Close
The page header's logo
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Mechanism of secretion and function of heat shock protein-90 (Hsp90) family genes
(USC Thesis Other) 

Mechanism of secretion and function of heat shock protein-90 (Hsp90) family genes

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Copy asset link
Request this asset
Transcript (if available)
Content
  1
 

 
MECHANISM
 OF
 SECRETION
 AND
 FUNCTION
 OF
 HEAT
 
SHOCK
 PROTEIN-­‐90
 (HSP90)
 FAMILY
 GENES
 

 

 

 

 

 
by
 

 
Priyamvada
 Jayaprakash
 

 

 
A
 Dissertation
 Presented
 to
 the
 
FACULTY
 OF
 THE
 USC
 GRADUATE
 SCHOOL
 
UNIVERISTY
 OF
 SOUTHERN
 CALIFORNIA
 
In
 Partial
 Fulfillment
 of
 the
 
Requirements
 for
 the
 Degree
 
DOCTOR
 OF
 PHILOSOPHY
 
(GENETIC,
 MOLECULAR,
 AND
 CELLULAR
 BIOLOGY)
 

August
 2016
 


 

 
Copyright
 2013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Priyamvada
 Jayaprakash
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  2
 
TABLE
 OF
 CONTENTS
 

 
Acknowledgements
  3
 
List
 of
 Figures
  4
 
Chapter
 1:
 Introduction
  6
 

 
 
 The
 Hsp90
 protein
 family
  6
 

 
 
 Hsp90α
 and
 Hsp90β
 isoforms
 perform
 similar
 
 

 
 
 as
 well
 as
 distinct
 functions
 
7
 

 
 
 The
 contrasting
 knockout
 phenotypes
 of
 
 

 
 
 Hsp90α
 and
 Hsp90β
 
8
 

 
 
 Extracellular
 roles
 of
 Hsp90α
 and
 Hsp90β
  10
 

 
 
 Secreted
 Hsp90α
 accelerates
 wound
 healing
  11
 

 
 
 Mechanism
 of
 action
 of
 secreted
 Hsp90α
  14
 

 
 
 Secreted
 Hsp90α
 and
 its
 downstream
 effectors
 in
 cancer
  15
 

 
 
 Mechanism
 of
 Hsp90α
 secretion
 by
 cells
  18
 

 
 
 Mechanisms
 of
 exosome
 biogenesis
  19
 

 
 
 Upstream
 stimuli
 driving
 exosome
 secretion
  20
 

 
 
 Proline-­‐Rich
 Akt
 substrate
 of
 40
 kDa
 (PRAS40)
  22
 
Chapter
  2:
  PRAS40
  connects
  microenvironmental
  stress
  signaling
  to
 
exosome
 secretion
 

 
36
 

 
 
 Abstract
  36
 

 
 
 Introduction
  36
 

 
 
 Results
  40
 

 
 
 Discussion
  54
 

 
 
 References
  57
 
Chapter
 3:
 Hsp90α
 and
 Hsp90β
 Co-­‐Operate
 a
 Stress-­‐Response
 Mechanism
 
to
 Cope
 With
 Hypoxia
 and
 Nutrient
 Paucity
 during
 Wound
 Healing
 
 
 
 

 
65
 

 
 
 Abstract
  65
 

 
 
 Introduction
  65
 

 
 
 Results
  68
 

 
 
 Discussion
  79
 

 
 
 References
  81
 
Chapter
 4:
 Breast
 Cancer
 MDA-­‐MB-­‐231
 Cells
 Use
 Secreted
 Heat
 Shock
 
Protein-­‐90alpha
 (Hsp90α)
 to
 Survive
 a
 Hostile
 Hypoxic
 Environment
 

 
87
 

 
 
 Abstract
  87
 

 
 
 Introduction
  87
 

 
 
 Results
  90
 

 
 
 Discussion
  103
 

 
 
 References
  105
 
Chapter
 5:
 Conclusions
  113
 
Chapter
 6:
 Methods
  120
 

  3
 
Acknowledgements
 

 
My
 PhD
 would
 not
 have
 been
 possible
 without
 the
 tremendous
 support
 of
 many
 
people.
 First,
 I
 am
 thankful
 to
 my
 mentor,
 Dr.
 Wei
 Li
 for
 giving
 me
 the
 opportunity
 to
 
work
 on
 extremely
 interesting
 projects
 and
 for
 helping
 me
 to
 appreciate
 and
 enjoy
 
doing
 science.
 I
 learnt
 being
 persistent
 and
 strong
 in
 the
 face
 of
 failed
 experiments
 
and
 to
 make
 it
 beyond
 all
 challenges.
 I
 am
 grateful
 to
 Dr.
 Mei
 Chen
 for
 making
 sure
 
we
 had
 the
 resources
 to
 carry
 out
 experiments.
 I
 also
 thank
 my
 past
 and
 present
 
colleagues,
 Ayesha,
 Patrick,
 Divya,
 Fred
 and
 Kate
 for
 their
 scientific
 suggestions
 and
 
helpful
 collaborations
 as
 well
 as
 the
 Stallcup
 lab
 for
 providing
 me
 with
 valuable
 
reagents
 and
 scientific
 help
 every
 time
 I
 needed
 it.
 I
 am
 indebted
 to
 my
 past
 and
 
current
 committee
 members,
 Dr.
 Michael
 Stallcup,
 Dr.
 Louis
 Dubeau
 and
 Dr.
 Amy
 
Lee
 for
 always
 being
 ready
 to
 help
 and
 provide
 valuable
 advice.
 
 

 
My
 mom,
 dad,
 sister
 and
 Ashwat
 have
 been
 great
 support
 systems,
 without
 whom,
 I
 
would
 not
 be
 where
 I
 am
 today.
 I
 am
 also
 extremely
 thankful
 to
 my
 friends
 who
 
made
 sure
 of
 providing
 me
 with
 a
 home
 away
 from
 home
 and
 made
 every
 step
 
toward
 my
 PhD
 easier
 than
 it
 could
 ever
 be.
 

 
Finally,
 none
 of
 this
 would
 have
 been
 possible
 without
 the
 grace
 of
 God
 and
 I
 thank
 
Him
 for
 giving
 me
 the
 strength
 and
 the
 drive
 to
 keep
 going
 and
 achieve
 what
 I
 set
 
out
 to
 do.
 
 

 

 

  4
 
LIST
 OF
 FIGURES
 

 
Figure
  1-­‐1:
  A
  model
  of
  how
  eHsp90
  promotes
  re-­‐epithelialization
  and
 
recruits
 dermal
 cells
 into
 the
 wound
 during
 wound
 healing
 

 
13
 
Figure
  1-­‐2:
  Schematic
  representation
  of
  extracellular
  Hsp90α-­‐mediated
 
signaling
 pathway
 

 
15
 
Figure
  1-­‐3:
  Structure
  of
  Hsp90
  highlighting
  domains
  required
  for
  its
 
intracellular
 versus
 extracellular
 functions
 

 
18
 
Figure
 1-­‐4:
 Exosome
 secretory
 pathway
 

 
20
 
Figure
 1-­‐5:
 Domain
 structure
 of
 PRAS40
  23
 

 
Figure
 2-­‐1:
 Identification
 of
 differentially
 activated
 pathways
 between
 TGFα
 
and
 EGF
 stimulated
 human
 keratinocytes
 (HKCs)
 

 
42
 
Figure
 2-­‐2:
 PRAS40
 knockdown
 inhibits
 Hsp90α
 secretion
 in
 response
 to
 
TGFα,
 hypoxia
 and
 oxidative
 stress
 in
 HKCs
 
45
 
Figure
  2-­‐3:
  PRAS40
  down
  regulation
  decreases
  TGFα-­‐driven
  exosome
 
secretion
 in
 HKCs
 

 
47
 
Figure
  2-­‐4:
  PRAS40
  regulates
  constitutive
  and
  hypoxia-­‐driven
  exosome
 
secretion
 in
 MDA-­‐MB-­‐231
 breast
 cancer
 cells
 

 
48
 
Figure
  2-­‐5:
  TGFα-­‐stimulated
  exosome
  secretion
  requires
  T246
 
phosphorylation
 of
 PRAS40
 

 
50
 
Figure
  2-­‐6:
  Constitutive
  exosome
  secretion
  in
  MDA-­‐MB-­‐231
  cells
  is
 
independent
 of
 T246
 phosphorylation
 of
 PRAS40
 

 
51
 
Figure
 2-­‐7:
 Hypoxia
 increases
 PRAS40
 levels
 in
 MDA-­‐MB-­‐231
 cells
 

 
52
 
Figure
 2-­‐8:
 PRAS40
 does
 not
 associate
 with
 exosomes
 

 
53
 
Figure
  3-­‐1:
  Distinct
  requirements
  for
  Hsp90α
  and
  Hsp90β
  for
  hypoxia-­‐
triggered
 cell
 migration
 

 
70
 
Figure
 3-­‐2:
 Secreted
 Hsp90α,
 not
 Hsp90β,
 mediates
 hypoxia-­‐triggered
 HDF
 
migration
 and
 promotes
 wound
 healing
 

 
72
 
Figure
 3-­‐3:
 Only
 Hsp90β
 stabilizes
 the
 LRP-­‐1
 receptor
 

 
75
 
Figure
 3-­‐4:
 Exogenously
 expressed
 Hsp90β
 rescues
 endogenous
 Hsp90β-­‐ 78
 

  5
 
down
 regulated
 HDF
 motility
 

 
Figure
 4-­‐1:
 Selection
 of
 MDA-­‐MB-­‐231
 breast
 cancer
 cell
 line
 as
 the
 model
 of
 
study
 
92
 
Figure
 4-­‐2:
 Generation
 of
 Hsp90α
 knockout
 MDA-­‐MB-­‐231
 cells
 

 
94
 
Figure
 4-­‐3:
 CRISPR-­‐cas9
 knockout
 of
 Hsp90α
 sensitizes
 MDA-­‐MB-­‐231
 cells
 to
 
hypoxia-­‐driven
 killing
 

 
96
 
Figure
 4-­‐4:
 Rescue
 of
 Hsp90α-­‐knockout
 cells
 from
 hypoxia-­‐driven
 killing
 by
 
extracellular
 Hsp90α,
 but
 not
 Hsp90β,
 protein
 via
 LRP-­‐1
 receptor
 signalling
 
 

 
99
 
Figure
  4-­‐5:
  Monoclonal
 antibody,
 1G6-­‐D7,
 binds
 to
 secreted
 Hsp90α
 and
 
neutralizes
 its
 function
 in
 vitro
 and
 in
 vivo
 
 

 
101
 
Figure
 4-­‐6.
 mAb
 1G6-­‐D7
 neutralizes
 secreted
 Hsp90α
 function
 and
 renders
 
MDA-­‐MB-­‐231
 cells
 susceptible
 to
 hypoxia-­‐driven
 cell
 death
 

 
103
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  6
 
Chapter
 1:
 Introduction
 
Hsp90
  was
  initially
  reported
  as
  an
  intracellular
  protein
  whose
  cellular
  level
 
increases
 in
 response
 to
 heat
 (1).
 Since
 then,
 Hsp90
 has
 been
 found
 to
 be
 present
 in
 
most
 cells
 and
 has
 been
 characterized
 as
 an
 intracellular
 chaperone
 protein
 that
 
assists
 the
 conformational
 activation
 of
 a
 long
 list
 of
 client
 proteins
 under
 both
 
physiological
 and
 stress
 conditions
 (2,3).
 Hsp90
 proteins
 constitute
 2-­‐3%
 of
 total
 
cellular
 proteins
 (19).
 The
 basic
 structure
 of
 Hsp90
 proteins
 includes
 an
 N-­‐terminal
 
ATP-­‐binding
 domain,
 a
 charged
 linker
 region,
 a
 client
 binding
 middle
 domain
 and
 a
 
C-­‐terminal
 dimerization
 domain.
 Hsp90
 proteins
 form
 multi-­‐protein
 complexes
 with
 
proteins
  called
  “co-­‐chaperones”.
  The
  chaperone-­‐co-­‐chaperone
  complexes
  co-­‐
operate
 with
 the
 ubiquitin-­‐proteasome
 system
 and
 target
 misfolded
 proteins
 for
 
degradation,
 thereby
 enabling
 protein
 homeostasis
 (70,71,72).
 In
 the
 chaperone
 
cycle,
  the
  co-­‐chaperones
  Hsp70
  and
  Hsp40
  form
  an
  “early
  complex”
  with
  the
 
substrate
 to
 be
 folded.
 This
 is
 followed
 by
 formation
 of
 an
 “intermediate
 complex”
 
with
 Hsp90
 and
 finally
 a
 “late
 complex”
 along
 with
 other
 co-­‐chaperones
 like
 p23
 and
 
PPIase
  and
  ATP.
  ATP
  hydrolysis
  results
  in
  the
  release
  of
  the
  properly
  folded
 
substrate
 (73).
 Hsp90
 has
 around
 200
 client
 proteins,
 including
 protein
 kinases
 and
 
nuclear
 receptors
 (74,
 75).
 
 

 
The
 Hsp90
 protein
 family
 
The
 90
 kDa
 heat
 shock
 protein
 family
 comprises
 the
 cytosolic
 isoforms,
 Hsp90α
 and
 
Hsp90β,
 the
 endoplasmic
 reticulum
 isoform,
 GRP94
 and
 the
 mitochondrial
 isoform,
 
TRAP1. The
 cytosolic
 Hsp90α
 and
 Hsp90β
 isoforms
 are
 86%
 identical
 at
 the
 amino
 

  7
 
acid
 level
 and
 are
 believed
 to
 have
 arisen
 due
 to
 a
 gene
 duplication
 event
 (4).
 
Despite
 the
 high
 degree
 of
 homology,
 the
 two
 isoforms
 have
 certain
 biochemical
 as
 
well
 as
 functional
 differences.
 
 Structurally,
 they
 mainly
 differ
 in
 the
 C-­‐terminal
 
dimerization
 domain.
 Hsp90β
 dimers
 are
 relatively
 unstable,
 hence
 mainly
 exists
 as
 
monomers.
 Hsp90α,
 on
 the
 other
 hand,
 readily
 forms
 homodimers.
 Dimerization
 is
 
reported
 to
 be
 important
 for
 its
 function
 in
 vivo
 (5).
 Apart
 from
 the
 dimerization
 
potential,
  the
  isoforms
  differ
  in
  other
  amino
  acid
  stretches
  too,
  giving
  rise
  to
 
differences
 in
 client
 protein
 binding.
 For
 example,
 Hsp90α
 binds
 more
 strongly
 to
 
ERK,
 A-­‐Raf
 and
 c-­‐Src
 (6),
 while
 Hsp90β
 and
 not
 Hsp90α,
 is
 reported
 to
 be
 the
 
chaperone
 for
 cIAP
 (7).
 
 

 
Hsp90α
 and
 Hsp90β
 isoforms
 perform
 similar
 as
 well
 as
 distinct
 functions
 
Studies
 in
 yeast
 reveal
 that
 an
 increased
 Hsp90β
 to
 Hsp90α
 ratio
 makes
 the
 yeast
 
more
 susceptible
 to
 the
 Hsp90
 inhibitor,
 radicicol
 (8).
 The
 isoforms
 have
 been
 
reported
 to
 behave
 both
 in
 synergy
 and
 independent
 of
 each
 other
 in
 cancer
 cells.
 
Viability
 of
 multiple
 myeloma
 cells
 was
 decreased
 when
 Hsp90α
 and
 Hsp90β
 were
 
knocked
 down
 individually
 by
 siRNA
 and
 the
 viability
 was
 further
 decreased
 by
 the
 
double
 knockdown
 (9).
 The
 role
 of
 Hsp90β
 in
 anti-­‐apoptosis
 was
 shown
 in
 newt
 
testis
 where
 presence
 of
 the
 prolactin
 receptor
 inhibited
 the
 anti-­‐apoptotic
 signal
 of
 
Hsp90β
 (10).
 CpG-­‐B
 ODN,
 a
 bacterial
 component
 known
 to
 trigger
 macrophage
 and
 
dendritic
 cell
 responses
 specifically
 increases
 association
 of
 Bcl-­‐2
 with
 Hsp90β
 and
 
not
 Hsp90α.
 Macrophages
 and
 dendritic
 cells
 expressing
 siRNA
 against
 Hsp90β
 
were
 no
 longer
 responsive
 to
 CpG-­‐B
 ODN
 mediated
 anti-­‐apoptosis
 (11).
 Such
 studies
 

  8
 
placed
 Hsp90β
 as
 an
 important
 player
 in
 anti-­‐apoptotic
 responses.
 Bouchier-­‐Hayes
 
et
 al.
 provided
 a
 possible
 mechanism
 for
 how
 Hsp90α
 or
 Hsp90β
 is
 involved
 in
 anti-­‐
apoptosis.
  Using
  RNAi
  approach,
  they
  showed
  that
  Hsp90α
  is
  a
  key
  negative
 
regulator
 of
 heat-­‐shock-­‐induced
 caspase-­‐2
 activation
 (12).
 

 
The
 contrasting
 knockout
 phenotypes
 of
 Hsp90α
 and
 Hsp90β
 
The
  distinct
  roles
  of
  Hsp90α
  and
  Hsp90β
  were
  further
  highlighted
  from
  the
 
knockout
  mouse
  phenotypes.
  Three
  papers
  on
  Hsp90α
  knockout
  mice
  and
  one
 
paper
 on
 Hsp90β
 knockout
 mice
 have
 been
 reported.
 Hsp90β
 null
 mice
 failed
 to
 
form
 a
 placental
 labyrinth
 and
 were
 embryonic
 lethal
 (13).
 However,
 the
 limitations
 
of
 this
 study
 were
 a)
 the
 authors
 did
 not
 verify
 that
 Hsp90β
 was
 truly
 nullified
 in
 the
 
knockout
 mice
 b)
 did
 not
 check
 if
 Hsp90α
 mRNA
 and
 protein
 levels
 were
 unaffected.
 
Nonetheless,
 this
 finding
 suggests
 that
 Hsp90β
 is
 essential
 for
 life
 and
 implies
 one
 of
 
the
 following
 two
 possibilities:
 (1)
 the
 role
 of
 Hsp90β
 is
 distinct
 and
 it
 cannot
 be
 
replaced
 by
 Hsp90α
 or
 (2)
 Hsp90α
 and
 Hsp90β
 together
 make
 up
 a
 threshold
 of
 the
 
activity
 that
 carries
 out
 the
 same
 functions.
 Therefore,
 reduction
 in
 either
 Hsp90α
 
or
 Hsp90β
 level
 would
 show
 defects.
 However,
 the
 phenotype
 of
 Hsp90α
 -­‐knockout
 
mice
 did
 not
 support
 the
 “threshold”
 possibility
 that
 presence
 of
 both
 Hsp90α
 and
 
Hsp90β
 are
 necessary
 to
 avoid
 lethality.
 

 
Three
 articles
 on
 Hsp90α
 -­‐knockout
 mice
 have
 recently
 appeared.
 Picard's
 group
 
first
 reported
 generation
 of
 the
 knockout
 mice
 carrying
 a
 gene
 trap
 insertion
 in
 
intron
 10
 of
 the
 Hsp90α
 gene.
 This
 insertion
 could
 potentially
 produce
 a
 truncated
 

  9
 
Hsp90α
 protein
 lacking
 the
 C-­‐terminal
 36
 amino
 acids,
 but
 for
 unknown
 reasons
 it
 
did
 not
 occur
 and
 the
 mice
 had
 an
 Hsp90α
 knockout-­‐like
 environment.
 The
 lack
 of
 
expression
 of
 truncated
 Hsp90α
 appeared
 not
 due
 to
 a
 compromised
 stability
 of
 the
 
protein
  (such
  as
  due
  to
  failed
  dimerization),
  because
  Li's
  group
  detected
  little
 
difference
 in
 expression
 between
 a
 mutant
 Hsp90α
 with
 deletion
 of
 the
 36
 amino
 
acids
 and
 the
 wild-­‐type
 Hsp90α
 in
 human
 keratinocytes
 (Cheng
 et
 al.,
 unpublished).
 
Surprisingly,
 except
 for
 the
 lack
 of
 sperms
 in
 the
 male
 mice
 due
 to
 an
 apparently
 
higher
 rate
 of
 apoptosis
 of
 the
 spermatocytes
 in
 the
 testes,
 these
 Hsp90α
 -­‐knockout
 
mice
 developed
 normally
 with
 only
 a
 slightly
 increased
 level
 of
 Hsp90β
 (14).
 The
 
role
  of
  Hsp90α
  in
  spermatogenesis
  even
  in
  adult
  mice
  was
  confirmed
  by
  an
 
independent
 study
 (15).
 This
 finding
 suggests
 that,
 in
 contrast
 to
 Hsp90β,
 Hsp90α
 is
 
not
 essential
 for
 life
 and,
 perhaps
 more
 interestingly,
 has
 a
 tissue-­‐specific
 role
 that
 
cannot
 be
 replaced
 by
 Hsp90β.
 

 
Concurrently,
 Imai
 et
 al.
 generated
 conditional
 Hsp90α-­‐knockout
 mice
 by
 floxing
 the
 
exons
 9
 and
 10
 in
 Hsp90α
 gene.
 Again,
 the
 mice
 showed
 a
 normal
 phenotype
 (16).
 In
 
addition,
 there
 were
 several
 additional
 interesting
 observations
 from
 this
 study:
 (1)
 
Hsp90β
 makes
 up
 at
 least
 50%
 of
 the
 total
 Hsp90
 in
 the
 cells
 (assuming
 that
 the
 pan
 
anti-­‐Hsp90
 antibody
 used
 recognized
 Hsp90α
 and
 Hsp90β
 with
 similar
 affinities),
 
(2)
 Hsp90α
 is
 responsible
 for
 cytosolic
 translocation
 of
 extracellular
 antigen
 across
 
the
 endosomal
 membrane
 into
 the
 cytosol.
 
 

 

 

  10
 
Extracellular
 roles
 of
 Hsp90α
 and
 Hsp90β
 
Aside
  from
  the
  well-­‐documented
  role
  of
  Hsp90α
  and
  Hsp90β
  as
  intracellular
 
chaperones,
 recent
 studies
 imply
 a
 role
 for
 Hsp90α
 in
 the
 extracellular
 space
 as
 well
 
with
 fewer
 papers
 suggesting
 such
 a
 role
 for
 Hsp90β.
 Hsp90α
 is
 secreted
 by
 normal
 
cells
 under
 stress
 and
 constitutively
 by
 cancer
 cells.
 The
 primary
 role
 of
 secreted
 
Hsp90α
 is
 to
 promote
 cell
 motility
 that
 facilitates
 both
 wound
 healing
 and
 tumor
 
metastasis.
  Upstream
  regulators
  of
  Hsp90α
  secretion
  identified
  so
  far
  include
 
hypoxia-­‐inducible
 factor-­‐1α
 (HIF-­‐1α)
 in
 human
 keratinocytes,
 dermal
 fibroblasts
 
and
 triple
 negative
 MDA-­‐MB-­‐231
 breast
 cancer
 cells
 (17,
 18,
 19);
 cytokines
 like
 
TGFα
 in
 human
 keratinocytes;
 PDGF-­‐BB,
 VEGF,
 bFGF
 and
 SDF-­‐1
 in
 endothelial
 cells
 
(30);
 p53
 in
 non
 small
 cell
 lung
 cancer
 (20)
 and
 Hectd1
 in
 the
 cranial
 mesenchyme
 
(21).
 
 

 
On
  the
  other
  hand,
  Hsp90β
  was
  expressed
  on
  the
  cell
  surface
  as
  well
  in
  the
 
conditioned
 medium
 of
 osteosarcoma
 cells
 (76).
 Hsp90β
 was
 also
 identified
 on
 the
 
cell
 surface
 of
 oligodendrocyte
 precursor
 cells
 and
 anti-­‐Hsp90β
 antibodies
 targeting
 
these
  cells
  were
  hypothesized
  to
  prevent
  remyelination
  in
  multiple
  sclerosis
 
patients
  (78).
  However,
  neither
  of
  these
  studies
  investigated
  the
  expression
  of
 
Hsp90α
 on
 the
 cell
 surface
 or
 conditioned
 media.
 Using
 wound
 healing
 as
 a
 model,
 
our
 group
 and
 Luo’s
 group
 have
 shown
 that
 only
 secreted
 Hsp90α,
 but
 not
 Hsp90β,
 
drives
 skin
 cell
 migration
 in
 vitro
 and
 enables
 wound
 healing
 in
 vivo
 (19,
 30).
 
 
 
 

 

 

  11
 
Secreted
 Hsp90α
 accelerates
 wound
 healing
 
Wound
 healing
 is
 a
 complex
 process,
 involving
 3
 major
 skin
 cell
 types—human
 
keratinocytes
  (HKCs),
  human
  dermal
  fibroblasts
  (HDFs)
  and
  human
  dermal
 
microvascular
  endothelial
  cells
  (HDMECs).
  The
  microenvironment
  of
  wounded
 
tissues
 is
 hypoxic
 and
 lacks
 continued
 nutrient
 supply
 due
 to
 vascular
 disruption
 
and
 high
 oxygen
 consumption
 by
 cells
 at
 the
 wound
 edge
 (22).
 Acute
 hypoxia
 in
 
injured
 tissues
 is
 also
 a
 critical
 environmental
 cue
 that
 triggers
 initiation
 of
 the
 
wound
  healing
  processes
  (23).
  For
  instance,
  it
  has
  been
  shown
  that
  hypoxia
 
promotes
 migration
 of
 human
 keratinocytes,
 the
 cell
 responsible
 for
 wound
 closure
 
via
  re-­‐epithelialization
  (24),
  and
  migration
  of
  human
  dermal
  fibroblasts,
  which
 
deposit
 new
 extracellular
 matrices
 to
 the
 wound
 and
 support
 subsequent
 wound
 
remodeling
 (25).
 On
 the
 other
 hand,
 impaired
 responses
 to
 hypoxia
 are
 associated
 
with
 impaired
 wound
 healing,
 such
 as
 the
 environment
 in
 chronic
 diabetic
 wounds
 
(26).
 In
 diabetic
 foot
 ulcers,
 in
 particular,
 the
 stability
 of
 the
 hypoxia-­‐inducible
 
factor-­‐1alpha
  (HIF-­‐1α)
  protein
  is
  compromised
  due
  to
  the
  hyperglycemic
 
environment,
 albeit
 the
 mechanism
 remains
 unclear
 (27,
 28,
 29).
 These
 in
 vitro
 and
 
in
 vivo
 studies
 suggest
 that
 acute
 hypoxia
 is
 a
 natural
 shock
 signal
 to
 the
 injured
 
tissues
 and,
 more
 importantly,
 a
 call
 for
 an
 immediate
 jump-­‐start
 of
 the
 wound
 
healing
 process.
 We
 previously
 reported
 that
 hypoxia
 drives
 Hsp90α
 secretion
 in
 
HKCs
 (17)
 and
 HDFs
 (18).
 This
 was
 dependent
 on
 the
 stable
 expression
 of
 HIF-­‐1α
 
since
 expression
 of
 a
 constitutively
 active
 HIF-­‐1α
 mutant
 under
 normoxia
 was
 able
 
to
 drive
 Hsp90α
 secretion.
 Once
 secreted
 the
 authors
 demonstrated
 that
 it
 binds
 to
 
a
 cell
 surface
 receptor
 LRP-­‐1.
 The
 authors
 identify
 the
 hypoxia>HIF1-­‐
 α>
 secretion
 

  12
 
of
 Hsp90α>LRP-­‐1
 binding>
 cell
 migration>
 wound
 healing
 loop
 in
 HKCs.
 Anti-­‐LRP-­‐1
 
antibodies,
 LRP-­‐1
 down
 regulation
 using
 siRNA
 and
 re-­‐introduction
 of
 a
 siRNA-­‐
resistant
  mLRP1
  receptor
  into
  the
  down
  regulated
  cells
  all
  inhibited
  secreted
 
Hsp90α
 driven
 HKC
 migration
 (17).
 In
 addition
 to
 hypoxia,
 tissue-­‐injury
 released
 
cytokines
 such
 as
 TGFα
 also
 drive
 Hsp90α
 secretion
 in
 HKCs.
 Secreted
 Hsp90α
 binds
 
to
 LRP-­‐1
 receptor
 on
 HDFs
 and
 HDMECs
 to
 facilitate
 the
 wound
 healing
 process.
 
Endothelial
 cells
 activated
 by
 ECM
 proteins
 such
 as
 gelatin
 and
 fibronectin
 and
 
growth
 factors
 such
 as
 bFGF,
 VEGF,
 PDGF-­‐BB
 and
 chemokines
 such
 as
 SDF-­‐1
 secrete
 
Hsp90α,
 but
 not
 Hsp90β.
 The
 secreted
 Hsp90α
 promotes
 endothelial
 cell
 migration
 
in
 vitro
 and
 angiogenesis
 in
 mice.
 In
 vivo,
 extracellular
 Hsp90α
 was
 localized
 on
 the
 
new
 vasculature
 in
 the
 wounded
 tissue
 (30).
 
 

 
Using
 deletion
 mutagenesis,
 Cheng
 et
 al.,
 identified
 F-­‐5,
 a
 115
 amino
 acid
 fragment
 
of
 secreted
 Hsp90α
 that
 recapitulated
 the
 pro-­‐motility
 activity
 of
 the
 full-­‐length
 
protein.
 F-­‐5
 included
 amino
 acids
 236-­‐350
 of
 Hsp90α,
 encompassing
 the
 charged
 
linker
 region
 and
 middle
 domains,
 implying
 the
 N-­‐terminal
 ATPase
 domain
 as
 being
 
dispensable
 for
 secreted
 Hsp90α’s
 pro-­‐motility
 function.
 In
 line
 with
 this
 finding,
 
ATPase
 mutants
 of
 Hsp90α
 were
 as
 effective
 as
 the
 wild
 type
 protein
 in
 promoting
 
cell
  migration.
  F-­‐5
  was
  superior
  to
  FDA-­‐approved
  recombinant
  PDGF-­‐BB
 
(Becaplermin)
 on
 both
 acute
 and
 diabetic
 wounds
 in
 mice.
 The
 superior
 effect
 of
 F-­‐5
 
was
 due
 to
 3
 reasons:
 1)
 F-­‐5
 acted
 on
 all
 3
 cell
 types
 involved
 in
 wound
 healing-­‐
 
HKCs,
 HDFs
 and
 HDMECs
 due
 to
 the
 expression
 of
 LRP-­‐1
 on
 all
 3
 cell
 types;
 2)
 F-­‐5
 
overrode
 the
 inhibition
 of
 TGFβ3
 in
 the
 wound
 bed,
 in
 contrast
 to
 PDGF-­‐BB
 and
 3)
 

  13
 
F-­‐5
 promoted
 cell
 migration
 even
 under
 hyperglycemia
 (31).
 We
 also
 proved
 the
 
efficacy
 of
 F-­‐5
 in
 accelerating
 wound
 healing
 in
 normal
 and
 diabetic
 pigs
 (32).
 F-­‐5
 
accelerated
 wound
 healing
 via
 re-­‐epithelialization,
 the
 lateral
 migration
 of
 HKCs
 
across
  the
  wound
  bed.
  The
  function
  of
  secreted
  Hsp90α
  in
  wound
  healing
  is
 
depicted
 in
 Figure
 1.
 
 

 
Figure
 1-­‐1:
 A
 model
 of
 how
 eHsp90
 promotes
 re-­‐epithelialization
 and
 recruits
 dermal
 cells
 into
 the
 
wound
  during
  wound
  healing.
  (Step
  1)
  Uninjured
  intact
  skin
  with
  little
  detectable
  TGFβ,
  cell
 
migration
 or
 stress;
 (Step
 2)
 Injury
 triggers
 release
 of
 TGFβ
 from
 several
 sources,
 the
 immotile
 to
 
motile
 transition
 of
 keratinocytes
 and
 release
 of
 conventional
 growth
 factors.
 However,
 the
 growth
 
factors
 will
 not
 be
 able
 to
 recruit
 the
 dermal
 cells
 at
 the
 wound
 edge
 to
 the
 wound
 bed
 due
 to
 the
 
presence
 of
 TGFβ;
 (Step
 3)
 While
 keratinocytes
 are
 migrating,
 they
 secrete
 Hsp90α.
 Whence
 the
 
secreted
 Hsp90α
 reaches
 the
 threshold
 concentration
 of
 0.1
 μM,
 it
 will
 drive
 inward
 migration
 of
 

  14
 
HDFs
 and
 HDMECs;
 (Step
 4)
 The
 HKs
 are
 about
 to
 close
 the
 wound
 and
 the
 moved-­‐in
 HDFs
 will
 start
 
to
 remodel
 the
 wound
 and
 HDMECS
 will
 start
 to
 build
 new
 blood
 vessels.
 HK,
 human
 keratinocyte,
 
HDF,
 human
 dermal
 fibroblast
 and
 HDMECs,
 human
 dermal
 microvascular
 endothelial
 cells.
 Adapted
 
from
 Li
 et
 al.
 2013.
 

 
Mechanism
 of
 action
 of
 secreted
 Hsp90α
 
Secreted
 Hsp90α
 acts
 as
 a
 ligand
 for
 cell
 surface
 LRP-­‐1
 (Low
 Density
 Lipoprotein
 
Receptor-­‐Related
 Protein-­‐1)
 receptor
 and
 mediates
 transmembrane
 signaling.
 LRP-­‐
1
 has
 a
 515
 kDa
 extracellular
 region
 with
 four
 extracellular
 domains
 I-­‐IV,
 an
 85
 kDa
 
transmembrane
 domain
 and
 a
 100
 amino
 acid
 long
 cytoplasmic
 tail.
 Extracellular
 
Hsp90α
 binds
 to
 subdomain
 II
 in
 the
 extracellular
 domain
 of
 LRP-­‐1
 and
 transmits
 
the
 pro-­‐motility
 signal
 to
 Akt1
 and
 Akt2
 to
 drive
 HDF
 motility.
 Topical
 application
 of
 
recombinant
 Hsp90α
 does
 not
 accelerate
 wound
 closure
 in
 Akt1
 (-­‐/-­‐)
 and
 Akt2
 (-­‐/-­‐)
 
mice.
  Since
  both
  full-­‐length
  and
  F-­‐5
  bind
  LRP-­‐1
  equally
  well,
  this
  mechanism
 
proposes
  a
  chaperone-­‐independent
  role
  for
  extracellular
  Hsp90α
  (33).
  This
 
mechanism
 is
 shown
 in
 Figure
 2.
 
 

  15
 

 
Figure
 1-­‐2:
 Schematic
 representation
 of
 extracellular
 Hsp90α-­‐mediated
 signaling
 pathway.
 The
 red
 
arrows
 depict
 the
 flow
 of
 extracellular
 Hsp90α
 signals
 from
 inside
 to
 outside
 the
 cell.
 Akt
 is
 essential
 
for
 extracellular
 Hsp90α
 signaling
 to
 promote
 cell
 migration
 and
 wound
 healing.
 Adapted
 from
 Tsen
 
et
 al.,
 2013.
 

 
Secreted
 Hsp90α
 and
 its
 downstream
 effectors
 in
 cancer
 
Hsp90α
 secretion
 has
 been
 reported
 in
 a
 number
 of
 cancers
 including
 breast,
 colon,
 
bladder,
 glioblastoma,
 ovarian
 etc.
 The
 primary
 function
 of
 secreted
 Hsp90α
 is
 to
 
promote
 tumor
 migration,
 invasion
 and
 metastasis.
 Different
 groups
 have
 reported
 
different
 mechanisms
 of
 action
 of
 secreted
 Hsp90α
 in
 cancer.
 In
 prostate
 cancer
 
cells,
 secreted
 Hsp90α
 acted
 in
 an
 autocrine
 manner
 through
 the
 LRP-­‐1
 receptor
 to
 

  16
 
activate
 ERK.
 The
 secreted
 Hsp90-­‐LRP1-­‐ERK
 pathway
 mediated
 an
 epithelial-­‐to-­‐
mesenchymal
 transition
 and
 also
 increased
 the
 transcription
 of
 MMPs
 2,3
 and
 9
 to
 
increase
  cancer
  invasion
  (34).
  Secreted
  Hsp90α
  drove
  HCT-­‐8
  colon
  cancer
  cell
 
migration
 through
 LRP-­‐1-­‐mediated
 integrin
 αv
 expression
 in
 an
 NFκB-­‐dependent
 
manner
 (35).
 In
 glioblastoma,
 LRP-­‐1
 acted
 as
 a
 co-­‐receptor
 for
 the
 receptor
 tyrosine
 
kinase
  EphA2
  and
  mediated
  secreted
  Hsp90
  driven
  cell
  motility,
  which
  was
 
independent
 of
 Hsp90’s
 ATPase
 activity
 (36).
 
 

 
Many
 groups
 have
 identified
 different
 extracellular
 client
 proteins
 of
 Hsp90.
 Matrix
 
metalloproteinases,
 MMPs
 2
 and
 9,
 are
 the
 best
 characterized.
 Jay’s
 group
 found
 that
 
similar
 to
 intracellular
 Hsp90α,
 the
 extracellular
 pool
 functioned
 in
 a
 complex
 with
 
co-­‐chaperones
 such
 as
 Hsp70,
 Hsp40,
 Hop
 and
 p23
 to
 increase
 MMP2
 activation
 as
 
well
 as
 breast
 cancer
 cell
 migration
 and
 invasion
 (37).
 In
 conjunction
 with
 this,
 
inhibition
 of
 cell
 surface
 Hsp90
 with
 a
 monoclonal
 antibody,
 mAb
 4C5
 inhibited
 the
 
activation
 of
 MMP2
 and
 MMP9
 and
 decreased
 breast
 cancer
 metastatic
 deposits
 in
 
the
 lungs
 of
 SCID
 mice
 (38).
 Stabilization
 of
 MMP2
 was
 mediated
 by
 the
 interaction
 
between
 the
 middle
 domain
 of
 Hsp90α
 and
 the
 C-­‐terminal
 hemopexin
 domain
 of
 
MMP2.
 Recombinant
 Hsp90α
 treatment
 of
 MCF7
 cells
 increased
 MMP2
 secretion.
 
Secreted
 Hsp90α
 from
 endothelial
 cells
 promoted
 endothelial
 cell
 proliferation
 and
 
tube
 formation
 in
 vitro
 and
 tumor
 formation
 and
 angiogenesis
 in
 vivo
 in
 an
 MMP2
 
dependent
 manner.
 The
 effect
 of
 Hsp90α
 was
 isoform-­‐specific
 and
 ATP
 independent
 
(39).
 In
 addition
 to
 MMPs,
 surface
 Hsp90
 interacted
 with
 the
 extracellular
 domain
 of
 
HER2
 and
 disruption
 of
 this
 interaction
 by
 mAb
 4C5
 inhibited
 breast
 cancer
 motility
 

  17
 
and
  invasion
  (40).
  Surface
  Hsp90
  interacted
  with
  surface
  Cdc37,
  a
  50
  kDa
 
chaperone
 on
 MDA-­‐MB-­‐231
 and
 MDA-­‐MB-­‐453
 breast
 cancer
 cells,
 to
 stabilize
 HER2
 
and
 EGFR
 thereby
 promoting
 cell
 migration
 and
 invasion
 (41).
 Other
 extracellular
 
clients
 include
 tissue
 plasminogen
 activator
 (tPA)
 that
 mediates
 the
 conversion
 of
 
plasminogen
 to
 plasmin.
 Inhibition
 of
 extracellular
 Hsp90α
 function
 using
 either
 
antibody
 or
 cell-­‐impermeable
 inhibitors
 like
 DMAG-­‐N-­‐oxide
 decreases
 plasminogen
 
activation
 and
 cancer
 cell
 migration
 (42).
 Using
 mass
 spectrometry
 of
 conditioned
 
media
 from
 MDA-­‐MB-­‐231
 breast
 cancer
 cells,
 Lysyl
 Oxidase
 2-­‐like
 Protein
 (LOXL2)
 
was
 identified
 as
 an
 extracellular
 client
 protein
 of
 Hsp90α.
 STA-­‐12-­‐7191,
 a
 cell-­‐
impermeable
 inhibitor
 of
 Hsp90,
 blocked
 breast
 cancer
 cell
 migration,
 which
 can
 be
 
rescued
 by
 exogenous
 supplementation
 with
 recombinant
 LOXL2
 (43).
 In
 addition
 
to
  its
  effects
  on
  cancer
  cells
  themselves,
  secreted
  Hsp90α
  also
  activates
  an
 
inflammatory
 program
 in
 prostate
 stromal
 fibroblasts.
 Recombinant
 full
 length
 or
 F-­‐
5
 Hsp90α
 treatment
 of
 prostate
 fibroblasts
 increases
 the
 transcription
 and
 secretion
 
of
  IL-­‐6
  and
  IL-­‐8
  in
  an
  ERK1/2,
  MMP2/9
  and
  NFκB-­‐dependent
  manner
  (44).
 
