this p ro c e d u re h a s been d is c u s s e d p re v io u sly i ( L o rim o r and S p itze r 1966 ). The la rg e te m p e ra tu re dependence of th e stro n g tw o-phonon i _ i j band n e a r 360 cm m ak es the te m p e ra tu re dependence of the Si band ! d ifficu lt to d e te rm in e . H ow ever, a t liq u id n itro g e n te m p e ra tu re i w h e re the tw o-phonon background is red u c ed , the Si lo c a l m ode band i w as m e a s u re d fo r s e v e ra l v alu es of x and the re s u lts a re show n in | F ig . 22a and 22b. The is the m e a s u re d a b so rp tio n co efficien t, j and is the background a b so rp tio n e s tim a te d by a lin e a r e x tr a - ! p o latio n a c ro s s the b a se of the band in F ig . 22a. The dependence of J (a m "a |5)< ^v ° £ ^he 390cm * band of F ig . 22b is given a s a function of Si co n ce n tra tio n (1-x) in F ig . 23. B ecau se of the u n c e rta in tie s in , the re s u lts a re not su fficien tly a c c u ra te to e s ta b lis h the p re c is e n a tu re of the dependence of J * (a rn "a j3) ^ on h o w ev er, the in c re a s e in band s tre n g th w ith in c ra s e in Si c o n c e n tra tio n is c le a rly ev id en t. I X --X - 6 410 375 380 410 400 •I 390 400 390 v c m F ig u re 22-. A b so rp tio n co efficien t v s . w avenum ber fo r the Si lo c a l m ode in G e -ric h Ge S ij_ x a llo y s, a. O b serv ed a b so rp tio n , b. L o cal m ode band w ith background su b tra c te d . o Ge 9948 ^ oo6, Ge_ 985 S i# 015, x G e. 975S l. 025* 0 G e. 955S l. 045’ 0 G e. 880S l. 120' 0.40 S y m b o l S a m p l e a 1 0 1 * 1 0 2 • 1 0 4 o 1 0 3 .01-02 .02-03 .04-05 .12 .006 0. 10 l - X s l o p e I 0 .0 1 ®-0 0.005 100 F ig u re 23. C o n cen tratio n dependence of the in te g ra te d a b so rp tio n stre n g th for the Si lo c a l m ode band. The a b so rp tio n c r o s s - s e c tio n of th e Si lo c a liz e d m ode, J (am-ab)dv i------------------ is one to th re e o r d e rs of m agnitude s m a lle r than . (l-x )(5 x 1022) th o se p rev io u sly o b se rv e d fo r im p u ritie s in Ge, Si, and III-V | com pound sem ic o n d u cto rs ( N ew m an and W illis 1965, B alk an sk i and ! N a zarew icz 1966, C osand a n d S p itz e r 1967, N a za rew ic z and Ju rk o w - sk i 1969). In th is e stim a te of the a b so rp tio n c ro s s - s e c tio n it is j a ssu m e d th a t a lm o st a ll of the m e a s u re d Si content e x is ts as a n e a rly ; random ly d istrib u te d s u b s titu tio n a l Si sp e c ie s fo r [ S i ] ~ 5 x 102*cm 2, | (1-x) ~ 0. 01. If an y of the s ilic o n e x is ts in the fo rm of n e a re s t I ! neighbor p a irs , the site sy m m e try is and the p a ir h a s six m odes i jfo r w hich th e re a re fo u r v ib ra tio n a l fre q u e n c ie s. M odes a t two I / | fre q u e n c ie s should be in f ra r e d a c tiv e . Such Si p a irs have been j ! id en tified in GaAs w h ere the s p e c tru m is m o re co m p lica te d b e ca u se i of the lac k of in v e rs io n sy m m e try ( L o rim o r and S p itz e r 1966 ). I ! _ j I F eld m an e t. a l. (1966) re p o rt R am an lin e s n e a r 448 an d 476 cm " in I “ “ * i | the G e -ric h allo y s w hich th ey te n ta tiv e ly a ttrib u te to Si p a ir s . In the j p re s e n t c a se w eak a b so rp tio n bands a re ob tain ed n e a r 440 and 454 cm "^ w hich could be the in f r a r e d a c tiv e v ib ra tio n s of the sam e defect. In any c a s e , if the id e n tific a tio n is c o rr e c t, th a t bands a re v e ry w eak, in d icatin g a s m a ll c o n c e n tra tio n of p a irs re la tiv e to iso la te d Si. No o th e r stro n g lo c a l m ode bands a re o b se rv e d . The sm a ll a b so rp tio n c r o s s - s e c tio n fo r the Si lo c a l m ode in Ge c o n tra s ts sh a rp ly w ith the m o st n e a rly analogous c a s e , th a t of C in :Si ( N ew m an and W illis 1965, N ew m an and Sm ith 1969 ). E ach is j ; j ! an is o e le c tro n ic im p u rity in a ho m o p o lar c ry s ta l, and th e m a s s ! d efect e is s im ila r fo r both. H ow ever, the c o n fig u ra tio n of the bonding e le c tro n s is ex p ected to be quite d iffe re n t fo r th e two c a s e s . The e le c tro -n e g a tiv ity v alu es fo r Ge and Si a re a lm o st e x a c tly the i sa m e , w hile the e le c tro -n e g a tiv ity fo r c arb o n is c o n sid e ra b ly i d iffe re n t. Ge and Si fo rm a u n ifo rm solid so lu tio n o v e r the e n tire i j co m p o sitio n range of m ix tu re s; carb o n is only slig h tly soluble in -3 ; Si (<10 %) and in la rg e q u an tities fo rm s a com pound, SiC. A lso, | the te tr a h e d r a l co v alen t ra d ii a re m uch m o re c lo se ly m a tc h e d fo r Si I in Ge th an fo r C in Si; r_ /r_ . = 0. 65 and r_ . / r „ = 0. 96. i C Sx Sx Ge ) | S ilico n h as th re e iso to p es of m a s s e s 28, 29, an d 30 in re la tiv e i abundance of 92. 5%, 4. 5% and 3%. U nder m o re fa v o ra b le conditions I | th re e c lo se ly sp aced lo ca l m ode bands should be o b se rv e d ; but w ith i i j the s tro n g tw o-phonon background"and the re la tiv e ly w eak a b so rp tio n j ' | of the lo c a l m ode, no s tru c tu re is o b se rv ed th a t c an u n am b ig u o u sly | be id e n tifie d a s belonging to the d ifferen t iso to p e s of S i. In additon to the Si lo ca l m ode, two o th e r ch an g es a re o b se rv e d in th e se G e -ric h a llo y s, and they a re evident in F ig s . 20 an d 21. At liq u id n itro g e n te m p e ra tu re th e re is a b ro ad band n e a r 200 cm V in the a llo y sa m p le s w hich is not p re s e n t in the p u re Ge sa m p le . T his b and is p re s e n t in the room te m p e ra tu re m e a s u re m e n ts of both the a llo y an d p u re Ge. The pure Ge a p p a re n tly h as tw o -p h o n o n a b s o rp - i _1 144 jtio n n e a r 200 cm and th is band is su b sta n tia lly en ch an ced in the 1 |a llo y s a m p le s . B ra u n ste in re p o rte d the freq u en cy of a b ro a d band j in s im ila r allo y sa m p le s as being about 214 cm * a t 300°K . T here is a n o v e ra ll te m p e ra tu re dependence of the a b so rp tio n in the region of th is band, but in the allo y the band does not d e c re a s e as m uch a t low te m p e ra tu re s a s it does in p u re Ge. This is a p p a re n t fro m F ig . 20 and 21. A s im ila r b e h av io r is o b se rv e d fo r the doubly-peaked b ro ad jband c e n te re d n e a r 290 c m ” *. P u re Ge h as a tw o-phonon band at j about th is p o sitio n . The TO p eak in the phonon d e n s ity -o f-s ta te s is | about 282 c m ” *. The re so n a n c e m ode c alcu latio n s of M aradudin, of i I B ellom onte and P ry c e , and of D aw ber and E llio tt w hen sc a le d to the I Ge phonon fre q u e n c ie s w ill p re d ic t a w eak reso n an c e n e a r th is p o sitio n fo r a lm o st any lig h t im p u rity ; how ever, th is reso n an ce is p re d ic te d to have v e ry litte a b so rp tio n . W hether the o b se rv e d band J j is a n in c r e a s e of th e tw o-phonon a b so rp tio n o r w h e th er the bands | grow in the a llo y s w ith a te m p e ra tu re independent a b so rp tio n cannot | | be a n sw e re d u n am biguously fro m the data. The bands in the alloys I a re n e a rly te m p e ra tu re independent if one a ssu m e s the bands a re su p e rim p o s e d on a te m p e ra tu re dependent background. H ow ever, the change in to ta l a a t th e p eak p o sitio n betw een 300°K and 80°K a re in re a so n a b le a g re e m e n t w ith th a t e x p ec te d fo r tw o-phonon p ro c e s s e s . T he a rro w s in F ig . 20 in d ic ate th e peak p o sitio n s in the phonon d e n s ity -o f-s ta te s c u rv e fo r p u re Ge. T h ere is not any obvious single phonon a b so rp tio n th a t is c o rr e la te d to the phonon d e n sity -o f - sta te s as w as the c a se in the S i-r ic h a llo y s. CHA PTER V i L o c a liz e d V ib ratio n al M odes of B o ro n -L ith iu m P a ir s in S i-R ich G e-Si A lloys As h as b een d isc u sse d in C h ap ter I and II, the fre q u e n c ie s and ■ d e g en e ra c y of lo c a liz e d v ib ra tio n a l m odes of light im p u ritie s a re j v e ry se n sitiv e to the im m ed iate en v iro n m en t of the im p u rity . T his i p ro p e rty has p re v io u sly been exploited to probe p a irin g in te ra c tio n s ! betw een im p u ritie s in sem ico n d u cto rs; th is c h a p te r d e s c rib e s the i I a p p lic a tio n of lo c a l m ode stu d ies to the p ro b lem of d e te rm in in g j s tru c tu re on an ato m ic sc a le in a se m ic o n d u cto r alloy, j M e a su re m e n ts a re p re se n te d h e re of th e in fra re d a b so rp tio n i i i of the lo c a liz e d v ib ra tio n a l m odes of b o ro n p a ire d w ith lith iu m in j | Ge Si a llo y s. The freq u e n cie s of b o ro n w ith fo u r Si n e a r e s t j « J C X " « X » | n eig h b o rs and b o ro n w ith th re e Si and one Ge n e a re s t n e ig h b o rs a re j | found to be w ell se p a ra te d . The fre q u e n c ie s re su ltin g f ro m d iffe re n t | second n eig h b o r co n fig u ratio n s a re not quite w ell enough s e p a ra te d to be re s o lv e d into individual lin e s. The su p e rp o sitio n of th e ir a b so rp tio n a p p e a rs a s an a s s y m e tric broadening of the bands w hich a r is e fro m d iffe re n t f i r s t neighbor c o n fig u ra tio n s. H o w ev er, enough s tru c tu re is p re s e n t th a t the o b se rv e d bandshapes c an be re p ro d u c e d by c a lc u la tio n and the d istrib u tio n of second n eig h b o rs can be in fe rre d ; The e ffe cts of th ird and fu rth e r n eighbors a re not re s o lv e d a t a ll an d a p p e a r only as inhom ogenous line bro ad en in g . 145 The o b se rv e d a b so rp tio n s p e c tra a re c o n siste n t w ith a random i I d istrib u tio n fo r the seco n d n eig h b o rs of b o ro n ato m s in S i-ric h i Ge Si ; no evidence is found fo r second neighbor o rd e rin g . The X X " X f i r s t n e ig h b o rs, h o w ev er, m ay have som e o rd e rin g ; it a p p e a rs th at i i j b o ro n a to m s have fe w e r Ge f i r s t n eig h b o rs th an w ould be ex p ected ! fro m a ran d o m d istrib u tio n . j A. B ackground The lo c a l m odes of an is o la te d im p u rity in a c ry s ta l w ith a | T ^ (te tra h e d ra l) point g roup sy m m e try a t the im p u rity site w ill have ja trip ly d e g e n e ra te in fra re d -a c tiv e v ib ra tio n a l freq u en cy . Any J p e rtu rb a tio n w hich lo w e rs the sy m m e try m ay sp lit the d eg en eracy | | an d sh ift any o r a ll of the v ib ra tio n a l fre q u e n c ie s. T y p ically , ! j h o w ev er, the m odes we have c o n sid e re d , such a s the B lo c a l m ode in | Si, a re so w e ll lo c a liz e d th a t the p e rtu rb a tio n m u st have sig n ifican t i i . {am plitude a t the im p u rity s ite , o r a t le a s t a t a f i r s t n eig h b o r s ite , in i ! i o rd e r to p ro d u ce an o b se rv a b le e ffe c t. O b serv a tio n s of lo c a liz e d v ib ra tio n a l m odes of an im p u rity can thus be u s e d to study the im m e diate e n v iro n m en t of the im p u rity . T h e o re tic a l stu d ies have been m ade of the v ib ra tio n a l fre q u e n c ie s to be e x p ec te d of p a ire d im p u ritie s . T h ere h a s b e en ex te n siv e e x p e rim e n ta l w ork on s p lit tin g s of lo c a liz e d m o d es c a u se d by a n o th e r im p u rity p a ire d w ith the im p u rity giving r is e to the lo c a liz e d m ode. L o c a l m o d es of both is o la te d b o