Close
The page header's logo
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Biochemical mechanism of TopBP1 recruitment to sites of DNA damage
(USC Thesis Other) 

Biochemical mechanism of TopBP1 recruitment to sites of DNA damage

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Copy asset link
Request this asset
Transcript (if available)
Content






Biochemical mechanism of TopBP1  
recruitment to sites of DNA damage







by  






Julyana Acevedo













A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY
(MOLECULAR BIOLOGY)
December 2015
 

 
 
ii
 
Copyright
 Page
 

   
 

 
 
iii
 
Dedication
 


I dedicate this work to my family.  

To my parents, Mauricio and Idalia Acevedo.

To Monica, Karla, Mauricio, and Alex.  
 

 
 
iv
 
Acknowledgements
 

 

 

 
I
 would
 like
 to
 acknowledge
 and
 thank
 the
 many
 people
 who
 helped
 me
 during
 the
 
completion
 of
 my
 work
 at
 USC.
 
 I
 would
 like
 to
 thank
 my
 thesis
 advisor
 Dr.
 Matt
 Michael
 for
 the
 
many
 helpful
 comments
 and
 suggestions
 on
 my
 project.
 He
 was
 always
 very
 willing
 to
 take
 the
 
time
 not
 only
 to
 carefully
 look
 at
 my
 data
 and
 provide
 thoughtful
 feedback,
 but
 also
 to
 provide
 
useful
 advice
 on
 everything
 from
 presentations
 to
 how
 to
 work
 with
 frogs.
 
 I
 would
 also
 like
 to
 
thank
 all
 members
 of
 my
 committee,
 Drs.
 Oscar
 Aparicio,
 Susan
 Forsburg,
 Judd
 Rice,
 Lin
 Chen,
 
and
 Sean
 Curran,
 for
 taking
 the
 time
 to
 offer
 their
 advice
 and
 support
 throughout
 all
 these
 years.
 
Dr.
 Aparicio
 and
 Dr.
 Forsburg
 offered
 me
 their
 kindness
 and
 encouragement
 since
 we
 first
 met,
 
especially
 when
 I
 first
 joined
 the
 program
 and
 needed
 it
 the
 most.
 They
 allowed
 me
 to
 do
 a
 
rotation
 in
 their
 labs
 where
 I
 had
 the
 opportunity
 to
 meet
 really
 wonderful
 people
 and
 learn
 a
 
lot,
 and
 have
 continued
 over
 the
 years,
 to
 provide
 helpful
 suggestions
 on
 my
 project
 during
 joint
 
lab
 meetings.
 Likewise,
 I
 greatly
 appreciate
 having
 had
 advices
 from
 Dr.
 Rice
 and
 Dr.
 Chen,
 who
 
always
 took
 the
 time
 to
 offer
 their
 insight
 and
 perspectives
 on
 my
 work,
 which
 were
 important
 
in
 making
 sense
 of
 some
 confusing
 aspects
 of
 it.
 
 I
 am
 greatly
 indebted
 to
 Dr.
 Sean
 Curran
 for
 not
 
only
 becoming
 part
 of
 my
 dissertation
 committee
 on
 very
 short
 notice,
 but
 also
 for
 providing
 
useful
 comments
 and
 suggestions
 on
 how
 to
 better
 present
 my
 work.
 
 I
 would
 also
 like
 to
 thank
 
all
 past
 and
 present
 Michael
 lab
 members,
 especially:
 Chris
 Murphy,
 Hovik
 Gasparyan,
 Melina
 
Butuci,
 Frances
 Tran,
 Matthew
 Wong,
 and
 Ashley
 Williams
 not
 only
 for
 their
 helpful
 comments
 
and
 suggestions,
 but
 also
 for
 being
 great
 people
 to
 work
 with
 and
 good
 friends.
 
 I
 would
 also
 like
 
to
 thank
 Anna
 Skylar,
 Alice
 Landolph,
 and
 Ji-­‐ping
 Yuan
 for
 helping
 me
 with
 many
 things
 and
 also
 
the
 many
 other
 friends
 I
 made
 while
 at
 USC.
 
 Lastly,
 but
 not
 least,
 I
 would
 like
 to
 thank
 my
 whole
 
family
 who
 have
 always
 supported
 and
 encouraged
 me
 in
 everything
 throughout
 my
 life.
 
