Close
USC Libraries
University of Southern California
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Folder
The phase behavior of cyclohexane-rich mixtures with water
(USC Thesis Other) 

The phase behavior of cyclohexane-rich mixtures with water

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Copy asset link
Request this asset
Request accessible transcript
Transcript (if available)
Content THE PHASE BEHAVIOR OP CYCLOHEXANE-RICH MIXTURES WITH WATER
A T h e s is
P r e s e n te d to
■The F a c u lt y o f th e S ch o o l o f E n g in e e rin g
■The U n i v e r s i t y o f S o u th e rn C a l i f o r n i a
I n P a r t i a l F u l f i l l m e n t
o f th e R e q u ire m e n ts - fo r th e D egree
M a ste r o f S c ie n c e i n C hem ical E n g in e e rin g
By
K en n eth E. H ayw orth
Ju n e 1962
U M I Number: EP41767
All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a com plete m anuscript
and there are missing pag es, th e se will be noted. Also, if material had to be removed,
a note will indicate the deletion.
UMI EP41767
Published by ProQ uest LLC (2014). Copyright in the Dissertation held by the Author.
Dissertation Publishing
Microform Edition © ProQ uest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United S ta te s Code
ProQ uest LLC.
789 E ast Eisenhow er Parkway
P.O. Box 1346
Ann Arbor, Ml 4 8 1 0 6 -1 3 4 6
d h '0>2 C V Z 7
This thesis, written by
K enneth. E . H a j w o r t h
under the guidance of h ls F a c u lty Committee
and approved by all its members, has been
presented to and accepted by the School of
Engineering in partial fulfillment of the re­
quirements for the degree of
M a ste r o f S c ie n c e i n .........................
C hem ical E n g in e e rin g
Date June..1962
Faculty Committee
' _ Chairman
ACKNOWLEDGMENTS
I w ish to e x p re s s my g r a t i t u d e to my a d v is e r ,
D r. C. J . R e b e rt f o r h i s p a t i e n c e and a s s i s t a n c e i n t h i s
w ork.
I w ish to acknow ledge th e c o n s t r u c t i v e c r i t i c i s m s
o f my com m ittee m em bers, D r. P. J . L o c k h a rt and D r.
G. M. B eeson.
I w ish to acknow ledge a ls o th e e f f o r t s o f Mr.
J . R. S c o t t , t h e l a b o r a t o r y m e c h a n ic . W ith o u t h i s a s s i s t ­
ance and s u g g e s tio n s , th e work w ould have been much more
d i f f i c u l t .
F i n a l l y , I w ish to e x p re s s my g r a t i t u d e t o M rs.
R uth Toyama. W ith o u t h e r h e lp and f r i e n d s h i p , t h i s work
may n e v e r have been c o m p le te d .
TABLE OF CONTENTS
Page
I n t r o d u c t i o n ...............................................................................  1
Scope and P r e s e n t a t i o n o f P r e s e n t Work . . . . 5
R e s u l t s .....................................................................................................20
Equipm ent and P ro c e d u re ...................................................... 26
B i b l i o g r a p h y ........................   38
A p p e n d i c e s ....................................................................................  ij.0
A ppendix A - A p p a ra tu s and P r o c e d u r e .......................ip.
A ppendix B - L o ad in g Sam ple Tube and S e t t i n g
Sample Tube i n t o C om pressor B lo ck . 56
A ppendix C - C a l i b r a t i o n o f E quipm ent .................. 63
A ppendix D - C a l c u l a t i o n from E x p e r im e n ta lly
D eterm in ed D a t a ..................................... . 68
A ppendix E - E x p e rim e n ta l Raw D a ta  ........................8 l
A ppendix F - P u r i t y o f F lu id s Used . .. .. . 87
A ppendix G - - S ta n d a rd E quipm ent U s e d ....................... 88
1
'LIST OP TABLES
T a b le No. Page
I Summary o f D a ta from th e L i t e r a t u r e on
th e C y elo h ex an e-W ater S y s t e m .............................. 29
I I P re s s u re - T e m p e r a tu re a t th e P hase B o u n d a rie s
o f th e System O ycloh exane-W ater a t E qual
I n t e r v a l s o f P r e s s u r e  .............................  31
I I I P re s s u re - T e m p e ra tu re a t th e Phase B o u n d a rie s
o f th e System C y clo h ex an e-W ater a t E q u al
I n t e r v a l s o f T em p eratu re ................................... 3l|
IV T herm ocouple C a l i b r a t i o n D a t a ................................ 66
V Sample C a lc u la t io n o f M ix tu re C o m p o sitio n . 69
VI Sample D a ta S h e e t ....................................................... . 73
V II R e fe re n c e C h a rt f o r I r o n - C o n s ta n ta n
T herm ocouple .... .. ................................... 75
V II I I n t e r p o l a t i o n C h a rt f o r I r o n - C o n s ta n ta n
T herm ocouple f o r E x p e rim e n ta l Range . . . 78
IX M ercury Vapor P r e s s u r e C h a rt f o r
E x p e rim e n ta l Range .................................................. 79
X. E x p e rim e n ta l D a t a .........................................  82:
LIST OP FIGURES
F ig u r e No. Page
1 C h a r a c t e r i s t i c Is o th e rm s o f P a r t i a l l y
M is c ib le B in a ry S y stem s-C ase IV .................... 2
2 P r o j e c t i o n o f th e T h ree Phase Curve i n t o
t h e T-X P la n e o f T h e o r e t i c a l S y stem s-
C ase I V ................................................................................ 3
3 Locus o f C r i t i c a l S t a t e s o f T h e o r e t i c a l
S y stem s-C ase I V ............................................................ I4 .
P re s s u r e -T e m p e ra tu re P hase B o u n d a rie s . . . 7
5 T e m p e ra tu re -C o m p o sitio n D iagram Showing
L ocus o f C r i t i c a l P o in ts and C r i t i c a l
V a p o r iz a tio n P o in ts (C om position-M ol %
W ater)  ........................   8
6 T e m p e ra tu re -C o m p o sitio n D iagram Showing
L ocus o f C r i t i c a l P o in ts and C r i t i c a l
V a p o r iz a tio n P o in ts (C o m p o sitio n -W eig h t
% W ater)  .............................   9
7 (A-F) Is o th e rm s o f t h e System ..............................................10
8 (A-H) I s o b a r s o f t h e System  .............................. 15
9 V apor P r e s s u r e o f W ater, B enzene, Hexane
and C yclohexane .  ........................  19
10 (A-C) D e v ia tio n o f S a t u r a t e d P r e s s u r e s from
C om plete Im m isc ib le P r e s s u r e s f o r C e r t a i n
System s .  ............................................................................21
11 E x p e rim e n ta l T u b e ...................................  lj.3
12 C om pressor B lock A ssem bly  ................................Ijij.
13 S ch em atic D iagram o f A ssem bled A p p a ra tu s . i|_ 6
1J| S c h e m a tic D iagram o f R e l a t i v e H e ig h ts of
E x p e rim e n ta l E q u i p m e n t ............................................. lj.7
1£ M ercury L e v e l I n d i c a t o r  .....................* ij.8
v i
F ig u re No. Page
16 S ch em atic D iagram o f L o ad in g A p p a ra tu s . . $1
17 P r e s s u r e Gauge D e v ia tio n G r a p h ........................6 1 ^ .
18 Therm ocouple D e v ia tio n G r a p h ........................  .
19 V apor P r e s s u r e o f C yclohexane and W ater
a t L oading T em p era tu re s (3) . . . . . . 70
20 D e n s ity o f G yelohexane and W ater a t
L oading T em p era tu re s ( 2 ) .........................................72.
INTRODUCTION
Broad s t u d i e s and g e n e r a l i z a t i o n s c o n c e rn in g p a r t i ­
a l l y m is c i b l e l i q u i d sy stem s w ere made a t t h e b e g in n in g o f
t h i s c e n tu r y . The f o u n d a tio n s f o r u n d e r s ta n d in g th e p h a se
b e h a v io r w ere o u t l i n e d by v a n d e r W aals (1 3 )• Van L aar
(12) and Kuenen (6) e x te n d e d th e m a th e m a tic a l tr e a tm e n t o f
th e b a s i c th e o r y to in c lu d e th e p a r t i a l l y m i s c i b l e l i q u i d s .
Rooseboom (9) and Kuenen c o n tr i b u te d to t h e g r a p h i c a l ap­
p e a ra n c e o f th e p h a se b e h a v io r o f su ch s y s te m s . These
were sum m arized by R e b e rt (8 ) i n h i s work on th e w a te r -
benzene s y s te m . The e x p e rim e n ta l work on th e e y c lo h e x a n e -
r i c h a r e a o f th e w a te r-c y c lo h e x a n e s y s te m i s d i r e c t e d t o ­
w ards a b e t t e r u n d e r s ta n d in g o f t h e s e s y s te m s .
The p r e s e n t work on th e w a te r- c y c lo h e x a n e sy stem
i n d i c a t e s t h a t i t f a l l s i n t o Case IV o f th e ’’C l a s s i c a l
I d e n t i f i c a t i o n o f P a r t i a l l y M is c ib le S y stem s” as o u t li n e d
by Rooseboom. The p r e s s u r e - e o m p o s itio n d ia g ra m , F ig u re 1 ,
th e te m p e r a tu r e - c o m p o s itio n d ia g ra m , F ig u re 2 , and th e
p r e s s u r e - te m p e r a t u r e d ia g ra m , F ig u re 3 , o f su c h a system
a r e shown w ith th e a r e a s c o v ered by t h i s i n v e s t i g a t i o n
n o te d by s o l i d l i n e s .
On th e d ia g ra m s , K -^ and Kg a re t h e v a p o r i z a t i o n c r i ­
t i c a l v a lu e s o f th e p u re com ponents. K^ i s th e t h r e e
p h a se v a p o r i z a t i o n c r i t i c a l . The c u rv e K^K^ i s th e lo c u s
o f th e v a p o r i z a t i o n c r i t i c a l p o i n ts o f m ix tu re s r i c h i n
PR E SSU R E
2
!
V a p o r
CoA/fPO S t r/O A /
C h a r a c t e r i s t i c / s o t h e r m s O f P a r t i a l l y
M i s c i b l e B in a r y S y s t e m s - C a s e 2 J T
F j G U R £ /
T£MPE H A TC/HE
3
JS
A
C o m p o s / t / o m
P r o j e c t i o n O f T h e T h /z e e P h a s e C c/p tse / n t o T h e
T~X P l a n e O f T h e o r e t l c a c S y s t e m s - C a s e HZ’
F /G U P E F
PxessuRC
k
M
/ K*
T fatpfra t u p f
L o c u s O p Cr i t / cal S t a t f s Of T r f o f f t / c a l
SY ST F M S - Ca S € H Z
F / g u r e 3
one l i q u i d , i n t h i s c a s e e y c lo h e x a n e , w hich i s c o m p le te ly
m is c ib le * C o rre s p o n d in g ly , a p o r t i o n o f t h e CUTV@
th e lo c u s o f v a p o r i z a t i o n c r i t i c a l p o i n t s f o r c o m p le te ly
m is c i b l e l i q u i d m ix tu r e s r i c h i n t h e second l i q u i d , i n
t h i s c a s e , w a te r . The re m a in d e r o f th e c u rv e K^MN i s th e
lo c u s o f c r i t i c a l s o l u t i o n p o i n t s . The c u rv e i s th e
t h r e e p h a se c u rv e .
The f i r s t e x p e r im e n ta l w ork on su ch sy stem s was r e - j
r
p o r te d by S c h e f f e r ( 1 0 ) , on w a te r-h e x a n e and w a te r-b e n z e n e
m ix t u r e s . I n h i s i n v e s t i g a t i o n s , he s t u d i e d o n ly t h e h y ­
d ro c a rb o n r i c h a r e a , d e te rm in in g th e v a p o r i z a t i o n c r i t i c a l ;
p o i n t s , c u rv e 8 1 1 ( 1 'blle c r i t i c a l v a p o r i z a t i o n end
p o i n t , K^. R e b e rt was t h e f i r s t to c o m p le te ly o u t l i n e
such a sy ste m . He co m p leted S c h e ff e r * s work on th e w a te r-^
ben zen e sy ste m .
The p r e s e n t e x p e rim e n ta l work was a s t a r t a t a t ­
te m p tin g t o th ro w l i g h t on th e e f f e c t o f h y d ro c a rb o n
I
s t r u c t u r e on t h e p r o p e r t i e s o f su c h s y s te m s . S c h e f f e r
s t a r t e d by s tu d y in g a s t r a i g h t c h a in h y d ro c a rb o n and
w a t e r , and an u n s a t u r a t e d r i n g h y d ro c a rb o n and w a t e r . As ;
n o te d ab ove, R e b e rt co m p leted S c h e ff e r * s work on t h e u n ­
s a t u r a t e d r i n g and w a te r . The p r e s e n t s tu d y i s on a s a t u ­
r a t e d r i n g h y d ro c a rb o n and w a te r .
Scope and P r e s e n t a t i o n o f P r e s e n t Work
The sy ste m , w a te r -c y c lo h e x a n e , was s t u d i e d by means
!o f a s e r i e s o f sam ples r a n g in g from a p p ro x im a te ly 0 .5 wt$
I 1
j(2.2 mol%) w a te r to ll+ .l w t$ (]j.3.3 m ol$) w a t e r . The r e ­
s u l t s a re shown g r a p h i c a l l y on F ig u re s th ro u g h 10 on j
p ag es 7 th ro u g h 2 3 . F ig u re Ip shows t h e p r e s s u r e - te m p e r a ­
t u r e p h a se b o u n d a rie s f o r each sam p le. The v a p o r i z a t i o n
c r i t i c a l end p o i n t , th e c r i t i c a l p o i n t f o r e a c h sam p le, the!
i
lo c u s o f c r i t i c a l p o i n t s , and th e v a p o r p r e s s u r e c u rv e s fo r!
e y clo h e x a n e and w a te r a re a l l p la c e d on t h i s g ra p h f o r r e f - i
I ;
ie r e n c e . F ig u re 5 i s a t e m p e r a t u r e - s a t u r a t e d s o l u t i o n d i a -
i
i
i gram w ith c o m p o s itio n shown a s mole % show ing a ls o th e
ilo c u s o f v a p o r i z a t i o n c r i t i c a l t e m p e r a tu r e s . On t h i s
g ra p h a r e a l s o shown th e r e s u l t s o f S c h e f f e r on w a te r - h e x - ;
■'ane,'.and R e b e rt on w a te r -b e n z e n e . F ig u re 6 shows th e same ;
i n f o r m a t i o n e x c e p t t h a t t h e c o m p o s itio n i s shown as w e ig h t !
'%, I t was f e l t t h a t b o th s h o u ld be in c lu d e d s in c e S c h e ffe r:
!r e p o r t e d h i s f i n d i n g s i n m ole and R e b e rt i n w e ig h t %.
'H e b e r t ’ s c h o ic e o f w e ig h t % was n e c e s s i t a t e d by h a v in g to
I show c o n s i d e r a b le d e t a i l i n th e w a t e r - r i c h a r e a , w hich on
!
i a mol % d ia g ra m w ould h a v e b e e n e x tre m e ly co m p re sse d .
F ig u r e s 1-k th ro u g h 7-F a r e a s e r i e s o f is o th e rm s f o r t h e
sy ste m , and F ig u r e s 8-A th ro u g h 8-H a re a s e r i e s o f i s o -
|b a r s f o r th e s y s te m .
On F ig u re 9 a r e p la c e d th e v a p o r p r e s s u r e c u rv e s fo r,
i
b e n z e n e , e y c lo h e x a n e , h ex an e and w a t e r . T h is was in c lu d e d
. to i n d i c a t e th e r e l a t i o n s h i p of e ac h o f t h e p u re com ponents
7
1 2 00
1000
LOCUS O F
"C R IT IC A L -------
PO IN TS
<
to
Q -
800
tii
t c
3
( O
to
tu
a:
tL
600
400
200
180 140 160 200 220 260 2 8 0
TEMPERATURE -°C
p r e s s u r e -T e m p e r a tu re Phase B o u n d a rie s
FIGURE k
TEMPERA T U R E -
300
< 0
o
ZOO
16 0
1 6 0
o Scheffer: W ater-Hexane
a Reb ert: W ater -B enzene
o T hese M ata : W ater- C yclohexahe
izo
4 0 so 20 o io 30
C o m p o sitio n - M ot % I/M a te r
T e m p e r a tu r e -C o m p o s itio n D ia g ra m Show ing lo c u s O f C r itic a l
P o in ts A n jj C r iti c a l V a p o r iz a ti o n P o i n t s
F ig u r e 5
TE M P E R A T O R E
3 0 0
260
220
o S c h e f f e r : Wa z e r - P e x a n e
R e b e r t : W a t e r - B e n z e n e
a Th e s e D a t a : W a t e r - C h clo h exane
25 30 o 5 20 IS IO
C o m p o s it io n - We ig h t % Wa t e r
Te m p e r a t u r e - c o m po sitio n Dia g r a m S n o w in g L o c u s O p Cr it ic a l
P o/n t s A n d Cr i t i c a l V a p o r iz a t io n P o i n t s
F / C U R C G
Pressure - P S /A Pressure -P S /A
1 0
400
300
Z O O
n
j
75 *C
i
4
< - —
too
O Z 4 6 3 / 0 / 2 / 4 / 6 !8 20 Z£ 24
C O H JR O S/T /O M - W T Vo WATER
/
/
) -------;
/
s
/
\
\
/
n 2 /7 0 °c
/
✓
/
2
/ s'
" >*"...
i '
400
300
Z O O { r
IOO
O 2 4. < o 8 1 0 1 2 / 4 /6 /8 20 22 24
CoMRos/T/o// - W t. % Wa t e r
F / g u r e 7 - / s o t h e r m s O f Th e S y s t e m
P f?£SS U R £ - PSM
11
9 0 0
7 0 0
600
500
300 jp-
2 0 0
too
a tO iZ /4 - / < S IS ZO 22 £4
C o m r o s i t / o n - W r. % W a t e r
7 - C
F ig u r e 7 (Contt/a o/ e d )
£ sxnoij
-NOU.tSOdlMOC>
+ Z Z Z OZ
ooc
oos
001
0 0 8
0 0 6
OOO!