ro n a to m s and of b o ro n p a ire d w ith o th e r im p u ritie s have b een o b se rv e d fo r both Si and Ge c r y s ta ls . f I B o ro n -lith iu m p a irs have b een se e n in Ge; in Si, m o d es have been i o b se rv e d fo r b o ro n p a ire d w ith L i, P , A s, o r Sb, o r a n o th e r boron i ato m . In a ll of th e se c a s e s , w ith the ex ce p tio n of th e b o ro n -b o ro n j p a irs , the o b se rv e d lo c a l m odes a re e s s e n tia lly b o ro n v ib ra tio n s ; p e rtu rb e d by the s tr a in fie ld an d / o r coulom b fie ld of th e p a ire d ion. B oron is an e le c tr ic a l dopant in Si o r Ge; to av o id having the i lo c a l m ode in fra re d a b so rp tio n m a sk e d by the fre e c a r r i e r a b so rp - ; tio n , the sa m p le s u se d in th is stu d y w e re co m p e n sa te d by L i I diffusion. I n te r s titia l lith iu m do n o rs p a ir quite re a d ily w ith the j j su b stitu tio n a l b o ro n a c c e p to rs ; the in te ra c tio n of the lith iu m w ith the j ' ’ | b o ro n sp lits the trip ly d e g en e ra te m ode of iso la te d ^ B ( ^ B ) at i 620(644) c m " * into a sin g ly d e g e n e ra te m ode along the L i-B ax is i ! _ i i a t 564(584) cm an d a doubly d e g e n e ra te tr a n s v e r s e m ode at j 655(681)cm~* ( S p itz e r and W ald n er 1965, E llio tt and P fe u ty 1967 ). ! i j The fre q u e n c ie s of th e se m o d es a re a lm o st independent of the L i j iso to p e, in d ic atin g th a t th e se a r e a lm o st e n tire ly b o ro n lo c a l m odes 7 6 w ith little m o tio n of the L i. The band a ttrib u te d to L i( L i) at 522(534) c m * show s no o b se rv a b le sh ift in freq u e n cy w hen the b o ro n isotope is changed; it th en is a lm o s t e n tire ly a L i lo c a l m o d e. The in te ra c tio n betw een L i an d B should a ls o s p lit the d e g e n e ra c y of the lith iu m v ib ra tio n s . The seco n d L i fre q u e n c y m a y be below the m axim um phonon freq u e n cy of Si and m e rg e into the band m odes so I th a t it does not p ro d u ce a sh a rp a b so rp tio n band. T h ere h a s b een | | som e re c e n t c o n je c tu re th a t since the o b se rv ed L i freq u e n cy is v e ry \ c lo se to the Si R am an freq u en cy the freq u en cy sp littin g is s m a ll and | the o b se rv e d band in clu d es a ll th re e m odes ( E llio tt and P fe u ty 1967). I M odels have b een su g g e ste d fo r the in te ra c tio n b etw een the B and ; L i th a t w ould sh ift the tra n s v e rs e m odes h ig h e r, so they should i acco u n t fo r the o b se rv e d band. H ow ever, in Ge, L i-G e p a irs : p roduce two L i bands w ith a stre n g th ra tio of ~ 2:1 and the s tro n g e r . I I b and is lo w er in freq u e n cy ( C osand and S p itzer 1967 ). T hus it is I not yet c le a r how the b o ro n and lith iu m in te ra c t to s p lit the | ' ! d e g en e ra c y . | In Si, a s m a lle r sp littin g is o b se rv ed fo r a su b stitu tio n a l donor j j i P , A s, o r Sb p a ire d w ith the b o ro n th an fo r B -L i p a ir s . The I a ssig n m e n t of the o b se rv e d bands is not definitely a s c e rta in e d . The m o d el of N ew m an and Sm ith (1968) gives the sp littin g the o p p o site sig n of w hat is o b tain ed w ith L i p a irs in Si. In th e ir m o d el, the a x ia l m ode lie s h ig h e r fo r P , A s, o r Sb p a irs . H ow ever, in la te r w o rk , N ew m an (1969) h as su g g ested th a t th is m o d el m ig h t be in e r r o r . The m agnitude of the sp littin g is only about o n e -th ird of the sp littin g c a u se d by L i; i . e . , about 30 c m " 1. The sp littin g is s u p e r p o se d on a sh ift in freq u e n cy w hich is a p p ro x im ate ly lin e a r in the co v alen t ra d iu s of the donor. T h e re have b een no re p o rts of the effects of a m ix ed c r y s ta l I 149 ! host on im p u rity lo c a l m o d es in se m ic o n d u c to rs. H ow ever, the | effects of a m ix ed c r y s ta l h o s t on h y d ro g en lo c a l m odes in a lk a li ; h alid es have b een o b s e rv e d by M e rlin and R eshina ( 1966). T h eir c ry s ta ls w ere p rin c ip a lly KC1, a llo y ed w ith a few p e r se n t of e ith e r 1 8 - 3 ' Na, C s, o r Rb o r F , B r, o r I, and doped to about 10 cm " with i hydrogen. The re s u ltin g s p e c tr a a re sim p le to in te r p r e t since the I H" sits on the anion s u b la ttic e in place of a C l", and a catio n su b sti- j tution can be only an odd n eig h b o r ( f ir s t, th ird , e tc . ) w hile an i | anion su b stitu tio n can be only a n ev en n eig h b o r. The c o n ce n tra tio n ' of the alloying e le m e n t w as low enough th at th e re w as not m uch I likelihood of m o re th a n one su b stitu tio n in the im m ed iate v icin ity j of any H ion. They id e n tifie d bands c o rre sp o n d in g to one f ir s t i i | neighbor o r one th ird n e ig h b o r fo r the Na, C s, and Rb a llo y s. In i I ! the alloys w ith F , B r, a n d I, b ands w e re o b se rv e d fo r one second neighbor. The o b se rv e d sp littin g s w e re found to v a ry a lm o st } lin e a rly w ith the ionic ra d iu s of the alloying e le m e n t. The effects of ! i i . | m ore d ista n t n eig h b o rs w e re to inhom ogenously b ro a d e n the o b serv ed localm ode a b s o rp tio n lin e s an d to sh ift the o b se rv e d fre q u e n c ie s, including the fre q u e n c y of the is o la te d H~ lo c a l m ode, in in v e rse p ro p o rtio n to th e change in a v e ra g e la ttic e p a ra m e te r. They conclude th a t the p r in c ip a l e ffe c t of a neighboring im p u rity on the lo cal m ode is th at the s t r a in in tro d u c ed by the im p u rity changes the fo rce c o n stan ts se e n by th e H . 150 The ra tio of lo c a l m ode a b so rp tio n s tre n g th fo r iso la te d H ; and H w ith one Na f ir s t neighbor is v e ry c lo se to w hat w ould be I p re d ic te d fo r a ran d o m d istrib u tio n of the Na in the KC1:H. H ow ever, i fro m the m e a s u re d a b so rp tio n , the a p p a re n t c o n c e n tra tio n of Rb o r j Cs is h ig h e r th an p re d ic te d , in d ic atin g a p re fe re n tia l p a irin g betw een : the H and the Rb o r C s. It is a lso p o ssib le th a t a t le a s t p a rt of the j i ' d isc re p a n c y in a b so rp tio n stre n g th m a y re fle c t a change in the H j I lo ca l m ode o s c illa to r stre n g th c au se d by the p a ire d im p u rity ; such ! changes have been o b se rv e d in o th e r sy s te m s ( N ew m an 1969 ). B. Expe rim e ntal j ! F o u r Ge S i1 ingots w ere u s e d in th is study; in e ac h case ! X 1 -X i | no m o re th an one th ird of the m e lt w as c ry s ta lliz e d in o rd e r to lim it | the change in c o m p o sitio n along the ingot. The n o m in al co m p o sitio n s i j w ere Ge Q^Si and undoped, Ge Q^Si ^ an d doped w ith ~ 2 x ' 1 9 - 3 ' 10 cm of n o rm a l b o ro n , Ge _Si _ and undoped, an d Ge ,- S i Q O i . 1 2 . oo .1 2 . oo [ 1 9 - 3 10 I and doped w ith ~ 1. 5 x 10 c m ” w ith B(96. 5% iso to p ic p u rity ). j The undoped Ge _ ,S i and the doped Ge 0Si O Q w ere single * Oo i /4 • 1 u i oo c ry s ta ls ; the o th e r two ingots w e re p o ly c ry s ta llin e w ith ty p ic al c ry s ta llite dim en sio n s of s e v e ra l m m . The b o ro n doping le v e ls w ere e s tim a te d fro m re s is tiv ity m e a s u re m e n ts and the d ata of B ra u n ste in (1963a ) fo r hole m o b ilitie s in Ge Si . The c o m p o si- Jl tio n w as d e te rm in e d by d en sity m e a s u re m e n ts , and h lso by e le c tro n m ic ro p ro b e a n a ly sis. M icro p ro b e m e a s u re m e n ts to ch eck the I hom ogeniety taken, a t d ifferen t p laces on one of the sa m p le s containing 12% Ge a g re e d w ithin . 02 of the Ge c o n c e n tra tio n . A line sc a n o v e r a length of 1 m m w ith a re so lu tio n of 1 jim show ed : no v a ria tio n la r g e r th an 0. 01 of the Ge c o n c e n tra tio n . The b o ro n doped Si w as co m p en sated by diffusion of lith iu m fro m a su rfa c e allo y la y e r by the p ro ced u re p re v io u sly d e sc rib e d . S e v e ra l u n su c c e ssfu l a tte m p ts w ere m ade to u se L i diffu sio n to 19 20 ■ co m p en sate som e v e ry h eav ily b o ro n -d o p ed ( 5 x 1 0 -2x1 0 -3 ! c m ) Ge Si sa m p le s w ith h ig h e r Ge content ( x = 0. 2 - 0. 3 ). X 1 •* X T hese a tte m p ts w e re not su c c e ssfu l as the sa m p le s w e re e ith e r j h e av ily p itte d by the L i o r w ere not co m p en sated . In fra re d tra n s m is s io n w as m e a su re d w ith the sin g le b e a m I g ratin g s p e c tro m e te r. The s p e c tra l re so lu tio n w as ty p ic a lly 0. 5 - ! 1 cm G e n e ra l fe a tu re s of the s p e c tra w e re tak e n fro m continuous tra c e s ; d e ta ile d 80°K m e a su re m e n ts of som e bands w e re m ade I ' ■ p o in t-b y -p o in t w ith the sa m p le -in , sa m p le -o u t tech n iq u e. Som e i j d iffe re n tia l m e a su re m e n ts w ere m ad e, w here an undoped allo y j i sam p le of the sam e th ic k n e ss as the doped sam p le w as p la c e d in the i S b e am w hen the I m e a su re m e n t w as m ad e. The v a lu e s of ax fo r I o th e se sa m p le s w ere la rg e enough that the a p p ro x im atio n I / I » i C d e a 2 )x i s re a so n a b ly a c c u ra te . C. R e su lts In F ig . 24, the a b so rp tio n s p e c tra a re show n in the re g io n of • \ 1 \ ' / © / I / \ / I u " J □ £ i - j <0 J l_ I _ Q Q ■ ~ » I Q Q o ■ ~ i o Z CD c n = _ W □ V ■cP.sF ___ _ ^ - " A J I L. 500 550 600 650 WAVENUMBER (cm -1) 700 F ig u re 24. A b so rp tio n co efficien t v s. w avenum ber fo r b o ro n doped, lith iu m com pensated sa m p le s a t 80°K. A: Si, n o rm a l b o ron, ^Li. B: Ge Q^Si Q 4 » n o rm al boron, ^Li. C: Ge 12Si 8g, 10 B, 6L i. i 1 3 0 ; | the b o ro n and lith iu m lo c a l m odes fo r Si and Ge ^ S i ^ w here j | both a re doped w ith n o rm a l b o ro n ( 81% **B, 19% *^B ) and fo r | Ge to Si O Q doped w ith 96. 5% *^B. A ll th re e sa m p le s have b een j i 1Z i oo i I c o m p en sated by lith iu m diffusion; the lith iu m is in in te r s titia l s ite s , ; m o st of it in the fo rm of L i* -B p a ir s . The a b so rp tio n c u rv e fo r S i:B -L i given in F ig . 24, show s the I bands a ttrib u te d to B and B -L i p a ir s , a s h as been p rev io u sly I ; d isc u sse d . The a ssig n m e n ts a r e in d ic a te d on the fig u re . The I p rin c ip a l fe a tu re s of the lo ca l m ode s p e c tra a re se e n a ls o in the I | a llo y s, w ith som e notable c h an g e s. T h ere is a g e n e ra l sh ift to I j lo w e r fre q u e n c ie s, a s show n in T able 9, and a b ro ad en in g of the 1 | m ain b an d s. In ad d itio n , som e w eak new bands a p p e a r. In the j : Ge , -S i O Q sa m p le , w h e re the e ffe c ts a re m o st pronounced, th e lin e | 0 X 2 i O O w idth of the tr a n s v e r s e ***B v ib ra tio n a t 677 cm * is se en to be n early ! tw ice as la rg e as in p u re Si, and the shape is som ew hat a s s y m e tr ic , being b ro ad e n ed m o re on the high fre q u e n c y sid e . The a x ia l m ode band is even m o re a s s y m e tric a lly b ro ad en ed ; h o w ev er, the low freq u en cy side of the band is v e ry n e a rly a s ste e p as the side of the sam e band in pu re Si. T his band is se en m o re c le a rly in F ig . 