 My
 
parents,
  especially,
  have
  been
  my
  example
  in
  hard
  work,
  dedication,
  and
  love
  that
  have
 
motivated
 me
 to
 pursue
 whatever
 I
 wanted
 in
 life
 and
 I
 am
 very
 thankful
 to
 them.
 
 
 
 
 

 
 
v
 
List
 of
 Figures
 


Chapter 1

Figure
 1.
 Diagram
 of
 the
 various
 roles
 of
 TopP1
 inside
 the
 cell
 .......................................................
 9
 

 

 

 
Chapter
 3
 

 
Figure
 2.
 TopBP1
 binds
 ssDNA
 in
 an
 RPA-­‐
 and
 length-­‐dependent
 manner.
 ............................
 33
 

 
Figure
 3.
 Deletion
 analysis
 of
 TopBP1
 binding
 to
 RPA-­‐ssDNA.
 .....................................................
 35
 

 
Figure
 4.
 PTIP
 BRCT2
 binds
 ssDNA
 in
 an
 RPA-­‐
 and
 length-­‐dependent
 manner
 ....................
 37
 

 
Figure
 5.
 Functional
 characterization
 of
 the
 TopBP1
 BRCT2
 interaction
 
 
with
 RPA-­‐ssDNA
 .................................................................................................................................................
 38
 

 
Figure
 6.
 ATR
 activity
 limits
 TopBP1
 chromatin
 recruitment
 .......................................................
 40
 

 
Figure
 7.
 Revised
 model
 for
 ATR
 activation
 during
 checkpoint
 response
 ................................
 41
 

 

 

 
Chapter
 4
 

 
Figure
 8.
 TopBP1
 4/5WR
 mutant
 leads
 to
 an
 enhanced
 checkpoint
 response
 
 
that
 cannot
 be
 explained
 by
 an
 increase
 in
 DNA
 replication.
 .........................................................
 57
 

 
Figure
 9.
 TopBP1
 BRCT4/5
 WR
 mutant
 does
 not
 enhance
 checkpoint
 
 
complex
 assembly.
 .............................................................................................................................................
 58
 

 
Figure
 10.
 TopBP1
 BRCT4/5
 WR
 mutant
 does
 not
 respond
 to
 ATR
 activity
 
 
as
 the
 wild
 type
 and
 shows
 no
 enhanced
 recruitment
 to
 sites
 of
 damage.
 ..............................
 60
 

 
Figure
 11.
 TopBP1
 BRCT4/5
 WR
 mutant’s
 ability
 to
 activate
 the
 
 
checkpoint
 is
 not
 dependent
 on
 damage
 or
 DNA
 .................................................................................
 61
 

 
Figure
 12.
 TopBP1
 BRCT4/5
 WR
 mutant
 ability
 to
 activate
 the
 checkpoint
 
 
is
 enhanced
 by
 the
 addition
 of
 a
 phosphatase
 inhibitor
 ...................................................................
 62
 

 
Figure
 13.
 TopBP1
 phosphorylation
 status
 in
 response
 to
 damage
 is
 
 
different
 in
 TopBP1
 mutants..
 ......................................................................................................................
 63
 

 
Figure
 14.
 TopBP1
 BRCT4/5
 WR
 shows
 possible
 enhanced
 oligomerization.
 .......................
 63
 

   
 

 
 
vi
 
Table
 of
 Contents
 
Title
 Page
 .....................................................................................................................................
 i
 
Copyright
 Page
 ..........................................................................................................................
 ii
 
Dedication
 ................................................................................................................................
 iii
 
Acknowledgements
 ................................................................................................................
 iv
 
List
 of
 Figures
 ............................................................................................................................
 v
 
Abstract
 of
 the
 Dissertation
 ...............................................................................................
 vii
 

 
Chapter
 1:
 Introduction
 ...................................................................................................................
 1
 
1.1
  DNA
 Replication
 ...................................................................................................................................
 2
 
1.2
  Checkpoint
 Response
 .........................................................................................................................
 3
 
1.3
  ATR
 signaling
 .........................................................................................................................................
 4
 
1.4
  Essential
 role
 of
 TopBP1
 for
 both
 DNA
 replication
 and
 checkpoint
 
 
establishment
 in
 response
 to
 DNA
 damage
 .........................................................................................
 5
 

 
 
 
 
 
 
 
 
 1.5
 
 
 
 
 Overview
 of
 the
 projects
 presented
 in
 this
 dissertation……………………………………..7
 
Chapter
 2:
 Materials
 and
 Methods
 ..................................................................................
 10
 

