Close
The page header's logo
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Study Of The Local Mode Of Calcium-Fluoride Doped With Negative Hydrogen Ion With Intense Carbon-Dioxide Laser Lines
(USC Thesis Other) 

Study Of The Local Mode Of Calcium-Fluoride Doped With Negative Hydrogen Ion With Intense Carbon-Dioxide Laser Lines

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Copy asset link
Request this asset
Transcript (if available)
Content 72-3784 LEE, Long C hi, 1940- ST U D Y O F T H E L O C A L M O D E O F CaF :H“ W IT H INTENSE C02 LASER LINES. 2 U n iv ersity o f Southern C a lifo r n ia , Ph.D., 1971 P h y sic s, sp ectroscop y r | University Microfilms, A X E R O X Company, Ann Arbor, Michigan -§■ ^ _ _____________________ THIS DISSERTATION HAS BE?N MICROFILMED EXACTLY AS RECEIVED STUDY OF THE LOCAL M ODE OF CaF2 tH WITH INTENSE CO2 LASER LINES t y Long C hi Lee A D i s s e r t a t i o n P r e s e n te d to th e FACULTY OF THE GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA I n P a r t i a l F u l f i l l m e n t o f th e R e q u ire m e n ts f o r th e D egree DOCTOR OF PHILOSOPHY ( P h y s ic s ) Ju n e 1971 UNIVERSITY O F SOUTHERN CALIFORNIA TH E GRADUATE SCHOOL UNIVERSITY PARK LOS A NGELES. CALIFORNIA S 0 0 0 7 This dissertation, written by Long C hi Lee under the direction of Dissertation Com­ mittee, and approved by all its members, has been presented to and accepted by The Gradu­ ate School, in partial fulfillment of require­ ments of the degree of D O C T O R OF P H IL O S O P H Y n „,„ June 1971 DISSERTATION COMMITT Chairman PLEASE NOTE: Some Pages have i n d i s t i n c t p r i n t . Filmed as received. UNIVERSITY MICROFILMS TABLE OF CONTENTS f Page J |LIST OF FIGURES .............. v j |LIST OF TABLES ............................................................................................... v i i i [ABSTRACT .............................................................................................................. v i i i CHAPTER I . INTRODUCTION ................................................................................. 1 I I . A BRIEF REVIEW OF C02 LASERS .......................................... 5 A. The Mechanism L e a d in g t o P o p u la tio n I n v e r s io n ........................ 5 B. The L a s e r L in e s O bserv ed by V a rio u s W orkers ............ 6 C. I n s ta n ta n e o u s Power L e v e ls O b ta in e d by V a rio u s W orkers ................... 7 I I I . THE TUNABLE, PULSED-DISCHARGE, BUT NOT Q-SWITCHED C02 L A SER................................................. 8 A. S t r u c t u r e o f th e L a s e r 8 1 | i B. The Gas P r e s s u r e and th e P u ls e d - D isc h a rg e ............ 10 C. D e te c to r s .............. 10 i D. L a s e r P u ls e O u tp u t ................................................. 11 E . S im u lta n e o u s L a s e r A c tio n o f N20 . . . . . . . 11 IV. THE TUNABLE, Q-SWITCHED, PULSED-DISCHARGE j C02 LASER lk \ A. D esig n o f th e L a s e r ............. 14 B. S pectrum o f L in e s Found ........................... 14 C. Optimum Gas P r e s s u r e and C u r re n t . . . . . . . 15 D. L a s e r O u tp u t E n erg y V ersu s Time D elay . . 15 CHAPTER V. V I. V I I . I I V I I I . Page E. D u ra tio n o f th e O u tp u t P u ls e V ersu s Time D elay .......................... 20 ! F . E f f e c t s o f V a rio u s G ases ..................... 21 G. The D w ell Time .................................................... 24j H. The P rim in g E x p e rim e n t ....................................... 24j A BRIEF DESCRIPTION OF THE LOCAL M ODE OF CaF2 «H" ............................................................................................ 27 A. P re v io u s Work on H ydrogenated C alcium F l u o r i d e ................................................... 27 B. Review o f th e T h e o r e t i c a l Model ............... 29 SATURATION OF THE LOCAL M ODE OF CaF2 »H_ . . . . . . 33 A. E x p e rim e n ta l A rrangem ent ................ 33 i I B. E x p e rim e n ta l R e s u l ts ............... 33 C. T heory o f S a t u r a t i o n ......... 38 D. A n a ly s is o f th e E x p e rim e n ta l R e s u lts hy th e above T heory ............................................... 4 l STEPWISE EXCITATION .............................................................. 45 A. I n t r o d u c t i o n ................................................................ 45j B. E x p e rim e n ta l A r r a n g e m e n t ................ 45 C. E x p e rim e n ta l R e s u l ts and D is c u s s io n . . . . 45 i) S te p w is e E x c i t a t i o n .................................. 45 i i ) On P o l a r i z a t i o n ............. 49 i i i ) On L in e w id th .................. 51 ! iv ) T e s t on Two-Quantum A b s o rp tio n . . . 53| CONCLUSIONS .................................................................................. 54 iii t Page I APPENDIX................... 56 REFERENCES ........................................................................................................ 6l iv i LIST OF FIGURES j ‘F ig u re I 1. The L a s e r w ith a G r a tin g and th e S u p p ly f o r j a P u ls e d D is c h a r g e . The T rio d e i s P u ls e d by ! Change o f Both th e G rid P o t e n t i a l and th e | E f f e c t i v e C athode R e s i s t o r ............. J ! 2. The R e la ti v e O u tp u t Power and Time D elay i f o r D i f f e r e n t NQS L in e s .......................................................... I j 3. The E f f e c t o f V a ry in g D isc h a rg e P u ls e L en g th s on th e O p t i c a l P u ls e E n erg y ............................................... k. The L a s e r I n t e n s i t y v s . Time D elay f o r P - , R -b ra n c h e s o f ( 1 0°0 -0 0 1) B a n d ..................................... 5. The L a s e r I n t e n s i t y v s . Time D elay f o r P - and R -b ra n c h e s o f ( 0 2 ° 0 - 0 0 ° l) Band ...................................... 6 . Changes o f Shape i n th e O p t i c a l P u ls e w ith V a ry in g D elay T im es, D ata Taken on th e (0 2 °0 -0 0 °1 ) P (22) L in e ........................................................... ; 7» The E f f e c t o f V a ry in g P a r t i a l P r e s s u r e o f He, i N2 on th e O p tic a l P u ls e E n erg y V e rsu s Time D elay f o r T y p ic a l R o t a t i o n a l - V i b r a t i o n a l Components ......................................................................................... | 8 . ' The E f f e c t o f V a ry in g P a r t i a l P r e s s u r e o f H2 I on th e O p t i c a l P u ls e E n erg y V e rsu s Time D elay f o r T y p ic a l R o t a t i o n a l - V i b r a t i o n a l Components . . j 9 . S pectrum a t ~>20°K, A dopted from R e f. 1. T r a n s i t i o n s S tu d ie d i n S u c c e e d in g I I n v e s t i g a t i o n s a r e 1 i ) R e f. 1, I n f r a r e d A b s o r p tio n , L in e s a , c , e , f . i i ) R e f. i r , U n ia x ia l S t r e s s , L in e s a , | b , c , d . i i i ) R e f. 5> Raman S c a t t e r i n g , L in e s a , b , c . ' iv ) P r e s e n t Work, L in e s a , b ' , c ' t d*. I n s e t 1 O bserved R e la tiv e T r a n s m is s io n on 10°0 L in e s R(2), R(4), R( 6 ), R( 8), R(10), a t 90 K ....................................................... | 10. The A rran g em en t f o r th e S a t u r a t i o n E x p e rim e n t . . j F ig u re I 11. a) Above i O s c illo s c o p e T ra c e s Show ing N arrow ing o f T ra n s m itte d R (6 ) P u ls e R e la ti v e to I n c i d e n t P u ls e , a t 80°K. b) Below i P l o t s o f I 0u t V e rsu s I i n C o n s tru c te d from th e R is in g and from th e F a l l i n g | P o r tio n s o f th e P u ls e s above ........................... I j 12, l o u t A i n V e rsu s I i n . F i l l e d Sym bols a re D ata f o r 90®K, Where <«oi = 9 65.1 cm” 1 , W idth = j 1 .2 cm” 1 . Empty Sym bols a re D a ta a t 290°K, Where ^ o i ~ 9 5 7 .8 cm"1 , W idth = 8 . 7 cm” 1 . G iven L a s e r F r e q u e n c ie s f o r T r ia n g le s a re N ear th e R e s p e c tiv e P e a k sj Those f o r C i r c l e s a r e i n th e Wings ................................... ............................... 13. The A rrangem ent f o r th e Two Quantum E x c i t a t i o n E x p e rim e n t ...................................................................................... 14. Above : O s c illo s c o p e T ra c e s Show ing "F a st* and "Slow 1 ' E f f e c t s . Below i P l o t s v s . NQS F re q u e n c y . F u l l C urves Show th e F a s t E f f e c t t Dashed C urves Show th e Slow E f f e c t . . . . . . . . . . . . . . . . . . . . . . . . . . | j 15. W av efu n ctio n s f o r th e S te p w ise T r a n s i t i o n s . . . . I ; 16, The C o o rd in a te S ystem s Used to C a lc u la te L o c i o f F r a u n h o f e r D i f f r a c t i o n on a P la n e ! P e r p e n d ic u la r to th e Z e ro th O rd e r | D i f f r a c t i o n Ray............................................................................... i | 17. The L o c i o f F r a u n h o f e r D i f f r a c t i o n on a P la n e ! P e r p e n d i c u la r to th e Z e ro th O rd e r D i f f r a c t i o n j Ray w ith V a rio u s n A / d , z = l, Q = 20° .................... vi Page 3 6 i 37 46 48 521 I i i ! 58 | i 60 LIST OF TABLES QS L in e s E f f e c t e d by th e S p eeds o f M otor and by th e P rim in g o f NQS L in e s . P(2)- P (48) Means P ( 2 )f P(4), P ( 6 ) , • • • • *P(^8)i P( 2), P (4 8 ) Means P(2) and P (4 8 ) Only . . . Wave F u n c tio n s , S y m m etries, and P o s i t i o n s o f th e Lower V i b r a t i o n a l E n erg y L e v e ls o f an H“ Io n i n CaF2 • • ........................... I v i i ! ABSTRACT ! \ 1 Two i n te n s e COo l a s e r s were c o n s t r u c t e d f o r th e i j ^ i I s tu d y o f re s o n a n c e on th e sim p le v i b r a t o r CaF2 iH~. One i s j Q -sw itc h e d (QS), f o r th e p u rp o se o f s a t u r a t i o n o f th e | j j ifu n d a m e n ta l (n=0 to n=l). The se c o n d , n o n -Q -sw itc h e d | '(NQS), was b u i l t to p ro v id e a probe beam f o r s tu d y o f ! i ! !a b s o r p t io n c o n n e c tin g th e e x c i t e d l e v e l n = l to y e t h ig h e r n =2 e x c i t a t i o n s . The e a r l y p o r t i o n o f t h i s d i s s e r t a t i o n d e s c r ib e d i j c o n s t r u c t i o n o f th e l a s e r s and o b s e r v a tio n s upon t h e i r |o p e r a t i o n . B ecause o p e r a t io n on i n d i v i d u a l r e l a t i v e l y weak | l i n e s n e a r a band c e n t e r o f th e CO2 sy ste m was n eed ed f o r t h i s re s o n a n c e w ork, o u r l a s e r equipm ent i s v e ry h ig h ly j |d e v e lo p e d . NQS h o ld s th e r e c o r d f o r th e o p e r a t io n on 130 j ! i i v i b r a t i o n a l - r o t a t i o n a l l i n e s , s p a n n in g th e fre q u e n c y ra n g e 1 1 ;from 900 cm t o 1100 cm . QS o p e r a te d on 80 l i n e s , w hich; | ; i s a l s o p ro b a b ly a r e c o r d f o r t h i s k in d o f o p e r a t i o n . A d d i t io n a l QS l i n e s were p ro d u ced by "p rim in g " w ith weak j r a d i a t i o n from NQS. NQS g e n e r a t e s ro u g h ly 20 w a tt p u ls e s on s t r o n g l i n e s , o f d u r a t i o n ps, QS g e n e r a te s 20 kw p u ls e s on s t r o n g l i n e s , o f d u r a t i o n ~ 3 0 0 n s . ! F o c u sin g th e QS beam on a CaF2 *H“ sa m