Close
USC Libraries
USC Homepage
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Generalized Taylor effect for main financial markets
(USC Thesis Other) 

Generalized Taylor effect for main financial markets

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Copy asset link
Request this asset
Request accessible transcript
Transcript (if available)
Content


Generalized Taylor Effect for Main Financial Markets

by

Mingpu Song

University of Southern California

ii

Table of Contents
List of Figures  ................................................................................................................................... iv
List of Tables  ...................................................................................................................................... v
Abstract  ................................................................................................................................................ 1
Chapter 1. Introduction ................................................................................................................. 2
Chapter 2. The Data  ......................................................................................................................... 7
Chapter 3. The analysis for Taylor effect and data property .......................................... 9
Chapter 4. The ARCH model and Autocorrelation Function .........................................  20
4.1 ACF in EGARCH(1, 1) model .....................................................................................  23
4.2 Parameters and Taylor Effect  ...................................................................................  25
Chapter 5. Emperical results and Simulation......................................................................  29
Chapter 6. Conclusion ..................................................................................................................  33
References ........................................................................................................................................  34

iii

Appendix ...........................................................................................................................................  38

iv

List of Figures
Figure 1  ..........................................................................................................................................  10
Figure 2  ..........................................................................................................................................  11
Figure 3  ..........................................................................................................................................  13
Figure 4  ..........................................................................................................................................  15
Figure 5  ..........................................................................................................................................  18
Figure 6  ..........................................................................................................................................  19
Figure 7  ..........................................................................................................................................  19
Figure 8  ..........................................................................................................................................  27
Figure 9  ..........................................................................................................................................  28
Figure 10 .......................................................................................................................................  32

v

List of Tables
Table 1  ............................................................................................................................................  29
Table 2  ............................................................................................................................................  30



1

Abstract
It has been tested that for financial time series, the autocorrelation does not exists
for  the  returns  themselves,  while  exist  for  the  power  transformation  of  the
absoluted values. Also, lots of studies have shown that, known as Taylor Effect, the
absolute  returns  are  more  strongly  autocorrelated  than  the  squared  values.  Ding
(1996) further checked some other time series and found that for the exchange rate
returns,  the  power  d  maximizing  the  autocorrelation  was  around  1/4.  So  a
Generalized  Taylor  Effect  that  the  power  maximizes  the  autocorrelation  varies  for
different data is proposed and analyzed. To more widely concern, 18 stock indices,
12  exchange  rate  seires  and  12  future  contracts  are  further  checked.  The  d  is
analyzed with some other properties of the data-mean, standard error, kurtosis and
skewness.  Inspired by  the  deduction  of  ACF  in  EGARCH models, He T (2002), this
paper  take  a  deeper  look  at  the  relationship  among  those  values.  Tests  and  Mote
Carlo  simulations  are  also  carried  out  to  see  the  goodness  of  fit  of  the  EGARCH
model.



2


Chapter 1. Introduction
Hurst (1951) first found the ‘long-memory’ property when studying the time series
of  the  water  flows  of  The  River  Nile.  Like  in  the  hydrology,  time  series  are  quite
important  for  the  finance.  In  many  Mathematical  Finance  theories,  the  Market
Efficiency  hypothesis  has  usually  been  the  foundation.  However,  it  has  been
examined that one of the hypothesis-the returns distribute normally-not to be true.
Taylor (1986), found that although the autocorrelation of the time series themselves
are  small,  the  power  transformation  of  the  absolute  values  |

|

 have  strong
correlation. By examining several series of stock returns, he found there exists the
‘long-memory’  property.  Also,  it  was  found  |

|  has  stronger  autocorrelation  than
the  squared values.  Similarly,  Ding,  Granger  and Engle (1993)  examined the  stock
returns  of  S&P  500  from  Jan  3,  1928  to  Aug  30,  1991,  and  found  the  |

|  have
strong autocorrelation after long lags. Furthermore, it is also found that, the power
form of the returns-|

|

, reaches its maximum value around d=1. It was defined as
Taylor effect in Ding and Granger (1995). To test this empirical property, Ding and
Granger  (1996)  then  examined  other  4  stock  returns  and  1  exchange  return.  An

3

interesting result is that the d that maximizes the autocorrelation, is always around
1 for the stock returns, and tend to be around 1/4 for the exchange return. Muller
and  Dacorogna  (1998)  tested  the  exchange  rates  of  USD/DEM  and  USD/FRF  and
found the |

|

maximized around d=1/2.
The first thought about this phenomenon would be whether this d could be figured
out theoretically, when applying the appropriate model. So far, there are two main
kinds of models  related to  the  non-linear time  series. The first  kind  of models are
based on the ARCH structure, which was first introduced in Engle (1982). Bollerslev
(1986) then introduced the GARCH model to capture the long memory property by
improving  the  variance  term.  Engle,  Lilien  and  Robins  (1987)  extended  the
conditional  variance  and  introduced  ATCH-M  model.  To  reduce  some  restrictions
and  illustrate  the  persistence  to  ‘bad  news’,  Nelson  (1991)  proposed  a  new
approach named EGARCH. Zakoian (1994) deduced the TARCH model, Higgins and
Bera  (1993)  introduced  NARCH  model.  And  a  conclusive  study  of  those  models  is
introduced in Ding, Granger and Engel (1993). They proposed a generalized class of
models  which could  transform  to  other ARCH models  in  special  cases. The  second
kind of models-Stochastic Volatility model-were first introduced by Taylor (1982).
Breidt et al. (1998) and Harvey (1998) proposed the LMSV model, which considered
the volatility as a long memory ARFIMA process. The SV models have simpler form