 
 
 
 
 
 
 
 
 
 Plasmids
 ...........................................................................................................................................................
 11
 
Xenopus
 egg
 extracts
 and
 sperm
 chromatin
 isolation
 .................................................................
 12
 
Expression
 vectors
 and
 IVT
 protein
 production
 .............................................................................
 12
 
Recombinant
 proteins
 ................................................................................................................................
 12
 
Replication
 assays
 ........................................................................................................................................
 13
 
ssDNA
 binding
 assays
 .................................................................................................................................
 13
 
GST
 pull-­‐down
 assays
 .................................................................................................................................
 14
 
Immunodepletion
 and
 antibodies
 .........................................................................................................
 14
 
Chapter
 3:
 Direct
 binding
 to
 RPA-­‐coated
 ssDNA
 allows
 recruitment
 
 
of
 the
 checkpoint
 activator
 TopBP1
 to
 sites
 of
 DNA
 damage
 .................................
 16
 
3.1
 Introduction
 ............................................................................................................................................
 18
 
3.2
 Results
 ........................................................................................................................................................
 23
 
TopBP1
 binds
 ssDNA
 in
 a
 length-­‐
 and
 RPA-­‐dependent
 manner
 ..........................................................
 23
 
TopBP1
 uses
 its
 BRCT2
 domain
 to
 bind
 RPA-­‐ssDNA
 ................................................................................
 25
 
TopBP1
 BRCT2
 W265R
 fails
 to
 accumulate
 on
 DNA
 DSB-­‐containing
 chromatin
 
 
and
 fails
 to
 activate
 ATR
 during
 a
 DSB
 response
 ........................................................................................
 27
 
ATR
 regulates
 TopBP1
 association
 with
 chromatin
 ..................................................................................
 29
 
3.3
 Discussion
 ................................................................................................................................................
 30
 
Chapter
 4:
 Analysis
 of
 TopBP1
 structure
 regulation
 during
 checkpoint
 
signaling
 ..................................................................................................................................
 42
 
4.1
 Introduction
 ............................................................................................................................................
 44
 
4.2
 Results
 ........................................................................................................................................................
 47
 
A
 TopBP1
 4/5WR
 mutant
 leads
 to
 increased
 checkpoint
 signaling
 ...................................................
 47
 
BRCT4/5
 WR
 does
 not
 hyper-­‐accumulate
 on
 chromatin
 in
 the
 absence
 of
 ATR
 
 
activity
 and
 can
 activate
 ATR
 in
 the
 absence
 of
 DNA
 damage
 ...............................................................
 49
 
The
 4/5
 WR
 mutant
 is
 able
 activate
 ATR
 in
 the
 absence
 of
 DNA
 .........................................................
 50
 
4.3
 Discussion
 ................................................................................................................................................
 54
 
Bibliography
 ...........................................................................................................................
 64
 

 
 
vii
 

 
Abstract
 of
 the
 Dissertation
 

 
During
 a
 replication
 stress
 response
 or
 after
 double
 strand
 break
 resection,
 
the
 ATR
 protein
 kinase
 is
 activated
 to
 allow
 a
 delay
 in
 cell
 cycle
 progression,
 a
 block
 
to
 further
 origin
 firing,
 and
 stabilization
 of
 the
 stalled
 fork.
 
 ATR
 is
 recruited
 to
 
stalled
 forks
 via
 an
 interaction
 between
 its
 binding
 partner
 ATRIP
 and
 RPA-­‐coated
 
single-­‐stranded
  DNA
  (ssDNA).
   
  However,
  binding
  of
  ATR-­‐ATRIP
  to
  RPA-­‐coated
 
ssDNA
 is
 not
 sufficient
 for
 ATR
 activation
 as
 both
 the
 9-­‐1-­‐1
 clamp
 protein
 and
 the
 
checkpoint
 activator
 TopBP1
 must
 also
 be
 recruited
 so
 that
 TopBP1
 may
 activate
 
ATR.
 
 The
 biochemical
 mechanism
 for
 assembly
 of
 the
 checkpoint-­‐signaling
 complex
 
has
 been
 an
 important
 unanswered
 question
 in
 the
 cell
 cycle
 field
 for
 many
 years.
 
 
 
Previous
  work
  from
  our
  laboratory,
  and
  other
  groups,
  has
  shown
  that
 
ATR/ATRIP
 and
 TopBP1/9-­‐1-­‐1
 are
 recruited
 independently
 to
 stalled
 forks,
 and
 
then
 come
 together
 on
 the
 DNA
 to
 form
 an
 active
 checkpoint-­‐signaling
 complex.
 