p le , we were : in d e e d a b le to s tu d y th e s a t u r a t i o n o f fu n d a m e n ta l ( n =0 to ;n=l). A sim p le th e o r y was d e v e lo p e d to f i t th e e x p e r im e n t- !a l d a ta on t r a n s m i s s io n v s . i n t e n s i t y . A v a lu e o f th e 1 • • * V l l l ! s a t u r a t i o n p a ra m e te r W was u se d to c a l c u l a t e t h e d e ca y tim e i i I i | . The v a lu e o b ta in e d (T^ = 11 p s e c ) a c c o u n ts f o r th e j | r e s i d u a l l i n e w i d t h a t low te m p e r a tu r e , i n a c c o rd a n c e w ith a p r i o r comment by H ayes, e t a l . The l in e s h a p e was c o n firm e d i I t o be hom ogeneous. When th e n -1 l e v e l p o p u la te d by a QS | beam p u l s e , a se c o n d e x c i t a t i o n ( n - l t o n~ 2 ) was o b se rv e d | | th ro u g h a b s o r p t i o n o f c e r t a i n NQS l i n e s . The n = l to n=2 j ! f r e q u e n c i e s a g re e w ith p r i o r c a l c u l a t i o n and o b s e r v a t i o n . W e a tte m p te d to d e m o n s tra te c e r t a i n e x p e c te d p o l a r i z a t i o n s e l e c t i o n r u l e s f o r t h r e e tw o - s te p p r o c e s s e s , b u t we fo u n d t h a t th e y do n o t h o ld . E v i d e n t l y , t h e r e i s a f a s t s c r a m b lin g among th e t h r e e d e g e n e ra te com ponents o f th e n = l j l e v e l b e fo r e th e seco n d a b s o r p t i o n . W e a t t r i b u t e t h i s | p o l a r i z a t i o n - s c r a m b l i n g to a p a r t o f th e p r o c e s s t o w hich i H ay es, e t a l . a t t r i b u t e d th e te m p e r a tu r e - d e p e n d e n t l i n e - j w id th . These in v o lv e e s s e n t i a l l y e l a s t i c s c a t t e r i n g o f j | th e r m a l- p h o n o n s . The l i n e w i d t h , o f t r a n s i t i o n from i ; n = l to n=2 , i s o b s e rv e d t o be th e sum o f th e fu n d a m e n ta l and th e s e c o n d -h a rm o n ic 1 in e w id th s , +AWq2 * CHAPTER I I INTRODUCTION I | T h ere a r e a num ber o f a t t r a c t i v e s p e c t r o s c o p i c p ro b lem s t o be s t u d i e d w ith t h e e x p l o i t a t i o n o f i n f r a r e d I gas l a s e r s a s s o u r c e s . W e have c o n s t r u c t e d two l a r g e COg l a s e r s and a p p l i e d them f o r th e s t u d y o f t h e l o c a l mode i n CaF2 iH“ . S u c c e s s f u l o p e r a t i o n o f s u c h l a s e r s h a s i n i t s e l f some g e n e r a l i n t e r e s t . I n r e c e n t y e a r s , t h e l o c a l v i b r a t i o n a l modes a s s o c i a t e d w ith t h e h y d ro g en d e f e c t s i n th e a l k a l i n e e a r t h f l u o r i d e s have b e e n s t u d i e d i n d e t a i l ( l - 5 ) . The a b s o r p t io n sp e c tru m o f CaP£ c o n t a i n i n g n e u t r a l h y d ro g e n atom s i n t h e i n t e r s t i t i a l s i t e h a s been s t u d i e d by Shamu, e t a l . ( 2 ) . The s p e c t r a o f h y d ro g e n a te d CaF2 c o n t a i n i n g r a r e - e a r t h io n s jhave b een i n v e s t i g a t e d by J o n e s , e t a l . ( 3). The v i b r a t i o n ­ a l l o c a l modes o f th e h y d rid e io n H~ i n p u re CaT^t BaFgi land S rF g C U -c e n te rs ) have been s t u d i e d and d e s c r i b e d w ith an |a p p r o p r i a t e m odel by E l l i o t t , e t a l . ( l ) . F o r t h e sim p le r e s o n a n t sy s te m o f th e l o c a l mode i n CaF2 *H“ , some l e v e l s w hich a r e p r e d i c t e d by t h e m odel o f E l l i o t t , e t a l .. b u t w hich a r e n o t o b s e rv e d by s im p le i n f r a r e d a b s o r p t i o n , w ere i o b s e rv e d by s t r e s s - i n d u c e d i n f r a r e d a b s o r p t i o n ^ ) • More r e c e n t l y , a l s o , th e fu n d a m e n ta l and two se c o n d harm onic i i l e v e l s w ere o b s e rv e d by Raman s c a t t e r i n g ( 5 ) • 1 j I n g e n e r a l , t h e e x c u r s io n o f io n s i n c r e a s i n g l y i rem o te from th e l i g h t d e f e c t f a l l s o f f r a p i d l y ( 6 ) , P a r t i ­ c u l a r l y when t h e d e f e c t i s v e r y l i g h t , t h e mode may be | d e s c r ib e d a p p ro x im a te ly as p e r i o d i c m o tio n o f th e d e f e c t io n a l o n e ( r i g i d l a t t i c e m o d e l). F o r CaFgiH” , th e H” io n , i w hich moves a b o u t a F ” s i t e , s e e s a p o t e n t i a l w e ll o f t e t r a h e d r a l sym m etry. The anharm onic te rm s a r e so s m a ll, when com pared w ith th e harm onic te rm , t h a t th e y c a n be c o n s id e r e d a s a p e r t u r b a t i o n . The n= l l e v e l has 1^ sym m etry. I t has a t h r e e - f o l d d e g e n e ra c y w hich i s n o t s p l i t by t h e p e r t u r b a t i o n . B ut t h e se c o n d harm onic l e v e l i s s p l i t i n t o t h r e e l e v e l s 1^ , F j , and P,, w ith o n e - , tw o -, and t h r e e - f o l d d e g e n e ra c y , r e s p e c t i v e l y . We a r e f o r t u n a t e i n s e v e r a l r e s p e c t s . Of th e v a r i o u s a l k a l i n e - e a r t h I I f l u o r i d e U c e n t e r s d e s c r ib e d by t h i s a n a l y t i c a l l y sim p le ! , t h e o r y , t h e CaF^ c a s e com bines th e f e a t u r e s i i ) s h a r p e s t a b s o r p t i o n l i n e s , i . e . r e s o n a n c e s o f h i g h e s t Q ( i n f a c t , j i th e CaF«iH“ fu n d a m e n ta l has t h e s m a l l e s t f r a c t i o n a l w id th ! | o f a l l l o c a l modes known), i i ) th e r e s o n a n c e s An= + 1 a r e | a l l w i t h i n th e c o v e ra g e o f th e COg l a s e r l i n e s . Thus t h i s sim p le r e s o n a n t sy ste m would a p p e a r t o le n d i t s e l f t o a v a r i e t y o f h i g h - i n t e n s i t y s t u d i e s su c h a s i i ) th e i | s a t u r a t i o n e f f e c t o f th e fu n d a m e n ta l mode, i i ) th e j I t r a n s i e n t e f f e c t s su c h a s n u t a t i o n , p u ls e b r e a k u p ,e t c . | i i i ) th e s te p w is e e x c i t a t i o n , p o s s i b l e v e r i f i c a t i o n o f s te p w is e s e l e c t i o n r u l e s . I n f a c t , we have b een a b le t o jstu d y s e v e r a l f e a t u r e s o f i ) and i i i ) , but not i i ) . ' The f o llo w in g m a tte r s w i l l be d is c u s s e d i | i ) C o n s tr u c tio n o f a t u n a b l e . p u l s e d - d i s c h a r g e , Q -sw itch ed COg l a s e r ( h e r e a f t e r ! QS) f o r s tu d y o f th e fu n d a m e n ta l t r a n s i t i o n o f th e l o c a l mode. W e w i l l c o n s i d e r a ! i num ber o f q u e s tio n s p e r t a i n i n g t o m ec h an ica l i j d e s ig n o f th e l a s e r , a n a l y s i s o f i t s o p e ra ­ t i o n , and e x p e rim e n ts upon th e COg l a s e r i j medium w hich become p o s s i b l e . i i ) E x p e rim e n ta l o b s e r v a tio n o f t h e s a t u r a t i o n | e f f e c t o f th e fu n d a m e n ta l mode and a sim p le t h e o r y d e v e lo p e d t o f i t th e d a t a — t r a n s ­ m is s io n v s , l a s e r i n t e n s i t y ( 8 ) . T h is work l e d to a n e s tim a te o f t h e d e ca y tim e o f n = l t o n=0 from th e s a t u r a t i o n p a ra m e te r W. I i i i ) C o n s tr u c tio n o f a t u n a b l e , p u l s e d - d is c h a r g e n o n -Q -sw itc h e d COg l a s e r ( h e r e a f t e r NQS) ! and s t u d i e s upon t h i s l a s e r i t s e l f . T h is l a s e r was b u i l t to make p o s s i b l e ite m i v ) • 1 | iv ) O b s e rv a tio n o f s t e p w i s e - e x c i t a t i o n w ith t h i s se co n d COg l a s e r * s e v e r a l i n t e r e s t i n g e f f e c t s w i l l be d e s c r i b e d . i W e c o n s i d e r t h i s an a t t r a c t i v e sy ste m f o r s t u d y , j e s s e n t i a l l y a te x tb o o k p ro b le m , b e c a u se i t i s w e l l - j (char a c t e r i zed by a f a i r l y s i m ple t h e o r y . I n f a m i l i a r t h e o r e t i c a l d i s c u s s i o n s o f t r a n s i t i o n s f o r n o n -d e g e n e ra te I two l e v e l s y s te m s , th e re s o n a n c e i s d e s c r ib e d by an |e x c i t a t i o n d ecay tim e T^, and by a p h ase c o h e re n c e tim e T2 , we w i l l se e t h a t th e CaF2 iH“ sy ste m h a s th e f e a t u r e o f an i j a d d i t i o n a l r e l a x a t i o n p ro c e s s — i t f o r g e t s th e p o l a r i z a - I I :t i o n o f an i n i t i a l e x c i t a t i o n . I t i s o u r b e l i e f t h a t j ™ & | |d e s c r i b e s t h i s p r o c e s s , a s w e ll as th e p h ase c o h e re n c e i | l o s s . 5 | CHAPTER II A BRIEF REVIEW OF COg LASERS A. THE MECHANISM LEADING TO POPULATION INVERSION The m o st im p o r ta n t m echanism f o r a C02 l a s e r t o jp ro d u ce a p o p u l a t i o n i n v e r s i o n i s t h e t r a n s f e r o f v i b r a ­ t i o n a l e n e r g y from e x c i t e d Ng m o le c u le s i n t h e v = l s t a t e t o COg m o le c u le s (1 0) i N2 (v=1) + C02 (0 0 °0 ) — Ng(v=0) + C 0 g (0 0 °l) - 18 cm"1 F o r th e g as m ix tu r e s u s e d , w ith t o t a l p r e s s u r e ~ 1 0 t o r r , th e r e l a x a t i o n tim e f o r t h e t r a n s f e r i s l e s s t h a n a jisec ( 1 1 ) , S in c e a Ng m o le c u le h a s z e r o p e rm a n e n t d i p o le jmomemt, i t s v = l l e v e l h a s a lo n g v i b r a t i o n a l r e l a x a t i o n | Itime, a few m se c. The s t a t e (0 0 °1 ) o f C02 h a s a r e l a x a t i o n tim e l e s s t h a n a j i s e c ( l l ) . B u t, i n e q u i l i b r i u m w ith th e e x c i t e d N2 m o le c u le s , a ( 00° 1 ) p o p u l a t i o n c a n be s u s t a i n e d j few m se c • The lo w e r l a s e r l e v e l s (1 0 °0 ) and (0 2 °0 ) q u i c k l y em pty t o t h e ( 01° 0 ) s t a t e , and th e l a t t e r more s lo w ly goes i I i n t o c e n t e r - o f - m a s s m o tio n , so t h a t t h e r e i s a p a r t i a l ] |b o t t l e n e c k a t t h i s p o i n t . The r o l e o f h e liu m i s p r e f e r e n t ­ i a l l y t o i n c r e a s e th e d e e x c i t a t i o n o f th e ( 01° 0 ) l e v e l , a s opposed t o t h e (0 0 °1 ) l e v e l . On t h e b a s i s o f d a t a a v a i l ­ a b le from p r e v io u s w o r k ( l l ) , we e s t i m a t e t h a t th e s p e c i f i c j d e e x c i t a t i o n r a t e o f t h e (O l1©) l e v e l due t o h e liu m i s ^0 6 ■times f a s t e r th a n f o r t h e (0 0 ° 1 ) l e v e l* T h u s, w ith th e p r e s e n c e o f e x c i t e d Ng i n t h e v = l s t a t e , a p o p u l a t i o n o f t h e 00°1 l e v e l may p e r s i s t t h r e e o r d e r s o f m ag n itu d e l o n g e r t h a n th e lo w e r l e v e l s . B. THE LASER LINES OBSERVED BY VARIOUS WORKERS I n 196 4 , l a s e r a c t i o n i n COg g a s was r e p o r t e d by P a t e l e t a l .( 1 2 ) . P a t e l o b s e rv e d l a s e r o s c i l l a t i o n i n p u re COg by e m p lo y in g b o th d . c . and 1 jis p u ls e d i s c h a r g e s i n a g a s colum n 4 .5 m lo n g . He r e p o r t e d t h e o b s e r v a t i o n o f o p t i c a l m a se r a c t i o n i n th e P - b ra n c h r o t a t i o n a l t r a n s i t i o n s f o r a t o t a l o f 21 l i n e s i n t h e ( 00° 1- 1 0 ° 0 ) and ( 0 0 ° l - 02° 0 ) v i b r a t i o n a l b a n d s . I n 196 6 , M o e lle r and R ig d e n (1 3 )» |i n t r o d u c i n g a d i f f r a c t i o n g r a t i n g a t one end o f t h e r e s o n - i |a n t c a v i t y a s a w a v e l e n g t h - d i s c r i m i n a t i n g d e v ic e , fo u n d a ■ to ta l o f 103 COg l a s e r l i n e s f o r b o th P - and R -b ra n c h e s o f | !two v i b r a t i o n a l b a n d s . I n 1969* M eyer, P in s o n , R o s s e t t i i and B a r c h e w itz ( l4 ) u s i n g s i m i l a r g a s m i x t u r e s , b u t d . c . I | e x c i t a t i o n and a lc o h o l c i r c u l a t i o n t o c o o l th e w a ll i n a .2,4 m g a s colum n, fo u n d a t o t a l o f 112 COg l a s e r l i n e s on i |the two v i b r a t i o n a l b a n d s . I n o u r w ork, we have fo u n d a I t o t a l o f 130 l i n e s ( 9 ) . I n t h i s w ork, we em ployed a p u ls e d i { d is c h a rg e o f ~-100 ma a n d "'■'350 u s i n a 4 . 