Close
The page header's logo
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Effects of particle architecture on in-vivo pharmacokinetics and bio-distribution of therapeutic nanostructures
(USC Thesis Other) 

Effects of particle architecture on in-vivo pharmacokinetics and bio-distribution of therapeutic nanostructures

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Copy asset link
Request this asset
Transcript (if available)
Content Effects of particle architecture on in-vivo
pharmacokinetics and bio-distribution of
therapeutic nanostructures
Santosh Peddi
USC ID:
A thesis presented to the Department of Pharmacology and Pharmaceutical
Sciences at University of Southern California in partial fulfillment of the
requirements for the degree MS Pharmaceutical Sciences
August 2016

 
2
 
Acknowledgements
 

 

 
I
 would
 like
 to
 thank
 my
 mentor
 Dr.
 J.
 Andrew
 Mackay
 for
 his
 continuous
 support
 
and
 feedback
 throughout
 the
 project.
 I
 would
 also
 like
 to
 thank
 my
 committee
 
members
 Dr.
 Curtis
 Okamoto
 and
 Dr.
 Ian
 Haworth
 for
 their
 suggestions
 and
 time
 
spent
 in
 reviewing
 my
 thesis.
 I’m
 indebted
 to
 my
 lab
 members
 and
 friends
 for
 
their
 support
 throughout
 the
 program
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3
 
Table
 of
 contents
 

 
Abstract
   
   
   
   
   
   
   
   
   
   
   
 
 
 
 
 4
 

 
Chapter
 1:
 Protein
 polymers
 for
 small
 molecule
 drug
 delivery
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5
 

 
1.1:
 Small
 molecule
 anti-­‐cancer
 drugs:
 Challenges
 for
 delivery
   
   
   
   
 
 
 
 
 5
 
1.2:
 Nanoparticle
 technology
 can
 address
 problems
 with
 small
 molecule
 drug
 delivery
   
 
 
 
 
 8
 
1.3:
 Pharmacokinetics/Clearance
 of
 nanoparticle
 drug
 carriers
   
   
   
   
 
 
 
 
 13
 
1.4:
 Materials
 for
 nanoparticle
 fabrication
   
   
   
   
   
   
   
 
 
 
 
 14
 
1.5:
 Elastin
 like
 polypeptides
 
   
   
   
   
   
   
   
   
 
 
 
 
 15
 

 
Chapter
 2:
 FKBP-­‐ELP
 fusion
 proteins
 for
 delivery
 of
 anti-­‐cancer
 drug
 rapamycin
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 17
 
2.1:
 Introduction
   
   
   
   
   
   
   
   
   
   
 
 
 
 
 17
 
2.2:
 Materials
 and
 Methods
   
   
   
   
   
   
   
   
   
 
 
 
 
 20
 
2.3:
 Results
 and
 Discussion
   
   
   
   
   
   
   
   
   
 
 
 
 
 26
 

 
References
   
   
   
   
   
   
   
   
   
   
   
 
 
 
 
 39
 

   
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 
4
 
Abstract
 

 
Small
 molecule
 chemotherapeutics,
 although
 routinely
 used
 in
 the
 clinic,
 suffer
 from
 poor
 drug-­‐
like
 properties,
 including
 low
 water
 solubility,
 rapid
 plasma
 clearance,
 and
 non-­‐specific
 bio-­‐
distribution
 causing
 toxic
 side
 effects.
 Protein
 polymers
 of
 appropriate
 size
 can
 address
 these
 
issues
  by
  solubilizing
  hydrophobic
  drugs,
  extending
  their
  mean
  plasma
  residence
  time
  by
 
preventing
 renal
 filtration
 and
 promoting
 tumor
 accumulation
 through
 enhanced
 permeation
 
and
 retention(EPR)
 effect,
 thereby
 reducing
 drug
 toxicity.
 Moreover,
 the
 delivery
 vehicle,
 being
 
proteinaceous
 in
 nature,
 is
 bio-­‐degradable,
 non-­‐toxic
 and
 largely
 non-­‐immunogenic.
 

 
The
 clinical
 utility
 of
 rapamycin,
 a
 highly
 potent
 anti-­‐cancer
 drug
 is
 limited
 by
 low
 solubility,
 low
 
bioavailablity
 and
 rapid
 systemic
 clearance.
 To
 address
 this,
 we
 synthesized
 FKBP-­‐elastin
 like
 
polypeptide(ELP)
 fusion
 proteins
 to
 utilize
 the
 tight
 binding
 of
 rapamycin
 to
 FKBP
 for
 effective
 
nanoparticle-­‐based
 delivery.
 Derived
 from
 human
 tropoelastin,
 ELPs
 are
 a
 class
 of
 thermo-­‐
responsive
 protein
 polymers
 with
 sequence
 of
 (VPGXG)
n
,
 where
 X
 is
 the
 guest
 residue
 and
 n
 is
 
number
 of
 repetitive
 units.
 Below
 a
 characteristic
 transition
 temperature
 (dictated
 by
 X
 and
 n),
 
ELPs
 and
 ELP
 fusion
 proteins
 stay
 in
 solution
 and
 above
 the
 transition
 temperature,
 they
 self
 
assemble
 nanostructures,
 typically
 micelles.
 To
 understand
 how
 polymer
 architecture
 affects
 
carrier
  pharmacokinetics(PK)
  and
  bio-­‐distribution,
  we
  recombinantly
  expressed
  a
  FKBP-­‐ELP
 
fusion
  library
  consisting
  of
  FKBP-­‐(VPGAG)
192

  (FA),
  FKBP-­‐(VPGAG)
192
 
-­‐FKBP
  (FAF),
  FKBP-­‐
(VPGSG)
48
(VPGIG)
48

 (FSI).
 At
 physiological
 temperature,
 FA
 and
 FAF
 are
 soluble
 monomers,
 while
 
FSI
 phase
 separates
 into
 25
 nm
 spherical
 micelles
 decorated
 with
 FKBP
 on
 the
 corona.
 For
 non-­‐
invasive
 PK
 and
 bio-­‐distribution
 evaluation,
 we
 labeled
 these
 drug
 carriers
 with
 IR800
 without
 
any
 effect
 on
 their
 physico-­‐chemical
 properties
 and
 physical
 stability.
 In
 a
 breast
 cancer
 xenograft
 
mouse
 model,
 we
 seek
 to
 understand
 how
 nanoparticle
 architecture
 and
 route
 of
 administration
 
(intravenous
 vs.
 subcutaneous)
 affect
 their
 circulation,
 clearance
 and
 bio-­‐distribution
 profile.
 

 

 

 

 
5
 
Chapter
 1:
 Protein
 polymers
 for
 small
 molecule
 drug
 delivery
 

 
1.1:
 Small
 molecule
 anti-­‐cancer
 drugs:
 Challenges
 for
 delivery
 
Cancer,
 a
 leading
 cause
 of
 death
 worldwide
 is
 a
 group
 of
 diseases
 characterized
 by
 abnormal
 cell
 
growth
 with
 the
 potential
 to
 spread
 to
 other
 parts
 of
 the
 body.
 In
 2012,
 there
 were
 14
 million
 
new
 cancer
 cases
 worldwide
 and
 8.2
 million
 cancer-­‐related
 deaths
[1]
.
 In
 2016,
 an
 estimated
 1.6
 
million
 new
 cancer
 cases
 will
 be
 diagnosed
 and
 nearly
 600,000
 people
 will
 die
 from
 the
 disease.
 
These
 numbers
 clearly
 emphasize
 the
 need
 for
 innovations
 in
 cancer
 treatment.
 Over
 the
 past
 
few
 years,
 overall
 cancer
 death
 rate
 has
 declined,
 thereby
 increasing
 the
 number
 of
 cancer
 
survivors.
 These
 treads
 suggest
 progress
 towards
 cancer
 treatment
 but
 many
 questions
 yet
 need
 
to
 be
 answered.
 

 
Cancer
 chemotherapy
 is
 currently
 the
 first
 line
 of
 treatment
 against
 cancer.
 Over
 100
 anti-­‐cancer
 
drugs
 have
 been
 approved
 and
 these
 drugs
 primarily
 function
 by
 inhibiting
 mitosis
 and
 inducing
 
apoptosis.
 Unfortunately,
 chemotherapy
 is
 highly
 toxic
 as
 it
 kills
 healthy
 cells
 too,
 especially
 the
 
ones
  that
  naturally
  divide
  rapidly.
  Small
  molecule
  anticancer
  agents
  exhibit
  poor
  drug-­‐like
 
properties,
 thereby
 posing
 delivery
 challenges:
 

 
a)
 Poor
 solubility,
 bioavailability,
 pharmacokinetic
 profile:
 
The
  in-­‐vivo
  effect
  of
  a
  drug
  is
  a
  function
  of
  pharmacokinetics
  (ADME
  profile)
  and
 
pharmacodynamics
 (potency).
 The
 critical
 physicochemical
 properties
 of
 a
 drug
 determining
 its
 
ease
  of
  delivery
  are
  solubility
  and
  permeability.
  Many
  chemotherapeutics
  suffer
  from
  low
 
bioavailability,
  which
  could
  be
  solubility
  limited,
  or
  permeability
  limited,
  or
  both
 
solubility/permeability
 limited.
 Classic
 examples
 of
 solubility
 limited
 poor
 bioavailability
 include
 
tamoxifen
[2]
,
  rubitecan,
  sorafenib
[3]
,
  gefitinib
[4]

  etc.
  While
  permeability
  limited
  poor
 
bioavailability
 is
 not
 often
 observed,
 >
 60%
 drugs
 are
 substrate
 for
 one
 or
 other
 types
 of
 efflux,
 
suggesting
 dominating
 role
 of
 drug
 efflux
 in
 the
 oral
 bioavailability.
 Permeability
 limited
 poor
 
availability
  is
  exhibited
  by
  cyclophosphamide,
  anastrozole
[5]
,
  letrozole
[6]
,
  doxorubicin
[7]
,
 
methotrexate
 etc.
 These
 drugs
 need
 solubility
 enhancement/absorption
 enhancement
 to
 make
 

 
6
 
them
  clinically
  useful.
  Rapid
  metabolism
  and
  clearance
  by
  kidneys
  demand
  frequent
  drug
 
administration,
 further
 limiting
 the
 clinical
 use
 of
 many
 chemotherapeutics.
 

 
Although
  oral
  administration
  can
  be
  considered,
  concentration
  dependent
  toxicity
  of
 
chemotherapeutics
 precludes
 the
 use
 of
 administration
 routes
 where
 the
 drugs
 can
 reach
 high
 
local
 concentrations
 like
 oral,
 subcutaneous,
 transdermal
 etc.
 Hence,
 intravenous
 route
 is
 widely
 
used
 to
 deliver
 chemotherapeutics,
 but
 only
 a
 small
 fraction
 of
 this
 administered
 dose
 actually
 
reaches
 the
 tumor.
 

 
b)
 Uncontrolled
 distribution/Toxicity:
 
 
When
 chemotherapeutics
 reach
 systemic
 circulation,
 there
 distribution
 is
 not
 controlled,
 and
 
this
 leads
 to
 dose
 dependent
 toxicity.
 Rapidly
 dividing
 healthy
 cells
 of
 the
 bone
 marrow,
 gut,
 
lymphoid
 tissue,
 and
 hair
 follicles
 are
 depleted,
 causing
 side-­‐effects
 ranging
 from
 nausea
 and
 
fatigue
 to
 blood
 disorders
 and
 neurological
 effects
 (Figure
 1).
 

 
 
Figure
 1:
 Common
 side
 effects
 of
 conventional
 chemotherapy.
 Source:
 NCI
 

 
7
 
c)
 Emergence
 of
 resistance:
 
Cancer
 cells
 can
 gain
 drug
 resistance
 through
 cellular
 and
 non-­‐cellular
 mechanisms.
 Non-­‐cellular
 
mechanisms
  include
  restricting
  drug
  access
  through
  poor
  vascularization,
  high
  interstitial
 
pressure
  and
  low
  microvascular
  pressure
  to
  retard
  drug
  extravasation,
  and
  acidic
  tumor
 
microenvironment
  to
  protonate
  basic
  drugs,
  and
  impede
  their
  cellular
  diffusion.
  Cellular
 
mechanisms
 include
 loss
 of
 a
 cell
 surface
 receptor
 or
 transporter
 for
 a
 drug
[8]
,
 up-­‐regulation
 of
 
efflux
 transporters,
 especially
 p-­‐glycoprotein
[9]

 which
 actively
 pump
 drugs
 from
 inside
 of
 cancer
 
cell
  to
  outside,
  thereby
  reducing
  drug
  sensitivity
  and
  intracellular
  drug
  accumulation.
  For
 
instance,
 P-­‐gp
 transports
 a
 wide
 variety
 of
 hydrophobic
 anti-­‐cancer
 drugs
 such
 as
 vinblastine,
 
doxorubicin,
 vincristine,
 and
 taxol,
 and
 therefore
 its
 increased
 expression
 has
 been
 correlated
 
with
 resistance
 to
 these
[10]
.
 

 

 
Figure
 2:
 Mechanism
 of
 drug
 resistance
 in
 cancer
 
Source:
 Gottesman
 MM,
 Annual
 Review
 of
 Medicine,
 53:615-­‐627
 

 
These
 issues
 make
 current
 chemotherapy
 a
 toxic,
 sub-­‐optimal,
 non
 patient
 compliant
 treatment
 
strategy
 for
 cancer.
 

 

 
8
 

 
1.2:
 Nanoparticle
 technology
 can
 address
 problems
 with
 small
 molecule
 drug
 
delivery
 

 
National
 Cancer
 Institute
 defines
 nanoparticles
 as
 colloidal
 particles
 in
 the
 size
 range
 of
 1-­‐100
 
nm.
 Although
 there
 is
 no
 size
 restriction
 on
 therapeutic
 nanoparticles,
 size
 range
 of
 10-­‐100
 nm
 
are
  most
  effective.
  More
  recently,
  scientists
  place
  less
  stringent
  limitations
  on
  the
  exact
 
dimensions,
 and
 defines
 the
 'right'
 size
 in
 bio-­‐nanotechnology
 in
 an
 operational
 fashion,
 with
 
respect
 to
 addressable
 unmet
 needs
 in
 biology.
 Nanoparticles
 can
 be
 fabricated
 into
 different
 
sizes,
 shapes,
 surface
 properties,
 architectures
 using
 a
 variety
 of
 materials
 ranging
 from
 synthetic
 
polymers,
 metals,
 inorganic
 materials
 to
 proteins,
 peptides,
 lipids,
 viruses
 etc.
 The
 advantages
 of
 
nanoparticle
 technology
 include
 increased
 solubilization
 potential,
 protection
 from
 metabolic
 
degradation,
  flexibility
  in
  surface
  functionalization,
  active
  targeting
  potential,
  ability
  to
 
encapsulate
 wide
 variety
 of
 drugs
 and
 ability
 to
 engineer
 drug
 release/particle
 degradation
 
profiles.
 With
 respect
 to
 anti-­‐cancer
 drug
 delivery,
 nanoparticle
 technology
 seems
 promising
 
because
 of
 its
 following
 advantages.
 

 
a)
 Improve
 solubility
 of
 water
 insoluble
 drugs:
 
 
Large
 number
 of
 chemotherapeutics
 and
 newly
 discovered
 molecules
 with
 cytotoxic
 properties
 
cannot
 be
 administered
 intravenously
 because
 of
 their
 low
 water
 solubility.
 Estimates
 state
 that
 
40%
 of
 the
 drugs
 in
 the
 pipelines
 have
 solubility
 problems
[11]
.
 Literature
 states
 that
 about
 60%
 
of
 all
 drugs
 coming
 directly
 from
 synthesis
 are
 nowadays
 poorly
 soluble
[12]
.
 Micelles,
 the
 most
 
widely
 studied
 nanoparticles
 are
 amphiphilic
 block
 copolymers
 that
 assemble
 to
 form
 core/shell
 
structures
 in
 aqueous
 solutions.
 The
 core
 is
 composed
 of
 hydrophobic
 block
 and
 can
 solubilize
 
and
 retain
 water
 insoluble
 drugs,
 while
 the
 shell
 is
 hydrophilic
 and
 stabilizes
 the
 core.
 The
 first
 
polymeric
 micelle
 therapeutic
 nanoparticle
 was
 Genexol-­‐PM
 (PEG-­‐poly(D,L-­‐lactide)–
paclitaxel)
[13]
.
 The
 micelle
 size,
 drug
 loading
 capacity,
 drug
 release
 kinetics
 can
 be
 controlled
 by
 
tuning
 the
 block
 structures
 for
 desired
 application.
 