OOH
2 1
Pressure - PSI A
P ressure - P S f A
13
(too
tooo
9 0 0
8 0 0
7 0 0
6 00
SOO
300
ZOO
20 22 24 B /O /Z / 4 (6.
C o m p o s i ti o n - W t. % W a t e r
7 - €
Fig u r e 7 ( C o ntin ued)
( a s r w / j N o ^ ^ 3 x n 9 /- f
% j L A ' l - HOIJ.ISOc/WG>3
-t?z z z o e f f j
ooe
0 09
0 0 9
Oo S t ? =1
009
<2 0 6
ooo/
OOH
\/tSd - J vn ssB X d
T E M P E R A T U R E - ° C Te AMPERATURE ~
220
P-- 2 5 0 PS/A
200
A 80
oo
e /O A 2 (4 - /£ > ta 20 22. 2 4
C oM PO SATAO AA-W t . % ABATER
8-A
240
220
P= 3 5 0 P S /A
200
o o
A 4 - AS A O 20 22 24- o 2 4 8 A 2
COMPOSATAOH - W r. % W A T E R
F a g u r e 6 - / s o b a r s Op Th e S y s t e m
Te m p e r a t u r e - ° C Te m p e r a t u r e -
16
P - 4 5 0 P S/A
z z o
__
oo
200
t o o
a tO / 2 fR /O t a 2 0 2 2 2 4 *
C o m p o s i tio n - W t. % Wa t e r
3 -C
260
P* < 3 SO P S/A
220
200
8 / O t2 1 4 - to /8
C o m p o s it io n - W t. % W a t e r
6 - D
F i g u r e 3 - (C o n t / nuejd)
T emperaturc - ° C T emperature -
P- 850 PS/A
oo
2 2 0
/e 20 22 24 e to fz
Co m po st t/o n - Wt. % Wa t e r
8-C
280
P- 950 PS/A
N o o
3 /0 !2 M - /& f8 20 22 24
C o m p o s i t i o n - W t. % W ater
8 - f
F i g u r e 8 (C o n t in u e d )
7 ~ £ M PEf t A T U P S - ° C T s MP S P A T UP P -
260
P ~ /050 P S /A
< 0
o
220
200
3 f O 1 2 /4 /6 / < S 20 22 24
C o m p o s fT /O N - Wr. % IA/ a t ^ r
230
260
240
P - Af64 PSP1
0
220
2 0 0
8 - H
6 3 1 0 / 2 14 /6 /& 20
C o m p o s /T /O N - W r % W a t c r
22 24-
F/OU PS S (CoNT/NU£D)
P r e s s u r e - P S f P
19
s o o
BOO
700
Soo
3 0 0
300
B e n z e n e
P e x a n e
Wa t e r
— C y c l o h e x a n e
too
s o ISO
T e m p e r a t u r e - ° C
V a p o r P r e s s u r e Of W a t e r , B e n z e n e ,
P E X A M E d /Y D C y c tO H E X A N E
F /6U PE 9
v a p o r p r e s s u r e to th e o t h e r s . The h y d ro c a rb o n v a p o r p r e s ­
s u re c u rv e s a re c o m p le te th r o u g h t h e i r c r i t i c a l te m p e ra ­
t u r e and p r e s s u r e , w h e rea s th e w a te r v a p o r p r e s s u r e c u rv e
i
: i s o n ly g iv e n th r o u g h o u t th e p r e s e n t a r e a o f i n t e r e s t .
On F ig u r e 1 0 -A th e e x p e r i m e n t a l ly d e te rm in e d v a p o r
p r e s s u r e f o r 3- p b a s e m ix tu r e s o f w a te r-h e x a n e i s show n.
I A lso shown a r e th e t h e o r e t i c a l v a l u e s , i . e . th e sum o f th e
1 v a p o r p r e s s u r e o f e a c h c o m p o n en t. F ig u r e 10-B i s s i m i l a r ,
b u t f o r th e s y s te m , w a te r - e y e lo h e x a n e . F ig u r e 10-C i s
a l s o s i m i l a r , b u t f o r th e s y s te m , w a te r - b e n z e n e .
i R e s u lts
The s y s te m , w a te r - c y e lo h e x a n e , c a n b e c l a s s e d w ith
I th e s y s te m s , w a te r -h e x a n e and w a te r - b e n z e n e ; i . e . i t i s a
i
c l a s s i c a l C ase IV s y s te m , one i n w h ic h th e c o m p o s itio n o f
th e v a p o r i s i n t e r m e d i a t e to th e c o m p o s itio n o f th e two
\ l i q u i d p h a s e s . As c a n be s e e n on F ig u r e s 5 and 6 , th e
i
j g e n e r a l p r e s s u r e - te m p e r a t u r e ra n g e f o r t h i s sy ste m l i e s
! i n t e r m e d i a t e to th e w a te r-h e x a n e and w a te r- b e n z e n e s y s te m s .
T h is , one w ould e x p e c t, a s t h e c r i t i c a l te m p e r a tu re and
: p r e s s u r e o f c y e lo h e x a n e i s i n t e r m e d i a t e to h e x a n e and b e n -
■ z e n e . (F o r r e f e r e n c e , th e v a p o r p r e s s u r e c u rv e s f o r h e x ­
a n e , c y e lo h e x a n e , b e n z e n e and w a te r a r e shown i n F ig u re
9 .) The lo c u s o f c r i t i c a l p o i n t s f o r t h e w a te r - c y e lo h e x ­
an e s y s te m f a l l s c l o s e r to t h e w a te r- b e n z e n e l o c u s , w h ich
i s a ls o a s one w o u ld e x p e c t, s in c e c y e lo h e x a n e f s c r i t i c a l
PRESSURE - PS/A
21.
1 7 0 0
uoo
woo
900
8 0 0
7 0 0
SOO
400
S O O
Z O O
25 50 75 fO O /2S / S O /75 200 225 250 275 300
TEM PERATURE ~ ° C
D e w a t / o n Or S a t u r a t e d P r e s s u r e s F r o m Co m p l e t e "
fflfM /s c /B L E P r e s s u r e s F o r W a t e r - R e x a /y e S y s t e m
F ig u re : /OA
PRESSURE P S //Q
22
1300
U O O
9 00
700
300
Z O O
— A c t u a l
— F f e o r e t/ c a l
zoo
25 50 75 J O O /25 /50 1 7 5 200 225 250 275 3 0 0
T e M R E R A T U R E - °C
P e v / a t/ oas O e S a t u r a t e s P r e s s u r e s F r o m C o m p l e t e
/m o s/ s c /s l e P r e s s u r e s F o r W t T E R -C y c l o r e e a r e S y s t e m
F /g u p f /O B
/SOO
W O O
900
800
70 0
600
S O O
400
300
Z O O
w o
ZS SO 7 5 W O /ZS /SO 775 Z O O ZZS 250 275 300
T £ -A S P e / ? A T t / f i ? £ r - °C
D s v /A T /o o f O f S a t u r a t e d P r e s s u r e s F r o m C oa/ R / e t e
/M A f/s c /B iS P r e s s u r e s F o r W a t e r -B e /v z E tv e S r s T s r / 7
FfGURE IO C
| 2k
1
te m p e r a tu r e i s c l o s e r to t h a t o f b e n z e n e th a n to t h a t o f i
h e x a n e •
The v a p o r i z a t i o n c r i t i c a l end p o i n t f o r c y e lo h e x a n e !
o c c u r r e d f o r a c o m p o s itio n o f a p p ro x im a te ly 5 > 0 m o l$ w a te r |
i j
j (S ee F ig u r e 5>)« R o u g h ly , one c o u ld s a y t h a t a t t h i s p o i n t ,i
j t h e r e was a o n e - to - o n e r a t i o o f w a te r to c y e lo h e x a n e . j
A g a in , t h i s i s i n te r m e d i a t e to th e s y s te m s , w a te r-h e x a n e
I
and w a te r - b e n z e n e . The w a te r- h e x a n e s y s te m h a s a ro u g h
'
r a t i o a t t h i s p o i n t o f 3 m o le s h e x a n e t o one m ole w a te r .
■On th e o t h e r h a n d , f o r th e w a te r - b e n z e n e , we h a v e 2 m o les
\
j b e n ze n e t o 3 m o le s w a t e r . I t seem s t h a t h e r e i s an i n d i c a -
l
t i o n t h a t th e s t r u c t u r e o f t h e h y d ro c a rb o n s a f f e c t s th e
^ u ltim a te s o l u b i l i t y o f th e w a te r i n t h e h y d ro c a rb o n . The i
I .
' i
j s t r a i g h t c h a in s a t u r a t e d compound h e x a n e w ith th e lo w e s t '
:w a te r s o l u b i l i t y , th e c y c l i c s a t u r a t e d r i n g o f c y e lo h e x a n e
: b e in g n e x t , and th e c y c l i c u n s a t u r a t e d r i n g o f b e n ze n e
! show ed th e g r e a t e s t a f f i n i t y f o r w a t e r ,
j F ig u r e s 7 -A th ro u g h 7 -F a r e a s e r i e s o f is o th e r m s
o f i n c r e a s i n g t e m p e r a t u r e . On t h e s e , th e m e a su re d a r e a i s
, g iv e n b y a s o l i d l i n e , and th e e x t r a p o l a t e d a r e a by d o t t e d
l i n e s . T h e ir sh a p e p ro v e s t h a t c l a s s i f y i n g t h i s sy ste m a s
a C ase IV was c o r r e c t . Of i n t e r e s t h e r e i s t h a t th e a z e o -
t r o p i c c o m p o s itio n p a s s e s th r o u g h a n a p p a r e n t maximum a t
a p p ro x im a te ly 230°G . T h is c an b e s e e n a ls o on F ig u r e 6 .
As h i g h e r te m p e r a tu re s a r e r e a c h e d , t h e h i g h e r c o m p o s itio n
! 2 5 j
c u rv e s a r e no lo n g e r c u t by t h e is o th e r m p l a n e , w ith th e
I i
r e s u l t a n t a i r f o i l s h a p e s o f F ig u r e s 7 -E and 7 -E . T hese j
c u rv e s e v e n t u a l l y d e g e n e r a te to a p o i n t a t t h e c r i t i c a l
te m p e r a tu r e o f th e p u re c o m p o n e n t.
i
F ig u r e s 8-A th r o u g h 8-H a r e a s e r i e s o f i s o b a r s f o r ^
't h e s y s te m . On t h e s e , th e a r e a i n v e s t i g a t e d i s show n i n
i
s o l i d l i n e s , and t h e e x t r a p o l a t e d a r e a i s shown w ith d o t te d '
; l i n e s . A t low p r e s s u r e s , th e c o n s t a n t p r e s s u r e p la n e c u ts
' a l l s a m p le s . As th e p r e s s u r e i s r a i s e d , and t h e sy s te m i s
1
|a b o v e t h e c r i t i c a l p r e s s u r e o f c y e lo h e x a n e , t h e c u rv e
b r e a k s away fro m t h e z e ro w t$ w a te r l i n e . As h i g h e r p r e s ­
s u r e p la n e s a r e i n v e s t i g a t e d , i t i s fo u n d t h a t m ore o f th e :
|lo w w a te r c o m p o s itio n sa m p le s f a l l to r e g i s t e r , su c h a s on i
! I
jF ig u r e s 8-E and 8- F . T h ese d ia g r a m s , i . e . t h i s p o r t i o n o f
I
r
th e c o m p le te te m p e r a tu r e - c o m p o s itio n d ia g ra m , d e g e n e r a te s
| to a p o i n t , a l s o . T h is p o i n t c o rre s p o n d s t o K3 on th e
I
i
j C l a s s i c a l D ia g ra m , o r i s w h a t i s c a l l e d t h e c r i t i c a l v a p o r -
j a t i o n end p o i n t . T h is i s shown on F ig u r e 8-H .
\ F ig u r e 9 i s n o t a r e s u l t o f th e p r e s e n t w o rk , b u t
^ d e s e rv e s m e n tio n a t t h i s t im e . On F ig u r e 9 a r e th e v a p o r
• p r e s s u r e c u rv e s f o r a l l th e com ponents d i s c u s s e d ; h e x a n e , j
c y e lo h e x a n e , b e n z e n e and w a t e r . W ith t h e a i d o f F ig u r e 9 , j
F ig u r e s 1 0 -A , 1 0 -B , and IQ tC w ere p r e p a r e d . On e a c h o f
t h e s e , t h e r e a r e two l i n e s . The s o l i d l i n e r e p r e s e n t s
i e x p e r im e n ta l d a t a o f t h e 3- p h a s e l i n e o f th e sy s te m
26
s t u d i e d . The d o t t e d l i n e r e p r e s e n t s a t h e o r e t i c a l 3 -p h a s e
v a p o r p r e s s u r e c u rv e f o r th e s y s te m . F ig u r e 1Q-A i s f o r
th e w a te r -h e x a n e s y s te m , F ig u r e 10-B i s f o r th e w a te r -
' c y e lo h e x a n e s y s te m , and F ig u re 10-C i s f o r th e w a te r - b e n -
j z en e s y s te m . I n e a c h c a s e , th e maximum d e v i a t i o n o c c u r s
1 n e a r t h e c r i t i c a l te m p e r a tu re o f t h e h y d r o c a r b o n . The
|w a te r -h e x a n e sy s te m e x h i b i t s th e g r e a t e s t d e v i a t i o n , w h ere
th e a c t u a l m e a su re d p r e s s u r e i s a p p ro x im a te ly 10$ g r e a t e r
th a n t h e t h e o r e t i c a l . The w a te r - c y e lo h e x a n e sy s te m h a s a
d e v i a t i o n a lm o s t a s g r e a t , b u t th e w a te r-b e n z e n e sy s te m
h a s a d e v i a t i o n o f o n ly 3~k$ t h i s p o i n t .
To sum m arize t h e r e s u l t s , i t c a n b e s a i d t h a t th e
s y s te m , w a te r - c y e lo h e x a n e i s o f th e same ty p e a s th e w a te r -
ih ex an e and t h e w a te r -b e n z e n e s y s te m s . F u rth e rm o re , i n a l l
'r e s p e c t s i n v e s t i g a t e d , i t h a s b e e n fo u n d t h a t th e w a te r -
c y c lo h e x a n e sy s te m i s i n t e r m e d i a t e to th e o t h e r tw o . T h is
\
!i s r e a s o n a b le fro m two p o i n t s o f v ie w . F i r s t , t h e c r i t i c a l
i te m p e r a tu r e an d p r e s s u r e o f c y e lo h e x a n e a r e i n t e r m e d i a t e ,
and s e c o n d , th e s t r u c t u r e o f c y e lo h e x a n e i s i n t e r m e d i a t e ,
'i n g e n e r a l , i t c a n b e s a i d t h a t t h e sy s te m b e h a v e d a s was
t o b e e x p e c te d .
E q u ip m en t and P ro c e d u re
B r i e f l y , th e e x p e r im e n ta l e q u ip m e n t and p ro c e d u re
,was a s fo llo w s * (F o r a m ore th o ro u g h d e s c r i p t i o n , s e e
i
a p p e n d ix .)
27
The e q u ip m e n t c o n s i s t e d o f two m ain e le m e n ts . The
f i r s t e le m e n t was a h ig h vacuum m o le c u la r s t i l l i n w h ich
th e sam p le was p r e p a r e d . (S e e F ig u r e 16 i n a p p e n d ix .) I n
t h i s e q u ip m e n t, i t was p o s s i b l e to th o r o u g h ly and s e p a r a t e ­
l y d e -g a s a q u a n t i t y o f w a te r an d c y e lo h e x a n e , and th e n to
t r a n s f e r a known q u a n t i t y o f e a c h to t h e sam ple tu b e by
m o le c u la r d i s t i l l a t i o n . The sa m p le was t h e n tr a p p e d b y a
ste m o f m e rc u ry w h ic h was p o u re d i n t o t h e sam p le t u b e .
The sam p le tu b e was th e n rem oved fro m t h i s e le m e n t o f th e
e q u ip m e n t and t r a n s f e r r e d t o th e se c o n d e le m e n t o f th e
e q u ip m e n t.
The se c o n d e le m e n t was e s s e n t i a l l y a d e v ic e i n
w h ic h th e o b s e r v e r c o u ld v a r y t h e te m p e r a tu r e and p r e s s u r e
w i t h i n t h e sa m p le tu b e o v e r a w id e r a n g e . (S ee F ig u r e 1 3 ,
p ag e ij.6 .) The te m p e r a tu r e w as c o n t r o l l e d b y b o i l i n g a
h ig h b o i l i n g p o i n t h y d ro c a rb o n ( n a p h th a le n e o r b e n z o p h e -
n o ne) u n d e r c o n t r o l l a b l e d e g re e s o f vacuum . M in u te c h a n g e s
i n te m p e r a tu r e (.0 1 ° C ) w ere p o s s i b l e b y t h i s a rr a n g e m e n t.