4

and are easier to get the Taylor property. Both models could capture the properties
asuc  as  the  volatility  persistence,  autocorrelation  and  the  Taylor  effect.  For  more
difference, it was reviewed, see Carnero (2004). Among all of the weak points of the
ARSV  models,  the  most  important  one  is  that  the  maximum  likelihood  can  not  be
derived except by numerical calcution with computer. Various methods have been
proposed to estimate this. But it is still of great interest to check if the esitimation is
good enough, especially when both models are reasonable to explore the time sereis.
However,  the  SV  models  has  a  strong  point  when  it  is  about  to  get  the
autocorrelation function. The acf could be derived easily while it is particularly hard
in  most  of  the  ARCH  type  models.  More  specifically,  considering  about  the  Taylor
Effect, one can only base his results by simulation. Ding, Granger and Engel (1993)
found for the S&P 500 stock returns, the Taylor Effect holds when d=2. But later in
Ding (1996),  the  property  holds for the  DEM/USD exchange rates  returns  when  d
equals to 1/4 instead of 1. So it is naturally to say the d is not a constant, or say, it
varies from sample to sample. Though it is extremely hard to deduce the analytical
forms of the acf of  |

|

 for free parameter, studies based on the ARCH type models
are considerable. He and T (1999a) derived the acf for GARCH (1,1) when d=1 and
d=2, and further proved the Taylor effect. Then based the on the asymmetric power
ARCH  models,  in  He  and  T  (1999c),  the  acf  of  the  logarithmed  observations  was

5

given  for  the  EGARCH  model.  The final  result  was introduced in  He  and T (2002),
which gave the general form of the acf using the EGARCH model. When it comes to
the  ARSV  model,  on  the  other  hand,  Harvey  (1998)  derives  the  acf of  |

|

 for  all
powers d in a consise form. In both models, it is still impossible to get a derivative,
or say, get an function of the parameters for the power maximizing the acf. However,
we could at least get the relationship between the parameters and the acf. Then to
some aspects, explore a more generalized Taylor effect.  
The  main  purpose  of  this  paper  is  to  check  the  Generalized  Taylor  Effect  in  some
other financial time series. The results show that further studies are needed because
the  d  changes  a  lot  for  the  different  data  samples.  Then  to  explore  this
phenomeneon,  by  the  derived  autocorrelation  function  in  EGARCH  model,  we  will
focus on the determinants that affect the power maximizing the autocorrelation. In
other  words,  a  more  generalized  Taylor  effect  will  be  shown  in  both  models.  By
caltulation  and  plotting,  the  relationship  between  the  maximum  d  and  some  data
properties is explicitly shown. Though both models can explain this property, due to
the efficiency of the estimation, emperical results are checked. Besides, Monte-Carlo
simulations  on  EGARCH  model  are  carried  to  see  if  the  model  is  well  fitted  to
capture this stylized fact.

6

The paper is organized as follows. Section 2 gives a brief introduction to the data we
use.  Section  3  gives  the  analysis  about  the  data.  Especially,  Taylor  Effect  and  the
autocorrelation is concerntrated. Then the d maximizing the autocorrelation would
be  compared  with  mean,  standard  error,  skewness  and  kurtosis.  Section  4
introduces the ARCH type model and we will analyze the acf in EGARCH models to
get  a  brief  view  of  the  generalized  Taylor  effect.  In  Section  5  the  Monte-Carlo
simulations  are  conducted  to  the  fitted  models.  Based  on  the  results,  Section  6
concludes.

7

Chapter 2. The Data
To  widely  check  the  Taylor  property,  various  data  are  chosen  in  this  paper.  The
basic idea is to check the dominate time sereis in the worldwide market. The stock
market, exchange rate market and futures contract market are the three markets we
may concern.  
For the stock market, the indices are S&P 500 Index, Dow Jones Industrial Average,
NASDAQ Composite  Index, S&P/TSX  Composite  Index,  EURO STOXX  50 Price  EUR,
FTSE 100 Index, CAC 40 Index, Deutsche Boerse AG German Stock Index DAX, IBEX
35  Index,  FTSE  MIB  Index,  AEX-Index,  OMX  Stockholm  30  Index,  Nikkei  225,
S&P/ASX  200,  Hong  Kong  Hang  Seng  Index,  Shanghai  Stock  Exchange  Composite
Index,  Mexican  Stock  Exchange  Mexican  Bolsa  IPC  Index  and  Ibovespa  Brasil  Sao
Paulo Stock Exchange Index.
For the exchange rate market, the currencies chosen are all based on the US dollars.
In other words, the value of currencies per US dollar. They are CAD, EUR, GBP, AUD,
JPY, BRL, CNY, HKD, INR, MXN, RUB, CHF.

8

For the future contract market, the commidies chosen are from 4 main kinds-Gold,
Silver, High Grade Copper and Platinum are from metal; Corn, Soybean, Wheat and
Cotton are from angricultural products; Crude Oil and Natural Gas are resource type;
US Treasury Bond and US 10-year note are financial futures.
Notice that for various data, the daily data available till now are quite different, so
the  data  range  is  mainly  chosen  from  Jan,  1984  to  Mar,  2014,  in  order  to  be
consistent. But differences of the number of the ovservations and the start date do
exist  for  various  countries.  The  explicit  ranges  for  different  data  are  given  in  the
Appendix.
If

denote the daily price, then the return series are defined as
 

= log

− log

   (1)
 

9

Chapter 3. The analysis for Taylor effect and data property
We may take a first look at the return series. Due to the large amount of samples, the
S&P 500 stock index, USDCAD exchange rate and Gold futures are chosen from the
three kinds of markets respectively. Figure 1 is the daily returns of the three typical
financial  time  series.  As  we  can  see,  the  DJI3d  is  more  stable  than  the  other  2.
Especially for the futures of Gold, the returns fluctuate a lot. Moreover, we can see a
trend that a large return is more likely to be followed by a small one (the absolute
value).

