Close
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected
Invert selection
Deselect all
Deselect all
Click here to refresh results
Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
A determination of ionic diffusion coefficients
(USC Thesis Other)
A determination of ionic diffusion coefficients
PDF
Download
Share
Open document
Flip pages
Contact Us
Contact Us
Copy asset link
Request this asset
Transcript (if available)
Content
A DETERMINATION OF IONIC DIFFUSION COEFFICIENTS
A D i s s e r t a t i o n
P r e s e n t e d t o
t h e F a c u lt y o f th e D epartm en t o f C h e m istry
U n i v e r s i t y o f S o u th e rn C a l i f o r n i a
In P a r t i a l F u l f i l l m e n t
o f t h e R e q u ire m e n ts f o r th e D egree
D o c to r o f P h ilo s o p h y
by
J u l i a n M. N ie ls e n
May 1951
U M I Number: DP21752
All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.
Dissertation Publishing
UMI DP21752
Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code
ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346
PH. 0 0- 'SI
This dissertation, written by
..................J u l i a n N i e l s e s .......
under the guidance of h.X.P. Faculty Committee
on Studies, and approved by all its members, has
been presented to and accepted by the Council
on Graduate Study and Research, in partial ful
fillment of requirements for the degree of
D O C T O R O F P H I L O S O P H Y
H* Deuel.*.... J r * .............
Dean
.H^...W...._Patmore
Secretary
Date.. ....................
Com m ittee on Studies
_ Chairman
.............................. ..................................
i
TABLE OF CONTENTS
CHAPTER PAGE
I . INTRODUCTION ....................................... .............................. 1
I I . THEORY . . . . . ..................................................................... 5
LIMITING LAWS FOR DIFFUSION ................................ 5
The "Thermodynamic" L im i ti n g Law
' f o r S e l f D i f f u s i o n ............................................... 7
The "C onductance" L im i ti n g Law
f o r S e l f D i f f u s i o n .....................................................11
The " R e la x a tio n " L im itin g Law
f o r S e l f D i f f u s i o n .....................................................12
THEORY OF THE DIAPHRAGM METHOD................................ 14
I I I . EXPERIMENTAL METHODS .......................................................... 21
Use o f th e Diaphragm C e l l ......................................21
P r e p a r a t i o n o f S o l u t i o n s ..................................... 22
P r e p a r a t i o n o f T r a c e r s . . . . . . . . . 22
C o u n tin g th e R a d io a c tiv e T r a c e r s . . . . 26
IV . THE EFFECT OF STIRRING............................................................31
N o n -m ec h an ic al S t i r r i n g .................................... 32
M e c h a n ic a l S t i r r i n g . . . . . . . . . . 35
. V. CALIBRATION OF THE DIAPHRAGM C E L L S ............................ 42
V I. SURFACE EFFECTS ............................................................49
V I I . RESULTS AND SUMMARY................................................................ 57
V I I I . DISCUSSION................................ 64
BIBLIOGRAPHY ................................................................................................ 67
ii
LIST OF TABLES
TABLE PAGE
I . S e l f a b s o r p t i o n c u rv e o f s u l f u r 3 3 i n
b a riu m s u l f a t e ................................................... 29
I I . Com parison o f e f f e c t o f r a t e of s t i r r i n g
on th e a l t e r n a t e r o t a t i o n and m ag n e tic
s t i r r i n g m e t h o d s ................................................... 41
I I I . D i f f u s i o n c e l l c a l i b r a t i o n by
c o n d u c ta n c e m easurem ents ...................................... 4 7
IV. C om parison o f e f f e c t o f a d s o r p t i o n on
g l a s s and s t e e l diaphragm on
d i f f u s i o n c o e f f i c i e n t s . . . . ......................... 54
V. S e l f d i f f u s i o n c o e f f i c i e n t s o f Ha*" and Cl"
i n aqueous sodium c h l o r i d e s o l u t i o n s
a t 25°C............................................................................ 58
V I. S e l f _ d if f u s io n c o e f f i c i e n t s o f Na* and
S O / i n aqueou s sodium s u l f a t e
s o l u t i o n s a t 25°C. ................................... . 59
iii
LIST OF FIGURES
FIGURE PAGE
1 . Diaphragm d i f f u s i o n c e l l . . . . . . . . . . 20
2. S e l f A b s o r p tio n f a c t o r s o f S 3 3 in BaS 0 4 . . . 30
3. Dependence o f s e l f d i f f u s i o n c o e f f i c i e n t s
o f H a ^ i n 0 ^ 3 8 0 4 on c e l l c o n s t a n t i n
u n s t i r r e d r u n s .....................................................................34
4 . S e c t i o n a l c o n d u c ta n c e and d i f f u s i o n c e l l s . . 44
5. T r a n s f e r e n c e a p p a r a t u s ..................................................... 45
6 . C ond uctance c e l l c o n s t a n t s o f HaCI
s o l u t i o n s i n diaphragm c e l l ..................................51
7. C onductance c e l l c o n s t a n t s o f ^ 3 8 0 4
s o l u t i o n s i n diaphragm c e l l . .......................... . 52
8 . S e l f d i f f u s i o n c o e f f i c i e n t s o f Na+
a nd Cl~ a t 2 5 ° C . ............................... 60
9 . S e l f d i f f u s i o n c o e f f i c i e n t s o f Ha4 "
and SOf a t 25°C .................................................................61
INTRODUCTION i
I
I
D i f f u s i o n i n s o l u t i o n h as been s u b j e c t t o s t u d y J
s i n c e 1850 when Graham^ began h i s e x p e r im e n ta l w ork. I
F ic k ^ began th e t h e o r e t i c a l work s h o r t l y t h e r e a f t e r by j
p o i n t i n g o u t t h e a n a lo g y betw een d i f f u s i o n and h e a t c o n - ;
l
d u c ti o n and t h i s l e d t o t h e la w s b e a r i n g h i s name. The :
f i r s t s t u d i e s w ere l a r g e l y e m p i r i c a l b u t found e a r l y ;
l
a p p l i c a t i o n in th e d e t e r m i n a t i o n o f io n s i z e by th e app
l i c a t i o n o f S to k e s ' law .
The d i f f u s i o n c o e f f i c i e n t i s th e p r o d u c t o f th e
m o b i l i t y tim e s th e d r i v i n g f o r c e . N e rn s t^ c o n s i d e r e d '
t h e d r i v i n g f o r c e t o be th e o sm o tic p r e s s u r e g r a d i e n t
and i n 1888 r e l a t e d t h e d i f f u s i o n c o e f f i c i e n t o f an e l
e c t r o l y t e t o t h e e l e c t r i c m o b i l i t i e s o f i t s c o n s t i t u e n t
i o n s a s d e te r m in e d from c o n d u c ta n c e m ea su re m e n ts. As
e x p e r im e n ta l work became a v a i l a b l e i t was found t h a t
t h i s law gave a v a lu e o f th e d i f f u s i o n c o e f f i c i e n t v a l
i d o n ly a t i n f i n i t e d i l u t i o n .
In 1931 H a r tle y ^ s u g g e s te d t h a t t h e d r i v i n g f o r c e
f o r d i f f u s i o n was th e g r a d i e n t o f th e c h e m ic a l p o t e n t i a l .
( l ) T. Graham, P h i l . T r a n s . , 1 4 0 . 1 , 805 (1 8 5 0 ).
(3 ) A. F ic k , Pogg. A nn., 9 4 , 59 ( l 8 5 5 ) .
(3 ) W. N e r n s t , Z. p h y s i k . Chem., 2, 613 (1 8 8 8 ).
(4 ) G. S. H a r t l e y , P h i l . M ag., 1 3 , 473 (1 9 3 1 ).
3 !
O n sag er and F uoss^ a p p l i e d th e i o n i c a t t r a c t i o n th e o r y
t o t h e d i f f u s i o n p ro b lem , o b t a i n i n g th e r e s u l t t h a t th e
i
« <
d i f f u s i o n m o b i l i t i e s f o r th e io n s a r e s l i g h t l y g r e a t e r j
i
th a n th e e l e c t r i c m o b i l i t i e s , and i n c r e a s e s l i g h t l y ;
i
o v e r th e i n f i n i t e d i l u t i o n v a lu e a s th e c o n c e n t r a t i o n I
j
i n c r e a s e s . However, t h i s law s h o u ld be v a l i d o n ly a t 1
i
sm a ll c o n c e n t r a t i o n s , where t h e i n t e r i o n i c a t t r a c t i o n
I
t h e o r y i s v a l i d . The c h e m ic a l p o t e n t i a l f a c t o r d e c r e a s
es w i t h i n c r e a s e in c o n c e n t r a t i o n . T h is o f f s e t s th e
i n c r e a s e i n m o b i l i t y and c a u s e s th e d i f f u s i o n c o e f f i c
i e n t to d e c r e a s e . Thus th e O n sa g e r-F u o ss t h e o r y r e l a t e d
th e d i f f u s i o n c o e f f i c i e n t s t o io n m o b i l i t i e s and a c t i v i t y
I
c o e f f i c i e n t s . T h is t h e o r y has b een p a r t i a l l y c o n firm e d
by Harned and French® .
The b e h a v io r o f s o l u t i o n s o f e l e c t r o l y t e s has
b een m easured u n d e r t h e i n f l u e n c e o f e x t e r n a l f o r c e s
su c h as m e c h a n ic a l s h e a r and e l e c t r i c a l f o r c e s t o g iv e
p r e c i s e v i s c o s i t y and c o n d u c ta n c e d a t a and y e t th e s tu d y
o f e l e c t r o l y t e s o l u t i o n s w ith no e x t e r n a l f o r c e s b u t
o n ly i n t e r n a l th e r m a l f o r c e s i s o n ly now y i e l d i n g e x a c t
r e s u l t s . R e ce n t mean d i f f u s i o n c o e f f i c i e n t d e te r m in a
(5) L. O nsager and R. M. F u o s s , J . P h y s. Chem .,
3 6 . 3689 (1 9 3 2 ). |
( 6 ) H. S. H arned and D. M. F re n c h , Ann. N.Y. Acad.
S c i . , 46 , 26? (1 9 4 5 ). j
t i o n s o f H arned and c o -w o r k e r s ’ 7'® and S to k e s 9 have p r o
v i d e d p r e c i s e d a t a on some 1 0 e l e c t r o l y t e s o v e r a w ide
ra n g e o f c o n c e n t r a t i o n s . These d a t a g iv e th e m o b i l i t i e s
o f io n s in s o l u t i o n u n d e r t h e c o n d i t i o n s t h a t o p p o s i t e l y
c h a rg e d io n s move t o g e t h e r a s an e l e c t r i c a l l y n e u t r a l
p a r t i c l e .
The s e l f d i f f u s i o n m o b i l i t i e s o f th e i n d i v i d u a l
io n s a s t h e y move a lo n e w ith o u t e l e c t r o n e u t r a l i t y r e s t r
i c t i o n s a r e o f more fu n d a m e n ta l i n t e r e s t i n t h a t th e y
r e l a t e t o t h e p r o p e r t i e s o f i n d i v i d u a l io n s r a t h e r th a n
t o t h e a v e ra g e p r o p e r t y o f two o r more i o n s . T h is i n
v e s t i g a t i o n o f a s i n g l e io n s p e c i e s i n s o l u t i o n i s made
p o s s i b l e th r o u g h th e u s e o f i s o t o p i c t r a c e r s . Ah io n
s p e c i e s may be ta g g e d by su c h t r a c e r s and t h e i r m otio n
f o llo w e d u n i n f lu e n c e d by e x t e r n a l f o r c e s o r c o n c e n t r a t i o n
g r a d i e n t s . The m o b i l i t y th u s m easured i s a r e s u l t o f
th e rm a l m o tio n a s m o d if ie d by th e i n t e r i o n i c a t t r a c t i o n
o f th e c h a rg e d i o n s .
P r i o r to 1948 when t h i s i n v e s t i g a t i o n was begu n
o n ly th e s e l f d i f f u s i o n o f heavy w a te r i n t o l i g h t w a te r
(7) H. S. H arned and R. L. N u t t a l l , J . Am. Chem. S o c .,
6 9 . 736 (1 9 4 7 ).
( 8 ) H. S. Harned and A. L. L evy, i b i d . , .71, 3781
( 1 9 4 9 ) .
(9) *R. H. S t o k e s , i b i d . , 72, 763, 2243 (1 9 5 0 ).
4
a t s e v e r a l temperatures***®, Na* and C l” i n aqueous sod
ium c h l o r i d e s o l u t i o n s a t 35°C. ■ * ■ ■ * " and Na^ in aqueous
sodium i o d i d e s o l u t i o n s a t 2 5 ° C . ^ had b e en r e p o r t e d .
I n c r e a s e d i n t e r e s t i s shown by t h e f a c t t h a t s i n c e t h a t
tim e s e v e r a l more s t u d i e s have b e en made. Na+ i n aq
ueo u s sodium c h l o r i d e s o l u t i o n s a t 250C.'*‘3 , Na- * " and 1 “
i n sodium i o d i d e s o l u t i o n s a t 250C .^ 4 and Ag- * " i n s i l v e r
n i t r a t e s o l u t i o n s a t 2 5 °C .15
The p u rp o s e o f t h i s r e s e a r c h was t o d e v e lo p and
a p p ly t h e d iaphragm c e l l method f o r d i f f u s i o n m easure
ment to s i n g l e io n d i f f u s i o n w ork. The s i n g l e io n d i f f
u s i o n c o e f f i c i e n t s o b ta in e d w ere d e s i r e d a s a g e n e r a l
c o n t r i b u t i o n t o th e n a t u r e o f e l e c t r o l y t e s o l u t i o n s and
t o s e r v e t o t e s t t h e o r i e s as th e y a r e now b e i n g d e v e l
oped.
(10) W. J . C. O rr and J . A. V. B u t l e r , J . Chem. S o c .,
1273 (1 9 3 5 ).
(11) L. P. J e h l e , Ph. D. D i s s e r t a t i o n , U n iv . o f
C a l i f . , B e r k e le y , 1938.
(12) A. W. Adamson, J . Chem. P h y s ., 1 5 , 762 (1 9 4 7 ).
(1 3 ) A. W. Adamson, J . W. Cobble and J . M. N i e l s e n ,
i b i d . . 1 7 , 740 (1 9 4 9 ).
(1 4 ) J . H. Wang and J . W. Kennedy, J . Am. Chem. S o c .,
7 2 , 2080 ( 1 9 5 0 ).
(1 5 ) S. 6 . W hiteway, D. F. MacLennan and C. C. C off
i n , J . Chem. P h y s ., 18, 229 ( 1 9 5 0 ).
THEORY
LIMITING LAWS FOR DIFFUSION
A c o m p le te t h e o r y o f s e l f d i f f u s i o n h a s n o t b e en
d e v e lo p e d . However, s e v e r a l l i m i t i n g e q u a t io n s have been
d e r i v e d from t h e O n s a g e r-F u o ss t h e o r y o f e l e c t r o l y t e
d i f f u s i o n ^ . S in c e s u f f i c i e n t d a t a to a d e q u a te ly t e s t j
t h e s e l i m i t i n g v a lu e s have n o t b e en a v a i l a b l e , work on
t h e t h e o r y h a s la g g e d . The l i m i t i n g law s a r e e x p r e s s e d
i n t h e form o f e q u a t io n s r e l a t i n g th e s e l f d i f f u s i o n
c o e f f i c i e n t o f t h e io n t o th e c o n c e n t r a t i o n . These eq
u a t i o n s s h o u ld become e x a c t o n ly a s i n f i n i t e d i l u t i o n i s
i
a p p ro a c h e d , i . e . , th e y g iv e a l i m i t i n g law f o r t h e v a r -
i 1
' i a t i o n in d i f f u s i o n c o e f f i c i e n t s w ith c o n c e n t r a t i o n . j
« I
j The O n sa g e r-F u o ss t h e o r y o f mean e l e c t r o l y t e
! I
i d i f f u s i o n c o n s i d e r s t h r e e f a c t o r s i n th e n e t m otion o f
io n s a c r o s s a c o n c e n t r a t i o n g r a d i e n t . The f i r s t i s th e
Htim e o f r e l a x a t i o n e f f e c t . ” I f t h e m o tio n i s su c h t h a t
1
j a f o r c e c a u s e s th e io n to move away from i t s a tm o s p h e re ,
t h e a tm o sp h e re i s deform ed and t h e io n w i l l s u f f e r an
e l e c t r i c a l d ra g t e n d i n g t o re d u c e i t s v e l o c i t y . T h is
d r a g may be r e l a t e d to t h e tim e o f r e l a x a t i o n and c a l c u
l a t i o n s made f o r c o r r e c t i o n s . I n i o n i c d i f f u s i o n b o th j
th e p o s i t i v e and n e g a t i v e io n s a r e r e q u i r e d by e l e c t r i c a l
6 ;
n e u t r a l i t y to move w ith t h e same a v e r a g e v e l o c i t y . Under
t h e s e c o n d itio n s , th e io n a tm o sp h e re s a r e s y m m e tric a l and 'j
t h e tim e o f r e l a x a t i o n e f f e c t v a n i s h e s .
