Close
USC Libraries
University of Southern California
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Folder
Three-dimensional volumetric analysis of gingival augmentation for the treatment of multiple recession defects by vestibular incision subperiosteal tunnel acces (VISTA)
(USC Thesis Other) 

Three-dimensional volumetric analysis of gingival augmentation for the treatment of multiple recession defects by vestibular incision subperiosteal tunnel acces (VISTA)

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Copy asset link
Request this asset
Request accessible transcript
Transcript (if available)
Content   1   Three-­‐‑dimensional  volumetric   Analysis  of  Gingival  Augmentation  for   the  treatment  of  multiple  recession   defects  by  Vestibular  Incision   Subperiosteal  Tunnel  Access  (VISTA)   Authors: Alfonso Gil, DDS Division of Periodontology, Diagnostic Sciences & Dental Hygiene University of Southern California Ostrow School of Dentistry 925 34th Street Room 4278 Los Angeles, CA 90089-0641 Correspondence: Gil.alfon@ hotmail.com Conferring Program: Master of Science, CBY Conferring Date: August 2016   2   Index         1-­‐‑  TITLE                                                                                               3       2-­‐‑ABSTRACT                     4     3-­‐‑KEYWORDS   6     4-­‐‑INTRODUCTION                 7     5-­‐HYPOTHESIS                   12     6-­‐‑OBJECTIVES                   13     7-­‐‑MATERIAL  AND  METHODS             14     8-­‐‑RESULTS                   17     9-­‐‑DISCUSSION                   24     10-­‐‑CONCLUSIONS                 31     11-­‐‑BIBLIOGRAPHY                 32     12-­‐‑TABLES/FIGURES                 37                         3   1-­‐‑Title     Three-­‐‑dimensional  volumetric  Analysis  of  Gingival  Augmentation  for  the  treatment  of   multiple  recession  defects  by  Vestibular  Incision  Subperiosteal  Tunnel  Access   (VISTA).                                                                           4   2-­‐‑Abstract       Aim:  Treatment  of  multiple  contiguous  recession  defects,  in  particular  in  sites  with   interproximal  periodontal  attachment  loss  remains  a  clinical  challenge.  Vestibular   Incision  Subperiosteal  Tunnel  Access  (VISTA)  has  been  developed  as  a  technique  well   suited  for  these  clinical  scenarios.  The  present  study  sought  to  analyze  retrospective   data  on  patients  treated  with  VISTA  to  achieve  periodontal  root  coverage  for  the   treatment  of  multiple  contiguous  recession  defects.  The  aim  of  this  study  was  to   determine  the  efficacy  of  VISTA  for  root  coverage  and  gingival  thickness/volume  gain,   and  to  determine  the  role  of  various  risk  factors  (initial  root  prominence,  initial   gingival  margin  thickness,  initial  recession  depth,  recession  type,  tooth  type,  graft  type   and  anatomic  location)     Material  and  methods:  Thirteen  patients  with  86  teeth  exhibiting  multiple  gingival   recession  defects  (mean  initial  recession  2.3  mm±0.9)  were  treated  with  VISTA  using   various  graft  materials.  Treated  root  surfaces  were  thoroughly  debrided  with  scaling   and  root  planning.  Odontoplasty  was  performed  to  reduce  root  prominence,  and   exposed  root  surfaces  were  conditioned  with  EDTA.  VISTA  entailed  a  vertical  incision   in  the  vestibule,  through  which  a  subperiosteal  tunnel  was  created,  extending  towards   the  vestibular  depth  and  gingival  margins.  The  tunnel  was  coronally  advanced  and   stabilized  with  sutures  that  were  bonded  to  the  facial  surface  of  the  teeth.  Graft   material  included  autogenous  connective  tissue  from  palate/tuberosity,  acellular   dermal  matrix  (ADM;  Perioderm),  or  xenogenic  collagen  matrix  (XCM;  Mucograft).   Sutures  were  removed  after  3  weeks.  Retrospective  data  on  patients  treated,  including   clinical  and  study  models  was  collected  in  an  effort  to  examine  therapeutic   effectiveness  of  various  clinical  cases.  The  outcome  of  soft  tissue  augmentation  was   assessed  by  3-­‐‑dimensional  analysis,  comparing  pre-­‐‑  and  post-­‐‑therapy  study  casts.       Study  casts  were  made  from  alginate  impressions  at  baseline  and  at  various  intervals   after  surgery.  The  pre-­‐‑  and  post-­‐‑op  study  models  were  scanned  with  3-­‐‑D  scanner  (3   Shape)  and  saved  as  STL  files.  These  were  imported  into  the  reverse  engineering   software  (Geomagic  Control)  and  superimposed  to  allow  for  comparison  of  volumetric   changes.  The  changes  in  gingival  volume,  soft  tissue  thickness,  percentage  of  root   coverage  and  complete  root  coverage  were  calculated.     Results:    The  mean  percentage  of  root  coverage  achieved  was  102.0  ±  10.0%  for   Miller  Class  I/II  and  83.0  ±  14.0%  for  Class  III  recession  defects.  Complete  root   coverage  was  71.0%  for  Miller  Class  I/II  recession  defects,  and  16.0%  for  Miller  Class   III.    The  mean  gingival  volume  gain  was  3.8  ±  1.8  mm3  and  5.9  ±  6.9  mm3  for  Class  I/II   and  III,  respectively.  The  gingival  thickness  gain  was  1.0  ±  0.3  mm,  1.0  ±  0.4  mm,  0.9  ±   0.4  mm,  0.9  ±  0.4  mm  and  0.8  ±  0.4  mm  at  1,  2,  3,  4,  5  mm,  from  the  final  gingival   margin,  respectively.  Root  prominence  showed  a  statistical  significant  negative   correlation  with  percentage  of  root  coverage  (p=0.0001).  Pre-­‐‑operative  gingival   margin  thickness  and  incisor  teeth  showed  a  statistical  significant  positive  correlation   with  percentage  of  root  coverage  (p=0.0001).  The  types  of  graft  material  used     5   (palatal/tuberosity  CTG,  ADM,  XCM)  and  the  anatomic  location  of  the  tooth  (maxillary   vs  mandibular)  showed  no  statistical  difference  in  any  of  the  parameters  measured.     Conclusions.  The  present  pilot  study  demonstrated  that  3D  volumetric  measurement   can  provide  a  quantitative  tool  to  examine  the  efficacy  of  treatment  of  gingival   recession  defects.    The  results  of  this  study  suggest  root  prominence  as  an  important   negative  predictor  of  root  coverage.    Additional  predictors  of  outcome  included  tooth   type  (incisor,  canine,  premolar  or  molar),  interproximal  tissue  loss  (Miller  class  I/II  vs   III)  and  pre-­‐‑operative  gingival  margin  thickness.  It  can  be  concluded  that  VISTA  shows   favorable  outcomes  in  root  coverage,  volume  gain  and  gingival  biotype  modification   after  a  mean  follow  up  period  of  12  months  after  surgery.                                                                   6   3-­‐‑Keywords     Mucogingival  surgery,  gingival  recession,  periodontal  root  coverage,  periodontal   regeneration,  connective  tissue  graft.                                                                           7   4-­‐‑Introduction     Gingival  recession  is  defined  as  the  apical  migration  of  the  gingival  margin  in   relationship  with  the  cementoenamel  junction  in  one  or  multiple  teeth.  This  is  one  of   the  most  common  periodontal  findings,  affecting  more  than  80%  of  the  population.   (Chambrone  et  al.,  2010)     Anatomic  factors,  trauma  from  brushing,  periodontal  disease  and  tooth  malposition   are  the  main  risk  factors  for  the  development  of  these  periodontal  defects.  Gingival   recession  is  often  associated  with  aesthetic  problems  and  dentinal  hypersensitivity   (Chambrone  et  al.,  2010).  Irregularities  of  gingival  margin  contour  may  also  pose   difficulty  for  patients  to  perform  adequate  oral  hygiene,  leading  to  accumulation  of   plaque  and  gingival  inflammation.  Sites  with  gingival  recession  also  have  increased   susceptibility  to  future  gingival  recession  (Serino  et  al.,  1994).  The  negative   consequences  associated  with  gingival  recession  provide  a  rationale  for  the  treatment   of  certain  gingival  recession  defects.       A  wide  variety  of  surgical  techniques  have  been  utilized  for  soft  tissue  augmentation   around  teeth.  From  the  1950s  to  the  1970s  repositioned  periodontal  flaps  began  to  be   used  for  the  treatment  of  recession  type  defects.  These  techniques  entailed  the   displacement  of  a  partial  thickness  pedicle  graft  adjacent  to  the  recession  in  a   lateral/oblique  manner  to  cover  the  denuded  root  surface.  (Grupe  and  Warren  1956,   Corn  et  al.,  1964,  Pennel  et  al.,  1965,  Cohen  et  al.,  1968)  The  clinical  outcomes  of  all   these  techniques  improved,  but  the  donor  site  always  healed  though  secondary   intention  healing.    Later  on,  repositioned  flaps  were  modified  to  substitute  lateral   sliding  flaps  for  coronally  advanced  flaps  (Bernimoulin  et  al.,  1975).  This  technique   utilized  periosteal  releasing  incisions  to  mobilize  the  flap  in  a  coronal  direction  to   cover  denuded  roots.    Many  clinicians  that  soon  made  modifications  of  the  technique   adopted  the  concept.  (Tarnow  et  al.,  1986,  Romanos  et  al.,  1993)     Miller  described  the  use  of  free  epithelialized  grafts,  containing  both  the  epithelium   and  connective  tissue  for  gingival  augmentation  and  root  coverage.    This  free  graft   would  be  stabilized  over  the  recipient  area  with  sutures  after  dissection  of  a  partial   thickness  and  apically  positioned  flap.  (Holbrook  et  al.,  1983)  This  technique  was   developed  for  areas  lacking  keratinized  tissue  but  also  for  the  purpose  of  root   coverage.  The  main  disadvantages  are  the  aesthetic  problems  due  to  lack  of  color   match  with  the  recipient  area  and  the  patient  morbidity  because  of  the  secondary   intention  healing  in  the  palate.  (Douglas  de  Oliveira  et  al.,  2013)     In  1985  Langer  and  Langer  (Langer  et  al.,  1985)  introduced  the  sub  epithelial   connective  tissue  graft  (SCTG)  for  mucogingival  therapy  and  root  coverage.  After   having  raised  a  split  thickness  flap,  this  graft  would  be  stabilized  over  the  denuded   root  area  with  sutures  and  would  then  be  left  uncovered  over  the  recession  sites.  This   technique  decreased  the  morbidity  of  the  surgery  and  improved  the  clinical  results  of   the  procedure.       8     Furthermore,  different  approaches  were  described  to  utilize  the  connective  tissue   graft  in  with  more  predictable  results.  (Raetzke  et  al.,  1985,  Allen  et  al.,  1994)     Finally,  after  the  year  2000,  long  term  outcomes  were  reported  for  the  use  of  a   coronally  advanced  flap  and  a  connective  tissue  graft  combined.  (Zabalegui  et  al.,   1999,  Zucchelli  et  al.,  2000,  Carvalho  et  al.,  2006,  Zadeh  et  al.,  2011,  Zuhr  et  al.,  2014,   Bethaz  et  al.,  2014).  The  connective  tissue  graft  would  be  placed  in  the  recipient  area   through  a  tunnel  or  through  a  raised  flap  and  then  the  tunnel/flap  would  be   repositioned  coronally.     An  increasing  number  of  publications  supported  these  techniques.  Not  only   descriptive  papers  but  also  randomized  controlled  clinical  trials  strengthened  the   current  periodontal  literature  supporting  this  type  of  surgery.     Recent  systematic  reviews  have  widely  reported  the  coronally  advanced  flap  (CAF)  in   combination  with  a  connective  tissue  graft  as  the  gold  standard  for  soft  tissue   augmentation  and  periodontal  root  coverage.  (Buti  et  al.,  2013,  Chambrone  et  al.,   2015)  Multiple  randomized  controlled  clinical  trials  have  demonstrated  successful   recession  reduction,  clinical  attachment  level  gain  and  increased  zone  of  keratinized   tissue.  (Aroca  et  al.,  2013,  Zucchelli  et  al.,  2009)     The  techniques  mentioned  above  have  shown  positive  outcomes,  especially  in  cases   when  there  is  no  loss  of  the  interproximal  bone:  recession  defects  class  I  and  II,   according  to  the  Miller  Classification.  (Miller  et  al.,  1985)  These  type  of  recession   defects  present  with  more  remaining  blood  supply  adjacent  to  the  defect  site  when   there  is  intact  interproximal  bone  and  periodontal  attachment.    Subsequently  there  is   a  better  chance  of  obtaining  complete  root  coverage,  regardless  of  the  technique  used.   Conversely,  in  sites  with  loss  of  interdental  bone  and  attachment  (Miller  class  III  and   IV),  root  coverage  procedures  have  reduced  efficacy  and  less  predictability.   (Chambrone  et  al.,  2015,  Cortellini  &  Pini  Prato  2012)  The  limitation  of  root  coverage   correlates  to  the  level  of  interproximal  bone  that  will  provide  blood  supply  during   healing  process.     The  evidence  on  the  treatment  of  gingival  recession  defects  type  III  is  scarce  and  only   a  few  randomized  controlled  clinical  trials  have  addressed  this  issue.  (Aroca  et  al.,   2010,  Cairo  et  al.,  2012,  Henriquez  et  al.,  2010)  These  studies  show  heterogeneous   results  with  a  mean  root  coverage  ranging  from  55  to  85%.    (Chambrone  et  al.,  2015)   More  studies  are  needed  to  determine  the  outcome  of  treatment  of  these  periodontal   defects.     Gingival  recession  may  also  be  part  of  a  generalized  condition  that  presents  itself  with   multiple  recession  type  defects  and  is  usually  associated  with  previous  history  of   periodontitis.  This  is  the  reason  why  some  root  coverage  procedures  nowadays   attempt  to  cover  more  than  one  tooth  with  recession,  therefore  reducing  the   morbidity  of  multiple  surgeries  for  the  patient.     9     Nevertheless,  this  common  clinical  situation  has  not  been  studied  enough  in  the   periodontal  literature.  In  fact,  there  are  not  many  prospective  studies  assessing  the   treatment  of  multiple  recession  type  defects.  Two  systematic  reviews  have  revised   this.  (Chambrone  et  al.,  2009,  Hofmänner  et  al.,  2012)  Both  conclude  using  the  scarce   available  literature,  that  in  the  presence  of  pristine  interdental  attachment  (gingival   recession  class  I  and  II)  multiple  recession  type  defects  can  benefit  from  root  coverage   procedures  when  a  coronally  advanced  flap  is  combined  with  the  use  of  a  connective   tissue  graft.  The  results  show  a  mean  root  coverage  ranging  from  91  to  98%,  which   remains  stable  in  a  short  period  of  time.  Such  results  suggest  that  we  can  improve   most  clinical  parameters  by  performing  periodontal  plastic  surgery  for  these  type  of   recessions  in  cases  where  there  is  no  interproximal  bone  loss.  For  adjacent  recession   defects  that  are  class  III,  there  is  very  limited  data  on  clinical  trials.  (Chambrone  et  al.,   2009)     Vestibular  Incision  Subperiosteal  Tunnel  Access  (VISTA)  may  be  well  suited  for  the   treatment  of  multiple  recession  type  defects  with  presence  of  interproximal  bone  loss.     VISTA  consists  of  a  vertical  incision  done  in  the  vestibule,  remote  from  the  recession   area.  Through  this  incision,  a  subperiosteal  tunnel  is  created  using  a  series  of  specially   designed  elevators,  extending  towards  the  vestibular  depth  as  well  as  the  gingival   margin  and  papillae.  This  type  of  tunneling  produces  a  tension  free  method  of   mobilizing  the  mucoperiosteal  complex  in  a  coronal  direction.  Sutures  are  placed  in   the  mucosal  margin  and  fixated  to  the  teeth  with  bonded  resin.  Then,  an  autogenous   connective  tissue  graft  or  graft  substitute  is  inserted  inside  the  tunnel  and  the  vertical   incision  is  approximated  with  suture.       This  technique  is  based  on  the  concept  of  a  coronally  advanced  tunnel  with  an   autogenous  or  synthetic  graft,  where  no  incisions  are  made  on  the  gingival  margin,  to   preserve  the  blood  supply,  and  there  is  an  important  coronal  displacement  of  the   whole  mucogingival  complex  with  bonded  sutures  to  the  buccal  surface  of  the  teeth.   (Zadeh  et  al.,  2011)     This  technique  can  be  applied  for  the  treatment  of  multiple  recession  type  defects.  The   tunnel  will  usually  include  at  least  one  tooth  mesial  and  distal  to  the  area  that  needs   treatment.  A  wider  the  tunnel  in  a  mesio-­‐‑distal  dimension,  will  provide  a  greater   tension  free  coronal  displacement  of  the  mucogingival  complex.    Absence  of   interproximal  incisions  in  conjunction  with  coronal  displacement  of  uninterrupted   blood  vessels  of  the  flap  can  provide  additional  blood  supply  for  improved  healing   potential  of  miller  class  III  recession  defects  where  there  is  interproximal  loss  of  bone   and  reduced  apical  perfusion  to  the  graft.     Different  predictive  factors  have  been  described  in  the  literature  for  the  treatment  of   gingival  recession  defects.  A  study  by  Cortellini  and  Pini  Prato  (Cortellini  &  Pini  Prato   2012)  presented  different  risk  factors,  categorized  into  3  groups:  patient  factors,  tooth   factors  and  defect/site  factors.  Mainly,  the  most  important  risk  factors  for  this  type  of   procedure  are  smoking,  presence  of  interproximal  bone  loss  (gingival  recession  type     10   III,  IV),  thin  biotype  and  deep  initial  recession  (more  than  4  mm).  All  of  these  are   supported  by  different  prospective  studies.  There  are  other  risk  factors  that  have   weaker  evidence,  such  as  tooth  type,  oral  hygiene,  anatomic  location,  abrasion  in  the   cervical  area  and  papilla  morphology.  These  have  been  described  in  retrospective   studies  but  are  lacking  stronger  evidence.  There  is  a  need  for  understanding  the   influence  of  such  risk  factors  in  outcome  of  therapy  and  whether  there  are  still  any   other  factors  yet  to  be  identified.     In  order  to  determine  the  efficacy  of  various  techniques  of  soft  tissue  augmentation,  it   will  be  necessary  to  utilize  quantitative  methods  that  can  precisely  measure  changes   achieved  after  therapy.  Classically  the  way  to  interpret  the  data  in  clinical  studies  on   the  treatment  of  recession  type  defects  has  been  with  direct  intraoral  measurements.      The  most  common  method  used  for  quantifying  the  efficacy  of  various  soft  tissue   augmentation  techniques  is  linear  measurement  using  a  periodontal  probe.  It  is   apparent  that  this  method  will  be  limited  by  the  errors  associated  with  utilizing  an   instrument  that  measures  at  millimeter  level.  First,  limited  visual  access  to  the  area   that  is  being  analyzed  may  be  present.  Second,  differences  in  angulation  and   projection  of  the  instrument  can  cause  reading  errors  in  the  quantification  of  the   measurement.  In  addition,  such  measurements  are  usually  rounded  to  the  next   millimeter.  (Badersten  et  al.,  1984)     Periodontal  probe  is  the  instrument  of  choice  for  measurement  changes  in  different   types  of  soft  tissue  conditions,  such  as  probing  pocket  depth,  width  of  keratinized   tissue  and  the  amount  of  gingival  recessions  depth.  Different  types  of  periodontal   probes  can  be  found  in  the  market.  They  show  different  horizontal  markings  at   defined  intervals  (usually  at  each  1,  2,  or  3  mm)  for  visual  measurements,  and  the   tendency  is  to  round  values  to  the  next  millimeter.    Because  of  this  tendency  to  round   off  numbers,  a  measurement  error  of  approximately  1  mm  can  occur.  This  has  been   shown  in  the  literature  before,  where  different  clinical  studies  have  assessed   differences  in  periodontal  pocket  depth  probing.  (Osborn  et  al.,  1990;  Wang  et  al.,   1995)     While  assessing  the  outcomes  of  different  treatment  options,  such  methodological   inaccuracies  could  affect  the  specificity  of  the  results,  therefore  potentially  leading  to   imprecise  conclusions  of  treatment  outcomes.  Therefore,  it  is  important  to  find  more   precise  measurement  techniques  that  can  ensure  a  more  accurate  data  collection  for   analysis.     Digital  technologies  are  becoming  more  established  in  everyday  dentistry  and  have   evolved  tremendously  to  become  more  efficient  and  accurate.  They  can  be  used  in  all   sorts  of  different  scenarios  in  dentistry,  from  computer-­‐‑aided  design  of  prosthetic   components,  to  optical  surface  scanning  and  volumetric  data  analysis.     Images  that  are  obtained  from  optical  scanning  can  be  analyzed  and  measured  at   different  magnifications  and  directions,  thus  being  able  to  make  accurate     11   measurements  of  even  a  tenth  of  a  millimeter.  Also,  optical  scanning  allows  for  not   only  linear  measurements  but  also  volumetric  analysis  in  3  dimensions.  This  is  a   unique  characteristic  for  this  type  of  measurement  technique,  that  is  unprecedented   for  any  type  of  clinical  measurement.  (Schneider  et  al.,  2014)     Digital  imaging  may  therefore  introduce  a  clear  advantage  in  measurement  method   for  data  collection  in  periodontal  research,  potentially  improving  quality  and   reliability  of  data  acquisition.  This  has  already  been  shown  in  other  areas  of  dentistry   where  different  clinical  scenarios  have  been  analyzed  through  this  new  technology   with  promising  results.  (Fickl  et  al.,  2009,  Thoma  et  al.,  2010,  Schneider  et  al.,  2011)   There  is  a  great  potential  to  utilize  digital  analysis  to  find  new  and  solid  evidence,   especially,  in  the  field  of  gingival  augmentation  around  teeth.  Only  a  few  studies  have   been  published  regarding  this  concept  (Rebele  et  al.,  2014,  Schneider  et  al.,  2014),   where  the  possibility  of  examining  3  dimensional  soft  tissue  aspects  following  root   coverage  procedures  is  presented  with  great  success.     The  present  study  sought  to  utilize  3D  volumetric  method  to  compare  the  pre-­‐‑  and   post-­‐‑therapy  study  models  of  patients  treated  with  VISTA  technique  for  multiple   gingival  recession  type  defects  and  to  examine  which  predictive  factors  may  play  a   role  in  outcome  of  root  coverage.                                                   12   5-­‐‑Hypothesis       1-­‐‑The  treatment  of  multiple  recession  defects  by  Vestibular  Incision  Subperiosteal   Tunnel  Access  (VISTA)  achieves  root  coverage,  gingival  thickness  and  gingival  volume   gain.       2-­‐‑The  ability  to  achieve  periodontal  root  coverage  with  VISTA,  depends  on  a  number   risk  factors.  (initial  root  prominence,  initial  gingival  margin  thickness,  initial  recession   depth,  recession  type,  tooth  type,  graft  type  and  anatomic  location)                                                                 13   6-­‐‑Objectives     The  aim  of  this  study  was  to  analyze  retrospective  clinical  data  and  study  casts  to   determine  the  efficacy  of  VISTA  for  root  coverage  and  gingival  thickness/volume  gain,   and  to  determine  the  role  of  various  risk  factors  on  the  outcome  of  VISTA.       To  that  end,  the  role  of  anatomic  properties  of  teeth  (initial  root  prominence,  initial   gingival  margin  thickness,  initial  recession  depth,  recession  type,  tooth  type  and   anatomic  location),  and  graft  material  used,  were  considered  on  the  outcomes   achieved.  The  outcome  measurement  examined  included  percentage  of  sites  with   complete  root  coverage,  percentage  of  root  coverage,  gingival  volume  and  gingival   thickness  gain.                                                               14   7-­‐‑Material  and  Methods     This  study  was  designed  as  a  retrospective  analysis  of  clinical  data,  as  well  as  study   casts  of  patients  treated  with  VISTA  for  gingival  recession  defects.  Three-­‐‑dimensional   volumetric  image  analysis  was  used  to  perform  quantitative  assessment  of  therapy-­‐‑ associated  gingival  changes.     A-Sample Characteristics The  study  sample  consisted  of  13  patients  contributing  86  teeth  with  multiple  gingival   recession  type  defects.  (mean  initial  recession  of  2.3  mm  ±  0.9)  The  average  was  6.6   recession  defects  per  patient,  ranging  from  2  to  12  recession  defects  treated  per   patient.     The  mean  age  of  the  patients  was  53  ±  15  years  (ranging  from  18  to  71).  There  were  4   males  and  9  females  in  the  study.  Patients  had  a  minimum  follow  up  period  of  6   months  and  a  maximum  follow  up  period  of  25  months  (mean  follow  up  12  months).     All  participants  met  the  study  inclusion  criteria:   •  Age  >  18  years   •  Full  mouth  plaque  and  bleeding  scores  of  less  than  20%   •  Multiple  (≥2)  Miller  (1985)  Class  I,  II  or  III  recession  defects  (≥1  mm   in  depth)  on  adjacent  teeth     •  Presence  of  identifiable  CEJ       Study  exclusion  criteria:   •  smoking  more  than  10  cigarettes  a  day   •  Miller  Class  IV  gingival  recession   •  Patients  with  untreated  periodontal  disease  or  with  contraindications  for   periodontal  surgery   •  Patients  taking  medication  that  could  affect  gingival  health  or  anatomy       All  patients  were  treated  in  a  private  practice  setting  by  the  same  periodontist  and   received  mucogingival  surgery  to  achieve  periodontal  root  coverage  using  VISTA   Technique.     Alginate  impressions  were  taken  at  pre-­‐‑  and  post-­‐‑therapy  measurement  periods.                     15   B-­‐‑Clinical  Intervention     The  use  of  graft  material  included  autogenous  connective  tissue  from  palate  or   tuberosity,  acellular  dermal  matrix  (ADM;  Perioderm)  allograft  or  xenogenic  collagen   matrix  (XCM;  Mucograft)  incubated  with  platelet  derived  growth  factor  (PDGF).     All  patients  were  treated  by  VISTA,  the  steps  of  which  consisted  of  (see  Figure  1):   -­‐‑Use  of  local  anesthesia  through  infiltration  or  block  anesthesia.   -­‐‑Scaling  and  root  planning  to  remove  all  plaque,  calculus  and  stains.   -­‐‑Odontoplasty  to  flatten  excessive  root  prominences  in  cervical  areas.   -­‐‑Application  of  EDTA  gel  (24%  pH  balanced;  PrefGel,  Straumann)  for  3  minutes.   -­‐‑Vertical  incision  in  vestibular  fornix,  remotely  position  from  treated  teeth.  The  typical   locations  included  midline  frenum  for  maxillary  anterior  teeth  or  between  canine  and   lateral  incisors  for  maxillary  posterior  and  all  mandibular  teeth.   -­‐‑A  subperiosteal  tunnel  was  created  using  specially  designed  elevators  (VISTA   elevators,  DoWell  Dental  Products,  USA)  extending  from  the  vestibule  to  the  gingival   margin  and  interproximally  to  the  extent  accessible  by  instruments.   -­‐‑Placement  of  single  loop  monofilament  suture  (6.0  polypropylene  suture  with  13mm   3/8  needle)  approximately  3  mm  apical  to  the  gingival  margin  with  the  knots   positioned  approximately  3mm  coronal  to  the  gingival  margin.   -­‐‑Etching  of  all  teeth  for  10  secs.  If  crown  restorations  present,  etching  for  1  minute   with  porcelain  etchant.   -­‐‑Coronally  repositioning  of  each  gingival  margin  at  least  2  mm  coronal  to  the  CEJ  of   the  tooth  and  bonding  the  sutures  in  position  with  flowable  composite.   -­‐‑Cutting  the  ends  of  the  sutures  using  blade  so  there  are  no  exposed  sharp  ends.   -­‐‑Insertion  of  graft  material  inside  the  tunnel  and  position  as  coronally  as  possible.     -­‐‑Secure  the  graft  in  position  with  sutures.   -­‐‑Approximation  and  suture  of  the  initial  access  vertical  incision(s).   -­‐‑Removal  of  the  sutures  3  weeks  post-­‐‑surgically.   -­‐‑Patients  were  prescribed  antibiotics  (Amoxicillin  or  clindamycin),  naproxen  sodium   550  mg  every  12  hours  when  needed  and  Chlorhexidine  rinse  0.12%  twice  a  day  for   three  weeks.     All  the  surgeries  were  performed  by  the  same  operator,  HZ.  The  optical  scanning  and   digital  analysis  were  performed  by  a  different  examiner,  AG,  from  the  operator.       C-­‐‑Digital  Image  Analysis     Alginate  impressions  were  taken  at  pre-­‐‑  and  post-­‐‑therapy  periods  and  poured  in   dental  stone.  The  study  models  were  scanned  with  an  optical  scanner  (3-­‐‑Shape,  D850)   and  saved  in  STL  format.  The  STL  files  were  imported  into  a  reverse  engineering   software  (Geomagic  Control).  Quantitative  analysis  of  digitized  study  casts  was   performed  by  a  single  examiner  (AG).  Pre-­‐‑  and  post-­‐‑operative  digitized  images  were   initially  cropped,  superimposed  and  then  the  difference  in  volume  was  subtracted   (image  subtraction).     16     This  allowed  for  the  measurement  of  any  changes  in  the  surface  area,  contour,   volume,  shape,  that  occurred  following  root  coverage  surgery  with  VISTA  technique.     The  measurements  performed  included  changes  in  the  location  of  the  gingival  zenith,   gingival  contour  and  thickness,  exposed  root  surface  and  root  prominence.       D-­‐‑Outcome  variables     The  outcome  variables  being  measured  were  initial  recession  depth,  linear  height  gain   in  the  denuded  root  surface,  initial  gingival  thickness,  and  initial  root  prominence.     The  outcome  measurements  were  percentage  of  root  coverage,  complete  root   coverage,  3-­‐‑D  gingival  volumetric  gain,  and  gingival  thickness  gain  at  1,  2,  3,  4,  and  5   mm  from  the  final  gingival  margin     The  changes  in  soft  tissue  volume,  soft  tissue  thickness,  as  well  as  percentage  of  root   coverage  were  calculated,  reported  as  mean+SD,  and  compared  with  each  of  the   outcome  variables  being  measured:       -­‐‑Recession  Class  according  to  Miller  Classification:  Recession  Class  I-­‐‑II  and  Class  III   (The  reason  why  recession  type  I  and  II  were  part  of  the  same  group  is  because   through  the  digital  analysis,  the  exact  location  of  the  mucogingival  junction  is  not  clear   enough  in  order  to  make  a  distinction.  Therefore,  both  type  of  recession  were   analyzed  as  the  same  group)   -­‐‑Tooth  type:  incisors,  canines,  premolars  and  molars   -­‐‑Pre-­‐‑operative  root  prominence   -­‐‑Initial  gingival  margin  thickness     -­‐‑Initial  recession  depth   -­‐‑Type  of  graft  material:  autogenous  connective  tissue  from  palate  or  tuberosity,   acellular  dermal  matrix  (ADM;  Perioderm)  allograft  or  xenogenic  collagen  matrix   (XCM;  Mucograft)   -­‐‑Anatomic  location  of  the  tooth:  maxillary  vs  mandibular       F-­‐‑Statistical  Analysis:     Descriptive  statistics  were  calculated  for  all  variables  of  interest.  Continuous   measures  were  summarized  using  means  and  standard  deviations  whereas   categorical  measures  were  summarized  using  counts  and  percentages.  A   nonparametric  regression  analyses  were  run  using  the  methods  of  Brunner  and   Langer,  comparing  the  outcomes  of  interest  to  predictors  adjusting  for  the  correlation   among  observations  taken  on  same  patient.  All  analyses  were  carried  out  using  SAS   Version  9.3  (SAS  Institute,  Cary,  NC,  USA).       17   8-­‐‑Results     A-­‐‑Periodontal  root  coverage  with  VISTA     Figure  1  illustrates  the  steps  in  the  surgical  treatment  of  a  representative  patient     Figure  1:  Illustration  of  a  representative  case  with  the  different  steps  of  the  VISTA  surgical  procedure.   A)  Recession  Class  III  B)  Vertical  incision    C)  Subperiosteal  tunnel  elevation    D)  Etching    E)  Coronal   suturing  with  flowable  composite    F)  Connective  tissue  graft  stabilization    G)  Suture  vertical  incision    H)   12  month  results       Patient  presented  with  generalized  Miller  class  III  gingival  recession  defects  in  the   maxillary  anterior  region  (Figure  1A).  Scaling  and  root  planning  was  performed  to   remove  all  mineralized  and  non-­‐‑mineralized  biofilm  from  the  treated  teeth,  followed   by  odontoplasty  to  flatten  excessive  root  prominence  in  cervical  areas  and  application   of  EDTA  gel  for  3  minutes.  A  vertical  incision  was  placed  in  the  vestibular  fornix  at  the   midline,  remote  from  the  recession  areas  (Figure  1B)  followed  by  subperiosteal   tunnel  elevation  extending  from  the  vestibule  to  the  gingival  margin  and   interproximally  (Figure  1C).  A  single  loop  monofilament  suture  was  placed   approximately  3  mm  apical  to  the  gingival  margin  and  coronal  surfaces  of  treated   teeth  were  etched  for  10  secs  (Figure  1D).  Coronally  repositioning  of  each  gingival   margin  was  done  at  least  2  mm  coronal  to  the  CEJ  of  the  tooth  and  bonded  by  sutures   in  position  with  flowable  composite  (Figure  1E).  Subepithelial  connective  tissue  graft   was  harvested  from  the  palate  and  inserted  inside  the  tunnel  and  positioned  as   coronally  as  possible  (Figure  1F).  The  graft  was  secured  in  position  with  sutures  and   the  initial  access  vertical  incision  was  sutured  (Figure  1G).  Sutures  were  removed  3   weeks  post-­‐‑surgically.  Clinical  results  after  12  months  showed  complete  root   coverage  (Figure  1H).       B-­‐‑Digital  image  analysis  and  quantitation     Alginate impressions were taken at pre- and post-therapy periods and poured in dental stone. The  study  models  were  scanned  with  an  optical  model  scanner  (3-­‐‑Shape,  D850)   and  saved  in  STL  format.  (Figure  2)     18                       Figure  2:  Illustration  of  the  stone  study  cast  (A)  scanned  with  the  3  Shape  optical  scanner  (B)  to   produce  an  STL  file.       The  STL  files  were  imported  into  a  reverse  engineering  software  (Geomagic  Control).   (Figure  3)                       Figure  3:  The  pre  and  post-­‐‑operative  STL  files  were  transferred  into  Geomagic  Control       Pre-­‐‑  and  post-­‐‑operative  digitized  images  were  initially  cropped  in  order  to  facilitate   image  manipulation.  This  step  was  performed  by  cropping  the  image  one  tooth   adjacent  to  the  treated  tooth,  using  the  “Trim”  tool  from  the  “Tool  Bar”.  (Figure  4)                           Figure  4:  Illustration  of  the  trimming  process  of  the  digitized  study  models.  Pre-­‐‑operative  (A)  and    post-­‐‑operative   (B)  3-­‐‑D  study  models  were  trimmed  (C)  to  limit  the  file  size  to  the  region  of  interest.  Cropped    pre-­‐‑operative  (D)   and    post-­‐‑operative  (E)  3-­‐‑D  study  models  are  shown     19     The  images  were  then  aligned  using  solid  landmarks  on  teeth  such  as  cusp  tips,   marginal  ridges  or  incisal  edges,  using  semi-­‐‑automatic  alignment  tool,  namely  the  “N-­‐‑ point  alignment”  tool  (Figure  5A,  B).  After  superimposition,  the  “Boolean”  tool  was   utilized  to  excise  the  volume  that  was  different  between  the  pre-­‐‑  and  post-­‐‑operative   digitized  images  (Figures  5C,  D).  The  region  was  further  cropped  to  limit  analysis  to   the  denuded  area  that  was  covered  post-­‐‑operative  by  the  graft  (Figure  5E).                             Figure  5:  Illustration  of  the  steps  involved  in  the  superimposition  of  pre-­‐‑  and  post-­‐‑operative  images  and  cropping   of  the  volume  of  interest.  Pre-­‐‑  and  post-­‐‑operative  images  were  aligned  using  the  semi-­‐‑automatic  N-­‐‑point  alignment   tool  (A,  B).  The  volume  change  between  pre-­‐‑  and  post-­‐‑operative  images  was  detected  and  cropped  (C,  D).    The   volume  was  further  cropped  to  limit  to  the  volume  present  over  the  pre-­‐‑existing  recession  area  (E).       This  allows  for  the  measurement  of  any  changes  in  the  surface  area,  contour,  volume,   shape,  which  occurred  following  root  coverage  surgery  with  VISTA.     The  measurements  performed  included  changes  in  the  location  of  the  gingival  zenith,   gingival  contour  and  thickness,  exposed  root  surface  and  root  prominence.       C-­‐‑Description  of  parameters  measured:       The  initial  recession  depth  (Figure  6)  was  calculated  by  performing  a  linear   measurement  from  the  identifiable  CEJ  of  the  tooth  to  the  most  apical  location  of  the   gingival  margin  (zenith)  in  the  recession  area.  The  digital  software  was  able  to   identify  the  CEJ  in  all  of  the  cases.  If  there  was  a  restoration,  the  margin  of  the   restoration  was  used  as  the  reference.           Figure  6:  Illustration  of  pre-­‐‑operative  digitized  study   model  and  the  landmarks  used  for  linear  measurement  of   initial  recession  depth.     20                                        The  linear  root  coverage  height  gain  was  calculated  by  two  different  methods.   The  first  method  entailed  superimposing  the  pre-­‐‑  and  post-­‐‑operative  scanned  study   models  and  using  subtraction  imaging.  This  provided  us  with  a  3  dimensional  volume   that  was  covering  the  previously  denuded  root  surface  (Figure  7A).  Linear   measurement  along  the  long  axis  of  the  tooth  was  performed  to  calculate  the  linear   height  gain  in  the  recession  after  surgery.  The  second  method  consisted  of  a  sagittal   cut  of  the  superimposed  pre-­‐‑  and  post-­‐‑operative  volumes  to  generate  a  2-­‐‑dimensional   image  (Figure  7B).  Comparison  of  the  values  obtained  by  the  two  methods   demonstrated  coincidence  of  the  numbers  with  less  than  2%  difference  between  the   measurements.              Figure  7:  Illustration  of  linear  height  gain  measurement   using  3-­‐‑dimensional  volume  occupying  the  previously   denuded  root  surface  (A)  and  2-­‐‑dimensional  section  of   super-­‐‑imposed  pre-­‐‑  and  post-­‐‑operative  models  (B).               The  initial  gingival  margin  thickness  was  calculated  by  drawing  two  lines   perpendicular  to  the  tooth  surface:  one  at  the  gingival  margin  and  another  at  1mm   apical  to  the  gingival  margin.  The  horizontal  distance  between  two  lines  was  used  for   the  measurement  of  the  pre-­‐‑operative  gingival  margin  thickness  (Figure  8).         Figure  8:  Illustration  of  pre-­‐‑operative   gingival  margin  thickness  and  landmarks   used  for  that  measurement.    The  3   dimensional  sagittal  section  taken  at  the   midfacial  area  of  the  tooth  with  recession   defect  (A)  was  used  for  making  a  2-­‐‑ dimensional  cross-­‐‑section  (B).               The  initial  root  prominence  (Figure  9)  was  calculated  by  taking  an  axial  section   perpendicular  to  the  facial  aspect  of  the  tooth  at  the  apical-­‐‑most  position  of  the  CEJ.  A   straight  line  is  created  from  the  emergence  point  of  the  tooth  from  the  gingival   margins  on  the  mesial  and  distal  aspect.  The  horizontal  distance  between  the  outer-­‐‑ most  position  on  the  root  and  the  horizontal  line  was  calculated  as  root  prominence.     21     Figure  9:  Illustration  of  the   steps  involved  in  calculating   the  pre-­‐‑operative  root   prominence                             The  percentage  of  linear  root  coverage  (Figure  10)  was  calculated  by  dividing   the  linear  height  gain  by  the  initial  recession  depth,  and  then  multiplying  it  by  100.  If   the  linear  height  gain  was  superior  to  the  initial  recession  the  percentage  root   coverage  achieved  was  expressed  as  more  than  100%.  This  was  observed  when  the   final  gingival  margin  was  coronal  to  the  CEJ.     Figure  10:  Illustration  of  pre  and  post-­‐‑ operative  study  model,  showing  100%   root  coverage.                   Gingival  volume  gain  (Figure  11)  was  calculated  by  superimposing  pre-­‐‑  and   post-­‐‑operative  scanned  study  models  and  using  subtraction  imaging.  This  provided  a   3  dimensional  soft  tissue  area  that  is  now  covering  the  previously  denuded  root   surface.  By  using  the  Geomagic  software  tools,  the  3-­‐‑dimensional  volume  gained  (in   mm 3 )  over  the  previously  denuded  root  surfaces  was  calculated.             Figure  11:  Illustration  of  the  3  dimensional  gingival  volume  gain   (including  height,  width  and  depth)  of  the  recession  area.               22   The  gingival  thickness  gain  (Figure  12)  was  calculated  at  different  location   relative  to  the  post-­‐‑operative  gingival  margin.  More  specifically  they  were  calculated   at  1,  2,  3,  4,  and  5  mm  relative  to  the  post-­‐‑operative  gingival  margin  at  the  center  of   the  long  axis  of  the  tooth.  The  thickness  gain  was  calculated  by  superimposing  the   pre-­‐‑  and  post-­‐‑operative  scanned  study  models  and  using  subtraction  imaging.  The   resultant  image  shows  the  outer  outline  of  the  pre-­‐‑operative  and  post-­‐‑operative  soft   tissues.                 Figure  12:  Illustration  of  the  2  dimensional  sagittal  view  of  the   gingival  thickness  gain  at  the  5  different  locations  relative  to   the  position  of  the  post-­‐‑operative  gingival  margin             D-­‐‑Quantitative  analysis  of  soft  tissue  changes:     The  clinical  characteristics  of  sites  with  gingival  recession  and  the  outcomes  achieved   are  shown  in  Table  1.  Number  of  recession  defects  for  recession  type,  tooth  type,  graft   type  and  anatomic  location  are  shown  in  Table  2.     Results  demonstrated  a  mean  percentage  of  root  coverage  after  12  months  of  92.0  ±   15.0  %  for  all  groups,  102.0  ±  10.0  %  for  Miller  Class  I/II  and  83.0  ±  14.0  %  for  Class   III  recession  defects.  Complete  root  coverage  was  achieved  in  42.0  %  of  all  sites,  while   71.0%  of  Miller  Class  I/II  and  16.0%  of  Miller  Class  III  sites  treated  yielded  complete   root  coverage.  Mean  gingival  volume  gain  was  4.8  ±  5  mm 3  for  all  sites,  3.8  ±  1.8  mm 3   for  Class  I/II  and  5.9  ±  6.9  mm 3    for  Miller  class  III  sites.       The  data  in  Figure  13  revealed  that  Miller  class  I/II  sites  (total  of  42  sites)  yielded   102.0  ±  10.0  %  root  coverage  and  Miller  Class  III  recession  defects  (total  of  44  sites)   exhibited  83.0  ±  14.0%  root  coverage.  The  difference  between  the  two  groups  was   statistically  significant  (p=0.0001).       Figure  14  illustrates  the  comparison  of  volumetric  gain  achieved  for  Miller  class  I-­‐‑II   (42  sites)  vs.  class  III  (44  sites)  gingival  recession  defects.    The  data  revealed  mean   gingival  volume  gain  was  4.8  ±  5  mm 3 ,  3.8  ±  1.8  mm 3  and  5.9  ±  6.9  mm 3  for  both   groups,  Class  I/II,  and  III,  respectively.  The  difference  between  the  groups  was  not   statistically  significant.       23   Figure  15  depicts  the  comparison  of  gingival  thickness  gain  at  different  locations   relative  to  the  post-­‐‑operative  gingival  margin  of  Miller  class  I-­‐‑II  (N=42  sites)  and  class   III  (N=44  sites)  gingival  recession  defects.  When  examining  mean  gingival  thickness   gain  at  various  locations  (1,  2,  3,  4,  5  mm  apical  to  buccal/labial  gingival  zenith)  in  all   groups,  the  thickness  gain  was  1.0  ±  0.3  mm,  1.0  ±  0.4mm,  0.9  ±  0.4  mm,  0.9  ±  0.4  mm   and  0.8  ±  0.4  mm  at  1,  2,  3,  4,  5  mm,  respectively.  The  thickness  gain  was  statistically   significant,  when  comparing  among  different  locations.  The  thickness  gain  was   significantly  higher  at  1  and  2  mm  compared  to  3,  4,  and  5  mm  relative  to  the  post-­‐‑ operative  gingival  margin.  (p=0.02).    In  comparing  the  degree  of  gingival  thickness   gain  achieved  between  Miller  class  I/II  versus  class  III  recession  defects,  at  1  mm   apical  to  the  gingival  margin  there  was  a  statistically  significant  difference.  (p=0.01)     Figures  16,  17  and  18  illustrate  the  root  coverage,  gingival  volume  and  thickness  gain   achieved  for  teeth  in  different  anatomic  locations.    There  were  12  incisors,  17  canines,   38  premolars  and  19  molars  analyzed.  The  type  of  tooth  (anterior  vs  posterior)   showed  a  statistically  significant  difference  on  %  of  root  coverage,  (p=0.0001)   achieved,  with  incisors  having  higher  percentage  root  coverage  than  either  molars  or   premolars.  Canines  exhibited  higher  percentage  of  root  coverage  than  molars.   Premolars  showed  higher  percentage  root  coverage  than  molars.  (Figure  16)  The   difference  between  the  teeth  groups  was  not  statistically  significant  in  terms  of   gingival  volume  gain  (Figure  17)  and  gingival  thickness  gain.  (Figure  18)     The  results  in  Figure  19  show  that  root  prominence  exhibited  a  statistically  significant   negative  correlation  with  percentage  root  coverage  (p=0.0001).  Sites  with  higher   initial  root  prominence  resulted  in  lower  percentage  of  root  coverage.  There  was  no   correlation  between  pre-­‐‑operative  root  prominence  and  gingival  volume  gain  nor   gingival  thickness  gain.  (Figures  20  and  21)     Pre-­‐‑operative  gingival  margin  thickness  (Figure  22)  showed  a  statistically  significant   positive  correlation  with  %  of  root  coverage  (p=0.0001).     There  was  no  statistically  significant  correlation  between  pre-­‐‑operative  gingival   margin  thickness  and  gingival  volume  gain.  (Figure  23)     Figure  24  illustrates  the  correlation  between  initial  linear  recession  depth  and   percentage  root  coverage  achieved.  Initial  recession  depth  showed  no  statistically   significant  correlation  with  percentage  of  root  coverage.  