Recently,
 Isaacs’
 group
 discovered
 an
 epigenetic
 role
 for
 secreted
 Hsp90.
 Secreted
 
Hsp90
 mediates,
 via
 an
 ERK1/2-­‐dependent
 pathway,
 transcription
 and
 increased
 
expression
 of
 EZH2,
 a
 methyltransferase
 of
 the
 polycomb
 repressor
 complex.
 It
 also
 
increased
  EZH2
  recruitment
  to
  E-­‐cadherin
  promoter,
  repressing
  it.
  EZH2
  was
 
required
 for
 secreted
 Hsp90
 driven
 EMT
 events
 in
 vitro
 and
 tumor
 formation
 in
 vivo
 
(45).
 

 
Hsp90α
 domains
 required
 for
 its
 intracellular
 vs
 extracellular
 functions
 are
 in
 Fig
 3.
 
 

  18
 

 
Figure
  1-­‐3:
  Structure
  of
  Hsp90
  highlighting
  domains
  required
  for
  its
  intracellular
  versus
 
extracellular
 functions.
 Adapted
 from
 Li
 et
 al.,
 2013
 

 
Mechanism
 of
 Hsp90α
 secretion
 by
 cells
 
There
 are
 two
 types
 of
 protein
 secretory
 pathways—the
 conventional
 ER/Golgi
 
pathway
 and
 the
 unconventional
 exosome
 trafficking
 pathway.
 Proteins
 secreted
 by
 
the
 ER/Golgi
 pathway
 contain
 a
 short
 amino
 acid
 sequence
 of
 5-­‐30
 amino
 acids
 
called
 “signal
 peptide”
 at
 their
 N-­‐termini.
 This
 peptide
 is
 required
 for
 recognition
 by
 
a
 signal
 recognition
 particle
 that
 binds
 to
 the
 SRP
 receptor
 on
 the
 ER.
 This
 facilitates
 

  19
 
translocation
 of
 the
 protein
 through
 the
 ER
 and
 Golgi
 followed
 by
 secretion
 outside
 
the
 cells.
 In
 contrast,
 proteins
 such
 as
 Hsp90α
 lack
 this
 signal
 peptide
 and
 are
 
therefore
 secreted
 via
 exosomes.
 Exosomes
 are
 30-­‐150
 nm
 non-­‐plasma
 membrane
 
derived
 vesicles
 of
 endosomal
 origin.
 They
 are
 formed
 due
 to
 inward
 budding
 of
 the
 
limiting
  endosomal
  membrane,
  forming
  intraluminal
  vesicles
  or
  ILVs
  within
 
multivesicular
 bodies
 or
 MVBs.
 MVBs
 have
 one
 of
 two
 fates-­‐
 1)
 they
 fuse
 with
 the
 
lysosomes
 and
 target
 their
 contents
 to
 degradation;
 2)
 they
 fuse
 with
 the
 plasma
 
membrane
 and
 release
 the
 contents
 into
 the
 extracellular
 space
 (46,
 47).
 The
 main
 
known
 function
 of
 exosomes
 is
 cell-­‐cell
 communication.
 There
 are
 two
 proposed
 
mechanisms
 of
 action-­‐
 one
 in
 which
 exosomes
 expose
 proteins
 on
 the
 surface
 that
 
can
 bind
 to
 cell-­‐surface
 receptors
 on
 target
 cells
 and
 trigger
 downstream
 signaling.
 
The
 second
 mechanism
 involves
 fusion
 of
 the
 exosomal
 membrane
 with
 the
 plasma
 
membrane
 of
 target
 cells
 and
 delivery
 of
 the
 exosomal
 cargo
 into
 the
 recipient
 cell
 
cytosol.
 
 

 
 
Mechanisms
 of
 exosome
 biogenesis
 
Exosome
 biogenesis
 mechanisms
 can
 be
 broadly
 divided
 into:
 ESCRT-­‐dependent
 
and
 ESCRT-­‐independent
 pathways.
 ESCRT
 (Endosomal
 Sorting
 Complex
 Required
 
for
 Transport)
 is
 a
 multi-­‐protein
 complex
 composed
 of
 at
 least
 30
 proteins
 divided
 
into
  four
  complexes-­‐
  ESCRT
  0,
  I,
  II
  and
  III.
  ESCRT
  0
  recognizes
  ubiquitinated
 
transmembrane
  proteins
  and
  sequesters
  them
  into
  the
  endosomal
  membrane.
 
Complexes
  I
  and
  II
  mediate
  vesicle
  budding,
  while
  ESCRT
  III
  mediates
  vesicle
 
scission.
 Knockdown
 of
 ESCRT
 components
 such
 as
 Alix
 and
 TSG101
 decreased
 

  20
 
exosome
 secretion
 in
 tumor
 cells
 and
 Hela
 cells
 respectively
 (48,
 49).
 However,
 
concomitant
  inactivation
  of
  all
  four
  ESCRT
  complexes
  did
  not
  block
  exosome
 
secretion
 in
 melanocytic
 cells
 where
 sorting
 of
 the
 pre-­‐melanosomal
 protein,
 PMEL
 
occurred
  independent
  of
  ESCRT
  (50),
  but
  dependent
  on
  CD63
  (51).
  Two
  lipid
 
metabolism
 enzymes,
 neutral
 sphingomyelinase
 (nSMase)
 and
 phospholipase
 D2,
 
have
  been
  implicated
  in
  the
  ESCRT-­‐independent
  mode
  of
  exosome
  secretion.
 
nSMase
  hydrolyzes
  sphingomyelin
  to
  ceramide
  (52),
  while
  phospholipase
  D2
 
hydrolyzes
 phosphatidylcholine
 to
 phosphatidic
 acid
 (53).
 By
 generating
 lipids
 on
 
the
 surface
 of
 MVBs,
 these
 enzymes
 facilitate
 inward
 budding
 and
 ILV
 formation.
 
 

 
Figure
 1-­‐4:
 Exosome
 secretory
 pathway.
 Inward
 budding
 results
 in
 formation
 of
 intraluminal
 
vesicles
 within
 multivesicular
 endosomes
 (MVEs).
 MVEs
 either
 fuse
 with
 lysosome
 for
 degradation
 
or
 with
 the
 plasma
 membrane
 for
 exocytosis
 and
 release
 of
 vesicles
 as
 exosomes.
 Adapted
 from
 
Raposo
 &
 Stoorvogel.,
 2013
 
 

 
Upstream
 stimuli
 driving
 exosome
 secretion
 
Various
 physiological
 and
 pathological
 stimuli
 drive
 exosome
 secretion,
 in
 order
 to
 

  21
 
facilitate
  intercellular
  communication.
  Stimuli
  modulate
  both
  the
  number
  and
 
contents
 of
 exosomes.
 High
 glucose
 (30
 mmol/L)
 treatment
 of
 glomerular
 epithelial
 
cells
 in
 the
 kidney
 increased
 the
 number
 of
 exosomes
 secreted
 and
 also
 increased
 
TGFβ1
 expression
 in
 exosomes.
 TGFβ1
 was
 taken
 up
 by
 glomerular
 mesangial
 cells
 
that
  increased
  their
  proliferation,
  α-­‐SMA
  production
  and
  fibrosis.
  This
  study
 
highlighted
  the
  negative
  impact
  of
  exosomes
  on
  diabetic
  nephropathy
  (54).
 
Recombinant
 Wnt5A
 induced
 the
 secretion
 of
 IL6,
 VEGF
 and
 MMP2
 via
 exosomes
 in
 
malignant
 melanoma
 cells
 in
 a
 Cdc42
 dependent
 manner
 and
 the
 secreted
 exosomes
 
induced
 endothelial
 cell
 branching
 (55).
 Genneback
 et
 al.,
 reported
 that
 stimulation
 
of
 cardiomyocytes
 with
 TGFβ2
 or
 PDGF-­‐BB
 resulted
 in
 differences
 in
 exosomal
 
cargo
 content,
 without
 affecting
 the
 number
 and
 morphology
 of
 exosomes
 secreted.
 
Although
  217
  transcripts
  were
  common
  in
  control
  and
  growth
  factor
  treated
 
cardiomyocytes
 with
 roles
 in
 energy
 supply
 of
 the
 cell,
 growth
 factor
 treatment
 
resulted
 in
 cargo
 content
 with
 roles
 in
 cell
 proliferation
 and
 hypertrophy
 (56).
 

 
Hypoxia
 regulates
 exosome
 secretion
 both
 quantitatively
 and
 qualitatively.
 Hypoxia
 
increased
 the
 number
 of
 exosomes
 secreted
 in
 a
 HIF1α-­‐dependent
 manner
 in
 three
 
different
 breast
 cancer
 cell
 lines,
 MDA-­‐MB-­‐231,
 MCF-­‐7
 and
 Skbr3
 (57).
 Exosomes
 
isolated
 from
 hypoxic
 glioblastoma
 cell
 lines
 increased
 endothelial
 cell
 proliferation
 
and
  migration
  and
  enhanced
  the
  paracrine
  activation
  of
  vascular
  pericytes
  by
 
endothelial
 cells.
 These
 effects
 led
 to
 accelerated
 tumor
 growth
 of
 GBM
 xenografts
 
(58).
 Hypoxia
 activated
 the
 transcription
 of
 Rab22A,
 a
 protein
 of
 the
 Rab
 GTPase
 
family
 to
 increase
 exosome
 release
 and
 subsequent
 tumor
 invasion
 and
 metastasis
 

  22
 
in
 breast
 cancer
 (59).
 In
 hepatocellular
 carcinoma,
 hypoxia
 induced
 the
 expression
 
of
 Rab11-­‐family
 interacting
 protein
 4
 (Rab11-­‐FIP4)
 in
 a
 HIF1α-­‐dependent
 manner
 
that
 in
 turn
 phosphorylated
 PRAS40
 to
 mediate
 hypoxia-­‐driven
 invasion
 and
 tumor
 
metastasis
 in
 mice
 (60).
 
 

 
Proline-­‐Rich
 Akt
 substrate
 of
 40
 kDa
 (PRAS40)
 
The
 proline-­‐rich
 Akt
 substrate
 of
 40
 kDa
 (PRAS40)
 was
 initially
 identified
 as
 one
 of
 
the
 direct
 substrates
 for
 the
 Akt
 family
 kinases
 and
 a
 14-­‐3-­‐3-­‐binding
 protein
 upon
 
phosphorylation
 at
 threonine-­‐246
 by
 Akt
 in
 insulin-­‐stimulated
 rat
 hepatoma
 cell
 line,
 
H4IIE
 (61).
 
 Deduced
 amino
 acid
 sequences
 from
 isolated
 cDNAs
 of
 both
 rat
 and
 
human
  (AKT1S1)
  PRAS40
  revealed
  a
  proline-­‐rich
  molecule
  without
  any
  major
 
homology
 to
 other
 proteins
 in
 the
 database
 or
 any
 previously
 reported
 functional
 
motifs
 from
 signaling
 molecules
 (61,
 62).
 PRAS40
 is
 a
 component
 and
 substrate
 of
 
mTORC1
 and
 required
 for
 inhibiting
 mTOR
 activity
 in
 the
 absence
 of
 stimuli.
 PRAS40
 
plays
 a
 critical
 role
 in
 linking
 insulin
 signaling
 to
 the
 mTOR
 (mammalian
 target
 of
 
rapamycin)
  pathway,
  leading
  to
  protein
  synthesis
  and
  cell
  growth.
  In
  growth-­‐
arrested
  cells,
  such
  as
  serum
  starvation
  or
  mitochondrial
  metabolic
  inhibition,
 
PRAS40
 binds,
 via
 the
 raptor
 subunit,
 to
 mTORC1
 and
 inhibits
 mTORC1
 function.
 
Insulin
 stimulation
 activates
 Akt
 kinases
 that
 phosphorylate
 the
 mTORC1-­‐associated
 
PRAS40
 at
 threonine-­‐246
 in
 its
 C-­‐terminus
 and
 cause
 dissociation
 of
 PRAS40
 from
 
mTORC1
  and
  association
  with
  14-­‐3-­‐3.
  The
  activated
  mTORC1
  now
  can
 
phosphorylate
 and
 activate
 S6K1
 and
 4E-­‐BP1
 and
 promote
 protein
 synthesis
 and
 cell
 
growth
 
 (63,
 64,
 65,
 66).
 PRAS40
 binding
 to
 raptor
 also
 appeared
 to
 require
 the
 

  23
 
phosphorylation
  of
  PRAS40
  at
  serine-­‐183
  by
  mTORC1’s
  kinase
  activity
  (64).
  In
 
addition,
 a
 dozen
 more
 phosphorylation
 sites
 in
 PRAS40,
 mostly
 by
 mTORC1
 kinase,
 
were
 reported
 and
 their
 functions
 remain
 unknown
 (67,
 68).
 Deregulation
 of
 PRAS40
 
phosphorylation
 has
 been
 reported
 in
 cancer
 and
 insulin-­‐resistance
 in
 diabetes
 (67,
 
69).
 

 
Figure
 1-­‐5:
 Domain
 structure
 of
 PRAS40
 

 
Hypothesis
 and
 goals
 
As
 emphasized
 in
 the
 previous
 sections,
 lots
 of
 questions
 remain
 with
 respect
 to
 
delineating
 the
 distinct
 functions
 of
 Hsp90α
 and
 Hsp90β
 as
 well
 as
 identifying
 the
 
relative
 importance
 of
 extracellular
 and
 intracellular
 Hsp90
 pools
 under
 diverse
 
pathological
 conditions.
 In
 addition,
 how
 Hsp90α
 secretion
 is
 regulated
 is
 a
 huge
 
area
 of
 investigation.
 The
 goal
 of
 my
 thesis
 was
 to
 address
 these
 questions.
 The
 
findings
  will
  shed
  light
  on
  the
  probable
  reasons
  as
  to
  why
  Hsp90
  inhibitors
 
targeting
 its
 chaperone
 activity
 failed
 in
 clinical
 trials,
 facilitate
 design
 of
 isoform-­‐
specific
 inhibitors
 that
 leave
 the
 chaperone
 function
 untouched
 and
 help
 identify
 
regulators
 of
 Hsp90α
 secretion
 that
 might
 act
 as
 biomarkers
 as
 well
 as
 therapeutic
 

  24
 
targets
 for
 the
 treatment
 of
 cancers
 that
 rely
 on
 secreted
 Hsp90α
 function.
 

 
In
 summary,
 my
 thesis
 includes
 three
 main
 projects,
 beginning
 with
 identifying
 the
 
mechanism
 of
 Hsp90α
 secretion
 in
 response
 to
 diverse
 stress
 signals
 (chapter
 1),
 
investigating
 the
 communication
 between
 Hsp90α
 and
 Hsp90β
 isoforms
 in
 wound
 
healing
 (chapter
 2)
 and
 uncovering
 a
 novel
 role
 of
 secreted
 Hsp90α
 as
 a
 tumor
 
survival
 factor
 under
 hypoxia
 (chapter
 3).
 

 
References:
 

 
1. Ritossa,
  F.,
  (1996).
  Discovery
  of
  the
  heat
  shock
  response.
  Cell
  Stress
 
Chaperones
 1,
 97–98.
 
2. Young,
 J.C.,
 Moarefi,
 I.,
 Hartl,
 F.U.,
 (2001).
 Hsp90:
 a
 specialized
 but
 essential
 
protein-­‐folding
 tool.
 J.
 Cell.
 Biol.
 154,
 267–273.
 
3. Whitesell,
 L.,
 Lindquist,
 S.L.,
 (2005).
 HSP90
 and
 the
 chaperoning
 of
 cancer.
 
Nat.
 Rev.
 Cancer
 5,
 761–772.
 
4. Gupta,
 RS.,
 (1995).
 Phylogenetic
 analysis
 of
 the
 90
 kD
 heat
 shock
 family
 of
 
protein
 sequences
 and
 an
 examination
 of
 the
 relationship
 among
 animals,
 
plants,
 and
 fungi
 species.
 Mol
 Biol
 Evol.
 
 12
 (6),
 1063-­‐73.
 
5. Minami,
 Y.,
 Kimura,
 Y.,
 Kawasaki,
 H.,
 Suzuki,
 K.,
 &
 Yahara,
 I.
 (1994).
 The
 
carboxy-­‐terminal
  region
  of
  mammalian
  HSP90
  is
  required
  for
  its
 
dimerization
 and
 function
 in
 vivo.
 Mol.
 Cell.
 Biol.
 14(2),
 1459–1464.
 

  25
 
6. Taherian,
 A.,
 Krone,
 PH.,
 &
 Ovsenek,
 N.
 (2008).
 A
 comparison
 of
 Hsp90alpha
 
and
 Hsp90beta
 interactions
 with
 cochaperones
 and
 substrates.
 Biochem
 Cell
 
Biol.
 
 86
 (1),
 37-­‐45
 
7. Didelot,
 C.,
 Lanneau,
 D.,
 Brunet
 M.,
 Bouchot
 A,
 Cartier,
 J.,
 
 Jacquel,
 A
 .,
 et
 al.
 
(2008).
 Interaction
 of
 heat-­‐shock
 protein
 90β
 isoform
 (HSP90β)
 with
 cellular
 
inhibitor
 of
 apoptosis
 1
 (c-­‐IAP1)
 is
 required
 for
 cell
 differentiation.
 Cell
 Death
 
and
 Differentiation
 (2008)
 15,
 859–86
 
8. Millson,
 S.
 H.,
 Truman,
 A.
 W.,
 Rácz,
 A.,
 Hu,
 B.,
 Panaretou,
 B.,
 Nuttall,
 J.,
 et
 al.
 
(2007),
 Expressed
 as
 the
 sole
 Hsp90
 of
 yeast,
 the
 α
 and
 β
 isoforms
 of
 human
 
Hsp90
 differ
 with
 regard
 to
 their
 capacities
 for
 activation
 of
 certain
 client
 
proteins,
 whereas
 only
 Hsp90β
 generates
 sensitivity
 to
 the
 Hsp90
 inhibitor
 
radicicol.
 FEBS
 Journal,
 274,
 4453–4463.
 
9. Chatterjee,
 M.,
 Jain,
 S.,
 Stühmer,
 T.,
 Andrulis,
 M.,
 Ungethüm,
 U.,
 Kuban,
 RJ.,
 et
 
al.,
  (2007).
  STAT3
  and
  MAPK
  signaling
  maintain
  overexpression
  of
  heat
 
shock
 proteins
 90alpha
 and
 beta
 in
 multiple
 myeloma
 cells,
 which
 critically
 
contribute
 to
 tumor-­‐cell
 survival.
 Blood.
 
 109
 (2),
 720-­‐8
 
10. Saribek,
 B.,
 Jin,
 Y.,
 Saigo,
 M.,
 Eto,
 K.,
 Abe,
 S.,
 (2006).
 HSP90beta
 is
 involved
 in
 
signaling
 prolactin
 induced
 apoptosis
 in
 newt
 testis.
 Biochem.
 Biophys.
 Res.
 
Commun.
 349,
 1190–1197.
 
11. Kuo,
 C.C.,
 Liang,
 C.M.,
 Lai,
 C.Y.,
 Liang,
 S.M.,
 (2007).
 Involvement
 of
 heat
 shock
 
protein
 Hsp90
 beta
 but
 not
 Hsp90
 alpha
 in
 antiapoptotic
 effect
 of
 CpG-­‐B
 
oligodeoxynucleotide.
 J.
 Immunol.
 178,
 6100–6108.
 

  26
 
12. Bouchier-­‐Hayes,
 L.,
 Oberst,
 A.,
 McStay,
 G.P.,
 Connell,
 S.,
 Tait,
 S.W.,
 Dillon,
 C.P.,
 
et
  al.,
  (2009).
  Characterization
  of
  cytoplasmic
  caspase-­‐2
  activation
  by
 
induced
 proximity.
 Mol.
 Cell.
 35,
 830–840.
 
13. Voss,
  A.K.,
  Thomas,
  T.,
  Gruss,
  P.,
  (2000).
  Mice
  lacking
  HSP90beta
  fail
  to
 
develop
 a
 placental
 labyrinth.
 Development
 127,
 1–11.
 
14. Grad,
 I.,
 Cederroth,
 C.R.,
 Walicki,
 J.,
 Grey,
 C.,
 Barluenga,
 S.,
 Winssinger,
 N.,
 et
 
al.,
 (2010).
 The
 molecular
 chaperone
 Hsp90α
 is
 required
 meiotic
 progression
 
of
 spermatocytes
 beyond
 pachytene
 in
 the
 mouse.
 PLoS
 One
 5,
 e15770.
 
15. Kajiwara,
 C.,
 Kondo,
 S.,
 Uda,
 S.,
 Dai,
 L.,
 Ichiyanagi,
 T.,
 Chiba,
 T.,
 et
 al.,
 (2012).
 
Spermatogenesis
 arrest
 caused
 by
 conditional
 deletion
 of
 Hsp90α
 in
 adult
 
mice.
 Biol.
 Open
 1,
 977–982.
 
16. Imai,
 T.,
 Kato,
 Y.,
 Kajiwara,
 C.,
 Mizukami,
 S.,
 Ishige,
 I.,
 Ichiyanagi,
 T.,
 et
 al.,
 
(2011).
 Heat
 shock
 protein
 90
 HSP90
 contributes
 to
 cytosolic
 translocation
 
of
 extracellular
 antigen
 for
 cross-­‐presentation
 by
 dendritic
 cells.
 Proc.
 Natl.
 
Acad.
 Sci.
 USA
 108,
 16363–16368.
 
17. Woodley,
 DT.,
 Fan,
 J.,
 Cheng,
 CF.,
 Li,
 Y.,
 Chen,
 M.,
 Bu,
 G.
 and
 Li
 W.
 (2009)
 
Participation
  of
  the
  lipoprotein
  receptor
  LRP1
  in
  hypoxia-­‐HSP90alpha
 
autocrine
 signaling
 to
 promote
 keratinocyte
 migration.
 J
 Cell
 Sci
 122,
 1495-­‐
1498.
 
18. Li,
 W.,
 Li,
 Y.,
 Guan,
 S.,
 Fan,
 J.,
 Cheng,
 C.,
 Bright,
 AM.,
 Chinn,
 C.,
 Chen,
 M.
 and
 
Woodley
  DT.
  (2007)
  Extracellular
  heat
  shock
  protein-­‐90alpha:
  linking
 
hypoxia
 to
 skin
 cell
 motility
 and
 wound
 healing.
 EMBO
 J
 26,
 1221-­‐1233.
 

  27
 
19. Sahu,
  D.,
 Zhao,
  Z.,
 Tsen,
  F.,
 Cheng,
  CF.,
 Park,
  R.,
 Situ,
  AJ.,
 Dai,
  J.,
 Eginli,
 
A.,
 Shams,
 S.,
 Chen,
 M.
 et
 al.
 (2012)
 A
 potentially
 common
 peptide
 target
 in
 
secreted
  heat
  shock
  protein-­‐90α
  for
  hypoxia-­‐inducible
  factor-­‐1α-­‐positive
 
tumors.
 Mol
 Biol
 Cell
 23,
 602-­‐613
 
20. Yu,
 X.,
 Harris,
 S.L.,
 Levine,
 A.J.,
 (2006).
 The
 regulation
 of
 exosome
 secretion:
 a
 
novel
 function
 of
 the
 p.53
 protein.
 Cancer
 Res.
 66,
 4795–4801.
 
21. Sarkar,
 A.A.,
 Zohn,
 I.E.,
 (2012).
 Hectd1
 regulates
 intracellular
 localization
 and
 
secretion
 of
 Hsp90
 to
 control
 cellular
 behavior
 of
 the
 cranial
 mesenchyme.
 J.
 
Cell.
 Biol.
 196,
 789–800.
 
22. Pai,
 M.
 P.
 and
 Hunt,
 T.
 K.
 (1972).
 Effect
 of
 varying
 oxygen
 tensions
 on
 healing
 
of
 open
 wounds.
 Surg.
 Gynecol.
 Obstet.
 135,
 756-­‐758.
 
23. Tandara,
 AA.
 and
 Mustoe,
 TA.
 (2004)
 Oxygen
 in
 wound
 healing-­‐-­‐more
 than
 a
 
nutrient.
 World
 J
 Surg
 28,
 294-­‐300.
 
24. O’Tool,
 EA.,
  Marinkovich,
 MP.,
  Peavey,
 CL.,
  Amieva,
  MR.,
  Furthmayr,
  H.,
 
Mustoe,
 TA.
 and
 Woodley
 DT.
 (1997)
 Hypoxia
 increases
 human
 keratinocyte
 
motility
 on
 connective
 tissue
 .
 J.
 Clin.
 Invest.
 100,
 2881-­‐2891.
 
25. Mogford,
 JE.,
 Tawil,
 N.,
 Chen,
 A.,
 Gies,
 D.,
 Xia,
 Y.
 and
 Mustoe
 TA.
 (2002)
 Effect
 
of
  age
  and
  hypoxia
  on
  TGFbeta1
  receptor
  expression
  and
  signal
 
transduction
 in
 human
 dermal
 fibroblasts:
 impact
 on
 cell
 migration.
 J
 Cell
 
Physiol
 190,
 259-­‐265.
 
26. Botusan,
 IR.,
 Sunkari,
 VG.,
 Savu,
 O.,
 Catrina,
 AI.,
 Grünler,
 J.,
 Lindberg,
 S.,
 
Pereira,
  T.,
   
  Yla-­‐Herttuala,
  S.,
  Poellinger,
  L.,
  Brismar,
  K.
  et
  al.
  (2008)
 

  28
 
Stabilization
 of
 HIF-­‐1alpha
 is
 critical
 to
 improve
 wound
 healing
 in
 diabetic
 
mice.
 Proc
 Natl
 Acad
 Sci.
 USA.
 105,19426-­‐19431.
 
27. Catrina,
 SB.,
 Okamoto,
 K.,
 Pereira,
 T.,
 Brismar,
 K.
 and
 Poellinger,
 L.
 (2004)
 
Hyperglycemia
 regulates
 hypoxia-­‐inducible
 factor-­‐1alpha
 protein
 stability
 
and
 function.
 Diabetes
 53,
 3226–3232.
 
 
28. Fadini,
  GP.,
  Sartore,
  S.,
  Schiavon,
  M.,
  Albiero,
  M.,
  Baesso,
  I.,
  Cabrelle,
 
A.,
 Agostini,
  C.,
  &
 Avogaro,
  A.
  (2006)
  Diabetes
  impairs
  progenitor
  cell
 
mobilisation
  after
  hindlimb
  ischaemia-­‐reperfusion
  injury
  in
  rats.
 
Diabetologia
 49,
 3075-­‐3084.
 
29. Gao,
  Z.,
 Sasaoka,
  T.,
 Fujimori,
  T.,
 Oya,
  T.,
  Ishii,
  Y.,
 Sabit,
  H.,
 Kawaguchi,
 
M.,
 Kurotaki,
 Y.,
 Naito,
 M.,
 Wada
 T.
 et
 al.
 (2005)
 Deletion
 of
 the
 PDGFR-­‐beta
 
gene
 affects
 key
 fibroblast
 functions
 important
 for
 wound
 healing.
 J
 Biol
 
Chem
 280,
 9375-­‐9389.
 
30. Song,
  X.,
  &
  Luo,
  Y.
  (2010).
  The
  regulatory
  mechanism
  of
  Hsp90alpha
 
secretion
 from
 endothelial
 cells
 and
 its
 role
 in
 angiogenesis
 during
 wound
 
healing.
 Biochem
 Biophys
 Res
 Commun.
 
 398
 (1),
 111-­‐7
 
31. Cheng,
 CF.,
 Fan,
 J.,
 Fedesco,
 M.,
 Guan,
 S.,
 Li,
 Y.,
 Bandyopadhyay,
 B.,
 et
 al.,
 
(2008).
  Transforming
  Growth
  Factor
  α
  (TGFα)-­‐Stimulated
  Secretion
  of
 
HSP90α:
  Using
  the
  Receptor
  LRP-­‐1/CD91
  To
  Promote
  Human
  Skin
  Cell
 
Migration
 against
 a
 TGFβ-­‐Rich
 Environment
 during
 Wound
 Healing.
 Mol
 Cell
 
Biol.
 28(10),
 3344–3358.
 
32. O’Brien,
 K.,
 Bhatia,
 A.,
 Tsen,
 F.,
 Chen,
 M.,
 Wong,
 AK.,
 Woodley,
 DT.,
 et
 al
 
(2014).
 Identification
 of
 the
 Critical
 Therapeutic
 Entity
 in
 Secreted
 Hsp90α
 

  29
 
That
  Promotes
  Wound
  Healing
  in
  Newly
  Re-­‐Standardized
  Healthy
  and
 
Diabetic
 Pig
 Models.
 PLoS
 One
 9(12):
 e113956.
 
33. Tsen,
  F.,
 Bhatia,
  A.,
 O'Brien,
  K.,
 Cheng
  CF,
 Chen
  M,
 Hay
  N.,
 et
  al.,
  (2013).
 
Extracellular
 heat
 shock
 protein
 90
 signals
 through
 subdomain
 II
 and
 the
 
NPVY
  motif
  of
  LRP-­‐1
  receptor
  to
  Akt1
  and
  Akt2:
  a
  circuit
  essential
  for
 
promoting
 skin
 cell
 migration
 in
 vitro
 and
 wound
 healing
 in
 vivo.
 Mol
 Cell
 
Biol.
 (24),
 4947-­‐59
 
34. Hance,
  M.
  W.,
  Dole,
  K.,
  Gopal,
  U.,
  Bohonowych,
  J.
  E.,
  Jezierska-­‐Drutel,
  A.,
 
Neumann,
 C.
 A.,
 et
 al.,
 (2012).
 Secreted
 Hsp90
 Is
 a
 Novel
 Regulator
 of
 the
 
Epithelial
  to
  Mesenchymal
  Transition
  (EMT)
  in
  Prostate
  Cancer.
 J.
 
Biol.Chem.
 287(45),
 37732–37744.
 
 
35. Chen,
 J.-­‐S.,
 Hsu,
 Y.-­‐M.,
 Chen,
 C.-­‐C.,
 Chen,
 L.-­‐L.,
 Lee,
 C.-­‐C.,
 &
 Huang,
 T.-­‐S.
 (2010).
 
Secreted
 Heat
 Shock
 Protein
 90α
 Induces
 Colorectal
 Cancer
 Cell
 Invasion
 
through
  CD91/LRP-­‐1
  and
  NF-­‐κB-­‐mediated
  Integrin
  αV
 Expression.
  J.
 
Biol.Chem,
 285(33),
 25458–25466.
 
 
36. Gopal,
 U.,
 Bohonowych,
 J.
 E.,
 Lema-­‐Tome,
 C.,
 Liu,
 A.,
 Garrett-­‐Mayer,
 E.,
 Wang,
 
B.,
 et
 al.,
 (2011).
 A
 Novel
 Extracellular
 Hsp90
 Mediated
 Co-­‐Receptor
 Function
 
for
  LRP1
  Regulates
  EphA2
  Dependent
  Glioblastoma
  Cell
  Invasion.
 PLoS
 
ONE,
 6(3),
 e17649.
 
 
37. Sims,
 J.
 D.,
 McCready,
 J.,
 &
 Jay,
 D.
 G.
 (2011).
 Extracellular
 Heat
 Shock
 Protein
 
(Hsp)70
 and
 Hsp90α
 Assist
 in
 Matrix
 Metalloproteinase-­‐2
 Activation
 and
 
Breast
 Cancer
 Cell
 Migration
 and
 Invasion.
 PLoS
 ONE,
 6(4),
 e18848.
 
 

  30
 
38. Stellas,
 D.,
 El
 Hamidieh,
 A.,
 &
 Patsavoudi,
 E.
 (2010).
 Monoclonal
 antibody
 4C5
 
prevents
 activation
 of
 MMP2
 and
 MMP9
 by
 disrupting
 their
 interaction
 with
 
extracellular
 HSP90
 and
 inhibits
 formation
 of
 metastatic
 breast
 cancer
 cell
 
deposits.
 BMC
 Cell
 Biology,
 11,
 51.
 
 
39. Song,
 X.,
 Wang,
 X.,
 Zhuo,
 W.,
 Shi,
 H.,
 Feng,
 D.,
 Sun,
 Y.,
 et
 al.
 (2010).
 The
 
Regulatory
 Mechanism
 of
 Extracellular
 Hsp90α
 on
 Matrix
 Metalloproteinase-­‐
2
 Processing
 and
 Tumor
 Angiogenesis.
 J.
 Biol.Chem,
 285
 (51),
 40039–40049.
 
 
40. Sidera,
 K.,
 Gaitanou,
 M.,
 Stellas,
 D.,
 Matsas,
 R.,
 &
 Patsavoudi,
 E.
 (2008).
 A
 
Critical
 Role
 for
 HSP90
 in
 Cancer
 Cell
 Invasion
 Involves
 Interaction
 with
 the
 
Extracellular
 Domain
 of
 HER-­‐2.
 J.
 Biol.Chem,
 283,2031-­‐2041.
 
41. El
 Hamidieh,
 A.,
 Grammatikakis,
 N.,
 &
 Patsavoudi,
 E.
 (2012).
 Cell
 Surface
 
Cdc37
 Participates
 in
 Extracellular
 HSP90
 Mediated
 Cancer
 Cell
 Invasion.
 
PLoS
 ONE,
 7(8),
 e42722.
 
 
42. McCready,
 J.,
 Sims,
 J.
 D.,
 Chan,
 D.,
 &
 Jay,
 D.
 G.
 (2010).
 Secretion
 of
 extracellular
 
hsp90α
 via
 exosomes
 increases
 cancer
 cell
 motility:
 a
 role
 for
 plasminogen
 
activation.
 BMC
 Cancer,
 10,
 294.
 
 
43. McCready,
 J.,
 Wong,
 D.
 S.,
 Burlison,
 J.
 A.,
 Ying,
 W.,
 &
 Jay,
 D.
 G.
 (2014).
 An
 
Impermeant
  Ganetespib
  Analog
  Inhibits
  Extracellular
  Hsp90-­‐Mediated
 
Cancer
  Cell
  Migration
  that
  Involves
  Lysyl
  Oxidase
  2-­‐like
 
Protein.
 Cancers,
 6(2),
 1031–1046.
 
 
44. Bohonowych,
 J.,
 Hance,
 M.,
 Nolan,
 K.,
 Defee,
 M.,
 Parsons,
 C.,
 &
 Isaacs,
 J.
 (2014).
 
Extracellular
  Hsp90
  mediates
  an
  NF-­‐κB
  dependent
  inflammatory
  stromal
 

  31
 
program:
  Implications
  for
  the
  prostate
  tumor
  microenvironment.
 The
 
Prostate,
 74(4),
 395–407.
 
 
45. Nolan,
 K.
 D.,
 Franco,
 O.
 E.,
 Hance,
 M.
 W.,
 Hayward,
 S.
 W.,
 &
 Isaacs,
 J.
 S.
 (2015).
 
Tumor-­‐secreted
 Hsp90
 Subverts
 Polycomb
 Function
 to
 Drive
 Prostate
 Tumor
 
Growth
 and
 Invasion.
 J.
 Biol.Chem.,
 290(13),
 8271–8282.
 
 
46. Jaiswal,
  JK.,
  Andrews,
  NW.
  &
  Simon
  SM.
  (2002).
  Membrane
  proximal
 
lysosomes
  are
  the
  major
  vesicles
  responsible
  for
  calcium-­‐dependent
 
exocytosis
 in
 nonsecretory
 cells.
 J.
 Cell
 Biol.
 159,
 625–35
 
47. Raposo,
 G.,
 Nijman,
 HW.,
 Stoorvogel,
 W.,
 Liejendekker,
 R.,
 Harding,
 CV.,
 Melief,
 
CJ.,
 et
 al.
 1996.
 B
 lymphocytes
 secrete
 antigen-­‐presenting
 vesicles.
 J.
 Exp.
 Med.
 
183,
 1161–72
 
48. Baietti,
 MF.,
 Zhang,
 Z.,
 Mortier,
 E.,
 Melchior,
 A.,
 Degeest,
 G.,
  Geeraerts
 A.,
 et
 al.
 
(2012).
 Syndecan-­‐syntenin-­‐ALIX
 regulates
 the
 biogenesis
 of
 exosomes.
 Nat.
 
Cell
 Biol.
 14,
 677–85
 
49. Colombo,
 M.,
 Moita,
 C.,
 van
 Niel,
 G.,
 Kowal
 J,
 Vigneron
 J,
 
 Benaroch
 P
 et
 al.
 
(2013).
 Analysis
 of
 ESCRT
 functions
 in
 exosome
 biogenesis,
 composition
 and
 
secretion
 highlights
 the
 heterogeneity
 of
 extracellular
 vesicles.
 J.
 Cell
 Sci.
 126,
 
5553–65
 
50. Theos,
 A.
 C.,
 Truschel,
 S.
 T.,
 Tenza,
 D.,
 Hurbain,
 I.,
 Harper,
 D.
 C.,
 Berson,
 J.
 F.,
 et
 
al.,
  (2006).
  A
  novel
  pathway
  for
  sorting
  to
  intralumenal
  vesicles
  of
 
multivesicular
  endosomes
  involved
  in
  organelle
  morphogenesis.
  Dev.
 
Cell,
 10(3),
 343–354.
 
 

  32
 
51. Van
 Niel,
 G.,
 Charrin,
 S.,
 Simoes,
 S.,
 Romao,
 M.,
 Rochin,
 L.,
 Saftig,
 P.,
 et
 al.
 
(2011).
 The
 tetraspanin
 CD63
 regulates
 ESCRT-­‐independent
 and
 dependent
 
endosomal
 sorting
 during
 melanogenesis.
 Dev.
 Cell,
 21(4),
 708–721.
 
 
52. Trajkovic,
 K.,
 Hsu,
 C.,
 Chiantia,
 S.,
 Rajendran,
 L.,
 Wenzel,
 D.,
 Wieland,
 F.,
 et
 al.
 
(2008).
 Ceramide
 triggers
 budding
 of
 exosome
 vesicles
 into
 multivesicular
 
endosomes.
 Science
 319,
 1244–47
 
53. Ghossoub,
 R.,
 Lembo,
 F.,
 Rubio,
 A.,
 Gaillard,
 CB.,
 Bouchet,
 J.,
 Vitale,
 N.,
 et
 al.
 
(2014).
 Syntenin-­‐ALIX
 exosome
 biogenesis
 and
 budding
 into
 multivesicular
 
bodies
 are
 controlled
 by
 ARF6
 and
 PLD2.
 Nat.
 Commun.
 5,
 3477
 
54. Wu,
 X.,
  Gao,
 Y.,
  Cui,
 F.,
  &
  Zhang,
  N.
  (2016).
  Exosomes
  from
  high
  glucose-­‐
treated
 glomerular
 endothelial
 cells
 activate
 mesangial
 cells
 to
 promote
 renal
 
fibrosis.
 Biol.
 Open.
 0,
 1-­‐8.
 
