Close
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected
Invert selection
Deselect all
Deselect all
Click here to refresh results
Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Prediction Of Enthalpy Of Saturated Paraffin Hydrocarbon Mixtures
(USC Thesis Other)
Prediction Of Enthalpy Of Saturated Paraffin Hydrocarbon Mixtures
PDF
Download
Share
Open document
Flip pages
Contact Us
Contact Us
Copy asset link
Request this asset
Transcript (if available)
Content
PREDICTION OF ENTHALPY OF SATURATED PARAFFIN HYDROCARBON MIXTURES by Edward L o n g s tr e th G horm ley A D i s s e r t a t i o n P r e s e n te d t o t h e FACULTY OF THE GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In P a r t i a l F u lf illm e n t o f th e R eq u irem en ts f o r t h e D egree DOCTOR OF PHILOSOPHY (C h em ical E n g in e e r in g ) Jan u ary 1971 71 - 21,457 GHORMLEY, Edward L o n g s tr e t h , 19 2 3 - PREDICTION OF ENTHALPY OF SATURATED PARAFFIN HYDROCARBON MIXTURES. U n iv e r s it y o f S o u th e rn C a l i f o r n i a , Ph.D., 1971 E n g in e e r in g , c h e m ic a l University Microfilms, A XERO X Com pany, Ann Arbor, M ichigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED UNIVERSITY O F SO UTH ERN CALIFORNIA TH E GRADUATE SCH O O L UNIVERSITY PARK LOS A N G ELES, C A LIFO R N IA 9 0 0 0 7 This dissertation, written by Edward L o n g s tr e th G horm ley under the direction of //is.... Dissertation Com mittee, and approved by all its members, has been presented to and accepted by The Gradu ate School, in partial fulfillment of require ments of the degree of D O C T O R O F P H I L O S O P H Y I'Tti O Dean Date.J33^3F.Z.2921. DISSERTATION COMMITTEE . & L - Chairman _fr?. ............ ACKNOWLEDGMENTS The a u th o r t a k e s t h i s o p p o r tu n ity t o th a n k t h o s e p e r s o n s who w ere p a r t i c u l a r l y h e l p f u l in th e c o m p le tio n o f t h i s w ork . I f i r s t w ou ld l i k e t o th a n k t h e f a c u l t y and :s t a f f a t U .S .C . f o r t h e i r c o o p e r a t io n in m aking i t p o s s i b l e !f o r me t o do t h i s r e s e a r c h w ork in a com p lex s t r u c t u r e o f j s c h e d u le s and com m itm en ts. ! D r. J . M. L e n o ir h a s b e e n p a r t i c u l a r l y h e l p f u l in ; h is g u id a n c e and en cou ragem en t in t h e d ev elo p m en t o f t h i s p a p e r . D r. C. J . R e b e rt h a s added t o t h e c l a r i f i c a t i o n o f t h e p r e s e n t a t io n by s u g g e s te d s i m p l i f i c a t i o n s o f some o f t h e c o n c e p ts w h ich a r e d e v e lo p e d . P r o f e s s o r E . K. S p r in g e r h a s p r o v id e d a d d i t io n a l h e lp and en cou ragem en t tow ard th e |s u c c e s s f u l c o m p le tio n o f t h i s p a p e r . I a l s o w ant t o th a n k th e members o f my fa m ily fo r t h e i r en cou ragem en t and su p p o r t d u r in g t h i s p e r io d o f a c - i c e l e r a t e d a c t i v i t y . In p a r t i c u l a r , I w ant t o a ck n o w led g e t h e l o y a l su p p o r t o f my w if e o v e r t h e e n t i r e p e r io d le a d in g t o t h e p r e p a r a tio n o f t h i s d ocu m en t. I A d d it io n a l m en tio n s h o u ld b e made o f th e ( S ig n if ic a n t c o n t r ib u t io n made b y t h e N o rth A m erican Rock w e l l C o r p o r a tio n tow ard t h e c o m p le tio n o f t h i s w ork . I . u t TABLE OF CONTENTS Page ACKNOWLEDGMENTS.............................. 11 INDEX OF F IG U R E S ........................................................................................ v l LIST OF T A B L E S ................................................................................................ v i l i I . THE PRO BLEM .................................................................................. 1 I I . PREVIOUS W O R K ............................................................................. 6 A . S o u r c e s o f E n th a lp y D a ta ......................... 6 B . H eat C a p a c ity D a t a ................................................. 8 C. H eat o f V a p o r iz a tio n . . . . . . . . . . . 9 D. E n th a lp y o f M ixed H yd rocarb on s .................... 10 E . The C r ic o n d e n th e r m ................................................. 13 I I I . THE ENTHALPY E N V E L O PE ................................................. 17 The Mean E n th a lp y C u r v e ................................... 17 B . S a tu r a te d Vapor and L iq u id E n th a lp ie s . . 22 C. S lo p e o f th e S a tu r a te d E n th a lp y C u rves . . 26 D. E n th a lp y P r e d i c t i o n o f P ure H yd rocarb on s . 27 IV . PREDICTION METHODS FOR BINARY MIXTURES . . . . 32 A . S p e c i a l P r o p e r t ie s o f M i x t u r e s ................... 32 B. P r e d ic t io n o f t h e C r ic o n d e n th e r m .............. 39 C. E n th a lp y P r e d ic t io n o f M eth an e-P rop an e M i x t u r e s ........................................................................... 43 iv P age D. E n th a lp y P r e d ic t io n o f P en ta n e -H e x a d e ca n e M i x t u r e s .................................................................................. 43 E . E n th a lp y P r e d ic t io n o f a P ro p a n e- Z so p en ta n e M ix tu re .................................................... 51 V. ACCURACY OP CALCULATED E N T H A L P IE S........................... 53 V I. CONCLUSIONS.................................................................................... 58 V I I . REFERENCES......................................................................................... 60 APPENDICES....................................................................................................... 63 A. N o m e n c la t u r e ........................................................................ 64 B. C a lc u la te d E n th a lp y V a lu e s o f Pure B u t a n e ........................................................ 66 C. C a lc u la te d E n th a lp y V a lu e s o f a M ethane- P rop ane M ix tu re .............................................................. 68 INDEX OF FIGURES I Figure No. 1 Mean E n th a lp y C u rves o f t h e A l i p h a t ic H yd rocarb on s ........................................................................ 2 C o r r e la t io n o f % w it h M o le c u la r W eigh t 3 S a tu r a te d E n th a lp y Boundary f o r P rop ane | 4 S a tu r a te d E n th a lp y Boundary fo r B u tan e . . 5 S a tu r a te d E n th a lp y Boundary f o r H exane . . 6 S a tu r a te d E n th a lp y Boundary f o r O ctan e . . 7 Mean E n th a lp y C u rves fo r M ix tu r e s o f M ethane in P rop an e ......................................................... 8 C o r r e la t io n o f C m /C h c w ith . . . . 9 V a r ia tio n o f Tc c /T gc w ith C o m p o sitio n . . 10 C o r r e la t io n o f (b + c ) w it h € ............................ 11 S a tu r a te d E n th a lp y Boundary f o r a M ix tu re C o n ta in in g 95% M ethane in P rop ane . . . . 12 s a t u r a t e d E n th a lp y Boundary f o r a M ix tu re C o n ta in in g 49.4% M ethane in P ropane . . . 13 S a tu r a te d E n th a lp y B oundary f o r a M ix tu re C o n ta in in g 23.4% M ethane i n P rop ane • . . 14 Mean E n th a lp y C u rves f o r M ix tu r e s o f P en ta n e in H exad ecane ............................................... 15 S a tu r a te d E n th a lp y B oundary fo r a M ix tu re C o n ta in in g 58.7% P en ta n e i n H exad ecan e . . i i j I vi Page 19 25 28 29 30 31 34 37 38 42 44 45 46 4 8 49 | F ig u r e N o. P age i 16 S a tu r a te d E n th a lp y Boundary f o r a M ix tu re C o n ta in in g 79.4% P en ta n e in H exad ecan e . . 50 17 S a tu r a te d E n th a lp y Boundary f o r a M ix tu re ! C o n ta in in g 43% P ropane in I s o p e n ta n e . . . 52 vii :Table j i i i h i i v i l i LIST OF TABLES Page S o u r c e s o f E n th a lp y D a t a .............................................. 7 D e v ia t io n o f C a lc u la te d P ure Component E n t h a l p i e s ........................................................................................ 56 D e v ia tio n o f C a lc u la t e d E n th a lp ie s o f B in a r y M i x t u r e s ......................................................................... 57 I i [ 1 1 j I I . THE PROBLEM i The e n g in e e r in g d e s ig n o f modern c h e m ic a l p r o c e s s i sy s te m s r e q u ir e s p r e c i s e k n o w led g e o f t h e e n th a lp y o f t h e m a t e r ia ls u se d in th e p r o c e s s . H ydrocarbon p r o c e s s in g u s u a l l y i s c o n c e r n e d w it h th e v a p o r iz a t io n o r c o n d e n s a tio n o f I s a t u r a t e d f l u i d s . Such p r o c e s s e s r e q u ir e a c c u r a te e n th a lp y i I d a ta a lo n g th e lo c u s o f t h e s a t u r a t e d vap or and l i q u i d . I V a p o r iz a tio n o c c u r s when th e t r a n s l a t i o n a l e n e r g y o f t h e m o le c u le e x c e e d s t h e f o r c e s o f a t t r a c t i o n b etw een m o le c u l e s . The l a t e n t h e a t o f v a p o r iz a t io n o f a m a t e r ia l i s th e h e a t r e q u ir e d t o v a p o r iz e a s p e c i f i e d amount o f th e l i q u i d u n der s p e c i f i c c o n d it io n s o f te m p e r a tu r e and p r e s s u r e . The l a t e n t h e a t o f v a p o r iz a t io n o f a g iv e n f l u i d i s |a c h a r a c t e r i s t i c p r o p e r ty o f t h a t m a t e r ia l. The p r e d i c t i o n !o f th e e n th a lp y or h e a t o f v a p o r iz a t io n o f a p u re compound r e q u ir e s k n ow led ge o f how f a c t o r s su ch a s te m p e r a tu r e , p r e s s u r e , m o le c u la r w e ig h t , and c h e m ic a l s p e c i e s a f f e c t it h e e n t h a lp y o f th e m a t e r ia l. j j Therm al p r o p e r t ie s o f m ix tu r e s a r e more d i f f i c u l t j i t o p r e d ic t b e c a u s e o f th e i n t e r a c t i o n b e tw e en m o le c u le s , j E n t h a lp ie s o f m ix tu r e s h a v e b e e n c a lc u l a t e d f o r many y e a r s 1 " " I 2 ! u s in g t h e rn olal a v e r a g e o f t h e p u re com ponent e n t h a l p i e s . T h is p r o c e d u r e i s q u i t e a c c u r a t e a t low p r e s s u r e s and te m p e r a tu r e s , s i n c e a t v e r y low p r