 

 
9
 

 
Figure
 3:
 Micellar
 structure
 of
 Genexol-­‐PM.
 Paclitaxel
 is
 encapsulated
 in
 the
 hydrophobic
 PLA
 
core
 of
 micelle
 

 

 

 
b)
 Increased
 drug
 accumulation
 in
 tumor/reduced
 toxicity:
 
Nanoparticles
 of
 the
 right
 size
 can
 inherently
 get
 accumulated
 in
 the
 tumor
 by
 enhanced
 
permeation
 and
 retention
 (EPR)
 effect
 (Figure
 4).
 The
 tumor
 neovasculature
 is
 poorly
 developed
 
and
 is
 characterized
 by
 loops,
 dead
 ends
 and
 openings
 that
 lead
 directly
 into
 perivascular
 
space
[14]
.
 Highly
 permeable
 tumor
 vasculature
 is
 known
 to
 have
 openings
 as
 big
 as
 400-­‐600
 nm
[15]

 
in
 diameter,
 facilitating
 nanoparticle
 extravasation
 into
 tumor
 tissue.
 These
 pores
 are
 much
 
larger
 than
 the
 junctions
 in
 normal
 tissue
 where
 the
 gaps
 are
 usually
 less
 than
 6
 nm.
 Although
 
tumors
 manage
 to
 signal
 growth
 of
 blood
 vessels
 through
 angiogenesis
 for
 access
 to
 nutrients,
 
they
 fail
 to
 develop
 a
 functional
 lymphatic
 system,
 resulting
 in
 poor
 clearance
 of
 nanoparticles
 
once
 they
 accumulate
 in
 the
 tumor.
 These
 phenomena
 together
 comprise
 EPR
 effect
[16]
.
 
 

 
10
 

 

 
The
 selective
 accumulation
 of
 nanoparticles
 in
 the
 tumor
 tissue
 should
 reduce
 drug
 distribution
 
to
 healthy
 tissues,
 and
 thereby
 reduce
 toxicity
 associated
 with
 free
 drug
 administration.
 Bae
 and
 
colleagues
 systematically
 examined
 the
 biodistribution
 of
 a
 micelle
 based
 formulation
 carrying
 
adriamycin
 [PEG–p(Asp-­‐Hyd-­‐ADR)]
 at
 several
 time
 points
 in
 experimental
 mice
[17]
.
 The
 circulation
 
of
 drug,
 as
 measured
 by
 the
 area
 under
 the
 curve
 (AUC),
 was
 15-­‐fold
 greater
 than
 that
 of
 free
 
ADR.
 There
 was
 also
 a
 greater
 concentration
 of
 micelles
 than
 of
 free
 ADR
 in
 the
 tumor
 and
 a
 
lower
 concentration
 in
 the
 heart
 and
 kidney,
 explaining
 the
 enhanced
 efficacy
 of
 the
 micelle-­‐
delivered
 ADR
 and
 the
 reduction
 in
 side
 effects,
 such
 as
 cardiotoxicity
 and
 nephrotoxicity.
 Tumor-­‐
specific
 accumulation
 lasted
 for
 up
 to
 50
 hours
 without
 significant
 decline.
 At
 the
 same
 time,
 a
 
constant
 level
 of
 micelle
 accumulation
 in
 the
 liver
 and
 spleen
 was
 also
 observed.
 In
 most
 relevant
 
studies,
 the
 accumulation
 of
 nanoparticles
 in
 the
 liver,
 spleen
 or
 kidney
 is
 commonly
 observed
 
depending
  on
  the
  size
  and
  surface
  characteristics
  of
  the
  particle,
  and
  this
  accumulation
 
constitutes
 the
 major
 concern
 regarding
 the
 toxicity
 of
 therapeutic
 nanoparticles.
 Although
 acute
 
toxicities
 are
 not
 usually
 observed,
 long-­‐term
 observations
 are
 still
 needed
 to
 understand
 any
 
potential
 harmful
 effects
 of
 therapeutic
 nanoparticles
 on
 major
 organ
 tissues.
 

 
Although
  particles
  can
  accumulate
  in
  tumor,
  their
  effectiveness
  as
  a
  therapeutic
  is
  not
 
guaranteed
  unless
  their
  drug
  release
  profile
  is
  optimized.
  Ideally,
  they
  are
  expected
  to
 
encapsulate
 the
 drug
 stably
 while
 in
 circulation
 and
 release
 drug
 only
 in
 the
 site
 of
 action.
 The
 
Figure
  4:
  Vascular
  pathophysiology
  and
  EPR
 
effect
  in
  nanoparticle
  delivery.
  Scheme
 
representing
 the
 microvasculature
 of
 normal
 (A)
 
and
  tumor
  (B)
  tissue.
  Poorly
  developed
  leaky
 
vasculature
  allows
  10-­‐100
  nm
  sized
 
nanoparticles
  to
  extravasate
  and
  gets
 
accumulated
 with
 in
 solid
 tumor.
 Within
 tumor
 
depending
  on
  their
  sustained
  drug
  release
 
properties,
 nanoparticles
 keep
 releasing
 active
 
drug
  for
  significantly
  longer
  time
  point.
 
Nanoparticles
  cannot
  leak
  through
  the
  intact
 
blood
 vessels,
 so
 it
 considerably
 decreases
 the
 
systemic
 toxicity.
 Source:
 Transl
 Cancer
 Res.
 2013
 
Aug
 1;
 2(4):
 309–319
 

 

 
11
 
rate
 and
 mechanism
 of
 release
 need
 to
 be
 optimum
 for
 anti-­‐tumor
 efficacy.
 A
 low
 drug
 leakage
 
from
 the
 particles
 in
 circulation
 is
 acceptable
 but
 rapid
 drug
 release
 in
 bloodstream
 is
 not
 
characteristic
 of
 an
 efficient
 carrier,
 as
 they
 cannot
 address
 any
 disadvantages
 of
 free
 drug.
 At
 
the
 same
 time,
 a
 very
 slow
 rate
 of
 drug
 release
 at
 the
 tumor
 site
 is
 not
 desirable
 either
 because
 
drug
 clearance
 may
 be
 faster
 than
 release,
 and
 the
 local
 drug
 concentration
 may
 not
 reach
 
therapeutic
 levels
 and
 not
 confer
 any
 anti-­‐tumor
 activity.
 An
 optimum
 rate
 of
 release
 that
 can
 
maintain
 local
 therapeutic
 dose
 in
 the
 tumor
 is
 desirable,
 but
 is
 difficult
 to
 achieve.
 To
 achieve
 
this,
 various
 factors
 including
 polymer
 architecture,
 hydrophobicity/hydrophilicity,
 mode
 of
 drug
 
association
 with
 the
 polymer,
 such
 as
 surface
 adsorption,
 dispersion
 homogeneity
 in
 the
 polymer
 
matrix
 and
 covalent
 linkage
 with
 the
 polymer
 backbone
 can
 be
 systematically
 altered.
 
Tumor
 targeted
 nanoparticles
 can
 release
 drugs
 extracelluarly
 in
 the
 tumor
 site
 and
 the
 released
 
drug
 can
 diffuse
 into
 cancer
 cells
 or
 can
 release
 drug
 upon
 particle
 internalization
 into
 cancer
 
cells.
 Mechanisms
 for
 extracellular
 drug
 release
 utilize
 the
 unique
 characteristics
 of
 tumor
 
microenvironment
 or
 use
 locally
 applied
 external
 forces
 like
 heat,
 sound,
 pressure
 etc.
 The
 
slightly
 acidic
 tumor
 microenvironment
 can
 be
 used
 to
 engineer
 nanoparticles
 that
 remain
 stable
 
and
 inactive
 at
 normal
 physiological
 pH
 but
 get
 activated
 and
 release
 drugs
 in
 response
 to
 acidic
 
tumor
 microenvironment.
 Local
 hyperthermia/hypothermia
 can
 be
 used
 to
 trigger
 thermo-­‐
responsive
 nanoparticles.
 For
 example,
 Bae
 and
 colleagues
 reported
 a
 pluronic
 nanocapsule
 that
 
maintains
 rigid
 walls
 at
 37
 
o
C
 but
 the
 capsule
 permeability
 rapidly
 increases
 when
 cooled
 to
 22
 
o
C
[18]
.
 Extracellular
 release
 from
 particles,
 though
 possible,
 would
 suffer
 from
 possibility
 of
 drug
 
resistance
  similar
  to
  free
  drug
  administration.
  Cancer
  cells
  can
  acquire
  resistance
  by
 
overexpressing
 efflux
 transporters,
 or
 by
 activating/deactivating
 various
 genes
 and
 proteins.
 

 
Apart
 from
 passive
 targeting
 via
 EPR
 strategies,
 active
 strategies
 utilize
 molecular
 markers
 of
 
cancer,
  including
  overexpressed
  cellular
  receptors,
  enzymes
  and
  other
  secreted
  functional
 
molecules
 like
 growth
 factors.
 These
 overexpressed
 proteins
 typically
 aid
 in
 cancer
 survival,
 
growth
  and
  metastasis.
  Grafting
  ligands/antibodies
  of
  these
  overexpressed
  receptors
  onto
 
surface
 of
 nanoparticles
 can
 actively
 accumulate
 the
 particles
 in
 tumor
 sites
 via.
 defined
 binding
 
events.
 Moreover,
 binding
 of
 few
 ligands/antibodies
 to
 their
 cognate
 receptors
 can
 trigger
 

 
12
 
receptor
 mediated
 endocytosis
[19]

 and
 facilitate
 the
 intracellular
 entry
 of
 these
 particles.
 In
 such
 
cases,
 the
 particles,
 after
 internalization,
 typically
 move
 through
 maturing
 endosomes
[20]
,
 before
 
fusing
 to
 lysosomes
 for
 degradation.
 This
 information
 can
 be
 used
 to
 advantage
 by
 engineering
 
particles
 that
 can
 release
 drugs
 in
 response
 to
 low
 pH
 endosomal
 and
 lysosomal
 compartments.
 
In
 few
 cases,
 the
 drug
 is
 covalently
 bound
 to
 polymer
 backbone
 through
 pH
 sensitive
 hydrozone
 
linkers
 that
 can
 hydrolyze
 in
 response
 to
 low
 endosomal
 pH
[21]
.
 The
 released
 drug
 can
 then
 
escape
 into
 cytoplasm
 to
 demonstrate
 its
 anti-­‐tumor
 activity.
 In
 vitro
 and
 in
 vivo
 comparisons
 
using
 internalizing
 or
 non-­‐internalizing
 ligands
 have
 shown
 that
 the
 intracellular
 concentration
 of
 
the
  drug
  is
  much
  higher
  when
  it
  is
  released
  from
  nanoparticles
  into
  the
  cytoplasm
  after
 
internalization
[22]
.
 Intracellular
 drug
 delivery
 can
 partially
 solve
 the
 problem
 of
 cancer
 cells
 
acquiring
 resistance,
 as
 P-­‐gp
 mediated
 active
 drug
 efflux
 is
 usually
 not
 observed
 in
 this
 case.
 
 

 
c)
 Improved
 drug
 pharmacokinetics:
 
Nanoparticles,
 by
 virtue
 of
 their
 size,
 can
 circulate
 longer
 than
 free
 drug
 by
 escaping
 glomerular
 
filtration,
  thereby
  improving
  drug
  pharmacokinetics
  and
  reducing
  frequency
  of
  dose
 
administration.
 Table
 1
 shows
 some
 therapeutic
 nanoparticle
 formulations
 extensively
 studied
 
and
 how
 they
 compare
 to
 free
 drug
 in
 terms
 of
 circulation
 and
 clearance
 profile.
 

 
Name
  Carrier
  Drug
  Circulation
 
half-­‐
time(hr)
 
Clearance
 
(ml/minkg)
 
Fold
  change
 
compared
  to
  free
 
drug
  (Circulation,
 
Clearance)
 
Ref.
 
SP1049C
  Pluronic
 micelle
  Doxorubicin
  2.4
  12.6
  3.1,
 0.88
  [23]
 
NK911
  PEG-­‐Asp
 micelle
  Doxorubicin
  2.8
  6.7
  3.5,
 0.47
  [23]
 
Doxil
  PEG-­‐liposome
  Doxorubicin
  84
  0.02
  105,
 0.001
  [23]
 
Genexol-­‐PM
  PEG-­‐PLA
 micelle
  Taxol
  11
  4.8
  0.5,
 1.3
  [23]
 
Abraxane
  Albumin
  Taxol
  21.6
  6.5
  0.99,
 1.7
  [24]
 
Xyotax
  Polyglutamate
  Taxol
  70-­‐120
  0.07-­‐0.12
  3.2-­‐5.5,
 0.18-­‐0.03
  [25]
 
CT-­‐2106
  Polyglutamate
  Camptothecin
  65-­‐99
  0.44
  5.6-­‐8.5,
 0.076
  [26]
 
Table
 1:
 Pharmacokinetic
 information
 on
 therapeutic
 nanostructures
 in
 humans
 

 

 
13
 
1.3:
 Pharmacokinetics/Clearance
 of
 nanoparticle
 drug
 carriers:
 
When
 nanoparticles
 reach
 the
 bloodstream,
 they
 are
 rapidly
 coated
 by
 various
 serum
 proteins,
 
complement
 proteins
 C3,
 C4,
 C5
 and
 immunoglobulins
 being
 the
 major
 players
 by
 a
 process
 called
 
opsonization
[27]
.
 After
 opsonization,
 macrophages,
 primarily
 Kupffer
 cells
 in
 liver
 can
 recognize
 
opsonins
 and
 phagocytosis
 can
 occur
 (Figure
 5),
 which
 is
 the
 engulfing
 and
 eventual
 destruction
 
or
 removal
 of
 particle
 from
 the
 bloodstream
[28]
.
 Since
 therapeutic
 nanoparticles
 are
 designed
 to
 
be
 bigger
 than
 the
 renal
 filtration
 cutoff,
 particle
 phagocytosis
 by
 macrophages
 is
 the
 major
 route
 
of
 clearance.
 If
 particles
 are
 not
 biodegradable
 and
 cannot
 be
 digested
 by
 lysozymal
 enzymes,
 
they
 are
 sequestered
 in
 the
 organs
 of
 reticulo-­‐endothelial
 system
 (RES),
 primarily
 liver
 and
 
spleen.
 The
 accumulation
 of
 particles
 in
 these
 organs
 can
 occur
 leading
 to
 toxicity
 and
 other
 
negative
 side
 effects.
 

