Close
The page header's logo
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Influences of specific environmental domains on childhood obesity and related behaviors
(USC Thesis Other) 

Influences of specific environmental domains on childhood obesity and related behaviors

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Contact Us
Contact Us
Copy asset link
Request this asset
Transcript (if available)
Content     Influences  of  specific  environmental  domains  on  childhood  obesity  and   related  behaviors         A  Dissertation     Presented  to     Faculty  of  the  USC  Graduate  School   In  Partial  Fulfillment  for  the  Degree  of   Doctor  of  Philosophy  in  Health  Behavior  Research         University  of  Southern  California   Keck  School  of  Medicine   Department  of  Preventive  Medicine   Institute  for  Health  Promotion  and  Disease  Prevention  Research         Lauren  Cook  Martinez   May  2016                         2   TABLE  OF  CONTENTS     Acknowledgements…………………………………………………………………………………..…………………….4   List  of  Tables  and  Figures…………..……………………………………………………………..…………………….6   Abstract……………………………………………………………………………………………………..…………………….7   Chapter  1:  Background………………………………………….……………………………..……………………...….9   Introduction…………………………………………………………………………………..……………………….9   The  problem:  Childhood  obesity……………………………………………………………..……...……….10   Behavioral  determinants  of  obesity…………………………………………………..………………...…..12   Environmental  impact  on  obesity-­‐related  behaviors…………………………………….….….…..16   Social  environment  ……………………………………………………….…….………………………17   Structured  learning  environment………………………………………..………………….…….21   Physical  environment  ………………………………………………………………..….…………….25   Aims  and  Hypotheses……………………………………………………………………………………………..31   Summary  of  Contribution………………………………………………………..……………………………...32   Chapter  2:  Similarities  in  consumption  of  fruit,  vegetables  and  soda  among  middle  school   friends………………………………………………………………………………………………………………...……………33   Introduction…………………………………………………………………………………..……………………....33   Methods………………………………………………….……………………………………………..…………...….35   Results…………………………………………………..…………………………………………...………………….39   Discussion……………………………………………………………………………………..…………….….….….43   Chapter  3:  Co-­‐occurring  change  in  dietary  determinants  and  fruit  and  vegetable  intake  in   Latino  elementary  school  youth……………………..………...………………………..……………………………...51   Introduction…………………………………………………………………………………..………………………51   Methods………………………………………………….……………………………………………..…………..….53   Results…………………………………………………..…………………………………………...………………....57   Discussion……………………………………………………………………………………..…………….….….….58   Chapter  4:  Effect  of  environmental  greenness  and  open  recreational  space  use  on  youth   momentary  perceived  stress…………………………………….………………………..……………………………..67   Introduction…………………………………………………………………………………..………………………67   Methods………………………………………………….……………………………………………..………………69   Results…………………………………………………..…………………………………………...………………….73   Discussion……………………………………………………………………………………..…………….….….….74     3         Chapter  5:  Discussion………………………………………………………………………………..……………………80   Summary  of  Findings……………………………………………………………………..……………………….80   Interaction  of  Environmental  Levels…………………………..………...………………..…………….….82   Future  Research…………………….………………………………………………………..……………………..84   Limitations………………………………………………………………………………………………….….….…..85   Recommendations……………………………………………………………………………………….….….….86   Conclusion.………………………………………………………………………………………………….….….….87   References  ……………….………………………………………………………………………………………...…..……..  88                                                   4   Acknowledgements   I  would  like  to  extend  my  thanks  and  sincere  gratitude  to  the  members  of  my   dissertation  committee.  My  mentor,  Dr.  Donna  Spruijt-­‐Metz,  has  provided  me  with  invaluable   guidance  and  support  throughout  my  graduate  training.  I  have  learned  so  much  from  her   about  transdisciplinary  research,  psychology  and  psychosocial  metrics,  mobile  health,  and   pediatric  obesity.  She  has  been  an  amazing  advocate  for  me,  has  been  patient  and   understanding  during  challenging  times,  and  has  helped  me  to  grow  as  an  individual.  Also,  her   intelligent  sense  of  humor  delights  me.  I  would  also  like  to  thank  Dr.  Chih-­‐Ping  Chou,  who  has   taught  me  so  much  about  modeling  and  mathematics,  and  who  I  admire  as  a  statistician,   independent  thinker,  and  kind-­‐hearted  individual.  Dr.  Jaimie  Davis  has  taught  me  so  much   about  dietary  research,  and  to  always  think  critically  and  dive  deeper.  It  has  truly  been  a  joy   to  work  with  her.  Dr.  Tom  Valente  has  provided  me  with  incredible  instruction  on  social   network  theory  and  methodology.  He  has  a  wonderful  spirit  and  positive  outlook  that  have   made  him  a  pleasure  to  work  with.  Dr.  Jennifer  Unger  has  provided  me  with  insightful,  level-­‐ headed  guidance  through  all  my  years  in  graduate  school,  and  Dr.  Genevieve  Dunton,  has   taught  me  so  much  about  mobile  health,  environmental  research,  and  career  development.  I   have  loved  working  with  both  of  these  intelligent,  inspiring  women.   Other  faculty  have  also  provided  me  with  indispensable  training  and  guidance,  and  I   am  grateful  to  have  had  the  opportunity  to  have  known  and  worked  with  them.  Dr.  Michael   Goran  was  my  first  supervisor,  and  under  him  I  learned  so  much  about  pediatric  obesity,   transdisciplinary  research  and  project  management.  He  is  an  incredibly  thoughtful  researcher   and  has  been  very  generous  throughout  the  many  years  I  have  known  him.  I  would  also  like  to   thank  Dr.  Nicole  Gatto,  from  whom  I  have  learned  epidemiology  and  gardening.  She  has  an   incredible  attention  to  detail  and  amazes  me  with  her  dedication  to  her  work  and  society.    Dr.   Jimi  Huh  has  been  so  patient  and  generous  with  her  time  in  teaching  me  about  longitudinal   research.  Dr.  Lorraine  Turcotte,  my  undergraduate  mentor,  provided  me  with  excellent   training  in  kinesiology  and  introduced  me  to  the  USC  Department  of  Preventive  Medicine  that   has  been  home  to  me  for  so  long.     I  would  also  like  to  thank  my  labmates.  Gillian  O’Reilly  Gentner  has  been  my  friend,   sounding  board,  and  companion  in  this  graduate  school  journey.  The  quality  of  her  work  is   incredible  and  she  has  inspired  me  to  be  a  more  diligent,  better  researcher.  Cheng  (Freddy)     5   Wen  inspires  me  with  his  enthusiasm,  and  has  always  provided  me  with  a  laugh  or  smile   when  I  most  needed  it.    Dr.  Lauren  Gyllenhammer,  Dr.  Tanya  Alderete,  and  Dr.  Claudia  Toledo-­‐ Corral  have  helped  me  to  learn  so  much  about  obesity  and  metabolic  function,  and  have  been   amazing  friends  and  supporters  for  many  years.  I  would  also  like  to  thank  a  special  group  of   classmates,  Stephanie  Dyal,  Dr.  Eleanor  Tate  Shonkoff,  Dr.  Kim  Miller,  and  Dr.  Myriam  Forster.   They,  along  with  Gillian  Gentner,  have  been  a  wonderful  group  of  friends  who  have  provided   perspective  and  many  laughs,  and  I  am  so  grateful  to  have  found  them.     Finally,  I  would  like  to  thank  the  most  important  people  in  my  life.  They  have   supported  me  during  difficult  times,  and  celebrating  during  good  ones.  My  parents,  Fran  and   Nancy,  have  always  encouraged  me  in  all  my  endeavors,  and  have  been  my  inspiration  in   pursuing  a  graduate  degree  in  Preventive  Medicine.  My  brother,  Ryan,  has  been  my  anchor   and  helps  me  to  stay  grounded  during  difficult  times.  My  husband,  Juan  Manuel,  is  my  biggest   advocate  and  most  patient  and  loving  supporter.  He  has  provided  me  with  so  much  valuable   advice  and  helped  me  grow  immensely  as  a  professional  and  individual.  I  would  never  be  the   individual  I  am  today  without  him.                                         6   List  of  Tables  and  Figures   List  of  Figures   Figure  1-­‐1:  Dissertation  Conceptual  Model:  environmental  influences  on  childhood     obesity  and  related  behaviors  ………………………………………...……………………..…………………...….…10       Figure  2-­‐1:  Sample  classroom  of  middle  school  students  partitioned  into  unique     communities  using  the  Walktrap  Community  Detection  Algorithm………………………..…...………46   Figure  2-­‐2:  Network  plots  of  17  Los  Angeles  middle  school   classrooms…………………………………………………………………………………………………..…………………..47   Figure  2-­‐3:  Plots  of  communities  of  middle  school  students  were  significant     homophily  on  vegetable  intake  was  observed………………………………………………..………….……….49   Figure  2-­‐4:  Sample  plot  of  vegetable  intake  in  a  community  without  significant     homophily………………………………………………………………….………………………………..……………….….50       Figure  3-­‐1:  Conceptual  model  for  intervention  effects  on  change  in  FV  intake  as  a   mediator  between  change  in  FV  determinants  and  change  in  BMI  z-­‐scor.……………….……….…  63   Figure  3-­‐2:  Associations  between  change  in  FV  determinants  and  change  in  FV  intake     among  LA  Sprouts  study  participants………………………...………………………………………….……….…  65   Figure  3-­‐3:  Baseline-­‐adjusted  associations  between  FV  determinants  and  FV  intake     among  LA  Sprouts  study  participants  at  follow-­‐up………...……………………………………….……….…  66   List  of  Tables   Table  2-­‐1:  Baseline  characteristics  of  617  middle  school  students  in  Los  Angeles……….……...46       Table  2-­‐2:  Network  summary  statistics  for  17  Los  Angeles  middle  school  classrooms……..…48   Table  2-­‐3:  Correlations  between  ego  intake  of  vegetables,  fruit  and  soda  with  named       friend  intake  of  the  same  food  item  among  617  middle  school  students  in  Los  Angeles..……..48   Table  2-­‐4:  Summary  of  interactions  between  social  network  effects  and  dietary  intake     in  17  Los  Angeles  middle  school  classrooms……..………………………………………...……………………..49   Table  3-­‐1:  Baseline  characteristics  of  elementary  school  children  who  participated  in  a     garden-­‐based  randomized  control  trial.  (n=363)  ……..………………………………...……………….….….64   Table  3-­‐2:  Fit  statistics  at  each  model-­‐building  step……..………………………………...………….….…..64   Table  4-­‐1:  Baseline  characteristics  of  120  3 rd  -­‐8 th  grade  children  in  Chino,  CA………………...….77   Table  4-­‐2:  Momentary  normalized  difference  vegetation  index  (NDVI)  as  a  predictor     of  stress  in  3 rd -­‐8 th  grade  children  in  Chino,  CA……..……………………………………...………………….….78   Table  4-­‐3:  Momentary  open  recreational  space  (ORS)  use  as  a  predictor  of  stress     in  3 rd -­‐8 th  grade  children  in  Chino,  CA……..…………………………………………………...………………….….78   Table  4-­‐4:  Thirty-­‐minute  normalized  difference  vegetation  index  (NDVI)  as  a     predictor  of  stress  in  3 rd -­‐8 th  grade  children  in  Chino,  CA……..………………………………………….….79   Table  4-­‐5:  Thirty-­‐minute  open  recreational  space  (ORS)  use  as  a  predictor  of  stress     in  3 rd -­‐8 th  grade  children  in  Chino,  CA……..…………………………………………………...………………….….79     7     ABSTRACT     The  high  rates  of  childhood  obesity  in  the  US  make  it  imperative  that  factors   contributing  to  the  onset  of  obesity  are  better  understood.  The  goal  of  this  dissertation  is  to   better  understand  how  the  environment  contributes  to  obesity-­‐related  behaviors  at  the  social,   structured  learning,  and  physical  levels.  The  objectives  for  this  dissertation  are  the  following:   1)  better  understand  similarities  among  adolescents  and  their  friends  in  intake  of  fruit,   vegetables  (FV)  and  soda,  2)  evaluate  the  impact  of  a  school-­‐based  nutrition  and  gardening   intervention  on  FV  intake  as  a  mediator  of  dietary  determinants  and  BMI,  and  3)  determine   the  impact  of  green  space  on  perceived  stress  among  youth  in  their  everyday  living   environments.       Study  1  utilized  cross-­‐sectional  data  from  617  middle  school  students  in  17  classrooms   in  the  Get  Moving  study.  Social  networks  were  constructed  by  asking  students  to  name  their   five  best  friends  in  their  classroom,  and  dietary  frequency  of  FV  and  soda  were  obtained.   Exponential  random  graph  models  were  used  to  measure  homophily  on  dietary  intake  among   friends.  Study  2  utilized  data  from  the  LA  Sprouts  study,  a  randomized,  controlled,  school-­‐ based  gardening  and  nutrition  intervention  with  363  elementary  school  students.  At  baseline   and  12-­‐weeks,  BMI  was  measured  and  participants  completed  questionnaires  on  dietary   determinants  and  behavior.  Path  modeling  was  used  to  examine  co-­‐occurring  changes  in   these  measures.  Study  3  utilized  data  on  63  3 rd -­‐8 th  grade  students  who  participated  in  the   Mobile  Healthy  PLACES  study.  Children  completed  Ecological  Momentary  Assessment  (EMA)   questions  on  stress,  and  GPS-­‐derived  variables  Open  Recreational  Space  (ORS)  and   Normalized  Difference  Vegetation  Index  (NDVI)  measured  green  space.  Analyses  to  examine   the  effect  of  green  space  on  stress  were  completed  using  multilevel  modeling  and  partial   correlations.       In  Study  1,  there  was  no  significant  association  between  friends  and  their  intake  of  FV,   or  soda  (p>0.9).  In  Study  2,  change  in  controlled  motivation  to  eat  FV,  willingness  to  try  FV,   and  vegetable  preferences  was  associated  with  change  in  vegetable  intake  (0.21  ±  0.6,   p<0.001;  0.17  ±  0.07,  p<0.01;  0.17  ±  0.06,  p<0.01;  respectively),  and  change  in  vegetable   preferences  was  associated  with  change  in  fruit  intake  (0.12  ±  0.06,  p=0.047).  There  were  no   associations  between  change  in  FV  intake  and  BMI,  and  no  significant  differences  in  effect     8   sizes  between  the  control  and  intervention  groups.  In  Study  3,  there  was  no  significant   association  between  participant  reported  stress  and  either  NDVI  or  ORS  use.     Although  findings  from  Study  1  are  null,  expecting  homogeneity  in  the  association   between  friendships  and  dietary  intake  may  not  be  realistic.  There  is  some  evidence  that   similarities  in  dietary  intake  exist  among  friends  in  small  groups,  and  new  techniques  are   needed  to  better  understand  how  often  and  when  these  associations  occur.    Findings  from   Study  2  indicate  that  motivation  to  eat  FV,  willingness  to  try  FV,  and  vegetable  preferences  are   relevant  targets  for  interventions  addressing  FV  intake.    In  this  study,  the  structured  learning   environment  did  not  alter  the  strength  of  association  between  simultaneous  change  in  dietary   determinants  and  intake,  but  can  be  one  mechanism  through  which  changes  in  dietary  intake   and  determinants  occur.    Although  findings  from  Study  3  are  null,  participants  reported   minimal  stress,  so  more  advanced,  biometric  data  collection  techniques  are  needed  to  better   capture  participant  momentary  stress  and  co-­‐occurring  environmental  contexts.  Taken   together,  these  findings  provide  further  insight  into  environmental  effects  on  obesity-­‐related   behaviors,  yet  additional  research  is  needed  on  all  study  topics  to  provide  a  more  robust   understanding  of  environmental  influences.                                               9   CHAPTER  1:  Background       Introduction   Childhood  obesity  has  emerged  as  an  epidemic  in  the  United  States  (US)  and  around   the  world,  (Ebbeling,  Pawlak,  &  Ludwig,  2002;  Ogden,  2012)  and  this  condition  has  far-­‐ ranging  chronic  disease  consequences.  (Ebbeling  et  al.,  2002)  The  direct  costs  of  childhood   obesity  are  estimated  at  $14  billion,  yet  the  costs  escalate  to  alarming  numbers  when  obese   children  become  obese  adults,  and  an  estimated  $147  billion  annually  goes  towards  treating   obesity-­‐related  illness.  (Cawley,  2010)  Individual  behavioral  choices,  such  as  in  diet  and   exercise,  are  commonly  implicated  in  obesity  development,  but  many  conditions  outside  an   individual’s  control,  such  as  early  life  factors  and  the  environment,  interact  to  have  a   significant  impact.  (Ebbeling  et  al.,  2002)     The  obesity-­‐related  environment  is  a  complex  system  that  encompasses  many   domains.  Firstly,  child  behaviors  are  influenced  by  peers  and  parents,  such  as  through   modeling  or  norms.  (McClain,  Chappuis,  Nguyen-­‐Rodriguez,  Yaroch,  &  Spruijt-­‐Metz,  2009;   Salvy,  de  la  Haye,  Bowker,  &  Hermans,  2012)    Next,  the  physical  environment  plays  an   important  role,  as  children  are  limited  to  health-­‐promoting  options  available  to  them  at  home,   school  and  in  their  neighborhood.  (French,  Story,  &  Jeffery,  2001;  Papas  et  al.,  2007)  Finally,   while  schools  can  present  barriers  to  health  through  lack  of  sufficient  access  to  physical   activity  and  health  dietary  choices,  schools  can  also  play  a  protective  role,  as  learning   opportunities  in  these  settings  can  empower  children  to  make  healthier  choices.  (T.  Brown  &   Summerbell,  2009)  This  proposal  will  examine  the  impact  of  these  three  distinct   environmental  domains  (social,  physical  and  structured  learning)  on  individual-­‐level  factors   related  to  obesity  (Figure  1-­‐1).                       10     Figure  1-­‐1:  Dissertation  Conceptual  Model:  environmental  influences  on  childhood  obesity   and  related  behaviors     Green  arrows  indicate  pathways  that  will  be  examined  in  this  proposal.     The  problem:  Childhood  obesity   Prevalence   Childhood  obesity  is  a  major  public  health  concern,  as  32%  of  US  children  aged  2-­‐19   are  overweight  (body  mass  index,  BMI  ≥  85 th  percentile  for  age  and  sex),  and  17%  are  obese   (BMI  ≥  95 th  percentile  for  age  and  sex).  (Ogden,  2012)  Rates  of  childhood  overweight  and   obesity  are  even  higher  among  minority  populations,  and  39%  of  Blacks  and  Latinos  are   overweight,  relative  to  only  28%  of  non-­‐Hispanic  Whites  who  are  overweight.  (Ogden,  2012)   Some  populations  are  at  an  even  greater  risk,  including  predominantly  Latino  elementary   school  children  living  in  a  large  urban  environment,  in  which  over  50%  of  students  are  either   overweight  or  obese.  (J.  N.  Davis,  Ventura,  Cook,  Gyllenhammer,  &  Gatto,  2011)     Health  consequences  of  childhood  obesity   The  problem  of  childhood  obesity  is  an  important  one,  as  overweight  children  are   more  likely  to  be  overweight  adults.  (D.  S.  Freedman  et  al.,  2003;  Power,  Lake,  &  Cole,  1997)   Obesity  is  associated  with  many  adult  chronic  health  conditions,  including  cardiovascular     11   disease  (CVD)  and  type  2  diabetes  (T2D),  yet  more  frequently,  overweight  children  are   showing  clinical  signs  of  adult  chronic  conditions.  (Dietz,  1998)  According  to  an  international   group  of  physicians,  obesity  is  the  leading  factor  contributing  to  childhood  high  blood   pressure,  due  in  part  to  increased  blood  volume  and  required  cardiac  output,  and/or  chronic   hypoventilation  found  in  these  children.  (Speiser  et  al.,  2005)  Furthermore,  childhood  obesity   is  also  a  strong  predictor  of  adult  hypertension.  (Daniels,  2009)  Other  mechanisms  through   which  obesity  can  put  children  at  higher  risk  for  CVD  are  higher  levels  of  triglycerides  and   lower  levels  of  high  density  lipoprotein  (HDL),  which  may  partly  be  explained  by  poor  dietary   patterns.  (Daniels,  2009)   As  mentioned  previously,  T2D  is  another  condition  closely  associated  with  obesity,   (Kahn,  Hull,  &  Utzschneider,  2006)  and  youth  in  the  US  are  being  diagnosed  with  T2D  with   increasing  frequency.  Prevalence  of  T2D  has  been  estimated  at  2.8  cases  per  1000  among   adolescents  aged  10-­‐19  years.  (SEARCH  for  Diabetes  in  Youth  Study  Group,  2006)  Central   adiposity  is  the  specific  type  of  adiposity  most  related  to  T2D,  and  in  youth  it  is  associated   with  fasting  insulin  and  impaired  insulin  action.  (D.  S.  Freedman  et  al.,  1987;  Gutin  et  al.,   1994)  This  relationship  is  believed  to  be  driven  by  release  of  fatty  acids,  cytokines,  glycerol   and  hormones  from  adipose  tissue,  which  impact  insulin  uptake  by  body  cells.  (Kahn  et  al.,   2006)  Insulin  resistance  is  also  strongly  implicated  in  the  development  of  non-­‐alcoholic  fatty   liver  disease  (NAFLD,  defined  as  liver  fat  fraction  >  5.5%),  which  can  eventually  progress  to   cirrhosis  in  severe  cases.  (Schwimmer  et  al.,  2003)  Prevalence  of  NAFLD  is  estimated  at  10%   in  children,  with  the  oldest  children  having  the  highest  rates  of  this  condition  (17%   prevalence  in  children  aged  15-­‐19  years).  (Schwimmer  et  al.,  2006)  Several  other  non-­‐ metabolic  conditions  are  additional  common  consequences  of  childhood  obesity,  including   sleep  apnea,  asthma,  polycystic  ovary  syndrome,  musculoskeletal  problems  and  psychological   issues  such  as  anxiety,  depression  and  poor  self-­‐esteem.  (Bray  &  Bouchard,  2003)   Similar  to  higher  prevalence  rates  of  obesity  in  minority  groups,  minority  children  are   also  at  higher  risk  for  related  metabolic  conditions.  (Cowie  et  al.,  2009)  Among  overweight   Latino  children,  60%  had  either  intermittent  or  persistent  pre-­‐diabetes,  and  many  had  excess   levels  of  visceral  adiposity.  (Goran,  Lane,  Toledo-­‐Corral,  &  Weigensberg,  2008)  Furthermore,   38%  of  these  children  also  had  clinical  characteristics  of  NAFLD.  (Goran  et  al.,  2010)  These   children  are  critical  targets  for  interventions  and  research  on  obesity-­‐related  behaviors  and   determinants,  topics  that  are  covered  in  this  proposal.     12   Behavioral  determinants  of  obesity     Genetics  play  an  at  least  moderate  role  in  obesity  development,  (C.  G.  Bell,  Walley,  &   Froguel,  2005)  but  behavioral  factors  are  modifiable  over  the  course  of  a  lifetime,  and  will  be   the  focus  of  this  proposal.  There  are  many  behavioral  determinants  of  obesity,  with  diet  and   physical  activity  (PA)  being  the  most  prominent  given  their  strong  relation  to  energy  balance.   (Rennie,  Johnson,  &  Jebb,  2005;  Spruijt-­‐Metz,  2011)  Stress  also  plays  a  very  important  role,   both  as  a  determinant  of  behavior  and  independent  contributor  to  obesity.  (Bray  &  Bouchard,   2003)  All  major  behavioral  determinants  of  obesity  are  discussed  briefly  below,  but  diet  and   stress  are  the  individual-­‐level  factors  that  will  be  examined  in  this  proposal  and  are  thus   discussed  with  more  detail.       Dietary  intake     Behaviors  related  to  diet  are  unique  in  that  food  is  consumed  several  times  throughout   the  day,  so  compounded  intake  of  deleterious  foods  is  the  primary  concern  relevant  to  chronic   conditions.  (Bray  &  Bouchard,  2003)  Larger  portion  sizes,  greater  consumption  of  energy-­‐ dense  low-­‐nutrient  foods  (for  example,  sugar-­‐sweetened  beverages,  SSB),  and  lower   consumption  of  nutrient-­‐dense  foods  (such  as  fruits  and  vegetables,  FV),  are  the  primary   dietary  behaviors  leading  to  childhood  obesity.  (Rennie  et  al.,  2005).  Because  of  this,  the   overall  carbohydrate  quality  (i.e.,  proportion  of  foods  with  added  sugars/refined  grains,   versus  whole  grains/FV)  or,  similarly,  glycemic  index  (measured  by  blood  glucose  levels   following  consumption)  may  be  relevant  targets  for  interventions  and  recommendations.   (Ludwig,  2002)  In  fact,  interventions  specifically  targeting  carbohydrate  quality  have  been   successful  with  Latino  youth.  (J.  N.  Davis  et  al.,  2011;  2007)  SSB  and  FV  intake  are  specific   behaviors  that  will  be  examined  in  this  proposal,  and  are  thus  discussed  in  further  detail   below.       Sugar-­‐sweetened  beverages     Increased  consumption  of  foods  with  added  sugars,  especially  SSB,  is  a  major   contributor  to  the  obesity  epidemic  and  subsequent  risk  for  T2D.  (Bray  &  Bouchard,  2003)  It   is  estimated  that  16%  of  our  caloric  intake  comes  from  added  sugars,  (Bray,  Nielsen,  &   Popkin,  2004)  and  in  less  than  25  years,  caloric  intake  from  SSB  rose  135%.  (Nielsen  &   Popkin,  2004)  A  meta-­‐analysis  reveals  that  SSB  intake  is  significantly  associated  with  weight     13   gain,  (Malik,  Schulze,  &  Hu,  2006)  and  data  from  a  large  cohort  study  indicates  that  those  who   drink  SSB  daily  have  80%  greater  risk  for  T2D,  relative  to  those  who  do  not  drink  SSB.   (Schulze  et  al.,  2004)   High-­‐fructose  corn  syrup  (HFSC),  a  component  in  many  SSB,  is  an  especially   deleterious  ingredient  because  it  has  a  higher  concentration  of  fructose  than  table  sugar,  and   fructose  has  different  metabolic  actions  compared  to  glucose,  the  other  component  of  table   sugar.  (Bray  et  al.,  2004;  Goran  et  al.,  2013)  Unlike  glucose,  fructose  does  not  promote  the   same  satiety  signals  in  the  brain  as  solid  foods  do,  (Bray  et  al.,  2004;  Hu  &  Malik,  2010)  so   these  beverages  may  not  be  recognized  by  the  satiety  system  as  highly  caloric.    Without   dietary  compensation  made  to  account  for  the  calories  in  SSB,  greater  total  energy  may  be   consumed  throughout  the  day.  (Hu  &  Malik,  2010)  Furthermore,  fructose  promotes  de  novo   lipogenesis,  which  can  encourage  weight  gain  and  insulin  resistance.  (Basciano,  Federico,  &   Adeli,  2005)  Insulin  resistance  is  also  promoted  by  the  rapid  postprandial  insulin  response   following  consumption  of  these  drinks  high  in  sugar.  (Hu  &  Malik,  2010)  Early  life   consumption  of  SSB  can  have  far-­‐reaching  consequences  into  adulthood,  including  effects  on   neuroendocrine  and  metabolic  function,  appetite  regulation  and  fat  deposition.  (Goran  et  al.,   2013)       Fruit  and  vegetable  intake   Low  FV  intake  is  another  national  dietary  concern,  as  only  1%  of  US  adolescents  meet   recommendations  for  intake,  (Kimmons,  Gillespie,  Seymour,  Serdula,  &  Blanck,  2009)  which  is   3.5  –  5  cups/day  for  youth  based  on  age  and  sex.  (United  States  Department  of  Agriculture,   2013)  Although  the  link  between  FV  intake  and  obesity  is  inconclusive,  (He  et  al.,  2004;  Tohill,   Seymour,  Serdula,  Kettel-­‐Khan,  &  Rolls,  2004)  there  have  been  several  large  studies  linking   increased  FV  intake  to  decreased  risk  for  T2D  and  other  chronic  diseases.  (Ford  &  Mokdad,   2001;  Ford,  Ajani,  McGuire,  &  Liu,  2005;  S.  Liu  et  al.,  2004;  Montonen  et  al.,  2005;  Pan  &  Pratt,   2008)    The  lack  of  evidence  supporting  a  link  between  FV  intake  and  obesity  may  be  due  to   frequent  use  of  imprecise  measurements  of  obesity  (i.e.,  BMI)  and  dietary  intake  (i.e.,   screeners).  (Tohill  et  al.,  2004)   The  primary  mechanism  through  which  FV  are  purported  to  be  beneficial  is  via  fiber,   (Lattimer  &  Haub,  2010;  Weickert  &  Pfeiffer,  2008)  and  research  indicates  that  one  additional   serving  of  fiber  per  day  may  reduce  central  adiposity  and  improve  metabolic  health  in     14   overweight  youth.  (E.  E.  Ventura  et  al.,  2008)  Fiber  slows  gastric  emptying  and  therefore   impedes  macronutrient  absorption,  (Ray  et  al.,  1983)  and  also  increases  satiety,  which  limits   intake  of  additional  calories.  (Bolton,  Heaton,  &  Burroughs,  1981)  Furthermore,  polyphenols,   which  are  present  in  FV,  may  alter  metabolic  pathways  and  limit  inflammation  (lower   inflammation  can  also  be  protective  against  obesity).  (Esmaillzadeh  et  al.,  2006;  Qureshi,   Singer,  &  Moore,  2009;  Williamson,  2012)  Given  the  potentially  important  role  of   polyphenols,  intake  of  nutrient  rich  vegetables  (dark  green  and  deep  orange/yellow  colored)   appears  to  be  of  particular  importance.  (van  Duyn  &  Pivonka,  2000)  However,  intake  of  these   foods  is  particularly  low,  as  the  median  adolescent  intake  is  0.06  cups/day,  (Kimmons  et  al.,   2009)  and  almost  40%  of  overweight  Latino  adolescents  do  not  consume  any  of  these   beneficial  vegetables.  (Cook,  O'Reilly,  Goran,  Weigensberg,  Spruijt-­‐Metz,  &  Davis,  2014b)   One  final  note  on  FV  intake:  FV  are  often  considered  together  as  one  food  group,  but   determinants  for  fruits  versus  vegetables  may  differ,  (Cook,  O'Reilly,  DeRosa,  Rohrbach,  &   Spruijt-­‐Metz,  2014a;  Glasson,  Chapman,  &  James,  2010)  and  vegetables  have  been  shown  to   be  more  beneficial  metabolically,  compared  to  fruit.  (Cooper  et  al.,  2012)  Therefore,  in  this   proposal,  F  and  V  intake  will  be  examined  separately.     Physical  activity   Lack  of  PA  is  another  important  factor,  and  while  42%  of  US  children  aged  6-­‐11  meet   recommendations  for  60  min/day  of  PA,  only  8%  of  adolescents  aged  12-­‐19  meet  these   recommendations.  (Troiano  et  al.,  2008)  Furthermore,  levels  of  PA  are  staggeringly  low  in   some  at-­‐risk  populations,  and  longitudinal  data  indicate  that  activity  rates  decline  at  an   alarming  rate  in  minority  adolescent  females.  (Spruijt-­‐Metz  et  al.,  2013)  Higher  levels  of  PA   are  associated  with  lower  levels  of  obesity,  CVD  and  T2D,  but  greater  sedentary  behavior   (waking  time  spent  sitting,  reclining,  or  lying  down)  is  also  independently  associated  with  the   aforementioned  conditions.  (Owen,  Healy,  Matthews,  &  Dunstan,  2010;  Sisson  et  al.,  2009;   Spruijt-­‐Metz,  2011)  Data  from  the  National  Health  and  Nutrition  Examination  Survey   (NHANES)  indicate  that  children  6-­‐11  years  old  spend  at  least  40%  of  their  time  in  sedentary   activities,  and  children  12-­‐19  spend  over  50%  of  their  time  sedentary.  (C.  E.  Matthews  et  al.,   2008)  One  related  activity  may  be  the  large  amounts  of  television  watched  by  US  children   while  sedentary,  which  can  affect  their  dietary  habits  via  distracted  eating  or  increased   exposure  to  unhealthy  food  advertising.  (Rennie  et  al.,  2005)       15   Sleep  and  smoking   Other  behaviors  implicated  in  the  development  of  obesity  include  sleep  and  smoking.   Inadequate  sleep  has  been  implicated  in  risk  for  obesity,  T2D  and  CVD.  (Chen,  Beydoun,  &   Wang,  2008;  Gangwisch  et  al.,  2006;  Lumeng  et  al.,  2007;  Vgontzas  et  al.,  2009)  Short  sleep   duration  may  lead  to  hormonal  changes,  which  influence  metabolism,  or  lead  to  greater   consumption  of  unhealthy  foods.  (Chen  et  al.,  2008)  Adolescent  sleep  need  is  approximately  9   hours/night,  yet  youth  aged  11-­‐18  have  less  sleep  at  all  ages  (with  a  linear  decrease  over   time;  at  age  11,  mean  hours  are  8.4;  at  age  17,  mean  hours  are  6.9).  (Van  Cauter  &  Knutson,   2008)     Smoking  also  contributes  to  risk  for  obesity,  and  in  2012,  7%  of  middle  school  students   and  23%  of  high  school  students  in  the  US  were  current  smokers.  (Centers  for  Disease  Control   and  Prevention  (CDC),  2013b)  Generally,  smokers  tend  to  have  lower  BMI,  (Bamia,   Trichopoulou,  Lenas,  &  Trichopoulos,  2004)  but  they  also  tend  to  have  higher  visceral   adiposity  (likely  driven  by  elevated  stress  hormone  activity),  (Chiolero,  Faeh,  Paccaud,  &   Cornuz,  2008;  Clair  et  al.,  2011;  Cryer,  Haymond,  Santiago,  &  Shah,  1976)  which,  as  previously   mentioned,  is  more  metabolically  deleterious.  (D.  S.  Freedman  et  al.,  1987)  Smokers  also  have   a  higher  risk  of  developing  T2D,  which  may  be  driven  partly  by  elevated  visceral  adiposity.   (Willi,  Bodenmann,  Ghali,  Faris,  &  Cornuz,  2007)     Stress   One  more  individual-­‐level  factor  that  is  implicated  in  obesity  development  is  stress.   Stress,  although  not  a  behavior,  is  a  modifiable  risk  factor,  and  perceived  stress  appears  to  be   more  important  than  objectively  measured  stress  with  respect  to  disease  risk.  (Spruijt-­‐Metz,   O'Reilly,  Cook,  Page,  &  Quinn,  2014)  Interventions  have  been  shown  to  be  effective  in   reducing  stress,  and  stress-­‐reduction  practices  such  as  mindfulness  may  be  a  relevant   behavioral  focus  for  obesity  prevention  and  treatment.  (Grossman,  Niemann,  Schmidt,  &   Walach,  2004;  O'Reilly,  Cook,  Spruijt-­‐Metz,  &  Black,  2014)     Stress  acts  by  influencing  obesity-­‐related  behaviors,  and  is  also  detrimental  in  and  of   itself.  Stress  can  contribute  to  increased  consumption  of  foods  high  in  fat  and  sugar,  by   increasing  the  salience  of  these  positive  stimuli.  (Dallman  et  al.,  2003;  Scott,  Melhorn,  &  Sakai,   2012)  Stress  may  also  impact  PA  levels,  and  a  recent  review  found  that  individuals  who  are   regularly  active  are  more  likely  to  exercise  as  a  response  to  stress,  but  more  sedentary     16   individuals  are  less  likely  to  exercise  in  stressful  circumstances.  (Stults-­‐Kolehmainen  &  Sinha,   2013)  Chronic  stress  can  also  lead  to  dysfunction  of  the  hypothalamic-­‐pituitary-­‐adrenal   (HPA)  axis,  which  is  responsible  for  the  release  of  the  stress  hormone  cortisol.  (McEwen,   2006;  Rosmond,  2003)  Elevated  cortisol  levels  can  lead  to  increased  insulin  resistance  (via   decreased  insulin  secretion,  and  increased  hepatic  glucose  production),  and  can  also  lead  to   increased  visceral  adiposity.  (Björntorp,  Holm,  &  Rosmond,  1999;  Rosmond,  2003)     Adolescence  can  be  a  particularly  stressful  time  for  individuals,  and  one  quarter  of  Los   Angeles  high  school  students  report  being  ‘very  stressed’  on  a  daily  basis.  (Anda  et  al.,  2000)   Environmental  stressors  likely  play  a  large  role  in  determining  an  individual’s  stress  level   (and  are  discussed  below),  but  other  individual-­‐level  factors  may  also  be  important.  As  youth   transition  towards  adulthood  they  experience  many  challenging  cognitive  and  biological   changes,  (Stang  &  Story,  2005)  and  may  find  this  transition  daunting  as  they  struggle  to  form   adult  identities.  (Arnett,  2006)  Coping  strategies,  such  as  mindfulness-­‐based  practices   mentioned  above,  can  also  serve  to  mitigate  the  impact  of  external  stressors.  (Anda  et  al.,   2000)       Environmental  impact  on  obesity-­‐related  behaviors   The  contextual  backdrop  influencing  obesity-­‐related  behaviors  is  complex,  and  will  be   discussed  in  detail  below.  One  overarching  factor  is  socio-­‐economic  status  (SES).  As   previously  mentioned,  there  are  strong  ethnic  disparities  in  obesity  and  related  disease  risk  in   children  and  adults,  and  socio-­‐economic  factors  are  often  implicated  as  the  major  cause  this.   (McLaren,  2007;  Y.  Wang,  2001)  In  a  study  of  Los  Angeles  children,  obesity  prevalence  was   significantly  associated  with  economic  hardship  of  their  communities,  and  in  communities   with  the  highest  economic  hardship,  obesity  rates  were  more  than  double  that  of   communities  with  the  least  hardship.  (Shih,  Dumke,  Goran,  &  Simon,  2013)  However,  there  is   not  a  strong  direct  theoretical  relationship  between  obesity  and  either  financial  capacity  or   education  (strong  SES  benchmarks),  but  rather  these  qualities  of  an  individual  or  family  affect   access  to  health  promoting  resources,  and  influence  behavioral  choices.  This  proposal  will   examine  the  impact  of  environmental  influences  on  obesity  and  related  behaviors  in  three   domains:  the  social  environment,  the  structured  learning  environment,  and  the  physical   environment.         17   Study  1:  Impact  of  the  social  environment  on  obesity-­‐related  behaviors   There  are  two  primary  social  environments  that  can  impact  obesity-­‐related  behaviors   in  children.  The  first  is  the  family  social  environment,  which  is  chiefly  composed  of   interactions  with  parents  or  guardians  (or  other  adult  role  models  like  teachers).  The  second   is  the  peer  environment,  which  is  discussed  in  detail  below.  The  larger  community  social   environment  also  play  a  role  in  determining  obesity-­‐related  behaviors,  however  the  extent  to   which  effects  of  this  environment  on  obesity  are  mediated  by  the  family  or  peer  social   environments  is  unclear.  Therefore,  the  focus  here  will  be  on  family  and  peer  environments.         Family  social  environment   In  the  family  social  environment,  parental  modeling  plays  an  important  role  in   affecting  children’s  dietary  intake.    