The te m p e r a tu r e ra n g e d u r in g t h e c o u rs e o f t h e e x p e r im e n ta ­
t i o n w as fro m 129.i+°C ( 2 6 ^ .9 GF) t o 2 7 9 .2°C (£ 3 Jj..£ °F ). The
te m p e r a tu r e m e a su re m e n ts w ere e s tim a te d to h a v e a p r e c i ­
s i o n o f ± 0 .0 5 ° G . (S ee A p p en d ix A f o r f u r t h e r d e t a i l s . )
The p r e s stare o n t h e sa m p le was t r a n s m i t t e d th r o u g h th e
m e rc u ry i n t h e sam p le t u b e . T h is was v a r i a b l e i n m in u te
I n c re m e n ts (1 p s i ) by m eans o f two h y d r a u l i c c o m p re sso r
p i s t o n s , one f i l l e d w ith m e rc u ry , a n d t h e o t h e r f i l l e d
w ith h y d r a u l i c o i l * The p i s t o n s w ere moved b y a f i n e s c re w
I th r e a d * The p r e s s u r e r a n g e was fro m 96 p s i to H 6I4 . p s i a .
i
The p r e s s u r e m ea su re m e n ts w ere e s tim a te d to h a v e a p r e c i ­
s io n o f ± 1 p s i . (S e e A p p e n d ix A f o r f u r t h e r d e t a i l s * )
The a c c u ra c y o f th e m e a su re m e n ts was d e te rm in e d by
r u n n in g a sam p le o f p u re c y e lo h e x a n e and c o m p a rin g th e
r e s u l t s w ith th e v a lu e s g iv e n i n th e l i t e r a t u r e . The a v ­
e ra g e te m p e ra tu re d e v i a t i o n g av e an a c c u r a c y o f ± 0.2$. and
th e a v e ra g e p r e s s u r e d e v i a t i o n gave a n a c c u ra c y o f ± 0.3$•
The d a t a ta k e n f o r e a c h sam ple c o n s i s t e d o f a s e r ­
i e s o f b u b b le p o i n t s a lo n g th e 3- p h a s e c u rv e , n o t in g th e
3- p h a s e c r i t i c a l p o i n t f o r e a c h s a m p le , when a p p r o p r i a t e .
The b u b b le p o i n t l i n e was th e n t r a c e d o u t a f t e r le a v in g
th e 3 - p h a s e c u r v e , n o t in g i t s maximum p r e s s u r e . The
jbubble p o i n t l i n e was f o llo w e d f u r t h e r u n t i l th e c r i t i c a l
(p o in t was d e te r m in e d . A f t e r th e c r i t i c a l p o i n t was d e t e r ­
m in e d , th e r e t r o g r a d e c o n d e n s a tio n a r e a was o u t l i n e d a s
c o m p le te ly a s p o s s i b l e , w ith an a tte m p t to d e te rm in e th e
maximum te m p e r a tu r e f o r e a c h s a m p le , F i n a l l y , t h e dew
p o i n t l i n e was t r a c e d o u t a s f a r a s p o s s i b l e . The r e s u l t s
o f th e s e r u n s a r e shown on F ig u r e i |, fro m w h ich th e b a l ­
a n ce o f F ig u r e s 5 th ro u g h 8 w ere p r e p a r e d .
The r e p r o d u c i b i l i t y o f a g iv e n p o i n t was demon­
s t r a t e d d u r in g t h e r u n o f sa m p le num ber 8 . A r e a d in g o f
29
th e c r i t i c a l te m p e r a tu r e an d p r e s s u r e was ta k e n on A u g u st
1 7 , 1961 a s 25> 5 >.80G an d l l 6i|_ p s i a . On A u g u s t 2 2 , 1961 a
se c o n d d e te r m i n a ti o n o f th e c r i t i c a l was m ade. The v a lu e s
w ere 255*8°0 and 116l p s i a .
The o n ly d a t a fo u n d on th e c y e lo h e x a n e - w a te r s y s te m
w ere t h a t o f T a ra sse n k o w a n d P o lo s h in z e w a , a s r e p o r t e d by
S e i d e l l ( 1 1 ) . T h e i r e x p e rim e n ts c o v e re d th e lo w e r te m p e ra ­
t u r e ra n g e a t a tm o s p h e r ic p r e s s u r e o f t h e s o l u b i l i t y o f
w a te r i n c y e lo h e x a n e * The p r e s e n t s tu d y y i e l d e d d a t a on
th e s o l u b i l i t y o f w a te r i n c y e lo h e x a n e . The d a t a a r e l i s t ­
e d b e lo w i n th e t a b l e f o l lo w in g , n o t a s s u p p o r tin g e v id e n c e
o f t h e p r e s e n t w o rk , b u t a s a n i n t e r e s t i n g ite m , sh o w in g
th e l i m i t e d s o l u b i l i t y a t r e l a t i v e l y lo w p r e s s u r e s an d
te m p e r a tu r e s a s com pared to t h a t fo u n d a t h i g h e r p r e s s u r e s
an d t e m p e r a t u r e s .
T a b le I
Summary o f D a ta fro m th e L i t e r a t u r e
on th e C y c lo h e x a n e -W a te r S y ste m
gm HgO/lOO gm
S a t u r a t e d s o l u ­ W e ig h t W eig h t W eig h t
Tem p. t i o n i n c y c lo - w a te r c y e lo h e x a n e
%
oc
h e x a n e g a s gms w a te r
Ik 0 .0 0 5 0 .0 0 5
9 9 .9 9 5 0 .0 0 5
19
0 .0 1 0 0 .0 1 0 9 9 .9 9 0 0 .0 1 0
2 8 .5 0 .0 1 5 0 .0 1 5 9 9-985 0 .0 1 5
3 2 .5
0 .0 2 0 0 .0 2 0 9 9 -980 0 .0 2 0
3 8 .0 0 .0 3 1 0 .0 3 1
9 9 .9 6 9 0 .0 3 1
5 3 .0 0 .0 5 0 0 .0 5 0 9 9 .9 5 0 0 .0 5 0
f a b l e s I I and I I I
l a th e f o llo w in g t a b l e s th e p r e s s u r e - t e m p e r a t a r e a t
th e p h a s e b o u n d a r ie s o f f i x e d c o m p o s itio n s o f th e s y s te m ,
c y c lo h e x a n e - w a te r a r e g i v e n , l a f a b l e I I , th e y a r e g iv e a
a t e q u a l i n t e r v a l s o f p r e s s u r e , an d i n f a b l e I I I th e y a r e
g iv e n a t e q u a l i n t e r v a l s o f t e m p e r a tu r e .
f h e t a b l e s a r e c o n s t r u c t e d i n th e f o llo w in g m anners
A . f h e v a lu e s f o r th e 3**phase c u rv e common to a l l
sa m p le s a r e f i r s t g iv e n .
B . f h e v a lu e s f o r e a c h s a m p le , s t a r t i n g w ith th e
p o i n t on th e 3 -p h a s e c u rv e w here t h a t p a r t i c u ­
l a r sam p le b r e a k s w ith t h e 3 -p h a s e c u r v e , a r e
th e n l i s t e d . T h is p o i n t c a r r i e s th e s u p e r ­
s c r i p t
C . O th e r p o i n t s n o te d i n th e t a b l e s
1 . Maximum p r e s s u r e f o r sam ple b y s u p e r ­
s c r i p t H b n
2 . C r i t i c a l p o i n t f o r sam p le b y s u p e r s c r i p t
«c»
3 . A r e t r o g r a d e c o n d e n s a tio n p o i n t b y s u p e r ­
s c r i p t " d ”
Ij.. Maximum te m p e r a tu r e f o r e a c h sam p le b y
s u p e r s c r i p t ” e B
5>. E x t r a p o l a t e d v a lu e s b y an a s t e r i s k ( * ) •
31
Table II
P r e s s u r e - T e m p e r a tu r e a t th e P h a se B o u n d a rie s o f t h e
S y stem C y e lo h e x a n e -W a te r a t E q u a l I n t e r v a l s o f P r e s s u r e
S u p e r s c r i p t ” a
T h ree P h a se L in e
P s i a
100
200
250
550
600
560
700
750
1100
1150
O q
1 3 1 .7
1 4 8 .2
1 6 1 .8
172*6
181*4
1 8 8 .9
1 9 5 .8
202.2
2 0 7 .9
2 1 3 .1
2 1 7 .7
2 2 1 .9
2 2 6 .1
2 2 9 .9
2 3 3 .7
2 3 7 .2
2 4 0 .7
2 4 3 .9
246 .9
2 4 9 .7
2 5 2 .5
2 5 5 .2
Sam ple # 1
C o m p o sitio n :.
0 .5 w t$ w a te r
P s i a
20 9 a
O Q
164.1
17 8 .4
f,a n - P o in t a t w h ic h b u b b le p o i n t l i n e
b re a k s away fro m t h r e e p h a s e
c u rv e
Maximum p r e s s u r e
C r i t i c a l p o i n t
R e tr o g r a d e c o n d e n s a tio n p o i n t
Maximum te m p e r a tu r e
E x tr a p o la t e d v a lu e s
"b " -
M c ” -
"d " -
" e ” -
* -
Sam ple # 1
(con* t . )
S am ple # 2
C o m p o s itio n :
1 .1 w t$ w a te r
P s i a °C
195.6
P s ia © G
300
350 209.7
297 a
180.8
400 222.1 300 181.8
450 2 3 3 .8 350 1 9 5 .2
500 2 4 6 .9 400 207.8
550 2 5 4 .8
450 220.1
600 264.2 500 2 3 1 .7
650 2 7 3 .2
550
242.6
660. 2 7 9 .1 600 2 5 2 .9
665
278.0 650
2 6 2 .5
660 2 7 5 .6 680 2 6 8 .9
658c 2 7 9 .2 690 271.6
650 2 7 9 .6
700w 2 7 4 .6
600
2 7 4 . T
702® 276.0
550 2 6 9 .1
690 278.2
500 262.2 688° 2 7 7 .7
450 254*4
680 278.2
400
2 4 7 .7 700 2 7 7 .2
350
236.1 650 276.8
300 225.2 600 2 7 2 .7
250 2 1 3 .4 5 5 0 , 267.2
200 1 9 9 .8 500* 260.4
150 182.8 450* 252.4
100 161.8 400*
350*
300*
250*
200*
150*
2 4 3 .8
2 3 4 .1
223.6
2 1 1 .9
1 9 7 .8
181.3
Table II (eon’t.)
S am ple #3
C o m p o sitio n :
4*7 w t$ w a te r
Sam ple # 4
( e o n 1t .)
P s i a
897a
980
99G
980
95> Q
9W®
93 0 d
90 0 d
850
800
750
700
6 0 01
550
$00*
k $ o t
400;
3 5 o ;
300^
250*
200"
150
O q
2 4 0 .4
21 4 .0 *9
2 ^ 0 .1
2 5 6 .3
2 5 8 .7
263.7
265.6
266 »4
2 6 8 .3
2 6 8 .6
269.2
2 6 9 .9
2 6 9 .7
268.2
265.6
262.2
2 5 8 .3
2 5 3 .8
2]J.8.6
243.1
2 3 7 .2
2 3 0 .3
222.2
2 1 3 4
202.8
1 9 0 .8
1 7 5 .9
S am ple # 4
C o m p o sitio n :
5*2 w t$ w a te r
P s ia °C
939a
2 4 3 .2
950 2 4 4 .8
1000 2 5 3 .9
1010 256.1
1020.
2 5 8 .7
1026b 261.8
1020 263.6
P s ia
1010 269.9
1000 265.8
976 267.2
95od 268.1
900
268.9
850
267.9
800 265.8
750 263.1
700 259.6
650
2 5 5 .4
600
250.7
245.7
§00* 2 4 0 .4
450;
234.0
l(-00* 227.6
3507 219.8
300* 210.8
250* 2 00.4
200* 188.7
Sam ple # 5
C o m p o sitio n :
6 .7 w t$ w a te r
P s i a °C
1 031a 248.7
1050
2 5 0 .5
1070 253.8
1080^
2 5 6 .3
1084b 258.6
1080 2 6 0 .3
1070 2 6 1 .9
1050
2 6 3 .3
1035°
2 6 4 .0
1000d 2 6 5 .6
950 2 6 6 .0
900 2 6 5 .2
850
2 6 3 .5
800 2 6 1 .2
750
2 5 8 .3
700 2 5 4 .6
Sam ple # 5
( c o n * t . )
P s ia . °C
650 250.7
600 246.2
55p;
241.2
5oo*
235.7
45o:
229.2
400' " * 2 22.4
35o! 214.8
300~ 205.6
250 " * 1 95.8
200'"' I 8 4 .4
Sam ple #6
C o m p o sitio n :
9 .6 w t$ w a te r
P s i a
O Q
l l 4 9 a 255.1
H 5 2 b 255.8
1150 256.4
1135°
258.3
1100d 2 6 0 .6
io 5 o d 2 6 1 .9
1000 2 6 1 .7
950 2 6 0 .7
900 2 5 9 .1
850 2 5 6 .8
800 2 5 4 .1
750 2 5 0 .9
700 2 4 7 .2
650 2 4 3 .1
600
2 3 8 .3
550 2 3 3 .2
500 2 2 7 .4
450,, 2 21.4
400* 214.8
350*
2 0 7 .1
300', : ‘ 1 9 5 .6
250^ 1 8 9 .4
200 188.0
Table II (con*t.)
Sam ple #7
C o m p o sitio n :;
1 0 .0 w ti o w a te r
P s i a
° c
l l 5 l a
255.2
l l 5 4 b
256.2
1150 257.2
1137®
258.2
1100d 2 6 0 .1
10^0 2 6 1 .3
1000 260.8
95© 2 5 8 .4
900
2 5 7 .9
8§0 2 5 5 .6
Sam ple #8
C o m p o sitio n s
II4 . . I wt% w atei
P s i a °c
116 l a
2 5 5 .8
U 6 ib k «
2 5 5 .8
1150 2 5 5 .8
1100 255*2
1050 25I4..2
1000
2 5 2 .7
950 2 5 0 .8
900
2 ^ 8 .5
8^0
245.8
800
2 4 2 .9
750* 2 3 9 .7
700'“ '
2 3 5 .9
650* 231.6
600*
2 2 6 .9
550* 2 22.1
500* 2 1 6 .7
k$o?
210.7
koo:: 203.8
350:; 1 9 6 .7
300';: 1 8 8 .7
250'“ '
1 7 9 .7
34
Table III
P r e s s u r e - T e m p e r a tu r e a t t h e P h a se B o u n d a rie s o f th e
S y stem € y e lo h e x a n e -W a te r a t E q u a l I n t e r v a l s o f T e m p e ra tu re
S u p e r s c r i p t ” a M - P o in t a t w h ic h b u b b le p o i n t l i n e
b re a k s away fro m t h r e e p h a s e
c u rv e
w b ” - Maximum p r e s s u r e
1 1 c ” - C r i t i c a l p o i n t
rtd H - R e tr o g r a d e c o n d e n s a tio n p o i n t
" e " - Maximum te m p e r a tu r e
- E x tr a p o la t e d v a lu e s
T h ree P h a se L in e Sam ple # 1 S am ple #1
C o m p o s itio n : ( c o n ’ t . )
°C P s i a 0 .5 w t$ w a te r
135
124
145 139
150 156
155 173
160
213
170 237
175 266
291
185 323
190 357
195 394
4 74
210 519
215
220 627
225 687
230 751
235 818
240 890
968
250 1055
255 1148
° c P s i a
1 6 2 .5 202
190 282
195
298
200
315
205
333
210 352
215 371
220
391
225 412
230
433
235
240
478
245
501
250
525
255
550
260
577
265 605
270
633
275
658
276 661
277 664
278
665
279
66l
2 7 9 .2 C 658
2 7 9 .4
■ -
279 641
278
631
277
621
276 612
03
P s ia
275
602
270
559
265 520
260 485
255 453
250
423
245 395
240 369
235 345
230
321
225 299
220
277
215 257
210
237
205 218
200 201
195 185
190 17G
185 156
180
143
175 130
170 118
165 107
160 96
155
86
150 76
145 67
T a b le I I I ( c o n ’ t . )
S am ple # 2
C o m p o sitio n !
1 .1 wt$> w a te r
180.8
195
200
205
210
215
220
225
230
235
25.0
245
250
255
260
265
270
27k
275
276
2 7 7 .7 °
277d
277.
277
276
275
27I 4 -
270
265
260
255
250
214-5
2lj.O
235
230
225
220
215
210
e
P s i a
349
3&9
389
409
429
l}-5o
471
5i5
561
585
611
637
662
68k
698
701
688
694
671
639
614
574
533
435;
4061
379:
3 5 ^ ;
330
262]:
242;
224*
Sam ple # 2
( e o n 1t . )
P s i a
195
171|-T
160*; 185
180
175
Sam ple #3
C o m p o s itio n :
i f .7 w t$ w a te r
°o
P s i a
2ip0 .4 &
897
245
923
250 950
255 9714-
260
994
261
997
262 998
263 999
26b
998
265 9 9k
266 986
267 973
268 956
268.6®
914-5
269d 9 35
270®
-
269 822
268 796
267 776
266
757
265 7M>
260 6 7 0 ;
255
612*
250 562*
21p5
517T
2I4 .O
1 4 - 73::
235 4 3 3 ;
230 39 8V *
35
Sam ple #3
( c o n 1t .)
© G P s ia
225
366!
220
337*
215
308*
210 282*
205 2 59?
200 238*
195 2 l5 ft
190
1 9 7 ;
185 178*
180 162*
175 147*
S am ple # 1 } .
C o m p o s itio n :
5*2 w t$ w a te r
°G P s i a
2 4 3 .2a 939
245 951
250 980
255 1005
260 1024
261
1077
262 1070
263
102k
264 1018
265 1009
266 998
267
980
267.2® 976
268d
957
268.9®
-
2 6 8 .5 872
268
853
267 825
266 803
265 783
264
765
263
749
262
734
Table III (con’t.)
Sample # 1 +
(eon1t .)
© G P s i a
260 705
255 61+5
250
593
21+5
21+ 0
235
1 +52^
230
1+171
225 3 8 3 :
220
3 5 i:
215
3 2 2 :
210 296';'
205 2 7 i :
200
21 +8;:
195
226:
190 205':;
185 l 8 7 r
180 170]:'
175 153
Sample #5
Composition:
6.7 wt$ water
©c P s i a
21+ 8 . 7a 1031
250 101+6
255 1075
257
1082
258 IO83
259 IO83
260 1081
261
1077
262 1070
263 1057
261+®
-
265d 1011+
266®
m m
265
261+ 861+
260
777
Sample #5
( eon1t .)