55. Ekström,
 E.
 J.,
 Bergenfelz,
 C.,
 von
 Bülow,
 V.,
 Serifler,
 F.,
 Carlemalm,
 E.,
 Jönsson,
 
G.,
  et
  al.,
  (2014).
  WNT5A
  induces
  release
  of
  exosomes
  containing
  pro-­‐
angiogenic
  and
  immunosuppressive
  factors
  from
  malignant
  melanoma
 
cells.
 Molecular
 Cancer,
 13,
 88.
 
 
56. Gennebäck,
 N.,
 Hellman,
 U.,
 Malm,
 L.,
 Larsson,
 G.,
 Ronquist,
 G.,
 Waldenström,
 
A.,
  et
  al.,
  (2013).
  Growth
  factor
  stimulation
  of
  cardiomyocytes
  induces
 
changes
 in
 the
 transcriptional
 contents
 of
 secreted
 exosomes.
 J.
 Extracell.
 
Vesicles,
 2,
 10.3402/jev.v2i0.20167.
 
 
57. King,
 H.
 W.,
 Michael,
 M.
 Z.,
 &
 Gleadle,
 J.
 M.
 (2012).
 Hypoxic
 enhancement
 of
 
exosome
 release
 by
 breast
 cancer
 cells.
 BMC
 Cancer,
 12,
 421.
 
 

  33
 
58. Kucharzewska,
 P.,
 Christianson,
 H.
 C.,
 Welch,
 J.
 E.,
 Svensson,
 K.
 J.,
 Fredlund,
 E.,
 
Ringnér,
 M.,
 et
 al.,
 (2013).
 Exosomes
 reflect
 the
 hypoxic
 status
 of
 glioma
 cells
 
and
 mediate
 hypoxia-­‐dependent
 activation
 of
 vascular
 cells
 during
 tumor
 
development.
 Proc
 Natl
 Acad
 Sci.
 USA.
 110(18),
 7312–7317.
 
 
59. Wang,
 T.,
 Gilkes,
 D.
 M.,
 Takano,
 N.,
 Xiang,
 L.,
 Luo,
 W.,
 Bishop,
 C.
 J.,
 et
 al.,
 
(2014).
  Hypoxia-­‐inducible
  factors
  and
  RAB22A
  mediate
  formation
  of
 
microvesicles
 that
 stimulate
 breast
 cancer
 invasion
 and
 metastasis.
 Proc
 Natl
 
Acad
 Sci.
 USA,
 111(31),
 E3234–E3242.
 
 
60. Hu,
  F.,
 Deng,
  X.,
 Yang,
  X,
 Jin,
  H.,
 Gu,
  D.,
 Lv,
  X.,

 
et
  al.,
  (2015).
 
Hypoxia
 upregulates
 Rab11-­‐family
 interacting
 protein
 4
 through
  HIF-­‐1α
  to
 
promote
  the
  metastasis
  of
  hepatocellular
  carcinoma.
  Oncogene.
 
  34(49),
 
6007-­‐17
 
61. Kovacina,
 KS.,
 Park,
 GY.,
 Bae,
 SS.,
 Guzzetta,
 AW.,
 Schaefer,
 E.,
 Birnbaum
 MJ,
 et
 
al.
 (2003).
 Identification
 of
 a
 proline-­‐rich
 Akt
 substrate
 as
 a
 14-­‐3-­‐3
 binding
 
partner.
 J
 Biol
 Chem
 278,
 10189–10194.
 
62. Beausoleil,
 SA.,
 Jedrychowski,
 M.,
 Schwartz,
 D.,
 Elias,
 JE.,
 Villen,
 J.,
 Li,
 J.,
 et
 al.,
 
(2004).
 Large-­‐scale
 characterization
 of
 HeLa
 cell
 nuclear
 phosphoproteins.
 
Proc
 Natl
 Acad
 Sci
 USA
 101,
 12130–12135.
 
63. Sancak,
 Y.,
 Thoreen,
 CC.,
 Peterson,
 TR.,
 Lindquist,
 RA.,
 Kang,
 SA.,
 Spooner,
 E.,
 
et
  al.,
  (2007).
  PRAS40
  is
  an
  insulin-­‐regulated
  inhibitor
  of
  the
  mTORC1
 
protein
 kinase.
 Mol
 Cell
 25:
 903–915
 
64. Oshiro,
 N.,
 Takahashi,
 R.,
 Yoshino,
 K.,
 Tanimura,
 K.,
 Nakashima,
 A.,
 Eguchi,
 S.,
 
et
  al.,
  (2007).
  The
  proline-­‐rich
  Akt
  substrate
  of
  40
  kDa
  (PRAS40)
  is
  a
 

  34
 
physiological
 substrate
 of
 mammalian
 target
 of
 rapamycin
 complex
 1.
 J
 Biol
 
Chem
 282,
 20329–20339
 
65. Vander
 Haar,
 E.,
 Lee,
 SI.,
 Bandhakavi,
 S.,
 Griffin,
 TJ.
 &
 Kim,
 DH.
 (2007).
 Insulin
 
signalling
 to
 mTOR
 mediated
 by
 the
 Akt/PKB
 substrate
 PRAS40.
 Nat
 Cell
 Biol
 
9,
 316–323.
 
66. Thedieck,
 K.,
 Polak,
 P.,
 Kim,
 ML.,
 Molle,
 KD.,
 Cohen,
 A.,
 Jeno,
 P.,
 et
 al.,
 (2007).
 
PRAS40
  and
  PRR5-­‐like
  protein
  are
  new
  mTOR
  interactors
  that
  regulate
 
apoptosis.
 PLoS
 One
 2:
 e1217.
 
67. Wiza,
 C.,
 Nascimento,
 EBM.
 &
 Ouwens,
 DM.
 (2012).
 Role
 of
 PRAS40
 in
 Akt
 and
 
mTOR
 signaling
 in
 health
 and
 disease.
 Am
 J
 Physiol
 Endocrinol
 Metab
 302:
 
E1453–E1460.
 
68. Wang,
 H.,
 Zhang,
 Q.,
 Wen,
 Q.,
 Zheng,
 Y.,
 Philip,
 L.,
 Jiang,
 H.,
 et
 al.,
 (2012).
 
Proline-­‐rich
 Akt
 substrate
 of
 40kDa
 (PRAS40):
 a
 novel
 downstream
 target
 of
 
PI3k/Akt
 signaling
 pathway.
 Cell
 Signal
 24,
 17–24.
 
69. Malla,
  R.,
 Wang,
  Y.,
 Chan,
  WK.,
 Tiwari,
  AK.,
 &
  Faridi,
  JS.
  (2015).
  Genetic
 
ablation
 of
 PRAS40
 improves
 glucose
 homeostasis
 via
 linking
 the
 AKT
 and
 
mTOR
 pathways.
 Biochem
 Pharmacol.
 96
 (1),
 65-­‐75
 
70. Pratt,
 WB.,
 Morishima,
 Y.,
 Murphy,
 M.
 &
 Harrell,
 M.
 (2006).
 Chaperoning
 of
 
glucocorticoid
 receptors.
 Handb.
 Exp.
 Pharmacol.
 172,
 111–138.
 
71. Pratt,
 WB.,
 Morishima,
 Y.,
 Peng,
 HM.,
 &
 Osawa,
 Y.
 (2010).
 Proposal
 for
 a
 role
 
of
 the
 Hsp90/Hsp70-­‐based
 chaperone
 machinery
 in
 making
 triage
 decisions
 
when
 proteins
 undergo
 oxidative
 and
 toxic
 damage.
 Exp.
 Biol.
 Med.
 235,
 278–
289.
 

  35
 
72. Gamerdinger,
 M.,
 Hajieva,
 P.,
 Kaya,
 AM.,
 Wolfrum,
 U.,
 Hartl,
 FU.,
 &
 Behl,
 C.
 
(2009).
  Protein
  quality
  control
  during
  aging
  involves
  recruitment
  of
  the
 
macroautophagy
 pathway
 by
 BAG3.
 EMBO
 J.
 28,
 889–901.
 
73. Li,
 J.,
 Richter,
 K.,
 &
 Buchner,
 J.
 (2011).
 Mixed
 Hsp90-­‐cochaperone
 complexes
 
are
 important
 for
 the
 progression
 of
 the
 reaction
 cycle,
 Nat.
 Struct.
 Mol.
 Biol.
 
18,
 61–66
 
74. Smith,
 D.F.,
 Stensgard,
 BA.,
 Welch,
 WJ.,
 
 &
 Toft,
 D.O.
 (1992).
 Assembly
 of
 
progesterone
 receptor
 with
 heat
 shock
 proteins
 and
 receptor
 activation
 are
 
ATP
 mediated
 events,
 J.
 Biol.
 Chem.
 267,
 1350–1356.
 
75. Ziemiecki,
 A.,
 Catelli,
 MG.,
 Joab,
 I.,
 &
 Moncharmont,
 B.
 (1986).
 Association
 of
 
the
 heat
 shock
 protein
 hsp90
 with
 steroid
 hormone
 receptors
 and
 tyrosine
 
kinase
 oncogene
 products,
 Biochem.
 Biophys.
 Res.
 Commun.
 138,
 1298–1307
 
76. Suzuki,
 S.,
 &
 Kulkarni,
 AB.
 (2010).
 Extracellular
 Heat
 Shock
 Protein
 HSP90β
 
Secreted
 by
 MG63
 Osteosarcoma
 Cells
 Inhibits
 Activation
 of
 Latent
 TGF-­‐β1.
 
Biochem.
 Biophys.
 Res.
 Commun.
 398(3),
 525–531.
 
 
77. Sidera,
  K.,
 Samiotaki,
  M.,
 Yfanti,
  E.,
 Panayotou,
  G.,
 &
  Patsavoudi,
  E.
  (2004).
 
Involvement
 of
 cell
 surface
 HSP90
 in
 cell
 migration
 reveals
 a
 novel
 role
 in
 the
 
developing
 nervous
 system.
 J
 Biol
 Chem.
 
 279
 (44),
 45379-­‐88
 
78. Cid,
 C.,
 Alvarez-­‐Cermeño,
 JC.,
 Camafeita,
 E.,
 Salinas,
 M.,
 &
 Alcázar,
 A.
 (2004).
 
Antibodes
  reactive
  to
  heat
  shock
  protein
  90
 
induce
 oligodendrocyte
 precursor
  cell
  death
  in
  culture.
  Implications
  for
 
demyelination
 in
 multiple
 sclerosis.
 FASEB
 J.
 
 18
 (2),
 409-­‐11
 

  36
 
Chapter
 2:
 PRAS40
 connects
 microenvironmental
 stress
 signaling
 to
 
exosome
 secretion
 
Abstract
 
Exosomes
 are
 30-­‐150
 nm
 sized
 membrane
 vesicles
 of
 endosomal
 origin
 that
 are
 
formed
  within
  multivesicular
  bodies
  inside
  the
  cell
  and
  are
  released
  into
  the
 
extracellular
 space
 following
 fusion
 with
 the
 plasma
 membrane.
 The
 main
 function
 
of
  exosomes
  is
  to
  facilitate
  intercellular
  communication.
  Various
  environmental
 
stimuli
 such
 as
 growth
 factors,
 hypoxia,
 radiation,
 oxidative
 stress
 etc.
 increase
 
exosome
  secretion.
  However,
  how
  these
  diverse
  signals
  converge
  on
  driving
 
exosome
 secretion
 is
 not
 known.
 Here,
 we
 report
 identification
 of
 proline-­‐rich
 Akt
 
substrate
  of
  40kDa
  (PRAS40)
  as
  a
  central
  regulator
  of
  exosome
  secretion
  in
 
response
 to
 growth
 factor,
 hypoxia
 and
 H2O2
 stimulation
 in
 both
 normal
 and
 cancer
 
cells.
 Down
 regulation
 of
 PRAS40
 blocked
 exosome
 secretion
 in
 response
 to
 diverse
 
stresses.
  PRAS40
  does
  not
  physically
  associate
  with
  exosomes
  and
  mediates
 
exosome
 secretion
 by
 both
 Threonine
 246
 (T246)
 phosphorylation
 dependent
 and
 
PRAS40
 total
 protein
 level
 dependent
 pathways.
 Thus,
 PRAS40
 controls
 both
 stress-­‐
induced
  and
  constitutive
  secretion
  of
  exosomes
  in
  normal
  and
  tumor
  cells
 
respectively.
 
 

 
Introduction
 
Based
 on
 differences
 in
 the
 content,
 size
 and
 membrane
 composition,
 cell-­‐secreted
 
extracellular
 vesicles
 (EVs)
 are
 classified
 into
 three
 subgroups,
 namely,
 apoptotic
 
bodies,
  microvesicles/ectosomes
  and
  exosomes
  (1-­‐4).
  Exosomes
  or
  intraluminal
 

  37
 
vesicles
 (ILVs)
 are
 membrane
 vesicles
 of
 endosomal
 origin,
 30-­‐150
 nm
 in
 diameter
 
and
 formed
 within
 multivesicular
 bodies
 (MVB).
 MVB-­‐derived
 exosomes
 can
 fuse
 
with
 the
 plasma
 membrane
 to
 release
 their
 cargo
 molecules
 into
 the
 extracellular
 
space.
 This
 release
 process
 was
 reported
 to
 include
 1)
 sorting
 into
 smaller
 vesicles;
 
2)
 fusing
 with
 the
 cell
 membrane;
 and
 3)
 releasing
 the
 vesicles
 to
 the
 extracellular
 
space.
 Exosomes
 can
 be
 enriched
 from
 cell
 culture
 supernatants
 of
 virtually
 any
 cell
 
type
 through
 a
 series
 of
 steps
 of
 high-­‐speed
 and
 ultra-­‐speed
 centrifugations
 and
 
express
 the
 tetraspanin
 protein
 family
 including
 CD9,
 CD63
 and
 CD81,
 as
 well
 as
 
carry
  cargo
  proteins
  including
  heat
  shock
  protein
  90
  and
  70,
  DNA,
  mRNA
  and
 
miRNA
 (5,6).
 
 

 
The
 main
 known
 function
 of
 exosomes
 is
 cell-­‐cell
 communication
 (7,
 8).
 
 There
 are
 
two
 proposed
 mechanisms
 of
 action-­‐
 one
 in
 which
 exosomes
 expose
 proteins
 on
 the
 
surface
  that
  can
  bind
  to
  cell-­‐surface
  receptors
  on
  target
  cells
  and
  trigger
 
downstream
  signaling.
  The
  second
  mechanism
  involves
  fusion
  of
  the
  exosomal
 
membrane
 with
 the
 plasma
 membrane
 of
 target
 cells
 and
 delivery
 of
 the
 exosomal
 
cargo
 into
 the
 recipient
 cell
 cytosol.
 Exosomes
 play
 an
 important
 role
 in
 intercellular
 
communication
  during
  host
  immune
  responses,
  tissue
  repair
  and
  cancer
 
progression.
 During
 innate
 immune
 response,
 for
 instance,
 infected
 macrophages
 
secrete
 exosomes
 containing
 pro-­‐inflammatory
 cytokines
 and
 chemokines
 that
 in
 
turn
 recruit
 other
 immune
 cells
 to
 the
 site
 of
 infection
 (9).
 Natural
 killer
 (NK)
 cell-­‐
derived
 exosomes
 contain
 cytotoxic
 proteins
 such
 as
 Fas
 ligand
 and
 perforin
 that
 
facilitate
 tumor
 cell
 lysis.
 Activation
 of
 T
 cells
 induces
 exosome
 release
 that
 triggers
 

  38
 
proliferation
 of
 resting
 T
 cells
 and
 alters
 their
 cytokine
 profile
 to
 a
 more
 cytotoxic
 
CD8+
 phenotype

 
(10).
 
 

 
Mesenchymal
 stem
 cell
 (MSC)-­‐secreted
 exosomes
 play
 an
 important
 role
 in
 wound
 
healing
 by
 enhancing
 migration
 and
 proliferation
 of
 normal
 and
 diabetic
 dermal
 
fibroblasts
 and
 augmenting
 angiogenesis
 by
 endothelial
 cells,
 thereby
 facilitating
 the
 
wound
 healing
 process
 (11).
 MSC
 exosomes
 have
 also
 been
 reported
 to
 alleviate
 
acute
 lung
 injury
 caused
 by
 E.coli
 LPS.
 Co-­‐injection
 of
 exosomes
 along
 with
 LPS
 
decreased
 pulmonary
 edema,
 influx
 of
 neutrophils
 and
 levels
 of
 pro-­‐inflammatory
 
cytokines
 such
 as
 TNFα
 (12).
 Exosomes
 released
 by
 human
 umbilical
 cord
 stem
 cells
 
decrease
 kidney
 injury
 mediated
 by
 cisplatin
 treatment
 in
 rats.
 Intrarenal
 delivery
 
of
 exosomes
 following
 cisplatin
 treatment
 decreased
 renal
 cell
 apoptosis,
 increased
 
their
 proliferation
 and
 decreased
 oxidative
 stress
 as
 measured
 by
 increased
 GSH
 
and
  decreased
  8-­‐OHdG
  levels
  (13).
  Other
  cell
  types
  in
  the
  wound
  bed
  such
  as
 
keratinocytes
 (14)
 and
 circulating
 monocytes
 home
 to
 the
 wound
 bed

 
and
 secrete
 
exosomes
 to
 activate
 fibroblasts
 (22).
 Keratinocyte
 exosomes
 express
 stratifin,
 a
 
protein
 of
 the
 14-­‐3-­‐3
 family.
 These
 exosomes
 are
 taken
 up
 by
 fibroblasts
 and
 induce
 
MMP-­‐1
  up
  regulation
  through
  the
  p38-­‐MAPK
  pathway
  (14,
  15).
  Bone-­‐marrow
 
derived
  progenitor
  cells
  secrete
  exosomes
  that
  promoted
  proliferation
  of
 
keratinocytes
 and
 fibroblasts,
 migration
 of
 keratinocytes
 and
 tube
 formation
 by
 
endothelial
 cells
 in
 vitro.
 In
 addition,
 exosome
 treatment
 enabled
 wound
 healing
 in
 
diabetic
  mice
  by
  triggering
  angiogenesis,
  keratinocyte
  proliferation
  and
  ECM
 
deposition
 (16).
 
 

  39
 
The
 pathological
 role
 of
 exosomes
 in
 tumor
 progression
 and
 metastasis
 has
 been
 
reported
 in
 a
 number
 of
 cancers.
 Due
 to
 their
 small
 size
 and
 surrounding
 membrane
 
coat,
  exosomes
  are
  stable
  in
  the
  extracellular
  environment
  and
  can
  migrate
  to
 
distant
  sites
  to
  set
  up
  metastatic
  niches.
  In
  pancreatic
  ductal
  adenocarcinoma,
 
“educating”
 mice
 with
 cancer
 exosomes
 prior
 to
 tumor
 cell
 injection
 increased
 liver
 
metastatic
 burden.
 The
 authors
 report
 that
 Kupffer
 cells
 in
 the
 liver
 take
 up
 these
 
exosomes
  and
  activate
  hepatic
  stellate
  cells
  to
  secrete
  TGFβ.
  This
  increases
 
fibronectin
  production
  and
  recruitment
  of
  BM-­‐derived
  macrophages
  to
  liver,
 
creating
 a
 pro-­‐inflammatory
 &
 pre-­‐metastatic
 niche
 (22).
 Hypoxia
 is
 a
 characteristic
 
feature
 of
 solid
 tumors
 with
 50%
 of
 solid
 tumors
 reportedly
 being
 hypoxic.
 Hypoxia
 
has
 been
 shown
 to
 increase
 the
 secretion
 as
 well
 as
 alter
 the
 proteome
 of
 exosomes
 
in
  a
  variety
  of
  studies
  (17,
  18,
  19).
  High
  exosome
  levels
  in
  blood
  plasma
  are
 
correlated
 with
 decreased
 patient
 survival

 
(20).
 Exosomes
 secreted
 in
 the
 tumor
 
microenvironment
 facilitate
 tumor
 migration
 and
 invasion
 in
 a
 variety
 of
 cancers
 
such
 as
 breast
 (17,
 19,
 21),
 pancreas
 (22)
 and
 glioma
 (18,
 23).
 
 

 
Proline-­‐rich
 Akt
 substrate
 of
 40
 kDa
 (PRAS40)
 is
 an
 inhibitor
 and
 substrate
 of
 the
 
mTORC1
 complex.
 In
 unstimulated
 cells,
 PRAS40
 binds
 to
 the
 raptor
 protein
 of
 the
 
mTORC1
 complex
 and
 inhibits
 mTOR
 kinase
 activity
 and
 downstream
 signaling.
 
When
 cells
 are
 subjected
 to
 growth
 factors
 such
 as
 insulin,
 Akt
 is
 phosphorylated
 on
 
Ser473
 by
 mTORC2
 and
 on
 T308
 by
 PDK1,
 which
 in
 turn
 phosphorylates
 PRAS40
 on
 
Threonine-­‐246
 (T246).
 mTOR
 itself
 phosphorylates
 PRAS40
 on
 Serine-­‐183
 (S183).
 
These
 phosphorylations
 sequester
 PRAS40
 away
 from
 mTORC1,
 thereby
 relieving
 

  40
 
the
 inhibitory
 constraint
 on
 mTORC1.
 This
 activates
 the
 kinase
 activity
 of
 mTOR
 to
 
phosphorylate
 its
 downstream
 substrates
 such
 as
 4E-­‐BP1
 and
 S6K1
 that
 regulate
 
processes
 such
 as
 cell
 growth
 and
 protein
 synthesis.
 The
 sequestered
 PRAS40
 binds
 
to
 14-­‐3-­‐3
 sigma
 protein.
 Thus,
 the
 known
 functions
 of
 PRAS40
 so
 far
 is
 its
 regulation
 
of
  mTORC1
  complex,
  influencing
  insulin
  signaling,
  cell
  cycle
  and
  pathological
 
conditions
 such
 as
 cancer
 and
 insulin
 resistance.
 
 

 
Although
  there
  has
  been
  considerable
  advance
  in
  understanding
  the
  growing
 
functions
 of
 exosomes
 in
 intercellular
 communication,
 mediating
 physiological
 and
 
pathological
 responses,
 few
 studies
 have
 focused
 on
 identifying
 upstream
 regulators
 
of
 exosome
 secretion.
 In
 this
 study,
 we
 identify
 proline-­‐rich
 Akt
 substrate
 of
 40
 kDa
 
(PRAS40)
 as
 a
 central
 regulator
 of
 exosome
 secretion
 in
 response
 to
 diverse
 signals
 
such
 as
 cytokine,
 hypoxia
 and
 oxidative
 stress.
 PRAS40
 down
 regulation
 blocked
 
exosome
 secretion
 in
 different
 cell
 types.
 PRAS40-­‐mediated
 exosome
 secretion
 was
 
both
 through
 its
 T246
 phosphorylation
 dependent
 and
 total
 protein
 level
 dependent
 
pathways,
 depending
 on
 the
 stress
 stimuli
 involved.
 Considering
 the
 importance
 of
 
exosomes
 in
 tumor
 progression,
 PRAS40
 might
 act
 as
 a
 potential
 biomarker
 to
 
identify
 the
 aggressiveness
 of
 tumors
 and
 act
 as
 an
 indication
 of
 the
 effectiveness
 of
 
treatment.
 
 

 
Results
 
 
Identification
 of
 PRAS40
 as
 a
 regulator
 of
 TGFα-­‐stimulated
 Hsp90α
 secretion
 
To
 identify
 regulator(s)
 of
 exosome
 secretion,
 we
 initially
 used
 secretion
 of
 Hsp90α
 

  41
 
as
 readout
 since
 it
 is
 a
 widely
 reported
 exosomal
 cargo
 protein.
 To
 establish
 a
 system
 
to
 identify
 such
 regulator(s),
 we
 took
 advantage
 of
 an
 observation
 made
 previously
 
in
  our
  lab
  that
  in
  human
  keratinocytes
  (HKCs),
  only
  TGFα,
  but
  not
  EGF,
  drives
 
Hsp90α
 secretion
 (Figure
 1A).
 This
 was
 interesting
 since
 both
 TGFα
 and
 EGF
 bind
 to
 
the
 same
 cell
 surface
 EGFR
 and
 activate
 many
 common
 downstream
 pathways
 to
 
drive
 cell
 proliferation,
 migration,
 adhesion
 and
 angiogenesis.
 We
 hypothesized
 that
 
following
  binding
  to
  EGFR,
  only
  TGFα
  and
  not
  EGF
  activated
  a
  pathway(s)
  that
 
contributed
 to
 Hsp90α
 secretion.
 In
 order
 to
 investigate
 if
 this
 secretion
 required
 
new
 protein
 synthesis
 or
 TGFα
 drove
 the
 secretion
 of
 the
 pre-­‐existing
 Hsp90α
 pool,
 
we
 took
 advantage
 of
 cycloheximide
 (CHX)
 that
 interferes
 with
 protein
 biosynthesis
 
by
 interfering
 with
 translational
 elongation.
 We
 found
 that
 CHX
 treatment
 did
 not
 
block
  TGFα-­‐stimulated
  Hsp90α
  secretion,
  implying
  that
  TGFα
  stimulated
  the
 
secretion
 of
 the
 pre-­‐existing
 Hsp90α
 pool
 (Fig
 1B).
 Since
 our
 goal
 was
 to
 identify
 
differentially
 activated
 pathways
 between
 TGFα
 and
 EGF,
 we
 took
 advantage
 of
 the
 
human
  phospho-­‐kinase
  array
  from
  R&D
  Systems.
  This
  array
  simultaneously
 
compares
  the
  activation
  of
  47
  different
  kinases
  and
  two
  related
  proteins.
  The
 
experimental
 design
 is
 illustrated
 in
 Fig
 1D.
 Lysates
 from
 untreated,
 TGFα
 treated
 
and
 EGF
 treated
 HKCs
 were
 added
 to
 the
 array
 and
 procedures
 were
 carried
 out
 as
 
per
 manufacturer’s
 instructions.
 At
 the
 2
 min
 time
 point,
 we
 detected
 four
 signaling
 
molecules,
  including
  PRAS40,
  EGFR,
  ERK1/2
  and
  Akt
  (T-­‐308),
  that
  exhibited
 
significantly
 stronger
 phosphorylation
 in
 TGFα-­‐stimulated
 cells
 than
 EGF-­‐stimulated
 
cells.
 We
 eliminated
 the
 involvement
 of
 EGFR
 and
 ERK1/2,
 because
 the
 difference
 
was
 due
 to
 different
 kinetics
 of
 their
 phosphorylation
 in
 response
 to
 the
 two
 growth
 

  42
 
factors.
  We
  decided
  to
  focus
  on
  PRAS40,
  because
  it
  has
  been
  reported
  that
 
phosphorylation
 at
 threonine-­‐308
 of
 Akt
 phosphorylates
 PRAS40
 at
 threonine246
 
and
 activates
 PRAS40
 (24).
 In
 addition,
 TGFα,
 but
 not
 EGF,
 stimulates
 theonine-­‐308
 
phosphorylation
 of
 Akt
 in
 human
 keratinocytes
 (see
 later
 section).
 

 
Figure
  2-­‐1.
  Identification
  of
  differentially
  activated
  pathways
  between
  TGFα
  and
  EGF
 
stimulated
 human
 keratinocytes
 (HKCs)
 
(A) Western
 blotting
 showing
 Hsp90α
 secretion
 only
 in
 response
 to
 TGFα
 but
 not
 EGF
 
(B) Western
 blotting
 showing
 that
 cycloheximide
 (10μg/ml)
 did
 not
 inhibit
 TGFα-­‐stimulated
 
Hsp90α
 secretion
 
(C) Model
 depicting
 the
 rationale
 behind
 choosing
 HKCs.
 TGFα
 activates
 certain
 pathway
 (s)
 not
 
activated
 by
 EGF
 and
 this
 might
 contribute
 to
 Hsp90α
 secretion
 
(D) Phospho
  kinase
  array
  for
  comparing
  pathways
  amongst
  unstimulated,
  TGFα
  or
  EGF
 

  43
 
stimulated
 HKCs
 

 
We
 first
 verified
 the
 results
 of
 the
 array
 through
 immunoblotting
 (Figure
 2).
 We
 
treated
 HKCs
 with
 TGFα
 or
 EGF
 for
 different
 times
 and
 investigated
 the
 activation
 of
 
PRAS40,
 RSK
 and
 Akt
 at
 Threonine
 308
 (T308)
 and
 Serine
 473
 (S473).
 
 Consistent
 
with
 the
 array
 results,
 PRAS40
 was
 phosphorylated
 at
 T246
 only
 by
 TGFα
 but
 not
 
EGF
 (panel
 c).
 This
 correlated
 with
 Akt
 phosphorylation
 at
 T308
 only
 by
 TGFα
 
(panel
 b).
 On
 the
 other
 hand,
 Akt
 was
 phosphorylated
 at
 S473
 by
 both
 TGFα
 and
 
EGF
 (panel
 a).
 Similarly,
 another
 protein
 on
 the
 array,
 RSK
 was
 also
 phosphorylated
 
by
  both
  the
  growth
  factors
  (panel
  d).
  Also,
  TGFα-­‐stimulated
  PRAS40
 
phosphorylation
 was
 dependent
 on
 EGFR
 signaling
 since
 knockdown
 of
 EGFR
 in
 
HKCs
  blocked
  TGFα-­‐stimulated
  PRAS40
  phosphorylation
  (Figure
  2B).
  Thus,
  we
 
propose
 the
 model
 that
 in
 HKCs,
 TGFα
 but
 not
 EGF
 phosphorylates
 Akt
 on
 T308,
 
which
 in
 turn
 phosphorylates
 PRAS40
 on
 T246
 (Figure
 2C).
 
 

 
The
  next
  question
  was
  if
  PRAS40
  was
  required
  for
  TGFα-­‐stimulated
  Hsp90α
 
secretion.
  To
  this
  end,
  we
  down
  regulated
  PRAS40
  in
  HKCs
  (Figure
  2D).
  We
 
subjected
  serum-­‐starved
  control
  and
  PRAS40
  knockdown
  cells
  to
  TGFα
  or
  EGF
 
stimulation
 and
 investigated
 Hsp90α
 secretion
 by
 analyzing
 conditioned
 media.
 We
 
found
  that
  while
  TGFα-­‐stimulated
  Hsp90α
  secretion
  in
  control
  HKCs
  (lane
  5),
 
PRAS40
 knockdown
 significantly
 decreased
 the
 secretion
 (lane
 5),
 implying
 PRAS40
 
was
 required
 for
 TGFα-­‐stimulated
 Hsp90α
 secretion
 in
 HKCs.
 Prior
 reports
 have
 
shown
 that
 various
 environmental
 stresses
 such
 as
 hypoxia
 and
 oxidative
 stresses
 

  44
 
also
 drive
 Hsp90α
 secretion.
 To
 examine
 if
 PRAS40
 also
 regulated
 Hsp90α
 secretion
 
in
 response
 to
 other
 stress
 signals,
 we
 focused
 on
 hypoxia
 and
 H2O2
 .
 We
 subjected
 
control
 and
 PRAS40
 knockdown
 HKCs
 to
 either
 normoxia
 or
 hypoxia
 (1%
 O2)
 for
 16
 
hours
  and
  collected
  conditioned
  media.
  We
  found
  that
  hypoxia-­‐driven
  Hsp90α
 
secretion
 was
 significantly
 decreased
 on
 PRAS40
 knockdown
 (Figure
 2F
 lanes
 3
 vs
 
4).
 In
 addition,
 while
 treatment
 with
 H2O2
 drove
 Hsp90α
 secretion
 in
 control
 cells,
 it
 
was
  significantly
  reduced
  on
  PRAS40
  knockdown
  (Figure
  2G
  lanes
  3
  vs
  4).
  A
 
schematic
 representation
 of
 the
 findings
 is
 shown
 in
 Figure
 2H.
 
 

  45
 

 
Figure
 2-­‐2.
 PRAS40
 knockdown
 inhibits
 Hsp90α
 secretion
 in
 response
 to
 TGFα,
 hypoxia
 and
 
oxidative
 stress
 in
 HKCs
 
(A) Time
  course
  treatment
  of
  HKCs
  with
  TGFα
  or
  EGF
  to
  investigate
  phosphorylation
  of
 
downstream
 substrates
 
(B) EGFR
 knockdown
 in
 HKCs
 (top)
 and
 conditioned
 media
 from
 control
 &
 EGFR
 knockdown
 
HKCs
 stimulated
 with
 TGFα
 or
 EGF
 (bottom)
 to
 investigate
 PRAS40
 phosphorylation
 
(C) Model
 depicting
 our
 current
 understanding.
 After
 binding
 to
 EGFR,
 only
 TGFα
 activates
 Akt
 
on
 T308,
 resulting
 in
 activation
 of
 PRAS40
 at
 T246.
 
 

  46
 
(D) PRAS40
 knockdown
 in
 HKCs.
 Knockdown
 decreases
 Hsp90α
 secretion
 in
 response
 to
 TGFα
 
(E),
 hypoxia
 (F)
 and
 H2O2
 (G).
 

 
PRAS40
 regulates
 exosome
 secretion
 
We
 next
 asked
 how
 PRAS40
 regulated
 Hsp90α
 secretion.
 From
 studies
 of
 others
 and
 
our
 lab,
 we
 know
 that
 secretion
 of
 Hsp90α
 is
 mediated
 by
 the
 unconventional
 
exosome
 trafficking
 pathway,
 due
 to
 the
 absence
 of
 a
 signal
 peptide
 in
 Hsp90α,
 that
 
is
 required
 for
 secretion
 by
 the
 ER/Golgi
 pathway.
 Using
 inhibitors
 specific
 to
 the
 
ER-­‐Golgi
  pathway
  (Brefeldin
  A
  or
  BFA)
  and
  the
  exosome
  trafficking
  pathway
 
(Dimethyl
 ameloride
 or
 DMA),
 several
 groups
 including
 ours
 have
 reported
 that
 
only
 DMA
 blocks
 Hsp90α
 secretion
 (25,
 26).
 
 To
 investigate
 if
 PRAS40
 regulates
 
exosome
 secretion,
 we
 treated
 control
 and
 PRAS40
 knockdown
 HKCs
 with
 TGFα
 co-­‐
treated
  with
  either
  BFA
  or
  DMA.
  Neither
  BFA
  nor
  DMA
  inhibited
  PRAS40
 
phosphorylation
  in
  response
  to
  TGFα
  (Figure
  3B
  panel
  a).
   
  We
  also
  isolated
 
exosomes
  from
  serum-­‐free
  conditioned
  media
  using
  ultracentrifugation.
  We
 
quantitated
 the
 number
 of
 exosomes
 secreted
 using
 Nanosight
 tracking
 analysis
 
(NTA).
 We
 found
 that
 TGFα
 treatment
 increased
 the
 number
 of
 exosomes
 secreted
 
in
 control,
 but
 not
 in
 PRAS40
 knockdown
 HKCs
 (Figure
 3A).
 This
 increase
 was
 
blocked
 by
 co-­‐treatment
 with
 DMA
 but
 not
 BFA.
 We
 also
 investigated
 a
 panel
 of
 
exosome
 markers
 (CD63,
 CD81,
 CD9
 and
 flotillin)
 in
 TGFα-­‐stimulated
 control
 and
 
PRAS40
 knockdown
 HKCs.
 Consistent
 with
 the
 NTA
 analysis,
 we
 found
 that
 TGFα
 
stimulated
 the
 secretion
 of
 Hsp90α
 (panel
 d),
 CD63
 (panel
 e),
 flotillin
 (panel
 f),
 
CD81
 (panel
 g)
 and
 CD9
 (panel
 h)
 in
 control
 HKCs,
 but
 the
 secretion
 of
 all
 the
 

  47
 
markers
  were
  significantly
  reduced
  when
  PRAS40
  was
  down
  regulated.
  To
 
investigate
 if
 the
 regulation
 by
 PRAS40
 was
 specific
 to
 the
 exosome
 trafficking
 
pathway,
 we
 looked
 at
 the
 secretion
 of
 MMP9,
 which
 is
 known
 to
 be
 secreted
 by
 the
 
classical
  ER-­‐Golgi
  protein
  secretory
  pathway
  (27).
  We
  found
  that
  PRAS40
 
knockdown
  failed
  to
  inhibit
  MMP9
  secretion.
  Thus
  PRAS40
  regulates
  exosome
 
secretion
  in
  response
  to
  TGFα
  in
  HKCs.
  While
  PRAS40
  knockdown
  decreased
 
secretion
 of
 exosomes,
 it
 resulted
 in
 intracellular
 accumulation
 of
 exosomes.
 As
 
shown
 in
 Figure
 3C,
 intracellular
 CD63
 levels
 were
 higher
 in
 PRAS40
 knockdown
 
cells
 compared
 to
 control
 cells
 (panel
 a).
 However,
 levels
 of
 other
 exosome
 markers
 
such
 as
 CD9
 (panel
 b)
 and
 flotillin
 (panel
 c)
 were
 unaffected.
 
 

 
Figure
 2-­‐3.
 PRAS40
 down
 regulation
 decreases
 TGFα-­‐driven
 exosome
 secretion
 in
 HKCs
 
(A) Nanosight
 Tracking
 Analysis
 (NTA)
 to
 investigate
 number
 of
 exosomes
 secreted
 in
 control
 
HKCs
 treated
 with
 TGFα,
 co-­‐treated
 with
 BFA
 or
 DMA
 (bars
 1-­‐4).
 NTA
 of
 exosomes
 from
 
control
 &
 PRAS40
 down
 regulated
 HKCs
 in
 response
 to
 TGFα
 stimulation
 (bars
 5-­‐8).
 
 

  48
 
(B) PRAS40
 phosphorylation
 in
 lysates
 of
 TGFα-­‐treated
 control
 and
 PRAS40
 knockdown
 HKCs.
 
Levels
 of
 exosome
 markers
 from
 the
 conditioned
 media
 of
 the
 same
 cells.
 
 
(C) Intracellular
 levels
 of
 exosome
 markers
 in
 TGFα-­‐treated
 control
 and
 PRAS40
 knockdown
 
HKCs
 

 
PRAS40
  regulates
  constitutive
  exosome
  secretion
  in
  MDA-­‐MB-­‐231
  breast
 
cancer
 cells
 
We
 previously
 reported
 that
 MDA-­‐MB-­‐231,
 a
 triple
 negative
 breast
 cancer
 cell
 line
 
secretes
  Hsp90α
  constitutively
  due
  to
  constitutive
  HIF1α
  expression
  (2).
  To
 
examine
 the
 role
 of
 PRAS40
 in
 this
 process,
 we
 down
 regulated
 PRAS40
 in
 MDA-­‐MB-­‐
231
 cells
 (Figure
 4A).
 We
 subjected
 control
 and
 PRAS40
 knockdown
 cells
 to
 either
 
normoxia
 or
 hypoxia
 and
 isolated
 exosomes
 from
 the
 different
 conditions.
 PRAS40
 
knockdown
 significantly
 decreased
 both
 constitutive
 and
 hypoxia-­‐driven
 exosome
 
secretion
 in
 MDA-­‐MB-­‐231
 cells
 (Figure
 4B).
 Thus,
 PRAS40
 is
 a
 central
 regulator
 of
 
exosome
 secretion
 in
 response
 to
 diverse
 stresses
 in
 normal
 and
 cancer
 cells.
 