e s s u r e s a l l g a s e s b eh ave i d e a l l y , and t h e h e a t o f m ix in g o f t h e g a s e o u s m o le c u le s i s z e r o . H ow ever, a s th e te m p e r a tu r e and p r e s s u r e i n c r e a s e , g a s e s c e a s e t o be i d e a l , and th e u s e o f p u re compo n e n t e n t h a l p ie s becom es i n c r e a s i n g l y in a c c u r a t e . The method o f p r e d i c t i o n d e v e lo p e d in t h i s t h e s i s t r e a t s t h e m ix tu r e s a s an e n t i t y , arid th u s a v o id s th e n e c e s s i t y o f i n d i v i d u a l l y d e f i n i n g t h e e f f e c t s o f m ix in g on th e m ix tu r e e n t h a lp y . The p rob lem o f d e f in in g th e e n th a lp y o f a h y d r o c a r bon m ix tu r e i s f u r t h e r c o m p lic a te d b y th e i r r e g u l a r i t y o f th e v a p o r - liq u id e n v e lo p e . The maximum vap or p r e s s u r e o f a b in a r y m ix tu r e o f a l i p h a t i c h y d ro ca rb o n s can e x c e e d th e c r i t i c a l p r e s s u r e o f e i t h e r o f th e p u re com p on en ts b y a c o n s id e r a b le am ount. S i m i l a r l y , th e maximum l i q u i d tem p er a tu r e o f a m ix tu r e o r c r ic o n d e n th e r m ca n e x c e e d t h e c r i t i c a l te m p e r a tu r e o f t h e m ix tu r e . The "tim e h on ored" p r a c t i c e o f p r e d i c t i n g c r i t i c a l p r o p e r t i e s o f m ix tu r e s u s in g m o la l a v e r a g e p r o p e r t i e s can in tr o d u c e c o n s id e r a b le e r r o r i n t o th e r m a l c a l c u l a t i o n s i n v o lv in g m ix t u r e s . In t h e c r i t i c a l r e g io n th e e n th a lp y o f t h e l iq u i d 3 j a p p r o a c h e s t h a t o f t h e v a p o r , and t h e h e a t o f v a p o r iz a t io n o f th e l i q u i d a p p r o a c h e s z e r o . One or more o f th e m ix tu r e com p on en ts may e x i s t in a l iq u i d s t a t e t h a t e x c e e d s t h e I ;c r i t i c a l c o n d it io n s o f th e p u re com p on en t. M ethods o f p r e d i c t i n g th e e n th a lp y o f a m ix tu r e o f h y d r o c a r b o n s u n d er j t h e s e c o n d it io n s a r e s e v e r e l y lim i t e d in b o th ra n g e and a c - c u r a c y . ! F u r th e r p ro b lem s d e v e lo p when an a tte m p t i s made t o p r e d ic t t h e s a t u r a t e d e n th a lp y e n v e lo p e o f a s u b s ta n c e a s ;a f u n c t io n o f te m p e r a tu r e . In a p l o t o f e n t h a lp y v e r s u s te m p e r a tu r e fo r a p u re com p on en t, th e e n th a lp y o f th e |v a p o r a p p r o a c h e s a Maximum a t a p o in t o f t h e c u r v e n ea r t h e c r i t i c a l te m p e r a tu r e and th e n d e c r e a s e s in v a lu e . T h is ty p e o f v a r i a t i o n p r e c lu d e s t h e p r e d i c t i o n o f e n th a lp y in -th e c r i t i c a l r e g io n u s in g sta n d a r d h e a t c a p a c it y d a ta a l o n e . A g r e a t d e a l o f e f f o r t h a s b een a p p lie d in th e p a s t j a tt e m p tin g t o p r e d ic t e n th a lp y u s in g th e C la p ey ro n e q u a tio n com bined w it h an e q u a tio n o f s t a t e . A u n iq u e f e a t u r e o f t h i s t h e s i s i s t h a t d a ta a r e d e f in e d fo r t h e s a t u r a t e d c o n d i t i o n o n ly , and t h e m ethod o f p r e d i c t i o n d e l i b e r a t e l y |a v o id s t h e u s e o f an e q u a tio n o f s t a t e . 4 An a c c u r a te m ethod o f p r e d i c t i n g th e s a t u r a t e d e n - i t h a lp y e n v e lo p e o f p u re and m ixed h y d ro ca rb o n s w i l l p r o v id e a u s e f u l t o o l f o r t e s t i n g th e c o n s is t e n c y o f e x p e r im e n ta l j d a t a . F r e q u e n tly e x p e r im e n ta l th e r m a l d a ta a r e r e s t r i c t e d in s c o p e by th e m e c h a n ic a l l i m i t s o f t h e t e s t f a c i l i t y . The m ethod o f p r e d i c t i o n o u t lin e d in t h i s p ap er w i l l make i isu ch d a ta more v a lu a b le by m aking i t p o s s i b l e t o e x tr a p o - j la t e e x p e r im e n ta l d a ta up t o t h e c r i t i c a l te m p e r a tu r e . An e f f e c t i v e m ethod o f p r e d i c t i n g th e is o th e r m a l jheat o f v a p o r iz a t io n o f p u re com p onents and b in a r y m ix tu r e s I o f h y d r o c a r b o n s up t o th e c r i t i c a l r e g io n i s p r e s e n t e d . iP ro ced u res a r e o u t lin e d fo r th e p r e d i c t i o n o f th e c r i c o n dentherm o f a l i p h a t i c h y d ro ca rb o n m ix tu r e s . A m ethod o f p r e d i c t i n g th e s a t u r a t e d e n th a lp y e n v e lo p e o f p u re and im ixed h y d r o c a r b o n s i s p r e s e n t e d . In a d d i t i o n , e q u a tio n s I a r e d e v e lo p e d f o r th e p r e d i c t i o n o f th e e n th a lp y ch a n g e a s a f u n c t io n o f te m p e r a tu r e fo r a s a t u r a t e d v a p o r and a jbubble p o in t l i q u i d . .. .. The m ethod o f c a l c u l a t i o n o u t lin e d in t h i s p a p er i s I s u i t a b l e fo r e i t h e r m anual or c o m p u te r iz e d o p e r a t io n , js in c e th e m ethod i s a n a l y t i c a l and r e q u ir e s no s t o r a g e o f jla r g e ta b u la r f u n c t i o n s , a com puter may b e e a s i l y 5 programmed fo r c a l c u l a t i o n o f eo m p lex d i s t i l l a t i o n and a b - |s o r p t i o n f u n c t i o n s . The m ethod o f c a l c u l a t i o n i s s im p le in j c o n c e p t s o t h a t m anual c h e c k s can be made a t any p h a se in |t h e c a l c u l a t i o n p r o c e d u r e . The m ethod w i l l p r o v id e a h ig h |d e g r e e o f a c c u r a c y when u sed t o p r e d ic t e n th a lp y v a l u e s . j I I t a l s o e x te n d s t h e r a n g e o f e x i s t i n g th e r m a l d a ta w e l l I jbeyond p r e s e n t l i m i t s o f a p p l i c a t i o n . I I . PREVIOUS W O R K j |A . S o u r c e s o f E n th a lp y D ata | Much w ork h a s b een exp en d ed in th e e x p e r im e n ta l i j I m easurem ent o f e n th a lp y o f c h e m ic a l com pounds. M ost o f th e I I w ork h a s b e e n a p p lie d t o t h e d ev elo p m en t o f e n th a lp y d a ta i j fo r p u re s u b s t a n c e s . The A m erican P e tr o le u m I n s t i t u t e h a s i jsu p p o r te d r e s e a r c h in t h i s f i e l d f o r many y e a r s , and h a s p u b lis h e d c o m p r e h e n siv e t a b l e s o f e n th a lp y d a ta f o r t h e p u re h y d ro ca rb o n compounds ( 1 ) . O n ly a lim i t e d amount o f d a ta i s a v a i l a b l e w h ich a c c u r a t e ly d e f i n e s t h e e n t h a lp y o f a m ix tu r e o f tw o or more s u b s t a n c e s . W ith ou t a tte m p tin g t o l i s t a l l t h e c o n t r ib u - ! t o r s in th e f i e l d , c e r t a i n i n v e s t i g a t o r s sh o u ld b e m en- | i t io n e d b e c a u s e o f t h e i r s i g n i f i c a n t c o n t r ib u t io n s o f e n - |t h a l p y d a ta fo r m ix t u r e s . L e n o ir ( 1 5 ,1 6 ,1 7 ,1 8 ,1 9 ) and ! P ow ers ( 2 ,4 3 ,4 4 ) h a v e s t u d ie d t h e e n th a lp y o f v a r io u s h y - I | d ro ca rb o n m ix tu r e s e x t e n s i v e l y , and S m ith (2 1 ,3 9 ) h a s m ea- ! su r e d t h e e n th a lp y o f v a r io u s m ix tu r e s o f p o la r and n o n - i i p o la r com pounds. T a b le I su m m arizes t h e e n th a lp y d a ta | | s o u r c e s t h a t w ere u se d in t h e p r e p a r a tio n o f t h i s d i s s e r t a - ! t i o n . i j i 6 TABLE I SOURCES OF ENTHALPY DATA Heavy Component L ig h t Comp. C1 c 2 C3 c 4 i c 5 C5 C6 c 7 C8 C16 C1 (1) (2 ,2 0 ,4 0 ) C2 (1) e 3 (1,40) (15) c 4 (1) i$ 5 (1) c 5 (1) (19) (17) C6 (1) C7 (1) C8 (1,19) c 16 (17) N o te: Components a r e I d e n t i f i e d by s u b s c r ip t w h ich i n d ic a t e s th e number o f carbon.-atom s in a m o le c u le . A p r e f i x o f ( i ) i d e n t i f i e s th e iso m e r . -4 3 [ I B . H eat C a p a c ity D ata 1 r The v a r i a t i o n o f e n th a lp y o f h y d ro c a r b o n f l u i d s ca n b e p r e d ic t e d u s in g t a b u la t e d h e a t c a p a c it y d a t a . C o n v e n i- ! | e n t t a b l e s fo r g a s e s a t low p r e s s u r e h a v e b e e n p u b lis h e d ! b y Kobe (1 4 ) and b y t h e A m erican P e tr o le u m I n s t i t u t e ( 1 ) . ; H eat c a p a c it y e q u a t io n s fo r a v a r i e t y o f s u b s t a n c e s a r e i j sum m arized b y H ougen, W atson , and R agatz (1 0 ) and b y S h er wood and R eid ( 3 1 ) . Shaw (34) h a s o u t lin e d a m ethod o f p r e d i c t i n g h e a t | c a p a c i t i e s o f l i q u i d s a t room te m p e r a tu r e and a m b ien t p r e s - ! s u r e u s in g a d d i t i v e c o n s t a n t s w h ich a r e grou p ed b y m ole c u la r s t r u c t u r e . Hadden h a s d e v e lo p e d e m p ir ic a l e q u a t io n s ' d e s c r ib in g th e h e a t c a p a c it y o f s p e c i f i c h om ologou s s e r i e s ; I l i q u i d h y d r o c a r b o n s up t o t h e norm al b o i l i n g p o in t o f t h e l i q u i d ( 9 ) . D ata o f t h i s ty p e a r e l i m i t e d t o u s e a t low p r e s s u r e c o n d i t i o n s . At h ig h p r e s s u r e g a s e o u s e n t h a l p ie s c a l c u l a t e d from low p r e s s u r e h e a t c a p a c i t i e s m ust b e c o r r e c t e d f o r p r e s - I s u r e . L iq u id e n t h a l p ie s a r e l e s s s e n s i t i v e t o p r e s s u r e i e f f e c t s , b u t f o r a c c u r a t e w ork i t i s n e c e s s a r y t o a p p ly a I | p r e s s u r e c o r r e c t io n t o l i q u i d e n t h a l p ie s c a lc u l a t e d from i h e a t c a p a c it y d a t a . E q u a tio n s f o r p r e d i c t i n g t h e e f f e c t j o f p r e s s u r e on e n t h a lp y , a r e a v a i l a b l e i n sta n d a r d th erm o - idynam ics t e x t s (5). ! I jC. H eat o f V a p o r iz a tio n ! A m ethod o f p r e d i c t i n g t h e h e a t o f v a p o r iz a t io n o f |p u re com pounds was f i r s t d e s c r ib e d by T K iesen in 1897 (40) . jH is c o r r e l a t i o n i s shown in e q u a tio n ( 1 ) . S u b s e q u e n tly , | o th e r a u th o r s h a v e i n v e s t i g a t e d t h i s c o r r e l a t i o n and f u r - ■ther d e f in e d th e c o n s t a n t s w h ic h h e f i r s t p r e d ic t e d . A = K{TC - T)** (1) w h ere K and e* = c