10

Figure 1

To  better  illustrate  the  data,  we  then  plot  the  histograms  and  calculate  some
descriptive values of the three samples. As shown in Figure 2, we can clearly see that
the  return  series  are  normally  distributed  and  all  the  JB  statistics  are  significant.
Also the skewness is quite small while the kurtosis is large. But both the skewness
and kurtosis varies a lot.
0 2000 4000 6000
-0.20 -0.10 0.00 0.10
S&P500
Return
0 2000 4000 6000 8000
-0.04 -0.01 0.01 0.03
USDCAD
Return
0 2000 4000 6000
-0.10 0.00 0.10
Gold Futures
Return

11

Figure 2

0
400
800
1,200
1,600
2,000
2,400
2,800
3,200
-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10
Series: SP500R
Sample 1 7607
Observations 7605
Mean       0.000319
Median   0.000586
Maximum  0.109572
Minimum -0.228997
Std. Dev.   0.011582
Skewness  -1.274191
Kurtosis   31.08254
Jarque-Bera 251954.8
Probability 0.000000
0
400
800
1,200
1,600
2,000
2,400
-0.0375 -0.0250 -0.0125 0.0000 0.0125 0.0250
Series: USDCADR
Sample 1 7846
Observations 7845
Mean      -1.52e-05
Median  -6.84e-05
Maximum  0.032986
Minimum -0.037665
Std. Dev.   0.004473
Skewness   0.159480
Kurtosis   8.748080
Jarque-Bera 10833.34
Probability 0.000000

12


Then  we  need  to  check  the  autocorrelation  at  the  data.  Figure  3  show  that  all  of
these three time series have little correlation of themselves but strong correlation of
the |

|. Although the autocorrelation decays, it still exists after long lags because the
rate  is  quite  slow.  This,  in  other  words,  shows  the  long  memory  property.  The
autocorrelations of


 are all smaller than that of |

|. Especially in figures for the
two  exchange  rates,  we  can  see  that  the  autocorrelation  of  


 almost  does  not
exist as well.
0
500
1,000
1,500
2,000
2,500
3,000
-0.10 -0.05 -0.00 0.05 0.10
Series: GOLDR
Sample 1 7578
Observations 7577
Mean       0.000168
Median   0.000124
Maximum  0.111278
Minimum -0.098206
Std. Dev.   0.010569
Skewness  -0.126994
Kurtosis   11.89349
Jarque-Bera 24991.07
Probability 0.000000

13

Figure 3


In  Ding,  Granger  and  Engel  (1993),  it  is  tested  that  |

|

 maximizes  the
autocorrelation around d=1 for the S&500. However, in Ding and Granger (1996),
other  four  stock  returns  are  examined  and  they  found  that  the  autocorrelation  of
|

|

maximizes  around  d=1/4  for  the  exchange  returns.  Inspired  by  this,  three
0 20 40 60 80 100
0.0 0.1 0.2 0.3
lags
Autocorrelation
r
|r|
r^2
0 20 40 60 80 100
0.0 0.1 0.2 0.3
lags
Autocorrelation
r
|r|
r^2
0 20 40 60 80 100
0.0 0.1 0.2 0.3
lags
Autocorrelation
r
|r|
r^2

14

typical series from the free markets are checked. Figure 4 shows the autocorrelation
of the power transformation  |

|

, changes along with the power d. As we can see,
the  maximum  d  is  quite  different  for  different  time  series.  One  may  consider  it
varies for different financial derivatives, e.g. d=1 for stock, d=1/4 for exchange rate,
d=5/4 for futures  etc.  However, for these  3 specific data,  the  d are 1.22, 1.37 and
1.48, which vary a lot. Especially, for the USDCAD data, it is extremely different from
the exchange rate tested in Ding Granger (1996).  

15

Figure 4

Based  on  the  previous  analysis,  it  is  necessary  to  explore  more  samlpes.  Also,  the
relationship  between  the  d  maxmizing  the  autocorrelation  and  the  descriptive
variables of the data is of our interest. The detailed values are given in Apendix B.
Intuitively,  we  will  see  the  relationship  in  the  pairs  plot,  which  is  Figure  5.  First
notice that even the outliers exist for all the plots, it is obvious that the d maxmizing
0 1 2 3 4 5
0.00 0.10 0.20
d
rou
0 1 2 3 4 5
0.05 0.15 0.25
d
rou
0 1 2 3 4 5
0.05 0.10 0.15
d
rou

16

the  autocorrelation  is  strongly  related  to  the  kurtosis  and  skewness.  On  the  other
hand,  the  d  is  randomly  distributed  with  the  mean  and  standard  error.  The
relationship between the d and kurtosis, skewness is then analyzed. For the kurtosis,
the  outliers  eliminated  are  FTSED,  FTMIBD,  USDEUR,  USDBRL,  USDCNY,  USDHKD,
USDINR,  USDRUB,  silver,  high  grade  copper,  soybean.  Figure  6  is  the  plot  for  the
data  without  outliers  for  d  and  kurtosis.  It  shows  that  there  is  a  negative  relation
between d and the kurtosis. Which is the larger the kurtosis is, the smaller value of
maximizing d is. Also, it is shown there is an approximately linear relation between
the d and the log values of the kurtosis. So a regression is applied to d and log values
of the kurtosis. It is surprisingly that the p-values are very small. In other words, the
d is significantly linear correlated with the log values of the kurtosis. The result is as
follows,

17


For the skewness, the  outliers eliminated are USDCNY, USDRUB, silver, high grade
copper,  cotton.  The  result  is  shown  in  Figure  6.  It  shows  that  there  is  no  specific
relation between these two variables.
In  this  section,  a  widely  test  on  various  data  from  the  fincancial  markets  are
conducted. Mainly, the analysis on the relationship between the values of d, mean,
variance,  kurtosis  and  skewness  shows  an  interesting  result  that,  the  d  that
maximizes  the  autocorrelation  is  strongly  related  to  the  kurtosis.  This  result
matches  a  lot  of  studies.  In  He  T  (2002),  by  the  analytical  form  fo  the
autocorrelation  function,  the  realtionship  between  kurtosis  and  d  would  be  then
studied.