 

 

 
Figure
  5:
  In
  vivo
  clearance
  pathway
  of
 
therapeutic
  nanoparticles
  (nanotubes
  in
  this
 
case)
  after
  binding
  to
  opsonins
  and
  after
 
subsequent
 recognition
 by
 macrophages
 in
 the
 
blood
  vessels.
  The
  macrophages
  engulf
  the
 
particles
 and
 sequester
 them
 to
 the
 hepato–
biliary
 organs,
 such
 as
 the
 liver
 and
 spleen,
 for
 
excretion.
  Processed
  short
  particles
  with
 
favorable
 dimension,
 orientation,
 charge,
 and
 
functionalization
  are
  eliminated
  through
  the
 
renal
 excretory
 system.
 
Source:
 Int
 J
 Nanomedicine.
 2014
 May
 6;9

 

 

 

 
14
 
Since
 clearance
 by
 RES
 can
 greatly
 reduce
 the
 half
 life
 of
 particles,
 extensive
 research
 has
 been
 
conducted
 to
 prevent
 opsonization.
 It
 has
 been
 found
 that
 particle
 properties
 like
 size,
 shape,
 
surface
 charge,
 molecular
 weight,
 hydrophilicity/hydrophobicity,
 surface
 architecture
 all
 play
 
important
 roles
 in
 extent
 and
 kinetics
 of
 opsonization.
 Although
 there
 are
 many
 contradicting
 
results
 about
 how
 these
 properties
 affect
 opsonization,
 two
 findings
 could
 be
 reproduced
 by
 
many
 researchers
 multiple
 times.
 Hydrophilic
 and
 neutral
 particle
 surfaces
 are
 less
 prone
 to
 
opsonization
 and
 RES
 clearance
 compared
 to
 hydrophobic
 and
 charged
 ones.
 One
 widely
 applied
 
strategy
 to
 prevent
 RES
 clearance
 is
 to
 graft
 shielding
 groups,
 like
 polyethylene
 glycol(PEG)
 which
 
can
 block
 the
 electrostatic
 and
 hydrophobic
 interactions
 that
 help
 opsonins
 bind
 to
 particle
 
surfaces.
 The
 PEG
 coating
 can
 be
 achieved
 by
 covalent
 grafting,
 entrapping,
 or
 adsorbing
 of
 PEG
 
chains.
 It
 has
 also
 been
 found
 that
 longer
 PEG
 chains
 can
 improve
 particle
 circulation
 half
 life
 
longer
 than
 shorter
 PEG
 chains.
 

 
1.4:
 Materials
 for
 nanoparticle
 fabrication:
 
Although
 a
 wide
 variety
 of
 materials
 have
 been
 used
 to
 fabricate
 therapeutic
 nanoparticles,
 two
 
general
 classes
 stand
 out:
 synthetic
 polymers
 and
 genetically
 engineered
 protein
 polymers.
 
Advances
  in
  polymer
  chemistry
[29]

  (living
  polymerization
  techniques)
  facilitate
  synthesis
  of
 
polymers
 with
 very
 low
 polydispersity.
 Despite
 this
 progress,
 synthetic
 polymers
 require
 defining
 
various
 terms
 to
 signify
 their
 heterogeneous
 composition
 as
 chemical
 synthesis
 results
 in
 a
 
mixture
 with
 variable
 polymer
 length,
 side
 chain
 and
 drug
 substituent
 distribution,
 and
 atomic
 
composition
 in
 general.
 Though
 research
 in
 drug
 delivery
 systems
 using
 synthetic
 polymers
 laid
 
the
 principles
 of
 structure-­‐function
 relationships
[30]
,
 present
 day
 delivery
 problems
 demand
 
materials
 with
 well
 defined
 molecular
 structure
 to
 facilitate
 precise
 characterization.
 To
 achieve
 
this,
 genetic
 engineering
[31]

 can
 be
 used
 to
 provide
 unmatched
 control
 over
 macromolecule
 
components
  of
  nano-­‐sized
  systems.
  The
  following
  advantages
  of
  genetically
  engineered,
 
recombinantly
 produced
 drug
 carriers
 make
 them
 superior
 over
 synthetic
 polymers:
 

 
a)
 Monodisperse,
 well
 defined
 composition
 containing
 stereo-­‐regular
 amino
 acids
 
b)
 Relatively
 easy
 to
 include
 diverse
 amino
 acid
 residues
 and
 motif
 combinations
 

 
15
 
c)
 Ease
 of
 fusing
 peptide
 polymer
 chains
 to
 functional/targeting
 peptides
 and
 protein
 domains
 
d)
 Programmable
 degradation
 profile
 into
 natural
 amino
 acids
 
e)
 Biocompatibility,
 low
 or
 no
 issues
 of
 immunogenicity
 
f)
 Relatively
 low
 cost
 of
 production
 on
 a
 large
 scale
 
g)
 Green
 and
 environment
 friendly
 approach
 compared
 to
 chemical
 synthesis
 

 
Recombinant
 protein
 polymer
 synthesis
 allows
 synthesis
 of
 protein
 polymer
 libraries
 with
 varying
 
amino
 acid
 composition,
 hydrophobicity,
 predictable
 secondary
 and
 higher
 order
 structures,
 and
 
facilitates
 incorporation
 of
 biologically
 functional
 peptide/protein
 motifs.
 Precise
 sequence-­‐
structure
 relationships
 can
 be
 established.
 Genetically
 engineered
 protein
 based
 drug
 carriers
 
can
 be
 polymeric
 or
 non-­‐polymeric
 in
 nature.
 Well
 studied
 polymeric
 class
 comprise
 of
 elastin
 
like
 polypeptides
 (ELP),
 silk
 like
 polypeptides
 (SLP),
 extended
 recombinant
 polypeptide
 (XTEN),
 
and
 silk
 elastin
 like
 polypeptides
 (SELP).
 On
 the
 other
 hand,
 non-­‐polymeric
 protein
 based
 drug
 
carriers
 are
 usually
 composed
 of
 viral
 proteins
 and
 viral
 vault
 proteins.
 

 
1.5:
 Elastin
 like
 polypeptides:
 
Elastin
 is
 a
 highly
 elastic
 protein
 in
 connective
 tissue
 and
 enables
 many
 tissues
 to
 restore
 their
 
normal
 shape
 and
 size
 after
 contracting
 or
 expanding.
 Elastin
 is
 a
 major
 component
 of
 the
 
extracellular
 matrix
 of
 lungs
[32]
,
 blood
 vessels,
 cartilage,
 ligaments,
 skin
 etc.
 The
 elastomeric
 
domains
 of
 elastin
 are
 rich
 in
 hydrophobic
 amino
 acids
 like
 valine
 and
 alanine,
 and
 regular
 
presence
 of
 proline
 imparts
 a
 coiled
 structure
 to
 elastin
 fibers.
 

 
Elastin
 like
 polypeptides
 (ELP)
 are
 a
 class
 of
 protein
 polymers
 derived
 from
 repeat
 sequences
 of
 
elastomeric
 domain
 of
 mammalian
 tropoelastin.
 ELPs
 consist
 of
 pentameric
 repeats
 of
 [Val-­‐Pro-­‐
Gly-­‐X-­‐Gly],
  where
  X
  is
  any
  guest
  amino
  acid,
  other
  than
  proline.
  This
  pentameric
  repeat
 
contributes
  greatly
  to
  the
  viscoelastic
  properties
  of
  elastin.
  ELPs
  are
  recombinant
  protein
 
polymers
 that
 exhibit
 many
 interesting
 properties,
 making
 them
 very
 useful
 biomaterials.
 Firstly,
 
ELPs
 display
 near-­‐ideal
 elasticity
 i.e
 they
 can
 return
 most
 of
 the
 energy
 spent
 on
 elongation
 upon
 
relaxation.
 This
 near-­‐ideal
 elasticity
 allows
 them
 to
 convert
 energy
 within
 a
 system
 through
 

 
16
 
changes
  in
  intramolecular
  interactions
[33]
.
  ELPs
  also
  display
  reversible
  thermo-­‐responsive
 
properties
 (Figure
 6).
 Upon
 heating
 a
 solution
 of
 ELP
 polymers,
 they
 transition
 from
 a
 disordered
 
soluble
 phase
 to
 an
 ordered,
 compact
 two
 phase
 coacervate
 through
 hydrophobic
 assembly.
 The
 
temperature
 above
 which
 ELPs
 coacervate
 is
 called
 transition
 temperature.
 This
 behavior
 is
 
reversible
 i.e
 upon
 cooling,
 the
 polymers
 go
 back
 into
 solution.
 The
 transition
 temperature
 can
 
be
 fine
 tuned
 by
 changing
 characteristics
 of
 the
 ELP
 polymer
 itself
 or
 by
 modifying
 solution
 
properties.
 ELPs
 with
 higher
 chain
 length
 (higher
 molecular
 weight),
 and
 hydrophobic
 guest
 
residues
 display
 lower
 transition
 temperatures.
 ELP
 concentration,
 salt
 concentration
 and
 pH
 of
 
solution
 also
 impact
 their
 thermo-­‐responsive
 behavior.
 In
 solution,
 the
 ELP
 backbone
 is
 hydrated
 
through
 highly
 ordered
 water
 structures,
 especially
 around
 the
 aliphatic
 residues
 
[34]
.
 Upon
 
heating,
 the
 hydrophobic
 hydration
 becomes
 disorder
 and
 drives
 the
 hydrophobic
 assembly
 of
 
ELP
  backbones
  into
  ordered,
  condensed
  beta
  sheet
  dominated
  spherical
  secondary
 
structures
[35][36]
.
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 

 
Figure
 6:
 (A)
 ELP
 diblock
 polymers
 undrgo
 hydrophobic
 collapse
 to
 form
 spherical
 micelles
 above
 
transition
 temperature
 (B)
 Above
 transition
 temperature,
 ELPs
 form
 soluble
 state
 to
 an
 insoluble
 
coacervate
 

 
Since
 ELPs
 display
 all
 the
 desirable
 qualities
 of
 protein
 polymer
 drug
 vehicles
 discussed
 above,
 
they
 have
 a
 widespread
 application
 in
 the
 field
 of
 drug
 delivery,
 employing
 various
 strategies.
 
Above
 transition
 temperature,
 ELPs
 assemble
 spherical
 micelles
 with
 hydrophobic
 cores
 that
 can
 

 
17
 
potentially
 solubilize
 hydrophobic
 drugs.
 Certain
 ELP-­‐drug
 conjugates
 collapse
 into
 nanoparticles,
 
thereby
 improving
 pharmacokinetics
 and
 bio-­‐distribution
 of
 the
 drug
[37]
.
 ELP-­‐antibody
 fusion
 
constructs
 that
 form
 multivalent
 nanostructures
 at
 physiological
 temperature
 improve
 PK
 and
 
efficacy
 of
 antibodies,
 while
 retaining
 the
 high
 affinity,
 high
 specificity
 binding
 of
 antibody
 to
 its
 
target.
 Thermo-­‐responsiveness
 of
 ELPs
 can
 be
 used
 to
 design
 hyperthermia
 based
 therapeutics.
 
ELPs
 with
 transition
 temperature
 above
 body
 temperature
 but
 below
 hyperthermia
 induced
 
temperature
  can
  phase
  separate
  locally
  in
  hyperthermic
  tissue
  resulting
  in
  high
  local
 
concentration
 of
 therapeutic
 payload,
 resulting
 in
 improved
 efficacy
 and
 reduced
 toxic
 effects
[38]
.
 
 
 

 

 
Chapter
 2:
 FKBP-­‐ELP
 fusion
 proteins
 for
 delivery
 of
 anti-­‐cancer
 drug
 
rapamycin
 

 
2.1:
 Introduction
 
Rapamycin
 (Figure
 7),
 also
 known
 as
 sirolimus
 is
 a
 macrolide
 drug
 produced
 by
 the
 bacterium
 
Streptomyces
 hygroscopicus.
 It
 was
 isolated
 for
 the
 first
 time
 in
 1972
 on
 Easter
 Island
 and
 was
 
named
 rapamycin
 after
 the
 native
 name
 of
 the
 island,
 Rapa
 Nui.
 Though
 rapamycin
 was
 originally
 
developed
 as
 an
 anti-­‐fungal,
 this
 use
 was
 later
 abandoned
 due
 to
 its
 potent
 immunosuppressive
 
and
 anti-­‐proliferative
 properties.
 Rapamycin
 can
 inhibit
 lymphocyte
 proliferation,
 and
 has
 been
 
repurposed
  an
  an
  immunosuppressant
  in
  organ
  transplantations,
  especially
  kidney
 
transplantations.
 The
 US
 FDA
 approved
 an
 oral
 formulation
 of
 rapamycin,
 called
 Rapamune
 in
 
September
  1999.
  It
  is
  available
  as
  both
  oral
  solution
  and
  tablets,
  to
  be
  used
  in
  organ
 
transplantations.
 Recently,
 anti-­‐cancer
 properties
 of
 rapamycin
 have
 been
 observed
 in
 various
 
pre-­‐clinical
 models
 of
 malignancies
 of
 the
 breast
[39]
,
 colon
[40]

 and
 kidney
[41]
.
 Though
 not
 approved
 
by
 FDA
 for
 treatment
 in
 cancer,
 these
 findings
 suggest
 rapamycin’s
 potent
 anti-­‐proliferative
 
properties.
 

 

 
18
 

 
Figure
 7:
 Chemical
 structure
 of
 rapamycin
 

 
The
 mechanism
 of
 rapamycin’s
 cytostatic
 activity
 has
 been
 studied
 well
 in
 literature
 (Figure
 8).
 
Rapamycin
 binds
 to
 FK-­‐506
 binding
 protein
 (FKBP)
 with
 an
 affinity
 of
 0.2
 nM
[42]
.
 The
 binary
 
complex
 of
 rapamycin
 and
 FKBP
 then
 binds
 to
 mTOR
 (mammalian
 target
 of
 rapamycin).
 The
 Rapa-­‐
FKBP-­‐mTOR
 ternary
 complex
 inhibits
 biochemical
 pathways
 that
 are
 required
 for
 cell
 progression
 
through
 the
 late
 G1
 phase
 or
 entry
 into
 S
 phase
 of
 cell
 cycle
 
[43]
.
 G1
 cell
 cycle
 arrest
 is
 responsible
 
for
 anti-­‐proliferative
 property
 of
 rapamycin.
 