Parental  intake  is  consistently  associated  with  child  intake,   including  with  fruit  and  vegetables.  (Rasmussen  et  al.,  2006;  van  der  Horst  et  al.,  2007)   Interestingly,  food  physical  availability  (i.e.,  what  is  served  in  meals,  in  this  case)  is  not   completely  driving  this  association,  but  child  reported  perceived  parental  modeling  is  more   strongly  associated  with  child  dietary  intake,  while  parental  report  of  modeling  is  not.   (McClain  et  al.,  2009)  The  family  social  environment  can  also  impact  PA;  parental  support  and   direct  help  from  parents  were  associated  with  adolescent  PA  in  a  review  of  108  studies.   (Sallis,  Prochaska,  &  Taylor,  2000)  Also,  parental  stress  can  impact  child  obesity-­‐related   behaviors,  not  only  due  to  altered  parenting  practices,  but  also  by  increasing  child  stress,   (Tate,  Wood,  Liao,  &  Dunton,  2014)  which  as  mentioned  above,  has  a  negative  impact  on  diet   and  PA.     Peer  social  environment   The  peer  social  environment  also  plays  a  role  in  youth  stress,  PA,  and  diet.  Peers  can   provoke  adolescent  stress  via  explicit  or  implicit  pressure  to  fit  in,  judging,  and  other   behaviors  constituting  peer  pressure.  (Moksnes,  Byrne,  Mazanov,  &  Espnes,  2010a;  Moksnes,   Moljord,  Espnes,  &  Byrne,  2010b)  Peers  also  play  a  role  in  PA  participation,  most  likely   through  social  facilitation,  in  which  access  to  friends  increases  opportunities  for  PA.  (Salvy  et   al.,  2012)  Yet,  similar  to  the  negative  effects  of  peer  pressure,  peer  victimization  (i.e.,  bullying)   is  negatively  associated  with  PA  levels.  (Salvy  et  al.,  2012;  Storch  et  al.,  2006)         18   Peer  social  environment  and  diet   Peers  can  also  be  influential  when  it  comes  to  dietary  behaviors  in  youth.  (Badaly,   2013;  Contento,  Williams,  Michela,  &  Franklin,  2006;  Feunekes,  de  Graaf,  Meyboom,  &  van   Staveren,  1998;  Fitzgerald,  Heary,  Kelly,  Nixon,  &  Shevlin,  2013)  In  as  study  of  Australian   youth,  male  friends  were  likely  to  share  similar  levels  of  high  calorie  food  consumption.  (de  la   Haye,  Robins,  Mohr,  &  Wilson,  2010;  de  la  Haye,  Robins,  Mohr,  &  Wilson,  2013)  A  similar   association  was  also  seen  in  adolescents  from  the  Netherlands,  such  that  peers  tend  to  share   similar  snack  and  soft  drink  intake.  (Wouters,  Larsen,  Kremers,  Dagnelie,  &  Geenen,  2010)   Data  from  the  Add  Health  study  indicate  that  peers  tend  to  share  participation  in  eating  at  fast   food  restaurants,  such  that  a  1-­‐day  increase  in  the  number  of  days  that  friends  (also  known  as   ‘alters’)  eat  fast  food  corresponds  to  a  0.18  increase  in  the  number  of  days  a  child  (or,  ‘ego’)   will  eat  at  these  restaurants.  (Ali,  Amialchuk,  &  Heiland,  2011)  Peer  effects  on  eating  FV  and   calorie-­‐dense  snacks  were  also  examined  in  this  study  and  found  to  be  non-­‐significant,  but   one  limitation  of  this  study  is  that  FV  and  snack  intake  were  measured  as  binary  variables.   (Ali  et  al.,  2011)  Data  from  the  Project  EAT  study  were  also  used  to  examine  peer  influence  on   adolescent  food  intake,  and  similar  eating  behaviors  were  found  between  friends  and  egos  in   breakfast  eating,  fast  food  restaurant  visits,  and  intake  of  whole  grains,  dairy,  SSB  and   vegetables  (but  not  fruit).  (Bruening  et  al.,  2012;  2014)  Furthermore,  a  simulation  study   demonstrated  that  high-­‐school  students  form  peer  groups  with  students  who  share  the  same   lunch-­‐eating  behaviors,  (Dabbaghian,  Mago,  Wu,  Fritz,  &  Alimadad,  2012)  and  dieting  and   disordered  eating  also  appear  to  be  shared  behaviors  among  girls.  (Eisenberg  &  Neumark-­‐ Sztainer,  2010;  Fletcher,  Bonell,  &  Sorhaindo,  2011;  Hutchinson  &  Rapee,  2007)   A  comprehensive  review  by  Salvy  et  al  identifies  several  social  mechanisms  through  which   peers  may  affect  eating  behaviors,  which  are  described  below.  (Salvy  et  al.,  2012)  The  first   mechanism  is  via  social  facilitation,  such  individuals  alter  their  eating  behavior  when  in  a   group  setting,  versus  eating  alone.  (Salvy  et  al.,  2012)  This  can  be  due  to  increased  duration  of   meals,  (de  Castro,  1994;  Pliner,  Bell,  Hirsch,  &  Kinchla,  2006)  and/or  due  to  release  of  eating   inhibitions,  such  that  individuals  eat  more  when  in  the  presence  of  familiar  peers  compared  to   unfamiliar  ones.  (de  Castro,  1994;  Salvy  et  al.,  2012)  A  second  mechanism  through  which   peers  have  an  effect  on  eating  is  modeling,  in  that  egos  will  strive  to  mimic  behavior  of  an   alter.  (Bandura,  1977;  Salvy  et  al.,  2012)  Ego  consumption  patterns  consistently  mirror  those   of  alters  in  adults  and  children  in  controlled  experiments,  (Salvy  et  al.,  2012)  and  overweight     19   youth  may  be  more  prone  to  mimicry  of  peers’  behaviors  than  normal-­‐weight  youth.   (Bevelander,  Anschütz,  &  Engels,  2012)  Social  Cognitive  Theory,  in  which  individuals  learn   from  observing  their  social  environment,  has  been  well  studied  in  a  health  behavior  context,   (Armitage  &  Conner,  2000)  and  modeling  is  a  well-­‐established  predictor  of  dietary  behavior.   (McClain  et  al.,  2009)  The  third  mechanism  is  through  impression  management,  whereby   individuals  seek  to  project  a  specific  image  of  themselves,  demonstrated  by  their  eating   behavior.  (Leary  &  Kowalski,  1990;  Salvy  et  al.,  2012)  This  often  manifests  in  healthier  eating,   (Vartanian,  Herman,  &  Polivy,  2007)  but  may  also  result  in  increased  consumption  of   American  junk  foods  for  children  eager  to  demonstrate  their  assimilation  to  the  US.  (Unger  et   al.,  2004)  Finally,  norms  may  play  a  role,  such  that  individuals  strive  to  eat  more  acceptable   foods  or  limit  inappropriate  intake  of  food,  so  that  they  can  gain  or  maintain  position  in  a  peer   group.  (Herman,  Roth,  &  Polivy,  2003;  Salvy  et  al.,  2012)       Study  1  description   Although  there  is  a  strong  theoretical  foundation  for  the  influence  of  peers  on  dietary   behavior,  there  have  been  few  studies  that  explicitly  examine  the  association  between   individual  and  ego  eating  behaviors  (key  papers  on  this  topic  included  above).  Furthermore,   very  few  studies  examining  peer  effects  on  dietary  behavior  have  utilized  techniques   developed  specifically  for  social  network  analysis  (SNA).  SNA  methods  allow  for  the   examination  of  the  complex  interrelationships  between  members  of  a  specific  community,   and  traditional  regression  approaches  are  not  sufficient  to  capture  this  given  the  high  inter-­‐ correlations  with  networks.  Furthermore,  use  of  these  specific  methodologies  is  important   because  it  allows  for  examination  of  the  following:  1)  relationships  with  an  individual’s   personal  connections,  2)  an  individual’s  role  within  the  greater  community,  and  3)  overall   structure  and  properties  of  the  community.  (Valente,  2010)  Study  1  will  use  SNA   methodology  to  examine  the  similarity  between  friends  in  dietary  intake  within  17  classroom   friendship  networks.  The  specific  dietary  behaviors  of  interest  are  consumption  of  FV  and   soda,  due  to  the  metabolic  importance  of  these  foods,  as  mentioned  above.     Data  for  this  study  are  from  the  Get  Moving!  project,  a  classroom-­‐based  media   intervention  aimed  at  improving  PA  in  middle  school  students.  (Nguyen-­‐Michel,  Unger,  &   Spruijt-­‐Metz,  2007;  Spruijt-­‐Metz,  Nguyen-­‐Michel,  Goran,  Chou,  &  Huang,  2008)  In  this  sample   of  617  students,  friendships  are  more  likely  to  exist  between  students  of  the  same  weight     20   status,  rather  than  between  students  in  different  weight  categories.  (Valente,  Fujimoto,  Chou,   &  Spruijt-­‐Metz,  2009)  Also,  overweight  students  named  more  friends  than  their  normal   weight  peers,  although  they  also  tended  to  be  less  likely  to  be  named  as  a  friend.  (Valente  et   al.,  2009)   There  are  several  strengths  of  this  study.  The  first  is  in  the  inclusion  of  specific  dietary   behaviors,  namely  intake  of  FV  and  soda,  which  have  been  documented  as  high-­‐importance   foods  for  obesity  and  related  disease  development.  To  our  knowledge,  only  two  studies  have   specifically  examined  friends  and  either  FV  or  soda  intake,  (Ali  et  al.,  2011;  Bruening  et  al.,   2012;  2014)  and  neither  of  this  projects  utilized  methodologies  to  account  for  network   structure.    Second,  17  adolescent  classroom  networks  are  included  in  these  analyses,  allowing   for  greater  generalizability  of  findings.    The  only  study  thus  far  to  use  SNA  methodologies  to   examine  the  effect  of  peers  on  dietary  intake  had  access  to  only  two  classroom  networks.  (de   la  Haye  et  al.,  2010;  2013)  Finally,  given  the  aforementioned  gaps  in  this  area  of  research,  the   third  strength  is  methodological,  and  is  in  the  use  of  exponential  random  graph  models   (ERGMs)  for  the  analyses.  As  indicated  earlier,  traditional  regression  techniques  are  not   appropriate  for  network  data  because  the  assumption  of  independence  of  observations  is   violated,  which  even  multilevel  models  cannot  account  for.  (Lusher,  Koskinen,  &  Robins,   2013)     A  brief  introduction  to  ERGM  methodology  is  presented  here:  In  regression  analyses,   we  attempt  to  replicate  occurrence  of  a  specific  outcome  by  weighting  various  characteristics   of  an  individual  (or  whichever  unit  an  observation  corresponds  to).  On  the  other  hand,  ERGMs   attempt  to  replicate  occurrence  of  a  specific  network  by  weighting  both  network   configurations  and  attributes  of  individuals  within  the  network.  (Lusher  et  al.,  2013)  Network   configurations  are  similar  to  atoms  within  a  molecule:  they  are  basic  relationships  between   individuals.  These  include  effects  such  as  reciprocity  between  two  people  (i.e.,  the  tendency  to   reciprocate  a  tie,  such  that  if  Donna  names  Chih-­‐Ping  as  a  friend,  Chih-­‐Ping  will  also  name   Donna),  and  transitivity  between  three  people  (i.e.,  the  tendency  for  friends  of  friends  to  have   a  tie,  such  that  if  Tom  names  Jennifer  and  Genevieve  as  friends,  either  Jennifer  or  Genevieve   will  name  the  other  as  a  friend).  These  network  configurations  overlap  with  many  others   throughout  the  network  to  form  the  overall  network  structure.  Because  the  final  outcome  of   an  ERGM  is  the  network  itself,  rather  than  an  outcome  like  dietary  intake,  we  examine  if  there   is  a  significant  similarity  between  friends  (i.e.,  if  there  is  homophily)  in  their  dietary  intake,     21   much  like  in  cross-­‐sectional  data  where  conclusions  are  limited  to  non-­‐causal  relationships  as   well.  (Lusher  et  al.,  2013)  By  modeling  the  underlying  social  processes  related  to  youth  intake   of  specific  foods,  this  study  fills  a  gap  in  our  knowledge  of  the  impact  of  the  social   environment  on  obesity-­‐related  behaviors.       Study  2:  Impact  of  the  structured  learning  environment  on  obesity-­‐related  behaviors   Education  in  a  structured  learning  environment,  such  as  in  a  traditional  classroom   where  there  is  direct,  active  instruction,  is  an  effective  way  to  improve  student  knowledge   and  performance.  (Doyle  &  Rutherford,  1984)  Structured  learning  environments  (as  opposed   to  unstructured  environments)  are  particularly  beneficial  for  lower  performing  students,   (Doyle  &  Rutherford,  1984)  so  they  may  be  especially  beneficial  for  students  with  minimal   previous  experience  practicing  healthy  behaviors.  Educational  interventions  are  one  of  the   more  popular  approaches  to  reduce  childhood  obesity  and  other  health  problems.  These  are   likely  popular  because  of  their  general  effectiveness,  (Waters  et  al.,  2011)  and  a  meta-­‐analysis   of  school-­‐based  randomized  controlled  trials  (RCTs)  revealed  these  programs  to  be  effective   in  reducing  overweight/obesity,  relative  to  controls  (OR=0.74,  95%  CI=0.60,  0.92).  (Gonzalez-­‐ Suarez,  Worley,  Grimmer-­‐Somers,  &  Dones,  2009)  Educational  environments  may  be  stressful   for  students  if  workload  demands  are  difficult  to  meet,  (Torsheim,  Aaroe,  &  Wold,  2003),  and   may  restrict  physical  activity  opportunities  and  access  to  healthy  foods.  However,  several   structured  education  programs  in  schools  have  been  effective  in  improving  diet  and  PA,   (Caballero  et  al.,  2003;  J.  N.  Davis  et  al.,  2011;  Gonzalez-­‐Suarez  et  al.,  2009;  Lytle  et  al.,  1996;   Story,  1999;  Zenzen  &  Kridli,  2009)  and  there  is  also  some  evidence  that  mindfulness-­‐based   instruction  in  schools  can  reduce  stress.  (Mendelson  et  al.,  2010)     It  is  also  worthwhile  to  note  that  while  the  majority  of  children’s  structured  learning   takes  place  in  schools,  this  can  also  occur  in  the  community  or  home.  (J.  N.  Davis  et  al.,  2007;   Robinson-­‐O'Brien,  Story,  &  Heim,  2009)  Yet,  schools  are  a  popular  setting  for  educational   interventions  because  a  large  number  of  students  can  be  reached  at  one  time.  (Zenzen  &   Kridli,  2009)       Garden-­‐based  interventions  in  schools   One  promising  and  novel  type  of  school-­‐based  educational  program  to  reduce  obesity   is  the  garden-­‐based  intervention.  Thus  far,  the  only  studies  published  examining  gardening     22   interventions  and  obesity  (as  opposed  to  effects  on  diet)  have  been  pilot  programs.  One  of   these  studies,  a  community-­‐based  gardening  education  program  with  a  pretest-­‐posttest   design  found  that  17%  of  overweight/obese  children  improved  their  BMI  classification   following  a  7-­‐week  program.  (Castro,  Samuels,  &  Harman,  2013)  The  other  study  with  a   documented  link  between  gardening  and  obesity  is  the  LA  Sprouts  program.  (J.  N.  Davis  et  al.,   2011;  Gatto,  Ventura,  Cook,  Gyllenhammer,  &  Davis,  2012;  Gatto,  Martinez,  Spruijt-­‐Metz,  &   Davis,  under  review;  Martinez,  Gatto,  Spruijt-­‐Metz,  &  Davis,  2015)  LA  Sprouts  is  a  12-­‐week   gardening,  cooking  and  nutrition  program  in  predominantly  Latino  elementary  school   students,  and  aims  to  improve  obesity,  and  FV  intake  and  dietary  determinants.  (Martinez  et   al.,  2015)  The  quasi-­‐experimental  pilot  for  this  program  found  that  overweight  students   significantly  decreased  their  weight  and  BMI  relative  to  control  students.  (J.  N.  Davis  et  al.,   2011)  Following  up  on  the  pilot,  a  RCT  was  conducted  with  320  students  who  were  enrolled   in  an  after-­‐school  program  (during  which  the  intervention  took  place)  in  four  Los  Angeles   elementary  schools.  As  a  result  of  this  intervention,  participating  students  had  significantly   greater  decreases  in  BMI  z-­‐score  (p=0.01)  and  waist  circumference  (p<0.001),  compared  to   controls.    (Gatto  et  al.,  under  review)   The  primary  mechanism  through  which  gardening  interventions  are  purported  to   reduce  obesity  is  via  improved  dietary  intake.    Other  secondary  mechanisms  include   decreased  sedentary  activity,  which  has  not  been  examined  to  date  and  is  an  important  area   for  future  research;  and  decreased  stress,  which  is  discussed  in  the  physical  environment   section  below.  (van  den  Berg  &  Custers,  2011)  Gardening  may  be  more  valuable  than  other   traditional  nutrition  education  programs  because  it  increases  children’s  exposure  to  and   familiarity  with  FV.  (Heim,  Stang,  &  Ireland,  2009;  Robinson-­‐O'Brien  et  al.,  2009)  Increased   exposure  is  associated  with  greater  preferences,  (Anzman-­‐Frasca,  Savage,  Marini,  Fisher,  &   Birch,  2012;  Cooke,  2007)  and  preferences  are  a  well-­‐documented  predictor  of  intake.   (McClain  et  al.,  2009)  The  importance  of  exposure  and  familiarity  is  supported  by  baseline   data  from  the  LA  Sprouts  RCT,  in  which  willingness  to  try  FV  (a  construct  influenced  by   exposure  (Birch  &  Marlin,  1982;  Birch,  McPhee,  Shoba,  Pirok,  &  Steinberg,  1987))  was  found   to  be  associated  with  intake.  (Martinez  et  al.,  under  review)  Secondly,  it  is  hypothesized  that   by  teaching  children  about  the  origins  of  food  and  giving  them  personal  experience  with   growing  their  own  foods,  they  will  be  more  likely  to  make  healthy  choices.  (Blair,  2009)   Finally,  gardening  may  be  an  especially  relevant  approach  in  low-­‐income  communities  where     23   there  is  limited  access  to  fresh  produce.  (Cummins,  2005)  Gardening  provides  access  to  high-­‐ quality  FV  at  little  monetary  cost,  (Carney  et  al.,  2011)  and  therefore  may  affect  dietary   behavior  by  changing  the  physical  neighborhood,  school,  or  home  environment,  independent   of  learning  activities  related  to  gardening.     To  support  these  theoretical  hypotheses,  many  studies  show  that  gardening  programs   are  effective  in  improving  FV  intake.  (A.  Evans  et  al.,  2012;  Hermann  et  al.,  2006;   Lautenschlager  &  Smith,  2007;  Robinson-­‐O'Brien  et  al.,  2009;  Somerset  &  Markwell,  2008)  As   with  studies  examining  the  impact  of  gardening  on  obesity,  many  of  these  studies  are   exploratory  in  nature  and  have  methodological  limitations,  such  as  non-­‐randomized  designs.   One  methodologically  sound  study  in  sixth  grade  students  found  that  those  who  participated   in  a  gardening  and  nutrition  program  had  an  approximately  2.5  serving/day  increase  in  FV   intake,  which  was  significantly  more  than  controls  or  students  with  nutrition  education  only.   (McAleese  &  Rankin,  2007)  Additionally,  a  study  of  elementary  and  middle  schools  with   initiatives  to  improve  school  food  (via  gardening  programs  and  other  mechanisms),  found   that  schools  with  a  higher  program  intensity  had  improvements  in  FV  intake  of  about  1   serving/day,  whereas  students  at  schools  with  low  program  intensity  decreased  their  intake.   (M.  C.  Wang  et  al.,  2010)  In  the  LA  Sprouts  program,  the  pilot  intervention  showed  an   improvement  in  dietary  fiber  in  program  participants,  relative  to  controls,  (J.  N.  Davis  et  al.,   2011)  as  did  the  RCT.  (Gatto  et  al.,  under  review)  Also,  results  from  the  LA  Sprouts  RCT   indicate  that  intervention  students  had  a  lesser  decrease  in  vegetable  intake  than  controls.   (Gatto  et  al.,  under  review)  The  finding  that  both  groups  decreased  in  their  intake  is   surprising,  but  may  be  an  artifact  of  the  tool  used  to  measure  intake  (which  has  limitations   with  its  use  in  this  population),  (Garcia-­‐Dominic  et  al.,  2012)  or  seasonal  effects  (i.e.,  dietary   habits  are  likely  worse  right  before  winter  break,  when  posttest  data  were  collected  for  over   half  the  participants).     There  are  also  several  studies  demonstrating  a  significant  impact  of  school  garden-­‐ based  intervention  programs  on  dietary  determinants.  (Robinson-­‐O'Brien  et  al.,  2009)  These   include,  but  are  not  limited  to  the  following  determinants:  attitudes  towards  eating  FV,  FV   preferences,  willingness  to  taste  FV,  nutritional  knowledge,  motivation  to  eat  FV,  and  self-­‐ efficacy  to  garden,  cook  and  eat  FV.  (A.  Evans  et  al.,  2012;  Lineberger  &  Zajicek,  2000;   McAleese  &  Rankin,  2007;  Morgan  et  al.,  2010;  Parmer,  Salisbury-­‐Glennon,  Shannon,  &   Struempler,  2009;  Ratcliffe,  Merrigan,  Rogers,  &  Goldberg,  2010;  Robinson-­‐O'Brien  et  al.,     24   2009;  Somerset  &  Markwell,  2008;  M.  C.  Wang  et  al.,  2010;  W.  Wright  &  Rowell,  2010)  In  the   LA  Sprouts  pilot  study,  preferences  for  FV  improved,  as  did  attitudes  about  garden-­‐grown   vegetables.  (Gatto  et  al.,  2012)  The  results  of  the  RCT  indicate  that  LA  Sprouts  participants   increased  in  their  ability  to  identify  of  vegetables,  in  their  self-­‐efficacy  to  eat  FV  and  related   behaviors,  and  were  more  likely  to  report  gardening  at  home.  (J.  N.  Davis,  Martinez,  Spruijt-­‐ Metz,  &  Gatto,  in  press)     Study  2  description   Many  of  the  previously  mentioned  dietary  determinants  have  been  demonstrated  to  be   significant  correlates  of  FV  intake  in  various  settings.  (McClain  et  al.,  2009)  However,  it  is  not   clear  which  of  these  determinants  have  an  impact  on  FV  intake  or  the  ultimate  target,  obesity,   as  a  result  of  a  school-­‐based  gardening  intervention.  Furthermore,  although  most,  if  not  all,   garden-­‐based  intervention  programs  used  theory  to  guide  their  development,  none  have  fully   examined  the  soundness  of  these  theoretical  assumptions.  Meditational  analysis  examining   the  foundational  theory  of  obesity  interventions  is  an  area  generally  lacking  in  research.   (Lubans,  Foster,  &  Biddle,  2008;  Spruijt-­‐Metz,  2011)  Study  2  will  utilize  a  path  model  to   examine  the  following:  1)  change  in  FV  intake  as  a  mediator  between  change  in  FV   determinants  and  change  in  BMI  over  the  12-­‐week  intervention  period,  2)  the  LA  Sprouts   intervention  as  a  moderator  of  the  aforementioned  relationships,  and  3)  strength  of   associations  between  change  in  FV  determinants  and  change  in  FV  intake.  Effects  of  the   intervention  on  FV  determinants,  FV  intake  and  BMI  have  already  been  examined  and  were   described  in  the  previous  section.  However,  differences  between  the  intervention  groups  in   the  impact  of  changing  dietary  determinants  on  change  in  obesity,  with  change  in  FV  intake  as   a  mediator,  have  not  yet  been  examined.   There  are  several  strengths  of  this  study.  The  first  is  the  use  of  a  path  model,  which  has   not  been  previously  employed  to  examine  effects  of  garden-­‐based  interventions.  This   technique  will  allow  for  investigation  of  the  interventional  theory,  specifically  the  impact  of   determinants,  and  mediating  effects  of  diet,  on  obesity,  resultant  from  an  educational   program.  Secondly,  this  study  is  one  of  the  few  garden-­‐based  programs  to  measure  obesity  as   an  outcome.  The  intervention  has  already  been  determined  to  be  effective  in  reducing  obesity,   but  the  question  remains  as  to  which  direct  targets  of  the  intervention  (motivation,  self-­‐ efficacy,  willingness  to  try  FV,  knowledge,  preferences,  attitudes)  contributed  to  this  change     25   among  program  participants.    Finally,  a  strength  of  the  LA  Sprouts  study  is  the  RCT  design,   which  reduces  threats  to  validity,  and  few  other  studies  have  used.       Study  3:  Impact  of  the  physical  environment  on  obesity-­‐related  behaviors   The  physical  environment  plays  a  major  role  in  obesity-­‐related  behaviors.  (K.  M.  Booth,   Pinkston,  &  Poston,  2005;  Davison  &  Lawson,  2006;  Ding  &  Gebel,  2012;  Dunton,  Kaplan,   Wolch,  Jerrett,  &  Reynolds,  2009a;  Papas  et  al.,  2007)  For  children,  the  physical  environment   generally  encompasses  three  major  areas:  home,  school  and  community.  The  impact  of  these   areas  on  diet  and  PA  has  been  well-­‐studied  and  is  described  briefly  below.       Physical  environment  and  diet   The  neighborhood  environment  plays  a  significant  role  in  child  dietary  intake,  and  a   review  of  54  articles  found  that  people  living  in  neighborhoods  with  poorer  access  to  grocery   stores,  and  greater  numbers  of  convenience  stores  and  fast  food  outlets,  had  less  healthy   diets.  (Larson,  Story,  &  Nelson,  2009)  The  school  food  environment  can  also  impact  diet  via   the  National  School  Lunch  Program  and  the  School  Breakfast  Program.  Participation  in  these   programs  is  associated  with  greater  childhood  obesity,  (Millimet,  Tchernis,  &  husain,  2010;   Schanzenbach,  2009)  but  one  caveat  is  that  students  have  non-­‐random  participation  in  such   programs.  (Millimet  et  al.,  2010)  Studies  examining  diets  of  lunch  program  participants  found   that  these  children  do  have  higher  intakes  of  several  micronutrients  (including  sodium),  but   also  have  diets  higher  in  fat,  compared  to  non-­‐participants.  (Gleason  &  Suitor,  2003;  Gordon,   Devaney,  &  Burghardt,  1995)  Finally,  the  physical  home  environment  can  also  impact  dietary   intake  through  the  availability  and  accessibility  of  specific  foods.  (Jago,  Baranowski,  &   Baranowski,  2007;  Pearson,  Biddle,  &  Gorely,  2008)  Yet  this  relationship  may  not  be  as   straightforward  as  it  appears:  for  example,  only  child  perception  of  vegetable  availability,   rather  than  actual  availability,  in  the  home  environment  is  associated  with  vegetable  intake.   (Cook,  O'Reilly,  DeRosa,  Rohrbach,  &  Spruijt-­‐Metz,  2014a)     Physical  environment  and  physical  activity   With  respect  to  PA,  a  recent  review  of  103  articles  identified  several  neighborhood   characteristics  to  be  associated  with  youth  PA,  including  neighborhood  walkability,  traffic   speed  and  volume,  access  to  parks  and  other  recreational  facilities,  residential  density,  and     26   land-­‐use  mix,  among  others.  (Ding,  Sallis,  Kerr,  Lee,  &  Rosenberg,  2011)  Schools  also  provide   opportunities  for  PA  in  addition  to  structured  physical  education  classes,  such  as  during   recess  or  lunch  periods.  (Haug,  Torsheim,  &  Samdal,  2008;  Haug,  Torsheim,  Sallis,  &  Samdal,   2010)  A  study  of  youth  in  130  Norwegian  schools  revealed  that  students  with  greater  access   to  outdoor  PA  facilities,  such  as  a  soccer  field  or  playground,  were  more  likely  to  be  physically   active.  (Haug  et  al.,  2010)  A  positive  association  between  areas  for  PA  in  the  schoolyard  and   youth  PA  are  also  seen  in  Canadian  and  US  youth.  (Cradock,  Melly,  Allen,  Morris,  &  Gortmaker,   2007;  Nichol,  Pickett,  &  Janssen,  2009)  Finally,  the  home  physical  environment  may  have  a   limited  influence  on  PA  in  some  populations,  (Davison  &  Lawson,  2006)  but  may  be  more   important  in  terms  of  sedentary  time,  specifically  with  respect  to  the  presence  of  television   sets.  (Dennison,  Erb,  &  Jenkins,  2002;  Roemmich,  Epstein,  Raja,  &  Yin,  2007;  Saelens  et  al.,   2002)     Physical  environment  and  stress   An  area  of  research  on  the  obesogenic  role  of  the  physical  environment  in  youth  that   has  not  been  as  extensively  researched  (relative  to  a  large  body  of  research  on  diet  and  PA)  is   the  environmental  impact  on  stress.  Characteristics  of  home,  school  and  community  settings   are  tend  to  overlap  (for  example,  housing  variables  like  high-­‐rise  versus  low-­‐rise  homes  are   relevant  to  both  the  home  and  community  environment)  (G.  W.  Evans,  2003;  G.  W.  Evans,   Wells,  &  Moch,  2003),  and  environmental  variables  associated  with  stress,  like  overcrowding,   noise,  and  substandard  facilities,  can  occur  at  each  of  these  levels.  (G.  W.  Evans,  2003;  G.  W.   Evans  et  al.,  2003;  G.  W.  Evans  &  English,  2002;  Sandel  &  Wright,  2006)  By  using  state-­‐of-­‐the   art  technologies  to  assess  specific  geographic  context,  as  will  be  done  in  this  proposal,  the   impact  of  particular  environmental  factors  can  be  examined  across  environmental  settings   (i.e.,  home,  school  and  community).     The  physical  environment  plays  an  important  role  in  stress  and  self-­‐rated  health,   whereby  negative  built  environment  characteristics  strengthened  the  association  between   greater  stress  and  poor  health  in  over  4,000  residents  is  Philadelphia.  (S.  A.  Matthews  &  Yang,   2010)  Yet,  there  are  some  elements  of  the  physical  environment  that  have  shown  a  protective   effect  against  stress.  One  of  these  is  green  space,  and  this  will  be  the  focus  of  the  proposed   study  on  this  topic.  Evidence  of  this  association  and  the  theoretical  justification  for  this   relationship  is  described  in  detail  below.    Green  space  was  chosen  as  a  focus  because     27   gardening,  the  focus  of  study  2  and  one  type  of  activity  conducted  in  a  green  environment,  has   some  evidence  to  be  preventive  against  stress.  In  one  intervention,  participants  who   experienced  stress  took  part  in  a  stress-­‐reduction  gardening  program,  and  said  that  the   enjoyment  of  gardening  created  an  environment  for  relaxation,  and  promoted  participation  in   other  stress-­‐reducing  activities.  (Eriksson,  Westerberg,  &  Jonsson,  2011)  Also,  in  an   experimental  design  in  which  adult  participants  were  required  to  perform  a  stressful  task,   cortisol  levels  and  positive  mood  were  significantly  better  in  participants  after  they   subsequently  completed  an  outdoor  gardening  activity,  compared  to  indoor  reading.  (van  den   Berg  &  Custers,  2011)     One  way  in  which  green  space  can  improve  stress  is  by  providing  opportunities  for  PA,   (Dyment  &  Bell,  2007;  A.  C.  K.  Lee  &  Maheswaran,  2011)  which  can  decrease  stress,  (Fox,   1999)  but  there  is  evidence  that  PA  does  not  fully  account  for  the  relationship  between  green   space  and  stress.  (Maas,  Verheij,  Spreeuwenberg,  &  Groenewegen,  2008)  Only  a  limited   number  of  studies  have  examined  the  association  between  stress  and  green  space,  and  even   fewer  had  a  strong  study  design  (or  large  sample  size).  In  one  study  of  over  11,000  adults  in   Denmark,  it  was  found  that  individuals  living  farther  from  green  space  reported  higher  levels   of  stress  than  those  that  lived  closer,  and  that  individuals  who  did  not  report  stress  were   more  likely  to  visit  green  spaces  (analyses  were  adjusted  for  SES).  (Stigsdotter  et  al.,  2010)   Another  study  of  112  young  adults  found  that  those  who  had  just  completed  a  drive  in  a  car  or   other  attentionally-­‐demanding  task  had  greater  decreases  in  diastolic  blood  pressure  when   sitting  in  a  room  with  a  nature  view  versus  sitting  in  a  room  with  no  window.  (Hartig,  Evans,   Jamner,  Davis,  &  Gärling,  2003)  This  same  study  found  that  walks  in  a  nature  reserve   produced  greater  decreases  in  blood  pressure  relative  to  walks  in  an  urban  setting.  (Hartig  et   al.,  2003)  Also,  a  pilot  study  of  25  adults  found  significant  inverse  relationships  between   green  space  quantity,  measured  via  census  data,  and  both  self-­‐reported  stress  and  salivary   cortisol  (although  it  is  not  clear  if  controlled  for  SES).  (Thompson  et  al.,  2012)  Furthermore,  in   a  study  of  Japanese  adults,  ‘forest  bathing’  (taking  in  the  forest  atmosphere)  was  associated   with  decreased  salivary  cortisol,  heart  rate,  and  reported  tension  and  anxiety,  relative  to   being  in  an  urban  setting.  (J.  Lee  et  al.,  2011;  Park  et  al.,  2011)  There  is  also  some  evidence   that  access  to  and  activities  in  green  space  have  positive  mental  health  outcomes.  (A.  C.  K.  Lee   &  Maheswaran,  2011;  R.  Mitchell,  2013;  Sugiyama,  Leslie,  Giles-­‐Corti,  &  Owen,  2008;  van   Dillen,  de  Vries,  Groenewegen,  &  Spreeuwenberg,  2012)  An  analysis  of  10  studies  found  a     28   positive  link  between  green  space  activity  and  both  self-­‐esteem  and  mood  (which  was   especially  strong  with  the  presence  of  water)  (Barton  &  Pretty,  2010),  and  a  meta-­‐analysis  of   25  studies  indicates  that  anxiety  is  also  improved  following  activity  in  a  natural  environment   (Bowler,  Buyung-­‐Ali,  Knight,  &  Pullin,  2010).     Although  there  are  few  other  studies  with  good  validity  linking  neighborhood  green   space  to  lower  stress  levels  (to  our  knowledge),  there  is  a  strong  theoretical  underpinning  for   this  association.  One  major  theory  guiding  this  area  of  research  is  Ulrich’s  Stress  Reduction   Theory,  in  which  natural  landscapes  are  pleasing  and  therefore  increase  positive  affect,  hold   attention,  and  subsequently  decrease  incidence  of  negative  or  stressful  thoughts.  (Bratman,   Hamilton,  &  Daily,  2012;  Ulrich,  1986;  Ulrich  et  al.,  2014)  A  second  theory,  Kaplan’s  Attention   Restoration  Theory,  posits  that  since  stress  can  result  from  taxing  tasks  that  require  directed   focus,  natural  environments  can  be  restorative  because  they  do  not  require  directed  attention   and  can  allow  the  mind  to  rest.  (Berto,  2005;  Bratman  et  al.,  2012;  Herzog,  Black,  Fountaine,  &   Knotts,  1997;  S.  Kaplan,  1995;  van  den  Berg,  Hartig,  &  Staats,  2007)  Additionally,  there  is  high   compatibility  in  nature,  meaning  the  environment  is  restorative  in  that  it  meets  the  needs  for   desired  activities,  and  there  is  a  respite  from  environments  that  require  directed  attention.   (van  den  Berg  et  al.,  2007)  Although  these  theories  have  some  overlap,  the  first  focuses  on   affect  and  emotional  state,  whereas  the  second  centers  on  attention.  (Bratman  et  al.,  2012)   These  two  theories  have  driven  the  majority  of  research  in  this  area,  but  other  hypotheses   exist  as  to  how  green  space  can  reduce  stress.  One  is  that  when  humans  feel  a  connectedness   with  nature,  we  feel  we  belong  to  something  greater  than  ourselves,  which  has  a  positive   effect  on  our  well-­‐being.  (Bratman  et  al.,  2012;  Cervinka,  Roderer,  &  Hefler,  2012;  Howell,   Dopko,  Passmore,  &  Buro,  2011)  Another  theory  uses  an  evolutionary  perspective,  and   hypothesizes  that  humans  feel  a  preference  for  natural  land  because  of  the  resources  our   ancestors  found  there,  (Verheij,  Maas,  &  Groenewegen,  2008)  which  likely  impacts  affect,  such   as  in  Ulrich’s  theory.  There  is  also  evidence  that  landscape  plants,  such  as  trees  and  small   hedges,  have  the  ability  to  reduce  the  noise  level  of  the  environment,  (F.  Yang,  Bao,  &  Zhu,   2011)  which,  as  previously  mentioned,  can  induce  stress.  One  important  caveat  in  this  area  of   research  is  that  some  green  environments  may  be  perceived  as  unsafe,  for  example  urban   parks,  and  would  not  be  expected  to  decrease  stress.         29   Study  3  description   Although  there  is  strong  theoretical  support  and  some  empirical  evidence  for  an   association  between  green  space  and  stress  in  adults,  very  few  well-­‐executed  studies  exist   that  examine  this  association  in  children.  Children  are  an  important  population  to  study  on   this  topic,  not  only  because  of  the  potential  obesity  and  metabolic  benefits,  but  greater   childhood  visits  to  nature  are  associated  with  individuals  being  more  likely  to  visit  nature  as   adults,  meaning  these  behaviors  can  have  long-­‐term  effects.  (Thompson,  Aspinall,  &   Montarzino,  2007)  One  study  found  a  significant  inverse  association  between  percent   neighborhood  park  area  and  perceived  stress  in  adolescents,  after  controlling  for  both  PA  and   SES.  (Feda  et  al.,  2014)  Another  study  found  neighborhood  greenness  to  be  inversely   associated  with  child  BMI  after  2  years,  but  did  not  examine  stress  as  a  possible  mechanism   for  this  relationship;  the  authors  merely  theorized  about  its  role.  (J.  F.  Bell,  Wilson,  &  Liu,   2008)  Yet,  none  of  these  studies  have  examined  the  relationships  between  stress  and   environment  in  real-­‐time,  using  ecologically  valid  designs  that  are  now  available  through  the   use  of  new  technologies  including  mobile  phones  and  sophisticated  location  tracking.  Study  3   will  examine  the  effect  of  a  green  space  environment  on  self-­‐reported  stress  in  children,  using   ecological  momentary  assessment  (EMA)  and  global  positioning  system  (GPS)-­‐derived  data   from  the  Mobile  Healthy  PLACES  study.  (Dunton  et  al.,  2014;  Dunton,  Kawabata,  Intille,  Wolch,   &  Pentz,  2012;  Dunton,  Liao,  Intille,  Spruijt-­‐Metz,  &  Pentz,  2009b;  Dunton,  Liao,  Intille,  Wolch,   &  Pentz,  2011)     The  purpose  of  the  Mobile  Healthy  PLACES  is  to  examine  the  context  of  physical  and   sedentary  activity  in  children;  including  mood,  location,  social  company  and  enjoyment;  using   real-­‐time  self-­‐report  data.  (Dunton  et  al.,  2009b)  In  this  sample  of  121  children  aged  9-­‐13   years,  there  was  lower  intra-­‐individual  variability  of  negative  affect  (which  is  measured   through  four  items:  stress,  mad/angry,  nervous/anxious,  sad)  in  children  with  more   moderate-­‐to-­‐vigorous  physical  activity  (MVPA).  (Dunton  et  al.,  2014)  Also,  negative  affect  was   lower  when  children  exercised  with  friends,  compared  to  alone  or  with  their  family.  (Dunton   et  al.,  2011)  Furthermore,  more  MVPA  occurred  outdoors,  relative  to  at  home  or  a  friends   house,  and  enjoyment  of  MVPA  was  also  greater  outdoors.  (Dunton  et  al.,  2011)  When   children  exercised  outdoors,  they  were  most  frequently  in  a  park  or  on  a  trail,  (Dunton  et  al.,   2012)  and  environmental  greenness  was  also  associated  with  MVPA.  (Almanza,  Jerrett,   Dunton,  Seto,  &  Pentz,  2012)  Finally,  demographic  differences  for  exercising  outdoors  were     30   seen,  such  that  the  following  groups  were  more  likely  to  exercise  outdoors:  older  children;   children  from  households  with  higher  annual  income;  Black,  Latino  and  biracial  children;  and   normal-­‐weight  and  overweight  children  (relative  to  underweight  children).  (Dunton  et  al.,   2012)   The  use  of  EMA  data  is  a  major  strength  of  this  study.  There  are  several  benefits  to  the   use  of  EMA:  1)  decreased  reporting  bias,  primarily  since  data  collected  are  not  based  on   recall;  2)  use  of  repeated  measures  to  capture  dynamic  processes;  and  3)  observations  can  be   made  in  the  environments  that  individuals  regularly  inhabit.  (Smyth  &  Stone,  2003;  Stone  &   Shiffman,  1994)    These  benefits  generally  lead  to  more  accurate  reflections  within  the  context   of  space  and  time.  (Smyth  &  Stone,  2003)  Use  of  EMA  is  especially  beneficial  in  this  study   because  stress  is  generally  contextual  and  will  fluctuate  throughout  the  day  based  on  settings   and  experiences.  (Zimring,  1982)  Another  methodological  strength  of  this  study  is  in  the  use   of  GPS-­‐derived  variables,  which  allow  for  environmental  green  space  to  be  measured   objectively,  before  and  during  the  EMA  prompt  for  stress.  Not  only  does  this  data  allow  for  the   exploration  of  temporal  relationships,  but  other  observational  studies  only  consider  the   broader  neighborhood  context  where  children  live,  and  this  study  will  examine  actual  green   space  use.  Another  strength  of  this  study  is  that  PA  will  be  well-­‐controlled,  given  that   accelerometry  data  was  also  collected  on  study  participants,  so  PA  will  not  be  a  possible   confounder.  Household  income  will  also  serve  as  a  control  variable.  Finally,  as  mentioned   previously,  few  studies  on  this  topic  have  been  conducted  in  children,  and  this  multi-­‐ethnic   sample  from  households  with  varying  levels  of  income  is  rich  in  diversity.  (Dunton  et  al.,   2014)  The  use  of  these  progressive  methodologies  makes  this  study  very  unique  in  having   strong  internal  validity  to  measure  the  effect  of  green  space  on  stress.                         31   Aims  and  Hypotheses   The  specific  aims  of  this  proposal  are  as  follows:   Specific  aim  1:  To  examine  the  similarity  between  youth  friends  in  their  intake  of  FV  (a   positive  health  behavior)  and  soda  (a  negative  health  behavior).     Hypothesis  1:  There  will  be  evidence  of  similarity  between  named  friends  and  their   reported  intake  of  FV.   Hypothesis  2:  There  will  be  evidence  of  similarity  between  named  friends  and  their   reported  intake  of  soda.     Specific  aim  2:  To  examine  the  impact  of  a  school  garden-­‐based  nutritional  education   program  on  FV  intake  as  a  mediator  between  FV  determinants  and  BMI.   Hypothesis  1:  Change  in  FV  intake  will  mediate  the  association  between  change  in  FV   determinants  (motivation  to  eat  FV,  self-­‐efficacy  to  eat  FV,  identification  of  FV,  willingness   to  try  FV  and  preferences  for  FV)  and  change  in  BMI.   Hypothesis  2:  The  LA  Sprouts  intervention  will  moderate  the  aforementioned   relationships  (as  listed  in  Hypothesis  1)  .     Post  hoc  exploratory  analysis:  Compare  strength  of  association  between  change  in  FV   determinants  (as  listed  in  Hypothesis  1)  and  change  in  FV  intake.       Specific  aim  3:  To  examine  the  impact  of  open  recreational  space  (ORS)  and  vegetation   density  on  child  reported  momentary  stress.   Hypothesis  1:  Children  with  greater  time  in  ORS  over  the  entire  monitoring  period  will   have  lower  overall  mean  reported  stress.     Hypothesis  2:  Children  in  areas  with  higher  mean  vegetation  density  over  the  entire   monitoring  period  will  have  lower  overall  mean  reported  stress.   Hypothesis  3:  Children  will  report  lower  stress  in  an  ORS,  relative  to  not  in  an  ORS,   when  they  are  in  this  environment  both  at  the  time  of  self-­‐report  and  in  the  30  minutes   prior.   Hypothesis  4:  Children  will  report  lower  stress  in  an  environment  with  greater   vegetation  density,  relative  to  less  vegetation-­‐dense  environments,  when  they  are  in  this   context  both  at  the  time  of  the  self-­‐report  and  in  the  30  minutes  prior.       32   Summary  of  Contribution     As  a  whole,  this  dissertation  proposal  will  contribute  to  our  knowledge  of  environmental   influences  on  obesity-­‐related  behavior  in  the  following  ways:   • Determine  which  protective  and  obesogenic  foods;  specifically  fruit,  vegetables  and   soda;  have  shared  consumption  patterns  among  adolescent  friends.     • Evaluate  the  theoretical  underpinning  of  a  12-­‐week  school  garden-­‐based  educational   program  by  examining  the  role  of  changing  fruit  and  vegetable  intake  as  a  mediator   between  change  in  dietary  determinants  and  obesity.   • Document  associations  between  green  space  and  self-­‐reported  stress  in  children  in   real  time,  using  an  observational  design  with  high  internal  validity.     Rates  of  obesity  remain  high,  especially  in  minority  youth,  (Ogden,  2012)  and  because   genetic  factors  are  not  highly  modifiable  over  a  lifetime,  it  is  imperative  that  youth  are   empowered  to  make  healthy  behavioral  choices  in  order  to  decrease  their  risk  for  disease.   While  a  broad  literature  exists  on  determinants  of  obesity-­‐related  behaviors,  US  youth   continue  to  practice  poor  dietary  behaviors,  (Kimmons  et  al.,  2009)  participate  little  in   physical  activity,  (Troiano,  Briefel,  Carroll,  &  Bialostosky,  2000)  and  experience  high  rates  of   stress.  (Anda  et  al.,  2000)  The  environment  in  which  children  are  raised  holds  a  strong   influence  on  their  behaviors,  (Bronfenbrenner,  1997)  and  these  environment-­‐behavior   relationships  must  be  better  understood  in  order  to  enact  positive  changes.    Opportunities   exist  in  various  environmental  domains;  social,  structured  learning  and  physical;  and  results   of  these  studies  can  help  drive  the  policy  and  intervention  efforts  needed  to  curtail  childhood   obesity.                               33   CHAPTER  2:  Similarities  in  consumption  of  fruit,  vegetables  and  soda   among  middle  school  friends     Introduction     Social  relationships  are  impactful  in  both  adult  and  child  obesity,  and  individuals  with   overweight  friends  are  themselves  more  likely  to  be  overweight.  (Christakis  &  Fowler,  2007;   Trogdon,  Nonnemaker,  &  Pais,  2008;  Valente  et  al.,  2009)  Although  shared  norms  for  obesity   (i.e.,  the  acceptability  of  being  overweight)  are  considered  one  of  the  main  factors   contributing  to  this  relationship,  shared  behaviors  may  a  more  important  driver.  (Hruschka,   Brewis,  Wutich,  &  Morin,  2011)  Data  on  physical  activity  in  adults  and  children  indicate  that   individuals  are  more  likely  to  be  active  when  they  share  activities  with  friends.  (M.  L.  Booth,   Owen,  Baum,  Clavisi,  &  Leslie,  2000;  Voorhees  et  al.,  2005)  Dietary  practices  can  also  be  highly   influenced  by  peers,  and  are  hypothesized  to  work  through  several  mechanisms.  These   include  1)  social  facilitation,  such  that  eating  practices  differ  when  eating  alone  versus  with   others;  2)  modeling  and  attempted  mimicry  of  others’  eating  behaviors;  3)  impression   management,  such  that  individuals  wish  to  project  a  certain  image  of  themselves  via  their   dietary  choices;  and  4)  norms,  or  the  acceptability  of  eating  a  specific  type  of  diet.  (Salvy  et  al.,   2012)     Peer  relationships  are  particularly  important  to  adolescents,  (B.  B.  Brown,  2004),  and   US  adolescents  often  fail  to  meet  dietary  recommendations.  (Kimmons  et  al.,  2009)     Therefore,  understanding  the  relationship  between  friendships  and  youth  dietary  behaviors   may  be  valuable  for  childhood  obesity  prevention  and  treatment.  Several  studies  have   demonstrated  associations  between  dietary  intake  by  a  friend  (or,  alter)  and  intake  by  an   individual  of  interest  (or,  ego).    Alter  intake  has  been  linked  to  ego  intake  of  high-­‐calorie  foods   in  Australian  youth,  (de  la  Haye  et  al.,  2010;  2013)  and  adolescent  friends  share  similar   patterns  of  eating  in  fast  food  restaurants  in  the  US.  (Ali  et  al.,  2011;  Bruening  et  al.,  2014)   Some  data  also  exist  that  link  adolescent  alter  and  ego  intake  of  specific  food  types,  namely   sugar-­‐sweetened  beverages  (SSB),  dairy,  whole  grains,  and  vegetables.  (Bruening  et  al.,  2012;   2014;  Wouters  et  al.,  2010)     Although  this  growing  area  of  research  is  promising,  a  major  methodological  limitation   exists  in  some  of  these  studies.  Few  studies  on  this  topic  thus  far  have  accounted  for  social   network  structure:  the  greater  community  of  interrelated  individuals,  more  than  just  a  given     34   individual  and  his/her  close  friends  (de  la  Haye  et  al.,  2010;  2013).  Considering  a  more   comprehensive  social  network  allows  researchers  to  observe  not  only  an  ego’s  interaction   with  people  with  whom  he/she  has  direct  ties  (i.e.,  a  reported  relationship  such  as  a   friendship),  but  also  an  ego  within  the  greater  community,  and  the  overall  properties  and   organization  of  the  community.  (Valente,  2010)  Furthermore,  network  data  violates   independence  assumptions  of  regression  approaches  because  of  the  complex   interdependencies  among  individuals.  (Lusher  et  al.,  2013)  Exponential  random  graph   modeling  (ERGM)  is  a  method  developed  to  test  hypotheses  while  accounting  for  network   characteristics,  and  is  described  in  detail  in  the  methods  section  of  this  manuscript.       To  our  knowledge,  a  modeling  approach  which  accounts  for  network   interdependencies  has  not  be  utilized  to  examine  intake  of  specific  foods,  namely  soda  and   fruit  and  vegetables  (FV).    These  examples  of  simple  and  complex  carbohydrates,  respectively,   are  of  interest  given  the  importance  of  this  macronutrient  in  obesity  development.  (Samaha  et   al.,  2003)  SSB  have  been  shown  to  lead  to  weight  gain  in  youth,  (Berkey,  Rockett,  Field,   Gillman,  &  Colditz,  2004;  Ludwig,  Peterson,  &  Gortmaker,  2001;  Malik  et  al.,  2006)  and  data   suggest  that  SSB  not  only  contribute  to  a  higher  overall  energy  intake,  but  also  replace   healthier  beverages,  like  milk,  in  children’s  diets.  (Harnack,  Stang,  &  Story,  1999)  FV  intake   has  been  linked  to  reduced  obesity  and  decreased  risk  for  type  2  diabetes  (to  which  SSB  is   also  strongly  linked).  (Ford  &  Mokdad,  2001;  Ledoux,  Hingle,  &  Baranowski,  2010;  Malik  et  al.,   2010;  Montonen  et  al.,  2005)  Furthermore,  only  1%  of  US  adolescents  consume  the   recommended  amount  of  FV/day,  (Kimmons  et  al.,  2009)  which  indicates  that  understanding   drivers  of  intake,  such  as  peer  influence,  may  be  important  for  reducing  childhood  obesity.       This  study  examines  middle  school  children  and  the  similarity  between  friends  in  their   consumption  of  soda  and  FV.    In  this  sample,  it  has  been  previously  shown  that  overweight   children  are  likely  to  have  overweight  friends,  (Valente  et  al.,  2009)  and  this  study  aims  to   determine  if  dietary  behaviors  may  be  partially  contributing  to  this  relationship.  Existence  of   a  shared  characteristic  among  those  with  direct  network  ties  is  also  known  as  homophily,   (Valente,  2010)  and  we  hypothesize  that  among  youth  in  these  classroom  networks,  there  will   be  homophily  between  friends  in  soda  and  FV  intake.  Follow-­‐up  exploratory  analyses  will  also   estimate  the  proportion  of  communities  (groups  of  friends)  within  middle  school  classroom   networks  that  exhibit  homophily  on  dietary  behaviors.  Friendship  dynamics  have  not  been   well  considered  in  programs  for  obesity  prevention  or  treatment,  but  some  meaningful     35   intervention  approaches  may  be  to  target  opinion  leaders  or  to  form  peer  learning  and   support  groups.  (Valente,  Hoffman,  Ritt-­‐Olson,  Lichtman,  &  Johnson,  2003)  These  findings  will   help  clarify  the  role  friends  play  in  shaping  obesity-­‐related  behaviors.         Methods   This  study  utilizes  cross-­‐sectional  baseline  data  from  the  Get  Moving!  study,  a   classroom  media-­‐based  intervention  to  reduce  sedentary  activity  in  middle  school  children.   The  recruitment  strategy  and  methods  for  this  study  have  been  described  in  detail  elsewhere   (Nguyen-­‐Michel  et  al.,  2007;  Spruijt-­‐Metz  et  al.,  2008).    Briefly,  seven  schools  in  the  Los   Angeles  area  participated  in  this  program,  and  85%  of  students  and  parents  provided   informed  assent  and  parental  permission.    Seventeen  classrooms  (individual  networks)   participated.  Data  collected  in  the  student  questionnaire  included  demographic  information;   physical  activity  behavior,  attitudes,  barriers,  and  social  support;  smoking  behavior;  body   image;  school  performance  (perceived)  and  engagement;  mental  health  status;  pubertal   status;  dietary  behaviors;  sensation-­‐seeking  attitudes;  and  classroom  friendship  networks.  No   inclusion  or  exclusion  criteria  were  applied  to  the  study  sample  for  use  in  these  analyses.  This   study  was  approved  by  the  University  of  Southern  California  Institutional  Review  Board.     Demographic  measures     Student  age,  sex,  ethnicity,  height  and  weight  were  collected.    Ethnicity  was  collapsed   into  four  variables:  Black,  Hispanic,  Asian/Pacific  Islander  (consisting  of  those  reporting  as   Chinese,  Filipino,  Korean,  Pacific  Islander,  Vietnamese),  and  White.  Weight  was  collected   using  a  Tanita  TBF  300/A  (Arlington  Heights,  IL),  and  height  was  measured  using  a  Seca   Mobile  Height  Rod  (Birmingham,  UK).  Participant  BMI  percentile  for  age  and  sex  was   calculated  based  on  guidelines  from  the  Centers  for  Disease  Control  and  Prevention   (Kuczmarski  et  al.,  2002).       Dietary  intake  measures   Frequency  of  FV  and  soda  consumption  was  measured.  (Nguyen-­‐Michel  et  al.,  2007;   Willett  et  al.,  1985)  A  single  item  on  frequency  of  “soda-­‐  not  diet  (1  can  or  glass)”,  had  seven   response  options  ranging  from  “never/less  than  1  per  month”  to  “more  than  3  cans  per  day”.   A  single  item  on  frequency  of  “fruit,  fresh  or  canned  (not  containing  juice)”  was  measured     36   with  six  response  options,  ranging  from  “less  than  once  a  week”  to  “2+  a  day”.  There  were   three  items  on  vegetable  frequency,  including  “green  salad”;  “vegetable  soups,  or  stew  with   vegetables”;  and  “any  other  vegetables,  including  string  beans,  peas,  corn,  broccoli  or  any   other  kind”,  all  with  the  same  response  options  as  the  fruit  item.  Items  on  FV  juice  and   potatoes  were  not  included  in  these  analyses.   For  descriptive  purposes,  the  categorical  response  scores  were  converted  into  an   average  daily  frequency.  For  example,  a  response  of  eating  fruit  once  per  week  was  converted   to  a  frequency  of  eating  fruit  0.14  times/day  (if  a  range  was  given,  the  mean  value  was  used;   0.5  was  used  to  represent  “less  than  1”,  2  was  used  to  represent  “2+”  and  4  was  used  to   represent  “more  than  3”).  To  consolidate  vegetable  items  into  one  value,  the  frequency  of  all   three  items  was  summed.       Friendship  network  measure     Participants  were  asked  to  nominate  their  five  best  friends  in  class.  For  these  analyses,   relationships  between  friends  were  directed,  such  that  friendships  were  not  assumed  to  be   reciprocated  (i.e.,  data  were  unidirectional,  not  bidirectional).         Analyses   Network  graphs  and  summary  statistics  were  obtained  for  all  17  networks  using  the   sna  (Butts,  2008;  2010;  2014)  and  igraph  (Csardi  &  Nepusz,  2006)  packages  in  R  (version   3.0.1,  2013  The  R  Foundation  for  Statistical  Computing,  (Ihaka  &  Gentleman,  1996).    To   visualize  networks,  they  were  plotted  based  on  sex,  given  the  strong  gender  homophily   expected  in  middle  school  students.  (Shrum,  Cheek,  &  Hunter,  1988)  Since  many  classrooms   exhibited  strong  gender  segmentation,  networks  were  first  examined  with  boys  and  girls   together,  then  split  by  gender.  Summary  statistics  were  derived  for  all  networks,  and  the   overall  mean(SD)  and  range  was  taken  across  networks  for  each  measure.  Intraclass   correlations  were  determined  using  a  multilevel  model  to  describe  the  level  of  similarity  in   fruit,  vegetable  and  soda  intake  among  individuals  within  classrooms.  Correlations  between   ego  intake  of  fruit,  vegetables  and  soda  and  intake  by  named  friends  of  the  same  food  item   were  also  examined.     To  test  whether  or  not  friends  shared  common  dietary  behaviors,  exponential  random   graph  models  (ERGMs)  were  examined  (Lusher  et  al.,  2013;  Snijders,  Tom  A.B.,  Pattison,     37   Robins,  &  Handcock,  2006),  using  the  statnet  suite  in  R.  (Handcock,  Hunter,  Butts,  Goodreau,   &  Morris,  2003)  Briefly,  ERGMs  attempt  to  replicate  an  observed  network  structure  using   purely  structural  effects  (relationships  among  individuals)  and  individual-­‐level  attributes,  or   characteristics  of  the  people  within  the  network.  ERGMs  compare  the  observed  network  to   other  possible  network  configurations,  and  Markov  chain  Monte  Carlo  (MCMC)  sampling  is   used  to  create  a  distribution  of  graphs  (given  the  exponentially  large  number  of  potential   configurations)  where  the  observed  data  are  central  to  the  distribution.    Parameter   estimation  is  achieved  via  maximum  likelihood  and  approximate  Wald  tests  are  used  to   determine  statistical  significance.  A  parameter  coefficient  of  zero  indicates  that  the  effect  of   the  variable  is  consistent  with  chance,  a  positive  coefficient  indicates  the  effect  occurs  more   often  than  due  to  chance  alone,  and  a  negative  coefficient  indicates  the  reverse,  given  other   effects  in  the  model.   The  following  a  priori  network  covariates  were  used  in  the  models,  as  recommended   by  Lusher  et  al.:  ties/edges  (number  of  ties,  also  known  as  degree),  reciprocity  (tendency  for   friendship  nominations  to  be  reciprocated),  simple  connectivity  (the  extent  to  which  people   who  send  nominations  also  receive  them),  popularity  spread  (distribution  of  nominations   received),  connectivity  spread/expansiveness  (distribution  of  nominations  sent),   triangulation  (tendency  for  two  people  nominated  by  one  person  to  also  share  a  tie),  cyclic   closure  (tendency  for  nominations  to  exist  A  →  B  →  C  →  A),  and  multiple  connectivity   (tendency  for  two  unconnected  individuals  to  have  two-­‐degree  connections  through  multiple   individuals).  (Lusher  et  al.,  2013)  The  following  a  priori  individual-­‐level  covariates  were  also   included  in  the  models:  age,  sex,  ethnicity  and  BMI  percentile.  The  dietary  variables  were   examined  in  three  separate  models,  each  including  one  food  type  only.  In  each  model,  effects   of  diet  were  included  for  “sender”  (the  extent  to  which  people  with  a  given  characteristic   nominate  friends,  compared  to  others;  ‘nodeocov’  term  in  statnet  suite),  “receiver”  (the  extent   to  which  people  with  a  given  characteristic  receive  friendship  nominations,  compared  to   others;  ‘nodeicov’  term  in  the  statnet  suite)  and  homophily  (the  extent  to  which  people   nominate  friends  with  a  shared  characteristic;  the  main  outcome  of  interest  in  these   analyses).  Homophily  was  measured  using  the  ‘absdiff’  term  in  the  statnet  suite.  This   measures  the  absolute  difference  in  an  attribute  among  individuals  who  share  a  tie.  Thus,  for   this  parameter,  a  negative  parameter  indicates  there  is  less  differences  between  individuals   (i.e.,  more  similarity,  or  homophily),  than  is  expected  by  chance  alone,  and  a  positive     38   parameter  indicates  there  is  more  difference  (i.e.,  less  similarity,  or  more  heterophily)  than  is   expected  by  chance.     Goodness  of  fit  was  assessed  by  examining  diagnostic  plots  and  the  differences   between  observed  and  sample  statistics.  If  there  was  a  significant  difference  at  p<0.05   between  the  sample  statistics  and  the  observed  statistics,  then  backward  selection  was  used   until  good  fit  was  achieved.  In  some  cases,  individual  network  models  were  not  able  to   achieve  appropriate  fit,  and  were  excluded  from  these  analyses.  To  summarize  homophily,   sender,  and  receiver  effects  across  all  networks,  a  meta-­‐analysis  was  conducted  using  the   method  described  by  Snijders  and  Baerveldt.  (Snijders,  Tom  AB  &  Baerveldt,  2003)   For  follow-­‐up  exploratory  analyses  on  the  prevalence  of  homophily  within   communities,  groups  of  friends  within  a  classroom  network  were  identified  using  the   Walktrap  Community  Detection  Algorithm  from  the  ‘igraph’  package  in  R.  (Csardi  &  Nepusz,   2006;  Pons  &  Latapy,  2006)  This  algorithm  performs  random  walks  on  a  graph,  and  walks  are   more  likely  to  occur  within  communities  given  that  there  are  few  opportunities  to  walk  along   ties  that  lead  to  individuals  outside  of  the  community.  Modularity  is  used  to  determine  the   number  of  communities  within  a  network.  Modularity  is  a  measure  used  to  determine  the   strength  of  a  network’s  division  into  groups;  it  compares  the  amount  of  ties  to  other  members   of  the  group,  relative  to  what  is  expected  randomly.  (Valente,  2010)  Figure  2-­‐1  provides  a   sample  diagram  of  a  classroom  split  into  communities.   ERGM  models  were  run  on  each  of  the  communities,  with  the  following  model  terms:   ties,  reciprocity,  simple  connectivity,  and  homophily  on  the  food  of  interest  (measured  by   absolute  difference).    A  term  for  cyclic  closures  was  added  to  models  if  needed  to  meet   convergence  criteria.  Individual-­‐level  attributes  (i.e.,  sex  and  ethnicity)  were  not  included  as   covariates  in  these  models,  as  it  was  already  established  that  individuals  in  these   communities  were  densely  connected,  and  the  reasons  for  their  connections  were  not  as   relevant  in  these  analyses.  However,  BMI  was  a  relevant  covariate,  given  that  individuals  with   certain  BMI’s  may  strive  to  eat  or  avoid  certain  foods,  and  individuals  with  higher  BMI’s  are   likely  consume  greater  quantities  of  food.  In  order  to  include  BMI  in  the  models,  vegetable,   fruit,  and  soda  intake  were  regressed  on  BMI,  resulting  in  adjusted  measures  of  dietary  intake.   Homophily  was  examined  on  both  raw  and  adjusted  dietary  intake  measures.         39   Results   Descriptive  Characteristics     Descriptive  measures  of  the  study  sample  are  in  Table  2-­‐1.  Six  hundred  and  seventeen   participants  had  at  least  partial  data.  They  were  36%  male,  over  40%  each  Latino  and   Asian/Pacific  Islander,  and  had  a  mean  age  of  12.8±1.0  years.  Two  hundred  and  one   participants  were  overweight  (34.0%,  BMI  ≥  85 th  percentile)  and  96  were  obese  (16.2%,  BMI   ≥  95 th  percentile).  On  average,  students  reported  eating  fruit  0.8±0.6  times/day,  eating   vegetables  1.5±1.2  times/day,  and  drinking  less  than  one  can  or  glass  of  soda/day  (mean:   0.8±1.1).   Plots  of  the  17  classroom  networks  are  found  in  Figure  2-­‐2,  and  summary  measures   across  all  networks  are  in  Table  2-­‐2  (along  with  a  brief  definition  of  terms).  Network  sizes   ranged  from  19-­‐52  students,  and  two  classrooms  consisted  only  of  females.  On  average,   students  were  connected  to  3.8±0.4  friends,  who  either  nominated  them,  or  that  they   nominated  (or  both;  reciprocity  was  high  at  a  mean  of  0.9±0.03).  Generally  networks  did  not   have  a  structure  highly  centralized  among  one  or  multiple  individuals  (centralization  mean:   0.12±0.04),  and  students  appeared  to  often  have  friends  with  students  of  the  same  gender  as   expected  (from  graphs).  Transitivity  was  moderate  (mean:  0.44±0.10),  although  varied   between  networks  (range  0.25  –  0.62).       Unadjusted  analyses     Correlations  between  ego  and  named  friend  intake  of  vegetables,  fruit  and  soda  can  be   found  in  Table  2-­‐3.  There  were  no  significant  correlations  between  egos  and  named  friends   in  their  intake  of  fruit  or  vegetables,  yet  there  was  a  significant  correlation  between  ego  soda   intake  and  soda  intake  among  all  named  friends  (r=0.09,  p=0.02).  There  was  also  a  significant   correlation  between  ego  soda  intake  and  soda  intake  among  the  fifth  named  friend  (r=0.10,   p=0.04).  Furthermore,  there  were  also  two  correlations  significant  at  p<0.1:  between  ego  soda   intake  and  soda  intake  of  the  first  named  friend  (r=0.07,  p=0.09)  and  between  ego  soda  intake   and  soda  intake  of  the  second  named  friend  (r=0.08,  p=0.09).       Intraclass  correlations  within  classrooms  were  0.024  for  vegetable  intake,  0.017  for   fruit  intake,  and  0.013  for  soda  intake.           40   Classroom-­‐level  network  effects  in  the  full  sample     Sixteen  classroom  networks  were  used  to  evaluate  the  relationship  between  network   ties  and  dietary  intake  of  vegetables  and  soda,  and  all  seventeen  classroom  networks  were   used  to  evaluate  the  relationship  between  network  ties  and  fruit.     Sender  effects  of  vegetable  intake  were  not  significant  in  any  of  the  sixteen  classroom   networks,  and  receiver  effects  were  significant  in  only  one  classroom.  In  classroom  17,  a   positive  effect  was  seen  such  that  students  who  consumed  more  vegetables  were  named  as   friends  more  frequently  than  students  who  consumed  fewer  vegetables  (0.14  ±  0.07,   p=0.047).  Heterophily  was  observed  in  one  network:  in  classroom  14,  there  was  a  significant   positive  absolute  difference,  indicating  that  individuals  had  differing  levels  of  vegetable   intake,  compared  to  their  friends  (0.20  ±  0.09,  p=0.03).  Homophily  on  vegetable  intake  was   not  observed  in  any  of  the  classroom  networks.     Similar  findings  were  found  for  fruit  intake:  there  were  no  classrooms  where   significant  sender  effects  were  exhibited,  yet  in  one  classroom  there  was  a  significant  receiver   effect  with  fruit.  In  network  2  there  was  a  positive  receiver  effect,  such  that  those  who   consumed  more  fruit  received  a  greater  number  of  friendship  nominations  from  classmates,   compared  to  those  who  ate  less  fruit  (0.09  ±  0.04,  p=0.03).  Homophily  on  fruit  intake  was   observed  in  one  classroom:  in  classroom  4,  there  was  a  significant  negative  absolute   difference,  such  that  individuals  and  their  friends  consumed  similar  amounts  of  fruit  (-­‐0.09  ±   0.04,  p=0.03).     For  soda  intake,  there  were  not  any  networks  that  demonstrated  significant  sender  or   receiver  effects.  There  were  two  networks  with  significant  associations  in  soda  intake   between  friends:  in  classroom  2,  there  was  a  significant  positive  absolute  difference,  such  that   friends  had  soda  intake  that  differed  from  their  friends’  intake  (0.12  ±  0.05,  p=0.02),  whereas   in  classroom  10,  there  was  a  significant  negative  absolute  difference,  such  that  individuals   shared  similar  patterns  of  soda  intake  with  their  friends  (-­‐0.12  ±  0.05,  p=0.03).     Results  from  the  meta-­‐analysis  of  all  classroom  networks  revealed  that  there  were  no   significant  homophily,  sender,  or  receiver  effects  in  the  overall  sample  for  vegetable,  fruit  or   soda  intake  (Table  2-­‐4;  all  effects  p>0.9).    Also,  in  networks  where  homophily  was  observed,   this  is  no  longer  significant  following  a  Bonferroni  adjustment  for  multiple  comparisons   (revised  alpha  level:  p=0.001).       41   Classroom-­‐level  network  effects  in  Girls  only     Sixteen  networks  were  used  to  evaluate  the  relationships  between  vegetable,  fruit,  and   soda  intake  and  female  friendships  in  middle  school  classrooms.     For  vegetable  intake,  there  were  not  any  classrooms  where  significant  sender  or   receiver  effects  of  vegetable  intake  were  observed.  Homophily  on  vegetable  intake  was   observed  in  only  one  classroom.  In  classroom  13,  there  was  a  significant  negative  absolute   difference,  indicating  that  there  was  less  difference  in  vegetable  intake  between  friends  than   expected  (-­‐0.34  ±  0.14,  p=0.01).     For  fruit  intake,  there  were  no  networks  where  significant  homophily,  sender  or   receiver  effects  were  observed.     For  soda  intake,  there  were  no  classrooms  were  significant  sender  effects  were   observed,  yet  there  was  one  classroom  where  significant  receiver  effects  were  found.  In   classroom  15,  there  was  a  significant  negative  receiver  effect,  indicating  that  girls  who   consumed  greater  amounts  of  soda  were  nominated  fewer  times  as  friends  than  those  who   drank  less  soda  (-­‐0.18  ±  0.09,  p=0.04).  Homophily  on  soda  intake  was  observed  in  one  female   classroom  network,  and  heterophily  on  soda  intake  was  observed  in  two  female  classroom   networks.  In  classroom  10,  there  was  a  significant  negative  absolute  difference  in  soda  intake   among  female  friends,  indicating  that  they  were  more  likely  to  have  similar  intake  than   expected  (-­‐0.16  ±  0.08,  p=0.046).  In  classrooms  2  and  15  there  were  significant  positive   absolute  differences  in  soda  intake  among  female  friends,  indicating  that  they  were  more   different  in  their  intake  than  expected  (0.18  ±  0.8,  p=0.02;  0.26  ±  0.10,  p<0.01;  respectively).     The  meta-­‐analysis  revealed  that  there  were  not  any  significant  homophily,  sender  or   receiver  effects  for  vegetable,  fruit  or  soda  intake  among  girls  (for  all  effects,  p>0.9).    Similar   to  findings  in  the  whole  sample,  significant  homophily  effects  do  not  remain  following  a   Bonferroni  correction  for  multiple  comparisons.       Classroom-­‐  level  network  effects  in  boys  only     Thirteen  classroom  networks  were  used  to  evaluate  the  relationship  between   vegetable  intake  and  male  friendships,  fourteen  networks  were  used  to  evaluate  male   friendships  and  fruit  intake,  and  twelve  networks  were  used  to  evaluate  male  friendships  and   soda  intake.  As  indicated  in  Figure  2-­‐2,  some  co-­‐ed  classrooms  had  a  small  amount  of  boys   and  thus  models  for  these  networks  had  more  challenges  converging.     42   For  vegetable  intake,  there  were  not  any  networks  where  significant  effects  of   homophily,  sender  or  receiver  were  observed.     For  fruit  intake,  sender  and  receiver  effects  were  seen  in  one  classroom  each.  In   classroom  9,  there  was  a  significant  negative  sender  effect,  such  that  those  boys  who  ate  more   fruit  nominated  fewer  classmates  as  friends  (-­‐0.82  ±  0.29,  p<0.01).  In  classroom  11,  there  was   a  significant  positive  receiver  effect  of  fruit,  such  that  those  boys  who  ate  more  fruit  were   more  likely  to  be  nominated  as  a  friend  by  their  classmates  (0.28  ±  0.14,  p=0.46).  Homophily   on  fruit  intake  was  observed  in  one  network:  in  classroom  15,  there  was  a  significant  negative   absolute  difference  in  fruit  intake  among  friends,  indicating  that  they  were  more  similar  in   their  intake  of  fruit  than  expected  (-­‐0.44  ±  0.21,  p=0.03).     For  soda  intake,  sender  and  receiver  effects  for  boys  were  observed  in  classroom  16,   but  not  in  any  other  classrooms.  A  significant  negative  sender  effect  was  observed,  such  that   boys  who  drank  more  soda  nominated  fewer  classmates  as  friends  (-­‐0.53  ±  0.24,  p=0.03),  and   a  positive  receiver  effect  was  observed,  such  that  boys  who  consumed  more  soda  were  more   likely  to  be  nominated  as  friends  by  their  classmates  (0.60  ±  0.26,  p=0.02).    Heterophily  on   soda  intake  was  observed  in  one  network  of  boys,  and  homophily  on  soda  was  not  observed   in  any  networks.  In  classroom  12,  there  was  a  significant  positive  absolute  difference  in  soda   intake  among  boys  who  were  friends,  indicating  that  they  were  more  different  than  expected   (0.26  ±  0.11,  p=0.02).     From  the  meta-­‐analysis,  there  were  not  any  significant  effects  of  homophily,  sender  or   receiver  interactions  with  vegetable,  fruit  or  soda  intake  among  boys  in  this  sample  (for  all   effects,  p>0.9).  Again,  no  significant  effects  of  homophily  in  individual  networks  are  significant   after  a  Bonferroni  adjustment  is  made.       Community-­‐level  network  effects   The  total  number  of  communities  in  sample  was  105  (isolates  are  considered  their   own  community  using  the  Walktrap  Algorithm).  The  average  number  of  communities  was  6.2   ±  1.5  communities/classroom  (within-­‐classroom  range:  4-­‐9  communities/classroom).  For   many  communities  with  three  or  fewer  members,  ERGM  models  did  not  achieve  convergence.     There  were  80  communities  in  which  models  on  vegetable  intake  converged,  and  five   communities  displayed  a  significant  negative  absolute  difference  of  vegetable  intake   (unadjusted).  Seventy-­‐four  communities  were  used  to  measure  fruit  intake,  and  four  had  a     43   significant  negative  absolute  difference  on  fruit.  There  were  76  communities  in  which  soda   intake  was  measured,  and  three  had  a  significant  negative  absolute  difference.  Following  a   Bonferroni  adjustment  (233  models  were  run  with  unadjusted  dietary  data;  revised  alpha   level:  0.00021),  two  communities  had  a  significant  negative  absolute  difference  with   vegetable  intake  (-­‐61.6  ±  2.8,  p=2.0e-­‐08;  and  -­‐10.0  ±  0.03,  p=9.0e-­‐51),  one  community  had  a   significant  negative  absolute  difference  in  fruit  intake  (-­‐24.7  ±  4.6,  p=5.8e-­‐5),  and  one   community  had  a  significant  negative  absolute  difference  in  soda  intake  (-­‐11.8  ±  1.8,   p=0.00019).  Negative  absolute  differences  indicate  that  members  of  these  communities  were   more  similar  in  their  dietary  intake  of  the  indicated  foods  than  was  expected  by  chance.  These   communities  are  pictured  in  Figure  2-­‐3.  In  ERGM  models  with  BMI-­‐adjusted  variables,  there   were  no  significant  effects  of  homophily  in  any  communities.       Discussion   Overall,  significant  homophily  on  dietary  intake  of  specific  obesity-­‐related  foods  (fruit,   vegetables,  and  soda)  was  not  found  in  this  sample  of  middle  school  students  in  Los  Angeles.   There  was  a  significant  correlation  between  ego  soda  intake  and  soda  intake  of  all  named   friends,  but  this  association  was  not  significant  in  models  including  network  effects  and   individual-­‐  level  covariates.  There  were  some  individual  classroom  networks  where  friends   shared  similar  dietary  intake  patterns,  but  significant  findings  were  likely  due  to  Type  1  error.   (It  is  expected  that  1  out  of  20  classrooms  will  demonstrate  significant  findings  with  the  initial   alpha  level  set  at  0.05.)  Furthermore,  there  were  not  any  significant  sender  or  receiver  effects   of  dietary  intake,  such  that  those  who  consumed  specific  obesity-­‐related  foods  were  not  more   or  less  likely  to  nominate  friends,  or  be  nominated  themselves  by  classmates.  Also,  no   significant  findings  were  observed  when  these  relationships  were  examined  separately  by   gender.       Findings  from  this  study  are  not  generally  consistent  with  similar  published  work,   although  it  is  possible  that  there  is  publication  bias  on  this  topic.  The  EAT-­‐2010  study  is  one   of  the  few  larger  studies  with  this  information  collected,  and  researchers  found  similarities   among  friends  in  their  soda,  fruit,  and  vegetable  intake.  (Bruening  et  al.,  2012;  2014)   However,  this  study  did  not  use  social  network-­‐specific  methodologies  that  account  for   overall  network  dynamics.  The  one  study  to  utilize  network  methodologies  to  examine  peer   effects  on  dietary  intake  is  by  de  la  Haye  et  al.,  and  it  was  found  that  middle  school  students     44   influence  their  friends’  junk  food  intake.  (de  la  Haye  et  al.,  2013)  One  notable  difference   between  the  study  by  de  la  Haye  et  al.  and  this  study  is  in  the  type  of  dietary  intake  examined,   as  the  study  by  de  la  Haye  et  al.  examined  broader  food  groups.  Perhaps  middle  school  friends   do  not  have  similar  intake  of  specific  food  items,  but  general  categories  of  food  types  (such  as   junk  food,  or  healthy  food)  may  be  similar  among  peers.  Homophily  on  junk  food  intake  was   not  significant  in  this  sample  (data  not  shown),  but  differences  in  results  could  be  attributable   to  different  measurement  techniques  (i.e.,  this  study  asked  about  specific  food  items,  although   candy  was  not  included,  whereas  the  study  by  de  la  Haye  et  al.  asked  about  sweet  snack  foods,   savory  snack  foods,  fast  food,  and  high-­‐calorie  drinks).  It  is  also  possible  that  behaviors   related  to  obtaining  food  (like  buying  lunch  at  school,  or  buying  soda  from  a  vending   machine)  are  commonly  shared  among  friends.     The  use  of  methodologies  that  account  for  the  entire  network  structure  is  an  important   consideration  when  interpreting  these  findings:  these  analyses  considered  whether  or  not   there  was  similarity  in  dietary  intake  among  friends  across  entire  classroom  networks.  It  is   perhaps  not  reasonable  to  expect  that  friends  always  share  similar  dietary  behaviors,  given   the  numerous  factors  that  impact  dietary  behavior  (such  as  individual-­‐level  factors,  including   preferences  and  knowledge,  and  factors  in  the  built  environment).  (McClain  et  al.,  2009;  van   der  Horst  et  al.,  2007)  It  is  possible  that  some  groups  of  friends  are  very  similar  in  their   dietary  intake,  while  others  are  less  similar.  The  magnitude  of  similarity  could  be  based  on   factors  such  as  the  degree  to  which  values  related  to  appearance  are  shared,  or  the  frequency   of  consumption  of  meals  from  the  same  location  (which  would  likely  have  more  similar   nutrient  composition  than  foods  from  differing  sources).     To  examine  small  groups  dynamics,  follow-­‐up  analyses  were  conducted  in  order   estimate  the  prevelance  of  homophily  within  small  groups  of  friends,  and  to  examine  any   characteristics  of  these  communities  that  made  them  distinct  from  other  communities  where   homophily  was  not  present.  Surprisingly,  there  were  very  few  communities  where  there  was   significant  homophily  on  dietary  intake.  However,  there  are  some  communities  that  appear  to   have  similarities  in  dietary  intake,  even  though  statistically  significant  effects  were  not  seen.   For  example,  many  individuals  in  the  community  pictured  in  Figure  2-­‐4  have  similar  levels  of   vegetable  intake.  In  this  specific  community,  the  measure  of  absolute  difference  was  0.06  ±   0.26,  p=0.81,  and  this  is  supported  by  visual  inspection,  given  that  there  are  a  large  number  of   ties  between  individuals  with  different  levels  of  intake.  However,  it  is  clear  from  this     45   community  plot  that  there  are  similarities  in  intake  among  many  members  of  this  community,   especially  between  2 nd  and  3 rd  degree  connections.  Given  that  the  ERGM  models  examine  the   probability  of  a  tie,  and  there  is  already  high  probability  of  ties  in  these  communities,  there   may  be  some  other  methodology  that  could  be  more  meaningful  to  address  the  question  of   homophily  within  a  small  community  of  middle  school  friends.  This  is  a  relevant  topic  for   future  research.     In  addition  to  the  measure  of  homophily  having  implications  on  interpretations  of   findings,  the  dietary  variables  used  could  bias  findings  towards  null.    Participants  were  asked   one  question  each  about  the  frequency  of  their  fruit  and  soda  consumption,  and  three   questions  on  the  frequency  of  their  vegetable  intake  over  an  average  week  (or  month,  in  the   case  of  soda).    Not  only  is  there  often  bias  in  reporting  of  dietary  intake  among  teens,  (A.  K.   Ventura,  Loken,  Mitchell,  Smiciklas-­‐Wright,  &  Birch,  2006)  but  it  may  also  be  difficult  for   individuals  to  estimate  their  habitual  intake  over  such  a  broad  range  of  time.  Additionally,   only  the  similarity  of  dietary  behaviors  with  classroom  friends  is  examined  in  this  study,  and   does  not  consider  behaviors  of  friends  outside  the  classroom,  or  family  dietary  intake.  For   middle  school  students,  their  dietary  intake  is  likely  largely  influenced  by  the  dietary   practices  of  family  members,  particularly  parents,  who  may  prepare  all  or  most  of  their  meals.     Another  limitation  is  the  cross-­‐sectional  design,  which  prevents  causality  from  being   examined  in  this  study.  Furthermore,  ERGM  models  measure  selection,  or  the  presence  of  ties   that  form  a  network,  rather  than  the  effect  that  friends  have  on  each  other,  as  can  be   examined  with  longitudinal  network  data.  However,  one  strength  of  this  study  is  in  the  large   sample  used,  which  allows  for  examination  of  many  differing  and  complex  social  dynamics   within  classrooms.  The  larger  sample  allows  for  better  generalizability,  and  also  allows  for   comparisons  to  be  made  between  groups,  as  was  done  with  the  follow-­‐up  community   analysis.     Although  there  was  no  overall  similarity  among  friends  in  their  dietary  intake  of  fruit,   vegetables  and  soda,  there  do  appear  to  be  some  groups  of  students  where  homophily  on   intake  is  practiced.  Further  research  should  be  done  on  this  topic  to  better  determine  the   prevalence  of  homophily  on  dietary  intake  in  youth,  and  should  utilize  measures  relevant  to   this  specific  research  question.  Also,  future  research  should  examine  why  these  behavioral   similarities  exist  within  some  groups  and  not  others,  for  example,  whether  it  is  due  to  a   deliberate  effort  among  group  members,  or  if  it  is  a  function  of  external  influences  (such  as     46   food  availability).  Better  understanding  the  role  of  friends  in  influencing  dietary  behavior  will   inform  determinants  of  intake  and  pave  the  way  for  network-­‐based  interventions  to  be  used   to  improve  dietary  behaviors  in  children.         Table  2-­‐1:  Baseline  characteristics  of  617  middle  school  students  in  Los  Angeles   Demographic  characteristics   n  (%)        Sex  (male)   220  (35.7%)        Ethnicity:                  Asian/Pacific  Islander   234  (40.3%)                Black   26  (4.5%)                Latino   243  (41.9%)                White   77  (13.3%)     mean  (SD)        Age  (years)   12.8  (1.0)        BMI  percentile   61.7  (31.9)   Dietary  characteristics          Fruit  (freq  consumed/day)   0.8  (0.6)        Vegetables  (freq  consumed/day)   1.5  (1.2)        Soda  (can  freq/day)   0.8  (1.1)             Figure  2-­‐1:  Sample  classroom  of  middle  school  students  partitioned  into  unique  communities   using  the  Walktrap  Community  Detection  Algorithm           47   Figure  2-­‐2:  Network  plots  of  17  Los  Angeles  middle  school  classrooms   a     a  Individuals  are  colored  by  their  sex:  coral  nodes  represent  girls,  teal  nodes  represent  boys,   and  white  nodes  did  not  have  gender  specified.                                               48   Table  2-­‐2:  Network  summary  statistics  for  17  Los  Angeles  middle  school  classrooms     Measure   Mean  (SD)   Range   Term  definition   a   Network  size   38.94  (7.89)   19  -­‐  52   n  students  in  classroom   Density   c   0.11  (0.03)   0.07  –  0.18   n  ties  in  network,  per  total  number   of  possible  ties   Average  degree  (ties)   b   3.82  (0.42)   3.02  –  4.39   n  connections  a  person  has  (either   outgoing  or  incoming)   Degree  centralization   c   0.12  (0.04)   0.07  –  0.23   Measure  of  how  central  (how  many   connections,  or  ties)  the  most   central  node  is  relative  to  others   Average  path  length   b   2.20  (0.53)   1.13  –  2.89   n  steps  along  the  shortest  path   length  between  any  2  given  people   (nodes)   Reciprocity   c   0.92  (0.03)   0.85  –  0.95   Extent  to  which  friend  nominations   are  reciprocated   Transitivity   c   0.44  (0.10)   0.25  –  0.62   Extent  to  which  if  A  and  B  share  a   tie,  and  B  and  C  share  a  tie,  that  A   and  C  also  share  a  tie   a  (Valente,  2010)   b  Individual-­‐level  variable,  rather  than  a  network-­‐level  variable;  values  therefore  represent   mean  of  network  means   c  Possible  range  of  values:  0-­‐1     Table  2-­‐3:  Correlations  between  ego  intake  of  vegetables,  fruit  and  soda  with  named  friend   intake  of  the  same  food  item  among  617  middle  school  students  in  Los  Angeles     With  all   named   friends   With  first   named   friend   With  second   named   friend   With  third   named   friend   With  fourth   named   friend   With  fifth   named   friend   Vegetable   intake   0.01  (0.78)   0.06  (0.16)   0.06  (0.17)   -­‐0.01  (0.78)   0.00  (0.90)   -­‐0.03  (0.52)   Fruit   intake   0.00  (0.94)   0.03  (0.52)   0.00  (0.93)   0.05  (0.32)   -­‐0.03  (0.60)   -­‐0.07  (0.16)   Soda   intake   0.09  (0.02)   0.08  (0.09)   0.08  (0.09)   0.00  (0.93)   0.03  (0.57)   0.10  (0.04)                             49   Table  2-­‐4:  Summary  of  interactions  between  social  network  effects  and  dietary  intake  in  17   Los  Angeles  middle  school  classrooms  a   Effect   Whole  Sample   Estimated  average   effect  size  (SE)   Girls  Only   Estimated  average   effect  size  (SE)   Boys  Only   Estimated   average  effect   size  (SE)   Sender  –  vegetable  intake   -­‐0.07  (0.08)   -­‐0.05  (0.10)   <-­‐0.01  (0.02)   Receiver  –  vegetable  intake   0.02  (0.08)   <-­‐0.01  (0.09)   <-­‐0.01  (0.02)   Homophily  –  vegetable  intake   -­‐0.03  (0.08)   -­‐0.04  (0.09)   <0.01  (0.03)   Sender  –  fruit  intake   -­‐0.05  (0.07)   -­‐0.07  (0.07)   -­‐0.03  (0.08)   Receiver  –  fruit  intake   0.01  (0.06)   -­‐0.02  (0.07)   <0.01  (0.04)   Homophily  –  fruit  intake   -­‐0.02  (0.06)   <0.01  (0.07)   -­‐0.02  (0.06)   Sender  –  soda  intake   -­‐0.03  (0.06)   -­‐0.04  (0.07)   <-­‐0.01  (0.05)   Receiver  –  soda  intake   -­‐0.03  (0.07)   -­‐0.05  (0.07)   <0.01  (0.06)   Homophily  –  soda  intake   <0.01  (0.06)   0.03  (0.07)   <0.01  (0.03)   a  p-­‐values  for  all  effects  in  this  table  were  not  significant.           Figure  2-­‐3:  Plots  of  communities  of  middle  school  students  were  significant  homophily  on   vegetable  intake  was  observed  a     a   Individuals  are  colored  by  their  dietary  intake  of  an  item  of  interest,  with  lighter  colors   indicating  higher  levels  of  intake.  Panels  A  and  B  portray  communities  with  significant   homophily  on  vegetable  intake,  panel  C  portrays  a  community  with  significant  homophily  on   fruit  intake,  and  panel  D  portrays  a  community  with  significant  homophily  on  soda  intake.                   50     Figure  2-­‐4:  Sample  plot  of  vegetable  intake  in  a  community  without  significant  homophily   a     a  Lighter  colors  indicate  higher  levels  of  intake                                                         51   CHAPTER  3:  Co-­‐occurring  change  in  dietary  determinants  and  fruit  and   vegetable  intake  in  Latino  elementary  school  youth       Introduction       Childhood  obesity  is  a  complex  issue  with  many  determinants,  including  genetic,   behavioral  and  environmental  factors  at  many  levels.  (Bray  &  Bouchard,  2003)  It  is  an   escalating  issue  in  the  United  States  and  around  the  world,(Lobstein,  Baur,  Uauy,  IASO   International  Obesity  TaskForce,  2004)  and  it  is  estimated  that  approximately  one  third  of  US   youth  are  overweight.  (Ogden,  2012)  The  Centers  for  Disease  Control  identify  eating  behavior   as  one  of  the  two  major  drivers  of  childhood  obesity,  with  the  other  being  lack  of  physical   activity.  (Centers  for  Disease  Control  and  Prevention  (CDC),  2013a)  Consumption  of  fruit  and   vegetable  (FV)  intake  is  one  eating  behavior  targeted  for  obesity  prevention,  as  greater  FV   intake  has  been  linked  to  both  decreased  adiposity  and  prevention  of  associated  metabolic   disease.  (Hung  et  al.,  2004;  Ledoux  et  al.,  2010;  Montonen  et  al.,  2005)  Low  consumption  of  FV   is  a  problem  in  US  youth,  as  only  1%  meet  recommendations  for  FV  intake  established  in  the   Dietary  Guidelines  for  Americans.  (Kimmons  et  al.,  2009)  Yet,  changing  diet  is  not  an  easy   task,  given  the  complexity  of  this  behavior:  it  is  practiced  multiple  times  throughout  the  day,   in  various  settings  and  circumstances.  Several  factors  have  been  established  as  determinants   of  FV  intake,  including  FV  availability,  attitudes,  knowledge,  intentions,  modeling,  motivation,   norms,  parenting  practices,  preferences,  and  self-­‐efficacy,  among  others.  (McClain  et  al.,  2009)     Several  approaches  have  been  undertaken  in  attempt  to  change  child  dietary  practices,   and  one  of  the  more  popular  strategies  in  recent  years  has  been  garden-­‐based  education,   inspired  by  Alice  Waters’  Edible  Schoolyard  Project  and  Michelle  Obama’s  Let’s  Move!   campaign.  (Let's  Move!,  2015;  M.  C.  Wang  et  al.,  2010)  Garden-­‐based  education  has  potential   to  improve  child  intake  of  FV  by  increasing  exposure  to  these  foods  in  a  fun  activity-­‐based   setting,  where  children  learn  about  the  origins  of  the  foods  they  eat.  (Blair,  2009;  Heim  et  al.,   2009)  Several  garden-­‐based  nutrition  interventions  have  been  developed  and  evaluated,  and   many  have  shown  improvements  in  FV  intake  among  participants.  (J.  N.  Davis  et  al.,  2011;  A.   Evans  et  al.,  2012;  Heim  et  al.,  2009;  Hermann  et  al.,  2006;  McAleese  &  Rankin,  2007;   Somerset  &  Markwell,  2008;  M.  C.  Wang  et  al.,  2010;  W.  Wright  &  Rowell,  2010)  One  program,   the  LA  Sprouts  intervention,  has  also  demonstrated  to  be  effective  in  reducing  body  mass   index  (BMI)  among  intervention  participants  in  both  the  pilot  study  and  subsequent     52   randomized  controlled  trial,  (J.  N.  Davis  et  al.,  2011;  Gatto  et  al.,  2012;  Gatto  et  al.,  under   review)  whereas  few  other  studies  have  reported  to  have  examined  adiposity  outcomes.   (Castro  et  al.,  2013)    The  LA  Sprouts  program  may  have  been  effective  in  reducing  BMI  in  part   because  this  intervention  was  adapted  from  a  nutrition  curriculum  aimed  at  changing  the   quality  of  carbohydrates  consumed  (i.e.,  fewer  simple  and  more  complex  carbohydrates,  such   as  whole  grains,  FV),  and  was  previously  successful  in  improving  dietary  intake  and  reducing   adiposity.  (J.  N.  Davis  et  al.,  2007)  LA  Sprouts,  like  many  other  gardening  programs,  also   utilizes  theory  to  identify  and  target  several  determinants  of  FV  intake  in  the  instructional   content  and  activities.  Some  determinants  that  have  been  shown  to  improve  as  a  result  of   garden-­‐based  education  include  preferences,  self-­‐efficacy,  knowledge,  willingness  to  try  FV.  (J.   N.  Davis  et  al.,  in  press;  Gatto  et  al.,  2012;  Gibbs  et  al.,  2013;  Lineberger  &  Zajicek,  2000;   Morgan  et  al.,  2010;  J.  L.  Morris  &  Zidenberg-­‐Cherr,  2002;  Parmer  et  al.,  2009;  Ratcliffe  et  al.,   2010;  Somerset  &  Markwell,  2008)       Although  there  is  compelling  evidence  that  garden-­‐based  nutrition  education  improves   dietary  intake,  and  is  promising  in  reducing  obesity,  there  is  minimal  research  exploring  the   relationships  between  determinants  and  intake  as  a  result  of  this  type  of  intervention.  This  is   important  because  some  determinants  of  intake  may  be  more  valuable  to  target  in  this   setting,  compared  to  others.  For  example,  in  a  cross-­‐sectional  analysis  of  LA  Sprouts  baseline   data,  willingness  to  try  FV  was  associated  with  FV  intake,  but  surprisingly,  preferences  were   not.  (Martinez  et  al.,  under  review)  Discerning  which  determinants  are  most  important  in   changing  intake  will  help  focus  future  interventions,  especially  in  settings  where  curricula   need  to  be  shortened  due  to  time  or  other  logistic  constraints.    Furthermore,  while  many   garden-­‐based  interventions  are  theory-­‐based,  none  to  date  have  fully  tested  the  theoretical   assumptions  underlying  their  design.  (Spruijt-­‐Metz,  2011)  This  meditational  analysis  will   explore  the  associations  between  change  in  dietary  determinants  and  change  in  both  FV   intake  and  subsequent  BMI,  as  a  result  of  the  LA  Sprouts  intervention.  We  hypothesize  that   there  will  be  evidence  of  mediation,  and  that  there  will  be  differences  between  the  control   versus  intervention  group  (i.e.  intervention  group  will  serve  as  a  moderator  of  these  effects).   We  also  perform  an  exploratory  analysis  on  the  strength  of  associations  between  change  in   different  dietary  determinants  and  change  in  FV  intake.             53   Methods     Participants  and  study  design   These  analyses  used  data  from  the  LA  Sprouts  randomized  controlled  trial.  Detailed   descriptions  of  the  design  and  methodology  can  be  found  elsewhere.  (Gatto  et  al.,  under   review;  Martinez  et  al.,  2015)  Briefly,  four  Los  Angeles-­‐area  elementary  schools  were  invited   to  participate  in  the  intervention,  and  randomization  occurred  at  the  school-­‐level,  with  two   schools  receiving  the  intervention  and  two  serving  as  controls  with  a  delayed  intervention.   These  schools  were  selected  based  on  the  following  criteria:  1)  the  partner  after-­‐school   program  was  offered,  2)  student  body  was  ≥75%  Latino,  3)  ≥75%  of  the  student  population   qualified  to  receive  free/reduce  price  lunch,  4)  school  was  within  10  miles  of  the  University  of   Southern  California  (USC),  5)  administrators  expressed  interest  in  having  a  school  garden   program,  and  6)  staff  affirmed  they  could  make  the  administrative  commitment.  All  3 rd -­‐5 th   grade  students  in  the  after-­‐school  program  at  these  schools  were  allowed  to  participate  in  the   intervention,  but  data  was  only  collected  on  those  without  major  illness  and  who  provided   child  assent  and  parental  permission.  All  permission  and  assent  materials  were  provided  in   English  and  Spanish,  and  this  study  was  approved  by  the  USC  Institutional  Review  Board.       Intervention  design     A  detailed  description  of  the  intervention  curriculum  can  also  be  found  elsewhere,   (Gatto,  et  al.,  under  review;  Martinez  et  al.,  2015)  and  materials  are  available  online  at   www.lasprouts.org.  The  intervention  consisted  of  12  weeks  of  once-­‐weekly  90-­‐minute  classes   conducted  after  school  in  a  school  garden.  Forty-­‐five  minutes  of  each  class  were  dedicated  to   cooking  and  nutrition,  and  45  minutes  were  dedicated  to  gardening.  In  the  nutrition   component,  students  learned  the  importance  of  and  strategies  for  consuming  fewer  simple   carbohydrates  and  greater  amounts  of  complex  carbohydrates,  specifically  FV.  Each  week   students  prepared  a  healthy  snack,  such  as  vegetable  quesadilla  with  fresh  salsa,  and   conducted  gardening  activities  relevant  to  cultivating  FV.  The  gardening  curriculum  also   focused  on  sustainability  and  techniques  for  growing  FV  at  home.       Several  dietary  determinants  were  targeted  in  this  intervention,  including  FV   preferences,  willingness  to  try  FV,  FV  identification,  self-­‐efficacy  to  eat  FV,  and  motivation  to   eat  FV.  Preferences  are  a  well-­‐established  predictor  of  FV  intake  (McClain  et  al.,  2009),  and  to     54   target  improving  preferences,  children  made  and  consumed  a  child-­‐friendly  snack  containing   fresh  FV  each  week.    This  activity  also  served  to  target  willingness  to  try  FV,  and  hesitant   children  were  encouraged  by  educators  to  try  each  snack.    Literature  on  willingness  to  try   foods  suggests  that  preferences  are  a  product  of  increased  exposure,  (Birch  &  Marlin,  1982)   but  as  previously  mentioned,  baseline  data  from  this  study  sample  also  indicate  that   willingness  to  try  FV  is  significantly  associated  with  intake,  independent  of  preferences.   (Martinez  et  al.,  under  review)  Children  were  also  instructed  on  FV  identification  throughout   the  program,  in  the  gardening,  cooking,  and  nutrition  activities.  Self-­‐efficacy,  or  an  individual’s   belief  that  he/she  can  perform  a  given  behavior,  (Bandura,  1977)  was  targeted  in  discussions   throughout  the  curriculum  on  how  to  incorporate  more  FV  into  meals  and  snacks,  and   examples  were  provided  in  the  cooking  component.  Finally,  motivation  to  eat  FV  was  a  focus   of  the  nutrition  component,  as  the  benefits  of  eating  FV  for  oneself  and  with  family  were   emphasized.       Anthropometric  measures   Height  was  measured  by  a  free-­‐standing  portable  stadiometer  (Seca,  Birmingham,  UK),   and  weight  was  assessed  using  a  Tanita  TBF  300A  (Arlington  Heights,  IL).  BMI  z-­‐score  for  age   and  sex  was  calculated  according  to  CDC  criteria.  (Kuczmarski  et  al.,  2002)     Questionnaire  measures   Dietary  intake  was  assessed  using  the  Block  Kids  Food  Screener  (last  week  version).   (Garcia-­‐Dominic  et  al.,  2012)  This  tool  provides  summary  measures  in  cup  equivalents   (CE/day)  for  major  food  categories,  including  vegetables  (not  potatoes)  and  fruit  (including   juice).  Because  determinants  of  fruit  versus  vegetables  may  differ,  (Glasson  et  al.,  2010)  these   variables  were  not  collapsed  into  one  FV  measure,  but  were  examined  separately.    In  order   mitigate  severe  recall  bias,  total  calories  consumed  was  regressed  on  weight,  and  data  from   those  with  a  standardized  residual  >|3|  were  removed  from  analyses  (n=8  diet  data  removed   at  baseline,  n=6  diet  data  removed  at  follow-­‐up).   Eight  items  were  used  to  assess  motivation  to  eat  FV  (adapted  from  Reasons  for   healthy  diet,  Treatment  Self-­‐Regulation  Questionnaire),  (Ryan  &  Connell,  1989;  G.  C.  Williams,   Grow,  Freedman,  Ryan,  &  Deci,  1996)  with  questions  relevant  to  either  autonomous  or   controlled  motivation.  Factor  analysis  of  this  scale  did  not  result  in  separate  factors  for     55   autonomous  and  controlled  motivation  (one  factor  with  eigenvalue  >1  revealed  from  factor   analysis:  eigenvalue=3.39),  yet  this  scale  was  divided  into  these  two  constructs  based  on  the   theoretical  principles  used  in  the  development  of  this  scale  (Cronbach’s  alpha  autonomous   motivation=0.76,  n=4  items;  Cronbach’s  alpha  controlled  motivation=0.68,  n=4  items).  For   these  analyses,  mean  scores  for  constructs  were  used  rather  than  latent  factors  with  several   indicators  each,  in  order  to  reduce  model  complexity.  This  holds  for  all  other  dietary   determinants,  as  well.   A  14-­‐item  scale  measured  self-­‐efficacy  for  eating  FV  and  related  behaviors  (cooking   and  gardening),  adapted  from  Baranowski  et  al.  (T.  Baranowski  et  al.,  2000)  Seven  of  these   items  were  related  to  consuming  FV,  and  were  therefore  used  for  these  analyses  (Cronbach’s   alpha=0.84;  one  factor  with  eigenvalue  >1  revealed  from  factor  analysis:  eigenvalue=3.54).     To  assess  willingness  to  try  FV  (a  lack  of  reluctance  to  eat  novel  foods,  or  food   neophobia),  six  items  adapted  from  Pliner  and  Hobden  were  used  to  measure  willingness  to   try  vegetables,  and  six  items  were  used  to  measure  willingness  to  try  fruit.  (Pliner  &  Hobden,   1992)  Scale  psychometric  properties  were  good:  for  vegetable  willingness  to  try,  one  factor   with  eigenvalue  >1  revealed  from  factor  analysis  (eigenvalue=4.01),  Cronbach’s  alpha=  0.90;   for  fruit  willingness  to  try,  one  factor  with  eigenvalue  >1  revealed  from  factor  analysis   (eigenvalue=3.03),  Cronbach’s  alpha=  0.80.   To  measure  FV  preferences,  a  scale  adapted  from  Domel  et  al.,  was  used,  with  8  items   for  fruit  and  17  items  for  vegetables.  (Domel  et  al.,  1993)  Data  from  this  scale  was  separated   into  two  separate  constructs  related  to  FV,  identification  and  preference.  For  each  FV  item,   participants  were  asked  if  they  liked  it  “A  lot”,  “A  little”,  “Not  at  all”,  or  “I  don’t  know  what  this   is”.  To  measure  identification,  the  number  of  items  for  which  they  reported  a  degree  of  liking   (i.e.,  they  knew  what  the  item  was)  was  summed  per  fruit  or  vegetable  category  and  divided   by  total  number  of  items  answered  in  that  category  (division  by  total  numbered  answers  was   done  to  account  for  missingness,  range  of  items  answered:  11-­‐17  for  vegetables,  6-­‐8  for  fruit).   To  measure  preferences,  a  mean  score  of  liking  for  those  they  identified  was  used.  For  the   revised  preference  scale  with  fruit,  one  factor  was  considered  acceptable  (2  factors  returned   with  eigenvalue  >1,  eigenvalues  =  2.98  and  1.08,  decision  was  made  by  examining  Scree  plot;   Cronbach’s  alpha  =  0.75),  and  one  factor  was  also  acceptable  for  the  revised  vegetable   preference  scale  (3  factors  returned  with  eigenvalue  >1,  eigenvalues  =  6.07,  1.58  and  1.01,   decision  was  made  by  examining  Scree  plot;  Cronbach’s  alpha  =  0.88).     56     The  following  demographic  characteristics  were  also  assessed  via  questionnaire:  sex,   age,  ethnicity,  and  whether  or  not  English  was  spoken  at  home  (a  proxy  for  socioeconomic   status;  significantly  different  between  groups  at  baseline:  30.2%  of  intervention  participants   and  18.5%  of  control  participants  spoke  no  English  at  home,  p=0.01).  (Martinez  et  al.,  2015)     Analyses   Paired  t-­‐tests  and  chi-­‐square  tests  were  used  to  compare  differences  between  groups   at  baseline.  A  path  model  was  used  to  test  the  following  relationships:  1)  change  in  FV  intake   as  a  mediator  between  change  in  FV  determinants  and  change  in  BMI,  2)  intervention  group   as  a  moderator  of  the  aforementioned  effects,  and  3)  whether  differences  exist  in  strength  of   association  between  change  in  various  FV  determinants  and  change  in  FV  intake.  Figure  3-­‐1   provides  a  visual  reference  for  this  hypothesized  model.    The  determinants  that  were   included  in  this  model  were  the  following:  autonomous  motivation  to  eat  FV,  controlled   motivation  to  eat  FV,  self-­‐efficacy  to  eat  FV,  vegetable  identification,  fruit  identification,   vegetable  preferences,  fruit  preferences,  willingness  to  try  vegetables,  and  willingness  to  try   fruit.  Covariance  terms  between  determinant  change  scores  (n=36  terms)  and  between   change  in  fruit  intake  and  change  in  vegetable  intake  were  also  included.     A  priori  covariates  in  this  model  included  sex,  school,  ethnicity  and  English  spoken  at  home.     Change  in  the  amount  of  total  calories  (kcal)  consumed  was  included  as  a  covariate  in  a   follow-­‐up  model.       To  create  change  scores  for  each  variable,  the  difference  between  baseline  and  follow-­‐ up  values  was  regressed  on  the  baseline  value.  Data  appear  to  be  missing  at  random;  to   account  for  missingness,  the  correlation  matrix  was  analyzed  rather  than  the  raw  data.    The   model  building  process  was  as  follows:  1)  the  hypothesized  model  was  fit  on  the  entire  study   sample  and  the  Lagrange  Multiplier  test  was  examined  to  ensure  no  significant  and   theoretically  relevant  associations  were  unaccounted  for,  2)  the  sample  was  divided  into  two   groups,  intervention  and  control,  and  the  models  were  fully  constrained  such  that  all   relationships  were  set  to  be  equivalent  between  groups,  3)  constraints  were  released  where   significant  differences  exist  between  groups  in  covariance  terms  or  effects  of  covariates,  4)   constraints  were  released  where  significant  differences  exist  in  parameters  relevant  to   research  questions.  Change  in  kcal  was  later  added  as  a  covariate  to  confirm  findings.  A   follow-­‐up  model,  in  which  associations  between  baseline-­‐adjusted  post-­‐test  variables  were     57   evaluated,  was  also  examined  to  confirm  findings.  All  analyses  will  be  performed  with  SAS   PROC  CALIS,  version  9.3  (SAS  Institute,  Inc.,  Cary,  NC),  with  a  significance  level  set  to  α=0.05.   All  reported  estimates  are  standardized.       Results   Three  hundred  and  sixty-­‐three  participants  had  at  least  partial  data  and  were  included   in  these  analyses  (n=197  intervention  participants  and  n=166  control  participants,  Table  3-­‐ 1).  This  sample  was  88%  Latino,  47%  male,  and  mean  age  was  9.3±0.9  years.  At  baseline,   there  were  significant  differences  in  identification  of  FV,  with  the  control  group  reporting   knowing  more  FV  (p=0.002  for  fruit  and  p<0.001  for  vegetables).  There  was  also  a  trend  for   the  control  group  to  have  higher  preferences  for  fruit  (p=0.07).  As  previously  mentioned,   control  participants  were  more  likely  to  speak  English  at  home,  but  there  were  no  other   significant  demographic  differences  between  groups.     On  average,  participants  consumed  1.5±1.3  CE/d  of  fruit,  and  1.0±1.0  CE/d  of   vegetables  at  baseline.  Average  BMI  z-­‐score  was  1.0±1.0  units,  and  182  students  (53.4%)   were  overweight  (BMI  ≥  85 th  percentile  for  age  and  sex),  and  121  (35.5%)  were  obese  (BMI  ≥   95 th  percentile  for  age  and  sex).   Fit  statistics  for  all  steps  described  in  the  model  building  process  above  can  be  found  in   Table  3-­‐2.  Model  fit  was  good  for  the  final  model  step  (step  4  above;  χ 2 =137.0,  degrees  of   freedom=141,  p=0.58),  although  was  not  as  strong  once  kcal  was  added  as  a  covariate   (χ 2 =204.6,  degrees  of  freedom=162,  p=0.01).     In  both  groups,  the  following  associations  were  significant  between  change  in  dietary   determinants  and  vegetable  intake  (Figure  3-­‐1):  change  in  controlled  motivation  to  eat  FV   had  a  positive  association  with  change  in  vegetable  intake  (0.21±0.6,  p<0.001;  i.e.,  a  1   standard  deviation  increase  in  controlled  motivation  was  associated  with  a  0.21  CE/d   increase  in  vegetable  intake),  change  in  willingness  to  try  vegetables  had  a  positive   association  with  change  in  vegetable  intake  (0.17±0.07,  p<0.01),  change  in  willingness  to  try   fruit  had  a  negative  association  with  change  in  vegetable  intake  (-­‐0.17±0.06,  p<0.01),  and   change  in  vegetable  preferences  had  a  positive  association  with  change  in  vegetable  intake   (0.17±0.06,  p<0.01).  Only  change  in  vegetable  preference  was  associated  with  change  in  fruit   intake  (0.12±0.06,  p=0.047).  Change  in  FV  intake  did  not  mediate  the  relationship  between     58   change  in  determinants  of  FV  intake  and  change  in  BMI,  as  there  were  no  significant   associations  between  change  in  either  F  intake  or  V  intake  and  change  in  BMI  z-­‐score.  There   were  also  no  direct  effects  of  change  in  FV  determinants  on  change  in  BMI  z-­‐score.  Results  did   not  differ  with  the  addition  of  kcal  as  a  covariate.     In  the  group  comparison,  there  was  only  one  significant  difference  between  the   intervention  and  control  participants.  The  relationship  between  change  in  identification  of   fruit  and  change  in  vegetable  intake  was  different  between  groups  (p=0.01).  However,  this   relationship  was  not  significant  in  either  group  (-­‐0.11±0.07,  p=0.09  in  the  intervention  group;   0.09±0.07,  p=0.18  in  the  control  group).  Similar  to  above  findings,  results  did  not  change  with   the  additional  of  kcal  as  a  covariate.     There  were  minimal  differences  in  the  strength  of  associations  between  change  in  FV   determinants  and  change  in  intake,  although  with  change  in  vegetable  intake,  change  in   controlled  motivation  had  the  greatest  strength  of  association.  However,  this  was  not   statistically  significantly  greater  than  other  significant  effects.     Findings  from  the  follow-­‐up  model  of  associations  between  baseline-­‐adjusted  post-­‐test   variables  can  be  found  in  Figure  3-­‐3.  Fit  for  the  partially  constrained  (final)  model  was  good   (χ 2 =130.0,  degrees  of  freedom=142,  p=0.76).    In  both  groups,  willingness  to  try  vegetables,   vegetable  preferences,  and  controlled  motivation  were  positively  associated  with  vegetable   intake  at  follow-­‐up  (0.17±0.07,  0.15±0.06,  and  0.21±0.06,  respectively,  p<0.01).    Willingness   to  try  fruit  was  negatively  associated  with  vegetable  intake  (-­‐0.13±0.06,  p<0.05).  There  were   not  any  significant  associations  between  dietary  determinants  and  fruit  intake,  and  no   significant  differences  between  groups  in  the  associations  of  interest.       Discussion   In  this  study  of  co-­‐occurring  change  over  an  intervention  period,  increases  in  controlled   motivation  to  eat  FV,  willingness  to  try  FV,  and  vegetable  preferences  were  associated  with   increased  vegetable  intake.  Change  in  vegetable  preferences  was  also  associated  with  change   in  fruit  intake  over  the  intervention  period.  However,  there  was  no  significant  association   between  change  in  either  fruit  or  vegetable  intake  and  BMI  z-­‐score,  and  there  were  minimal   differences  between  intervention  groups.  Findings  from  the  path  model  of  change  scores  were   generally  supported  in  a  cross-­‐sectional  path  model  using  baseline  adjusted  follow-­‐up  data.     59   Significant  relationships  between  change  in  FV  determinants  and  change  in  FV  intake   provide  evidence  of  relevant  targets  for  future  interventions,  and  these  results  are  consistent   with  a  large  body  of  research  supporting  the  importance  of  personal  factors  in  driving  FV   intake.  (Guillaumie,  Godin,  &  Vezina-­‐Im,  2010;  McClain  et  al.,  2009;  Rasmussen  et  al.,  2006)   However,  there  are  few  longitudinal  studies  examining  these  effects  in  children,  (Guillaumie   et  al.,  2010)  and  this  study  helps  elucidate  which  behavioral  determinants  are  most  relevant   to  change  in  dietary  behaviors.  Also,  because  determinants  of  intake  differed  for  fruit  versus   vegetables,  this  study  supports  the  practice  of  examining  fruit  and  vegetables  separately.     In  this  study,  change  in  controlled  motivation  to  eat  FV  had  the  greatest  strength  of   association  with  change  in  vegetable  intake,  compared  to  other  determinants,  although  the   effect  size  was  not  significantly  larger  than  those  in  other  significant  associations.  With   controlled  motivation,  an  individual’s  thoughts  and  actions  are  influenced  by  external  factors,   such  as  the  desire  to  please  others.  (Deci  &  Ryan,  2008)  Given  that  the  LA  Sprouts   intervention  was  delivered  in  a  group  setting,  it  is  possible  that  the  desire  to  adhere  to  social   norms  could  influence  vegetable  intake.  Drivers  of  this  association  in  the  control  group  are   not  clear,  but  it  is  possible  that  this  same  dynamic  occurs  when  meals  are  consumed  in  group   settings,  like  during  school  lunch.  Controlled  motivation  in  an  intervention  setting  may  not  be   as  sustainable  as  other  determinants,  given  that  this  is  influenced  by  external  factors  which   could  disappear  after  the  intervention  has  ended.  However,  given  that  a  significant   association  was  also  seen  in  control  participants,  it  is  likely  that  there  are  other  factors   driving  this  relationship  in  these  predominantly  Latino  elementary  school  children,  such  as  a   district-­‐wide  campaign  to  eat  healthier,  or  standard  health  class  curriculum  promoting   practices  for  healthy  weight.  Further  research  is  needed  to  determine  key  drivers  of   controlled  motivation  in  this  group,  and  to  identify  opportunities  to  foster  this  quality  in   individuals.     Preferences  for  FV  are  a  well-­‐documented  predictor  of  FV  intake,  (McClain  et  al.,  2009;   Rasmussen  et  al.,  2006),  and  in  this  study,  preference  for  vegetables  was  associated  with  FV   intake.  It  was  surprising  that  change  in  preference  for  vegetables  was  significantly  associated   with  change  in  fruit  intake,  rather  than  preference  for  fruit.    Since  fruit  are  generally   considered  more  palatable  than  vegetables  (due  to  higher  sugar  content),  greater  preferences   for  all  fruit  may  not  be  as  important  in  predicting  the  quantity  of  fruit  consumed  (although   may  influence  the  variety  of  fruit  consumed).  It  may  be  possible  that  preference  for  vegetables     60   is  an  important  enough  factor  that  it  influences  both  fruit  and  vegetable  intake  (although  this   was  not  found  to  be  significant  in  the  model  with  baseline-­‐adjusted  follow-­‐up  data).    It  was   also  surprising  that  change  in  other  FV  determinants  was  not  associated  with  change  in  fruit   intake.  This  may  indicate  that  environmental  factors  such  as  availability  and  accessibility  of   fruit,  rather  than  personal  factors,  are  more  important  in  driving  fruit  intake.  (Hearn  et  al.,   1998)     In  addition  to  preferences,  willingness  to  try  FV  was  predictive  of  intake.  Change  in   willingness  to  try  vegetables  was  associated  with  change  in  vegetable  intake,  and  baseline   data  from  this  study  also  found  that  willingness  to  try  FV  was  strongly  associated  with  intake,   yet  preferences  were  not.  (Martinez  et  al.,  under  review)  The  importance  of  willingness  to  try   foods  as  a  predictor  of  intake  should  be  further  explored  in  intervention  contexts,  as  it  may   have  similar  importance  to  preferences  (willingness  to  try  foods  is  not  as  frequently  reported   in  the  literature).  However,  the  inverse  association  between  willingness  to  try  fruit  and   vegetable  intake  is  surprising.  The  bivariate  association  between  these  two  variables  is  not   significant  (p=0.16),  yet  willingness  to  try  fruit  is  highly  correlated  with  willingness  to  try   vegetables  (0.53±0.03,  p<0.0001).  Willingness  to  try  fruit  is  also  significantly  correlated  with   all  other  determinants  of  FV  intake,  except  for  with  the  ability  to  identify  fruit  (all  others   p<0.05).  This  is  likely  an  example  of  the  suppression  effect,  whereby  a  variable  with  little   correlation  with  an  outcome  variable  is  predictive  in  a  multivariate  model  by  virtue  of  its  high   correlation  with  at  least  one  other  variable.  (Lancaster,  1999)     Given  that  there  were  significant  differences  in  BMI  z-­‐score  between  groups  following   the  LA  Sprouts  intervention,  (Gatto  et  al.,  under  review)  it  was  surprising  that  change  in   neither  fruit  nor  vegetable  intake  was  associated  with  change  in  BMI,  as  these  were  the   primary  behavioral  targets  of  the  intervention.    It  is  not  clear  from  these  analyses  which   alternate  behavioral  changes  led  to  the  observed  changes  in  BMI,  but  it  is  possible  that   collective  changes  in  diet  could  be  the  cause.  Whole  grains,  fiber,  added  sugar  and  sugar-­‐ sweetened  beverages  were  other  foods  and  nutrients  targeted  in  the  intervention,  and   changes  in  some  or  all  of  these  factors  in  combination  with  change  in  FV  intake  could  have  led   to  changes  in  BMI.  It  is  also  possible  that  a  decrease  in  sedentary  behavior  could  have  led  to   changes  in  BMI.  Also,  determinants  of  cooking  and  gardening  behaviors  improved  as  a  result   of  the  intervention,  (J.  N.  Davis  et  al.,  in  press)  which  may  have  contributed  to  changes  in  BMI     61   observed.  Future  studies  are  needed  to  determine  which  specific  behavioral  changes  are   associated  with  decreases  in  obesity  following  garden-­‐based  interventions.     The  lack  of  differences  between  intervention  and  control  groups  was  also  surprising,   given  that  significant  differences  were  observed  between  groups  following  the  intervention  in   determinants,  vegetable  intake  and  obesity.  (J.  N.  Davis  et  al.,  in  press;  Gatto  et  al.,  under   review)  The  intervention  was  thought  to  intensify  the  relationships  under  examination.  Yet,  in   the  main  outcomes  analyses,  it  was  found  that  both  groups  decreased  in  many  of  the  desired   outcomes  (including  in  vegetable  intake  and  many  determinants),  with  the  LA  Sprouts  group   decreasing  to  a  lesser  extent.  (It  is  not  known  why  both  groups  changed  in  this  manner  over   the  intervention  period,  but  it  is  possible  that  there  was  a  seasonal  effect:  follow-­‐up  data  was   collected  just  before  winter  and  summer  vacations,  which  could  have  had  an  effect  on   children’s  attention,  opinions  and  behaviors.  For  example,  during  holiday  and  end-­‐of-­‐year   parties,  children  could  be  exposed  to  more  junk  food  than  under  other  circumstances.)   Because  this  study  measures  co-­‐occurring  change,  a  positive  association  can  be  found  with   two  variables  that  both  increase  over  time,  or  from  two  variables  that  both  decrease  over   time.  Therefore,  significant  effects  from  these  analyses  could  be  driven  by  individuals  who   decreased  both  in  intake  and  in  determinants  of  intake,  as  these  analyses  do  not  discriminate   between  individuals  with  positive  versus  negative  changes.  Unfortunately,  it  is  not  known   from  these  analyses  why  individuals  changed,  especially  those  in  the  control  group.  It  has   been  demonstrated  that  the  LA  Sprouts  intervention  is  one  way  that  individuals  can  change   intake  and  determinants  of  intake  in  the  desired  directions,  and  there  are  many  other  factors   (such  as  the  school  and  home  food  environments,  parenting  practices,  etc.)  that  could  have   influenced  behavior  and  determinants  of  behavior  in  control  participants  in  positive  or   negative  directions.     There  are  some  additional  limitations  of  this  study  that  may  effect  the  interpretation   and  generalizability  of  findings.  First,  data  were  only  collected  at  two  time-­‐points,  which  may   not  be  sufficient  to  truly  measure  change.  (J.  D.  Singer  &  Willett,  2003)  Second,  there  is  often   recall  bias  with  the  use  of  dietary  screeners,  and  the  screener  chosen  may  have  posed  some   challenges  for  children  in  this  age  group.  (Garcia-­‐Dominic  et  al.,  2012)  Third,  the  use  of  co-­‐ occurring  change  scores  prevents  conclusions  about  causality  from  being  drawn.  Fourth,   determinants  of  other  dietary  behaviors  discussed  in  the  LA  Sprouts  intervention  (i.e.,  whole   grain  and  added  sugar  intake)  were  not  measured,  so  only  FV  intake  (the  primary  targeted     62   behavior)  and  respective  determinants  were  examined  in  these  analyses.  This  may  limit  our   understanding  of  how  dietary  determinants  effect  dietary  behaviors  as  a  whole,  and  how   intake  overall  effects  obesity.  Finally,  the  significant  effects  observed  in  these  analyses   provide  more  evidence  on  how  dietary  determinants  are  related  to  behavior,  but  findings  in   this  sample  of  predominantly  Latino  3 rd -­‐5 th  graders  in  Los  Angeles  may  not  generalize  to   other  populations.       These  findings  indicate  that  changes  in  controlled  motivation,  preferences,  and   willingness  to  try  foods  are  associated  with  changes  in  FV  intake.  These  may  be  relevant  areas   to  consider  when  developing  future  interventions  targeting  dietary  determinants  of  obesity  in   children.  Controlled  motivation  may  be  addressed  by  conducting  interventions  in  group  or   family  settings,  and  these  contexts  may  also  work  to  increase  willingness  to  try  foods  via  peer   pressure,  social  norms  or  parental  modeling.  Giving  children  the  opportunity  to  consume   snacks  may  also  improve  willingness  to  try  foods  and  preferences,  especially  when  they  are   introduced  in  ways  that  are  appealing  and  fun.  Presenting  the  same  foods  in  a  variety  of   formats  (for  example,  spinach  in  a  salad,  on  a  pizza,  or  with  eggs  in  a  taco)  may  also  help  to   increase  both  preferences  and  willingness  to  try  foods.  Community-­‐  or  school-­‐based   interventions  like  LA  Sprouts,  where  children  get  to  try  their  own  fruit  and  vegetable  snacks   that  they  prepare  together,  are  one  format  to  target  these  mechanisms  of  dietary  behavior   change.                                             63   Figure  3-­‐1:  Conceptual  model  for  intervention  effects  on  change  in  FV  intake  as  a  mediator   between  change  in  FV  determinants  and  change  in  BMI  z-­‐score         Note:    A  multiple-­‐group  approach  was  used  on  the  above  model,  with  group  1=  intervention   participants,  group  2=  control  participants.    For  ease  of  interpretation,  model  covariates  and   covariances  are  not  included  in  the  above  diagram.  Covariates  included  age,  sex,  school,   ethnicity  and  English  spoken  at  home.  Covariances  were  included  between  change  in  F  intake   and  change  in  V  intake,  and  among  all  FV  determinants  change  scores.                                                 64   Table  3-­‐1:  Baseline  characteristics  of  elementary  school  children  who  participated  in  a   garden-­‐based  randomized  control  trial.  (n=363)     LA  Sprouts   participants   (n=197)   Control   participants   (n=166)   p-­‐value     n  (%)            Demographic  characteristics   Sex  (male)   93  (47.2%)   79  (47.6%)   0.94   Ethnicity  (Latino)   174  (88.3%)   142  (87.7%)   0.62   English  spoken  at  home  (yes)   134  (69.8%)   128  (81.5%)   0.01 a     mean  (SD)     Age  (years)   9.3  (0.9)   9.3  (0.9)   0.96          Dietary  determinants   Motivation  to  eat  FV  (range  1-­‐4)   3.1  (0.7)   3.1  (0.7)   0.98   Self-­‐efficacy  to  eat  FV  (range  1-­‐4)   3.2  (0.8)   3.3  (0.7)   0.23   Willingness  to  try  fruit  (range  1-­‐4)   3.3  (0.6)   3.3  (0.7)   0.51   Willingness  to  try  vegetables  (range  1-­‐4)   3.0  (0.8)   2.9  (0.9)   0.16   Fruit  identification  (range  0-­‐1)   0.93  (0.16)   0.97  (0.09)   0.002 a   Vegetable  identification  (range  0-­‐1)   0.79  (0.18)   0.86  (0.14)   <0.0001 a   Fruit  preferences  (range  1-­‐3)   2.7  (0.4)   2.8  (0.3)   0.07   Vegetable  preferences  (range  1-­‐3)   2.2  (0.5)   2.2  (0.5)   0.86          Outcome  measures   Fruit  intake  (CE/d)   1.5  (1.3)   1.4  (1.3)   0.37   Vegetable  intake  (CE/d)   0.9  (0.9)   0.9  (0.9)   0.78   BMI  z-­‐score   0.9  (1.0)   1.1  (1.0)   0.20   a  Significant  difference  between  intervention  and  control  group  at  baseline     Table  3-­‐2:  Fit  statistics  at  each  model-­‐building  step   Model  step   χ 2 ,  degrees  of  freedom   (df),  p-­‐value   Comparative   Fit  Index  (CFI)   Root  Mean   Square  Error  of   Approximation   (RMSEA)   1:  Whole  sample   χ 2 =18.0,  df=9,  p=0.04   0.99   0.06   2:  Two-­‐group,  fully   constrained   χ 2 =181.4,  df=147,   p=0.03   0.97   0.04   3:  Two-­‐group,  partially   constrained  (covariance  terms   and  effects  of  covariates   released)   χ 2 =143.5,  df=142,   p=0.45   1.00   0.01   4:  Two-­‐group,  partially   constrained  (parameters  of   interest  released)   χ 2 =137.0,  df=141,   p=0.58   1.00   0.00   Two-­‐group,  partially   constrained  (change  in  kcal   added  as  a  covariate)   χ 2 =204.6,  df=162,   p=0.01   0.97   0.04     65   Figure  3-­‐2:  Associations  between  change  in  FV  determinants  and  change  in  FV  intake  among   LA  Sprouts  study  participants         Note:  A  multiple-­‐group  approach  was  used,  with  group  1=  intervention  participants,  group  2=   control  participants.    For  ease  of  interpretation,  model  covariates  and  covariances  are  not   included  in  the  above  diagram.  Covariates  included  sex,  school,  ethnicity  and  English  spoken   at  home.  Covariances  were  included  between  change  in  F  intake  and  change  in  V  intake,  and   among  all  FV  determinants  change  scores.  Gray  pathways  indicate  non-­‐significant  effects.                                       66   Figure  3-­‐3:  Baseline-­‐adjusted  associations  between  FV  determinants  and  FV  intake  among  LA   Sprouts  study  participants  at  follow-­‐up       Note:  A  multiple-­‐group  approach  was  used,  with  group  1=  intervention  participants,  group  2=   control  participants.    For  ease  of  interpretation,  model  covariates  and  covariances  are  not   included  in  the  above  diagram.  Covariates  included  sex,  school,  ethnicity  and  English  spoken   at  home.  Covariances  were  included  between  F  intake  and  V  intake,  and  among  all  FV   determinants.  Gray  pathways  indicate  non-­‐significant  effects.                                     67   CHAPTER  4:  Effect  of  environmental  greenness  and  open  recreational   space  use  on  youth  momentary  perceived  stress     Introduction     Social  and  physical  environments  provide  a  variety  of  stimuli  attracting  attention   throughout  the  day,  from  sources  such  as  cell  phones,  advertisements,  and  the  behaviors  of   other  people  in  our  vicinity.  Although  many  of  these  stimuli  enrich  our  lives  in  a  variety  of   ways,  they  may  also  wear  on  our  attentional  capacity  and  ability  to  be  resilient  in  difficult   situations.  (S.  Kaplan,  1995)  An  inadequacy  of  resources  (either  psychological,  for  example   patience,  or  tangible,  for  example,  money)  to  respond  to  these  stimuli  can  elicit  a  stress   response,  manifesting  in  a  physiological  change  in  our  bodies  (for  example,  higher  blood   pressure  and  increased  respiration).  (S.  Kaplan,  1995)  Furthermore,  some  stimuli,  such  as   noise,  traffic  and  neighborhood  violence  may  encourage  stress  without  having  any  positive   benefit  in  our  lives.  (G.  W.  Evans,  2003)     In  contrast  to  an  urbanized  environment,  activities  in  the  natural  world  may  serve  to   reduce  stress  (however,  it  should  be  noted  that  natural  environments  that  are  perceived  to  be   unsafe  are  unlikely  to  reduce  stress).  Two  prominent  theories  attempt  to  explain  the  effect   that  the  natural  world  has  on  individual  stress  levels.  Kaplan’s  Attention  Restoration  Theory   posits  that  time  spent  in  nature  can  be  beneficial  to  decrease  mental  fatigue  and  improve   concentration  because  the  natural  environment  is  less  complex  than  developed  ones.  (R.   Kaplan  &  Kaplan,  1989;  S.  Kaplan,  1995)  Another  prominent  theory  of  the  environmental   impact  on  stress  is  Ulrich’s  Stress  Reduction  Theory,  which  posits  that  natural  environments   are  inherently  pleasing  and  promote  positive  emotions,  therefore  mitigating  negative   emotions  and  diminishing  stress.  (Ulrich,  1986)  Experimental  studies  also  support  this   relationship.  For  example,  in  a  study  where  participants  were  asked  to  walk  in  a  nature   preserve  versus  an  urban  setting,  those  in  nature  had  a  greater  decrease  in  blood  pressure   following  the  walk.  (Hartig  et  al.,  2003)  In  this  same  study,  after  performing  a  stressful  task,   participants  had  more  rapid  decreases  in  blood  pressure  when  sitting  in  a  room  with  a  nature   view,  compared  to  participants  who  recovered  in  a  windowless  room.  (Hartig  et  al.,  2003)   Other  similar  experiments  have  demonstrated  additional  positive  physiological  outcomes   following  experiences  with  nature,  including  decreased  salivary  cortisol,  lower  heart  rate,  and   less  reported  tension  and  anxiety.  (J.  Lee  et  al.,  2011;  Park  et  al.,  2011)     68     Elucidating  the  relationship  between  the  natural  environment  and  stress  is  valuable   given  the  importance  of  stress  in  affecting  our  mental  health  and  quality  of  life.  (McEwen,   2008;  Ramirez,  Graham,  Richards,  Cull,  &  Gregory,  1996;  Reibel,  Greeson,  Brainard,  &   Rosenzweig,  2001)  Our  physical  health  is  also  impacted  by  stress,  and  notably,  stress   increases  the  risk  for  obesity,  a  substantial  problem  among  children  in  the  United  States.   (Ogden,  2012)  The  primary  metabolic  mechanism  through  which  stress  contributes  to  obesity   is  in  activation  of  the  hypothalamic-­‐pituitary-­‐adrenal  (HPA)  axis,  which  releases  the  hormone   cortisol  and  increases  visceral  adiposity.  (McEwen,  2008;  Rosmond,  2003)  Additionally,  stress   can  impact  obesity-­‐related  behaviors,  namely  in  consumption  of  foods  high  in  fat  and  sugar.   (Dallman  et  al.,  2003)  High  sugar  foods  are  especially  deleterious  for  obesity-­‐related  chronic   disease,  and  are  possibly  the  most  damaging  food  type.  (Lustig,  Schmidt,  &  Brindis,  2012)   Better  understanding  of  the  determinants  of  stress,  including  those  at  the  environmental   level,  may  be  valuable  in  limiting  child  obesity  and  subsequent  related  disease.       One  environmental  factor  that  may  mitigate  child  stress  is  green  space  in  the  natural   environment,  as  mentioned  above.  This  area  of  research  is  not  well  explored  in  children,   especially  the  impact  of  green  spaces  that  are  visited  as  part  of  their  everyday  lives.  In  one   study,  percent  of  neighborhood  park  area  was  inversely  related  to  adolescent  stress,  (Feda  et   al.,  2014)  and  another  found  that  neighborhood  greenness  was  negatively  related  to  child   body  mass  index  (BMI)  two  years  later,  with  stress  being  a  possible  mechanism  the  authors   suggest  for  this  relationship.  (J.  F.  Bell  et  al.,  2008)  One  major  issue  in  this  area  of  research  is   that  stress  is  highly  variable  and  may  be  affected  by  a  variety  of  different  factors;  therefore,   exploring  the  true  temporal  causal  relationship  is  difficult.  (Spruijt-­‐Metz  et  al.,  2014)  Also,   neighborhood  presence  of  green  space  may  not  represent  child  utilization  of  that  space,  and   there  is  uncertainty  in  the  timing  and  duration  of  use  of  this  space.  (Kwan,  2012a;  2012b)  A   solution  to  both  of  these  problems  is  in  the  use  of  ecological  momentary  assessment,  or  EMA.   EMA  allows  for  data  to  be  collected  on  individuals  in  their  free-­‐living  everyday  environment,   and  includes  periodic  prompts  for  individuals  to  report  their  current  activities  and   perceptions  (such  as  perceived  stress).  (Stone  &  Shiffman,  1994)  Global  positioning  system   (GPS)  data  can  also  be  collected  on  individuals  via  the  same  mobile  devices  used  for  EMA,  and   GPS-­‐derived  variables  can  provide  information  on  the  specific  physical  environmental   conditions  individuals  are  in  when  they  answer  EMA  prompts.  This  study  uses  EMA  and  GPS   data  to  examine  the  impact  that  exposure  to  green  space  presence  has  on  momentary     69   perceived  stress  in  children.  We  hypothesize  that  after  accounting  for  physical  activity,  when   children  are  in  greener  environments,  they  will  report  less  stress,  compared  to  when  they  are   in  other  environments.       Methods   Participants  and  Study  Design   Data  used  in  these  analyses  are  from  the  Mobile  Healthy  PLACES  study,  an   observational  EMA  study  of  a  subset  of  children  participating  in  the  Healthy  PLACES  study.   (Dunton  et  al.,  2009b;  2011;  2012;  2014)  In  this  study,  participants  either  recently  moved  to  a   Smart  Growth  community,  or  lived  in  a  neighborhood  comparison  community  (quasi-­‐ experimental  design  with  non-­‐random  groups,  communities  were  demographically   equivalent).  All  data  used  in  these  analyses  were  collected  at  baseline  of  the  Health  PLACES   study.  A  detailed  description  of  study  design,  recruitment,  participants  and  measures  can  be   found  elsewhere.  (Almanza  et  al.,  2012;  Dunton  et  al.,  2009b;  2011;  2012;  2014)  Briefly,   criteria  for  inclusion  in  this  study  were  the  following:  1)  child  was  in  grades  three  through   eight;  2)  family  lived  in  Chino,  CA  (the  location  of  the  Smart  Growth  community)  or  in  the   surrounding  community;  3)  annual  family  income  <$165,000;  and  4)  child  ability  to  answer   questions  in  English.  No  additional  criteria  were  imposed  for  inclusion  in  these  analyses.  This   study  was  approved  by  the  University  of  Southern  California  Institutional  Review  Board,  and   all  children  and  families  provided  assent/parental  permission  to  participate.           Demographic  and  Anthropometric  Measures     Sex,  age  and  ethnicity  were  reported  via  questionnaire.  Height  was  measured  using  a   portable  stadiometer  (PE-­‐AIM-­‐101,  Perspective  Enterprises,  Portage,  MI)  and  weight  was   measured  using  a  Tanita  WB  110A  (Arlington  Heights,  IL).  Body  mass  index  (BMI)  percentile   for  age  and  sex  was  calculated  according  to  Centers  for  Disease  Control  criteria.  (Kuczmarski   et  al.,  2002)     Stress  Measure   EMA  data  on  perceived  stress  were  collected  over  a  four-­‐day  period,  from  Friday  at   4pm  to  Monday  at  8:30pm  (no  data  were  collected  prior  to  4pm  on  Monday  when  children   were  in  school).  All  EMA  data  were  collected  via  a  mobile  phone  (HTC  Shadow,  T-­‐Mobile  USA,     70   Inc.)  provided  to  participants  with  custom  software  installed,  and  participants  were   compensated  up  to  $40  for  their  participation,  depending  on  the  number  of  questions   answered.   Stress  was  measured  with  a  single  item:  “How  STRESSED  were  you  feeling  just  before   the  beep  went  off?”,  and  children  had  four  response  options  ranging  from  “Not  at  All”  to   “Extremely”.    A  total  of  20  EMA  prompts  were  given  to  each  participant  at  a  random  time  over   preprogrammed  intervals  over  the  four-­‐day  observation  period,  and  stress  was  randomly   measured  at  12  of  the  20  times  (60%).    Participants  were  prompted  to  answer  questions  by   an  audible  indicator,  and  three  reminder  signals  were  given  at  5-­‐minute  intervals  if   participants  failed  to  answer  the  prompt.       Green  Space  Measures     Participants  were  provided  with  a  BT-­‐335  portable  GPS  (GlobalSat  Technology  Corp,   Taiwan)  to  measure  momentary  location,  and  green  space  measures  were  derived  using  the   geographical  information  system  ArcGIS  (version  9.3,  ERSI,  Redlands,  CA)  for  the  period  of   March-­‐May  2010.  (Almanza  et  al.,  2012)  Two  variables  were  used  as  a  measure  of  green   space:  Normalized  Difference  Vegetation  Index  (NDVI,  a  measure  of  vegetation  density)  and   Open  Recreational  Space  (ORS),  a  land  use  type  defined  by  the  Southern  California   Association  of  Governments.    NDVI  has  a  range  of  -­‐1  to  +1,  with  a  greater  number  indicating   greater  vegetation  density.  Negative  values  (usually  representing  water)  were  coerced  to   zero,  with  a  zero  NDVI  value  corresponding  to  barren  earth  (such  as  in  areas  of  sand  or  rock).   All  data  were  rescaled  over  the  10-­‐90 th  percentile  range  to  improve  interpretability.  The  ORS   variable  was  dichotomized  to  indicate  being  in  an  ORS  (which  included  golf  courses,  parks,   wildlife  preserves,  gardens  and  arboreta,  and  beaches,  among  others),  versus  not.  (Southern   California  Association  of  Governments,  2005)       Physical  Activity  Measure     Physical  activity  (PA)  was  used  as  a  covariate  in  these  analyses,  given  the  association   between  PA  and  stress.  (Fox,  1999)  PA  was  measured  using  an  Actigraph  GT2M   accelerometer  (Actigraph  LLC,  Pensacola,  FL).  (Lopes,  Vasques,  Maia,  &  Ferreira,  2007)  Total   number  of  steps  in  the  30-­‐minute  interval  prior  to  each  EMA  prompt  was  used  as  an  indicator   of  PA.     71   Analyses     EMA,  GPS  and  accelerometer  data  were  merged  within  the  closest  30-­‐second  period.   The  environmental  context  at  both  the  time  of  the  EMA  prompt  (simultaneous)  and  in  the  30-­‐ minutes  prior  to  each  prompt  was  of  interest,  and  both  NVDI  and  ORS  at  each  of  these  times   were  used  as  predictors.  To  create  the  30-­‐minute  NDVI  variable,  the  mean  of  the  NDVI   measures  for  30  minutes  prior  to  an  EMA  prompt  were  used.  To  create  the  30-­‐minute  ORS   variable,  the  number  of  minutes  a  participant  was  in  an  ORS  during  that  time  period  was   counted,  and  the  proportion  of  minutes  in  an  ORS  was  used.  Also,  mean  NVDI  score  over  the   entire  observation  period  and  total  number  of  minutes  in  an  ORS  was  obtained.  Partial   correlations  were  examined  between  these  summary  variables  for  NDVI  and  ORS  over  all   observation  days  and  mean  reported  participant  stress.  Stress  was  treated  as  a  continuous   variable  throughout  these  analyses.   Multi-­‐level  models  were  used  to  examine  effect  of  green  space  variables  (simultaneous   and  30-­‐minute  prior  NDVI  and  ORS)  as  predictors  of  stress.  (J.  D.  Singer  &  Willett,  2003)  The   simultaneous  NDVI  variable  was  partitioned  into  two  variables,  one  to  represent  the   between-­‐person  simultaneous  NDVI  (i.e.,  the  mean  NVDI  score  for  each  individual  at  the  times   when  stress  was  measured),  and  the  other  to  represent  the  within-­‐person  variance  in  NDVI   (i.e.,  at  any  given  timepoint,  the  difference  between  the  individual  mean  and  the  value  at  that   instance).  (Hedeker,  Mermelstein,  &  Demirtas,  2012)  This  was  also  be  done  for  the  30-­‐minute   NDVI  variable,  30-­‐minute  ORS  variable,  and  PA.  For  momentary  ORS  (binary),  the  between-­‐ person  variance  was  set  to  the  proportion  of  occasions  in  an  ORS  when  stress  was  measured,   and  the  within-­‐person  variance  remained  binary.  (Hedeker,  Mermelstein,  Berbaum,  &   Campbell,  2009)  The  aforementioned  between-­‐subject  variables,  in  addition  to  other   continuous  covariates,  were  centered  around  means  for  the  entire  sample  (grand  mean   centered).  Predictors  were  examined  in  univariate  analyses,  and  outliers  were  identified   using  box-­‐and-­‐whisker  plots  and  removed  (data  with  values  >(  3 rd  quartile  +   1.5*(interquartile  range))  and  <(1 st  quartile  –  1.5*(interquartile  range))  were  removed).   Given  that  stress  was  a  discrete  variable,  there  were  not  any  outliers  removed.     The  longitudinal  model  has  two  levels:  Level  1  describes  within-­‐person  differences  and   Level  2  describes  between-­‐person  differences.  (J.  D.  Singer  &  Willett,  2003)  The  Level  1  model   is  specified  as  follows:   Yij  =  π0i  +  π1iZij  +  εij     72   where  Yij  is  reported  stress  for  individual  i  at  time  j,  π0i  is  the  true  initial  status  for  individual  i,   π1i  is  the  slope  representing  the  effect  of  time-­‐varying  predictor  terms  Zij,  and  εij  is  random   measurement  error.  The  Level  2  model  is  then  specified  as  follows:   π0i  =  γ00  +  γ0kZi  +  ζ0i   π1i  =  γ10  +  γ1kZi  +  ζ1i   where  γ00  and  γ10  are  the  population  average  initial  status  and  rate  of  change,  respectively;  γ0k   and  γ0k  are  slopes  representing  the  effect  of  predictor  terms  Zi;  and  ζ0i  and  ζ1i  are  the  residuals   (individual  deviations).     Goodness  of  fit  was  established  by  checking  normality  and  homoscedasticity  of  error   terms.  (J.  D.  Singer  &  Willett,  2003)  A  priori  individual  covariates  included  age,  sex,  ethnicity   (dummy  coded  with  multiple  levels),  annual  household  income  (a  continuous  variable),   neighborhood  group  (Smart  Growth  Community  versus  control),  BMI  percentile,  and  PA.   Between-­‐person  covariates  were  entered  in  the  Level  2  model  (within-­‐person  PA  was   included  in  the  Level  1  model).  Temporal  covariates  included  time  of  day,  day  of  week   (categorical,  dummy  coded  with  reference=Friday),  day  of  study  (ordinal),  and  prompt   number  (entered  in  Level  1  of  the  model).  For  model  parsimony,  backward  selection  was   employed  to  remove  non-­‐contributing  covariates.  Covariates  were  left  in  the  model  when   removal  of  the  covariate  of  interest  resulted  in  a  >20%  change  in  a  coefficient  of  interest,  or   when  statistically  significant.     Follow-­‐up  models  examined  stress  as  a  binary  outcome  (no  stress  versus  at  least  some   level  of  stress)  and  green  space  predictors  as  categorical  variables.  Categories  were   determined  by  examining  univariate  distributions  and  observations  were  assigned  to  one  of   three  levels.  For  momentary  and  30-­‐minute  NVDI  variables,  the  following  categories  were   used:  NDVI=0,  0<NVDI≤0.25,  NDVI<0.25  (maximum  NDVI  value  for  both  30  minute  and   momentary  NDVI  was  0.52).  For  30-­‐minute  ORS  use,  the  following  categories  were  used:   %ORS=0,  0<%ORS<1,  %ORS=1.  (Momentary  ORS  use  was  not  categorized  given  it  is  a  binary   variable.)   Given  the  longitudinal  nature  of  this  study,  missingness  is  a  concern  in  these  analyses,   as  this  can  impact  parameter  estimates  and  interpretations.  (J.  D.  Singer  &  Willett,  2003)  In   this  study,  data  were  presumed  to  be  missing  at  random  (MAR),  such  that  missingness  may   depend  on  any  of  observed  data,  but  does  not  depend  on  any  unobserved  variables.  (J.  D.     73   Singer  &  Willett,  2003)  According  to  Graham,  once  variables  known  to  predict  missingness   are  included  in  the  model,  then  the  missing  completely  at  random  (MCAR)  criteria  is   essentially  met.  (Graham,  2012)  To  test  this,  a  binary  variable  for  missingness  of  an  EMA   stress  measure  was  created,  and  all  of  the  above  aforementioned  covariates  were  examined  as   possible  predictors  of  missingness  in  separate  multilevel  logistic  regression  models.  Prior   missingness  and  measures  of  positive  and  negative  affect  (measured  via  EMA)  were  also   considered  as  possible  predictors  of  missing  an  EMA  prompt,  based  on  theoretical   considerations.  Those  that  were  significant  predictors  of  missingness  were  included  as   covariates  in  main  outcomes  models,  and  were  not  removed  during  backward  selection.   Analyses  were  conducted  using  SAS  PROC  MIXED  version  9.3  (SAS  Institute,  Inc.,  Cary,   NC),  using  restricted  maximum  likelihood  as  the  method  of  estimation,  and  an  unstructured   covariance  matrix.  In  tests  for  predictors  of  missingness,  SAS  PROC  GLIMMIX  with  a  logit  link   function  and  binomial  distribution  was  used.       Results   One  hundred  and  nine  children  (51%  male,  age  10.9±1.2  years,  Table  4-­‐1)  had  at  least   partial  data,  and  there  were  979  valid  observations  with  a  stress  measure  (range  2-­‐12   observations  with  corresponding  GPS  data  within  participant;  mean  number  of  observations   per  participant  8.9±3.0).  Latinos  comprised  the  largest  ethnic  group  at  31.4%  of  participants.   Among  participating  children,  39.6%  were  overweight  (BMI  ≥  85 th  percentile  for  age  and  sex),   and  20.8%  were  obese  (BMI  ≥  95 th  percentile).    Reported  stress  was  generally  low  (mean   0.4±0.6),  and  participants  spent  10.8%  of  their  time  during  the  observation  period  in  ORS   (9.7%  of  time  in  30  minutes  prior  to  prompts  was  in  ORS).  Mean  NDVI  over  the  entire   observation  period  was  0.18±0.12,  and  mean  NDVI  in  30  minutes  prior  to  prompts  was   0.12±0.19.   Tests  for  predictors  of  missingness  revealed  that  two  variables  were  significant   predictors  of  the  likelihood  of  failing  to  respond  to  any  given  EMA  prompt:  the  total  number   of  prior  EMA  prompts  missed  was  positively  related  to  missingness,  (between-­‐subject  prior   missingness;  p<0.0001),  such  that  those  who  missed  more  prior  prompts  on  average  had  a   greater  likelihood  of  failing  to  respond  to  a  prompt;  and  the  mean  score  for  feeling  energetic   was  positively  related  to  missingness  (an  affect  measure;  between-­‐subject  energetic;  p=0.01),     74   such  that  those  who  reported  feeling  more  energetic  overall  had  a  greater  likelihood  of  failing   to  respond  to  a  prompt.  Both  of  these  covariates  were  included  in  all  final  models.     From  partial  correlations,  there  were  no  significant  associations  between  mean   reported  stress  and  either  overall  ORS  use  or  NDVI  (r  =  0.21,  p=0.09;  r  =  0.03,  p=0.81;   respectively).  There  were  no  associations  between  EMA-­‐reported  stress  and  either   momentary  NDVI  or  ORS  use  (for  momentary  NDVI,  between-­‐person:  -­‐0.05±0.40,  p=0.90,   within-­‐person:  -­‐0.19±0.17,  p=0.26;  for  momentary  ORS,  between  person:  0.35±0.28,  p=0.21,   within-­‐person:  -­‐0.09±0.06,  p=0.26;  Tables  4-­‐2  and  4-­‐3,  respectively).  Covariates  for  the  test   of  momentary  NDVI  included  the  aforementioned  from  the  test  for  predictors  of  missingness,   ethnicity,  physical  activity,  and  day.  Covariates  for  the  test  of  momentary  ORS  included  those   from  the  test  for  predictors  of  missingness,  physical  activity,  day,  and  prompt  number.     There  were  also  no  associations  between  EMA-­‐reported  stress  and  either  30-­‐minute   NDVI  or  ORS  use  (for  30-­‐minute  NDVI,  between-­‐person:  -­‐0.22±0.33,  p=0.51,  within-­‐person:   0.07±0.18,  p=0.69;  for  30-­‐minute  ORS,  between  person:  0.18±0.18,  p=0.32,  within-­‐person:  -­‐ 0.02±0.13,  p=0.87;  Tables  4-­‐4  and  4-­‐5,  respectively).  Covariates  for  the  test  of  30-­‐minute   NDVI  included  the  aforementioned  from  the  test  for  predictors  of  missingness  and  day.   Covariates  for  the  test  of  30-­‐minute  ORS  included  those  from  the  test  for  predictors  of   missingness,  day,  and  prompt  number.     There  were  no  significant  effects  when  stress  was  examined  as  a  binary  variable,  or   when  green  space  variables  were  categorized  (data  not  shown).  Fit  was  acceptable  for  all  final   models.       Discussion   This  study  of  109  youth  in  Southern  California  examined  the  associations  between   reported  stress  and  green  space  use,  measured  via  NDVI  and  ORS  use.  This  study  is  one  of  the   few  studies  to  examine  whether  time  in  nature  has  a  therapeutic  effect  on  stress  in  children.   The  following  relationships  were  examined:  overall  green  space  use  and  mean  stress  over  the   entire  4-­‐day  observation  period,  stress  and  green  space  use  at  the  time  of  self-­‐report,  and   stress  and  green  space  use  in  the  30  minutes  prior  to  self-­‐report.  This  study  found  that  there   was  no  association  between  green  space  use  and  stress  in  youth.     As  mentioned,  there  is  little  prior  research  examining  the  effect  of  green  space  on   stress  in  youth.  To  our  knowledge,  a  study  by  Feda  et  al.  is  the  only  other  study  to  examine     75   neighborhood  green  space  and  stress  in  children.  This  study  examined  percent  neighborhood   park  area  and  stress  via  the  14-­‐item  perceived  stress  scale  in  68  adolescents,  and  found  there   to  be  an  inverse  association  between  neighborhood  park  area  and  stress  (β=-­‐62.6,  p<0.03).   (Feda  et  al.,  2014)  The  present  study  differs  from  this  study  in  that  it  measures  utilization  of   green  space  by  children,  whereas  the  study  by  Feda  et  al.  only  measures  the  presence  of   neighborhood  green  space.     The  lack  of  significant  effects  in  this  study  is  surprising  given  the  theoretical  support   for  this  relationship.  (Bratman  et  al.,  2012;  R.  Kaplan  &  Kaplan,  1989;  Ulrich,  1986)  Also,  there   is  data  from  experimental  studies  demonstrating  that  nature  can  be  restorative  after   performing  a  stressful  task,  yet  these  data  were  collected  in  adults.  (Hartig  et  al.,  2003)  A   limitation  in  this  study  is  that  stress  was  measured  at  random  times  over  regular  intervals,   and  not  necessarily  when  individuals  were  experiencing  high  stress.    Participants  said  they   felt  ‘extremely’  stressed  in  only  3.1%  of  observations,  and  they  reported  feeling  ‘quite  a  bit’   stressed  in  only  5.6%  of  observations.  If  more  data  were  available  during  times  of  high  stress,   it  may  be  possible  to  further  examine  the  environmental  influences  on  stress  and  coping.     Another  limitation  of  this  study  was  that  participants  spent  minimal  time  in  green   areas.  Participants  were  in  areas  with  zero  greenness  at  the  time  of  self-­‐report  69.4%  of  the   time,  and  in  areas  with  zero  greenness  in  the  30  minutes  prior  in  68.9%  of  the  time.  Yet,  in   Southern  California,  where  these  data  were  collected,  there  are  many  popular  natural  areas   with  low  vegetation  density,  such  desert  and  coastal  areas.  Mountains  and  foothills  in  the   area,  where  the  primary  vegetation  is  brush  and  chaparral  due  to  the  semi-­‐arid  climate,   would  also  be  expected  to  have  a  low  amount  of  greenness.    Furthermore,  given  chronic   drought  conditions  in  Southern  California,  many  parks  may  have  implemented  a  reduced-­‐ watering  schedule,  even  when  these  data  were  collected  in  2010.  However,  participants  were   in  open  recreational  spaces  at  the  time  of  self-­‐report  only  7.0%  of  the  time,  and  participants   spent  some  time  in  an  ORS  in  the  30  minutes  prior  to  self-­‐report  only  24.3%  of  times.  Also,  it   is  not  possible  to  tell  from  these  data  whether  participants  were  indoors  or  outdoors,  which   would  likely  affect  the  relationship  between  area  vegetation  and  stress.  (However,  it  has  been   shown  that  even  looking  out  a  window  onto  a  natural  landscape  can  be  beneficial  for  stress   reduction).  (Hartig  et  al.,  2003)  Participants  were  asked  during  select  prompts  whether  or  not   they  were  outdoors,  but  there  were  only  62  instances  when  both  this  question  and  the   question  on  stress  were  asked.  Just  as  it  would  be  helpful  to  have  more  data  available  during     76   times  when  participants  experienced  moderate-­‐to-­‐high  stress,  it  may  have  been  possible  to   learn  more  about  the  relationship  between  nature  and  stress  had  there  been  more  data   available  during  times  when  participants  were  in  natural  areas  with  higher  vegetation   density.  Mean  NDVI  over  the  entire  monitoring  period  was  0.18,  whereas  it  was  only  0.12  on   average  during  the  30  minutes  prior  to  self-­‐report,  indicating  that  not  all  experiences  in   (relatively)  higher  vegetation  density  were  captured.  This  research  question  can  be  better-­‐ addressed  with  a  study  design  that  collects  environmental  information  from  individuals   during  times  of  high  stress,  or  one  that  collects  stress  data  upon  entering  or  leaving  a  natural   area.     Another  consideration  when  interpreting  these  findings  is  the  lack  of  information  on   the  social  environment.  In  this  study,  there  was  no  significant  difference  in  reported  stress   when  children  reported  being  with  parents,  siblings,  other  family,  friends,  classmates  or   strangers  (data  not  shown).    However,  interpersonal  dynamics  are  very  complex,  and  it  is   possible  for  individuals  to  feel  high  stress  or  great  happiness  and  serenity  with  the  same   individual  at  different  times.  Youth  may  be  particularly  susceptible  to  stress  from  their  social   environment,  (Moksnes  et  al.,  2010b)  for  example  from  challenging  family  dynamics,  pressure   from  peers,  or  the  presence  of  strangers.  Also,  some  natural  areas  may  not  be  as  calming  as   others.  For  example,  parks  next  to  a  noisy  freeway,  or  with  homelessness  or  gang  activity,  are   not  as  likely  to  be  calming  or  restorative.   There  are  some  other  limitations  in  this  study.  One  limitation  was  the  measure  of   reported  stress,  which  was  limited  to  a  single  item  with  four  response  options.  Also,  the   bidirectional  relationship  between  stress  and  green  space  use  was  not  examined  in  this  study,   and  given  the  measurement  schedule  of  the  stress  variable,  it  is  not  known  whether  or  not   participants  ever  sought  out  green  space  to  cope  with  stress.  Furthermore,  data  were   collected  over  a  4-­‐day  period,  which  may  not  be  fully  representative  of  children’s  lives.   However,  this  study  was  the  first,  to  our  knowledge,  to  measure  stress  and  geographic   environment  in  real  time  in  children.  Also,  physical  activity  is  well-­‐controlled  through  the  use   of  accelerometers.   Although  there  was  no  significant  association  found  in  this  study  between  time  in   green  space  and  self-­‐reported  stress  in  children,  this  study  design  was  not  highly  appropriate   to  use  to  measure  this  relationship.  The  use  of  real-­‐time  data  was  a  major  strength,  but  the   small  amount  of  data  captured  during  pivotal  instances  make  it  difficult  to  draw  conclusions     77   from  these  findings.  More  observational  studies  are  needed  to  examine  the  effect  of  green   space  on  stress,  especially  in  children,  but  more  deliberate  action  must  be  taken  to  ensure   that  data  is  collected  during  critical  times.    One  possible  approach  could  be  to  ask  participants   to  report  on  their  environment  when  they  feel  stressed,  but  they  are  likely  to  be  distracted   during  these  times  and  may  not  be  reliable  in  performing  self-­‐report.  It  is  also  possible  for   individuals  to  be  distracted  in  a  different  manner  when  they  visit  natural  areas,  such  as  when   they  are  fully  present  in  taking  in  a  beautiful  setting.  However,  as  data  collection  tools   improve  through  the  use  of  mobile-­‐monitoring  prompt  triggers  (such  as  GPS  alerts  when   entering  or  leaving  a  park,  or  an  increase  in  heart  rate  as  proxy  for  higher  stress),  bias  from   the  need  to  initiate  self-­‐report  can  be  reduced.  Studies  that  employ  these  new  technologies  to   examine  the  effect  of  green  space  on  stress  are  needed  in  order  to  inform  recommendations   for  child  stress  and  obesity  prevention.           Table  4-­‐1:  Baseline  characteristics  of  109  3 rd -­‐8 th  grade  children  in  Chino,  CA   Demographic  characteristics   n  (%)        Sex  (male)   54  (50.9%)        Ethnicity:                  Black   10  (9.5%)                Asian   15  (14.3%)                Latino   33  (31.4%)                White   23  (21.9%)                Mixed   17  (16.2%)                Other   7  (6.7%)     mean  (SD)        Age  (years)   10.9  (1.2)        BMI  percentile   64.4  (30.8)        Annual  household  income  (dollars)   78,507  (39,829)   Individual  modifiable  characteristics          Perceived  stress  (range  0-­‐3)   0.4  (0.6)        Physical  activity  (steps/30  min  prior  to  prompt)   335.7  (510.4)   Environmental  characteristics  (over  entire   observation  period)          Normalized  Difference  Vegetation  Index  (range  0-­‐1)   0.18  (0.12)     Percent  of  time  over  entire   observation  period        Open  Recreational  Space  use     10.8  (20.2)         78     Table  4-­‐2:  Momentary  normalized  difference  vegetation  index  (NDVI)  as  a  predictor  of  stress   in  3 rd -­‐8 th  grade  children  in  Chino,  CA  (n=964  observations)   Parameter   Coefficient  (SE)   p-­‐value   Intercept   0.72  (0.16)   <0.0001   Ethnicity  (Black)   -­‐0.53  (0.21)   0.01     Ethnicity  (Asian)   -­‐0.11  (0.19)   0.56  a   Ethnicity  (Latino)   -­‐0.36  (0.18)   0.04   Ethnicity  (White)   -­‐0.37  (0.18)   0.04   Ethnicity  (Mixed)   -­‐0.34  (0.18)   0.06   Between-­‐subject  energetic   -­‐0.02  (0.07)   0.72   Between-­‐subject  prior  missingness   -­‐0.47  (0.29)   0.11   Between-­‐subject  physical  activity   -­‐0.08  (0.04)   0.03   Day  (Friday)   -­‐0.04  (0.06)   0.52  a   Day  (Monday)   0.16  (0.07)   0.02   Day  (Saturday)   -­‐0.06  (0.05   0.25  a   Between-­‐subject  momentary  NDVI   -­‐0.05  (0.40)   0.90   Within-­‐subject  momentary  NDVI   0.19  (0.17)   0.26   a  F-­‐test  p-­‐value  <  0.05         Table  4-­‐3:  Momentary  open  recreational  space  (ORS)  use  as  a  predictor  of  stress  in  3 rd -­‐8 th   grade  children  in  Chino,  CA  (n=573  observations)   Parameter   Coefficient  (SE)   p-­‐value   Intercept   0.79  (0.21)   <0.001   Between-­‐subject  energetic   0.02  (0.08)   0.77   Between-­‐subject  prior  missingness   -­‐0.51  (0.35)   0.15   Between-­‐subject  physical  activity   -­‐0.08  (0.04)   0.05   Day  (Friday)   -­‐0.42  (0.19)   0.02   Day  (Monday)   0.39  (0.11)   <0.001   Day  (Saturday)   -­‐0.28  (0.12)   0.02   Prompt  number   -­‐0.03  (0.01)   0.04   Between-­‐subject  momentary  ORS  use   0.35  (0.28)   0.21   Within-­‐subject  momentary  ORS  use   -­‐0.09  (0.06)   0.26                           79   Table  4-­‐4:  Thirty-­‐minute  normalized  difference  vegetation  index  (NDVI)  as  a  predictor  of   stress  in  3 rd -­‐8 th  grade  children  in  Chino,  CA  (n=969  observations)   Parameter   Coefficient  (SE)   p-­‐value   Intercept   0.66  (0.16)   <0.0001   Between-­‐subject  energetic   -­‐0.001  (0.07)   0.98   Between-­‐subject  prior  missingness   -­‐0.36  (0.30)   0.22   Day  (Friday)   -­‐0.25  (0.14)   0.08  a   Day  (Monday)   0.25  (0.09)   <0.01   Day  (Saturday)   -­‐0.19  (0.09)   0.04   Between-­‐subject  30-­‐minute  NDVI   -­‐0.22  (0.33)   0.51   Within-­‐subject  30-­‐minute  NDVI   0.07  (0.18)   0.69   a  F-­‐test  p-­‐value  <  0.05             Table  4-­‐5:  Thirty-­‐minute  open  recreational  space  (ORS)  use  as  a  predictor  of  stress  in  3 rd -­‐8 th   grade  children  in  Chino,  CA  (n=706  observations)   Parameter   Coefficient  (SE)   p-­‐value   Intercept   0.80  (0.19)   <0.0001   Between-­‐subject  energetic   -­‐0.02  (0.07)   0.75   Between-­‐subject  prior  missingness   -­‐0.41  (0.32)   0.21   Day  (Friday)   -­‐0.39  (0.17)   0.02   Day  (Monday)   0.35  (0.10)   <0.001   Day  (Saturday)   -­‐0.27  (0.11)   0.01   Prompt  number   -­‐0.03  (0.01)   0.03   Between-­‐subject  30-­‐minute  ORS  use   0.18  (0.18)   0.32   Within-­‐subject  30-­‐minute  ORS  use   -­‐0.02  (0.13)   0.87                                       80   CHAPTER  5:  Discussion     Summary  of  Findings     Childhood  obesity  is  a  major  public  health  issue  in  the  United  States  (US),  and  of  the   estimated  74.5  million  children  living  in  the  US,  approximately  24  million  are  estimated  to  be   overweight  or  obese.  (childstats.gov,  2013;  Ogden,  2012)  Understanding  opportunities  for   prevention  and  treatment  is  imperative  in  order  to  reduce  obesity  and  associated   comorbidities  in  children.  Although  there  are  many  non-­‐modifiable  characteristics   contributing  to  childhood  obesity,  such  as  genetics,  individual  behaviors  (including  diet  and   physical  activity)  and  other  modifiable  individual-­‐level  characteristics  (such  as  stress)  play  a   major  role  in  obesity  development.  (Centers  for  Disease  Control  and  Prevention  (CDC),   2013a)  The  goal  of  this  body  of  work  was  to  understand  how  differing  environmental  levels,   the  social,  structured  learning,  and  physical  environments,  affect  obesity-­‐related  behaviors  in   children.  The  first  objective  was  to  examine  patterns  of  similarity  among  adolescent  friends  in   their  dietary  intake,  specifically  fruit,  vegetables  (FV)  and  soda.    These  three  food  types  are   important  as  they  are  associated  with  risk  for  obesity,  and  are  consumed  in  amounts  highly   disproportional  to  their  nutritional  value.  (He  et  al.,  2004;  Kimmons  et  al.,  2009;  Malik  et  al.,   2006;  Nielsen  &  Popkin,  2004)  The  second  objective  was  to  examine  the  impact  of  a  school   garden-­‐based  nutritional  education  program  on  FV  intake  as  a  mediator  between  FV   determinants  and  BMI.  The  third  objective  was  to  examine  the  impact  of  green  space  use  on   child  perceived  stress  in  their  everyday  living  environments.       Results  from  Study  1  indicate  that  there  were  not  any  overall  similarities  among   middle  school  friends  in  their  intake  of  fruit,  vegetables  or  soda.  It  was  also  found  that  there   were  not  any  significant  sender  or  receiver  effects,  such  that  the  dietary  behaviors,  as   measured  in  this  study,  did  not  affect  the  number  of  friends  nominated  or  the  number  of   times  a  person  was  nominated.  Since  it  may  not  be  plausible  to  expect  that  all  friendships   share  similar  dietary  patterns,  smaller  communities  within  each  classroom  were  identified,   and  similarities  among  friends  in  dietary  behaviors  were  examined  in  these  groups.   Surprisingly,  there  were  very  few  communities  with  significant  homophily  on  dietary  intake   among  members.  Only  two  communities  had  significant  homphily  on  vegetable  intake,  and   one  community  each  had  significant  homophily  on  fruit  and  soda  intake.  However,  homophily   as  measured  by  the  absolute  difference  between  those  who  share  direct  connections,  as  was     81   done  in  this  study,  is  likely  not  an  appropriate  way  to  examine  relationships  within   communities.  Presumably,  all  community  members  interact  in  the  small  social  group,  and   second-­‐  and  third-­‐degree  connections  may  be  highly  relevant,  especially  in  a  classroom   setting  where  community  members  share  common  spaces  and  weekday  activities  (unlike   many  communities  in  adult  networks).       Study  2  found  that  the  structured  learning  environment  of  a  garden-­‐based  intervention   for  obesity  prevention  did  not  significantly  effect  instances  of  co-­‐occurring  change  in   determinants  of  FV  intake  and  change  in  FV  intake  or  BMI  in  elementary  school  children.  The   addition  of  gardening,  cooking  and  nutrition  information  to  an  education  program  has   previously  been  shown  to  have  a  positive  effect  on  dietary  determinants,  intake  and  measures   of  obesity  in  this  group,  (J.  N.  Davis  et  al.,  in  press;  Gatto  et  al.,  under  review)  yet  this  study   examined  which  changes  between  pre-­‐  and  post-­‐test  occurred  simultaneously.  This  study   found  that  students  who  changed  their  controlled  motivation  to  eat  FV,  willingness  to  try  FV,   and  vegetable  preferences  had  a  positively  associated  change  in  their  vegetable  intake.  Also,   change  in  vegetables  preferences  was  positively  associated  with  change  in  fruit  intake.  This   suggests  that  a  structured  learning  environment  does  not  alter  the  strength  of  association   between  simultaneous  change  in  dietary  determinants  and  intake,  but  can  be  one  mechanism   through  which  behaviors  and  determinants  are  altered.         Data  from  Study  3  did  not  show  an  association  between  stress  and  green  space  as   measured  by  Normalized  Difference  Vegetation  Index  (NDVI)  or  Open  Recreational  Space   (ORS)  use  among  children.  The  use  of  a  semi-­‐random  prompt  schedule  was  not  most   appropriate  to  address  this  research  question,  as  children  often  reported  little  or  not  stress,   and  were  infrequently  in  open  spaces  or  areas  with  high  vegetation  density.    A  study  design   that  allows  for  the  collection  of  data  during  these  critical  times  is  needed  in  order  to  have  a   more  robust  understanding  of  this  relationship.  New  methodologies  that  include  on-­‐body   stress  measuring  devices  and  GPS  tracking  to  trigger  Ecological  Momentary  Assessment   (EMA)  prompts  should  be  used  to  fully  capture  these  instances  in  a  real-­‐world  environment.       These  studies  contribute  to  the  literature  in  various  ways.  Study  1  is  the  first,  to  our   knowledge,  to  measure  dietary  intake  of  FV  and  soda  with  complete  social  networks.   Although  these  findings  we  null,  it  is  also  the  first  to  consider  whether  or  not  communities   within  networks  may  have  varying  levels  of  homophily  on  dietary  intake.    Study  2  aids  in   identifying  determinants  of  intake  that  have  co-­‐occurring  change  with  vegetable  intake.  Given     82   limited  longitudinal  research  on  the  impact  of  change  in  determinants  on  dietary  behavior,   (Guillaumie  et  al.,  2010)  these  findings  will  help  identify  areas  of  focus  for  future   interventions.  Study  3  is  the  first  to  our  knowledge  to  examine  both  ORS  use  and  NDVI  in   relation  to  stress  over  time  in  children.  The  lack  of  significant  findings  provides  a  rationale  for   the  use  of  more  advanced  data  collection  strategies  to  measure  this  association.       Interaction  of  Environmental  Levels   Social  Environment     The  social  environment  played  an  important  role  in  all  three  studies,  even  though  it   was  only  examined  in  Study  1.  For  Study  2,  the  intervention  was  delivered  in  a  classroom   setting,  and  children  were  encouraged  to  eat  snacks  together  and  discuss  their  thoughts  about   the  food.  (Topics  of  conversation  that  were  encouraged  included  ‘What  did  you  like  or  not  like   about  this  snack?’,  and  ‘What  other  fruits  or  vegetables  could  you  include  in  this  snack?’.)   Results  from  this  study  indicate  that  change  in  controlled  motivation  to  eat  FV  had  the  largest   strength  of  association  in  predicting  change  in  vegetable  intake.  With  controlled  motivation,   thoughts  and  actions  are  driven  by  factors  outside  of  the  individual,  such  as  a  desire  to  please   others  or  to  adhere  to  social  norms.  (Deci  &  Ryan,  2008)  Since  the  LA  Sprouts  intervention   was  delivered  in  a  group  setting,  this  could  reflect  a  desire  for  individuals  to  have  similar   dietary  intake  as  their  classmates,  or  to  adhere  to  a  specific  dietary  pattern  because  it  was   encouraged  by  the  instructor.  This  significant  association  was  also  found  in  control   participants,  which  suggest  that  desire  to  adhere  to  an  instructor’s  recommendations  is  not   the  sole  driver  of  this  relationship,  but  peers,  such  as  those  one  eats  lunch  with,  may  also  be   important  in  influencing  intake  through  mechanisms  described  in  chapter  1  of  this   dissertation.       In  Study  3,  it  is  likely  that  specific  social  context  can  influence  the  relationship  between   green  space  and  stress  in  youth.  For  example,  presence  of  strangers  in  a  park,  especially  if   there  is  homelessness  or  gang  activity,  could  moderate  the  beneficial  effects  of  open  space.  On   the  other  hand,  being  with  friends  or  loved  ones  in  a  natural  setting  could  be  especially   relaxing  for  some  people.  Or,  being  alone  in  a  natural  setting  could  provide  an  even  better   opportunity  to  recover  from  stress  and  restore  attentional  reserves  for  some  people,  although   this  may  be  more  relevant  for  adults,  compared  to  children.         83   Structured  Learning  Environment     The  structured  learning  environment  plays  an  especially  important  role  in  the  lives  of   children,  as  it  provides  opportunities  to  not  only  teach  them  information  and  skills  needed  for   a  successful  and  healthy  life,  but  is  also  the  setting  for  the  majority  of  opportunities  for   socializing  with  peers.    In  Study  1,  social  networks  were  based  on  friendships  within   classrooms,  and  generally  students  had  many  friendships  with  other  students  in  their   classroom  (see  Figure  2-­‐2).  Only  8  students  out  of  the  617  middle  school  students  in  this   sample  did  not  report  having  any  friends  in  their  classroom,  nor  were  they  reported  as  being   a  friend  of  someone  in  their  classroom.  It  is  not  clear  to  what  extent  obesity-­‐related  behaviors   are  influenced  by  classroom  friends,  relative  to  other  friends  outside  one’s  class,  or  family   members.  Parental  modeling  is  a  well-­‐established  determinant  of  dietary  intake,  (McClain  et   al.,  2009)  but  may  also  be  an  easier  relationship  to  measure,  relative  to  complex  social   dynamics  among  youth  friends.       In  addition  to  providing  opportunities  for  friendship,  schools  constitute  an  important   part  of  the  physical  environments  in  which  children  spend  their  time.  Children  eat  1/3  of  all   weekday  meals  at  schools,  and  many  children  eat  both  breakfast  and  lunch  at  school.  In  the  LA   Sprouts  study,  87%  of  all  participants  were  eligible  for  free  lunch  at  their  school,  (Gatto  et  al.,   under  review)  and  school  lunch  can  has  substantial  impact  on  dietary  intake.  (Gordon  et  al.,   1995)  With  respect  to  Study  3,  schools  can  provide  opportunities  for  children  to  use  open   green  space  if  this  is  available  on  campus.  However,  many  urban  schools  in  cities  like  Los   Angeles  do  not  have  substantial  playground  and  recreational  areas,  and  also  lack  the  budget   and  manpower  to  maintain  safe,  natural  spaces.  Installation  of  teaching  gardens  on  blacktops,   as  was  done  in  the  LA  Sprouts  study,  could  provide  a  restorative  and  calming  environment  for   schoolchildren,  but  findings  from  Study  3  suggest  that  greater  density  of  vegetation  does  not   reduce  stress  in  children.  It  is  therefore  unclear  what  effects  school  gardens  could  have  on   stress  in  youth.       Physical  Environment     It  is  not  expected  that  the  physical  environment  play  a  large  role  in  the  relationship   between  adolescent  friendships  and  dietary  behaviors,  except  in  instances  where  friends  eat   together  in  specific  locations.  These  may  include  settings  where  menu  options  are  limited,   such  as  during  school  lunches,  as  previously  mentioned,  or  in  fast  food  restaurants.  Research     84   has  shown  that  youth  consume  a  similar  number  of  meals  at  fast  food  restaurants  as  their   friends.  (Ali  et  al.,  2011)  Further  research  on  the  interaction  between  food  sources  and   friendship  groups  on  dietary  intake  in  youth  would  make  a  valuable  contribution  towards  our   understanding  of  environmental  influences  on  dietary  behavior.  This  research  topic  is   especially  relevant  to  teenagers,  as  they  are  more  autonomous  in  their  eating  behaviors  than   younger  children.     It  is  also  unclear  to  what  extent  the  physical  environment  affects  structured  learning  as   it  relates  to  health  behaviors.  There  has  been  research  conducted  on  ways  to  optimize   classroom  organization,  (Slavin,  1989)  which  could  help  facilitate  the  delivery  of  obesity-­‐ related  information.  In  the  LA  Sprouts  study,  it  is  unlikely  that  substantial  physical  changes   were  made  to  neighborhood,  school  or  home  environments  over  the  12-­‐week  study  period   (with  the  exception  of  the  school  garden),  so  it  is  unlikely  that  the  physical  environment  could   be  a  primary  driver  of  changes  seen  in  dietary  determinants  or  intake  in  control  students.         Future  Research     For  all  three  of  these  studies,  more  questions  were  raised  than  were  answered.  From   the  follow-­‐up  analyses  in  Study  1,  there  is  some  evidence  of  similar  dietary  behaviors  within   small  communities  of  friends  within  a  classroom  network,  but  it  is  not  clear  how  frequently   this  occurs.  As  mentioned,  the  technique  utilized  (absolute  difference  over  direct  ties)  is   limited  in  that  it  does  not  consider  2 nd  and  3 rd  degree  connections,  or  the  small  community  as   a  whole,  where  it  can  be  assumed  that  most  members  are  friends  with  varying  degrees  of   closeness.  One  possible  way  to  approach  this  research  question  would  be  to  artificially  inflate   the  density  of  each  community,  and  to  allow  for  individuals  to  have  more  than  5  outgoing  ties   (the  limit  imposed  by  the  study  design).  Absolute  difference  could  then  be  used,  as  it  was  in   this  study.  Or,  some  measure  of  standard  deviation  from  a  community  mean  could  possibly  be   informative.  Once  small  communities  with  homophily  on  dietary  behaviors  are  better   identified,  the  prevalence  can  be  estimated,  and  communities  can  be  further  examined  in   order  to  determine  under  which  conditions  homophily  is  more  likely  to  occur.     In  the  LA  Sprouts  study,  it  was  found  that  the  intervention  resulted  in  improvements  in   child  BMI  compared  to  controls,  but  it  is  not  clear  what  contributed  to  these  findings,  as  there   was  no  change  in  both  BMI  and  FV  intake  or  determinants  of  intake.  It  is  possible  that  small   changes  were  made  in  the  consumption  of  many  dietary  items  (for  example,  FV  consumption     85   could  increase  by  a  very  small  amount,  whole  grains  consumption  could  increase  by  a  small   amount,  added  sugar  could  decrease  by  a  small  amount,  etc).  Cooking  and  gardening   behaviors  were  not  explored  in  these  analyses,  and  these  could  be  responsible  for  the  change   observed  in  BMI,  but  it  would  not  be  through  change  in  FV  intake  alone.  Or,  perhaps   sedentary  behavior  decreased  in  the  LA  Sprouts  participants  through  the  gardening  activities.   A  data  mining  approach  could  be  used  to  determine  how  changes  in  individual  dietary  factors   related  to  change  in  BMI.  It  could  also  be  examined  how  and  if  this  differed  among  children   (for  example,  one  child  may  have  increased  FV  consumption,  whereas  another  may  have   stopped  consuming  sodas,  etc).  If  no  relationship  can  be  found  with  change  in  diet  and  change   in  BMI,  it  can  be  presumed  that  physical  or  sedentary  activity  played  a  major  role  in  changes   observed  in  BMI  (unfortunately,  activity  was  not  measured  in  this  study).       In  Study  3,  a  limitation  is  that  there  were  few  instances  when  participants  experienced   high  stress,  and  even  at  these  points,  a  single  question  with  four  possible  response  options   was  used  to  measure  stress.  A  measure  such  as  this  limits  ability  to  measure  a  stress  response   over  time,  let  alone  the  dynamic  relationship  between  environmental  factors  and  recovery   from  stress.  As  mentioned  previously,  a  more  robust  stress-­‐monitoring  tool  is  needed  to   identify  when  data  on  stress  ought  to  be  collected,  and  more  detailed  environmental  data   would  also  help  elucidate  the  association  between  nature  and  stress.     A  theme  for  future  research  in  all  of  these  studies  is  heterogeneity.  Individuals  cannot   be  expected  to  have  the  same  behavioral  response  to  all  environmental  stimuli,  and  better   understanding  of  in  whom  and  under  which  conditions  certain  behaviors  occur  will  help  us  to   better  understand  health  practices  and  to  make  more  informed  recommendations.  In   addition,  the  interaction  between  different  environmental  levels  should  be  further  explored,   as  mentioned  in  the  previous  section.  This  is  especially  valuable  with  interaction  of  the  social   and  physical  environments,  as  different  environmental  contexts  may  inspire  various   behavioral  reactions  in  children.     Limitations       In  addition  to  limitations  specific  to  each  study,  as  mentioned  in  individual  study   chapters,  there  are  some  overall  limitations  of  this  body  of  work.  The  first  is  that  this   dissertation  offers  a  broad  overview  of  environmental  influences  on  obesity-­‐related   behaviors,  but  does  not  dive  deep  into  the  exploration  of  specific  relationships.  Three     86   environmental  levels  and  three  obesity-­‐related  behaviors  were  identified  as  being  relevant  to   childhood  obesity  (See  Figure  1-­‐1),  yet  each  environmental  level  is  only  examined  once,  and   each  with  only  one  specific  behavior  (also,  interactions  of  environmental  levels  are  not   measured,  as  discussed  above).  Physical  activity  is  not  examined  in  these  studies,  yet  plays  an   important  role  in  energy  balance.  (Centers  for  Disease  Control  and  Prevention  (CDC),  2013a)   Furthermore,  BMI  is  only  examined  in  one  study,  although  it  is  well-­‐established  that  diet,   stress,  and  physical  activity  all  contribute  to  this  overweight  and  obesity.  (Centers  for  Disease   Control  and  Prevention,  2013a;  Spruijt-­‐Metz  et  al.,  2014)     Although  environmental  measures  in  each  study  were  generally  robust  and  consistent   with  best  practices,  behavioral  measures  were  not  as  strong.  In  Study  1,  vegetable  intake  was   measured  with  three  items,  yet  fruit  and  soda  intake  were  measured  with  one  frequency  item   each.  In  Study  2,  the  Block  Kids  Food  Screener  was  used  because  this  provides  an  estimate  of   total  calories  consumed  (although  the  kcal  variable  is  not  validated).  (Garcia-­‐Dominic  et  al.,   2012)  This  screener  is  challenging  for  elementary  school  children  and  may  be  one  reason  why   there  was  no  significant  association  found  between  change  in  FV  intake  and  change  in  BMI.  In   Study  3,  stress  was  measured  with  a  single  item,  although  it  was  a  momentary  measure,  which   is  a  major  strength.    However,  it  was  measured  at  quasi-­‐random  times  and  likely  did  not   capture  the  environmental  contexts  of  all  experiences  of  stress  in  participants.  Having  strong   behavioral  measures  is  important  because  measures  lacking  robustness  could  bias  findings   towards  null  and  limit  exploration  and  understanding  of  complex  relationships.         Recommendations     Based  on  findings  from  this  body  of  work,  the  following  recommendations  can  be   made:   1) More  research  needs  to  be  done  on  the  relationship  between  adolescent  friendships   and  dietary  intake,  and  new  techniques  must  be  developed  in  order  to  measure  the   heterogeneity  of  this  relationship  across  small  communities  of  friends.     2) The  following  dietary  determinants  are  valuable  to  address  in  interventions  targeting   vegetable  intake:  controlled  motivation  to  eat  FV,  willingness  to  try  FV,  and  vegetable   preferences.  Vegetable  preferences  may  also  be  important  to  address  in  interventions   targeting  fruit  intake,  although  additional  research  should  confirm  these  findings.       87   3) Fruit  and  vegetable  intake  should  not  be  considered  the  same  dietary  construct,  and   when  examining  determinants  of  intake,  fruit  and  vegetables  ought  to  be  examined  as   two  separate  food  types.     4) School-­‐based  obesity  interventions  should  consider  the  role  of  peer  groups  when   implementing  curricula.     5) More  robust  measurement  tools  should  be  used  to  fully  capture  the  dynamic   association  between  green  space  and  stress  in  children.     6) Research  is  needed  on  the  interaction  between  the  physical  and  social  environment,   and  how  this  affects  dietary  intake  and  stress  in  youth.       Conclusion   This  body  of  work  provides  additional  insight  into  ways  in  which  environmental   factors  affect  obesity  and  related  behaviors.  Improving  obesity-­‐related  behaviors  is  especially   important  in  children,  given  the  staggering  amount  of  children  who  are  overweight  and  obese,   and  the  greater  disease  risks  these  children  are  susceptible  to.  (Bray  &  Bouchard,  2003;   Ogden,  2012)  Given  the  evidence  from  the  studies  conducted  and  the  literature  cited,  it  is   clear  that  the  environment,  which  includes  social,  structured  learning,  and  physical  levels,   impacts  diet,  physical  activity  and  stress.  The  general  public  has  strongly  debated  the   importance  of  ‘personal  choice’  as  the  primary  driver  of  obesity,  (Brownell  et  al.,  2010)  yet   the  evidence  here  shows  that  individuals  make  choices  based  on  circumstances  and  situations   around  them.    More  needs  to  be  done  to  fully  understand  how  the  environment  shapes  our   health-­‐related  activities,  and  actions  must  be  taken  to  empower  individuals  in  making  better   choices  and  to  facilitate  long-­‐term  health  in  children.                               88   REFERENCES     Ali,  M.  M.,  Amialchuk,  A.,  &  Heiland,  F.  W.  (2011).  Weight-­‐related  behavior  among  adolescents:   the  role  of  peer  effects.  PloS  One,  6(6),  e21179.   http://doi.org/10.1371/journal.pone.0021179   Almanza,  E.,  Jerrett,  M.,  Dunton,  G.,  Seto,  E.,  &  Pentz,  M.  A.  (2012).  A  study  of  community   design,  greenness,  and  physical  activity  in  children  using  satellite,  GPS  and  accelerometer   data.  Health  &  Place,  18(1),  46–54.  http://doi.org/10.1016/j.healthplace.2011.09.003   Anda,  D.  de,  Baroni,  S.,  Boskin,  L.,  Buchwald,  L.,  Morgan,  J.,  Ow,  J.,  et  al.  (2000).  Stress,  stressors   and  coping  among  high  school  students.  Children  and  Youth  Services  Review,  22(6),  441– 463.   Anzman-­‐Frasca,  S.,  Savage,  J.  S.,  Marini,  M.  E.,  Fisher,  J.  O.,  &  Birch,  L.  L.  (2012).  Repeated   exposure  and  associative  conditioning  promote  preschool  children's  liking  of  vegetables.   Appetite,  58(2),  543–553.  http://doi.org/10.1016/j.appet.2011.11.012   Armitage,  C.  J.,  &  Conner,  M.  (2000).  Social  cognition  models  and  health  behaviour:  A   structured  review.  Psychology  &  Health,  15(2),  173–189.   http://doi.org/10.1080/08870440008400299   Arnett,  J.  J.  (2006).  Suffering,  Selfish,  Slackers?  Myths  and  Reality  About  Emerging  Adults.   Journal  of  Youth  and  Adolescence,  36(1),  23–29.  http://doi.org/10.1007/s10964-­‐006-­‐ 9157-­‐z   Badaly,  D.  (2013).  Clinical  Psychology  Review.  Clinical  Psychology  Review,  33(8),  1218–1236.   http://doi.org/10.1016/j.cpr.2013.09.003   Bamia,  C.,  Trichopoulou,  A.,  Lenas,  D.,  &  Trichopoulos,  D.  (2004).  Tobacco  smoking  in  relation   to  body  fat  mass  and  distribution  in  a  general  population  sample.  International  Journal  of   Obesity,  28(8),  1091–1096.  http://doi.org/10.1038/sj.ijo.0802697   Bandura,  A.  (1977).  Self-­‐efficacy:  toward  a  unifying  theory  of  behavioral  change.  Psychological   Review,  84(2),  191–215.   Baranowski,  T.,  Davis,  M.,  Resnicow,  K.,  Baranowski,  J.,  Doyle,  C.,  Lin,  L.  S.,  et  al.  (2000).  Gimme   5  fruit,  juice,  and  vegetables  for  fun  and  health:  outcome  evaluation.  Health  Education  &   Behavior,  27(1),  96–111.   Barton,  J.,  &  Pretty,  J.  (2010).  What  is  the  Best  Dose  of  Nature  and  Green  Exercise  for   Improving  Mental  Health?  A  Multi-­‐Study  Analysis.  Environmental  Science  &  Technology,   44(10),  3947–3955.  http://doi.org/10.1021/es903183r   Basciano,  H.,  Federico,  L.,  &  Adeli,  K.  (2005).  Fructose,  insulin  resistance,  and  metabolic   dyslipidemia.  Nutrition  &  Metabolism,  2(1),  5.  http://doi.org/10.1186/1743-­‐7075-­‐2-­‐5   Bell,  C.  G.,  Walley,  A.  J.,  &  Froguel,  P.  (2005).  The  genetics  of  human  obesity.  Nature  Reviews   Genetics,  6(3),  221–234.  http://doi.org/10.1038/nrg1556   Bell,  J.  F.,  Wilson,  J.  S.,  &  Liu,  G.  C.  (2008).  Neighborhood  Greenness  and  2-­‐Year  Changes  in   Body  Mass  Index  of  Children  and  Youth.  Am  J  Prev  Med,  35(6),  547–553.   http://doi.org/10.1016/j.amepre.2008.07.006   Berkey,  C.  S.,  Rockett,  H.  R.  H.,  Field,  A.  E.,  Gillman,  M.  W.,  &  Colditz,  G.  A.  (2004).  Sugar-­‐added   beverages  and  adolescent  weight  change.  Obesity  Research,  12(5),  778–788.   http://doi.org/10.1038/oby.2004.94   Berto,  R.  (2005).  Exposure  to  restorative  environments  helps  restore  attentional  capacity.   Journal  of  Environmental  Psychology,  25(3),  249–259.   http://doi.org/10.1016/j.jenvp.2005.07.001   Bevelander,  K.  E.,  Anschütz,  D.  J.,  &  Engels,  R.  C.  M.  E.  (2012).  Social  norms  in  food  intake     89   among  normal  weight  and  overweight  x.  