The se co n d f a c t o r a r i s e s from th e r e s i s t a n c e t o !
m o tio n o f t h e s o l v e n t e n t r a i n e d hy th e io n a tm o sp h e re ;
t h i s i s t r e a t e d a s an a d d i t i v e c o r r e c t i o n t o t h e io n
v e l o c i t i e s and- i s c a l l e d th e ‘’e l e c t r o p h o r e t i c " e f f e c t .
Net d i f f u s i o n i s a c o n seq u en ce o f a c o n c e n t r a t i o n 1
g r a d i e n t and t h i s i n t u r n in v o lv e s an a c t i v i t y c o e f f i c
i e n t g r a d i e n t . T h is g r a d i e n t r e p r e s e n t s t h e th erm o - \
dynamic c o r r e c t i o n t o th e d r i v i n g f o r c e on th e io n and
a p p e a rs as a t h i r d f a c t o r in th e form o f a te rm ,
( 1 + c d in y / d c ) , w here i s th e mean a c t i v i t y c o e f f i c
i e n t and £ i s t h e c o n c e n t r a t i o n i n m oles p e r l i t e r .
In th e c a s e o f s e l f d i f f u s i o n t h e r e a r e no b u lk
c o n c e n t r a t i o n g r a d i e n t s , t h e r e f o r e , t h e r e w i l l be no
s o l v e n t c o u n te r f lo w and th e e l e c t r o p h o r e t i c te rm p l a y s
no p a r t . T h is l e a v e s t h e tim e o f r e l a x a t i o n and t h e a c t
i v i t y c o e f f i c i e n t e f f e c t s t o b e c o n s i d e r e d . T here i s
much d is a g r e e m e n t on t h e s e two f a c t o r s . H u izen g a,
G r ie g e r and Wall'*'® and G o s tin g and H arned1 ^ h o ld t h a t
(16) J . R. H u iz en g a , P. F. G r ie g e r and F. T. W all,
J . Am. Chem. S o c ., 72., 4328 ( 1 9 5 0 ). >
(1 7 ) L. J . G o s tin g and H. S. H arned, i b i d , 73, I
159 (1 9 5 1 ). !
7
t h e a b s e n c e of b u lk c o n c e n t r a t i o n g r a d i e n t s i n s e l f d i f f
u s io n means t h a t t h e r e can be no a c t i v i t y c o e f f i c i e n t
i
i
g r a d i e n t s and hence no a c t i v i t y te rm . G o s tin g and Harned)
compute t h e v a r i a t i o n o f th e d i f f u s i o n c o e f f i c i e n t w ith !
c o n c e n t r a t i o n a s d e p en d e n t e n t i r e l y upon a c a l c u l a t e d j
tim e o f r e l a x a t i o n e f f e c t . The l i m i t i n g s lo p e e q u a t io n j
1 fz 1
o f Adamson, Cobble and N ie ls e n ^ and f h i te w a y , MacLennan
and C o f f i n 1 5 i n c l u d e s no tim e o f r e l a x a t i o n e f f e c t on th e
! c o n c e n t r a t i o n d e p e n d e n c e , w hich i s g iv e n i n s t e a d by th e
j a c t i v i t y c o e f f i c i e n t te rm . T hese d i f f e r e n t p o i n t s o f
! view w i l l be d i s c u s s e d in t h e t h e o r y t o f o l lo w .
i
The wThermodynamic L im i ti n g Law f o r S e l f D i f f u s
i o n . F ic k * s f i r s t law** s t a t e s t h a t in a column o f u n i t
c r o s s s e c t i o n a l a r e a t h e q u a n t i t y , J[, in e q u i v a l e n t s p e r
i cm2 p e r s e c . o f s o l u t e d i f f u s i n g th r o u g h a g iv e n p e rp e n
d i c u l a r p l a n e i s p r o p o r t i o n a l t o th e g r a d i e n t o f t h e con-
J c e n t r a t i o n , V c, where: £ i s in e q u i v a l e n t s p e r cra^
JjL * - D j V c 5* CVi ( l )
, w h e re , Di , i s t h e p r o p o r t i o n a l i t y f a c t o r c a l l e d t h e d i f f -
j u s i o n c o e f f i c i e n t f o r th e io n . has th e d im e n sio n s o f
I and i s e x p r e s s e d in cm2 p e r s e c . ( o r more c o n v en -
i
I i e n t l y , i n cm2 p e r d a y ) . The q u a n t i t y , v-^, i s th e v e l -
I
o c i t y o f th e p a r t i c l e i n cm. p e r s e c . T h is v e l o c i t y may
i
I be e x p r e s s e d a s th e p ro d u c t o f t h e d i f f u s i o n m o b i l i t y i
and t h e c h e m ic a l p o t e n t i a l ,
v i = - c J i V ^ i ( 3 )
o^i i s th e m o b i l i t y o f t h e i ^ 11 io n i n th e s o l u t i o n . T his
m o b i l i t y i s n o t t h e same a s th e c o n d u c ta n c e m o b i l i t y ,
f o r t h e l a t t e r i s s u b j e c t t o a d ra g due t o t h e o p p o sin g I
m o tio n o f t h e io n a tm o sp h e re 1 ®. At th e l i m i t i n g c a s e o f j
i n f i n i t e d i l u t i o n th e two m o b i l i t i e s a r e e q u a l . In th e !
I
O n sa g e r-F u o ss t r e a t m e n t o f d i f f u s i o n th e io n a tm o sp h e re |
e f f e c t on was e v a l u a t e d i n term s o f t h e c o n d u c ta n c e j
m o b i l i t i e s a t i n f i n i t e d i l u t i o n and i t was a l s o i n d i c a t e d
t h a t would b e a f u n c t i o n o f t h e v i s c o s i t y o f th e s o l
u t i o n . The a n a la g o u s d e r i v a t i o n f o r t h e c a s e o f s e l f
d i f f u s i o n h as n o t b e e n t r e a t e d b u t s h o u ld be s i m i l a r .
V a rio u s p u b l i c a t i o n s 1 ®,1 4 ,1 5 ,1 ? have a p p e a re d 1
u s i n g f o r cj^ e i t h e r th e l i m i t i n g c o n d u c ta n c e m o b i l i t y a t
i n f i n i t e d i l u t i o n o r th e c o n d u c ta n c e m o b i l i t i e s a t th e
c o n c e n t r a t i o n o f t h e s o l u t i o n . N e i th e r i s p r o p e r b u t
may b e c o n s i d e r e d a s a p p r o x im a tio n s . At i n f i n i t e d i l u
t i o n th e d i f f u s i o n m o b i l i t y e q u a ls th e c o n d u c ta n c e mob
i l i t y and may be w r i t t e n
^ ( 3 )
1 i * J T T ( 3 )
w here i s th e l i m i t i n g d i f f u s i o n m o b i l i t y , i s th e
(18) R. H. S t o k e s , p r i v a t e com m un icatio n.
9
l i m i t i n g e q u i v a l e n t c o n d u c ta n c e , | z ^ \ i s th e a b s o l u t e
v a lu e o f t h e v a le n c e o f th e io n and F i s th e F a ra d a y in
coulom bs p e r e q u i v a l e n t .
The q u a n t i t y , i s t h e g r a d i e n t o f th e chem
i c a l p o t e n t i a l and, e x p r e s s e d in v o l t s
~ yj.c (4) ;
w i t h R, th e g as c o n s t a n t , 8 .3 1 6 v o l t coulom bs p e r
j
d e g re e p e r m ole, T, th e a b s o l u t e t e m p e r a t u r e , and !
t h e i o n i c a c t i v i t y c o e f f i c i e n t on t h e c o n c e n t r a t i o n
s c a l e , c_. E q u a tio n (1) now becomes
DiVc « c ^ I ^ V 'l n y xc (5) ;
l
o r
» i = " i f 1 0 + ° ( 6 ) :
A g e n e r a l p r e c e p t h a s b e e n t h a t i n a con densed system
m o tio n i s due t o t h e p r o d u c t o f a f o r c e and a m o b i l i t y .
Thus t h i s e q u a t io n i s o b t a i n e d by fo rm al a n a lo g y w ith
t h e t h e o r y f o r i o n i c d i f f u s i o n and th e f i n a l t e s t o f
i t s v a l i d i t y m ust w a i t u n t i l a p r o p e r t r e a tm e n t o f
i n t e r i o n i c a t t r a c t i o n e f f e c t s on th e Brownian m otion o f
io n s p r o v i d e s a fu n d a m e n ta l b a s i s f o r t h e t r e a tm e n t o f
i o n i c s e l f d i f f u s i o n . U ■
At i n f i n i t e d i l u t i o n t h e b r a c k e t t e d th erm o dyn a-
1 0 i
mic term i n e q u a tio n ( 6 ) d i s a p p e a r s , = co? and u s i n g ;
i
e q u a t io n (3) I
D -j (cm ^/day) = 0 .0 2 3 0 3 - i ^ ( 7 ) !
T h is e q u a tio n i s t h e N e rn s t l i m i t i n g e q u a t i o n 3 f o r th e I
i
s p e c i a l c a s e o f s e l f d i f f u s i o n . To o b t a i n an a p p ro x - !
I
|
irnate l i m i t i n g s lo p e i t i s p o s s i b l e to l e t = u>l and i
!
u s e t h e Debye-Hlickel t h e o r e t i c a l v a lu e f o r £ i
- l o g = 0 .5 0 9 z f Vu ( 8 )
w here u i s t h e i o n i c s t r e n g t h . S u b s t i t u t i o n i n t o equa
t i o n ( 6 ) g iv e s t h e l i m i t i n g s lo p e e q u a t io n
T h is i s t h e l i m i t i n g s lo p e e q u a t i o n o f Adamson,
C obble and N i e l s e n *-3 and W hiteway, MacLennan and Cof
fin*-5 . The tim e o f r e l a x a t i o n e f f e c t i s n o t c o n s id e r e d
o p e r a t i v e h e r e f o r th e r e a s o n t h a t i n a homogeneous
e l e c t r o l y t e s o l u t i o n th e i o n i c a tm o s p h e re s o f each io n
s h o u ld be s y m m e tr ic a l. In th e a b s e n c e o f asym metry
t h e r e s h o u ld be no e l e c t r i c a l d r a g o f t h e a tm o sp h ere
and hence no tim e o f r e l a x a t i o n e f f e c t .
The m o b i l i t y te r m , how ever, i s n o t a c o n s t a n t b u t
m ust depend in some m anner upon t h e v i s c o s i t y o f th e
s o l u t i o n and p o s s i b l y on o t h e r v a r i a b l e s . These e f f e c t s
a r e n e g l e c t e d i n th e l i m i t i n g s lo p e e q u a t i o n .
11
The ”C onductance" L im i ti n g Law fo x S e l f D i f f u s i o n .
H u iz e n g a , G r ie g e r and W all h o ld t h a t th e a b se n c e of
b u lk c o n c e n t r a t i o n g r a d i e n t s c a u s e s th e a c t i v i t y c o e f f
i c i e n t term t o d i s a p p e a r . I f t h i s term i s d ro p p ed from
e q u a t io n ( 6 ) , t h e i r e q u a t i o n i s o b t a i n e d . They c o n s i d e r
th e d i f f u s i o n m o b i l i t y to be th e same a s th e c o n d u c ta n c e
m o b i l i t y and c a l c u l a t e t h e i r d i f f u s i o n c o e f f i c i e n t s from
t h e e q u a t io n
D = 0 .0 2 3 * 1 (10)
\z ±\
w here i s th e o b se rv e d e q u i v a l e n t c o n d u c ta n c e o f th e
io n and i t s v a l e n c e . In t h i s e q u a t io n th e d i f f u s i o n
c o e f f i c i e n t v a r i e s o n ly a s t h e c o n d u c ta n c e m o b i l i t y .
T h is c a n n o t be t h e c a s e s i n c e th e p r o c e s s o f e l e c t r i c a l
con ductance, d i f f e r s m ark e d ly from s e l f d i f f u s i o n . Under
i
t h e i n f l u e n c e o f th e e l e c t r i c c u r r e n t th e a tm o sp h e re s a re j
i
made u n sy m m e tric a l in f lo w in g p a s t each o t h e r and a tim e !
i
o f r e l a x a t i o n e f f e c t a p p e a r s . The e l e c t r i c a l f o r c e w i l l '
te n d to move th e a tm o sp h e re and t h e l i q u i d c o n t a i n i n g i t
t
in th e d i r e c t i o n o f th e f o r c e . T h is w i l l b r i n g an elect*-!
r i c a l f o r c e to b e a r on th e c e n t r a l io n i n th e o p p o s i t e
d i r e c t i o n to i t s m o tio n . N e i t h e r o f th e s e f o r c e s p l a y s
a p a r t in s e l f d i f f u s i o n . B ecause o f t h e s e f o r c e s th e
c o n d u c ta n c e m o b i l i t y i s l e s s th a n t h e d i f f u s i o n m o b i l i t y
13 I
and th e d i f f u s i o n c o e f f i c i e n t s c a l c u l a t e d by e q u a tio n ( 1 0 )
w i l l be to o s m a ll .
The ”R e l a x a t i o n ” L im i ti n g Law f o r S e l f D i f f u s i o n .
O nsager 1 9 h a s t r e a t e d t h e c a s e o f d i f f u s i o n i n a s o l u t i o n
c o n t a i n i n g more t h a n two k in d s o f i o n s . In a d d i t i o n to i
t
♦
a g e n e r a l t r e a t m e n t he d e r i v e d a s im p le l i m i t i n g law f o r I
i
th e d i f f u s i o n o f an io n o f v e ry low c o n c e n t r a t i o n i n a !
s o l u t i o n o f o t h e r w is e c o n s t a n t c o m p o s itio n w ith o n ly
t h r e e k in d s o f io n s p r e s e n t . G o s tin g and E arn e d 1 7 have
a p p l i e d t h i s e q u a t io n to th e s p e c i a l c a s e o f s e l f d i f f
u s i o n by t r e a t i n g th e t r a c e r io n as a n o th e r s p e c i e s o f
io n p r e s e n t in t r a c e q u a n t i t y , b u t w ith t h e same p r o p e r
t i e s a s i t s i s o t o p e . j
I
I f d i f f u s i o n t a k e s p l a c e in a s o l u t i o n c o n t a i n i n g ;
more th a n -tw o i o n s t h e s e io n s need n o t have th e same v e l
o c i t y . The d i f f u s i n g io n p r e s e n t in o n ly a t r a c e amount
has a v e l o c i t y r e l a t i v e to th e o t h e r io n s and hence has
an a s y m m e tric a l a tm o s p h e re . T h is g i v e s r i s e to a tim e o f
r e l a x a t i o n f o r c e on th e io n w hich c h an g es i t s v e l o c i t y .
(19) L. O n sa g e r, Ann. H.Y, Acad. S c i . , 4 6 , 241 (1 9 4 5 ).