o n s t a n t s , T = a b s o lu t e te m p e r a tu r e , Tc - c r i t i c a l te m p e r a tu r e , A = ^e a t o f v a p o r iz a t io n o f t h e m a t e r ia l a t te m p e r a tu r e T . The c o n s ta n t c* h a s b e e n shown t o h a v e a v a lu e o f abou t 0 .3 8 fo r m ost h y d r o c a r b o n s (3). F or o th e r m a t e r ia ls i t can v a r y from a b o u t 0.3 t o 0.4 (35). ! A 0 r e p r e s e n t s th e h e a t o f v a p o r iz a t io n o f t h e m a t e r ia l a t T = 0 a s shown in t h e f o l lo w in g e q u a t io n . j A 0 = K(Tc )°< (2) 10 ; D iv id in g e q u a tio n (1) b y e q u a tio n (2) e li m in a t e s K ! and e x p r e s s e s te m p e r a tu r e a s a g e n e r a liz e d red u ced tem pera* ! jtu r e , Tr , th u s i / \ = A 0 <1 - Tr )°^ (3) whfere Tr r e p r e s e n t s th e r a t i o T /T c . : T h is e q u a tio n may be u se d t o p r e d i c t t h e h e a t o f ; v a p o r iz a t io n o f a compound a s a f u n c t io n o f te m p e r a tu r e ju sin g a known h e a t o f v a p o r iz a t io n a t some c o n v e n ie n t tern- ! ip e r a tu r e su ch a s th e a tm o sp h e r ic b o i l i n g p o i n t . D iv id in g e q u a tio n (3) by i t s e l f f o r tw o s e t s o f c o n d it io n s g iv e s .3 8 T h is e q u a tio n i s f r e q u e n t ly r e f e r r e d t o a s th e W atson C or- i r e l a t i o n ( 4 1 ) . D. E n th a lp y o f M ixed H ydrocarbon s ! S t e i n and M artin (3 7 ) h a v e o u t lin e d a s i m p l i f i e d p r o c e d u r e t o p r e d ic t t h e i s o b a r i c h e a t o f v a p o r iz a t io n o f i I a m ix tu r e by a s t e p w is e su m m ation . The com p on en ts o f th e j m ix tu r e a r e t r e a t e d i n d i v i d u a l l y . The is o th e r m a l h e a t o f v a p o r iz a t io n f o r e a c h com ponent i s s e l e c t e d a t a low r I _________________________________________ _____________________________________________ 11 p r e s s u r e w h ere A i s known. N e x t, v a p o r s a r e t r e a t e d a s 1 i p e r f e c t s g a s e s , and t h e g a se o u s m ix tu r e i s h e a te d from t o T2 . I f t h e p r e s s u r e a t T2 i s lo w , no fu r t h e r c o r r e c t io n s ja r e s u g g e s t e d . H ow ever, i f th e p r e s s u r e a t T2 i s h ig h , a 1 ;p r e s s u r e c o r r e c t io n i s recomm ended t o in c lu d e t h i s e n th a lp y d i f f e r e n c e in t h e c a l c u l a t i o n . To make t h i s c o r r e c t io n i t | i s n e c e s s a r y t h a t th e dew p o in t e n v e lo p e be f u l l y d e f in e d , 1 and t h a t t h e P-V -T p r o p e r t i e s o f t h e m ix tu r e b e known. I S te v e n s and Thodos (38) h a v e e s t im a t e d t h e s a t u r a t e d e n th a lp y o f h y d ro ca rb o n m ix tu r e s b y f i r s t c a l c u l a t i n g th e j v a p o r e n th a lp y a t z e r o p r e s s u r e u s in g th e m o la l a v e r a g e o f th e e n t h a l p ie s o f th e p u re co m p o n en ts. An e n th a lp y c o r r e c t i o n t o th e sta n d a r d va p o r s t a t e w as th e n c a lc u l a t e d from t h e eq u a t io n i H* - H = Tc (mTr + K )1 /P (5) i j The e n th a lp y c o r r e c t io n t o th e s a t u r a t e d l i q u i d s t a t e was c a l c u l a t e d from th e f o l lo w in g e q u a tio n : 1 r H* O h + 1QTC(a - bTr ) 1 / r (6 ) | w h ere H* = t h e e n th a lp y o f an i d e a l g a s , H = th e s a t u r a t e d v a p o r e n t h a lp y , 1 i h = t h e s a t u r a t e d l i q u i d e n t h a lp y . 12 m ,p ,T c ,a ,b , and r = f u n c t io n s o f th e c r i t i c a l c o m p r e s s ib il i t y o f th e m ix tu r e . E q u a tio n s (5) and (6 ) w ere d e r iv e d from H ougen, W atson , and R a g a tz 1 (1 0 ) G e n e r a liz e d T a b le s o f th e P ro p er t i e s o f S a tu r a te d P ure V apors and L iq u id s . The r ed u c ed !te m p e r a tu r e and c o m p r e s s i b i l i t y o f th e m ix tu r e w ere c a lc u - i |l a t d d u s in g m o la l a v e r a g e p r o p e r t i e s o f t h e co m p o n en ts. 3 ;The a u th o r s show ed t h a t th e m ethod c o u ld b e u sed t o p r e d ic t ;t h e e n th a lp y o f s e v e r a l h y d ro ca rb o n m ix tu r e s w ith an e r r o r i o f from tw o t o f i v e p e r c e n t . O r e n t lic h e r and P r a u s n it z (2 4 ) u t i l i z e d s t a t i s t i c a l therm od ynam ic th e o r y t o p r e d i c t th e e n th a lp y o f s im p le d e n se f l u i d m ix t u r e s . The e n t h a lp y i s t h e sum o f t h r e e . term s H - E + U + RTz (7) w h ere E = th e i d e a l g a s e n th a lp y o b ta in e d from lo w p r e s s u r e h e a t c a p a c it y d a t a , U = th e p o t e n t i a l e n e r g y c o n t r ib u t io n o r r e s i d u a l e n e r g y d e f in e d b y t h e f o l lo w in g e q u a tio n p o ° u ~ / ° y J 0i j (r)g±j (r)4 T T r 2dr (8) | o i i _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ i r = in t e r m o le c u la r d i s t a n c e , R = th e g a s law c o n s t a n t , T = te m p e r a tu r e , g^j = p a ir d i s t r i b u t i o n f u n c t io n fo r an i j p a i r , # i j = p o t e n t i a l f u n c t io n f o r an i j p a i r , z = c o m p r e s s i b i l i t y . M ixed h y d ro c a r b o n e n t h a l p ie s f o r b o th l iq u i d s and ;v a p o r s w ere c a l c u l a t e d u s in g a com puter program d e v e lo p e d j I b y O r e n t lic h e r . The m ethod i s r e p o r te d t o g i v e an e r r o r o f ; l e s s th a n 10%. I t d o e s n o t d e f in e th e s a t u r a t e d or m ixed p h a se r e g io n . E d m iste r (6 ) u sed t h e e q u ilib r iu m (K) c h a r ts t o e v a lu a t e h e a t s o f v a p o r iz a t io n o f i n d iv i d u a l com ponents w it h an e q u a t io n d e r iv e d b y Dodge (5) f o r i d e a l s o l u t i o n s I w h ere A H i s in d e p e n d e n t o f te m p e r a tu r e . T h ese a ssu m p tio n s p r e c lu d e u s e o f t h e e q u a tio n in th e c r i t i c a l r e g io n w h ere & H i s o b v io u s ly n o t in d e p e n d e n t o f te m p e r a tu r e , s i n c e i t i ! r a p id ly a p p r o a c h e s z e r o a t t h e c r i t i c a l te m p e r a tu r e . i | E . The C rico n d en th erm i I The maximum te m p e r a tu r e o f th e v a p o r - liq u id 14 je n th a lp y e n v e lo p e o f a m ix tu re o f h y d ro c a r b o n s i s c a ll e d ■the c r ic o n d e n th e r m . P r e d ic t io n o f e n th a lp y a lo n g th e I !v a p o r - liq u id b ou nd ary r e q u ir e s a p r e c i s e k n o w led g e o f t h i s i !te m p e r a tu r e . The c r ic o n d e n th e r m and th e c r i t i c a l tem p era tu r e o f a p u re com ponent are i d e n t i c a l , but w it h m ixed com p on en ts t h e c r ic o n d e n th e r m c a n e x c e e d t h e c r i t i c a l tem - i p e r a tu r e s i g n i f i c a n t l y . Many d i f f e r e n t m eth od s h a v e b een d e v is e d t o p r e d ic t t h e c r i t i c a l te m p e r a tu r e s o f m ix tu r e s , ibut t h e r e a r e r e l a t i v e l y few p r o c e d u r e s fo r p r e d i c t i n g t h e |c r ic o n d e n th e r m . i M ix tu r e s o f a l i p h a t i c h y d ro c a r b o n s a r e s i m i la r in c h e m ic a l s t r u c t u r e , and in t h e i r th e r m a l p r o p e r t i e s . The c r ic o n d e n th e r m o f s u c h m ix tu r e s c a n ex ceed t h e p u re com p o n en t c r i t i c a l te m p e r a tu r e s b y a f a c t o r t h a t may be a s la r g e a s 2 , b u t su ch m ix tu r e s a r e c o n s i s t e n t i n t h e i r b e - j h a v io r , and may b e c o r r e la t e d u s i n g th e p r o c e d u r e s o u t lin e d in t h i s s t u d y . E t t e r and Kay (7 ) have d e v e lo p e d e m p ir ic a l e q u a tio n s |t o p r e d i c t t h e c r ic o n d e n th e r m o f a m ix tu r e o f a l i p h a t i c i [h y d r o c a r b o n s. D i f f e r e n t e q u a t io n s a r e p r e s e n t e d f o r v a r i - I jous m ix tu r e s o f l i g h t h y d r o c a r b o n s . Each e q u a t io n i s 1 j l i m i t e d t o a s p e c i f i c sy s te m , and i s n o t a p p l i c a b l e t o o th e r s y s t e m s . 15 S ilv e r m a n and T hodos (3 6 ) h a v e d e v e lo p e d an e m p ir i- | l e a l m ethod o f c a l c u l a t i n g t h e c r ic o n d e n th e r m o f b in a r y | i f ■hydrocarbon m ix t u r e s . T h ese a u th o r s u sed s t a t i s t i c a l t e c h - jn iq u e s t o c o r r e l a t e t h e c h a r a c t e r i s t i c p r o p e r t ie s o f t h e :s y s t e m s . The r e s u l t i n g c o r r e l a t i o n i s a com p lex p o ly n o m ia l !in w h ich t h e c o e f f i c i e n t s m ust b e c a lc u l a t e d from o th e r I T p o ly n o m ia l e q u a tio n s i n v o lv in g t h e r a t i o o f a tm o p p h eric i b o i l i n g p o i n t s o f t h e c o n s t i t u e n t s . i G r ie v e s and Thodos (8) p r e s e n t a group o f e m p ir ic a l e q u a tio n s f o r c a l c u l a t i n g t h e maximum te m p e r a tu r e and m axi mum p r e s s u r e o f h y d ro ca rb o n m ix t u r e s . The m ethod r e q u ir e s a k n ow led ge o f t h e m o la l a v e r a g e b o i l i n g p o i n t , t h e m o la l | a v e r a g e c r i t i c a l te m p e r a tu r e , t h e a tm o sp h e r ic b o i l i n g p o i n t , and t h e m ole f r a c t i o n o f t h e l i g h t com p on en t. Where m u ltico m p o n en t m ix tu r e s a r e t o b e i n v e s t i g a t e d , a s te p w is e i c a l c u l a t i o n p r o c e d u r e i s recomm ended t o o b t a in th e maximum i Item p era tu re and p r e s s u r e o f t h e l i q u i d m ix tu r e . The a c c u r a c y o f th e p r o c e d u r e i s c o n s id e r a b ly red u c ed f o r m u lt i- com ponent m ix tu r e s . M ix tu r e s o f compounds from d i f f e r e n t c h e m ic a l fa m i- l i e s a r e much more ir r e g u la r and u n p r e d ic t a b le . Such m ix - i t u r e s d i f f e r from i d e a l s o l u t i o n b e h a v io r , and t h e v a r ia t i o n 16 o f th e c r i t i c a l te m p e r a tu r e and th e c r ic o n d e n th e r m i s e r r a t i c . B in a r y m ix tu r e s o f a l i p h a t i c h y d ro ca rb o n s and c y - c ld h e x a n e e x h ib it t h e same in c r e a s e o f c r i t i c a l te m p e r a tu r e |a s th e a l i p h a t i c h y d r o c a r b o n s i f th e c r i t i c