 

 
Figure
 2-­‐4.
 PRAS40
 regulates
 constitutive
 and
 hypoxia-­‐driven
 exosome
 secretion
 in
 MDA-­‐MB-­‐
231
 breast
 cancer
 cells
 
(A) Western
 blot
 verification
 of
 PRAS40
 down
 regulation
 in
 MDA-­‐MB-­‐231
 cells
 

  49
 
(B) Effect
 of
 PRAS40
 down
 regulation
 on
 constitutive
 &
 hypoxia-­‐induced
 exosome
 secretion
 in
 
MDA-­‐MB-­‐231
 cells
 

 
TGFα-­‐stimulated
 exosome
 secretion
 in
 HKCs
 requires
 T246
 phosphorylation
 
of
 PRAS40
 
TGFα
 stimulates
 the
 phosphorylation
 of
 PRAS40
 at
 T246
 (Figure
 2A).
 The
 schematic
 
showing
  the
  structure
  of
  PRAS40
  is
  shown
  in
  Fig
  5A.
  PRAS40
  consists
  of
  two
 
proline-­‐rich
  regions
  followed
  by
  TOS
  and
  RAIP
  motifs,
  implicated
  in
  mTORC1
 
binding
 (41).
 To
 investigate
 the
 requirement
 of
 T246
 phosphorylation
 of
 PRAS40
 in
 
TGFα-­‐stimulated
  exosome
  secretion,
  we
  generated
  phosphorylation-­‐deficient
 
(T246A)
  and
  phosphorylation-­‐mimic
  (T246E)
  mutants.
  We
  overexpressed
  WT,
 
T246A
 or
 T246E
 cDNA
 into
 PRAS40
 down
 regulated
 HKCs
 (Figure
 5B
 lanes
 3,4,5
 vs
 
lane
 2).
 We
 isolated
 exosomes
 from
 control,
 PRAS40
 down
 regulated
 HKCs
 and
 
PRAS40
  down
  regulated
  HKCs
  in
  which
  WT,
  T246A
  or
  T246E
  constructs
  were
 
overexpressed,
 left
 untreated
 or
 treated
 with
 TGFα.
 We
 investigated
 the
 secretion
 of
 
Hsp90α
 and
 an
 exosome
 marker,
 CD9.
 We
 found
 that
 PRAS40
 knockdown
 decreased
 
TGFα-­‐stimulated
  exosome
  secretion,
  which
  was
  rescued
  by
  WT
  cDNA
 
overexpression
 (lane
 6
 vs
 lane
 4)
 The
 T246A
 phosphorylation
 deficient
 mutant
 
failed
 to
 rescue
 the
 secretion
 (lane
 8
 vs
 lane
 4).
 Interestingly,
 the
 T246E
 mutant
 
rescued
 secretion
 only
 in
 response
 to
 TGFα
 and
 not
 constitutively
 even
 in
 untreated
 
cells
 (lane
 10
 vs
 lane
 4).
 This
 implies
 that
 PRAS40
 phosphorylation
 at
 T246
 was
 
necessary,
 but
 not
 sufficient
 for
 TGFα-­‐stimulated
 exosome
 secretion
 and
 TGFα
 has
 
additional
 downstream
 effectors
 to
 drive
 exosome
 secretion.
 
 

  50
 

 
Figure
 2-­‐5.
 TGFα-­‐stimulated
 exosome
 secretion
 requires
 T246
 phosphorylation
 of
 PRAS40.
 
(A) Structure
 of
 PRAS40
 highlighting
 the
 location
 of
 Threonine
 246
 at
 the
 C-­‐terminus
 and
 design
 
of
 different
 mutants
 
(B) Overexpression
 of
 PRAS40
 WT
 and
 mutants
 in
 PRAS40
 down
 regulated
 HKCs
 
(C) Exosome
 secretion
 in
 response
 to
 TGFα
 by
 the
 cells
 shown
 in
 (B).
 

 
Constitutive
 exosome
 secretion
 in
 MDA-­‐MB-­‐231
 cells
 is
 independent
 of
 T246
 
phosphorylation
 of
 PRAS40
 
In
 contrast
 to
 induced
 secretion
 in
 normal
 cells,
 MDA-­‐MB-­‐231
 breast
 cancer
 cells
 
constitutively
 secrete
 exosomes
 due
 to
 constitutive
 HIF-­‐1α
 expression
 (25).
 In
 these
 
cells,
  PRAS40
  is
  constitutively
  phosphorylated
  at
  T246
  (28).
  To
  investigate
  the
 
requirement
 of
 T246
 phosphorylation
 in
 exosome
 secretion,
 we
 overexpressed
 WT,
 
T246A
 or
 T246E
 cDNA
 into
 PRAS40
 down
 regulated
 MDA-­‐MB-­‐231
 (Figure
 6
 panels
 
a
 &
 b).
 We
 investigated
 the
 constitutive
 secretion
 of
 Hsp90α
 and
 exosome
 markers,
 

  51
 
CD9
 and
 CD63
 in
 control,
 PRAS40
 down
 regulated
 MDA-­‐MB-­‐231
 and
 PRAS40
 down
 
regulated
  MDA-­‐MB-­‐231
  in
  which
  WT,
  T246A
  or
  T246E
  constructs
  were
 
overexpressed.
 Interestingly,
 in
 contrast
 to
 our
 data
 on
 HKCs,
 we
 found
 that
 all
 the
 
three
 constructs
 were
 able
 to
 rescue
 exosome
 secretion
 in
 PRAS40
 down
 regulated
 
MDA-­‐MB-­‐231
 cells
 (Figure
 6
 panels
 c,d,e).
 There
 are
 two
 possible
 explanations
 for
 
this
 finding.
 The
 first
 possibility
 is
 that
 normal
 and
 cancer
 cells
 utilize
 PRAS40
 
differently
 to
 regulate
 exosome
 secretion.
 The
 second
 possibility
 is
 that
 different
 
stresses
 regulate
 PRAS40
 differently
 to
 mediate
 exosome
 secretion.
 Thus,
 TGFα-­‐
stimulated
  exosome
  secretion
  requires
  T246
  phosphorylation,
  while
  hypoxia-­‐
induced
 secretion
 does
 not.
 The
 second
 hypothesis
 can
 be
 verified
 in
 HKCs,
 which
 
secrete
 exosomes
 in
 response
 to
 hypoxia.
 
 

 

 
Figure
 2-­‐6.
 Constitutive
 exosome
 secretion
 in
 MDA-­‐MB-­‐231
 cells
 is
 independent
 of
 T246
 
phosphorylation
 of
 PRAS40
 
(a) and
 (b).
 Overexpression
 of
 PRAS40
 WT
 and
 mutant
 cDNA
 in
 PRAS40
 down
 regulated
 MDA-­‐
MB-­‐231
 cells.
 
 

  52
 
(c),
 (d)
 and
 (e).
 Secreted
 Hsp90α,
 CD9
 and
 CD63
 levels
 in
 exosomes
 from
 cells
 in
 (a).
 
 

 
Hypoxia
 increases
 PRAS40
 levels
 in
 MDA-­‐MB-­‐231
 cells
 
Since
 hypoxia-­‐driven
 exosome
 secretion
 in
 MDA-­‐MB-­‐231
 cells
 was
 independent
 of
 
the
 T246
 phosphorylation
 of
 PRAS40,
 we
 hypothesized
 that
 the
 rescue
 of
 secretion
 
in
 PRAS40
 down
 regulated
 MDA-­‐MB-­‐231
 cells
 was
 due
 to
 increased
 total
 protein
 
levels,
 rather
 than
 the
 T246
 phosphorylation
 status.
 To
 this
 end,
 we
 subjected
 the
 
cells
 to
 1%
 O2
 for
 increasing
 periods
 of
 time
 and
 investigated
 PRAS40
 levels.
 We
 
found
 that
 PRAS40
 levels
 were
 increased
 in
 response
 to
 hypoxia
 at
 3h
 and
 6h
 and
 
started
 decreasing
 at
 8h
 (Figure
 7
 panel
 a).
 We
 observed
 an
 increase
 in
 HIF-­‐1α
 
levels
 at
 around
 1h
 and
 3h,
 followed
 by
 a
 decrease
 with
 increasing
 time
 of
 hypoxic
 
exposure
 at
 6h
 and
 8h
 (panel
 b).
 Thus,
 hypoxia
 up
 regulates
 PRAS40,
 which
 in
 turn,
 
might
 regulate
 exosome
 secretion.
 
 

 
Figure
 2-­‐7.
 Hypoxia
 increases
 PRAS40
 levels
 in
 MDA-­‐MB-­‐231
 cells
 
(a) PRAS40
 levels
 in
 MDA-­‐MB-­‐231
 cells
 subjected
 to
 hypoxia
 for
 different
 periods
 of
 time
 
 
(b) HIF1-­‐α
 levels
 in
 the
 cells
 in
 (a)
 

  53
 

 
PRAS40
 does
 not
 interact
 with
 exosomes
 inside
 the
 cells
 
In
 order
 to
 investigate
 how
 PRAS40
 regulates
 exosome
 secretion
 and
 to
 examine
 
any
 potential
 interactions
 between
 PRAS40
 and
 exosomes
 before
 their
 fusion
 with
 
the
 plasma
 membrane,
 we
 performed
 co-­‐immunoprecipitation
 (co-­‐IP)
 assays.
 We
 
used
 anti-­‐PRAS40
 antibody
 to
 pull
 down
 the
 protein
 from
 MDA-­‐MB-­‐231
 cells
 and
 
performed
  western
  blotting
  for
  markers
  such
  as
  CD63
  and
  CD9.
  We
  found
  no
 
association
  between
  PRAS40
  and
  both
  the
  markers
  tested
  (Figure
  8).
  This
  is
 
consistent
 with
 the
 fact
 that
 PRAS40
 is
 not
 secreted
 by
 exosomes
 (Figure
 3).
 Hence,
 
the
 regulation
 of
 exosome
 secretion
 by
 PRAS40
 is
 indirect
 and
 involves
 additional
 
players
 between
 PRAS40
 and
 the
 exosome
 pathway.
 
 

 
Figure
 2-­‐8.
 PRAS40
 does
 not
 associate
 with
 exosomes
 
(a) CD63
 association
 after
 immunoprecipitation
 with
 increasing
 amounts
 of
 PRAS40
 antibody
 
(b) CD9
 association
 after
 immunoprecipitation
 with
 increasing
 amounts
 of
 PRAS40
 antibody
 
(c) PRAS40
 levels
 following
 immunoprecipitation
 with
 increasing
 amounts
 of
 PRAS40
 antibody
 

 

 

  54
 
Discussion
 
We
 have
 identified
 PRAS40
 as
 a
 new
 regulator
 of
 exosome
 secretion
 in
 response
 to
 
diverse
 stress
 signals
 in
 different
 cell
 types.
 We
 initially
 took
 advantage
 of
 the
 
differential
 responses
 of
 HKCs
 to
 TGFα
 and
 EGF
 treatment,
 where
 despite
 being
 to
 
the
  same
  EGFR,
  only
  TGFα
  drove
  Hsp90α
  secretion.
  Comparison
  of
  pathways
 
between
 TGFα
 and
 EGF
 treated
 HKCs
 helped
 us
 identify
 PRAS40.
 Since
 cells
 secrete
 
Hsp90α
 in
 response
 to
 other
 stresses
 such
 as
 hypoxia
 and
 oxidative
 stress,
 we
 also
 
investigated
 and
 verified
 the
 importance
 of
 PRAS40
 in
 exosome
 secretion
 under
 
these
 stresses
 in
 different
 cell
 types.
 PRAS40
 works
 in
 both
 T246
 phosphorylation
 
dependent
 and
 protein
 level
 dependent
 pathways
 to
 mediate
 exosome
 secretion.
 We
 
found
 that
 TGFα-­‐induced
 exosome
 secretion
 depended
 on
 T246
 phosphorylation
 of
 
PRAS40
  in
  HKCs.
  On
  the
  other
  hand,
  constitutive
  and
  hypoxia-­‐driven
  exosome
 
secretion
 in
 MDA-­‐MB-­‐231
 cells
 was
 independent
 of
 phosphorylation
 at
 this
 site
 and
 
instead
 depended
 on
 PRAS40
 expression
 levels.
 PRAS40
 did
 not
 associate
 with
 
exosomes
 inside
 cells,
 ruling
 out
 the
 possibility
 of
 a
 direct
 interaction
 between
 
PRAS40
 and
 exosomes
 being
 involved
 in
 regulating
 secretion.
 
 

 
PRAS40
  is
  well
  studied
  as
  an
  inhibitor
  and
  substrate
  of
  mTORC1
  complex.
  It
 
possesses
 two
 short
 motifs
 implicated
 in
 mTORC1
 binding,
 i.e.,
 a
 TOS
 motif
 (amino
 
acids
 129–133
 of
 the
 human
 256-­‐amino
 acid
 PRAS40
 protein)
 and
 a
 Lys-­‐Ser-­‐Leu-­‐
Pro
 sequence
 (amino
 acids
 182–185)
 showing
 resemblance
 to
 the
 RAIP
 motif.
 In
 
addition
 to
 PRAS40,
 mTORC1
 complex
 includes
 the
 regulatory-­‐associated
 protein
 of
 
mTOR
 (raptor),
 mLST8
 and
 deptor.
 Raptor
 acts
 as
 a
 scaffold
 protein,
 facilitating
 

  55
 
assembly
 of
 the
 mTORC1
 complex.
 PRAS40
 competes
 with
 mTOR
 substrates,
 4E-­‐
BP1
 and
 S6K1,
 for
 substrate
 binding
 sites
 on
 raptor.
 Dissociation
 of
 PRAS40
 from
 
raptor
 by
 growth
 factor
 induced
 PRAS40
 phosphorylation
 enables
 the
 binding
 of
 4E-­‐
BP1
 and
 S6K1
 to
 the
 substrate
 binding
 sites
 on
 raptor,
 activating
 mTORC1
 resulting
 
in
 increased
 cell
 growth
 and
 protein
 synthesis
 (29).
 PRAS40
 is
 mainly
 regulated
 
through
  extensive
  phosphorylation
  at
  T246
  and
  a
  panel
  of
  mTORC1
 
phosphorylation
 sites
 such
 as
 S221,
 S183,
 S202
 S203,
 S211
 and
 S212.
 Akt
 is
 the
 
principal
  kinase
  phosphorylating
  PRAS40
  at
  T246
  since
  PI3K
  inhibitors
  like
 
wortmannin,
 but
 not
 mTOR
 inhibitors
 like
 rapamycin
 blocked
 insulin-­‐stimulated
 
T246
 phosphorylation
 in
 skeletal
 and
 cardiac
 muscles
 in
 vivo
 and
 in
 vitro
 (35).
 
PDGF-­‐stimulated
  T246
  phosphorylation
  was
  blocked
  in
  MEFs
  lacking
  Akt1
  and
 
Akt2.
 Inducible
 activation
 of
 Akt
 was
 sufficient
 to
 promote
 T246
 phosphorylation
 in
 
NIH3T3
 fibroblasts
 (34).
 However,
 Akt
 independent
 pathways
 can
 also
 drive
 T246
 
phosphorylation.
 Protein
 kinase
 A
 (PKA)
 has
 been
 shown
 to
 phosphorylate
 T246
 in
 
thyroid
 cells
 in
 response
 to
 thyroid
 hormone
 treatment
 and
 intracellular
 cAMP
 
levels
 (36).
 The
 proto-­‐oncogene,
 PIM1,
 phosphorylates
 T246
 in
 non-­‐small
 cell
 lung
 
cancer
 cells
 and
 promotes
 radioresistance
 (37).
 
 

In
 the
 past
 decade,
 exosomes
 have
 been
 gradually
 recognized
 as
 important
 vehicles,
 
which
 are
 able
 to
 carry
 various
 kinds
 of
 cargos
 such
 as
 proteins,
 lipids
 and
 nucleic
 
acids,
 for
 intercellular
 communication,
 thereby
 influencing
 various
 physiological
 
and
 pathological
 functions
 of
 both
 donor
 and
 recipient
 cells.
 Various
 environmental
 
stimuli
 regulate
 not
 only
 secretion
 of
 exosomes,
 but
 also
 modify
 their
 cargoes.
 In
 

  56
 
adipose
 mesenchymal
 stem
 cells,
 treatment
 with
 growth
 factors
 such
 as
 PDGF-­‐BB
 
increased
 the
 number
 of
 exosomes
 secreted
 and
 modulated
 their
 cargo
 to
 a
 more
 
pro-­‐angiogenic
  state
  (30).
  Similarly,
  TGFβ2
  and
  PDGF-­‐BB
  treatment
  of
 
cardiomyocytes
  resulted
  in
  secretion
  of
  exosomes
  with
  higher
  expression
  of
 
transcripts
 involved
 in
 proliferation
 and
 hypertrophy
 (31).
 Stresses
 such
 as
 hypoxia
 
increase
 exosome
 secretion
 from
 endothelial
 cells
 (32)
 and
 various
 tumor
 cells
 (17,
 
18,
 19,
 33),
 facilitating
 angiogenesis
 and
 tumor
 metastasis
 respectively.
 Considering
 
the
 growing
 number
 of
 roles
 of
 exosomes
 under
 normal
 and
 pathological
 conditions,
 
there
 is
 a
 great
 need
 to
 identify
 regulators
 of
 exosome
 secretion.
 So
 far,
 Rab
 family
 
GTPases
 have
 been
 widely
 studied
 for
 their
 role
 in
 regulating
 exosome
 secretion.
 
Rab27a
 and
 b
 regulate
 exosome
 secretion
 in
 Hela
 cells
 by
 controlling
 different
 steps
 
of
 the
 exosome
 trafficking
 pathway.
 Rab27a
 knockdown
 resulted
 in
 intracellular
 
accumulation
  of
  exosomal
  vesicles
  and
  increased
  their
  size,
  while
  Rab27b
 
knockdown
 resulted
 in
 a
 perinuclear
 distribution
 of
 exosomes.
 These
 resulted
 in
 
reduced
 docking
 of
 MVBs
 at
 the
 plasma
 membrane,
 a
 pre-­‐requisite
 for
 exosome
 
secretion
 (38).
 Rab27a
 was
 overexpressed
 in
 malignant
 melanoma
 cells
 and
 Rab27a
 
knockdown
 decreased
 the
 number
 of
 exosomes
 secreted,
 though
 it
 did
 not
 affect
 the
 
protein
 content,
 implying
 Rab27a
 regulated
 exosome
 secretion
 quantitatively,
 but
 
not
 qualitatively
 (39).
 In
 ER
 positive
 breast
 cancer
 cell
 lines,
 only
 Rab27b
 but
 not
 
Rab27a
 regulated
 Hsp90α
 secretion
 and
 promoted
 cell
 proliferation,
 invasion
 and
 
tumorigenesis
  in
  mice
  (40).
   
  Rab22A
  mediates
  formation
  of
  microvesicles
  that
 
increase
 breast
 cancer
 metastasis
 (17).
 Thus,
 the
 importance
 of
 an
 individual
 Rab
 
GTPase
 in
 exosome
 secretion
 varies
 depending
 on
 the
 cell
 type.
 Interestingly,
 Bobrie
 

  57
 
et
  al.,
  reported
  that
  Rab27a
  modulated
  the
  tumor
  microenvironment
  of
  mouse
 
mammary
  carcinoma
  by
  both
  exosome-­‐dependent
  and
  independent
  pathways.
 
Using
  two
  different
  mouse
  mammary
  carcinoma
  cell
  lines,
  4T1
  and
  TS/A,
  the
 
authors
  show
  that
  only
  Rab27a,
  but
  not
  Rab27b
  regulated
  exosome
  secretion,
 
primary
 tumor
 formation
 and
 lung
 colonization
 by
 4T1
 cells
 in
 mice.
 Rab27a
 also
 
regulated
  the
  secretion
  of
  MMP9,
  a
  protein
  secreted
  through
  the
  conventional
 
ER/Golgi
 pathway.
 These
 functions
 facilitated
 the
 influx
 of
 pro-­‐tumoral
 neutrophils
 
and
 thereby
 tumor
 progression
 (42).
 In
 contrast,
 we
 found
 that
 PRAS40
 specifically
 
regulates
 exosome
 secretion
 in
 different
 cell
 types
 and
 under
 diverse
 environmental
 
stresses.
 Targeting
 PRAS40
 in
 cancer
 will
 therefore
 be
 a
 valid
 approach
 to
 block
 
exosome
 secretion
 and
 overcome
 exosome-­‐mediated
 tumor
 invasion,
 angiogenesis
 
and
 metastasis.
 
 

 
References:
 
 

 
1. Gould
  SJ,
  Raposo
  G.
  (2013).
  As
  we
  wait:
  coping
  with
  an
  imperfect
 
nomenclature
 for
 extracellular
 vesicles.
 J
 Extracell
 Vesicles.
 2,
 20389
 
2. Colombo
  M,
  Raposo
  G,
  Thery
  C.
  (2014)
  Biogenesis,
  secretion,
  and
 
intercellular
 interactions
 of
 exosomes
 and
 other
 extracellular
 vesicles.
 Ann
 
Rev
 Cell
 Dev
 Biol.
 30,
 255-­‐89.
 
3. Kalra
 H,
 Adda
 CG,
 Liem
 M,
 Ang
 CS,
 Mechler
 A,
 Simpson
 RJ,
 et
 al.
 (2013).
 
Comparative
 proteomics
 evaluation
 of
 plasma
 exosome
 isolation
 techniques
 

  58
 
and
 assessment
 of
 the
 stability
 of
 exosomes
 in
 normal
 human
 blood
 plasma.
 
Proteomics.
 13,
 3354-­‐64.
 
4. Tauro
 BJ,
 Greening
 DW,
 Mathias
 RA,
 Ji
 H,
 Mathivanan
 S,
 Scott
 AM,
 et
 al.
 
(2013).
 Comparison
 of
 ultracentrifugation,
 density
 gradient
 separation,
 and
 
immunoaffinity
 capture
 methods
 for
 isolating
 human
 colon
 cancer
 cell
 line
 
LIM1863-­‐derivedexosomes.
 Methods.
 56,
 293-­‐304.
 
5. Théry,
 C.,
 Regnault,
 A.,
 Garin,
 J.,
 Wolfers,
 J.,
 Zitvogel,
 L.,
 Ricciardi-­‐Castagnoli,
 
P.,
  et
  al.
  (1999).
  Molecular
  Characterization
  of
  Dendritic
  Cell-­‐Derived
 
Exosomes:
 Selective
 Accumulation
 of
 the
 Heat
 Shock
 Protein
 Hsc73.The
 J.
 
Cell.
 Biol.
 147(3),
 599–610.
 
6. Hegmans,
 J.
 P.
 J.
 J.,
 Bard,
 M.
 P.
 L.,
 Hemmes,
 A.,
 Luider,
 T.
 M.,
 Kleijmeer,
 M.
 J.,
 
Prins,
 J.-­‐B.,
 et
 al.
 (2004).
 Proteomic
 Analysis
 of
 Exosomes
 Secreted
 by
 Human
 
Mesothelioma
 Cells.
 The
 American
 Journal
 of
 Pathology,
 164(5),
 1807–1815.
 
7. Raposo,
 G.,
 Nijman,
 HW.,
 Stoorvogel,
 W.,
 Liejendekker,
 R.,
 Harding,
 CV.,
 et
 al.
 
(1996).
 B
 lymphocytes
 secrete
 antigen-­‐presenting
 vesicles.
 J.
 Exp.
 Med.
 183,
 
1161–72
 
8. Zitvogel,
  L.,
  Regnault,
  A.,
  Lozier,
  A.,
  Wolfers,
  J.,
  Flament,
  C.,
  et
  al.
  1998.
 
Eradication
 of
 established
 murine
 tumors
 using
 a
 novel
 cell-­‐free
 vaccine:
 
dendritic
 cell-­‐derived
 exosomes.
 Nat.
 Med.
 4,
 594–600
 
9. Singh,
 P.
 P.,
 Smith,
 V.
 L.,
 Karakousis,
 P.
 C.,
 &
 Schorey,
 J.
 S.
 (2012).
 Exosomes
 
isolated
  from
  mycobacteria-­‐infected
  mice
  or
  cultured
  macrophages
  can
 
recruit
  and
  activate
  immune
  cells
 in
  vitro
 and
 in
  vivo.
 J.
  Immunol.
  189(2),
 
777–785.
 

  59
 
10. Wahlgren,
 J.,
 Karlson,
 T.
 D.
 L.,
 Glader,
 P.,
 Telemo,
 E.,
 &
 Valadi,
 H.
 (2012).
 
Activated
 Human
 T
 Cells
 Secrete
 Exosomes
 That
 Participate
 in
 IL-­‐2
 Mediated
 
Immune
 Response
 Signaling.
 PLoS
 ONE,
 7(11),
 e49723.
 
 
11. Shabbir,
  A.,
 Cox,
  A.,
 Rodriguez-­‐Menocal,
  L,
 Salgado
  M,
  &
  Van
  Badiavas
  E.
 
(2015).
  Mesenchymal
  Stem
  Cell
  Exosomes
  Induce
  Proliferation
  and
 
Migration
  of
  Normal
  and
  Chronic
  Wound
  Fibroblasts,
  and
  Enhance
 
Angiogenesis
 In
 Vitro.
 Stem
 Cells
 Dev.
 
 24(14),
 1635-­‐47
 
12. Zhu,
 Y.,
 Feng,
 X.,
 Abbott,
 J.,
 Fang,
 X.,
 Hao,
 Q.,
 Monsel,
 A.,
 et
 al.
 (2014).
 Human
 
Mesenchymal
  Stem
  Cell
  Microvesicles
  for
  Treatment
  of
 E.coli
  Endotoxin-­‐
Induced
 Acute
 Lung
 Injury
 in
 Mice.
 Stem
 Cells
 32(1),
 116–125.
 
 
13. Zhou,
 Y.,
 Xu,
 H.,
 Xu,
 W.,
 Wang,
 B.,
 Wu,
 H.,
 Tao,
 Y.,
 et
 al.
 (2013).
 Exosomes
 
released
 by
 human
 umbilical
 cord
 mesenchymal
 stem
 cells
 protect
 against
 
cisplatin-­‐induced
  renal
  oxidative
  stress
  and
  apoptosis
 in
  vivo
 and
 in
 
vitro.
 Stem
 Cell
 Research
 &
 Therapy,
 4(2),
 34.
 
 
14. Chavez-­‐Muñoz,
 C.,
 Morse,
 J.,
 Kilani,
 R.
 &
 Ghahary,
 A.
 (2008).
 Primary
 human
 
keratinocytes
 externalize
 stratifin
 protein
 via
 exosomes.
 J.
 Cell.
 Biochem.,
 104:
 
2165–2173.
 
 
15. Lam
  E,
 Kilani
  RT,
 Li
  Y,
 Tredget
  EE,
 Ghahary
  A.
  (2005).
  Stratifin-­‐induced
 
matrix
  metalloproteinase-­‐1
  in
  fibroblast
  is
  mediated
  by
  c-­‐fos
  and
  p38
 
mitogen-­‐activated
 protein
 kinase
 activation.
 J
 Invest
 Dermatol.
 
 125(2),
 230-­‐
8.
 

  60
 
16. Geiger
  A,
 Walker
  A,
 Nissen
  E.
  (2015).
  Human
  fibrocyte-­‐derived
  exosomes
 
accelerate
 wound
 healing
 in
 genetically
 diabetic
 mice.
 Biochem
 Biophys
 Res
 
Commun.
 
 467(2),
 303-­‐9
 
17. Wang,
 T.,
 Gilkes,
 D.
 M.,
 Takano,
 N.,
 Xiang,
 L.,
 Luo,
 W.,
 Bishop,
 C.
 J.,
 et
 al.
 (2014).
 
Hypoxia-­‐inducible
 factors
 and
 RAB22A
 mediate
 formation
 of
 microvesicles
 
that
 stimulate
 breast
 cancer
 invasion
 and
 metastasis.
 Proc.
 Natl.
 Acad.
 Sci.
 
USA,
 111(31),
 E3234–E3242.
 
 
18. Kucharzewska,
 P.,
 Christianson,
 H.
 C.,
 Welch,
 J.
 E.,
 Svensson,
 K.
 J.,
 Fredlund,
 E.,
 
Ringnér,
 M.,
 et
 al.
 (2013).
 Exosomes
 reflect
 the
 hypoxic
 status
 of
 glioma
 cells
 
and
 mediate
 hypoxia-­‐dependent
 activation
 of
 vascular
 cells
 during
 tumor
 
development.
 Proc.
 Natl.
 Acad.
 Sci.
 USA,
 110(18),
 7312–7317.
 
 
19. King,
  HW.,
  Michael,
  MZ.
  &
 Jonathan
 M
 Gleadle
  (2012).
  Hypoxic
 
enhancement
 of
 exosome
 release
 by
 breast
 cancer
 cells.
 BMC
 Cancer
 12,
 
421
 
20. Logozzi,
 M.,
 De
 Milito,
 A.,
 Lugini,
 L.,
 Borghi,
 M.,
 Calabrò,
 L.,
 Spada,
 M.,
 …
 Fais,
 S.
 
(2009).
 High
 Levels
 of
 Exosomes
 Expressing
 CD63
 and
 Caveolin-­‐1
 in
 Plasma
 
of
 Melanoma
 Patients.
 PLoS
 ONE,
 4(4),
 e5219.
 
 
21. Harris,
 D.
 A.,
 Patel,
 S.
 H.,
 Gucek,
 M.,
 Hendrix,
 A.,
 Westbroek,
 W.,
 &
 Taraska,
 J.
 
W.
 (2015).
 Exosomes
 Released
 from
 Breast
 Cancer
 Carcinomas
 Stimulate
 Cell
 
Movement.
 PLoS
 ONE,
 10(3),
 e0117495.
 
 
22. Costa-­‐Silva
 B,
 Aiello
 NM,
 Ocean
 AJ,
 Singh
 S,
 Zhang
 H,
 Thakur
 BK.,
 et
 al.
 (2015).
 
Pancreatic
 cancer
 exosomes
 initiate
 pre-­‐metastatic
 niche
 formation
 in
 the
 
liver.
 Nat
 Cell
 Biol.
 
 17(6),
 816-­‐26
 

  61
 
23. Arscott,
 W.
 T.,
 Tandle,
 A.
 T.,
 Zhao,
 S.,
 Shabason,
 J.
 E.,
 Gordon,
 I.
 K.,
 Schlaff,
 C.
 D.,
 
et
 al.
 (2013).
 Ionizing
 Radiation
 and
 Glioblastoma
 Exosomes:
 Implications
 in
 
Tumor
 Biology
 and
 Cell
 Migration.
 Translational
 Oncology,
 6(6),
 638–648.
 
24. Vincent,
 E.
 E.,
 Elder,
 D.
 J.
 E.,
 Thomas,
 E.
 C.,
 Phillips,
 L.,
 Morgan,
 C.,
 Pawade,
 J.,
 et
 
al.,
 (2011).
 Akt
 phosphorylation
 on
 Thr308
 but
 not
 on
 Ser473
 correlates
 with
 
Akt
  protein
  kinase
  activity
  in
  human
  non-­‐small
  cell
  lung
  cancer.
  Br.
  J.
 
Cancer,
 104(11),
 1755–1761
 
 
25. Sahu,
 D.,
 Zhao,
 Z.,
 Tsen,
 F.,
 Cheng,
 C.-­‐F.,
 Park,
 R.,
 Situ,
 A.
 J.,
 et
 al.,
 (2012).
 A
 
potentially
 common
 peptide
 target
 in
 secreted
 heat
 shock
 protein-­‐90α
 for
 
hypoxia-­‐inducible
 factor-­‐1α–positive
 tumors.
 Mol.
 Biol.
 Cell.
 
 23(4),
 602–613.
 
26. McCready,
 J.,
 Sims,
 J.
 D.,
 Chan,
 D.,
 &
 Jay,
 D.
 G.
 (2010).
 Secretion
 of
 extracellular
 
hsp90α
 via
 exosomes
 increases
 cancer
 cell
 motility:
 a
 role
 for
 plasminogen
 
activation.
 BMC
 Cancer,
 10,
 294.
27. Duellman,
 T.,
 Burnett,
 J.,
 Shin,
 A.,
 &
 Yang,
 J.
 (2015).
 LMAN1
 (ERGIC-­‐53)
 is
 a
 
potential
  carrier
  protein
  for
  matrix
  metalloproteinase-­‐9
  glycoprotein
 
secretion.
 Biochem.
 Biophys.
 Res.
 Commun.
 464(3),
 685-­‐91
28. Zou,
  M.,
  Bhatia,
  A.,
  Dong,
  H.,
  Jayaprakash,
  P.,
  Sahu,
  D.,
  Tsen,
  F.,
  et
  al.,
 
Conserved
  Dual
  Lysines
  Determine
  Non-­‐Chaperone
  Function
  of
  Secreted
 
HSP90α
 in
 Tumor
 Progression.
 Oncogene
 (in
 submission).
29. Wang
  L,
 Harris
  TE,
 Roth
  RA,
 Lawrence
  JC
  Jr.
  (2007).
  PRAS40
  regulates
 
mTORC1
 kinase
 activity
 by
 functioning
 as
 a
 direct
 inhibitor
 of
 substrate
 
binding.
 J
 Biol
 Chem.
 
 282
 (27),
 20036-­‐44

  62
 
30. Lopatina,
 T.,
 Bruno,
 S.,
 Tetta,
 C.,
 Kalinina,
 N.,
 Porta,
 M.,
 &
 Camussi,
 G.
 (2014).
 
Platelet-­‐derived
  growth
  factor
  regulates
  the
  secretion
  of
  extracellular
 
vesicles
 by
 adipose
 mesenchymal
 stem
 cells
 and
 enhances
 their
 angiogenic
 
potential.Cell
 Commun.
 Signal,
 12,
 26.
 
31. Gennebäck,
 N.,
 Hellman,
 U.,
 Malm,
 L.,
 Larsson,
 G.,
 Ronquist,
 G.,
 Waldenström,
 
A.,
 &
 Mörner,
 S.
 (2013).
 Growth
 factor
 stimulation
 of
 cardiomyocytes
 induces
 
changes
 in
 the
 transcriptional
 contents
 of
 secreted
 exosomes.
 J.
 Extracell.
 
Vesicles,
 2,
 10.3402
 
 
32. De
 Jong,
 O.
 G.,
 van
 Balkom,
 B.
 W.
 M.,
 Gremmels,
 H.,
 &
 Verhaar,
 M.
 C.
 (2016).
 
Exosomes
  from
  hypoxic
  endothelial
  cells
  have
  increased
  collagen
 
crosslinking
 activity
 through
 up-­‐regulation
 of
 lysyl
 oxidase-­‐like
 2.
 J.
 Cell
 Mol.r
 
Med.
 20(2),
 342–350.
 
33. Hu,
  F.,
 Deng,
  X.,
 Yang,
  X.,
 Jin,
  H.,
 Gu,
  D.,
 Lv,
  X.,
  et
  al.
  (2015).
  Hypoxia
 
upregulates
 Rab11-­‐family
 interacting
 protein
 4
 through
 HIF-­‐1α
 to
 promote
 
the
 metastasis
 of
 hepatocellular
 carcinoma.
 Oncogene.
 
 34
 (49),
 6007-­‐17.
34. Kovacina,
 KS.,
 Park,
 GY.,
 Bae,
 SS.,
 Guzzetta,
 AW.,
 Schaefer,
 E.,
 Birnbaum,
 MJ.,
 &
 
Roth,
 RA.
 (2003).
 Identification
 of
 a
 proline-­‐rich
 Akt
 substrate
 as
 a
 14-­‐3-­‐3
 
binding
 partner.
 J
 Biol
 Chem
 278,
 10189–10194.
35. Nascimento,
 EB.,
 Fodor,
 M.,
 van
 der
 Zon,
 GC.,
 Jazet,
 IM.,
 Meinders,
 AE.,
 Voshol,
 
PJ.,
 et
 al.
 (2006).
 Insulin-­‐mediated
 phosphorylation
 of
 the
 proline-­‐rich
 Akt
 
substrate
 PRAS40
 is
 impaired
 in
 insulin
 target
 tissues
 of
 high-­‐fat
 diet-­‐fed
 
rats.
 Diabetes.
 55(12),
 3221-­‐8.
 

  63
 
36. Blancquaert,
 S.,
 Wang,
 L.,
 Paternot,
 S.,
 Coulonval,
 K.,
 Dumont,
 JE.,
 Harris
 TE,
 et
 
al.
 (2010).
 cAMP-­‐dependent
 activation
 of
 mammalian
 target
 of
 rapamycin
 
(mTOR)
 in
 thyroid
 cells.
 Implication
 in
 mitogenesis
 and
 activation
 of
 CDK4.
 
Mol
 Endocrinol
 24,
 1453–1468.
37. Kim,
 W.,
 Youn,
 H.,
 Seong,
 KM.,
 Yang,
 HJ.,
 Yun,
 YJ.,
 Kwon,
 T.,
 et
 al.
 (2011).
 PIM1-­‐
activated
 PRAS40
 regulates
 radioresistance
 in
 non-­‐small
 cell
 lung
 cancer
 
cells
  through
  interplay
  with
  FOXO3a,
  14-­‐3-­‐3
  and
  protein
  phosphatases.
 
Radiat
 Res.
 
 176(5),
 539-­‐52
38. Ostrowski,
 M.,
 Carmo,
 NB.,
 Krumeich,
 S.,
 Fanget,
 I.,
 Raposo,
 G.,
 Savina,
 A.,
 et
 al.
 
(2010).
 Rab27a
 and
 Rab27b
 control
 different
 steps
 of
 the
 exosome
 secretion
 
pathway.
 Nat
 Cell
 Biol.
 
 12(1),
 19-­‐30
39. Peinado
  H.,
  Alečković
  M.,
  Lavotshkin
  S.,
  Matei
  I.,
  Costa-­‐Silva
  B.,
  Moreno-­‐
Bueno
  G.,
  et
  al.,
  (2012).Melanoma
  exosomes
  educate
  bone
  marrow
 
progenitor
 cells
 toward
 a
 pro-­‐metastatic
 phenotype
 through
 MET.
 Nature
 
Medicine,
 18(6),
 883–891.
 
 
40. Hendrix
 A,
 Maynard
 D,
 Pauwels
 P,
 Braems
 G,
 Denys
 H,
 Van
 den
 Broecke
 R
 et
 
al.,
 (2010).
 Effect
 of
 the
 Secretory
 Small
 GTPase
 Rab27B
 on
 Breast
 Cancer
 
Growth,
 Invasion,
 and
 Metastasis.
 J
 Natl
 Cancer
 Inst.
 102(12):
 866-­‐80
 
 
41. Wiza,
 C.,
 Nascimento,
 EB.,
 &
 Ouwens
 DM.
 (2012).
 Role
 of
 PRAS40
 in
 Akt
 and
 
mTOR
  signaling
  in
  health
  and
  disease.
  Am
  J
  Physiol
  Endocrinol
 
Metab.
 
 302(12),
 E1453-­‐60
 
42. Bobrie,
  A.,
 Krumeich,
  S.,
 Reyal,
  F.,
 Recchi,
  C.,
 Moita,
  LF.,
 Seabra,
  MC.,
  et
  al.,
 
(2012).
 Rab27a
 supports
 exosome-­‐dependent
 and
 -­‐independent
 mechanisms
 

  64
 
that
  modify
  the
  tumor
  microenvironment
  and
  can
  promote
  tumor
 
progression.
 Cancer
 Res.
 72(19),
 4920-­‐30
 
 




 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

  65
 
Chapter
 3:
 Hsp90α
 and
 Hsp90β
 Co-­‐Operate
 a
 Stress-­‐Response
 Mechanism
 to
 
Cope
 With
 Hypoxia
 and
 Nutrient
 Paucity
 during
 Wound
 Healing
 
Abstract
 
The
  lack
  of
  blood
  supply
  makes
  the
  wound
  microenvironment
  predominantly
 
hypoxic,
 deprived
 of
 oxygen
 and
 nutrients.
 Heat
 shock
 proteins
 of
 Hsp90
 family
 are
 
secreted
 under
 hypoxia
 and
 enable
 wound
 healing
 and
 tissue
 repair.
 The
 cytosolic
 
Hsp90
 isoforms,
 Hsp90α
 and
 Hsp90β
 are
 86%
 identical
 at
 amino
 acid
 levels
 and
 
thought
 to
 be
 redundant
 in
 their
 function.
 Here,
 we
 report
 a
 unique
 communication
 
between
 Hsp90α
 and
 Hsp90β
 in
 driving
 dermal
 fibroblast
 migration.
 Hsp90β
 acts
 as
 
an
  intracellular
  chaperone
  protein
  for
  LRP-­‐1
  receptor,
  stabilizing
  it
  at
  the
  cell
 
surface.
 Hsp90α,
 on
 the
 other
 hand,
 gets
 secreted
 outside
 the
 cell
 to
 bind
 LRP-­‐1
 
extracellularly.
  This
  novel
  communication
  facilitates
  cell
  migration
  and
  wound
 
healing
 and
 has
 the
 potential
 to
 be
 applicable
 to
 other
 non-­‐cutaneous
 wounds
 as
 
well.
 