 
Furthermore,
 we
 have
 previously
 shown
 that
 TopBP1
 is
 required
 for
 loading
 of
 the
 
9-­‐1-­‐1
 clamp,
 however
 the
 means
 by
 which
 TopBP1
 senses
 the
 stalled
 fork
 to
 allow
 
checkpoint
 complex
 assembly
 was
 not
 previously
 known.
 
 Our
 data
 shows
 that
 
direct
 interaction
 between
 TopBP1
 BRCT
 repeat
 2
 and
 RPA-­‐coated
 ssDNA
 is
 the
 
mechanism
  for
  TopBP1
  recruitment.
  Importantly,
  we
  determined
  that
  direct
 
interaction
  with
  RPA-­‐coated
  ssDNA
  is
  a
  general
  feature
  of
  a
  subclass
  of
  BRCT
 
domains
 from
 other
 proteins,
 such
 as
 PTIP.
 Furthermore,
 we
 find
 that
 once
 TopBP1
 
has
  promoted
  initial
  ATR
  activation,
  further
  chromatin
  loading
  of
  TopBP1
  to
 
damaged
 sites
 is
 prevented
 by
 a
 negative
 feedback
 loop
 of
 ATR
 activity.
 
 

 
 
viii
 

 Lastly,
 we’ve
 also
 identified
 and
 studied
 a
 point
 mutant,
 BRCT4/5
 WR,
 that
 
seems
 to
 have
 a
 different
 structure
 to
 the
 wild-­‐type
 protein
 and
 strongly
 enhances
 
the
 checkpoint
 in
 the
 absence
 of
 DNA
 damage
 or
 even
 DNA.
 
 This
 is
 possibly
 due
 to
 a
 
greater
 accessibility
 of
 its
 AAD
 to
 ATR,
 but
 further
 work
 is
 needed
 to
 confirm
 this
 or
 
any
  other
  possibility.
   
  Given
  the
  fact
  that
  this
  mutant
  strongly
  enhances
  the
 
checkpoint,
 it
 might
 in
 the
 future
 prove
 useful
 in
 allowing
 us
 to
 gain
 a
 clearer
 
understanding
  of
  the
  changes
  TopBP1
  normally
  undergoes
  in
  the
  process
  of
 
checkpoint
 activation
 and
 might
 be
 important
 in
 further
 describing
 the
 order
 in
 
sequence
 of
 events
 that
 lead
 to
 checkpoint
 activation.
 

 

   
 

 
  1
 
Chapter
 1
 
Introduction
 

   
 

 
  2
 
1.0
 
  Introduction
 
 

 
Accurate
 transmission
 of
 genetic
 information
 relies
 on
 a
 cell’s
 ability
 to
 respond
 
to
 and
 properly
 repair
 damage
 to
 its
 DNA.
 What
 a
 cell
 does
 in
 response
 to
 this
 
damage
 can
 have
 major
 consequences
 not
 only
 to
 the
 survival
 of
 that
 particular
 cell
 
and
 its
 immediate
 progeny
 but
 when
 part
 of
 multicellular
 organism,
 to
 the
 organism
 
as
 a
 whole.
 Accumulated
 DNA
 mutations
 that
 result
 from
 DNA
 damage
 can
 affect
 
genomic
 integrity,
 which
 can
 lead
 to
 cancer.
 
 DNA
 damage
 can
 be
 caused
 by
 any
 
number
 of
 environmental
 factors
 or
 may
 occur
 spontaneously;
 this
 damage
 may
 
result
 from
 replication
 stress,
 cellular
 metabolism,
 exposure
 to
 UV
 light
 or
 ionizing
 
radiation,
 or
 harmful
 chemicals.
 In
 order
 for
 a
 cell
 to
 properly
 respond
 to
 assaults
 to
 
its
 DNA,
 it
 must
 signal
 to
 alert
 and
 then
 tightly
 coordinate
 an
 intricate
 series
 of
 
events
  that
  collectively
  are
  termed
  a
  checkpoint
  response.
  Depending
  on
  the
 
severity
 of
 the
 damage
 the
 outcome
 to
 the
 fate
 of
 the
 cell
 will
 result
 in
 a
 launch
 of
 a
 
checkpoint
 response
 that
 will
 organize
 and
 promote
 repair
 to
 the
 site
 of
 damage,
 or
 
lead
 to
 apoptosis.
 