18

Figure 5

data
0 1 2 3 0.0000 0.0006 0.0012 0 2000 4000 6000
0 10 20 30 40
0 1 2 3
d
mean
0.000 0.002
0.0000 0.0006 0.0012
se
skewness
-60 -20 20
0 10 20 30 40
0 2000 4000 6000
0.000 0.002 -60 -20 0 20 40
kurtosis

19

Figure 6

Figure 7

 
0.8 1.0 1.2 1.4 1.6 1.8
0 50 100 150 200 250 300
data1$d
data1$kurtosis
0 1 2 3
-2 0 2 4 6
data2$d
data2$skewness

20

Chapter 4. The ARCH model and Autocorrelation Function
The ARCH was first introduced in Engle (1982) to the properties of the volatility. It
was then developed and derived to other specific models. In this section, we mainly
talk  about  the  GARCH,  EGARCH  and  PGARCH  models.  If  

 follows  the  ARCH(p)
model, then
 

=



,          

~  (0, 1)  (2)
Where
 


= ω + ∑






 (3)
In Bollerslev (1986), the generalized ARCH (GARCH) model was defined by adding
moving average to the volatility term as follows
 σ


= ω + ∑ β

σ




+ ∑ α

ε




 (4)
Actually,  the  ARCH  model  is  a  special  case  of  the  above  GARCH  model.  Also,  if
ARMA(r,  m)  model  is  added  to  the  

 to  get  new  series  

,  then  we  can  have  the
ARMA-GARCH model where
 

= C + ∑





+ ∑





+

 (5)

21

By the previous examination of the original data, the  

 has no correlation of itself,
so here we only take the MA(1) model to the  

 as a filter. The GARCH (1, 1) model,
meanwhile, was mostly used and studied. For other values of (p, q), the conclusion
was similar but tedious. So in this paper we actually refer the GARCH model as
 

=  +

+

 (6)
 

=



,          

~  (0, 1)  (7)
 


=  +


+


 (8)
As  we  can  see  from  the  model,  the  autocorrelation  does  not  exist  for  

 itself  but
exists  for  the  squared  terms.  So  the  model  could  capture  this  property  of  the
financial  time  series.  More  generally,  Ding  (1993)  introduced  a  new  asymmetric
power  ARCH  (A-PARCH)  model,  which  includes  several  other  ARCH  models  as
special cases, where the term  

 was defined as,
 


=  + ∑

(|

| −



)



+ ∑






 (9)
Consider the special case of the PARCH model when   → 0, the conditional variance
term can be derived as
 log


=  + ∑

log




+ ∑






 
−  




 



+ ∑





 


(10)

22

More generally, the variance term in the EGARCH(1, 1) mode is defined as
 log


=  + (

) +  log


 (11)
Here the g is a well-defined function of  

, if
 (

) =

+ (|

| − |

|)  (12)
Then  we  could  get  the  previous  EGARCH  model  introduced  by  Nelson  (1991).
Among the three parameters,   measures the persistence and to ensure the  log



to  be  stationary,   < 1; is the asymmetry parameter, and stands for the
magnitude of  

 or say ,the shock of the volatility.
The Taylor effect was first found in Taylor (1986) and defined in Granger and Ding
(1995). It shows that for the various financial time series, the autocorrelation of the
absolute-valued prices is larger than the squared terms,
 (|

|, |

|) > (|

|

, |

|

)  (13)
Also, by using the distribution introduced by Nagao and Kadoya (1971), the Taylor
property  was  briefly  shown  in  Granger  and  Ding  (1995).  However,  there  is  little
evidence to show the relation between distributions to the time series tested. Then
in Ding and Granger (1996), acf for various ARCH (1, 1) type models were derived.

23

But on one hand, the analytical forms of free power were not given and on the other
hand, a specific result of the exchange rate return found the maximum d was equal
to 1/4. So it will be interesting to test and study if the d varies for different samples.
Section  3  has  shown  this  is  true  by  testing  4  other  data.  Then  it  comes  to  the
question  that  if  we  can  capture  this  stylized  fact  by  theoretical  methods  in  some
specific models.
4.1 ACF in EGARCH(1, 1) model
The specific form of the ACF in EGARCH model was introduced by He T (2002), by
deriving the acf of the log ovservations. The acf of the  |

|

 is
 

() = (

∗

−


∗

) (

∗

−


∗

) ⁄    (14)
Where


= |

|


() = exp




   


= () ∏ [ ( )]


∗ ∏ [ ( )]




 


= ∏ ([ ( )] )


 

24



= ∏ [ ( )]


 .
Here k denotes the lags of the acf, and g is the well-defined function of  

. Note that
the  g  we  have  mentioned  in  Section  3  for  Nelson’s  EGARCH  model.  Then  the
unknown determinants of the acf would be the distribution of  

, the parameters  
and  ,   defined  in  g.  Instead  of  using  the  moments  of  the  data,  we  will  use  the
kurtosis  of  the  data  which  was  explained  in  He  T(2002)  and  Harvey  (1998).  The
kurtosis of  

 in this model is
  = (

) ∏ [ ( )]

[ [ ( )]

]