255
25G
21+5
21+0
235
P s i a
70i+
61+2*
587*
537*
m :
225
220
215
210
205
200
195
190
185
1 + 18*
383*
351*
322*
297*
271*
2 1 + 6*
223*
202*
175
I 67*
S ample #6
Compositions
9.6 vt% water
P s i a
2 5 5 .1 a
256
257
258
2 5 8 .3 °
1152
1H+5
1137
1135
26 l d
262®
261
260
255
250
21+5
21+ 0
235
1 1 1 1
961
816
71+7
673
617
522
36
Sample #6
( con* t .)
© 0 P s ia
225 1+79
220 1+39
215 i+01*
210 368*
205 337*
200 308*
195
279*
190
253*
185 230*
180 208*
175
188*
Sample #7
Composition:
10.0 wt$ water
©c P s ia
2 5 5 .2a 1 1 5 1
256 1151+
257 1 1 5 1
258 1139
258 . 2 ®
1 137
259 d
1121+
260d 1102
261d
1077
261. 1 + ®
-
261 1010
260 960
255
839
Sam ple #8
C o m p o sitio n :
l l + .l w t$ w a te r
©c P s i a
2 5 5 .5 a
1 15 6
255.8® 1161
2 5 5 .5
1 12 1
Sample #8
(con’t . )
°C Psia
255 1086
250 931
8 3 5
2k0 753
235
225
220 529^
215 S.85T
210 ‘ * '
205 ti-08'
200 373
195 339
185 27 8t
1 8 0 2 5 i :
175 - —
37
Table III (con1t .)
B I B L I O S S A P H Y
'BIBLIOGRAPHY
1 . I n t e r n a t i o n a l C r i t i c a l T a b le s . C r i t i c a l P o in t D a ta ,
V o l. 3 , 233 (1 933)
2 . I b i d . D e n s ity , V o l. 3 , 29 (1 9 3 3 )
3 . I b i d . V apor P r e s s u r e , V o l. 3» 222 (1933)
i|_. K a tz, D. L . and R ozasa, M. J . , B ib lio g ra p h y f o r
P h y s ic a l B e h a v io r o f H y d ro c a rb o n s U n d er P r e s s u r e
and R e la te d Phenom ena^ J . ¥ . E d w ard s, I n c . Cl9l£6)
5 . K ay, w. B ., IE C , 3 0 , 1^59 (1 9 3 8 )
6 . K uenen, J . P . , V erdam pfung und V e r f lu s s ig u n g von
G em lsch, J o h a n o r A m brosius B o r th , L e ip z ig (1906)
7 . L e c a t, M. ¥ . A ., T a b le s A z e o tr o p lq u e s , U c c le - B r u x e lle s
( 19lf-9)
8 . R e b e r t, C. J . , P h .D . D i s s e r t a t i o n , The O hio S t a t e
U n i v e r s i t y (1955)
9 . Roozeboom , H. W ., H e te ro g e n e o u s E q u i l i b r i a , V o l. I I ,
P a r t 2 , F r e i d r i c h V iew ig and Son (1918)
1 0 . S c h e ff e r , F . E . G ., K. Akad. Wet P r o c ., 1 6 , IpO ip (1913)
1 1 . S e i d e l l , A ., S o l u b i l i t i e s o f I n o r g a n ic an d O rg a n ic
Coiripounds, V o l. I I , 3 rd e d . (1911-1)
1 2 . v an L a a r , J . J . , K o n ik l, A kad. W e te n s c h a p .,
A m sterdam , 7 , 517 ( 190lj_)
1 3 . W aa ls, J . D. v an d e r , L e h rb u c h e s d e r T herm odynam iks,
L e ip z ig (1927)
lip • Y oung, S . , S to ic h io m e tr y , Longmans G reen and Co., New
Y ork (191ft]
A P P E N D I C E S
APPEHDIX A
A P P A R A T U S AID P R O C E D U R E j
i
■ General
E sse n tia lly , the complete apparatus i s a device In
which i t is p ossib le to prepare a to ta lly degassed sample
of known composition of two components, a fte r which i t is
p ossib le to subject the sample to varying degrees of
j temperature and pressure.
The equipment and procedure were b a sic a lly those
i
developed by Young (II4 .) and Kay (5)j and used, a fte r modi-
, fic a tio n , by Hebert ( 8) . Minor changes in H eb erts appara-
I
I
tus were made to f a c ilit a t e loading the sample tube. The
1 ^ I
method co n sists of confining a known mass of sample in a '
quartz ca p illa ry tube with mercury. This ca p illa ry is
I
then held in a sp e c ia lly b u ilt w ell so that pressure may j
j
' be applied to the sample through the mercury. The c a p il-
l
lary i s surrounded by a thermostat in which a liq u id may be
t
b o iled . The condensing vapors transfer heat to the
sample. By varying the pressure within the thermostat,
the b o ilin g point o f the liq u id i s changed; hence the
condensing vapor and sample temperature are changed. The
thermostat is only p a r tia lly silv ered , allowing the opera­
tor to observe the sta te of the sample. By varying the
pressure at a given temperature, the bubble point and the
dew point can be esta b lish ed . In th is manner, the phase
k*
boundaries ean be traeed out*
Experimental Tube
The experimental tube used was made o f fused s ilic a
with dimensions approximately those shown in Figure 11.
The tube was constructed with a thickened co lla r (A) to
f i t the mounting assembly in the compressor block* At­
tached to the loading end of the ca p illa ry tube was a male
tapered jo in t (B) for mounting the sample tube on the
loading apparatus*
Compressor Block
The compressor block was a mild s te e l cylinder
machined with a w ell and Internal shoulder to receive the
experimental tube and support the mounting assembly. Fig­
ure 12 shows the compressor block com pletely assembled*
The assembly labeled (A) supplied the main mechani­
cal support for the experimental tube by seatin g on the
shoulder provided in the compressor block* This also
served to align the experimental tube. W hen pressure was
applied to the sample* the leather washer, backed up by the
rubber stopper, metal rin g, s te e l gland, and s t e e l reta in ­
ing head, kept the experimental tube in p lace. When as­
sembling the apparatus, the s te e l retain in g head was turned
down causing the s te e l gland and washer to compress the
rubber stopper, which served to make the rubber-steel and
Q u a r t z Ca r /c l a r y
Tu b e . 2 m m /.JD. }
8 m m O .D .
600 y r > y r >
(OO mm
~j 2 Quartz
T a p e r e d
£ X PE R /M E N TAL TU BE
F jgure / /
M a l e
J o /N T .
2/ s t / r w j
A 7 B tvsss(/ w ooygr v o s s s i / c f w o Q
K X X X N
rx
T r r r n r
i i i m i
m i n t . ii n ij
i n n
( H u n
\ \ \ N \
r u b b e r - q u a r tz s e a l s m erc u ry t i g h t . A ls o , w ith t h i s a r ­
ra n g e m e n t, p r o p e r a lig n m e n t o f th e sam ple tu b e was r e l a ­
t i v e l y sim p le an d no s h e a r in g s t r e s s e s w ere a p p li e d to th e
e x p e r im e n ta l t u b e •
!C om plete D a ta C o l l e c t i n g A p p a ra tu s
F ig u r e 13 i s a sc h e m a tic d ia g ra m o f th e e n t i r e a p ­
p a r a t u s a s a sse m b le d f o r u s e . F ig u r e lij. i s a sc h e m a tic
d ia g ra m show ing th e r e l a t i v e h e i g h t s o f t h e v a r io u s p ie c e s
o f equip m ent f o r d e te rm in in g th e t r u e p r e s s u r e on th e
sa m p le ,
The d a ta t o be ta k e n on su c h a sy ste m c o n s i s t o f a
s e r i e s o f p r e s s u r e and t e m p e r a t u r e s . The e q u ip m en t c o n ­
s i s t s o f two e le m e n ts t h e n , one o f w h ieh v a r i e s th e p r e s ­
s u re and t h e o t h e r w hich v a r i e s th e te m p e r a tu r e ,
P r e s s u r e was a p p l i e d to t h e sam ple h y d r a u l i e a l l y by
means o f m ercu ry an d o i l c o m p re sso r p i s t o n s . The h y d r a u l i c
h ead on t h e sam ple was d e te rm in e d a s shown i n F ig u r e 1^.,
The m ercu ry l e v e l was h e ld c o n s t a n t by a d j u s t i n g th e l e v e l
i n th e m ercury l e v e l i n d i c a t i n g c y l i n d e r , ( F o r d e t a i l s o f
t h i s i n d i c a t o r , s e e F ig u r e lf>.) The l e v e l was o b s e rv a b le
by means o f a s i n g l e p ro b e w hich made c o n t a c t w ith th e m er­
c u r y , a n d was c o n n e c te d to a f l a s h l i g h t b u lb and b a t t e r i e s ,
| I t was n o t p o s s i b l e to add o r rem ove m ercu ry t o o r from
th e sy stem a f t e r m o u n tin g th e sam ple tu b e i n th e co m p resso r
T H E R M O C O U P L E
LEAD S
D E A D W E IG H T G A U G E rE STE P
C O N D E N S E R
O IL
C O M P R E S S O R
T H E R M O C O U P L E
JACKET-----------
B U L B S F O R M /R O T E
P R E SSU R E V A R IA T IO N
W IT H IN T H E R M O S T A T
W IR E H A N G E R S F O R
S T IR R IN G M A G N E T —
SA M P L E T U B E
M E R C U R Y L E V E L
IN D IC A T O R
MERCURY
C O M P R E SSO R
T H E R M O ST A T
RESISTANCE
H E A T E R
, V A C U U M R E S E R V O IR
[ Z F IV E G A L L O N B O T T L E S)
C O M P R E S S O R B L O C K
S chematic D/agram O f Assembled Apparatus
F igure: 13
P r e s s u r e G a u g e
E x p e r i m e n t a l T u b e
C o m p r e s s o r
Block
H e i g h t Or M e r c u r y
Col u m / y Ay Ex pe rim e n ta l
Tu b e (Pa r /a b l e ) .
M e r c u r y L e v e l
/ N D tC A T O R^
8 5 cm
R e f e r e n c e P l a n e
S c h e m a t i c O r R e l a t i v e H e i g h t s O p
Ex p e r i m e n t a l E q u i p m e n t
F/GURE / 4
48
E l e c t r / c a l
I/R L V E To
f ? ETL E A S E /J /R
/ I ns/ O r E x c e s s
O/l .
O /l f / v
M e r c u r y - O / l
// v t e r f a c e —
M e r c u r y L e v e l / r d i c a t o r
F/GURE IS
k9
i
block} so , care had to be taken to assure the le v e l could j
! be adjusted by simply adding o i l , i f needed. This was ac- !
complished by having the mercury compressor piston sligh tlyJ
over h a lf f u ll of mercury, the o i l compressor piston approx*?
imately one quarter f u ll o f o i l , and the mercury le v e l in
the mercury-level in d icatin g cylinder a t the righ t point
!
when the experimental tube was placed into the compressor
block* This lim ita tio n on the a d ju sta b ility o f the system
never caused trouble during the experimentation*
The pressure in the system was indicated by a Bour­
don pressure gauge with a range of 0 to 5000 psi* The
gauge was calibrated p erio d ica lly and found to be within
i
the claimed accuracy range of ± 0*1% of the f u ll scale
reading. Although the sm allest scale d iv isio n was 5 p s i,
repeated point calib ration during the en tire in vestigatio n
jshowed that an ultim ate accuracy of ± 1 p si was observable*
A dead weight te ste r was also in the system to calib rate
I
the gauge• j
In Figure 13, the experimental tube i s shown sur- j
rounded by the vapor thermostat. Heat was supplied to the
sample by means of a condensing vapor. The pressure within
the vapor thermostat was co n trollab le, therefore the temp­
erature of the condensing vapor was co n tro lla b le. Arrange­
ments, as shown, were made to enable the extraction or ad­
d ition of a ir in minute amounts, so th at the temperature
so
eould be varied s lig h tly when necessary* During the course
of th is in v estig a tio n , i t was neeessary to use two b oilin g
flu id s , naphthalene and benzophenone• This gave a workable
temperature range of 129*1}.0C (26i|-.90F) to 279 *2°C
j( » without v io len t bumping at the lower tempera­
tu res.
The temperature was determined by means of an iron-
constantan thermocouple in conjunction with a potentio­
meter and galvanometer which could d etect read ily a temper­
ature change of 0 . 02°C• The temperature maintained within
the thermostat and Indicated by the thermocouple was e s t i ­
mated to have the conservative accuracy o f + 0.05°G. The
calib ration of the thermocouple system is described in
Table VI•
To hasten the attainment of equilibrium , the sample
was stirred by means of a I 4 .O O S ta in le ss S tee l b a ll inside
the experimental tube • This b a ll was moved within the
i .
sample by means of a small permanent magnet which surround­
ed the sample tube• This magnet was hung Inside of the
vapor thermostat on wires which were suspended from a s te e l
plug. This s te e l plug was i t s e l f moved by four permanent
magnets outside the system.
In order to observe the phase changes taking place
within the sample tube, a lig h t was mounted d ir e c tly behind
the tube. This lig h t was connected to a Variac so that
S i
I
i th e i n t e n s i t y c o u ld be ch an g ed *
D e t a i l s o f t h e c o n s t r u c t i o n o f th e i n d i v i d u a l com­
p o n e n ts o f th e a p p a r a t u s , o r i n th e c a s e o f c o m m e rc ia lly
a v a i l a b l e e q u ip m e n t, th e nam es o f th e m a n u f a c tu r e r s c a n be
fo u n d i n A p p e n d ix G*
| E x p e r im e n ta l P ro c e d u re
W ith t h e d a t a c o l l e c t i n g a p p a r a tu s c o m p le te ly a s ­
se m b le d , th e e x p e rim e n ta l p ro c e d u re c o u ld b e g in * A l i m i t ­
in g c o n d it i o n on t h i s e q u ip m e n t w as t h e lo w e s t b o i l i n g
p o i n t , u n d e r vacuum an d w ith o u t b u m p in g , t h a t c o u ld b e ob­
t a i n e d w ith th e h e a t i n g h y d r o c a r b o n s . W ith n a p h th a le n e ,
th e lo w e s t te m p e r a tu r e o b t a i n a b l e was 120°C , an d th e h ig h ­
e s t te m p e r a tu r e was 21f>°G* W ith b e n z o p h e n o n e , th e y w ere
210°C and 305°C .
! W ith th e p r o p e r h ig h b o i l i n g h y d ro c a rb o n i n th e
b o i l e r , th e p r e s s u r e was lo w e re d to a n a p p r o p r i a t e l e v e l*
The h e a t e r w as th e n tu r n e d on and th e V a ria e a d j u s t e d so
t h a t th e l i q u i d i n th e b o i l e r b o i l e d o f f a t a c o n s t a n t r a t e
s u f f i c i e n t t o c a u s e c o n d e n s a tio n to o c c u r a t th e u p p e r en d
o f th e th e r m o s ta t* S in c e t h e r e w as no p r e s s u r e g r a d i e n t
w i t h in th e t h e r m o s t a t , th e te m p e r a tu re was c o n s t a n t an d
c o n s i s t e n t a f t e r s te a d y s t a t e c o n d i t i o n s h a d b e e n a t t a i n e d *
The tim e e le m e n t d u r in g th e i n i t i a l w anaup w as v e r y im p o r t­
a n t* The s a m p le , b e in g e n c a s e d i n a q u a r t z e a p i l l a r y tu b e
5>2
w ith 3 fflnu t h i c k w a l l s , n a t u r a l l y to o k lo n g e r to come to a n
e q u il i b r i u m c o n d it i o n th a n th e th e rm o c o u p le e n c a s e d i n a
g l a s s tu b e w ith a p p ro x im a te ly 1 mm. t h i c k w a l l . E ven w ith
th e sam ple s t i r r i n g m ech an ism , i t was n o te d t h a t f o r tem p­
e r a t u r e c h a n g e s o f 5°C» a tim e i n t e r v a l o f a t l e a s t lj.0
m in u te s was n e c e s s a r y to a t t a i n e q u i l i b r i u m . To e n s u re an
e q u il i b r i u m r e a d i n g , th e f o llo w in g p ro c e d u r e was f o llo w e d :
1 . S u f f i c i e n t tim e was a llo w e d to e la p s e , a f t e r
c h a n g in g th e te m p e r a tu re w i t h in th e t h e r m o s t a t .
T h is tim e i n t e r v a l ra n g e d fro m a p p ro x im a te ly
20 m in u te s f o r a 1°C c h an g e t o one h o u r f o r a
10°C c h a n g e .
2 . P r e s s u r e and te m p e r a tu r e r e a d in g s w ere ta k e n .
3 . D a ta c o r r e c t i o n c a l c u l a t i o n s w ere m ad e. (T h is
to o k a p p r o x im a te ly 5 m in u t e s .)
!{. . P r e s s u r e and te m p e r a tu re r e a d in g s w ere c h e e k e d
by r e d e t e i m in i n g t h e s t a t e p o i n t b e in g c h e c k e d .
a . I f t h e v a lu e s h a d c h a n g e d , th e new v a lu e s
w ere r e c o r d e d a n d th e c o r r e c t i o n s w ere
c a l c u l a t e d .
b . I f th e v a lu e s h a d n o t c h a n g e d , th e p r e s ­
s u r e was ch an g ed w i t h i n th e t h e r m o s ta t
so t h a t th e n e x t s t a t e p o i n t c o u ld be
d e te r m in e d .
I t was fo u n d t h a t th e e x p e r im e n ta l v a lu e s w ere m ore
53
I
i <
a c c u r a t e l y d e te rm in e d i f t h e b u b b le p o i n t s an d th e dew ;
p o i n t s w ere d e te rm in e d by a p p ro a c h in g them fro m a lo w e r
t e m p e r a t u r e . C lo s e t o th e maximum p r e s s u r e , e q u il i b r i u m
i
was m o st e a s i l y a t t a i n e d , and c o u ld be a p p ro a c h e d e a s i l y i
fro m e i t h e r a h i g h e r o r lo w e r te m p e r a t u r e .