a l te m p e r a tu r e s j |o f th e com ponents a r e w id e ly d i s s i m i l a r . H ow ever, b in a r y j jmixfcfcnes w ith s i m i l a r c r i t i c a l te m p e r a tu r e s may c l o s e l y i ■approach t h e m o la l a v e r a g e c r i t i c a l te m p e r a tu r e or may ev en ! |h ave a s l i g h t r e d u c t io n in t h e c r i t i c a l te m p e r a tu r e b e lo w th e m o la l a v e r a g e . T h ese m ix tu r e s h a v e su ch a narrow b o i l in g r a n g e th a t t h e c r ic o n d e n th e r m and th e c r i t i c a l tem p er a - tu r e a r e i n d i s t i n g u i s h a b l e . U n sa tu r a te d compounds su ch a s a c e t y l e n e or b e n z e n e when m ixed w ith a l i p h a t i c or n a p h th e n ic h y d ro c a r b o n s d i s p la y e v e n more u n p r e d ic t a b le b e h a v io r . M ix tu res o f t h e s e ;d i s s i m i l a r c h e m ic a ls can e x h i b i t a d e f i n i t e r e d u c tio n o f |th e c r i t i c a l te m p e r a tu r e b e lo w th e m o la l a v e r a g e . No c o r r e l a t i o n i s y e t a v a i l a b l e t h a t w i l l p r e d i c t t h i s t y p e o f I v a r ia t io n a c c u r a t e l y . I I I . THE ENTHALPY ENVELOPE IA. The Mean E n th a lp y Curve In 1886 C a i l l e t e t and M a th ia s (4 ) h y p o th e s iz e d t h a t i Ith e mean o f t h e v a p o r and l i q u i d d e n s i t i e s o f a compound i I c o u ld b e c o r r e l a t e d w ith te m p e r a tu r e a s a l i n e a r f u n c t io n . S u b seq u en t i n v e s t i g a t i o n s h a v e shown t h a t th e mean d e n s i t y | i s more a c c u r a t e l y r e p r e s e n te d by a q u a d r a tic e q u a tio n o f i :th e form : + / ° i ) — A + BT + CT2 (9) i w h ere g - d e n s i t y o f vap or ~ d e n s i t y o f l iq u i d T = te m p e r a tu r e A,B,C = s c o n s t a n t s ;T h is c o r r e l a t i o n p r o v id e s an a c c u r a t e m ethod o f p r e d i c t i n g i Ith e mean v a p o r - liq u id d e n s i t y up t o t h e c r i t i c a l tem p er a - | :t u r e . | | When t h e s a t u r a t e d v a p o r and l i q u i d e n t h a l p ie s o f a i |c h e m ic a l s u b s ta n c e a r e p l o t t e d a s a fu n c t io n o f te m p e r a tu r e , | i l 'an e n v e lo p e s i m i l a r t o t h e d e n s i t y e n v e lo p e i s fo rm ed . A I c o r r e l a t i o n o f e n t h a lp y w it h te m p e r a tu r e can b e o b ta in e d 18 by p l o t t i n g ^(H y + H^) v e r s u s te m p e r a tu r e . T h is c o r r e l a t i o n r e p r e s e n t s t h e a v e r a g e o f t h e s a t u r a t e d vapor and l i q u i d e n t h a l p ie s up t o t h e c r i t i c a l te m p e r a tu r e . I t w i l l b e r e f e r r e d t o a s th e "mean" e n th a lp y o f t h e h yd rocarb on in th e rem a in d er o f t h i s d i s c u s s i o n . F ig u r e 1 show s th e v a r ia t i o n o f t h e mean e n th a lp y a s a f u n c t io n o f tem p era t u r e fo r s e v e r a l l i g h t h y d r o c a r b o n s. The mean e n th a lp y o f e a c h h y d ro ca rb o n can b e d e s c r ib e d b y a q u a d r a tic e q u a tio n o f t h e ty p e : J*(HV Hx ) = A + BT + CT2 (1 0 a ) w h ere Hy » e n th a lp y o f th e s a t u r a t e d v a p o r , = e n th a lp y o f th e b u b b le p o in t l i q u i d , A, B , and C a r e p o ly n o m ia l c o e f f i c i e n t s . The a b s o lu t e e n th a lp y o f a s u b s ta n c e i s h o t hnown. T h e r e fo r e , an a r b it r a r y te m p e r a tu r e i s u s u a l l y s e l e c t e d a t w h ich th e e n th a lp y o f th e l i q u i d i s assum ed t o be z e r o , and th e e n t h a lp ie s o f b o th th e v a p o r and t h e l iq u i d a r e m easured from t h i s p o i n t . The v a lu e o f t h e c o n s ta n t A i s d ep en d en t on t h e te m p e r a tu r e a t w h ich t h e l i q u i d e n th a lp y i s assum ed t o b e z e r o . The c o n s t a n t A r e p r e s e n t s t h e v a lu e o f + H^) when T e q u a ls z e r o . E x p e r im e n ta l d a ta 19 500 OCTANE HEXANE 400- BUTANE 4 - 1 300- PROPAN] ETHANE 200 100 600 300 400 500 700 800 900 1000 TEMPERATURE °R F ig u r e 1 Mean E n th a lp y C urves o f t h e A lip h a t ic H ydrocarbons 20 a r e n o t a v a i l a b l e in t h i s r e g i o n , and v a lu e s o f A d e r iv e d from e x t r a p o la t e d d a ta a r e e x tr e m e ly in a c c u r a t e . i I f th e c o n s t a n t A i s e lim in a t e d , a more a c c u r a te m ethod o f d e te r m in in g th e c o n s t a n t s o f t h e e q u a tio n r e s u l t s . T h is m o d if ic a t io n can b e a c c o m p lish e d b y s u b s t i - j j t u t in g i n e q u a tio n ( 10a) a known v a lu e o f e n th a lp y ta k e n a t I ja c o n v e n ie n t te m p e r a tu r e , and s u b t r a c t in g t h i s e q u a tio n I :from e q u a tio n ( 1 0 a ) . The c o n s t a n t A i s e lim in a t e d in t h e ;s u b t r a c t i o n . E n th a lp y v a lu e s ta k e n from th e API T e c h n ic a l D ata j Book h a v e an e n t h a lp y b a se a t 260°R . At t h i s b a se te m p e r a - j t u r e - 0 and th e v a lu e o f (Hy + H^) i s e q u a l t o t h e h e a t o f v a p o r iz a t io n o f t h e m a t e r i a l. E n th a lp y v a lu e s from t h e API T e c h n ic a l D ata Book can b e s u b s t it u t e d in e q u a tio n j ( 10a ) t o g iv e : i j H >v260 = A + B (2 6 ° ) + C < 2 6 0 )2 ( 10b) | i 'S u b t r a c t in g t h i s e q u a tio n from (1 0 a ) g i v e s : I Jgdiy + Hx) « ^ > 2 6 0 + B(T " 260) + c ( t 2 “ 26° 2) j ( 10 c ) | T h is e q u a tio n i s e q u iv a le n t t o e q u a tio n ( 1 0 a ) , b u t t h e 21 \q u e s t io n a b le c o n s ta n t A h a s b e e n r e p la c e d b y ah e n th a lp y \v a lu e t h a t i s c h o se n in th e r a n g e o f e x p e r im e n ta l d a ta . I V a lu e s o f X 260 f o r s t r a ^9lllt c h a in a l i p h a t i c | h y d r o c a r b o n s cafi b e c o r r e la t e d w it h m o le c u la r w e ig h t by i ! Ith e f o llo w in g e q u a tio n : | ^ 2 6 0 = 2 3 5 / M ° * 2 t 1 1 ) j D i f f e r e n t i a t i o n o f e q u a tio n (1 0 a ) w ith r e s p e c t t o tem p era t u r e g i v e s : i d J s t H v + H j . ) , % | * -= B + 2CT (12) ; dT T h is e q u a t io n d e f in e s t h e h e a t c a p a c it y o f an e q u i-m o la l m ix tu r e o f va p o r and l i q u i d o f a p u re co m p o n en t. The !c u r v e s o f F ig u r e 1 a r e e s s e n t i a l l y p a r a l l e l t o ea ch o th e r ' from 260 R t o th e c r i t i c a l te m p e r a tu r e o f e a c h m a t e r ia l. | iT h is f a c t p e r m its t h e c o n c lu s io n t h a t e q u i- m o la l v a p o r - l i q u i d m ix tu r e s o f t h e a l i p h a t i c h y d ro c a r b o n s h a v e th e !sam e h e a t c a p a c it y , v a lu e s o f B and C u sed t o d e s c r ib e lo n e c u r v e can b e u s e d f o r t h e e n t i r e fa m ily o f c u r v e s . The i c o n s t a n t s B and C can b e e v a lu a t e d u s in g tw o o r more e x - ! i I p e r im e n ta l p o in t s from th e mean e n th a lp y -te m p e r a tu r e d i a - \gram f o r t h e m a t e r ia l. A more p r e c i s e m ethod o f o b ta in in g ! 22 ! t h e s e v a lu e s i s t o d e te r m in e th e p o ly n o m ia l c o e f f i c i e n t s by a l e a s t sq u a r e f i t o f a group o f e x p e r im e n ta l d a ta p o i n t s . The f o llo w in g v a l u e s o f B and C h a v e b e e n u sed t o I d e s c r ib e t h e mean e n t h a lp y c u r v e s o f th e a l i p h a t i c h y d ro c a rb o n s from e th a n e t o h e x a d e c a n e . j B = 0 .2 2 1 (12) C = 2 .1 6 x 1 0“4 (13) i i The o r d in a t e o f e a ch c u r v e a t 260°R i s th e v a lu e o f h A 250 !from e q u a t io n ( 1 1 ) . The mean e n t h a lp y cu rv e f o r an y a l i p h a t ic h y d ro ca rb o n can b e d e s c r ib e d b y u s in g t h e above c o n s t a n t s B and C and a v a lu e o f % ^ 2 6 0 ^rom t ^ ie AP* T ech n i c a l D a ta B ook. B . S a tu r a te d Vapor and L iq u id E n th a lp ie s j The is o th e r m a l h e a t o f v a p o r iz a t io n o f a s u b s ta n c e i s d e fin e d a s a f u n c t io n o f te m p e r a tu r e b y e q u a t io n ( 3 ) . T h is e q u a t io n p r e d i c t s t h e h e a t o f v a p o r iz a t io n o f a hydro- i .carb on q u i t e a c c u r a t e l y , i f th e c o r r e c t c r i t i c a l tem p er a - |tu r e i s u s e d . I f an e r r o r o c c u r s in t h e s e l e c t i o n o f Tc , i \a s i g n i f i c a n t e r r o r can o c c u r in t h e v i c i n i t y o f t h e c r i t i c a l p o i n t . I f t h e Tc s e l e c t e d i s lo w er th a n t h e t r u e c r i t i c a l te m p e r a tu r e , a grap h o f e q u a tio n (3) w i l l c u r v e 23 upward in t h e r e g io n a p p r o a c h in g th e c r i t i c a l te m p e r a tu r e , jwhere (1 - Tr ) i s s m a ll. I f Tc i s g r e a t e r th a n t h e t r u e c r i t i c a l tem p er a tu r e* th e grap h w i l l c u r v e downward in t h e I same r e g i o n . E q u a tio n (3 ) m ust be d iv id e d by 2 t o malce i t s e n th a lp y v a l u e s c o n s i s t e n t w ith t h o s e in e q u a tio n ( 1 0 c ) . By c o m b in in g e q u a tio n s (1 0 c ) w ith % o f e q u a tio n ( 3 ) , we o b - i i t a i n e x p l i c i t e q u a t io n s d e f i n i n g term s Ey and H^. A d d itio n r o f th e e q u a tio n s g i v e s an e x p r e s s io n w h ich p r e d i c t s t h e ;e n th a lp y o f th e s a t u r a t e d va p o r c u r v e up t o t h e c r i t i c a l p o i n t . I I I j H v = ^ -* 2 6 0 + B<T " 260) + C^ 2 " 26° 2) * % ^ o ( l * Tt >0f ! (1 4 ) By s u b t r a c t in g h o f e q u a tio n (3 ) from e q u a tio n (1 0 c) a :r e l a t i o n s h i p i s o b ta in e d fo r t h e l iq u i d e n th a lp y b o u n d a ry . H1 = * * 5 ^ 2 6 0 + B(T “ 260) + C (t2 ~ 26° 2) _ ^ o 11 " Tr ,0< | (1 5 ) f [ I T h is e q u a tio n d e s c r i b e s th e e n t h a lp y o f th e s a t u r a t e d ! liq u i d up t o th e c r i t i c a l p o i n t . E v a lu a tio n o f e q u a tio n s [( 1 4 ) and ( i 5 ) p r o v id e s c o m p le te d e f i n i t i o n o f t h e s a t u r a t e d v a p o r and l i q u i d e n th a lp y c u r v e s up t o t h e c r i t i c a l te m p e r a tu r e . To a p p ly e q u a tio n s (1 4 ) and (1 5 ) t o a s p e c i f i c a l i p h a t ic h y d ro ca rb o n th e c o