25, w hich show s the d iffe re n tia l a b so rp tio n ( ) betw een b o ro n - doped and undoped Ge Si ot) sa m p le s a t ~ 10°K . The band is se e n f l u i OO to have no re so lv a b le s tru c tu re . T h e re is a new band n e a r 553 cm "* th a t is m uch w e a k e r th an the 580 cm * band but h a s the sam e ABSORPTION COEFFICIENT (cm" i 450 500 550 WAVENUMBER (cm") 600 650 700 750 i i i e 25. D iffere n tia l a b so rp tio n b etw een Ge j^S i g8 * L i and undoped Ge . 12S a t liq u id He te m p e ra tu re . D ata w as tak en fro m continuous sc an s; le v e l sh ifts a re the r e s u lt of m isa lig n m e n t of the d ew ar. 154! “155;' a s s y m e tr ic sh ap e. The o th er new band in the allo y is a t 651 c m ; it is of s im ila r stre n g th to the 553 c m ”* band but it o v e rla p s so m e w hat both the iso la te d band at 638 cm * and the 677 c m * band. T hus its stre n g th and line shape a re difficult to d e te rm in e . TABLE 9 L o c a liz e d Mode F re q u e n c ie s at 80°K Si G e.0 6 S i.94 Ge . 12 10B tr a n s v e r s e 682. 0 679. 0 677. 0 a x ia l 586. 1 582. 3 5 8 0 .3 7t • L i 523. 5 521.5 5 1 8 .2 D. D isc u ssio n | F o r th e S i-ric h allo y s stu d ied h e re , the s y s te m is b a s ic a lly j i th e sa m e a s S i:B -L i, ex cep t th a t it is p e rtu rb e d by the G e. If the I ! j s y s te m is n e a r ran d o m , m o st B s ite s should have fo u r Si f ir s t j j n e ig h b o rs, som e w ill have one Ge and th re e Si, few w ill have two Ge, a lm o s t none m o re th an two. S im ila rly , ex p ected c o n fig u ra tio n s can be c a lc u la te d fo r seco n d n eig h b o rs, th ird n e ig h b o rs, e t c . . The e ffect one e x p e c ts to o b se rv e fro m the su b stitu tio n of a Ge fo r one of the Si a to m s n eighboring the B is a sp littin g o r sh ift of a B lo c a l m ode. The e ffe c t m a y be la rg e fo r f ir s t neighbors but1 is e x p e c te d to fa ll off ra p id ly w ith in c re a s in g d istan ce to the p e rtu rb in g a to m . Since the 580 and 677 cm * bands develop d ir e c tly fro m the _1 156 | 586 and 682 c m bands of B -L i in Si, they m u st include the 'a b s o rp tio n due to B w ith fo u r Si n e a r n eig h b o rs. The 553 c m ” * band h as a lm o st ex ac tly the sam e a s s y m e tric | sh ap e a s th e 580 c m ” * band. It se e m s re a so n a b le to a ssu m e th a t j the sam e m e c h a n ism gives ris e to th is s tru c tu re in both c a s e s , and ■any m o d el m u st a ttrib u te the s tru c tu re to som e m ec h an ism o r in te r - :a c tio n th a t is e s s e n tia lly unchanged by w h a tev e r sp lits th e .553 c m ” * I band off fro m the 580 cm * band. The la rg e s t effe cts due to adding j jGe th a t a r e se e n a r e the sp littin g s betw een the 553 c m ” * and 580 jcm * b ands and betw een the 651 c m ” * and 677 c m ” * bands. T h ese j jsp littin g s have to be f i r s t neig h b o r in te ra c tio n s u n less it is a s s u m e d i jthat none of the B h a s any Ge f i r s t n eig h b o rs. If the sp lit off bands I I we re due to seco n d n eig h b o rs, it would be d ifficu lt to e x p la in why i . . jonly one s p lit off band is se en fo r each p rin c ip a l B -L i band w hen jth ese a re m any n o n -eq u iv alen t p o ssib le co n figurations of second i n e ig h b o rs. E . M odels F ig u re 26 show s an ato m (1) in a diam ond la ttic e w ith its fo u r ' f i r s t n e ig h b o rs (2 -5), tw elve second n eig h b o rs (6-17), and a t e t r a h e d ra l in te r s titia l s ite (18). T hroughout the r e s t of th is p a p e r, m e n tio n of la ttic e s ite s by n u m b er w ill r e f e r to th is fig u re . The boror. s ite w ill alw ays be p o sitio n 1. A ssig n m e n ts could be p ro p o se d a ttrib u tin g both the sp lit off F ig u re 26. A n atom (1) in a diam ond la ttic e w ith its four f ir s t n e ig h b o rs (2 -5), tw elve second n eig h b o rs (6-17), and a t e t r a h e d ra l in te r s titia l site (18). T h ere a r e th re e se ts of second n eig h b o r s ite s (6 - 8 , 9-14, 15-17) such that th e .s ite s w ithin a s e t a r e eq u iv alen t re la tiv e to a s u b s titu tio n a l-in te rs titia l 158 j : bands and the a s s y m e tric b ro ad e n in g to f i r s t n e ig h b o rs. C onsidering ! j only the 553 and 580 c m ” * b ands one could su g g e st th at a Ge f irs t ! n eighb or on site 5, o p p o site th e L i of the B -L i p a ir , gives a la r g e r ; sp littin g than a Ge on any of th e o th e r th re e f i r s t n eig h b o r s ite s , i _ i | 2 -4 . The assig n m en ts could th en b e m ade th a t the 553 cm band is | due to site s with a Ge o p p o site th e L i, and th e b ro ad en in g on both i I bands is caused by having one o r m o re Ge f i r s t neig h b o rs on the ! o th e r th re e s ite s . T his m o d el w ould im ply a la rg e tendency fo r a s s o - | ciation betw een Ge and B . H ow ever, the e ffe cts of Ge f ir s t neighbors | in the th re e sites off the B -L i a x is should b e v e ry pronounced on the : tr a n s v e r s e m odes; th e 651 and 677 cm ” * bands a re too sim p le to j su p p o rt th is m odel. Any o th e r m o d els th at m ay be p ro p o sed s till | m u st tak e into account th e s im ila r ity in sh ap e b etw een th e 553 and i ; 580 c m ” * bands, and th a t th e s tr u c tu r e is too co m p licated to be i re so lv e d into a su p e rp o sitio n of only two o r th re e bands w ith sim p le shape. A m odel that s a tis fa c to rily fits a ll th e o b se rv e d d ata is to a ssig n the 580 and 677 c m ” * bands to the a x ia l and tr a n s v e r s e m odes of B -L i w here the B has fo u r Si f i r s t n e ig h b o rs. The 553 and 651 c m ” * bands a re the c o rre sp o n d in g m odes fo r b o ro n w ith one Ge atom am ong the f ir s t n e ig h b o rs. W hen one Ge f i r s t n eig h b o r is p re s e n t the L i e ith e r sits o p p o site th e Ge o r a d ja ce n t to th e Ge, but only one of the configurations o c c u rs to any a p p re c ia b le ex ten t. The lin e 159 shape of any in d iv id u al o s c illa to r is sy m m e tric , but its freq u e n cy ■depends on the seco n d neighbor co n fig u ratio n . The o b se rv e d b ro ad en ed a s s y m e tric bands a re the su p e rp o sitio n of the a b so rp tio n fro m boiton a to m s w ith d ifferen t second neig h b o r c o n fig u ra tio n s, i One of the obvious fe a tu re s of the 580 c m * and 677 c m * bands is the g re a te r b ro ad en in g of the lo w er freq u e n cy band. In both c a se s : the b ro ad en in g is a ttrib u te d to second n e ig h b o rs. One p o ssib le | ex p lan atio n is b a se d on the p ro p e rty of lo c a liz e d v ib ra tio n a l m odes ! th a t a h ig h e r freq u e n cy m ode is a tte n u a te d m o re ra p id ly w ith i d istan c e th an is a lo w er freq u e n cy m ode. The low fre q u e n c y m ode i I | should involve m o re m otion of the seco n d n e ig h b o rs, an d thus be jm o re a ffe c te d by su b stitu tio n of a Ge fo r a Si. T his ex p lan atio n is i ! u n s a tis fa c to ry fo r two re a s o n s . The e ffect of the m a s s change should i j be to lo w e r the m ode freq u en cy c au sin g b ro ad en in g on the low ‘freq u e n cy sid e s of the ban d s, and, a s is show n in the appendix, the | ! e ffect is too sm a ll. The change in freq u e n cy of the a x ia l b o ro n m ode of a B -L i p a ir w hen a Ge is su b stitu te d fo r a Si seco n d neig h b o r w as c alcu late d ; the value depended on w hich n eig h b o r w as su b stitu te d , and ran g ed fro m - 0 . 1 to 01 . 1 cm "* fo r an iso to p ic su b stitu tio n m odel. If re a so n a b le changes of the G e-S i fo rc e c o n stan t a re c o n sid e re d , the la r g e s t change is -1 .5 c m "* , w hich is s till too sm a ll. F . L in esh ap e C alcu latio n s ! 160 ! The shape of the bands does not uniquely give the seco n d n e ig h b o r d istrib u tio n w ithout som e ad d itio n al as su m p tio n s, but a | sim p le m o d el can be d ev ised w ith w hich a p ro p o sed d istrib u tio n can : be te s te d to se e if it is c o n siste n t w ith the o b se rv ed band sh ap e. In I fa c t, it is found th a t the o b se rv e d lin e shape can be obtained fro m a : p u re ly ran d o m d istrib u tio n of seco n d n eighbors and a few e m p iric a l I but p h y sic a lly re a so n a b le n u m b e rs. C o n sid er f ir s t the a x ia l m ode I a t 580 cm it show s the la r g e s t e ffe c ts fro m the second n e ig h b o rs. I j It is a sin g le n o n -d eg e n era te m ode and the p e rtu rb a tio n s due to s e c - j I ond n e ig h b o rs a re a ll s m a ll c o m p a re d to the sp littin g due to the b o ro n i • ; b ein g p a ire d w ith L i. It should th e re fo re be a re a so n a b le a p p ro x i- j m a tio n to c o n sid e r the e ffe cts of d iffe re n t second n eig h b o rs as being | | in d ependent. The. e ffe c t of a given co n fig u ratio n of seco n d neig h b o rs j is ta k e n a s the su m of the e ffe c ts of the individual second n eig hbors | i c o n sid e re d se p a ra te ly . j j R e fe rrin g to F ig . 26, it is se e n th at in te rm s of the e ffect on i — ’ f’ j the a x ia l m ode of a B -L i p a ir th e re a re th re e d istin c t s e ts of se co n d n e ig h b o rs. One s e t c o n sists of the th re e site s 6-8 th at a re + n e ig h b o rs of the in te r s titia l L i , 18. The second s e t c o n sists of th e six s ite s 9-14 w hich a re in a plane w hich is p e rp e n d ic u la r to th e B -L i a x is and p a s s e s th ro u g h the b o ro n site . The th ird s e t c o n sists of th e th re e re m a in in g s ite s , 15-17. The th re e d iffe re n t se ts of s ite s a re d esig n ated by a n index i = 1, 2 o r 3, re s p e c tiv e ly . A Ge a to m in one of the s ite s of the itn se t is then a ssu m e d to sh ift the fre q u e n c y of the lo c a l m ode by som e ; c h a ra c te ris tic am ount 6.. If the n u m b er of Ge ato m s in the ith set l is n^, then a boron ato m w ith a c o n fig u ra tio n ( n ^ n ^ n ^ ) of Ge second neighbors w ill have its lo c a l m ode freq u e n cy sh ifte d by S n .6 . rela tiv e to th a t of a b o ro n w ith no Ge seco n d n e ig h b o rs. If a . i i l i random d istrib u tio n of Ge a to m s th ro u g h o u t the la ttic e is a ssu m e d , : then the allo y co m p o sitio n d e te rm in e s the p ro b a b ility of any config- 1 u ra tio n . F o r Ge Si the p ro b a b ility of a c o n fig u ra tio n (n .,n , n_) X i ~ X . > X w < 5 ! is p (n x) p(n2) p(n3) ; p(m ) = V;- ---j; * 1 (1-x) w h ere k = 3 i ' “ r i ' I fo r i = 1 o r 3 and k = 6 fo r i = 2. If the a b so rp tio n a(v) fo r a single | o s c illa to r can be w ritte n a s a lin e -sh a p e fu nction c e n te re d about a : freq u en cy V q , a(v) = L(V-\>o ), th e n th e re s u ltin g inhom ogeneously : b ro ad en ed line in the allo y is e x p re s s e d a s a su m of the a b so rp tio n I of individual o s c illa to rs , e a c h w ith its fre q u e n c y d e te rm in e d by the , second neighbor c o n fig u ratio n , w eighted by the p ro b a b ility fo r the | o c c u rre n c e of th at c o n fig u ra tio n ; a(v) = N E i a ll(n , n , n ) L(V-V - E n .6 .) p(n.) . F o r the o . 1 1 . r 1 i i S i-ric h allo y s being c o n sid e re d , the su m m atio n w as tak e n only o v er the tw enty co n fig u ratio n s fo r w hich E n^ < 3. The p ro b a b ility that E n^ > 4 is le s s th an . 01 fo r a n a llo y w ith 6 % Ge and le s s th an 0. 