On  the  other  hand,  initial   recession  depth  showed  a  statistically  significant  correlation  with  gingival  volume   gain.  (Figure  25;  p=0.0001)       The  type  of  graft  material  used  (palatal  CTG  (19),  tuberosity  CTG  (33),  ADM  (26),  XCM   (8))  did  not  appear  to  have  any  statistically  significant  correlation  with  any  of  the   parameters  examined.  (Figures  26,  27,  28)     Figures  29  and  30  depict  the  comparison  of  different  anatomical  tooth  locations   (maxillary  (42)  vs  mandibular  (44))  with  the  outcome  measurements.  There  was  no   statistical  significant  difference  in  any  of  the  parameters  evaluated.     24   9-­‐‑Discussion     The  present  study  was  undertaken  to  examine  the  outcome  of  periodontal  root   coverage  for  the  treatment  of  gingival  recession  defects  using  VISTA.  Quantitative   comparison  of  study  casts  taken  at  pre-­‐‑  and  post-­‐‑treatment  time  points  showed  the   influence  of  pre-­‐‑treatment  site  characteristics  and  graft  material  used  on  therapy   outcomes.  This  study  revealed  a  number  of  important  observations,  including:       1)  Application  of  VISTA  for  the  treatment  of  multiple  recession  defects  achieved   periodontal  root  coverage  and  gingival  thickness  and  volume  gain   2)  Specific  initial  site  characteristics  such  as  root  prominence,  gingival  thickness,  type   of  recession  and  tooth  type  demonstrated  predictive  value  on  the  outcome  of   periodontal  root  coverage  achieved.  Although  clinicians  intuitively  recognize  the   negative  predictive  value  of  root  prominence  on  achieving  root  coverage,  the  present   study  represents  the  first  study  to  concrete  data  to  demonstrate  its  predictive  value.   3)  Initial  recession  depth  and  root  prominence  showed  predictive  value  on  achieving   gingival  thickness  and  volume  gain.     4)  The  type  of  graft  material  used  or  anatomical  location  of  teeth  did  not  show   statistical  difference  in  achieving  periodontal  root  coverage.     5)  3-­‐‑D  volumetric  analysis  may  be  used  to  detect  quantitative  changes  of  soft  tissues   achieved  following  periodontal  root  coverage  procedure.       Three-­‐‑dimensional  volumetric  analysis  has  only  been  applied  to  a  limited  degree  for   examination  of  soft  and  hard  tissue  changes  (Fickl  et  al.,  2009,  Thoma  et  al.,  2010,   Schneider  et  al.,  2011,  Rebele  et  al.,  2014).  These  investigations  have  demonstrated   the  benefits  of  this  technology  as  a  quantitative  tool  with  versatile  capabilities.   Though  additional  work  needs  to  be  done  to  take  full  benefit  of  all  of  this  technology,   some  of  the  advantages  of  3D  analysis  include:  (Schneider  et  al.,  2014):     -­‐‑digital  measurements  on  study  models  offer  the  advantage  of  better  accessibility  to   the  relevant  area.   -­‐‑measurements  can  be  performed  in  a  nonclinical  environment  without  time   constraints.       -­‐‑measurements  can  be  repeated  as  many  times  as  needed  with  the  use  of  various   tools,  possibly  not  suitable  for  intraoral  application.   -­‐‑digital  models  can  be  measured  in  different  magnifications  and  angles.     -­‐‑digital  rulers  with  high  accuracy  can  be  used  for  measurements  of  distances,  areas,   and  volumes.     The  study  by  Schneider  et  al.,  in  2014  was  the  first  to  compare  digital  measurement   method  to  intraoral  clinical  measurement  for  different  periodontal  parameters.  It   demonstrated  that  digital  measurements  of  papilla  height  and  amount  of  gingiva  were   more  reproducible  compared  with  clinical  intraoral  measurements  by  different   investigators  as  well  as  by  repeated  measurements  of  the  same  investigator.     25     This  type  of  measuring  method  has  also  been  used  in  a  randomized  clinical  trial   (Rebele  et  al.,  2014)  for  the  purpose  of  studying  healing  dynamics  and  evaluating  the   outcome  of  surgical  root  coverage.     The  present  study  also  performed  3D  volumetric  assessment  of  study  casts  to  examine   post-­‐‑therapy  changes  in  gingival  margin  position  and  gingival  contour,  as  well  as  their   relationship  to  individual  risk  factors.         Classically,  gingival    augmentation  outcomes  have  been  assessed  by  a  periodontal   probe.  The  advantages  of  this  method  include  low  cost  and  simplicity  of  the  technique.   On  the  other  hand,  the  assessment  of  outcomes  with  a  periodontal  probe  has  a   number  of  limitations,  which  include:       1)  A  stent  will  be  required  to  ensure  measurements  are  made  in  same  area  and   direction   2)  Probes  have  markings  that  measure  at  best  at  1  mm  interval,  limiting  the   measurement  accuracy   3)  The  angle  at  which  the  operator  views  the  probe  can  potentially  affect  the   recording  accuracy   4)  Probe  measures  vertical  or  horizontal  linear  changes  of  gingival  margin,  whereas   gingival  margin  is  irregular  shape  and  linear  changes  do  not  accurately  represent   changes  accomplished  after  therapy     5)  Periodontal  probes  only  record  changes  in  gingival  margin,  so  that  changes  in   surface  contour,  in  particular  beyond  the  gingival  margin  are  not  detected.       Three-­‐‑dimensional  quantitation  of  soft  tissue  changes  provides  opportunity  to   examine  many  of  the  parameters,  which  could  not  have  been  possible  to  measure  with   a  periodontal  probe.  These  include,  determination  of  root  surface  area,  gain  of  tissue   thickness  at  various  depth  in  the  gingiva,  surface  contour  changes,  as  well  as  detection   of  root  prominence.             The  percentage  of  root  coverage  achieved  in  the  present  study  for  all  groups  was  92.0   ±  15%.  Interestingly,  102.0  ±  10%  root  coverage  was  achieved  for  Miller  class  I/II   recession  defects  and  83  ±  14%  for  Class  III  sites.  The  high  degree  of  root  coverage   achieved,  which  was  sometimes  higher  than  100%,  was  possible  because  VISTA   allows  coronally  advancing  the  gingival  margins  of  teeth  beyond  the  CEJ  and   maintaining  such  position  during  the  healing  by  coronal  anchoring  of  sutures.  The   significance  of  coronally  advancing  the  gingival  margin  during  surgery  at  least  2  mm   past  the  CEJ  has  been  demonstrated  (Pini  Prato  et  al.,  2005),  where  100%  complete   root  coverage  was  achieved  only  in  cases  where  the  gingival  margin  was  advanced  2   mm  past  the  CEJ.  This  implies  that  after  the  healing  process,  such  gingival  margin  can   even  stay  coronal  to  the  CEJ,  thus  obtaining  root  coverage  over  100%.  This  was   achieved  in  the  majority  of  class  I/II  gingival  recession  defected  treated  in  this  study.       26   Moreover,  for  gingival  recession  class  III  sites,  where  loss  of  interproximal  bone  and   attachment  exists,  previous  studies  have  demonstrated  that  the  percentage  of  root   coverage  is  around  60%  (Barker  et  al.,  2010,  Carney  et  al.,  2012).  This  occurs  due  to   the  limited  blood  supply  to  the  area  having  reduced  bone  and  attachment  apparatus.   Tunneling  procedures,  including  VISTA,  do  not  utilize  surface  incisions,  in  an  effort  to   preserve  the  vascular  supply  to  the  gingival  margin.  On  the  other  hand,  the   tremendous  coronal  advancement  of  the  mucogingival  complex  and  fixation  with   coronally-­‐‑bonded  sutures  allows  for  a  new  coronal  establishment  of  the  gingival   margin  that  when  provided  enough  thickness  and  adequate  blood  supply,  can  remain   in  place  and  cover  compromised  recession  defects.  These  results  are  corroborated  by   publications  reporting  that  the  treatment  of  gingival  recession  class  III  (Aroca  et  al.,   2010,  Cairo  et  al.,  2012,  Henriquez  et  al.,  2010),  can  be  successfully  achieved  when   coronal  advanced  flap  is  performed  and  the  interdental  bone  and  attachment  loss  is   not  advanced.     The  3D  quantitation  of  surface  contour  used  in  the  present  study  provided  a  number   of  advantages  afforded  by  volumetric  analysis.  This  3D  analysis  enabled  quantitation   of  volume  gain  achieved  by  soft  tissue  augmentation.  The  mean  volume  gain  was  3.8  ±   1.8  mm 3  and  5.9  ±  6.9  mm 3  for  Class  I/II,  and  III  sites,  respectively.  These  results  may   be  difficult  to  interpret  in  terms  of  the  clinical  relevance  of  each  specific  volumetric   gain.  However,  volumetric  gain  can  be  a  great  research  tool  to  assess  the  influence  of   various  risk  factors,  including  initial  site  characteristics  or  the  type  of  graft  and   technique  used.  These  results  may  be  used  for  future  comparison  with  other  related   publications.     Accordingly,  the  gingival  thickness  gain  was  examined  at  different  locations  from  the   reference  point  (at  1,  2,  3,  4,  5  mm  from  the  final  gingival  margin).  In  all  of  the   surgeries  a  graft  was  placed,  therefore  expecting  to  achieve  increased  gingival   thickness  post  operatively.     Gingival  thickness  gain  was  approximately  1  mm  at  the  most  coronal  portion  and   decreased  slightly  in  more  apical  areas.  This  can  be  explained  by  the  fact  that  the   coronal  most  areas  were  previously  denuded  and  are  likely  to  gain  the  most  thickness   due  to  the  coronal  position  of  the  graft.    In  view  of  the  fact  that  the  present  study  only   considered  the  outer  contour  of  pre-­‐‑  and  post-­‐‑operative  tissues,  the  degree  of  soft   tissue  thickness  gain  is  likely  to  have  been  under-­‐‑estimated  in  the  present  analysis.   This  is  because  root  prominences  where  reduced  by  odontoplasty,  which  was  not   detected  in  the  present  analysis.  We  have  planned  future  studies  using  CBCT  to   include  the  root  surfaces  in  the  analysis.         In  terms  of  recession  type,  the  results  of  this  study  correlate  with  other  publications   on  root  coverage  (Chambrone  et  al.,  2015),  where  statistical  significant  difference  in   root  coverage  have  been  reported  between  Miller  class  I/II  versus  Miller  class  III   gingival  recession  defects.    The  presence  of  interproximal  periodontal  attachment   provides  the  required  vascular  supply  to  support  the  survival  of  a  gingival  graft.   Recessions  with  no  interdental  tissue  loss  typically  yield  better  root  coverage     27   outcomes  (Miller  et  al.,  1985).  Nevertheless,  as  mentioned  earlier,  the  efficacy  of  root   coverage  on  recession  class  III  was  shown  in  the  present  study  to  be  predictable.     Root  convexity  is  a  site-­‐‑related  factor  that  per  se  might  influence  the  clinical  outcome   of  root  coverage  procedures.  (Wennstrom  et  al.,  2003)   Experienced  clinicians  realize  that  root  prominence  is  an  important  risk  factor  in   achieving  complete  root  coverage.  On  the  basis  of  their  experience,  some  authors  have   stressed  the  importance  of  reducing  root  convexity  to  enhance  the  outcome  of  root   coverage  procedures.       However,  scientific  data  supporting  these  considerations  is  lacking,  due  to  the   difficulty  in  its  assessment.  The  literature  shows  data  on  dental  crown  morphology   and  measurements  (Merz  et  al.,  1991),  but  there  is  no  information  regarding  root   curvature  at  the  cemento-­‐‑enamel  junction.  (CEJ)     The  part  of  the  root  that  is  outside  of  the  gingival  housing  can  be  considered  as  root   prominence  (Saletta  et  al.,  2005).  Sometimes  this  curvature  is  so  prominent,  that  the   tension  applied  to  the  coronal  margin  of  the  flap  to  be  adapted  to  the  curved  root   surface,  may  compromise  the  blood  supply  to  this  area.  This  factor  should  be   accounted  for  pre  operatively  and,  if  needed,  root  odontoplasty  should  be  performed   accordingly  to  reduce  the  excessive  root  surface  area.  Another  consideration  as  to   why  root  prominence  can  adversely  affect  root  coverage  is  that,  the  more  prominent   the  root,  the  further  is  the  height  of  contour  of  the  root  from  the  periodontal  ligament   source.     Optical  scanning  with  digital  analysis  can  be  useful  for  this  purpose.  This  allows  us  to   calculate  and  quantify  the  initial  root  prominence  and  correlate  it  with  the  percentage   of  root  coverage,  and  gingival  thickness/volume  gain.     Interestingly  the  data  showed  a  very  strong  negative  correlation  between  root   prominence  and  root  coverage.  When  the  initial  root  prominence  was  over  1.3  mm,   the  percentage  of  root  coverage  was  reduced  substantially.  When  this  prominence   was  less  than  1  mm,  root  coverage  was  very  predictable.  A  classification  system  of   different  degrees  of  root  prominence  should  be  developed,  in  an  effort  to  provide  a   guideline  as  to  how  much  root  odontoplasty  to  perform.     The  majority  of  the  RCTs  published  about  mucogingival  surgery  for  root  coverage   purposes  focus  on  maxillary  canines  and  premolars.    (Buti  et  al.,  2013)  Specifically  to   other  tooth  types,  the  effect  of  treatment  on  mandibular  incisors  and  posterior  teeth   has  also  been  studied,  (Harris  et  al.,  2003,  Zucchelli  et  al.,  2012)  with  positive  results   (mean  root  coverage  around  90%)  However,  there  is  lack  of  sufficient  prospective   studies  in  the  literature  showing  the  differences  in  outcome  depending  on  the  tooth   type.       The  present  study  has  shown  that  tooth  type  may  be  an  important  predictive  factor   for  root  coverage.    Anterior  teeth  (central  and  lateral  incisors)  were  the  teeth  that     28   showed  greater  root  coverage,  followed  by  canines  and  premolars.  The  teeth  that   presented  the  least  root  coverage  were  the  molars.  This  could  be  explained  by  the   increased  surface  area  and  the  increased  root  curvature.  Molars  are  wider  teeth  than   incisors,  so  the  amount  of  denuded  root  that  is  needed  to  cover  will  always  be  greater   than  that  of  an  incisor.  (Saletta  et  al.,  2005)  Also,  the  curvature  of  the  roots  of  molars   is  greater  than  incisors,  therefore  limiting  the  coronal  advancement  and  stability  of   the  graft.       Several  studies  have  correlated  greater  flap  thickness  to  better  clinical  outcomes  after   root  coverage  (Baldi  et  al.,  1999,  Berlucchi  et  al.,  2005)  and  thus  identified  flap   thickness  as  one  relevant  prognostic  factor  in  the  treatment  of  gingival  recession   defects.  (Huang  et  al.,  2006)     Additional  thickening  of  the  marginal  gingiva  with  the  use  of  autologous  connective   tissue  grafts  (CTG)  can  enhance  treatment  outcomes.  There  is  uniformed  agreement   that  a  thick  gingival  biotype  will  benefit  the  outcome  of  root  coverage  surgery.  (Huang   et  al.,  2006).  Nevertheless,  very  few  studies  have  focused  on  the  single  effect  of  the   pre-­‐‑operative  gingival  margin  thickness  on  root  coverage  alone.  (Ahmedbeyli  et  al.,   2014)         In  the  present  study,  the  initial  gingival  thickness  showed  a  strong  positive  correlation   with  root  coverage.  When  the  pre-­‐‑operative  gingival  margin  thickness  was  more  than   1  mm,  100%  root  coverage  was  very  predictable.  When  the  initial  thickness  was  less   than  one  mm,  decreased  root  coverage  was  observed,  especially  in  those  cases  where   interproximal  attachment  had  been  lost.  This  could  be  explained  by  understanding  the   vascular  supply  to  the  surgery  area.  The  areas  that  show  thicker  biotype  can  benefit   from  an  increased  blood  supply  that  can  nourish  the  graft  and  the  recipient  bed.  In   cases  where  such  blood  supply  is  compromised  (Miller  Class  III  recession  defects)  the   initial  thickness  can  become  an  important  predictive  factor.     The  importance  of  the  initial  recession  depth  has  also  been  reported  in  the  literature.   Berlucchi  et  al.,  in  1999  showed  that  when  presenting  recession  depth  was  <4  mm,  the   mean  root  coverage  was    94.7%  and  when  the  presenting  recession  depth  was  >4  mm     the  mean  root  coverage  only  reached  85%.       According  to  what  is  published,  it  is  logical  to  think  that  the  deeper  the  recession  the   more  surface  area  it  requires  to  be  covered  and  the  harder  it  is  to  obtain  complete   root  coverage.     Surprisingly,  the  present  study  showed  no  statistical  significance  between  initial   recession  depth  and  percentage  of  root  coverage.  It  seems  that  the  coronal   displacement  with  stabilization  through  bonded  sutures  may  help  in  covering  deep   recession  defects.  Nevertheless,  these  results  should  be  interpreted  with  caution  due   to  the  fact  of  the  limited  number  of  recession  defects  deeper  than  4  mm  and  the   number  of  variables  included  in  the  study.       29   Different  types  of  graft  material  (autogenous,  acellular  dermal  matrix  and  xenogenic   collagen  matrix)  were  used  in  the  study.  There  was  no  statistically  significant   correlation  with  any  of  the  parameters  analyzed.  This  result  differs  from  what  has   been  published,  where  the  gold  standard  is  considered  CTG  +  CAF  (Buti  et  al.,  2013,   Chambrone  et  al.,  2015).  In  our  study,  the  use  of  different  graft  materials  did  not  affect   root  coverage,  gingival  thickness  or  volume  gain.  There  seemed  to  be  a  small  clinical   difference  in  terms  of  gingival  volume  and  thickness  gain  favoring  the  use  of   tuberosity  graft  but  the  results  do  not  reach  statistical  significance.  These  results   should  be  interpreted  with  caution  because  the  lack  of  correlation  could  be  related  to   the  sample  size  and  number  of  variables  analyzed  in  the  study.     When  maxillary  and  mandibular  sites  are  compared,  there  is  a  trend  showing  positive   results  in  favor  of  maxillary  teeth.  It  was  reported  that  significantly  greater   improvements  of  recession  depth  were  observed  for  maxillary  multiple  recession   defects  treated  with  SCTG  +  CAF  compared  with  alike  mandibular  defects.   (Chambrone  et  al  2006-­‐‑  50)  The  muscle  pull  and  the  decreased  thickness  of  the   gingiva  in  this  area  could  negatively  affect  the  outcome  of  our  mucogingival  surgery.     The  results  of  this  study  may  have  showed  a  different  tendency.  There  was  no   statistical  significant  difference  between  the  different  anatomical  location  of  the  teeth   and  the  outcome  parameters  measured.  When  coronally  advanced,  the  tunnel  is   tension  free  because  of  the  advanced  periosteal  release  of  the  tunnel.  In  this  way,  this   may  allow  for  less  pull  of  the  lip  and  muscles  as  would  happen  with  other  classical   techniques,  which  could  potentially  hamper  the  success  of  the  coronal  advancement.       The  present  investigation  had  a  series  of  limitations,  which  included:     1)  The  difficulty  of  identifying  the  CEJ  in  some  of  the  cases,  especially  if  the  teeth   presented  with  full  contour  restorations.  In  these  cases,  the  restoration  margin  was   used  as  the  reference  for  measurement.   2)  The  mucogingival  junction  was  not  readily  discernable  on  study  models  to  allow   distinction  between  type  I  and  type  II  recession  defects.  This  is  why  both  classes  were   combined  as  one  during  data  collection  and  analysis.   3)The  use  of  alginate  material  as  the  impression  material  has  its  limitations.  The   volumetric  changes  that  can  occur  from  the  moment  of  the  alginate  impression  until   the  pouring  of  the  stone  cast  models,  can  affect  the  accuracy  and  reliability  of  the   results.   4)Besides  the  infrastructural  requirements,  training,  and  expenses,  intraoral  scanning   can  be  limited  in  terms  of  access  to  the  relevant  area.   Inability  to  access  the  area  of  measurement,  unfavorable  tooth  position,  excess  or  lack   of  impression  material  can  result  in  inferior  image  quality  and  inability  of  the   software  to  stitch  the  images  correctly.  For  example,  this  is  the  reason  why  the   interproximal  papilla  height  could  not  be  calculated  for  this  study,  due  to  the  fact  that   the  optical  scanner  could  not  accurately  reproduce  the  morphology  of  each  papillae  in   order  to  be  able  to  make  correct  analysis.     30   5)  The  fact  that  this  study  was  retrospective  and  without  control  group  does  not  allow   for  definitive  conclusions  about  causality.     6)  The  influence  of  the  multiple  variables  on  each  outcome  variable  analyzed  in  this   study  was  not  accounted  for.  This  may  act  as  a  confounding  variable  in  the  assessment   of  our  observations,  data  analysis  and  statistical  significance  of  our  results.   Conclusions  should  not  be  drawn  from  those  variables  that  did  not  reach  statistical   significance  since  there  were  no  controls  to  compare  them  to.     The  implications  of  the  present  data  for  the  future  studies  include:     1)   randomized  control  clinical  trials  will  be  required  in  order  to  examine  the   efficacy  of  VISTA  and  validate  the  risk  factors  identified  in  this  study.   2)   Digital  measurements  have  to  be  compared  with  conventional  clinical   measurements  to  validate  these  measurements.   3)   If  the  risk  factors  identified  in  the  present  study  are  validated  in  future   randomized  control  clinical  trials,  these  factors  can  be  incorporated  as  part  of   risk  assessment  to  predict  outcome  of  therapy.       4)   The  risk  factors  (root  prominence,  interproximal  periodontal  attachment  loss,   initial  gingival  margin  thickness,  tooth  type)  may  potentially  be  incorporated   into  a  classification  system  to  predict  clinical  outcomes.                                                 31   10-­‐‑Conclusion     The  present  pilot  retrospective  study  demonstrated  that  3D  volumetric  analysis   provided  a  highly  quantitative  tool  for  examination  of  soft  tissue  changes  and   associated  risk  factors  for  the  treatment  of  gingival  recession  defects.       The  results  of  this  study  suggested  that  root  prominence  was  an  important  negative   predictor  of  root  coverage.    Additional  predictors  of  outcome  included  tooth  type   (incisor,  canine,  premolar  or  molar),  interproximal  tissue  loss  (Miller  class  I/II  vs  III)   and  pre-­‐‑operative  gingival  margin  thickness.     