13
F o r t h i s c a s e O nsager h as found
° j = * 10-7 - ^ lz4 y -£ * io~9T / ^ A i ~
3 I2 # 3D v 1000DRT
( i d
w here Aj i s th e l i m i t i n g i o n i c c o n d u c ta n c e o f th e
io n w hich i s t h e io n p r e s e n t i n t r a c e am ount, R i s th e
g a s c o n s t a n t , T _ t h e a b s o l u t e t e m p e r a t u r e , z,j i s th e v a l
ence o f th e i o n , F i s t h e F a r a d a y , v th e v e l o c i t y o f
l i g h t , € t h e e l e c t r o n i c c h a r g e , D t h e d i e l e c t r i c c o n s ta n t,
c,^ t h e c o n c e n t r a t i o n o f th e i tJl io n in m oles p e r l i t e r
a n d z. i s t h e v a l e n c e . The i ^ 11 io n s a r e a l l th o s e io n s
p r e s e n t e x c e p ti n g th e t r a c e ( j t h ) i o n . The q u a n t i t y ,
d C ^ j) , i s r e p r e s e n t e d by th e e q u a t io n
d(OJ .) — — 1 g.. ^ ,Pi }„ zjl ( 1 2 )
3 £ c i 2i 1 Al Z Ai U '
i iz-jl ■ * " »Z£|
F o r t h e c a s e o f t h r e e io n s p r e s e n t w i t h j a 1 and i « 3
f o r t h e io n f o r w hich i s t h e t r a c e r and i = 3 f o r th e
io n o f o p p o s i t e c h a r g e , e q u a t io n 0£ ) re d u c e s to
d(£V ~ (\z2\ + |2l)A3^ ) (13)
G o s tin g and H arned a p p l i e d t h i s e q u a t io n to s e l f d i f f
u s i o n by c o n s i d e r i n g 1 t h e r a d i o a c t i v e t r a c e r i o n ,
14
2 th e n o rm al io n c o r r e s p o n d i n g to 1 , and _3 th e io n o f
o p p o s i t e c h a r g e . F or s e l f d i f f u s i o n i n 1 -1 e l e c t r o l y t e s
e q u a t io n ( 1 1 ) r e d u c e s to
a * )
G o s tin g and H arned u s e t h i s e q u a t io n f o r d (h ^ ) to s o lv e
e q u a t io n ( 1 1 ) f o r t h e l i m i t i n g s l o p e o f t h e i r t h e o r y .
The weak p o i n t i n G o s tin g and H a rn e d 1s t r e a t m e n t
a p p e a r s t o be t h a t i t r e q u i r e s t h a t a t r a c e r io n have
an a s y m m e tric a l a tm o sp h e re in a homogeneous e l e c t r o l y t e
s o l u t i o n c o n t a i n i n g i t s i s o t o p e . Yet su c h s o l u t i o n s
have s y m m e tric a l io n a tm o s p h e r e s . S in c e t h e two io n s
a r e c h e m ic a lly i d e n t i c a l t h i s does n o t seem p o s s i b l e .
Each o f th e t h e o r i e s c o n s i d e r e d above i s to some \
i
i
e x t e n t f u n d a m e n ta lly u n s a t i s f a c t o r y . T h is w ork, h o w e v e r,!
d i d n o t c o n c e rn i t s e l f w ith th e b a s i c s o l u t i o n th e o r y
I
and so no d e v elo p m e n t o f a more fu n d a m e n ta l t h e o r y was ;
a tt e m p t e d .
THEORY OF THE DIAPHRAGM METHOD i
l
The e q u a t io n f o r d i f f u s i o n c o e f f i c i e n t s from d i a - !
phragm c e l l m easurem en ts i s o b t a i n e d by t h e d i r e c t a p p l i - j
c a t i o n o f F i c k ’ s f i r s t la w . T h is i s th e d e f i n i n g equa
t i o n f o r t h e d i f f u s i o n c o e f f i c i e n t and t h u s i s in d e p e n d
15 |
e n t o f t h e o r i e s o f th e mechanism o f th e d i f f u s i o n p ro
c e s s . The d iap hragm i s assum ed t o c o n s i s t o f a number o f
p o r e s o f l e n g t h , and t o t a l c r o s s s e c t i o n a l a r e a , A. j
Two s o l u t i o n s o f c o n c e n t r a t i o n s , c^ a n ^ £ 2 * a r e b r o u g h t |
\
i n t o c o n t a c t th r o u g h t h i s d iap h ra g m . I f ci^and Cg change |
s lo w ly th e c o n c e n t r a t i o n g r a d i e n t , (c]_ - c 2 ) , th r o u g h th e ;
d iap hragm w i l l be e s s e n t i a l l y l i n e a r . From F i c k 's law
t h e am ount, d £ , o f a s o l u t e d i f f u s i n g i n tim e , d t , i s
In o r d e r t o e x te n d t h e m easurem ents o v e r a p r a c t i c a l
tim e i n t e r v a l t h e i n t e g r a l form o f t h i s e q u a t io n m ust be j
»
u s e d . I f a mass b a la n c e i s w r i t t e n f o r th e d i f f u s i o n j
c e l l i
w here and V2 a r e th e volum es o f th e co m p a rtm e n ts.
T h is e q u a tio n becomes
I f D i s assum ed in d e p e n d e n t o f c o n c e n t r a t i o n t h i s equa
t i o n can be i n t e g r a t e d from t h e i n i t i a l c o n c e n t r a t i o n
d i f f e r e n c e , (c-j_ - c o n c e n t r a t i o n d i f f
(15)
V ld o l * JT^0! - ° 3 ^ d t = v 3 d c 3 * f f i ° l ~ °3 )d t 06)
(IV)
e r e n c e , (c-^ - c 2 ) f
(18) j
_ J
16
S in c e A g e n e r a l l y c a n n o t be d e te r m in e d , th e c o n s
t a n t , ^ (L + i. \ , i s d e s i g n a t e d K and d e te r m in e d by
2 .3 0 3 ^ \Y]_ ““
c a l i b r a t i o n w ith a s a l t whose d i f f u s i o n c o e f f i c i e n t i s
known. T h is g i v e s
The c o n c e n t r a t i o n u n i t s c a n c e l i n t h i s e q u a t i o n and so
t h e c o u n ts p e r m in u te p e r u n i t volume can be u s e d d i r e c t
l y i n p l a c e o f t h e t r a c e r c o n c e n t r a t i o n i n more conven
t i o n a l u n i t s . S in c e t h e t r a c e r was ad d ed t o o n ly one
com partm ent t h e i n i t i a l v a lu e o f c_ 2 i s z e r o . By making
a t r a c e r mass b a l a n c e t h e i n i t i a l v a lu e o f c j can be ob
t a i n e d in te rm s o f th e f i n a l v a lu e s o f _ci and eg and th e
v o lu m e s, V ]_ and Vg.
In th e d e r i v a t i o n t h e a s s u m p tio n i s made t h a t th e d i f f
u s i o n c o e f f i c i e n t i s in d e p e n d e n t o f c o n c e n t r a t i o n . I f
t h e d i f f u s i o n c o e f f i c i e n t o f th e s p e c i e s i n q u e s t i o n
v a r i e s w ith i t s c o n c e n t r a t i o n , th e u s e o f e q u a t io n ( 2 0 )
y i e l d s a ty p e o f a v e r a g e o r i n t e g r a l d i f f u s i o n c o e f f i c
i e n t . T h is i s an i m p o r t a n t p o i n t i n mean d i f f u s i o n
s t u d i e s b u t i s n o t in v o lv e d i n s e l f d i f f u s i o n e x p e r i
m en ts s i n c e th e o v e r a l l c o n c e n t r a t i o n o f t h e l a b e l l e d
(19)
( 2 0 )
'n
17 !
s p e c i e s does n o t c h a n g e . |
Stokes® h a s r e p o r t e d d i f f u s i o n d a t a f o r sodium j
c h l o r i d e a t 25°C. d i f f u s i n g i n t o w a t e r . Under t h e s e j
c o n d i t i o n s th e Na+ and Cl" io n s d i f f u s e t o g e t h e r t o p r e - \
s e r v e e l e c t r i d a l n e u t r a l i t y . These d i f f u s i o n c o e f f i c - j
i e n t s were o b t a i n e d by th e diap h rag m c e l l method and !
-. : L - I
would seem t o r e p r e s e n t some .mean v a lu e o f th e Na*~ and
• r i
C l” io n s e l f d i f f u s i o n c o e f f i c i e n t s r e p o r t e d i n t h i s I
w ork. The N e r n s t e x p r e s s i o n s a t i n f i n i t e d i l u t i o n a r e
% a = ^ a kT DC1“ X C lkT DNa01 T % 1kT
S o lv in g f o r Djja Qi i n term s o f E%a and g i v e s
n ° - DNa Dei
% a C l Dtfa + 'Drfx (2S)
T h is e q u a t io n i s e x a c t a t i n f i n i t e d i l u t i o n and s h o u ld
b e a c l o s e a p p ro x im a tio n a t f i n i t e c o n c e n t r a t i o n s . How
e v e r , b e f o r e t e s t i n g t h i s e q u a tio n i t i s a t l e a s t n e c
e s s a r y to b r i n g th e two s e t s o f m easurem en ts t o t h e same
b a s i s i n one im p o r ta n t r e s p e c t . In th e c a s e o f d i f f u s
io n i n t o w a t e r , t h e r e i s a n e t flo w o f s a l t and o f
w a te r ; t h e volume flo w o f th e two m ust be e q u a l in mag
n i t u d e and o p p o s i t e in s ig n s i n c e t h e system a s a w hole
h as a c o n s t a n t volum e. The m easu red d i f f u s i o n c o e f f i c
i e n t i s t h e r e f o r e an a v e ra g e o f t h e i n t r i n s i c c o e f f i c
i e n t s f o r t h e two com ponents, g iv e n by e q u a t io n ( 2 3 ) .
18
The d i f f u s i o n c o e f f i c i e n t o f w a te r i s 2 .3 8 5ra2 p e r day 1 0
and r e l a t i v e l y in d e p e n d e n t o f s a l t c o n c e n t r a t i o n . S in c e
t h i s d i f f u s i o n c o e f f i c i e n t i s g r e a t e r t h a n t h a t f o r th e
io n s h e re c o n s i d e r e d , D0^,B w i l l be l a r g e r t h a n Ds a ^ ^ .
^ o b s ~ ^salt^ H g O “ ^HgO^ions (23)
w here and Z io n s a r e " fciie volume f r a c t i o n s o f w a te r
and i o n s . T h is c o r r e c t i o n to D ^ g s h o u ld i n c r e a s e w ith
i n c r e a s i n g c o n c e n t r a t i o n , b u t i t s v a lu e i s u n c e r t a i n b e
c a u s e t h e number o f w a te r s o f h y d r a t i o n t o be u s e d i n
co m p u tin g F£ons i s n o t known. Only a f t e r c o r r e c t i o n f o r
t h e above volume e f f e c t i n mean d i f f u s i o n e x p e rim e n ts
c an a c o m p a riso n be made w ith s e l f d i f f u s i o n c o e f f i c i e n t s
s i n c e t h e l a t t e r a r e , o f c o u r s e , u n a f f e c t e d by any such
volume f o r c e s .
The diaphragm c e l l was c h o sen f o r t h i s work b e
c a u s e o f i t s s i m p l i c i t y and due to th e f a c t t h a t o t h e r
m ethods w ere deemed to o d i f f i c u l t o r in a d e q u a te f o r th e
s p e c i a l c a s e o f s e l f d i f f u s i o n . . In th e d iaphragm c e l l
m ethod, d i f f u s i o n t a k e s p l a c e o n ly w i t h i n t h e c o n f i n e s
o f th e diaph ragm p o r e s w here m e c h a n ic a l and th e r m a l v a r
i a t i o n s a r e u n a b le t o a f f e c t t h e d i f f u s i o n , r u n s may be
c o m p le te d i n 3 o r 4 d ay s and th e a p p a r a t u s i s s im p le and
c o n v e n ie n t t o u s e . O p t i c a l m ethods c o u ld n o t b e u s e d
19
s i n c e t h e r e a r e no c o n c e n t r a t i o n g r a d i e n t s . F red d i f f
u s i o n was a tte m p te d w ith an a p p a r a t u s i n which a bound
a r y c o u ld be form ed betw een th e norm al and th e ta g g e d
s o l u t i o n s to g iv e a column 10 cm, i n l e n g t h and 1 cm. i n
d i a m e t e r . T h is m ethod c o u ld n o t be s u c c e s s f u l l y u s e d a t
ou r l a b o r a t o r y f o r no m o unting c o u ld be c o n s t r u c t e d t h a t
was u n a f f e c t e d by t h e b u i l d i n g ' s v i b r a t i o n . F re e d i f f
u s i o n , how ever, h as s i n c e b e en d e v e lo p e d 1 ^ to o f f e r a
c o n v e n ie n t and a c c u r a t e m ethod.
c
FIG. I. D IA P H R A G M DIFFUSIO N C E L L
EXPERIMENTAL METHODS
Use o f th e Diaphragm C e l l . F ig u r e 1 shows th e
d i f f u s i o n c e l l u se d i n t h i s w ork. I t c o n s i s t e d o f a
c y l i n d r i c a l g l a s s v e s s e l d i v i d e d i n t o two com partm ents by
a s i n t e r e d g l a s s d iap h ra g m . Each com partm ent had a v o l
ume o f a b o u t 25 m l. and had two s to p c o c k s t o a llo w th e
com partm ent t o be e m p tied o r f i l l e d w ith o u t d i s t u r b i n g
t h e l i q u i d i n t h e d iap h rag m . One com partm ent was f i l l e d
w i t h a s o l u t i o n c o n t a i n i n g t r a c e r io n and th e o t h e r w ith
a s o l u t i o n o f t h e same c o n c e n t r a t i o n b u t u n ta g g e d . The
c e l l was t h e n m ounted in a w a t e r t h e r m o s t a t a t 25 - 0 .0 £ c
The ty p e o f m ou n tin g was v a r i e d d e p e n d in g on th e ty p e o f
s t i r r i n g u s e d . A f t e r two t o f o u r h o u rs o f p r e l i m i n a r y
d i f f u s i o n to e s t a b l i s h th e d i f f u s i o n g r a d i e n t i n t h e d i a
phragm , t h e s o l u t i o n i n t o w hich t h e t r a c e r i s d i f f u s i n g
was r e p l a c e d w ith n o n - ta g g e d s o l u t i o n a f t e r c a r e f u l r i n s
i n g . T h is s o l u t i o n was t h e r m o s t a t t e d t o 25°c . b e f o r e
u s e . The c e l l was a g a i n p l a c e d i n p o s i t i o n and d i f f u s i o n
a llo w e d t o p r o c e e d u n t i l a p p ro x im a te ly 25$ o f t h e t r a c e r
had p a s s e d th r o u g h t h e d iap h rag m . T h is to o k from two to
f i v e d a y s . The s o l u t i o n s w ere s t o r e d in s t o p p e r e d t e s t
t u b e s f o r c o u n ti n g .
32
P r e p a r a t i o n o f S o l u t i o n s , A ll s o l u t i o n s w ere p r e
p a re d u s i n g d o u bly d i s t i l l e d w a te r w ith a s p e c i f i c con
d u c ta n c e o f l e s s t h a n 3 x 10” ® mho cm. A n a l y t i c a l q u a l
i t y sodium and p o ta s s iu m c h l o r i d e s and sodium io d id e were
i
u s e d w ith o u t f u r t h e r p u r i f i c a t i o n . The sodium s u l f a t e of
C. P . q u a l i t y was r e c r y s t a l l i z e d b e f o r e u s e . The s o l u
t i o n s were p r e p a r e d from s a l t s w hich had b een d r i e d f o r
24 h o u rs a t 1 1 0 °0 . and c o o le d i n a d e s i c c a t o r . A ll s o l u
t i o n s o f c o n c e n t r a t i o n l e s s th a n 0 . 0 1 N. were p r e p a r e d by
d i l u t i o n o f m easu red volum es from more c o n c e n t r a t e d s o l u
t i o n s . D is s o lv e d g a s e s w ere removed from th e s o l u t i o n s
p r i o r t o u s e by b o i l i n g f o r one m in u te i n t h e vacuum o f
a w a te r pump.