 

 
Introduction
 
The
 wound
 environment
 is
 hypoxic
 due
 to
 the
 loss
 of
 blood
 supply
 and
 excessive
 
consumption
 of
 oxygen
 by
 cells
 at
 the
 wound
 edge
 (1).
 Hypoxia
 is
 an
 important
 
driver
 of
 skin
 cell
 migration,
 promoting
 migration
 of
 all
 the
 three
 skin
 cell
 types,
 
including
 human
 keratinocytes
 (2,
 3),
 human
 dermal
 fibroblasts
 (4,
 5)
 and
 human
 
dermal
 microvascular
 endothelial
 cells
 (6).
 Impaired
 hypoxia
 results
 in
 impaired
 
wound
  healing
  as
  in
  the
  case
  with
  diabetic
  foot
  ulcers
  (7).
  Hyperglycemia
 
destabilizes
 HIF1-­‐α
 or
 impairs
 the
 function
 of
 HIF1-­‐α
 (8,9,10)
 resulting
 in
 impaired
 

  66
 
wound
  healing
  responses.
  In
  vitro,
  knockdown
  of
  HIF1-­‐α,
  blocked
  migration
  of
 
keratinocytes
 and
 human
 dermal
 fibroblasts
 whereas
 the
 overexpression
 of
 both
 
wild
 type
 and
 a
 constitutively
 active
 mutant
 of
 HIF1-­‐α
 rescued
 the
 defect
 (3,4).
 
 
 

 
Hypoxia
 facilitates
 the
 stabilization
 of
 hypoxia-­‐inducible
 factor-­‐1
 α
 (HIF1-­‐α),
 which
 
is
 an
 upstream
 regulator
 of
 Hsp90α
 secretion
 (3,4,11).
 The
 secreted
 Hsp90α,
 in
 turn,
 
promotes
  wound
  healing
  and
  tissue
  repair.
  Supplementation
  with
  recombinant
 
Hsp90α
 drives
 fibroblast
 migration
 under
 hyperglycemia,
 supporting
 the
 finding
 
that
 HIF1-­‐α
 driven
 Hsp90α
 secretion
 is
 required
 for
 wound
 healing
 under
 both
 
normal
 and
 diabetic
 conditions
 (6).
 Recombinant
 Hsp90α
 was
 found
 to
 accelerate
 
wound
  closure
  in
  both
  rodent
  and
  porcine
  models
  (12).
  Using
  site-­‐directed
 
mutagenesis,
 Cheng
 et
 al.,
 identified
 that
 the
 full
 pro-­‐motility
 activity
 of
 secreted
 
Hsp90α
 could
 be
 recapitulated
 by
 F-­‐5,
 a
 115
 amino
 acid
 region
 encompassing
 the
 
charged
 linker
 and
 middle
 domains,
 independent
 of
 its
 N-­‐terminal
 ATPase
 domain
 
(6).
 Topical
 application
 with
 F-­‐5,
 enhanced
 wound
 re-­‐epithelialization
 compared
 to
 
control
 and
 improved
 the
 quality
 of
 healing
 in
 normal
 and
 diabetic
 pigs
 and
 mice
 
(11,12).
 
 

 
Different
  mechanisms
  of
  action
  of
  secreted
  Hsp90α
  have
  been
  reported.
  One
 
mechanism
 is
 that
 secreted
 Hsp90α
 acts
 by
 binding
 to
 the
 cell
 surface
 LRP-­‐1
 (Low
 
Density
 Lipoprotein
 Receptor
 Related
 Protein-­‐1)
 receptor,
 driving
 either
 wound
 
healing
 (13)
 or
 tumor
 progression
 (11,13).
 LRP-­‐1
 is
 a
 member
 of
 the
 LDL
 receptor
 
family
 that
 includes
 seven
 members.
 It
 is
 synthesized
 as
 a
 600kDa
 precursor
 that
 is
 

  67
 
proteolytically
 cleaved
 into
 a
 515kDa
 extracellular
 ligand
 binding
 α
 subunit,
 an
 
85kDa
 transmembrane
 β
 subunit
 and
 a
 100
 amino
 acid
 long
 cytoplasmic
 tail
 (30).
 
The
 extracellular
 ligand
 binding
 domain
 is
 divided
 into
 four
 domains,
 I,
 II,
 III
 and
 IV.
 
Most
 ligands
 bind
 to
 domains
 II
 and
 IV
 (34).
 LRP-­‐1
 is
 a
 scavenger
 receptor
 that
 is
 
involved
  in
  the
  uptake
  of
  around
  30
  ligands
  including
  extracellular
  matrix
 
macromolecules,
 active
 proteinases
 and
 proteinase/inhibitor
 complexes
 (31).
 It
 is
 
also
  reported
  to
  bind
  heat
  shock
  proteins
  such
  as
  Hsp90,
  Hsp70,
  gp96
  and
 
calreticulin
 (33).
 LRP-­‐1
 knockout
 in
 mice
 results
 in
 embryonic
 lethality
 (32).
 Tsen
 et
 
al.
 reported
 that
 secreted
 Hsp90α
 binds
 to
 the
 extracellular
 domain
 II
 of
 LRP-­‐1,
 
activates
 downstream
 Akt
 kinases
 and
 promotes
 wound
 healing
 (13).
 However,
 
other
 reports
 propose
 that
 extracellular
 Hsp90α
 acts
 as
 a
 chaperone
 stabilizing
 its
 
extracellular
 client
 proteins
 such
 as
 MMP2
 and
 MMP9,
 activating
 them
 and
 driving
 
tumor
 cell
 motility
 and
 invasion
 (14,
 16).
 Cell
 surface
 HER2
 is
 another
 reported
 
client
 of
 extracellular
 Hsp90α
 (18,
 29).
 
 
 

 
There
  are
  two
  cytosolic
  Hsp90
  isoforms,
  Hsp90α
  and
  Hsp90β,
  which
  are
  86%
 
identical
 at
 the
 amino
 acid
 level.
 Despite
 the
 high
 degree
 of
 homology,
 only
 secreted
 
Hsp90α,
 but
 not
 Hsp90β,
 possesses
 pro-­‐motility
 activity.
 In
 order
 to
 investigate
 the
 
non-­‐redundancy
 of
 the
 two
 isoforms
 in
 wound
 healing,
 we
 used
 human
 dermal
 
fibroblasts
  (HDFs)
  as
  a
  model.
  HDFs
  offer
  a
  good
  model
  owing
  to
  three
 
characteristics:
 1)
 they
 secrete
 Hsp90α
 under
 hypoxia,
 2)
 have
 the
 ability
 to
 migrate
 
in
 response
 to
 recombinant
 Hsp90α
 stimulation
 and
 3)
 express
 high
 levels
 of
 LRP-­‐1.
 
We
 report
 that
 Hsp90α
 and
 Hsp90β
 have
 distinct
 functions
 in
 the
 wound
 healing
 

  68
 
process
 and
 cannot
 compensate
 for
 each
 other.
 Hsp90β
 acts
 inside
 the
 cell
 as
 a
 
chaperone
 for
 LRP-­‐1,
 in
 order
 to
 stabilize
 it
 at
 the
 cell
 surface.
 
 Hsp90α,
 on
 the
 other
 
hand,
  is
  secreted
  outside
  where
  it
  acts
  as
  a
  ligand
  for
  LRP-­‐1,
  mediating
 
transmembrane
 signaling
 and
 driving
 cell
 motility.
 
 
 

 
Results
 
Secreted
 Hsp90α
 and
 intracellular
 Hsp90β
 are
 required
 for
 HDF
 migration
 
In
 order
 to
 understand
 the
 specific
 roles
 of
 Hsp90α
 and
 Hsp90β
 and
 investigate
 the
 
existence
 of
 a
 compensatory
 mechanism,
 we
 generated
 lentiviral
 knockdown
 of
 
either
  Hsp90α
  or
  Hsp90β
  in
  HDFs.
  Fig
  1a
  shows
  the
  verification
  of
  antibody
 
specificity
  using
  recombinant
  proteins,
  showing
  that
  the
  Hsp90α
  and
  Hsp90β
 
antibodies
 do
 not
 cross
 react.
 We
 then
 used
 these
 antibodies
 to
 verify
 specific
 
knockdown
 of
 the
 Hsp90
 proteins.
 Fig
 1b
 depicts
 that
 the
 knockdown
 of
 Hsp90α
 
and
 Hsp90β
 were
 both
 efficient
 (>95%
 down
 regulation)
 and
 specific
 (not
 affecting
 
the
 other
 isoform).
 We
 subjected
 these
 cells
 to
 the
 colloidal
 gold
 migration
 assay.
 
This
 assay
 measures
 the
 migration
 of
 individual
 cells
 denoted
 by
 tracks
 created
 on
 a
 
gold
 surface.
 HDFs
 infected
 with
 control,
 Hsp90α
 or
 Hsp90β
 shRNA
 were
 stimulated
 
with
 either
 PDGF-­‐BB
 (physiological
 condition)
 or
 hypoxia
 (stress
 condition)
 and
 left
 
to
 migrate
 overnight.
 As
 shown
 in
 Fig
 1c,
 all
 three
 groups
 of
 cells
 had
 basal
 motility
 
under
 serum-­‐free
 conditions.
 PDGF-­‐BB
 induced
 a
 robust
 migration
 of
 all
 the
 three
 
cell
 types,
 consistent
 with
 its
 role
 as
 a
 potent
 mitogen
 and
 motogen
 for
 HDFs,
 
binding
 and
 signaling
 through
 the
 cell
 surface
 PDGF
 receptor.
 Interestingly,
 the
 
migration
 of
 Hsp90α
 knockdown
 cells
 was
 even
 slightly
 higher
 than
 control
 cells.
 

  69
 
However,
 when
 the
 same
 cells
 were
 subjected
 to
 hypoxia
 (1%
 O2),
 only
 the
 control
 
cells
 responded
 with
 increased
 migration.
 In
 contrast,
 both
 Hsp90α
 and
 Hsp90β
 
knockdown
 inhibited
 hypoxia-­‐driven
 migration.
 Since,
 we
 have
 previously
 reported
 
that
  hypoxia
  drives
  the
  secretion
  of
  Hsp90
  proteins,
  we
  asked
  the
  question
  if
 
extracellular
  supplementation
  with
  recombinant
  Hsp90α
  and
  Hsp90β
  proteins
 
rescued
 the
 migration
 defect
 under
 hypoxia.
 We
 found
 that
 recombinant
 Hsp90α
 
but
  not
  Hsp90β
  rescued
  the
  migration
  defect
  of
  Hsp90α
  knockdown
  HDFs.
  In
 
contrast,
 neither
 Hsp90α
 nor
 Hsp90β
 protein
 was
 able
 to
 rescue
 the
 migration
 
defect
  of
  Hsp90β
  knockdown
  HDFs.
  These
  findings
  indicate
  that
  extracellular
 
Hsp90α
 and
 intracellular
 Hsp90β
 are
 required
 for
 hypoxia-­‐driven
 HDF
 motility.
 The
 
quantitation
 of
 migration
 is
 shown
 in
 Fig
 1d.
 
 

 

  70
 
Figure
  3-­‐1.
  Distinct
  requirements
  for
  Hsp90α
  and
  Hsp90β
  for
  hypoxia-­‐triggered
  cell
 
migration.
 (A)
 The
 specificity
 of
 anti-­‐Hsp90α
 and
 anti-­‐Hsp90β
 antibodies
 was
 confirmed
 using
 
purified
  recombinant
  Hsp90α
  and
  Hsp90β
  proteins
  in
  Western
  blot
  analysis.
  (B)
  Lentiviral
 
infection-­‐mediated
  down
  regulation
  of
  endogenous
  Hsp90α
  and
  Hsp90β
  in
  HDFs,
  shown
  by
 
Western
 blots.(C)
 The
 above
 cells
 were
 serum-­‐starved
 for
 16
 hours
 and
 subjected
 to
 colloidal
 gold
 
migration
 assay.
 Motility
 was
 visualized
 as
 “migration
 tracks”
 indicated
 by
 dotted
 circles.
 Human
 
recombinant
 (hr)
 Hsp90α
 and
 Hsp90β
 proteins
 were
 used
 to
 rescue
 Hsp90
 down
 regulation-­‐caused
 
cell
 migration
 defects
 in
 response
 to
 hypoxia.
 (D)
 Quantitation
 of
 the
 cell
 migration
 (in
 C)
 as
 
Migration
 Index
 (MI,
 %).
 n
 =
 4,
 p
 <
 0.05
 

 
Secreted
 Hsp90α,
 not
 Hsp90β
 mediates
 hypoxia-­‐driven
 HDF
 migration
 
In
 order
 to
 verify
 if
 secreted
 Hsp90α
 is
 necessary
 for
 hypoxia-­‐driven
 HDF
 motility,
 
we
 used
 a
 neutralizing
 antibody
 approach.
 As
 shown
 in
 Fig
 2a,
 we
 subjected
 wild
 
type
 HDFs
 to
 the
 colloidal
 gold
 migration
 assay
 in
 response
 to
 either
 PDGF-­‐BB
 or
 
hypoxia.
  We
  co-­‐treated
  the
  cells
  with
  antibodies
  specifically
  targeting
  either
 

 

  71
 
secreted
 Hsp90α
 or
 Hsp90β.
 We
 found
 that
 hypoxia
 promoted
 the
 migration
 of
 wild
 
type
 HDFs
 compared
 to
 serum-­‐free
 control.
 This
 migration
 was
 dose
 dependently
 
blocked
 by
 anti-­‐Hsp90α,
 but
 not
 anti-­‐Hsp90β
 antibody.
 Interestingly,
 neither
 of
 the
 
antibodies
  blocked
  PDGF-­‐BB
  driven
  migration,
  implying
  that
  physiological
  and
 
stress
 conditions
 use
 different
 mechanisms
 to
 drive
 HDF
 motility.
 
 

 
We
 also
 found
 that
 secreted
 Hsp90α
 has
 a
 chemotactic
 ability,
 comparable
 to
 PDGF-­‐
BB
 stimulation
 (Fig
 2b).
 Treatment
 with
 recombinant
 Hsp90α
 enabled
 HDFs
 to
 
migrate
 toward
 10%
 FBS
 through
 a
 collagen
 coated
 matrix
 in
 a
 transwell
 assay.
 In
 
order
 to
 compare
 the
 relative
 importance
 of
 Hsp90α
 and
 Hsp90β
 in
 vivo,
 we
 used
 a
 
porcine
 wound
 healing
 model
 since
 pig
 skin
 is
 physiologically
 closer
 to
 human
 skin
 
than
 rodents’
 (12).
 We
 created
 1.5
 x
 1.5
 cm
 wounds
 and
 topically
 treated
 them
 with
 
either
 carboxymethyl
 cellulose
 (CMC)
 vehicle,
 recombinant
 Hsp90α
 or
 Hsp90β.
 We
 
found
 that
 at
 day
 7
 post
 wounding,
 control
 CMC
 treated
 wounds
 were
 about
 50%
 
closed.
  Treatment
  with
  recombinant
  Hsp90α
  accelerated
  wound
  closure
  to
 
approximately
 75%.
 Interestingly,
 recombinant
 Hsp90β
 also
 caused
 a
 moderate
 
acceleration
 of
 wound
 closure,
 though
 significantly
 lesser
 than
 recombinant
 Hsp90α
 
treated
 wounds.
 The
 major
 difference
 between
 the
 two
 proteins
 was
 evident
 in
 the
 
quality
  of
  wound
  healing,
  as
  determined
  by
  histological
  analyses.
  Recombinant
 
Hsp90α
 treated
 wounds
 showed
 a
 similar
 epidermal
 thickness
 as
 unwounded
 skin,
 
while
  CMC
  treated
  wounds
  showed
  a
  significant
  reduction
  in
  thickness.
 
Recombinant
 Hsp90β
 treated
 wounds
 however,
 displayed
 the
 poorest
 quality
 of
 
healing
 amongst
 the
 three
 groups,
 with
 an
 extremely
 thin
 epidermis
 (Fig
 1d).
 Thus,
 

  72
 
recombinant
 Hsp90α
 is
 a
 superior
 wound
 healing
 agent
 than
 recombinant
 Hsp90β.
 
The
 moderate
 acceleration
 of
 wound
 closure
 by
 Hsp90β
 treatment
 might
 be
 due
 to
 
its
 effects
 on
 wound
 contraction
 or
 its
 lower
 promotility
 effect
 on
 HDFs
 (6).
 
 

 
Figure
 3-­‐2.
 Secreted
 Hsp90α,
 not
 Hsp90β,
 mediates
 hypoxia-­‐triggered
 HDF
 migration
 and
 
promotes
 wound
 healing.
 
(A)
 HDF
 migration
 under
 indicated
 conditions.
 Anti-­‐Hsp90α
 antibody
 inhibited
 hypoxia-­‐triggered
 
HDF
 migration
 (bars
 5
 and
 6).
 
 
(B)
 Comparison
 of
 PDGF-­‐BB-­‐
 and
 Hsp90α-­‐
 induced
 chemotaxis
 relative
 to
 untreated
 cells
 using
 the
 
transwell
 assay.
 The
 percentage
 of
 cells
 that
 penetrated
 that
 membrane
 is
 calculated.
 
 

  73
 
(C)
 hrHsp90α
 and
 hrHsp90β
 proteins
 were
 compared
 for
 their
 effects
 on
 promoting
 pig
 wound
 
healing.
 Topical
 application
 of
 Hsp90
 proteins
 (100μg/ml)
 or
 control
 vehicle
 (CMC)
 was
 carried
 out
 
once
 on
 day
 0.
 n
 =
 3,
 p
 <
 0.05
 
(D)
 H&E
 staining
 of
 fully
 closed
 wounds
 on
 day
 21.
 n
 =
 20-­‐24
 (sections)
 per
 treatment.
 

 
Hsp90β
 chaperones
 LRP-­‐1
 and
 stabilizes
 it
 on
 the
 cell
 surface
 
 
The
 findings
 so
 far
 indicate
 that
 extracellular
 Hsp90α
 and
 intracellular
 Hsp90β
 are
 
indispensable
 for
 hypoxia-­‐driven
 HDF
 motility.
 Our
 next
 question
 was
 to
 identify
 
the
 mechanism
 by
 Hsp90β
 played
 a
 role
 in
 this
 process.
 We
 focused
 on
 LRP-­‐1,
 the
 
cell
 surface
 receptor
 required
 for
 extracellular
 Hsp90α’s
 transmembrane
 signaling
 
and
 pro-­‐motility
 activity
 (19,
 3,
 13).
 We
 hypothesized
 that
 Hsp90α
 and
 Hsp90β
 bind
 
differentially
  to
  LRP-­‐1
  receptor.
  To
  investigate
  which
  isoform
  binds
  to
  the
 
cytoplasmic
 tail
 of
 LRP-­‐1,
 we
 took
 advantage
 of
 RAP
 (receptor-­‐associated
 protein),
 a
 
universal
 antagonist
 of
 the
 extracellular
 ligand-­‐binding
 domain
 of
 LRP-­‐1
 (20).
 We
 
incubated
 HDFs
 with
 increasing
 amounts
 of
 RAP,
 in
 order
 to
 prevent
 binding
 of
 
Hsp90
  proteins
  to
  LRP-­‐1’s
  extracellular
  domain
  following
  cell
  lysis.
  We
  then
 
performed
 immunoprecipitation
 with
 LRP-­‐1
 antibody
 and
 looked
 at
 the
 association
 
of
  Hsp90α
  and
  Hsp90β.
  As
  shown
  in
  Fig
  3a,
  we
  found
  that
  RAP
  treatment
 
specifically
 blocked
 the
 association
 of
 Hsp90α
 to
 LRP-­‐1.
 In
 contrast,
 association
 of
 
Hsp90β
 was
 unaffected.
 The
 slight
 increase
 in
 Hsp90β
 association
 with
 increasing
 
amounts
 of
 RAP
 might
 be
 due
 to
 lesser
 internalization
 of
 LRP-­‐1
 following
 RAP
 
binding.
 Based
 on
 this
 finding,
 we
 concluded
 that
 Hsp90α
 binds
 to
 the
 extracellular
 
ligand-­‐binding
 domain
 of
 LRP-­‐1
 while
 Hsp90β
 binds
 to
 its
 intracellular
 cytoplasmic
 
tail.
 We
 hypothesized
 that
 Hsp90β
 binds
 to
 the
 cytoplasmic
 tail
 of
 LRP-­‐1
 and
 acts
 as
 

  74
 
a
 chaperone
 to
 stabilize
 it
 on
 the
 cell
 surface.
 Therefore,
 we
 investigated
 LRP-­‐1
 
levels
 in
 control,
 Hsp90α
 knockdown
 and
 Hsp90β
 knockdown
 HDFs.
 We
 found
 that
 
only
 the
 knockdown
 of
 Hsp90β
 significantly
 decreased
 LRP-­‐1
 levels,
 verifying
 that
 
Hsp90β
 acts
 as
 a
 chaperone
 for
 LRP-­‐1.
 In
 contrast,
 the
 levels
 of
 PDGFRβ
 and
 EGFR
 
were
  either
  unaffected
  or
  slightly
  reduced
  in
  the
  Hsp90β
  knockdown
  HDFs
 
respectively.
  We
  also
  verified
  that
  Hsp90β
  regulated
  LRP-­‐1
  post-­‐translationally
 
since
 the
 mRNA
 levels
 were
 unaffected
 in
 Hsp90β
 knockdown
 HDFs
 (Fig
 3c).
 
 

 
Due
 to
 the
 high
 degree
 of
 homology,
 Hsp90α
 and
 Hsp90β
 are
 thought
 to
 compensate
 
for
  each
  other’s
  function.
  To
  investigate
  if
  the
  migration
  defect
  in
  Hsp90β
 
knockdown
 HDFs
 could
 be
 rescued
 by
 physical
 replacement
 of
 the
 missing
 Hsp90β
 
with
 Hsp90α
 to
 increase
 the
 total
 amount
 of
 Hsp90
 proteins
 in
 the
 cells,
 we
 used
 
lentiviral
 infection
 to
 overexpress
 Hsp90α
 in
 Hsp90β
 knockdown
 HDFs.
 As
 shown
 in
 
Fig
 3d,
 there
 was
 a
 compensatory
 up
 regulation
 of
 Hsp90α
 in
 Hsp90β
 knockdown
 
HDFs
 (panel
 b
 lane
 2
 vs
 lane
 1)
 and
 has
 also
 been
 reported
 by
 others
 (21).
 We
 also
 
achieved
 a
 successful
 overexpression
 of
 Hsp90α
 in
 Hsp90β
 knockdown
 HDFs
 (panel
 
b
 lane
 3
 vs
 lane
 1).
 Interestingly,
 we
 found
 that
 even
 the
 overexpression
 of
 Hsp90α
 
failed
  to
  rescue
  LRP-­‐1
  levels
  (panel
  c
  lane
  2
  vs
  lane
  3).
  To
  verify
  the
  specific
 
chaperone
 function
 for
 Hsp90β,
 not
 Hsp90α,
 we
 also
 rescued
 Hsp90β’s
 expression
 
in
 Hsp90β
 knockdown
 HDFs
 through
 lentiviral
 overexpression.
 The
 overexpression
 
is
 shown
 in
 Fig
 3e
 (panel
 a
 lane
 2
 vs
 lane
 3).
 We
 found
 that
 Hsp90β
 overexpression
 
rescued
 LRP-­‐1
 levels
 (panel
 c
 lane
 2
 vs
 lane
 3).
 Based
 on
 these
 two
 gene
 rescue
 
experiments,
 we
 concluded
 that
 Hsp90β
 is
 the
 specific
 chaperone
 for
 LRP-­‐1
 and
 

  75
 
even
 increasing
 the
 total
 amount
 of
 Hsp90
 proteins
 in
 the
 cell
 through
 Hsp90α
 
overexpression
 cannot
 overcome
 the
 absence
 of
 Hsp90β
 to
 regulate
 LRP-­‐1
 levels.
 
 

 
Figure
 3-­‐3.
 Only
 Hsp90β
 stabilizes
 the
 LRP-­‐1
 receptor.
 
(A)
  HDFs
  in
  150
  mm
  dishes
  were
  serum-­‐starved
  for
  16
  hours
  and
  incubated
  with
  increasing
 
amounts
 of
 RAP
 to
 block
 LRP-­‐1’s
 extracellular
 domain.
 Cell
 lysates
 were
 immunoprecipitated
 with
 
anti-­‐LRP-­‐1
 antibody.
 Anti-­‐LRP-­‐1
 immunoprecipitates
 were
 divided
 into
 three
 portions:
 45%
 for
 
blotting
 with
 anti-­‐Hsp90α,
 45%
 for
 blotting
 with
 anti-­‐Hsp90β
 and
 10%
 for
 blotting
 with
 anti-­‐LRP-­‐1
 
antibodies.
 
 
(B)
 Hsp90α-­‐
 or
 Hsp90β-­‐down
 regulated
 HDFs
 were
 examined
 for
 their
 effects
 on
 expression
 of
 LRP-­‐
1
 (panel
 a),
 PDGFRβ
 (panel
 b)
 and
 EGFR
 (panel
 c),
 in
 comparison
 to
 parental
 HDFs
 (lanes
 1)
 by
 
Western
 blot
 analyses.
 
 
(C)
 RT-­‐PCR
 analysis
 of
 LRP-­‐1
 mRNA
 in
 the
 cells.
 

  76
 
(D)
 Hsp90β-­‐down
 regulated
 HDFs
 were
 re-­‐infected
 with
 a
 lentiviral
 vector
 carrying
 a
 wild
 type
 
Hsp90α
 gene.
 The
 cellular
 levels
 of
 Hsp90β
 (panel
 a),
 Hsp90α
 (panel
 b)
 and
 LRP-­‐1
 (panel
 c)
 were
 
examined
 by
 Western
 blot
 analysis
 with
 corresponding
 antibodies.
 
 
(E)
 HDFs
 with
 Hsp90β
 downregulation
 were
 re-­‐infected
 with
 a
 lentiviral
 vector
 carrying
 a
 wild
 type
 
Hsp90β
 gene.
 The
 cellular
 levels
 of
 Hsp90β
 (panel
 a),
 Hsp90α
 (panel
 b)
 and
 LRP-­‐1
 (panel
 c)
 were
 
examined
 by
 Western
 blot
 analysis
 with
 corresponding
 antibodies.
 

 
Exogenous
 expression
 of
 Hsp90β
 or
 LRP-­‐1
 rescues
 migration
 defect
 of
 Hsp90β
 
knockdown
 HDFs
 in
 response
 to
 extracellular
 Hsp90α
 and
 hypoxia
 
To
 directly
 investigate
 if
 Hsp90β
 regulated
 LRP-­‐1
 levels
 contributed
 to
 hypoxia-­‐
driven
 migration,
 we
 subjected
 control,
 Hsp90β
 knockdown,
 Hsp90β
 knockdown
 
cells
 with
 exogenous
 Hsp90α
 overexpression
 and
 Hsp90β
 knockdown
 cells
 with
 
exogenous
 Hsp90β
 overexpression
 to
 a
 migration
 assay
 in
 response
 to
 hypoxia
 and
 
recombinant
 Hsp90α
 stimulation.
 Consistent
 with
 the
 rescue
 of
 LRP-­‐1
 levels,
 only
 
overexpression
 of
 Hsp90β
 rescued
 the
 migration
 defect
 (Fig
 4a).
 
 

 
In
 order
 to
 verify
 that
 LRP-­‐1
 stabilization
 downstream
 Hsp90β
 is
 required
 for
 HDF
 
migration,
  we
  tested
  if
  overexpression
  of
  LRP-­‐1
  was
  sufficient
  to
  rescue
  the
 
migration
 defect
 of
 Hsp90β
 knockdown
 cells.
 The
 13-­‐kb
 cDNA
 for
 the
 human
 LRP-­‐1
 
encodes
 a
 515-­‐kDa
 extracellular
 α
 subunit
 and
 a
 transmembrane
 85-­‐kDa
 β
 subunit
 
that
 has
 a
 100-­‐amino-­‐acid-­‐long
 cytoplasmic
 tail.
 It
 is
 too
 large
 to
 be
 accommodated
 
and
 expressed
 by
 any
 existing
 mammalian
 cDNA
 expression
 systems
 (32,
 35).
 LRP-­‐
1’s
  extracellular
  domain
  is
  composed
  of
  four
  independent
  ligand-­‐binding
 
subdomains
 (I
 to
 IV).
 We
 therefore
 made
 use
 of
 four
 hemagglutinin
 (HA)-­‐tagged
 

  77
 
mini-­‐LRP-­‐1
  receptors
  (mLRP1-­‐I
  to
  mLRP1-­‐IV),
  in
  which
  each
  of
  the
  four
 
extracellular
 subdomains
 was
 fused
 to
 the
 p85
 subunit
 gene
 and
 examined
 which
 
subdomain(s)
 was
 sufficient
 to
 mediate
 eHsp90α
 signaling.
 We
 identified
 mLRP1-­‐II
 
to
 be
 sufficient
 to
 bind
 and
 signal
 secreted
 Hsp90α’s
 pro-­‐motility
 activity
 (22,
 23,
 
13).
 We
 therefore
 overexpressed
 mLRP1-­‐II
 in
 Hsp90β
 knockdown
 HDFs
 and
 found
 
that
 it
 was
 sufficient
 to
 rescue
 their
 motility
 defect
 in
 response
 to
 recombinant
 
Hsp90α.
 The
 overexpression
 is
 shown
 in
 Fig
 4b
 and
 the
 migration
 quantitation
 is
 
shown
 in
 Fig
 4c.
 As
 previously
 reported
 by
 us,
 PDGF-­‐BB
 signaling
 was
 unaffected
 by
 
mLRP1-­‐II
 overexpression,
 implying
 PDGF-­‐BB
 and
 secreted
 Hsp90α
 utilize
 different
 
pathways
 to
 drive
 cell
 motility
 (13).
 Fig
 4d
 is
 a
 depiction
 of
 a
 working
 model,
 
indicating
 the
 differential
 roles
 of
 Hsp90α
 and
 Hsp90β.
 

  78
 

 
Figure
 3-­‐4.
 Exogenously
 expressed
 Hsp90β
 rescues
 endogenous
 Hsp90β-­‐down
 regulated
 
HDF
 motility.
 
(A)
  HDFs
  with
  control
  sh-­‐LacZ
  (bars
  1-­‐3),
  Hsp90β-­‐down
  regulation
  (bars
  4-­‐6),
  Hsp90β-­‐down
 
regulation
  and
  Hsp90β
  re-­‐expression
  (bars
  7-­‐9)
  or
  Hsp90β-­‐down
  regulation
  and
  Hsp90α
  re-­‐
expression
 (bars
 10-­‐12)
 were
 subjected
 to
 the
 migration
 assay
 in
 response
 to
 the
 stimulations
 
indicated.
 Quantitation
 of
 the
 data
 as
 migration
 index
 (MI,
 %)
 is
 shown.
 n
 =
 3,
 p
 <
 0.05
 
 
(B)
 Overexpression
 of
 LRP-­‐1-­‐II
 in
 Hsp90β-­‐down
 regulated
 cells.
 
(C)
 LRP-­‐1-­‐II
 rescues
 the
 motility
 defect
 of
 Hsp90β-­‐down
 regulated
 cells
 in
 response
 to
 extracellular
 
Hsp90α
 stimulation.
 

  79
 
(D)
 Schematically,
 when
 tissue
 is
 damaged,
 acute
 hypoxia
 triggers
 cells
 in
 the
 wound
 edge
 to
 secrete
 
Hsp90α.
 Hsp90β
 stabilizes
 LRP-­‐1
 and
 the
 secreted
 Hsp90α
 binds
 and
 signals
 through
 the
 LRP-­‐1
 
receptor
 to
 promote
 cell
 migration
 and
 wound
 healing.
 
 

 
Discussion
 
This
 study
 provides
 a
 novel
 working
 relationship
 between
 extracellular
 Hsp90α
 and
 
intracellular
  Hsp90β
  in
  driving
  HDF
  migration
  under
  stress
  conditions
  such
  as
 
hypoxia
 and
 nutrient
 paucity.
 Hsp90α
 is
 secreted
 outside
 the
 cells
 under
 the
 control
 
of
 HIF-­‐1α.
 The
 secreted
 Hsp90α
 binds
 to
 the
 extracellular
 domain
 of
 LRP-­‐1
 and
 
through
 activation
 of
 downstream
 kinases
 such
 as
 Akt,
 activates
 cell
 migration
 and
 
wound
 healing.
 This
 process
 requires
 the
 presence
 of
 intracellular
 Hsp90β,
 which
 
binds
 to
 the
 cytoplasmic
 tail
 of
 LRP-­‐1
 and
 stabilizes
 it
 on
 the
 cell
 surface.
 Thus,
 
Hsp90α
 and
 Hsp90β
 have
 distinct
 roles
 in
 wound
 healing.
 
 

 
For
 decades,
 scientists
 have
 not
 distinguished
 the
 functions
 of
 the
 two
 isoforms,
 
which
  were
  thought
  to
  have
  redundant
  functions.
  However,
  the
  contrasting
 
knockout
 phenotypes
 of
 Hsp90α
 and
 Hsp90β
 and
 the
 emerging
 roles
 of
 secreted
 
Hsp90α
 in
 tissue
 repair
 highlight
 the
 need
 to
 study
 the
 two
 isoforms
 as
 independent
 
entities.
 Hsp90β
 knockout
 mice
 were
 embryonic
 lethal
 due
 to
 their
 failure
 to
 form
 a
 
placental
 labyrinth
 (24).
 Three
 papers
 report
 the
 generation
 of
 Hsp90α
 knockout
 
mice.
 Picard’s
 group
 generated
 a
 gene
 trap
 insertion
 in
 intron
 10
 of
 the
 Hsp90α
 
gene.
 However,
 instead
 of
 the
 expected
 C-­‐terminally
 truncated
 protein,
 the
 authors
 
reported
 an
 Hsp90α
 knockout
 mouse
 (25).
 These
 mice
 developed
 normally,
 but
 

  80
 
showed
 defects
 in
 spermatogenesis.
 This
 observation
 was
 confirmed
 by
 a
 second
 
group,
 using
 the
 Cre/LoxP
 system
 to
 remove
 exons
 9
 and
 10,
 creating
 an
 Hsp90α
 
knockout
  mouse
  (26).
  Additionally,
  Hsp90α’s
  role
  in
  spermatogenesis
  was
  also
 
verified
 in
 adult
 mice
 (27).
 These
 reports
 bring
 to
 light
 the
 following:
 1)
 Hsp90β
 is
 
essential
 for
 life
 while
 Hsp90α
 is
 not;
 2)
 the
 tissue-­‐specific
 functions
 of
 Hsp90α
 
cannot
 be
 compensated
 for
 by
 Hsp90β.
 Hsp90α
 was
 reported
 to
 have
 specific
 roles
 
as
  a
  chaperone
  for
  AR
  and
  promoting
  piRNA
  biogenesis
  (28).
  Meanwhile,
  the
 
extracellular
 pro-­‐motility
 function
 of
 Hsp90α
 in
 driving
 wound
 healing
 and
 tumor
 
progression
  is
  becoming
  increasingly
  popular.
  We
  reported
  that
  recombinant
 
Hsp90α
 accelerated
 wound
 closure
 of
 acute
 and
 diabetic
 wounds
 in
 both
 mice
 (6)
 
and
 pigs
 (12).
 Interestingly,
 extracellular
 Hsp90β
 has
 no
 pro-­‐motility
 activity.
 Based
 
on
 these
 studies,
 we
 suggest
 that
 the
 long
 recognized
 chaperone
 function
 of
 Hsp90
 
proteins
 is
 mainly
 attributed
 to
 the
 Hsp90β
 isoform.
 Hsp90α,
 on
 the
 other
 hand,
 is
 
more
 important
 in
 the
 extracellular
 space
 where
 it
 acts,
 independent
 of
 its
 ATPase
 
function,
 in
 driving
 cell
 motility
 (19).
 

 
Subsequent
 studies
 in
 our
 lab
 identified
 that
 the
 pro-­‐motility
 activity
 of
 Hsp90α
 
involved
 the
 presence
 of
 two
 lysines
 K270
 and
 K277
 in
 the
 F-­‐5
 region.
 The
 lack
 of
 
pro-­‐motility
 activity
 in
 Hsp90β
 was
 due
 to
 the
 replacement
 of
 these
 residues
 by
 
glycine-­‐262
  and
  threonine-­‐269
  respectively.
  Substituting
  these
  residues
  with
 
lysines
 converted
 Hsp90β
 into
 an
 Hsp90α-­‐like
 pro-­‐motility
 factor.
 Thus,
 Hsp90α
 
functions
  as
  an
  extracellular
  pro-­‐motility
  factor
  independent
  of
  its
  N-­‐terminal
 

  81
 
ATPase
 activity,
 but
 dependent
 on
 these
 two
 lysine
 residues
 (Jayaprakash
 et
 al.,
 in
 
submission).
 

 
References
 
1.
 Pai,
 M.
 P.
 and
 Hunt,
 T.
 K.
 (1972).
 Effect
 of
 varying
 oxygen
 tensions
 on
 healing
 of
 
open
 wounds.
 Surg.
 Gynecol.
 Obstet.
 135,
 756-­‐758.
 
2.
 O’Toole,
 EA.,
 Marinkovich,
 MP.,
 Peavey,
 CL.,
 Amieva,
 MR.,
 Furthmayr,
 H.,
 Mustoe,
 
TA.
 and
 Woodley
 DT.
 (1997)
 Hypoxia
 increases
 human
 keratinocyte
 motility
 on
 
connective
 tissue
 .
 J.
 Clin.
 Invest.
 100,
 2881-­‐2891.
 
 
3.
  Woodley,
  DT.,
 Fan,
  J.,
 Cheng,
  CF.,
 Li,
  Y.,
 Chen,
  M.,
 Bu,
  G.
  and
  Li
  W.
  (2009)
 
Participation
 of
 the
 lipoprotein
 receptor
 LRP1
 in
 hypoxia-­‐HSP90alpha
 autocrine
 
signaling
 to
 promote
 keratinocyte
 migration.
 J
 Cell
 Sci
 122,
 1495-­‐1498.
 
4.
 Li,
 W.,
 Li,
 Y.,
 Guan,
 S.,
 Fan,
 J.,
 Cheng,
 C.,
 Bright,
 AM.,
 Chinn,
 C.,
 Chen,
 M.
 and
 
Woodley
 DT.
 (2007)
 Extracellular
 heat
 shock
 protein-­‐90alpha:
 linking
 hypoxia
 to
 
skin
 cell
 motility
 and
 wound
 healing.
 EMBO
 J
 26,
 1221-­‐1233.
 
5.
 Mogford,
 JE.,
 Tawil,
 N.,
 Chen,
 A.,
 Gies,
 D.,
 Xia,
 Y.
 and
 Mustoe
 TA.
 (2002)
 Effect
 of
 
age
  and
  hypoxia
  on
  TGFbeta1
  receptor
  expression
  and
  signal
  transduction
  in
 
human
 dermal
 fibroblasts:
 impact
 on
 cell
 migration.
 J
 Cell
 Physiol
 190,
 259-­‐265.
 