Appetite,  58(3),  864–872.   http://doi.org/10.1016/j.appet.2012.02.003   Birch,  L.  L.,  &  Marlin,  D.  W.  (1982).  I  don“t  like  it;  I  never  tried  it:  Effects  of  exposure  on  two-­‐ year-­‐old  children”s  food  preferences.  Appetite,  3(4),  353–360.   http://doi.org/10.1016/S0195-­‐6663(82)80053-­‐6   Birch,  L.  L.,  McPhee,  L.,  Shoba,  B.  C.,  Pirok,  E.,  &  Steinberg,  L.  (1987).  What  kind  of  exposure   reduces  children's  food  neophobia?  Looking  vs.  tasting.  Appetite,  9(3),  171–178.   Björntorp,  P.,  Holm,  G.,  &  Rosmond,  R.  (1999).  Hypothalamic  arousal,  insulin  resistance  and   Type  2  diabetes  mellitus.  Diabetic  Medicine  :  a  Journal  of  the  British  Diabetic  Association,   16(5),  373–383.  http://doi.org/10.1046/j.14   Blair,  D.  (2009).  The  child  in  the  garden:  An  evaluative  review  of  the  benefits  of  school   gardening.  The  Journal  of  Environmental  Education,  40(2),  15–38.   Bolton,  R.  P.,  Heaton,  K.  W.,  &  Burroughs,  L.  F.  (1981).  The  role  of  dietary  fiber  in  satiety,   glucose,  and  insulin:  studies  with  fruit  and  fruit  juice.  The  American  Journal  of  Clinical   Nutrition,  34(2),  211–217.   Booth,  K.  M.,  Pinkston,  M.  M.,  &  Poston,  W.  S.  C.  (2005).  Obesity  and  the  Built  Environment.   Journal  of  the  American  Dietetic  Association,  105(5),  110–117.   http://doi.org/10.1016/j.jada.2005.02.045   Booth,  M.  L.,  Owen,  N.,  Baum,  A.,  Clavisi,  O.,  &  Leslie,  E.  (2000).  Social–Cognitive  and  Perceived   Environment  Influences  Associated  with  Physical  Activity  in  Older  Australians.  Preventive   Medicine,  31(1),  15–22.  http://doi.org/10.1006/pmed.2000.0661   Bowler,  D.  E.,  Buyung-­‐Ali,  L.  M.,  Knight,  T.  M.,  &  Pullin,  A.  S.  (2010).  A  systematic  review  of   evidence  for  the  added  benefits  to  health  of  exposure  to  natural  environments.  BMC  Public   Health,  10(1),  456.  http://doi.org/10.1186/1471-­‐2458-­‐10-­‐456   Bratman,  G.  N.,  Hamilton,  J.  P.,  &  Daily,  G.  C.  (2012).  The  impacts  of  nature  experience  on   human  cognitive  function  and  mental  health.  Annals  of  the  New  York  Academy  of  Sciences,   1249(1),  118–136.  http://doi.org/10.1111/j.1749-­‐6632.2011.06400.x   Bray,  G.  A.,  &  Bouchard,  C.  (2003).  Handbook  of  obesity:  clinical  applications.   Bray,  G.  A.,  Nielsen,  S.  J.,  &  Popkin,  B.  M.  (2004).  Consumption  of  high-­‐fructose  corn  syrup  in   beverages  may  play  a  role  in  the  epidemic  of  obesity.  The  American  Journal  of  Clinical   Nutrition,  79(4),  537–543.   Bronfenbrenner,  U.  (1997).  Ecological  models  of  human  development.   Brown,  B.  B.  (2004).  Adolescents’  relationships  with  peers.  In  Handbook  of  adolescent   psychology  2  (pp.  363–394).   Brown,  T.,  &  Summerbell,  C.  (2009).  Systematic  review  of  school-­‐based  interventions  that   focus  on  changing  dietary  intake  and  physical  activity  levels  to  prevent  childhood  obesity:   an  update  to  the  obesity  guidance  produced  by  the  National  Institute  for  Health  and   Clinical  Excellence.  Obesity  Reviews,  10(1),  110–141.  http://doi.org/10.1111/j.1467-­‐ 789X.2008.00515.x   Brownell,  K.  D.,  Kersh,  R.,  Ludwig,  D.  S.,  Post,  R.  C.,  Puhl,  R.  M.,  Schwartz,  M.  B.,  &  Willett,  W.  C.   (2010).  Personal  Responsibility  And  Obesity:  A  Constructive  Approach  To  A  Controversial   Issue.  Health  Affairs,  29(3),  379–387.  http://doi.org/10.1377/hlthaff.2009.0739   Bruening,  M.,  Eisenberg,  M.,  MacLehose,  R.,  Nanney,  M.  S.,  Story,  M.,  &  Neumark-­‐Sztainer,  D.   (2012).  Relationship  between  Adolescents’  and  TheirFriends’  Eating  Behaviors:  Breakfast,   Fruit,Vegetable,  Whole-­‐Grain,  and  Dairy  Intake.  Journal  of  the  Academy  of  Nutrition  and   Dietetics,  112(10),  1608–1613.  http://doi.org/10.1016/j.jand.2012.07.008   Bruening,  M.,  MacLehose,  R.,  Eisenberg,  M.  E.,  Nanney,  M.  S.,  Story,  M.,  &  Neumark-­‐Sztainer,  D.     90   (2014).  Associations  Between  Sugar-­‐Sweetened  Beverage  Consumption  and  Fast-­‐Food   Restaurant  Frequency  Among  Adolescents  and  Their  Friends.  Journal  of  Nutrition   Education  and  Behavior,  46(4),  277–285.  http://doi.org/10.1016/j.jneb.2014.02.009   Butts,  C.  T.  (2008).  Social  network  analysis  with  sna.  J.  Stat.  Softw,  24(6),  1–51.   Butts,  C.  T.  (2010).  sna:  Tools  for  social  network  analysis.  R  Package  Version,  2.   Butts,  C.  T.  (2014).  sna:  Tools  for  Social  Network  Analysis.  R  package  version  2.3-­‐2.   http://CRAN.R-­‐project.org/package=sna.   Caballero,  B.,  Clay,  T.,  Davis,  S.  M.,  Ethelbah,  B.,  Rock,  B.  H.,  Lohman,  T.,  et  al.  (2003).  Pathways:   a  school-­‐based,  randomized  controlled  trial  for  the  prevention  of  obesity  in  American   Indian  schoolchildren.  The  American  Journal  of  Clinical  Nutrition,  78(5),  1030–1038.   Carney,  P.  A.,  Hamada,  J.  L.,  Rdesinski,  R.,  Sprager,  L.,  Nichols,  K.  R.,  Liu,  B.  Y.,  et  al.  (2011).   Impact  of  a  Community  Gardening  Project  on  Vegetable  Intake,  Food  Security  and  Family   Relationships:  A  Community-­‐based  Participatory  Research  Study.  Journal  of  Community   Health,  37(4),  874–881.  http://doi.org/10.1007/s10900-­‐011-­‐9522-­‐z   Castro,  D.  C.,  Samuels,  M.,  &  Harman,  A.  E.  (2013).  Growing  Healthy  Kids:  A  community   Garden-­‐Based  Obesity  Prevention  Program.  American  Journal  of  Preventive  Medicine,   44(S3),  S193–S199.  http://doi.org/10.1016/j.amepre.2012.11.024   Cawley,  J.  (2010).  The  Economics  Of  Childhood  Obesity.  Health  Affairs,  29(3),  364–371.   http://doi.org/10.1377/hlthaff.2009.0721   Centers  for  Disease  Control  and  Prevention  (CDC).  (2013a).  Overweight  and  Obesity.   Retrieved  January  30,  2015,  from  http://www.cdc.gov/obesity/childhood/problem.html   Centers  for  Disease  Control  and  Prevention  (CDC).  (2013b).  Tobacco  product  use  among   middle  and  high  school  students-­‐-­‐United  States,  2011  and  2012.  MMWR.  Morbidity  and   Mortality  Weekly  Report,  62(45),  893–897.   Cervinka,  R.,  Roderer,  K.,  &  Hefler,  E.  (2012).  Are  nature  lovers  happy?  On  various  indicators   of  well-­‐being  and  connectedness  with  nature.  Journal  of  Health  Psychology,  17(3),  379– 388.  http://doi.org/10.1177/1359105311416873   Chen,  X.,  Beydoun,  M.  A.,  &  Wang,  Y.  (2008).  Is  Sleep  Duration  Associated  With  Childhood   Obesity?  A  Systematic  Review  and  Meta-­‐analysis.  Obesity,  16(2),  265–274.   http://doi.org/10.1038/oby.2007.63   Child  population.  (2013).  Child  population.  Retrieved  February  10,  2015,  from   http://www.childstats.gov/americaschildren/tables/pop1.asp   Chiolero,  A.,  Faeh,  D.,  Paccaud,  F.,  &  Cornuz,  J.  (2008).  Consequences  of  smoking  for  body   weight,  body  fat  distribution,  and  insulin  resistance.  American  Journal  of  Clinical  Nutrition,   87(4),  801–809.   Christakis,  N.  A.,  &  Fowler,  J.  H.  (2007).  The  spread  of  obesity  in  a  large  social  network  over  32   years.  The  New  England  Journal  of  Medicine,  357(4),  370–379.   http://doi.org/10.1056/NEJMsa066082   Clair,  C.,  Chiolero,  A.,  Faeh,  D.,  Cornuz,  J.,  Marques-­‐Vidal,  P.,  Paccaud,  F.,  et  al.  (2011).  Dose-­‐ dependent  positive  association  between  cigarette  smoking,  abdominal  obesity  and  body   fat:  cross-­‐sectional  data  from  a  population-­‐based  survey.  BMC  Public  Health,  11(1),  23.   http://doi.org/10.1186/1471-­‐2458-­‐11-­‐23   Contento,  I.  R.,  Williams,  S.  S.,  Michela,  J.  L.,  &  Franklin,  A.  B.  (2006).  Understanding  the  food   choice  process  of  adolescents  in  the  context  of  family  and  friends.  Journal  of  Adolescent   Health,  38(5),  575–582.  http://doi.org/10.1016/j.jadohealth.2005.05.025   Cook,  L.  T.,  O'Reilly,  G.  A.,  DeRosa,  C.  J.,  Rohrbach,  L.  A.,  &  Spruijt-­‐Metz,  D.  (2014a).  Association   between  home  availability  and  vegetable  consumption  in  youth:  a  review.  Public  Health     91   Nutrition,  1–9.  http://doi.org/10.1017/S1368980014000664   Cook,  L.  T.,  O'Reilly,  G.  A.,  Goran,  M.  I.,  Weigensberg,  M.  J.,  Spruijt-­‐Metz,  D.,  &  Davis,  J.  N.   (2014b).  Vegetable  Consumption  Is  Linked  to  DecreasedVisceral  and  Liver  Fat  and   Improved  InsulinResistance  in  Overweight  Latino  Youth.  Journal  of  the  Academy  of   Nutrition  and  Dietetics,  1–8.  http://doi.org/10.1016/j.jand.2014.01.017   Cooke,  L.  (2007).  The  importance  of  exposure  for  healthy  eating  in  childhood:  a  review.  J  Hum   Nutr  Diet,  20,  Pp.  294–301,  1–8.   Cooper,  A.  J.,  Sharp,  S.  J.,  Lentjes,  M.  A.  H.,  Luben,  R.  N.,  Khaw,  K.  T.,  Wareham,  N.  J.,  &  Forouhi,   N.  G.  (2012).  A  Prospective  Study  of  the  Association  Between  Quantity  and  Variety  of  Fruit   and  Vegetable  Intake  and  Incident  Type  2  Diabetes.  Diabetes  Care,  35(6),  1293–1300.   http://doi.org/10.2337/dc11-­‐2388   Cowie,  C.  C.,  Rust,  K.  F.,  Ford,  E.  S.,  Eberhardt,  M.  S.,  Byrd-­‐Holt,  D.  D.,  Li,  C.,  et  al.  (2009).  Full   Accounting  of  Diabetes  and  Pre-­‐Diabetes  in  the  US  Population  in  1988-­‐1994  and  2005-­‐ 2006.  Diabetes  Care,  32(2),  287–294.  http://doi.org/10.2337/dc08-­‐1296   Cradock,  A.  L.,  Melly,  S.  J.,  Allen,  J.  G.,  Morris,  J.  S.,  &  Gortmaker,  S.  L.  (2007).  Characteristics  of   School  Campuses  and  Physical  Activity  Among  Youth.  American  Journal  of  Preventive   Medicine,  33(2),  106–113.e1.  http://doi.org/10.1016/j.amepre.2007.04.009   Cryer,  P.  E.,  Haymond,  M.  W.,  Santiago,  J.  V.,  &  Shah,  S.  D.  (1976).  Norepinephrine  and   epinephrine  release  and  adrenergic  mediation  of  smoking-­‐associated  hemodynamic  and   metabolic  events.  The  New  England  Journal  of  Medicine,  295(11),  573–577.   http://doi.org/10.1056/NEJM197609092951101   Csardi,  G.,  &  Nepusz,  T.  (2006).  The  igraph  software  package  for  complex  network  research.   InterJournal,  Complex  Systems,  1695(5).  Retrieved  from  http://igraph.org   Cummins,  S.  (2005).  Food  environments  and  obesity-­‐-­‐neighbourhood  or  nation?  International   Journal  of  Epidemiology,  35(1),  100–104.  http://doi.org/10.1093/ije/dyi276   Dabbaghian,  V.,  Mago,  V.  K.,  Wu,  T.,  Fritz,  C.,  &  Alimadad,  A.  (2012).  Social  interactions  of   eating  behaviour  among  high  school  students:  a  cellular  automata  approach.  BMC  Medical   Research  Methodology,  12,  155.  http://doi.org/10.1186/1471-­‐2288-­‐12-­‐155   Dallman,  M.  F.,  Pecoraro,  N.,  Akana,  S.  F.,  La  Fleur,  S.  E.,  Gomez,  F.,  Houshyar,  H.,  et  al.  (2003).   Chronic  stress  and  obesity:  a  new  view  of  "comfort  food".  Proceedings  of  the  National   Academy  of  Sciences  of  the  United  States  of  America,  100(20),  11696–11701.   http://doi.org/10.1073/pnas.1934666100   Daniels,  S.  R.  (2009).  REVIEWComplications  of  obesity  in  children  and  adolescents,  33(S1),   S60–S65.  http://doi.org/10.1038/ijo.2009.20   Davis,  J.  N.,  Martinez,  L.  C.,  Spruijt-­‐Metz,  D.,  &  Gatto,  N.  M.  (in  press).  LA  Sprouts:  A  nutrition   and  gardening  program  improves  determinants  of  dietary  intake.  Journal  of  Nutrition   Education  and  Behavior.   Davis,  J.  N.,  Ventura,  E.  E.,  Alexander,  K.  E.,  Salguero,  L.  E.,  Weigensberg,  M.  J.,  Crespo,  N.  C.,  et   al.  (2007).  Feasibility  of  a  home-­‐based  versus  classroom-­‐based  nutrition  intervention  to   reduce  obesity  and  type  2  diabetes  in  Latino  youth.  International  Journal  of  Pediatric   Obesity,  2(1),  22–30.  http://doi.org/10.1080/17477160601133077   Davis,  J.  N.,  Ventura,  E.  E.,  Cook,  L.  T.,  Gyllenhammer,  L.  E.,  &  Gatto,  N.  M.  (2011).  LA  Sprouts:  a   gardening,  nutrition,  and  cooking  intervention  for  Latino  youth  improves  diet  and  reduces   obesity.  Journal  of  the  American  Dietetic  Association,  111(8),  1224–1230.   http://doi.org/10.1016/j.jada.2011.05.009   Davison,  K.  K.,  &  Lawson,  C.  T.  (2006).  Do  attributes  in  the  physical  environment  influence   children's  physical  activity?  A  review  of  the  literature.  International  Journal  of  Behavioral     92   Nutrition  and  Physical  Activity,  3(1),  19.  http://doi.org/10.1186/1479   de  Castro,  J.  M.  (1994).  Family  and  friends  produce  greater  social  facilitation  of  food  intake   than  other  companions.  Physiology  &  Behavior,  56(3),  445–445.   de  la  Haye,  de,  K.,  Robins,  G.,  Mohr,  P.,  &  Wilson,  C.  (2010).  Social  Networks.  Social  Networks,   32(3),  161–167.  http://doi.org/10.1016/j.socnet.2009.09.001   de  la  Haye,  de,  K.,  Robins,  G.,  Mohr,  P.,  &  Wilson,  C.  (2013).  Adolescents’  Intake  of  Junk  Food:   Processes  and  Mechanisms  Driving  Consumption  Similarities  Among  Friends.  Journal  of   Research  on  Adolescence,  23(3),  524–536.  http://doi.org/10.1111/jora.12045   Deci,  E.  L.,  &  Ryan,  R.  M.  (2008).  Self-­‐determination  theory:  A  macrotheory  of  human   motivation,  development,  and  health.  Canadian  Psychology/Psychologie  ….   Dennison,  B.  A.,  Erb,  T.  A.,  &  Jenkins,  P.  L.  (2002).  Television  viewing  and  television  in   bedroom  associated  with  overweight  risk  among  low-­‐income  preschool  children.   Pediatrics,  109(6),  1028–1035.   Dietz,  W.  H.  (1998).  Health  consequences  of  obesity  in  youth:  childhood  predictors  of  adult   disease.  Pediatrics,  101(3  Pt  2),  518–525.   Ding,  D.,  &  Gebel,  K.  (2012).  Health  &  Place.  Health  &  Place,  18(1),  100–105.   http://doi.org/10.1016/j.healthplace.2011.08.021   Ding,  D.,  Sallis,  J.  F.,  Kerr,  J.,  Lee,  S.,  &  Rosenberg,  D.  E.  (2011).  Neighborhood  Environment  and   PhysicalActivity  Among  Youth.  Am  J  Prev  Med,  41(4),  442–455.   http://doi.org/10.1016/j.amepre.2011.06.036   Domel,  S.  B.,  Baranowski,  T.,  Davis,  H.,  Leonard,  S.  B.,  Riley,  P.,  &  Baranowski,  J.  (1993).   Measuring  fruit  and  vegetable  preferences  among  4th-­‐  and  5th-­‐grade  students.  Preventive   Medicine,  22(6),  866–879.  http://doi.org/10.1006/pmed.1993.1078   Doyle,  W.,  &  Rutherford,  B.  (1984).  Classroom  research  on  matching  learning  and  teaching   styles.  Theory  Into  Practice,  23(1),  20–25.   Dunton,  G.  F.,  Huh,  J.,  Leventhal,  A.  M.,  Riggs,  N.,  Hedeker,  D.,  Spruijt-­‐Metz,  D.,  &  Pentz,  M.  A.   (2014).  Momentary  assessment  of  affect,  physical  feeling  states,  and  physical  activity  in   children.  Health  Psychology,  33(3),  255–263.  http://doi.org/10.1037/a0032640   Dunton,  G.  F.,  Kaplan,  J.,  Wolch,  J.,  Jerrett,  M.,  &  Reynolds,  K.  D.  (2009a).  Physical   environmental  correlates  of  childhood  obesity:  a  systematic  review.  Obesity  Reviews,   10(4),  393–402.  http://doi.org/10.1111/j.1467-­‐789X.2009.00572.x   Dunton,  G.  F.,  Kawabata,  K.,  Intille,  S.,  Wolch,  J.,  &  Pentz,  M.  A.  (2012).  Assessing  the  social  and   physical  contexts  of  children's  leisure-­‐time  physical  activity:  an  ecological  momentary   assessment  study.  American  Journal  of  Health  Promotion  :  AJHP,  26(3),  135–142.   http://doi.org/10.4278/ajhp.100211-­‐QUAN-­‐43   Dunton,  G.  F.,  Liao,  Y.,  Intille,  S.  S.,  Spruijt-­‐Metz,  D.,  &  Pentz,  M.  (2009b).  Investigating   Children's  Physical  Activity  and  Sedentary  Behavior  Using  Ecological  Momentary   Assessment  With  Mobile  Phones.  Obesity,  19(6),  1205–1212.   http://doi.org/10.1038/oby.2010.302   Dunton,  G.  F.,  Liao,  Y.,  Intille,  S.,  Wolch,  J.,  &  Pentz,  M.  A.  (2011).  Physical  and  social  contextual   influences  on  children's  leisure-­‐time  physical  activity:  an  ecological  momentary   assessment  study.  Journal  of  Physical  Activity  &  Health,  8  Suppl  1,  S103–8.   Dyment,  J.  E.,  &  Bell,  A.  C.  (2007).  Grounds  for  movement:  green  school  grounds  as  sites  for   promoting  physical  activity.  Health  Education  Research,  23(6),  952–962.   http://doi.org/10.1093/her/cym059   Ebbeling,  C.  B.,  Pawlak,  D.  B.,  &  Ludwig,  D.  S.  (2002).  Childhood  obesity:  public-­‐health  crisis,   common  sense  cure.  Lancet,  360(9331),  473–482.  http://doi.org/10.1016/S0140-­‐   93   6736(02)09678-­‐2   Eisenberg,  M.  E.,  &  Neumark-­‐Sztainer,  D.  (2010).  Friends’  Dieting  and  Disordered  Eating   Behaviors  Among  Adolescents  Five  Years  Later:  Findings  From  Project  EAT.  Journal  of   Adolescent  Health,  47(1),  67–73.  http://doi.org/10.1016/j.jadohealth.2009.12.030   Eriksson,  T.,  Westerberg,  Y.,  &  Jonsson,  H.  (2011).  Experiences  of  women  with  stress-­‐related   ill  health  in  a  therapeutic  gardening  program.  Canadian  Journal  of  Occupational  Therapy,   78(5).  http://doi.org/10.2182/cjot.2011.78.5.2   Esmaillzadeh,  A.,  Kimiagar,  M.,  Mehrabi,  Y.,  Azadbakht,  L.,  Hu,  F.  B.,  &  Willett,  W.  C.  (2006).   Fruit  and  vegetable  intakes,  C-­‐reactive  protein,  and  the  metabolic  syndrome.  The   American  Journal  of  Clinical  Nutrition,  84(6),  1489–1497.   Evans,  A.,  Ranjit,  N.,  Rutledge,  R.,  Medina,  J.,  Jennings,  R.,  Smiley,  A.,  et  al.  (2012).  Exposure  to   Multiple  Components  of  a  Garden-­‐Based  Intervention  for  Middle  School  Students   Increases  Fruit  and  Vegetable  Consumption.  Health  Promotion  Practice,  13(5),  608–616.   http://doi.org/10.1177/1524839910390357   Evans,  G.  W.  (2003).  The  built  environment  and  mental  health.  Journal  of  Urban  Health,  80(4),   536–555.   Evans,  G.  W.,  &  English,  K.  (2002).  The  environment  of  poverty:  multiple  stressor  exposure,   psychophysiological  stress,  and  socioemotional  adjustment.  Child  Development,  73(4),   1238–1248.   Evans,  G.  W.,  Wells,  N.  M.,  &  Moch,  A.  (2003).  Housing  and  mental  health:  A  review  of  the   evidence  and  a  methodological  and  conceptual  critique.  Journal  of  Social  Issues,  59(3),   475–500.   Feda,  D.  M.,  Seelbinder,  A.,  Baek,  S.,  Raja,  S.,  Yin,  L.,  &  Roemmich,  J.  N.  (2014).  Neighbourhood   parks  and  reduction  in  stress  among  adolescents:  results  from  Buffalo,  New  York.  Indoor   and  Built  Environment.  http://doi.org/10.1177/1420326X14535791   Feunekes,  G.  I.,  de  Graaf,  C.,  Meyboom,  S.,  &  van  Staveren,  W.  A.  (1998).  Food  choice  and  fat   intake  of  adolescents  and  adults:  associations  of  intakes  within  social  networks.   Preventive  Medicine,  27(5  Pt  1),  645–656.  http://doi.org/10.1006/pmed.1998.0341   Fitzgerald,  A.,  Heary,  C.,  Kelly,  C.,  Nixon,  E.,  &  Shevlin,  M.  (2013).  Self-­‐efficacy  for  healthy   eating  and  peer  support  for  unhealthy  eating  are  associated  with  adolescents  food  intake   patterns.  Appetite,  63(C),  48–58.  http://doi.org/10.1016/j.appet.2012.12.011   Fletcher,  A.,  Bonell,  C.,  &  Sorhaindo,  A.  (2011).  You  are  what  your  friends  eat:  systematic   review  of  social  network  analyses  of  young  people's  eating  behaviours  and  bodyweight.   Journal  of  Epidemiology  &  Community  Health,  65(6),  548–555.   http://doi.org/10.1136/jech.2010.113936   Ford,  E.  S.,  &  Mokdad,  A.  H.  (2001).  Fruit  and  Vegetable  Consumption  and  Diabetes  Mellitus   Incidence  among  U.S.  Adults.  Preventive  Medicine,  32(1),  33–39.   http://doi.org/10.1006/pmed.2000.0772   Ford,  E.  S.,  Ajani,  U.  A.,  McGuire,  L.  C.,  &  Liu,  S.  (2005).  Concentrations  of  serum  vitamin  D  and   the  metabolic  syndrome  among  U.S.  adults.  Diabetes  Care,  28(5),  1228–1230.   Fox,  K.  R.  (1999).  The  influence  of  physical  activity  on  mental  well-­‐being.  Public  Health   Nutrition,  2(3A),  411–418.   Freedman,  D.  S.,  Khan,  L.  K.,  Serdula,  M.  K.,  Dietz,  W.  H.,  Srinivasan,  S.  R.,  &  Berenson,  G.  S.   (2003).  Inter-­‐relationships  among  childhood  BMI,  childhood  height,  and  adult  obesity:  the   Bogalusa  Heart  Study.  International  Journal  of  Obesity,  28(1),  10–16.   http://doi.org/10.1038/sj.ijo.0802544   Freedman,  D.  S.,  Srinivasan,  S.  R.,  Burke,  G.  L.,  Shear,  C.  L.,  Smoak,  C.  G.,  Harsha,  D.  W.,  et  al.     94   (1987).  Relation  of  Body-­‐Fat  Distribution  to  Hyperinsulinemia  in  Children  and   Adolescents  -­‐  the  Bogalusa-­‐Heart-­‐Study.  The  American  Journal  of  Clinical  Nutrition,  46(3),   403–410.   French,  S.  A.,  Story,  M.,  &  Jeffery,  R.  W.  (2001).  Environmental  influences  on  eating  and   physical  activity.  Annual  Review  of  Public  Health,  22(1),  309–335.   Gangwisch,  J.  E.,  Heymsfield,  S.  B.,  Boden-­‐Albala,  B.,  Buijs,  R.  M.,  Kreier,  F.,  Pickering,  T.  G.,  et  al.   (2006).  Short  Sleep  Duration  as  a  Risk  Factor  for  Hypertension:  Analyses  of  the  First   National  Health  and  Nutrition  Examination  Survey.  Hypertension,  47(5),  833–839.   http://doi.org/10.1161/01.HYP.0000217362.34748.e0   Garcia-­‐Dominic,  O.,  Trevino,  R.  P.,  Echon,  R.  M.,  Mobley,  C.,  Block,  T.,  Bizzari,  A.,  &  Michalek,  J.   (2012).  Improving  Quality  of  Food  Frequency  Questionnaire  Response  in  Low-­‐Income   Mexican  American  Children.  Health  Promotion  Practice,  13(6),  763–771.   http://doi.org/10.1177/1524839911405847   Gatto,  N.  M.,  Martinez,  L.  C.,  Spruijt-­‐Metz,  D.,  &  Davis,  J.  N.  (under  review).  LA  sprouts   randomized  controlled  nutrition  and  gardening  program  reduces  obesity  and  metabolic   risk  in  latino  youth.     Gatto,  N.  M.,  Ventura,  E.  E.,  Cook,  L.  T.,  Gyllenhammer,  L.  E.,  &  Davis,  J.  N.  (2012).  LA  Sprouts:  a   garden-­‐based  nutrition  intervention  pilot  program  influences  motivation  and  preferences   for  fruits  and  vegetables  in  Latino  youth.  Journal  of  the  Academy  of  Nutrition  and  Dietetics,   112(6),  913–920.  http://doi.org/10.1016/j.jand.2012.01.014   George,  L.  K.  (2006).  Perceived  quality  of  life.  Handbook  of  Aging  and  the  Social  Sciences,  6,   320–336.   Gibbs,  L.,  Staiger,  P.  K.,  Johnson,  B.,  Block,  K.,  Macfarlane,  S.,  Gold,  L.,  et  al.  (2013).  Expanding   Children’s  Food  Experiences:  The  Impact  of  a  School-­‐Based  Kitchen  Garden  Program.   Journal  of  Nutrition  Education  and  Behavior,  45(2),  137–146.   http://doi.org/10.1016/j.jneb.2012.09.004   Glasson,  C.,  Chapman,  K.,  &  James,  E.  (2010).  Fruit  and  vegetables  should  be  targeted   separately  in  health  promotion  programmes:  differences  in  consumption  levels,  barriers,   knowledge  and  stages  of  readiness  for  change.  Public  Health  Nutrition,  14(04),  694–701.   http://doi.org/10.1017/S1368980010001643   Gleason,  P.  M.,  &  Suitor,  C.  W.  (2003).  Eating  at  School:  How  the  National  School  Lunch   Program  affects  children's  diets.  Am  J  Agr  Econ,  85(4),  1047–1061.   Gonzalez-­‐Suarez,  C.,  Worley,  A.,  Grimmer-­‐Somers,  K.,  &  Dones,  V.  (2009).  School-­‐Based   Interventions  on  Childhood  Obesity.  Am  J  Prev  Med,  37(5),  418–427.   http://doi.org/10.1016/j.amepre.2009.07.012   Goran,  M.  I.,  Dumke,  K.,  Bouret,  S.  G.,  Kayser,  B.,  Walker,  R.  W.,  &  Blumberg,  B.  (2013).  The   obesogenic  effect  of  high  fructose  exposure  during  early  development.  Nature  Publishing   Group,  9(8),  494–500.  http://doi.org/10.1038/nrendo.2013.108   Goran,  M.  I.,  Lane,  C.,  Toledo-­‐Corral,  C.,  &  Weigensberg,  M.  J.  (2008).  Persistence  of  Pre-­‐ Diabetes  in  Overweight  and  Obese  Hispanic  Children:  Association  With  Progressive   Insulin  Resistance,  Poor    -­‐Cell  Function,  and  Increasing  Visceral  Fat.  Diabetes,  57(11),   3007–3012.  http://doi.org/10.2337/db08-­‐0445   Goran,  M.  I.,  Walker,  R.,  Le,  K.  A.,  Mahurkar,  S.,  Vikman,  S.,  Davis,  J.  N.,  et  al.  (2010).  Effects  of   PNPLA3  on  Liver  Fat  and  Metabolic  Profile  in  Hispanic  Children  and  Adolescents.   Diabetes,  59(12),  3127–3130.  http://doi.org/10.2337/db10-­‐0554   Gordon,  A.  R.,  Devaney,  B.  L.,  &  Burghardt,  J.  A.  (1995).  Dietary  effects  of  the  National  School   Lunch  Program  and  the  School  Breakfast  Program.  The  American  Journal  of  Clinical     95   Nutrition,  61(1  Suppl),  221S–231S.   Graham,  J.  W.  (2012).  Missing  Data  Theory  (pp.  3–46).  New  York,  NY:  Springer  New  York.   http://doi.org/10.1007/978-­‐1-­‐4614-­‐4018-­‐5_1   Grossman,  P.,  Niemann,  L.,  Schmidt,  S.,  &  Walach,  H.  (2004).  Mindfulness-­‐based  stress   reduction  and  health  benefits.  Journal  of  Psychosomatic  Research,  57(1),  35–43.   http://doi.org/10.1016/S0022-­‐3999(03)00573-­‐7   Guillaumie,  L.,  Godin,  G.,  &  Vezina-­‐Im,  L.-­‐A.  (2010).  Psychosocial  determinants  of  fruit  and   vegetable  intake  in  adult  population:  a  systematic  review.  International  Journal  of   Behavioral  Nutrition  and  Physical  Activity,  7(1),  12.  http://doi.org/10.1186/1479-­‐5868-­‐7-­‐ 12   Gutin,  B.,  Islam,  S.,  Manos,  T.,  Cucuzzo,  N.,  Smith,  C.,  &  Stachura,  M.  E.  (1994).  Relation  of   Percentage  of  Body-­‐Fat  and  Maximal  Aerobic  Capacity  to  Risk-­‐Factors  for  Atherosclerosis   and  Diabetes  in  Black-­‐and-­‐White  7-­‐Year-­‐Old  to  11-­‐Year-­‐Old  Children.  Journal  of  Pediatrics,   125(6),  847–852.   Handcock,  M.  S.,  Hunter,  D.  R.,  Butts,  C.  T.,  Goodreau,  S.  M.,  &  Morris,  M.  (2003).  statnet:   Software  tools  for  the  Statistical  Modeling  of  Network  Data.  Retrieved  January  15,  2015,   from  http://statnetproject.org   Harnack,  L.,  Stang,  J.,  &  Story,  M.  (1999).  Soft  Drink  Consumption  Among  US  Children  and   Adolescents.  Journal  of  the  American  Dietetic  Association,  99(4),  436–441.   http://doi.org/10.1016/S0002-­‐8223(99)00106-­‐6   Hartig,  T.,  Evans,  G.  W.,  Jamner,  L.  D.,  Davis,  D.  S.,  &  Gärling,  T.  (2003).  Tracking  restoration  in   natural  and  urban  field  settings.  Journal  of  Environmental  Psychology,  23(2),  109–123.   http://doi.org/10.1016/S0272-­‐4944(02)00109-­‐3   Haug,  E.,  Torsheim,  T.,  &  Samdal,  O.  (2008).  Physical  environmental  characteristics  and   individual  interests  as  correlates  of  physical  activity  in  Norwegian  secondary  schools:  The   health  behaviour  in  school-­‐aged  children  study.  International  Journal  of  Behavioral   Nutrition  and  Physical  Activity,  5(1),  47.  http://doi.org/10.1186/1479-­‐5868-­‐5-­‐47   Haug,  E.,  Torsheim,  T.,  Sallis,  J.  F.,  &  Samdal,  O.  (2010).  The  characteristics  of  the  outdoor   school  environment  associated  with  physical  activity.  Health  Education  Research,  25(2),   248–256.  http://doi.org/10.1093/her/cyn050   He,  K.,  Hu,  F.  B.,  Colditz,  G.  A.,  Manson,  J.  E.,  Willett,  W.  C.,  &  Liu,  S.  (2004).  Changes  in  intake  of   fruits  and  vegetables  in  relation  to  risk  of  obesity  and  weight  gain  among  middle-­‐aged   women.  International  Journal  of  Obesity,  28(12),  1569–1574.   http://doi.org/10.1038/sj.ijo.0802795   Hearn,  M.  D.,  Baranowski,  T.,  Baranowski,  J.,  Doyle,  C.,  Smith,  M.,  Lin,  L.  S.,  &  Resnicow,  K.   (1998).  Environmental  Influences  on  Dietary  Behavior  among  Children:  Availability  and   Accessibility  of  Fruits  and  Vegetables  Enable  Consumption.  Journal  of  Health  Education,   29(1),  26–32.  http://doi.org/10.1080/10556699.1998.10603294   Hedeker,  D.,  Mermelstein,  R.  J.,  &  Demirtas,  H.  (2012).  Modeling  between-­‐subject  and  within-­‐ subject  variances  in  ecological  momentary  assessment  data  using  mixed-­‐effects  location   scale  models.  Statistics  in  Medicine,  31(27),  3328–3336.  http://doi.org/10.1002/sim.5338   Hedeker,  D.,  Mermelstein,  R.  J.,  Berbaum,  M.  L.,  &  Campbell,  R.  T.  (2009).  Modeling  mood   variation  associated  with  smoking:  an  application  of  a  heterogeneous  mixed-­‐effects  model   for  analysis  of  ecological  momentary  assessment  (EMA)  data.  Addiction,  104(2),  297–307.   http://doi.org/10.1111/j.1360-­‐0443.2008.02435.x   Heim,  S.,  Stang,  J.,  &  Ireland,  M.  (2009).  A  Garden  Pilot  Project  Enhances  Fruit  and  Vegetable   Consumption  among  Children.  Journal  of  the  American  Dietetic  Association,  109(7),  1220–   96   1226.  http://doi.org/10.1016/j.jada.2009.04.009   Herman,  C.  P.,  Roth,  D.  A.,  &  Polivy,  J.  (2003).  Effects  of  the  Presence  of  Others  on  Food  Intake:   A  Normative  Interpretation.  Psychological  Bulletin,  129(6),  873–886.   http://doi.org/10.1037/0033-­‐2909.129.6.873   Hermann,  J.  R.,  Parker,  S.  P.,  Brown,  B.  J.,  Siewe,  Y.  J.,  Denney,  B.  A.,  &  Walker,  S.  J.  (2006).  After-­‐ School  Gardening  Improves  Children’s  Reported  Vegetable  Intake  and  Physical  Activity.   Journal  of  Nutrition  Education  and  Behavior,  38(3),  201–202.   http://doi.org/10.1016/j.jneb.2006.02.002   Herzog,  T.  R.,  Black,  A.  M.,  Fountaine,  K.  A.,  &  Knotts,  D.  J.  (1997).  Reflection  and  attentional   recovery  as  distinctive  benefits  of  restorative  environments.  Journal  of  Environmental   Psychology,  17(2),  165–170.   Howell,  A.  J.,  Dopko,  R.  L.,  Passmore,  H.-­‐A.,  &  Buro,  K.  (2011).  Nature  connectedness:   Associations  with  well-­‐being  and  mindfulness.  Personality  and  Individual  Differences,   51(2),  166–171.  http://doi.org/10.1016/j.paid.2011.03.037   Hruschka,  D.  J.,  Brewis,  A.  A.,  Wutich,  A.,  &  Morin,  B.  (2011).  Shared  Norms  and  Their   Explanation  for  the  Social  Clustering  of  Obesity.  American  Journal  of  Public  Health,   101(S1),  S295–S300.  http://doi.org/10.2105/AJPH.2010.300053   Hu,  F.  B.,  &  Malik,  V.  S.  (2010).  Physiology  &  Behavior.  Physiology  &  Behavior,  100(1),  47–54.   http://doi.org/10.1016/j.physbeh.2010.01.036   Hung,  H.  C.,  Joshipura,  K.  J.,  Jiang,  R.,  Hu,  F.  B.,  Hunter,  D.,  Smith-­‐Warner,  S.  A.,  et  al.  (2004).   Fruit  and  Vegetable  Intake  and  Risk  of  Major  Chronic  Disease.  JNCI  Journal  of  the  National   Cancer  Institute,  96(21),  1577–1584.  http://doi.org/10.1093/jnci/djh296   Hutchinson,  D.,  &  Rapee,  R.  (2007).  Do  friends  share  similar  body  image  and  eating  problems?   The  role  of  social  networks  and  peer  influences  in  early  adolescence.  Behaviour  Research   and  Therapy,  45(7),  1557–1577.  http://doi.org/10.1016/j.brat.2006.11.007   Ihaka,  R.,  &  Gentleman,  R.  (1996).  R:  A  Language  for  Data  Analysis  and  Graphics.  Journal  of   Computational  and  Graphical  Statistics,  5(3),  299–314.   http://doi.org/10.1080/10618600.1996.10474713   Jago,  R.,  Baranowski,  T.,  &  Baranowski,  J.  C.  (2007).  Fruit  and  vegetable  availability:  a  micro   environmental  mediating  variable?  Public  Health  Nutrition,  10(07).   http://doi.org/10.1017/S1368980007441441   Kahn,  S.  E.,  Hull,  R.  L.,  &  Utzschneider,  K.  M.  (2006).  Mechanisms  linking  obesity  to  insulin   resistance  and  type  2  diabetes.  Nature,  444(7121),  840–846.   http://doi.org/10.1038/nature05482   Kaplan,  R.,  &  Kaplan,  S.  (1989).  The  experience  of  nature:  A  psychological  perspective.  CUP   Archive.   Kaplan,  S.  (1995).  The  restorative  benefits  of  nature:  Toward  an  integrative  framework.   Journal  of  Environmental  Psychology,  15(3),  169–182.   Kimmons,  J.,  Gillespie,  C.,  Seymour,  J.,  Serdula,  M.,  &  Blanck,  H.  M.  (2009).  Fruit  and  vegetable   intake  among  adolescents  and  adults  in  the  United  States:  percentage  meeting   individualized  recommendations.  Medscape  Journal  of  Medicine,  11(1),  26.   Kuczmarski,  R.  J.,  Ogden,  C.  L.,  Guo,  S.  S.,  Grummer-­‐Strawn,  L.  M.,  Flegal,  K.  M.,  Mei,  Z.,  et  al.   (2002).  2000  CDC  Growth  Charts  for  the  United  States:  methods  and  development.  Vital   and  Health  Statistics.  Series  11,  Data  From  the  National  Health  Survey,  (246),  1–190.   Kwan,  M.-­‐P.  (2012a).  How  GIS  can  help  address  the  uncertain  geographic  context  problem  in   social  science  research.  Annals  of  GIS,  18(4),  245–255.   http://doi.org/10.1080/19475683.2012.727867     97   Kwan,  M.-­‐P.  (2012b).  The  Uncertain  Geographic  Context  Problem.  Annals  of  the  Association  of   American  Geographers,  102(5),  958–968.   http://doi.org/10.1080/00045608.2012.687349   Lancaster,  B.  P.  (1999).  Defining  and  Interpreting  Suppressor  Effects:  Advantages  and   Limitations.   Larson,  N.  I.,  Story,  M.  T.,  &  Nelson,  M.  C.  (2009).  Neighborhood  Environments.  Am  J  Prev  Med,   36(1),  74–81.e10.  http://doi.org/10.1016/j.amepre.2008.09.025   Lattimer,  J.  M.,  &  Haub,  M.  D.  (2010).  Effects  of  Dietary  Fiber  and  Its  Components  on  Metabolic   Health.  Nutrients,  2(12),  1266–1289.  http://doi.org/10.3390/nu2121266   Lautenschlager,  L.,  &  Smith,  C.  (2007).  Beliefs,  knowledge,  and  values  held  by  inner-­‐city  youth   about  gardening,  nutrition,  and  cooking.  Agriculture  and  Human  Values,  24(2),  245–258.   http://doi.org/10.1007/s10460-­‐006-­‐9051-­‐z   Leary,  M.  R.,  &  Kowalski,  R.  M.  (1990).  Impression  management:  A  literature  review  and  two-­‐ component  model.  Psychological  Bulletin,  107(1),  34.   Ledoux,  T.  A.,  Hingle,  M.  D.,  &  Baranowski,  T.  (2010).  Relationship  of  fruit  and  vegetable  intake   with  adiposity:  a  systematic  review.  Obesity  Reviews,  12(5),  e143–e150.   http://doi.org/10.1111/j.1467-­‐789X.2010.00786.x   Lee,  A.  C.  K.,  &  Maheswaran,  R.  (2011).  The  health  benefits  of  urban  green  spaces:  a  review  of   the  evidence.  Journal  of  Public  Health,  33(2),  212–222.   http://doi.org/10.1093/pubmed/fdq068   Lee,  J.,  Park,  B.  J.,  Tsunetsugu,  Y.,  Ohira,  T.,  Kagawa,  T.,  &  Miyazaki,  Y.  (2011).  Effect  of  forest   bathing  on  physiological  and  psychological  responses  in  young  Japanese  male  subjects.   Public  Health,  125(2),  93–100.  http://doi.org/10.1016/j.puhe.2010.09.005   Let's  Move!  (2015).  Let's  Move!  Retrieved  January  30,  2015,  from  http://www.letsmove.gov   Lineberger,  S.  E.,  &  Zajicek,  J.  M.  (2000).  School  gardens:  Can  a  hands-­‐on  teaching  tool  affect   students'  attitudes  and  behaviors  regarding  fruit  and  vegetables?  Horttechnology,  10(3),   593–597.   Liu,  S.,  Serdula,  M.,  Janket,  S.-­‐J.,  Cook,  N.  R.,  Sesso,  H.  D.,  Willett,  W.  C.,  et  al.  (2004).  A   prospective  study  of  fruit  and  vegetable  intake  and  the  risk  of  type  2  diabetes  in  women.   Diabetes  Care,  27(12),  2993–2996.   Lobstein,  T.,  Baur,  L.,  Uauy,  R.,  IASO  International  Obesity  TaskForce.  (2004).  Obesity  in   children  and  young  people:  a  crisis  in  public  health.  Obesity  Reviews  :  an  Official  Journal  of   the  International  Association  for  the  Study  of  Obesity,  5  Suppl  1,  4–104.   http://doi.org/10.1111/j.1467-­‐789X.2004.00133.x   Lopes,  V.  P.,  Vasques,  C.  M.  S.,  Maia,  J.  A.  R.,  &  Ferreira,  J.  C.  V.  (2007).  Habitual  physical  activity   levels  in  childhood  and  adolescence  assessed  with  accelerometry.  The  Journal  of  Sports   Medicine  and  Physical  Fitness,  47(2),  217–222.   Lubans,  D.  R.,  Foster,  C.,  &  Biddle,  S.  J.  H.  (2008).  Preventive  Medicine.  Preventive  Medicine,   47(5),  463–470.  http://doi.org/10.1016/j.ypmed.2008.07.011   Ludwig,  D.  S.  (2002).  The  glycemic  index:  physiological  mechanisms  relating  to  obesity,   diabetes,  and  cardiovascular  disease.  JAMA:  the  Journal  of  the  American  Medical   Association,  287(18),  2414–2423.   Ludwig,  D.  S.,  Peterson,  K.  E.,  &  Gortmaker,  S.  L.  (2001).  Relation  between  consumption  of   sugar-­‐sweetened  drinks  and  childhood  obesity:  a  prospective,  observational  analysis.   Lancet,  357(9255),  505–508.  http://doi.org/10.1016/S0140-­‐6736(00)04041-­‐1   Lumeng,  J.  C.,  Somashekar,  D.,  Appugliese,  D.,  Kaciroti,  N.,  Corwyn,  R.  F.,  &  Bradley,  R.  H.   (2007).  Shorter  Sleep  Duration  Is  Associated  With  Increased  Risk  for  Being  Overweight  at     98   Ages  9  to  12  Years.  Pediatrics,  120(5),  1020–1029.  http://doi.org/10.1542/peds.2006-­‐ 3295   Lusher,  D.,  Koskinen,  J.,  &  Robins,  G.  (Eds.).  (2013).  Exponential  random  graph  models  for   social  networks:  Theory,  Methods,  and  Applications.  Cambridge  University  Press.   Lustig,  R.  H.,  Schmidt,  L.  A.,  &  Brindis,  C.  D.  (2012).  Public  health:  The  toxic  truth  about  sugar.   Nature,  482(7383),  27–29.  http://doi.org/10.1038/482027a   Lytle,  L.  A.,  Stone,  E.  J.,  Nichaman,  M.  Z.,  Perry,  C.  L.,  Montgomery,  D.  H.,  Nicklas,  T.  A.,  et  al.   (1996).  Changes  in  nutrient  intakes  of  elementary  school  children  following  a  school-­‐ based  intervention:  results  from  the  CATCH  Study.  Preventive  Medicine,  25(4),  465–477.   http://doi.org/10.1006/pmed.1996.0078   Maas,  J.,  Verheij,  R.  A.,  Spreeuwenberg,  P.,  &  Groenewegen,  P.  P.  (2008).  Physical  activity  as  a   possible  mechanism  behind  the  relationship  between  green  space  and  health:  A  multilevel   analysis.  BMC  Public  Health,  8(1),  206.  http://doi.org/10.1186/1471-­‐2458-­‐8-­‐206   Malik,  V.  S.,  Popkin,  B.  M.,  Bray,  G.  A.,  Despres,  J.  P.,  Willett,  W.  C.,  &  Hu,  F.  B.  (2010).  Sugar-­‐ Sweetened  Beverages  and  Risk  of  Metabolic  Syndrome  and  Type  2  Diabetes:  A  meta-­‐ analysis.  Diabetes  Care,  33(11),  2477–2483.  http://doi.org/10.2337/dc10-­‐1079   Malik,  V.  S.,  Schulze,  M.  B.,  &  Hu,  F.  B.  (2006).  Intake  of  sugar-­‐sweetened  beverages  and  weight   gain:  a  systematic  review.  The  American  Journal  of  Clinical  Nutrition,  84(2),  274–288.   Martinez,  L.  C.,  Gatto,  N.  M.,  Chou,  C.-­‐P.,  O'Reilly,  G.  A.,  Spruijt-­‐Metz,  D.,  &  Davis,  J.  N.  (under   review).  Determinants  of  fruit  and  vegetable  preferences  and  intake  in  Hispanic/Latino   children.  Appetite.   Martinez,  L.  C.,  Gatto,  N.  