P r e p a r a t i o n o f t h e T r a c e r s . Two r a d i o a c t i v e i s o -
j to p e s o f sodium w ere u se d d u r i n g t h e c o u rs e o f t h i s r e
s e a r c h , Na2 2 (3 y e a r h a l f l i f e ) and Ha2 4 ( 1 4 .8 h o u r h a l f
' 1
l i f e ) . The Na2 2 was o b t a i n e d from th e M .I .T . R a d ia ti o n
L a b o r a to r y and th e C a rn e g ie I n s t i t u t e o f T e r r e s t r i a l
I
j M agnetism . I t was p r e p a r e d by d e u te r o n bombardment of
m agnesium . The t r a c e r was r e c e i v e d a s sodium c h l o r i d e
s o l i d o r s o l u t i o n o f v e ry h ig h s p e c i f i c a c t i v i t y . These
j w ere d i l u t e d w ith a s m a ll volume o f w a te r t o make th e
i
s t o c k s o l u t i o n . The Na2 4 from n e u tr o n bom barded sodium i
i
j c a r b o n a t e was o b t a i n e d from th e Oak Ridge N a t io n a l L abor
33 t
a t o r y . The t r a c e r a r r i v e d a s sodium c a r b o n a te o f v e ry
i
h ig h s p e c i f i c a c t i v i t y . The t r a c e r was c o n v e r te d t o u s e !
a s sodium c h l o r i d e by a d d in g e x c e s s h y d r o c h l o r i c a c i d ,
e v a p o r a t i n g t o d r y n e s s to e l i m i n a t e HG1 and r e d i s s o l v i n g
i
i n a s m a ll amount o f w a te r t o form a s t o c k s o l u t i o n . Sod-1
ium s u l f a t e was p r e p a r e d by t i t r a t i o n w ith s u l f u r i c a c i d i
1
u s i n g m e th y l r e d a s i n d i c a t o r . T h is s o l u t i o n was e v a p o r - ,
a t e d to a s m a ll volume and u se d a s t h e s t o c k s o l u t i o n . I
Upon u s e t h e Na2 4 was fo u n d t o c o n t a i n r a d i o a c t i v e im pur
i t i e s w hich gave i t an a p p a r e n t h a l f l i f e o f 1 5 .6 h o u r s ,
how ever, on co m p a rin g d u p l i c a t e r u n s t h e r e was no a p p a r e n t
j
d i f f e r e n c e b etw een t h e r e s u l t s o b t a i n e d u s i n g t h i s t r a c e r
and t h o s e made u s i n g Ha2 2 .
The S3 5 and C l3® t r a c e r s w ere made from a n e u tr o n
bom barded sam ple o f p o ta s s iu m c h l o r i d e o b t a i n e d from th e
Atom ic E nergy Com mission. S in c e t h i s sam ple had aged
s e v e r a l m onths a l l a c t i v i t i e s o f s h o r t h a l f l i v e s had de
c a y e d l e a v i n g 8 7 .1 day S3® and 10® y e a r C l3 6 . An a b s o r p
t i o n c u rv e on a t h i n sam ple o f t h i s m a t e r i a l a f f i r m e d t h a t
o n ly t h e s e two a c t i v i t i e s w ere p r e s e n t , w ith th e c h l o r i n e
a c t i v i t y l e s s th a n one p e r c e n t o f t h e t o t a l . The C l3® was
p r e s e n t in th e sam ple e n t i r e l y a s c h l o r i d e b u t th e was
d i s t r i b u t e d among s e v e r a l v a le n c e s t a t e s i n c l u d i n g th e !
s u l f i d e and th e s u l f a t e . j
A s o l u t i o n o f t h e n e u tr o n bom barded p o ta s s iu m
c h l o r i d e was p a s s e d th r o u g h an io n exchange column con
t a i n i n g th e H* form o f Dowex 50 , y i e l d i n g an HC1 s o l u
t i o n . T h is HC1 s o l u t i o n c o n t a i n i n g t h e r a d i o s u l f u r and
t h e r a d i o c h l o r i n e was t h e n t r e a t e d w ith b rom ine w a te r to
o x i d i z e t h e s u l f u r t o s u l f a t e . A f t e r e x p e l l i n g th e b r o
m ine by b o i l i n g , th e c h l o r i d e was p r e c i p i t a t e d by th e add-;
i t i o n o f t h e s t o i c h i o m e t r i c amount o f s i l v e r n i t r a t e .
A lth o u g h th e s i l v e r c h l o r i d e p r e c i p i t a t e c o n ta in e d some
C13 S , r e c o v e r y was n o t f e a s i b l e f o r th e s p e c i f i c a c t i v
i t y was n o t s u f f i c i e n t l y g r e a t .
The f i l t r a t e from t h e s i l v e r c h l o r i d e p r e c i p i t a t e j
c o n ta in e d r a d i o s u l f a t e i n n i t r i c a c i d . T h is was a g a in j
' p a s s e d th r o u g h t h e io n e x c h a n g e r to e n s u r e th e a b se n c e
j o f a l l . p o s i t i v e io n s o t h e r th a n K+ , and was th e n b o i l e d
I I
! down t o ' n e a r d r y n e s s t o e x p e l most o f th e a c i d and t h e n .
one d ro p o f 1 0 “ ® H- sodium h y d ro x id e was added and th e
e v a p o r a t i o n c o n tin u e d t o d r y n e s s . The t r a c e o f s o l i d s
i
j r e m a in in g was ta k e n up i n w a te r t o g iv e th e s t o c k s o l u
t i o n o f ta g g e d sodium s u l f a t e .
A seco n d sh ip m en t o f s u l f u r t r a c e r was o b t a i n e d
from th e Atomic E nergy Commission a s cadmium s u l f i d e
w ith b a riu m io n in s o l u t i o n t o p r e c i p i t a t e any s u l f a t e j
form ed. T h is s o l u t i o n was p a s s e d th r o u g h t h e H* io n
25 |
I
e x c h a n g e r , o x i d i z e d by brom ine w a te r a s b e f o r e and evap
o r a t e d a f t e r a d d in g a d rop o f 10” ® N sodium h y d r o x id e .
A s to c k s o l u t i o n wa8 made from t h e sodium s u l f a t e rem ain-j
i n g . ,
I n o r d e r t o t e s t t h e c o m p le te n e s s o f th e c o n v e r-
s i o n o f r a d i o a c t i v e s u l f u r t o s u l f a t e a sodium s u l f a t e ^
s o l u t i o n was ta g g e d w i t h t h i s t r a c e r . T h is ta g g e d s o l u - -
t i o n was a llo w e d to d i f f u s e i n t o w a te r i n a diaphragm
c e l l u n t i l 25$ o f th e s a l t had p a s s e d th r o u g h . Now
w eig h ed sam p les o f s a l t from b o th com partm ents were
c o u n te d . The s p e c i f i c a c t i v i t i e s w ere t h e same. S in c e
I
t h e d i f f u s i o n m o b i l i t i e s o f th e v a r i o u s s u l f u r a n io n s j
a r e d i f f e r e n t , t h e d i f f u s a t e would c o n t a i n a d i f f e r e n t i
i
r a t i o o f t h e s e io n s and hen ce have a d i f f e r e n t s p e c i f i c
a c t i v i t y i n th e e v e n t r a d i o a c t i v e s u l f u r was p r e s e n t in
o t h e r v a le n c e fo rm s. T h is t e s t showed t h a t no im p u ri
t i e s w ere p r e s e n t i n am ounts s u f f i c i e n t t o c a u s e th e
t r a c e r t o be s i g n i f i c a n t l y d i f f e r e n t from s u l f a t e io n i n
i t s b e h a v i o r .
C h lo r in e t r a c e r s u i t a b l e f o r work i n v e ry d i l u t e
s o l u t i o n s was o b t a i n e d from th e Oak R idge N a t io n a l Lab
o r a t o r y a s sodium c h l o r i d e s o l u t i o n o f m o d era te a c t i v
i t y . The s o l u t i o n a s r e c e i v e d was u s e d a s s to c k t r a c e r
s o l u t i o n . i
In a l l c a s e s th e s t o c k t r a c e r s o l u t i o n s w ere o f
su c h s p e c i f i c a c t i v i t y t h a t o n ly a few lambda, n eed be i
added t o t a g t h e s o l u t i o n . T h is added n e i t h e r enough j
s a l t n o r w a te r to m e a su ra b ly change th e c o n c e n t r a t i o n o f I
any s o l u t i o n so ta g g e d .
C o u n tin g t h e R a d i o a c t i v e T r a c e r s . At f i r s t one !
m l. a l i q u o t s o f N a ^ and N a ^ .and C l 3 3 ta g g e d s o l u t i o n s (
i
were e v a p o r a te d to d r y n e s s in sm a ll w atch g l a s s e s u n d e r j
I
an i n f r a r e d h e a t lamp and w ere c o u n te d u n d e r a m ica
window c o u n t e r . L a t e r s m a ll g l a s s j a c k e t e d G e ig er c o u n t
e r tu b e s were u se d i n w hich s o l u t i o n s d i r e c t from th e com
p a r t m e n t s w ere p i p e t t e d i n t o th e c o u n tin g tu b e and t h r e e 1
!
f i v e - m i n u t e c o u n ts w ere made. Thus c o u n ti n g c o u ld be
i
c o m p le te d i n t h i r t y m in u te s w hereas i f e v a p o r a t i o n were
u s e d , more th a n two h o u rs was n eeded t o e v a p o r a te t h r e e
sam p les from e a c h com partm ent and c o u n t t h r e e f i v e - m in
u t e c o u n ts o f e a c h . The o b s e rv e d c o u n ts were c o r r e c t e d
f o r b a ck g ro u n d and c o in c id e n c e and th e W a ^ sa m p le s were
c o r r e c t e d f o r d e c a y .
The 0 .1 6 8 mev. b e t a r a y s from S3 3 a r e n o t o f h ig h
enough e n erg y t o p e r m it c o u n tin g t h e n i n a s o l u t i o n
c o u n t e r . E v a p o ra te d o r p r e c i p i t a t e d sam p les w ere c o u n t
ed w i t h a m ica window c o u n ti n g tu b e o r w ith an a tm o s-
t
p h e r i c p r e s s u r e flo w g a s c o u n te r tu b e i n t o w hich t h e j
27 I
i
sam ple c o u ld be p l a c e d . Due t o t h e weak r a d i a t i o n th e
sam ple m ust b e o f u n ifo rm c r o s s s e c t i o n and a s e l f a b -
w o r p tio n c o r r e c t i o n made. I t i s im p o r ta n t t h a t th e s o l i d
m a t e r i a l be o f u n if o r m , v e ry s m a ll p a r t i c l e s i z e and n o t
d e l i q u e s c e n t . Barium s u l f a t e was t h e form cho sen f o r !
i
i
t h i s p r o c e d u r e .
P o r t i o n s o f th e sodium s u l f a t e s o l u t i o n s from t h e
o om p artm en ts o f t h e d i f f u s i o n c e l l were made a p p ro x .
0 . 1 N i n n i t r i c a c i d and p r e c i p i t a t e d by a d d in g a s l i g h t
i
e x c e s s o f b a riu m n i t r a t e s o l u t i o n . The b ariu m s u l f a t e
p r e c i p i t a t e was c e n t r i f u g e d , th e s u p e r n a t a n t l i q u i d d e -
l
! c a n t e d and t h e n th e p r e c i p i t a t e was washed tw ic e w ith
v e r y d i l u t e n i t r i c a c i d fo llo w e d by two w a sh in g s w i t h ab
s o l u t e e t h y l a l c o h o l . The r e s u l t i n g b a riu m s u l f a t e was
i s l u r r i e d i n e t h y l a l c o h o l and p l a c e d i n g l a s s c y l i n d e r s
i
■ clam ped upon w eighed a lu m in u n d i s k s . The p r e c i p i t a t e
j was a llo w e d to s e t t l e o n to th e d i s k and th e e t h y l a l c o h o l
i
e v a p o r a t e d i n an oven a t 75 C. The d i s k w ith t h e sam ple
j was th e n w e ig h ed , and f i n a l l y c o u n te d . I t was found
I n e c e s s a r y t o d ry t h e sam p les u n d e r a h e a t lamp j u s t p r i o r
I t o c o u n ti n g t o g e t r e p r o d u c i b l e r e s u l t s .
i The s e l f a b s o r p t i o n c o r r e c t i o n i s made by a f a c t o r
i w h ich c o r r e c t s eac h c o u n te d v a l u e t o t h e e x t r a p o l a t e d
v a lu e f o r z e r o sam ple t h i c k n e s s . In o r d e r to d e te r m in e ■
28
t h e s e f a c t o r s t r a c e r sodium s u l f a t e was added t o a so d
ium s o l u t i o n t o g iv e a s o l u t i o n h a v in g a g iv e n s p e c i f i c
a c t i v i t y . P o r t i o n s o f t h i s s o l u t i o n w ere p r e c i p i t a t e d
a s b a riu m s u l f a t e , s l u r r i e d and a s e r i e s o f d i s k s p r e
p a r e d e a c h w ith a d i f f e r e n t t h i c k n e s s b u t. o f th e same
a r e a . These d i s k s w ere c o u n te d and th e s e l f a b s o r p t i o n
f a c t o r s o b t a i n e d a c c o r d i n g to t h e g e n e r a l m ethod o f
Yankwich, N o r r i s and Huston^® a r e t a b u l a t e d i n T ab le I
and p l o t t e d i n F ig . 3.
(SO) P . E. Y ankw ich, T. H. N o r r i s and J . H u sto n , A n al.
C h em ., 1 9 , 439 ( 1 9 4 7 ).
TABLE I
ABSORPTION CURVE OF SULFUR3 5 IN BARIUM SULFATE
W eight o f
Sample
C ounts p e r
M inute
S e l f A b s o rp tio n
F a c to r
1 .7 5 171 0 .9 9 4
2 .8 5 282 0 .9 8 7
3 .4 342, 0 .9 8 3
8 .7 823 0 .9 3 7
9 .2 870 0 .9 3 2
1 2 .5 1127 0 .8 9 8
1 4 .8 1310 0 .8 7 3
2 0 .4 1625 0 .8 1 0
2 1 .3 1720 0 .8 0 4
2 6 .4 1955 0 .7 5 0
3 2 .6 2214 0 . 6 8 6
3 9 .9 2393 0 .6 1 1
4 2 .5 2450 0 .5 8 4
5 5 .4 2639 0 .4 7 9
6 2 . 3a 2651 0 .4 3 7
a A ll a r e a s 5 .7 2 9 cm** with, t h i s e x c e p ti o n w hich i s
5 .5 2 9 cm2.
SELF ABSORPTION FACTOR
.0
0.9
0.8
0 .7
0.6
0 .5
0 .4
0 .3
0.2
0 , 1
4 0 5 0 6 0 0 20 3 0 1 0
MG/CM
FIG. 2 . S E L F A B S O R P T I O N F A C T O R S OF IN B a S O *
1
THE EFFECT OF STIRRING
l
The diaphragm c e l l h as b een c r i t i c a l l y re v ie w e d by j
Pi !
Gordon^ . T h is re v ie w p o i n t s o u t th e n e e d f o r f u r t h e r I
i
i n v e s t i g a t i o n o f t h i s m ethod a s to th e e f f e c t o f s t i r r i n g , ]
m ethod o f c a l i b r a t i o n o f th e c e l l s and t h e s p e c i f i c e f f - j
e c t o f t h e l a r g e s u r f a c e a r e a o f t h e diaphragm on d i f f u s - ,
io n . These p ro b lem s a r e o f g r e a t im p o rta n c e to t h e a p p l i
c a t i o n o f t h i s m ethod to s e l f d i f f u s i o n w ith r a d i o a c t i v e j
t r a c e r s f o r t h e r e a r e no d e n s i t y d i f f e r e n c e s betw een t h e j
t
two s o l u t i o n s and more d i l u t e s o l u t i o n s may be u s e d w ith
t r a c e r a n a l y s i s t e c h n i q u e . These c o n d i t i o n s a re su c h a s
t o e x a g g e r a t e any s t i r r i n g o r s u r f a c e e f f e c t s and hence
th e d iaphragm m ethod had t o be c r i t i c a l l y exam ined f o r
e v id e n c e o f su c h e f f e c t s . Much o f th e m a t e r i a l t h a t f o l -
j low s c o n s i s t s o f th e p r o c e d u r e s ta k e n to h a n d le th e s e
p ro b lem s t h a t d e v e lo p e d due to u s e o f th e d iaphragm c e l l
m ethod.
1 I m p l i c i t i n th e e q u a t io n f o r c a l c u l a t i o n o f th e
i
d i f f u s i o n c o e f f i c i e n t from d iap h rag m c e l l r e s u l t s i s th e
J a s s u m p tio n t h a t b o th s o l u t i o n s a r e o f u n ifo rm c o n c e n t r a -
j t i o n r i g h t up t o t h e d ia p h ra g m . Any s t a g n a n t l a y e r s w hich
| m ig h t e x i s t a d j a c e n t t o t h e d iap hragm c o u ld n o t be e x p e c t- ,
ed to rem a in t h e same f o r a l l s u b s ta n c e s i n a l l c o n c e n tr a - ;
. 32
t i o n s and so e r r o n e o u s v a lu e s would r e s u l t . U niform con
c e n t r a t i o n s i n th e com p artm en ts a r e o b t a i n e d in p r a c t i c e
th ro u g h s t i r r i n g by v a r i o u s m eans. I t w ould be e x p e c te d
t h a t th e amount o f s t i r r i n g n eed ed s h o u ld be t o some de
g re e d e p e n d e n t on th e p a r t i c u l a r c o n d i t i o n s o f th e s o l u
t i o n s , su c h a s v i s c o s i t y . T h e r e f o r e , s t i r r i n g w hich i s
s u f f i c i e n t f o r th e d i l u t e s o l u t i o n s u s e d i n c a l i b r a t i o n
may n o t be a d e q u a te f o r o t h e r , more c o n c e n t r a t e d s o l u
t i o n s .