5 m g a s c o lu m n . 1 [The l a s e r tu b e was c o o le d t o n e a r z e ro d e g re e s c e n t i g r a d e . |F o r s tu d y o f t h e m axim al s e t o f l i n e s l a s i n g , pow er was jc o u p le d o u t s o l e l y th ro u g h th e z e r o o r d e r o f th e d i f f r a c - 7 t i o n g r a t i n g (F o r o u r CaF2 »H“ re s o n a n c e w ork, t h i s was g e o m e t r i c a l l y i n c o n v e n ie n t and a n o th e r o u tp u t was t a k e n th ro u g h a d i e l e c t r i c m i r r o r ) • C. INSTANTANEOUS POWER LEVELS OBTAINED BY VARIOUS WORKERS P a t e l (1 2 ) m ea su re d a c o n tin u o u s pow er o u tp u t o f a b o u t 1 m W f o r th e f i r s t COg l a s e r . M o e lle r and R ig d e n o b ta in e d a c o n tin u o u s power o f a b o u t ^W/m o f tu b e l e n g t h f o r a s t r o n g s i n g l e l i n e ( 1 3 ) ( w i t h a d i f f r a c t i o n g r a t i n g a t one end o f th e c a v i t y ) , and a b o u t 75 W/m o f tu b e le n g t h ( 1 5 ) f o r a m ultim ode l a s e r (w ith co n cav e m i r r o r s a t b o th en ds). E m ploying a r o t a t i n g m i r r o r , b u t w ith no l i n e - s e l e c t i o n d e v ic e , F ly n n , e t a l . ( l 6 ) fo u n d t h a t a 3 w a tt cw sy ste m j g iv e s a p u ls e o u tp u t o f p e ak pow er i n e x c e s s o f 10 kw and I p u ls e l e n g t h l e s s t h a n 100 n s . W ith o u r t u n a b l e . Q- s w itc h e d , p u l s e d - d i s c h a r g e COg l a s e r ( 7 ) , we o b t a i n p u l s e s ! o f <~20 kw p e ak pow er and r- 300 n s d u r a t i o n f o r s t r o n g i j r o t a t i o n a l l i n e s . T h e re have b e e n r e c e n t r e p o r t s o f g as i I J dynamic C0« l a s e r s g e n e r a t i n g c o n tin u o u s pow er l e v e l s o f ( | t h e o r d e r o f 100 k w (1 7 ). R e c e n tl y , B e a u lie u (1 8 ) h a s | d e v e lo p e d a COg l a s e r o p e r a te d a t a tm o s p h e ric p r e s s u r e , j He o b ta in e d p u l s e s o f 20 M w p e a k power and o f e n e r g y 2 i jo u le s ( t h u s r o u g h ly 100 n s d u r a t i o n ) w ith a 1- m e te r ! I d i s c h a r g e . To th e b e s t o f o u r k now ledge, n e i t h e r t h e g a s j | dynam ic l a s e r n o r t h e a tm o s p h e ric l a s e r h a s b een o p e r a t e d w ith a l i n e - s e l e c t i o n d e v ic e . | CHAPTER I I I ] I THE TUNABLE, PULSED-DISCHARGE, BUT NOT Q-SWITCHED CO« LASER I |A. STRUCTURE OF THE LASER ! j The l a s e r i s b u i l t upon a 16 f t s t e e l r a i l ( F i g , 1 ) , J |The b o re d ia m e te r i s t a p e r e d i n t h r e e s t e p s , t o accom m odate |the fu n d a m e n ta l modej the i , d . ' s a r e 22 mm, 27 mm, and | 32 mm. The l a s e r em ploys a t one end a c o n ca v e m i r r o r !w i t h in th e vacuum e n v e lo p e , and a t th e o t h e r end a B re w s te r i |window and a f l a t c i r c u l a r g r a t i n g . The m i r r o r h a s a 10 m e te r r a d i u s and r e f l e c t i v i t y ! i t i s a d i e l e c t r i c |m i r r o r on a Ge s u b s t r a t e , m a n u fa c tu re d by L a s e r O p t i c s , line. The 2" d ia m e te r g r a t i n g , B & L , Type 3 5 -5 3 -0 5 -8 9 0 i s a r e p l i c a c o a te d w i t h g o ld , b la z e d a t 37° w ith L i t t r o w wave l e n g t h 8 ji. A r e d Ne-He l a s e r was u se d t o a l i g n th e g r a t i n g . The g ro o v e s o f th e g r a t i n g a r e p e r p e n d i c u l a r t o t h e l a s e r jaxis. The g r a t i n g m ount, made by O r i e l O p tic s Corp., i s u se d t o v a r y t h e a n g le Q b etw een t h e n o rm al a x i s o f th e g r a t i n g and t h e l a s e r a x i s . The g r a t i n g r e t u r n s o f th e e n e rg y i n t o th e f i r s t o r d e r , b ack i n t o t h e l a s e r c a v i t y . i iThe o s c i l l a t i o n wave l e n g t h i s d e te rm in e d by t h e e q u a tio n I X= 2d s i n $ , where d i s th e g roo ve s p a c i n g . E i t h e r th e jco n cav e m i r r o r o r t h e z e r o t h o r d e r o f t h e g r a t i n g o r b o th , g r a t i n g B re w ste r window concave m ir r o r l a s e r o u tp u t . 25pfrJ= 15 kV MLEE64Y MLEEb^Y 10k -AAAA- 2N4240 25)lf fu s e 1 /1 6 A 2N^2^0 |----- |+45V t r i g g e r p u ls e fu s e 1/16 A F i g , 1. The l a s e r w ith a g r a t i n g and th e s u p p ly f o r a p u ls e d d i s c h a r g e . The t r i o d e i s p u ls e d by change o f b o th th e g r i d p o t e n t i a l and th e e f f e c t i v e c ath o d e r e s i s t e r . 10 may toe u se d f o r o u t p u t . The l a s e r tu b e was c o o le d t o n e a r z e ro d e g re e s c e n t i g r a d e toy c i r c u l a t i n g a c o o l i n g a g e n t j th r o u g h p l a s t i c t u b i n g w hich was a t t a c h e d a ro u n d th e l a s e r tu b e • B. THE GAS PRESSURE AND THE PULSED-DISCHARGE T h is l a s e r h as a f lo w in g g as s y s te m . The optimum p a r t i a l p r e s s u r e s a t e Pcc>2 = t o r r , P^^ = 2 .3 t o r r , pHe = 't o r r « The l a s e r h a s two d is c h a r g e s e c t i o n s . E ach s e c t i o n h a s a t r i o d e , M a c h le t MLEE 6k , a s shown i n F i g . 1 . A t r i g g e r p u ls e a p p l i e d t o th e g r i d o f th e t r i o d e g a te s t h e d is c h a r g e p u l s e . A t y p i c a l d is c h a r g e p u ls e was o f —350 jis l e n g t h and o f ^ 9 0 mA p e a k c u r r e n t* i t s r e p e t i ­ t i o n r a t e o f 360 c p s was s y n c h ro n iz e d w ith t h e a . c . r i p p l e o f o u r f u ll- w a v e t h r e e - p h a s e .power s u p p l i e s . IC. DETECTORS Two p h o t o d e t e c t o r s were u se d t o s t u d y th e p u ls e jshape and th e r e l a t i v e i n t e n s i t y o f th e l a s e r o u t p u t . Two jc o ld dew ars w ere d e s ig n e d t o m ount GeiAu ( a t l i q u i d n i t r o - f gen te m p e r a tu r e ) and GetHg ( a t l i q u i d h y d ro g en te m p e r a tu r e ) j p h o t o d e t e c t o r s . E ach dew ar c a n m ount more th a n one d e t e c - jto r. The a v e ra g e pow er was e i t h e r m easu red toy a th e rm o - Ipile, o r d e te rm in e d by t h e change i n b o i l - o f f r a t e o f i ! l i q u i d n i t r o g e n when t h e l a s e r beam e n t e r e d a th u m b siz e d I l i q u i d n i t r o g e n dew ar. 1 1 D. LASER PULSE OUTPUT The l a s e r c a n tu n e o v e r t h e f r e q u e n c y ra n g e o f 900 cm”1 t o 1100 cm” '*'. We fo u n d a t o t a l o f 130 l i n e s —- P(2)-P(66) and R(0)-R(62) f o r b o th (1 0 ° 0 -0 0 ° 1 ) and ( 0 2 ° 0 - 0 0 ° 1 ) r o t a t i o n a l b a n d s . The r e l a t i v e pow er o u tp u t f o r d i f f e r e n t l i n e s i s p r o m in e n tly a f f e c t e d by t h e c h a r a c t e r i s t i c s o f th e g r a t i n g u s e d . The o u tp u t p u l s e l e n g t h i s c o r r e l a t e d w ith t h e d i s c h a r g e p u l s e ^350 jus l o n g . The p e ak pow er i s a ro u n d 20 w a tts f o r m o st o f t h e s t r o n g l i n e s . A w e l l - d e f i n e d r e l a t i o n s h i p b etw een t h e e n e rg y o u tp u t and t h e " tim e d e la y " on a l i n e was a l s o fo u n d ( F i g . 2 ) . The tim e d e la y i s d e f in e d a s t h e i n t e r v a l b e tw ee n t h e f r o n t edge i jof t h e e x c i t a t i o n p u l s e and t h e f i r s t a p p e a ra n c e o f i n f r a r e d [en erg y , Weak l i n e s , w h ich have r e l a t i v e l y slo w b u i ld u p , a p p e a r w ith d e la y s a p p ro c h in g 600 jisec ( s e e C h a p te r V I, s e c t i o n C f o r th e p r o b a b le m e c h a n ism )• E. SIMULTANEOUS LASER ACTION OF NgO Some l i n e s o t h e r t h a n t h e two p r i n c i p a l r o t a t i o n a l 1 b an d s o f COg a r e f o u n d . Such l i n e s o c c u r i n th e r a n g e s from P ( 8 ) t o P ( 6 6 ) and from R ( 6 ) t o R (18) o f th e (1 0 ° 0 -0 0 ° 1 ) | b a n d , and from P ( 6 ) t o P(l^) o f t h e ( 0 2 ° 0 - 0 0 ° l) band* The [ a d d itio n a l l i n e s am id t h e ( 1 0 ° 0- 00° 1 ) band seem t o be due t o t h e l a s e r a c t i o n o f NgO g a s a s r e p o r t e d by Sugiyam a and I n a b a ( 1 9 ) . The P (l) (1 0 ° 0 -0 0 ° 1 ) l i n e o f NgO i s c l o s e t o t h e tim e d e la y power a r b . u n i t 500 20 power — tim e d e la y 12 100 1060 1020 P( 20) P(60) R( 20) P( 20) P(60) F i g . 2. The r e l a t i v e o u tp u t power and tim e d e la y f o r d i f f e r e n t NQS l i n e s P (2 6) (1 0 ° 0 -0 0 ° 1 ) l i n e o f CC^. The o b s e rv e d a d d i t i o n a l l i n e s a r e c o n s i s t e n t w ith th e s p e c tru m o f th e NgO (1 0 ° 0 - 00°1) r o t a t i o n a l b a n d . The NgO l a s e r l i n e s from P ( l ) t o P(*H) and from R ( l ) t o R (51) o f (1 0 ° 0 -0 0 ° 1 ) r o t a t i o n a l band w ere o b s e r v e d , Meyer e t _ a l , (1*0 a l s o o b s e rv e d su c h a d d i ­ t i o n a l l i n e s , b u t t h e y a t t r i b u t e d t h e s e l i n e s t o th e P b ra n c h o f t h e COg ( O l ^ l- l l ^ O ) v i b r a t i o n a l b a n d . The a d d i ­ t i o n a l l i n e s amid P (6 ) t o P(1*0 o f (0 2 ° 0 -0 0 ° 1 ) band have f r e q u e n c i e s to o h ig h f o r th e NgO (1 0 ° 0 -0 0 ° 1 ) r o t a t i o n a l b a n d . W e c a n n o t i d e n t i f y them . j CHAPTER IV | | THE TUNABLE, Q-SWITCHED, PULSED-DISCHARGE C02 LASER I 1 |A. DESIGN OF THE LASER ! ! T h is l a s e r i s i d e n t i c a l t o th e p r e v io u s one, i n r e g a r d t o th e g as m ix tu re s u p p ly , th e d is c h a r g e sy ste m , and m ost o f th e m e c h a n ic a l p a r t s and d e t e c t o r s . B ut th e d i f f r a c t i o n g r a t i n g s p i n s a b o u t i t s sy m m e tric a l a x e s , l i k e a f l y w h e e l , t o a c h ie v e Q -s w itc h e d o p e r a t i o n . Only a t one p o i n t i n th e s p i n c y c le c an th e g r a t i n g c lo s e th e o p t i c a l r e s o n a t o r i t h i s i s when th e r u l i n g s a r e p e r p e n d i c u l a r to th e p la n e o f th e tu b e a x i s and th e g r a t i n g n o rm a l. Wave i l e n g t h s o f p o s s i b l e o p e r a t i o n a r e th e n s u b j e c t to th e u s u a l I j g r a t i n g e q u a t i o n . When th e g r a t i n g s p i n s , th e lo c u s o f th e ! i | f i r s t o r d e r o f d i f f r a c t i o n i s a c o n e - l i k e s u r f a c e (s e e th e : | |a p p e n d ix f o r a c o m p lete a n a l y s i s ) . The r e s o n a t o r l i n e u p i s j I c o m p le te ly t r i v i a l , b e c a u se a m in o r m is a lig n m e n t i n one o f i I jth e two c o o r d i n a te s o n ly ch an g e s th e p r e c i s e tim e o f th e |p u l s e , w h ile th e o t h e r c o o r d in a te d e te rm in e s th e l a s e r l i n e !