 
Figure
 8:
 Mechanism
 of
 
rapamycin’s
 cytostatic
 activity:
 
Rapamycin-­‐FKBP
 binary
 complex
 
binds
 to
 the
 mammalian
 target
 of
 
rapamycin
 (mTOR).
 The
 SRL–
FKBP–mTOR
 complex
 inhibits
 
biochemical
 pathways
 that
 are
 
required
 for
 cell
 cycle
 progression
1

 
19
 

 
 
 
 
 
 
 
 
 
 
 
 
 Although
  extremely
  potent,
  the
  clinical
  use
  of
  rapamycin
  is
  limited
  by
  its
  poor
  drug
  like
 
properties.
 Currently
 used
 oral
 formulations
 of
 rapamycin
 have
 low
 bio-­‐availability
[44]

 (14
 –
 16%)
 
because
 of
 its
 extremely
 low
 water
 solubility
[45]
(<0.01
 mg/ml).
 To
 improve
 aqueous
 solubility
 and
 
make
 rapamycin
 amenable
 for
 delivery,
 various
 solubility
 enhancing
 agents
 like
 ethanol,
 PEG,
 
poloxamer
 188,
 polysorbate
 80,
 propylene
 glycol,
 carnauba
 wax
 and
 others
 are
 frequently
 used.
 
These
 formulations
 are
 associated
 with
 carrier
 mediated
 toxicity,
 especially
 toxic
 to
 liver
 and
 
kidneys,
 can
 cause
 hemolysis
 and
 hypersensitivity
 reactions.
 Recent
 studies
 also
 show
 that
 
rapamycin
 and
 other
 mTOR
 inhibitors
 are
 toxic
 to
 lungs
 by
 causing
 interstitial
 pneumonitis
[46]
.
 
Moreover,
 rapamycin
 is
 known
 to
 readily
 partition
 into
 erythrocytes
 leading
 to
 reduced
 drug
 
concentrations
 at
 site
 of
 action
[47]
.
 Current
 oral
 formulation
 of
 rapamycin
 suffers
 from
 another
 
disadvantage,
 which
 is
 variable
 PK
 across
 patients.
 The
 absorption
 of
 rapamycin
 into
 the
 blood
 
stream
 from
 the
 intestine
 varies
 widely
 between
 patients,
 with
 some
 patients
 having
 up
 to
 eight
 
times
 more
 exposure
 than
 others
 for
 the
 same
 dose.
 Drug
 levels
 are,
 therefore,
 taken
 to
 make
 
sure
 patients
 get
 the
 right
 dose
 for
 their
 condition.
 Plasma
 drug
 levels
 need
 to
 be
 continuously
 
monitored,
 especially
 before
 giving
 the
 next
 dose.
 

 
It
 is
 because
 of
 these
 limitations
 that
 different
 approaches
 have
 been
 taken
 to
 improve
 the
 
formulation
 and
 delivery
 of
 rapamycin.
 One
 of
 these
 approaches
 has
 been
 the
 development
 of
 
Temsirolimus
 (CCI-­‐779),
 a
 water-­‐soluble
 rapamycin
 ester
 that
 has
 demonstrated
 promise
 in
 early
 
Phase-­‐I
 trials
[48]
.
 However,
 CCI-­‐779
 still
 has
 limited
 solubility
 in
 water,
 ~120
 μg/ml,
 requiring
 the
 
use
 of
 ethanol
 as
 a
 co-­‐solvent
[49]

 for
 IV
 formulations.
 Even
 though,
 phases
 I
 and
 II
 clinical
 studies
 
have
 reported
 significant
 changes
 in
 the
 pharmacokinetic
 profile
 (5-­‐fold
 increase
 in
 C
max
,
 5-­‐fold
 
decrease
 in
 t
max
,
 3-­‐fold
 decrease
 in
 t
1/2
,
 and
 1-­‐fold
 decrease
 in
 AUC)
[50][51]
,
 high
 inter-­‐patient
 
variability
 and
 mild
 to
 moderate
 side
 effects
 such
 as
 neurotropenia,
 thrombocytopenia,
 manic-­‐
depressive
 syndrome,
 and
 diarrhea
 were
 observed.
 
 

 
These
 disadvantages
 can
 be
 addressed
 by
 using
 protein
 nanoparticle
 technology
 to
 improve
 
solubility
 and
 PK
 of
 rapamycin,
 attain
 a
 predictable
 plasma
 profile
 and
 prevent
 its
 distribution
 
into
 erythrocytes
 and
 other
 non-­‐target
 tissues,
 thereby
 reducing
 toxicity.
 Biodegradable
 protein
 

 
20
 
based
  particles
  prevent
  vehicle
  mediated
  toxicity
  associated
  with
  current
  rapamycin
 
formulations.
 To
 achieve
 this,
 we
 designed
 a
 library
 of
 FKBP-­‐ELP
 fusion
 proteins
 that
 utilize
 the
 
tight
 binding
 of
 rapamycin
 to
 its
 cognate
 receptor
 (FKBP)
 to
 solubilize
 and
 deliver
 rapamycin.
 

 
2.2:
 Materials
 and
 Methods:
 

 
FKBP-­‐ELP
 expression
 and
 purification
 
The
  pET25b(+)
  vectors
  with
  FKBP-­‐ELP
  fusion
  gene
  were
  transfected
  into
  BLR
  (DE3)
  E.coli
 
competent
  cells
  (Novagen)
  and
  plated
  onto
  Agar
  plates
  with
  100
  µg/mL
  carbenicillin
  and
 
incubated
 overnight
 in
 a
 37°C
 incubator.
 5-­‐6
 colonies
 were
 picked
 for
 each
 construct
 and
 
evaluated
 for
 highest
 protein
 expression
 by
 transforming
 each
 colony
 into
 50mL
 Terrific
 Broth
 
(TB)
 media
 grown
 overnight
 supplemented
 with
 100
 µg/mL
 carbenicillin
 at
 37°C.
 The
 bacterial
 
culture
 grown
 from
 each
 colony
 was
 amplified
 to
 1L
 TB
 media
 supplemented
 with
 100
 µg/mL
 
carbenicillin
 and
 allowed
 to
 grow
 for
 24
 h
 at
 37°C.
 The
 culture
 was
 centrifuged
 and
 bacterial
 
pellet
 was
 resuspended
 in
 Dulbecco’s
 sterile
 phosphate
 buffered
 saline
 (PBS)
 buffer
 (Corning).
 
The
 resuspension
 was
 subjected
 to
 tip
 probe
 sonication
 for
 cell
 lysis.
 The
 supernatant
 containing
 
fusion
 protein
 was
 purified
 using
 Inverse
 Transition
 Cycling
 (ITC).
 The
 colony
 having
 the
 highest
 
protein
 expression
 was
 purified
 in
 bulk
 in
 8-­‐9
 L
 TB
 media
 with
 yield
 of
 50-­‐60
 mgs/L.
 The
 purified
 
protein
 was
 filtered
 through
 200
 nm
 sterile
 acrodisc
 25
 mm
 filters
 (Pall
 Corporation)
 and
 protein
 
concentration
 was
 estimated
 using
 Beer
 Lambert’s
 law:
 
Protein
 concentration
 (M)
 =
 
("
#$%
&
 "
()%  
 
)
 ×
 ,-./0-12
 345016
789
 ×.

 
where
 A
280

 and
 A
350
 
are
 absorbance
 at
 280
 and
 350
 nm
 respectively,
 l
 is
 the
 path
 length
 (cm)
 and
 
MEC
 is
 the
 estimated
 molar
 extinction
 coefficient
 at
 280
 nm,
 11585
 M
-­‐1
cm
-­‐1

 for
 FKBP-­‐ELP
 and
 
20190
 M
-­‐1
cm
-­‐1

 for
 FKBP-­‐ELP-­‐FKBP.
 

 

 

 

 

 

 
21
 
FKBP-­‐ELP
 physicochemical
 characterization
 
The
 purified
 fusion
 proteins
 were
 characterized
 for
 their
 physicochemical
 properties:
 Transition
 
temperature
 using
 UV-­‐Vis
 spectroscopy,
 particle
 size
 and
 stability
 using
 Dynamic
 Light
 Scattering,
 
affinity
 for
 rapamycin
 using
 Isothermal
 Titration
 Calorimetry.
 Purity
 of
 ELPs
 was
 determined
 by
 
running
 denatured
 samples
 on
 4-­‐20%
 gradient
 Tris-­‐Glycine-­‐SDS
 PAGE
 gel.
 6-­‐12
 µg
 protein
 in
 
water
 was
 mixed
 with
 SDS
 loading
 buffer
 containing
 10%
 β-­‐mercapto
 ethanol
 and
 heated
 at
 90°C
 
for
 5
 mins
 before
 loading
 onto
 the
 gel.
 Gels
 were
 stained
 using
 10%
 w/v
 copper
 chloride
 solution
 
and
 imaged
 using
 BioRad
 Gel
 Imager
 (Figure
 2A).
 
ELP
 transition
 temperatures
 were
 obtained
 by
 measuring
 optical
 density
 at
 350nm
 as
 a
 function
 
of
 temperature
 on
 a
 UV-­‐Vis
 DU
 800
 spectrophotometer.
 A
 temperature
 ramp
 was
 performed
 by
 
heating
 different
 concentrations
 of
 ELPs
 (with
 and
 without
 FKBP)
 and
 FKBP-­‐ELPs
 (with
 and
 
without
 rapamycin)
 in
 Beckman
 Coulter
 Tm
 microcells
 (Brea,
 CA).
 The
 temperature
 was
 increased
 
at
 rate
 of
 1°C/min
 with
 readings
 taken
 every
 0.3°C
 increment.
 Temperature
 corresponding
 to
 
maximum
 first
 derivative
 of
 optical
 density
 was
 defined
 as
 bulk
 transition
 temperature.
 

 
The
 particle
 size
 of
 all
 the
 FKBP-­‐ELPs
 was
 evaluated
 by
 measuring
 Hydrodynamic
 radius
 (R
h
)
 using
 
Dynamic
 Light
 Scattering.
 All
 samples
 and
 microwell
 plates
 were
 pre-­‐chilled
 at
 4
 °C
 before
 
analysis.
 25
 µM
 concentration
 samples
 were
 filtered
 through
 200
 nm
 sterile
 acrodisc
 13
 mm
 
filters
 (Pall
 Corporation)
 and
 60
 µL
 of
 each
 sample
 was
 loaded
 in
 triplicates
 in
 384
 well
 plate
 
(Greiner
 Bio
 One)
 and
 covered
 with
 15
 µL
 mineral
 oil.
 The
 plate
 was
 centrifuged
 at
 3000
 rpm
 for
 
3
 minutes
 to
 clear
 any
 surface
 air
 bubbles.
 Samples
 were
 analyzed
 using
 Wyatt
 Dynapro
 plate
 
reader
 (Santa
 Barbara,
 CA)
 from
 15-­‐37°C
 at
 interval
 of
 1°C.
 The
 stability
 of
 FKBP-­‐ELPs
 was
 
evaluated
  at
  37°C
  for
  period
  of
  48h
  after
  rapamycin
  encapsulation
  to
  study
  the
  effect
  of
 
rapamycin
 binding
 on
 the
 size
 and
 structural
 properties
 of
 FKBP-­‐ELPs.
 The
 reported
 values
 are
 
presented
 as
 mean
 ±
 SD.
 

 
The
 affinity
 of
 FKBP-­‐ELPs
 for
 rapamycin
 was
 studied
 using
 Isothermal
 Titration
 Calorimetry
 on
 a
 
MicroCal
 PEAQ
 ITC
 (Malvern
 Instruments,
 United
 Kingdom).
 The
 reference
 cell
 of
 the
 calorimeter
 
was
 filled
 with
 water
 and
 all
 binding
 studies
 were
 performed
 at
 37
 °C.
 Briefly,
 300
 µl
 of
 8
 µM
 

 
22
 
rapamycin
 (PBS,
 2.36%
 DMSO)
 was
 carefully
 loaded
 into
 the
 calorimeter
 cell
 using
 a
 Hamilton
 
syringe,
 making
 sure
 not
 to
 introduce
 any
 air
 bubbles.
 The
 titration
 syringe
 was
 filled
 with
 100
 
µM
 FKBP-­‐ELP
 (PBS,
 2.36%
 DMSO).
 While
 the
 titration
 syringe
 was
 spinning
 at
 250
 rpm,
 FKBP-­‐ELP
 
was
 injected
 into
 rapamycin
 12
 times,
 each
 injection
 being
 3
 µl,
 allowing
 3
 minutes
 between
 
injections
 to
 facilitate
 equilibration.
 
 At
 the
 end
 of
 titration,
 the
 calorimeter
 cell
 and
 syringe
 were
 
emptied,
 washed
 with
 detergent,
 water
 and
 dried
 using
 methanol
 before
 starting
 the
 next
 
experiment.
 The
 resulting
 isotherm
 was
 fitted
 to
 a
 binding
 model
 in
 “Offset
 mode”
 using
 MicroCal
 
PEAQ
 ITC
 analysis
 software
 (Malvern
 Instruments,
 United
 Kingdom)
 to
 generate
 affinity
 (k
d
),
 
stoichiometry
 of
 binding,
 enthalpy
 of
 binding
 (ΔH),
 entropy
 of
 binding
 (ΔS)
 and
 the
 Gibbs
 free
 
energy
 (ΔG).
 
 

 
Rapamycin
 encapsulation
 and
 formulation
 for
 in
 vivo
 injections
 
Purified
 FKBP-­‐ELPs
 were
 used
 for
 rapamycin
 encapsulation
 using
 two-­‐phase
 solvent
 evaporation
 
method.
 200-­‐400
 µM
 (2mL)
 FKBP-­‐ELP
 in
 PBS
 was
 equilibrated
 in
 a
 glass
 vial
 to
 37°C,
 followed
 by
 
addition
 of
 1.1
 mol
 equivalent
 rapamycin
 in
 hexane/EtOH
 mixture
 (7:3
 v/v).
 The
 organic
 phase
 
was
 evaporated
 under
 mild
 flow
 of
 N
2

 gas
 with
 continuous
 stirring
 for
 20
 mins.
 After
 complete
 
evaporation
 of
 organic
 solvent,
 the
 remaining
 aqueous
 solution
 was
 centrifuged
 at
 13000
 rpm
 at
 
37
 °C
 to
 precipitate
 and
 pellet
 free
 unbound
 rapamycin.
 The
 supernatant
 was
 added
 to
 a
 20
 kDa
 
MWCO
  dialysis
  cassette
  (Thermo
  Scientific)
  and
  was
  dialyzed
  against
  PBS
  (1:750
 
sample:dialyzate)
 for
 12
 hours
 to
 completely
 remove
 unbound
 rapamycin.
 
 
 The
 sample
 after
 
dialysis
 was
 filtered
 through
 200
 nm
 sterile
 acrodisc
 25
 mm
 filters
 (Pall
 Corporation)
 and
 an
 
aliquot
 of
 filtered,
 encapsulated
 material
 was
 injected
 onto
 a
 C-­‐18
 RP-­‐HPLC
 column
 (Waters,
 Inc.)
 
to
 quantify
 rapamycin
 concentration.
 Post
 quantification,
 all
 drug
 loaded
 FKBP-­‐ELP
 formulations
 
were
 diluted
 to
 required
 dose
 and
 aliquots
 for
 single
 injection
 were
 stored
 frozen
 at
 -­‐80°C.
 