n s t a n t s Tc , and < = < m ust be know n. The c r i t i c a l te m p e r a tu r e can b e o b ta in e d d i r e c t l y from t h e API T e c h n ic a l D ata Book fo r p u re h y d r o c a r b o n s . A v a lu e o f 0 .3 8 sh o u ld b e u sed f o r oC fo r t h e a l p h a t i c h y d r o c a r b o n s o th e r th a n m eth a n e. M ethane c a n n o t be c o r r e l a t e d w it h t h e o th e r h y d ro c a r b o n s and m ust be c o n s id e r e d s e p a r a t e l y . The h e a t o f v a p o r iz a t io n d a ta f o r m eth ane can b e c o r r e l a t e d u s in g a v a lu e o f 0 .3 5 fo r The v a lu e o f X Q c a n b e o b ta in e d b y e x p e r im e n t a lly m ea su r in g X a t s e v e r a l d i f f e r e n t te m p e r a tu r e s , and p l o t t i n g t h e v a lu e s o f A a s a fu n c t io n o f (1 - Tr ) on l o g - l o g p a p e r . The v a lu e o f A Q i s o b ta in e d b y e x t r a p o l a t i n g t h i s c o r r e l a t i o n t o T « 0 (w here (1 - Tr ) = 1 ) . F ig u r e 2 shows t h e v a r i a t i o n o f h X Q a s a f u n c tio n o f m o le c u la r w e ig h t b a se d on th e r m a l d a ta from th e API T e c h n ic a l D ata B ook . V a lu e s o f X Q fo r t h e s t r a i g h t - c h a i n a l i p h a t i c h y d r o c a r b o n s| i from e th a n e th r o u g h ? h e x a d e ca n e can b e p r e d ic t e d b y t h e j e q u a tio n lOOOj 100 - - < 100 MOLECULAR WEIGHT F ig u r e 2 C o r r e la t io n o f *sAv0 w it h M o le c u la r W eigh t 26 i w h ere M i s t h e m o le c u la r w e ig h t o f th e h y d r o carb on . 'E q u a tio n s (1 1 ) th r o u g h (1 6 ) p e r m it th e p r e d i c t i o n o f th e is a t u r a t e d va p o r and l i q u i d e n t h a l p ie s io f th e s t r a i g h t c h a in p a r a f f i n i c h y d r o c a r b o n s k n ow ing o n ly t h e m o le c u la r w e ig h t |and t h e c r i t i c a l te m p e r a tu r e s o f th e m a t e r i a l. Iso m er s |s u c h a s is o b u ta n e and is o p e n ta n e a r e n o t c o r r e la t e d w ith i !e q u a tio n s (11) and ( 1 6 ) . For su ch m a t e r ia ls th e v a lu e o f ^ 2 6 0 can be o b ta in e d from t h e API D a ta B ook, and t h e lv a lu e s o f c a n b e c a lc u l a t e d u s in g e q u a tio n ( 3 ) . i C. S lo p e o f t h e S a tu r a te d E n th a lp y C u rves H aving d e f in e d t h e e n th a lp y o f th e s a t u r a t e d vap or and l i q u i d c u r v e s , i t i s now a s im p le m a tte r t o d i f f e r e n t i a t e e q u a tio n s (1 4 ) and (1 5 ) w it h r e s p e c t t o te m p e r a tu r e t o i o b t a in e x p r e s s io n s f o r t h e s lo p e o f t h e s a t u r a t e d v a p o r e n th a lp y c u r v e , dHy/dT = B + 2CT - h [ ^ - r ] (Tc “ T) 5 * * 1 (17) iand fo r th e l i q u i d a t i t s b u b b le p o in t : | dH^/dT = B + 2CT + H h “ “p r l - T) * " 1 (18) j L c J i I iT h e se e q u a tio n s d e s c r ib e t h e v a r i a t i o n o f th e e n th a lp y o f 27 th e dew p o in t vap or and t h e b u b b le p o in t l iq u i d a s a fu n c t i o n o f te m p e r a tu r e . T h ese h e a t c a p a c i t i e s a r e n o t con s t a n t p r e s s u r e , or c o n s t a n t volum e p r o p e r t i e s . T hey s p e c i - i f i c a l l y d e s c r ib e th e ch a n g e o f t h e f l u i d e n th a lp y w ith i te m p e r a tu r e a lo n g th e lo c u s o f th e v a p o r - liq u id e n th a lp y l |e n v e lo p e . i j |D . P r e d ic t io n o f E n th a lp y o f Pure H ydrocarbon s The p r o c e d u r e s o u t l i n e d h e r e h a v e been u s e d t o p r e d i c t t h e e n t h a l p ie s o f a number o f a l i p h a t i c h y d r o c a r b o n s. j The compounds p r o p a n e , b u t a n e , h e x a n e , and o c ta n e h a v e r j b e e n e v a lu a t e d . The r e s u l t s o f t h e s e c a l c u l a t i o n s a r e p l o t t e d in F ig u r e s 3 , 4 , 5 , and 6 . V a lu e s ta k e n from th e i i API T e c h n ic a l D ata Book h a v e b een su p erim p o sed on t h e s e .c a lc u l a t e d c u r v e s t o d e m o n str a te t h e a c c u r a c y o f t h e m eth o d . The a v e r a g e d e v i a t io n and th e sta n d a r d d e v i a t i o n o f I e a c h c a lc u l a t e d sy ste m from t h e r e p o r te d d a ta h a v e been c a lc u la t e d and t a b u la t e d i n S e c t io n V. SATURATED ENTHALPY, Btu/lb 28 300 * 200 100 500 600 700 TEMPERATURE °R F ig u r e 3 Saturated Enthalpy Boundary for Propane SATURATED ENTHALPY, Btu/lb. 29 300 200 LOO 600 700 800 TEMPERATURE.°R F ig u r e 4 Saturated Enthalpy Boundary for Butane 30 400 C O 300 200 800 700 900 T E M P E R A T U R E °R F ig u r e 5 Saturated Enthalpy Boundary for Hexane SATURATED ENTHALPY, Btu/lb. 31 500 400 300 900 1000 TEMPERATURE °R F ig u r e 6 Saturated Enthalpy Boundary for Octane j IV. PREDICTION METHODS FOR BINARY MIXTURES I A. S p e c ia l P r o p e r t ie s o f M ix tu re s i The e n th a lp y e n v e lo p e o f a b in a r y m ix tu r e o f h y d r o - I ic a r b o n s on a H-T d iagram a p p r o x im a te s in i t s g e n e r a l sh ap e ith e o u t l i n e o f a p u re com ponent e n v e lo p e . The e n v e lo p e j c o n s i s t s o f a dew p o in t c u r v e , and a b u b b le p o in t c u r v e j w h ic h r e a c h a maximum te m p e r a tu r e a t t h e c r ic o n d e n th e r m . The c o n c e n t r a t io n s o f t h e com ponents rem ain c o n s ta n t a lo n g t h e e n t i r e c u r v e . C o n s e q u e n tly , i t i s n o t p o s s i b l e t o i h e a t a b o i l i n g l i q u i d sa m p le o f a b in a r y m ix tu r e i s o t h e r - i m a lly from a g iv e n p o in t on th e l i q u i d c u r v e t o a p o in t a t t h e same te m p e r a tu r e on t h e dew p o in t c u r v e . The m eth od s o f p r e d i c t i n g th e e n th a lp y e n v e lo p e s o f p u r e a l i p h a t i c h y d r o c a r b o n s w h ich h a v e b een d e s c r ib e d can b e a p p lie d w it h a h ig h d e g r e e o f a c c u r a c y t o b in a r y m ix - i it u r e s o f h y d r o c a r b o n s . H ow ever, i t i s n e c e s s a r y t o u s e th e p r o p e r c o n s t a n t s in t h e e q u a t io n s . The h e a t o f v a p o r iz a t io n o f a h y d ro ca rb o n m ix tu r e i jean b e p r e d ic t e d by e q u a tio n (3 ) i f t h e p r o p e r c r i t i c a l |te m p e r a tu r e i s u s e d , and t h e v a lu e o f i s a d ju s te d t o |c o n fo r m . To c o r r e l a t e t h e is o th e r m a l h e a t o f v a p o r iz a t io n 33 o f a b in a r y m ix tu r e , i t i s n e c e s s a r y t o u s e a s t h e c r i t i c a l | temperature the cricondentherm (Tc c ) , at which A becomes i | z e r o . The v& lue o f A Q must b e red u c ed t o co m p en sa te f o r j the increase in the absolute value of Xl - Tr * ) , where Tr ' i ! = T/Tc c . T h us, e q u a tio n (3) m ust be m o d ifie d in a c c o r d a n c e i i i w it h t h e f o llo w in g e q u a tio n : ^ . T °* o< , A = A q ' (1 - = T c c< |^ t ccJ (Tcc - T) (19) ] The term A 0 ‘ i s r e l a t e d t o t h e m o la l a v e r a g e v a lu e o f A 0 by t h e e x p r e s s io n = E V i ( 2 0 ) C C _J V a lu e s o f A fox t h e m ix tu r e can th e n b e c a lc u la t e d ik sin g t h e c o r r e c t e d A 0 ' in e q u a tio n ( 3 ) . E n th a lp y d a ta fa r s e v e r a l b in a r y m ix tu r e s o f m ethane j in p ro p a n e h ave b e e n r e p o r te d ( 2 , 1 7 , 3 7 ) . F ig u r e 7 shows ; th e s l o p e o f ^(Hy + H1 ) a s a f u n c t io n o f te m p e r a tu r e fo r t h e s e m ix t u r e s . The m ore v o l a t i l e m ix tu r e s show a p r o - j nounced in c r e a s e o f s l o p e in t h e h ig h te m p e r a tu r e or c r i - ! t i c a l r e g i o n . I f t h e a v e r a g e m o le c u la r w e ig h t o f th e m ix t u r e v a r i e s s i g n i f i c a n t l y from t h e m o le c u la r w e ig h t o f t h e h e a v y com p on en t, t h e s lo p e o f t h e mean e n th a lp y c u r v e o f 34 400 300 23.4% C « 8 9% C 4 J « PROPANE 200 100 400 300 500 600 700 TEMPERATURE °R F ig u r e 7 Mean E n th a lp y C urves fo r M ix tu r e s o f M ethane in P ropane 35 t h e m ix tu r e w i l l be s t e e p e r th a n t h a t e x h ib it e d b y p u re At low te m p e r a tu r e s and p r e s s u r e s th e e n th a lp y o f im ixed h y d ro ca rb o n g a s e s and l i q u i d s can b e c l o s e l y a p p r o x i m a ted by u s in g t h e m o la l a v e r a g e o f th e e n th a lp y o f p u re t h a lp y o f h y d ro ca rb o n m ix tu r e s d iv e r g e s i n c r e a s i n g l y from I !t h e e n th a lp y o f t h e pu re co m p o n en ts. The s lo p e o f t h e mean | e n t h a lp y cu rv e f o r a m ix tu r e m ust v a r y a c c o r d in g ly . The v a lu e o f (B + 2CT) fo r a m ix tu r e m ust c l o s e l y a p p ro x im a te th e e n th a lp y o f t h e pure com p on en ts a t low te m p e r a tu r e , b u t i t m ust in c r e a s e more r a p i d l y th a n t h e e n th a lp y o f th e p u re com p on en ts a s te m p e r a tu r e i n c r e a s e s . C o n s e q u e n tly , th e v a lu e o f B u s e d fo r m ix tu r e s o f a l i p h a t i c h y d r o c a r b o n s can b e t h e same a s t h a t u sed f o r p u re co m p o n en ts, b u t th e v a lu e o f C m ust be c o r r e c t e d t o co m p en sa te fo r th e in c r e a s e d s l o p e o f th e c u r v e . ;to t h e v a lu e o f C fo r t h e h e a v y com ponent by th e f o llo w in g ie q u a tio n : a l i p h a t i c h yd ro ca rb o n s a t t h e same te m p e r a tu r e jcom p on en ts. As te m p e r a tu r e and p r e s s u r e i n c r e a s e , th e e n - The v a lu e o f C f o r a v o l a t i l e m ix tu r e can b e r e l a t e d ^ ( H y - % ) „ - Bm < 3 * 5 <Hy + - Bfic (21) 36 ! | V a lu e s o f Cm /C h c w ere e v a lu a te d f o r e a c h o f th e I m eth a n e-p ro p a n e m ix tu r e s a t s e v e r a l te m p e r a tu r e s , V a lu e s o f Cm /C h c f o r e a ch m ix tu r e w ere c o n s t a n t a c r o s s t h e f u l l r a n g e o f th e d a ta , in d e p e n d e n t o f te m p e r a tu r e . The r a t i o o f C f o r t h e m ix tu r e t o C f o r t h e h e a v y com ponent i s a i c o n s ta n t f o r e a ch b in a r y m ix tu r e w h ic h v a r ie s w it h th e com p o s i t i o n o f t h e m ix tu r e . I t can b e c o r r e la t e d w it h th e r a t i o