⁄


 (15)
If we assume that  

 has normal distribution, the kurtosis and the form of the acf
could be derived as following.
  = 3 exp
(  )



∏
 

(  )  
( )
   

(  )
 

(  )  
( )
   

(  )



 (16)
 

() =  

(∙ ) ∏ Φ



∏ Φ



− ∏ Φ



/

∏ Φ



− ∏ Φ



  (17)
Where


=
()






exp





(  )



( )









 

25



=


 








exp





(  )



   
(∙ ) =
()
−




( + )+ exp  −




()

()
−




( − )    
Φ

= Φ




( + )+ exp  −




( )
Φ




( − )    
Φ

= Φ




(1 +

)( + )+ exp  −




( )
Φ (




(1 +

)( − ))  
Φ

= Φ  

( + )+ exp −2


( )
Φ (

( − ))  
And  Φ (∙ )  is the cdf of the standard normal distribution,  

[ ]   is called parabolic
cylinder function as,
 

[ ]=
 




()
∫

exp  −−






 (18)
Compared to the original model (17), this function is easier to calculate and has a
better approximation when applying numerical method.
4.2 Parameters and Taylor Effect
Based  on  the  autocorrelation  function,  when  specific  distribution  and  parameters
are applied to the model, the Taylor property could then be checked. Notice that the
relationship between  

(1)  and  

(2)  has already been proved in various models.

26

And it shows the Taylor effect exists with some specific parameters. But the focus of
this paper is on the more generalized form of Taylor effect. Or say, by the acf derived
in  EGARCH  and  ARSV  model,  the  relationship  between  the  maximum  d  and  the
parameters is our interest. Becasue in EGARCH model, the kurtosis are functions of
,   and  .
But the acf can not be expressed only with kurtosis, which means we need to fix 2 of
the  3  parameters  and  change  the  1  lest.  Then  along  with  the  change  the  last
parameter, the acf and kurtosis both could be calculated.    and    are first set as
0.99 and 0.3, which is  approximately shown in many financial data. Then Figure 8
gives a visual relationship among acf, kurtosis and power d.
So  under  the  assumption  that  

 has  normal  distribution,  and  fix  the  persistence
=0.99, the asymmetry   = −0.19, we change the shock    from 0.05 to 0.5. The
trend  shows  in  2  aspects:  the  peak  power  is  changing  with  different  kurtosis;  the
autocorrelation  decreases  along  when  the  kurtosis  increases.  More  specifically,
Figure 8 shows the acf with power d for different kurtosis. It was explicit that the d
maximizing  the  autocorrelation  does  change  from  about  0.5  to  1  for  different
kurtosis.  Notice  that  the  kurtosis  increases  when  ||,  ||  increase,  so  this  plot

27

shows  that  the  larger  the  kurtosis,  the  smaller  the  maximum  d  is.  Similarly,  when
the changing parameter is  , we can get the relationship which is in Figure 9.
Figure 8


28

Figure 9

29

Chapter 5. Emperical results and Simulation
In this section, three data samples are fitted to EGARCH model, and simulations by
the  fitted  model  are  carried  out  to  see  if  they  are  reasonable.  The  Dow  jones
industial  index,  USDCAD  exchange  rate  and  Gold  futures  are  chosen  respectively.
Then  by  plugging  in  the  estimated  parameters  to  the  acf  derived  in  Section  4,  the
power maximizing the acf are compared to the power from the original data.
To test the existence of ARCH property of the data, the Lagrange multiplier (LM) test
is  first  taken. Table  1  shows  the  p  values  of the LM statistics. The  results  strongly
indicate  that  the  heteroscedasticity  property  exists  for  all  the  data  in  small  lags.
However, for the exchange rates data, the property vanishes rapidly. And this is the
same with the results shown in Section 3.
Table 1

 Lag[1]   Lag[5]   Lag[10]  
DJI  0.0005526  0.0023267  0.0122245
USDCAD  0.01029  0.09467  0.39655
GCC  6.726e-12  1.379e-10  1.791e-08


30

Table 2 displays the estimated results. The models are revised by different results.
For  example,  for  the  USDCAD  exchange  rate  returns,  when  applying  the
MA(1)-EGARCH(1,1),  the  p-value  of  the  MA  term  is  0.200128,  which  shows  we
could reject. So EGARCH(1,1) with no ARMA model is then applied.
Table 2

   Ma1          
DJI  0.000347  0.127837  -0.083869  -0.057999  0.991350  0.132777
USDCAD  NA  NA  -0.075081  0.023384  0.992425  0.325317
GCC  0.000131  -0.075670  -0.047619  0.033353  0.994762  0.119654

After the parameters are estimated, simulations are carried out 1000 larger than the
size  of  the  4  samples,  and  the  first  1000  simulations  are  discarded.  The  Figures
compare the simulated acf of the squared values compared to the actual data, while
Figure  is  the  plot  of the  absolute  values.  Though the simulated acf  of the  absolute
values  are  typically  smaller  than  the  actual  ones,  but  the  shape  is  more  similar,
which indicates better fitted. Along with the power changing, Figure shows the acf of
the simulated values and of original data at lag=1. Also by the simulated parameters,
the values calculated by the theoretical form of the acf derived in Chapter 4 is added
to the figures. As we can see, the simulated acf fits well with the theoretical ones for