 
1.1
  DNA
 Replication
 

 

  Duplication
 of
 the
 genome
 takes
 place
 during
 the
 synthesis
 phase
 (or
 S
 phase)
 
of
 the
 cell
 cycle.
 
 Before
 reaching
 this
 point,
 most
 cells
 undergo
 growth
 and
 ensure
 
conditions
 are
 favorable
 for
 division
 as
 they
 prepare
 to
 duplicate
 their
 DNA
 (G1
 
phase).
 
 At
 this
 point,
 the
 cell
 establishes
 origins
 with
 the
 vast
 majority
 of
 initiation
 
occurring
 non-­‐randomly
 at
 genetically/epigenetically
 defined
 origins
 by
 loading
 of
 

 
  3
 
origin
 recognition
 complex
 (ORC)
 and
 making
 them
 into
 pre-­‐replication
 complexes
 
(pre-­‐RCs).
 Pre-­‐RC
 formation
 requires
 the
 recruitment
 and
 loading
 of
 cell
 division
 
cycle
 6
 (cdc6),
 chromatin
 licensing
 and
 DNA
 replication
 factor
 1
 (cdt1),
 and
 the
 
mini-­‐chromosome
 maintenance
 (mcm2-­‐7)
 complex
 to
 sites
 bound
 by
 ORC.
 
 During
 S
 
phase
 a
 select
 number
 of
 the
 previously
 established
 pre-­‐RCs
 are
 converted
 into
 pre-­‐
initiation
 complexes
 (pre-­‐IC’s)
 and
 origins
 fire
 to
 begin
 the
 replication
 process.
 In
 
Xenopus
 as
 well
 as
 yeast,
 in
 order
 for
 pre-­‐RC’s
 to
 be
 turned
 into
 pre-­‐IC’s,
 both
 cdc7-­‐
drf1
 and
 cdk2-­‐cyclin
 E
 activities
 are
 necessary
 for
 the
 activation
 of
 the
 replicative
 
helicase
 (Pospiech,
 2010;
 Boos,
 2011).
 The
 activity
 of
 cdk2-­‐cyclin
 E
 leads
 to
 the
 
recruitment
  of
  cell
  division
  cycle
  45
  (cdc45).
  Specifically,
  cdk2-­‐
  mediated
 
phosphorylation
  of
  Treslin
  (TopBP1-­‐interacting,
  replication-­‐stimulating
  protein)
 
allows
 it
 to
 bind
 to
 TopBP1
 (topoisomerase-­‐2
 binding
 protein
 1)
 on
 DNA,
 this
 then
 
allows
 it
 to
 deposit
 cdc45
 onto
 pre-­‐ICs
 (Van
 Hatten,
 2002;
 Kumagai,
 2010).
 After
 the
 
helicase,
 or
 cdc45-­‐MCM10-­‐GINS
 (CMG
 complex),
 unwinds
 DNA,
 DNA
 replication
 
occurs
 (Im,
 2009).
 
1.2
  Checkpoint
 Response
 

 

  The
 main
 players
 in
 a
 checkpoint
 response
 are
 different
 depending
 on
 the
 type
 
of
 DNA
 damage.
 
 Ataxia
 Telangiectasia
 Mutated
 (ATM)
 and
 Ataxia
 Telangiectasia
 and
 
Rad3-­‐Related
 (ATR)
 are
 two
 highly
 conserved
 kinases
 between
 organisms
 that
 are
 
part
 of
 the
 phosphatidylinositol
 3-­‐kinase-­‐related
 kinases
 (PIKKs)
 protein
 family.
 
PIKKs,
 which
 are
 
 
 serine/threonine-­‐protein
 kinases,
 are
 related
 to
 phosphatidylin-­‐
ositol
 3-­‐kinases
 (PI3Ks)
 that
 are
 also
 key
 components
 of
 signaling
 pathways
 in
 

 
  4
 
response
 to
 different
 stimuli.
 
 While
 ATM
 is
 almost
 exclusively
 activated
 by
 DNA
 
double
 strand
 breaks
 (DSB),
 ATR
 is
 mainly
 activated
 by
 long
 stretches
 of
 ssDNA,
 
most
 commonly
 present
 during
 S
 phase
 and
 also
 by
 resected
 double-­‐strand
 breaks
 
(Cimprich,
 2008).
 