N o n -m ech an ical S t i r r i n g . I t h a s b e e n c o n s i d e r e d
t h a t i f t h e c e l l i s m ounted v e r t i c a l l y w i t h t h e more d en se
s o l u t i o n i n th e u p p e r com partm ent s t i r r i n g i s a cco m p lish ed
s u f f i c i e n t t o p e r m i t no s t a g n a n t l a y e r s a s t h e more d en se
l a y e r s i n eac h com partm ent w ould be u p p e rm o st and hen ce i n
SX I
j an u n s t a b l e c o n d i t i o n . Gordon com pared h i s d e n s i t y !
! s t i r r e d r e s u l t s on p o ta s s iu m c h l o r i d e w i t h t h e r e s u l t s ob-
* 22
t a i n e d w i t h m e c h a n ic a l s t i r r i n g by H a r t l e y and R u n n ic le s
from w hich he c o n c lu d e d t h a t i f t h e c e l l c a l i b r a t i o n and
I
i s u b s e q u e n t d i f f u s i o n m easurem ents w ere made a t n e a r l y th e !
same d e n s i t y and v i s c o s i t y d i f f e r e n c e s e i t h e r d e n s i t y o r
m e c h a n ic a l s t i r r i n g c o u ld be u se d w ith c o m p a ra b le r e s u l t s . '
I f , how ever, t h e r e s h o u ld be d i f f e r e n c e s in th e d e n s i t i e s
" 1 ..... ' ’' 1 "'' i
(23) G. S. H a r t l e y and D. F. R u n n i c l e s , P r o c . Roy.
S o c . , A 1 6 8 . 401 (1 9 3 8 ).
33 j
an d v i s c o s i t i e s , m e c h a n ic a l s t i r r i n g s h o u ld he u s e d . In
s e l f d i f f u s i o n t h e r e i s no d e n s i t y d i f f e r e n c e o r v i s c o s - j
i t y d i f f e r e n c e b etw een t h e s o l u t i o n s i n th e two c o m p a rt- \
m ents and so d e n s i t y s t i r r i n g c a n n o t keep th e s o l u t i o n s
hom ogeneous.
Adamson2 3 h as made a t e s t o f th e e f f e c t o f s t i r - ■
r i n g in diap h rag m c e l l s i n th e d i f f u s i o n o f sodium t r a c e r :
i n 0 .0 4 7 8 H. sodium i o d i d e a t 2 5 ° C ., in w hich he fo und
t h a t th e d i f f u s i o n c o e f f i c i e n t o b t a i n e d w ith s t i r r i n g was \
1 . 9 # h i g h e r t h a n t h a t o b t a i n e d w i t h o u t s t i r r i n g . P r e l i m - j
S
i n a r y i n v e s t i g a t i o n s f o r t h i s r e s e a r c h w ere made by d e te r - :
I
m in in g t h e d i f f u s i o n c o e f f i c i e n t s o f sodium t r a c e r i n eod-j
ium s u l f a t e s o l u t i o n s up t o l.Q If. a t 25°C. These d e t e r - j
I
j
m in a tio n s w ere made w i t h o u t m e c h a n ic a l s t i r r i n g . The
!
c e l l s w ere su sp en d e d i n th e t h e r m o s t a t on r u b b e r t u b i n g .
Each c e l l gave v a l u e s o f th e d i f f u s i o n c o e f f i c i e n t w hich
upon p l o t t i n g ( F i g . 3) seemed to be c o n s i s t e n t w i t h o t h e r
v a lu e s o b t a i n e d f o r t h e same c e l l , b u t t h e c u rv e o b t a i n e d :
f o r each c e l l was d i f f e r e n t . A c o r r e l a t i o n w ith t h e c e l l I
c o n s t a n t was fo u n d . The d i f f u s i o n c o e f f i c i e n t s w ere in
eac h c a s e lo w e r t h a n . t h o s e o b t a i n e d u s i n g s t i r r i n g . At
h i g h e r c o n c e n t r a t i o n s t h e d e v i a t i o n s became more m arked.
(23) A. W. Adamson, P r i v a t e co m m u n icatio n .
i
STIRRED
K = 0 ,0 7 7 6
0.6
K = 0 .0 9 2 7
I
0 .4
0.2
0 0 .4 0 .8 1.2 M
-fc
FIG. 3. DEPENDENCE OF SELF DIFFUSION COEFFICIENTS OF N
IN N a ^ O * ON CELL CONSTANT IN UNSTIRRED R U NS
w
35
I
The lo w e s t v a l u e s f o r t h e d i f f u s i o n c o e f f i c i e n t s were J
I
o b t a i n e d w ith t h e c e l l w ith t h e l a r g e s t c e l l c o n s t a n t , !
w h ile th e h i g h e s t v a l u e s were o b ta in e d w ith t h e c e l l j
w i t h th e s m a l l e s t c e l l c o n s t a n t . T h is means t h a t th e I
more p o ro u s d iap h ra g m s g iv e t h e lo w e s t d i f f u s i o n c o e f f
i c i e n t s w hich i s e x a c t l y a s would be e x p e c te d i f t h e s o l
u t i o n s in t h e co m p artm en ts w ere n o t homogeneous up t o
t h e diaphragm w ith r e s u l t a n t d i f f u s i o n g r a d i e n t s i n t h e j
m ain body o f t h e s o l u t i o n s . T hese g r a d i e n t s would be j
more p ro n o u n ce d in th e more p o ro u s d iap hragm c e l l s w here i
i
t h e io n s a r e t r a n s p o r t e d i n g r e a t e r num bers th r o u g h t h e !
d iap h rag m p e r u n i t t im e . T h is e f f e c t i v e l y i n c r e a s e s t h e !
d i s t a n c e th ro u g h w hich t h e d i f f u s i o n o c c u r s and r e s u l t s
in low v a lu e s f o r t h e d i f f u s i o n c o e f f i c i e n t s . ■
M e c h a n ic a l S t i r r i n g . D u rin g th e e a r l y work on
s t i r r i n g i n t h i s r e s e a r c h i t was f e l t d e s i r a b l e to de
v i s e a s t i r r i n g m ethod w hich d i d n o t r e q u i r e any s t i r r i n g
d e v ic e t o come i n t o c o n t a c t w ith t h e diap h rag m so a s . t o
a v o id any p o s s i b l e pum ping e f f e c t s . F i r s t th e c e l l s
w ere m ounted w i t h t h e lo n g a x e s h o r i z o n t a l and r o t a t e d *
a b o u t t h i s a x i s . Sm all 1 t o 2 mm. d i a m e te r g l a s s ro d s
were p l a c e d i n e a c h com partm ent to move a lo n g th e w a l ls
a s t h e c e l l r o t a t e d . The m easu red d i f f u s i o n c o e f f i c i e n t
was found t o i n c r e a s e a s t h e r a t e o f r o t a t i o n was i n - '
36
c r e a s e d and no l i m i t was r e a c h e d up t o a b o u t 50 rpm. I t
was now a r r a n g e d t o r e v e r s e th e d i r e c t i o n o f r o t a t i o n
e v e r y f o u r r e v o l u t i o n s . W ith t h i s a rra n g e m e n t i n c r e a s i n g
t h e r a t e o f r o t a t i o n i n c r e a s e d t h e d i f f u s i o n c o e f f i c i e n t
o f 0 .0 2 K sodium s u l f a t e u n t i l a p p ro x . 25 rpm. was r e a c h e d
an d t h e n no f u r t h e r i n c r e a s e was n o te d up t o 60 rpm. w hich
was t h e h i g h e s t r a t e t e s t e d . T h is i n d i c a t e d t h a t c o m p le te
s t i r r i n g was o b t a i n e d above 25 rpm. S in c e t h i s f i g u r e
m ig h t be e x p e c te d t o i n c r e a s e i f th e s o l u t i o n s w ere more
c o n c e n t r a t e d t h e p r o c e s s was r e p e a t e d on 1 .5 .N sodium
s u l f a t e w ith c o m p le te s t i r r i n g r e a c h e d a t a b o u t 40 rpm.
At t h i s tim e a p r i v a t e com m unication was r e c e iv e d •
from R. H. S to k e s c o n t a i n i n g i n f o r m a ti o n l a t e r p u b l i -
q
sh e d on a m a g n e tic s t i r r i n g m ethod. S t i r r i n g was accom
p l i s h e d by s t i r r e r s o p e r a t e d m a g n e t i c a l l y from o u t s i d e
th e c e l l . These s t i r r e r s c o n s i s t e d o f g l a s s t u b i n g 3 ram.
i n d i a m e te r and s l i g h t l y s h o r t e r th a n t h e diap hragm d i a - j
I
i
m e t e r . I n t o e a c h s t i r r e r was s e a l e d a l e n g t h o f ' i r o n \
I
w ir e and t h e s t i r r e r s w ere so a d j u s t e d t h a t th e s t i r r e r ;
i
i n t h e u p p e r com partm ent sank and t h a t i n t h e lo w e r com- j
I
p a r tm e n t f l o a t e d so t h a t t h e s t i r r e r s were a lw ay s a d j a c - j
e n t t o t h e d ia p h ra g m . The s t i r r e r s were r o t a t e d by a
U -shaped magnet r o t a t e d a b o u t t h e c e l l . S to k e s t e s t e d
t h e m ethod t o f i n d t h a t pum ping and b u lk flo w e f f e c t s
. - . n
37 I
w ere n e g l i g i b l e . D i f f u s i o n c o e f f i c i e n t s o f p o ta s s iu m
c h l o r i d e o b t a i n e d by t h i s m ethod w ere com pared w ith th o s e
o f H arned and B u t t a l l 7 w hich a r e a v a i l a b l e up t o 0 . 5 N.
and were fo u n d t o a g r e e v e ry w e ll a t c o n c e n t r a t i o n s above-
a p p ro x . 0 .0 5 N. Below t h i s c o n c e n t r a t i o n s u r f a c e e f f e c t s
o f t h e d iaphragm g iv e c o e f f i c i e n t s h i g h e r t h a n t h e f r e e !
i
d i f f u s i o n e x p e r im e n ts . In 0 .0 0 5 S . p o ta s s iu m b ro m ide th e
d i f f u s i o n c o e f f i c i e n t was a l r e a d y 3 .5 $ abo v e t h e O n sa g e r- j
i
Fuoss t h e o r e t i c a l v a lu e f o r t h a t c o n c e n t r a t i o n and i n
0 .0 0 3 5 N. p o ta s s iu m b ro m id e , w hich was t h e lo w e s t concen
t r a t i o n m e a su re d , t h e d i f f u s i o n c o e f f i c i e n t was 6 $ above
t h e t h e o r e t i c a l .
A m o d i f i c a t i o n o f t h e S t o k e s ' m ethod was made.
M ag n etic s t i r r e r s w ere p l a c e d i n t h e c o m p artm en ts and
s i n c e i t was more c o n v e n ie n t t o r o t a t e t h e c e l l s w ith th e
e x i s t i n g e q u ip m e n t, t h e m ag n ets were p e rm a n e n tly mounted
i n t h e t h e r m o s t a t and t h e c e l l s w ere r o t a t e d b etw een them .
T a b le I I shows t h e r e s u l t s o f a c o m p a riso n betw een m agnet
i c s t i r r i n g and a l t e r n a t e r o t a t i o n s t i r r i n g a t SO rpm. f o r
a s e r i e s o f f i v e sodium s u l f a t e s o l u t i o n s . The two m eth
ods a g r e e w i t h i n 1 $ e x c e p t a t th e m ost c o n c e n t r a t e d s o l
u t i o n .
The a p p e a ra n c e o f t h e p a p e r o f Wang an d Kennedy ^ 4
a t t h i s tim e p r o v i d e d t r a c e r s e l f d i f f u s i o n r e s u l t s i
38
o b t a i n e d by an a b s o l u t e m ethod w hich made p o s s i b l e a d i r
e c t check o f t h e s u i t a b i l i t y o f t h e s e s t i r r i n g m ethods
f o r s e l f d i f f u s i o n . T a b le I I shows t h e r e s u l t s o f r a t e
o f s t i r r i n g t e s t s on t h e s o l u t i o n s . Sodium t r a c e r d i f f -
i
u s i o n was m easured f o r 0 . 0 5 , 0 . 6 , 2 .0 and 3 .5 H sodium ]
i o d i d e u s i n g t h e m a g n e tic s t i r r i n g m ethod a t 60 rpm. In
t h e two lo w e r c o n c e n t r a t i o n s t h e d i f f u s i o n c o e f f i c i e n t s j
i
a g r e e d w i t h i n 1$ o f th o s e by t h e a b s o l u t e m ethod. At
2 .0 IT. th e m a g n e t i c a l l y s t i r r e d v a l u e was 5$ low and a t
3 .5 N. t h e v a lu e was 27$ lo w . Runs were made on 2 .0 and
3 .5 N. s o l u t i o n s a t 80 and 100 rpm. V alu es o b t a i n e d from
t t h e s e r u n s a g r e e d w i t h i n one p e r c e n t o f th o s e o f Wang and
K ennedy. I n t h e more c o n c e n t r a t e d s o l u t i o n s o f sodium
I
s u l f a t e and sodium c h l o r i d e i t was a l s o found n e c e s s a r y
j t o s t i r a t a more r a p i d r a t e t o r e a c h a v a lu e f o r t h e
d i f f u s i o n c o e f f i c i e n t in d e p e n d e n t o f t h e r a t e . The a g r e e
m ent o f t h e m a g n e t i c a l l y s t i r r e d r u n s on sodium io d id e
s o l u t i o n s w ith th o s e o f t h e a b s o l u t e m ethod o f Wang and
j Kennedy i n d i c a t e d t h a t th e d iap h rag m c e l l m ethod c a n be
j u s e d t o g iv e a c c u r a t e io n d i f f u s i o n c o e f f i c i e n t s o v e r a
J wide ra n g e o f c o n c e n t r a t i o n s p r o v i d e d s t i r r i n g i s done
I
i a t a r a t e a d e q u a te f o r t h e s o l u t i o n t e s t e d .
The d a t a i n T a b le I I a r e n o t s u f f i c i e n t t o a c t u a l - ,
i
l y a n a l y z e t h e r e a s o n f o r t h e n e ed f o r i n c r e a s e d s t i r r i n g ]
39 '
l
1
i n c o n c e n t r a t e d s o l u t i o n s . C e r t a i n l y v i s c o s i t y s h o u ld j
he a f a c t o r , t h u s t h e v i s c o s i t y i n c r e a s e s by 50$ o v e r t h e j
ra n g e 0 .0 3 t o 3 .0 N. sodium s u l f a t e . However, v a r i a t i o n s j
i n t h e bo uyancy o f t h e s t i r r e r r o d s w ith t h e d e n s i t y may 1
a l s o have an e f f e c t . I
A ll d i f f u s i o n c o e f f i c i e n t s m easu red f o r t h i s r e - i
s e a r c h u s i n g m a g n e tic s t i r r i n g on s o l u t i o n s above 1 .5 H.
w ere done a t 100 rpm. A t e s t o f t h e a l t e r n a t e r o t a t i o n
s t i r r i n g method a t 60 rpm. on a 3 .5 H. sodium io d id e s o l
u t i o n gave a r e s u l t a l s o low by 16 $. T h is m ethod was n o t
u s e d f o r r u n s i n c o n c e n t r a t i o n ra n g e s g r e a t e r t h a n 1 . 0 N. j
S to k e s r e p o r t e d no r a t e o f s t i r r i n g m easurem ents I
on c o n c e n t r a t e d s o l u t i o n s . I t would seem from h i s
g
p a p e r s t h a t 50 rpm. was u se d e x c l u s i v e l y f o r h i s meas
u r e m e n ts . As s e e n i n t h i s r e p o r t t h e r a t e o f s t i r r i n g
n e e d e d t o p ro d u c e a d e q u a te s t i r r i n g d epended v e ry g r e a t
l y on c o n c e n t r a t i o n . A c r i t i c a l e x a m in a tio n o f t h i s e f f
e c t s h o u ld be made on t h e s o l u t i o n s u s e d by S to k e s t o de
te r m in e i f an i n c r e a s e d s t i r r i n g r a t e m ig h t n o t be n e c e s s
a r y f o r h i g h e r c o n c e n t r a t i o n s .