— and t h e r e a r e no dead s p o ts b e tw ee n l i n e s . The s p i n i ! sp e e d o f th e g r a t i n g may be v a r i e d from 100 cp s to 650 c p s . B. SPECTRUM OF LINES FOUND j The l a s e r r o t a t i o n a l com ponents from J= 4 to J=^2 were o b s e rv e d on a l l f o u r b ra n c h e s — ( 1 0 ° 0 - 0 0 ° 1 ) , (0 2 ° 0 - lb 1 5 0 0 ° 1 )} P, R b ra n c h e s . W ith th e optimum g a s p r e s s u r e and I c u r r e n t , th e s t r o n g l i n e s , e . g , , P ( 2 0 ), have a v e ra g e i I pow ers o f a b o u t 2 W . The p u ls e l e n g t h , w hich depends on j ! i th e m o to r s p e e d , i s a b o u t J00 n s . A t y p i c a l peak power i s a b o u t 20 kw. C. OPTIMUM GAS PRESSURE AND CURRENT j As shown i n F i g . 3, th e l a s e r i n t e n s i t y i s t y p i c a l l y n o t s e n s i t i v e t o th e d is c h a r g e p u ls e l e n g t h w henever t h i s i s lo n g e r th a n 100 y jsec. The p a r t i a l p r e s s u r e s f o r th e s e d a ta a r e Pco2= 3 t o r r , Pne = 6*5 t o r r , Pjjg* 1 .5 t o r r . The c u r r e n t i s 90 mA. The "tim e d e la y " has been a d ju s te d to th e o p tim a l v a lu e o f 100 jasec, where we now d e f in e th e tim e d e la y a s th e i n t e r v a l from th e end o f th e d is c h a rg e p u ls e i | j t o th e b e g in n in g o f good a lig n m e n t (ju d g e d o n ly by th e ! I | !a p p e a ra n c e o f th e l a s e r o u tp u t p u l s e ) . [ A ll th e s e a re e s s e n t i a l l y o p tim a l v a lu e s ( f o r a i c o n v e n tio n a l low p r e s s u r e l a s e r ) , th o u g h some a re n o t | c r i t i c a l . F o r th e d a ta o f th e s u b s e q u e n t p a ra g r a p h s , th e |d is c h a r g e p u ls e le n g th was f i x e d a t 350 jis e c ( th e d is c h a r g e ! ! ! je x te n d s from -350 ^isec to z ero i n F i g . k -6 t se e b e lo w ). j |D. LASER OUTPUT ENERGY VERSUS TIME DELAY G e n e r a lly , o u r d a ta can be d is p la y e d a s p l o t s o f ! i o u tp u t e n e rg y v e r s u s tim e d e la y f o r v a r i o u s l i n e s , g as im ix tu r e s , c u r r e n t , e t c . F ig u r e s k, 5 show th e l a s e r 16 i 1 i n t e n s i t y a r b . u n i t 1 0 °0 -0 0 1 P (14) 10°0-00°1 R(20) .4 .5 ms d is c h a r g e p u ls e d u r a t i o n F i g . 3 . The e f f e c t o f v a r y i n g d is c h a r g e p u ls e l e n g t h s on th e o p t i c a l p u ls e e n e r g y . 1 7 (a ) p -b ra n c h i n t e n s i t y a r b . u n i t J=18 12 ms tim e d e la y (b) R -b ran ch i n t e n s i t y a r b . u n i t J=18 tim e d e la y F ig . 4 . The l a s e r i n t e n s i t y v s . tim e d e la y f o r P - , R- b ra n c h e s o f (1 0 ° 0 -0 0 ° 1 ) band. i n t e n s i t y a r b . u n i t P -b ra n c h J=18 12 - 3 ° m i n t e n s i t y 1 - a r b . u n i t (b) R -b ran c h J=18 12 i I j F ig , 5- The l a s e r i n t e n s i t y v s . tim e d e la y f o r P - and | R e b ran ch es o f 0 2 ° 0 -0 0 ° l band, 1 2 i n t e n s i t y a r b . u n i t \ - i n i t i a t i o n d u rin g d is c h a rg e 10 tim e d e la y - .1 5 ms 1.20 L tim e F ig , 6 , Changes o f shape i n th e o p t i c a l p u ls e w ith v a ry in g d e la y tim e s , d a ta ta k e n on th e 02°0-00 1 P (2 2) l i n e . VO 2 0 i n t e n s i t y v e rs u s tim e d e la y f o r d i f f e r e n t r o t a t i o n a l [com ponents o f e ac h b ra n c h . The m ost n o t i c e a b l e f e a t u r e o f t h i s fa m ily o f c u rv e s i s t h a t s t r o n g l i n e s s t i l l l a s e i w ith o u t e v id e n t s y s te m a tic d ecay ( b u t n o t w ith o u t some te m p o ra l s t r u c t u r e ) f o r tim e d e la y s f o r w hich weak l i n e s w i l l n o t l a s e a t a l l . Among weak l i n e s , a r o t a t i o n a l com ponent w ith a low J num ber seems t o l a s e somewhat lo n g e r th a n a com parable com ponent ( s i m i l a r max. power) w ith a h ig h J num ber. I t i s l i k e l y t h a t th e d e t a i l s o f th e s t r u c t u r e depend upon e f f e c t s o f v i b r a t i o n a l - r o t a t i o n a l r e l a x a t i o n . I t m ig h t be f e l t t h a t th e s t r u c t u r e i n F i g . ^ and 5 would be v e ry s e n s i t i v e to s m a ll v i b r a t i o n s i n th e r e s o n a t o r | geo m etry and t h a t l i t t l e g e n e r a l in f e r e n c e c o u ld be e x t r a c t e d from th e c u rv e s . However, we f i n d some u n if o r m i- |ty o v e r th e v a r io u s l i n e s o f b o th v i b r a t i o n s . The P -b ra n c h jli n e s a re a l l g e n e r a l l y s i m i l a r , w ith a l a t e ''bump". The j |R -b ran ch l i n e s a r e a g a in s i m i l a r , b u t th e l a t e bump i s now i •istro n g e r. A minimum a p p e a rs i n th e m id d le r e g i o n , so t h a t Ithe c u rv e s have th e a p p e a ra n c e o f a c a m e l's b a ck . i i |e . duration of the output pu l se versus t im e delay i As shown i n F ig , 6, th e d u r a t i o n o f th e o p t i c a l i ! | jpulse i s g r e a t e r when th e i n i t i a t i o n o f th e o p t i c a l p u ls e j I I jis d e la y e d th a n when i t i s a llo w e d t o i n i t i a t e b e fo r e th e ! jd isc h a rg e e x c i t a t i o n h a s been t e r m in a t e d . W e have c o n s i - 2 1 d e re d t h e o r e t i c a l a n a l y s i s a lo n g th e l i n e s o f th e work o f iLengyel and W agner(20), b u t t h e i r th e o r y ( d e v is e d f o r th e I jruby l a s e r ) assum es no f u r t h e r pum ping d u r in g th e o p t i c a l jp u ls e ; we f i n d no u n iq u e and s a t i s f a c t o r y e x p la n a t i o n o f jour d a t a , |F . EFFECTS OF VARIOUS GASES F i g s . 7 a , b show how th e p u ls e e n e rg y v e r s u s d e la y tim e c u rv e s change a s we add f i r s t , i n c r e a s i n g am ounts o f He ( w ith f i x e d Pc02= t o r r ) , th e n i n c r e a s i n g N2 ( w ith Pq02= 2 .5 t o r r , P ne= ^ .5 t o r r ) . W e f i n d t h a t th e a d d i t i o n o f N2 p ro d u c e s a m odest i n c r e a s e i n th e a v a i l a b l e p u ls e ien e rg y , b u t more n o ta b ly a s u b s t a n t i a l e x te n s i o n o f th e |p o s s ib le d e la y tim e (1 0 , 2 1 ). j As shown in F i g , 8, th e e f f e c t o f h y d ro g en on a s i n g l e r o t a t i o n a l com ponent was a l s o s t u d i e d . The l a s e r p u ls e pow er d e c r e a s e s r a p i d l y f o r i n c r e a s i n g d e la y tim e , more s e v e r e l y f o r i n c r e a s i n g H2 p r e s s u r e . W e a s c r i b e th e jdecrem ent o f th e l i f e t i m e to d e a c t i v a t i o n o f th e u p p e r l a s e r l e v e l by h y d ro g en . On th e o t h e r han d , i t was o b s e r ­ ved t h a t th e a d d i t i o n o f v e ry s m a ll am ounts o f H2 c a u se d a i .sm a ll i n c r e a s e i n th e l a s e r p u ls e pow er, f o r s u i t a b l y s h o r t id e la y tim e s ( 2 2 ) . T h is i s due to th e d e a c t i v a t i o n o f th e I 'lo w e r l a s e r l e v e l by h y d ro g en . The p o i n t i s t h a t h y d ro g en i jr a p i d ly d e e x c it e s b o th th e u p p e r and th e lo w e r l e v e l s ; and t h e r e i s p r e f e r e n t i a l d e e x c i t a t i o n o f th e lo w e r l e v e l , b u t 22 (a) ‘ i n t e n s i t y - a r b . u n i t ■ J j*i !> i !n l i i i / 1 ' H - 0 2 ° 0 -0 0 ° l R(2*f) *. \ x - PC02 pHe ----------- 2 .5 1 .5 ------------2 .5 3 .3 -------- - 2 .5 6 .5 -------------2 .5 1 2 .7 \ \ V \ N ' \ \ I 1 I I I I I I f\ I I I I I \ l I l \ l [ 7 5 7 8 1T 2 \ 1 (i i n t e n s i t y a r b . u n i t 1 .6 2. (T ms tim e d e la y 2 ,5 6 .5 0 i i ----------2 .5 6 .5 1 .2 2 .5 6 .5 2.3 PC02 pHe PN2 \ \ ^ y 1 0 °0 -0 0 °1 R (20) \ \ i i i i i i i i i i\i i iv n i\ i i .8 1 .2 1 .6 ms tim e d e la y F i g , 7 . The e f f e c t o f v a r y in g p a r t i a l p r e s s u r e o f He, N« on th e o p t i c a l p u ls e e n e rg y v s . tim e d e la y f o r t y p i c a l r o t a t i o n a l - v i b r a t i o n a l co m p o n en ts. 23 10°0-00°1 R(20) il i n t e n s i t y — a r b . u n i t PC02 PHe p h2 3 .0 6 .5 0 3 .0 6 .5 A 5 3 .0 6 .5 ,6o 3 .0 6 .5 .90 3 .0 6 .5 1 .1 0 I I \ I I I l\ I I I 1 .2 176 2 / 0 ' tim e d e la y ms F ig . 8. The e f f e c t o f v a r y in g p a r t i a l p r e s s u r e o f H2 on th e o p t i c a l p u ls e e n e rg y v s . tim e d e la y f o r t y p i c a l r o t a t i o n a l - v i b r a t i o n a l co m p o n en ts. 24 th e p r e f e r e n c e i s n o t so s t r o n g a s f o r h e liu m . | G. THE DWELL TIME I T here i s a c e r t a i n " d w e ll tim e " T<j d u rin g w hich th e r e s o n a t o r l i n e u p i s a d e q u a te f o r h ig h Q ( f o r a l l th e s e r o t a t i n g - o p t i c s sc h e m e s). The l a s e r g as i n s i s t s upon a c e r t a i n tim e T^ f o r a m p l i f i c a t i o n o f a s i g n a l d e v e lo p in g from n o is e t o r e a c h a m e a su ra b le l e v e l , and f u r t h e r tim e Tp t o s a t u r a t e th e t r a n s i t i o n ( 2 3 ) . F o r a w e ll-fo rm e d p u ls e we r e q u i r e TD = Td + Tp , ^ 3 0 0 n s e c f o r a s t r o n g l i n e . L a s in g can ta k e p la c e w ith a c e r t a i n t o l e r a n c e a n g le ff>/2 from p e r f e c t a lig n m e n t, M ey erh o fer m easured <j>- 1 I |m rad (23). F o r th e g r a t i n g w ith a s p in n in g sp e e d o f 360 c p s , | jthe p r o j e c t i o n o f th e a n g u la r v e l o c i t y u) to an a x is jp e r p e n d ic u la r to th e l a s e r a x is i s 1.36 X 10-^ r a d / s e c . The j m e c h a n ic a l Q -s w itc h e d d w e ll tim e f o r su c h sp e ed i s 370 | i n s e c ; i t i s j u s t lo n g enough f o r s tr o n g l i n e s to l a s e , b u t n o t f o r weak l i n e s . T hus, QS g iv e s f a r fe w e r l i n e s (80 i n num ber) th a n NQS ( 1 3 0 ) . More l i n e s a r e o b se rv e d i f one slo w s down th e m o to r sp e e d to in c r e a s e th e d w e ll tim e , o r i f one in tr o d u c e s a s m a ll amount o f r a d i a t i o n from NQS j ( o p e r a t i n g on th e same l i n e ) t o "prim e" QS (s e e n e x t ‘ s e c t i o n ) . 1 1 H. THE "PRIMING" EXPERIMENT From th e o p e r a t io n o f NQS, we know t h a t th e d w e ll jtime r e q u i r e d f o r weak l i n e s i s much l o n g e r th a n t h a t f o r j js tro n g l i n e s (s e e F i g . 