o f t h e m o le c u la r w e ig h t o f t h e h e a v y com ponent t o th e m o le c u la r w e ig h t o f th e m ix tu r e a s shown in F ig u r e 8 . The v a lu e o f Cm /C hc f o r a s p e c i f i c m ix tu r e can be p r e d ic t e d by it h e r e l a t i o n C^c = ^2 2 ^ F ig u r e 9 show s t h a t Cm /C ^c h a s a v a lu e o f 1 when t h e :m o le c u la r w e ig h t r a t i o h a s a v a lu e o f 1 ,0 6 i n d i c a t i n g t h a t ' m ix tu r e s c o n t a in in g ab ou t 95 p e r c e n t o r more o f t h e h e a v y l | |com p onent e x h i b i t no d iv e r g e n c e from t h e norm al s lo p e o f | ' t h e mean e n th a lp y c u r v e . i | V a lu e s o f Cjn/Chc o th e r h y d ro ca rb o n m ix tu r e s a r e I | a l s o shown in F ig u r e 9 . Each m ix tu r e h a s a d e f i n i t e s lo p e |w it h a c o r r e s p o n d in g v a lu e o f /3 • T h e se e x p o n e n ts can b e c o r r e la t e d a s a f u n c t io n o f th e m o le c u la r w e ig h t o f th e SYMBOL MIXTURE COMPONENTS METHANE-PROPANE PROPANE-ISOPENTANE PENTANE-HEXADECANE O o 8 4 2 3 5 Figure 8 Correlation of Cn/C^ with sc 38 2.0 1.8 - CURVE COMPOSITION REFERENCE 1 C1"C 10 26 2 C1~C7 29 3 C1“C 6 25 4 Ci-C5 33 5 C1-C4 32 6 Cl“iC4 23 7 C1_C3 30 8 c2"c7 12 9 C3"C10 28 10 C4_C10 27 11 c2-c4 13 12 C4-C7 11 13 C3"C4 22 o u E -t 1.4 - 0.2 0.8 MOL FRACTION LIGHT COMPONENT F ig u r e 9 V a r ia t io n o f Tc c /T s c w ith C o m p o sitio n 39 h e a v y c o m p o n e n t. T he f o l l o w i n g e q u a t io n d e s c r i b e s t h i s \ ■ r e l a t i o n s h i p . / 3 = 4 6 0 0 (Mh c ) " 2 ,1 (2 3 ) ; The e q u a t io n s f o r t h e s a t u r a t e d v a p o r and l i q u i d e n t h a lp y : o f m ix t u r e s th e n b eco m e: I | Hv = *5*26 0 + B(T - 2 6 0 ) + C (T2 - 2 6 0 2 ) + *$*0 ' (1 - T j ' ) ^ (2 4 ) j and I j = * 5 * 2 6 0 * B ( T “ 2 6 0 ) + C < t 2 “ 2 6 ° 2 ) " ^ o * ( 1 " Tr ' ^ ! (2 5 ) T h e s e e q u a t io n s a r e s i m i l a r in form t o e q u a t io n s ; (1 4 ) and (1 5 ) p r e v i o u s l y show n f o r p u r e c o m p o n e n ts . E q u a- ; t i o n s (2 4 ) and (2 5 ) p e r m it t h e p r e d i c t i o n o f t h e e n t h a lp y j e n v e lo p e o f a m ix tu r e o f h y d r o c a r b o n s up t o t h e c r i c o n d e n - | th e rm te m p e r a tu r e o f t h e m ix t u r e . The e q u a t io n s a r e s p e c i - 1 f i c f o r b in a r y m ix t u r e s and s h o u ld b e a p p l i c a b l e f o r m u l t i - | com p on en t s y s t e m s . I B . P r e d i c t i o n o f t h e C r ic o n d e n th e r m A s t u d y o f t h e v a r i a t i o n o f t h e c r ic o n d e n th e r m w it h ! c o m p o s it io n f o r b in a r y m ix t u r e s sh ow s t h a t t h i s f u n c t i o n 40 m a x im izes fo r p a r a f f i n i c m ix tu r e s a t a c o m p o s itio n b e tw e e n 70 and 95 m ol p e r c e n t o f t h e l i g h t com p on en t. The r a t i o o f th e c r ic o n d e n th e r m (Tc c ) t o t h e p seu d o c r i t i c a l te m p e r a tu r e (Ts c ) can b e r e l a t e d t o th e m ix tu r e c o m p o s itio n a s shown in F ig u r e 9 fa r a v a r i e t y o f b in a r y m ix tu r e s . The maximum tem p er a tu r e o f ea ch c u r v e h a s b e e n c o r r e l a t e d w ith t h e r a t i o o f c r i t i c a l te m p e r a tu r e s o f p u re i I com ponent s su c h t h a t 6 ~ L Ts c ] "ax. 1.2 4 3 - .2 4 3 r l s i l (2 6 ) w here TC2 > TCl The c o m p o s itio n w h ere t h i s maximum o c c u r s i s o b ta in e d b y th e r e l a t i o n Xg. = 0 .5 9 + .1 1 I | (2 7 ) te] The c u r v e s o f F ig u r e 9 can b e d e s c r ib e d by a g e n e r a l eq u a t i o n o f th e form = 1 + bX + cX2 - dX v (2 8 ) i s c w h ere d = (b + c ) when X = * 1 and X = m ol f r a c t i o n o f t h e l i g h t co m p o n en t. [ 41 I f ^ i s a la r g e num ber, th e n t h e fo u r th ter m o f th e e q u a tio n d is a p p e a r s when X i s s m a l l , and th e i n i t i a l s e c t i o n o f t h e cu rv e i s d e s c r ib e d b y 7 = ^ = 1 + bX + cX“ (29) As c D i f f e r e n t i a t i n g e q u a tio n (2 9 ) g iv e s d [ H LTs c J = b + 2 cX (30) dX When X = 0 .5 t h e f u n c t io n (b + c) c a n b e c o r r e la t e d w ith by t h e e q u a t io n b + c = 1 . 25 ( € - 1) (31) a s shown in F ig u r e 1 0 . For v a lu e s o f €. b e lo w 1 .5 , t h e c u r v e s a r e l i n e a r , ian d C * 0 . F or v a lu e s o f £ g r e a t e r th a n 1 .5 th e c u r v e i s I n o t l i n e a r . The v a lu e o f C can b e o b ta in e d from e q u a tio n (3 1 ) u s in g a c o n s ta n t v a l u e o f b = 0 . 4 5 . The a ssu m p tio n t h a t tS i s a l a r g e number c a n now be | p ro v ed b y d i f f e r e n t i a t i n g e q u a tio n (2 8 ) and e v a lu a t in g j | a t t h e maximum p o in t w h er e X = X g a s d e f in e d by e q u a tio n | (27). V a lu e s o f ^ w ere fou n d t o v a r y a s a f u n c t io n o f £ in a c c o r d a n c e w ith th e e q u a tio n 42 X.5 1.0 m © X X J < T > 4 1 0* a iH 0 ) o + 0.5 0 1.0 2.0 6 F ig u r e 10 C o r r e la t io n o f (b + c ) w ith € I 2 T = 6 .7 6 2,5 (32) I i E q u a tio n s (26) th r o u g h (32) c o m p le t e ly d e f i n e th e ; v a r i a t i o n o f t h e c r ic o n d e n th e r m o f a b in a r y m ix tu r e o f | | a l i p h a t i c h y d r o c a r b o n s , u s in g o n ly t h e m o le c u la r c o m p o si- | t i o n and th e c r i t i c a l te m p e r a tu r e s o f t h e co m p o n en ts. i | C. E n th a lp y P r e d ic t io n o f M eth an e-P rop an e M ix tu r e s | i The p r o c e d u r e s o u t l i n e d p e r m it t h e r ea d y c a l c u l a t i o n o f e n t h a l p ie s o f m ix tu r e s o f m ethane w it h o th e r a l i p h a t i c h y d r o c a r b o n s . To d e m o n str a te th e e f f e c t i v e n e s s o f t h i s m ethod o f c a l c u l a t i o n , t h r e e ex a m p les o f m ethane m ixed w ith 5%, 51% and 76% p rop an e h a v e b een c a lc u l a t e d and p l o t t e d in F ig u r e s 1 1 , 12 and 1 3 . E x p e r im e n ta l d a ta p o in t s a r e su p e r im posed on t h e c u r v e s t o d e m o n str a te t h e a c c u r a c y o f th e p r o c e d u r e . A d e t a i l e d c a l c u l a t i o n f o r t h i s p r o c e d u r e i s j ; t a b u la t e d in A p p en d ix C. ID. E n th a lp y P r e d ic t io n o f P en ta n e -H e x a d e ca n e M ix tu r e s The e n t h a l p i e s of- s e v e r a l m ix tu r e s o f p e n ta n e and jh e x a d e c a n e h a v e b e e n r e p o r te d (17). The e n th a lp y d a ta fo r ] |t h e s e a l i p h a t i c h y d ro ca rb o n m ix tu r e s h a v e b een i n v e s t i g a te d f o r co m p a riso n w ith o t h e r h y d ro ca rb o n s y s t e m s . The SATURATED ENTHALPY, Btu/lb. 44 200 100 400 300 260 TEMPERATURE °R F ig u r e 11 Saturated Enthalpy Boundary for a Mixture Containing 95% Methane in Propane 45 300 * .a H P U P5 200 < ! m 100 400 500 600 TEMPERATURE °R F igu re 12 Saturated Enthalpy Boundary for a Mixture Containing 49.4% Methane in Propane 46 300 200 a 100 500 600 TEMPERATURE °R Figure 13 Saturated Enthalpy Boundary for a Mixture Containing 23.4% Methane in Propane mean e n th a lp y c u r v e s fo r t h e s e m ix tu r e s , p l o t t e d in F ig u re 1 4 , show a d iv e r g e n c e o f th e more v o l a t i l e hyd rocarbon m ix tu r e s s im ila r t o t h a t found in th e m eth ane-propan e m ix tu r e s * V a lu es o f C fo r t h e s e m ix tu r e s can b e p r e d ic t e d in th e same way a s t h a t o u t lin e d fo r m ethane-propane m ix tu r es u s in g e q u a tio n (21) . To d em o n stra te th e e f f e c t i v e n e s s o f t h i s c a l c u l a t i o n p r o c e d u r e , th e e n th a lp y e n v e lo p e s o f tw o b in a r y m ix tu r e s o f p en ta n e and h exad ecan e w ere c a l c u l a t e d . The m ix tu r e s con ta in e d 0 .5 8 7 and 0 .7 9 4 mol f r a c t i o n p e n ta n e . The r e s u l t s o f t h e s e c a l c u l a t i o n s a r e p l o t t e d in F ig u r e s 15 and 16. E x p e r im e n ta lly m easured e n th a lp y p o i n t s a r e p l o t t e d on th e c u r v e s t o show how c l o s e l y th e c a lc u l a t e d cu rve a p p r o x i m ates th e a c t u a l d a ta . I t i s app arent t h a t two o f t h e e x p e r im e n ta l e n t h a l py v a lu e s do n ot matjcJh t h e c a lc u l a t e d dew p o in t cu rv e in F ig u re 1 6 . The w id e b o i l i n g range o f t h i s sy stem made th e d e te r m in a tio n o f t h e dew p o in t lo c u s d i f f i c u l t . I t i s p o s s i b l e t h a t t h e s e tw o p o in t s a r e p o in t s o f i n f l e c t i o n o f t h e i s o b a r i c e n th a lp y c u r v e s . S in c e th e o th e r d a ta p o in t s c l o s e l y m atch th e c a lc u l a t e d c u r v e , fu r th e r e x p e r im e n ta l s tu d y o f t h e dew p o in t e n th a lp y seem s w arran ted f o r t h e M E A N ENTHALPY, B t u / l b 48 600 0.587 C 0.794 C5 500 « HEXADECANE 300 900 1000 1100 TEMPERATURE °R F igu re 14 Mean E n th a lp y Curves fo r M ixtures o f Pentane in H exadecane SATURATED ENTHALPY, B t u / l b 600 49 500 400 320 960 1000 1100 TEMPERATURE °R F ig u re 15 S a tu r a te d E n th alp y Boundary fo r a M ixtu re C o n ta in in g 58.7% P entane in H exadecane 50 500 3 400 300 900 1000 1100 TEMPERATURE °R Figure 16 Saturated Enthalpy Boundary for a Mixture Containing 79.4% Pentane in Hexadecane 51 i j j p a r t i c u la r c a s e o f t h e 7 9 .4 mol p e r c e n t p en ta n e in h e x a d e - |c a n e s y s te m . i i i i E. E n th a lp y P r e d ic t io n o f a P r o p a n e -Iso p e n ta n e M ixtu re i | E n th alp y d a ta have b een r e p o r te d fo r a s i n g l e m ix- | I ;t u r e o f propane and iso p e n ta n e ( 1 5 ) . The m ixtu re c o n ta in e d I ; 0 .4 3 mol f r a c t i o n p rop an e. The e n th a lp y d a ta showed th e same ty p e o f d iv e r g e n c e e x h i b i t e d by th e p r e v io u s ex a m p les. |The v a lu e o f C fo r t h e m ixtu re was c a l c u l a t e d u s in g eq u a - i t i o n ( 1 0 c ) . B ecau se o n ly one v a lu e o f C was a v a i l a b l e , i t I was n e c e s s a r y t o assum e th a t C = 1 when = 1 .0 6 , a s i shown in F ig u re 8 , i n order t o e s t a b l i s h t h e v a lu e o f i n e q u a tio n (22 ) fo r t h i s b in a r y sy ste m . The c a l c u l a t e d e