6.
 Cheng,
 CF.,
 
 Sahu,
 D.,
 Tsen,
 F.,
 Zhao,
 Z.,
 Fan,
 J.,
 Kim,
 R.,
 Wang,
 X.,
 O’Brien,
 K.,
 Li,
 Y.,
 
Kuang
 Y.
 et
 al.
 (2011)
 A
 fragment
 of
 secreted
 Hsp90α
 carries
 properties
 that
 enable
 
it
 to
 accelerate
 effectively
 both
 acute
 and
 diabetic
 wound
 healing
 in
 mice.
 J
 Clin
 
Invest.
 121,
 4348-­‐4361
 

  82
 
7.
 Botusan,
 IR.,
 Sunkari,
 VG.,
 Savu,
 O.,
 Catrina,
 AI.,
 Grünler,
 J.,
 Lindberg,
 S.,
 Pereira,
 T.,
 
 
Yla-­‐Herttuala,
 S.,
 Poellinger,
 L.,
 Brismar,
 K.
 et
 al.
 (2008)
 Stabilization
 of
 HIF-­‐1alpha
 
is
 critical
 to
 improve
 wound
 healing
 in
 diabetic
 mice.
 Proc
 Natl
 Acad
 Sci.
 USA.
 
105,19426-­‐19431.
 
8.
  Catrina,
  SB.,
  Okamoto,
  K.,
  Pereira,
  T.,
  Brismar,
  K.
  and
  Poellinger,
  L.
  (2004)
 
Hyperglycemia
  regulates
  hypoxia-­‐inducible
  factor-­‐1alpha
  protein
  stability
  and
 
function.
 Diabetes
 53,
 3226–3232.
 
 
9.
 Fadini,
 GP.,
 Sartore,
 S.,
 Schiavon,
 M.,
 Albiero,
 M.,
 Baesso,
 I.,
 Cabrelle,
 A.,
 Agostini,
 
C.,
  &
 Avogaro,
  A.
  (2006)
  Diabetes
  impairs
  progenitor
  cell
  mobilisation
  after
 
hindlimb
 ischaemia-­‐reperfusion
 injury
 in
 rats.
 Diabetologia
 49,
 3075-­‐3084.
 
10.
  Gao,
  Z.,
 Sasaoka,
  T.,
 Fujimori,
  T.,
 Oya,
  T.,
  Ishii,
  Y.,
 Sabit,
  H.,
 Kawaguchi,
 
M.,
 Kurotaki,
 Y.,
 Naito,
 M.,
 Wada
 T.
 et
 al.
 (2005)
 Deletion
 of
 the
 PDGFR-­‐beta
 gene
 
affects
 key
 fibroblast
 functions
 important
 for
 wound
 healing.
  J
 Biol
 Chem
 280,
 
9375-­‐9389.
 
11.
 Sahu,
 D.,
 Zhao,
 Z.,
 Tsen,
 F.,
 Cheng,
 CF.,
 Park,
 R.,
 Situ,
 AJ.,
 Dai,
 J.,
 Eginli,
 A.,
 Shams,
 
S.,
 Chen,
 M.
 et
 al.
 (2012)
 A
 potentially
 common
 peptide
 target
 in
 secreted
 heat
 
shock
 protein-­‐90α
 for
 hypoxia-­‐inducible
 factor-­‐1α-­‐positive
 tumors.
 Mol
 Biol
 Cell
 
23,
 602-­‐613
 
12.
 O’Brien,
 K.,
 Bhatia,
 A.,
 Tsen,
 F.,
 Chen,
 M.,
 Wong,
 AK.,
 Woodley,
 DT.
 and
 Li
 W.
 
(2014).
 Identification
 of
 the
 Critical
 Therapeutic
 Entity
 in
 Secreted
 Hsp90α
 That
 
Promotes
  Wound
  Healing
  in
  Newly
  Re-­‐Standardized
  Healthy
  and
  Diabetic
  Pig
 
Models.
 PLoS
 One
 9(12):e113956.
 

  83
 
13.
  Tsen,
  F.,
 Bhatia,
  A.,
 O'Brien,
  K.,
 Cheng
  CF,
 Chen
  M,
 Hay
  N.,
 et
  al.,
  (2013).
 
Extracellular
 heat
 shock
 protein
 90
 signals
 through
 subdomain
 II
 and
 the
 NPVY
 
motif
 of
 LRP-­‐1
 receptor
 to
 Akt1
 and
 Akt2:
 a
 circuit
 essential
 for
 promoting
 skin
 cell
 
migration
 in
 vitro
 and
 wound
 healing
 in
 vivo.
 Mol
 Cell
 Biol.
 (24),
 4947-­‐59
 
14.
 Sims,
 J.
 D.,
 McCready,
 J.,
 &
 Jay,
 D.
 G.
 (2011).
 Extracellular
 Heat
 Shock
 Protein
 
(Hsp)70
 and
 Hsp90α
 Assist
 in
 Matrix
 Metalloproteinase-­‐2
 Activation
 and
 Breast
 
Cancer
 Cell
 Migration
 and
 Invasion.
 PLoS
 ONE,
 6(4),
 e18848
 
15.
 McCready,
 J.,
 Sims,
 J.
 D.,
 Chan,
 D.,
 &
 Jay,
 D.
 G.
 (2010).
 Secretion
 of
 extracellular
 
hsp90α
  via
  exosomes
  increases
  cancer
  cell
  motility:
  a
  role
  for
  plasminogen
 
activation.
 BMC
 Cancer,
 10,
 294.
 
 
16.
 Song,
 X.,
 Wang,
 X.,
 Zhuo,
 W.,
 Shi,
 H.,
 Feng,
 D.,
 Sun,
 Y.,
 et
 al.,
 (2010).
 The
 Regulatory
 
Mechanism
 of
 Extracellular
 Hsp90α
 on
 Matrix
 Metalloproteinase-­‐2
 Processing
 and
 
Tumor
 Angiogenesis.
 J
 Biol
 Chem.
 285(51),
 40039–40049.
 
 
17.
 Eustace
 BK,
 Sakurai
 T,
 Stewart
 JK,
 Yimlamai
 D,
 Unger
 C,
 Zehetmeier
 C.,
 et
 al.,
 
(2004).
  Functional
  proteomic
  screens
  reveal
  an
  essential
  extracellular
  role
  for
 
hsp90
 alpha
 in
 cancer
 cell
 invasiveness.
 Nat
 Cell
 Biol.
 6(6),
 507-­‐14
 
18.
 El
 Hamidieh,
 A.,
 Grammatikakis,
 N.,
 &
 Patsavoudi,
 E.
 (2012).
 Cell
 Surface
 Cdc37
 
Participates
 in
 Extracellular
 HSP90
 Mediated
 Cancer
 Cell
 Invasion.
 PLoS
 ONE,
 7(8),
 
e42722.
 
 
19.
 Cheng,
 C.-­‐F.,
 Fan,
 J.,
 Fedesco,
 M.,
 Guan,
 S.,
 Li,
 Y.,
 Bandyopadhyay,
 B.,
 et
 al.,
 (2008).
 
Transforming
 Growth
 Factor
 α
 (TGFα)-­‐Stimulated
 Secretion
 of
 HSP90α:
 Using
 the
 
Receptor
 LRP-­‐1/CD91
 To
 Promote
 Human
 Skin
 Cell
 Migration
 against
 a
 TGFβ-­‐Rich
 
Environment
 during
 Wound
 Healing.
 Mol
 Cell
 Biol.
 28(10),
 3344–3358.
 
 

  84
 
20.
 Bu,
 G.
 and
 Marzolo,
 M.
 P.
 (2000).
 Role
 of
 rap
 in
 the
 biogenesis
 of
 lipoprotein
 
receptors.
 Trends
 Cardiovasc.
 Med.
 10,
 148-­‐155.
 
21.
 Chatterjee,
 M.,
 Jain,
 S.,
 Stu¨hmer,
 T.,
 Andrulis,
 M.,
 Ungethu¨m,
 U.,
 Kuban,
 R.
 J.,
 et
 al.
 
(2007).
 STAT3
 and
 MAPK
 signaling
 maintain
 overexpression
 of
 heat
 shock
 proteins
 
90a
  and
  b
  in
  multiple
  myeloma
  cells,
  which
  critically
  contribute
  to
  tumor-­‐cell
 
survival.
 Blood
 109,
 720-­‐728.
 
22.
 Obermoeller-­‐McCormick
 LM,
 Li
 Y,
 Osaka
 H,
 FitzGerald
 DJ,
 Schwartz
 AL,
 Bu
 G.
 
(2001).
 Dissection
 of
 receptor
 folding
 and
 ligand-­‐binding
 property
 with
 functional
 
minireceptors
 of
 LDL
 receptor-­‐related
 protein.
 J.
 Cell
 Sci.
 114,
 899–908.
 
23.
 Song
 H,
 Bu
 G.
 (2009).
 MicroRNA-­‐205
 inhibits
 tumor
 cell
 migration
 through
 
down-­‐regulating
 the
 expression
 of
 the
 LDL
 receptor-­‐related
 protein
 1.
 Biochem.
 
Biophys.
 Res.
 Commun.
 388,
 400–405.
 
24.
 Voss,
 A.
 K.,
 Thomas,
 T.
 and
 Gruss,
 P.
 (2000).
 Mice
 lacking
 HSP90beta
 fail
 to
 
develop
 a
 placental
 labyrinth.
 Development
 127,
 1-­‐11.
 
25.
 Grad,
 I.,
 Cederroth,
 C.
 R.,
 Walicki,
 J.,
 Grey,
 C.,
 Barluenga,
 S.,
 Winssinger,
 N
 et
 al.,
 
(2010).
 The
 Molecular
 Chaperone
 Hsp90α
 Is
 Required
 for
 Meiotic
 Progression
 of
 
Spermatocytes
 beyond
 Pachytene
 in
 the
 Mouse.
 PLoS
 ONE,5(12),
 e15770.
 
 
26.
 Imai,
 T.,
 Kato,
 Y.,
 Kajiwara,
 C.,
 Mizukami,
 S.,
 Ishige,
 I.,
 Ichiyanagi,
 T.,
 et
 al.,
 (2011).
 
Heat
  shock
  protein
  90
  (HSP90)
  contributes
  to
  cytosolic
  translocation
  of
 
extracellular
 antigen
 for
 cross-­‐presentation
 by
 dendritic
 cells.
 Proc.
 Natl.
 Acad.
 Sci.
 
USA,
 108
 (39),
 16363–16368.
 
 

  85
 
27.
 Kajiwara,
 C.,
 Kondo,
 S.,
 Uda,
 S.,
 Dai,
 L.,
 Ichiyanagi,
 T.,
 Chiba,
 T.,
 et
 al.,
 (2012).
 
Spermatogenesis
 arrest
 caused
 by
 conditional
 deletion
 of
 Hsp90α
 in
 adult
 mice.
 Biol.
 
Open,
 1(10),
 977–982.
 
 
28.
 Ichiyanagi,
 T.,
 Ichiyanagi,
 K.,
 Ogawa,
 A.,
 Kuramochi-­‐Miyagawa,
 S.,
 Nakano,
 T.,
 
Chuma,
 S.,
 et
 al.,
 (2014).
 HSP90α
 plays
 an
 important
 role
 in
 piRNA
 biogenesis
 and
 
retrotransposon
 repression
 in
 mouse.
 Nucleic
 Acids
 Res.
 42(19),
 11903–11911.
 
 
29.
 Sidera
 K,
 Gaitanou
 M,
 Stellas
 D,
 Matsas
 R,
 Patsavoudi
 E.
 (2008).
 A
 critical
 role
 for
 
HSP90
 in
 cancer
 cell
 invasion
 involves
 interaction
 with
 the
 extracellular
 domain
 of
 
HER-­‐2.
 J
 Biol
 Chem.
 283(4),
 2031-­‐41.
 
 
30.
 Strickland,
 DK.,
 Ashcom,
 JD.,
 Williams,
 S.,
 Burgess,
 WH.,
 Migliorini,
 M.,
 &
 
Argraves
 WS.
 (1990).
 Sequence
 identity
 between
 the
 alpha
 2-­‐macroglobulin
 
receptor
 and
 low
 density
 lipoprotein
 receptor-­‐related
 protein
 suggests
 that
 
this
 molecule
 is
 a
 multifunctional
 receptor.
 J
 Biol
 Chem.
 265,
 17401-­‐4.
 
31.
 Emonard,
 H.,
 Bellon,
 G.,
 de
 Diesbach,
 P.,
 Mettlen,
 M.,
 Hornebeck,
 W.,
 &
 Courtoy
 PJ.
 
(2005).
 Regulation
 of
 matrix
 metalloproteinase
 (MMP)
 activity
 by
 the
 low-­‐density
 
lipoprotein
  receptor-­‐related
  protein
  (LRP).
  A
  new
  function
  for
  an
  “old
  friend”.
 
Biochimie
 
 87,
 369-­‐76
 
32.
 Herz,
 J.,
 &
 Strickland,
 DK.
 (2001).
 LRP:
 a
 multifunctional
 scavenger
 and
 signaling
 
receptor.
 J
 Clin
 Invest.
 108,
 779-­‐84.
 
33.
 Basu,
 S.,
 R.
 J.
 Binder,
 T.
 Ramalingam,
 &
 P.
 K.
 Srivastava.
 (2001).
 CD91
 is
 
a
 common
 receptor
 for
 heat
 shock
 proteins
 gp96,
 hsp90,
 hsp70,
 and
 
calreticulin.
 Immunity
 14,
 303–313.
 
34.
 Obermoeller-­‐McCormick,
 LM.,
 Yonghe,
 Li.,
 Osaka,
 H.,
 FitzGerald,
 DJ.,
 Schwartz,
 

  86
 
AL.,
 et
 al.,
 (2001).
 Dissection
 of
 receptor
 folding
 and
 ligand-­‐binding
 property
 with
 
functional
 minireceptors
 of
 LDL
 receptor-­‐related
 protein.
 J
 Cell
 Sci.
 
 114,
 899-­‐908.
 
35.
 Lillis,
 AP.,
 Mikhailenko,
 I.,
 and
 Strickland,
 DK.
 (2005).
 Beyond
 endocytosis:
 LRP
 
function
  in
  cell
  migration,
  proliferation
  and
  vascular
  permeability.
  J.
  Thromb.
 
Haemost.
 3,
 1884–1893.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  87
 
Chapter
 4:
 Breast
 Cancer
 MDA-­‐MB-­‐231
 Cells
 Use
 Secreted
 Heat
 Shock
 Protein-­‐
90
 alpha
 (Hsp90α)
 to
 Survive
 a
 Hostile
 Hypoxic
 Environment
 
Abstract
 
Rapidly
 growing
 tumors
 consume
 large
 amounts
 of
 nutrients
 and
 oxygen
 as
 well
 as
 
quickly
 outgrow
 the
 surrounding
 blood
 supply,
 making
 them
 intrinsically
 hypoxic.
 
However,
  despite
  being
  a
  harsh
  microenvironment,
  hypoxia
  correlates
  with
 
increased
 tumor
 growth
 and
 progression.
 This
 implies
 that
 tumor
 cells
 adapt
 self-­‐
sustenance
 mechanisms
 to
 survive
 the
 hypoxic
 tumor
 microenvironment.
 The
 lack
 
of
 blood
 supply
 to
 the
 growing
 tumor
 indicates
 that
 the
 factor(s)
 playing
 a
 role
 in
 
this
 “adaptation”
 is
 secreted
 either
 by
 the
 tumor
 cells
 themselves
 or
 the
 surrounding
 
stromal
 cells.
 Constitutive
 hypoxia
 drives
 the
 secretion
 of
 heat
 shock
 protein-­‐90α
 
(Hsp90α)
 in
 triple
 negative
 MDA-­‐MB-­‐231
 cells.
 Here,
 we
 report
 that
 tumor
 cells
 
secrete
  Hsp90α
  to
  protect
  themselves
  from
  hypoxia-­‐driven
  cell
  death.
  Hsp90α
 
knockout
 sensitized
 the
 cells
 to
 hypoxia-­‐driven
 cell
 death,
 which
 could
 be
 rescued
 
by
  supplementation
  with
  recombinant
  Hsp90α,
  but
  not
  Hsp90β,
  protein.
 
Neutralization
  of
  secreted
  Hsp90α
  using
  a
  monoclonal
  antibody
  resulted
  in
 
increased
 cell
 death
 of
 parental
 MDA-­‐MB-­‐231
 cells.
 Finally,
 secreted
 Hsp90α-­‐LRP-­‐1
 
autocrine
 signaling
 was
 required
 for
 protecting
 cells
 from
 hypoxia-­‐driven
 cell
 death.
 
Thus,
 secreted
 Hsp90α
 is
 a
 potential
 therapeutic
 target
 to
 inhibit
 the
 growth
 of
 HIF-­‐
1α
 overexpressing
 tumors.
 
 

 
Introduction
 
50%
 of
 tumors
 are
 hypoxic
 and
 constitutively
 express
 HIF1α
 (1,
 2,
 3).
 While
 normal
 

  88
 
cells
  express
  HIF1α
  only
  under
  hypoxic
  conditions,
  some
  tumors
  constitutively
 
express
  HIF1α
  either
  due
  to
  constant
  intratumoral
  hypoxia,
  over
  activated
 
oncogenes
  or
  mutated
  tumor
  suppressor
  genes
  (2,3).
  HIF1α
  activates
  the
 
transcription
 of
 around
 800
 target
 genes,
 encompassing
 those
 contributing
 to
 tumor
 
proliferation
  and
  stem
  cell
  maintenance
  (eg.
  TGFα,
  IGF2
  and
  TERT),
  (4,5,6)
 
angiogenesis
 (eg.
 VEGF
 and
 SDF-­‐1)
 as
 well
 as
 tumor
 invasion
 and
 metastasis
 (MMPs
 
and
 LOX
 family
 proteins
 that
 remodel
 the
 ECM)
 (7,8).
 HIF
 expression
 has
 been
 
correlated
 to
 resistance
 to
 chemotherapy
 (9)
 and
 radiotherapy
 (10).
 HIF-­‐1
 mediates
 
the
 switch
 from
 oxidative
 phosphorylation
 to
 glycolysis,
 reducing
 cellular
 ROS
 levels
 
(11),
 resulting
 in
 resistance
 to
 chemotherapy
 (12).
 
 In
 addition,
 target
 genes
 of
 HIF
 
include
 genes
 of
 the
 ABC
 family
 of
 transporters
 that
 mediate
 efflux
 of
 cancer
 drugs
 
(13,
 14).
 HIF1
 decreases
 expression
 of
 pro-­‐apoptotic
 proteins
 such
 as
 Bid
 and
 Bax
 as
 
well
 as
 caspases
 3,8
 and
 10
 and
 increases
 expression
 of
 anti-­‐apoptotic
 proteins
 such
 
as
 Bcl2
 and
 Birc5
 (15-­‐19).
 There
 are
 a
 number
 of
 HIF1
 inhibitors,
 that
 target
 both
 
HIF1α
 stability
 at
 the
 mRNA
 and
 protein
 levels
 (20,
 21)
 as
 well
 as
 its
 transcriptional
 
activity
 by
 blocking
 its
 DNA
 binding
 (22,
 23)
 or
 transactivation
 properties
 (24-­‐26).
 
However,
 most
 of
 these
 drugs
 have
 failed
 in
 clinical
 trials,
 even
 when
 used
 at
 the
 
maximum
 tolerated
 dose.
 In
 addition,
 they
 work
 only
 for
 some
 but
 not
 all
 cancers.
 
The
 failure
 of
 these
 drugs
 has
 been
 attributed
 to
 1)
 not
 high
 enough
 concentration
 
to
  inhibit
  HIF1
  function
  2)
  other
  compensatory
  pathways
  in
  response
  to
  drug
 
treatment
 3)
 the
 targeted
 pathway
 does
 not
 contribute
 to
 HIF’s
 action.
 Thus,
 there
 is
 
a
 growing
 need
 for
 identifying
 new
 targets
 that
 offer
 a
 more
 viable
 alternative
 to
 
HIF
 inhibition.
 
 

  89
 

 
Heat
  shock
  proteins
  of
  Hsp90
  family
  have
  been
  widely
  studied
  as
  intracellular
 
chaperone
 proteins
 that
 help
 a
 wide
 array
 of
 client
 proteins
 fold
 into
 their
 mature,
 
functional
 states.
 They
 have
 been
 found
 to
 be
 either
 qualitatively
 overactive
 or
 
quantitatively
  overexpressed
  in
  a
  wide
  range
  of
  cancers
  (27-­‐30).
  Since
  Hsp90
 
stabilizes
 a
 variety
 of
 growth
 factors
 and
 oncogenes,
 targeting
 Hsp90
 offered
 a
 good
 
therapeutic
 approach
 to
 overcome
 drug
 resistance
 in
 response
 to
 a
 single
 drug
 in
 
cancer
 cells.
 Ansamycin
 family
 drugs
 such
 as
 geldanamycin
 and
 its
 derivatives,
 17-­‐
AAG
  and
  the
  water-­‐soluble
  17-­‐DMAG
  target
  the
  N-­‐terminal
  ATPase
  of
  Hsp90
 
proteins,
 inhibiting
 its
 chaperone
 function.
 However,
 these
 drugs
 present
 severe
 
hepatotoxicity
 and
 none
 of
 them
 have
 cleared
 clinical
 trials.
 Over
 the
 last
 decade,
 a
 
new
  role
  and
  cellular
  localization
  for
  Hsp90
  proteins,
  especially
  Hsp90α
  have
 
emerged-­‐
  the
  secreted
  pool
  of
  Hsp90α.
  We
  reported
  that
  normal
  cells
  secrete
 
Hsp90α
 under
 stress
 conditions
 such
 as
 hypoxia
 (31,
 32)
 and
 serum-­‐derived
 growth
 
factors
 such
 as
 TGFα
 (33).
 Hsp90α
 is
 secreted
 constitutively
 by
 a
 number
 of
 cancer
 
cells
 including
 HT-­‐1080
 fibrosarcoma
 cells
 and
 MDA-­‐MB-­‐231
 breast
 cancer
 cells
 
(34-­‐36);
 MCF-­‐7
 breast
 cancer
 cells
 (36),
 HCT-­‐8
 colorectal
 cancer
 cells
 (37),
 T24
 
bladder
 cancer
 cells,
 B16
 melanoma
 cells
 and
 PC3
 prostate
 cancer
 cells
 (38),
 SKBR3,
 
MDA-­‐MB-­‐453,
  MDA-­‐MB
  435
  and
  MDA-­‐MB-­‐468
  breast
  cancers,
  CaoV-­‐3
  ovarian
 
cancer
 and
 HepG2
 hepatoma
 (34,
 36,
 39),
 A172
 glioblastoma
 and
 SUM159
 breast
 
cancer
 (34).
 The
 main
 role
 of
 secreted
 Hsp90α,
 reported
 so
 far,
 is
 to
 drive
 tumor
 cell
 
invasion
 and
 metastasis
 (40).
 
 

 

  90
 
In
 this
 study,
 we
 report
 a
 new
 role
 for
 secreted
 Hsp90α
 as
 a
 survival
 factor
 for
 MDA-­‐
MB-­‐231
 breast
 cancer
 cells
 under
 hypoxia.
 Constitutive
 HIF1α
 expression
 drives
 
constitutive
 secretion
 of
 Hsp90α
 in
 these
 cells.
 The
 secreted
 Hsp90α
 acts
 via
 the
 
LRP-­‐1
 receptor
 to
 protect
 the
 cells
 from
 hypoxia-­‐driven
 cell
 death.
 
 

 
Results
 
Selection
 of
 a
 suitable
 cell
 line
 as
 the
 model
 of
 study
 
Breast
 cancers
 are
 highly
 heterogenous
 and
 are
 broadly
 classified
 into
 ER+
 PR+,
 
ER+PR+HER2+
  (triple
  positive)
  and
  ER-­‐PR-­‐HER2-­‐
  (triple
  negative).
  In
  order
  to
 
identify
 the
 best
 cell
 model
 for
 our
 study,
 we
 investigated
 the
 intracellular
 levels
 of
 
Hsp90α
 and
 Hsp90β
 as
 well
 as
 that
 of
 LRP-­‐1,
 the
 cell
 surface
 receptor
 for
 secreted
 
Hsp90α.
 This
 highlighted
 the
 heterogeneity
 of
 breast
 cancers
 with
 all
 cell
 lines
 
expressing
 comparable
 levels
 of
 Hsp90α
 and
 Hsp90β
 except
 MDA-­‐MB-­‐468,
 which
 
expressed
  significantly
  lesser
  levels
  of
  Hsp90β
  (Fig
  1a).
  LRP-­‐1
  levels
  varied
 
significantly
  amongst
  the
  cell
  lines
  with
  three
  of
  the
  eight
  cell
  lines
  screened
 
expressing
 no
 LRP-­‐1,
 MDA-­‐MB-­‐231
 and
 T47D
 expressing
 intermediate
 levels
 and
 
HS-­‐578T
 expressing
 the
 highest
 levels
 of
 LRP-­‐1
 (Fig.
 1d).
 We
 also
 found
 differing
 
levels
 of
 secretion
 with
 HS-­‐578T
 secreting
 undetectable
 levels
 of
 both
 Hsp90α
 and
 
Hsp90β,
 Skbr3
 secreting
 only
 Hsp90α
 and
 MDA-­‐MB-­‐231
 secreting
 both
 Hsp90α
 and
 
Hsp90β
 (Fig
 1b).
 We
 have
 previously
 reported
 that
 constitutive
 HIF1α
 expression
 in
 
MDA-­‐MB-­‐231
 cells
 drives
 the
 secretion
 of
 Hsp90α
 that
 binds
 to
 cell
 surface
 LRP-­‐1
 
receptor
 and
 this
 autocrine
 signaling
 pathway
 is
 crucial
 for
 tumor
 cell
 invasion
 in
 
vitro
 and
 tumor
 metastasis
 in
 vivo
 (39).
 In
 line
 with
 this
 finding,
 we
 found
 that
 cell
 

  91
 
lines
 lacking
 this
 pathway
 failed
 to
 invade
 in
 a
 Matrigel
 invasion
 assay
 (Fig
 1c).
 For
 
example,
 though
 HS-­‐578T
 cells
 expressed
 the
 highest
 LRP-­‐1
 levels,
 they
 did
 not
 
secrete
 both
 Hsp90α
 and
 Hsp90β
 and
 were
 therefore
 unable
 to
 invade
 through
 the
 
Matrigel
 barrier.
 MDA-­‐MB-­‐468
 cells
 secreted
 Hsp90α
 and
 Hsp90β,
 but
 lacked
 LRP-­‐1
 
and
 failed
 to
 invade
 in
 vitro.
 Previously,
 we
 also
 reported
 that
 MDA-­‐MB-­‐468
 cells
 
fail
 to
 form
 tumors
 in
 vivo
 (39).
 The
 only
 exception
 was
 T47D
 cells
 which
 expressed
 
comparable
 levels
 of
 secreted
 Hsp90α
 and
 Hsp90β
 and
 LRP-­‐1
 as
 MDA-­‐MB-­‐231
 but
 
failed
 to
 invade,
 highlighting
 that
 secreted
 Hsp90α
 might
 not
 be
 used
 by
 all
 cancers
 
to
 invade.
 An
 alternative
 possibility
 is
 that
 for
 certain
 cancers,
 secreted
 Hsp90α
 is
 
necessary,
 but
 not
 sufficient
 for
 invasion.
 Based
 on
 these
 findings,
 we
 decided
 to
 use
 
MDA-­‐MB-­‐231
 as
 the
 cell
 model
 for
 our
 study.
 We
 found
 that
 exposure
 of
 these
 cells
 
to
 hypoxia
 (1%
 O2)
 for
 16
 hours
 resulted
 in
 an
 increase
 of
 both
 intracellular
 and
 
secreted
 Hsp90α
 and
 Hsp90β.
 

  92
 

 
Figure
 4-­‐1.
 Selection
 of
 MDA-­‐MB-­‐231
 breast
 cancer
 cell
 line
 as
 the
 model
 of
 study
 
 
Western
 blots
 for
 Hsp90α
 and
 Hsp90β
 in
 total
 lysates
 (TL)
 (A)
 or
 conditioned
 media
 (100x)
 (CM)
 (B)
 
and
 the
 invasiveness
 (C)
 of
 the
 indicated
 breast
 cancer
 and
 control
 cell
 lines.
 Western
 blots
 for
 LRP-­‐1
 
receptor
 among
 cell
 lines
 (D)
 and
 the
 total
 (E)
 and
 the
 secreted
 (F)
 Hsp90α
 and
 Hsp90β
 under
 
hypoxia
 in
 MDA-­‐MB-­‐231.
 Intracellular
 (G)
 and
 secreted
 (H)
 ratios
 between
 Hsp90α
 and
 Hsp90β
 in
 
MDA-­‐MB-­‐231
 cells.
 
 

 

 

 

  93
 
Generation
 of
 CRISPR-­‐Cas9
 knockout
 of
 Hsp90α
 in
 MDA-­‐MB-­‐231
 
In
  order
  to
  investigate
  the
  role
  of
  Hsp90α
  in
  cell
  survival
  under
  hypoxia,
  we
 
generated
 CRISPR-­‐Cas9
 knockout
 of
 Hsp90α
 in
 MDA-­‐MB-­‐231
 cells.
 We
 verified
 the
 
knockout
  at
  three
  levels—DNA,
  mRNA
  and
  sequencing
  levels.
  We
  found
  that
 
compared
  to
  parental
  MDA-­‐MB-­‐231
  cells,
  Hsp90α
  mRNA
  was
  slightly
  down
 
regulated
  in
  the
  knockout
  cells
  (Figure
  2A).
  This
  decrease
  in
  mRNA
  levels
  in
 
CRISPR/Cas-­‐9
 knockout
 cells
 is
 consistent
 with
 other
 reports
 using
 this
 technology.
 
We
  found
  complete
  depletion
  of
  Hsp90α
  protein
  by
  the
  CRISPR/Cas9
  system
 
(Figure
  2B).
  Interestingly,
  there
  was
  an
  up
  regulation
  of
  Hsp90β
  in
  Hsp90α
 
knockout
 cells
 and
 has
 also
 been
 reported
 by
 others
 (41).
 Consistently,
 secretion
 of
 
Hsp90α
 was
 abolished
 (Figure
 2C
 panel
 a
 lane
 5
 vs
 lane
 4)
 while
 that
 of
 Hsp90β
 was
 
unaffected
 (Figure
 2C
 panel
 b
 lane
 5
 vs
 lane
 4).
 Sequencing
 of
 the
 Cas9
 target
 site
 in
 
Hsp90α
 gene
 revealed
 the
 presence
 of
 a
 premature
 stop
 codon,
 contributing
 to
 the
 
lack
 of
 protein
 in
 the
 knockout
 cells
 (Figure
 2D
 and
 2E).
 The
 target
 site
 is
 located
 in
 
exon
 1
 of
 Hsp90α
 gene,
 explaining
 the
 lack
 of
 detection
 of
 even
 a
 truncated
 protein.
 
We
 found
 that
 the
 knockout
 did
 not
 affect
 the
 cellular
 morphology
 (Fig
 2F)
 or
 the
 
proliferation
 profiles
 of
 the
 cells
 (Fig
 2G).
 
 

  94
 

 
Figure
 4-­‐2.
 Generation
 of
 Hsp90α
 knockout
 MDA-­‐MB-­‐231
 cells
 
(A) RT-­‐PCR
 from
 parental
 and
 Hsp90α
 KO
 MDA-­‐MB-­‐231
 cells.
 cDNA
 was
 synthesized
 by
 the
 
SuperScript®
 III
 RT
 kit(Invitrogen)
 from
 total
 RNA
 isolated
 
 from
 the
 two
 cell
 lines
 .
 PCR
 
was
  set
  up
  for
  Hsp90α
  using
  the
  primers
  5’-­‐ATGCCCCCGTGTTCG-­‐3’
  (sense)
  and
  5’-­‐
CTGAAAGGCGAACGTCTC-­‐3’
  (antisense)
  and
  GAPDH
  using
  primers
  GAPDH
  5′-­‐
CCATCACCATC-­‐TTCCAGGAG-­‐3′
 (sense)
 and
 5′-­‐CCTGCTTCACCACCTTCTTG-­‐3′
 (antisense).
 
(B) Western
 blotting
 for
 Hsp90α
 and
 Hsp90β
 in
 lysates
 of
 parental
 and
 Hsp90α
 KO
 MDA-­‐MB-­‐
231
 cells
 
(C) Western
 blotting
 for
 Hsp90α
 and
 Hsp90β
 in
 conditioned
 media
 from
 parental
 and
 Hsp90α
 
KO
 MDA-­‐MB-­‐231
 cells
 
(D) &
 (E)
 Sequencing
 of
 CRISPR-­‐Cas9
 target
 site
 from
 parental
 and
 Hsp90α
 KO
 MDA-­‐MB-­‐231
 
cells.
 2μl
 of
 the
 RT-­‐PCR
 from
 MDA-­‐MB-­‐231
 parental
 and
 Hsp90α
 KO
 cells
 was
 ligated
 into
 

  95
 
the
  TOPO
  vector
  using
  the
  TOPO
  TA
  cloning
  kit
  following
  manufacturer’s
  protocol
 
(Invitrogen).
 Positive
 colonies
 were
 subjected
 to
 sequencing
 using
 the
 M13
 reverse
 primer.
 
 
 
(F) Morphology
 images
 of
 MDA-­‐MB-­‐231
 parental
 and
 Hsp90α
 KO
 cells
 
(G)
 Proliferation
 profiles
 of
 MDA-­‐MB-­‐231
 parental
 and
 Hsp90α
 KO
 cells
 

 
Hsp90α
 knockout
 sensitizes
 MDA-­‐MB-­‐231
 cells
 to
 hypoxia-­‐driven
 cell
 death
 
We
 initially
 investigated
 the
 viability
 of
 parental
 MDA-­‐MB-­‐231
 cells
 under
 varying
 
concentrations
 of
 oxygen,
 ranging
 from
 20%
 (normoxia)
 down
 to
 varying
 levels
 of
 
hypoxia
 up
 to
 0%
 (Fig
 3A
 and
 B).
 Results
 of
 calcein-­‐AM
 and
 ethidium
 homodimer-­‐1
 
staining
 to
 detect
 live
 and
 dead
 cells
 respectively
 revealed
 that
 cell
 viability
 was
 
comparable
  under
  normoxia
  and
  hypoxia
  upto
  1%
  O2.
  Decreasing
  the
  oxygen
 
content
 further
 to
 0.5%
 and
 0%
 significantly
 reduced
 the
 cell
 viability.
 
 

 
We
 then
 used
 knockout
 cells
 to
 investigate
 their
 response
 to
 hypoxia-­‐driven
 cell
 
death.
  We
  found
  that
  Hsp90α
  knockout
  cells
  survived
  normally
  under
  both
 
normoxia
 and
 2%
 oxygen
 (hypoxia)
 conditions.
 However,
 there
 was
 a
 drastic
 drop
 
in
 cell
 viability
 when
 the
 oxygen
 content
 was
 lowered
 to
 1%
 and
 lower.
 As
 shown
 in
 
Fig
 3C
 and
 D,
 1%
 oxygen
 resulted
 in
 >50%
 reduction
 in
 cell
 viability,
 with
 0.5%
 and
 
0%
 resulting
 in
 further
 decline.
 We
 also
 found
 1%
 oxygen
 exposure
 for
 48
 hours
 led
 
to
  a
  statistically
  significant
  difference
  in
  cell
  viability
  between
  MDA-­‐MB-­‐231
 
parental
 and
 Hsp90α
 knockout
 cells
 (p<
 0.05,
 n=3).
 
 

 

  96
 
Figure
 4-­‐3.
 CRISPR-­‐cas9
 knockout
 of
 Hsp90α
 sensitizes
 MDA-­‐MB-­‐231
 cells
 to
 hypoxia-­‐driven
 
killing.
 
 
(A)
 Cell
 viability
 by
 fluorescence
 microscopy
 (panels
 a
 to
 e)
 and
 flow
 cytometry
 (panels
 a’
 to
 e’).
 (B)
 
Quantitation
 of
 viability
 data.
 (C)
 Viability
 of
 Hsp90α-­‐knockout
 cells
 under
 normoxia
 or
 various
 
degrees
 of
 hypoxia
 (D)
 Quantitation
 of
 viability
 data.
 n
 =
 3,
 *
 p
 <
 0.05.
 

 
Secreted
  Hsp90α,
  not
  Hsp90β,
  protects
  MDA-­‐MB-­‐231
  cells
  from
  hypoxia-­‐
mediated
 cell
 death
 
Hsp90α
 knockout
 depletes
 both
 intracellular
 and
 extracellular
 pools
 of
 the
 protein.
 
As
 mentioned
 above
 (Fig
 1F),
 hypoxia
 drives
 the
 secretion
 of
 both
 Hsp90α
 and
 
Hsp90β.
 In
 order
 to
 distinguish
 which
 pool
 contributes
 to
 protecting
 cells
 from
 
hypoxia-­‐driven
 cell
 death,
 we
 supplemented
 Hsp90α
 knockout
 cells
 with
 either
 

  97
 
recombinant
  Hsp90α
  or
  recombinant
  Hsp90β
  and
  subjected
  them
  to
  varying
 
concentrations
  of
  oxygen.
  As
  shown
  in
  Figure
  4A,
  normoxia
  did
  not
  affect
  cell
 
viability
 of
 Hsp90α
 knockout
 cells
 (panels
 a
 and
 a’).
 Treatment
 with
 recombinant
 
Hsp90α
 or
 Hsp90β
 did
 not
 alter
 the
 viability
 (panels
 b,
 b’
 and
 c,
 c’).
 However
 
hypoxia
 caused
 a
 dramatic
 decrease
 in
 viability
 of
 Hsp90α
 knockout
 cells
 (panels
 d
 
and
 d’).
 Interestingly,
 treatment
 with
 recombinant
 Hsp90α
 (panels
 e
 and
 e’
 vs
 d
 and
 
d’),
 but
 not
 recombinant
 Hsp90β
 (panels
 f
 and
 f’
 vs
 d
 and
 d’),
 rescued
 cell
 viability.
 
The
  quantitation
  is
  shown
  in
  Figure
  4B
  and
  the
  proteins
  used
  for
  the
  rescue
 
experiments
 are
 shown
 via
 Coomassie
 blue
 staining
 in
 Figure
 4C.
 This
 implies
 that
 
tumor
  cells
  use
  secreted
  Hsp90α
  and
  not
  Hsp90β
  to
  protect
  themselves
  from
 
hypoxia-­‐driven
 cell
 death.
 The
 secreted
 and
 not
 the
 intracellular
 chaperone
 function
 
of
 Hsp90α
 is
 therefore
 the
 driver
 of
 this
 process.
 
 

 
We
 next
 investigated
 the
 mechanism
 by
 which
 secreted
 Hsp90α
 mediates
 tumor
 cell
 
survival
 under
 hypoxia.
 We
 focused
 on
 the
 cell
 surface
 receptor
 LRP-­‐1
 (low
 density
 
lipoprotein
 receptor-­‐related
 protein-­‐1).
 We
 have
 previously
 shown
 that
 in
 both
 
normal
 skin
 cells
 and
 in
 MDA-­‐MB-­‐231
 cells,
 secreted
 Hsp90α
 binds
 to
 LRP-­‐1
 and
 
drives
 tumor
 cell
 invasion
 in
 vitro
 and
 in
 vivo.
 Inhibition
 of
 LRP-­‐1
 either
 through
 
lentiviral
 knockdown
 or
 via
 a
 universal
 antagonist
 of
 its
 ligand-­‐binding
 domain
 led
 
to
 decreased
 cell
 motility
 in
 vitro
 and
 a
 reduction
 in
 both
 wound
 healing
 and
 tumor
 
metastasis
  (31,
  33,
  39).
  We
  hypothesized
  that
  secreted
  Hsp90α
  used
 
transmembrane
 signaling
 through
 LRP-­‐1
 to
 mediate
 its
 pro-­‐survival
 function
 as
 
well.
 To
 this
 end,
 we
 generated
 stable
 knockdown
 of
 LRP-­‐1
 in
 MDA-­‐MB-­‐231
 cells
 

  98
 
(Fig
 4D).
 We
 subjected
 these
 cells
 to
 either
 normoxia
 or
 hypoxia
 (1%
 O2)
 with
 or
 
without
 exogenous
 supplementation
 with
 recombinant
 Hsp90α
 protein.
 Hypoxia
 led
 
to
 a
 dramatic
 reduction
 in
 cell
 viability
 of
 LRP-­‐1
 down
 regulated
 cells
 (Fig
 
 4E
 panels
 
b
 and
 b’
 vs
 a
 and
 a’)
 similar
 to
 the
 phenotype
 observed
 in
 Hsp90α
 knockout
 cells.
 