05 fo r an allo y w ith 12% Ge. In c o m p a rin g the p re d ic te d a b so rp tio n band shape to an e x p e rim e n ta lly o b se rv e d band, the n o rm a liz a tio n fa c to r N and the unshifted freq u en cy vQ a r e d e te rm in e d fro m the in te g ra te d in te n sity and the frequency of the o b se rv ed band. If a I L o re n tz ia n lin e -sh a p e is a ssu m e d fo r a sin g le o s c illa to r, th e w idth : p a ra m e te r m u st be d e te rm in e d . The effects of th ird and fu rth e r n eig h b o rs a r e lum ped into th e linew idth, so th e lo w e r bound on the w idth is th a t o b se rv ed fo r th e boron lo c a l m ode in Si. It w ill be seen ; th at a good fit can be obtained by sim p ly using th e w idths o b se rv ed ■ fo r B in Si, in d icatin g th at the effect of th e m o re d is ta n t neig h b o rs is I sm a ll. T h e re a r e then th re e fre e p a ra m e te r s , th e 6 ., to d e te rm in e the shape of th e lin e . > The o rig in of the sh ifts of 6 . . is d e sc rib a b le in te r m s of the i n a tu re of th e in te ra c tio n betw een th e b o ro n and its Ge second | i n e ig h b o rs. The freq u en cy of the b o ro n lo c a l m ode is d e te rm in e d i a lm o st e n tire ly by the m a s s of th e b o ro n , the fo rc e c o n stan ts b etw een | b o ro n and o th e r a to m s, and the m a s s e s of th e f ir s t n e ig h b o rs. The m ode is su fficie n tly w ell lo ca liz ed th at changing a fir s t- to - s e c o n d n eig h b o r fo rc e co n stan t o r a second n eig h b o r m a s s h a s v e ry little e ffect on th e freq u en cy . The fo rce constant b etw een b o ro n and a second n eig h b o r Ge should not be su b sta n tia lly d iffe re n t fro m th at w hich o c c u rs fo r a Si second n eig h b o r. H ow ever, the a s s y m e tric a l b ro ad e n in g s p re a d s out o v e r ~20 c m ” *. T h ere a r e two in te ra c tio n s betw een a b o ro n ato m and a Ge second neig h b o r th a t a r e lik e ly to be stro n g enough to account fo r the o b se rv e d sh ifts. One is th e la ttic e 164 due to p o la riz a tio n induced on the neighbors by the Li . A Ge ato m | is both la r g e r and m o re p o la riz a b le than the Si it re p la c e s . If th e i re p u lsiv e in te ra c tio n due to th e in c re a se d siz e of the Ge d o m in ates, ! J . ; a Ge w ould push and in te r s titia l L i c lo s e r to the boron, in c re a s in g | the e le c tr o s ta tic field seen by th e boron and in cre asin g th e sp littin g ; of th e b o ro n m o d es, thus lo w erin g the axial m ode freq u en cy . If the j a ttra c tiv e in te ra c tio n due to the in c re a se d p o lariza b ility d o m in a tes, i | » ^ I then the L i w ill b e pulled away from the boron, which w ill r a is e the f . i ■ a x ia l m ode freq u e n cy . The la tte r is w hat is required to fit the ! i # | o b se rv e d lin e -s h a p e . A ssum ing th at th e changes in the b o ro n m ode i (fre q u e n c ie s fo r a change in th e L i+ - B~ in te ra c tio n a re in the sam e | ra tio as the to ta l sp littin g fro m the isolated^B frequency, the e le c tr o - j s ta tic p a rt otf.the freq u en cy sh ifts of th e 580 and 677 cm * bands |sh o u ld b e re la te d by 6l e (677) » 6l e (580) = -0 . 6 6l e (580). ! 1 • • + j The e ffe ct of the s tro n g Coulom b in te ra c tio n betw een th e B and L i should b e to pull th e L i+ along th e < 1 1 1> ax is tow ard th e b oron and aw ay fro m th e second neig h b o r s ite s . This should favor the p o la r iz a tio n in te ra c tio n and red u ce th e o v erlap in te rac tio n b etw een th e L i+ and a Ge in th e f i r s t s e t of s ite s , giving the d e sire d p o sitiv e v alu e f o r 6. (580). T he 6 . (677) w ill then be n eg ativ e, w hereas th e s tr a in l e 1 e sh ifts fo r th e 677 band should be positive, thus accounting fo r th e l e s s e r b ro ad e n in g of th e 677 cm""* band. T he s im p le s t m odel to d e te rm in e a p p ro p ria te v a lu e s for th e 165 i ; freq u en cy sh ifts is to a ssu m e th a t a Ge on any of the second neighbor ; s ite s gives the sa m e s tr a in shift; 6 = 6 = 6 , and 6 = 6 + 6 . 1 S u X X S X G : The v alu es fo r th e se p a ra m e te rs w hich give a fia rly good fit to the \ shape of the 580 cm "* band a re 3. 3 c m ’ * fo r 6 ^ and 9. 5 cm~* fo r ; 6 , so th at 6 is 6 .2 c m *. As is se e n in F ig . 27, th is gives a X X 6 i re a so n a b le fit to the g e n e ra l shape of th e a x ia l m ode. A b e tte r fit can be o b tain ed by u sin g a som ew hat m o re r e a lis tic | m o d el fo r th e e ffe c ts of s tr a in induced by Ge second n eig h b o rs. The I p rin c ip a l m a n n e r in w hich a seco n d neighbor Ge can affect the b o ro n I m ode fre q u e n c y is to in c re a s e the fo rc e c o n stan ts coupling thei-boron i I j to its n e ig h b o rs by d isp lac in g one of the n eig h b o rs to w ard the bo ro n . | A Ge ato m in the th ir d s e t of seco n d neighbor s ite s , nos. 15-17 in i ! j F ig . 26, w ill d isp lac e the n eig h b o r (no. 5) th a t lie s on the B -L i a x is, i ' p rin c ip a lly a ffe c tin g the fo rc e c o n stan ts coupling the b o ro n to th at n eig h b o r. A Ge a to m in e ith e r the f i r s t o r seco n d s e t of second j n eig h b o rs w ill d isp la c e one of the o ff-ax is f i r s t neighbours, changing J m ain ly the fo rc e c o n sta n ts b etw een the n eig h b o r and the boron. Since the a x ia l m ode a t 580 c m * is se n sitiv e m o re to the fo rce co n stan t b etw een the b o ro n and the o n -a x is f ir s t n eig h b o r th an to any of the o th e r fo rc e c o n sta n ts, the freq u e n cy sh ifts 6^ should sa tis fy 6^(580) < = « 6_(580) < 6,(580); 6 is s till given by 6 = 6 + 6 . The v alu es C t <j X X X 8 X G fo r th e se p a r a m e te r s th a t a re found to give a good fit to the o b se rv e d band shape ( see F ig . 27 ) a re 6 , = 5. 0 c m ’ *, 6 = 2 .7 cm "*, and ABSORPTION COEFFICIENT (cm" O O o "540 560 580 600 V640 W AVENUMBER (crrf) 660 680 700 F ig u re 27. L o ca liz ed v ib ra tio n a l m ode a b so rp tio n of b o ro n in B - -L i+ p a irs in Ge j^S i gg- C irc le s a r e e x p e rim e n ta l p o in ts. D ashed lin e is the fit obtained w ith ju s t one sh ift ( , = - = o )• Solid lin e s a re fits obtained w ith two s tr a in sh ifts. Is 2 3 ' I F o r th e tr a n s v e rs e lo c a l m ode, the seco n d n eig h b o rs in the ' f i r s t and second se t of site s w ill give the la r g e r s tr a in sh ift, so I 6 . » 6 _ > 6, . U sing the ra tio 6 . (677)/6. (580) = - 0 .6 and the sam e 1 S Ct J XG XG i n u m e ric a l values fo r the s tr a in s h ifts , one o b tain s 6 ^ = 5 .0 - 4 . 1 = ; 0 . 9 , = ^3 = c m "*« - A - good fit c an be m ade u sing v alu es | quite clo se to th ese n u m b e rs, w ith the b e s t v alu es being 6 ^ = 1 . 0 , ; = 5 .4 , and 6, = 2. 9 cm * ( see F ig . 27 ). F o r the tra n s v e r s e u < 3 I lo c a l m ode the sim p le m o d el w ith only one s tr a in sh ift does not give i I a rea so n a b le fit to the o b se rv e d band sh ap e. i It is not s u rp ris in g th at the above m odel w orks w ell fo r the | a x ia l m ode; it is a n o n -d eg e n era te m ode, and the sp littin g induced i * I ! by the L i w hich defines the m ode is la rg e c o m p a re d to the e ffe cts of i I : the second n e ig h b o rs. The sim p le f i r s t o r d e r p e rtu rb a tio n t r e a t- I | m en t should w ork w ell. The tr a n s v e r s e m ode, ho w ev er, is a doubly i d e g en e ra te m ode. The sim p le d e sc rip tio n of co n fig u ratio n s of second n eighbors is not ad equate to d e sc rib e th e ir e ffe ct on sp littin g the d eg en eracy of the m ode. In te rp re tin g the freq u e n cy sh ift p a ra m e te rs 6^ a s additive e ffe c ts of in d iv id u al Ge seco n d n eighbors does not se em re a so n a b le ; the m o d el is too sim p le . F o r the t r a n s v e rs e m ode the 6^ m u st be ta k e n a s being an a v e ra g e e ffect, w ith the im p o rta n t point being the p a rtia l c a n c e lla tio n of the s tr a in and Coulom b sh ifts. The fits fo r both bands a ssu m e d ran d o m d is tr i- : _ 168 ! bution of the seco n d n eig h b o rs, and no e v id e n ce is found to ; c o n tra d ic t th is . The 553 c m ” * band is n o m in ally the sa m e shape and w idth as i ' ■ ■ i - 1 1 the 580 c m ” band. The m o d el w hich fits th e 580 band q u a lita tiv e ly | ! fits th is b and a ls o . The 553 band is w eak enough th a t it is h a rd to I get a re a lly q u an titativ e c o m p a riso n . : + The e ffe c t of a f i r s t n e ig h b o r Ge on th e a x ia l m ode of B - L i j should depend on w h eth er the L i is in the s ite along th e B -G e ax is I o r in one of the th re e o ff-ax is s ite s . H o w ev er, only one band is i ! se e n sp lit off fro m the 580 c m ” * band; th is is the 553 cm "* band. ! The 677 c m * band a lso a p p e a rs to have o n ly one s a te llite , the : _ 1 | 651 cm band. If the c o n je c tu re about the L i-B d ista n c e being ! n o ticeab ly le s s th an a bond len g th is c o r r e c t, then, sin ce the Ge is j la r g e r th an the Si, the p r e f e r r e d p osition f o r the L i should be the I ! i site opposite the Ge. T his does not split th e tr a n s v e r s e m ode | d e g en e ra c y , and only one sh ifte d a x ial m ode is se en . It is , how ever, | ■ | p o ssib le th a t th e re a re c e n te rs fo r which th e tr a n s v e r s e m ode d e g en e ra c y is lifte d and the se co n d band is h id d en u n d e r the la rg e 677 cm * band. . No band h as yet been s e e n th a t can be a ttrib u te d to B ” w ith a f i r s t n eig h b o r but no p a ire d L i. A t room te m p e ra tu re o r below , the - + u n p a ire d B band is its e lf quite sm a ll, but th e B - L i p a irs d is so c ia te re a d ily at h ig h e r te m p e ra tu re ( 100-200°C ) a n d the is o la te d 169 b o ro n band b ecom es quite la rg e . H ow ever, the L i begins to diffuse I out of the sam ple in a few m in u te s a t th ese te m p e ra tu re s and the fre e I c a r r i e r background a b so rp tio n in c re a s e s . T he IF tr a n s m is s io n I m e a su re m e n t m u st be m ade quickly. S e v e ra l sa m p le s w ere i | m e a s u re d a t e le v a te d te m p e ra tu re s , but the noise le v e l and b a ck - ; ground a b so rp tio n w e re such th a t no side band of the is o la te d b o ro n ■ band could be id en tified . G. B -L i P a irin g D istan ces j - - | In th e d isc u ssio n of both the f ir s t and second n e ig h b o r e ffe c ts, j i the a ssu m p tio n w as m ade th a t the d istan ce fro m the b o ro n to the ! + ! in te r s titia l L i should be le s s th an the d istan ce to the c e n te r of the i \ te tr a h e d r a l in te r s titia l s ite , w hich is the sam e a s a S i-S i bond length, ! ab o u t 2. 35 X. P re v io u sly p u b lish ed values (P e ll I960, P o lia k an d W att 1965) fo r B - L i p a ir d ista n c e s in Si range fro m 2 .4 - 2 . 9-&. T h ese v a lu e s, how ever, w e re d e riv e d fro m m e a s u re m e n ts of th e rm a l d isso c ia tio n of L i* -B p a ir s . R ie ss e t;a l. (1956) c a lc u la te d the f r a c tio n of ions p a ire d a s a fu nction of te m p e ra tu re fo r a m o d el w hich + c o n s id e rs the in te ra c tio n betw een B and L i as only a C oulom b in te r a c tio n s c re e n e d by the bulk d ie le c tric co n stan t of the c ry s ta l. T he B- L i d ista n c e is th en a p a ra m e te r to define the p a irin g e n e rg y . It h a s been noted (K ro g er 1964) th a t th is m o d el n eg lects e la s tic s tr a in e n e rg y fo r a L i* ion d isp lac ed fro m the c e n te r of an in te r s titia l s ite , a s w e ll a s n eg lectin g the red u c tio n in effectiv e d ie le c tric sc re e n in g 170 w hen th e d ista n c e betw een the p a ire d ions is sm a ll. T hese te rm s a r e j ; i j of o p p o site sig n and w ill tend to can cel if the p a irin g d istan c e is le s s j th an a bond len g th . The m odel h as been supported by n u m b ers I obtained fo r p a irin g d ista n c e s fo r L i+ p aired w ith Al, Ga, o r In in Ge | (R iess et a l. 1956) and Al in Si (M aita 1958); the values obtained a r e i I 1. 