 
Removal
 and
 quantification
 of
 bacterial
 endotoxin
 
Pierce
  High
  capacity
  endotoxin
  removal
  column
  (Thermo
  Scientific,
  catalog
  no:88276)
  was
 
activated
 according
 to
 the
 manufacturer’s
 protocol.
 Rapamycin
 encapsulated
 FKBP-­‐ELP
 was
 
incubated
 with
 activated
 resin
 overnight
 at
 4
 °C.
 Next
 day,
 the
 sample
 was
 retrieved,
 an
 aliquot
 

 
23
 
was
 diluted
 to
 15
 µM
 rapamycin
 and
 residual
 endotoxin
 burden
 was
 estimated
 using
 LAL
 gel
 clot
 
assay
 (Pyrotell,
 Associates
 of
 Cape
 Cod
 Inc.)
 following
 the
 manufacturer’s
 protocol.
 The
 LAL
 lysate
 
was
 reconstituted
 using
 LAL
 Reconstitution
 buffer
 (Pyrosol,
 Associates
 of
 Cape
 Cod
 Inc.)
 and
 the
 
gel
 clot
 assays
 were
 performed
 in
 sterile
 glass
 tubes
 (Pyrotubes,
 Associates
 of
 Cape
 Cod
 Inc.)
 

 
Rapamycin
 release
 kinetics
 from
 FKBP-­‐ELPs
 by
 dynamic
 dialysis
 
Rapamycin
 loaded
 FKBP-­‐ELP
 was
 added
 to
 a
 20
 kDa
 dialysis
 cassette
 (Thermo
 Scientific)
 and
 was
 
dialyzed
 against
 PBS
 at
 37°C
 (1:750
 sample:dialysate).
 Penicillin-­‐Streptomycin
 1X
 solution
 was
 
added
 to
 PBS
 to
 prevent
 bacterial
 contamination.
 100
 µL
 aliquots
 were
 collected
 from
 the
 
cassette
 at
 fixed
 time
 intervals
 and
 rapamycin
 concentration
 was
 quantified
 using
 RP-­‐HPLC.
 %
 
drug
 retained
 versus
 time
 was
 plotted
 and
 release
 half-­‐life
 was
 calculated
 by
 performing
 non-­‐
linear
 regression.
 

 
Synthesis
 of
 FL-­‐SLF
 
The
  aniline
  analog
  of
  SLF
  (Cayman
  Chemicals,
  5
  mg,
  1
  equiv.)
  was
  dissolved
  in
  500
  µl
 
dimethylformamide
 (DMF)
 and
 added
 to
 the
 succinimidyl
 ester
 of
 5-­‐carboxyfluorescein(9.5
 mg,
 
2
 equiv.,
 Molecular
 Probes)
 in
 a
 brown-­‐glass
 vial.
 Triethylamine
 (10
 equiv.)
 and
 1-­‐hydroxy-­‐7-­‐
benzotriazole
 monohydrate
 (HObt.H
2
O)
 (20
 equiv.)
 were
 added,
 and
 the
 reaction
 was
 stirred
 for
 
24
 h
 at
 room
 temperature.
 DMF
 was
 blown
 off
 with
 a
 gentle
 stream
 of
 nitrogen
 over
 the
 reaction
 
mixture
 overnight.
 The
 mixture
 was
 purified
 using
 preparative
 TLC.
 Presence
 of
 FL-­‐SLF
 in
 reaction
 
mixture
 was
 confirmed
 using
 ESI-­‐MS.
 
 

 
Cyanine5.5
 labeling
 of
 FKBP-­‐ELPs:
 
To
 a
 solution
 of
 FKBP-­‐ELPs
 in
 phosphate
 buffered
 saline
 (Corning),
 three
 times
 stoichiometric
 
excess
 of
 Cyanine5.5
 NHS
 ester
 (Lumiprobe,
 15
 mg/mL
 in
 DMSO)
 was
 added.
 Following
 overnight
 
incubation
  at
  4
  °C,
  the
  reaction
  mixture
  was
  loaded
  onto
  a
  PD-­‐10
  desalting
  column
  (GE
 
Healthcare)
 to
 remove
 unreacted
 free
 dye.
 Fractions
 containing
 Cyanine5.5
 labeled
 FKBP-­‐ELPs
 
were
 identified
 using
 SDS-­‐PAGE,
 were
 pooled
 together
 and
 concentrated
 10
 times
 (Amicon
 Ultra,
 
30
 kDa
 MWCO).
 The
 concentrate
 was
 subjected
 to
 another
 round
 of
 PD-­‐10
 purification
 and
 

 
24
 
ultrafiltration
 for
 maximum
 removal
 of
 free
 dye.
 Concentrations
 of
 Cyanine5.5
 and
 FKBP-­‐ELP
 in
 
the
 purified
 material
 were
 estimated
 by
 UV-­‐Vis
 spectroscopy
 (Beckman
 Coulter
 DU-­‐800)
 using
 
the
 following
 equations.
 
C
Cy5.5

 =
 Absorbance
 at
 679
 nm
 *
 dilution
 factor
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 209000
 
C
FKBP-­‐ELP

 =
 Ab
280

 -­‐
 0.09*Ab
679
 
*
 dilution
 factor
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
M.E.C
FKBP-­‐ELP

 
Labeling
 efficiency
 =
 C
Cy5.5
/C
FKBP-­‐ELP
 
*
 100
 
To
 assess
 purity
 and
 efficiency
 of
 unreacted
 dye
 removal,
 we
 used
 SDS-­‐PAGE,
 followed
 by
 
fluorescent
 imaging
 of
 the
 gel.
 Briefly,
 10
 µg
 of
 labeled
 protein
 after
 purification
 was
 added
 to
 
SDS
 sample
 buffer
 (2%
 SDS,
 25%
 glycerol,
 62.5
 mM
 Tris–HCl,
 pH
 6.8).
 The
 denatured
 samples
 
were
 run
 on
 4-­‐20%
 gradient
 Tris-­‐Glycine-­‐SDS
 PAGE
 gel
 at
 constant
 voltage
 (150
 V)
 for
 30
 minutes.
 
Fluorescent
 images
 were
 acquired
 on
 a
 Typhoon
 8610
 imager
 (Excitation:
 633nm
 red
 laser,
 
Emission
 filter:
 670nm
 bandpass
 30nm).
 

 
IR-­‐800
 labeling
 of
 FKBP-­‐ELPs:
 
To
 a
 solution
 of
 FKBP-­‐ELPs
 in
 phosphate
 buffered
 saline
 (Corning),
 0.25
 mole
 equivalents
 of
 IR-­‐
800
 NHS
 ester
 (LiCor
 Biosciences,
 20
 mg/mL
 in
 DMSO)
 was
 added.
 Following
 overnight
 incubation
 
at
 4
 °C,
 the
 reaction
 mixture
 was
 transferred
 to
 10
 kDa
 MWCO
 dialysis
 cassette
 (Thermo
 
Scientific)
 and
 was
 dialyzed
 extensively
 against
 PBS
 (1:1000
 sample
 :
 dialysate,
 6
 buffer
 changes,
 
8
 hours
 between
 buffer
 change).
 Purity
 and
 efficiency
 of
 free
 dye
 removal
 were
 assessed
 as
 
discussed
 above.
 Concentrations
 of
 IR-­‐800
 and
 FKBP-­‐ELP
 in
 the
 purified
 material
 were
 estimated
 
by
 UV-­‐Vis
 spectroscopy
 (Beckman
 Coulter
 DU-­‐800)
 using
 the
 following
 equations.
 
C
IR800

 =
 Absorbance
 at
 774
 nm
 *
 dilution
 factor
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 240000
 
C
FKBP-­‐ELP

 =
 Ab
280

 -­‐
 0.03*Ab
774
 
*
 dilution
 factor
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
M.E.C
FKBP-­‐ELP

 
Labeling
 efficiency
 =
 C
IR800
/C
FKBP-­‐ELP
 
*
 100
 

 

 
25
 
Near
 infrared
 imaging
 of
 fluorescently
 labelled
 FKBP-­‐ELPs
 
All
 animal
 experiments
 were
 conducted
 as
 per
 the
 guidelines
 of
 the
 American
 Association
 of
 
Laboratory
 Animal
 Care
 under
 an
 USC
 approved
 protocol.
 MDA-­‐MB-­‐468
 cells
 (American
 Type
 
Tissue
 Culture
 Collection)
 were
 cultured
 at
 37°C
 with
 5%
 CO
2

 in
 Dulbecco’s
 modified
 Eagle’s
 
medium
 (DMEM)/Ham’s
 F-­‐12
 media
 (Caisson)
 supplemented
 with
 10%
 fetal
 bovine
 serum.
 The
 
cells
 were
 sent
 for
 screening
 major
 mouse
 pathogens
 and
 human
 blood
 borne
 pathogens
 
(Charles
 River)
 prior
 to
 implantation.
 A
 single
 injection
 of
 MDA-­‐MB-­‐468
 cells
 (1-­‐2
 x
 10
6

 cells
 in
 
100
 µL
 fetal
 bovine
 serum
 free
 DMEM
 media)
 was
 implanted
 into
 the
 left
 mammary
 fat
 pad
 of
 7-­‐
8
 weeks
 old
 female
 nude
 (nu/nu)
 athymic
 mice
 (Harlan,
 Inc.)
 Tumors
 were
 allowed
 to
 grow
 to
 a
 
size
 of
 ~
 50-­‐100
 mm
3

 and
 mice
 were
 randomized
 blindly
 into
 respective
 groups.
 Near-­‐infrared
 
dye
 labeled
 FKBP-­‐ELPs
 were
 administered
 subcutaneously
 in
 the
 right
 flank
 above
 the
 hind
 leg,
 
or
 intravenously
 via
 tail
 vein.
 Mice
 were
 anaesthetized
 with
 2%
 v/v
 isoflurane/oxygen
 gas
 prior
 
to
 injection
 of
 labelled
 FKBP-­‐ELPs.
 Whole
 body
 dorsal
 and
 ventral
 scans
 were
 acquired
 using
 the
 
IVIS
 optical
 spectrum
 (Perkin
 Elmer)
 at
 0,1,2,4,8,24
 and
 48
 h
 post
 injection
 using
 1
 sec
 exposure
 
time
 and
 small
 binning.
 Excitation
 and
 emission
 filter
 for
 Cyanine5.5
 were
 chosen
 to
 be
 640nm
 
and
 700
 nm
 respectively.
 Images
 were
 analyzed
 using
 Living
 Image
®
 
(Perkin
 Elmer)
 software.
 
Region
 of
 Interest
 (ROI)
 was
 drawn
 on
 tumor,
 liver
 and
 spleen
 from
 ventral
 scans
 and
 that
 of
 left
 
kidney
 and
 injection
 site
 from
 dorsal
 scans.
 Fluorescence
 from
 respective
 ROIs
 was
 quantified
 in
 
average
  radiance
  efficiency
  with
  units
  (photons/sec/cm
2
/sr)/
  (µW/cm
2
)
  and
  plotted
  after
 
subtracting
 respective
 ROI
 background
 intensity
 at
 0hr.
 Organ
 distribution
 of
 Cyanine5.5
 labelled
 
FKBP-­‐ELPs
 with
 respect
 to
 time
 is
 presented
 as
 mean
 ±
 SD
 with
 n
 =
 4
 per
 group
 (Figure
 XYZ).
 After
 
48h,
 mice
 were
 euthanized
 and
 small
 volume
 of
 blood
 was
 withdrawn
 via
 cardiac
 puncture.
 Mice
 
were
  then
  skinned
  and
  imaged
  dorsally
  and
  ventrally
  for
  any
  evidence
  of
  lymph
  node
 
accumulation.
  The
  carcasses
  were
  then
  dissected
  and
  individual
  organs
  along
  with
  blood
 
withdrawn
 earlier
 were
 scanned
 using
 1
 sec
 exposure
 time
 with
 small
 binning.
 The
 fluorescence
 
from
 the
 dissected
 organs
 was
 quantified
 as
 described
 earlier
 (Figure
 XYZ).
 

 
 

 

 

 
26
 
2.3:
 Results
 and
 discussion:
 

 
To
 solubilize
 and
 deliver
 rapamycin,
 we
 designed
 a
 FKBP-­‐ELP
 library
 consisting
 of
 four
 members:
 
FKBP-­‐(VPGAG)
192

 (FA),
 FKBP-­‐(VPGAG)
192
 
-­‐FKBP
 (FAF),
 FKBP-­‐(VPGSG)
48
(VPGIG)
48

 (FSI),
 and
 FKBP-­‐
(VPGVG)
48

 (V48).
 Based
 on
 previous
 experience
 in
 the
 lab,
 we
 expected
 these
 fusion
 proteins
 to
 
have
 different
 thermo-­‐responsive
 properties,
 particle
 sizes
 and
 drug
 carrying
 capacities.
 We
 
characterized
  and
  studied
  these
  four
  different
  fusions
  to
  understand
  how
  nanoparticle
 
architecture
 affects
 PK
 and
 bio-­‐distribution
 of
 particles,
 and
 improve
 our
 understanding
 of
 ELP
 
based
 drug
 delivery.
 The
 carriers
 with
 optimum
 PK
 and
 bio-­‐distribution
 profile
 can
 efficiently
 
deliver
 rapamycin.
 

 
Recombinant
 expression
 of
 FKBP-­‐ELPs:
 
Recombinant
 expression
 of
 FKBP-­‐ELP
 library
 resulted
 in
 yields
 of
 50-­‐60
 mg/L.
 Inverse
 transition
 
cycling
 was
 effective
 in
 purifying
 ELP
 fusions
 from
 bacterial
 proteins.
 Typically,
 3
 rounds
 of
 ITC
 
resulted
 in
 >99%
 pure
 proteins.
 SDS-­‐PAGE
 (Figure
 9A)
 was
 used
 to
 assess
 purity
 and
 confirm
 
molecular
 weights
 of
 FKBP-­‐ELPs.
 
 

 
FKBP-­‐ELP
 fusion
 proteins
 retain
 thermo-­‐responsive
 properties
 observed
 with
 ELPs:
 
 
FKBP-­‐ELPs
 and
 control
 ELPs
 (without
 FKBP)
 exhibited
 concentration
 dependent
 phase
 transition
 
temperature
 (Figure
 9B).
 As
 expected,
 the
 transition
 temperature
 dropped
 with
 increasing
 
solution
 concentration.
 We
 obtained
 linear
 graphs
 when
 transition
 temperature
 was
 plotted
 
against
 log(concentration)
 and
 data
 points
 were
 fit
 to
 equation
 T
t

 =
 b
 –
 m
 [Log
10
(concentration)].
 
These
 phase
 diagrams
 help
 us
 understand
 the
 physical
 state
 of
 an
 ELP
 at
 a
 particular
 temperature
 
and
 concentration.
 At
 physiological
 temperature
 of
 37
 
o
C,
 FA
 and
 FAF
 remain
 monomeric
 in
 
solution
 over
 a
 wide
 range
 of
 concentrations
 (5-­‐100
 µM)
 while
 FSI
 assembles
 nanoparticles.
 At
 
37
 
o
C,
 FV
 remains
 soluble
 at
 concentrations
 lower
 than
 100
 µM,
 and
 forms
 a
 coacervate
 at
 higher
 
concentrations.
 FKBP-­‐ELPs
 retain
 their
 concentration
 dependent
 thermo-­‐responsive
 properties
 
even
 after
 encapsulating
 rapamycin
 (Figure
 9C).
 

 

 
27
 
After
 evaluating
 thermal
 properties,
 we
 measured
 the
 hydrodynamic
 radii
 (R
h
)
 of
 these
 ELPs
 using
 
dynamic
  light
  scattering
  (Figure
  9D).
  FV,
  FA
  and
  FAF
  (at
  25
  µM)
  exhibited
  temperature
 
independent
 (between
 15
 to
 37
 
o
C)
 hydrodynamic
 radii
 of
 3.6
 nm,
 8
 nm
 and
 10
 nm
 respectively.
 