2 ) , The m e c h a n ic a l Q -sw ite h e d d w e ll Itime i s j u s t lo n g enough f o r s t r o n g l i n e s to l a s e . I f we |i n j e c t a s m a ll amount o f l a s e r e n e rg y i n t o th e QS c a v i t y , t h e tim e f o r b u ild u p t o a s i g n i f i c a n t l e v e l may be re d u c e d . | jThus, QS may be a b le to ru n on a d d i t i o n a l weak l i n e s . I n j p r i n c i p l e , c a r e s h o u ld be ta k e n t o o b t a i n c o in c id e n c e o f th e two l a s e r s ' d e t a i l e d f r e q u e n c i e s , and p e rh a p s o f o t h e r m a tc h in g p a r a m e te r s . W e to o k no d e l i b e r a t e m easures in th e s e r e g a r d s . N e v e r t h e l e s s , we d id o b se rv e su c h an e f f e c t . Some l i n e s w hich r a n w eakly i n th e Q -s w itc h e d l a s e r were a ls o en h an ced t o g iv e s u b s t a n t i a l l y l a r g e r p u l s e s . Those jlin e s e x te n d e d and en h an ced a re sum m arized i n T ab le I , I n jthe t a b l e , "QS l i n e s " r e f e r to th e QS l i n e s w hich e x p e r i ­ e n ce d no e n ch an cem en t; th e m eanings o f th e o t h e r term s a re c l e a r . N ^ ^ ^ B r a n c h e s P (1 0 ° 0 -0 0 ° l) R (1 0 ° 0 -0 0 ° l) P (0 2 ° 0 -0 0 ° l) R ( 0 2 ° 0 - 0 0 ° l) R otating speeds of g r a t i n g w P M o o -3 - C V J QS l i n e s P (2 )-P (4 8 ) R (2 )-R (4 4 ) P (4 ) -P ( ^ 8 ) R ( 2 ) - R ( ^ ) enhanced l i n e s P (2 ) ,P ( 4 8 ) R (2 ),R (4 4 ) P (^ )» P (^ 8 ) R (2),R (4*0 a d d i t i o n a l l i n e s P (50) R (^ 6 )-R (5 0 ) P (2) P (5 0 )-P (5 ^ ) R (4 6 )fR(48) to P M o o V O QS l i n e s P(i|,)_P(420 R (2 )-R (^ 2 ) P ( 4 ) - P ( W R (4 )-R (4 2 ) enhanced l i n e s P ( ^ ) , P ( ^ ) R (2 ),R (^ 2 ) P ( ^ ) , P ( W R (4 ),R (4 2 ) a d d i t i o n a l l i n e s P(if6) R(il4) ,R (^6) P (^6) R(2) T ab le I . QS l i n e s e f f e c t e d by th e sp e e d s o f m o tor and by th e p rim in g o f NQS l i n e s . P (2 )-P (4 8 ) means P ( 2 ) f P (4)» P ( 6 ) ............... P ( W * P ( 2 ) ,P ( ^ 8 ) means P (2 ) and P (^ 8 ) o n ly . I CHAPTER V | ! A BRIEF DESCRIPTION OF THE LOCAL M ODE OF CaF2 iH” I A. PREVIOUS W O RK ON HYDROGENATED CALCIUM FLUORIDE j | I n 1962, H a ll and S c h u m ac h er(24) in tr o d u c e d h ydrogen j |atoms in to CaF2 by h eatin g pure CaF2 in the presence o f H 2 j |a n d m e t a l l i c A l. The c r y s t a l s were X -ra y e d , T h is c au se d I |th e hydrogen atoms to move from F“ s u b s titu tio n a l s i t e s to 1 i n t e r s t i t i a l s i t e s j the c r y s ta ls then appeared q u ite b lack . They in v e s tig a te d the e le c tr o n sp in resonance o f the d e fe c t hydrogen atom. In 19&3» Hayes e t a l .(2 5 ) reported the I measurement o f the in fra red ab sorp tion spectrum a sso c ia te d 1 ; ; 1 jw ith th e v i b r a t i o n o f th e h y d rid e io n i n CaF2 . They p r e ­ p a r e d th e sam ple w ith th e m ethod o f H a ll and Schum acher, b u t X r a y i r r a d i a t i o n was n o t p e rfo rm e d . The h y d ro g e n a te d d e f e c t was a s s ig n e d t o th e s u b s t i t u t i o n a l s i t e o f th e ! flu o r in e io n . In 19^5* the same group, E l l i o t t e t a l . (1), com pleted the measurement o f the f i r s t fo u r allow ed (I"L) j j 1 ile v e l s . They a lso presented a th e o r e tic a l model to d escrib e t h is resonant system (F ig . 9)* L ater in the same jyear, Hayes e t a l . (26) observed the other two s t a te s o f the |n=2 le v e l p red icted by t h is m odel; the c r y s ta l was placed |under heavy s t r e s s so th a t ab sorp tion by the otherw ise lunobservable s t a te s was induced by admixture o f the nearby I | 1^ s t a t e s . T h e ir r e s u l t s were a l s o c o r r o b o r a te d i n some 28 cm (2) r-1 1 2912.2. 5 r4 2886.4. r . 2862.5- r",} 2825,6- ,n I T, 1943.6 r* 5 1919.8 r, 1894.1 1 .0 £ tn c o X v 8 3 10 . n \ 965.6 5 X » 6 1 , ; T I 6 <f r i 0 a b e d e f 0 F i g , 9 . S p ectru m a t^ -'2 0 oKl a d o p te d from r e f , 1, T r a n s tio n s s t u d i e d i n s u c c e e d in g i v e s t i g a t i o n s a re t i ) r e f . 1 , i n f r a r e d a b s o r p t i o n , l i n e s a , c , e , f . i i ) r e f . 4 . i r , u n i a x i a l s t r e s s , l i n e s a , b , c , d. i i i ) r e f , 5» Raman s c a t t e r i n g , l i n e s a , b , c . iv ) p r e s e n t w ork, l i n e s a , b ' r c ' , d* . 0 I n s e t i o b se rv e d r e l a t i v e t r a s m i s s i o n on 10 0 lin e $ R (2 ), R ( 4 ) , R ( 6 ) , R (8 ) , R (1 0 ), a t ~ 9 0 °K . 29 measure by Raman(5) and n eutron(2?) s c a tte r in g . R ecen tly , the i r ab so rp tio n sp e c tr a o f the lo c a liz e d v ib r a tio n o f an j i hydrogen atom on an i n t e r s t i t i a l s i t e fo r pure(2 ) and f o r r a r e -e a r th (3 ) doped CaF2 were a ls o measured. i B. REVIEW OF THE THEORETICAL MODEL i CaF2 has a fa ce cen tered cu b ic f lu o r it e str u c tu r e . | | iEach Ca io n i s s u r ro u n d e d by e i g h t f l u o r i d e s a t th e c o m e r s o f a cube and e v e ry se co n d cube o f f l u o r i d e s i s ++ em pty. The p o i n t sym m etry i s c u b ic , 0^* f o r b o th th e Ca io n s i t e and th e i n t e r s t i t i a l s i t e ( t h e s e b e lo n g to th e ++ v a c a n t p o s i t i o n s on th e Ca c u b ic l a t t i c e ) . The f l u o r i d e s have f o u r n e a r e s t - n e i g h b o u r Ca io n s a t th e c o m e r s o f a r e g u l a r t e t r a h e d r o n . The h y d rid e io n a t th e f l u o r i d e s i t e , t h e r e f o r e , w i l l se e a p o t e n t i a l w i l l o f t e t r a h e d r a l |sym m etry, Td . j I : I The l o c a l mode may be d e s c r i b e d a p p r o x im a te ly a s j p e r i o d i c m o tio n o f th e H" io n a lo n e . The r a t i o o f th e ! i displacem ent am plitudes between a s u b s tit u tio n a l d e fe c t ion o f mass M * and a n e ig h b o u r io n o f m ass Mp, i s t y p i c a l l y on th e o r d e r o f M '//M M _. ( 1 ) , where M i s th e mass o f th e io n | ^ Which i s r e p l a c e d by th e d e f e c t io n . F o r an H” io n i n th e |s u b s t i t i o n a l F s i t e , t h e r a t i o o f th e d is p la c e m e n t I ++ « a m p litu d e s b etw een Ca and H io n s i s a b o u t 3 \ | F o r th e o s c i l l a t i o n o f an H io n i n a s t a t i c t e t r a h e d r a l a n h arm o n ic w e l l, th e p o t e n t i a l f o r th e 3 0 d is p la c e m e n t o f t h e H~ io n from th e c e n t e r o f t h e c e l l h a s th e fo rm , j V * A r2 + Bxyz + C ^ x ^ + y ^ + z 1 *) + C g(y2 z 2+z^x^+ x^y^)+ ----- where t h e x - , y - , z - c o o r d i n a te s a r e a lo n g t h e s i d e s o f a u n i t c e l l . The i r sp e c tru m o f t h i s sy ste m i s q u i t e s i m i l a r |to one due t o a p e r f e c t harm onic o s c i l l a t o r , w hich shows t h a t t h e q u a d r a t i c , s p h e r i c a l l y sym m etric te rm g iv e s by f a r th e l a r g e s t c o n t r i b u t i o n t o t h e e n e r g i e s o f lo w - l y in g s t a t e s . T h u s, th e e f f e c t s o f th e an harm onic te rm s a r e sm a ll and t h e te rm s may be c o n s id e r e d a s p e r t u r b a t i o n s . On th e o t h e r h a n d , t h e s e te rm s c a u s e th e v a r i o u s A n- + 1 f r e q u e n c i e s t o be d i s t i n c t , w e ll o u t s i d e t h e i r l i n e w i d t h s . jThis i s q u i t e c o n v e n ie n t f o r o u r p u r p o s e s , s i n c e i t c a u s e s th e s e p r o c e s s e s t o be d i s t i n g u i s h a b l e . I n t h i s r e s p e c t , th e anharm onic te rm s a r e by no means n e g l i g i b l e . To be more s p e c i f i c , th e v i b r a t i o n a l s p e c tru m re s e m b le s t h a t o f a s p h e r i c a l l y sym m etric h arm o n ic o s c i l l a - j • I i t o r w ith u n ifo rm s p a c in g s h i/ i n th e v i c i n i t y o f 950 cm x , iln th e s p h e r i c a l harm on ic m o d e l(2 8 ), we have f o r n - 0 , a n s s t a t e (no d e g e n e ra c y )* f o r n = l , a p s t a t e ( t r i p l e degenerw ;acy)* n= 2, s+ d s t a t e s ( s i x f o l d ) * n=3» P+f ( t e n f o l d ) * e t c . B ecause o f t h e anharm onic p e r t u r b a t i o n , t h e d e g e n e r a c ie s | a r e b ro k e n and t h e c e n t e r - o f - g r a v i t y o f t h e s e v e r a l l e v e l s |o f an y g iv e n n i s s h i f t e d . The n = l l e v e l , w h ic h h a s JV j 5 [sym m etry, i s n o t s p l i t * t h e n=2 l e v e l i s s p l i t i n t o t h r e e l e v e l s w ith sy m m etries 1 ^ , and 1^, w hich have o n e -, tw o -, and t h r e e - f o l d d e g e n e r a c ie s , r e s p e c t i v e l y . These s t a t e s a r e sum m arized i n T ab le I I . The p e r tu r b e d e n e rg y , to f i r s t o r d e r i n th e q u a r t i c te rm s and t o seco n d o r d e r i n th e c u b ic te rm , r e l a t i v e to t h e u n p e rtu r b e d g ro u n d s t a t e , was f o u n d ( l ) to be E = nf>& + ( ^ 1C1-»^2c 2 ) ^ / 2M,^ ) 2- ^ B2ft2/ 2 ^ The c o n s t a n t s were d e te rm in e d by th e i r a b s o r p t io n sp e c tru m i Q,/C = 981 .1 cm"1 , B = 7 .8 ? X 1012 e rg /c m 3 , Ci = - 2 .3 2 X 1019 e rg /c m ^ , | C2 = -1 .0 1 X lO 1^ e rg /c m ^ | land th e i n t e g r a l c o n s t a n t s & ^ f o r d i f f e r e n t s t a t e s lare shown i n T ab le I I , | F i g . 9 shows th e t r a n s i t i o n s s t u d i e d i n v a r io u s i n v e s t i g a t i o n s . n Symmetry Wave F u n c tio n s n X ECcm"1 ) 0 1 |000> 9 3 1 0 i 5 lioo> 21 7 5 965.6 2 l ( | 200>+ |020> + |002> )//3 45 15 21 1894.1 2 3 ( |2 0 0 > -|0 2 0 > ) //5 ‘ 45 9 3 1943.6 2 5 |011> 33 15 13 1919.8 T ab le I I • Wave f u n c t i o n s , s y m m e trie s , and p o s i t i o n s o f th e lo w er v i b r a t i o n a l e n e rg y l e v e l s o f an H“ io n i n CaF2 « CHAPTER VI I | SATURATION OF THE LOCAL M ODE OF CaF2 *H“ j I i A. EXPERIMENTAL ARRANGEMENT The e x p e rim e n t i s a rr a n g e d a s shown i n F ig . 10. j Sam ples were p re p a r e d by th e m ethod o f H a ll and Schuma- c h e r ( 2 4 ) . T hree h o le s in a m ovable c o ld f i n g e r were c o v e re d r e s p e c t i v e l y by a pure CaF2 sa m p le , by a CaF2 »H“ sa m p le , and by n o th in g . Two BaF2 l e n s e s ( f = 62 mm) p la c e d a s dew ar windows f o c u s th e beam on th e sam ple and r e c o l l i - mate a f t e r i t . W e em ployed a c h o p p e r w i t h in th e l a s e r c a v i t y to re d u c e th e p u ls e r a t e from 360 cps to 20 c p s, i n o r d e r to re d u c e th e tim e -a v e ra g e th e rm a l lo a d a t th e c r y s t a l s . I t was d r i v e n s y n c h ro n o u s ly w ith th e d is c h a rg e j |p u l s e . A m onochrom ator was u se d to i d e n t i f y l a s e r l i n e s . | j A th e rm o p ile was u se d to d e te rm in e th e a v e ra g e power, and i j ;two GeiAu d e t e c t o r s were u se d to s tu d y th e p u ls e sh a p e s o f I ! j th e l a s e r o u tp u t from th e z e r o t h o r d e r o f th e g r a t i n g s and from th e concave m i r r o r . The t r a n s m i t t e d i n t e n s i t y th ro u g h th e t h r e e p o r t s o f th e c o ld f i n g e r (one by one, by moving th e f i n g e r ) a re com pared f o r v a r i o u s l y a t t e n u a t e d power i l e v e l s . i IB. EXPERIMENTAL RESULTS A t room te m p e r a tu r e , th e a b s o r p t i o n peak f o r th e 3 3 m o to r Ge s u b s tr a t e d m ir r o r g r a t i n g Q -sw itch ed C02 l a s e r m ir r o r B re w ster window m on och rom ator ’ m ir r o r Ge iAu d e t e c t o r I V o ltag e s i g n a l to o s c illo s c o p e Sample CaF2 *H“ and CaF2 on a m ovable c o ld f i n g e r (3 h o le s ) F ig . 10, The a rran g em en t f o r th e s a t u r a t i o n e x p e rim e n t. 3 5 jfu n d am en ta l i s a t P (^ ) (1 0 °0 -0 0 °1 ) (957*8 cirT'*'), This jfre q u e n c y , and some o f th e o t h e r A n = + 1 f r e q u e n c i e s , l i e i ' O O n e a r th e band c e n t e r f o r th e (10 0-00 1) v i b r a t i o n . As a c o n se q u e n c e , th e C02 l a s e r l i n e s h e re a r e r e l a t i v e l y weak. jT his c ir c u m s ta n c e , i n f a c t , f o r c e d us to d e v e lo p th e | I p r e v io u s " d e s c r ib e d " l a s e r d e s ig n s f o r m axim al g a in and jm inim al l o s s j t h i s i n t u r n l e d to th e o b s e r v a t i o n o f th e jre c o rd num ber o f 130 l i n e s l a s i n g . N e v e r t h e l e s s , P (^ ) re m a in s a weak l i n e f o r QS. T h e r e f o r e , i n o u r s tu d y o f s a t u r a t i o n , we have u s e d i n s t e a d th e s t r o n g e r l i n e s P (6 ) and P ( 8 ) , ( 1 0 ° 0 -0 0 ° 1 ) ( 9 5 6 .2 , 95^*5 cm * ) , w hich a re s t i l l w i t h in th e l in e w i d t h a t t h i s te m p e r a tu r e . The a b s o r p t io n peak c o in c id e s c l o s e l y w ith th e R ^ ) l i n e a t a c o n v e n ie n t jte m p e ra tu re ~ 90°K, n e a r th e b o i l i n g p o i n t o f l i q u i d oxygen. ! jBelow l i q u i d n i t r o g e n te m p e r a tu re (7 7 °K ), how ever, i t ia s y m p to tic a lly a p p ro a c h e s th e l i n e R(6). The r e l a t i v e ! t r a n s m i s s io n f o r v a r io u s l i n e s n e a r th e fu n d a m e n ta l, i s jshown i n th e i n s e r t o f F i g . 