C o n s ta n t c o n t a c t o f t h e s t i r r e r s has been r e p o r t e d
by S to k e s 9 to c a u s e w ear o f th e diaph ragm r e s u l t i n g in
a s lo w ly i n c r e a s i n g c e l l c o n s t a n t . D u rin g th e p e r i o d o f
some 4 5 d ay s o f u s e of t h i s m ethod th e c e l l c o n s t a n t s i
re m a in e d c o n s t a n t w i t h i n one p e r c e n t and no c o r r e c t i o n s
w ere made.
41
TABLE II
Com parison o f t h e e f f e c t o f r a t e o f s t i r r i n g on ,
t h e a l t e r n a t e r o t a t i o n and m a g n e tic s t i r r i n g m eth o d s.
I
Na4" i n sodium i o d i d e ,
D ( c m " /d a y )
c Wang & A l t . r o t M a g n etic s t i r r i n g
Worm. Kennedy 60 rpm 60 rpm 80 rpm 100 rpm
0 .0 5 1 .1 0 7 1 .1010.3*
0 . 6 1 .0 9 8 1 .1 0 ± 0 .5
2 .0 1 .0 7 1 1 .0 2 1 .0 6 1 .0 8
3 .5 1 .0 7 0 0 .9 1 + 1 .5 0 . 7 8 H . 1 1 .0 8 1 .0 8
Na4- in sodium s u l f a t e
C A l t . r o t . M agnetic s t i r r i n g
Norm. 60 rpm 25 rpm 35 rpm 48 rpm 60 rpm 100 rpm
0 .0 2 1 .0 7 1 0 .2 1 .0 3 1 .1 3 1 . 1 2 1 .1 2 * 0
1 . 2
0 .8 4 1 0 .6 0 .8 5 1 0 .8
1 . 5
0 .8 0 1 0 .3 0 . 8 1 1 0 . 3 0 .8 0 + 0 .5
2 .0 0 .7 3 1 0 .4 0 .7 3 0.7710.4*
3 .0 0 .6 3 1 0 .8 0 .5 7 1 1 .0 0 .7 3 1 1 .2
Na+ i n sodium c h l o r i d e
C
Norm.
1.0
1 . 5
2.0
3 .5
A l t . r o t .
60 rpm
0 .9 7 1 0 .4
0 .6 9 1 0 .7
60 rpm
1 .0 4
1 .0 2 1 0 .5
0 .9 7 ± 0 .6
0 .7 6
D (cm ^ /d ay )
M ag n etic s t i r r i n g
80 rpm 1 0 0 rpm
1.01
0 .9 9
1 .0 3 1 0 .6
1 .0 1 1 0 .4
1 .0110.3
* D e v i a t i o n s a r e g iv e n i n p e r c e n t .
CALIBRATION OF THE DIAPHRAGM CELLS
The c e l l c o n s t a n t , K, i n th e d iap h rag m d i f f u s i o n
e q u a t io n i s r e l a t e d t o t h e d im e n s io n s o f th e f r e e s p a c e
i
o f t h e d iap hrag m by th e e q u a t io n
K “ 2 .3 0 3 J jA (vu +‘ t L) |
w here and Vl a r e 'blie v° l umes ° f th e u p p e r and lo w e r
1
c o m p artm en ts and k i s t h e r a t i o o f t h e mean p o r e l e n g t h
t o t h e t o t a l p o re a r e a . T h is r a t i o has n o t b een e x p e r i
m e n t a l l y d e te r m i n a b le and so t h e d iap h rag m c e l l method
h a s r e q u i r e d c a l i b r a t i o n w i t h a s o l u t i o n of known d i f f
u s i o n c o e f f i c i e n t t o d e te rm in e t h e c e l l c o n s t a n t .
The s o l u t i o n g e n e r a l l y u s e d f o r c a l i b r a t i o n i s j
o . l N. p o ta s s iu m c h l o r i d e w hich i s a llo w e d t o d i f f u s e
! i n t o w a te r u n t i l 25$ h as p a s s e d t h r o u g h t h e diap h rag m ,
j S to k e s 9 h as c r i t i c a l l y c o n s i d e r e d t h e d i f f u s i o n c o e f f i c -
j i e n t o f t h i s s a l t by t h e a b s o l u t e m ethods o f Harned a,nd
i N u t t a l l 7 , Lamm2 4 , and Cohen and B r u i n s 2^ t o a r r i v e a t
t h e v a lu e o f 1 .6 1 3 cm2 p e r day a s t h e i n t e g r a l d i f f u s i o n
i c o e f f i c i e n t f o r th e above c o n d i t i o n s . T h is v a lu e was
l
I _ _ _
J
(24) 0 . Lamm, Nova A cta Regiaw Soc. S c i . U p s a l i e n s i s ,
IV 1 0 . 6 ( 1 9 3 ? ) .
(2 5 ) E. Cohen and H. R. B r u i n s , Z. p h y s i k . C hem ., j
1 0 3 , 337 (1 9 2 3 ).
43
u s e d i n th e c a l i b r a t i o n o f t h e c e l l s em ployed i n t h i s r e
s e a r c h . The a g re em e n t o f my diaphragm c e l l r e s u l t s w ith
t h e a b s o l u t e d i f f u s i o n c o e f f i c i e n t s o f Na+ i n sodium i o
d id e a s d e te r m in e d by Wang and Kennedy * 4 c o n s t i t u t e s a
f u r t h e r ch eck on t h e v a l i d i t y o f th e c h o s e n v a l u e , 1 .6 1 3
cm ^/day, a s w e ll a s th e E e l f c o n s i s t e n c y o f t h e s t i r r i n g
i n t h e c a l i b r a t i o n and su b s e q u e n t s e l f d i f f u s i o n r u n s . j
A f u r t h e r c a l i b r a t i o n was made p o s s i b l e by the.
m ethod o f Mehl and Schmidt^® i n which $ /A i s d e te rm in e d
by f i l l i n g th e d iaph rag m w ith a s o l u t i o n o f known s p e c -
I i f i c c o n d u c ta n c e and d e te r m i n i n g t h e a p p a r e n t r e s i s t a n c e ,
j F i g u r e s 4 and 5 show t h e a p p a r a t u s u s e d i n t h i s d e te r m i n - ;
| ' j
a t i o n . I t was c o n s t r u c t e d from s t a n d a r d t a p e r g l a s s !
j o i n t s t o have a rem o vable c e n t e r c y l i n d e r c o n t a i n i n g a j
j s i n t e r e d g l a s s d iap h ra g m . By u s i n g a p p r o p r i a t e end s e c t - j
| i o n s , c o n d u c ta n c e , d i f f u s i o n and t r a n s f e r e n c e m easurem ents
c o u ld be made i n t h e same d iap h rag m .
The p la tin u m e l e c t r o d e s were mounted on s h o r t
|
j c o i l s o f p la t i n u m w ire w hich were s o l d e r e d to t u n g s t e n
w ir e and s e a l e d th r o u g h a g l a s s tu b e c o n t a i n i n g m ercury
t o make t h e c o n t a c t . The e l e c t r o d e s w ere c u t th e same
I
I d ia m e te r a s th e d ia p h ra g m , p l a t i n i z e d and s l i g h t l y d e n te d
1 1 '■ ■ 1 1 1 i
(2 6 ) J . W. Mehl and C. L. A. S c h m id t, U n iv . C a l i f . *
P u b l . P h y s i o l . , 8 _, 165 (1 9 3 7 ).
C O N D U C T A N C E END S E C T I O N S
D IA P H R A G M S E C T IO N
i
\
I
I
i
\
D IFFU SIO N E N D S E C T I O N S
FIG.4 . SECTIONAL CONDUCTANCE AND DIFFUSION C E L L S
BALL
JOINT
W j mh
[.liH m u i.iM iif.i.n .ti DIAPHRAGM
PIG. 5. TRANSFERENCE APPARATUS
46
i n t h r e e p l a c e s a lo n g t h e c ir c u m f e r e n c e so t h a t when t h e j
c e l l was a sse m b le d t h e p la t i n u m b l a c k d i d n o t come i n t o |
I
d i r e c t c o n t a c t w i t h t h e d iap h rag m b u t was some few te n th s ]
o f a m i l l i m e t e r rem oved. In o r d e r t o e v a l u a t e th e p o s s - j
i b l e e r r o r in v o lv e d in t h i s s e p a r a t i o n r e a d i n g s w ere madej
I
on a s o l u t i o n a s t h e e l e c t r o d e s w ere moved p r o g r e s s i v e l y !
\
b a c k from t h e d ia p h ra g m . The p e r c e n t change i n A was ;
n u m e r i c a l l y a p p r o x im a te ly f i v e tim e s t h e sum o f t h e d i s - '
i
t a n c e s betw een th e e l e c t r o d e s and t h e d ia p h ra g m , i n m il
l i m e t e r s . The few t e n t h s o f a mm. s e p a r a t i o n due to th e
d e n ts would t h e r e f o r e c o rr e s p o n d t o c a . one p e r c e n t
i
c n a n g e , and a l l t h e m easu rem ents w ere c o r r e c t e d by t h i s j
a m o u n t. 1
i
R e s i s t a n c e m easurem ents were made w ith a Leeds
and N o rth ru p J o n e s -D ik e b r i d g e , a u d io f r e q u e n c y o s c i l l a - :
t o r , n u l l d e t e c t o r and an o s c i l l o s c o p e . Due t o th e
low r e s i s t a n c e o f t h e c e l l a l l m easurem ents w ere made
w ith a s t a n d a r d r e s i s t a n c e i n s e r i e s w i t h t h e c e l l . A ll
s o l u t i o n s u s e d i n t h e c e l l were p r e p a r e d u s i n g w a te r
— R
w i t h a s p e c i f i c c o n d u c ta n c e o f 2 x 1 0 ° mho cm. and were
d e g a s s e d b e f o r e u s e by b o i l i n g i n th e vacuum o f a w a te r
pump. The c e l l was f i l l e d by s u c t i o n an d b r o u g h t to
te m p e r a tu r e e q u i l i b r i u m i n an o i l t h e r m o s t a t m a in ta in e d
i
a t 35 - 0 .0 0 2 ° 0 . R e ad in g s w ere ta k e n a t te m p e r a t u r e j
47 I
I
e q u i l i b r i u m and th e n more s o l u t i o n ( a t t e m p e r a t u r e ) was
drawn th r o u g h th e d iap hragm and th e r e a d i n g s r e p e a t e d
u n t i l a c o n s t a n t v a lu e was o b t a i n e d . C o nductance c e l l i
I
i I
| c o n s t a n t s o f t h e two d iap h ra g m s w ere d e te r m in e d u s i n g
:
s e v e r a l sodium c h l o r i d e s o l u t i o n s from 0 .0 0 4 t o 0 .1 ET. i
t 4
T hese two d ia p h ra g m s were th e n f i t t e d w ith end
i
s e c t i o n s t o make d i f f u s i o n c e l l s an d c e l l c o n s t a n t s w ere ;
»
d e te r m in e d by p o ta s s iu m c h l o r i d e d i f f u s i o n , f o r e a c h , ;
i
f i r s t , w i t h d e n s i t y s t i r r i n g and t h e n w ith m a g n e tic s t i r -
i
r i n g a t 60 rpm. T hese c e l l c o n s t a n t s a r e com pared in
T a b le I I I w ith th e c o n s t a n t s c a l c u l a t e d from th e c o n d u c t-
!
a n c e c e l l c o n s t a n t s i
TABLE I I I
! ~ *
D i f f u s i o n C e l l C f l i b r a t i o n by
; C o n d u ctan ce M easurem ents
C e l l J /k K ( l f f ? | S a )
M -l 0 .3 0 8 + 0 .8 * 0 .0 4 8 0 1 0 .8 0 .0 4 4 8 + 0 .0 0 .0 4 8 2 * 0 .0
Mg 0 .4 6 4 1 0 .5 0 .0327 tO.5 0 .0 3 0 9 1 0 .3 0 . 0 3 2 6 i 0 . 5
* D e v i a t io n s g iv e n i n p e r c e n t .
T h is p r o v i d e s a n o th e r in d e p e n d e n t v e r i f i c a t i o n of
t h e c e l l c a l i b r a t i o n p r o c e d u r e u s i n g 0 . 1 N. p o ta s s iu m
c h l o r i d e and t h e v a l u e , 1 .6 1 3 c m 2 /d a y , w ith m a g n e tic
\
j
s t i r r i n g . . ___ ______ ______ _ J
The c e l l c o n s t a n t f o r u se o f t h e c e l l w ith a l t e r
n a t e r o t a t i o n was o b t a i n e d by c a l i b r a t i o n w ith a l t e r n a t e
r o t a t i o n a t 60 rpm. o f t h e c e l l mounted v e r t i c a l l y w ith
0 . 1 N. p o ta s s iu m c h l o r i d e i n t h e lo w e r com partm ent and
w a te r i n t h e u p p e r . F or any g iv e n c e l l t h e s e two c a l i b
r a t i o n v a l u e s a g r e e d iw ithin Vfo.
For f u t u r e d i f f u s i o n work c e l l s can be c a l i b r a t e d
u s i n g one o f t h e io n s s t u d i e d in t h i s w ork. T h is method
p e r m i t s c a l i b r a t i o n i n a s o l u t i o n w ith no b u lk c o n c e n tr a
t i o n g r a d i e n t s and so i s a d v a n ta g e o u s i n t h a t t h e c o m p li
c a t i o n s o f c o m p a riso n w ith mean d i f f u s i o n v a l u e s can be
a v o id e d .
SURFACE EFFECTS
P r e l i m i n a r y work on d i l u t e s o l u t i o n s y i e l d e d
d i f f u s i o n c o e f f i c i e n t s w hich d id n o t a g r e e w ith th o s e
e x p e c te d from t h e U e r n s t e q u a t io n f o r d i f f u s i o n c o e f f i c - 1
i
i e n t s a t i n f i n i t e d i l u t i o n or w ith t h e O n sa g e r-F u o ss |
e q u a t i o n f o r t h e l i m i t i n g s l o p e i n d i l u t e s o l u t i o n s . The :
t
e x p e r i m e n t a l e x t r a p o l a t e d l i m i t i n g v a l u e s w ere h i g h e r j
th a n th e K e r n s t v a lu e and th e s lo p e was g r e a t e r th e n t h a t
c a l c u l a t e d by th e O n s a g e r-F u o ss t h e o r y .
I f t h i s d e v i a t i o n from t h e o r y i s due t o th e u s e I
i
i
o f a g l a s s d ia p h ra g m , t h e n some t r a n s p o r t p r o c e s s i s
p r e s e n t w hich i n c r e a s e s t h e a p p a r e n t m o b i l i t y o f t h e io n
i n t h e d ia p h ra g m . T h is c o u ld be d i f f u s i o n o f th e a d - !
s o r b e d io n on th e s u r f a c e o f t h e p o r e s i n t h e d iap h rag m .
Such a m echanism would a l s o i n c r e a s e th e c o n d u c ta n c e o f
t h e s o l u t i o n i n t h e d iaph rag m and t h i s i n c r e a s e h a s b e en
o b s e r v e d i n t h e c a s e o f p o ta s s iu m c h l o r i d e by M ysels and
McBa.in^7 . They m easured the c o n d u c ta n c e o f a p p ro x im a t
e l y 0 . 1 and 0 .0 0 0 5 N. p o ta s s iu m c h l o r i d e s to c k s o l u t i o n s
in a c o n d u c ta n c e c e l l w hich h ad b e e n m o d ifie d by t h e i n
s e r t i o n o f a P y re x s i n t e r e d g l a s s d iap h rag m b etw een th e
(2 7) K. J . M ysels and J . W. McBain, J . C o l l . S c i . ,
3 , 45 (1 9 4 8 ) . !