On
 the
 other
 hand,
 FSI
 remained
 soluble
 at
 temperatures
 below
 24
 
o
C
 (hydrodynamic
 radius:
 5.3
 
nm),
 and
 assembled
 into
 25
 nm
 spherical
 micelles
 above
 the
 transition
 temperature.
 The
 renal
 
filtration
 cutoff
 for
 nanoparticles
 is
 extensively
 studied
 and
 is
 generally
 accepted
 to
 be
 5.5
 nm
[52]
.
 
Nanoparticles
 smaller
 than
 the
 glomerular
 filtration
 cutoff
 are
 rapidly
 cleared
 by
 kidneys
 and
 
would
 not
 make
 efficient
 drug
 carriers.
 With
 a
 hydrodynamic
 radius
 well
 above
 5.5
 nm
 at
 37
 
o
C,
 
FA,
 FAF,
 and
 FSI
 can
 be
 expected
 to
 have
 desirable
 PK
 properties
 of
 a
 drug
 carrier.
 On
 the
 other
 
hand,
 FV
 being
 smaller
 than
 renal
 filtration
 cutoff
 might
 get
 rapidly
 cleared
 when
 administered
 
in-­‐vivo
 and
 would
 not
 make
 a
 great
 carrier.
 For
 this
 reason,
 FV
 was
 excluded
 from
 the
 library
 and
 
was
 not
 evaluated
 in-­‐vivo.
 Since
 physical
 stability
 is
 an
 important
 characteristic
 of
 a
 stable
 drug
 
carrier,
 we
 evaluated
 the
 stability
 of
 FKBP-­‐ELPs
 at
 37
 
o
C.
 All
 FKBP-­‐ELP
 nanoparticles
 showed
 no
 
signs
 of
 aggregation
 and
 remained
 stable
 for
 at
 least
 24
 hours
 (Figure
 9E).
 

 

 
28
 

 
Figure
 9:
 A)
 SDS-­‐PAGE
 gel
 shoeing
 purity
 of
 FKBP-­‐ELPs
 and
 control
 ELPs.
 B)
 Concentration
 
dependent
 phase
 transition
 behavior
 of
 FKBP-­‐ELPs.
 C)
 Concentration
 dependent
 phase
 
transition
 behavior
 of
 rapamycin
 loaded
 FKBP-­‐ELPs.
 
 D)
 Temperature
 dependence
 of
 particle
 
size
 of
 FKBP-­‐ELPs.
 E)
 Physical
 stability
 of
 rapamycin
 loaded
 FKBP-­‐ELPs
 at
 37
 
o
C
 

 
29
 

 

 
FKBP-­‐ELPs
 bind
 to
 rapamycin
 with
 a
 low
 nanomolar
 dissocation
 constant:
 
 
To
 study
 the
 binding
 of
 rapamycin
 to
 FKBP-­‐ELPs,
 we
 used
 Isothermal
 Titration
 Calorimetry
 (ITC)
 
to
 evaluate
 binding
 affinity
 and
 thermodynamics.
 ITC
 is
 a
 powerful
 technique
 to
 evaluate
 a
 wide
 
range
 of
 bio-­‐molecular
 interactions
 with
 affinities
 in
 low
 nanomolar
 to
 millimolar
 range.
 It
 works
 
by
 directly
 measuring
 the
 heat
 absorbed/released
 during
 a
 binding
 event.
 Being
 a
 label
 free
 
technique,
 ITC
 does
 not
 require
 any
 fluorescent
 tags
 or
 immobilization
 and
 measures
 binding
 
parameters
 in
 native
 states
 of
 binding
 partners.
 A
 single
 ITC
 experiment
 can
 simultaneously
 
determine
 binding
 stoichiometry,
 binding
 affinity,
 enthalpy
 of
 binding,
 entropy
 of
 binding
 and
 
the
 binding
 mechanism
 (Figure
 10).
 Although
 very
 useful,
 one
 disadvantage
 of
 ITC
 is
 its
 low
 
sensitivity
  when
  compared
  to
  techniques
  like
  fluorescence
  polarization,
  surface
  plasmon
 
resonance
 and
 nuclear
 magnetic
 resonance.
 During
 the
 experiment,
 one
 component
 of
 the
 
ligand-­‐receptor
 complex
 is
 titrated
 into
 the
 other
 component
 and
 the
 incremental
 heat
 changes
 
for
 each
 step
 of
 the
 titration
 are
 measured.
 This
 raw
 data
 is
 converted
 to
 a
 binding
 isotherm
 that
 
is
 fitted
 to
 a
 suitable
 binding
 model
 by
 non-­‐linear
 least
 squares
 fit
 to
 retrieve
 the
 desired
 binding
 
parameters.
  The
  shape
  of
  this
  binding
  isotherm
  depends
  on
  the
  ratio
  of
  the
  receptor
 
concentration
 divided
 by
 the
 dissociation
 constant,
 also
 called
 the
 c
 value.
 It
 is
 generally
 accepted
 
that
 c
 values
 in
 a
 certain
 range
 (10-­‐100)
 provide
 the
 best
 sigmoidal
 shape
 for
 obtaining
 reliable
 
Table
 2:
 Physicochemical
 properties
 of
 ELP
 protein
 polymers
 with
 and
 without
 FKBP
 
Label
 
a
Amino
 acid
 
sequence
 
Expected
 
MW
 
(kDa)
 
R
h

 at
 
20
 C°
 
(nm)
 
R
h

 at
 
37
 C°
 
(nm)
 
c
Slope,
 m
 
[⁰C
 
Log
 (µM)]
 
c
Intercept,
 b
 
(⁰C)
 
V48
  MG(VPGVG)
48
Y
  19.7
   
   
  7.01
  48.8
 
FKBP-­‐V48
 (FV)
  FKBP-­‐G(VPGVG)
48
Y
  31.5
  3.6
  3.6
  10.26
  56.7
 
S48I48
 (SI)

 
MG(VPGSG)
48
(VPGIG)
48
Y
  39.6
   
   
   
   
 
FKBP-­‐S48I48
 (FSI)
  FKBP-­‐G(VPGSG)
48
(VPGIG)
48
Y
  51.4
  5
  25
   
   
 
A192
  MG(VPGAG)
192
Y
  73.5
  7
  7
   
   
 
FKBP-­‐A192
 (FA)
  FKBP-­‐G(VPGAG)
192
Y
  85
  8
  8
   
   
 
FKBP-­‐A192-­‐FKBP
 
(FAF)
 
FKBP-­‐G(VPGAG)
192
-­‐FKBP
  97
  10
  10
   
   
 
a
FKBP
 amino
 acid
 sequence:
 
MGVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFMLGKQEVIRGWEEGVAQMSVGQRAKLTISPDYAYGATGH
PGIIPPHATLVFDVELLKLE
 
c
Phase
 diagrams
 were
 fit
 with
 the
 following
 linear
 relationship:
 T
t

 =
 b
 –
 m[Log
10
(concentration)].
 Mean
 ±
 95%
 CI.
 R
2

 =
 0.99.
 

 
30
 
k
d

  values.
  However,
  ligand
  and
  protein
  solubility
  can
  strictly
  limit
  the
  achievable
  c
  value,
 
particularly
 for
 weak
 binders.
 
 

 

 

 
In
 a
 typical
 ITC
 experiment,
 a
 low
 concentration
 macromolecule
 in
 calorimeter
 cell
 is
 titrated
 
against
 high
 concentration
 ligand
 in
 titration
 syringe.
 In
 the
 case
 of
 rapamycin,
 its
 low
 aqueous
 
solubility
 limited
 reaching
 high
 enough
 concentrations
 required
 to
 be
 used
 in
 titration
 syringe.
 
Hence
 we
 titrated
 rapamycin
 in
 the
 calorimeter
 cell
 against
 FKBP-­‐ELPs
 in
 the
 titration
 syringe.
 
The
 resulting
 binding
 isotherms
 are
 shown
 in
 Figure
 11.
 As
 shown
 in
 the
 figure,
 when
 rapamycin
 
was
 titrated
 against
 FKBP-­‐ELPs,
 the
 heat
 released
 reduced
 with
 every
 injection
 as
 the
 titration
 
moved
 towards
 saturation.
 This
 is
 expected
 because
 with
 every
 injection,
 the
 number
 of
 binding
 
events
 decrease
 and
 hence
 the
 heat
 released
 decreases.
 The
 raw
 data
 represents
 a
 typical
 
binding
 profile
 seen
 with
 ITC.
 On
 the
 other
 hand,
 when
 rapamycin
 was
 titrated
 against
 A192
 and
 
Figure
 10:
 Raw
 data
 (upper
 panel)
 generated
 
by
 an
 ITC
 experiment
 representing
 the
 heat
 
released/absorbed
 during
 the
 duration
 of
 
the
 titration.
 This
 raw
 data
 is
 converted
 into
 
the
 binding
 isotherm
 (below)
 by
 integration
 
of
 each
 injection
 peak
 giving
 the
 thermal
 
energy
 (∆H)
 of
 each
 titration
 step.
 Upon
 
saturation
 of
 the
 protein
 in
 the
 cell
 with
 
added
 ligand,
 the
 signal
 is
 reduced
 until
 only
 
the
 background
 heat
 of
 dilution
 remains.
 
From
 the
 binding
 isotherm
 (heat
 plotted
 
against
 the
 molar
 ratio
 of
 ligand/protein),
 
the
 change
 in
 enthalpy
 ∆H,
 the
 
stoichiometry
 n,
 and
 the
 binding
 affinity
 k
d
 
can
 be
 calculated.
 

 
31
 
S48I48
 control
 ELPs,
 we
 could
 only
 detect
 heat
 of
 dilution
 that
 remained
 constant
 with
 every
 
injection.
 The
 data
 obtained
 from
 controls
 ELPs
 did
 not
 show
 any
 signs
 of
 binding
 to
 rapamycin.
 

 

 
Figure
 11:
 ITC
 titration
 curve
 and
 binding
 isotherm
 for
 FA-­‐rapa
 (left)
 and
 FAF-­‐rapa
 (right)
 

 
By
 transforming
 raw
 data
 to
 binding
 isotherms,
 we
 could
 fit
 the
 data
 to
 a
 binding
 model
 and
 
extract
 binding
 parameters
 (Table
 3).
 The
 binding
 stoichiometry
 was
 close
 to
 1
 in
 case
 of
 FSI
 and
 
FA.
 Since
 each
 FAF
 has
 two
 copies
 of
 FKBP,
 it
 can
 theoretically
 bind
 two
 rapamycin
 molecules.
 
ITC
 proved
 this
 to
 be
 true
 since
 FAF
 Rapamycin
 binding
 resulted
 in
 a
 binding
 stoichiometry
 close
 
to
 2.
 The
 fact
 that
 binding
 stoichiometry
 was
 not
 an
 exact
 whole
 number
 reflects
 small
 errors
 in
 
concentration
 measurements
 of
 rapamycin
 or
 FKBP-­‐ELP.
 Another
 less
 likely
 explanation
 is
 an
 
existence
 of
 partially
 misfolded
 FKBP-­‐ELP
 population
 that
 is
 not
 able
 to
 participate
 in
 binding.
 

 

 
0 10 20 30
11.0
11.5
12.0
12.5
13.0
TIme(min)
Power(µJ/sec)
FA-Rapa
0 1 2 3
-80
-60
-40
-20
0
Molar ratio
ΔH(kJ/mol)
0 10 20 30
10.5
11.0
11.5
12.0
12.5
13.0
TIme(min)
Power(µJ/sec)
FAF-Rapa
0.0 0.5 1.0 1.5
-150
-100
-50
0
Molar ratio
ΔH(kJ/mol)

 
32
 

 
   
 
 
 
 
 
 
 
 
 
   
 
Figure
 11
 (cont.):
 ITC
 titration
 curve
 and
 binding
 isotherm
 for
 FSI
 (left)
 and
 titration
 curves
 for
 
A192
 and
 SI(right).
 A192
 and
 SI
 do
 not
 fit
 a
 binding
 profile.
 

 

  Binding
 
stoichiometry
 
(n)
 
Dissociation
 
constant
 
(nM)
 
Enthalpy
 of
 
binding
 
(kJ/mol)
 
Free
 energy
 
of
 binding
 
(kJ/mol)
 
-­‐TΔS
 
FA
  0.92
 ±
 0.05
  7.42
 ±
 2.01
  -­‐61.76
 ±
 1.67
  -­‐48.36
 ±
 0.70
  13.4
 ±
 1.90
 
FAF
  1.82
 ±
 0.10
  7.04
 ±
 1.67
  -­‐59.90
 ±
 3.43
  -­‐48.60
 ±
 0.69
 
  11.3
 ±
 3.97
 
FSI
  0.80
 ±
 0.07
  5.59
 ±
 2.34
  -­‐49.56
 ±
 2.13
  -­‐49.70
 ±
 0.10
  2.11
 ±
 0.17
 
FV
  1.09
 ±
 0.02
  5.97
 ±
 1.24
  -­‐58.53
 ±
 2.70
  -­‐48.67
 ±
 0.90
  9.72
 ±
 1.98
 

 
Table
 3:
 Binding
 parameters
 for
 FKBP-­‐ELP
 rapamycin
 binding.
 All
 experiments
 have
 been
 
performed
 at
 37
 
o
C
 and
 100
 uM
 ELP
 was
 titrated
 into
 8
 uM
 Rapamycin
 (2.36%
 DMSO/PBS).
 All
 
figures
 are
 represented
 as
 Mean
 ±
 SD
 of
 three
 independent
 experiments.
 

 
 
The
 k
d

 for
 FKBP
 Rapamycin
 binding
 was
 previously
 estimated
 to
 be
 0.3
 nM.
 For
 FKBP-­‐ELP
 binding
 
to
 rapamycin,
 we
 derived
 a
 dissociation
 constant
 of
 6-­‐7
 nM
 (Table
 2),
 independent
 of
 ELP
 
composition.
 Although
 conjugation
 of
 ELP
 to
 FKBP
 resulted
 in
 approximately
 20-­‐fold
 reduction
 in
 
0 10 20
9.5
10.0
10.5
11.0
11.5
TIme(min)
Power(µJ/sec)
FSI-Rapa
0 1 2 3
-50
-40
-30
-20
-10
0
Molar ratio
ΔH(kJ/mol)
0 10 20 30
9
10
11
TIme(min)
Power(µJ/sec)
A192-Rapa
0 5 10 15 20 25
11.0
11.1
11.2
11.3
TIme(min)
Power(µJ/sec)
SI-Rapa

 
33
 
affinity
 of
 FKBP
 for
 rapamycin,
 FKBP-­‐ELP/rapamycin
 binding
 is
 still
 strong
 enough
 for
 the
 purpose
 
of
 drug
 delivery.
 A
 high
 binding
 enthalpy
 of
 approximately
 -­‐60
 kJ/mol
 suggests
 an
 enthalpy
 driven
 
binding
  mechanism.
  A
  positive
  -­‐TΔS
  revealed
  an
  entropic
  cost
  associated
  with
  FKBP-­‐
ELP/rapamycin
 binding.
 This
 is
 expected
 because
 upon
 binding,
 rapamycin
 is
 transitioning
 from
 
a
 free,
 random
 state
 in
 solution
 to
 a
 bound,
 ordered
 state,
 thereby
 reducing
 the
 entropy
 of
 the
 
system.
  Nonetheless,
  a
  negative
  gibbs
  free
  energy
  for
  all
  FKBP-­‐ELPs
  binding
  to
  rapamycin
 
indicates
 the
 binding
 is
 energetically
 favorable.
 