6 - a . 8 k , c lo se to th e su m of the covalent rad iu s of the a c c e p to r land th e ionic ra d iu s of th e L i+. A low er p airin g energy is o b se rv e d ! fo r L i+ - B~ p a irs in both Ge and L i, and th is is in te rp re te d as ! in d ic atin g a la r g e r p a irin g d istan c e. i j | T he m e a s u re d p a irin g energy is the d ifferen ce in en erg y b e - I tw een a L i+ in a n o rm a l la ttic e s ite and the L i+ in a site a d ja ce n t to i i jth e a c c e p to r. The c h a rg e on th e L i p o la riz e s its n eig h b o rs, so the I j d iffe re n c e in p o la riz a tio n en erg y m u st also be included if th e p o la r- I i iz a b ility of th e a c c e p to r is d ifferen t fro m th at of a silico n ato m . The e n erg y is p ro p o rtio n a l to the p o la riz a b ility of the n eig h b o rs; B e ll- m o n te and P ry c e (1968) have e stim a te d it as about 0. 3 eV fo r each of the n e a r n e ig h b o rs fo r L i+ in a te tra h e d ra l in te rs titia l s ite in Si. As a rough e s tim a te , th e p o la riz a b ility of an atomccaaabe tak en as being p ro p o rtio n a l to its volum e. A boron atom h as le s s than h a lf th e volum e of a Si ato m , hence a s m a lle r p o la riz a b ility . O ther su b stitu tio n a l a c c e p to rs a r e as la rg e o r la r g e r th an Si, so th a t th e change in p o la riz a tio n en erg y m ight be expected to reduce the o b se rv e d L i+ - B~ p a ir en erg y in Si by 0. 1 - 0. 2 eV as c o m p a red to 171 1 ,J- - i Li - Al p a irs . The o b se rv e d d iffe re n c e is about 0. 1 eV. The j | ag re em e n t of th e quoted n u m b ers is probably ju s t fo rtu ito u s, j D isto rtio n of th e la ttic e is not n eg lig ib le around a su b stitu tio n al j boron sin ce the b o ro n is sm a ll c o m p ared to th e Si it re p la c e s. This i ! m ay m odify the in te r s titia l s ite su fficien tly that th e sim p le m odel j i ! above is not re a lly v a lid . i I It has b een re p o rte d th at th e su b stitu tio n of boron fo r silicon contacts the la ttic e by about 0 . 8 of the volum e of a silico n atom fo r | each su b stitu ted b o ro n a to m (Horn 1955). In th e p re s e n t w ork x -ra y la ttic e p a ra m e te r m e a s u re m e n ts w e re m ad e com paring Si, Si heavily 10 -3 doped w ith B ( ~ 5 x 10 cm ), and lith iu m diffused heavily B- doped Si. It w as found th a t the L i d iffusion r e s to re s about 40% of the c o n tra c tio n c a u se d by the bo ro n , so that B -L i p a irs m ay involve a c o n sid e ra b le am ount of e la s tic en erg y . A dditional ev id en ce fo r a s m a ll L i-B p a ir d istan c e com es fro m the sp littin g of th e b o ro n lo c a l m ode in Si. P a ire d s u b s ti tutional donors (P, A s, Sb), w hich m u st be clo se to a bond length away sin c e th ey a r e c o v alen tly bonded to th e la ttic e , only give about o n e -th ird th e sp littin g given by a p a ire d L i*. Since the splitting is assu m ed to be c o n tro lle d by the Coulom b in te ra c tio n betw een B ” and the p a ire d d o n o r, th e d is c re p a n c y is conveniently explained if the Li* - B" p a ir d ista n c e is s m a lle r than a bond len g th . T hus, the p rev io u sly re p o rte d p a irin g d ista n c e s fo r Li* - B ~ p a irs a re not to I 172 ! be tak en too se rio u sly . H. S u m m ary and C onclusions j L o c a liz e d v ib ra tio n a l m odes of B - L i p a irs in S i-ric h I 1 i Ge Si, w ere stu d ied w ith the in te n t of u sin g the lo c a liz e d m ode a s a x 1 -x j p ro b e fo r p o ssib le s tru c tu re in the a llo y . It w as found th a t the ab- | so rp tio n stre n g th of the bands due to b o ro n w ith a Ge f i r s t neighbor i w as lo w er than m ight be e x p ec te d fro m a ran d o m d istrib u tio n .o f Ge | and B throughout the la ttic e . T h is m ay be c a u se d by a ten d en cy fo r | B and Ge to avoid fo rm in g f i r s t n eig h b o r p a ir s , a s m a lle r o s c illa to r 1 j s tre n g th fo r B m odes when a Ge f i r s t n eig h b o r is p re s e n t, o r both of ; th e se effe cts to g e th e r. I j The effect of the seco n d n eig h b o r Ge a to m s on the b o ro n i | m odes w as to produce a p ro nounced a s y m m e tric b ro ad en in g of the t i | o b se rv e d bands. A m o d el is p ro p o se d w hich fits the band sh ap es I | and does not re q u ire invoking any o rd e rin g am ong the seco n d neig h b o rs of the bo ro n . It is a ssu m e d th a t the p rin c ip a l e ffe c ts of a seco n d neighbor Ge atom a re a change in the fo rc e c o n sta n ts coupling the b o ro n to the la ttic e and, on som e s ite s , m o d ifica tio n of the B -L i p a irin g in te ra c tio n b e ca u se the Ge d iffe rs in p o la riz a b ility fro m the Si. The a sy m m e tric shape of the bands c a n th e n be fit quite w ell as a su p e rp o sitio n of the a b so rp tio n of b o ro n atom s- on s ite s having d iffe re n t second neighbor c o n fig u ra tio n s by u sin g th re e a d ju sta b le i . p a ra m e te rs d e sc rib in g the s tre n g th of th e s tr a in and p o la riz a tio n j in te ra c tio n s , and assu m in g th at the d istrib u tio n of Ge in the la ttic e J i i I is random . : j C aution m u st be e x e rc is e d in the in te rp re ta tio n of th e se | m e a su re m e n ts since th e re is the p o s s ib ility th a t the b o ro n m ay be j ; p re fe re n tia lly se g re g a te d e ith e r into o r aw ay fro m any G e -ric h o r : S i-ric h o r o th erw ise anom alous reg io n s th a t m ay e x ist; a ls o , the ( e ffect, if any, of the L i diffusion on the sh o rt ran g e o rd e rin g is not | known. If the low stre n g th of the bands fro m f i r s t neig h b o r B -G e i ! p a irs is c au se d by a low c o n c e n tra tio n of th e se p a ir s r a th e r th an a ; low o s c illa to r stre n g th , th en th is is an exam ple of a se g re g a tio n ! j phenom enon. The seco n d n eig h b o r d istrib u tio n m ay be m o re r e p r e - j se n ta tiv e of the bulk of the c ry s ta l; the r e s u lt h e re is c o n siste n t I j w ith a ran d o m alloy, b u r does not by its e lf p ro v e th at the allo y is I I ! random . ! The lo c a l m ode sp e c tru m in the allo y does give in fo rm a tio n on | | the s tru c tu re of the B -L i p a ir th a t w as not o b tain ed fro m m e a s u r e m en ts in Si o r Ge. The m o d ificatio n of the B -L i p a irin g in te ra c tio n th a t is re q u ire d to fit the o b se rv e d line sh a p es stro n g ly su g g e sts th a t the c o rr e c t value fo r the B -L i p a irin g d ista n c e should be le s s th an 2. 35 X, the S i-S i bond len g th , r a th e r th an the p re v io u sly re p o rte d v alu es of 2 .4 - 2 .9 X . CH A PTER VI L o c a liz e d V ib ratio n al M odes of P h o sp h o ru s and of L ith iu m I , P a ir e d w ith G allium in G erm anium T h e re a re s e v e ra l lig h t e le m e n ts w ith a la rg e enough so lu b ility in Ge th a t in fra re d a b so rp tio n fro m lo c a liz e d v ib ra tio n a l m o d es ‘ should be o b se rv a b le . T h ese include b o ron, alum inum , silic o n , and I p h o sp h o ru s am ong th o se dopants th at occupy su b stitu tio n a l s ite s , and | lith iu m an d oxygen am ong th o se dopants th at a re p rim a rily in te r - i s titia l. G erm an iu m is one of the two m o st w idely stu d ied se m ic o n - I i ' ! d u c to rs , the o th e r being silic o n . The la ttic e dynam ics of p u re Ge j h a s b een stu d ie d both e x p e rim e n ta lly and th e o re tic a lly in c o n s id e r able d e ta il, ho w ev er, p r io r to the p u blication of the m a te ria l ! c o v e re d in th is c h a p te r, the only re p o rte d in fra re d a b so rp tio n of | im p u rity v ib ra tio n s w as th at of in te r s titia l oxygen ( K a ise r 1962). i i j The only o th e r re p o rt of a lo c a liz e d m ode w as th a t of the Si lo c a l ! i m ode as o b se rv e d by R am an sc a tte rin g ( F e ld m a n e t. a l. 1967 ). T h ere w e re , by th a t tim e , n u m erous re p o rts of lo c a l m odes o b se rv e d in IR a b so rp tio n in o th e r se m ic o n d u cto rs such as Si, G aA s, GaSb, InSb, CdS, ZnSe, and in s e v e ra l ionic c ry s ta ls ( se e , fo r in sta n c e , the rev iew by N ew m an 1969 )• The la c k of o b se rv atio n s in Ge w as p rin c ip a lly due to the d ifficu lty of e le c tric a lly co m p en satin g h e a v ily doped Ge to s u p p re ss fre e c a r r i e r a b so rp tio n . W ith the e x ce p tio n of Si and O, a ll the lig h t e le m e n ts w ith la rg e so lu b ilitie s 174 | 175 a re e le c tric a l d o p an ts, and the silic o n lo c a l m ode (see C h ap ter III) i is only v e ry w eakly IR a c tiv e . Since th e p u b licatio n of the re s u lts I p re s e n te d in th is c h a p te r, N a zarew icz and Ju rk o w sk i (1969) have i o b se rv e d th e lo c a l m odes of iso la te d b o ro n and of b oron in B~ - Li* ! p a irs in Ge co m p en sated by L i diffusion. T h e ir co m pensation w as not : good enough to allow o b se rv atio n of the L i m odes of the B ” - Li* p a ir s . As of th is tim e , th e re is s till no re p o rt of the Al lo c a l m ode. i The situ a tio n w ith Ge c o n tra s ts stro n g ly w ith th a t of Si, w h ere | co m p en satio n is re la tiv e ly e asy . The lo c a l m odes of a ll of the !highly so lu b le lig h t im p u ritie s have been o b se rv ed and ex ten siv e I j stu d ie s have b een m ad e of th e lo ca l m odes of th e s e im p u ritie s p a ire d i t | w ith o th e r im p u ritie s . s I j A quite c lo se d e g re e of co m pensation is needed, sin ce the fre e I c a r r i e r a b so rp tio n c ro s s se c tio n is quite la rg e . In the freq u en cy i ’ - 1 ran g e of in te r e s t (300 - 600 cm ) the a b so rp tio n c ro s s se c tio n of a fre e h ole in Ge is about 5 x 10” ^ cm ^ a t 300°K, and it in c re a s e s w ith d e c re a s in g te m p e ra tu re (K a iser e t. a l. 1953). The a b so rp tio n c ro s s se c tio n of th e b o ro n lo ca l m ode in both Ge and Si is only -18 2 1 - 2 x 1 0 ” cm , sm a ll enough th at th e band is not d e te ctab le above the fre e c a r r i e r a b so rp tio n w ithout a fa ir d e g re e of co m pensation. Q uite good co m p en satio n is needed if q u an titativ e m e a su re m e n ts a re to be m ad e of the lo c a l m ode band sh ap e and s tre n g th . F o r p h o sp h o ru s th e situ a tio n is not quite as u n fav o rab le. The a b so rp tio n | 176 ! _ 2 ! c ro s s se ctio n of fre e e le c tro n s is only about 2 x 10 " cm a t the ; phosphorus lo c a l m ode freq u e n cy , w hile the phosphorus lo cal m ode -18 2 ! c ro s s se c tio n is about 5 x 10" cm , a little la r g e r than fo r b o ro n . | It probably would b e p o ss ib le , given p r io r know ledge of the frequency of th e lo c a l m o d e, to o b se rv e th e IR a b so rp tio n of the p horphorus lo c a l m ode in an uncom pensated sa m p le . Q uantitative i m e a su re m e n ts , h o w e v er, re q u ire fa irly good com pensation. ! The in itia l m a te r ia l u sed w as doped so th a t [ G ] ^ 18 -3 • 4 x 10 cm . S lic e s w e re cut th a t had reg io n s th at w ere p-type i w ith p > . 