31

the DJI and USDCAD. However for the GCC    exchange rates, the shape of acf of the
returns is irregular compared to the other three samples, and the simulated results
are not satisfactory either. But to our interest, the power that maximizes the acf are
most significant, which implies the generalized Taylor effect.
To capture the property of the autocorrelation of the varying volatility, several time
series  models  are  introduced.  Based  on  the  ARCH  structure,  Bollerslev’s  GARCH
model, Taylor/Schwert’s model and Ding, Granger, and Engle’s Power-ARCH model
are  mostly  used.  The  main  difference  is  that  the  three  models  focus  on  different
power transformation of the volatility. In section 3, we can see the results show the
autocorrelation  are  mostly  stronger  for  |

|  than  


,  so  one  may  consider  the
Taylor/Schwert’s model better fits the data. Notice that Taylor/Schwert’s model is a
special case of the PARCH model when  δ = 1. So here the estimations are taken in
two  ways.  From  the  estimation  results  in  Appendix  B,  we  can  see  the  estimated
parameters  are  always  significant  in  the  same  for  both  models.  For  example,  all
parameters  are  significant  for  the  Dow  Jones  Industrial  Average  Index  for  both
models.  And  for  the  other  3  indices,  the  parameters  in  GARCH  model  are  not
significant when the parameters for PARCH are not simultaneously.

32

To  better  illustrate  the  model  efficiency,  Monte  Carlo  simulations  are  conducted.
Figure  10  shows  the  autocorrelation  of  |

|

 for  r  and  two  simulation  series.  It  is
shown that both models could catch the long memory property, while GARCH model
is  better fitted. As tested in  Section  3,  the  d that  maximizes the  autocorrelation  of
the |

|

is  1.13,  0.29,  0.81,  1.25.  And  for  the  PARCH  model,  the  estimated δ  is  1.6,
0.7, 1.4 and 1.7. It is obvious that the d and δ  have the same trend, or say,  δ = d +


.
This could only be carried out by the computer, but in some aspects, this shows the
PARCH  model  could carry out the d. Compared to  the  ARSV model, the d could be
explained in terms of  

,

 and  

, which have strong relation with δ. So from the
empirical applications, PARCH and ARSV models could figure it out numerically.
Figure 10
0 20 40 60 80 100
0.0 0.1 0.2 0.3
lags
Autocorrelation
0 20 40 60 80 100
0.0 0.1 0.2 0.3
lags
Autocorrelation

33

Chapter 6. Conclusion
In  this  paper,  42  other  financial  time  series  were  examined.  The  results  show  the
autocorrelation does exist for the power transformation of the returns. On the other
hand,  by  maximizing  it,  it  is  shown  that  the  Taylor  Effect  holds  for  different  d  in
different samples. However, the power that maximizes the autocorrelation varies a
lot.  To  explain  it  to  some  aspects,  we  analyze  the  relationship  between  the  power
and  other  properties  of  the  data.  It  is  shown  that  there  is  a  strong  linear  relation
between d and the log values of the kurtosis. Meanwhile, no obvious evidence shows
that the power is realted to other variables. Then by the derived form of acf in He T
(2002),  this  paper  explores  this  relationship.  Though  we  could  not  derive  a
analytical form fo the maximum d, we could figure out the relation between d and
kurtosis. The result is in accordance to the result shown in previous part. Then the
EGARCH  model  is  fitted  to  one  of  the  data  and  simulations  are  then  conducted.  It
shows the model is reasonable enough to capture the property.

34

References
Abdalla,  S.  Z.  S.  (2012).  Modelling  Exchange  Rate  Volatility  using  GARCH  Models:
Empirical  Evidence  from  Arab  Countries. International  Journal  of  Economics  &
Finance, 4(3).
Bera,  A.  K.,  &  Higgins,  M.  L.  (1993).  ARCH  models:  properties,  estimation  and
testing. Journal of Economic Surveys, 7(4), 305-366.
Bollerslev,  T.  (1986).  Generalized  autoregressive  conditional
heteroskedasticity. Journal of Econometrics, 31(3), 307-327.
Broto,  C.,  &  Ruiz,  E.  (2004).  Estimation  methods  for  stochastic  volatility  models:  a
survey. Journal of Economic Surveys, 18(5), 613-649.
Carnero, M. A., Peña, D., & Ruiz, E. (2004). Persistence and kurtosis in GARCH and
stochastic volatility models. Journal of financial econometrics, 2(2), 319-342.
Cheong, C. W. (2009). Modeling and forecasting crude oil markets using ARCH-type
models. Energy Policy, 37(6), 2346-2355.
Ding,  Z.,  &  Granger,  C.  W.  (1996).  Modeling  volatility  persistence  of  speculative
returns: a new approach. Journal of Econometrics, 73(1), 185-215.
Ding,  Z.,  Granger,  C.  W.,  &  Engle,  R.  F.  (1993).  A  long  memory  property  of  stock
market returns and a new model. Journal of empirical finance, 1(1), 83-106.

35

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of
the variance of United Kingdom inflation. Econometrica: Journal of the Econometric
Society, 987-1007.
Granger, C. W., & Ding, Z. (1995). Some properties of absolute return: An alternative
measure of risk. Annales d'économie et de statistique, 67-91.
Haas,  M.  (2009).  Persistence  in  volatility,  conditional  kurtosis,  and  the  Taylor
property in absolute value GARCH processes. Statistics & Probability Letters, 79(15),
1674-1683.
Harvey,  A.,  Ruiz,  E.,  &  Shephard,  N.  (1994).  Multivariate  stochastic  variance
models. The Review of Economic Studies, 61(2), 247-264.
He,  C.,  &  Teräsvirta,  T.  (1999).  Fourth  moment  structure  of  the  GARCH  (p,  q)
process. Econometric Theory, 15(06), 824-846.
He, C., & Teräsvirta, T. (1999). Higher-order dependence in the general Power ARCH
process and a special case. Stockholm School of Economics, Working Paper Series in
Economics and Finance, 315.
He,  C.,  &  Teräsvirta,  T.  (1999).  Properties  of  moments  of  a  family  of  GARCH
processes. Journal of Econometrics, 92(1), 173-192.
He,  C.,  Teräsvirta,  T.,  &  Malmsten,  H.  (2002).  Moment  structure  of  a  family  of
first-order exponential GARCH models. Econometric Theory, 18(04), 868-885.