 
Bivalent
 FAF
 extends
 rapamycin
 release
 by
 30
 fold
 over
 FA
 
We
 studied
 the
 kinetics
 of
 rapamycin
 release
 from
 FKBP-­‐ELPs
 by
 dynamic
 dialysis
 method.
 
Dynamic
 dialysis
 is
 used
 to
 study
 protein
 binding
 of
 small
 molecules
 based
 on
 the
 determination
 
of
 rate
 of
 dialysis
 of
 a
 small
 molecule
 from
 a
 protein-­‐containing
 compartment.
 The
 method
 is
 
based
 on
 the
 fact
 that
 non-­‐diffusible
 protein-­‐small
 molecule
 complexes
 are
 reversibly
 formed
 in
 
the
 protein
 compartment
 and
 that
 the
 rate
 of
 loss
 of
 small
 molecule
 from
 that
 compartment
 is
 
directly
  proportional
  to
  the
  concentration
  of
  unbound
  small
  molecule,
  provided
  that
  sink
 
conditions
 are
 maintained
 for
 the
 diffusing
 species,
 i.e.
 that
 back
 diffusion
 into
 the
 protein
 
compartment
 is
 insignificant.
 

 
Rapamycin
 encapsulation
 had
 an
 efficiency
 of
 70-­‐90%
 with
 FA
 and
 FSI,
 and
 ~160%
 with
 bivalent
 
FAF.
 Drug
 loaded
 FKBP-­‐ELPs
 were
 added
 to
 a
 dialysis
 cassette
 and
 dialyzed
 under
 sink
 conditions
 
(>5
 times
 the
 volume
 of
 buffer
 needed
 to
 saturate
 the
 rapamycin
 in
 cassette).
 By
 determining
 
total
 rapamycin
 concentration
 in
 the
 cassette
 at
 various
 time
 points
 of
 dialysis,
 %drug
 retained
 
(vs)
  time
  was
  plotted
  and
  was
  fit
  to
  a
  one-­‐phase
  exponential
  decay
  model
  by
  non-­‐linear
 
regression
 analysis.
 With
 a
 half
 life
 of
 1500
 hours,
 FAF
 reproducibly
 demonstrated
 a
 30-­‐fold
 
slower
 release
 (Figure
 12)
 compared
 to
 FA
 (release
 half
 life
 =
 46
 h).
 
 

 
As
 shown
 in
 figure
 12,
 the
 dissociation
 rate
 constant
 (k
off
)
 for
 FAF
 is
 30
 fold
 lower
 than
 FA.
 This
 
suggests
 that
 FAF
 might
 behave
 as
 a
 sustained
 release
 drug
 carrier
 in-­‐vivo
 and
 extend
 circulation
 
half
 life
 of
 rapamycin.
 On
 the
 other
 hand,
 dissociation
 constant
 (K
d
),
 which
 is
 a
 measure
 of
 affinity
 

 
34
 
and
 is
 defined
 as
 ratio
 of
 on-­‐rate
 (k
on
)
 and
 off-­‐rate
 (k
off
),
 is
 comparable
 for
 both
 FA-­‐Rapa
 and
 FAF-­‐
Rapa
 (Table
 3).
 Based
 on
 these
 results,
 we
 hypothesized
 that
 FA
 and
 FAF
 have
 equal
 affinity
 for
 
rapamycin,
 but
 different
 binding
 kinetics.
 To
 prove
 this
 hypothesis,
 we
 are
 currently
 using
 Surface
 
Plasmon
 Resonance
 (SPR)
 to
 calculate
 both
 on
 and
 off
 rates
 of
 binding.
 We
 expect
 to
 see
 
compensation
 in
 on
 and
 off
 rates
 such
 that
 K
d

 still
 remains
 the
 same
 for
 FA-­‐rapa
 and
 FAF-­‐rapa
 
binding.
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
Figure
 12:
 Differential
 release
 kinetics
 

 
Non-­‐invasive
 bio-­‐distribution
 of
 FKBP-­‐ELPs
 using
 near
 infrared
 imaging:
 
To
 evaluate
 circulation,
 clearance
 and
 bio-­‐distribution
 profile
 of
 FKBP-­‐ELPs,
 we
 labeled
 them
 with
 
near
 infrared
 dye
 and
 tracked
 in-­‐vivo
 non-­‐invasively
 using
 near
 infrared
 imaging.
 Near
 infrared
 
(700nm–
 900nm)
 probes
 provide
 the
 following
 advantages
 for
 optical
 imaging
 when
 compared
 
to
 probes
 that
 emit
 in
 visible
 region:
 
1)
 NIR
 light
 can
 penetrate
 deeper
 into
 tissue
 than
 light
 at
 visible
 wavelengths
 (Figure
 13),
 thus
 
enabling
 the
 assessment
 of
 information
 from
 deeper
 structures.
 

 

 
35
 
2)
 Less
 autofluorescence
 is
 present
 at
 the
 NIR
 compared
 to
 visible
 wavelengths,
 enabling
 higher
 
signal-­‐to-­‐background
 ratios.
 Whenever
 tissue
 absorbs
 light,
 there
 is
 a
 chance
 that
 fluorescent
 
light
  will
  be
  emitted.
  Figure
  14
  demonstrates
  the
  relationship
  of
  excitation
  and
  emission
 
wavelengths
 to
 tissue
 autofluorescence.
 Green
 autofluorescence
 of
 the
 skin
 and
 viscera,
 and
 
especially
 the
 gallbladder,
 small
 intestine
 and
 bladder,
 is
 very
 high
 when
 excited
 with
 blue
 light.
 
Autofluorescence
 of
 the
 gallbladder
 and
 bladder
 are
 greatly
 reduced
 using
 a
 ‘red’
 filter
 set
 (green
 
light
 excitation),
 but
 intestinal
 autofluorescence
 remains
 significant.
 Use
 of
 a
 NIR
 filter
 set
 
essentially
 eliminates
 autofluorescence.
 Hence,
 high
 tissue
 autofluorescence
 precludes
 the
 use
 
of
 visible
 light
 for
 most
 in
 vivo
 imaging
 applications,
 and
 NIR
 light
 solves
 this
 problem
 by
 reducing
 
fluorescence
 background.
 

 

 

 
FKBP-­‐ELPs
 were
 labeled
 with
 Cyanine-­‐5.5
 using
 NHS
 chemistry.
 With
 excitation
 maximum
 and
 
emission
 maximum
 at
 673nm
 and
 707nm
 respectively,
 and
 a
 high
 extinction
 coefficient
 of
 
209000
 M
-­‐1
cm
-­‐1
,
 cyanine-­‐5.5
 is
 a
 widely
 used
 NIR
 dye.
 Using
 NHS
 chemistry,
 we
 non-­‐specifically
 
labeled
 side
 chain
 amino
 and
 carboxy
 groups
 of
 FKBP-­‐ELPs
 with
 cy-­‐5.5.
 Following
 unreacted
 dye
 
removal,
 we
 assessed
 the
 purity
 of
 labeled
 conjugates
 using
 SDS-­‐PAGE
 (Figure
 15)
 and
 verified
 
that
 labeled
 protein
 contributed
 to
 >85%
 fluorescence.
 Labeling
 proteins/nanoparticles
 with
 
Figure
 13:
 Spectral
 attenuation
 of
 light
 transmitted
 
through
 the
 thoracic
 tissue
 of
 a
 mouse
 along
 the
 
dorsal–ventral
 axis.
 [ln(1/I
t
)]
 is
 relative
 spectral
 
attenuation,
 where
 I
 and
 I
t

 are
 the
 intensity
 of
 the
 
incident
 and
 transmitted
 light
 for
 0.8
 cm
 thickness
 
in
 a
 living
 mouse
 (in
 vivo,
 solid
 curve)
 and
 post-­‐
mortem
 (ex
 vivo,
 dashed
 curve).
 Attenuation
 drops
 
substantially
 at
 wavelengths
 longer
 than
 600
 nm,
 in
 
the
 red
 part
 of
 the
 spectrum,
 making
 this
 region
 
ideal
 for
 non-­‐invasive
 imaging.
 
Source:
 J.
 Biomed.
 Opt.
 13,
 0440081–0440089.
 

 
36
 
hydrophobic
 dyes
 can
 sometimes
 drastically
 alter
 their
 properties.
 Using
 dynamic
 light
 scattering,
 
we
 assessed
 if
 dye
 conjugation
 was
 impacting
 the
 size
 or
 stability
 of
 FKBP-­‐ELP
 particles.
 It
 was
 
observed
 that
 stability
 of
 dye
 labeled
 particles
 was
 a
 function
 of
 labeling
 efficiency.
 At
 37
 
o
C,
 cy-­‐
5.5
 labeled
 FA
 and
 FAF
 retained
 their
 hydrodynamic
 radii,
 but
 FSI
 formed
 stable
 25
 nm
 particles
 
only
 if
 labeling
 efficiency
 was
 <20%
 (Figure
 16),
 in
 other
 words,
 only
 when
 less
 than
 20%
 of
 FSI
 
molecules
  were
  labeled.
  When
  labeling
  efficiency
  was
  >20%,
  FSI
  aggregated
  to
  form
 
microparticles
 as
 soon
 as
 warmed
 to
 37
 
o
C
 (data
 not
 shown).
 
 

 

 
Figure
 14:
 (a)
 Physical
 location
 of
 organs
 in
 mouse
 (b)
 Green
 autofluorescence
 observed
 with
 a
 
blue
 excitation/green
 emission
 filter
 set
 (c)
 Reduced
 autofluorescence
 of
 gall
 bladder
 and
 
bladder
 using
 red
 emission
 filter,
 but
 GI
 tract
 signal
 is
 still
 strong
 (d)
 NIR
 filter
 set
 has
 no
 
autofluorescence
 Source:
 Current
 Opinion
 in
 Chemical
 Biology
 Volume
 7,
 Issue
 5,
 October
 
2003,
 Pages
 626–634
 

 

 
Figure
 15:
 SDS-­‐PAGE,
 followed
 by
 fluorescent
 imaging
 of
 FKBP-­‐ELPs
 (represented
 by
 FSI)
 

 
37
 

 
Mice
 bearing
 tumors
 of
 size
 50-­‐100
 mm
3

 were
 injected
 with
 450
 µM
 Cy5.5
 labeled
 FKBP-­‐ELP
 (80
 
µM
 cy5.5)
 subcutaneously.
 Whole
 body
 dorsal
 and
 ventral
 scans
 were
 acquired
 at
 0,1,2,4,8,24
 
and
 48
 h
 post
 injection
 (Figure
 17)
 using
 1
 sec
 exposure
 time
 and
 small
 binning.
 Excitation
 and
 
emission
 filter
 for
 Cyanine5.5
 were
 chosen
 to
 be
 640
 nm
 and
 700
 nm
 respectively.
 As
 seen
 from
 
Fig
 17,
 though
 our
 optical
 range
 was
 in
 near-­‐infrared
 region,
 we
 observed
 a
 very
 high
 background
 
signal
 and
 it
 was
 not
 easy
 to
 resolve
 true
 signal
 of
 Cy5.5
 FKBP-­‐ELPs
 from
 background
 noise.
 The
 
reason
 for
 high
 background
 was
 unrefined
 chlorophyll
 containing
 ingredients,
 particularly
 alfalfa
 
that
 is
 found
 in
 regular
 laboratory
 animal
 diets.
 Before
 optical
 imaging,
 animals
 need
 to
 be
 shifted
 
to
 a
 low
 fluorescence
 alfalfa
 free
 diet,
 but
 we
 failed
 to
 do
 this.
 Since
 animals
 were
 on
 regular
 diet
 
and
 chlorophyll
 fluoresces
 at
 680
 nm,
 we
 had
 strong
 background
 signals
 from
 GI
 tracts
 of
 animals
 
masking
 fluorescence
 from
 underlying
 organs,
 making
 data
 analysis
 difficult.
 
 

 
Nonetheless,
 we
 obtained
 reliable
 and
 very
 useful
 information
 from
 optical
 imaging
 of
 excised
 
organs
 after
 48
 hrs
 of
 injecting
 Cy5.5-­‐FKBP-­‐ELPs
 (Figure
 18).
 As
 expected,
 excised
 large
 and
 small
 
intestines
 in
 PBS
 group
 displayed
 high
 fluorescence,
 confirming
 the
 source
 of
 background
 noise
 
in
 full
 body
 scans.
 FKBP-­‐ELPs
 show
 promising
 tumor
 localization,
 with
 FA
 and
 FAF
 having
 a
 higher
 
tumor
 localization
 compared
 to
 FSI.
 This
 data
 is
 coherent
 with
 our
 in-­‐vivo
 tumor
 regression
 
studies
 where
 we
 observed
 better
 efficacy
 with
 rapamycin
 loaded
 FAF
 when
 compared
 to
 FSI.
 
Significant
 signal
 from
 liver
 and
 kidneys
 suggested
 these
 organs
 as
 primary
 routes
 of
 clearance,
 
a
 common
 observation
 with
 nanoparticles.
 This
 also
 raises
 the
 question
 of
 possible
 toxicity
 to
 
liver
 and
 kidneys
 when
 rapamycin
 is
 delivered
 using
 FKBP-­‐ELPs.
 Additional
 experiments
 need
 to
 
be
 carried
 out
 to
 answer
 this.
 

 
Figure
 16:
 Physical
 stability
 of
 
Cyanine5.5
 labeled
 FKBP-­‐ELPs
 
as
 measured
 by
 DLS.
 Data
 is
 plotted
 
as
 mean
 ±
 SD
 

 
38
 

 

 

 
Figure
 18:
 (A)
 Representative
 near
 infrared
 images
 of
 excised
 organs
 after
 48hrs
 (B)
 Average
 
radiant
 efficiency
 from
 excised
 organs
 in
 FA,
 FAF,
 FSI
 groups
 (n=4)
 
Figure
 17:
 Representative
 dorsal
 and
 ventral
 scans
 
 
of
 breast
 cancer
 xenograft
 bearing
 mice
 injected
 
with
 Cy5.5
 FKBP-­‐ELPs
 at
 4
 hrs
 and
 24
 hrs
 post
 
injection.
 Site
 of
 injection
 (subcutaneous)
 is
 
evident
 in
 dorsal
 scans
 as
 the
 brightest
 spot
 above
 
hind
 leg.
 

 
39
 
References
 

 
[1]
 American
 Cancer
 Institute:
 http://www.cancer.gov/about-­‐cancer/understanding/statistics
 
 
[2]
 A.F.
 El-­‐Kattan,
 C.S.
 Asbill,
 N.
 Kim,
 B.B.
 Michniak,
 Int.
 J.Pharm.
 215
 (2001)
 229–240
 
[3]
 L.
 Jain,
 E.R.
 Gardner,
 W.D.
 Figg,
 M.S.
 Chernick,
 H.H.
 Kong,
 Pharmacotherapy
 30
 (2010)
 52–56
 
[4]
 S.
 Hofer,
 K.
 Frei,
 H.P.
 Rutz,
 Cancer
 Biol.
 Ther.
 5
 (2006)
 483–484
 
[5]
 H.S.
 Friedman,
 O.M.
 Colvin,
 S.M.
 Ludeman,
 S.C.
 Schold
 Jr.,
 V.L.
 Boyd,
 L.H.
 Mulhbaier,
 D.D.
 