02Q -c m . T h ese w e re co m p en sated by L i diffusion. The i i i ! sam p les w e re th en ground and p o lish ed and the IR tra n s m is s io n w as I m e a su re d a t 80°K . I I -1 -1 In the s p e c tr a l reg io n fro m 270 cm to 510 cm four a b s o rp - j tion bands not p re s e n t in high p u rity Ge a re found in L i com pensated j j Ga and P doped Ge a t 80°K (sam ple 1, F ig . 28). Two of the b ands, I at 356, 380 c m "* , change freq u en cy to 379, 405 cm * if ^L i is u sed in ste a d of n a tu ra l L i (93% ^Li). T h ese two bands also a p p e a r a t th e sam e freq u e n cy in Ga doped Ge w hich has been n e a rly co m p en sated w ith As and Sb and th en diffused w ith L i (sam ples 2, 3, F ig . 28); the two b ands in th e Ga and P doped m a te r ia l at 343 and 350 cm - * w hich do not show a L i iso to p e sh ift do not a p p ea r in th is m a te ria l. The p re s e n c e of tw o L i bands im p lie s th a t th e in te rs titia l L i is 177 ! F ig u re 28. A b so rp tio n c o e ffic ie n t a t liq u id -n itro g e n te m p e ra tu re v s. I 7 w avenum ber fo r g e rm a n iu m sa m p le s: (1) P and Ga doped, L i l ! 7 | diffused; (2) Ga, A s and Sb doped, L i diffused; (3) Ga, A s ! and Sb doped, ^L i diffused; (4) p u re G e. V arying am ounts j j of background a b so rp tio n a r e the r e s u lt of im p e rfe c t com p en satio n . 40 30 20 4 0 0 3 8 0 360 340 179 in a p a ire d configuration, pro b ab ly as L i-G a p a ir s . The lo w er , freq u en cy band of the two is a lm o st ex actly tw ice a s stro n g as the ! h ig h er frequency band. I n te rs titia l L i p a ire d w ith an a c c e p to r ! should have C^ sy m m e try , w hich w ill s p lit th e lo cal m ode into a j sin g le a x ial m ode and a doubly d e g e n e ra te tr a n s v e r s e m ode. The ■ s im p le st m odel fo r the a b so rp tio n fro m a lo c a liz e d m ode is th a t of j a sin g le ch arg ed im p u rity v ib ra tin g in a u n ifo rm d ie le c tric m edium . i I T his m odel w ill give tw ice th e a b so rp tio n s tre n g th to a doubly degen- j e ra te m ode as to a sin g le m ode, so th a t it w ould a ssig n the band a t : 356 (379) c m “ * to the doubly d e g e n e ra te m ode and th e 380 (405) cm * I 7 6 j band to the singly d e g e n e ra te m ode of L i( L i). The m odel is o v e r- 1 | sim p lified , h o w ev er, and th e re a re c a s e s , su ch as p a irs betw een | b o ro n and su b stitu tio n a l donors in Si, w h e re the s tro n g e r of two | bands is pro b ab ly not th e doubly d e g e n e ra te band (T sevtov et. a l. i 1968, N ew m an and Sm ith 1968). The m o d el u se d fo r B - L i p a irs in Si, th at of co m p letely lo c a liz e d B and L i v ib ra tio n s in te ra c tin g w ith a sim p le Coulom b field , p re d ic ts th e doubly d e g e n e ra te v ib ra tio n s to be the h ig h e r freq u en cy ones (W aldner et a l. 1965). In Si, the B .v ib ratio n s q u a litativ e ly fitted th is m o d el, but only one L i m ode w as o b se rv e d , w ith v, , the lo c a l m ode freq u e n cy , c lo se to V - j j llld> X th e m ax im u m phonon freq u en cy of the u n p e rtu rb e d la ttic e . In the p re s e n t c a se , although th e vT values fo r both L i m odes > jj m ax the v L (doubly d e g e n e ra te ) < vL (singly d e g e n e ra te ) and the ! 180 ! sp littin g Av is m uch s m a lle r th an th a t p re d ic te d by the coulom b m odel. It is not obvious th at th e re should be two P bands as th e re is I only one abundant P iso to p e. A n o th er sp e c im e n w as p re p a re d w ith I about tw ice the doping lev e l of the f ir s t P and Ga doped sp ecim en . The la r g e r band a t 343 cm * a lm o st doubled in sten g th fro m a = 23 c m * to a =39 cm * w hile the s m a lle r band a t 351 c m ” * m o re than ; trip le d fro m a = 5 c m ” * to a = 16 c m ” * ( m e a s u re d in te rm s of j peak a b so rp tio n stre n g th ). A p o ssib le m odel is th a t the s tro n g e r band is a ttrib u te d to the i | trip ly d e g en e ra te m ode of is o la te d su b stitu tio n a l P and the w e a k e r one is due to P -G a p a irs . It is not u n re a so n a b le th a t only a sin g le j ad d itio n al band be se en fro m p a irs . T sev to v , e t. a l. (1 9 6 8 ) have i I o b se rv e d p a irin g of B w ith P , A s, and Sb in silic o n ; in e ac h c a se j | two a d d itio n al bands w e re o b se rv ed , but in one c a s e , B - P p a ir s , one j i | of the bands ap p ea re d only as a s m a ll sh o u ld e r on the band due to j ' j is o la te d B w hile the o th e r band w as sp lit off by a s u b s ta n tia l am ount. i ! . • j If one of the two freq u e n cie s of P p a ire d w ith Ga is the sam e a s the I is o la te d P freq u en cy , only one a d d itio n al band w ould be o b se rv e d . In a given h o st la ttic e , the fre q u e n c ie s of lo c a l m odes depend both on the im p u rity m a ss and on changes in fo rc e c o n sta n ts, In the c a se of a P -G a p a ir, the effect on the P lo c a l m ode fre q u e n c ie s of changing the m a s s of one of the f ir s t n eig h b o rs fro m th a t of Ge 181 ; i ( a t. w t. 72. 6 ) to th a t of Ga ( a t. w t. 69. 7 ) can be f a ir ly e a s ily ! c a lc u la te d . E llio tt and P feu ty ( 1968) have done su ch c a lc u la tio n i fo r b o ro n in silic o n , w hen the boron is p a ire d w ith a n o th e r im p u rity : i of a r b itr a r y m a s s . W hen the a r b itr a r y m a s s is slig h tly lig h te r th an i j the h o st la ttic e a to m s, the case analogous to P -G a p a ir s in Ge, th ey I ! find th a t the a x ia l m ode of the p a ir is r a is e d in fre q u e n c y , w hile the ! doubly d e g e n e ra te tra n s v e rs e m ode is a lm o st unchanged. The | re a s o n fo r th is can be se e n q u a litativ e ly by exam ining th e e ig e n - j ! v e c to rs fo r the lo c a l m ode of an iso la te d im p u rity . It is sim p le st I to u se the e ig e n v e c to rs fo r the c e n tra l-fo rc e -o n ly m o d e l ( T able 6 , | C hap. 2 ), fo r w hich the neighbors of th e im p u rity m o v e along the 1 bonds b etw een the im p u rity and the n e ig h b o rs. F o r an im p u rity I I v ib ra tio n along one of the cubic axes the m agnitude of th e m o tio n is | | th e sa m e fo r a ll the n e ig h b o rs, but two of the n e ig h b o rs a r e m oving in w a rd to w a rd the im p u rity w hile two a re m oving o u tw ard . The d ire c tio n of m o tio n of the neighbors fo r a v ib ra tio n of th e im p u rity j ■ along e a c h of the cubic ax es is shown in T able 10. D ire c tio n D ire c tio n of m otion of the n eig h b o rs of im p u rity v ib ra tio n (1 ) (2 ) (3) (4) (1 0 0 ) A - r l A - r 2 A r 3 A r 4 (0 1 0 ) A - r l A r 2 A - r 3 A r 4 (0 0 1 ) A - r l A r 2 A r 3 A " r 4 ( L ab e lin g of n eig h b o rs and ax es is a s show n in F ig . 6 , C h ap ter 2 .) ' ! I & is a v e c to r giving the d ire c tio n fro m the im p u rity | to the ith n eig h b o r. ! T able 10 ; i ! T he a p p ro p ria te m o d es fo r a p a ir su ch as P - Ga a re an a x ial ! m ode along a [111 ] d ire c tio n and two tr a n s v e r s e m o d es, su ch as f ! along [110 ] o r [ l l Z ] d ire c tio n s; th e se m ay be obtained fro m lin e a r i | com binations of the m o d es in T able 9. F o r the [111] m ode the ! n e ig h b o r along th e a x is h as th re e tim e s as la rg e a v ib ratio n as each j j of th e o th e r th re e n e ig h b o rs. In the tr a n s v e r s e m odes the o n -ax is i j n eig h b o r does not v ib ra te at a ll. T hus, fo r th is m o d el, th e a x ia l j m ode of a P -G a p a ir should be ra is e d in freq u en cy slig h tly , sin ce | th e Ga is le s s m a s s iv e th an th e Ge it re p la c e d , w hile the tr a n s v e r s e | m o d es a r e not a ffe c te d . If the m o re r e a lis tic e ig e n v e c to rs obtained I ‘ j fro m a m odel in cluding n o n -c e n tra l fo rc e s a r e u se d (T able 7, | j C h a p te r. 2), th e tr a n s v e r s e m odes a re not to ta lly in se n sitiv e to th e i Ga, and the a x ia l m o d e is not quite as se n sitiv e as in the c e n tra l- fo rc e -o n ly m o d el, but th e effect of th e lig h te r m a s s of the Ga w ill s till be to ra is e th e a x ia l m ode freq u en cy c o n sid e ra b ly m o re th an it r a is e s th e tr a n s v e r s e m ode freq u en cy . The changes in m ode freq u e n cie s p re d ic te d by c o n sid erin g only th e m a s s change q u a lita tiv e ly a g re e w ith th e o b se rv e d re s u lt of -One_band_split_off_to_higher_frequency.__HQ.weLve£,_since_no_ajCCOimt__ : 183 ! hg.s b een ta k e n of the changes in fo rc e c o n stan ts, even this q u a lita - ! tiv e a g re e m e n t m u st be c o n sid e re d fo rtu ito u s. S e v e ra l fa c to rs ■ a ffe c t the fo rc e c o n sta n ts. The P is s m a lle r and the G a slig h tly i la r g e r th an the Ge ato m s th ey re p la c e , and th e ir bonds to the re s t i ' of the c r y s ta l a r e d iffe re n t fro m the n o rm a l Ge-Ge bonds. T he | G a -P bonding is a lso d iffe re n t fro m th e se bonds, and th e re is a ! ■ coulom b in te ra c tio n b etw een the Ga and the P. I The phonon s p e c tra of Ge and Si a re sufficiently s im ila r that a i j j G re e n 's fu n ctio n c a lc u la tio n fo r the lo c a l mode freq u e n cie s in silic o n j should be a p p lica b le to g e rm a n iu m if th e freq u en cies a r e sc a le d a c c o rd in g to the ra tio of the m ax im u m phonon freq u e n cie s of Ge and j • ! Si, p a rtic u la rly if the lo c a l m ode freq u e n cy is not too close to the i m ax im u m phonon freq u e n cy ( see C hap. II, sec. A ). F ro m the c a lc u la tio n of D aw ber and E llio tt fo r a m a ss su b stitu tio n w ith no fo rc e c o n sta n t c h a n g e s, the lo c a l m ode freq u e n cy of P in Ge should be 1. 27 v , w hile the o b se rv e d fre q u e n c y of 343 c m ’ * is only about zn3>x 1. 14 v . T hus, the P -G a fo rc e c o n stan ts a re su b sta n tia lly w eak er m ax 1 th an G e-G e fo rc e c o n sta n ts. A n a p r io r i e stim a te of th e e ffe c ts of p a irin g a G a w ith the P is d iffic u lt. A c o m p a riso n can be m ad e w ith th e an alogous c a s e s of b o ro n p a ire d w ith su b sta n tia l donors in Si ( T sev to v 1968; N ew m an 1968 ). The c a s e s m o st c lo se ly analogous to P -G a p a ir s in Ge a re B -A s and B -S b, w here the im p u rity giving th e lo c a l m ode is s m a lle r th an a h o st a to m but is p a ire d with an | 184 ! ; im p u rity la r g e r than a h o s t ato m . In th e se c a s e s one boron i I I freq u e n cy is above an d one is below th e freq u e n cy of iso lated boron; ; the sp littin g is about 30 c m "* , c o m p a re d to the 8 cm "* sp littin g fo r I P -G a p a ir s . One sh o u ld not ex p ect the re s u lts to com pare too j c lo sely , sin ce the la ttic e m is m a tc h fo r b o ro n in Si ( covalent ra d ii i | of 0 . 88 X and 1 . 17 X ) is g r e a te r than th a t fo r P in Ge ( 1 .1 0 X i and 1. 