36

Kim, S., Shephard, N., & Chib, S. (1998). Stochastic volatility: likelihood inference and
comparison with ARCH models. The Review of Economic Studies, 65(3), 361-393.
Malmsten, H., & Teräsvirta, T. (2004). Stylized facts of financial time series and three
popular  models  of  volatility. SSE/EFI  Working  Paper  Series  in  Economics  and
Finance, Stockholm School of Economics, 563.
Mora  Galán,  A.,  Pérez,  A.,  &  Ruiz,  E.  (2004).  Stochastic  volatility  models  and  the
Taylor effect.
Müller, U. A., Dacorogna, M. M., & Pictet, O. V. (1998). Heavy tails in high-frequency
financial  data. A  Practical  Guide  to  Heavy  Tails:  Statistical  Techniques  and
Applications. Boston: Birkhaüser, 55-77.
NAGAO,  M.,  &  KADOYA,  M.  (1971).  Two-variate  exponential  distribution  and  its
numerical  table  for  engineering  application. Bulletin  of  the  Disaster  Prevention
Research Institute, 20(3), 183-215.
Nelson,  D.  B.  (1991).  Conditional  heteroskedasticity  in  asset  returns:  A  new
approach. Econometrica: Journal of the Econometric Society, 347-370.
Pagan,  A.  R.,  &  Schwert,  G.  W.  (1990).  Alternative  models  for  conditional  stock
volatility. Journal of Econometrics, 45(1), 267-290.
Pérez, A., & Ruiz, E. (2008). A new specification tool for Stochastic Volatility models
based on the Taylor effect.

37

Poon,  S.-H.,  &  Granger,  C.  W.  (2003).  Forecasting  volatility  in  financial  markets:  A
review. Journal of economic literature, 41(2), 478-539.
Ruiz,  E.  (1994).  Quasi-maximum  likelihood  estimation  of  stochastic  volatility
models. Journal of Econometrics, 63(1), 289-306.
Ruiz, E., & Veiga, H. (2008). Modelling long-memory volatilities with leverage effect:
A-LMSV  versus  FIEGARCH. Computational  Statistics  &  Data  Analysis,  52(6),
2846-2862.
Sandmann, G., & Koopman, S. J. (1998). Estimation of stochastic volatility models via
Monte Carlo maximum likelihood. Journal of Econometrics, 87(2), 271-301.
Taylor, S. J. (2007). Modelling financial time series.
Teräsvirta,  T.,  &  Zhao†,  Z.  (2011).  Stylized  facts  of  return  series,  robust  estimates
and three popular models of volatility. Applied Financial Economics, 21(1-2), 67-94.
Vee,  D.  C.,  Gonpot,  P.  N.,  &  Sookia,  N.  (2011).  Forecasting  Volatility  of  USD/MUR
Exchange  Rate  using  a  GARCH  (1,  1)  model  with  GED  and  Student’st
errors. University of Mauritius Research Journal, 17(1), 1-14.
Zakoian,  J.-M.  (1994).  Threshold  heteroskedastic  models. Journal  of  Economic
Dynamics and Control, 18(5), 931-955.

38

Appendix
Table A: The data range
Data  Start date  End date  Observations
SPXD  01/03/1984  03/03/2014  7607
DJI3D  01/03/1984  03/03/2014  7606
OTC_D  01/03/1984  03/03/2014  7607
GSPTSED  01/03/1984  03/03/2014  7594
EUSX5ED  12/31/1986  03/03/2014  6988
FTSED  01/03/1984  03/03/2014  7618
FCHID  07/09/1987  03/03/2014  6740
GDAXD  01/02/1984  03/03/2014  7587
IBEXD  01/05/1987  03/03/2014  6822
FTMIBD  12/31/1997  03/03/2014  4153
AEXD  01/02/1984  03/03/2014  7662
OMXSPID  01/31/1986  03/03/2014  6963
N225D  01/04/1984  03/03/2014  7594
AXJOD  01/31/1992  03/03/2014  5574
HSID  01/03/1984  03/03/2014  7497
SSECD  12/19/1990  03/03/2014  5672
MXXD  01/02/1985  03/03/2014  7300
BVSPD  01/02/1984  02/28/2014  7535
USDCAD  01/03/1984  03/03/2014  7846
USDEUR  01/02/1984  03/03/2014  7713
USDGBP  01/03/1984  03/03/2014  7834
USDAUD  01/03/1984  03/03/2014  7826

39

USDJPY  01/03/1984  03/03/2014  7844
USDBRL  01/02/1984  03/03/2014  7726
USDCNY  01/03/1984  03/03/2014  7675
USDHKD  01/03/1984  03/03/2014  7737
USDINR  01/03/1984  03/03/2014  7735
USDMXN  01/03/1984  03/03/2014  7743
USDRUB  01/03/1984  03/03/2014  6344
USDCHF  01/03/1984  03/03/2014  7832
gold  01/03/1984  03/03/2014  7578
silver  01/03/1984  03/03/2014  7572
high grade copper  01/03/1984  03/03/2014  7576
platinum  01/03/1984  03/03/2014  7547
corn  01/03/1984  03/03/2014  7608
soybean  01/03/1984  03/03/2014  7606
wheat  01/03/1984  03/03/2014  7606
cotton  01/03/1984  03/03/2014  7580
crude oil  01/03/1984  03/03/2014  7545
natural gas  04/03/1990  03/03/2014  5999
us treasury bond  01/03/1984  03/03/2014  7599
us 10-year bond  01/03/1984  03/03/2014  7600