The  present  data  utilizing  VISTA  provided  data,  which  compare  favorably  to  published   reports  for  the  treatment  of  multiple  recession  defects.    Randomized  controlled   clinical  trial  will  be  required  to  compare  the  efficacy  of  VISTA  to  other  periodontal   root  coverage  methods,  as  well  as  to  examine  the  predictive  value  of  the  risk  factors   identified  in  the  present  study.                                                             32       11-­‐‑Bibliography     Ahmedbeyli,  C.,  Ipci,  S.  D.,  Cakar,  G.,  Kuru,  B.  E.  &  Yilmaz,  S.  (2014)  Clinical  evaluation   of  coronally  advanced  flap  with  or  without  acellular  dermal  matrix  graft  on  complete   defect  coverage  for  the  treatment  of  multiple  gingival  recessions  with  thin  tissue   biotype.  Journal  of  Clinical  Periodontology  41,  303–310.     Allen  AL.  Use  of  the  supraperiosteal  envelope  in  soft  tissue  grafting  for  root  coverage.   I.  Rationale  and  technique.  Int  J  Periodontics  Restorative  Dent.  1994;14:216–27     Aroca  S,  Keglevich  T,  Nikolidakis  D,  et  al.  Treatment  of  class  III  multiple  gingival   recessions:  A  randomized  clinical  trial.  J  Clin  Periodontol  2010;37:88-­‐‑97     Aroca  S,  Molna´  r  B,  Windisch  P,  et  al.  Treatment  of  multiple  adjacent  Miller  class  I  and   II  gingival  recessions  with  a  Modified  Coronally  Advanced  Tunnel  (MCAT)  technique   and  a  collagen  matrix  or  palatal  connective  tissue  graft:  A  randomized,  controlled   clinical  trial.  J  Clin  Periodontol  2013;40:713-­‐‑720     Badersten  A,  Nilveus  R,  Egelberg  J.  Reproducibility  of  probing  attachment  level   measurements.  J  Clin  Periodontol  1984;11:475–85.     Baldi  C,  Pini-­‐‑Prato  G,  Pagliaro  U,  et  al.  Coronally  advanced  flap  procedure  for  root   coverage.  Is  flap  thickness  a  relevant  predictor  to  achieve  root  coverage?  A  19-­‐‑case   series.  J  Periodontol  1999;70:1077-­‐‑  1084.     Barker  TS,  Cueva  MA,  Rivera-­‐‑Hidalgo  F,  et  al.  A  comparative  study  of  root  coverage   using  two  different  acellular  dermal  matrix  products.  J  Periodontol  2010;81:1596-­‐‑ 1603     Berlucchi  I,  Francetti  L,  Del  Fabbro  M,  Basso  M,  Weinstein  RL.  The  influence  of   anatomical  features  on  the  outcome  of  gingival  recessions  treated  with  coronally   advanced  flap  and  enamel  matrix  derivative:  A  1-­‐‑year  prospective  study.  J  Periodontol   2005;  76:899-­‐‑907.     Bernimoulin,  J.P.,  Luscher,  B.,  &  Muhlemann,  H.  (1975)  Coronally  repositioned   periodontal  flap.  Journal  of  Clinical  Periodontology  2,  1–13.     Bethaz  N,  DDS,  Romano  F,  DDS,  Ferrarotti  F,  DDS,  Mariani  GM,  DDS,  Aimetti  M,  MD,   DDS.    A  mucogingival  technique  for  the  treatment  of  multiple  recession  defects  in  the   mandibular  anterior  region:  a  case  series  with  two-­‐‑year  follow-­‐‑up.  Int  J  Periodontics   Restorative  Dent  2014;  34:345-­‐‑352.     Burton  Langer  and  Lauren  Langer.  Subepithelial  Connective  Tissue  Graft  Technique     33   for  Root  Coverage.    J  Periodontol  December,  1985,  Vol.  56,  No.  12,  Pages  715-­‐‑720,  DOI   10.1902     Buti  J,  Baccini  M,  Nieri  M,  La  Marca  M,  Pini-­‐‑Prato  GP.  Bayesian  network  meta-­‐‑analysis   of  root  coverage  procedures:  Ranking  efficacy  and  identification  of  best  treatment.  J   Clin  Periodontol  2013;40:372-­‐‑386     Cairo  F,  Cortellini  P,  Tonetti  M,  et  al.  Coronally  advanced  flap  with  and  without   connective  tissue  graft  for  the  treatment  of  single  maxillary  gingival  recession  with   loss  of  inter-­‐‑dental  attachment.  A  randomized  controlled  clinical  trial.  J  Clin   Periodontol  2012;39:760-­‐‑768     Carney  CM,  Rossmann  JA,  Kerns  DG,  et  al.  A  comparative  study  of  root  defect  coverage   using  an  acellular  dermal  matrix  with  and  without  a  recombinant  human  platelet-­‐‑ derived  growth  factor.  J  Periodontol  2012;83:893-­‐‑901     Chambrone  LA,  Chambrone  L.  Subepithelial  connective  tissue  grafts  in  the  treatment   of  multiple  recession-­‐‑  type  defects.  J  Periodontol  2006;77:909-­‐‑916   Chambrone  L,  Sukekava  F,  Arau´  jo  MG,  Pustiglioni  FE,  Chambrone  LA,  Lima  LA.  Root-­‐‑ coverage  procedures  for  the  treatment  of  localized  recession-­‐‑type  defects:  A  Cochrane   systematic  review.  J  Periodontol  2010;81:452-­‐‑478     Chambrone  L,  DDS,  MSD;  Luiz  A.  Lima,  DDS,  MSD,  PhD;  Francisco  E.  Pustiglioni,  DDS,   MSD,  PhD;  Luiz  Armando  Chambrone,  DDS,  MSD,  PhD.  Systematic  Review  of   Periodontal  Plastic  Surgery  in  the  Treatment  of  Multiple  Recession-­‐‑Type  Defects.  JCDA   •  www.cda-­‐‑adc.ca/jcda  •  April  2009,  Vol.  75,  No.  3     Chambrone*  L  and  Tatakis  DN.  Periodontal  Soft  Tissue  Root  Coverage  Procedures:  A   Systematic  Review  from  the  AAP  Regeneration  Workshop.  J  Periodontol   2015;86(Suppl.):S8-­‐‑S51     Cohen  D  &  Ross  S.  The  double  papilla  flap  in  the  periodontal  therapy.  J  Periodontol   1968;39:65-­‐‑70     Corn  H.  Edentulous  area  pedicle  grafts  in  mucogingival  surgery.  J  Periodontol  1964;   2:229–242     Douglas  de  Oliveira  DW,  Marques  DP,  Aguiar-­‐‑Cantua´  ria  IC,  Flecha  OD,  Goncxalves  PF.   Effect  of  surgical  defect  coverage  on  cervical  dentin  hypersensitivity  and  quality  of   life.  J  Periodontol  2013;  84:768-­‐‑775     Fickl,  S.,  Schneider,  D.,  Zuhr,  O.,  Hinze,  M.,  Ender,  A.,  Jung,  R.  E.  &  Hurzeler,  M.  B.   (2009)  Dimensional  changes  of  the  ridge  contour  after  socket  preservation  and  buccal   overbuilding:  an  animal  study.  Journal  of  Clinical  Periodontolo  36,  442–448     Harold  E.  Grupe,  D.D.S.,*  and  Richard  F.  Warren,  Jr.,  B.Sc.,  D.D.S.,*.  Repair  of  Gingival     34   Defects  by  a  Sliding  Flap  Operation  J  Periodontol  April  1956,  Vol.  27,  No.  2,  Pages  92-­‐‑ 95,  DOI  10.1902/jop.1956.27.2.92     Harris  RJ.  Root  coverage  in  molar  recession:  Report  of  50  consecutive  cases  treated   with  subepithelial  connective  tissue  grafts.  J  Periodontol  2003;74:703-­‐‑   708.     Henriques  PSG,  Pelegrine  AA,  Nogueira  AA,  Borghi  MM.  Application  of  subepithelial   connective  tissue  graft  with  or  without  enamel  matrix  derivative  for  root  coverage:  A   split-­‐‑mouth  randomized  study.  J  Oral  Sci  2010;52:463-­‐‑471     Hofmanner  P,  Alessandri  R,  Laugisch  O,  et  al.  Predictability  of  surgical  techniques  used   for  coverage  of  multiple  adjacent  gingival  recessions—A  systematic  review.   Quintessence  Int  2012;43:545-­‐‑554.     Holbrook  T,  Ochsenbein  C.  Complete  coverage  of  the  denuded  root  surface  with  a  one-­‐‑ stage  gingival  graft.  Int  J  Periodontics  Restorative  Dent.  1983;3:8–27     Huang  LH,  Neiva  RE,  Wang  HL.  Factors  affecting  the  outcomes  of  coronally  advanced   flap  root  coverage  procedure.  J  Periodontol  2005;76:1729-­‐‑1734   Merz  ML,  Isaacson  RJ,  Germane  N,  Rubenstein  LK.  Tooth  diameters  and  arch   perimeters  in  a  black  and  a  white  population.  Am  J  Orthod  Dentofac  Orthop   1991;100:53-­‐‑  58.     Miller  PD.,  Jr  Root  coverage  using  a  free  soft  tissue  autograft  following  citric  acid   application.  Part  1:  Technique.  Int  J  Periodontics  Restorative  Dent.  1982;2:65–70      Miller  PD  Jr.  A  classification  of  marginal  tissue  recession.  Int  J  Periodontics   Restorative  Dent.  1985;5(2):8-­‐‑13.     Osborn  J,  Stoltenberg  J,  Huso  B,  et  al.  Comparison  of  measurement  variability  using  a   standard  and  constant  force  periodontal  probe.  J  Periodontol  1990;61:497–503     Paulo  F.M.  Carvalho,*  Robert  C.  da  Silva,*  Patrı´cia  R.  Cury,*  and  Julio  C.  Joly   Modified  Coronally  Advanced  Flap  Associated  with  a  Subepithelial  Connective  Tissue   Graft  for  the  Treatment  of  Adjacent  Multiple  Gingival  Recessions.  J  Periodontol   2006;77:1901-­‐‑1906.     Pennel  BM  et  al.  Oblique  rotated  flap.  J  Periodontol  1965;36:305-­‐‑309     Pierpaolo  Cortellini  &  Giovanpaolo  Pini  Prato.  Coronally  advanced  flap  and   combination  therapy  for  root  coverage.  Clinical  strategies  based  on  scientific  evidence   and  clinical  experience.  Periodontology  2000,  Vol.  59,  2012,  158–184     Pini-­‐‑Prato,  G.  P.,  Baldi,  C.,  Nieri,  M.,  Franseschi,  D.,Cortellini,  P.,  Clauser,  C.,  Rotundo,  R.   &  Muzzi,  L.(2005)  Coronally  advanced  flap:  the  post-­‐‑surgical  position  of  the  gingival     35   margin  is  an  important  factor  for  achieving  complete  root  coverage.    Journal  of  Periodontology  76,  713–722     Raetzke  PB.  Covering  localized  areas  of  root  exposure  employing  the  “envelope”   technique.  J  Periodontol.  1985;56:397–402     Rebele  SF,  Zuhr  O,  Schneider  D,  Jung  RE,  Hurzeler  MB.  Tunnel  technique  with   connective  tissue  graft  versus  coronally  advanced  flap  with  enamel  matrix  derivative   for  root  coverage:  a  RCT  using  3D  digital  measuring  methods.  Part  II.  Volumetric   studies  on  healing  dynamics  and  gingival  dimensions.  J  Clin  Periodontol  2014;  41:   593–603     Romanos  GE1,  Bernimoulin  JP,  Marggraf  E.  The  double  lateral  bridging  flap  for   coverage  of  denuded  root  surface:  longitudinal  study  and  clinical  evaluation  after  5  to   8  years.  J  Periodontol.  1993  Aug;64(8):683-­‐‑8.     Saletta  D,  Baldi  C,  Nieri  M,  Ceppatelli  P,  Franceschi  D,  Rotundo  R,  Cairo  F,  Pini  Prato   GP.  Root  curvature:  differences  among  dental  morphotypes  and  modifications  after   mechanical  instrumentation.  J  Periodontol  2005:  76:  723–  730.     Schneider,  D.,  Grunder,  U.,  Ender,  A.,  Hammerle,  C.  H.  &  Jung,  R.  E.  (2011)  Volume  gain   and  stability  of  peri-­‐‑implant  tissue  following  bone  and  soft  tissue  augmentation:  1-­‐‑ year  results  from  a  prospective  cohort  study.  Clinical  Oral  Implants  Research  22,  28– 37.     Schneider,  D.,  Ender,  A.,  Truninger,  T.,  Leutert,  C.,  Sahrmann,  P.,  Roos,  M.  &  Schmidlin,   P.  (2014)  Comparison  between  clinical  and  digital  soft  tissue  measurements.  Journal   of  Esthetic  and  Restorative  Dentistry.  doi:10.1111/  jerd.12084.     Serino  G.  Wennstrom  J.  Lindhe  J  and  Eneroth  L.  The  prevalence  and  distribution  of   gingival  recession  in  subjects  with  a  high  standard  of  oral  hygiene.  J  Clin  Periodontol   1994;  21:  57-­‐‑63.     Tarnow,  D.P.  (1986)  Semilunar  coronally  repositioned  flap.  Journal  of  Clinical   Periodontology  13,  182–185.     Thoma,  D.  S.,  Jung,  R.  E.,  Schneider,  D.,  Cochran,  D.  L.,  Ender,  A.,  Jones,  A.  A.,  Gorlach,  C.,   Uebersax,  L.,  Graf-­‐‑Hausner,  U.  &  Hammerle,  C.  H.  (2010)  Soft  tissue  volume   augmentation  by  the  use  of  collagen-­‐‑based  matrices:  a  volumetric  analysis.  Journal  of   Clinical  Periodontology  37,  659–666.     Wang  SF,  Leknes  KN,  Zimmerman  GJ,  et  al.  Intra-­‐‑  and  inter-­‐‑examiner  reproducibility   in  constant  force  probing.  J  Clin  Periodontol  1995;22:918–22     Wennstrom  JL,  Pini  Prato  GP.  Mucogingival  therapy  –  periodontal  plastic  surgery.  In:   Lindhe  J,  Karring  T,  Lang  NP,  eds.  Clinical  Periodontology  and  Implant  Dentistry,  4th     36   ed.  Copenhagen:  Blackwell  Munksgaard;  2003;611,613.     Zabalegui  I,  Sicilia  A,  Cambra  J,  Gil  J,  Sanz  M.  Treatment  of  multiple  adjacent  gingival   recessions  with  the  tunnel  subepithelial  connective  tissue  graft:  a  clinical  report.  