Interestingly,
 in
 contrast
 to
 Hsp90α
 knockout
 cells
 whose
 viability
 was
 rescued
 by
 
exogenous
  supplementation
  with
  Hsp90α
  protein,
  the
  viability
  of
  LRP-­‐1
  down
 
regulated
 cells
 was
 not.
 This
 implies
 that
 LRP-­‐1
 was
 indispensable
 for
 MDA-­‐MB-­‐231
 
cell
 survival
 under
 hypoxia
 and
 secreted
 Hsp90α
 uses
 signaling
 through
 LRP-­‐1
 
receptor
 to
 protect
 tumor
 cells
 under
 hypoxia.
 
 
 

  99
 

 
Figure
  4-­‐4.
  Rescue
  of
  Hsp90α-­‐knockout
  cells
  from
  hypoxia-­‐driven
  killing
  by
  extracellular
 
Hsp90α,
 but
 not
 Hsp90β,
 protein
 via
 LRP-­‐1
 receptor
 signalling
 
 
(A) Cell
 viability
 data
 showing
 representative
 images
 and
 FACS
 plots
 of
 Hsp90α
 knockout
 cells
 under
 
normoxia
 and
 hypoxia
 with
 extracellular
 supplementation
 of
 Hsp90α
 and
 Hsp90β.
 
(B) Quantitation
 of
 viability
 data
 from
 three
 independent
 experiments.
 

  100
 
(C) Coomassie
  blue
  stained
  SDS-­‐PAGE
  gel
  showing
  the
  purified
  proteins
  used
  in
  the
  rescue
 
experiments.
 
 
(D) Down-­‐regulation
 of
 LRP-­‐1
 shown
 by
 Western
 blot.
 
 
(E) Cell
 viability
 data
 showing
 representative
 images
 and
 FACS
 plots
 using
 LRP-­‐1
 down
 regulated
 
cells.
 The
 cell
 viability
 percentage
 is
 indicated
 on
 the
 figure.
 
(F) Quantitation.
 n=3,
 *
 p
 <
 0.05.
 

 
Design
 of
 a
 neutralizing
 antibody
 against
 secreted
 Hsp90α
 
In
 order
 to
 further
 verify
 the
 requirement
 of
 secreted
 Hsp90α
 in
 protecting
 tumor
 
cells
 from
 hypoxia-­‐driven
 cell
 death,
 we
 used
 an
 antibody
 neutralization
 approach.
 
We
 generated
 a
 monoclonal
 antibody,
 1G6-­‐D7,
 targeting
 the
 F-­‐5
 region
 of
 secreted
 
Hsp90α.
 F-­‐5
 is
 a
 115
 amino
 acid
 peptide
 that
 recapitulates
 the
 full
 pro-­‐motility
 
activity
 of
 the
 full
 length
 Hsp90α
 protein
 (42).
 Fig
 5A
 shows
 the
 location
 of
 F-­‐5
 in
 
Hsp90α
 against
 which
 1G6-­‐D7
 was
 designed.
 1G6-­‐D7
 was
 able
 to
 pull
 down
 His-­‐
tagged
  recombinant
  F-­‐5
  fragment
  (Figure
  5B).
  In
  addition,
  using
  co-­‐
immunoprecipitation,
  we
  proved
  that
  1G6-­‐D7
  was
  capable
  of
  binding
  to
 
endogenously
 secreted
 Hsp90α
 in
 the
 conditioned
 media
 of
 MDA-­‐MB-­‐231
 cells.
 As
 
shown
 in
 Figure
 5C,
 1G6-­‐D7
 bound
 strongly
 to
 secreted
 Hsp90α
 and
 weakly
 to
 
secreted
 Hsp90β.
 Functionally,
 1G6-­‐D7
 was
 effective
 in
 decreasing
 Hsp90α-­‐driven
 
MDA-­‐MB-­‐231
 cell
 invasion
 (Figure
 5D
 panels
 b,
 c
 vs
 a,
 d)
 and
 migration
 (Figure
 5E
 
panel
 d
 vs
 panel
 a)
 in
 vitro
 and
 tumor
 formation
 in
 mice
 (Figure
 5F).
 The
 inhibitory
 
effect
 of
 1G6-­‐D7
 on
 invasion
 and
 migration
 was
 rescued
 by
 F-­‐5
 addition
 (Figure
 5D
 
panel
 e
 vs
 panels
 f
 &
 g;
 Figure
 5E
 panel
 d
 vs
 panel
 e).
 Neutralization
 of
 secreted
 

  101
 
Hsp90β
 by
 an
 anti-­‐Hsp90β
 antibody
 did
 not
 inhibit
 tumor
 cell
 migration
 (Figure
 5E
 
panel
 c
 vs
 panel
 a).
 
 

 
Figure
 4-­‐5.
 Monoclonal
 antibody,
 1G6-­‐D7,
 binds
 to
 secreted
 Hsp90α
 and
 neutralizes
 its
 
function
 in
 vitro
 and
 in
 vivo.
 
 
(A) Location
 of
 the
 antigen
 F-­‐5
 in
 Hsp90α
 against
 which
 1G6-­‐D7
 is
 targeted
 
(B) Immunoprecipitation
 showing
 1G6-­‐D7
 binding
 to
 recombinant
 F-­‐5
 peptide
 
(C) Co-­‐
 immunoprecipitation
 using
 1G6-­‐D7
 antibody
 showing
 the
 ability
 of
 the
 antibody
 to
 bind
 
endogenous
 secreted
 Hsp90α
 
(D) Representative
 images
 from
 an
 invasion
 assay
 showing
 that
 1G6-­‐D7
 inhibits
 basal
 invasion
 
of
 MDA-­‐MB-­‐231
 cells,
 which
 is
 rescued
 by
 addition
 of
 increasing
 amounts
 of
 F-­‐5.
 
(E) Representative
 images
 from
 a
 migration
 assay
 showing
 the
 effect
 of
 1G6-­‐D7
 vs
 control
 
mouse
 IgG
 and
 an
 Hsp90β
 neutralizing
 antibody.
 The
 black
 tracks
 outlined
 by
 white
 circles
 
are
 an
 indication
 of
 cell
 motility.
 
 

  102
 
(F
 &
 G)
 Tumor
 growth
 as
 measured
 over
 4
 weeks
 from
 the
 time
 MDA-­‐MB-­‐231
 tumor
 cells
 were
 
injected
 into
 nude
 mice.
 1G6-­‐D7
 (red)
 is
 compared
 to
 normal
 mouse
 IgG
 (black)
 as
 a
 control.
 

 
Neutralization
 of
 secreted
 Hsp90α
 by
 1G6-­‐D7
 sensitizes
 parental
 MDA-­‐MB-­‐
231
 cells
 to
 hypoxia-­‐driven
 cell
 death
 
We
 hypothesized
 that
 if
 secreted
 Hsp90α
 was
 indispensable
 for
 tumor
 cell
 survival
 
under
 hypoxia,
 then
 treatment
 with
 1G6-­‐D7
 will
 make
 parental
 MDA-­‐MB-­‐231
 cells
 
more
  susceptible
  to
  hypoxia-­‐induced
  cell
  death.
  We
  treated
  parental
  cells
  with
 
either
 control
 mouse
 IgG
 or
 1G6-­‐D7
 and
 subjected
 them
 to
 either
 normoxia
 or
 
hypoxia
 (1%
 O2)
 for
 48h.
 
 As
 shown
 in
 Figure
 6A,
 while
 control
 IgG
 treatment
 under
 
hypoxia
 did
 not
 affect
 cell
 viability
 (panels
 c
 and
 c’),
 treatment
 with
 1G6-­‐D7
 led
 to
 a
 
dramatic
 reduction
 in
 cell
 viability
 under
 hypoxia
 (panels
 d
 and
 d’),
 again
 proving
 
that
 the
 secreted
 pool
 of
 Hsp90α
 contributes
 to
 tumor
 cell
 survival
 in
 the
 hypoxic
 
tumor
 microenvironment.
 Also,
 addition
 of
 F-­‐5
 overcame
 this
 loss
 of
 cell
 viability
 
implying
 that
 the
 inhibition
 mediated
 by
 1G6-­‐D7
 was
 due
 to
 its
 neutralization
 of
 
secreted
 Hsp90α
 function
 (panels
 e
 and
 e’
 vs
 d
 and
 d’).
 The
 quantitation
 is
 shown
 in
 
Figure
 6B.
 A
 working
 model
 explaining
 our
 findings
 is
 depicted
 in
 Figure
 6C.
 Under
 
hypoxia
 in
 the
 tumor
 microenvironment,
 HIF1α
 levels
 are
 stabilized,
 which
 drives
 
Hsp90α
 secretion.
 The
 secreted
 Hsp90α
 binds
 to
 the
 cell
 surface
 LRP-­‐1
 receptor
 and
 
possibly
  through
  activating
  Akt,
  mediates
  tumor
  cell
  survival,
  invasion
  and
 
metastasis.
 
 

  103
 

 
Figure
 4-­‐6.
 mAb
 1G6-­‐D7
 neutralizes
 secreted
 Hsp90α
 function
 and
 renders
 MDA-­‐MB-­‐231
 cells
 
susceptible
 to
 hypoxia-­‐driven
 cell
 death
 
(A) Cell
 viability
 data
 showing
 representative
 images
 from
 fluorescence
 microscopy
 and
 FACS
 
plots
 of
 parental
 MDA-­‐MB-­‐231
 cells
 under
 normoxia
 or
 hypoxia
 with
 1G6-­‐D7
 treatment.
 
(B) Quantitation
 of
 cell
 viability
 
(C) Model
 showing
 the
 requirement
 of
 HIF1α-­‐secreted
 Hsp90α-­‐LRP-­‐1
 autocrine
 loop
 in
 cellular
 
adaptation
 to
 hypoxia
 

 
Discussion
 
Approximately
 50%
 of
 solid
 tumors
 are
 hypoxic
 and
 constitutively
 express
 HIF-­‐1α,
 
regardless
 of
 the
 oxygen
 content
 (43).
 HIF-­‐1α
 is
 an
 upstream
 regulator
 of
 Hsp90α
 
secretion
 in
 both
 normal
 (31,
 32,
 33)
 and
 tumor
 cells
 (39).
 We
 have
 previously
 
shown
  that
  constitutive
  secretion
  of
  Hsp90α
  contributes
  to
  MDA-­‐MB-­‐231
  cell
 
migration
 and
 invasion
 in
 vitro
 and
 tumor
 formation
 in
 mice
 (39).
 Here,
 we
 report
 a
 
new
 function
 of
 secreted
 Hsp90α
 in
 protecting
 tumor
 cells
 from
 hypoxia-­‐driven
 cell
 
death.
  Constitutive
  HIF-­‐1α
  expression
  in
  MDA-­‐MB-­‐231
  cells
  drives
  constitutive
 

  104
 
secretion
  of
  both
  Hsp90α
  and
  Hsp90β.
  Exogenous
  supplementation
  of
  Hsp90α
 
knockout
 cells
 with
 recombinant
 Hsp90α
 protein,
 but
 not
 Hsp90β
 protein,
 rescued
 
cell
  viability,
  while
  neutralizing
  endogenously
  secreted
  Hsp90α
  made
  parental
 
MDA-­‐MB-­‐231
  cells
  more
  susceptible
  to
  hypoxia-­‐driven
  killing.
  Similar
  to
  the
 
requirement
  of
  LRP-­‐1
  receptor
  in
  mediating
  secreted
  Hsp90α’s
  pro-­‐motility
 
function,
 it
 was
 also
 important
 for
 its
 pro-­‐survival
 function.
 Thus,
 MDA-­‐MB-­‐231
 cells
 
use
 secreted
 Hsp90α
 to
 thrive
 in
 the
 harsh
 hypoxic
 tumor
 microenvironment
 and
 
subsequently
 invade
 and
 metastasize.
 
 

 
Hypoxia
 in
 tumors
 is
 correlated
 with
 increased
 invasiveness
 (44)
 and
 HIF-­‐1α
 levels
 
in
 tumors
 are
 correlated
 with
 increased
 mortality
 in
 cervical
 (45),
 lung
 (46),
 breast
 
(47,48)
  and
  ovarian
  cancers
  (49).
  HIF-­‐1α
  is
  a
  master
  transcription
  factor
  that
 
triggers
 expression
 of
 a
 number
 of
 genes
 involved
 in
 driving
 tumor
 angiogenesis
 
(eg.
 VEGF),
 tumor
 metabolism
 (eg.
 GLUT1)
 and
 therefore,
 tumor
 metastasis.
 HIFs
 
are
 crucial
 for
 tumor
 progression
 in
 both
 autochthonous
 and
 orthotopic
 models
 of
 
breast
 cancer.
 HIFs
 also
 drive
 secretion
 of
 various
 proteins
 via
 the
 unconventional
 
exosome
 trafficking
 pathway
 that
 mediate
 tumor
 progression.
 However,
 targeting
 
HIF
 directly
 has
 been
 tough
 since
 it
 is
 an
 intracellular
 protein
 (43).
 A
 better
 strategy
 
will
 be
 to
 target
 downstream
 effectors
 of
 HIF-­‐mediated
 tumor
 progression.
 Secreted
 
Hsp90α
 is
 one
 such
 molecule.
 Secreted
 Hsp90α
 is
 an
 important
 driver
 of
 metastasis
 
in
 different
 types
 of
 cancer
 such
 as
 breast
 (35,36,39),
 colon
 (37),
 prostate
 (38)
 and
 
ovarian
  (36),
  to
  name
  a
  few.
  In
  this
  study,
  we
  identify
  that
  in
  addition
  to
 
contributing
 to
 tumor
 metastasis,
 secreted
 Hsp90α
 also
 plays
 a
 role
 in
 tumor
 cell
 

  105
 
survival
  under
  hypoxia.
  Hence
  targeting
  secreted
  Hsp90α
  with
  a
  neutralizing
 
antibody
 such
 as
 1G6-­‐D7
 will
 help
 contain
 both
 primary
 tumor
 formation
 (Figure
 5)
 
and
 inhibit
 metastasis
 (Zou
 et
 al.,
 in
 submission).
 
 

 
References:
 
1. Semenza,
 G.L.,
 (2007).
 Evaluation
 of
 HIF-­‐1
 inhibitors
 as
 anticancer
 agents.
 
Drug
 Discov.
 Today
 12,
 853–859.
 
2. Semenza,
  G.L.,
  (2012a).
  Hypoxia-­‐inducible
  factors
  in
  physiology
  and
 
medicine.
 Cell
 148,
 399–408.
 
3. Semenza,
  G.L.,
  (2012b).
  Molecular
  mechanisms
  mediating
  metastasis
  of
 
hypoxic
 breast
 cancer
 cells.
 Trends
 Mol.
 Med.
 18,
 534–543.
 
4. Gunaratnam
 L.,
 Morley
 M.,
 Franovic
 A.,
 de
 Paulsen
 N.,
 Mekhail
 K.,
 Parolin
 DA.,
 
et
 al.
 (2003).
 Hypoxia
 inducible
 factor
 activates
 the
 transforming
 growth
 
factor-­‐α/epidermal
 growth
 factor
 receptor
 growth
 stimulatory
 pathway
 in
 
VHL–/–
 renal
 cell
 carcinoma
 cells.
 J.
 Biol.
 Chem.
 278,
 44966–44974.
 
 
5. Zhang
 L.,
 Zhou
 W.,
 Velculescu
 VE.,
 Kern
 SE.,
 Hruban
 RH.,
 Hamilton
 SR.,
 et
 al.
 
Gene
 expression
 profiles
 in
 normal
 and
 cancer
 cells.
 Science.
 276:1268–1272.
 
 
6. Feldser
 D,
 Agani
 F,
 Iyer
 NV,
 Pak
 B,
 Ferreira
 G,
 Semenza
 GL.
 (1999).
 Reciprocal
 
positive
 regulation
 of
 hypoxia-­‐inducible
 factor
 1α
 and
 insulin-­‐like
 growth
 
factor
 2.
 Cancer
 Res.
 59,
 3915–3918.
 
7. Erler
  JT,
  et
  al.
  (2006).
  Lysyl
  oxidase
  is
  essential
  for
  hypoxia-­‐induced
 
metastasis.
 Nature.
 440,
 1222–1226.
 
 

  106
 
8. Erler
  JT.,
 Bennewith
  KL.,
 Nicolau
  M.,
 Dornhöfer
  N.,
 Kong
  C.,
 Le
  QT.,
  et
  al.
 
(2011).
 Hypoxia-­‐inducible
 factor
 1
 is
 a
 master
 regulator
 of
 breast
 cancer
 
metastatic
 niche
 formation.
 Proc.
 Natl.
 Acad.
 Sci.
 USA.
 108,
 16369–16374.
 
9. Rohwer
  N.,
  Cramer
  T.
  (2011).
  Hypoxia-­‐mediated
  drug
  resistance:
  novel
 
insights
 on
 the
 functional
 interaction
 of
 HIFs
 and
 cell
 death
 pathways.
 Drug
 
Resist
 Updat.
 14,
 191–201.
 
10. Moeller
  BJ.,
 Richardson
  RA.,
 Dewhirst
  MW.
  (2007).
  Hypoxia
  and
 
radiotherapy:
  opportunities
  for
  improved
  outcomes
  in
  cancer
  treatment.
 
Cancer
 Metastasis
 Rev.
 26,
 241–248
 
11. Semenza
 GL.
 (2009).
 Regulation
 of
 metabolism
 by
 hypoxia-­‐inducible
 factor
 1.
 
Semin
 Cancer
 Biol.
 19(1),
 12-­‐6
 
12. Santamaría
  G.,
 Martínez-­‐Diez
  M.,
 Fabregat
  I.,
 Cuezva
  JM.
  (2006).
  Efficient
 
execution
 of
 cell
 death
 in
 non-­‐glycolytic
 cells
 requires
 the
 generation
 of
 ROS
 
controlled
 by
 the
 activity
 of
 mitochondrial
 H+-­‐ATP
 synthase.
 Carcinogenesis.
 
27,
 925–935.
 
13. Comerford
 KM.,
 Wallace
 TJ.,
 Karhausen
 J.,
 Louis
 NA.,
 Montalto
 MC.,
 Colgan
 SP.
 
(2002).
 Hypoxia-­‐inducible
 factor-­‐1-­‐dependent
 regulation
 of
 the
 multidrug
 
resistance
 (MDR1)
 gene.
 Cancer
 Res.
 62,
 3387–3394.
 
 
14. Krishnamurthy
  P.,
 Ross
  DD.,
 Nakanishi
  T.,
 Bailey-­‐Dell
  K.,
 Zhou
  S.,
 Mercer
 
KE.,
 et
 al.
 (2004).
 The
 stem
 cell
 marker
 Bcrp/ABCG2
 enhances
 hypoxic
 cell
 
survival
 through
 interactions
 with
 heme.
 J.
 Biol.
 Chem.
 279,
 24218–24225.
 
15. Erler
 JT,
 et
 al.
 (2004)
 Hypoxia-­‐mediated
 down-­‐regulation
 of
 Bid
 and
 Bax
 in
 
tumors
 occurs
 via
 hypoxia
 inducible
 factor
 1-­‐dependent
 and
 -­‐independent
 

  107
 
mechanisms
  and
  contributes
  to
  drug
  resistance.
  Mol.
 Cell.
 Biol.
  24:2875–
2889.
 
 
16.  
 Peng
 XH,
 et
 al.
 (2006)
 Cross-­‐talk
 between
 epidermal
 growth
 factor
 receptor
 
and
  hypoxia-­‐inducible
  factor-­‐1α
  signal
  pathways
  increases
  resistance
  to
 
apoptosis
  by
  up-­‐regulating
  survivin
  gene
  expression.
  J.
  Biol.
  Chem.
  281,
 
25903–25914.
 
 
17. Brown
 LM,
 Cowen
 RL,
 Debray
 C,
 Eustace
 A,
 Erler
 JT,
 Sheppard
 FC.
 (2006).
 
Reversing
  hypoxic
  cell
  chemoresistance
  in
  vitro
  using
  genetic
  and
  small
 
molecule
 approaches
 targeting
 hypoxia-­‐inducible
 factor
 1.
 Mol.
 Pharmacol.
 
69,
 411–418.
 
18. Liu,
 L.,
 Ning,
 X.,
 Sun,
 L.,
 Zhang,
 H.,
 Shi,
 Y.,
 Guo,
 C.,
 et
 al.
 (2008).
 Hypoxia-­‐
inducible
  factor-­‐1α
  contributes
  to
  hypoxia-­‐induced
  chemoresistance
  in
 
gastric
 cancer.
 Cancer
 Science,
 99,
 121–128
 
19. Flamant,
 L.,
 Notte,
 A.,
 Ninane,
 N.,
 Raes,
 M.,
 Michiels,
 C.
 (2010).
 Anti-­‐apoptotic
 
role
  of
  HIF-­‐1
  and
  AP-­‐1
  in
  paclitaxel
  exposed
  breast
  cancer
  cells
  under
 
hypoxia.
 Molecular
 Cancer,
 9,
 191.
 
 
20. Terzuoli,
 E.,
 Puppo,
 M.,
 Rapisarda,
 A.,
 Uranchimeg,
 B.,
 Cao,
 L.,
 Burger,
 A.
 M.,
 …
 
(2010).
 Aminoflavone,
 a
 ligand
 of
 the
 Aryl
 Hydrocarbon
 Receptor
 (AhR),
 
inhibits
  HIF-­‐1α
  expression
  in
  an
  AhR-­‐independent
  fashion.
 Cancer
 
Research,
 70(17),
 6837–6848.
 
 
21. Shackelford,
 D.
 B.,
 Vasquez,
 D.
 S.,
 Corbeil,
 J.,
 Wu,
 S.,
 Leblanc,
 M.,
 Wu,
 C.-­‐L.,
 et
 al.
 
(2009).
 mTOR
 and
 HIF-­‐1α-­‐mediated
 tumor
 metabolism
 in
 an
 LKB1
 mouse
 
model
 of
 Peutz-­‐Jeghers
 syndrome.
 PNAS,
 106(27),
 11137–11142.
 
 

  108
 
22. Lee,
  K.,
  Qian,
  D.
  Z.,
  Rey,
  S.,
  Wei,
  H.,
  Liu,
  J.
  O.,
  &
  Semenza,
  G.
  L.
  (2009).
 
Anthracycline
  chemotherapy
  inhibits
  HIF-­‐1
  transcriptional
  activity
  and
 
tumor-­‐induced
  mobilization
  of
  circulating
  angiogenic
  cells.
 PNAS,
 106(7),
 
2353–2358.
 
 
23. Wang,
 Y.,
 Liu,
 Y.,
 Malek,
 S.
 N.,
 Zheng,
 P.,
 &
 Liu,
 Y.
 (2011).
 Targeting
 HIF1α
 
eliminates
 cancer
 stem
 cells
 in
 hematological
 malignancies.
 Cell
 Stem
 Cell,
 
8(4),
 399–411.
 
 
24. Molineaux
  SM.
  Molecular
  pathways:
  targeting
  proteasomal
  protein
 
degradation
 in
 cancer.
 (2012).
 Clin.
 Cancer
 Res.
 18,
 15–20.
 
 
25. Kaluz,
 S.,
 Kaluzová,
 M.,
 &
 Stanbridge,
 E.
 J.
 (2006).
 Proteasomal
 Inhibition
 
Attenuates
 Transcriptional
 Activity
 of
 Hypoxia-­‐Inducible
 Factor
 1
 (HIF-­‐1)
 via
 
Specific
 Effect
 on
 the
 HIF-­‐1α
 C-­‐Terminal
 Activation
 Domain.
 Molecular
 and
 
Cellular
 Biology,
 26(15),
 5895–5907.
 
 
26. Befani
  CD,
 Vlachostergios
  PJ,
 Hatzidaki
  E,
 Patrikidou
  A,
 Bonanou
  S,
 Simos
 
G,
 et
 al.,
 (2015).
 Bortezomib
 enhances
 the
 radiosensitivity
 of
 hypoxic
 cervical
 
cancer
 cells
 by
 inhibiting
 HIF-­‐1α
 expression.
 International
 Journal
 of
 Clinical
 
and
 Experimental
 Pathology,
 8(8),
 9032–9041.
 
27. Workman,
  P.,
  Burrows,
  F.,
  Neckers,
  L.
  &
  Rosen,
  N.
  (2007).
  Drugging
  the
 
cancer
 chaperone
 HSP90:
 combinatorial
 therapeutic
 exploitation
 of
 oncogene
 
addiction
 and
 tumor
 stress.
 Ann
 N
 Y
 Acad
 Sci
 1113,
 202–216
 
 
28. Trepel,
 J.,
 Mollapour,
 M.,
 Giaccone,
 G.
 &
 Neckers,
 L.
 (2010).
 Targeting
 the
 
dynamic
 HSP90
 complex
 in
 cancer.
 Nat
 Rev
 Cancer
 10,
 537–549
 

  109
 
29. Kamal
 A.,
 Thao
 L.,
 Sensintaffar
 J.,
 Zhang
 L.,
 Boehm
 MF.,
 Fritz
 LC.,
 et
 al.
 (2003).
 
A
 high-­‐affinity
 conformation
 of
 Hsp90
 confers
 tumour
 selectivity
 on
 Hsp90
 
inhibitors.
 Nature
 425,
 407–410
 
 
30. Li,
 W.,
 Tsen,
 F.,
 Sahu,
 D.,
 Bhatia,
 A.,
 Chen,
 M.,
 Multhoff,
 G.,
 &
 Woodley,
 D.
 T.
 
(2013).
 Extracellular
 Hsp90
 (eHsp90)
 as
 the
 Actual
 Target
 in
 Clinical
 Trials:
 
Intentionally
 or
 Unintentionally.
 IRCMB.
 303,
 203–235.
 
 
31. Woodley,
  DT.,
  Fan,
  J.,
  Cheng,
  C.-­‐F.,
  Li,
  Y.,
  Chen,
  M.,
  Bu,
  G.,
  et
  al.,
  (2009).
 
Participation
 of
 the
 lipoprotein
 receptor
 LRP1
 in
 hypoxia-­‐HSP90α
 autocrine
 
signaling
  to
  promote
  keratinocyte
  migration.
 Journal
 of
 Cell
 Sci.
 122
  (10),
 
1495–1498.
 
 
32. Li,
  W.,
  Li,
  Y.,
  Guan,
  S.,
  Fan,
  J.,
  Cheng,
  C.-­‐F.,
  Bright,
  A.
  M.,
  et
  al.,
  (2007).
 
Extracellular
 heat
 shock
 protein-­‐90α:
 linking
 hypoxia
 to
 skin
 cell
 motility
 and
 
wound
 healing.
 
 EMBO
 J,
 26(5),
 1221–1233.
 
 
33. Cheng,
 C.-­‐F.,
 Fan,
 J.,
 Fedesco,
 M.,
 Guan,
 S.,
 Li,
 Y.,
 Bandyopadhyay,
 B.,
 …
 Li,
 W.
 
(2008).
  Transforming
  Growth
  Factor
  α
  (TGFα)-­‐Stimulated
  Secretion
  of
 
HSP90α:
  Using
  the
  Receptor
  LRP-­‐1/CD91
  To
  Promote
  Human
  Skin
  Cell
 
Migration
 against
 a
 TGFβ-­‐Rich
 Environment
 during
 Wound
 Healing.
 Mol.
 Cell.
 
Biol.
 28(10),
 3344–3358.
 
 
34. McCready,
 J.,
 Sims,
 J.
 D.,
 Chan,
 D.,
 &
 Jay,
 D.
 G.
 (2010).
 Secretion
 of
 extracellular
 
hsp90α
 via
 exosomes
 increases
 cancer
 cell
 motility:
 a
 role
 for
 plasminogen
 
activation.
 BMC
 Cancer,
 10,
 294.
 

  110
 
35. Eustace
 BK,
 Sakurai
 T,
 Stewart
 JK,
 Yimlamai
 D,
 Unger
 C,
 Zehetmeier
 C.,
 et
 al.,
 
(2004).
 Functional
 proteomic
 screens
 reveal
 an
 essential
 extracellular
 role
 
for
 hsp90
 alpha
 in
 cancer
 cell
 invasiveness.
 Nat
 Cell
 Biol.
 6(6),
 507-­‐14
 
36. Wang,
  X.,
  Song,
  X.,
  Zhuo,
  W.,
  Fu,
  Y.,
  Shi,
  H.,
  Liang,
  Y.,
  et
  al.
  (2009).
  The
 
regulatory
  mechanism
  of
  Hsp90α
  secretion
  and
  its
  function
  in
  tumor
 
malignancy.
 PNAS,
 106(50),
 21288–21293.
 
 
37. Chen,
 J.-­‐S.,
 Hsu,
 Y.-­‐M.,
 Chen,
 C.-­‐C.,
 Chen,
 L.-­‐L.,
 Lee,
 C.-­‐C.,
 &
 Huang,
 T.-­‐S.
 (2010).
 
Secreted
 Heat
 Shock
 Protein
 90α
 Induces
 Colorectal
 Cancer
 Cell
 Invasion
 
through
  CD91/LRP-­‐1
  and
  NF-­‐κB-­‐mediated
  Integrin
  αV
 Expression.
  J.
  Biol.
 
Chem.,
 285(33),
 25458–25466.
 
 
38. Tsutsumi,
 S.,
 Scroggins,
 B.,
 Koga,
 F.,
 Lee,
 M.J.,
 Trepel,
 J.,
 Felts,
 S.,
 et
 al.,
 (2008).
 
A
  small
  molecule
  cell-­‐impermeant
  Hsp90
  antagonist
  inhibits
  tumor
  cell
 
motility
 and
 invasion.
 Oncogene
 27,
 2478–2487.
 
39. Sahu,
 D.,
 Zhao,
 Z.,
 Tsen,
 F.,
 Cheng,
 C.-­‐F.,
 Park,
 R.,
 Situ,
 A.
 J.,
 et
 al.,
 (2012).
 A
 
potentially
 common
 peptide
 target
 in
 secreted
 heat
 shock
 protein-­‐90α
 for
 
hypoxia-­‐inducible
 factor-­‐1α–positive
 tumors.
 MBoC.
 
 23(4),
 602–613.
 
 
40. Li,
 W.,
 Sahu,
 D.,
 &
 Tsen,
 F.
 (2012).
 Secreted
 Heat
 Shock
 Protein-­‐90
 (Hsp90)
 in
 
Wound
 Healing
 and
 Cancer.
 BBA,
 1823(3),
 730–741.
 
 
41. Chatterjee,
 M.,
 Jain,
 S.,
 Stu¨hmer,
 T.,
 Andrulis,
 M.,
 Ungethu¨m,
 U.,
 Kuban,
 R.
 J.,
 
et
 al.
 (2007).
 STAT3
 and
 MAPK
 signaling
 maintain
 overexpression
 of
 heat
 
shock
  proteins
  90a
  and
  b
  in
  multiple
  myeloma
  cells,
  which
  critically
 
contribute
 to
 tumor-­‐cell
 survival.
 Blood
 109,
 720-­‐728.
 

  111
 
42. Cheng,
 C.-­‐F.,
 Sahu,
 D.,
 Tsen,
 F.,
 Zhao,
 Z.,
 Fan,
 J.,
 Kim,
 R.,
 et
 al.,
 (2011).
 A
 
fragment
 of
 secreted
 Hsp90α
 carries
 properties
 that
 enable
 it
 to
 accelerate
 
effectively
 both
 acute
 and
 diabetic
 wound
 healing
 in
 mice.
 
 J.
 Clin.
 Invest.
 
121(11),
 4348–4361.
 
 
43. Semenza
 GL
 (2003).
 Targeting
 HIF-­‐1
 for
 cancer
 therapy.
 Nat.
 Rev.
 Cancer.
 
3(10),
 721-­‐32.
 
44. Gilkes,
 DM
 &
 Semenza,
 GL
 (2013).
 Role
 of
 hypoxia-­‐inducible
 factors
 in
 breast
 
cancer
 metastasis.
 Future
 Oncol
 9(11),
 1623–1636
 
45. Birner,
 P.,
 Schindl,
 M.,
 Obermair,
 A.,
 Plank,
 C.,
 Breitenecker,
 G.
 &
 Oberhuber
 G
 
(2000).
 Overexpression
 of
 hypoxia-­‐inducible
 factor
 1α
 is
 a
 marker
 for
 an
 
unfavorable
 prognosis
 in
 early-­‐stage
 invasive
 cervical
 cancer.
 Cancer
 Res.
 60,
 
4693–4696
 
 
46. Volm,
  M.
  &
  Koomagi,
  R.
  (2000).Hypoxia-­‐inducible
  factor
  (HIF-­‐1)
  and
  its
 
relationship
 to
 apoptosis
 and
 proliferation
 in
 lung
 cancer.
 Anticancer
 Res.
 20,
 
1527–1533
 
 
47. Schindl
 M,
 Schoppmann
 SF,
 Samonigg
 H,
 Hausmaninger
 H,
 Kwasny
 W,
 Gnant
 
M,
 et
 al.
 (2002).
 Overexpression
 of
 hypoxia-­‐inducible
 factor
 1α
 is
 associated
 
with
 an
 unfavorable
 prognosis
 in
 lymph
 node-­‐positive
 breast
 cancer.
 Clin.
 
Cancer
 Res.
 8,
 1831–1837
 
 
48. Bos
  R,
 van
  der
  Groep
  P,
 Greijer
  AE,
 Shvarts
  A,
 Meijer
  S,
 Pinedo
  HM
  et
  al.
 
(2003).
  Levels
  of
  hypoxia-­‐inducible
  factor-­‐1α
  independently
  predict
 
prognosis
 in
 patients
 with
 lymph
 node
 negative
 breast
 carcinoma.
 Cancer
 97,
 
1573–1581
 
 

  112
 
49. Birner,
 P.,
 Schindl,
 M.,
 Obermair,
 A.,
 Breitenecker,
 G.
 &
 Oberhuber
 G
 (2001).
 
Expression
 of
 hypoxia-­‐inducible
 factor
 1α
 in
 epithelial
 ovarian
 tumors:
 its
 
impact
 on
 prognosis
 and
 on
 response
 to
 chemotherapy.
 Clin.
 Cancer
 Res.
 7,
 
1661–1668
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  113
 
Chapter
 5:
 Conclusions
 
It
 is
 now
 becoming
 clear
 that
 the
 cytosolic
 Hsp90
 isoforms,
 Hsp90α
 and
 Hsp90β
 
possess
  distinct
  functions.
  The
  contrasting
  knockout
  mice
  phenotypes
  and
  the
 
specific
 function
 of
 secreted
 Hsp90α,
 but
 not
 Hsp90β,
 in
 wound
 healing
 and
 tumor
 
progression
 highlight
 this
 further.
 For
 decades,
 researchers
 have
 not
 studied
 the
 
isoforms
 in
 isolation
 and
 inhibitors
 do
 not
 distinguish
 between
 them.
 Using
 human
 
dermal
 fibroblasts,
 my
 work
 shows
 that
 Hsp90α’s
 primary
 role
 is
 to
 act
 as
 an
 
extracellular
  ligand
  for
  the
  LRP-­‐1
  receptor
  and
  promote
  cell
  migration
  under
 
hypoxia.
  Hsp90α
  does
  not
  bind
  LRP-­‐1
  inside
  the
  cell
  and
  is
  not
  required
  to
 
chaperone
  LRP-­‐1.
  Hsp90β,
  on
  the
  other
  hand,
  functions
  as
  an
  intracellular
 
chaperone
 for
 LRP-­‐1
 and
 stabilizes
 it
 on
 the
 cell
 surface.
 Though
 secreted
 under
 
hypoxia,
  Hsp90β
  alone
  does
  not
  have
  pro-­‐motility
  activity.
  Thus,
  extracellular
 
Hsp90α
  and
  intracellular
  Hsp90β
  have
  exclusive
  functions,
  which
  cannot
  be
 
compensated
 for
 by
 the
 other
 isoform.
 
 The
 discovery
 of
 isoform-­‐specific
 functions
 
of
  Hsp90α
  and
  Hsp90β
  has
  important
  implications
  in
  cancer
  therapy.
  Hsp90
 
proteins
 have
 been
 found
 to
 be
 either
 qualitatively
 over
 activated
 or
 quantitatively
 
overexpressed
  in
  cancer
  cells.
  In
  addition,
  targeting
  Hsp90
  was
  proposed
  to
 
simultaneously
 target
 and
 shut
 down
 multiple
 oncogenic
 signaling
 pathways
 and
 
overcome
 the
 problem
 of
 drug
 resistance.
 Thus,
 they
 provide
 a
 valid
 therapeutic
 
target
  (1,2,3,4).
  Current
  Hsp90
  inhibitors
  target
  the
  N-­‐terminal
  ATPase,
  which
 
inhibits
 both
 Hsp90α
 and
 Hsp90β
 isoforms.
 Despite
 numerous
 clinical
 trials,
 few
 of
 
the
  inhibitors
  have
  been
  approved
  for
  human
  use
  (2,8,9).
  The
  failure
  of
  the
 
inhibitors
 have
 been
 attributed
 to
 their
 poor
 stability
 and
 toxicity
 (10).
 My
 work,
 in
 

  114
 
conjunction
  with
  others,
  shows
  the
  importance
  of
  Hsp90β’s,
  but
  not
  Hsp90α’s
 
chaperone
 function
 in
 maintaining
 homeostasis
 in
 normal
 cells.
 At
 the
 same
 time,
 
secreted
 Hsp90α
 is
 not
 required
 for
 normal
 cells
 under
 physiological
 conditions.
 
Thus,
  we
  propose
  that
  specific
  targeting
  of
  secreted
 Hsp90α
  using
  neutralizing
 
antibodies
 or
 membrane-­‐impermeable
 inhibitors
 instead
 of
 its
 chaperone
 function
 
in
  cancer,
  as
  being
  currently
  pursued
  will
  provide
  safer
  and
  more
  selective
 
therapeutic
 options.
 