Bigner,
 Cancer
 Res.
 46
 (1986)
 2827–2833
 
[6]
 N.
 Suvannang,
 C.
 Nantasenamat,
 C.
 Isarankura-­‐Na-­‐Ayudhya,
 V.
 Prachayasittikul,
 Molecules
 
16
 (2011)
 3597–3617
 
[7]
 P.
 Paixão,
 L.F.
 Gouveia,
 J.A.G.
 Morais,
 Int.
 J.
 Pharm.
 429
 (2012)
 84–98
 
[8]
 Longo-­‐Sorbello
 GS,
 Bertino
 JR,
 Haematologica
 86:121-­‐27
 
[9]
 Borst
 P,
 Evers
 R,
 Kool
 M,
 J.
 Natl.
 Cancer
 Inst.
 92(2012)1295-­‐301
 
[10]
 Gottesman
 MM,
 Fojo
 T,
 Bates
 SE,
 Nat
 Rev
 Cancer.
 Jan
 2(1)
 2002:48-­‐58
 
 
[11]
 Speiser
 PP.
 Poorly
 soluble
 drugs:
 a
 challenge
 in
 drug
 delivery.
 In:
 Müller
 RH,
 Benita
 S,
 Böhm
 
B,
 editors.
 Emulsions
 and
 nanosuspensions
 for
 the
 formulation
 of
 poorly
 soluble
 drugs.
 
Medpharm
 Stuttgart:
 Scientific
 Publishers;
 1998.
 pp.
 15–28
 
[12]
 Merisko-­‐Liversidge
 E.
 Particles;
 April
 20–23,
 2002;
 Orlando,
 Florida,
 USA.
 2002
 
[13]
 Kim
 TY,
 Kim
 DW,
 Chung
 JY,
 Shin
 SG,
 Kim
 SC,
 Heo
 DS,
 Kim
 NK,
 Bang
 YJ,
 Clin
 Cancer
 Res.
 2004
 
Jun
 1;
 10(11):3708-­‐16.
 
[14]
 Carmeliet
 P,
 Jain
 RK
 Nature.
 2000
 Sep
 14;
 407(6801):249-­‐5
 
[15]
 Yuan
 F,
 Dellian
 M,
 Fukumura
 D,
 Leunig
 M,
 Berk
 DA,
 Torchilin
 VP,
 Jain
 RK,
 Cancer
 Res.
 1995
 
Sep
 1;
 55(17):3752-­‐6.
 
[16]
 Yuan
 F,
 Leunig
 M,
 Huang
 SK,
 Berk
 DA,
 Papahadjopoulos
 D,
 Jain
 RK,
 Cancer
 Res.
 1994
 Jul
 1;
 
54(13):3352-­‐6
 
[17]
 Bae
 Y,
 Jang
 WD,
 Nishiyama
 N,
 Fukushima
 S,
 Kataoka
 K.
 Mol
 Biosyst.
 2005
 Sep;1(3):242-­‐50
 
[18]
 Zhang
 W,
 et
 al.,
 Nanotechnology.
 2009;20:275101
 
[19]
 Heidel
 JD,
 Yu
 Z,
 Liu
 JY,
 Rele
 SM,
 Liang
 Y,
 Zeidan
 RK,
 Kornbrust
 DJ,
 Davis
 ME,
 Proc
 Natl
 Acad
 
Sci
 U
 S
 A.
 2007
 Apr
 3;
 104(14):5715-­‐21
 

 

 
40
 
[20]
 Wang
 X,
 Li
 J,
 Wang
 Y,
 Cho
 KJ,
 Kim
 G,
 Gjyrezi
 A,
 Koenig
 L,
 Giannakakou
 P,
 Shin
 HJ,
 Tighiouart
 
M,
 Nie
 S,
 Chen
 ZG,
 Shin
 DM,
 ACS
 Nano.
 2009
 Oct
 27;
 3(10):3165-­‐74
 
[21]
 JA
 MacKay,
 M
 Chen,
 JR
 McDaniel,
 W
 Liu,
 AJ
 Simnick,
 A
 Chilkoti,
 Nature
 materials
 8
 (12),
 
993-­‐999
 
[22]
 Sugano
 M,
 Egilmez
 NK,
 Yokota
 SJ,
 Chen
 FA,
 Harding
 J,
 Huang
 SK,
 Bankert
 RB,
 Cancer
 Res.
 
2000
 Dec
 15;
 60(24):6942-­‐9
 
[23]
 Sutton
 D,
 et
 al,
 Pharm.
 Res.
 2007;24:1029–1046
 
[24]
 Gradishar
 WJ,
 et
 al.,
 J.
 Clin.
 Oncol.2005;23:7794–7803
 
[25]
 Boddy
 AV,
 et
 al.,
 Clin.
 Cancer
 Res.2005;11:7834–7840
 
[26]
 Bhatt
 R,
 et
 al.,
 J.
 Med.
 Chem.
 2003;46:190–193
 
[27]
 Gref
 R.;
 et
 al,
 Colloids
 Surf.2000,
 18,
 301–313
 
[28]
 Nagayama
 S.;
 Ogawara
 K.;
 Fukuoka
 Y.;
 Higaki
 K.;
 Kimura
 T.,
 Int.
 J.
 Pharm.
 2007,
 342,
 215–
221
 
[29]
 K
 Matyjaszewski,
 J
 Spanswick,
 Materials
 Today,
 2005,
 8(3),
 26–33
 
[30]
 S.
 Kim,
 J.
 H.
 Kim,
 O.
 Jeon,
 I.
 C.
 Kwon
 and
 K.
 Park,
 Eur.
 J.
 Pharm.
 Biopharm.,
 2009,
 71,
 420
 
[31]
 M.
 Haider,
 Z.
 Megeed
 and
 H.
 Ghandehari,
 J.
 Controlled
 Release,
 2004,
 95,
 1
 
[32]
 D.
 W.
 Urry,
 K.
 D.
 Urry,
 W.
 Szaflarski
 and
 M.
 Nowicki,
 Adv.
 Drug
 Delivery
 Rev.,
 2010,
 62,
 
1404
 
[33]
 D.
 W.
 Urry,
 What
 Sustains
 Life?
 Consilient
 Mechanisms
 for
 Protein-­‐
 based
 Machines
 and
 
Materials,
 Springer,
 Birkhauser,
 LLC,
 2006.
 
 
[34]
 M.
 R.
 Banki,
 L.
 Feng
 and
 D.
 W.
 Wood,
 Nat.
 Methods,
 2005,
 2,
 659
 
[35]
 D.
 W.
 Urry,
 R.
 D.
 Harris
 and
 K.
 U.
 Prasad,
 J.
 Am.
 Chem.
 Soc.,
 1988,
 110,
 3303
 
[36]
 D.
 K.
 Chang,
 C.
 M.
 Venkatachalam,
 K.
 U.
 Prasad
 and
 D.
 W.
 Urry,
 J.
 Biomol.
 Struct.
 
Dyn.,1989,
 6,
 851
 
 
[37]
 J.
 A.
 MacKay,
 M.
 Chen,
 J.
 R.
 McDaniel,
 W.
 Liu,
 A.
 J.
 Simnick
 and
 A.
 Chilkoti,
 Nat.
 Mater.,
 
2009,
 8,
 993
 
[38]
 W.
 Liu,
 M.
 R.
 Dreher,
 D.
 Y.
 Furgeson,
 K.
 V.
 Peixoto,
 H.
 Yuan,
 M.
 R.
 Zalutsky
 and
 A.
 Chilkoti,
 J.
 
Controlled
 Release,
 2006,
 116,
 170
 

 
41
 
[39]
 Yu
 K1,
 Toral-­‐Barza
 L,
 Discafani
 C,
 Zhang
 WG,
 Skotnicki
 J,
 Frost
 P,
 Gibbons
 JJ.
 Endocr
 Relat
 
Cancer.
 2001
 Sep;8(3):249-­‐58
 
[40]
 Seeliger
 H1,
 Guba
 M,
 Koehl
 GE,
 Doenecke
 A,
 Steinbauer
 M,
 Bruns
 CJ,
 Wagner
 C,
 Frank
 E,
 
Jauch
 KW,
 Geissler
 EK,
 Clin
 Cancer
 Res.
 2004
 Mar
 1;10(5):1843-­‐52
 
[41]
 Luan
 FL1,
 Ding
 R,
 Sharma
 VK,
 Chon
 WJ,
 Lagman
 M,
 Suthanthiran
 M.
 Kidney
 Int.
 2003
 
Mar;63(3):917-­‐26
 
[42]
 Bierer,
 B.
 E.,
 Mattila,
 P.
 S.,
 Standaert,
 R.
 F.,
 Herzenberg,
 L.
 A.,
 Burakoff,
 S.
 J.,
 Crabtree,
 G.,
 
Schreiber,
 S.
 L,
 1990,
 Proc
 Natl
 Acad
 Sci
 U
 S
 A,
 87,
 9231-­‐5.
 
[43]
 Bjornsti,
 M.
 A.
 &
 Houghton,
 P.
 J.
 2004,
 Nat
 Rev
 Cancer,
 4,
 335-­‐48.
 
[44]
 Buck,
 Marcia
 L.,
 Pediatric
 Pharmacotherapy
 12
 (2),
 2006
 
[45]
 Simamora,
 P;
 Alvarez,
 JM;
 Yalkowsky,
 SH,
 International
 journal
 of
 pharmaceutics
 213
 (1-­‐2):
 
25–9
 
[46]
 Chhajed,
 P.
 N.,
 Dickenmann,
 M.,
 Bubendorf,
 L.,
 Mayr,
 M.,
 Steiger,
 J.,
 Tamm,
 M.,Respiration,
 
73,
 367-­‐74,
 2006
 
[47]
 Yatscoff,
 R.
 W.,
 Wang,
 P.,
 Chan,
 K.,
 Hicks,
 D.
 &
 Zimmermann,
 J.
 1995,
 Ther
 Drug
 Monit,
 17,
 
666-­‐71
 
[48]
 Temsirolimus:
 CCI
 779,
 CCI-­‐779,
 cell
 cycle
 inhibitor-­‐779.
 Drugs
 R
 D.
 2004;5:363–367.
 
[49]
 Raymond
 E,
 Alexandre
 J,
 Faivre
 S,
 Vera
 K,
 Materman
 E,
 Boni
 J,
 Leister
 C,
 Korth-­‐Bradley
 J,
 
Hanauske
 A,
 Armand
 JP,
 J
 Clin
 Oncol.
 2004
 Jun
 15;
 22(12):2336-­‐47
 
[50]
 Hidalgo
 M,
 Buckner
 JC,
 Erlichman
 C,
 Pollack
 MS,
 Boni
 JP,
 Dukart
 G,
 Marshall
 B,
 Speicher
 L,
 
Moore
 L,
 Rowinsky
 EK,
 Clin
 Cancer
 Res.
 2006
 Oct
 1;
 12(19):5755-­‐63
 
[51]
 Raymond
 E,
 Alexandre
 J,
 Faivre
 S,
 Vera
 K,
 Materman
 E,
 Boni
 J,
 Leister
 C,
 Korth-­‐Bradley
 J,
 
Hanauske
 A,
 Armand
 JP,
 J
 Clin
 Oncol.
 2004
 Jun
 15;
 22(12):2336-­‐47
 
[52]
 Hak
 Soo
 Choi,
 Wenhao
 Liu,
 Preeti
 Misra,
 Eiichi
 Tanaka,
 John
 P.
 Zimmer,
 Binil
 Itty
 
Ipe,
 Moungi
 G.
 Bawendi,
 John
 V.
 Frangioni,
 Nat
 Biotechnol.
 2007
 Oct;
 25(10):
 1165–1170. 
Asset Metadata
Creator Santosh, Peddi (author) 
Core Title Effects of particle architecture on in-vivo pharmacokinetics and bio-distribution of therapeutic nanostructures 
Contributor Electronically uploaded by the author (provenance) 
School School of Pharmacy 
Degree Master of Science 
Degree Program Pharmaceutical Sciences 
Publication Date 07/28/2016 
Defense Date 06/18/2016 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag drug delivery,elastin-like polypeptides,EPR effect,FKBP,fusion protein,nanoparticle,OAI-PMH Harvest,rapamycin 
Format application/pdf (imt) 
Language English
Advisor Andrew, Mackay (committee chair) 
Creator Email santosh.peddi1992@gmail.com,speddi@usc.edu 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c40-284676 
Unique identifier UC11279401 
Identifier etd-SantoshPed-4659.pdf (filename),usctheses-c40-284676 (legacy record id) 
Legacy Identifier etd-SantoshPed-4659-0.pdf 
Dmrecord 284676 
Document Type Thesis 
Format application/pdf (imt) 
Rights Santosh, Peddi 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law.  Electronic access is being provided by the USC Libraries in agreement with the a... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Abstract (if available)
Abstract Small molecule chemotherapeutics, although routinely used in the clinic, suffer from poor drug-like properties, including low water solubility, rapid plasma clearance, and non-specific bio-distribution causing toxic side effects. Protein polymers of appropriate size can address these issues by solubilizing hydrophobic drugs, extending their mean plasma residence time by preventing renal filtration and promoting tumor accumulation through enhanced permeation and retention(EPR) effect, thereby reducing drug toxicity. Moreover, the delivery vehicle, being proteinaceous in nature, is bio-degradable, non-toxic and largely non-immunogenic. ❧ The clinical utility of rapamycin, a highly potent anti-cancer drug is limited by low solubility, low bioavailablity and rapid systemic clearance. To address this, we synthesized FKBP-elastin like polypeptide(ELP) fusion proteins to utilize the tight binding of rapamycin to FKBP for effective nanoparticle-based delivery. Derived from human tropoelastin, ELPs are a class of thermo-responsive protein polymers with sequence of (VPGXG)n, where X is the guest residue and n is number of repetitive units. Below a characteristic transition temperature (dictated by X and n), ELPs and ELP fusion proteins stay in solution and above the transition temperature, they self assemble nanostructures, typically micelles. To understand how polymer architecture affects carrier pharmacokinetics(PK) and bio-distribution, we recombinantly expressed a FKBP-ELP fusion library consisting of FKBP-(VPGAG)₁₉₂ (FA), FKBP-(VPGAG)₁₉₂ -FKBP (FAF), FKBP-(VPGSG)₄₈(VPGIG)₄₈ (FSI). At physiological temperature, FA and FAF are soluble monomers, while FSI phase separates into 25 nm spherical micelles decorated with FKBP on the corona. For non-invasive PK and bio-distribution evaluation, we labeled these drug carriers with IR800 without any effect on their physico-chemical properties and physical stability. In a breast cancer xenograft mouse model, we seek to understand how nanoparticle architecture and route of administration (intravenous vs. subcutaneous) affect their circulation, clearance and bio-distribution profile. 
Tags
drug delivery
elastin-like polypeptides
EPR effect
FKBP
fusion protein
nanoparticle
rapamycin
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button