Int  J   Periodontics  Restorative  Dent.  1999  Apr;19(2):199-­‐‑206.     Zadeh  H,  DDS,  PhD.  Minimally  Invasive  Treatment  of  Maxillary  Anterior  Gingival   Recession  Defects  by  Vestibular  Incision  Subperiosteal  Tunnel  Access  and  Platelet-­‐‑ Derived  Growth  Factor  BB.Int  J  Periodontics  Restorative  Dent  2011;31:653–660     Zucchelli  G,  De  Sanctis  M.  Treatment  of  multiple  recession-­‐‑type  defects  in  patients   with  esthetics  demands.  J  Periodontol.  2000;71:1506–14     Zucchelli  G,  Marzadori  M,  Mele  M,  Stefanini  M,  Montebugnoli  L.  Root  coverage  in  molar   teeth:  A  comparative  controlled  randomized  clinical  trial.  J  Clin  Periodontol   2012;39:1082-­‐‑1088.     Zucchelli  G,  Mele  M,  Mazzotti  C,  Marzadori  M,  Montebugnoli  L,  De  Sanctis  M.  Coronally   advanced  flap  with  and  without  vertical  releasing  incisions  for  the  treatment  of   multiple  gingival  recessions:  A  comparative  controlled  randomized  clinical  trial.   J  Periodontol  2009;80:1083-­‐‑1094     Zuhr,  O.,  Rebele,  S.  F.,  Schneider,  D.,  Jung,  R.  E.  &  Hurzeler,  M.  B.  (2014b)  Tunnel   technique  with  connective  tissue  graft  versus  coronally  advanced  flap  with  enamel   matrix  derivative  for  root  coverage:  a  RCT  using  3D  digital  measuring  methods.  Part  I.   Clinical  and  patient  centered  outcomes.  Journal  of  Clinical  Periodontology  41,  582– 592.                                           37   12-­‐‑Tables/Figures     Miller Class IRD %RC CRC RP GVG IGMT I-II 2 ± 0.6 102 ± 10 71 0.6 ± 0.3 3.8 ± 1.8 1 ± 0.2 III 2.5 ± 1 83 ± 14 16 1.2 ± 0.7 5.9 ± 6.9 0.8 ± 0.2 All 2.3 ± 0.9 92 ± 15 42 0.9 ± 0.6 4.8 ± 5 0.9 ± 0.2 Miller Class GT1 GT2 GT3 GT4 GT5 I-II 0.9 ± 0.3 1 ± 0.3 0.9 ± 0.3 0.9 ± 0.3 0.9 ± 0.3 III 1.1 ± 0.4 1.1 ± 0.5 0.9 ± 0.4 0.9 ± 0.4 0.8 ± 0.5 All 1 ± 0.3 1 ± 0.4 0.9 ± 0.4 0.9 ± 0.4 0.8 ± 0.4 Table  1:  Characteristics  of  defect  sites  and  associated  outcomes   -­‐‑IRD  =  Initial  recession  depth   -­‐‑%  RC  =  Percentage  of  Root  coverage   -­‐‑CRC:  Complete  root  coverage   -­‐‑RP  =  root  prominence   -­‐‑GVG  =Gingival  volumetric  gain   -­‐‑IGMT=Initial  gingival  margin  thickness   -­‐‑GT:  Gingival  thickness  gain  at  the  different  locations  (1,2,3,4,5mm)  from  the   post-­‐‑operative  gingival  margin                     Table  2:  Number  of  recession  defects  for  recession  type,   tooth  type,  graft  type  and  anatomic  location:     1)  Number  of  class  I/II  and  III  defects   2)  Number  of  incisors,  canines,  premolars,  and  molars   3)  Number  of  teeth  for  each  graft  material   4)  Number  of  maxillary  and  mandibular  teeth     Column1 Column2 1-Recession type Class I,II 42 Class III 44 Total 86 2-Tooth type Incisors 12 Canines 17 Premolars 38 Molars 19 Total 86 3-Graft type Palate 19 Tuberosity 33 ADM 26 XCM 8 Total 86 4-Anatomic location Maxillary 42 Mandibular 44 Total 86   38     Figure  13:  Comparison  of  %  root  coverage  achieved  for  Miller  class  I-­‐‑II  (42  sites)  vs.   class  III  (44  sites)  gingival  recession  defects.  *  P<0.001       Figure  14:  Comparison  of  volumetric  gain  achieved  for  Miller  class  I-­‐‑II  (42  sites)  vs.  class  III   (44)  gingival  recession  defects.  Difference  between  groups  was  not  statistically  significant.   3.8 5.9 0 2 4 6 8 10 12 14 Class/I1II Class/III Volumetric/Gain/(mm3) Recession/type/according/to/Miller/Classification   39                                           Figure  15:  Comparison  of  gingival  thickness  gain  at  different  locations  relative  to  the  post-­‐‑ operative  gingival  margin  of  Miller  class  I-­‐‑II  (42  sites)  and  class  III  (44  sites)  gingival   recession  defects.    *  P<0.01       Figure  16:  Comparison  of  %  root  coverage  achieved  for  teeth  in  different  anatomic   locations  (12  incisors,  17  canines,  38  premolars,19  molars).      *  P<0.001       40     Figure  17:  Comparison  of  gingival  volumetric  gain  for  teeth  in  different  anatomic   locations.  (12  incisors,  17  canines,  38  premolars,19  molars).      Differences  among   groups  were  not  statistically  significant.     Figure  18:  Comparison  of  gingival  thickness  gain  achieved  at  different  locations   relative  to  the  post-­‐‑operative  gingival  margins  for  teeth  in  various  anatomic  locations   (12  incisors,  17  canines,  38  premolars,19  molars).        *  P<0.05   4.24 7.21 4.22 4.25 0 2 4 6 8 10 12 14 16 18 Incisors Canines Premolars Molars Gingival;Volumetric;Gain;(mm3) Type;of;Tooth   41         Figure  19:    Scatter  plot  illustrating  the  correlation  between  pre-­‐‑operative  root   prominence  and  percentage  root  coverage  achieved.     R 2 =  -­‐‑0.77;  p<0.001.         Figure  20:  Scatter  plot  illustrating  the  correlation  between  pre-­‐‑operative  root   prominence  and  gingival  volume  gain  achieved.     R 2 =  -­‐‑0.008;  p>0.05.   50 60 70 80 90 100 110 120 130 140 +0.5 0 0.5 1 1.5 2 2.5 3 %.root.coverage Pre+operative.Root.Prominence 0 5 10 15 20 25 30 35 &0.5 0 0.5 1 1.5 2 2.5 3 Gingival/volumetric/gain/(mm3) Pre&operative/Root/Prominence   42     Figure  21:  Scatter  plot  illustrating  the  correlation  between  pre-­‐‑operative  root   prominence  and  gingival  thickness  gain  at  1-­‐‑5mm  intervals  relative  to  the  post-­‐‑ operative  gingival  margin.     1mm:  R 2 =0.11;  p>0.05.   2mm:  R 2 =  -­‐‑0.16;  p>0.05.   3mm:  R 2 =  -­‐‑0.21;  p<0.01.   4mm:  R 2 =  -­‐‑0.21;  p>0.05.   5mm:  R 2 =  -­‐‑0.24;  p>0.05.       Figure  22:  Scatter  plot  illustrating  the  correlation  between  initial  gingival  marginal   thickness  and  percentage  root  coverage  achieved.    R 2 =  0.71;  p<0.001.   0 20 40 60 80 100 120 140 160 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 %)Root)Coverage Initial)Gingival)Margin)Thickness   43       Figure  23:  Scatter  plot  illustrating  the  correlation  between  initial  gingival  marginal   thickness  and  gingival  volume  gain.     R 2 =  -­‐‑0.01;  P>0.05.         Figures  24:  Scatter  plot  illustrating  the  correlation  between  initial  linear  recession   depth  and  percentage  root  coverage  achieved.     R 2 =  -­‐‑0.17;  p>0.05.           0 5 10 15 20 25 30 35 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Gingival1Volume1Gain1(mm3) Initial1Gingival1Margin1Thickness 0 20 40 60 80 100 120 140 160 0 1 2 3 4 5 6 7 %+Root+Coverage Initial+Recession+Depth   44     Figures  25:  Scatter  plot  illustrating  the  correlation  between  initial  linear  recession   depth  and  gingival  volume  gain.     R 2 =  0.71;  p<0.001.       Figure  26:  Degree  of  root  coverage  achieved  for  soft  tissue  augmentation  procedures   using  various  graft  material  (Palate  19,  Tuberosity  33,  ADM  26,  XCM  8)  Comparisons   among  different  groups  were  not  statistically  significant.           0 5 10 15 20 25 30 35 0 1 2 3 4 5 6 7 Gingival0Volume0Gain0(mm3) Initial0Recession0Depth 94 99 97 82 0 20 40 60 80 100 120 140 XCM Palate Tuberosity ADM %<Root<Coverage Type<of<Graft   45     Figure  27:  Gingival  volume  gain  achieved  for  soft  tissue  augmentation  procedures   using  various  graft  material  (Palate  19,  Tuberosity  33,  ADM  26,  XCM  8).  Comparisons   among  different  groups  were  not  statistically  significant.               Figure  28:  Gingival  thickness  gain  achieved  at  different  locations  from  post-­‐‑operative   gingival  margin  for  soft  tissue  augmentation  procedures  using  various  graft  material   (Palate  19,  Tuberosity  33,  ADM  26,  XCM  8).  Comparisons  among  different  groups   were  not  statistically  significant.             4.22 2.94 4.07 6.52 0 2 4 6 8 10 12 14 XCM Palate Tuberosity ADM GingivalAVolumeAGainA(mm3) TypeAofAGraft 1.16 1.04 0.94 0.96 1.02 0.86 0.94 0.84 0.81 0.74 1.15 1.26 1.03 0.99 1.02 0.94 0.85 0.8 0.85 0.88 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 1 2 3 4 5 Gingival3Thickness3Gain3 Location3of3analysis3relative3to3postA operative3gingival3margin3between3different3Types3of3Graft XCM Pal Tuber ADM   46       Figure  29:  Comparison  of  %  root  coverage  achieved  for  teeth  in  different  anatomic   locations  (maxillary  42,  mandibular  44).  The  difference  between  two  groups  was  not   statistically  significant.           Figure  30:  Comparison  of  gingival  volume  gain  achieved  for  teeth  in  different   anatomic  locations  (maxillary  42,  mandibular  44).  The  difference  between  two  groups   was  not  statistically  significant.         92 92 0 20 40 60 80 100 120 Maxillary Mandibular %4Root4Coverage 3.8 5.8 0 2 4 6 8 10 12 Maxillary Mandibular Gingival8Volume8Gain8(mm3) 
Asset Metadata
Creator Gil, Alfonso (author) 
Core Title Three-dimensional volumetric analysis of gingival augmentation for the treatment of multiple recession defects by vestibular incision subperiosteal tunnel acces (VISTA) 
Contributor Electronically uploaded by the author (provenance) 
School School of Dentistry 
Degree Master of Science 
Degree Program Periodontology / Craniofacial Biology 
Publication Date 07/21/2016 
Defense Date 05/12/2016 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag connective tissue graft,gingival recession,mucogingival surgery,OAI-PMH Harvest,periodontal regeneration,periodontal root coverage 
Format application/pdf (imt) 
Language English
Advisor Zadeh, Homa (committee chair), Kar, Kian (committee member), Paine, Michael (committee member) 
Creator Email alfonslg@usc.edu,gil.alfon@hotmail.com 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c40-272385 
Unique identifier UC11280063 
Identifier etd-GilAlfonso-4574.pdf (filename),usctheses-c40-272385 (legacy record id) 
Legacy Identifier etd-GilAlfonso-4574.pdf 
Dmrecord 272385 
Document Type Thesis 
Format application/pdf (imt) 
Rights Gil, Alfonso 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law.  Electronic access is being provided by the USC Libraries in agreement with the a... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Abstract (if available)
Abstract Aim: Treatment of multiple contiguous recession defects, in particular in sites with interproximal periodontal attachment loss remains a clinical challenge. Vestibular Incision Subperiosteal Tunnel Access (VISTA) has been developed as a technique well suited for these clinical scenarios. The present study sought to analyze retrospective data on patients treated with VISTA to achieve periodontal root coverage for the treatment of multiple contiguous recession defects. The aim of this study was to determine the efficacy of VISTA for root coverage and gingival thickness/volume gain, and to determine the role of various risk factors (initial root prominence, initial gingival margin thickness, initial recession depth, recession type, tooth type, graft type and anatomic location). ❧ Material and methods: Thirteen patients with 86 teeth exhibiting multiple gingival recession defects (mean initial recession 2.3 mm±0.9) were treated with VISTA using various graft materials. Treated root surfaces were thoroughly debrided with scaling and root planning. Odontoplasty was performed to reduce root prominence, and exposed root surfaces were conditioned with EDTA. VISTA entailed a vertical incision in the vestibule, through which a subperiosteal tunnel was created, extending towards the vestibular depth and gingival margins. The tunnel was coronally advanced and stabilized with sutures that were bonded to the facial surface of the teeth. Graft material included autogenous connective tissue from palate/tuberosity, acellular dermal matrix (ADM 
Tags
connective tissue graft
gingival recession
mucogingival surgery
periodontal regeneration
periodontal root coverage
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button