 
 
 

 
1.3
  ATR
 signaling
 

 
Polymerase
 stalling
 during
 DNA
 replication
 can
 occur
 for
 any
 number
 of
 
reasons,
 such
 as:
 DNA
 damage,
 difficult
 to
 replicate
 sequences
 like
 trinucleotide
 
repeats,
 or
 by
 activated
 oncogenes
 (Cortez,
 2001;
 Batkova,
 2005;
 Zeman,
 2014;
 
Hills,
 2014).
 Interference
 of
 replication
 fork
 progression
 due
 to
 polymerase
 stalling
 
can
  lead
  to
  polymerase
  and
  helicase
  uncoupling,
  activating
  a
  replication
  stress
 
response
 (Burrows,
 2005).
 Replication
 stress
 activates
 many
 pathways
 with
 the
 
major
 responder
 being
 ATR.
 Activation
 of
 ATR
 allows
 it
 to
 activate
 its
 main
 effector
 
protein
  Chk1.
  Chk1
  activation
  will
  then
  arrest
  the
  cell
  cycle,
  prevent
  firing
  of
 
replication
 origins
 near
 damaged
 sites,
 and
 recruit
 proteins
 to
 the
 damaged
 site
 for
 
repair.
 
 
 

   
 

  Polymerase
 and
 helicase
 uncoupling
 results
 in
 generation
 of
 long
 stretches
 of
 
ssDNA
 that
 then
 lead
 to
 RPA
 coating
 of
 the
 DNA
 (Byun,
 2005).
 When
 parts
 of
 
chromatin
  are
  unwound
  to
  reveal
  DNA
  during
  replication
  or
  damage,
  RPA
 
immediately
 coats
 it
 to
 help
 stabilize
 it
 and
 prevent
 breakage.
 Each
 RPA
 hetero-­‐
trimeric
 protein
 complex
 is
 composed
 of
 a
 70kD,
 32kD,
 14kd
 subunit
 that
 when
 

 
  5
 
bound
 to
 DNA,
 bind
 and
 protect
 around
 30
 nucleotides
 (Fan,
 2012).
 RPA-­‐ssDNA
 is
 
the
  structure
  recognized
  to
  allow
  the
  checkpoint
  complex
  to
  form,
  ultimately
 
activating
 ATR
 and
 leading
 to
 Chk1
 phosphorylation
 (Ball,
 2005).
 

   
 

  ATR
 is
 brought
 to
 RPA-­‐coated
 ssDNA
 by
 its
 binding
 partner
 ATRIP,
 which
 
serves
 as
 a
 bridge
 between
 the
 two
 (Ball,
 2005;
 Zou,
 2003;
 Choi,
 2007;
 Choi,
 2010).
 
 
Yet,
 ATR/ATRIP
 localization
 to
 sites
 of
 damage
 is
 not
 sufficient
 to
 promote
 its
 kinase
 
activity
 (Kumagai,
 2006a&b).
 
 TopBP1
 is
 a
 multi-­‐BRCT
 domain
 protein
 that
 contains
 
an
 essential
 ATR
 activation
 domain
 (Kumagai,
 2006).
 TopBP1
 recruits
 pol
 alpha
 and
 
911,
 takes
 them
 to
 the
 site
 of
 damage,
 where
 pol
 alpha
 makes
 a
 primer
 that
 allows
 
Rad17
 to
 load
 911
 onto
 the
 5’
 junction
 and
 mediates
 assembly
 of
 the
 checkpoint
 
(Yan,
 2009).
 TopBP1
 associates
 with
 the
 911
 clamp,
 which
 leads
 to
 the
 activation
 of
 
ATR
 (for
 fuller
 details
 of
 ATR
 activation,
 refer
 to
 section
 3.1).
 
 

 
1.4
  Essential
  role
  of
  TopBP1
  for
  both
  DNA
  replication
  and
  checkpoint
 
establishment
 in
 response
 to
 DNA
 damage
 

 

  TopBP1
 is
 an
 essential
 protein
 that
 has
 major
 roles
 in
 various
 processes
 inside
 
a
 cell
 such
 as
 DNA
 replication,
 transcription,
 and
 the
 establishment
 of
 the
 DNA
 
damage
  checkpoint
  response
  (Yamane,
  1997;
  Yamane
  2002;
  Makaneimi,
  2001;
 
Tacarini,
 2006;
 Kumagai,
 2006;
 Sokka,
 2010;
 Germann,
 2011;
 Chowdhoury,
 2011).
 