 
We
 identified
 a
 novel
 role
 for
 secreted
 Hsp90α
 as
 a
 survival
 factor
 for
 tumors,
 
protecting
 them
 from
 the
 hypoxic
 microenvironment-­‐mediated
 cell
 death.
 We
 used
 
CRISPR/Cas9
  to
  generate
  Hsp90α
  knockout
  MDA-­‐MB-­‐231
  cells.
  We
  found
  an
 
increased
 susceptibility
 of
 these
 cells
 to
 hypoxia
 driven
 cell
 death
 that
 could
 be
 
rescued
 by
 exogenous
 Hsp90α,
 but
 not
 Hsp90β,
 protein.
 Additionally,
 we
 developed
 
a
 monoclonal
 antibody,
 1G6-­‐D7,
 targeted
 against
 the
 F-­‐5
 region
 of
 Hsp90α.
 1G6-­‐D7
 
sensitized
  parental
  MDA-­‐MB-­‐231
  cells
  to
  hypoxia-­‐triggered
  cell
  death.
  In
 
conjunction
 with
 this,
 1G6-­‐D7
 inhibited
 the
 ability
 of
 MDA-­‐MB-­‐231
 cells
 to
 form
 
tumors
 in
 vivo.
 This
 finding
 further
 emphasizes
 the
 importance
 of
 targeting
 secreted
 
Hsp90α,
  not
  intracellular
  Hsp90
  chaperone,
  to
  block
  tumor
  formation
  and
 
metastasis
 
 

 
Considering
 the
 vast
 number
 of
 stresses
 driving
 Hsp90α
 secretion,
 it
 is
 important
 to
 
understand
 the
 central
 regulator
 (s)
 that
 facilitates
 the
 communication
 between
 
these
 upstream
 stimuli
 and
 downstream
 secretion.
 We
 identified
 PRAS40
 (Proline-­‐

  115
 
Rich
 Akt
 Substrate
 of
 40kDa)
 as
 being
 at
 least
 one
 of
 these
 molecules.
 PRAS40
 
regulated
  exosome-­‐mediated
  Hsp90α
  secretion
  in
  response
  to
  TGFα,
  H2O2
 and
 
hypoxia
 in
 normal
 and
 cancer
 cells.
 PRAS40
 worked
 in
 both
 T246-­‐phosphorylation
 
dependent
 and
 total
 protein
 level
 dependent
 pathways,
 depending
 on
 the
 nature
 of
 
the
  upstream
  stimuli.
  Exosomes
  play
  an
  important
  role
  in
  intercellular
 
communication
  and
  are
  gaining
  attention
  especially
  in
  the
  field
  of
  tumor
 
progression
 due
 to
 their
 ability
 to
 act
 locally
 and
 at
 distant
 sites,
 establishing
 pre-­‐
metastatic
  niches.
  They
  have
  roles
  in
  tumor
  immune
  evasion,
  metastasis,
  drug
 
resistance
 etc.
 Few
 upstream
 regulators
 of
 exosome
 secretion
 have
 been
 reported
 in
 
the
 literature,
 mainly
 focusing
 on
 the
 Rab
 GTPase
 family.
 However,
 diverse
 Rabs
 
regulate
 exosome
 secretion
 in
 distinct
 cell
 types,
 making
 them
 a
 difficult
 drug
 target
 
to
 block
 exosome
 secretion.
 My
 work
 has
 helped
 identify
 PRAS40
 as
 being
 a
 central
 
regulator
 of
 exosome
 secretion,
 independent
 of
 cell
 type
 and
 upstream
 stimuli.
 
 
 
Since
 PRAS40
 is
 an
 upstream
 regulator
 of
 exosome
 secretion,
 PRAS40
 levels
 or
 
T246
  phosphorylation
  can
  act
  as
  a
  biomarker
  for
  more
  aggressive
  cancers.
  In
 
addition,
 PRAS40
 is
 an
 ideal
 target
 for
 therapeutic
 intervention
 to
 block
 exosome
 
secretion
 and
 subsequent
 tumor
 metastasis
 and
 immune
 evasion.
 
 

 
Future
 directions
 
Our
 findings
 identify
 PRAS40
 as
 being
 an
 important
 regulator
 of
 exosome
 secretion,
 
independent
 of
 cell
 type
 or
 stress.
 However,
 co-­‐immunoprecipitation
 experiments
 
and
 absence
 of
 PRAS40
 in
 exosomes
 collected
 by
 ultracentrifugation
 rule
 out
 a
 
direct
 interaction
 between
 PRAS40
 and
 exosomes.
 Hence,
 additional
 molecule
 (s)
 

  116
 
mediate
 the
 communication
 between
 PRAS40
 and
 the
 exosome
 trafficking
 pathway.
 
In
 order
 to
 identify
 potential
 interacting
 proteins,
 we
 are
 generating
 a
 PRAS40
 GST
 
fusion
 protein.
 Using
 GST
 pull
 down
 assays
 followed
 by
 mass
 spectrometry,
 we
 
propose
 to
 identify
 PRAS40
 interacting
 proteins
 under
 unstimulated,
 growth
 factor-­‐,
 
hypoxia-­‐
 and
 oxidative-­‐stress
 -­‐treated
 conditions.
 We
 hypothesize
 that
 different
 
stimuli
 will
 modify
 PRAS40
 interactions
 differently,
 leading
 to
 exosome
 secretion.
 It
 
will
 also
 be
 interesting
 to
 compare
 PRAS40
 interacting
 partners
 amongst
 different
 
cell
 types.
 Once
 potential
 protein
 (s)
 have
 been
 identified,
 we
 need
 to
 verify
 their
 
importance
 in
 facilitating
 PRAS40-­‐regulated
 exosome
 secretion
 through
 lentiviral
 
knockdown
 and
 rescue
 experiments.
 We
 are
 also
 generating
 GST
 fusion
 proteins
 of
 
PRAS40
  T246A
  and
  T246E
  mutants
  to
  investigate
  how
  phosphorylation
  at
  this
 
residue
 alters
 its
 interactions.
 
 

 
The
 ultimate
 evidence
 that
 PRAS40
 is
 a
 central
 regulator
 of
 exosome
 secretion
 will
 
come
 from
 mouse
 knockout
 studies.
 Two
 reports
 on
 PRAS40
 knockout
 mice
 exist
 
(5,6).
 Exosomes
 can
 be
 collected
 from
 the
 plasma
 of
 wild
 type
 and
 PRAS40
 knockout
 
mice
 to
 study
 if
 PRAS40
 regulates
 exosome
 secretion
 in
 vivo.
 Since
 exosomes
 have
 
been
 reported
 to
 drive
 wound
 healing
 (7)
 as
 well
 as
 tumor
 metastasis,
 it
 will
 be
 
interesting
 to
 investigate
 if
 PRAS40
 knockout
 mice
 have
 defects
 in
 wound
 healing
 
and/or
 tumor
 metastasis
 and
 if
 these
 defects
 could
 be
 rescued
 by
 either
 topical
 
application
 or
 intratumoral
 injection
 of
 exosomes
 respectively.
 
 

 

  117
 
Further
  studies
  are
  warranted
  in
  delineating
  the
  isoform-­‐specific
  functions
  of
 
Hsp90α
 and
 Hsp90β.
 First,
 the
 unique
 communication
 between
 intracellular
 Hsp90β
 
and
 extracellular
 Hsp90α
 needs
 to
 be
 tested
 in
 other
 cell
 types,
 including
 cancer
 
cells,
 some
 of
 which
 constitutively
 secrete
 both
 Hsp90α
 and
 Hsp90β.
 Second,
 the
 
domains
 required
 for
 Hsp90β-­‐LRP-­‐1
 interaction
 need
 to
 be
 identified.
 Although
 
preliminary
 data
 show
 that
 Hsp90β
 binds
 to
 the
 intracellular
 cytoplasmic
 tail
 of
 
LRP-­‐1,
 it
 is
 unknown
 which
 domain
 (s)
 of
 Hsp90β
 are
 required
 for
 this
 interaction.
 
Also,
 hypoxia
 drives
 Hsp90β
 secretion.
 Though
 extracellular
 Hsp90β,
 on
 its
 own,
 
lacks
 pro-­‐motility
 activity,
 it
 needs
 to
 be
 tested
 if
 extracellular
 Hsp90β
 is
 able
 to
 
assist
 extracellular
 Hsp90α
 in
 its
 pro-­‐motility
 action.
 This
 involves
 testing
 if
 the
 two
 
isoforms
 dimerize
 and
 if
 this
 dimerization
 is
 required
 for
 secreted
 Hsp90α-­‐driven
 
migration.
 
 

 
These
  studies
  will
  help
  elucidate
  the
  communication
  between
  intracellular
  and
 
secreted
 Hsp90
 proteins
 and
 their
 regulation
 by
 different
 environmental
 stimuli.
 
They
 will
 facilitate
 the
 identification
 of
 targets
 that
 modulate
 both
 wound
 healing
 
and
 tumor
 microenvironments.
 
 

 
References:
 
1. Workman,
  P.,
  Burrows,
  F.,
  Neckers,
  L.
  &
  Rosen,
  N.
  (2007).
  Drugging
  the
 
cancer
 chaperone
 HSP90:
 combinatorial
 therapeutic
 exploitation
 of
 oncogene
 
addiction
 and
 tumor
 stress.
 Ann
 N
 Y
 Acad
 Sci
 1113,
 202–216
 
 

  118
 
2. Trepel,
 J.,
 Mollapour,
 M.,
 Giaccone,
 G.
 &
 Neckers,
 L.
 (2010).
 Targeting
 the
 
dynamic
 HSP90
 complex
 in
 cancer.
 Nat
 Rev
 Cancer
 10,
 537–549
 
3. Kamal
 A.,
 Thao
 L.,
 Sensintaffar
 J.,
 Zhang
 L.,
 Boehm
 MF.,
 Fritz
 LC.,
 et
 al.
 (2003).
 
A
 high-­‐affinity
 conformation
 of
 Hsp90
 confers
 tumour
 selectivity
 on
 Hsp90
 
inhibitors.
 Nature
 425,
 407–410
 
 
4. Li,
 W.,
 Tsen,
 F.,
 Sahu,
 D.,
 Bhatia,
 A.,
 Chen,
 M.,
 Multhoff,
 G.,
 &
 Woodley,
 D.
 T.
 
(2013).
 Extracellular
 Hsp90
 (eHsp90)
 as
 the
 Actual
 Target
 in
 Clinical
 Trials:
 
Intentionally
 or
 Unintentionally.
 IRCMB.
 303,
 203–235.
 
 
5. Malla,
  R.,
  Wang,
  Y.,
  Chan,
  WK.,
  Tiwari,
  AK.
  &
  Faridi,
  JS.
  (2015).
  Genetic
 
ablation
 of
 PRAS40
 improves
 glucose
 homeostasis
 via
 linking
 the
 AKT
 and
 
mTOR
 pathways.
 Biochemical
 Pharmacology
 96,
 65–75
 
6. Xiong,
 X.,
 Xie,
 R.,
 Zhang,
 H.,
 Gu,
 L.,
 Xie,
 W.,
 Cheng,
 M.,
 et
 al.,
 (2014).
 PRAS40
 
plays
 a
 pivotal
 role
 in
 protecting
 against
 stroke
 by
 linking
 the
 Akt
 and
 mTOR
 
pathways.
 Neurobiol
 Dis.
 66,
 43-­‐52
 
7. Shabbir,
  A.,
 Cox,
  A.,
 Rodriguez-­‐Menocal,
  L,
 Salgado
  M,
  &
  Van
  Badiavas
  E.
 
(2015).
  Mesenchymal
  Stem
  Cell
  Exosomes
  Induce
  Proliferation
  and
 
Migration
  of
  Normal
  and
  Chronic
  Wound
  Fibroblasts,
  and
  Enhance
 
Angiogenesis
 In
 Vitro.
 Stem
 Cells
 Dev.
 
 24(14),
 1635-­‐47
 
8. Solit,
  DB.,
  and
  Chiosis,
  G.
  (2008)
  Development
  and
  application
  of
  Hsp90
 
inhibitors.
 Drug
 Discov
 Today
 13,
 38-­‐43.
 
9. Sidera,
 K.,
 &
 Patsavoudi,
 E.
 (2014)
 HSP90
 inhibitors:
 current
 development
 
and
 potential
 in
 cancer
 therapy.
 Recent
 Pat
 Anticancer
 Drug
 Discov.
 9,
 1-­‐20.
 
10. Samuni,
 Y.,
 Ishii,
 H.,
 Hyodo,
 F.,
 Samuni,
 U.,
 Krishna,
 M.
 C.,
 Goldstein,
 S.,
 et
 al.,
 

  119
 
(2010).
  Reactive
  oxygen
  species
  mediate
  hepatotoxicity
  induced
  by
  the
 
Hsp90
  inhibiting
  anti-­‐cancer
  geldanamycin
  and
  its
  analogs.
 Free
  Radical
 
Biology
 &
 Medicine,
 48(11),
 1559–1563.
 
 

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  120
 
Chapter
 6:
 Methods
 
Antibodies
 and
 reagents
 
rhPDGF-­‐BB
 was
 purchased
 from
 R&D
 Systems.
 Antibodies
 against
 PDGFR-­‐β
 (3169)
 
and
  EGFR
  (4267)
  were
  from
  Cell
  Signaling
  Technologies
  (Dancers,
  MA).
  Anti-­‐
LRP1/CD91
  antibody
  (37-­‐7600)
  was
  purchased
  from
  Life
  Technologies
  (Grand
 
Island,
 NY).
 We
 purchased
 mouse
 monoclonal
 antibodies
 against
 Hsp90α
 (CA1023)
 
from
  Calbiochem
  (Billerica,
  MA)
  and
  Hsp90β
  (SMC
  107)
  from
  Stressmarq
 
Biosciences
 (Victoria,
 BC,
 Canada).
 Anti-­‐GAPDH
 antibody
 (GTX28245)
 antibody
 was
 
from
  Genetex
  (Irvine,
  CA).
  Anti-­‐PRAS40
  (MAB6408),
  anti-­‐p-­‐PRAS40
  T246
 
(MAB6890)
 and
 anti-­‐p-­‐RSK
 S380
 antibodies
 (MAB79671)
 were
 from
 R&D
 systems
 
(Minneapolis,
 MN).
 Anti-­‐CD63
 antibody
 (EXOAB
 CD63-­‐A1)
 and
 anti-­‐CD9
 antibodies
 
(13403)
 were
 from
 System
 Biosciences
 (Mountain
 View,
 CA)
 and
 Cell
 Signaling
 
Technology
  (Danvers,
  MA)
  respectively.
  Anti-­‐flottilin-­‐1
  (3253)
  and
  anti-­‐CD81
 
antibodies
 (EXOAB
 CD81A-­‐1)
 were
 from
 Cell
 Signaling
 Technology
 Inc.
 (Danvers,
 
MA)
 and
 System
 Biosciences
 (Mountain
 View,
 CA)
 respectively.
 Anti-­‐phospho-­‐Akt
 
S473
  (4060)
  and
  anti-­‐phospho-­‐Akt
  T308
  (4087)
  were
  from
  Cell
  Signaling
 
Technology
  Inc.
  (Danvers,
  MA). Anti-­‐cyclin-­‐D1
  (GTX61845)
  was
  from
  Genetex
 
(Irvine,
 CA).
 Anti-­‐EGFR
 antibody
 (4267)
 was
 from
 Cell
 Signaling
 Technology
 Inc.
 
(Danvers,
 MA).
 Brefeldin
 A
 (BFA)
 and
 dimethyl
 ameloride
 (DMA)
 were
 purchased
 
from
 Sigma
 Aldrich
 (St.
 Louis,
 MO).
 TGFα
 and
 EGF
 were
 purchased
 from
 Fitzgerald
 
Industries
 International
 (Acton,
 MA).
 The
 PRAS40
 WT
 cDNA
 was
 purchased
 from
 
Addgene
  (Plasmid
  #14950).
  The
  recombinant
  RAP
  protein
  was
  as
  previously
 

  121
 
described
 (Cheng
 et
 al.,
 2008).
 XL-­‐10
 Gold
 Ultra
 competent
 cells
 (XL-­‐10
 Gold)
 were
 
from
 Stratagene.
 
 
Cell
 lines
 
Primary
 human
 dermal
 fibroblasts
 were
 purchased
 from
 Clonetics
 (San
 Diego,
 CA)
 
and
 were
 cultured
 in
 DMEM
 supplemented
 with
 10%
 fetal
 bovine
 serum.
 The
 3
rd

 or
 
4
th

 passages
 were
 used
 in
 cell
 migration
 assays.
 Human
 keratinocytes
 (HKCs)
 were
 
cultured
 in
 EpiLife
 medium
 with
 added
 human
 keratinocyte
 growth
 supplements.
 
The
 2
nd

 or
 3
rd

 passages
 of
 cells
 were
 used.
 MDA-­‐MB-­‐231
 cells
 were
 cultured
 in
 
DMEM
 supplemented
 with
 10%
 FBS.
 Mouse
 hepatocytes
 were
 a
 kind
 gift
 from
 Dr.
 
Bangyan
  Stiles
  (University
  of
  Southern
  California,
  Los
  Angeles).
  Mouse
  lung
 
epithelial
 cell
 line
 (MLE
 15)
 was
 obtained
 from
 Dr.
 Zea
 Borok’s
 lab
 (University
 of
 
Southern
 California,
 Los
 Angeles).
 Eight
 human
 breast
 cancer
 cell
 and
 a
 control
 
(untransformed)
 mammary
 epithelial
 cell
 lines
 were
 gifts
 from
 Dr.
 Michael
 Press
 
(University
 of
 Southern
 California,
 Los
 Angeles).
 All
 the
 cells
 were
 cultured
 in
 DMEM
 
medium
  supplemented
  with
  10%
  fetal
  bovine
  serum
  (FBS),
  as
  well
  as
  ATCC-­‐
suggested
 media
 for
 some
 of
 the
 cell
 lines,
 such
 as
 McCoy’s
 5A
 for
 Skbr3.
 
 
 
Cell
 migration
 assay
 
 
The
 colloidal
 gold
 migration
 assay
 was
 modified
 and
 described
 previously
 in
 details
 
by
 us
 (Li
 et
 al.,
 2004).
 Initially,
 1%
 BSA
 is
 used
 to
 coat
 cover
 slips
 and
 the
 excess
 BSA
 
washed
 off
 by
 100%
 ethanol.
 The
 cover
 slips
 are
 dried
 and
 placed
 in
 a
 8-­‐well
 plate,
 
one
 cover
 slip
 per
 well.
 Gold
 salt
 solution
 (9%
 of
 gold
 salt
 combined
 with
 52%
 of
 
H2O
 and
 30%
 of
 the
 Na2CO3
 solution)
 was
 heated
 in
 an
 Erlenmeyer
 flask
 with
 
constant
 swirling
 until
 boiling,
 after
 which
 an
 equal
 volume
 of
 freshly
 prepared
 

  122
 
formaldehyde
 (0.1%)
 as
 the
 gold
 salt
 was
 quickly
 added
 to
 the
 gold
 salt
 mixture
 
with
  swirling.
  Once
  the
  mixture
  turns
  light
  purplish-­‐brown,
  it
  is
  immediately
 
pipetted
  into
  each
  well
  of
  the
  8-­‐well
  plate.
  The
  plates
  were
  covered
  and
  left
 
undisturbed
 over
 night
 to
 let
 the
 gold
 salt
 particles
 settle.
 Following
 the
 removal
 of
 
the
 gold
 salt
 solution,
 the
 cover
 slips
 were
 gently
 rinsed
 1.5
 ml
 Hank's
 buffered
 salt
 
solution
 (HBSS)
 and
 then
 incubated
 with
 1.5
 ml
 of
 HBSS
 containing
 5
 mM
 Ca
2+

 and
 
25
 μg/mL
 rat
 tail
 type
 I
 collagen
 at
 37°C
 for
 2
 hours.
 The
 collagen
 solution
 was
 
removed
 and
 plates
 were
 rinsed
 twice
 with
 PBS
 prior
 to
 plating
 the
 cells.
 Media
 
containing
 the
 appropriate
 conditions
 such
 as
 growth
 factor,
 recombinant
 protein
 
or
 antibody
 were
 prepared
 in
 individual
 tubes.
 Cells
 were
 trypsinized,
 resuspended
 
in
 serum-­‐free
 media
 and
 counted.
 3500
 cells
 were
 added
 to
 each
 condition
 and
 left
 
to
 migrate
 overnight
 at
 37
o
C.
 The
 media
 was
 removed
 and
 cells
 were
 fixed
 in
 0.1%
 
formaldehyde.
 Migration
 was
 examined
 under
 dark
 field
 optics
 and
 photographed.
 
Twenty
  randomly
  selected
  and
  non-­‐overlapping
  fields
  were
  analyzed
  with
  an
 
attached
 camera.
 Migration
 index
 is
 calculated
 as
 the
 average
 area
 taken
 up
 by
 the
 
tracks.
 Data
 from
 independent
 experiments
 (n
 ≥
 3)
 were
 averaged
 and
 calculated
 
(mean
 ±
 SD,
 p
 <
 0.05).
 
 
Cell
 viability
 assays
 
We
 used
 the
 LIVE/DEAD
 Viability/Cytotoxicity
 Kit
 for
 mammalian
 cells
 (MP
 03224,
 
Molecular
 Probes)
 and
 followed
 its
 (two)
 protocols:
 the
 Fluorescence
 Microscopy
 
Protocol
 and
 the
 Flow
 Cytometry
 Protocol.
 Samples
 were
 analysed
 in
 triplicate
 for
 
each
 condition.
 

 

  123
 
Chemotaxis
 assay
 
The
  transwell
  motility
  assay
  was
  carried
  out
  according
  to
  the
  manufacturer’s
 
instruction
 (Cat
 no.
 3422,
 Corning
 Life
 Sciences,
 Tewksbury,
 MA).
 1
 ×
 10
5

 serum-­‐
starved
 HDFs
 in
 100μL
 of
 serum-­‐free
 medium
 were
 seeded
 into
 the
 upper
 chamber
 
of
 the
 insert
 and
 650μL
 medium
 with
 chemoattractant
 was
 added
 to
 lower
 chamber
 
in
 a
 24-­‐well
 tissue
 culture
 plate.
 Medium
 with10%
 fetal
 bovine
 serum
 or
 PDGF-­‐BB
 
(15
 ng/ml)
 or
 30
 μg/ml
 recombinant
 Hsp90α
 were
 tested
 for
 induced
 chemotaxis
 of
 
the
 cells.
 Following
 24h,
 the
 migrated
 fibroblasts
 were
 stained
 with
 crystal
 violet,
 
visualized
 under
 microscope
 and
 quantitated
 in
 averaged
 percentage
 (%)
 of
 cells
 
over
 the
 total
 number
 of
 seeded
 cells
 that
 penetrated
 the
 lower
 chamber.
 
 
 
Creating
 excision
 wounds
 in
 pigs
 
To
 create
 full-­‐thickness
 excision
 wounds
 in
 pigs,
 the
 animal
 was
 shaved
 along
 its
 
torso
 on
 both
 sides.
 The
 pig
 was
 placed
 on
 its
 right
 side
 (left
 side
 up).
 The
 surgical
 
skin
 site
 on
 the
 torso
 was
 scrubbed
 with
 betadine
 scrub
 and
 solution
 3
 times
 using
 
the
 sterile
 prep
 kit
 provided
 in
 the
 Operating
 Room.
 The
 outline
 of
 the
 wounds
 was
 
created
 with
 a
 pre-­‐cut
 paper
 template
 and
 a
 permanent
 marker.
 Wounds
 were
 1.5cm
 
x
 1.5cm
 with
 2.5cm
 of
 unwounded
 skin
 between
 two
 wounds.
 The
 maximum
 number
 
of
 excision
 wounds
 on
 each
 side
 was
 12,
 making
 a
 possible
 maximum
 of
 24
 wounds
 
for
 each
 experimental
 investigation.
 Using
 number
 15
 scalpel
 blades,
 the
 wounds
 
were
 cut
 to
 a
 full
 thickness
 depth;
 the
 epidermis,
 dermis
 and
 underlying
 fat
 are
 
removed
 to
 expose
 the
 fascia
 layer
 below.
 The
 depths
 of
 the
 wounds
 were
 measured
 
at
 approximately
 5
 mm.
 
 

 

  124
 
Exosome
 Purification,
 characterization
 and
 analyses
 
Cells
 were
 cultured
 in
 serum
 free
 media
 overnight
 and
 then
 treated
 with
 different
 
stimuli
 at
 indicated
 time
 points.
 Supernatant
 were
 then
 collected
 and
 spun
 at
 300xg
 
for
  10min
  to
  discard
  cell
  contamination.
  Dead
  cells
  were
  then
  removed
  by
 
centrifugation
 at
 2,000xg
 for
 10min
 and
 cell
 debris
 were
 removed
 by
 spinning
 at
 
10,000xg
  for
  30
  min.
  Finally,
  exosomes
  were
  collected
  by
  ultracentrifugation
 
(Beckman
 Coulter
 Optima
 L-­‐100
 XP,
 Beckman
 Coulter,
 CA)
 at
 100,000xg
 for
 70min
 
and
 pelleted
 exosomes
 were
 washed
 in
 10ml
 of
 PBS
 and
 harvested
 again
 at
 10,000xg
 
for
 70
 min
 to
 get
 rid
 of
 micro-­‐vesicles
 and
 other
 contaminating
 particles.
 Exosome
 
size
  distribution
  and
  concentration
  were
  analyzed
  using
  the
  Malvern
  NanoSight
 
(Nanosight,
  Malvern
  instruments)
  aided
  by
  the
  Nanoparticle
  Tracking
  Analysis
 
(NTA)
 software.
 
 
Human
 Phospho-­‐Kinase
 Antibody
 Array
 
Human
 Keratinocytes
 were
 grown
 to
 80%
 confluence
 in
 15cm
 tissue
 culture
 dishes
 
and
  serum-­‐starved
  overnight.
  Cells
  were
  then
  treated
  with
  various
  stimuli
  for
 
indicated
 time
 points
 and
 cells
 were
 lysed
 and
 subject
 to
 Proteome
 Profiler
 Human
 
Phospho-­‐Kinase
  Array
  Kit
  (Catalog#
  ARY003B,
  R&D
  Systems,
  Minneapolis,
  MN)
 
strictly
 complying
 with
 the
 manufacturer’s
 instructions.
 
Hypoxia
 treatment
 and
 preparation
 of
 serum-­‐free
 conditioned
 media
 
The
 OxyCycler
 C42
 from
 BioSpherix
 (Redfield,
 NY)
 was
 used
 as
 the
 oxygen
 content
 
controller.
 This
 equipment
 allows
 creation
 of
 any
 oxygen
 profile
 with
 full-­‐range
 
oxygen
  (0.1–99.9%)
  and
  CO2
 control
  (0.1–20.0%).
  All
  media
  used
  for
  hypoxia
 
experiments
 were
 preincubated
 in
 hypoxia
 chambers
 with
 the
 designated
 oxygen
 

  125
 
content
 for
 16
 h
 prior
 to
 their
 use
 to
 replace
 normoxic
 culture
 media
 (Li
 et
 al.,
 2007).
 
Preparation
  of
  serum-­‐free
  conditioned
  media
  was
  carried
  out
  as
  previously
 
described
 (Cheng
 et
 al.,
 2008).
 
Immunoprecipitation
 
Cells
 were
 lysed
 using
 lysis
 buffer
 and
 lysates
 prepared.
 An
 equal
 amount
 of
 protein
 
lysates
 from
 each
 condition
 were
 incubated
 with
 the
 appropriate
 antibody
 overnight
 
at
  4°C.
  The
  next
  day,
  protein-­‐G
  sepharose
  beads
  (20μl
  beads/condition)
  were
 
washed
 with
 lysis
 buffer.
 The
 samples
 were
 then
 incubated
 with
 the
 beads
 for
 2
 
hours
 at
 4
o
C.
 They
 were
 washed
 3x
 times
 with
 lysis
 buffer
 to
 eliminate
 any
 non-­‐
specific
 binding.
 The
 associated
 proteins
 were
 investigated
 using
 western
 blot.
 
Invasion
 assay
 
 
We
 followed
 the
 procedures
 as
 described
 by
 the
 manufacturer’s
 instructions
 (BD
 
Biosciences,
  Bedford,
  MA).
  The
  Corning
  Biocoat
  Matrigel
  Invasion
  Chamber
 
(Cat#354480)
 was
 used
 as
 detailed
 previously
 
21
.
 The
 %
 invasion
 was
 calculated
 as
 
per
 the
 formula:
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Number
 of
 cells
 invaded
 
 
%
 Invasion
 =
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
 ×
 100
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Total
 number
 of
 cells
 seeded
 
Lentiviral
 systems
 
Utilization
 of
 lentiviral
 systems
 for
 down-­‐regulation
 and
 overexpression
 of
 genes
 are
 
as
 previously
 described
 (Li
 et
 al.,
 2007;
 Cheng
 et
 al.,
 2008;
 Sahu
 et
 al.,
 2012).
 The
 
pRRLsinh-­‐CMV
 system
 was
 used
 to
 overexpress
 exogenous
 genes.
 The
 pHR-­‐CMV-­‐
puro
 RNAi
 delivery
 system
 was
 used
 to
 deliver
 shRNA.
 The
 shRNA
 sequences
 of
 the
 

  126
 
various
  genes
  are
  as
  follows:
  PRAS40:
  GCTGAGTTCTAAGCTCTAA
  (sense),
  EGFR:
 
AGAATGTGGAATACCTAAGG
  (sense),
  Hsp90α:
 GGAAAGAGCTGCATATTAA
  (sense)
 
and
  Hsp90β:
 GCATCTATCGCATGATCAA
  (sense).
  The
  FG-­‐12
  system
  was
  used
  to
 
deliver
 shRNA
 against
 Raptor:
 AAAATTTCGAAACAGACTAGCC
 (sense)
 and
 mTOR:
 
GGCCGCATTGTCTCTATCAT
 (sense).
 
Nanoparticle
 Tracking
 analysis
 (NTA)
 
Exosome
  size
  distribution
  and
  concentration
  were
  analyzed
  using
  the
  Malvern
 
NanoSight
 (Nanosight,
 Malvern
 instruments)
 aided
 by
 the
 Nanoparticle
 Tracking
 
Analysis
  (NTA)
  software.
  Briefly,
  conditioned
  media
  from
  cells
  treated
  under
 
different
 conditions
 was
 passed
 into
 a
 sample
 chamber
 and
 subjected
 to
 a
 laser
 
beam.
 Particles
 in
 the
 media
 scatter
 light
 that
 is
 visualized
 by
 a
 microscope
 and
 
captured
 by
 a
 camera.
 The
 NTA
 software
 calculates
 the
 hydrodynamic
 diameter
 of
 
the
 particles
 using
 Stokes-­‐Einstein
 equation,
 providing
 a
 real-­‐time
 measurement
 of
 
the
 concentration,
 particle
 size
 and
 aggregation
 of
 particles
 in
 the
 media.
 
 
Preparation
 of
 carboxymethylcellulose
 gel
 with
 recombinant
 human
 Hsp90α
 
proteins
 
To
 prepare
 the
 wound
 healing
 formula,
 CMC
 powder
 (Sigma
 Aldrich;
 viscosity,
 50
 to
 
200cps;
 purity,
 99.5%,
 sodium
 salt)
 was
 dissolved
 in
 double-­‐distilled
 water
 in
 a
 
tissue
 culture
 hood
 at
 a
 20%
 (wt/vol)
 concentration.
 The
 mixture
 was
 incubated
 for
 
4
 hours
 at
 37°C
 and
 then
 placed
 on
 a
 shaker
 for
 24
 hours
 at
 4°C.
 After
 being
 
equilibrated
  back
  to
  room
  temperature,
  the
  CMC
  solution
  was
  mixed
  at
  a
  1:1
 
(vol/vol)
  ratio
  with
  the
  indicated
  concentrations
  of
  FPLC
  purified
  and
  filtered
 
Hsp90α
 proteins
 and
 topically
 added
 to
 wounds.
 
 

  127
 

 
Recombinant
 Hsp90α
 and
 Hsp90β
 proteins
 production
 and
 purification
 
Protein
  synthesis
  was
  induced
  by
  the
  addition
  of
  IPTG
  (isopropyl-­‐β-­‐D-­‐
thiogalactopyranoside)
 to
 the
 bacterium
 culture
 (optical
 density
 0.5-­‐1)
 for
 a
 final
 
concentration
 of
 1
 mM
 and
 incubated
 for
 5
 h
 at
 25°C.
 His-­‐tagged
 proteins
 were
 first
 
purified
 by
 a
 nickel-­‐nitrilotriacetic
 acid
 (Ni-­‐NTA)
 column
 with
 a
 His-­‐Bind
 purification
 
kit
  (EMD
  Biosciences,
  Inc.)
  according
  to
  the
  manufacturer's
  procedure.
  Briefly,
 
bacteria
 were
 resuspended
 in
 binding
 buffer
 with
 protease
 inhibitors
 and
 lysozyme.
 
They
 were
 sonicated
 for
 1.30
 minutes
 in
 bursts
 of
 10
 seconds
 with
 20
 seconds
 in
 
between
 bursts.
 The
 purified
 proteins
 were
 concentrated
 in
 an
 Amicon
 filter
 tube
 
(Millipore,
  Billerica,
  MA)
  to
  4
  ml
  and
  loaded
  onto
  a
  Superdex
  200
  HiLoad
  gel
 
filtration
 column
 (GE
 Healthcare,
 Piscataway,
 NJ)
 and
 separated
 by
 fast
 protein
 liquid
 
chromatography
  (FPLC).
  Proteins
  were
  eluted
  by
  use
  of
  Dulbecco's
  phosphate-­‐
buffered
 saline
 buffer
 with
 a
 flow
 speed
 of
 1.0
 ml/min.
 The
 fractions
 with
 Hsp90α
 
were
 further
 concentrated
 with
 Amicon
 filter
 tubes
 to
 achieve
 a
 final
 concentration
 
of
 1
 mg/ml.
 Proteins
 were
 stored
 in
 10%
 glycerol-­‐DPBS
 at
 −80°C.
 
 
Reverse
 Transcriptase
 PCR
 (RT-­‐PCR)
 
Total
  RNA
  was
  extracted
  from
  control,
  Hsp90α-­‐
  or
  Hsp90β-­‐
  knockdown
  human
 
dermal
  fibroblasts
  using
  Trizol
  (Invitrogen).
  cDNA
  was
  extracted
  using
  the
 
Superscript
  III
  First
  Strand
  synthesis
  system,
  according
  to
  the
  manufacturer’s
 
instructions
  (Invitrogen).
  The
  primers
  for
  LRP1
  5’
  CTCCCACCGCTATGTGATCC
  3’
 
(forward)
  and
  5’
  ACTCATCTTGTGCTCGGCAA
  (reverse)
  and
  for
  GAPDH
  (5′-­‐
CCATCACCATCTTCCAGGAG-­‐3′
  (forward)
  and
  5′-­‐CCTGCTTCACCACCTTCTTG-­‐3′
 

  128
 
(reverse)
 were
 designed
 using
 the
 Primer-­‐Blast
 software.
 cDNAs
 were
 subject
 to
 PCR
 
with
 an
 initial
 denaturation
 at
 94
o
C
 for
 2
 minutes
 followed
 by
 denaturation
 at
 94
o
C
 
for
 30
 seconds,
 annealing
 at
 55

 o
C
 for
 30
 seconds
 and
 extension
 at
 68

 o
C
 for
 1
 minute.
 
The
  products
  were
  visualized
  on
  a
  1.5%
  agarose
  gel
  using
  Ethidium
  Bromide
 
staining.
 
 
Site-­‐directed
 mutagenesis
 on
 T246
 site
 of
 PRAS40
 
The
  Quikchange
  II
  XL
  site-­‐directed
  mutagenesis
  kit
  (200521-­‐5)
  from
  Agilent
 
Technologies
 was
 used
 to
 mutate
 the
 T246
 site
 of
 PRAS40.
 The
 primer
 sequence
 
GGAAGTCGCTGGCGTTAAGCCGCGGC
  (sense)
  was
  used
  to
  generate
  the
  T246
  to
 
alanine
  (T246A)
  mutation
  and
  the
  primer
  sequence
 
GCTTCTGGAAGTCGCTTTCGTTAAGCCGCGGCCGTGG
 (sense)
 was
 used
 to
 generate
 the
 
T246
 to
 glutamic
 acid
 (T246E)
 mutation.
 
Statistical
 analyses
 
 

 
 Data
 are
 based
 on
 three
 or
 four
 independent
 experiments.
 The
 data
 are
 presented
 
as
 mean
  ±
  s.d.
 Matrigel
 Invasion
 Assay
 quantification
 was
 achieved
 by
 measuring
 
five
  randomly
  selected
  fields
  per
  experimental
  condition.
  Colloidal
  gold
  salt
 
migration
 assay
 quantification
 was
 achieved
 by
 measuring
 the
 individual
 tracks
 of
 
20
  randomly
  selected
  individual
  cells
  per
  experimental
  condition,
  where
  each
 
condition
 in
 an
 experiment
 was
 repeated
 at
 least
 three
 times.
 Flow
 cytometry
 assay
 
quantification
  was
  based
  on
  triplicate
  samples
  in
  each
  experiment
  from
  three
 
indepedent
 experiments
 as
 percentage
 (%).
 
 The
 data
 are
 presented
 as
 mean
  ±
  s.d.
 
Statistical
  differences
  were
  evaluated
  using
  the
  two-­‐tailed
  Student
  t-­‐test
  for
 

  129
 
comparisons
 of
 two
 groups,
 or
 analysis
 of
 variance
 for
 comparisons
 of
 more
 than
 
two
 groups.
 p
 <
 0.05
 was
 considered
 significant.
 
Western
 blot
 
Equal
 amounts
 of
 lysates
 (normalized
 using
 Bradford
 assay)
 were
 loaded
 onto
 a
 
SDS-­‐PAGE
 gel.
 Proteins
 were
 transferred
 to
 a
 nitrocellulose
 membrane
 using
 the
 
wet
 transfer
 apparatus
 (Bio-­‐Rad)
 at
 90V
 for
 2
 hours.
 Membranes
 were
 stained
 with
 
ponceau
 red
 to
 confirm
 transfer
 and
 equal
 loading
 of
 proteins
 after
 which,
 they
 
were
 washed
 2x
 times
 with
 TBS-­‐T
 and
 1x
 with
 TBS.
 Membranes
 were
 blocked
 for
 1
 
hour
 at
 room
 temperature
 using
 5%
 BSA
 in
 TBS.
 Primary
 antibodies
 were
 incubated
 
overnight
 and
 then
 washed
 3x
 times
 with
 TBS-­‐T
 and
 1x
 with
 TBS.
 The
 membranes
 
were
 incubated
 with
 HRP-­‐
 linked
 secondary
 antibodies
 (Santa
 Cruz
 biotechnology)
 
for
 1
 hour
 at
 room
 temperature
 followed
 by
 TBS-­‐T
 and
 TBS
 washes.
 Membranes
 
were
 developed
 using
 the
 ECL
 kit
 (GE
 Healthcare
 Lifesciences)
 in
 a
 dark
 room. 
Asset Metadata
Creator Jayaprakash, Priyamvada (author) 
Core Title Mechanism of secretion and function of heat shock protein-90 (Hsp90) family genes 
Contributor Electronically uploaded by the author (provenance) 
School Keck School of Medicine 
Degree Doctor of Philosophy 
Degree Program Genetic, Molecular and Cellular Biology 
Publication Date 07/29/2016 
Defense Date 04/28/2016 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag breast cancer,cell migration,exosomes,Hsp90,OAI-PMH Harvest,wound healing 
Format application/pdf (imt) 
Language English
Advisor Stallcup, Michael (committee chair), Dubeau, Louis (committee member) 
Creator Email jayaprak@usc.edu,priyamvada.jayaprakash@gmail.com 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c40-287386 
Unique identifier UC11280393 
Identifier etd-Jayaprakas-4682.pdf (filename),usctheses-c40-287386 (legacy record id) 
Legacy Identifier etd-Jayaprakas-4682.pdf 
Dmrecord 287386 
Document Type Dissertation 
Format application/pdf (imt) 
Rights Jayaprakash, Priyamvada 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law.  Electronic access is being provided by the USC Libraries in agreement with the a... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Abstract (if available)
Abstract The cytosolic heat shock proteins of 90kDa family, Hsp90α and Hsp90β, were widely studied for their intracellular chaperone function. Over the past decade, an extracellular promotility function of majorly the Hsp90α isoform has emerged, where it drives cell migration resulting in wound healing or cancer metastasis. We report that despite being 86% homologous at the amino acid level, the Hsp90α and Hsp90β isoforms have distinct functions in driving dermal fibroblast migration. Hsp90β acts inside the cell as a chaperone stabilizing the cell surface LRP-1 receptor while Hsp90α acts outside the cell as a promotility factor binding and signaling through LRP-1. In addition, we also show the distinct functions of Hsp90α and Hsp90β in breast cancer formation and metastasis. Only secreted Hsp90α but not Hsp90β protects tumor cells from hypoxia-driven cell death. Neutralizing its function blocks tumor cell survival in vitro and tumor formation in vivo. In addition, we have identified an important upstream regulator of Hsp90α secretion in response to diverse environmental stresses. This protein named PRAS40 controls exosome-mediated Hsp90α secretion and its lentiviral knockdown inhibits not only exosome secretion, but also exosome-mediated cell migration. 
Tags
breast cancer
cell migration
exosomes
Hsp90
wound healing
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button