The c r i t i c a l p o i n t f o r e a c h sam p le was d e te rm in e d j
b y f i r s t d e te r m in in g r o u g h ly th e ra n g e w here th e c r i t i c a l
e x i s t e d . A f t e r t h i s , th e a r e a was c a r e f u l l y s u rv e y e d w ith
a n a tte m p t to a p p ro a c h th e t r u e c r i t i c a l fro m a h i g h e r
t e m p e r a tu r e , and a l s o a lo w e r t e m p e r a t u r e . The c r i t i c a l
phenom ena was o b s e rv e d w ith b o th t r a n s m i t t e d l i g h t and
i n c i d e n t l i g h t .
The i s o th e r m a l r e t r o g r a d e c o n d e n s a tio n a r e a was o u t -
I
l i n e d b y s e t t i n g th e te m p e r a tu re and d e te r m in in g b o th
I
! b o u n d a rie s w h ile a t t h a t t e m p e r a t u r e . T h is a r e a w as r e l a -
i
t i v e l y e a s y to d e te r m in e . The h ig h p r e s s u r e l i m i t was
n o te d w here th e l i q u i d p h a s e d is a p p e a r e d a s th e p r e s s u r e
was r a i s e d . H e re a g a i n , p a t i e n c e was n e c e s s a r y . E ach
b o u n d a ry was a p p ro a c h e d fro m th e l i q u i d and v a p o r r e g i o n ,
a s i t was e a s i e r t o o b s e rv e th e d is a p p e a r a n c e o f th e l i q u i d
p h a s e , th a n to n o te th e a p p e a ra n c e o f th e l i q u i d p h a s e .
The maximum te m p e r a tu re f o r e a c h sa m p le was th e m o st d i f ­
f i c u l t p o i n t t o l o c a t e . U s u a l l y , t h i s p o i n t was o n ly
a p p ro a c h e d and n o t a c t u a l l y a t t a i n e d . The maximum te m p e ra ­
t u r e was th e n d e te rm in e d b y g r a p h in g th e p h a s e b o u n d a ry
cu rv e.
The b u b b le p o i n t was d e te r m in e d b y s e t t i n g th e J
i • i
1 te m p e r a tu r e an d a llo w in g th e sam p le to come to e q u il i b r i u m j
te m p e r a tu r e w h ile s t i l l t o t a l l y l i q u i d . The p r e s s u r e was
th e n s lo w ly lo w e re d u n t i l v a p o r i z a t i o n o c c u r r e d . T h is was
t
| n o te d by th e a p p e a ra n c e o f a s m a ll b u b b le . The p r e s s u r e
i
was th e n r a i s e d u n t i l th e s m a ll b u b b le d i s a p p e a r e d . By
r e p e a t i n g t h i s p ro c e d u re s e v e r a l tim e s , i t was p o s s i b l e to
n a rro w th e p r e s s u r e g ap b e tw e e n th e a p p e a ra n c e and d i s a p ­
p e a ra n c e o f t h e b u b b le to a v e ry s m a ll v a l u e . A t low
te m p e r a tu r e s and p r e s s u r e s a p r e s s u r e gap o f 1 p s i . was
o b t a i n a b l e , w h e re a s a t h ig h te m p e r a tu r e s and p r e s s u r e s , the;
gap was h a r d l y n o t i c e a b l e , th e a p p e a ra n c e an d d is a p p e a r a n c e
I
o f th e b u b b le s e e m in g ly o c c u r r i n g a t th e same p r e s s u r e .
The l i m i t a t i o n s on th e ra n g e o f d a t a w ere a s
i
f o l lo w s : i
1 . The lo w e s t b u b b le p o i n t o b s e r v a b le was d e t e r ­
m in ed by th e lo w e s t b o i l i n g p o i n t o b t a i n a b l e (
w ith th e h e a t i n g f l u i d s u s e d . j
2 . T he lo w e s t dew p o i n t o b s e r v a b le was d e te r m in e d
b y th e p h y s i c a l s i z e o f th e sam p le w ith r e l a ­
t i o n to th e l e n g t h o f th e sa m p le t u b e • Due to
th e l a r g e i n c r e a s e I n volum e o f th e sam p le
when t o t a l l y v a p o r iz e d a t low t e m p e r a t u r e s , th e
sam p le s i z e so o n r e a c h e d th e maximum s i z e
5S
a ll o w a b l e . F o r t h i s r e a s o n , t h e dew p o i n t
r e g i o n f o r m o st o f th e sa m p le s w as o n ly b r i e f l y
o u t l i n e d w ith a c t u a l d a t a p o i n t s . The b a la n c e
o f th e dew p o i n t c u rv e shown a s a d a sh e d l i n e
on F ig u r e 1 was d e te rm in e d b y e x t r a p o l a t i n g
th e d a ta p o i n t s . The e x t r a p o l a t i o n was done
on a s e m i- lo g p l o t o f p r e s s u r e v s . th e r e c i ­
p r o c a l o f th e a b s o l u te te m p e r a t u r e . On su c h
a p l o t , v a p o r p r e s s u r e c u rv e s p l o t a s a s t r a i g h t
l i n e * S in c e tw o o f th e sa m p le s w e re e x tre m e ly
s m a ll , th e p l o t s o f t h e i r dew p o i n t s re a c h e d
th e p o i n t w here th e y w ere s t r a i g h t l i n e s . T h is
gave two l i m i t i n g a r e a s f o r th e c u rv e s o f th e
o t h e r s a m p le s : th e common b u b b le p o i n t l i n e
an d th e dew p o i n t l i n e o f th e s m a ll s a m p le s .
APPENDIX B
i
i.
I LOADING SAMPLE TUBE AND SETTING
SAMPLE TUBE INTO COMPRESSOR BLOCK
I
t
W ien m ea su rin g t h e p h a se b o u n d a rie s o f a m ix tu re
o f two f l u i d s , t h e p u r i t y o f th e f l u i d s u s e d and t h e a c ­
c u r a t e m easu re o f th e amount o f e a c h component p r e s e n t i s
j o f u tm o s t im p o rta n c e . The p u r i t y o f th e f l u i d s u se d i s
| c o v e re d i n A ppendix P .
The s u c c e s s o f t h e w hole i n v e s t i g a t i o n depends upon
th e a c c u ra c y and r e p e a t a b i l i t y o f any m ethod u se d f o r
I m aking th e sa m p le s. The f o llo w in g p a ra g ra p h s d e s c r i b e th e
' a p p a r a tu s and se q u en c e o f o p e r a t io n s u se d f o r c o l l e c t i n g
and m e a su rin g th e sa m p le .
S
j The o v e r a l l seq u en ce o f o p e r a t io n s i s as f o llo w s s
j
i 1 . D e-g as b o th f l u i d s .
2 . T r a n s f e r a known amount o f e aeh f l u i d to th e
sam ple tu b e .
3 . T rap t h e sam ple w ith a stem o f m erc u ry .
| I4 .. Remove sam ple tu b e from t h e lo a d in g a p p a r a tu s
and t r a n s f e r t o th e c o m p re sso r b lo c k .
The lo a d in g a p p a r a tu s i s shown s c h e m a tic a lly i n
F ig u re 1 6 . E s s e n t i a l l y , i t i s a vacuum s t i l l i n w hich
i t i s p o s s i b l e to d e -g a s th e e x p e rim e n ta l f l u i d s , and a ls o
to t r a n s f e r known am ounts o f e ac h f l u i d by m o le c u la r d i s -
, t i l l a t i o n .
M
S c h e m a t i c O f L o a d i m g A p p a r a t u s
F/GURO f 6
£8
The lo a d in g i s s t a r t e d by a t t a c h i n g h y d ro c a rb o n
f l u i d - f i l l e d b u lb J , ■ w a te r -f ille d b u lb L, e x p e r im e n ta l
tu b e a ssem b ly N, 0 , P, Q, 1R , and th e c o ld t r a p S, to th e
a p p a r a t u s . An a c e to n e - d r y i c e b a t h i s p la c e d around t h e
1 c o ld t r a p , and th e vacuum pump and m e rc u ry d i f f u s i o n pump
U, a r e s t a r t e d . A ll v a lv e s a re opened e x c e p t v a lv e A
i le a d i n g to th e h y d ro c a rb o n b u lb , and v a lv e C l e a d in g to
t h e w a te r b u lb . The sy ste m i s pumped down f o r s e v e r a l
h o u rs u n t i l i t i s a t a s u f f i c i e n t l y low p r e s s u r e to c a r r y
o u t th e d e g a s s in g o p e r a t io n and t h e m o le c u la r d i s t i l l a t i o n
1 -it
(10 mm H g .) . The p r e s s u r e w i t h i n th e system i s checked
by th e McLeod Gauge, T.
The h y d ro c a rb o n i s d e g a ss e d f i r s t . W ith a l l v a lv e s
i
ic lo s e d e x c e p t P and G, th e h y d ro c a rb o n i s f r o z e n . Then
,v a lv e A i s opened and t h e h y d ro c a rb o n b u lb J i s pumped
o u t, k e e p in g th e h y d ro c a rb o n f r o z e n by means o f a c o ld
!
'b a t h . V alve A i s th e n c lo s e d and t h e h y d ro c a rb o n i s a l -
■ low ed t o m e l t . T h is o p e r a t io n i s c a r r i e d o u t s e v e r a l
■ tim es. A f t e r t h i s , th e h y d ro c a rb o n i s p a s s e d back and
f o r t h from b u lb s J and K by m o le c u la r d i s t i l l a t i o n . A f t e r
■ e ac h su ch t r a n s f e r , th e b u lb s a re opened t o t h e sy ste m to
e v a c u a te any n o n -c o n d e n sa b le g a s e s p r e s e n t . S e v e ra l t r a n s ­
f e r s a re n e c e s s a r y to a s s u r e co m p lete rem oval of th e n o n -
c o n d e n s a b le s . A f t e r th e s e p r o c e s s e s , t h e h y d ro c a rb o n i s
i
r e t u r n e d to b u lb J and i s f r o z e n t h e r e . V alve A i s now
c lo s e d , and i s k e p t c lo s e d u n t i l t r a n s f e r o f t h e h y d ro - 1
c a rb o n to th e m e a s u rin g s e c t i o n i s n e c e s s a r y .
The w a te r i s n e x t d e g a s s e d . T h is i s a r e l a t i v e l y j
s im p le o p e r a t i o n a f t e r th e h y d r o c a rb o n . W ith w a t e r , i t i s j
o n ly n e c e s s a r y to a l t e r n a t e l y f r e e z e th e w a te r , o p en v a lv e !
i
€ and draw o f f t h e n o n - c o n d e n s a b le s , c lo s e v a lv e C and l e t
th e i e e m e l t . A f t e r d o in g t h i s s e v e r a l tim e s , th e w a te r i
i s s u f f i c i e n t l y d e g a s s e d .
I
W ith b o th f l u i d s d e g a s s e d , th e n e x t s te p i s to |
t r a n s f e r a known q u a n t i t y o f e a c h t o th e sam p le t u b e . The j
t
m ea su re m e n t o f th e am ount o f e a c h com ponent t r a n s f e r r e d i s !
I
do n e w ith th e f i n e c a p i l l a r y tu b e M. The c a l i b r a t i o n o f ;
tu b e M i s c o v e re d i n A p p en d ix C.
i
To t r a n s f e r th e h y d ro c a rb o n to th e m e a s u rin g c a p i l ­
l a r y , a l l v a lv e s a r e c lo s e d e x c e p t D, F , and G -. The sy s te m
i
i s pumped down f o r a few m in u te s , and t h e n v a lv e F i s
c lo s e d an d v a lv e A i s o p e n e d . A q u a n t i t y o f t h e h y d r o c a r ­
b on i s t r a n s f e r r e d to th e n e c k o f th e m e a s u rin g c a p i l l a r y
b y m o le c u la r d i f f u s i o n r e s u l t i n g fro m a te m p e r a tu r e d i f ­
f e r e n c e . The te m p e r a tu r e d i f f e r e n c e i s c a u s e d b y h o ld in g
a n i c e cu b e on th e n e c k o f th e c a p i l l a r y t u b e . When a s u f ­
f i c i e n t q u a n t i t y o f h y d ro c a rb o n i s c o l l e c t e d a s l i q u i d i n
th e n e c k o f th e m e a s u rin g c a p i l l a r y t u b e , v a lv e s A and D
a r e c l o s e d . The h y d ro c a rb o n i s th e n c o ax e d to t h e b o tto m
o f th e m e a s u rin g c a p i l l a r y by c o o lin g th e s i d e s w ith an
i c e c u b e . T h is i s a f r u s t r a t i n g jo b , a s i n v a r i a b l y ,
6o
e x tre m e ly s m a ll g as p o c k e ts a re tr a p p e d a t th e b o tto m o f
th e c a p i l l a r y . These can o n ly be rem oved by slo w ly
pumping them o u t w ith th e a id o f th e h y d ro c a rb o n . The
m ethod i s t o draw th e h y d ro c a rb o n as f a r i n t o th e tu b e as
p o s s i b l e , th e n to warm th e tr a p p e d gas w ith th e f i n g e r s
and f o r c e i t o u t o f t h e tu b e . V alve D i s opened m o m en tari­
l y a llo w in g th e s e g a s e s to p a s s o u t, and th e n c lo s e d a g a in .
T hese p ro c e d u re s a re c o n tin u e d u n t i l th e h y d ro c a rb o n s e a t s
i t s e l f on th e b o tto m o f t h e tu b e .
The amount o f h y d ro c a rb o n n eed ed h a s b een d e t e r ­
m ined b e f o r e s t a r t i n g , and t h i s q u a n t i t y h a s b een c o n v e r t­
ed to a c e r t a i n l e n g t h o f l i q u i d i n th e m ea su rin g tu b e .
(S ee A ppendix D .) I n th e t r a n s f e r r i n g o p e r a t i o n , a s u r p lu s
o f m a t e r i a l was t r a n s f e r r e d ; so , i t i s n e c e s s a r y n e x t, to
draw o f f th e e x c e s s . The c a th e to m e te r i s b ro u g h t i n t o
p o s i t i o n , and a r e a d in g o f t h e b o tto m o f t h e m e a su rin g
tu b e i s e s t a b l i s h e d . N ex t, th e s e t t i n g o f th e c a th e to m e te r
f o r t h e d e s i r e d l e n g t h o f l i q u i d i s made and th e e x c e ss to
be draw n o f f i s n o te d . W ith v a lv e D c lo s e d , F i s opened
to e v a c u a te t h e sy s te m . V alve F I s t h e n c lo s e d , and v a lv e
D opened to a llo w some o f t h e h y d ro c a rb o n t o e s c a p e . De­
p en d in g upon th e amount to be rem oved, t h i s p ro c e d u re may
h av e t o b e r e p e a t e d s e v e r a l t im e s . D u rin g th e s e o p e ra ­
t i o n s , t h e m e a su rin g c a p i l l a r y I s im m ersed i n a w a te r b a th
k e p t a t a p p ro x im a te ly 12 to 15>°C. When t h e d e s i r e d l e n g t h
o f l i q u i d h y d ro c a rb o n i s a t t a i n e d , v a lv e D i s c lo s e d .
The n e x t s t e p i s to t r a n s f e r th e h y d ro c a rb o n fro m
th e m e a s u rin g tu b e to th e sa m p le t u b e . A g a in , t h i s i s a
m o le c u la r d i s t i l l a t i o n p r o c e s s . To a c c o m p lis h t h i s ,
v a lv e s E , F , and Q a re o p en ed and th e sy ste m i s a llo w e d t o
pump down f o r a p e r io d o f tim e . T h en , v a lv e F i s c l o s e d ,
and a n a c e to n e - d r y i c e b a th i s p la c e d a t th e t i p o f th e
sam p le t u b e . V alv e D i s th e n o p en ed and s u f f i c i e n t tim e
i s a llo w e d f o r th e sam p le to t r a n s f e r fro m th e m e a s u rin g
tu b e to th e sam p le t u b e . The sam ple i s c o l l e c t e d a s a
s o l i d . When th e h y d ro c a rb o n h a s t r a n s f e r r e d , v a lv e E i s
c lo s e d and t h e w h o le p r o c e d u r e s t a r t e d a g a in to o b t a i n th e
w a te r p o r t i o n o f th e sa m p le .
When b o th t h e w a te r p o r t i o n and th e h y d ro c a rb o n p o r ­
t i o n o f th e sam p le a r e i n th e sam p le tu b e , m e rc u ry i s
p o u re d i n t o t h e sa m p le tu b e fro m th e m e rc u ry r e s e r v o i r
S u f f i c i e n t m e rc u ry i s p u t i n t o t h e tu b e to c o m p le te ly f i l l
i t . The vacuum i s b ro k e n by re m o v in g th e m e rc u ry r e s e r ­
v o i r fro m t h e s y s te m , and t h e sam p le tu b e i s t h e n rem oved
fro m th e s y s te m . D u rin g t h i s o p e r a t i o n , i t i s im p o r ta n t
t o k e e p th e sam p le f r o z e n a s i t i s l i g h t e r t h a n t h e m e r­
c u r y .
D u rin g t h e lo a d in g o f th e sam ple tu b e , t h e r e i s
s u f f i c i e n t tim e to p r e p a r e t h e c o m p re sso r b lo c k t o a c c e p t
t h e sa m p le tu b e . T h is i s done by c r e a t i n g a l a r g e r d i a ­
62
m e te r r e s e r v o i r o f m erc u ry above t h e c o m p re sso r b lo c k by
w rapp ing ta p e aro und t h e o u t s i d e d ia m e te r . D u rin g t h i s
o p e r a t i o n , i t i s im p o r ta n t to a d j u s t th e m ercu ry l e v e l i n
th e m ercu ry l e v e l i n d i c a t o r , and to h av e t h e m e rc u ry and
h y d r a u l i c o i l co m p re sso r p i s t o n s a t a p p ro x im a te ly a h a l f
f u l l p o i n t .