An
 important
 feature
 of
 TopBP1
 is
 that
 it
 contains
 9
 BRCT
 repeats.
 BRCT
 domains
 
were
  first
  identified
  in
  BRCA1,
  where
  work
  showed
  they
  are
  able
  to
  mediate
 
protein-­‐protein
 interactions
 (Yu,
 2003;
 Manke,
 2003).
 
 
 Further
 studies
 showed
 that
 

 
  6
 
these
 domains
 are
 able
 to
 recognize
 phospho-­‐peptides
 and
 thus
 distinguish
 between
 
phosphorylated
 and
 un-­‐phosphorylated
 forms
 of
 their
 binding
 partners
 (Yu,
 2003;
 
Manke,
 2003).
 
 TopBP1
 interacts
 with
 many
 proteins,
 for
 example:
 the
 region
 within
 
TopBP1
 containing
 BRCT0-­‐2
 is
 necessary
 for
 binding
 Rad9,
 NBS1,
 CtIP
 and
 Treslin
 
(Ramirez,
 2012
 ;
 Kumagai,
 2010;
 Lee,
 2010);
 the
 linker
 region
 between
 BRCT3
 and
 4
 
is
 required
 for
 GINS
 binding;
 BRCT
 4/5
 bind
 RecQ4,
 MDC1(Wang,
 2011;
 Leung,
 
2013),
 BLM
 (Wang,
 2013;
 Wang,
 2015;
 Blackford,
 2015),
 53BP1
 (Cescutti,
 2010),
 
and
 possibly
 MRN
 complex;
 BRCT6
 binds
 E2F1
 (Liu,
 2003);
 region
 between
 BRCT6
 
contains
 an
 ATR
 activation
 domain
 (Kumagai,
 2006);
 BRCT7/8
 bind
 BACH1/FANCJ
 
(Leung,
 2011),
 p53
 (Liu,
 2009),
 Miz
 1(Herold,
 2008),
 and
 facilitates
 AKT
 induced
 
TopBP1:TopBP1
 oligomerization
 (Liu,
 2006).
 
 

   
 

  As
 mentioned
 above,
 TopBP1
 interacts
 with
 many
 proteins
 and
 this
 results
 in
 
its
 association
 with
 chromatin
 at
 different
 times.
 
 There
 are
 three
 modes
 of
 TopBP1
 
chromatin
  association:
  (A)
  Mode
  I:
   
  association
  with
  replication
  origins
  during
 
replication
  initiation
  (B)
  Mode
  II:
   
  cdk-­‐dependent
  coating
  of
  chromatin
  during
 
unperturbed
 S
 phase
 (function
 unknown)
 (C)
 Mode
 III:
 
 association
 with
 sites
 of
 
replication
 stress
 during
 checkpoint
 activation
 (Yan,
 2009)
 (Figure
 1).
 
 During
 DNA
 
replication
 TopBP1
 is
 essential
 at
 the
 initiation
 step
 to
 allow
 origin
 firing.
 TopBP1
 
recognizes
 the
 cdk2
 phosphorylated
 form
 of
 Treslin,
 which
 is
 activated
 once
 cdk2-­‐
cyclin
 E
 levels
 rise
 at
 the
 beginning
 of
 S
 phase
 (Kumagai,
 2010).
 This
 ultimately
 
allows
 the
 loading
 of
 cdc45
 by
 Treslin/TopBP1
 onto
 the
 pre-­‐RC
 and
 allows
 the
 
initiation
 of
 DNA
 replication.
 
 
 

 
  7
 

 

  As
 previously
 mentioned,
 TopBP1
 is
 not
 only
 essential
 for
 replication
 and
 the
 
replication
 checkpoint,
 but
 is
 also
 responsible
 for
 recognizing
 sites
 of
 damage
 to
 
help
 launch
 a
 checkpoint
 response.
 
 In
 response
 to
 resected
 double
 strand
 breaks
 
for
 example,
 ATM
 activation
 leads
 to
 the
 phosphorylation
 of
 many
 targets,
 one
 being
 
TopBP1.
 Direct
 ATM
 phosphorylation
 of
 TopBP1
 near
 its
 ATR
 activation
 domain
 
(AAD)
 at
 S1131
 in
 Xenopus
 better
 exposes
 this
 region
 to
 make
 contact
 with
 ATR,
 and
 
thus
 greatly
 enhances
 ATR’s
 kinase
 activity
 (Yoo,
 2007).
 