50
two e l e c t r o d e s . C om parison o f t h e s e v a l u e s showed t h a t
th e d i l u t e s o l u t i o n a p p e a re d t o c o n d u c t 5 - 10$. b e t t e r
i n t h e c e l l w ith th e d ia p h ra g m . T h is i n c r e a s e th e y s t a t e
m ust be due t o t h e e l e c t r i c a l s u r f a c e c o n d u c ta n c e o f th e
d o u b le l a y e r a d s o r b e d on t h e l a r g e g l a s s - p o t a s s i u m c h l o r
id e s o l u t i o n i n t e r f a c e in t h e d iap h rag m .
i
In o r d e r to d e te r m in e a t what d i l u t i o n t h e a d s o r b - {
ed l a y e r would l e a d t o a m e a s u ra b le e r r o r on t h e d ia p h
ragm , r e s i s t a n c e m easu rem en ts w ere made on a s e r i e s o f
s o l u t i o n s o f sodium c h l o r i d e and sodium s u l f a t e i n th e
s e c t i o n a l c o n d u c ta n c e c e l l ( F i g . 4 ) . C o nd u ctan ce c e l l
c o n s t a n t s were c a l c u l a t e d from t h e s e d a t a u s i n g c o n d u c t-
j p q
an c e v a lu e s from M aclnnes . I f c o n d u c ta n c e and t r a n s -
s
[ f e r e n c e m easurem ents on v e r y d i l u t e s o l u t i o n s were ob
t a i n e d i t w ould be p o s s i b l e t o e v a l u a t e t h e e f f e c t o f t h e 1
S
s u r f a c e on t h e c o n d u c ta n c e m o b i l i t i e s a t e a c h c o n c e n t r a - i
i
i
t i o n . T hese m o b i l i t i e s a r e n o t e q u i v a l e n t t o d i f f u s i o n :
m o b i l i t i e s , how ever, and h en ce t h e r e s u l t s c a n n o t be u se d
a c c u r a t e l y ' t o c o r r e c t s e l f d i f f u s i o n c o e f f i c i e n t s f o r :
t h i s s u r f a c e e f f e c t . F i g u r e s - 6 and 7 show how t h e s e
c e l l c o n s t a n t s v a ry w ith s a l t c o n c e n t r a t i o n below
i
n n m * T » (
f
(28) D. A. M a cln n e s, "The P r i n c i p l e s o f E le c tro c h e m
i s t r y " , R e in h o ld P ub . C o r p ., p . 339 ( 1 9 3 9 ). J
0.46
0 .4 2
0 .3 8
0 .3 4
0 .3 0
0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0.10 0.12
. VC
FIG. 6. CONDUCTANCE CELL CONSTANTS OF NaCI
SOLUTIONS IN DIAPHRAGM CELL
52
0.34
0.32
0.30
k
0.28 -
0.26
0.2 0.1 0.3
/ C
FIG. 7. CONDUCTANCE CELL CONSTANTS OF NajSO ^
SOLUTIONS IN DIAPHRAGM CELL
0 .0 0 3 H. f o r sodium c h l o r i d e and 0 .0 1 N f o r sodium s u l f - '
»
a t e . Below t h e s e v a l u e s t h e s i n t e r e d g l a s s d iaphragm
g i v e s e r r o n e o u s r e s u l t s .
S i n t e r e d s t a i n l e s s s t e e l d iap h ra g m s w ere m ounted !
i n c e l l s and u s e d i n d i f f u s i o n s t u d i e s i n an a tt e m p t t o j
e l i m i n a t e t h i s a d s o r p t i o n e r r o r w ith o u t a b a n d o n in g t h e !
i
d iap h ra g m m ethod. In T a b le IV a r e g iv e n th e d i f f u s i o n '
d a t a in v e r y d i l u t e s o l u t i o n s u s i n g b o th t h e g l a s s and
s t a i n l e s s s t e e l d ia p h ra g m s . I n e a c h c a s e t h e g l a s s d i a
phragm r e s u l t s a r e h i g h e r t h a n t h o s e e x p e c te d from t h e
o r y . The s t a i n l e s s s t e e l diap h rag m r e s u l t s a r e i n e v e r y
c a s e lo w e r th a n th o s e w i t h t h e g l a s s d ia p h ra g m . I n th e
1
c a s e o f Na+ io n i n sodium c h l o r i d e t h e r e seems t o be no !
a d s o r p t i o n e f f e c t s i n c e t h e r e s u l t s a r e v e ry n e a r l y ;
t h o s e e x p e c te d from t h e o r y , h ow ever, th o s e f o r Cl" and
SO^ io n s do show an a p p r e c i a b l e e f f e c t . In gen era/1 ,
t h e r e f o r e , th e s t a i n l e s s s t e e l d iap hragm c a n n o t be con
s i d e r e d any more s a t i s f a c t o r y th a n th e P y re x ones a n d ,
m o re o v e r, a r e more d i f f i c u l t t o h a n d le e x p e r i m e n t a l l y .
The m easurem ent o f t r a n s f e r e n c e num bers o f Na+
and SOJ io n s was a t t e m p t e d , t o p r o v i d e d a t a t o e s t i m a t e
t h e r e l a t i v e c o n t r i b u t i o n s o f t h e s e io n s t o t h e a d s o r p
t i o n e r r o r . For t h i s p u r p o s e t h e ’’a n a l y t i c a l b o u n d a ry ” j
m ethod f o r t r a n s f e r e n c e number m easurem ent d e v e lo p e d by
54
TABLE IV
Com parison o f th e e f f e c t o f a d s o r p t i o n
on g l a s s a n d s t e e l d iap h ra g m s on d i f f u s i o n c o e f f i c i e n t s
Ion C
Form.
N e rn s t
t h e o r y
D ( c m ^ /d a y )
G l a s s
d i a p h .
S t e e l
d i a p h .
F a* in
F aC l
C l ' i n
FaC l
Na+ i n
FagSC^
c a 1 0 °
0 .0 0 0 3 4 4
0 .003
0.02
1 .1 5 4
c a IQ" 5
c a 1 0 **^
0 .0 0 0 3 3 4
0 . 0 0 3.:
0.01
SOJ in c a 1 0 -5
F a |S 0 4
0 .0 0 3 5
1 .7 5 4
1 .1 5 4
0 .9 1 9
1 .4 7 1 0 .8 *
1 .2 5 1 0 .8
1 .1 3 1 0 .3
2 .7 0 1 1 .0 '
1 .4 7 1 0 .8
1 .3 8 1 0 .4
0 .9 8 1 0 .4
1 .1 5 6t 0 . 4
1 .1 3 1 0 .3
1 .1 0 t o . 4
2 .4 1 ± 0 .9
1 .1 5 s t 0 . 4
1 .2 7
1 .1 7 ± 0 .6
0 .9 4 ± 0 .6
0.88
* D e v i a t io n s g iv e n i n p e r c e n t .
55
p q
Brady and S a l l e y was u s e d w ith t h e a p p a r a t u s m o d ifie d
by i n s e r t i n g g ro u n d g l a s s j o i n t s t o a llo w th e i n t r o d u c t
io n o f t h e same diaphragm s e c t i d n u s e d f o r d i f f u s i o n and
c o n d u c ta n c e . The c u r r e n t p a s s e d was m easured p e r i o d i c a l
l y w i t h a L eeds and l o r t h r u p P o r t a b l e P r e c i s i o n P o t e n t i o
m e te r i n te rm s o f t h e v o l t a g e a c r o s s a 1 0 ohm r e s i s t o r
p l a c e d in s e r i e s w ith t h e t r a n s f e r e n c e c e l l . D i f f i c u l t y
was e x p e r ie n c e d i n s e a l i n g t h e v a r i o u s j o i n t s o f t h e app
a r a t u s t o be n o n - c o n d u c t in g . The t h e r m o s t a t l i q u i d
c o u ld n o t be w a te r f o r a t 0 .0 0 3 N. sodium s u l f a t e a b o u t
50$ o f t h e c u r r e n t fo u n d i t s way th r o u g h th e sy s te m w ith
o u t p a s s i n g th r o u g h t h e d ia p h ra g m . Upon u s i n g o i l a s t h e
t h e r m o s t a t l i q u i d t h i s s o u r c e o f e r r o r seemed t o b e e lim -
i
i n a t e d s i n c e r e a d i n g s ta k e n w i t h t h e a p p a r a t u s i n t h e
t h e r m o s t a t w ere unchanged i f t h e c e l l w ere l i f t e d from
l
t h e b a t h d u r i n g t h e r e a d i n g . I n t h e o i l t h e r m o s t a t t h e 1
t r a n s f e r e n c e num bers o f Na4' and SO4 i n 0 .0 0 3 N. sodium !
s u l f a t e w ere fo u n d t o be 0 .3 8 9 and 0 .5 6 1 . These two v a l -
i i
1 u e s sum t o 0 .9 5 0 r a t h e r th a n u n i t y w hich i n d i c a t e s t h a t |
! t
one o r b o th a r e i n e r r o r . The v a l u e s o b t a i n e d w ith o u t
a diaphragm by L ongsw orth*^ a r e 0 .3 8 6 and 0 .6 1 4 . T hese ;
...........i n ■ » " I ■ * " ■ ■ ■ ■ " ■
(29) A. P . Brady and D. J . S a l l e y , J . Am. Ohem. S o c .,
70 . 914 (1 9 4 8 ).
(3 0 ) L. Cr. L o n g sw o rth , J . Am. Chera. S o c ., 57_, 1185
( 1 9 3 5 ) .
56
s t u d i e s w ere d i s c o n t i n u e d f o r l i t t l e o r no i n f o r m a ti o n
seem ed f o r th c o m in g a t t h e e x p en se o f g r e a t e f f o r t .
Assuming t h a t t h e t r a n s f e r e n c e num bers f o r th e
io n s i n th e a d s o rb e d l a y e r a r e th e same a s i n b u lk s o l u
t i o n , t h e s u r f a c e e f f e c t may b e a p p ro x im a te d by a p p ly
i n g t o eac h d i f f u s i o n c o e f f i c i e n t d e t e r m i n a t i o n t h e cond
u c t a n c e c e l l c o n s t a n t f o r t h a t c o n c e n t r a t i o n . F o r Na+
i n 0 .0 0 0 3 4 4 N. sodium c h l o r i d e th e c o r r e c t e d D i s 1 .0 5
cm ^/day and f o r Na+ i n 0 .0 0 0 3 2 4 N. sodium s u l f a t e th e
c o r r e c t e d D i s 1 .2 0 cm ^/day. At t h i s v e ry low c o n c e n tr a
t i o n t h e v a lu e o f t h e d i f f u s i o n c o e f f i c i e n t s h o u ld be
w i t h i n a few t e n t h s o f a p e r c e n t o f t h e i n f i n i t e d i l u t i o n
( N e r n s t) v a lu e o f 1 .1 5 4 . Thus t h i s s im p le c o r r e c t i o n i s
i n s u f f i c i e n t .
RESULTS AHD SUMMARY
The d i f f u s i o n c o e f f i c i e n t s f o r Na+ and Cl” i n so d
ium c h l o r i d e and Na+ and SO4 i n sodium s u l f a t e a t 25°C.
a r e t a b u l a t e d i n T a b le s V and V I . I n g e n e r a l eac h v a lu e
i s a mean o f two o r more in d e p e n d e n t d e t e r m i n a t i o n s .
The d e v i a t i o n s i n p e r c e n t a r e g iv e n f o r t h o s e v a l u e s
w h ic h a r e an a v e r a g e o f more t h a n one v a l u e . The d a t a
i n T a b le s V and VI a r e p l o t t e d i n F i g u r e s 8 and 9 . I n
t h e s e f i g u r e s t h e c u rv e s a r e o r i g i n a t e d a t th e N e rn s t
c a l c u l a t e d v a l u e . Due t o t h e e f f e c t o f s u r f a c e a d s o r p
t i o n in d i l u t e s o l u t i o n s , a c c u r a t e i n v e s t i g a t i o n s c o u ld
t
n o t be made i n t h i s r e g i o n b u t i n t h e a b s e n c e o f v a l i d !
e v id e n c e to th e c o n t r a r y th e c a l c u l a t e d v a lu e s w ere I
a c c e p t e d .
As a r e s u l t o f t h i s work t h e l i m i t a t i o n s o f t h e
i
d iaphragm m ethod f o r m e a su rin g d i f f u s i o n c o e f f i c i e n t s
have been made more c l e a r . I t had been p o i n t e d o u t by
G o r d o n ^ t h a t work was n e c e s s a r y t o d e te r m in e t h e e f f e c t
o f s t i r r i n g an d t h e l a r g e s u r f a c e a r e a o f th e d iap hragm
on t h e m easurem ent o f d i f f u s i o n c o e f f i c i e n t s . He r e p o r t s
a n o m a lie s w hich i n d i c a t e t h a t t h e s e e f f e c t s m ight be con
s i d e r a b l e b u t d e c r i e s th e l a c k o f d e f i n i t i v e d a t a . Ex-
i
p e r i m e n t a l d a t a a r e p r e s e n t e d i n t h i s r e s e a r c h on t h e ;
58
TABLE V
S e l f d i f f u s i o n c o e f f i c i e n t s o f Na± and 01“
i n a q ueou s sodium c h l o r i d e s o l u t i o n s a t 25°C
C
Norm.
JL
C2
0 .0 0 5 0 .0 7 0 7
0 .0 2 0 .1 4 1
0 . 0 4 0 .2 0 0
0 . 1 0 0 .3 1 6
0 . 1 6 0 .4 0 0
0 . 2 0 0 .4 4 7
0 .3 0 0 .5 4 8
0 .5 0 0 .7 0 7
0 . 6 0 0 .7 7 5
0 . 7 0 0 .8 3 7
0 . 8 0 0 .8 9 4
1.00 1.000
1 .4 0 1 .1 8 3
2 .0 0 1 .4 1 4
3 .5 0 1 .8 7 1
% a
cm2/ d a y
DC1
cm2/ d a y
1 .1 3 5*2T0.9* 1 .7 0 5± 0 .4
1 .1 3 1 .6 6 ± 0 .1
1 .1 2 t o . 2
1 .6 3 ± 0 .1
1 .0 9 ± 0 .0
1 .6 3 ± 0 .3
1 . 0 8 ? ±0.3
1 .5 8 ± 0 .7
1 .0 5 ±1.0
1 .5 0 ± 0 .4
1 .0 5 ± 0 .3
1 .4 6 ± 0 .2
1 . 0 3 5 ± 0 .6 1 .4 3 ±0.4
1 . 0 1 5 ± 0.4 1 .4 1
1 .0 1 ± 0 .3 1 .4 1 ± 0 .5
* D e v i a t io n s a r e g iv e n i n p e r c e n t .
c
Norm.
0.01
0.02
0 . 0 3
0 . 0 5
0.10
0 . 2 0
0 .4 0
0 .5 5
0 .7 0
1.20
1 . 5 0
2.00
3 .0 0
59
TABLE VI
S e l f d i f f u s i o n c o e f f i c i e n t s o f Ha"*" and SOJ
i n aq u eo u s sodium s u l f a t e s o l u t i o n s a t 25°C.
' A Ds04
0 2 cm2/ d a y cm2/d a y
0 .1 0 0 1 .1 2 5 ±0.8* 0 .8 3 ± 1.0
0 .1 4 1 1 .1 2 ± 0 .0
0 .1 7 3 0 .7 5 ± 0 .4
0 .2 2 4 1 .0 9 s ± 0 .6 0 .7 2 ± 0 .7
0 .3 1 6 “ 0 .6 5
0 .4 4 7 1 .0 5 ± 0 .0 0 .6 1 ± 0 .3
0 .6 3 3 1 .0 0 ± 0 .5 0 .5 7 ± 0 .4
0 .7 4 2 0 .5 7
0 .8 3 7 0 . 9 3 5 ± 0 .3 0 . 5 5 5 ± 0.6
1 .0 9 5 0 . 8 4 5± 0 .8 0 .5 3 ± 0 .0
1 .2 2 5 0 .8 0 ± 0 .5 0 .5 0
1 .4 1 4 0 .7 7 ± 0 .4 0 .5 2 5 ±0.4
1 .7 3 2 0 .7 3 ± 1 .2 0 .5 4 ± 0 .6
* D e v i a t io n s a r e g iv e n i n p e r c e n t .
EQ.II
EQ, 10
EQ.9
o -
1.4
N b l
0.8
» 0 .4
/ C
FIG. 8 . SE L F D IFFU SIO N C O E F F IC IE N T S OF N a+ AND Cl" AT 2 5 °C .
0.8
i.4
EQ.I I
EQ.9
0.8
0 . 6 - EQ*9
EQ.I I
jO-
s o ;
0 .4
0.2
0 0 .4 0.8 1.2
1.6
■/c"
FIG. 9 . S E L F DIFFUSION COEFFICIENTS O F N * + AND S 0 7 AT 2 5 ° C .