n th a lp y e n v e lo p e f o r t h i s m ix tu r e i s shown in F ig u r e 1 7 . E x p e r im e n ta lly d eterm in ed e n th a lp y p o in t s a r e p l o t t e d on th e graph fo r com p arison . The a r i t h m e tic and sta n d a rd d e v ia t io n f o r t h i s sy s te m a re ta b u la te d i in S e c t io n V. i i | i i i r r i \ \ I i ___________________________________________________________________________________________ SATURATED ENTHALPY, Btu/lb 52 300 200 100 700 800 600 TEMPERATURE °R Figure 17 Saturated Enthalpy Boundary for a Mixture Containing 43% Propane in Isopentane V. ACCURACY OF CALCULATED ENTHALPIES ; A p roced ure h a s been d e v e lo p ed t o p r e d ic t t h e v a p o r - ! l i q u i d e n th a lp y e n v e lo p e fo r a pu re hyd rocarbon compound, ; or a b in a r y m ix tu re o f h y d ro c a r b o n s. To d e m o n stra te t h e : a c c u r a c y o f th e p r o c e d u r e , i t i s n e c e s s a r y t o d e ter m in e th e I d i s p e r s i o n or d e v i a t io n o f th e m ethod. The d e v i a t i o n , e , i I i s d e fin e d by th e e q u a tio n e = (Hc - H) (33) where H ^ , = th e c a lc u l a t e d e n th a lp y v a lu e , H = th e mean e n th a lp y v a lu e e s t a b l i s h e d by e x p e r im e n ta l m easurem ent. V a lu es o f H o b ta in e d from l i t e r a t u r e s o u r c e s and ; c o r r e l a t e d d a ta r e p r e s e n t th e b e s t a v era g e v a lu e o f t h e ; param eter a t any g iv e n p o i n t . I n d iv id u a l e x p e r im e n ta l e r - I r o r s Which may v a r y up t o 10% a r e averaged in th e c o r r e l a t e d v a l u e . Based on r e p o r te d measurement a c c u r a c ie s , th e ; c o r r e l a t e d d a ta may b e assumed t o have an a v e r a g e a c c u r a c y o f ± 1.5%. These r e p o r te d d a ta v a lu e s have b een u sed t o e s t a b l i s h th e d e v i a t i o n o f th e c a lc u l a t e d e n th a lp y v a l u e s . i One measure o f th e a c c u r a c y o f th e p ro ced u re i s t h e a r it h m e t ic av era g e o f t h e e r r o r o f a number o f p o in t s 53 54 ta k e n a lo n g t h e same c u r v e . The a r it h m e t ic mean e r r o r o f th e p ro ced u re can be o b ta in e d by d i v i d i n g th e sum o f th e e r r o r s by t h e number o f r e a d in g s . 2 e (34) n A more u s e f u l way o f r e p r e s e n t in g th e d a ta i s by i t h e u s e o f t h e stan d ard d e v i a t i o n , or th e r o o t mean sq u are i ! i j d e v ia t io n ( S ) . i (35) The u n i t s o f t h i s d e v i a t io n a r e t h e same a s fo r t h e i n d i v id u a l m easurem ents. H owever, th e v a lu e o f S i s th e sta n d ard d e v i a t i o n o f t h e e n t i r e p o p u la t io n o f d a ta p o i n t s . A h ig h d e g r ee o f a c cu ra c y was a c h ie v e d in th e c a l - j . c u l a t i o n o f th e e n th a lp y b o u n d a rie s o f pure a l i p h a t i c com- ; p o n e n ts. V a lu e s w ere ta k e n a t t e n d e g r e e i n t e r v a l s i n th e ; c r i t i c a l tem p era tu re r e g io n and a t 50 d e g r ee i n t e r v a l s a t i | low er tem p er a tu r es down t o a tem p era tu re a p p r o x im a te ly i ! 200°R b e lo w t h e c r i t i c a l p o i n t . T a b le I I sum m arizes th e a c cu ra c y o f t h e s e c a l c u l a t i o n s . The a v era g e d iv e r g e n c e o f a l l th e c a l c u l a t i o n s was l e s s th an 0.5% w hich i s w it h in t h e a c c u r a c y o f th e o r i g i n a l m easurem ents. 55 TABLE II DEVIATION OF CALCULATED PURE COMPONENT ENTHALPIES A verage D e v ia tio n A r ith m e tic Standard P ercenl Component D e v ia tio n D e v ia tio n E rror Propane 2 .1 4 2 .7 0 .8 5 Butane 1 .5 0 1 .7 5 0 .5 1 Hexane 1 .1 1 1 .5 2 0 .3 0 O ctane 1 .3 9 1 .7 1 0 .3 2 A verage 1 .5 4 0 .4 9 56 j I The a c c u r a c y o f th e p ro ced u re fo r b in a r y m ix tu r e s I h a s b een e v a lu a te d in th e same manner a s fo r pu re compo n e n t s . T ab le I I I shows th e a r it h m e t ic d e v i a t io n and th e sta n d a rd d e v i a t io n fo r ea ch o f th e m ix tu r e s s t u d i e d , and th e a v e ra g e d e v i a t io n fo r a l l th e c a s e s . The p e r c e n t : e r r o r based on th e a v e ra g e e n th a lp y o f each sy stem i s | shown a lo n g w ith t h e a v e ra g e p e r c e n t e r r o r fo r a l l th e i | c a s e s . The a v e ra g e p e r c e n t e r r o r fo r t h e s e exam p les i s I 0 . 8% w h ich r e p r e s e n t s a s i g n i f i c a n t improvement o v er a v a i l a b le m ethods o f e n th a lp y p r e d i c t i o n . 57 TABLE III DEVIATION OF CALCULATED ENTHALPIES OF BINARY MIXTURES A v e ra g e D e v i a t i o n A r i t h m e t i c S t a n d a r d P e r c e n t M o l a l C o m p o s itio n ______________ D e v i a t i o n D e v i a t i o n E r r o r 0 .9 5 M ethane, 0 .0 5 Propane 1 .9 5 2 .7 1 .1 7 0 .4 9 M ethane, 0 .5 1 Propane 2 .3 4 2 .8 7 1 .0 3 0 .2 4 M ethane, 0 .7 6 Propane 2 .6 6 3 .3 6 1 .1 4 0 .7 9 4 P en tane , 0 .2 0 6 H exadecane 1 .6 2 1 .9 0 0 .3 7 0 .5 8 7 P en tane , 0 .4 1 3 H exadecane 1 .1 7 .1 .3 0 0 .2 5 0 .4 3 P rop ane, 0 .5 7 P en tane 2 .2 3 2 .7 3 0 .7 4 A verage 1 .9 8 0 .8 VI. CONCLUSIONS The tw o p h ase e n th a lp y b o u n d a rie s o f th e a l i p h a t i c hy d rocarb on s can b e c o r r e l a t e d by a p o ly n o m ia l e q u a tio n o f th e form Jjdiy + H]^) = A + 9T + CT2 The mean e n th a lp y c u r v e s o f t h e a l i p h a t i c h yd rocarbons a re p a r a l l e l t o ea ch o t h e r . The change o f e n th a lp y o f t h e s e c u r v e s a s a f u n c t io n o f tem p era tu re i s p r e d ic te d by t h e e q u a tio n dJgtl^ + Hx ) / dT a B + 2CT F ixed v a lu e s o f th e c o n s t a n ts B and C can be u sed t o d e s c r ib e th e mean e n th a lp y c u r v e s o f a l l th e a l i p h a t i c h yd rocarb on s from eth a n e th rou gh h e x a d e c a n e . The d i f f e r e n c e betw een t h e mean e n th a lp y c u r v e s fo r v a r io u s h yd rocarb on s i s e s t a b l i s h e d by th e d i f f e r e n c e in th e h e a t o f v a p o r iz a t io n o f th e i n d iv id u a l h yd roca r bons a t th e tem p era tu re o f th e e n th a lp y b a s e . The two p h ase e n th a lp y boundary o f pure a l i p h a t i c h y d rocarb on s can b e p r e d ic t e d u s in g o n ly th e c r i t i c a l 58 59 te m p e r a tu r e , th e m o le c u la r w e ig h t , and t h e h e a t o f v a p o r iz a t io n o f th e su b s ta n c e a t th e e n th a lp y b a s e . Mixed h yd rocarb on s e x h i b i t a mean e n th a lp y curve w ith a s lo p e w h ich te n d s t o be g r e a t e r than th e s lo p e o f th e pu re co m p on en ts, -and w hich in c r e a s e s w ith t h e p e r c e n ta g e o f l i g h t component in th e m ix tu r e . The s lo p e for a m ix tu r e can b e r e l a t e d t o t h e s lo p e o f th e pure com ponents u s in g t h e r a t i o Cm /C ^ c . The crico n d en th erm o f a b in a r y m ixtu re o f h yd rocarbons can be p r e d ic t e d u s in g o n ly t h e c r i t i c a l tem p er a tu r es and th e m o le c u la r c o m p o sitio n o f th e m ix tu r e . The two p h a se e n th a lp y boundary o f b in a r y m ix tu r e s o f a l i p h a t i c h y d rocarb on s can be p r e d ic te d u s i n g o n ly t h e pure component c r i t i c a l te m p e r a tu r e s , th e m o lec u la r w e ig h t s , and th e h e a t s o f v a p o r iz a t io n o f th e com p on en ts a t th e e n th a lp y b a s e . X. REFERENCES 1 . Am erican P etro leu m I n s t i t u t e , T e c h n ic a l Data Book - P etro leu m R e f in in g , P ort C ity P r e s s , B a ltim o r e , Md. (1 9 6 6 ). 2. B h iru d , V. L. and P ow ers, J . E .,P h .D . T h e s is , U n iv e r s i t y o f M ich igan , August 19 69. 3. B ra d fo rd , M. L. and T hodos, G ., J . Chem. Eng. D a ta , 1 2 , 373 (1 9 6 7 ). 4 . C a i l l e t e t , L. and M a th ia s, E. 0 . J . , Compt. R e n d ., 1 0 4 , 1563 (1 8 8 7 ). 5. D odge, B. F ., C hem ical E n g in e e r in g Therm odynam ics, McGraw H i l l , N. Y. (1 9 4 4 ). 6 . E d m iste r , W. C . , A .I .C h .E . J . , JL, 38 (1 9 5 5 ). 7 . E t t e r , D. O. ana Kay, W. B . , J . Chem. Eng. D ata, _ 6 , 409 (1 9 6 1 ). 8 . G r ie v e s , R. B. and T hodos, G ., S o c. P e t r o l . Eng. J . , 2 , 287 (1 9 6 3 ). 9 . Hadden, S . T. , J . Chem. Eng. D ata, 15,* 92 (1 9 7 0 ). 1 0 . Hougen, 0 . A ., W atson, K. M. and R a g a tz , R. A ., Chem i c a l P r o c e s s P r i n c i p l e s , 2nd E d ., W ile y , N. Y. (1 9 5 9 ). 1 1 . Kay, W. B ., In d . Eng. Chem., 22* 590 (1 9 4 1 ). 1 2 . Kay, W. B ., In d . Eng. Chem., 3 0 , 459 (1 9 3 8 ). 1 3 . Kay, W. B ., In d . Eng. Chem., 22, 353 (1 9 4 0 ). 14. Kobe, K. A ., T herm ochem istry for th e P e tr o c h e m ic a l In d u stry* P etroleu m R e fin e r (1 9 5 1 ). 1 5 . L e n o ir , J . M ., H ydrocarbon P r o c e s s in g , 4 6 , 161 (1 9 6 7 ). 60 61 | 16. L e n o ir , J . M ., H ayworth, K. E. and H ip k in , H. G ., P r o c . Amer. P e t r o l . I n s t . , 5 0 , 212 (1 9 7 0 ). i 1 7 . L e n o ir , J . M. and H ip k in , H. G ., J . Chem. Eng. D a ta , 1 5 , 368 (1 9 7 0 ). | 18. L e n o ir , J . M ., K u r a v ila , G. K. and H ip k in , H. G ., P r o c . Amer. P e t r o l . I n s t . , 4 9 , 89 (1 9 6 9 ). | | 1 9 . L e n o ir , J . M ., R ob in son , D. R. and H ip k in , H. G ., J . Chem. Eng. D ata, 1 5 , 26 (1 9 7 0 ). I 2 0 . M ather, A. E ., Ph.D . T h e s is , U n iv e r s i t y o f M ichigan ( 1 9 6 7 ). I 2 1 . McCracken, P. G. and S m ith , J . M ., A .l.C h .E . J . , 2, j 498 (1 9 5 6 ). | ! 22. N ysew ander, C. N . , S a g e , B. H. and L acey, W. N . , In d . Ehg. Chem., 32., 118 (1 9 4 0 ). i 23. O ld s, R. H ., S a g e , B. H. and L acey, W. N . , In d . Eng. Chem ., 34, 1008 (1 9 4 2 ). j 24. O r e n t lic h e r , M. and P r a u s n it z , J . M ., Can. J . Chem. j E n g ., 4 5 / 78 (1 9 6 7 ). j 25. P o s to n , R. S . and M cK etta, J . J . , J . Chem. Eng. D ata, 1 1 , 362 (1 9 6 6 ). i 26. Reamer, H. H ., O ld s, R. H ., S a g e, B. H. and L acey, W. N . , In d . Eng. Chem., 3 4 , 1526 (1 9 4 2 ). 27. Reamer, H .-H . and S a g e , B. H ., J . Chem. Eng. D a ta , 9., 24 ( 1 9 6 4 ). | 2 8 . Reamer, H. H. and S a g e , B. H ., J . Chem. Eng. D a ta , 1 1 . 