22 X ), an d the coulom b in te ra c tio n is m o re effectively j i sc re e n e d in Ge than in Si. It is im p o ssib le to p re d ic t the freq u en cies j j of such a p a ir su ffic ie n tly a c c u ra te ly to d efin itely a s s e r t that the | m issin g band of the P -G a p a ir m u st lie at the sam e frequency a s the j iso la te d P lo c a l m ode. i In su m m a ry , th e lo c a liz e d m ode of is o la te d phosphorus in Ge j j is o b se rv e d in in f r a r e d a b so rp tio n a t 343 <im~*. The lo ca l m odes ! 6 7 -1 | of Li( L i) p a ire d w ith Ga a re o b se rv e d at 379(356) cm and 405(380) cm "*; the lo w e r freq u e n cy band h a s about tw ice the a b s o rp tio n stre n g th of the h ig h e r freq u e n cy band, so it is probably the doubly d e g e n e ra te tr a n s v e r s e m ode of the p a ire d L i. A nother a b so rp tio n b and at 351 cm "* is te n ta tiv e ly id e n tifie d as being one of the m odes of P p a ire d w ith Ga; the o th e r P m ode is assu m ed to have the sam e fre q u e n c y a s does is o la te d P . D ifficu lties in a c c u ra te ly p re d ic tin g fre q u e n c ie s of such p a irs a re d isc u sse d . C H A PTER VII ! S u m m ary A. C a lc u la tio n of L o c a liz e d V ib ra tio n a l Mode F re q u e n c ie s The m ethod of finding th e h ig h est eig en v alu e of a m a trix by i i ! ite ra te d m u ltip lic atio n of a v e c to r by the m a tr ix w as u se d as a te c h - ! nique fo r calcu latin g lo c a l m ode fre q u e n c ie s, u se fu l p a rtic u la rly fo r i : d iso rd e re d c ry s ta ls w ere sy m m e try c o n sid e ra tio n s cannot be u se d ! to sim p lify the calcu latio n . T he technique w as u se d to calcu late i j the change in freq u e n cy of the b o ro n lo c a l m ode in Si to be ex p ected j fro m su b stitu tio n of a Ge fo r one of the seco n d n eighbors of the I | | b o ro n . The su b stitu tio n w as a p p ro x im a te d by a sim ple change in m a s s , and by both a change in m a s s and a G e-S i fo rc e constant ! ! d iffe re n t fro m the S i-S i fo rc e c o n sta n t. A sim p le f ir s t neighbor | I fo rc e constant m odel w as u se d to a p p ro x im ate the la ttic e . The j ! c a lc u la te d changes in freq u e n cy a re quite s m a ll c o m p a red to the I I ■ . | freq u en cy sp re a d of s tru c tu re o b se rv e d in the b o ro n lo cal m ode bands in stu d ies of b o ro n lo c a l m o d es in Ge Si a llo y s. T his X X “ X r e s u lt is la te r u se d in su p p o rt of a m o d el fo r the effe cts of second n eighbors on the b o ro n lo c a l m ode w hich ta k e s s tr a in effects into account but n e g le cts the e ffect of m a s s ch an g es. B. In fra re d A b so rp tio n of L a ttic e M odes and the Si L o c a l Mode In S i-ric h Ge S i, ( x < . 12 ) th e re a re th re e in fra re d x 1 -x ' — 186 | a b so rp tio n bands a t fre q u e n c ie s below the m ax im u m phonon I freq u en cy of Si. The a b so rp tio n a s s o c ia te d w ith th e se bands a p p e a rs ; to be independent of te m p e ra tu re , in d icatin g a sin g le-p h o n o n p ro c e s s . ■ The fre q u e n c ie s of 485 cm "*, 405 cm "*, and 125 cm "* do not | c o rre sp o n d w ell to a b so rp tio n peaks p re d ic te d by the th e o ry of ; D aw ber and E llio tt, n o r to p re d ic tio n s of fre q u e n c ie s a t in -b an d le so n an ces. T hey do, h o w ev er, c o rre sp o n d fa ir ly c lo se ly to peaks ! in the single-phonon d en sity of s ta te s of Si. | In G e -ric h allo y s ( x > . 88 ) th e re is a lso in -b a n d a b so rp tio n , | but it o c c u rs a t fre q u e n c ie s of m u lti-p h o n o n la ttic e bands of Ge. i I I I The a b so rp tio n is te m p e ra tu re dependent, but not a s stro n g ly a s is i I e x p ec te d fo r a tw o-phonon p ro c e s s . As is the c a se w ith the S i-ric h i l j a llo y s, the a b so rp tio n does not c o rre sp o n d to th a t p re d ic te d by the j ! D aw ber and E llio tt th eo ry ; in th is c a se it does not c o rre sp o n d to the sin g le-p h o n o n d en sity of s ta te s e ith e r. i The Si lo c a l m ode is se e n in in fra re d a b so rp tio n in the G e -ric h a llo y s. Its freq u e n cy v a rie s w ith the allo y c o m p o sitio n fro m 388 c m * a t x = . 99 to 394 c m * a t x - . 8 8 , in good a g re e m e n t w ith p rev io u s R am an sc a tte rin g m e a su re m e n ts . The a b so rp tio n c ro s s 20 2 se c tio n ( J adv / [S i] ) is only 10" cm , two to th r e e o rd e rs of m agnitude le s s than fo r o th e r lo c a l m odes in se m ic o n d u c to rs. C . L o c a liz e d V ib ratio n al M odes of B o ro n -L ith iu m P a ir s In S i-R ich G e jS i, A lloys | 187 The in fra re d a b so rp tio n bands due to boron lo ca l m odes of B" - L i+ p a irs in Ge S i. w e re o b se rv ed for 0 < x < 0. 12. In Si X 1 “ X | (x = 0) th e re a r e two lo c a l m odes of B” - L i+ p a irs th at a r e a lm o st j e n tire ly b o ro n v ib ra tio n s; one is along th e B -L i a x is, and the i o th e r, doubly d e g e n e ra te m ode, is tr a n s v e rs e to the a x is . In ! sp e c im e n s containing Ge the boron bands a re a sy m m e tric a lly I b ro a d e n e d and two new bands a p p e a r. The new bands a r e a ttrib u te d ! to th e lo c a l m o d es of b o ro n on s ite s w ith a Ge f ir s t n eig h b o r. The I a s y m m e tric b ro ad en in g of the b o ro n bands is a ttrib u te d to in te ra c tio n of th e B - L i p a irin g in te ra c tio n . A m o d el is p ro p o sed w h ereb y th e ! a s y m m e tric lin e sh ap es a re fit by a su p e rp o sitio n of th e a b so rp tio n j fro m b o ro n ato m s w ith d ifferen t second neighbor c o n fig u ra tio n s. The j o b se rv e d lin e sh ap es can be fit quite w ell by assu m in g a ran d o m ; d istrib u tio n of Si and Ge on the second neighbor s ite s . It is n e c e s - | s a r y to a ssu m e a value fo r the d istan c e betw een p a ire d B and L i : th a t is sig n ific a n tly s m a lle r than th a t p rev io u sly re p o rte d ; p o ssib le re a s o n s fo r th e d isc re p a n c y a r e d isc u sse d . D. L o ca liz ed V ib ratio n al M odes of P h osphorus and L ith iu m in G erm an iu m L o c a liz e d v ib ra tio n a l m odes of iso la te d p h o sp h o ru s, lith iu m p a ire d w ith g a lliu m , and w hat is te n ta tiv e ly identified a s p h o sp h o ru s p a ire d w ith g alliu m w e re o b se rv ed in g erm an iu m . The Ge c ry s ta ls I 188 I w e re grow n w ith the p h o sp h o ru s slig h tly o v e r-c o m p e n sa te d w ith | g a lliu m so th a t L i d iffu sio n could be u se d fo r fin al co m p en satio n . ; Two bands w e re id e n tifie d fro m isotope sh ifts as being i | p rim a rily L i v ib ra tio n s . The two bands o c c u r w ith a stre n g th ra tio | v e ry n e a rly 2:1 and a re p re s u m e d to be the tr a n s v e r s e and a x ial ! v ib ra tio n s of in te r s titia l L i p a ire d w ith su b stitu tio n a l Ge. If the i stre n g th ra tio is tak en a s in d ic atin g th a t the lo w e r freq u e n cy band is ! indeed the doubly d e g e n e ra te tr a n s v e r s e m ode, th is c a se conflicts ! w ith th e o re tic a l m o d els of B - L i p a irs in Si w h ere the tra n s v e rs e | m ode is a ssu m e d to lie h ig h e r in freq u en cy . ! i | The band a ttrib u te d to P p a ire d w ith Ga in c re a s e s in stre n g th j |f a s te r th an lin e a rly w ith p h o sp h o ru s c o n c e n tra tio n in sa m p le s in t I w hich the p hosphorus an d g a lliu m c o n ce n tra tio n s a re n e a rly equal. I ! i No e x p e rim e n ts w e re done to d e te rm in e how its stre n g th v a rie s w ith ] jh eat tre a tm e n ts th a t w ould be ex p ected to change the c o n ce n tra tio n ! . of P -G a p a ir s . P a ire d p h o sp h o ru s should be ex p ected to give two bands; it w as a ssu m e d th a t the seco n d band m u st have the sam e freq u en cy as does is o la te d p h o sp h o ru s. i 189 R E F E R E N C E S ; W .P . A llre d , 1970, p riv a te co m m u n icatio n . ; J . F . A n g re s s , A .R . Goodw in, and S. D. S m ith, 1965, P ro c . I Roy-: Soc. A 287, 64. 1 1 | J . F . A n g re ss , S. D. S m ith, a n d K .F . R enk, 1964, L a ttic e D ynam ics , ed ited by R .F . W allis ( P e rg a m o n P r e s s , New Y o r k ) , p. 467. I M. B alk an sk i, 1964, 7th In te rn a tio n a l C o n feren ce on the P h y sic s i of S em ico n d u cto rs, P a r is ( A c a d e m ic P r e s s , New Y ork ) , j j p. 1 0 2 1 . I | M. B alk an sk i and W . N a z a re w ic z , 1964, J . P h y s. C hem . Solids j . 25, 437; 1966, Ib id . , 27, 671. A .S . B a rk e r, J r . , 1968, L o c a liz e d E x c ita tio n s in S olids, edited by | R .F . W allis ( P len u m P r e s s , New Y o rk ) p. 581. j L . B ello m o n te and M .H .L . P ry c e , 1966, P ro c . P h y s. Soc. 89, 967; 1968, L o c a liz e d E x c ita tio n s in S olids, edited by R . F . W allis ( P len u m P r e s s , New Y o rk ) p. 203. R. B ra u n ste in , 1963a, P h y s. R ev. 130, 869; 1963b, I b id , 130, 879. R . B ra u n ste in , A .R . M o o re , and F . H e rm a n , 1957, P h y s. R ev. 109, 695. B .N . B ro ck h o u se, 1959, P h y s. R ev. L e tt. 2 , 256. B .N . B ro ck h o u se and P .K . Iy e n g a r, 1958, P h y s. R ev. I l l , 747. I . F . Chang and S. S. M itra , 1968, P h y s. R ev. 172, 924. ; A .E . C osand and W. G. S p itz e r, 1967, A ppl. P h y s. L e tt. 11, 279. ; P . D aw ber and R . J . E llio tt, 1963a, P r o c . R oy. Soc. A 273, 222; 1963b, P ro c . P hys. Soc, 81, 453. ; P . D ean, 1968a, L o calized E x c ita tio n s in S olids, e d ited by R .F . ‘ W allis ( P lenum P r e s s , New Y o rk ) p. 109; 1968b, J . P h y s. i C hem . 1,22. i i S .D . D evine and R. C. Newm an, 1970, J . P h y s. C hem . Solids 31, I 685. i \ J . P . D ism ukes and L . E k stro m , 1965, T r a n s . M etal. Soc. AIM E ; 233, 672. i | J . P . D ism ukes, L . E k stro m , a n d R .J . P a ff, 1964, J. P h y s. C hem . | 6 8 , 3021. ! I j J . P . D ism ukes, L . E k stro m , E .F . S te ig m e ir, I. K udm an, and ! | D .S . B e e rs, 1964, J . A ppl. P h y s. 35, 2899. i r | G. D olling, 1963, In e la stic S c a tte rin g of N e u tro n s in Solids and i L iq u id s, Vol. II, IAEA, V ienna, p. 37. | G. D olling and R . A. Cowley, 1966, P r o c . P h y s. Soc. 8 8 , 463. , R .J . E llio tt, 1963, P ro c . of In te rn a tio n a l C o n feren ce on L a ttic e D ynam ics, edited by R .F . W allis ( P e rg a m o n P r e s s , New Y o rk ), p. 459. R .J . E llio tt and P . P feuty, 1967, J . P h y s . C hem . S olids 28, 1789. D. F e ld m a n , M. A shkin, and J .H . P a r k e r , J r . , 1966, P h y s. R ev. ; M. G licksm an, 1955, P hys. R ev. 100, 1146; 1956, I b id , 102, 1496. i M. G lick sm an and S .M . C h ristia n , 1956, P h y s. R ev. 104, 1278. W. H ayes, 1964, P h y s. R ev. L e tt. 13, 275. : B. H igm an, 1964, A pplied G ro u p -T h e o re tic and M a trix M ethods ( D over, New Y ork ). : F .H . H orn, 1955, P hys. R ev. 97, 1521. D .T . Hon, W .L . F a u st, W .G . S p itz e r, a n d P . F . W illia m s, 1970, P hys. R ev. L e tt. 25, 1184. I S. S. Ja sw a l, 1965, P hys. R ev. 140, A 687. i E .O . Johnson, a n d S .M . C h ristia n , 1954, P h y s. R ev. 95, 560. | j F .A . Johnson, 1965, P ro g re s s in S em ic o n d u cto rs, ed ited by A . F . j G ibson and R . E . B u rg e ss ( CRC P r e s s , C leveland ), vol. 9, j P- 1?9- j F .A . Johnson and R . Loudon, 1966, P ro c . Roy. Soc. 281, A 274. i W. K a is e r, 1962, J . P hys. C hem . Solids 2 3 , 255. i W. K a is e r, R .J . C ollins, and H .Y , F a n , 1953, P h y s. R ev. 91, i I 1380. i W. K a is e r, P .H . K eck, a n d C .H . L ange, 1959, P h y s. R ev. 101, 1264. C. K itte l, 1966, In tro d u ctio n to Solid S tate P h y s ic s ( W iley, New Y ork ), p. 156. N. K rish n a m u rth y and T .M . H a rid a sa n , 1966, P h y s. L e tt. 2 1 , 372; 1969, J . Indian In st. Sci. 51, 1 . > 192 i F .A . K ro g e r, 1964, C h em istry of Im p e rfe c t C ry s ta ls ( In te rsc ie n c e , New Y o rk ), p. 267. ; R .A . L ogan, J .M . R ow ell, and F .A . T ru m b o re , 1964, P h y s. R ev. 136, A 1751. i i P .L . L and and B. Goodm an, 1962, J . P h y s. C hem . Solids 28, 113. I ■ • i j R .S . L eig h and B. S zigeti, 1967a, P ro c . R oy. Soc. 301 A, 211; 1967 b, P h y s. R ev. L ett. 19, 566; 1968, L o c a liz e d E x c ita - ! tio n s in S o lid s, edited by R .F . W allis (P le n u m P r e s s , New I j Y ork ), p. 159. | I.M . L ifs c h itz , 1956, Nuovo C im ento Suppl. 