W ith t h e s e a l s i n p la c e on th e sam ple tu b e , a f i n g e r
i s p la c e d o v e r th e open end and t h a t end i s q u ic k ly p la c e d
u n d e r th e m e rc u ry l e v e l i n th e l a r g e m erc u ry r e s e r v o i r .
The sam ple tu b e and s e a l s a r e th e n p u sh ed i n t o t h e i r p o s i ­
t i o n s and th e s t e e l g la n d p u t i n p l a c e . F i n a l l y , t h e r e ­
t a i n i n g h e a d i s p u t i n p l a c e , and t h e lo a d in g p ro c e d u re s
a re o v e r.
I APPENDIX G
j CALIBRATION OF EQUIPMENT
P r e s s u r e Gauge
| The B ourdon p r e s s u r e gauge was c a l i b r a t e d a g a i n s t
a dead w e ig h t gauge t e s t e r up to a p r e s s u r e o f 15>00 p s i g
a t i n c r e a s i n g and d e c r e a s in g in c re m e n ts o f ^0 p s i . The
r e s u l t s o f t h e c a l i b r a t i o n w ere sum m arized as a s t r a i g h t
l i n e c u rv e i n th e form o f a d e v i a t i o n c h a r t ( F ig u r e 1 7 ) .
I P r i o r to t h e b e g in n in g o f each c o n s e c u tiv e s e r i e s
o f o b s e r v a t i o n s , th e dead w e ig h t gauge t e s t e r and t h e
p r e s s u r e gauge w ere i s o l a t e d fro m th e re m a in d e r o f t h e
! sy ste m , and th e r e f e r e n c e z e ro d e v i a t i o n e s t a b l i s h e d .
!
1
. T herm ocouple
A th erm o co u p le made from 2ij.-gauge i r o n and c o n -
s t a n t a n w ir e w ith f i b e r g l a s s i n s u l a t i o n was s ta n d a r d iz e d
a g a i n s t m e ltin g i c e , c o n d e n sin g w a te r v a p o r, c o n d e n sin g
n a p h th a le n e v a p o r, c o n d en sin g benzophenone v a p o r, co n ­
d e n s in g m erc u ry v a p o r, and c o n d e n sin g s u l f u r v a p o r u s in g
a m e ltin g i c e r e f e r e n c e j u n c t i o n . The r e s u l t s o f th e
1
s t a n d a r d i z a t i o n a r e sum m arized i n T ab le IV . The s t a n d a r d ,
: T ab le V II, and th e I n t e r p o l a t i o n C h a r t, T a b le V I I I , w ere
p r e p a r e d from t h e t a b l e g iv e n by R e b e rt (8).
A c u rv e ( F ig u re 18) o f th e d e v i a t i o n o f th e t r u e
EMF o f th e th erm o co u p le from th e s ta n d a r d c h a r t v e r s u s th e
z / 3 t / n D / j
J.b/O'H j} NO/JLV/A3(? S£>nP£> J t/n S S S t/J
&/Scf
0008 0061 008/ O O H 009/ 005/ O O tr/ O 0£l 008/ O O H 000/
£>/Sd
006 OOff O O P / 009 o o e O Ol
DeV/a t / o n - PS/ Dstz/AT/OA/ - PS!
D ev/A T IO N - rrtV
*
|
i
0
f
!
1
r
'i
0
fv
" 1
59
o
N
v
N
O
i
T a b le IV
T h erm o co u p le C a l i b r a t i o n D a ta
S u b s ta n c e
E© emf
th e rm o ­
c o u p le
mv
B a ro m e tric
p r e s s u r e
mm Hg
T ru e
tem p.
©c
E© emf
c h a r t
rav
D e v ia ­
t i o n
E© * — E©
M e ltin g i c e
-0.0619 757.1
0 .0 0 0.000 -0 .0 6 2
C o n d e n sin g
w a te r
5.2ij.9 757.1 99.89 5 .2 3 8 +0.012
C o n d e n sin g
n a p h th a le n e
11.700 751.0 2 1 7 4 3
I I . 72I -0 .0 2 0
C o n d e n sin g
b en zo p h en o n e
16.560
759.1 3 0 5 .8 1 |-
16.632 - 0.072
C o n d e n sin g
m e rc u ry
19.308
759.5 356.9 1 9 4 0 1
-0 .0 9 3
EMF was p r e p a r e d i n o r d e r to f a c i l i t a t e i n t e r p o l a t i o n .
i
i
; Sam ple M e a s u rin g Tube
i
i The p r e c i s i o n - b o r e d c a p i l l a r y tu b e t h a t w as u s e d
I
' f o r m e a s u rin g th e q u a n t i t y o f e a c h com ponent i n a sam p le
I m ix tu r e was c a l i b r a t e d to d e te rm in e i t s volum e as a f u n c ­
t i o n o f i t s l e n g t h fro m th e t i p . M easu rem en ts w ere made
[ o f th e l e n g t h and te m p e r a tu r e o f known m a sse s o f m e rc u ry
| i n th e tu b e and o f th e h e i g h t o f th e m e rc u ry m e n is c u s . To
| th e c a l c u l a t e d volum e o f m e rc u ry w as ad d ed a volum e com-
ip le m e n t o f t h e m e rc u ry m e n isc u s b a s e d o n th e a s s u m p tio n
t h a t t h e m e n isc u s was a se g m e n t o f a s p h e r e .
F o r c o n v e n ie n c e i n s u b s e q u e n t u s e , t h e s e d a t a w ere
i
i re d u e e d to th e fo rm o f a l i n e a r e q u a tio n b y a p p l i c a t i o n o f
i
|t h e m eth o d o f l e a s t s q u a r e s w ith th e f o llo w in g r e s u l t r
V = O.OOOIj.675 L OOOIHj l
w h ere V i s th e volum e i n cc
L i s th e sam ple l e n g t h i n cm.
i
The t o t a l volum e o f th e a sse m b ly was 5*99 c c .
68
APPENDIX D
CALCULATIONS PROM EXPERIMENTALLY
DETERMINED DATA
D e te r m in a tio n o f Sam ple C o m p o sitio n
Prom t h e m e a su re m e n ts m ade on t h e i n d i v i d u a l com­
p o n e n ts , th e a c t u a l c o m p o s itio n o f th e sam p le was c a l c u ­
l a t e d i n a m anner show n i n T a b le V f o r sam p le n o . £ . The
i n d i v i d u a l ite m s i n t h e t a b l e h a v e th e f o llo w in g s i g n i f i ­
can ce::
1 . The te m p e r a tu r e o f th e w a te r b a th s u r r o u n d in g
t h e sam p le m e a s u rin g c a p i l l a r y tu b e .
2 . The v a p o r p r e s s u r e o f th e i n d i v i d u a l com p o n en ts
a t th e te m p e r a tu r e o f th e b a th (fro m F ig u r e 1 9 ) .
3 . C a th e to m e te r r e a d in g o f to p o f l i q u i d l e v e l i n
c a p i l l a r y .
i|.. C a th e to m e te r r e a d in g o f b o tto m o f l i q u i d i n
c a p i l l a r y .
The d i f f e r e n c e o f ite m s 3 and l |, g iv in g th e
l e n g t h o f l i q u i d i n c a p i l l a r y .
6 . The c a l c u l a t e d volum e o f l i q u i d .
7 . The c a l c u l a t e d num ber o f g ram -m o les o f compo­
n e n t c o n ta in e d i n t h e re m a in d e r o f th e volum e
o f th e m e a s u rin g tu b e a sse m b ly a t i t s s a t u r a ­
t i o n v a p o r p r e s s u r e and te m p e r a tu r e a ssu m in g
i d e a l g a s b e h a v io r .
69
Table V
Sam ple C a l c u l a t i o n o f M ix tu re C o m p o sitio n
Sample No. 5
- W ater • G y e lo h ex a n e
1 . B a th te m p e r a tu r e °G 2 2 .0 1 2 .0
2 . V apor p r e s s u r e mm Hg
1 9 .9 52.1
3 .
M e n isc u s l e v e l (cm)
70.870 7 8 .8 2 0
k•
Tube t i p (cm) 7 0 .0 7 5 70.112
L iq u id l e n g t h (mm)
7 .9 5
87.08
6 . L iq u id volum e (c c ) 0 .0 0 3 6 1 O.Oij.06
7 .
Mol v a p o r (gm m ol) 6 .i|.8 x l0 “ ^ 1.7*1.5x10'
8 . W e ig h t v a p o r (gm) 0 .0 0 0 1 1 7 O.OOII4 .7
9 .
W eig h t l i q u i d (gm) O.OO36O O
0 .0 3 1 8 5
1 0 . T o ta l w e ig h t com ponent (gm) 0 .0 0 3 7 1 7 0 .0 3 3 3 2
1 1 . S am ple w e ig h t (gm) 0 .0 3 7 0 3 7
1 2 . C o m p o s itio n w e ig h t
p e r c e n t
1 0 .0 2 8 9 .9 8
1 3 .
C o m p o s itio n m ole
3*1-. 26 65.7*1-
p e r e e n t
Vapor Ppessope- -
*
I
V O
^ X l
* 5
* s
ta 5 ?
I
?
IS.
0
!
T ' k
^ 3
3
J
1
I
o
71
i
8 . The m ass o f t h e v a p o r.
9 . The m ass o f th e l i q u i d ( d e n s i t i e s from F ig u re
j
j 2 0 ) •
J 1 0 . The t o t a l m ass o f e a c h com ponent.
1 1 . The t o t a l m ass o f th e sa m p le .
1 2 . The c o m p o s itio n o f t h e sam ple i n w e ig h t p e r
cent*
1 3 . The c o m p o s itio n o f th e sam ple i n m ole p e r c e n t .
D e te r m in a tio n o f True T em p era tu re and P r e s s u r e o f Sample
F o r each o b se rv e d p o i n t , th e EKF o f th e th erm o -
I c o u p le , th e p r e s s u r e r e a d in g o f th e g a u g e , and th e l e v e l
(of t h e m erc u ry colum n i n th e e x p e r im e n ta l tu b e w ere r e c o r d -
je d . A m odel d a t a c o r r e c t i o n s h e e t was d e v is e d , and i n t e r ­
p o l a t i o n c h a r t s p r e p a re d (T a b le s V I I I and I X ), i n o r d e r to
s i m p li f y t h e a p p l i c a t i o n o f c o r r e c t i o n s to th e s e b a s i c
m ea su re m e n ts. Shown i n T a b le VI i s a sam ple o f t h i s d a ta
s h e e t on w hich a re i n d i c a t e d by a s t e r i s k s th e p rim a ry
m ea su re m e n ts.
The s i g n i f i c a n c e o f th e ite m s i n t h e t a b l e a re as
f o l l o w s :
■ " * 1 . The EMF g e n e r a te d by t h e therm ocouple*
2 . The d e v i a t i o n o f th e a c t u a l EMF o f th e th erm o -
1 c o u p le from th e r e f e r e n c e c h a r t (A ppendix C,
j
Figure 18), as determined by standardization.
o
73
T a b le VI
Sam ple B a ta S h e e t
C o r r e c te d D a ta on Sam ple # 5
O b s e r v a tio n num ber 3Ip7
j T e m p e ra tu re C o r r e c t io n
* 1 . O b se rv e d EMF (m .v .) 1 4 .0 6 3
2 . - C o r r e c t io n - ( - .0 4 2 :
3 .
C h a rt EMF 14.IO 5
4*
W hole d e g re e s 260.26
s .
F r a c t i o n a l d e g re e s .0 9
6 . T e m p e ra tu re °C
2 6 0 .3 5
P r e s s u r e C o r r e c tio n
7 •
R e l a t i v e HG h e a d (mm) 703
8 . - R e fe re n c e c o r r e c t i o n (mm) -(+ 9 0 )
9 .
H y d r o s ta t ic h e a d (mm) 613
1 0 . H y d r o s ta t ic h e a d ( p s i ) 1 1 .8 7
11 . Hg v a p o r p r e s s u r e ( p s i ) 2 .0 3
1 2 . T o ta l n e g a tiv e c o r r e c t i o n ( p s i ) 1 3 .9 0
* 1 3 . Gauge r e a d in g ( p s i )
975
lip . - C o r r e c tio n - ( + 0 . 25)
1$. Gauge p r e s s u r e ( p s i a )
974*75
1 6 . B a ro m e tric p r e s s u r e ( p s i a ) 14.70
1 7 .
A b s o lu te p r e s s u r e a t g au g e ( p s i a )
9 8 9 .4S
1 8 . + T o ta l n e g a t iv e c o r r e c t i o n + ( - 1 3 .9 0 )
1 9 .
A b s o lu te sa m p le p r e s s u r e ( p s i a )
9 7 5 .5 5
7 1 *
3 . The v a lu e o f EMF on th e c h a r t fro m w h ic h to
r e a d th e c o rre s p o n d in g te m p e r a tu r e .
Ij.. The v a lu e o f t h e te m p e r a tu re as i n d i c a t e d by
th e n e a r e s t 0 .1 m i l l i v o l t . (See T ab le V II)
5 . The i n t e r p o l a t e d f r a c t i o n o f te m p e r a tu re to th e
n e a r e s t 0 .0 0 1 m i l l i v o l t . (See T a b le V III)
6 . The t r u e te m p e r a tu re o f th e t h e r m o s t a t .
* " '7 • The h e i g h t o f th e m erc u ry m en isc u s i n th e ex­
p e r im e n ta l tu b e above an a r b i t r a r y datum p la n e
n e a r th e b a s e o f t h e c o m p re sso r b lo c k (A ppendix
A, F ig u re Ilf.).
8 . A c o n s t a n t c o r r e c t i o n f o r t h e d i f f e r e n c e i n
h y d r o s t a t i c h ead betw een th e datum p la n e n e a r
t h e b a se o f th e c o m p re sso r b lo c k and th e c e n t e r
o f th e B ourdon tu b e i n th e p r e s s u r e g au g e.
9 . The c o n t r i b u t i o n to t h e p r e s s u r e i n d i c a t e d on
t h e gau g e b y t h e h y d r o s t a t i c h e a d . Sum o f 7
and 8 .
1 0 . The c o n t r i b u t i o n to t h e p r e s s u r e i n d i c a t e d on
th e gauge due to th e v a p o r p r e s s u r e o f m erc u ry
i n t h e e x p e rim e n ta l t u b e . (See T a b le IX)
1 1 . and 1 2 . The accum m ulated n e g a tiv e c o r r e c t i o n
to a p p ly to th e g au g e r e a d i n g s . Sum o f 9 and
10.
" ' 5 '13. The actual gauge reading.
fab le VII
R e fe r e n c e C h a rt f o r I r o n - C o n s ta n ta n
T h erm o co u p les M i l l i v o l t s v s °C & °P
A v g .A T /
M .V. 0 .0 0 .1 0 .2 0 .3 0.i(. 0 .5 0 .6 0 .7 0 .8 0 .9 .1 mv
0
o o
■ x ) Q
0 .0 0 2 .0 2 If. .01}.
6 .0 5 8 .0 5 1 0.05 12.04 14.02 1 6 .0 0
1 7 .9 7
2 .0 0
32 .0 2 3 5 .6 6
29.29 4 2 .9 1 4 6 .5 1 50*11 5 3 .6 6 5 7 .2 6 6 0 .8 1
6 4 .3 7
3 .6 0
1 ° c
19 .91+.
2 1 .9 0 23.86 2 5 .8 1 27.76 29.70 3 1 .6 4 3 3 .5 8
3 5 .5 1 3 7 .4 4 1 .9 4
O p
67 .9 1
7I . I 4 J4 -
71+.97
7 8 .4 8
81.99 85.48 8 8 .9 7
9 2 .4 6
9 5 .9 4 9 9 .4 1
3 .5 0
2 °0 39 .3 6 4 1 .2 8
4 3 .1 9 4 5 .1 0 4 7 .0 1 4 8 .9 1 50.81
5 2 .7 1
5 4 .6 0
5 6 .4 9 1 .9 0
© p
102
.87
1 0 6 .3 2 1 0 9 .7 6 113.20 116.64 1 2 0 .0 6 123.48 1 2 6 .9 0 1 3 0 .3 0 1 3 3 .7 0
3 .4 2
3
°c 58 .3 8 6 0 .2 6
6 2 .1 4
64.02
65.89 6 7 .7 6 6 9 .6 3 7 1 .5 0 7 3 .3 6 6 5 .2 2 I .87
O p
13?
.1 0 lij.O.if.9 343*87 147.25
150.62
1 5 3 .9 9 1 5 7 .3 5
1 6 0 .7 2
1 6 4 .0 7
167.41
3 .3 7
4
° c
77
.0 8
7 8 .9 3
80.78
82.63
84.48
8 6 .3 3 86.17 9 0 .0 1
9 1 .8 5 9 3 .6 9
1 .8 5
O p
1?0 .7 6 1 7 4 »°9 1 7 7 4 2
180.75
184.08 18? .41 1 9 0 .7 2 1 9 4 .0 4
1 9 7 .3 5
2 0 0 .6 6 3 .3 2
5
© G
95 *53 9 7 .3 7
9 9 .2 0
101.03 102.86
1 0 4 .6 9 1 0 6 .5 2
1 0 8 .3 5
1 1 0 .1 8 1 1 2 .0 1
1 .8 3
© p
203
*9?