9 . Undoped CaF2 sam p les o f l i d e n t i c a l t h ic k n e s s show a c o n s t a n t t r a n s m i s s i o n ^ 90$ . I The tran sm itted p u lse a f t e r the CaF2 *H - was compared Iwith the p ulse from the zeroth order o f the g ra tin g and jdisplayed on an o s c illo s c o p e (T ektronix Type 556), as shown i jin F ig , 1 1 a. As a sim p le d e m o n s tra tio n o f s a t u r a t i o n , i t j jshows te m p o ra l n a rro w in g o f th e t r a n s m i t t e d p u ls e r e l a t i v e to th e i n c i d e n t p u l s e . F i g . l i b d i s p l a y s g ra p h s c o n s t r u c t - 36 pulse after CaF« :H 2 0 0 ns/cm F i g , 11, a) Abovei o s c i l l o s c o p e t r a c e s show ing n a rr o w in g o f t r a n s m i t t e d R(6) p u ls e . r e l a t i v e to i n c i d e n t p u l s e , a t '-*'80 K, b ) Below* p l o t s o f I q v s , I i n c o n s t r u c t e d from th e r i s i n g and from th e f a l l i n g p o r t i o n s o f th e p u ls e a b o v e . PERCENT 3 7 4 0 3 0 20 4 0 3 0 20 6 0 50 4 0 l r i r i r -I 9 5 4 .5 cm _ jo — to — o — _- o-------x r o - o ° — 956.2 cm-' _ - A - ~ ---------- _ - 4 9 6 6 .5 cm"' ____ — - • ~ • . 2.2 c 2.0 • — H 1.4 1 .0 RELATIVE I- in F i g . 12. I 0/ l i n vs-. I i n . F i l l e d sym bols a re d a t a f o r 9®°Kj , where Wq.,= 9 65.1 cm- ! , w id th A = 1.2 cm- ! . Empty sym bols a re d a ta a t 290°K, where Wq i =9 5 7 ,8 cm- ! , w id th A = 8 ,7 cm- ! . G iven l a s e r f r e q u e n c i e s f o r t r i a n g l e s a re n e a r th e r e s p e c t i v e p e a k s ; th o s e f o r c i r c l e s a re i n th e w in g s. ed from p o i n ts on 11a, to i n v e s t i g a t e w h e th e r th e t r a n s jm itte d i n t e n s i t y i s i ) s o l e l y a f u n c t i o n o f th e i n s t a n t a n ­ eo u s i n c i d e n t i n t e n s i t y , c o rre s p o n d in g to s a t u r a t i o n (su c h e f f e c t s w i l l he r e f e r r e d to a s " f a s t " ) * o r i i ) d e p e n d e n t upon th e h i s t o r y — p resu m ab ly upon th e i n t e g r a l o v e r p r e v io u s i n t e n s i t i e s j t h i s m ig h t be ta k e n a s a th e r m a l e f f e c t (•'s lo w " ). Both s o r t s o f e f f e c t a re c l e a r l y p r e s e n t j i j jbut s a t u r a t i o n i s th e dom inant one o t h e r th a n f o r l a t e p o r t i o n s o f th e p u l s e , where th e slow e f f e c t o b v io u s ly d o m in a te s . i I n F ig . 12 we p l o t th e t r a n s m i s s io n I o u t / ^ i n v s * * in a t d i f f e r e n t te m p e r a tu r e s . T h is f i g u r e a l s o d e m o n s tra te s I s a t u r a t i o n . The c u rv e s p l o t t e d a re f i t by a sim p le th e o r y |(se e n e x t s e c t i o n ) , I t j i jc. THEORY OF SATURATION | C o n s id e rin g a s t r o n g CO2 l a s e r beam a t th e fu n d a ­ m e n ta l fre q u e n c y fo c u s e d upon a CaF2 »H~, we a d o p t th e r a t e I j j ie q u a tio n s , jpj- = - Wi (N0 - % ) + ^ Nj. where |Nq i s th e c o n c e n tr a ti o n o f l o c a l mode a t th e ground s t a t e ! and N^ a t th e n = l s t a t e , 1 |Ti i s th e decay tim e from n = l to n=0, I | 39 i 2 jWi = i m i I g ( W “ ^ l o ) i s in d u c e d a b s o r p t io n r a t e , i|^ i \p Q1 = 0 . 1 x 10> = i s th e t r a n s i t i o n d ip o le moment, 11 i s th e l a s e r i n t e n s i t y a t f r e q u e n c y q j , |q i s th e e f f e c t i v e c h a rg e o f th e H“ io n , j ! t2_1 | g(CU~a#i r .) = —----------------- 5--------s— i s th e n o rm a liz e d L o re n tz | 10 * [ ; ( u - w1 0 ) 2+ t 2- 2 ] lin e s h a p e f u n c t i o n , I i W10 i s th e r e s o n a n t f re q u e n c y b etw een s t a t e s ( 1 ) and ( 0 ) , j | a n d , T2 » w hich w i l l a p p ro a c h t o T^ when t h e te m p e ra tu re a p p ro a c h e s 0°K ( d i s c u s s i o n b e lo w ), i s th e l i f e - t i m e o f I | th e n = l l e v e l . | The r e l a x a t i o n tim e s a re o f th e o r d e r o f a few p s e c , |b u t th e l a s e r d u r a t i o n i s *-400 n s , so t h a t th e p o p u la tio n j . d i s t r i b u t i o n i s b a s i c a l l y one o f s t e a d y - s t a t e d u rin g th e j l a s e r p u ls e , i . e . dN0 dNi L e t N -t;0-t be th e t o t a l c o n c e n t r a t i o n o f th e l o c a l 'modes i n s t a t e s ( 0 ) and ( 1 ) , i . e . = N0 + Nl t th e n wiTl | N1 1 + The l a s e r i n t e n s i t y a b so rb e d by H“ io n s i n th e | i n t e r v a l A x i s j A h I = - t la ;W i (N0 - N^AX . o r 4° A u i _ ^ w l ^ o i l 2 T2 N to 1 : 1 ________ A * fi c -2 8 7 r ^Olt 2 -1 ( 01- O ^0 ) + T2 + — ------ T ^ g T h is r e s u l t i s i d e n t i c a l t o a n e q u a t io n d e r iv e d from a d e n s i t y m a tr ix t r e a t m e n t by F a i n an d K h a n in (2 9 ), D e f in in g some new q u a n t i t i e s t o em p h asize th e i n t e n s i t y , r a t h e r th a n t h e fr e q u e n c y d e p e n d e n c e , we have A h1 _ A h1 A x 1+WI , where 2 7Tq2T2N-fc0t _ ^ i s th e a b s o r p t i o n c o e f f i c i e n t McCl + ( M - W 10)2T22] due t o H” io n s i n th e l i m i t o f low l a s e r i n t e n s i t y , and ^7Tq2T1T2 W = -r o— 5“ i s "the s a t u r a t i o n p a r a m e te r . * wi o MCCi+ ( w - w1 0 ) 2t 2z 3 i | I f we ta k e C L ^ t o be th e a b s o r p t i o n c o e f f i c i e n t due t o th e i j l a t t i c e o f p u re CaFgi th e n th e n e t a b s o r p t i o n o f l a s e r j i n t e n s i t y p e r u n i t l e n g t h w i l l be ! A l „ , „ . ®H__\ t ' £ x L T+WI ;A f t e r i n t e g r a t i o n , we g e t / „ - b -b e „ v a(R e - 1) WIi n = — - bc~ ’ where j R - e D e D C ja = b ~ a l / aK» c ” R = i o u t ^ i n * !I ou^. i s th e l a s e r i n t e n s i t y a f t e r th e CaFgiH” c r y s t a l o f l e n g t h L , and I I i n i s th e l a s e r i n t e n s i t y r e a c h i n g th e sa m p le . The c o n s t a n t s O f L and CfH can be m easured by th e ^ a b so rp tio n o f a weak beam, i . e . i i I a LL = - i n R f o r p u re CaF2 » = - I n R - OjL f o r CaF2 *H” , T hus, th e e x p e r im e n ta l curve R v s , I ^ n can be f i t by a s i n g l e p a ra m e te r WI^n (m ax). a „ 27T q2T2 D e f in in g <T = = -------------------------- -— — , we have " t o t M0& + < " l o ) T2 3 2 ) ^ = 1 1 i “ iow /<r L a t e r we w i l l se e e v id e n t t h a t t h e r e i s a v e ry f a s t s c ra m b lin g among th e t h r e e d e g e n e ra te com ponents o f th e n=l l e v e l . The above argum ent m ust be m o d ifie d ! th e r e s u l t i s t h a t th e f a c t o r o f i s changed to 2 , By d e te r m in a tio n o f !W from th e s a t u r a t i o n c u rv e , and o f (T from p re v io u s w ork, |as d e s c r ib e d b e lo w (2 ), th e n T^ can be c a l c u l a t e d . j |d . ANALYSIS OF THE EXPERIMENTAL RESULTS BY THE ABOVE ! THEORY j — 1 — 1 A t room te m p e r a tu r e , O fL = 4 .5 6 cm" = 4 4 . 7 cm” , ! land WI^n (max) = .152 f o r l i n e P ( 6)* a t l i q u i d oxygen i te m p e r a tu re (c h o s e n b e ca u se t h i s p l a c e s a l i n e c lo s e to th e -1 -1 I p e a k ) , Cf^ = 2 .7 7 cm » a H = *75 cm , and Wl£n (max) = .357 i |f o r l i n e R (4 ). Our e s t im a t e o f I ^ n (max) i s v e r y rou g h i jb ecau se th e s p o t d ia m e te r d i s p o o r ly known. T ak in g d=80 | p.m and a maximum power r e a c h in g th e sam ple o f 3 kw, we f i n d ............................ i+2 , I i n (max) = 6 .0 X 10? w a tt/c m 2 . The s a t u r a t i o n p a ra m e te r wj th e n i s 2 .5 X 10“ ^ cm2/ w a t t a t room te m p e r a t u r e , and -9 2 / 6 .0 X 10 7 cm / w a t t a t l i q u i d oxygen t e m p e r a t u r e . Our s u c c e s s i n d e s c r i b i n g th e s a t u r a t i o n in t h i s s im p le f a s h i o r le n d s s u p p o r t t o o u r b e l i e f t h a t t h e l in e s h a p e i s homo­ gen eo u s . Shamu e t a l .( 2 ) m easu red th e i n t e g r a t e d i n t e n s i t y o f th e se c o n d h a rm o n ic a s f 20 H(27rC)’' 1d % 2 = 68 cm” 2 And E l l i o t t e t a l . ( l ) m ea su re d th e r a t i o o f th e fu n d a m e n ta l t o th e se c o n d h arm onic a s / l « H d% l / = 2 3 + 3 I T h u s, th e i n t e g r a t e d i n t e n s i t y o f t h e fu n d a m e n ta l ! i f o r Shamu*s sam ple was i i f 1a ii( z m ) ~ 1&a01 = 156b cm” 2 ! 1 A ssum ing t h a t th e l in e s h a p e i s L o r e n t z i a n , th e n f o r ! th e fu n d a m e n ta l j ®H(p e a k ) = 832 cm” 1 ^ where th e fu n d a m e n ta l l i n e w i d t h i s A = 1 .2 cm” f o r 90°K . i ( The d e f e c t c o n c e n t r a t i o n o f th e Shamu*s sam ple was o n o ! d e te rm in e d by n e u tr o n s c a t t e r i n g t o be n= 10 /cm -5. T hus, ! th e p e ak c r o s s s e c t i o n d e te rm in e d from O'- O /n i s I O' = 8.3 X 10” 18 cm2 . ; peak j The c o n c e n t r a t i o n o f th e one o f o u r sa m p le s u n d e r d i s c u s s i o n i s a p p ro x im a te ly H 175 lg .3 N+ + = -=------- = ----------------- T-o = 2 .0 X 10 7 cm . t o t p eak 8 .3 X 10“ 18 w here th e fre q u e n c y o f th e R (^) l i n e i s ta k e n t o be a t th e p eak o f th e l o c a l mode a b s o r p t i o n . One may n o te t h a t , e v en a p a r t from a s tu d y o f s a t u r a t i o n , th e r e l a t i v e l y lo w -p o w er ( W I « 1 ) m easurem ent o f CtH n e c e s s a r y f o r t h i s p u rp o se w ould be v e ry d i f f i c u l t w ith a c o n v e n tio n a l s o u r c e . T h is pro b lem a r o s e f o r Shamu, i n f a c t , and c a u se d him t o s tu d y th e se c o n d h a rm o n ic a b s o r p t i o n r a t h e r th a n t h a t o f th e fu n d a ­ m e n ta l (s e e a b o v e ). F o r a v i b r a t o r o f known fr e q u e n c y an d m ass t o g iv e o u r t T p g ^ v a l u e , th e e f f e c t i v e c h a rg e * w ould n e c e s s a r i l y be q = y/<r mHCA/¥ T if - .18 e . i ; 1 S u b t i t u t i n g th e v a lu e o f W and O’p e ak i n t o e q u a t io n ■ ( 2 ) , we have T1 = 11 p s e c , j The q u a n t i t a t i v e u n c e r t a i n t i e s a r e l a r g e , b u t th e ' im p lie d d e ca y w id th (hom ogeneous, o b v io u s ly ) c h e c k s w e ll i I w ith th e r e s i d u a l w id th * ( t h e l i n e w i d t h a t z e ro te m p e ra - tt i t u r e ) - .7 cm” and w ith th e a s s e r t i o n by Hayes e t a l .