4, 716. i ! O .G . L o rim o r and W. G. S p itz e r, 1966, J . A ppl. P h y s. 37, 3687. i ! O .G . L o rim o r, W .G . S p itze r, and M. W ald n er, 1966, J. A ppl. | j P h y s. 3>7, 2509. ! G. L u co v sk y , M .H . B rodsky, and E . B u rste in , 1968, L o ca liz ed | E x c ita tio n s in S o lid s, ed ited by R .F . W allis ( P len u m P r e s s , New Y ork ), p. 592. J . P . M aita, 1958, J . P h y s. C hem . Solids 4, 6 8 . A . A . M aradudin, 1966, Solid S tate P h y s ic s, edited by F . S eitz and D. T urnbull (A c a d e m ic P r e s s , New Y o r k ) vol. 18, p. 273. A. A . M aradudin, E .W . M ontroll, and G. W e iss, 1963, Solid S tate P h y s ic s , Suppl. 3, edited by F . S eitz and D. T u rn b u ll (A c a d e m ic P r e s s , New Y o r k ) . D .N . M e rlin and 1.1. R eshina, 1966, S oviet P h y s. Solid S tate G .A . M orton, M .L . S chultz, and W .E . H a rty , 1959, RCA R eview | 20, 599. ! W. N azarew icz and J . Ju rk o w sk i, 1969, P h y s. S tat. Sol. 3 1 , 237. ; R . C. New m an, 1969, A dvances in P h y scs 18, No. 75, 545. R .C . N ew m an and R . S. S m ith, 1967, P h y s. L e tt. 2 4 A , 671; 1968, L o c a liz e d E x cita tio n s in S o lid s, edited by R .F . W allis ( P len u m P r e s s , New Y ork ), p. 177; 1969, J. P h y s. C hem . | Solids 3j0, 1493. I R .C . N ew m an and J . B. W illis, 1965, J . P h y s. C hem . S o lid s 26, i ! 373. I E .M . P e ll, I960, J . A ppl. P hys. 3J,, 1675. ! ! P . P feu ty , 1968, L o c a liz e d E xcitations in S o lid s, ed ited by R . F . j W allis ( P len u m P r e s s , New Y ork ), p. 193. i M. P o lia k and D .H . W att, 1965, P h y s. R ev. 140, A 87. | j H. R ie s s , C .S . F u lle r, and F , J. M orin, 1956, B ell S y stem T ech. J . 3 5 , 535. G. S c h a effer, I960, J . P h y s. Chem . Solids 12, 233. J . S m it, 1970, p riv a te com m unication. S .D . Sm ith, R .E .V . Chaddock, a n d A .R . Goodwin, 1966, J . P h y s. Soc. Ja p an , Suppl. II, J21, 67. F .M . S m its, 1958, B ell S ystem T ech. J. 37, 711. W .G . S p itz e r, 1966, p riv a te com m unication; 1967, S e m ic o n d u cto rs and S e m im e ta ls , vol. 3, edited by R .K . W illa rd so n and A . C. B e e r ( A cad em ic P r e s s , New Y o rk ), p. 17. W .G . S p itz e r and W. P . A llre d , 1968, J . A ppl. P h y s. 39, 4999- W .G . S p itz e r, W. A llre d , S .E . B lum , and R .J . C hicotka, 1969, J . A ppl. P h y s. 40, 2589. W .G . S p itz e r and M. W ald n er, 1965, J . A ppl. P h y s. 36, 2540. J . S te in in g ^ r, 1970, J . A ppl. P h y s. 41^, 2713. H. Sttihr and W. K lem m , 1939, Z. A norg. C hem . 241, 313. N. D. S tra h m and A . L . M cW horter, 1969, L ig h t S c a tte rin g in S o lid s, ed ited by G .B . W rig h t ( S p rin g e r-V e rla g , New Y o rk ), p. 455. D. T a y lo r, 1967, P h y s. R ev . JJ56, 1017. D .G . T hom as and J. J . H opfield, 1966, P h y s. R ev. 150, 680. V . T sev to v , W .P . A llre d , an d W .G . S p itz e r, 1968, L o c a liz e d E x c ita tio n s in S o lid s, edited by R .F . W allis ( P le n u m P r e s s , New Y o r k ) , p. 185. F .A . T ru m b o re , I960, B e ll S ystem T ech. J . 39> 205. M . W ald n er, M . A . H ille r, and W. G. S p itz e r, 1965, P h y s. R e v . 140, A 172. R .F . W allis, 1968, e d ito r, L o calized E x c ita tio n s in S olids ( P le n u m P r e s s , New Y o rk ) . A PPE N D IX 1 C a lc u la tio n of the Change in the L o ca l Mode F re q u e n c y of B o ro n in S ilicon c a u se d by the A ddition of G erm an iu m Second N eighbors In C h a p te r V it w as s ta te d th a t changing the m a s s of a seco n d i n eig h b o r of a b o ro n ato m by su b stitu tin g Ge fo r Si h ad v e ry little | e ffe ct on th e B lo c a l m ode fre q u e n c y . T his w as c a lc u la te d by u sin g i th e ite ra tiv e c a lc u la tio n sc h em e developed in C h a p te r II. i j A c o m p u te r p ro g ra m in itia lly w as s e t up to be able to ev alu ate ! lo c a l m ode fre q u e n c ie s of a B -L i p a ir, including the L i lo c a l m o d e. | The ^L i m ode is clo se to the m a x im u m band m ode freq u e n cy , and is ! 7 i not v e ry s h a rp ly lo c a liz e d ; L i p a ire d w ith b o ro n gives a v ib ra tio n a l i j | m ode th a t m ay be a c tu a lly slig h tly below the m ax im u m phonon t I fre q u e n c y of Si and thus not a tru e lo c a l m o d e. A 5 x 5 x 5 a r r a y of j . | p rim itiv e c e lls w as u se d to avoid having to c o n sid e r e ffe c ts of the j j b o u n d a rie s. T his is c o n sid e ra b ly la r g e r th an is needed fo r the b o ro n t I ! m o d es, but it is not too unw ieldy a s the co m p u tatio n al d ifficu lty I i in c r e a s e s only lin e a rly w ith th e n u m b er of ato m s c o n sid e re d w hen the m o d el is r e s tr ic te d to s h o rt-ra n g e in te ra c tio n s . In the m o d el u se d , the b o ro n d iffe re d fro m the Si in m a s s and fo rc e c o n sta n ts, as d id the g e rm a n iu m . Since it is known th a t the lith iu m does not p a rtic ip a te m uch in the b o ro n lo c a l m o d es, the L i w as a p p ro x im a te d a s being s ta tio n a ry . 195 196 The tr a n s v e r s e b o ro n lo c a l m odes of the B - L i p a ir a re the h ig h e st fre q u e n c y m odes of the s y s te m , and thus the freq u e n cy is e a s ily found. The a x ia l m ode e ig e n v e c to r and freq u en cy a re found by u sin g a d isp la c e m e n t of the b o ro n along the B - L i ax is a s the in itia l t r i a l v e c to r; th is is o rth o g o n al to the e ig e n v ec to rs of the tr a n s v e r s e m o d es. To fit the o b se rv e d freq u e n cy fo r iso la te d *^B, it w as found ; th a t the B - Si fo rc e c o n stan t should be about 0. 85 of the S i-S i j fo rc e c o n sta n t. To get the o b se rv e d fre q u e n c ie s fo r the B - L i p a ir j m odes the B - Si fo rc e c o n stan ts h ad to be about 0. 95 of a S i-S i j | fo rc e c o n sta n t. The L i - B fo rc e co n stan t w as about -1 . 2 of a Si - Si ! fo rc e c o n stan t. T his value is s im ila r to w hat E llio tt and P feuty i j found to be n e c e s s a ry fo r the to ta l re d u c tio n in a x ia l fo rc e c o n stan ts I I in a G re e n 's fu n ctio n calcu latio n ; th e ir fin al m o d el had the red u c tio n i i i in a x ia l stiffn e s s d istrib u te d am ong s e v e ra l d iffe re n t fo rce c o n stan t ch an g es. The e ffe ct of a seco n d n eig h b o r su b stitu tio n w as c alc u la te d fo r the a x ia l m ode. S ixteen ite ra tio n s w e re m ade fo r an in itia l t r ia l v e c to r of b o ro n m o tio n only. T his gave a freq u en cy changing by -5 le s s th an 10 p e r ite ra tio n . One of the seco n d n eighbors w as changed and six m o re ite ra tio n s m ade to ev alu ate the change in fre q u e n c y . C hanging one of the seco n d n eighbors changes the sy m m e try , so th a t the m ode ob tain ed w ith an in itia l a x ia l d isp la c e - 197 j m en t is not ex ac tly o rth o g o n al to the h ig h e r freq u e n cy tr a n s v e rs e j m o d e s, and re p e a te d ite ra tio n w ill ev en tu ally y ield one of the i I tr a n s v e rs e m o d es. T h is p ro b le m w as avoided by c o n stra in in g the ! j i b o ro n to m ove only along the L i - B a x is . The p e rtu rb e d m ode is i c lo se enough to being p u re ly a x ia l th a t th is is not too s e rio u s an a p p ro x im atio n . T h ere a re th re e d is tin c t ty p es of seco n d neig h b o r s ite s : re la tiv e to a L i - B p a ir, a s a r e show n in F ig . 26, C hap. IV. F o r the f i r s t and second s e ts of se co n d n eig h b o r s ite s the changes in the b o ro n I a x ia l m ode freq u e n cy re s u ltin g fro m the su b stitu tio n of one Ge i i second neighbor w ere -0 . 13 c m an d -0 . 17 cm fo r a sim p le m a s s j su b stitu tio n , and -0 . 08 c m and -0 . 04 cm if the G e-S i fo rc e co n stan t ; w as a ssu m e d to be 20% la r g e r th a n the S i-S i fo rc e c o n stan t. The i ; su b stitu tio n of a Ge on the th ir d s e t of seco n d n eig h b o r s ite s gave a ! c o n sid e ra b ly la r g e r sh ift, - 1 .1 c m “ * fo r the m a ss su b stitu tio n , j and -1 .5 cm * fo r the m a s s an d fo rc e c o n stan t change. T hese la s t n u m b ers a re p ro b ab ly o v e r- e s tim a te s . T he tr a n s v e r s e m ode freq u a n cy w as fit by in c ra s in g a ll the B - Si fo rce c o n sta n ts, but the fo rc e co n stan t b etw een the b o ro n and a to m 5 ( F ig . 26 ) should p ro b ab ly be no la r g e r th an the fo rc e c o n stan t fo r iso la te d boron. The la r g e r fo rc e co n stan t r e s u lts in an in c re a s e d am p litu d e fo r the m otion of the f ir s t and seco n d n e ig h b o rs along the L i - B a x is in the a x ial m ode, in c re a s in g the a p p a re n t e ffe c t of a se co n d n eig h b o r m a ss change. F u r th e r re fin e m e n ts of the m o d el w e re not c o n sid e re d w o rth w h ile, sin ce the p rin c ip a l p u rp o se of the c a lc u la tio n w as to show th a t the change in seco n d n eig h b o r m a s s did not c o n trib u te sig n ific an tly to the o b se rv e d e ffe c ts d is c u s s e d in C h a p te r V.
Asset Metadata
Creator
Cosand, Albert Edmund (author)
Core Title
Infrared-Absorption Studies Of Localized Vibrational-Modes And Lattice-Modes In Germanium - Silicon Alloys
Contributor
Digitized by ProQuest
(provenance)
Degree
Doctor of Philosophy
Degree Program
Electrical Engineering
Publisher
University of Southern California
(original),
University of Southern California. Libraries
(digital)
Tag
OAI-PMH Harvest,physics, condensed matter
Language
English
Advisor
Spitzer, William G. (
committee chair
), Smit, Jan (
committee member
), Whelan, James M. (
committee member
)
Permanent Link (DOI)
https://doi.org/10.25549/usctheses-c18-682319
Unique identifier
UC11355769
Identifier
7417333.pdf (filename),usctheses-c18-682319 (legacy record id)
Legacy Identifier
7417333.pdf
Dmrecord
682319
Document Type
Dissertation
Rights
Cosand, Albert Edmund
Type
texts
Source
University of Southern California
(contributing entity),
University of Southern California Dissertations and Theses
(collection)
Access Conditions
The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law. Electronic access is being provided by the USC Libraries in agreement with the au...
Repository Name
University of Southern California Digital Library
Repository Location
USC Digital Library, University of Southern California, University Park Campus, Los Angeles, California 90089, USA
Tags
physics, condensed matter
Linked assets
University of Southern California Dissertations and Theses