M.,  Spruijt-­‐Metz,  D.,  &  Davis,  J.  N.  (2015).  Design  and  methodology  of   the  LA  Sprouts  nutrition,  cooking  and  gardening  program  for  Latino  youth:  a  randomized   controlled  intervention.  Contemporary  Clinical  Trials,  219–227.   Matthews,  C.  E.,  Chen,  K.  Y.,  Freedson,  P.  S.,  Buchowski,  M.  S.,  Beech,  B.  M.,  Pate,  R.  R.,  &   Troiano,  R.  P.  (2008).  Amount  of  Time  Spent  in  Sedentary  Behaviors  in  the  United  States,   2003-­‐2004.  American  Journal  of  Epidemiology,  167(7),  875–881.   http://doi.org/10.1093/aje/kwm390   Matthews,  S.  A.,  &  Yang,  T.-­‐C.  (2010).  Exploring  the  Role  of  the  Built  and  Social  Neighborhood   Environment  in  Moderating  Stress  and  Health.  Annals  of  Behavioral  Medicine  :  a   Publication  of  the  Society  of  Behavioral  Medicine,  39(2),  170–183.   http://doi.org/10.1007/s12160-­‐010-­‐9175-­‐7   McAleese,  J.  D.,  &  Rankin,  L.  L.  (2007).  Garden-­‐Based  Nutrition  Education  Affects  Fruit  and   Vegetable  Consumption  in  Sixth-­‐Grade  Adolescents.  Journal  of  the  American  Dietetic   Association,  107(4),  662–665.  http://doi.org/10.1016/j.jada.2007.01.015   McClain,  A.  D.,  Chappuis,  C.,  Nguyen-­‐Rodriguez,  S.  T.,  Yaroch,  A.  L.,  &  Spruijt-­‐Metz,  D.  (2009).   Psychosocial  correlates  of  eating  behavior  in  children  and  adolescents:  a  review.   International  Journal  of  Behavioral  Nutrition  and  Physical  Activity,  6(1),  54.   http://doi.org/10.1186/1479-­‐5868-­‐6-­‐54   McEwen,  B.  S.  (2006).  Protective  and  damaging  effects  of  stress  mediators:  central  role  of  the   brain.  Dialogues  in  Clinical  Neuroscience,  8(4),  367–381.   McEwen,  B.  S.  (2008).  Central  effects  of  stress  hormones  in  health  and  disease:  Understanding   the  protective  and  damaging  effects  of  stress  and  stress  mediators.  European  Journal  of   Pharmacology,  583(2-­‐3),  174–185.  http://doi.org/10.1016/j.ejphar.2007.11.071   McLaren,  L.  (2007).  Socioeconomic  Status  and  Obesity.  Epidemiologic  Reviews,  29(1),  29–48.   http://doi.org/10.1093/epirev/mxm001   Mendelson,  T.,  Greenberg,  M.  T.,  Dariotis,  J.  K.,  Gould,  L.  F.,  Rhoades,  B.  L.,  &  Leaf,  P.  J.  (2010).     99   Feasibility  and  Preliminary  Outcomes  of  a  School-­‐Based  Mindfulness  Intervention  for   Urban  Youth.  Journal  of  Abnormal  Child  Psychology,  38(7),  985–994.   http://doi.org/10.1007/s10802-­‐010-­‐9418-­‐x   Millimet,  D.  L.,  Tchernis,  R.,  &  husain,  M.  (2010).  School  Nutrition  Programs  and  the  Incidence   of  Childhood  Obesity.  J  Human  Resources,  45(3),  640–654.   Mitchell,  R.  (2013).  Is  physical  activity  in  natural  environments  better  for  mental  health  than   physical  activity  in  other  environments?  Social  Science  &  Medicine,  91(C),  130–134.   http://doi.org/10.1016/j.socscimed.2012.04.012   Moksnes,  U.  K.,  Byrne,  D.  G.,  Mazanov,  J.,  &  Espnes,  G.  A.  (2010a).  Adolescent  stress:  Evaluation   of  the  factor  structure  of  the  Adolescent  Stress  Questionnaire  (ASQ-­‐N).  Scandinavian   Journal  of  Psychology,  51(3),  203–209.  http://doi.org/10.1111/j.1467-­‐9450.2009.00803.x   Moksnes,  U.  K.,  Moljord,  I.  E.  O.,  Espnes,  G.  A.,  &  Byrne,  D.  G.  (2010b).  Personality  and   Individual  Differences.  Personality  and  Individual  Differences,  49(5),  430–435.   http://doi.org/10.1016/j.paid.2010.04.012   Montonen,  J.,  Järvinen,  R.,  Heliövaara,  M.,  Reunanen,  A.,  Aromaa,  A.,  &  Knekt,  P.  (2005).  Food   consumption  and  the  incidence  of  type  II  diabetes  mellitus.  European  Journal  of  Clinical   Nutrition,  59(3),  441–448.  http://doi.org/10.1038/sj.ejcn.1602094   Morgan,  P.  J.,  Warren,  J.  M.,  Lubans,  D.  R.,  Saunders,  K.  L.,  Quick,  G.  I.,  &  Collins,  C.  E.  (2010).   The  impact  of  nutrition  education  with  and  without  a  school  garden  on  knowledge,   vegetable  intake  and  preferences  and  quality  of  school  life  among  primary-­‐school   students.  Public  Health  Nutrition,  13(11),  1931–1940.   http://doi.org/10.1017/S1368980010000959   Morris,  J.  L.,  &  Zidenberg-­‐Cherr,  S.  (2002).  Garden-­‐enhanced  nutrition  curriculum  improves   fourth-­‐grade  school  children's  knowledge  of  nutrition  and  preferences  for  some   vegetables.  Journal  of  the  American  Dietetic  Association,  102(1),  91–93.   http://doi.org/10.1016/S0002-­‐8223(02)90027-­‐1   Nguyen-­‐Michel,  S.  T.,  Unger,  J.  B.,  &  Spruijt-­‐Metz,  D.  (2007).  Dietary  correlates  of  emotional   eating  in  adolescence.  Appetite,  49(2),  494–499.   http://doi.org/10.1016/j.appet.2007.03.005   Nichol,  M.  E.,  Pickett,  W.,  &  Janssen,  I.  (2009).  Associations  between  school  recreational   environments  and  physical  activity.  The  Journal  of  School  Health,  79(6),  247–254.   http://doi.org/10.1111/j.1746-­‐1561.2009.00406.x   Nielsen,  S.  J.,  &  Popkin,  B.  M.  (2004).  Changes  in  beverage  intake  between  1977  and  2001.   American  Journal  of  Preventive  Medicine,  27(3),  205–210.   http://doi.org/10.1016/j.amepre.2004.05.005   O'Reilly,  G.  A.,  Cook,  L.,  Spruijt-­‐Metz,  D.,  &  Black,  D.  S.  (2014).  Mindfulness-­‐based  interventions   for  obesity-­‐related  eating  behaviours:  a  literature  review.  Obesity  Reviews,  15(6),  453– 461.  http://doi.org/10.1111/obr.12156   Ogden,  C.  L.  (2012).  Prevalence  of  Obesity  and  Trends  in  Body  Mass  Index  Among  US  Children   and  Adolescents,  1999-­‐2010.  JAMA:  the  Journal  of  the  American  Medical  Association,   307(5),  483.  http://doi.org/10.1001/jama.2012.40   Owen,  N.,  Healy,  G.  N.,  Matthews,  C.  E.,  &  Dunstan,  D.  W.  (2010).  Too  Much  Sitting.  Exercise  and   Sport  Sciences  Reviews,  38(3),  105–113.  http://doi.org/10.1097/JES.0b013e3181e373a2   Pan,  Y.,  &  Pratt,  C.  A.  (2008).  Metabolic  Syndrome  and  Its  Association  with  Diet  and  Physical   Activity  in  US  Adolescents.  Journal  of  the  American  Dietetic  Association,  108(2),  276–286.   http://doi.org/10.1016/j.jada.2007.10.049   Papas,  M.  A.,  Alberg,  A.  J.,  Ewing,  R.,  Helzlsouer,  K.  J.,  Gary,  T.  L.,  &  Klassen,  A.  C.  (2007).  The     100   Built  Environment  and  Obesity.  Epidemiologic  Reviews,  29(1),  129–143.   http://doi.org/10.1093/epirev/mxm009   Park,  B.-­‐J.,  Furuya,  K.,  Kasetani,  T.,  Takayama,  N.,  Kagawa,  T.,  &  Miyazaki,  Y.  (2011).   Relationship  between  sychological  responses  and  physical  environments  in  forest   settings.  Landscape  and  Urban  Planning,  102(1),  24–32.   http://doi.org/10.1016/j.landurbplan.2011.03.005   Parmer,  S.  M.,  Salisbury-­‐Glennon,  J.,  Shannon,  D.,  &  Struempler,  B.  (2009).  School  Gardens:  An   Experiential  Learning  Approach  for  a  Nutrition  Education  Program  to  Increase  Fruit  and   Vegetable  Knowledge,  Preference,  and  Consumption  among  Second-­‐grade  Students.   Journal  of  Nutrition  Education  and  Behavior,  41(3),  212–217.   http://doi.org/10.1016/j.jneb.2008.06.002   Pearson,  N.,  Biddle,  S.  J.,  &  Gorely,  T.  (2008).  Family  correlates  of  fruit  and  vegetable   consumption  in  children  and  adolescents:  a  systematic  review.  Public  Health  Nutrition,   12(02),  267.  http://doi.org/10.1017/S1368980008002589   Pliner,  P.,  &  Hobden,  K.  (1992).  Development  of  a  scale  to  measure  the  trait  of  food  neophobia   in  humans.  Appetite,  19(2),  105–120.   Pliner,  P.,  Bell,  R.,  Hirsch,  E.  S.,  &  Kinchla,  M.  (2006).  Meal  duration  mediates  the  effect  of   “social  facilitation”  on  eating  in  humans.  Appetite,  46(2),  189–198.   http://doi.org/10.1016/j.appet.2005.12.003   Pons,  P.,  &  Latapy,  M.  (2006).  Computing  communities  in  large  networks  using  random  walks.   J  Graph  Algorithms  Appl.   Power,  C.,  Lake,  J.  K.,  &  Cole,  T.  J.  (1997).  Measurement  and  long-­‐term  health  risks  of  child  and   adolescent  fatness.  International  Journal  of  Obesity,  21(7),  507–526.   Qureshi,  M.  M.,  Singer,  M.  R.,  &  Moore,  L.  L.  (2009).  A  cross-­‐sectional  study  of  food  group   intake  and  C-­‐reactive  protein  among  children.  Nutrition  &  Metabolism,  6(1),  40.   http://doi.org/10.1186/1743-­‐7075-­‐6-­‐40   Ramirez,  A.  J.,  Graham,  J.,  Richards,  M.  A.,  Cull,  A.,  &  Gregory,  W.  M.  (1996).  Mental  health  of   hospital  consultants:  the  effects  of  stress  and  satisfaction  at  work.  Lancet,  347(9003),   724–728.   Rasmussen,  M.,  Krølner,  R.,  Klepp,  K.-­‐I.,  Lytle,  L.,  Brug,  J.,  Bere,  E.,  &  Due,  P.  (2006).   Determinants  of  fruit  and  vegetable  consumption  among  children  and  adolescents:  a   review  of  the  literature.  Part  I:  quantitative  studies.  International  Journal  of  Behavioral   Nutrition  and  Physical  Activity,  3(1),  22.   Ratcliffe,  M.  M.,  Merrigan,  K.  A.,  Rogers,  B.  L.,  &  Goldberg,  J.  P.  (2010).  The  Effects  of  School   Garden  Experiences  on  Middle  School-­‐Aged  Students'  Knowledge,  Attitudes,  and   Behaviors  Associated  With  Vegetable  Consumption.  Health  Promotion  Practice,  12(1),  36– 43.  http://doi.org/10.1177/1524839909349182   Ray,  T.  K.,  Mansell,  K.  M.,  Knight,  L.  C.,  Malmud,  L.  S.,  Owen,  O.  E.,  &  Boden,  G.  (1983).  Long-­‐ term  effects  of  dietary  fiber  on  glucose  tolerance  and  gastric  emptying  in  noninsulin-­‐ dependent  diabetic  patients.  The  American  Journal  of  Clinical  Nutrition,  37(3),  376–381.   Reibel,  D.  K.,  Greeson,  J.  M.,  Brainard,  G.  C.,  &  Rosenzweig,  S.  (2001).  Mindfulness-­‐based  stress   reduction  and  health-­‐related  quality  of  life  in  a  heterogeneous  patient  population.  General   Hospital  Psychiatry,  23(4),  183–192.   Rennie,  K.  L.,  Johnson,  L.,  &  Jebb,  S.  A.  (2005).  Behavioural  determinants  of  obesity.  Best   Practice  &  Research  Clinical  Endocrinology  &  Metabolism,  19(3),  343–358.   http://doi.org/10.1016/j.beem.2005.04.003   Robinson-­‐O'Brien,  R.,  Story,  M.,  &  Heim,  S.  (2009).  Impact  of  Garden-­‐Based  Youth  Nutrition     101   Intervention  Programs:  A  Review.  Journal  of  the  American  Dietetic  Association,  109(2),   273–280.  http://doi.org/10.1016/j.jada.2008.10.051   Roemmich,  J.  N.,  Epstein,  L.  H.,  Raja,  S.,  &  Yin,  L.  (2007).  The  neighborhood  and  home   environments:  disparate  relationships  with  physical  activity  and  sedentary  behaviors  in   youth.  Annals  of  Behavioral  Medicine  :  a  Publication  of  the  Society  of  Behavioral  Medicine,   33(1),  29–38.  http://doi.org/10.1207/s15324796abm3301_4   Rosmond,  R.  (2003).  Stress  induced  disturbances  of  the  HPA  axis:  a  pathway  to  Type  2   diabetes?  Medical  Science  Monitor  :  International  Medical  Journal  of  Experimental  and   Clinical  Research,  9(2),  RA35–9.   Ryan,  R.  M.,  &  Connell,  J.  P.  (1989).  Perceived  locus  of  causality  and  internalization:  examining   reasons  for  acting  in  two  domains.  Journal  of  Personality  and  Social  Psychology,  57(5),   749–761.   Saelens,  B.  E.,  Sallis,  J.  F.,  Nader,  P.  R.,  Broyles,  S.  L.,  Berry,  C.  C.,  &  Taras,  H.  L.  (2002).  Home   environmental  influences  on  children’s  television  watching  from  early  to  middle   childhood.  Journal  of  Developmental  &  Behavioral  Pediatrics,  23(3),  127–132.   Sallis,  J.  F.,  Prochaska,  J.  J.,  &  Taylor,  W.  C.  (2000).  A  review  of  correlates  of  physical  activity  of   children  and  adolescents.  Medicine  and  Science  in  Sports  and  Exercise,  32(5),  963–975.   Salvy,  S.-­‐J.,  de  la  Haye,  K.,  Bowker,  J.  C.,  &  Hermans,  R.  C.  J.  (2012).  Influence  of  peers  and   friends  on  children“s  and  adolescents”  eating  and  activity  behaviors.  Physiology  &   Behavior,  106(3),  369–378.  http://doi.org/10.1016/j.physbeh.2012.03.022   Samaha,  F.  F.,  Iqbal,  N.,  Seshadri,  P.,  Chicano,  K.  L.,  Daily,  D.  A.,  McGrory,  J.,  et  al.  (2003).  A  low-­‐ carbohydrate  as  compared  with  a  low-­‐fat  diet  in  severe  obesity.  The  New  England  Journal   of  Medicine,  348(21),  2074–2081.  http://doi.org/10.1056/NEJMoa022637   Sandel,  M.,  &  Wright,  R.  J.  (2006).  When  home  is  where  the  stress  is:  expanding  the   dimensions  of  housing  that  influence  asthma  morbidity.  Archives  of  Disease  in  Childhood,   91(11),  942–948.  http://doi.org/10.1136/adc.2006.098376   Schanzenbach,  D.  W.  (2009).  Do  School  Lunches  Contribute  to  Childhood  Obesity?  J  Human   Resources,  44(3),  684–709.   Schulze,  M.  B.,  Manson,  J.  E.,  Ludwig,  D.  S.,  Colditz,  G.  A.,  Stampfer,  M.  J.,  Willett,  W.  C.,  &  Hu,  F.   B.  (2004).  Sugar-­‐sweetened  beverages,  weight  gain,  and  incidence  of  type  2  diabetes  in   young  and  middle-­‐aged  women.  JAMA:  the  Journal  of  the  American  Medical  Association,   292(8),  927–934.  http://doi.org/10.1001/jama.292.8.927   Schwimmer,  J.  B.,  Deutsch,  R.,  Kahen,  T.,  Lavine,  J.  E.,  Stanley,  C.,  &  Behling,  C.  (2006).   Prevalence  of  Fatty  Liver  in  Children  and  Adolescents.  Pediatrics,  118(4),  1388–1393.   http://doi.org/10.1542/peds.2006-­‐1212   Schwimmer,  J.  B.,  Deutsch,  R.,  Rauch,  J.  B.,  Behling,  C.,  Newbury,  R.,  &  Lavine,  J.  E.  (2003).   Obesity,  insulin  resistance,  and  other  clinicopathological  correlates  of  pediatric   nonalcoholic  fatty  liver  disease.  The  Journal  of  Pediatrics,  143(4),  500–505.   http://doi.org/10.1067/S0022-­‐3476(03)00325-­‐1   Scott,  K.  A.,  Melhorn,  S.  J.,  &  Sakai,  R.  R.  (2012).  Effects  of  Chronic  Social  Stress  on  Obesity.   Current  Obesity  Reports,  1(1),  16–25.  http://doi.org/10.1007/s13679-­‐011-­‐0006-­‐3   SEARCH  for  Diabetes  in  Youth  Study  Group.  (2006).  The  Burden  of  Diabetes  Mellitus  Among   US  Youth:  Prevalence  Estimates  From  the  SEARCH  for  Diabetes  in  Youth  Study.  Pediatrics,   118(4),  1510–1518.  http://doi.org/10.1542/peds.2006-­‐0690   Shih,  M.,  Dumke,  K.  A.,  Goran,  M.  I.,  &  Simon,  P.  A.  (2013).  The  association  between   community-­‐level  economic  hardship  and  childhood  obesity  prevalence  in  Los  Angeles.   Pediatric  Obesity,  8(6),  411–417.  http://doi.org/10.1111/j.2047-­‐6310.2012.00123.x     102   Shrum,  W.,  Cheek,  N.  H.,  Jr,  &  Hunter,  S.  M.  (1988).  Friendship  in  school:  Gender  and  racial   homophily.  Sociology  of  Education,  227–239.   Singer,  J.  D.,  &  Willett,  J.  B.  (2003).  Applied  Longitudinal  Data  Analysis.  Oxford  Univ  Press.   Sisson,  S.  B.,  Church,  T.  S.,  Martin,  C.  K.,  Tudor-­‐Locke,  C.,  Smith,  S.  R.,  Bouchard,  C.,  et  al.  (2009).   Profiles  of  sedentary  behavior  in  children  and  adolescents:  The  US  National  Health  and   Nutrition  Examination  Survey,  2001–2006.  International  Journal  of  Pediatric  Obesity,  4(4),   353–359.  http://doi.org/10.3109/17477160902934777   Slavin,  R.  E.  (1989).  School  and  classroom  organization.   Smyth,  J.  M.,  &  Stone,  A.  A.  (2003).  Ecological  momentary  assessment  research  in  behavioral   medicine.  Journal  of  Happiness  Studies,  4(1),  35–52.   Snijders,  Tom  AB,  &  Baerveldt,  C.  (2003).  A  multilevel  network  study  of  the  effects  of   delinquent  behavior  on  friendship  evolution.  Journal  of  Mathematical  Sociology,  27(2-­‐3),   123–151.  http://doi.org/10.1080/00222500390213119   Snijders,  Tom  AB,  Pattison,  P.  E.,  Robins,  G.  L.,  &  Handcock,  M.  S.  (2006).  New  specifications  for   exponential  random  graph  models.  Sociological  Methodology,  36(1),  99–153.   Somerset,  S.,  &  Markwell,  K.  (2008).  Impact  of  a  school-­‐based  food  garden  on  attitudes  and   identification  skills  regarding  vegetables  and  fruit:  a  12-­‐month  intervention  trial.  Public   Health  Nutrition,  12(02),  214.  http://doi.org/10.1017/S1368980008003327   Southern  California  Association  of  GovernmentsSCAG  Aerial  Land  Use  data  description.  SCAG   Aerial  Land  Use  data  description.  Southern  California  Association  of  Governments.   Speiser,  P.  W.,  Rudolf,  M.  C.  J.,  Anhalt,  H.,  Camacho-­‐Hubner,  C.,  Chiarelli,  F.,  Eliakim,  A.,  et  al.   (2005).  Childhood  Obesity.  The  Journal  of  Clinical  Endocrinology  &  Metabolism,  90(3),   1871–1887.  http://doi.org/10.1210/jc.2004-­‐1389   Spruijt-­‐Metz,  D.  (2011).  Etiology,  Treatment,  and  Prevention  of  Obesity  in  Childhood  and   Adolescence:  A  Decade  in  Review.  Journal  of  Research  on  Adolescence,  21(1),  129–152.   http://doi.org/10.1111/j.1532-­‐7795.2010.00719.x   Spruijt-­‐Metz,  D.,  Belcher,  B.  R.,  Hsu,  Y.  W.,  McClain,  A.  D.,  Chou,  C.  P.,  Nguyen-­‐Rodriguez,  S.,  et   al.  (2013).  Temporal  Relationship  Between  Insulin  Sensitivity  and  the  Pubertal  Decline  in   Physical  Activity  in  Peripubertal  Hispanic  and  African  American  Females.  Diabetes  Care,   36(11),  3739–3745.  http://doi.org/10.2337/dc13-­‐0083   Spruijt-­‐Metz,  D.,  Nguyen-­‐Michel,  S.  T.,  Goran,  M.  I.,  Chou,  C.-­‐P.,  &  Huang,  T.  T.-­‐K.  (2008).   Reducing  sedentary  behavior  in  minority  girls  via  a  theory-­‐based,  tailored  classroom   media  intervention.  International  Journal  of  Pediatric  Obesity,  3(4),  240–248.   http://doi.org/10.1080/17477160802113415   Spruijt-­‐Metz,  D.,  O'Reilly,  G.  A.,  Cook,  L.,  Page,  K.  A.,  &  Quinn,  C.  (2014).  Behavioral   Contributions  to  the  Pathogenesis  of  Type  2  Diabetes.  Current  Diabetes  Reports,  14(4),   475.  http://doi.org/10.1007/s11892-­‐014-­‐0475-­‐3   Stang,  J.,  &  Story,  M.  (2005).  Adolescent  growth  and  development.  Guidelines  for  Adolescent   Nutrition  Services.  Minneapolis,  MN:  Center  for  Leadership,  Education  and  Training  in   Maternal  and  Child  Nutrition,  Division  of  Epidemiology  and  Community  Health,  School  of   Public  Health,  University  of  Minnesota,  1–8.   Stigsdotter,  U.  K.,  Ekholm,  O.,  Schipperijn,  J.,  Toftager,  M.,  Kamper-­‐Jorgensen,  F.,  &  Randrup,  T.   B.  (2010).  Health  promoting  outdoor  environments  -­‐  Associations  between  green  space,   and  health,  health-­‐related  quality  of  life  and  stress  based  on  a  Danish  national   representative  survey.  Scandinavian  Journal  of  Public  Health,  38(4),  411–417.   http://doi.org/10.1177/1403494810367468   Stone,  A.  A.,  &  Shiffman,  S.  (1994).  Ecological  momentary  assessment  (EMA)  in  behavorial     103   medicine.  Annals  of  Behavioral  Medicine  :  a  Publication  of  the  Society  of  Behavioral   Medicine,  16(3),  119–202.   Storch,  E.  A.,  Milsom,  V.  A.,  DeBraganza,  N.,  Lewin,  A.  B.,  Geffken,  G.  R.,  &  Silverstein,  J.  H.   (2006).  Peer  Victimization,  Psychosocial  Adjustment,  and  Physical  Activity  in  Overweight   and  At-­‐Risk-­‐For-­‐Overweight  Youth.  Journal  of  Pediatric  Psychology,  32(1),  80–89.   http://doi.org/10.1093/jpepsy/jsj113   Story,  M.  (1999).  School-­‐based  approaches  for  preventing  and  treating  obesity.  International   Journal  of  Obesity  and  Related  Metabolic  Disorders  :  Journal  of  the  International  Association   for  the  Study  of  Obesity,  23  Suppl  2,  S43–51.   Stults-­‐Kolehmainen,  M.  A.,  &  Sinha,  R.  (2013).  The  Effects  of  Stress  on  Physical  Activity  and   Exercise.  Sports  Medicine,  44(1),  81–121.  http://doi.org/10.1007/s40279-­‐013-­‐0090-­‐5   Sugiyama,  T.,  Leslie,  E.,  Giles-­‐Corti,  B.,  &  Owen,  N.  (2008).  Associations  of  neighbourhood   greenness  with  physical  and  mental  health:  do  walking,  social  coherence  and  local  social   interaction  explain  the  relationships?  Journal  of  Epidemiology  &  Community  Health,  62(5),   e9–e9.  http://doi.org/10.1136/jech.2007.064287   Tate,  E.,  Wood,  W.,  Liao,  Y.,  &  Dunton,  G.  (2014).  Do  stressed  mothers  have  heavier  children?:   A  meta-­‐analysis  on  the  relationship  between  maternal  stress  and  child  body  mass  index.   Obesity  Reviews,  1–42.   Thompson,  C.  W.,  Aspinall,  P.,  &  Montarzino,  A.  (2007).  The  Childhood  Factor:  Adult  Visits  to   Green  Places  and  the  Significance  of  Childhood  Experience.  Environment  and  Behavior,   40(1),  111–143.  http://doi.org/10.1177/0013916507300119   Thompson,  C.  W.,  Roe,  J.,  Aspinall,  P.,  Mitchell,  R.,  Clow,  A.,  &  Miller,  D.  (2012).  More  green   space  is  linked  to  less  stress  in  deprived  communities:  Evidence  from  salivary  cortisol   patterns.  Landscape  and  Urban  Planning,  105(3),  221–229.   http://doi.org/10.1016/j.landurbplan.2011.12.015   Tohill,  B.  C.,  Seymour,  J.,  Serdula,  M.,  Kettel-­‐Khan,  L.,  &  Rolls,  B.  J.  (2004).  What  Epidemiologic   Studies  Tell  Us  about  the  Relationship  between  Fruit  and  Vegetable  Consumption  and   Body  Weight.  Nutrition  Reviews,  62(10),  365–374.   http://doi.org/10.1301/nr.2004.oct.365-­‐374   Torsheim,  T.,  Aaroe,  L.  E.,  &  Wold,  B.  (2003).  School-­‐related  stress,  social  support,  and   distress:  prospective  analysis  of  reciprocal  and  multilevel  relationships.  Scandinavian   Journal  of  Psychology,  44(2),  153–159.   Trogdon,  J.  G.,  Nonnemaker,  J.,  &  Pais,  J.  (2008).  Peer  effects  in  adolescent  overweight.  Journal   of  Health  Economics,  27(5),  1388–1399.  http://doi.org/10.1016/j.jhealeco.2008.05.003   Troiano,  R.  P.,  Berrigan,  D.,  Dodd,  K.  W.,  Mâsse,  L.  C.,  Tilert,  T.,  &  McDowell,  M.  (2008).  Physical   activity  in  the  United  States  measured  by  accelerometer.  Medicine  and  Science  in  Sports   and  Exercise,  40(1),  181–188.  http://doi.org/10.1249/mss.0b013e31815a51b3   Troiano,  R.  P.,  Briefel,  R.  R.,  Carroll,  M.  D.,  &  Bialostosky,  K.  (2000).  Energy  and  fat  intakes  of   children  and  adolescents  in  the  united  states:  data  from  the  national  health  and  nutrition   examination  surveys.  The  American  Journal  of  Clinical  Nutrition,  72(5  Suppl),  1343S– 1353S.   Ulrich,  R.  S.  (1986).  Human  responses  to  vegetation  and  landscapes.  Landscape  and  Urban   Planning,  13,  29–44.   Ulrich,  R.  S.,  Simons,  R.  F.,  Losito,  B.  D.,  Fiorito,  E.,  Miles,  M.  A.,  &  Zelson,  M.  (2014).  Stress   recovery  during  exposure  to  natural  and  urban  environments.  Journal  of  Environmental   Psychology,  11(3),  201–230.   Unger,  J.  B.,  Reynolds,  K.,  Shakib,  S.,  Spruijt-­‐Metz,  D.,  Sun,  P.,  &  Johnson,  C.  A.  (2004).     104   Acculturation,  physical  activity,  and  fast-­‐food  consumption  among  Asian-­‐American  and   Hispanic  adolescents.  Journal  of  Community  Health,  29(6),  467–481.   United  States  Department  of  Agriculture.  My  Plate,  choosemyplate.gov  1–5  (pp.  1–5).   Retrieved  from  http://choosemyplate.gov/food-­‐groups/   Valente,  T.  W.,  Hoffman,  B.  R.,  Ritt-­‐Olson,  A.,  Lichtman,  K.,  &  Johnson,  C.  A.  (2003).  Effects  of  a   social-­‐network  method  for  group  assignment  strategies  on  peer-­‐led  tobacco  prevention   programs  in  schools.  American  Journal  of  Public  Health,  93(11),  1837–1843.   Valente,  T.  W.  (2010).  Social  networks  and  health:  Models,  methods,  and  applications.  Oxford   Univ  Press.   Valente,  T.  W.,  Fujimoto,  K.,  Chou,  C.-­‐P.,  &  Spruijt-­‐Metz,  D.  (2009).  Adolescent  Affiliations  and   Adiposity:  A  Social  Network  Analysis  of  Friendships  and  Obesity.  Journal  of  Adolescent   Health,  45(2),  202–204.  http://doi.org/10.1016/j.jadohealth.2009.01.007   Van  Cauter,  E.,  &  Knutson,  K.  L.  (2008).  Sleep  and  the  epidemic  of  obesity  in  children  and   adults.  European  Journal  of  Endocrinology,  159(suppl_1),  S59–S66.   http://doi.org/10.1530/EJE-­‐08-­‐0298   van  den  Berg,  A.  E.,  &  Custers,  M.  H.  G.  (2011).  Gardening  Promotes  Neuroendocrine  and   Affective  Restoration  from  Stress.  Journal  of  Health  Psychology,  16(1),  3–11.   http://doi.org/10.1177/1359105310365577   van  den  Berg,  A.  E.,  Hartig,  T.,  &  Staats,  H.  (2007).  Preference  for  nature  in  urbanized  societies:   stress,  restoration,  and  the  pursuit  of  sustainability.  Journal  of  Social  Issues,  63(1),  79–96.   van  der  Horst,  K.,  Oenema,  A.,  Ferreira,  I.,  Wendel-­‐Vos,  W.,  Giskes,  K.,  van  Lenthe,  F.,  &  Brug,  J.   (2007).  A  systematic  review  of  environmental  correlates  of  obesity-­‐related  dietary   behaviors  in  youth.  Health  Education  Research,  22(2),  203–226.   http://doi.org/10.1093/her/cyl069   van  Dillen,  S.  M.  E.,  de  Vries,  S.,  Groenewegen,  P.  P.,  &  Spreeuwenberg,  P.  (2012).  Greenspace   in  urban  neighbourhoods  and  residents'  health:  adding  quality  to  quantity.  Journal  of   Epidemiology  &  Community  Health,  66(6),  e8–e8.   http://doi.org/10.1136/jech.2009.104695   van  Duyn,  M.  A.  S.,  &  Pivonka,  E.  (2000).  Overview  of  the  Health  Benefits  of  Fruit  and   Vegetable  Consumption  for  the  Dietetics  Professional.  Journal  of  the  American  Dietetic   Association,  100(12),  1511–1521.  http://doi.org/10.1016/S0002-­‐8223(00)00420-­‐X   Vartanian,  L.  R.,  Herman,  C.  P.,  &  Polivy,  J.  (2007).  Consumption  stereotypes  and  impression   management:  How  you  are  what  you  eat.  Appetite,  48(3),  265–277.   http://doi.org/10.1016/j.appet.2006.10.008   Ventura,  A.  K.,  Loken,  E.,  Mitchell,  D.  C.,  Smiciklas-­‐Wright,  H.,  &  Birch,  L.  L.  (2006).   Understanding  reporting  bias  in  the  dietary  recall  data  of  11-­‐year-­‐old  girls.  Obesity  (Silver   Spring,  Md.),  14(6),  1073–1084.  http://doi.org/10.1038/oby.2006.123   Ventura,  E.  E.,  Davis,  J.  N.,  Alexander,  K.  E.,  Shaibi,  G.  Q.,  Lee,  W.,  Byrd-­‐Williams,  C.  E.,  et  al.   (2008).  Dietary  Intake  and  the  Metabolic  Syndrome  in  Overweight  Latino  Children.   Journal  of  the  American  Dietetic  Association,  108(8),  1355–1359.   http://doi.org/10.1016/j.jada.2008.05.006   Verheij,  R.  A.,  Maas,  J.,  &  Groenewegen,  P.  P.  (2008).  Urban-­‐-­‐Rural  Health  Differences  and  the   Availability  of  Green  Space.  European  Urban  and  Regional  Studies,  15(4),  307–316.   http://doi.org/10.1177/0969776408095107   Vgontzas,  A.  N.,  Liao,  D.,  Pejovic,  S.,  Calhoun,  S.,  Karataraki,  M.,  &  Bixler,  E.  O.  (2009).  Insomnia   With  Objective  Short  Sleep  Duration  Is  Associated  With  Type  2  Diabetes:  A  population-­‐ based  study.  Diabetes  Care,  32(11),  1980–1985.  http://doi.org/10.2337/dc09-­‐0284     105   Voorhees,  C.  C.,  Murray,  D.,  Welk,  G.,  Birnbaum,  A.,  Ribisl,  K.  M.,  Johnson,  C.  C.,  et  al.  (2005).  The   role  of  peer  social  network  factors  and  physical  activity  in  adolescent  girls.  American   Journal  of  Health  Behavior,  29(2),  183–190.   Wang,  M.  C.,  Rauzon,  S.,  Studer,  N.,  Martin,  A.  C.,  Craig,  L.,  Merlo,  C.,  et  al.  (2010).  Exposure  to  a   Comprehensive  School  Intervention  Increases  Vegetable  Consumption.  Journal  of   Adolescent  Health,  47(1),  74–82.  http://doi.org/10.1016/j.jadohealth.2009.12.014   Wang,  Y.  (2001).  Cross-­‐national  comparison  of  childhood  obesity:  the  epidemic  and  the   relationship  between  obesity  and  socioeconomic  status.  International  Journal  of   Epidemiology,  30(5),  1129–1136.   Waters,  E.,  de  Silva-­‐Sanigorski,  A.,  Burford,  B.  J.,  Brown,  T.,  Campbell,  K.  J.,  Gao,  Y.,  et  al.  (2011).   Interventions  for  preventing  obesity  in  children  (Review).  Chichester,  UK:  The  Cochrane   Library.  http://doi.org/10.1002/14651858.CD001871.pub3   Weickert,  M.  O.,  &  Pfeiffer,  A.  F.  H.  (2008).  Metabolic  effects  of  dietary  fiber  consumption  and   prevention  of  diabetes.  The  Journal  of  Nutrition,  138(3),  439–442.   Willett,  W.  C.,  Sampson,  L.,  Stampfer,  M.  J.,  Rosner,  B.,  Bain,  C.,  Witschi,  J.,  et  al.  (1985).   Reproducibility  and  validity  of  a  semiquantitative  food  frequency  questionnaire.  American   Journal  of  Epidemiology,  122(1),  51–65.   Willi,  C.,  Bodenmann,  P.,  Ghali,  W.  A.,  Faris,  P.  D.,  &  Cornuz,  J.  (2007).  Active  smoking  and  the   risk  of  type  2  diabetes:  a  systematic  review  and  meta-­‐analysis.  JAMA:  the  Journal  of  the   American  Medical  Association,  298(22),  2654–2664.   Williams,  G.  C.,  Grow,  V.  M.,  Freedman,  Z.  R.,  Ryan,  R.  M.,  &  Deci,  E.  L.  (1996).  Motivational   predictors  of  weight  loss  and  weight-­‐loss  maintenance.  Journal  of  Personality  and  Social   Psychology,  70(1),  115–126.   Williamson,  G.  (2012).  Possible  effects  of  dietary  polyphenols  on  sugar  absorption  and   digestion.  Molecular  Nutrition  &  Food  Research,  57(1),  48–57.   http://doi.org/10.1002/mnfr.201200511   Wouters,  E.  J.,  Larsen,  J.  K.,  Kremers,  S.  P.,  Dagnelie,  P.  C.,  &  Geenen,  R.  (2010).  Peer  influence   on  snacking  behavior  in  adolescence.  Appetite,  55(1),  11–17.   http://doi.org/10.1016/j.appet.2010.03.002   Wright,  W.,  &  Rowell,  L.  (2010).  Examining  the  effect  of  gardening  on  vegetable  consumption   among  youth  in  kindergarten  through  fifth  grade.  WMJ  :  Official  Publication  of  the  State   Medical  Society  of  Wisconsin,  109(3),  125–129.   Yang,  F.,  Bao,  Z.  Y.,  &  Zhu,  Z.  J.  (2011).  An  Assessment  of  Psychological  Noise  Reduction  by   Landscape  Plants.  Int.  J.  Environ.  Res.  Public  Health,  8(12),  1032–1048.   http://doi.org/10.3390/ijerph8041032   Zenzen,  W.,  &  Kridli,  S.  (2009).  Integrative  Reviewof  School-­‐based  Childhood  Obesity   Prevention  Programs.  Journal  of  Pediatric  Health  Care,  23(4),  242–258.   http://doi.org/10.1016/j.pedhc.2008.04.008   Zimring,  C.  (1982).  The  built  environment  as  a  source  of  psychological  stress:  Impacts  of   buildings  and  cities  on  satisfaction  and  behavior.  In  Environmental  Stress  (pp.  151–198).   New  York,  NY:  Cambridge  University  Press. 
Abstract (if available)
Abstract The high rates of childhood obesity in the US make it imperative that factors contributing to the onset of obesity are better understood. The goal of this dissertation is to better understand how the environment contributes to obesity-related behaviors at the social, structured learning, and physical levels. The objectives for this dissertation are the following: 1) better understand similarities among adolescents and their friends in intake of fruit, vegetables (FV) and soda, 2) evaluate the impact of a school-based nutrition and gardening intervention on FV intake as a mediator of dietary determinants and BMI, and 3) determine the impact of green space on perceived stress among youth in their everyday living environments. ❧ Study 1 utilized cross-sectional data from 617 middle school students in 17 classrooms in the Get Moving study. Social networks were constructed by asking students to name their five best friends in their classroom, and dietary frequency of FV and soda were obtained. Exponential random graph models were used to measure homophily on dietary intake among friends. Study 2 utilized data from the LA Sprouts study, a randomized, controlled, school-based gardening and nutrition intervention with 363 elementary school students. At baseline and 12-weeks, BMI was measured and participants completed questionnaires on dietary determinants and behavior. Path modeling was used to examine co-occurring changes in these measures. Study 3 utilized data on 63 3rd-8th grade students who participated in the Mobile Healthy PLACES study. Children completed Ecological Momentary Assessment (EMA) questions on stress, and GPS-derived variables Open Recreational Space (ORS) and Normalized Difference Vegetation Index (NDVI) measured green space. Analyses to examine the effect of green space on stress were completed using multilevel modeling and partial correlations. ❧ In Study 1, there was no significant association between friends and their intake of FV, or soda (p>0.9). In Study 2, change in controlled motivation to eat FV, willingness to try FV, and vegetable preferences was associated with change in vegetable intake (0.21 ± 0.6, p<0.001 
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button
Conceptually similar
Motivation and the meanings of health behavior as factors associated with eating behavior in Latino youth
PDF
Motivation and the meanings of health behavior as factors associated with eating behavior in Latino youth 
Psychosocial and behavioral ractors associated with emotional eating in adolescents
PDF
Psychosocial and behavioral ractors associated with emotional eating in adolescents 
Objectively measured physical activity and related factors in minority youth
PDF
Objectively measured physical activity and related factors in minority youth 
The vicious cycle of inactivity, obesity, and metabolic health consequences in at-risk pediatric populations
PDF
The vicious cycle of inactivity, obesity, and metabolic health consequences in at-risk pediatric populations 
Effects of parent stress on weight-related parenting practices and child obesity risk
PDF
Effects of parent stress on weight-related parenting practices and child obesity risk 
Investigating factors that influence peer relationships and obesity during middle childhood
PDF
Investigating factors that influence peer relationships and obesity during middle childhood 
Effects of sugar and fiber consumption in minority adolescents and self-tracking as a potential dietary intervention tool
PDF
Effects of sugar and fiber consumption in minority adolescents and self-tracking as a potential dietary intervention tool 
A network analysis of online and offline social influence processes in relation to adolescent smoking and alcohol use
PDF
A network analysis of online and offline social influence processes in relation to adolescent smoking and alcohol use 
System dynamics of in-home family eating behavior: insights from intensive longitudinal data using Ecological Momentary Assessment and wearable sensors
PDF
System dynamics of in-home family eating behavior: insights from intensive longitudinal data using Ecological Momentary Assessment and wearable sensors 
Adolescent cigarette use and psychological distress: relation to adult obesity risk
PDF
Adolescent cigarette use and psychological distress: relation to adult obesity risk 
Effects of near-roadway air pollution exposure on obesity, obesity-related behavior, and neurobehavioral deficits during peripuberty
PDF
Effects of near-roadway air pollution exposure on obesity, obesity-related behavior, and neurobehavioral deficits during peripuberty 
The acute relationship between affective states and physiological stress response, and the moderating role of moderate-to-vigorous physical activity
PDF
The acute relationship between affective states and physiological stress response, and the moderating role of moderate-to-vigorous physical activity 
Mixed methods investigation of user engagement with a smoking cessation app
PDF
Mixed methods investigation of user engagement with a smoking cessation app 
Cultural risk and protective factors for tobacco use behaviors and depressive symptoms among American Indian adolescents in California
PDF
Cultural risk and protective factors for tobacco use behaviors and depressive symptoms among American Indian adolescents in California 
Applications of mindfulness toward promoting psychosocial health in diverse communities
PDF
Applications of mindfulness toward promoting psychosocial health in diverse communities 
Social networks, neighborhood environments, dietary patterns and obesity risk among adults in Los Angeles County
PDF
Social networks, neighborhood environments, dietary patterns and obesity risk among adults in Los Angeles County 
Childhood cancer survivorship: parental factors associated with survivor's follow-up care behavior and mental health
PDF
Childhood cancer survivorship: parental factors associated with survivor's follow-up care behavior and mental health 
Understanding the dynamic relationships between physical activity and affective states using real-time data capture techniques
PDF
Understanding the dynamic relationships between physical activity and affective states using real-time data capture techniques 
Marginalization in acculturation is related to objectively measured physical activity in Latina adolecents
PDF
Marginalization in acculturation is related to objectively measured physical activity in Latina adolecents 
Investigating daily effects of activity space-based built environment exposures on physical activity behaviors in Hispanic women during pregnancy and early postpartum
PDF
Investigating daily effects of activity space-based built environment exposures on physical activity behaviors in Hispanic women during pregnancy and early postpartum 
Action button
Asset Metadata
Creator Martinez, Lauren Cook (author) 
Core Title Influences of specific environmental domains on childhood obesity and related behaviors 
School Keck School of Medicine 
Degree Doctor of Philosophy 
Degree Program Preventive Medicine (Health Behavior Research) 
Publication Date 05/02/2016 
Defense Date 10/09/2015 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag built environment,childhood obesity,Nutrition,OAI-PMH Harvest,social environment,Stress 
Format application/pdf (imt) 
Language English
Contributor Electronically uploaded by the author (provenance) 
Advisor Chou, Chih-Ping (committee chair), Spruijt-Metz, Donna (committee chair), Dunton, Genevieve (committee member), Unger, Jennifer (committee member), Valente, Thomas (committee member) 
Creator Email laurcook@gmail.com,laurenco@usc.edu 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c40-246442 
Unique identifier UC11278295 
Identifier etd-MartinezLa-4394.pdf (filename),usctheses-c40-246442 (legacy record id) 
Legacy Identifier etd-MartinezLa-4394.pdf 
Dmrecord 246442 
Document Type Dissertation 
Format application/pdf (imt) 
Rights Martinez, Lauren Cook 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law.  Electronic access is being provided by the USC Libraries in agreement with the a... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Tags
built environment
childhood obesity
social environment