** o>
63 ;
e f f e c t o f s t i r r i n g , c o r r e c t m ethod o f c a l i b r a t i o n and |
s u r f a c e e f f e c t f o r t h e s p e c i a l c a s e o f s e l f d i f f u s i o n . j
i
The r e s u l t s a r e a l s o a p p l i c a b l e i n g e n e r a l t o any d i f f u s - j
io n m easu rem en ts i n d iap h rag m c e l l s . !
i
M e c h a n ic a l s t i r r i n g was fo u n d t o be n e c e s s a r y f o r '
I
a l l c o n c e n t r a t i o n s . The amount n e c e s s a r y t o e n s u r e homo- 1
g e n e i t y i n t h e co m p artm en ts seems t o i n c r e a s e w ith t h e
i
c o n c e n t r a t i o n o f th e s o l u t i o n . T h is e f f e c t i s n o t c l e a r - j
I
l y u n d e r s t o o d b u t seems t o be in p a r t o r w h o lly due t o j
t h e i n c r e a s e i n v i s c o s i t y .
S u p p le m e n ta l p r o o f was o b t a i n e d v e r i f y i n g t h e e x - j
a c t n e s s o f t h e m ethod o f c a l i b r a t i o n s u g g e s te d by S to k e s^ .j
I
Two a d d i t i o n a l m ethods o f c a l i b r a t i o n w ere d e v e lo p e d .
I t was shown t h a t t h e r e e x i s t s a s u r f a c e e f f e c t in
s e l f d i f f u s i o n o f i o n s a t low c o n c e n t r a t i o n s . T h is e f f
e c t v a r i e s w ith th e io n and w ith t h e d iap h ra g m . I t was
n o t found p o s s i b l e t o c o r r e c t f o r t h i s e f f e c t b u t a m eth
od was d e v e lo p e d to d e te r m in e a t w hat lo w e r c o n c e n t r a t i o n
t h i s e f f e c t becom es a p p r e c i a b l e a n d hen ce s e t s a lo w e r
c o n c e n t r a t i o n l i m i t f o r th e u s e f u l n e s s o f d iap hragm d i f f
u s i o n c e l l s f o r t h a t p a r t i c u l a r i o n .
The p r e s e n t f i n d i n g s on s t i r r i n g needd and s u r f a c e
e f f e c t s s h o u ld make i t p o s s i b l e t o c r i t i c a l l y a p p r a i s e
diaphragm d e te r m in e d d i f f u s i o n c o e f f i c i e n t s r e p o r t e d i n j
63
t h e l i t e r a t u r e . In p a r t i c u l a r a l l v a lu e s f o r d i l u t e s o l
u t i o n s and a l l th o s e o b t a i n e d w hich had no m e c h a n ic a l
s t i r r i n g a r e s u s p e c t .
DISCUSSION
The l i m i t i n g s l o p e s from e q u a t i o n s (9 ) and (11)
| and t h e c u r v e s from e q u a t io n ( 1 0 ) i n t h e d i l u t e c o n c e n -
i
t r a t i o n r e g i o n a r e shown w ith t h e d i f f u s i o n c o e f f i c i e n t s j
|
i n F i g u r e s 8 and 9 t o p r o v i d e a t e s t o f th e v a r i o u s t h e - i
o r i e s . The l i n e s l a b e l l e d "Eq. 9 ” r e p r e s e n t th e s l o p e s !
i
c a l c u l a t e d a c c o r d i n g t o t h e Adamson, C obble and N i e ls e n
and W hitew ay, MacLennan an d C o f f i n t h e o r y . F o r sodium
c h l o r i d e
Djfa (cm2 / d a y ) * 1 .1 5 4 ( 1 - 0.586V 5) (9 a)
Dc l (cm2 / d a y ) = 1 .7 5 8 ( 1 - 0.586V c) (9b) j
i
! F o r sodium s u l f a t e '
D jjfa (cm 2/day) - 1 .1 5 4 ( 1 - Q.715-/c) (9c) |
• D gg^fcm ^/day) = 0 .9 1 9 ( 1 - 2 . 8 6 Vc) (9d)
! Only th e d i f f u s i o n c o e f f i c i e n t c u rv e f o r Cl~ in
sodium c h l o r i d e seems t o a p p ro a c h th e l i m i t i n g s lo p e eq
u a t i o n a t low c o n c e n t r a t i o n s . T h is l a c k o f g e n e r a l
1 a g re e m e n t may n o t d i s p r o v e th e t h e o r y f o r t h e v a r i a t i o n
o f m o b i l i t y w ith c o n c e n t r a t i o n was n e g l e c t e d in t h i s
i
i t h e o r e t i c a l t r e a t m e n t . The m o b i l i t y may be s t r o n g l y c o n -
i
c e n t r a t i o n d e p e n d e n t and hen ce c o u ld b r i n g t h e c u rv e s
i n t o a g re e m e n t. A t h e o r e t i c a l a p p ro a c h t o t h e f o r c e s
a c t i n g upon io n s m oving i n a medium w ith no c o n c e n t r a t i o n i
65
g r a d i e n t s i s n e e d e d . As t h e t h e o r y now s t a n d s th e a g r e e
m ent i s n o t s a t i s f a c t o r y .
The c u r v e s m arked "Eq. 10" p r o v i d e a c o m p a ris o n o f
t h e H u iz e n g a , G r i e g e r and W all t h e o r y w i t h e x p e r im e n t.
In e v e r y c a s e t h e t h e o r e t i c a l c u rv e l i e s below th e e x p e r i
m e n t a l . For t h e s u l f a t e i o n , how ever’, t h e a g re e m e n t may
b e c o n s i d e r e d f a i r . In view o f th e b a s i c d i f f e r e n c e b e
tw een c o n d u c ta n c e a n d s e l f d i f f u s i o n i t d o e s n o t seem p r o
f i t a b l e t o a tte m p t t o a p p ly c o r r e c t i o n s t o t h i s e q u a t i o n .
More s h o u ld b e g a in e d by r e c o n s i d e r i n g t h e b a s i c f a c t o r s
i n v o lv e d i n s e l f d i f f u s i o n .
| G o s tin g and H a r n e d 's t h e o r y i s r e p r e s e n t e d on F i g
u r e s 8 and 9 by t h e l i m i t i n g s l o p e s m arked "Eq. 1 1 " . The
n u m e r ic a l e q u a t i o n s f o r t h e i n d i v i d u a l io n s w ere c a l c u l a -
; t e d from e q u a t i o n ( 1 1 ) . For sodium c h l o r i d e
Djja (cm ^ /d ay ) = 1*154 - 0.23181^"
j DQiCcm^/day) « 1 .7 5 6 - 0.4543V5*
' F or sodium s u l f a t e
i Djja (cm ^ /d ay ) « 1 .1 5 4 - 0 .3 5 3 6 t€T
| DS04 ( cm3 / d ay) “ O * 0 ! 9 “ 0 .9 8 0 t 6 ”
! The e x p e r i m e n t a l c u rv e s f o r Na+ i n sodium c h l o r i d e ,
I Na* i n sodium s u l f a t e and SO^ i n sodium s u l f a t e a p p ro a c h
I
j t h e l i m i t i n g s l o p e s v e r y c l o s e l y and t h u s seem t o i n d i c -
! a t e t h e c o r r e c t n e s s of th e t h e o r y . The c u rv e f o r C l” i n
( 1 1 a)
( l i b )
( 1 1 c)
( l i d )
66
sodium c h l o r i d e d oes n o t f i t s o c l o s e l y . G o s tin g and
Harned^-^ a p p l i e d t h i s t h e o r y to Ua+ and 1 “ i n sodium i o
d id e a s m easured by Wang and Kennedy1^ and Ag+ i n s i l v e r
n i t r a t e a s m easu red by W hitew ay, MacLennan and C o f f i n 1 5 .
The c u rv e f o r E a+ i n sodium i o d i d e a p p ro a c h e d t h e l i m i t
in g s l o p e v e ry s a t i s f a c t o r i l y . The d a t a f o r Ag+ i n s i l
v e r n i t r a t e was so s c a t t e r e d a s t o make i t d i f f i c u l t to
d e f i n i t e l y p l a c e th e c u r v e , b u t G o s tin g and E arn ed con
s i d e r e d t h i s t o be a p o s s i b l e v e r i f i c a t i o n . The d a t a f o r
I " i n sodium i o d i d e , w hich w ere p r e c i s e , d ip p e d somewhat
belo w t h e l i m i t i n g s l o p e c u rv e b e f o r e r i s i n g t o t h e i n
f i n i t e d i l u t i o n v a l u e . From F ig u r e 8 i t can be se e n t h a t !
I
t h e c u rv e f o r C l” i n sodium c h l o r i d e l i k e w i s e d i p s belo w j
t h e l i m i t i n g s l o p e c u r v e . I n g e n e r a l , h ow ever, a p p a r e n t
a g re e m e n t h as b e e n fo u n d w ith t h e l i m i t i n g s l o p e p r e d i c t - :
ed by t h e O n sag er e q u a t i o n a s a p p l i e d by G o s tin g and H ar-
n e d . A greem ent h as b e e n o b s e r v e d f o r Ea+ i n sodium i o
d i d e , sodium c h l o r i d e and sodium s u l f a t e an d f o r s u l f a t e
i o n in sodium s u l f a t e . A p p a ren t l a c k o f a g re em e n t h as
b e e n o b se rv e d f o r I ” and Cl” i n sodium i o d i d e and sodium
c h l o r i d e .
I
B I B L I 0 G R A P H Y
BIBLIOGRAPHY
BOOKS
D. A. M a cln n e s, “P r i n c i p l e s o f E l e c t r o c h e m i s t r y . ” R e in
h o ld P u b l i s h i n g C o r p ., New Y ork, p . 339 ( 1 9 3 9 ).
.PERIODICALS
A. W. Adamson, J . Chem. P h y s . , 15, 762 ( 1 9 4 7 ).
.A. W. Adamson, J . W. C obble and J . M. N i e l s e n , J . Chera.
P h y s . , 1 7 , 740 ( 1 9 4 9 ) .
A. P. Brady and D. J . S a l l e y , J . Am. Chem. S o c . , 70,
914 (1 9 4 8 ).
E. Cohen and H. R. B r u i n s , Z. p h y s i k . Chem., 103,
337 (1 9 2 3 ).
A. F i c k , Pogg. A n n ., 94 , 59 (1 8 5 5 ).
A. R. Gordon, Ann. N.Y. Acad. S c i . , 4 6 , 285 ( 1 9 4 5 ).
L. J . G o s tin g and H. S. E a r n e d , J . Am. Chem. S o c .,
73, 159 ( 1 9 5 1 ) .
T. Graham, P h i l . T r a n s . , 1 4 0 , 1 , 805 ( 1 9 5 0 ) .
H. S. H arned and D. M. F re n c h , Ann. N.Y. Acad. S c i . ,
4 6 , 267 (1 9 4 5 ) .
H. S. H arned and R. L. N u t t a l l , J . Am. Chem. S o c .,
6 9 , 736 (1 9 4 7 ) .
H. S. Harned and A. L. L evy, J . Am. Chem. S o c .,
71, 2781 ( 1 9 4 9 ).
G. S. H a r t l e y , P h i l . M ag., 1 2 , 473 (1 9 3 1 ).
G. S. H a r t l e y and D. F. R u n n i c l e s , P r o c . Roy. S o c .,
A 1 6 8 , 401 ( 1 9 3 8 ) .
J . R. H u iz en g a , P. F. G r ie g e r and F. T. W a ll, J . Am.
Chera. S o c ., 72, 4228 (1 9 5 0 ) .
69 <
0 . Lamm, Nova A cta R e g ia e Soc. S c i . U p s a l i e n s i e
IV 1 0 , 6 ( 1 9 3 7 ).
L. G. L o n g sw o rth , J . Am. Chem. S o c . , 57 , 1185 (1 9 3 5 ).
J . W. Mehl and C. L. A. S c h m id t, U n iv . C a l i f . P u h l.
P h y s i o l . , 8 , 165 (1 9 3 7 ) .
K. J . M y sels and J . W. McBain, J . C o l l . S c i . ,
3 , 45 ( 1 9 4 8 ) .
W .'N e r n s t , Z. p h y s i k . Chem., 2, 613 ( 1 8 8 8 ).
L. O n s a g e r, Ann. N.Y. Acad. S c i . , 4 6 , 841 ( 1 9 4 5 ).
L . O nsager and R. M. F u o s s , J . P h y s. Chem., 36,
8689 ( 1 9 3 8 ).
W. J . C. O rr and J . A. V. B u t l e r , J . Chem. S o c .,
1273 (1 9 3 5 ),
| R. H. S t o k e s , J.. Am. Chem. S o c . , 72, 763, 2343 (1 9 5 0 ).
J . H. Wang and J . W. Kennedy, J . Am. Chem. S o c ., |
72, 3080 ( 1 9 5 0 ) .
S. G. W hitew ay, D. F. MacLennan and C. C. C o f f i n ,
J . Chem. P h y s . , 1 8 , 229 ( 1 9 5 0 ).
P . E. Y ankw ich, T. H. N o r r i s and J . H u s to n , A n a l. Chem., *
1 9 , 439 ( 1 9 4 7 ).
A. W. Adamson, P r i v a t e co m m u n ica tio n .
R. H. S t o k e s , P r i v a t e c o m m u n icatio n .
L. P. J e h l e , P h . D. D i s s e r t a t i o n , U n iv . o f C a l i f . ,
B e r k e le y , 1938.
UNPUBLISHED WORK
Linked assets
University of Southern California Dissertations and Theses
Conceptually similar
PDF
A study of the interactions of polar gases with solid proteins and some simple organic compounds
PDF
A kinetic study of the radioactive exchange between potassium ferrocyanide and potassium cyanide
PDF
A study of the structures and properties of triaryl compounds of boron
PDF
A study of the reaction of tetramethyldiborane with sodium in liquid ammonia and the products derived from this reaction
PDF
A study of the reaction of 2,4-dinitrobenzene-sulfenyl halides with ketones
PDF
A study of the activation of hydrogen by cuprous salts in quinoline / by Max K. Barsh
PDF
An experimental investigation of amino compounds of boron hydrides
PDF
Colloid properties of some New Mexico clays
PDF
An investigation of the system sodium stearate-water by means of x-ray diffraction and differential thermal analysis
PDF
Addition compounds of boron fluoride with certain sulfoxy-amines
PDF
Alpha nitro sulfides and related studies
PDF
An experimental investigation of gas phase synthesis using a spark generated shock wave
PDF
A preliminary investigation of the formation of molecular addition compounds by phosphorus chloronitride
PDF
A study of the pressure stability of calcium stearate-cetane systems containing additives
PDF
A study of chemical tests for the vitamins
PDF
A study of the relation between the concentration of a dye and the transmission of an image produced by dye adsorption on a suitable mordant.
PDF
Adrenalectomy and fat absorption
PDF
An investigation of the physical properties of concentrated solutions of sodium sulphate
PDF
A method of determining molecular weights of vapors by effusion
PDF
Addition compounds of trimethylamine with boron fluoride and its methyl derivatives.
Asset Metadata
Creator
Nielsen, Julian M (author)
Core Title
A determination of ionic diffusion coefficients
Degree
Doctor of Philosophy
Degree Program
Chemistry
Publisher
University of Southern California
(original),
University of Southern California. Libraries
(digital)
Tag
chemistry, inorganic,OAI-PMH Harvest
Language
English
Contributor
Digitized by ProQuest
(provenance)
Advisor
Adamson, A.W. (
committee chair
), [illegible] (
committee member
), Copeland, C.S. (
committee member
)
Permanent Link (DOI)
https://doi.org/10.25549/usctheses-c17-619861
Unique identifier
UC11354654
Identifier
DP21752.pdf (filename),usctheses-c17-619861 (legacy record id)
Legacy Identifier
DP21752.pdf
Dmrecord
619861
Document Type
Dissertation
Rights
Nielsen, Julian M.
Type
texts
Source
University of Southern California
(contributing entity),
University of Southern California Dissertations and Theses
(collection)
Access Conditions
The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law. Electronic access is being provided by the USC Libraries in agreement with the au...
Repository Name
University of Southern California Digital Library
Repository Location
USC Digital Library, University of Southern California, University Park Campus, Los Angeles, California 90089, USA
Tags
chemistry, inorganic