17 (1 9 6 6 ). i i | 29. Reamer, H. H ., S ag e, B. H. and L acey, W. N . , J . Chem. ! Eng. D a ta , 1 , 29 (1 9 5 6 ). j 3 0 . Reamer, H. H ., S a g e , B. H. and L acey , W. N . , In d . Eng. ! C hem ., 4 2 , 534 (1 9 5 0 ). 62 31. I I I 3 2 . j 3 3 . ! 3 4 * : 3 5 . i 36. : 3 7 . 1 3 8 . 3 9 . ; 4 0 . : 4 i . 1 ! 4 2 . - 4 3 . 44. R e id , R. C. and Sherwood, T. K ., The P r o p e r t ie s o f G ases and L iq u id s , 2nd E d ., McGraw H i l l , N. Y. (1 9 6 6 ) . S a g e , B. H . , H ic k s, B. L. and L acey, W. N . , Ind. Eng. Chem., 32., 1085 (1 9 4 0 ). S a g e , B. H ., Reamer, H. H ., O ld s, R. H. and L acey, W. N. , In d . Eng. Chem., 34* 3.108 ( 1 9 4 2 ). Shaw, R . , J . Chem. Eng. D a ta , .14, 461 (1 9 6 9 ). S ilv e r b e r g , P. M ., and W en zel, L. A ., j . Chem. Eng. D ata, ljO, 363 (1 9 6 5 ). S ilv er m a n , E. D* and T h odos, G ., Ind. Eng. Chem. F u n d ., 1, 299 (1 9 6 2 ). S t e i n , P. P. and M artin , J . J . , Chem. Eng. P ro gr. Symp. S e r . No. 4 4 , 559. (1 9 6 3 ). S te v e n s , W. P. and T hodos, G ., A .I .C h .E . J . , .9, 293 (1 9 6 3 ). S t o r v ic k , T. S . and S m ith , J . M ., J . Chem. Eng. D a ta , 5., 133 (1 9 6 0 ). T h ie s e n , A ., V e r h l. D e u t. P h ys. G e s ., .16, 80 (1 8 9 7 ). W atson, K. M ., In d. Eng. Chem., 85, 398 (1 9 4 3 ). Y esa v a g e, V. F . , Ph.D. T h e s i s , U n iv e r s i t y o f M ichigan (1 9 6 8 ). Y esa v a g e, V. F. F u rtad o , A. W. and P ow ers, J . E ., P ro c . N a t ' l . Gas P r o c e s s . A s s o c ., T ech . P a p ers, 47., 3 (1 9 6 8 ). Y esa v a g e, V. F . , M ather, A. E . , K atz, D. L. and P ow ers, J . E . , In d . Eng. Chem., .59, 35 (1 9 6 7 ). i I I j i A P P E N D I C E S 63 APPENDIX A NOMENCLATURE i a , b , c , d C o n sta n ts in cricon d en th erm e q u a tio n A,B,C C o n sta n ts in mean e n th a lp y e q u a tio n c s l Heat c a p a c it y o f s a t u r a t e d l i q u i d c sv Heat c a p a c it y o f s a t u r a t e d vapor H1 E n th alpy o f s a tu r a te d l iq u i d ( B t u /lb ) E n th alp y o f s a tu r a t e d vapor ( B t u /lb ) k C on stan t i n e q u a tio n (22) K C on stan t i n T h ie s e n 's e q u a tio n M M o lecu lar w e ig h t o f hyd rocarbon T Tem perature (°R ankine) T C C r i t i c a l tem p era tu re (°R ankine) Tc c C ricondentherm tem p eratu re (°R ankine) Tc l C r i t i c a l te m p e r a tu r e , component 1 t c 2 C r i t i c a l te m p e r a tu r e , component 2 Tc i C r i t i c a l tem p eratu re o f component (i) Tr Reduced tem p eratu re = T/Tc T ' ■ L r Reduced tem p eratu re b a sed on crico n d e n th er m T/Tc c T ±ac Pseudo c r i t i c a l tem p era tu re = ( S x ^ 1 C£) 64 X Mol f r a c t i o n X g Mol f r a c t i o n o f l i g h t e r component o f b in a r y Where crico n d e n th er m m axim izes c* Exponent in T h ie s e n 's e q u a tio n /3 Exponent i n e q u a tio n (22) " S ' Exponent in crico n d en th erm e q u a tio n (28) £ Maximum r a t i o o f c rico n d en th erm tem p eratu re t o pseudo c r i t i c a l tem p era tu re * Heat o f v a p o r iz a t io n (B tu /lb ) ?V Q ' L aten t h e a t o f v a p o r iz a t io n o f m ixtu re when T = 0°R D e n s ity o f vapor D e n s ity o f l iq u i d S u b s c r i o t s : m B inary m ix tu re h e Heavy component i i^fc component APPENDIX B ! CALCULATED ENTHALPY VALUES OF PURE BUTANE I The e n th a lp y e n v e lo p e o f bu tane i s c a lc u l a t e d t o j d em o n stra te t h e a p p l i c a t i o n o f th e e q u a tio n s in t h e p r e d i c - | t i o n o f th e s a tu r a t e d e n th a lp y lo c u s o f a pure h y d ro ca rb o n . The c o n s t a n t s u se d in th e c a l c u l a t i o n a r e a s f o llo w s : M o lecu la r W eight - 5 8 .0 C r i t i c a l Tem perature « 7 6 5 .6°R O 2 3 35X 0 = 3 8 4 /( 5 8 .0 } = 123 (E q u ation 16) is X 260 = 2 3 5 / ( 5 8 . 0 ) ° * 2 » 1 0 4 .5 (E q u ation 11 ) °R ^ 2 6 0 .221(1-260) 2.16x10”4(T2-2602) h(Uv+ H x) 600 1 0 4 .5 7 5 .2 6 3 .1 2 4 2 .8 650 1 0 4 .5 8 6 .3 7 6 .5 2 6 7 .3 700 1 0 4 .5 9 7 .4 9 1 .3 2 9 3 .2 740 1 0 4 .5 1 0 6 .2 1 0 3 .9 3 1 4 .6 750 1 0 4 .5 1 0 8 .6 1 0 6 .8 3 1 9 .9 760 1 0 4 .5 110.6 110.2 3 2 5 .3 66 1 1 1 : °R Tr U -V <1-Tr ) ‘ 38 % 'A 0(1-Tr)*38 H v H1 r r 600 0 . 7 8 4 0 . 2 1 6 0 . 5 5 9 6 8 . 6 3 1 1 .4 1 7 4 . 2 ! 650 ! 0 . 8 4 9 0 . 1 5 1 0 . 4 8 8 6 0 . 6 3 2 7 .9 2 0 6 . 7 7 0 0 0 . 9 1 5 0 . 0 8 5 0 . 3 9 2 4 8 . 2 3 4 1 .4 2 4 5 . 0 740 0 . 9 6 7 0 . 0 3 3 0 . 2 7 4 3 3 . 7 3 4 8 .3 2 8 0 . 9 750 i 0 . 9 8 0 0 . 0 2 0 0 . 2 2 5 2 7 . 7 3 4 7 .6 2 9 2 . 2 760 0 . 9 9 4 0 . 0 0 6 0 . 1 4 3 1 7 . 6 3 4 2 .9 3 0 7 . 7 i I i i i I ! APPENDIX C j CALCULATED ENTHALPY VALUES OF A METHANE-PROPANE MIXTURE | j To dem onstrate th e a p p lic a t io n o f th e e q u a tio n s p r e s e n t e d in t h i s stu d y for th e p r e d ic t io n o f th e e n th a lp y o f !a b in a r y m ix tu re, the e n th a lp y en v elo p e o f a m ixtu re con t a i n i n g 95% methane in propane has been c a lc u l a t e d . The j ! c o n s t a n t s used in t h i s c a l c u l a t i o n are as f o llo w s : C r i t i c a l Components Mol F r a c tio n Mol Weight Tem perature, R Methane 0 .9 4 8 1 6 .0 4 3 4 4 .3 Propane 0 .0 5 2 4 4 .0 9 6 6 6 .4 M o la l Average C r i t i c a l Tem perature ( 0 .9 4 8 ) ( 3 4 4 .3 ) = 3 2 6 .4 ( 0 .0 5 2 ) ( 6 6 6 .4 ) = 3 4 .6 Ts c = 3 6 1 .0 M o la l Average Mol Weight ( 0 .9 4 8 ) ( 1 6 .0 4 ) = 1 5 .1 9 ( 0 .0 5 2 ) ( 4 4 .0 9 ) « 2 .2 9 17.48 63 Critical Temperature Ratio ' L c J L = 66 6 .4 - 1 .9 3 5 TC1 3 4 4 .3 Maximum C ricondentherm R a tio (E q u ation 26) 1 .2 4 3 - ( 0 .2 4 3 ) ( 1 .9 3 5 ) = 1 .2 9 Mol F r a c tio n o f L ig h t Component a t 6 (E qu ation 27) X€ = 0 .5 9 + 0 .1 1 ( 1 .9 3 5 ) - 0 .8 0 3 Cr icon d en th erm (b + c) = 1 . 2 5 ( € - 1) (E q u ation 31) = ( 1 .2 5 ( 1 .2 9 - 1) = 0 .3 6 2 S in c e < i s l e s s th an 1 . 5 , th e cu rve i s l i n e a r . T h e r e fo r e , c = 0 b = 0 .3 6 2 y « 6 .7 € 2 ‘ 5 (E q u ation 32) X = 6 .7 ( 1 . 2 9 ) 2 *5 = 1 2 .7 When X = 0 .9 4 8 Z ee s i + bx + c x 2 - d x ^ (E qu ation 28) Ts c 12 7 = 1 + ( .3 6 2 ) ( .9 4 8 ) - ( 0 .3 6 2 ) ( .9 4 8 ) = 1 .1 6 1 Tc c = ( 1 .1 6 1 ) ( 3 6 1 ) « 421°R C a lc u la t io n o f h for m ethane = ( .9 4 8 ) ( 1 5 0 ) = 1 4 2 .1 H fo r propane = ( .0 5 2 ) ( 1 3 3 ) = 6 .9 T o ta l = 1 4 9 .0 h ^o ' = 1 4 9 1 - —7 7 7 | = 140 (E q u ation 20) C a lc u la t io n o f % /N ^ 2 6 0 “ 1 4 0 C a lc u la t io n o f / 3 [ r f e ] 260 , 38 1 " 421 I = 9 7 *5 1 9 > / 3 = 4600 (M^q) (E q u ation 23) = 4600 ( 4 4 .0 9 ) - 2 *1 - 1 .6 4 C a lc u la t io n o f Cn / Ch c When Cm /Ch c = 1 = 1 . 0 6 S a _ = 1 = K d . 0 6 ) 1 *64 (E q u ation 22) Che 71 Cm = ( 4 . 1 6 ) ( 2 , 1 6 x 10~4 ) = 9 x 10~4 B = 0 .2 2 1 I R T a b u la ted E n th a lp y C a lc u la t io n °R ^*260 Bm(T~260) (T^SO2)^ H(lyf %) 260 9 7 .5 0 0 9 7 .5 300 9 7 .5 8 .8 2 0 .2 1 2 6 .5 320 9 7 .5 1 3 .3 3 1 .5 1 4 2 .3 340 9 7 .5 1 7 .7 4 3 .3 1 5 8 .5 360 9 7 .5 2 2 .1 5 5 .8 1 7 5 .4 380 9 7 .5 2 6 .6 6 9 .1 1 9 3 .2 400 9 7 .5 3 1 .0 8 2 .8 2 1 1 .3 420 9 7 .5 3 5 .4 98 2 3 0 .9 °R T ’ A r (1“V ) (1-Tr ')°*38 h X H v H 1 260 0 .6 1 8 0 .3 8 2 0 .6 9 4 9 7 .5 1 9 5 .0 0 300 0 .7 1 3 0 .2 8 7 0 .6 2 2 8 7 .0 2 1 3 .5 3 9 .5 320 0 .7 6 0 0 .2 4 0 .5 8 0 8 1 .2 2 2 3 .5 6 1 .1 340 0 .8 0 9 0 .1 9 1 0 .5 3 4 7 4 .7 2 3 3 .2 8 3 .8 360 0 .8 5 6 0 .1 4 4 0 .4 8 0 6 7 .1 2 4 2 .5 1 0 8 .3 380 0 .9 0 3 0 .0 9 9 0 .4 1 2 5 7 .6 2 5 0 .8 1 3 5 .6 400 0 .9 5 1 0 .0 4 9 0 .3 1 7 4 4 .4 2 5 5 .7 1 6 6 .9 420 0 .9 9 8 0 .0 0 2 0 .0 9 5 1 3 .2 2 4 4 .1 2 1 7 .7
Linked assets
University of Southern California Dissertations and Theses
Conceptually similar
PDF
Predicting The Enthalpy Of Saturated Hydrocarbon Mixtures
PDF
An Experimental Investigation Of Heat Conduction Through Liquid-Liquid Phase Boundaries
PDF
The Separation Of Multicomponent Mixtures In Thermally-Coupled Distillation Systems
PDF
A Study Of The Behavior Of Thixotropic Fluids
PDF
Radiative Transfer Through Plane-Parallel Clouds Of Small Particles
PDF
Vapor-Liquid Equilibria For The Benzene - N-Octane System Near The Regionof The Critical-Locus
PDF
Dental Enamel Electrochemistry
PDF
Absorption And Scattering Of Thermal Radiation By A Cloud Of Small Particles
PDF
Mechanistic Study Of Air Pollution
PDF
Thermal Conductivity Of Liquids
PDF
Thermal Conductivity Of Binary Liquid Mixtures
PDF
Phase Behavior In A Multicomponent Heteroazeotropic System
PDF
Perovskite Structure Rare-Earth Transition-Metal-Oxide Catalysts
PDF
The Generation Of Predictor Equations By Recursive Linear Regression
PDF
Investigations On The Flow Behavior Of Disperse Systems
PDF
Autoignition temperatures of hydrocarbon mixtures
PDF
Design, construction and operation of a flow calorimeter to measure enthalpies of mixed systems
PDF
Removal And Separation Of Particles (In Solid Organic Chemicals And Metals) By Crystallization
PDF
The enthalpy of isopentane
PDF
Prediction of viscosity of pure liquids, mixture of gases and mixture of liquids
Asset Metadata
Creator
Ghormley, Edward Longstreth
(author)
Core Title
Prediction Of Enthalpy Of Saturated Paraffin Hydrocarbon Mixtures
Degree
Doctor of Philosophy
Degree Program
Chemical Engineering
Publisher
University of Southern California
(original),
University of Southern California. Libraries
(digital)
Tag
engineering, chemical,OAI-PMH Harvest
Language
English
Contributor
Digitized by ProQuest
(provenance)
Advisor
Lenoir, John M. (
committee chair
), Rebert, Charles J. (
committee member
), Springer, E. Kent (
committee member
)
Permanent Link (DOI)
https://doi.org/10.25549/usctheses-c18-509559
Unique identifier
UC11362379
Identifier
7121457.pdf (filename),usctheses-c18-509559 (legacy record id)
Legacy Identifier
7121457
Dmrecord
509559
Document Type
Dissertation
Rights
Ghormley, Edward Longstreth
Type
texts
Source
University of Southern California
(contributing entity),
University of Southern California Dissertations and Theses
(collection)
Access Conditions
The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law. Electronic access is being provided by the USC Libraries in agreement with the au...
Repository Name
University of Southern California Digital Library
Repository Location
USC Digital Library, University of Southern California, University Park Campus, Los Angeles, California 90089, USA
Tags
engineering, chemical