( 2 5 ) ♦The v a lu e o f c r i s p r o p o r t i o n a l to q t th u s i f one ch o se a <rp e a ij v a lu e a p p r o p r i a t e to th e known f r e q u e n c y OJq i » m ass mp, an a a u n i t c h a rg e e , one w ould i n f e r a v a lu e o f Ti so l a r g e a s t o be i n c o n s i s t e n t w ith t h e o b s e rv e d r e s i d u a l l i n e w i d t h . t h a t th e r e s i d u a l w id th i s due to d e c a y . They a l s o s t a t e d t h a t th e " te m p e r a tu re -d e p e n d e n t e f f e c t s (o n lin e w i d t h ) f o llo w from th e i n t e r a c t i o n o f l o c a l i z e d modes w ith th e band m odes. The w id th o f th e l i n e s a r i s e s from p r o c e s s e s iin w hich phonons a r e s c a t t e r e d o f f th e d e f e c t w ith o u t a J |change i n i t s v i b r a t i o n a l s t a t e " ( b u t w ith ra n d o m iz a tio n o f |p h a s e i e v i d e n t l y a l s o o f p o l a r i z a t i o n — se e n e x t C h a p t e r ) . CHAPTER V II STEPWISE EXCITATION A. INTRODUCTION The p o s i t i o n s o f t h e n = 2 l e v e l s o f t h e l o c a l mode w ere o b s e rv e d by s te p w is e e x c i t a t i o n . OS was u se d t o p o p u la te th e n = 1 l e v e l . NQS was u se d th e n t o o b s e rv e th e n * = 1 t o n = 2 a b s o r p t i o n . The p o s i t i o n s o f t h e n « 2 l e v e l s were d e te rm in e d by t h e sum o f th e s e two r e s o n a n t f r e q u e n c i e s ( s u b j e c t t o some l a t e r c o n s i d e r a t i o n s on fr e q u e n c y a d d i t i v i t y ) . B. EXPERIMENTAL ARRANGEMENT ! As shown i n F i g . 13» th e d e w ar, th e s a m p le , and t h e ! d e t e c t o r sy ste m a rra n g e m e n t was t h e same a s i n t h e s a t u r a - ' t i o n e x p e r im e n t. B oth l a s e r s were m e c h a n ic a lly chopped ; t o 2o p u l s e s / s e c . t o m in im iz e h e a t i n g o f th e s a m p le . The | sam ple was g lu e d i n f r o n t o f a h o le o f 20 m il d ia m e te r on I i | a c o ld f i n g e r . B oth l a s e r s w ere a d j u s t e d t o i l l u m i n a t e a common s p o t (fro m d i s t i n c t c o n e s o f s o l i d a n g le ) on t h e I s a m p le . The tim in g f o r b o th l a s e r s was a d j u s t e d so t h a t i | t h e OS p u ls e l a y w i t h i n t h e NQS p u l s e . I | | C. EXPERIMENTAL RESULTS AND DISCUSSION i ) STEPWISE EXCITATION ^ 5 ch o p p er Q -s w itc h e d COg l a s e r n o n -Q -sw itc h ed CO2 l a s e r Ge jAu d e t e c t o r m onochrom ator v o lta g e s i g n a l to o s c i ll o s c o p e t r i g g e r Ge«Au — ] d e t e c t o r ! v o lta g e s i g n a l to o s c i ll o s c o p e sam ple CaF2 »H- on a c o ld f i n g e r o f dewar F i g . 13. The a rra n g e m e n t f o r th e s te p w is e e x c i t a t i o n e x p e rim e n t. | ~ ........ ^7 j | The e x p e rim e n t was done a t l i q u i d n i t r o g e n and a t J I l i q u i d h eliu m t e m p e r a tu r e s . When th e n 2 5 ! l e v e l was pumped |by th e QS l i n e R(4) (9 6 ^ .7 7 cm- *) o r by R(6) (966,25 cm- * ) , I jth e in d u c e d a b s o r p t io n o f NQS p u ls e s was s t u d i e d f o r each |l i n e o f th e (1 0 °0 -0 0 °1 ) ban d . F o r th e s e v a r i o u s NQS I f r e q u e n c i e s , th e chan ges o f t r a n s m i t t e d i n t e n s i t y c a u se d by a p u ls e from QS a r e d e p ic te d i n F i g . l ^ . T here i s a "slo w ” |com ponent o f a b s o r p t io n ( p e r s i s t s a few p s e c ) f o r f r e q u e n ­ c i e s i n th e w ing o f th e fu n d a m e n ta l, a sy m m etric to th e low - fre q u e n c y s i d e . W e t e n t a t i v e l y a t t r i b u t e t h i s to a sim p le ] i n c r e a s e o f l in e w i d t h w ith r i s i n g te m p e r a tu r e , so t h a t a NQS fre q u e n c y i n th e w ing e n c o u n te r s a d d i t i o n a l a b s o r p t io n . T h is th e r m a lly - in d u c e d i n c r e a s e o f a b s o r p t i o n c o rre s p o n d s to a te m p e r a tu re r i s e to a t m ost 120°K. More p ro m in e n t and I imore i n t e r e s t i n g i s th e s te p w is e a b s o r p t i o n , n = l t o n=2j | t h i s i s a " f a s t ” e f f e c t , f a i t h f u l to th e te m p o ra l shape o f th e QS p u ls e . A t l i q u i d n i t r o g e n te m p e r a tu r e , th e NQS beam ;was a b so rb e d on l i n e s P (3 6 )(9 2 9 ,0 2 c m " 1 ) - P (^ O )(9 2 ^ .9 7 cm ” i ) , jP (6 ) (9 5 6 .1 9 cm"1 ) - P ( 10) (9 5 2 .8 8 cm"1 ) , and R(20) (975*93 cm- 1 )-R (2 6 ) (9 7 9 .7 1 cm"1 ) . These t h r e e g ro u p s b e lo n g to th e lin e s h a p e s f o r th e l e v e l s P p r e s - ! j p e c t i v e l y . A t l i q u i d h e liu m te m p e r a tu r e , th e l in e w i d t h s 1 a r e n a rro w e r. The NQS beam was a b so rb e d o n ly f o r l i n e s !P (36 ) — P ( 3 8 ), P ( 8 ) - P ( 1 0 ), and R (2 2 )-R (2 4 ). j j Each o f th e t h r e e n=2 l e v e l s o f E l l i o t t e t a l . (1) jwas in d e e d o b se rv e d i n s te p w is e a b s o r p t i o n , a t th e e n e rg y Q _ or- o co G O < A y \ A/ 20°K QS R(6) A J L > . '■ x v 20°K QS R(4) - a ; _________ A / 80°K QS R(6) 60 50 38 J VALUE |o 4 22 50 | I I I I i I I I I I I I I I I I I II I I I I I I I I I I ^ I I I I I Ml I 1111 |l IIIII111{ lIlIM | 900 920 940 cm-i 960 980 1000 I ---------------- P BRANCH---------—J 1 --------- R BRANCH— 1 F ig , 1^. Above* o s c i ll o s c o p e t r a c e s show ing ''f a s t " and "slow " e f f e c t s . Below* p l o t s v s , NQS fre q u e n c y . F u l l c u rv e s show th e f a s t e f f e c t } d ashed c u rv e s show th e slow e f f e c t . •£ - 0 3 2*9 d e te rm in e d i n th e p r i o r w ork. T h a t i s , th e f r e q u e n c i e s 'a d d , cu01 + t ^ i 2 =<**0 2 # i n e a c h c a s e . T h is i s p e rh a p s l e s s ;t r i v i a l th a n i t seem s. T here m ig h t o c c u r r e l a x a t i o n o f th e j v i c i n a l l a t t i c e io n s a f t e r e x c i t a t i o n o f th e H“ to n = l, w ith a c o n s e q u e n t change o f <^12 f o r 'tlie n e w ly -d e fin e d j " v e r t i c a l " t r a n s i t i o n s . The p o i n t i s t h a t we have a v e ry I good c a se o f a l o c a l e x c i t a t i o n w eakly c o u p le d to l a t t i c e j jphonons. From R e f, 1 we have q u i t e d i s t i n c t "no-phonon" l i n e s ( d o m in a n t), "o n e-p h o n o n " l i n e s (w e a k ), and " m u lt i - phonon" l i n e s ( n o t o b s e r v e d ) . Our n = l t o n=2 l i n e s , a s w e ll a s th e fu n d a m e n ta l, a r e n o -p h o n o n l i n e s , c h a r a c t e r ­ i s t i c o f a sy ste m in c a p a b le o f r e l a x a t i o n . j I i i ) ON POLARIZATION | Our n a iv e e x p e c t a t i o n was t h a t , w ith o u r B rew ster-w in d o w l a s e r s , we c o u ld c o n firm p o l a r i z a t i o n s e l e c t i o n r u l e s i n s te p w is e e x c i t a t i o n . S uppose t h a t we d r i v e ft#Q£ w ith Ex r a d i a t i o n from QS, th e n w ith d i f f e r e n t p o l a r i z a t i o n s o f NQS s tu d y th e n=2 1^ l e v e l f o r s te p w is e !e x c i t a t i o n . T h is n=2 mode i s l a r g e l y l i k e x y j one s h o u ld ! i |f i n d a n u l l e f f e c t i f Ex i s u s e d a g a in f o r NQS. B r i e f l y , Ex *Ey— * r 5 only* EX*EX— * r i f | one f i n d s e a c h l i n e i n e a c h p o l a r i z a t i o n I T here seems t o ibe f a s t " s c ra m b lin g " b e tw een th e t h r e e com ponents o f th e jn=l l e v e l b e fo r e th e se c o n d a b s o r p t i o n . W e a t t r i b u t e t h i s t o phonons s c a t t e r e d from th e 1-3 o n ly . E x p e r im e n ta lly d e f e c t w ith o u t a change from th e n = l l e v e l ( b u t th e p o l a r i z a t i o n may be c h a n g e d ). T h is i s c o n ta in e d among th e p r o c e s s e s to w hich Hayes a t t r i b u t e s l o s s o f p h a se c o h eren c e i le a d i n g to a te m p e ra tu re - d e p e n d e n t e x c e s s w id th beyond th e i r e s i d u a l w id th (T -0 ) d e te rm in e d by decay ( T ^ ). As s t a t e d by E l l i o t t * e t a l . ( 1 ) , th e te m p e r a tu re - d e p e n d e n t e x c e s s i 8 -1 l in e w i d t h can be e x p re s s e d a s A 0 ^ = 3 .2 X 10 T ' cm , A t 5 6 °K, th e te m p e r a tu re -d e p e n d e n t l in e w i d t h w i l l be ,k5 cm"'1 ', th e same a s th e r e s i d u a l l in e w i d t h (T^ - 11 p s e c ) . The r a t e f o r th e p o l a r i z a t i o n s c ra m b lin g sh o u ld be e q u a l to th e r a t e o f phase d i s r u p t i o n , to w i t h in a n u m e ric a l f a c t - j I i o r o f th e o r d e r o f u n i t y . Thus th e r e l a x a t i o n s c ra m b lin g j I i tim e s h o u ld be i n th e o r d e r o f a few p s e c , w hich i s in d e e d ! i v e r y f a s t com pared w ith th e d u r a t i o n o f th e QS l a s e r p u ls e , i I*-*300 n s , I I W e a tte m p te d " f r e e z e - o u t '1 o f th e r e s p o n s i b l e phonons ! i ' |w ith l i q u i d h e liu m , b u t th e s c ra m b lin g re m a in s . The t e s t -p ro b ab ly i s s p o i l e d by th e QS p u ls e h e a t in g e f f e c t . | j | L e t us assume f o r arg u m en t t h a t th e t h r e e n=l ! j d e g e n e ra c y s t a t e s sc ram b le so r a p i d l y t h a t th e y rem a in i ! ' ! e q u a l ly p o p u la te d r e g a r d l e s s o f th e QS p o l a r i z a t i o n . On j t h i s h y p o th e s is , th e r e l a t i v e r a t e s o f a b s o r p t io n on th e t h r e e n = l to n=2 t r a n s i t i o n s f o r any s p e c i f i c e l e c t r i c p o l a r i z a t i o n , s a y Ex , a r e g iv e n e s s e n t i a l l y by th e sq u a re o f th e m a tr ix e le m e n ts . I n d e t a i l , one m ust sum th e r a t e s l o v e r th e d e g e n e ra te com ponents o f t h e n=2 l e v e l . The I c a l c u l a t i o n i s s t r a i g h t f o r w a r d ( s e e F i g . 1 5 ) . D e n o tin g i t h e s e r a t e s o r i n t e n s i t i e s o f n = l to n=2 a b s o r p t i o n by W^, ! W^, W 5 ( f o r r i f r 3§ 1 ^ ) , we c a n d i s p l a y t h e r a t i o s a s | W x t 1W 5 = 1 1 2 1 3 . A m e a n in g fu l t r i a l h e re r e q u i r e s t h a t th e two l a s e r s j have a common s p o t , o r a t l e a s t t h a t th e o v e r l a p be th e same a s we t r y th e f r e q u e n c i e s f o r I \ , F j , F j . W e o b s e rv e t h a t th e i n d u c e d - a b s o r p t i o n s t r e n g t h f o r th e X s t a t e i s in d e e d a lw a y s th e s t r o n g e s t o n e , b u t th e r a t i o , 1 1 2 i 3 , i s n o t c o n s i s t e n t l y v e r i f i e d . W e a t t r i b u t e t h i s t o th e o v e r la p p ro b le m . 1 i i i ) ON LINEWIDTH ! W e ta k e th e w id th o f th e n==l s t a t e t o be g iv e n [b y th e m easurem ent o f E l l i o t t , e t a l . ( 1 ) . th e l i n e w i d t h A a ,01 o f th e fu n d a m e n ta l. S i m i l a r l y , th e w id th o f th e n=2 j j r*3 s t a t e i s ta k e n from t h e i r s e c o n d -h a rm o n ic l i n e w i d t h | A W02 d e te r m i n a ti o n . I n t h e o r y , we s h o u ld f i n d f o r th e j I s te p w is e p r o c e s s , 2= + ^ w02 ^ 0 )« The ol3Served ! 1 — 1 — 1 — 1 ! w id th s a r e r e s p e c t i v e l y a b o u t 3 cm , 1 cm , and 1 .5 cm . I T h is i s e s s e n t i a l l y s a t i s f a c t o r y . A c t u a l l y i t i s p o s s i b l e | t h a t o u r w id th A W i 2 has b een i n c r e a s e d som ewhat by h e a t i n g : due to th e QS l a s e r p u l s e . The t e s t i s th u s n o t a l t o g e t h e r i f I I c o n c l u s i v e » b u t o u r f e e l i n g i s t h a t t h i s b ro a d e n in g i s r [s m a ll and t h a t th e t e s t i s m e a n in g f u l. j ( |200>-|020> ) / / 2 , (2 |002>-|200>-|02G> )//% |011>, | 101>,| 110> | (| 200> +|020>+/0 0 2 > )//3 ! i i i i c ' I NQS » E |ioo>, loio>,|ooi> ! I I I I I Q S — ------- J . 1000> F ig . 