2 0 7 .2 8 2 1 0 .5 8 213.87 217.17
2 2 0 .4 6
2 2 3 .7 5 2 2 7 .0 5
2 3 0 .3 4 2 3 3 .6 4 3 .3 0
6 ©c
113 .8 3 1 1 5 .6 5 1 1 7 .4 7 119.29 121.11
1 2 2 .9 3 1 2 4 .7 5 1 2 6 .5 7 1 2 8 .3 9 1 3 0 .2 1 1 .8 2
©p
236 .9 1
2I4 .0 .19
2 4 3 .4 6 2 4 6 .7 4
250.02
2 5 3 .2 9 2 5 6 .5 7
2 5 9 .8 4 2 6 3 .1 2 2 6 6 .4 0 3 .2 8
7
©0 132
.0 3 133*85 1 3 5 .6 7 1 3 7 .4 9 1 3 9 .3 0 i 4 i . l l 1 4 2 .9 2
1 4 4 .7 3
1 4 6 .5 4 1 4 8 .3 5
\ I .81
© p
269 .6 7 2 7 2 .9 5
276.22 279.50 282.76 2 8 6 .0 4
2 8 9 .2 7 2 9 2 .5 3 2 9 5 .7 9 299105 3^26
-si
vn
•T able V II ( e o n ’t .)
. AT/
0 .8
Avg
M.V. 0 .0 0 .1 0 .2
0 .3
0 .4
0 .5
0 .6 0 .7 0 .9 .1 mv
8 °c 150.16 151.97 1 5 3 .7 8
1 5 5 .5 9 1 5 7 .4 0 1 5 9 .2 1 161.02 1 6 2 .8 3 164.64
1 6 6 .4 5 1 .81
O p
302.31 3 0 5 .5 6 3 0 8 .8 2 3 1 2 .0 8
3 1 5 .3 4
3 1 8 .6 0 321.85
3 2 5 .1 1 3 2 8 .3 7 3 3 1 .6 3 3
.26
9
O q
1 6 8 .2 6
170.07
1 7 1 .8 8
1 7 3 .6 9 1 7 5 .5 0
1 7 7 .3 1
179.12
1 8 0 .9 3 1 8 2 .7 4 1 8 4 .5 5
1 .81
O p
334*89 3 3 8 .1 4
341.40 3 4 4 .6 6 3 4 7 .9 2 3 5 1 .1 8 3 5 4 .4 3 3 5 7 .6 9 3 6 0 .9 5
3 6 4 .2 1
3
.2 6
10
oc
186.36 188.17
1 8 9 .9 8
1 9 1 .7 9
1 9 3 .6 0
1 9 5 .4 1
3 8 3 .7 6
197.22 1 9 9 .0 3
2 0 0 .8 4
2 0 2 .6 5 1 .81
Op
367.1*7
370.72 3 7 3 .9 8 3 7 7 .2 4 3 8 0 .5 0 387.01 3 9 0 .2 7 3 9 3 .5 3 3 9 6 .7 9 3
.2 6
11
oc
204*46
206.26 2 0 8 .0 6 2 9 0 .8 6 2 1 1 .6 6
2 1 3 .4 6
215.26 2 1 7 .0 6 2 1 8 .8 6 2 2 0 .6 6 1 .80
op
4 0 0 .0 5 403.29 4 0 6 .5 3 4 0 9 .7 7 4 1 3 .0 1 4 1 6 .2 5 4 1 9 .4 9 4 2 2 .7 3 4 2 5 .9 7 4 2 9 .2 1 3
.2 4
12 ©c 2 2 2 .4 6 224.26 2 2 6 .0 6 2 2 7 .8 6 2 2 9 .6 6 2 3 1 .46 2 3 3 .2 6 2 3 5 .0 6 236•86 238.66 1 .80
op
1*3 2 4 5 4 3 5 .6 9 4 3 8 .9 3 4 4 2 .1 7 445*41
448.05 4 5 1 .8 9 4 5 5 .1 3 4 5 8 .3 7
4 6 1 .6 1
3 .24
13
©C 21*0.46 242.26 2 4 4 .0 6 2 4 5 .8 6 247.66
2 7 9 .4 6
2 5 1 .2 6 2 5 3 .0 6 254.86 2 5 6 .6 6 1 .
CD
O
O p
4 6 4 .% 468.09 4 7 1 .3 3
4 7 4 .5 6 477.81 4 8 1 .0 5 4 8 4 .2 9 4 8 6 .5 3 4 9 0 .7 7
4 9 4 .0 1
3
.2 4
14
© G 2 5 8 .4 6 2 6 0 .2 6 2 6 2 .0 6 2 6 3 .8 6 265.66 267.46 2 6 9 .2 6 271.07 272.86 274.66 1 .8 0
op
4 9 7 .2 5 5 0 0 .4 9
5 0 3 .7 3 5 0 6 .9 7
510.21
5 1 3 .4 5 5 1 6 .6 9 5 1 9 .9 3 5 2 3 .1 7
526.41
3
.2 4
15
O Q
2 7 6 .46 2 7 8 .2 6 2 8 0 .0 6 2 8 1 .8 6 283.66 2 8 5 .4 6 2 8 7 .2 6 2 8 9 .0 6 2 9 0 .8 6 2 9 2 .6 6 1 .80
op
5 2 9 .6 5 5 3 2 .8 9 5 3 6 .1 3 5 3 9 .3 7
542.61
5 4 5 .8 5 5 4 9 .0 9 5 5 2 .3 3 555*57
558.81
3
.2 4
16 ©c
2 9 4 .4 6
2 9 6 .2 6 2 9 8 .0 6 2 9 9 .8 6 301.66
303.46
3 0 5 .2 6 307.06 308.86 2 1 0 .6 6 1 .80
©p
5 6 2 .0 5 5 6 5 .2 9 5 6 8 .5 3 5 7 1 .7 7 5 7 5 .0 1 5 7 8 .2 5 5 8 1 .4 9 584*73 5 8 7 .9 7
5 9 1 .2 1
3
.2 4
17
©o 312.46 3 1 4 .2 6 3 1 6 .0 6 3 1 7 .8 6 319.66 321.46 3 2 3 .2 6 3 2 5 .0 6 3 2 6 .8 6 3 2 8 .6 6 1 .8 0
O p
594.1*5 5 9 7 .6 9 6 0 0 .9 3 6 0 4 .1 7
607.41
610.65 613.89 6 1 7 .1 3 6 2 0 .3 7
6 2 3 .6 1
3
.2 4
0
M .V. 0 .0 0 .1 0 .2
T a b le V II ( e o n ’ t . )
0 .3 0 .4 0 .5 0 .6
0 .7 0 .8 0 .9
A vg. A T /
.1 mv
18
O Q
op
3 3 0 4 6 3 3 2 .2 6
6 2 6 .8 5 6 3 0 .0 9
334*06
6 3 3 .3 3
3 3 5 .8 6 3 3 7 .6 6 3 3 9 4 6
6 3 6 .5 7 639.81 6 4 3 .0 5
3 4 1 .2 6
6 4 6 .2 9
3 4 3 .0 6
6 4 9 .5 3
344*86 3 4 6 .6 6
6 5 2 .7 7 6 5 6 .0 1
1 .8 0
3 .2 4
19
O Q
op
3 ^ 8 4 6 3 5 0 .2 6
6 5 9 .2 5 6 6 2 4 9
3 5 2 .0 6
6 6 5 .7 3
3 5 3 .8 6 3 5 5 .6 6 3 5 7 .4 6
6 6 8 .9 7 6 7 2 .2 1 6 7 5 .4 5
3 5 9 .2 6
678.69
3 6 1 .0 6
6 8 1 .9 3
362.86 364.66
6 8 5 .1 7 688.41
1 .8 0
3 .2 4
20 ©c
op
366 .k 6 368.25
6 9 1 .6 5 6 9 4 .8 7
3 7 0 .0 4
698.09
3 7 1 .8 3 3 7 3 .6 2 375 4 1
7 0 1 .3 1 7 0 4 .5 3 7 0 7 .7 6
3 7 7 .2 0
7 1 0 .9 8
3 7 8 .9 9
7 1 4 .2 0
3 8 0 .7 8 3 8 2 .5 7
7 1 7 4 2 7 2 0 .6 4
1 .7 9
3 .2 2
21
OQ
Op
384.36 3 8 6 .1 5
7 2 3 .8 7 7 2 7 .0 9
3 8 7 .9 4
7 3 0 .3 1
3 8 9 .7 3 3 9 1 .5 2 3 9 3 .3 1
7 3 3 .5 3 7 3 6 .7 5 7 3 9 .9 8
3 9 5 .1 0
7 4 3 .2 0
j *
3 9 6 .8 9
7 4 6 4 2
3 9 8 .6 8 400.47
7 4 9 .6 4 7 5 2 .8 6
1 .7 9
3 .2 2
22 °C
°P
4 0 2 •2 6
7 5 6 .0 9
1 .7 9
3 .2 2
23 °G
©p
4 2 0 .1 6
7 8 8 .3 9
1 .7 9
3 .2 2
24 °G
©p
438.16
820.69
4 3 9 .9 6
823.91
4 4 1 .7 5
8 3 7 .1 3
4 4 3 .5 4 4 4 5 .3 3
830.35 8 3 3 .5 7
1 .7 9
3 .2 2
m
^ 0
M.V. *000 *001
T a b le V II I
I n t e r p o l a t i o n O h a rt f o r I r o n - C o n s ta n ta n
T herm o co u p le f o r E x p e rim e n ta l R ange
(F o r h T o f 1 .8 0 ° C /0 .1 mv)
*002 .0 0 3 .0 0 k .0 0 $ .0 0 6 *007 .008
.0 0 9
o
Q
•
.0 2 .o k .0 5
.0 ? .0 9 .1 1
.1 3 • l k
.1 6
.0 1 .18 .2 0 « 22 .2 3 .2 5 .2 7 .2 9 .3 1
.3 2
• 3k
.0 2
.3 6
.3 8 •ko •k l •k3 •k5 4 7 4 9
.$0 .$ 2
.0 3
•5k
.5 6 .5 8 .5 9
.6 1
.6 3 .6 $ .67 .6 8 .7 0
.0 4 .72
.Ik
.76
.7 7 .7 9
.8 1 .83 .8 5
.8 6 .8 8
.0 $ .9 0 .9 2
.9 k .9 5 .97 .99
1 .0 1 1 .0 3 1 .0 k 1 .0 6
.0 6 1.0.8 1 .1 0 1 .1 2 1 .1 3
1 .1 $
1 .1 7 1 .1 9 1.2 1 1*22
1 .2 k
.0 7
1 .2 6 1 .2 8 1 .3 0
1.3X 1 .3 3 1 .3 $ 1 .3 7 1 .3 9
1 4 0 1 4 2
GO
O
.
l . k k
1 4 6 l . k 8 l .k 9 l . $ l 1 .5 3 1 .5 5 1 .5 7
l . $ 8 1*60
O '
0
.
1 .6 2 1 .6 ^ 1 .6 6
1 .6 7 1 .6 9 1 .7 1 1 .7 3 1 .7 5
1 .7 6 1 .7 8
.1 1 .8 0
-^ 3
00
Table IX
M ercury Vapor P r e s s u r e C h a r t f o r E x p e rim e n ta l Range
PSIA vs °C
O f!
0 1 2
3 1 + 5
6
7
8
9
110
120
130
11+ 0
150
160
170
.01
.015
.023
.01+
.06
.08
.12 .12
.13 .13
.11+ .11+
.15 .15
.16 .16
180
.17
.18 .18
.19
.20 .21 .21 .22
.23 .23
190 .21+
.25
.26 .27
.28 .28
.29 .30
.31
.32
200
.33 .35
.36
.37 .39
4 °
.1+2 .14+
i t 210 .1+6 .1+8
.1+9 .51
.52 . 51+ .56 .57 .59
220 .62 .63+ .06 .68 .70
.73 .75 .77 .79
.81
230 .83
.85 .8 8
.91 .93
.96 .99
1 .0 1 1.01+ 1.06
2 1 + 0
1.09
1.1 2
1 .1 5 1.19
1 ,2 2 1.25
1.29 1 .3 2
1 .3 5 1.39
250
i.k 3 1.1+7
1.52 1 .5 6 1 .6 0 1 .6 5
1.69 1.73
1 .7 8 1 .8 2
260 1 .8 6
1 .9 1
1.96 2 .0 2 2.07 2.12 2.18 2.23 2 .2 8
2 .3 3
270 2.38
2.1+5 2.5 1
2 .5 8 2.61+
2 .7 1 2.77
2.81+ 2.90
2.97
280
3.03 3.11 3.19 3.27 3*31+ 3.1+1
3.1+9 3.57 3 .6 5 3 .7 3
290 3 .8 2 3 .9 1 1+.00 £+.10
1+.19
1+.28 1+.38
1+ .1+ 7
1+.56 1+.66
300
1+.75 C.87 1+.99 5.10 5 .2 2
5.31+ 5.1i-5 5.5 6
5.68 5.8 0
310 5.9 2
6 .0 5 6,19 6.32 6.1+6
6.59
6.72 6 .8 6
6.99 7 .1 2
320
7 .2 5 7.1+1 7.57 7.73 7 .8 9 8.05
8.21
8.37 8.53 8.69
330
8.8^
9.01+
9 .2 3
9 .1+ 2 9 .6 1 9.80
9.99
10.18
10.37 10.56
3 1 + 0
10.75 10.97
11.20 11 .1+ 2 11.61+ 11.87 12.09 12.31 12.51+
12.76
350 12.98
13.23 13.1+8 13.71+ 13.99
1I+.21+ 11+.50
11+.75
15.00
15.25
360 15.50
80
I lf . A d e v i a t i o n c o r r e c t i o n t o a p p ly to th e gauge
d e te rm in e d by c a l i b r a t i o n (A p p en d ix C, F ig u r e
I IT).
l £ . The t r u e g au g e p r e s s u r e .
'5 S 'l 6 . The b a r o m e tr ic p r e s s u r e *
1 7 . The a b s o l u te p r e s s u r e a t th e g a u g e . Sum o f
I 1$ and 1 6 .
1
j 1 8 . + T o ta l n e g a tiv e c o r r e c t i o n (Ite m 12 a b o v e ).
1
' 1 9 . The a b s o l u te p r e s s u r e e x e r t e d b y th e sa m p le .
Sum o f 17 and 1 8 .
! T h ese d a ta (A p p en d ix E , T a b le X) w ere p l o t t e d on a
I
! l a r g e g ra p h w h ile th e y w ere b e in g t a k e n , i n o r d e r t o t e s t
I im m e d ia te ly t h e i r c o n s i s t e n c y and to e s t a b l i s h t h e d i r e c -
| t i o n o f th e p a r t i c u l a r p h a s e b o u n d a ry U n d er o b s e r v a t i o n .
The tim e r e q u i r e d to c o r r e c t an d p l o t a d a t a p o i n t w as so
s m a ll com pared to t h e tim e r e q u i r e d f o r e q u il i b r i u m t o be
a t t a i n e d i n t h e s a m p le , t h a t th e te m p e r a tu r e i n th e therm o-
I s t a t w as l e f t c o n s t a n t u n t i l a f t e r t h e c o r r e c t i o n s h ad
\
l
b e e n m ade and p l o t t e d . I n t h i s w ay, any g r o s s d e v i a t i o n s
c o u ld be c h e c k e d im m e d ia te ly w ith o u t a g r e a t l o s s o f tim e .
81
APPENDIX E
EXPERIMENTAL RA W DATA
D a ta on S o l u b i l i t y R e la tio n s
I The d a t a on s o l u b i l i t y r e l a t i o n s f o r sam ples o f
f i x e d c o m p o s itio n a r e p r e s e n te d i n T ab le X, a s th e y w ere
; o r i g i n a l l y o b se rv e d and c o r r e c t e d f o r t h e known d e v i a t i o n s
i
I o f th e m e a su rin g in s t r u m e n t s .
R ecorded a r e th e o b s e r v a t i o n num ber, t h e c o r r e c t e d
te m p e r a tu r e and th e c o r r e c t e d p r e s s u r e . The d a t a a re
a rr a n g e d i n su c h an o r d e r t h a t t h e t h r e e p h a se c u rv e i s
't r a c e d o u t , th e n th e b u b b le p o i n t l i n e th ro u g h th e c r i t i c a l
p o i n t , th e n th e r e t r o g r a d e c o n d e n s a tio n l i n e , and f i n a l l y ,
th e d e w -p o in t l i n e . The c r i t i c a l p o i n t i s i n d i c a t e d by
( c . p . ) n e x t to th e o b s e r v a t i o n number*
8?
T a b le X
E x p e r im e n ta l D a ta
D a ta on S am ple # 1
C o m p o sitio n :
99 • 5 w t$ e y c lo h e x a n e
0 .5 w t$ w a te r
97*7 m ol$ o y c lo h e x a n e
2 .3 m ol$ w a te r
D a ta on S am ple # 1 ( c o n 't . )
O b s e r­ Tomp • .P re s s u re
v a t i o n ° c p s i a
126
129.1}. 96
123 1 2 9 .7 93
125. lij-3.9 132
12?
l k 7 .3 Ik 7
129 1 6 0 .2
199
131 1 6 2 .7 215
133
1 6 6 .1 231
135 1 6 8 .3 255
13 k
1 6 9 .3
2k k
137
1 7 7 .8 266
138 1 8 3 .9 283
139 188.0 296
78 192.8
291
79 1 9 3 .3
292
ilio 1 9 k . 6 316
95
200 .k
323
96 200.0
323
lip - 2 0 1 .3 338
70 203.2
325
l k 2 208.2 360
S i
2 0 9 .9 353
218.2 398
83 2 1 9 .8
393
85 2 3 3 .3 kk8
115
236 .k
£67
72 2 k 3 .o k92
97 2 k 6 .5
51k
87
250.8
531
98
253.3 5M>
99 2 5 k . 8 55k
100 2 5 8 .0 570
101 2 6 0 .9 586
Til-
2 6 1 .0
583
102
2 6 2 .5
59k
O b s e r­ Temp. P r e s s u r e
v a t i o n © G p s i a
103
267.2
619
89 2 6 7 .3
621
io £ 2 6 9 .9 633
105
272.6
W L
91 272.8 6k 8
106
2 7 5 4
658
113 2 7 5 .7
662
112 2 7 7 .0 665
76 2 7 7 .9 677
111 278.0
665
107 2 7 8 4
668
110 278.6 666
109 2 7 9 .2 658 e .p
108
2 7 9 .3 66k
93 2 7 9 .3
670
9k 2 7 9 .3 6k7
77
2 7 8 .8 6 £ o
122
2 7 7 .5
627
121
2 7 7 .1 62k
120
2 7 5 .7 609
11k 2 7 5 .7
608
92 2 7 2 .8 58k
119 2 7 1 .1 568
90
2 6 7 .3 537
118
2 6 3 4
509
75
2 6 1 .0
k91
117 2 5 3 .6
147
88 250.8 k26
73
2 k 3 .8 389
116
2 3 6 .5 353
86
2 3 3 4
336
8k
2 2 0 .0
275
lk k T 1
218.2 272
82 2 1 0 .1
237
71
203.8
213
80 1 9 k . 1
182
136 1 6 8 .3 130
132 1 6 2 .5
106
130 1 6 0 .3 99
83
Table X (eon1t.)