Table B: The values for different data
data  d  mean  se  skewness  kurtosis
SPXD  1.22  0.000318238  0.000132798  -1.273687  28.0744
DJI3D  1.18  0.000336319  0.000129787  -1.682733  41.91773
OTC_D  1.17  0.000359557  0.000161124  -0.2369475  8.195057
GSPTSED  1.56  0.000226186  0.000112886  -0.9315663  14.74038
EUSX5ED  1.14  0.000174739  0.00015973  -0.1531232  5.935494

40

FTSED  3.56  0.000250212  0.0001277  -0.4802456  9.500651
FCHID  1.5  0.000157664  0.000172026  -0.141156  5.282739
GDAXD  1.2  0.000325992  0.000163667  -0.3140695  6.19985
IBEXD  1.13  0.000220125  0.000170617  -0.07540204  5.47444
FTMIBD  0.01  -5.08E-05  0.000242278  -0.08131647  4.130582
AEXD  1.34  0.000213602  0.000154681  -0.2608978  8.289928
OMXSPID  1.47  0.000391667  0.000162094  0.05476509  5.984059
N225D  1.63  5.13E-05  0.000165372  -0.320745  8.199229
AXJOD  1.74  0.000215216  0.000129205  -0.4313148  5.931758
HSID  1.18  0.000433777  0.000198132  -2.251437  54.17237
SSECD  0.73  0.000534802  0.000320059  5.559207  152.7058
MXXD  1.81  0.001256751  0.000209985  -0.452504  17.52736
BVSPD  0.83  0.003445939  0.000350285  -0.623561  28.34601
USDCAD  1.37  -1.52E-05  5.05E-05  0.1594495  5.74585
USDEUR  2.33  -6.61E-05  7.97E-05  0.06161741  6.055585
USDGBP  1.32  -1.97E-05  7.11E-05  0.09932239  3.439354
USDAUD  1.58  5.27E-07  8.61E-05  0.5478854  12.02732
USDJPY  1.24  -0.000105738  7.87E-05  -0.3899569  6.139682
USDBRL  0.12  0.002926584  0.000119697  1.1652  22.99414
USDCNY  0.01  0.000147215  6.73E-05  53.52434  3311.074
USDHKD  1.17  -6.23E-07  6.94E-06  6.63162  907.2021
USDINR  0.41  0.000228829  5.26E-05  5.352201  134.5234
USDMXN  0.95  0.000563038  0.00011436  3.778311  113.5117
USDRUB  0.01  0.00170244  0.00051007  52.0332  3471.44
USDCHF  1.34  -0.000117513  8.28E-05  0.1013234  4.96924
gold  1.48  0.000167595  0.000121422  -0.1269693  8.890355
silver  0.34  -0.000491567  0.001366564  -53.77612  4966.037
high grade
copper
0.39  -0.000398595  0.000643552  -74.48101  6150.575
platinum  1.23  0.000175078  0.000165262  -0.2884284  4.182063

41

corn  0.75  4.49E-05  0.000198534  -1.392238  23.0615
soybean  3.64  7.68E-05  0.000180505  -0.9516823  16.56061
wheat  1  7.51E-05  0.000212174  -1.023314  17.00474
cotton  0.67  2.03E-05  0.000229307  -8.559391  323.2503
crude oil  1.13  0.000168638  0.000277101  -0.8388064  15.73106
natural gas  0.91  0.000168499  0.000457579  0.2054964  7.448934
us treasury bond  0.8  8.72E-05  8.01E-05  -2.937623  80.26898
us 10-year bond  0.81  6.23E-05  5.21E-05  -2.389452  61.14194 
Asset Metadata
Creator Song, Mingpu (author) 
Core Title Generalized Taylor effect for main financial markets 
Contributor Electronically uploaded by the author (provenance) 
School College of Letters, Arts and Sciences 
Degree Master of Science 
Degree Program Statistics 
Publication Date 06/17/2014 
Defense Date 05/07/2014 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag autocorrelation,financial time series,GARCH model,OAI-PMH Harvest,Taylor effect 
Format application/pdf (imt) 
Language English
Advisor Zhang, Jianfeng (committee chair), Lototsky, Sergey V. (committee member), Mikulevičius, Remigijus (committee member), Piterbarg, Leonid (committee member) 
Creator Email 306829355@qq.com,mingpuso@usc.edu 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c3-419973 
Unique identifier UC11285966 
Identifier etd-SongMingpu-2554.pdf (filename),usctheses-c3-419973 (legacy record id) 
Legacy Identifier etd-SongMingpu-2554.pdf 
Dmrecord 419973 
Document Type Thesis 
Format application/pdf (imt) 
Rights Song, Mingpu 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law.  Electronic access is being provided by the USC Libraries in agreement with the a... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Abstract (if available)
Abstract It has been tested that for financial time series, the autocorrelation does not exists for the returns themselves, while exist for the power transformation of the absoluted values. Also, lots of studies have shown that, known as Taylor Effect, the absolute returns are more strongly autocorrelated than the squared values. Ding (1996) further checked some other time series and found that for the exchange rate returns, the power d maximizing the autocorrelation was around 1/4. So a Generalized Taylor Effect that the power maximizes the autocorrelation varies for different data is proposed and analyzed. To more widely concern, 18 stock indices, 12 exchange rate seires and 12 future contracts are further checked. The d is analyzed with some other properties of the data‐mean, standard error, kurtosis and skewness. Inspired by the deduction of ACF in EGARCH models, He T (2002), this paper take a deeper look at the relationship among those values. Tests and Monte Carlo simulations are also carried out to see the goodness of fit of the EGARCH model. 
Tags
autocorrelation
financial time series
GARCH model
Taylor effect
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button