15. W av e fu n c tio n s f o r th e S te p w ise T r a n s i t i o n s , iv ) TEST O N TW O -Q UANTUM ABSORPTION W e have made r a t h e r s e n s i t i v e t e s t s f o r e f f e c t s ' o f th e c h o ic e o f QS fre q u e n c y u se d to d r iv e th e fu n d a m e n ta l I jupon th e a p p a r e n t p o s i t i o n s o f th e s e c o n d - s te p r e s o n a n c e s . j |Any inhom ogeneous component o f th e lin e s h a p e c o u ld p ro d u ce su c h a s e f f e c t . Two NQS f r e q u e n c i e s , one on e a c h wing o f a s te p w is e r e s o n a n c e , a re com pared f o r th e i n t e n s i t y o f a b s o r p t io n — f i r s t QS on one wing o f th e fu n d a m e n ta l, and th e n on th e o t h e r . No su ch s h i f t i s d i s c e m a b l e . W ith th e fre q u e n c y o f QS w e ll-re m o v e d fromGU01, we s o u g h t NQS a b s o r p t io n a s th e sum o f th e two l a s e r f r e q u e n c i e s p a s s e d th ro u g h an "this a ls o g iv e s a n u l l r e s u l t . CHAPTER VIII l | i CONCLUSIONS j ! 1 ; 1 7 i The QS o u tp u t w ith a f o c u s e d f l u x d e n s i t y '■'-6 X 1 0 ' t 1 ? | w a tt/c m s u f f i c e s to s a t u r a t e th e fu n d a m e n ta l f o r ^ 6 0 j d e p th i n t o th e c r y s t a l a t ^ 90°K, The e x p e r im e n ta l c u rv e J i o f t r a n s m i s s i o n v s . i n c i d e n t l a s e r i n t e n s i t y i s f i t hy a I j !sim p le t h e o r y w ith a d ju s tm e n t o f a s i n g l e s a t u r a t i o n I p a ra m e te r W. T h is a llo w s c a l c u l a t i o n o f th e d e ca y tim e | Ti = 11 p s e c . T h is i n t u r n a c c o u n ts ro u g h ly f o r th e o b s e r ­ v e d r e s i d u a l l i n e w i d t h a t low te m p e r a tu r e a s th e l i m i t e d - l i f e t i m e w id th , i n a c c o rd a n c e w ith a comment by Hayes e t a l . ( 2 5 ) . | The s te p w is e e x c i t a t i o n e x p e rim e n t was s u c c e s s f u l l y i [perform ed by th e o b s e r v a t i o n o f in d u c e d a b s o r p t i o n o f o u r j |NQS beam. E ach o f th e t h r e e n=2 l e v e l s o f E l l i o t t e t a l . ( l ) i s c o n firm e d by th e s te p w is e e x c i t a t i o n a s th e sum o f l a s e r f r e q u e n c i e s . The l o c a l mode i s w eakly c o u p le d t o th e phonori land i s w e ll d i s c r i b e d by a r i g i d - l a t t i c e m odel. The j l i n e s h a p e was v e r i f i e d t o be hom ogeneous. j F o r e a c h o f th e n=2 l e v e l s , th e in d u c e d a b s o r p t i o n ] o f th e NQS beam i s in d e p e n d e n t o f th e r e l a t i v e p o l a r i z a t i o n s ' I iof th e l a s e r s . T h is e f f e c t i s a t t r i b u t e d t o f a s t " s c ra m - j i i " i j jb lin g " among th e t h r e e d e g e n e ra te n = l 1 ^ s t a t e s p r i o r t o the; jsecond a b s o r p t i o n . T h is s c r a m b lin g i s a t t r i b u t e d t o a p a r t | 5k I o f p r o c e s s e s o f e l a s t i c phonon s c a t t e r i n g which i s |a s s o c i a t e d w ith T2 . I I i I i APPENDIX 56 [ APPENDIX i | A c c o rd in g to th e F r e s n e l - K i r c h h o f f d i f f r a c t i o n i l ! i n t e g r a l ( 3 1 ) , th e com plex a m p litu d e a t th e o b s e r v a t i o n i I |p o i n t p w i l l be U (p) = - f f ± ------------ [ > o s ( z ' , r ) - c o s ( z * ,s)]]dS 2 \ Sf sr Where th e z 1 a x i s i s a lo n g th e n o rm al o f th e g r a t i n g , and j a i l o t h e r n o t a t i o n i s d e f in e d i n r e f e r e n c e (3 1 ) o r shown in F i g . 16. I n t e g r a t i o n o v e r th e l a s e r s p o t a r e a S on th e g r a ­ t i n g g iv e s th e a n g u la r lo c u s o f d i f f r a c t i o n r a y s o f o r d e r n a s th e i n t e r s e c t i o n o f th e c o n es ^ = s i n £ sLn<j> and = - s i n # c o s <f}+ 2 2 2 \ A * | w here r - ( x ' + y ' + z* )% A i s th e w a v e le n g th , d i s j th e g ro o v e s p a c in g , and Q i s th e a n g le b etw een th e l a s e r ; a x i s and th e z ' a x i s . The c o o r d i n a te sy ste m ( x Q , y , z ') , I w hich h a s th e l a s e r a x i s on th e x 0 z* p l a n e , i s f i x e d i n s p a c e * . The c o o r d i n a te sy ste m ( x ^ y ^ z ' ) h a s th e y* a x i s p a r a l l e l to th e g ro o v e s o f th e g r a t i n g . < /> i s th e a n g le j *The c o o r d i n a te sy ste m w h ich we r e g a r d a s " f i x e d " a c t u a l l y change i f a w a v e le n g th a d ju s tm e n t i s made* th e j p r e s e n t a n a l y s i s d e a l s o n ly w ith t h e s p in n in g m o tio n , so t h e s e a r e ta k e n a s f i x e d . z e r o th o r d e r th e i n c i d e n t l a s e r g r a t i n g g ro o v e ► y l a s e r s p o t a r e a S (f> S cu t F i g . 16. The c o o r d i n a te sy ste m s u s e d to c a l c u l a t e l o c i o f F r a u n h o f e r d i f f r a c t i o n on a p la n e p e r p e n d i c u l a r t o th e z e r o t h o r d e r d i f f r a c t i o n r a y . [betw een XqZ ' p la n e and x * z ' p la n e . Each c o o r d in a te sy ste m | [ is r ig h t- h a n d e d and h a s th e c e n t e r o f th e l a s e r a r e a on th e i g r a t i n g a s i t s o r i g i n . T ra n sfo rm in g ( x ^ y ' j Z 1) c o o r d in a te s (m oving sy ste m ) to ( x Q ,y ,z ') ( f i x e d sy ste m ) and th e n to ( x , y , z ) ( a l s o f i x ­ e d ) , f o r w hich th e z a x i s i s p a r a l l e l to th e z e ro — o r d e r o f d i f f r a c t i o n , th e n th e two cones above a r e r e p r e s e n t e d by - c o s# s i n ^ | j + s i n # s i = s i n # s i n<j> - c o s ^ ^ c o s # cos< £^ + s i n ^ ^ - s i n # c o s = - s i n # co s4* + n X d 2 2 2 where r = ( x +y + z ) I f th e g r a t i n g r o t a t e s w ith a n g u la r v e l o c i t y C tl , th e n 4* = & t . E li m in a t in g 0 from th e e q u a tio n s , we g e t th e !lo c u s on th e p la n e p e r p e n d i c u l a r to th e z e ro — o r d e r d i f f r a c t i o n r a y , a t z = c o n s t . , to be j , x c o s g - z s i n g + s l n o ) 2+ / . ( n X ) 2 r r 2 d i [Taking # = 2 0 °, z - 1, th e f a m ily o f l o c i w ith v a r i o u s [n X /d a re shown i n F ig u r e 17. A 6328 £ He-Ne l a s e r , u s e d | [fo r l i n e u p , g iv e s a v i v i d q u a l i t a t i v e c o n f ir m a tio n o f t h i s [ p a tte r n . nA /d = ,7866 — 1.6 - .6 - . 4 - 1.6 - A - 1.2 — 6 - - 1.0 - - 1 .4 F ig . 17. The l o c i o f F r a u n h o f e r d i f f r a c t i o n on a p la n e p e r p e n d i c u l a r to th e z e r o t h o r d e r d i f f r a c t i o n r a y w ith v a r io u s n A /d , T ak in g z = l t 0 = 2 0 ° . 6 1 REFERENCES i | 1 > , R. J . E l l i o t t , W. H ayes, G. D, J o n e s , H. F . M acD onald, Co T . S e n n e t t , P r o c . R oy. S o c . 289 A. 1 (1965)* 2 . R. E . Shamu, W. M. H artm ann and E . L. Y a s a i t i s , P h y s. | R ev. 1 2 0 , 822 (1 9 6 8 ). ! 3» G. D. J o n e s , S . P e le d , S . Rosenwaks and S . Y a t s i v , j P h y s . R ev. 1 8 2 , 353 ( 1 9 6 9 ) . 1 4 , W. H ayes and H. F . M acD onald, P r o c . Roy. S o c . 297 A. 503 ( 1 9 6 7 ). 5* R. T . H a r le y , J . A. H a r r in g to n an d C. T . W alk er, B u l l . j Am. P h y s . S o c . 1 2 , 297 ( 1 9 7 0 ) . ! 6 . E . W. M o n tro ll and R. B. P o t t s , P h y s . R ev. 1 0 0 . 5^5 | ( 1 9 5 5 ) . i 7 . L . C. L e e , M a rtin G u n d ersen and W. L . F a u s t , O p tic s C o m m u n icatio n s, 1 , 291 ( 1970 ) . ! 8 . L . C. Lee and W. L . F a u s t , P h y s . R ev. L e t t e r s , 2 6 , 648 ( 1 9 7 1 ). 9 . L . C . Lee and W. L . F a u s t , O p tic s C o m m u n icatio n s, 2 , 111 ( 1 9 7 0). ! 1 0 . C. K. N. P a t e l , P h y s , R e v , L e t t e r s , 1 2 , 617 (1 9 6 * 0 . 1 1 . C. B. M oore, R . E . Wood, B. L . Hu and J . T . Y a rd le y , J . Chem. P h y s . 4 6 , 4222 ( 1967 ) . 1 2 . C. K. N. P a t e l , W. L . F a u s t and R . A. M c F a rla n e , B u l l . I Am. P h y s . S o c . £ , 500 (1 9 6 4 )1 C. K. N. P a t e l , P h y s . j R e v . 136 A. 118? (1 9 6 4 ). j 1 3 . G. M o lle r and J . D. R ig d e n , A p p l. P h y s. L e t t e r s 8 , I 69 ( 1 9 6 6 ) . ! 1 4 . C. M eyer, P . P in s o n , C. R o s s e t t i and P . B a rc h e w itz , " S t a b i l i s a t i o n en P u is s a n c e d 'u n L a s e r a Gas C a rb o - n iq u e Monode e t M o n o ch ro m atiq u e", t o be p u b l i s h e d . ! 1 5 . J . D. R ig d en and G, M o e lle r , IEEE J , o f Q, E l e c t r o n i c s V o l. QE-2, 365 (1 9 6 6 ). 1 6 . G, W, F ly n n , L , 0 . H o c k e r, A. J a v a n , M. A. K ovacs and C. K. R h o d es, IEEE J . o f Q. E l e c t r o n i c s V o l. QE-2, 378 ( 1 9 6 6 ) . 17. 18. 19. 20. 2 1 . 2 2 . 23. 24. 25. 2 6 . 27. 2 8. 29. 3 0. 31. 62 E . T. G e rry , B u l l. Am. P h y s. S o c. lj>, 563 (1970) 1 A. E. H i l l , A p p l. P h y s. L e t t e r s 18, 19k (1 9 7 1)1 A ls o , se e th e re v ie w by J . L. Emm ett, P h y s. Today, March 1971» p . 24. A. J . B e a u lie u , A p p l. P h y s. L e t t e r s , 1,6, 50k ( 1970 ) . A. Sugiyam a and H. I n a b a , P h v s, L e t t e r s 28 A, 120 ( 1968) . B. A. L en g y e l and W. G. W agner, i n Quantum E l e c t r o ­ n i c s , e d s . G r iv e t and Bloem bergen (C olum bia U n i. P r e s s , New Y ork, 1964) p . 1427. P . K. Cheo, J . A p p l. P h y s. 38 , 3563 ( 1967)1 IEEE J . Quantum E l e c t r o n i c s QE-4, 58? (1 9 6 8 ). P. K. Cheo, A pp l. P h y s. L e t t e r s 11, 38 ( 1967) . D. M ey erh o fe r, IEEE J . Quantum E l e c t r o n i c s 4 ,7 6 2 ( 1968). J . L. H a ll and R. T. Schum acher, P h y s. Rev. 1 2 7 # I 892 ( 1962). W . H ayes, G. D. J o n e s , R. J . E l l i o t t and C. P . S e n n e tt , P a p e r D 6 , p . 475* L a t t i c e D ynam ics, e d . R. F . W a llis , Pergam on P r e s s , New Y ork, O xford 1965 . W. H ayes, H. P . M acDonald and R. J . E l l i o t t , P h y s, Rev, L e t t e r s 1£, 961 ( 1965 ). R. E . Shamu and F . 0 . B e l l i n g e r , B u l l. Am. P h y s. S o c . 1 2 , 393 (1 9 6 7 ). R. H. D icke and J . P . W ittk e , I n t r o d u c t i o n to Quantum M echanics (A d d iso n -W esley P u b lis h in g Co. i 960 ) p . 166. V. M. F a in and Ya I , K h an in , Quantum E l e c t r o n i c s , t r a n s l a t e d by H. S . H. M assey,(M . I . T. P r e s s , C am bridge, 1969 ; E q. 2 3 . 2 3 ). V. W eisskopf and E . W igner, Z e i t s c h r i f t f u e r P h y s ik , §1* 54 (1 9 3 0 ). M. Born and E. W olf, P r i n c i p l e s o f O p tic s (Pergam on P r e s s , New Y ork, 1959) P. 381. 
Asset Metadata
Creator Lee, Long Chi (author) 
Core Title Study Of The Local Mode Of Calcium-Fluoride Doped With Negative Hydrogen Ion With Intense Carbon-Dioxide Laser Lines 
Contributor Digitized by ProQuest (provenance) 
Degree Doctor of Philosophy 
Degree Program physics 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag OAI-PMH Harvest 
Language English
Advisor Faust, Walter L. (committee chair), Hurrell, John P. (committee member), Marburger, John H. (committee member), Porto, Sergio P.S. (committee member), Spitzer, William G. (committee member) 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c18-544295 
Unique identifier UC11362124 
Identifier 7203784.pdf (filename),usctheses-c18-544295 (legacy record id) 
Legacy Identifier 7203784.pdf 
Dmrecord 544295 
Document Type Dissertation 
Rights Lee, Long Chi 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law. Electronic access is being provided by the USC Libraries in agreement with the au... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus, Los Angeles, California 90089, USA
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button