Data on Sample #1 (con’t.)
O b s e r- Temp, P r e s s u r e
v a t i o n °C p s i a
128 11*7 .1 * 78
125 14.3 .9 70
D a ta on Sam ple # 2
C o m p o sitio n :
9 8 ,9 w t% o y c lo h e x a n e
1 .1 w t$ w a te r
95*0 m ol$ e y e lo h e x a n e
5 .0 moVfo w a te r
O b ser­ Temp. P r e s s u r e
v a t i o n °C p s i a
316 191}..0
3 U
301 206.6
397
302 23k . 7
513
303
2i*6 .4 568
301}. 21*7.1 571
305 2 5 9 .7 635
306 265.6
665
307
270.2 681}.
308
2 7 3 .1 695
309 2 7 5 .5
701
310
2 7 6 .5 701
311 2 7 7 .5
69k
312
2 7 7 .7
688 c .p
311+ -
2 7 7 .8 685
313
2 7 7 .8 667
315 2 7 6 .7 61*2
320
2 7 2 .9 602
319
270.2 578
318 2 6 6 .7
51*6
317
261,3 506
D a ta on Sam ple # 3
C o m p o s itio n :
95*3 w t$ o y c lo h e x a n e
I+..7 w ti o w a te r
81,3 m o l^ o y c lo h e x a n e
1 8 .7 m ol$ w a te r
O b se r­ Temp. P r e s s u r e
v a t i o n ° c p s i a
321 2 1 2 .7 51*7
322 2 3 3 .6 71*3
335
2i*0 .1 891
336 21 *2 .0 906
323
21*7.0
933
321* 2 5 1 .3 957
325 2 5 7 .9 987
326 2 6 2 .0 - 998
337 2 6 k . 7
996
327
2 6 6 .0 986
328 2 6 8 .6
91*5 c .P
329
2 6 8 .8 91*0
330 2 6 9 .1
331*
2 7 0 .0 898
333
2 7 0 .0
863
332 269.1*
836
331 2 6 9 .1
821*
338 2 6 ^ .7 737
339
261.1* 690
D a ta on Sam ple #1*
C o m p o s itio n :
91* *8 w t$ o y c lo h e x a n e
5 .2 w t$ w a te r
7 9 ,6 m ol$ o y c lo h e x a n e
20.1* moVfo w a te r
O b se r­ Temp. P r e s s u r e
v a t i o n °C p s i a
21*9
211.1*
51*1
250 2 2 2 .7
662
21*2
2 2 3 .5 667
21*3
2 3 6 .0 831
251
2 3 8 .6 872
300 21*0.3
898
8 1 4 -
Table X (con’t.)
B a ta on Sam ple #lj. ( e o n ’t . )
O b ser­ Temp. P r e s s u r e
v a t i o n
o G
p s i a
252
2 4 1 .9
920
298 242.8 938
253 2 1 4 .3 .4
939
297 2 p . 5
9)4.2
2)44
245 * 6 953
296 246.8 963
295 248.9 976
214-5
250.1 980
2li6
2 5 k . 3
1002
251)- 256.3
1012
294 2 5 7 .6 1017
247 2 5 8 .5
1018
293 2 5 9 .4
1022
288 2 6 1 .2 1027
289
2 6 2 .1 1026
21|.8
2 6 2 .7
1020
290 263*4 1022
255 2 6 4 .5 1013
292 2614..8 1011
291 2 6 5 .3
1006
256 2 6 6 ,1 996
257
2 6 6 ,5 987
258 2 6 6 .9
981
287 2 6 7 .2 976 c .p
286
2 6 7 .4 969
285
2 6 7 .5
966
284 2 6 7 .6 964
283 2 6 7 .7 959
282 2 6 8 .0
953
28l 2 6 8 .1 948
280 2 6 8 ,3
941
279 2 6 8 .5 936
276
268*7 934
27k
2 6 8 .8
921
273
2 6 9 .2 9 l8
275
2 6 8 .8 888
277 2 6 8 .7 877
270 2 6 8 .0 850
269
2 6 6 .1
805
268 26 1 4 .. 6
775
262 2 6 2 .6
743
267
2 6 0 .8
715
D ata on Sample §k ( c o n ’t
O b ser­ Temp. P r e s s u r e
v a t i o n
oc
p s i a
261
2 5 6 .5 663
266 2 5 3 .6 629
260 252.0 612
265
250.0
593
259 2 4 7 .4 571
272
214-7.3
568
26k 21 4 .8 542
263 2 4 L.9 523
271
2 3 6 .0 476
B a ta on Sam ple # 5
C o m p o sitio n :
93 • 3 w t$ e y e lo h e x a n e
6 .7 w t$ w a te r
7i|..8 m ol$ e y elo h ex a n e
25.2 mol% w a te r
O b ser- Temp. P r e s s u r e
v a t i o n °C p s i a
145 II18.8 II4 .6
II4 .6 16 $ .2 211
147 1 7 6 .2 269
I P 1 8 7 .4 339
349 2 0 2 .7 l i p
150 2 1 8 .3 609
151 22k•0 675
152 2214..3 670
170 234*0 805
162 2 3 9 . 1 4 . 883
163 2i4 .l1.i4 . 961
16k 214 .8 .0 1021
165 2J S 4 .9 .2 1038
153 2 5 0 .7 1051
166 251.8 1060
155 254*2 1073
167 2 5 6 .2 1079
171 2 5 9 .0 1082
157 2 5 9 .il 1083
172 259.6 1081
173 260.2 1080
85
T a b le X ( c o n ’ t . )
D a ta on S am ple # 5 ( e o n ’ t . ) D a ta on Sam ple #6 ( e o n ’ t . )
O b s e r­ Temp. P r e s s u r e O b s e r­ Temp. P r e s s u r e
v a t i o n °c p s i a
v a t i o n °G p s i a
17k 2 6 0 .7 1079 50 1 9 2 .8
377
175
261.2 1076
k9 1 9 5 .0 39k
176 271.8
1071 52 209.2
51k
169 262. k
1073 k 6
2 0 9 .k
500
177
262.6
1063
51
212 * 4. 5k6
178 263.0
1057 k 5
21k* 8 568
179 2 6 3 .3
1052
k k
2 2 0 .7 635
180 263.6
10k k k3 22k . 3 667
181
2 6 3 .7 10k0 k 2 2 2 7 .7 719
182
2 6 k . 0 1035 c . p . k l
2 32.1
777
159 2 6 k . 3 1030
k© 2 3 6 .7 839
183 26k» 6 1023
39 2k3*k 925
265.0
1013 38 2k 6 .0 998
185
265 «k
1007 32 2 k 9 .0
1039
186 265.8 986
37 2 5 0 .9 1069
196 266.1 950 36
25k • 6
1138
195
2 6 5 .8
927
65 2 5 k -9 l l k 5
160 26k .2
869 6 k 2 5 5 .9 1152
19k 2 6 3 .7
880
35 2 5 7 .1
llij.8
192 2 6 2 .0 813
33 2 5 7 .9 1139
193
2 6 3 .0 838
3k 2 5 8 .3 113k ©*P*
191
2 6 0 .8
791 66
2 5 8 .3 1135 c . p .
158
2 5 9 .5
780 62 2 6 0 .1 1110
190
2 5 9 .1 765 61 2 6 1 .1 1087
189 2 5 8 .1
7k8 59
2 6 1 .8 1061
188
2 5 7 .1 731 58 2 6 1 .8 1006
168 2 5 6 .2 721 60 2 6 1 .1 961
187 2 5 5 .9 716
57 2 6 0 .7 952
156 25k*6 702
56 2 5 8 .1 881
15k
2 5 0 .7
67k 67 2 5 7 .0 853
68
2 5 5 .5 82k
k-8
252.8
77k
D a ta on S am ple #6
69
250.6
7k8
C o m p o sitio n :
55
2 k 7 .2
705
90 .k
wt% e y e lo h e x a n e
k7 2 3 8 .9 607
9 .6 w t^ w a te r
5k
232.8
5k7
6 6 .9 m ol$ e y e lo h e x a n e
53
2 2 0 .1
k39
33*1 mol% w a te r
O b s e r­ Temp. P r e s s u r e
v a t i o n
©c
p s i a
63 187 4 33k
Table X (con1t.)
D a ta on Sam ple # 7
C o m p o sitio n :
9 0 .0 vrtfo e y e lo h e x a n e
1 0 .0 w t$ w a te r
6 5 .7 m ol$ e y e lo h e x a n e
34*3
m ol$ w a te r
O b s e r­ 7 @ m p • P r e s s u r e
v a t i o n ° c p s i a
31^0 2 3 9 .2 883
3 4 1
246.3 992
314-2 251.6 1085
3k3
2 5 4 .8 1144
353 2 5 5 .4
I I 56
354
2 5 6 .8
1155
2 5 7 .0
1151
353 2 5 8 .2
1137 c .
355 2 5 8 .3 1138
356
2 5 8 .5 1134
345 2 5 9 .3
1116
348 2 6 0 .3 1094
350 2 6 1 .4
1054
349 2 6 1 .2 1018
347
2 6 0 .4 976
346 2 5 9 .3 9 4 4
352 2 5 5 .2
844
D a ta o n S am ple # 8
C o m p o sitio n ::
8 5 .9 w t % e y e lo h e x a n e
l k . 1 w t$ w a te r
5 ° *7 m ol% e y e lo h e x a n e
43*3 m ol$ w a te r
O b se r­ Temp. P r e s s u r e
v a t i o n ° c p s i a
197
2 1 2 .2
543
198
2 2 4 .4 679
199 2 3 3 .2
793
200 240.6
899
202
2inL.2 978
214
2 4 6 .8 998
201
2 4 7 .4 9 7 4 n .g
215 2 4 8 .7 1031
D a ta -o n Sam ple # 8 ( e o n * t .)
O b se r­ Temp. P r e s s u r e
v a t i o n ° c p s i a
203 2 5 0 .5 1063
216
2 5 1 .4
1079
217 2 5 2 .4
1098
218 2 5 3 .6 1120
204
254*3
1136
223 2 5 5 .2
1157
219 2 5 5 .3
1152
206
2 5 5 .4
1160
226
2 5 5 .4
1163
237
2 5 5 .5 1154
239 2 5 5 .5 1157
224 2 5 5 .6 1161
240 2 5 5 .6
1157
225 2 5 5 .7
1162
222 2 5 5 .8 1164 e .p
241 2 5 5 .8 1161 e .p
220
255*9 1162
235 2 5 5 .7
1158
207 2 5 5 .6 1130
238
2 5 5 .5 1153
236 2 5 5 .2 1152
234 2 5 4 .9
1086
213
2 5 4 .4 1055
233
2 5 3 .9 1043
232
2 5 2 .9 1006
208 252.6 1002
231
2 5 0 .9 958
212 2 4 9 .8 926
230
2 4 8 .5
902
229 2 4 6 .9 865
211 2 4 5 .8
847
228
2 4 4 .7 833
210
2 4 2 .9 798
227 2 4 0 .5
761
209 2 3 8 .7
661
87
APPENDIX F
PURITY OF FLUIDS USED
W ater The w a te r u se d was f r e s h l y d i s t i l l e d and d e ­
g a s s e d . I t s p u r i t y was f u r t h e r p ro v e n by r u n n in g a sam ple
j dew and b u b b le p o i n t c u rv e th r o u g h o u t th e e x p e r im e n ta l
i
!r a n g e . Maximum d e v i a t i o n fro m s t a n d a r d v a lu e s (3) was
a p p ro x im a te ly ± 0 .5 $ . C o n s id e r in g t h e d i f f i c u l t y o f e s ­
t a b l i s h i n g t h e s e p o i n t s w ith p u r e w a t e r , th e d e v i a t i o n i s
n o t m ore th a n th e e x p e r im e n ta lly p o s s i b l e a c c u ra c y .
i
C y o lo h ex an e The sam p le o f e y e lo h e x a n e was e s p e e i -
i
I a l l y p r e p a r e d b y th e C. F . B rau n L a b o r a to r i e s fro m a p e t r o ­
leu m f r a c t i o n . P r o g r e s s i v e l y f i n e r c u t s fro m a l a r g e
am ount o f m a t e r i a l y i e l d e d a f l u i d w ith n e a r l y a c o n s t a n t
b o i l i n g p o i n t . T h is was t e s t e d i n t h e a p p a r a tu s and th e
c o m p le te b u b b le p o in t an d dew p o i n t c u rv e s w ere r u n , and
th e c r i t i c a l p o i n t d e te r m in e d . Maximum d e v i a t i o n fro m th e
known v a p o r p r e s s u r e c u rv e (3 ) was a p p ro x im a te ly 0 .5 $ . The
o b s e rv e d c r i t i c a l p r e s s u r e and te m p e r a tu r e was 595 p s i a
and 2 8 0 .9 °C . T hese com pare f a v o r a b l y w ith v a lu e s i n th e
l i t e r a t u r e (3 ) o f 597 p s i a and 2 8 l .0 ° 0 .
88
APPENDIX G
STANDARD EQUIPMENT USED
The f o llo w in g equipm ent i s s ta n d a r d and was c o m m e rc ia lly
a v a i l a b l e :
1 . C a th e to m e te r. 100 cm. v e r t i c a l s c a l e . B raun
C hem ical C o ., Los A n g e le s , C a l i f .
2 . C ondensing v a p o r j a c k e t . G r e in e r G la ssb lo w in g
L a b o r a t o r i e s , Los A n g e le s , C a l i f .
3 . Dead w e ig h t gauge t e s t e r . Range zero t o 5000 p s i .
A s h c ro ft P o r ta b le Dead W eight T e s t e r , Model #
1 3 0 5 -3 -5 0 , M anning, M axw ell and M oore, I n c . ,
S t r a f f o r d , Conn.
4 . D i f f u s i o n pump. G r e in e r G la ssb lo w in g L a b o ra ­
t o r i e s , Los A n g e le s, C a l i f .
5 . Fused q u a r t z c a p i l l a r y tu b e . 2 f t . lo n g , 2 mm,
b o r e , 8 mm. O.D. C le v e la n d Q u a rtz W orks,
C le v e la n d , O h io .
6 . G a lv a n o m e te r. Model #2ij.20. Leeds and N o rth ru p
C o ., P h i l a d e l p h i a , P a .
7 . McLeod g au g e, 22 m l. c a p a c i t y . G re in e r G la s s -
blow ing L a b o r a t o r i e s , Los A n g e le s, C a l i f .
8 . O il c o m p re sso r p i s t o n . Range z e r o t o l5 # 0 0 0 p s i ,
h y d r a u l i c p r e s s u r e g e n e r a t o r . C a ta lo g #ij.6-93l5*
A m erican I n s tr u m e n t Company, I n c . , S i l v e r S p r in g ,
Md.
9 . P l i a f l e x l i q u i d mold compound. P ry P l a s t i c s
I n t e r n a t i o n a l , Los A n g e le s, C a l i f .
1 0 . P o te n tio m e te r , Model # 7 5 5 2 . L eeds and N o rth ru p
Co. , P h i l a d e l p h i a , Pa.
1 1 . P r e s s u r e g a u g e . 16 in c h d i a l , 100 g r a d u a t io n s ,
ra n g e 0 to 500 p s i . H e ise Bourdon Tube L a b o ra ­
t o r i e s , Newton, Conn.
1 2 . S t a i n l e s s S t e e l (ijij.0) l / l 6 " d ia m e te r b a l l b e a r ­
i n g s . H a r tf o r d P r e c i s i o n P a l l s , The M a ltb y C o .,
Los A n g e le s , C a l i f .
1 3 . Vacuum pump, C a ta lo g # llj.0 5 . W. M. Welch
S c i e n t i f i c Co., C h ic a g o , 1 1 1 .
The f o llo w in g e q u ip m e n t w ere custom -m ade l o c a l l y s
1 . M ild s t e e l p r e s s u r e v e s s e l w ith r e t a i n i n g head
and i n t e r n a l g la n d . Acme M achine W orks, I n c . ,
H aw thorne, C a l i f .
2 . M ercury l e v e l i n d i c a t o r . C hem ical E n g in e e rin g
M achine Shop, U n i v e r s i t y o f S o u th e rn C a l i f o r n i a ,
Los A n g e le s , C a l i f .
pntverslty of S outhern California U biw >
Asset Metadata
Creator Hayworth, Kenneth E. (author) 
Core Title The phase behavior of cyclohexane-rich mixtures with water 
Contributor Digitized by ProQuest (provenance) 
Degree Master of Science 
Degree Program Chemical Engineering 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag engineering, chemical,OAI-PMH Harvest 
Language English
Advisor Rebert, Charles J. (committee chair), Beeson, Carrol M. (committee member), Lockhart, Frank J. (committee member) 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c20-309815 
Unique identifier UC11259522 
Identifier EP41767.pdf (filename),usctheses-c20-309815 (legacy record id) 
Legacy Identifier EP41767.pdf 
Dmrecord 309815 
Document Type Thesis 
Rights Hayworth, Kenneth E. 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law. Electronic access is being provided by the USC Libraries in agreement with the au... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus, Los Angeles, California 90089, USA
Tags
engineering, chemical
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button