 It
 has
 been
 proposed
 that
 
TopBP1,
 CtBP-­‐Interacting
 Protein
 (CtIP),
 and
 MRN
 form
 a
 large
 complex
 that
 is
 
stimulated
 by
 DNA
 damage
 to
 allow
 the
 switch
 from
 ATM
 to
 ATR
 activation
 in
 
response
  to
  double
  strand
  breaks
  (Ramirez-­‐Lugo,
  2011).
  To
  do
  this,
  ATM
  also
 
controls
 resection
 of
 DNA
 ends
 by
 MRN,
 exposing
 ssDNA
 that
 becomes
 RPA-­‐ssDNA
 
that
 recruits
 ATR
 to
 allow
 it
 to
 launch
 a
 checkpoint
 response
 (Yoo,
 2009).
 
 
 In
 this
 
way,
 both
 resected
 double-­‐strand
 breaks
 and
 stalled
 forks
 lead
 to
 the
 generation
 of
 
RPA-­‐ssDNA,
 which
 ultimately
 allows
 activation
 of
 ATR
 signaling.
 
 
 

   
 

 
1.5
  Overview
 of
 the
 projects
 presented
 in
 this
 dissertation
 

 

 

  The
 work
 presented
 in
 this
 dissertation
 investigates
 how
 ATR
 is
 activated
 at
 
stalled
 forks
 and
 resected
 double-­‐strand
 breaks.
 Specifically,
 I
 investigated
 how
 
RPA-­‐ssDNA
 is
 initially
 detected
 by
 TopBP1
 to
 allow
 it
 to
 serve
 in
 its
 role
 in
 ATR
 
activation.
  I
  find,
  that
  like
  ATR/ATRIP
  localization
  to
  sites
  of
  damage,
  a
  direct
 
interaction
 between
 TopBP1
 and
 RPA-­‐ssDNA
 is
 the
 mechanism
 by
 which
 TopBP1
 is
 

 
  8
 
able
 to
 detect
 sites
 of
 DNA
 damage.
 This
 direct
 interaction
 between
 TopBP1
 and
 
RPA-­‐ssDNA
 is
 mediated
 through
 its
 second
 BRCT
 domain.
 Importantly,
 I
 also
 found
 
that
 BRCT
 domains
 that
 are
 similar
 to
 TopBP1
 BRCT2
 are
 able
 to
 allow
 binding
 to
 
RPA-­‐ssDNA
 in
 other
 proteins
 as
 well.
 Furthermore,
 I
 find
 that
 ATR
 activity
 limits
 the
 
amount
  of
  TopBP1
  on
  chromatin
  after
  damage.
  Thus,
  it
  seems
  that
  a
  negative
 
feedback
 loop
 of
 ATR
 activity
 limits
 further
 ATR
 activation
 once
 damage
 has
 been
 
sensed.
  Lastly,
  I
  identify
  and
  characterize
  a
  TopBP1
  mutant
  that
  allows
  the
 
activation
 of
 ATR
 in
 the
 absence
 of
 DNA.
 
 This
 ability
 is
 perhaps
 facilitated
 by
 a
 
conformational
 change
 that
 allows
 the
 mutant
 to
 mirror
 a
 conformation
 TopBP1
 
normally
 undergoes
 while
 it
 is
 on
 DNA
 and
 serving
 in
 its
 role
 in
 ATR
 activation.
 
 
Altogether,
 this
 work
 provides
 a
 mechanism
 for
 how
 the
 ATR-­‐activating
 protein,
 
TopBP1,
  recognizes
  damage
  to
  activate
  ATR
  and
  provides
  insights
  into
  how
 
conformational
 changes
 in
 the
 protein
 might
 allow
 it
 to
 accomplish
 this.
 
 
 

 

 

 

 

 
 

 

 

 

 

 
 
 
 
 

   
 

 
  9
 

 

 

 
A
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 C
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure
 1.
 Diagram
 of
 the
 various
 roles
 of
 TopBP1
 inside
 the
 cell.
 (A)
 TopBP1
 is
 
essential
  in
  the
  initiation
  step
  of
  DNA
  replication.
   
  It
  recognizes
  the
  cdk-­‐2
 
phosphorylated
 Treslin
 protein
 and
 allows
 cdc45
 loading
 onto
 origins.
 
 In
 yeast,
 it
 
also
 is
 responsible
 for
 the
 recruitment
 of
 Sld2
 (REQ4L)
 protein
 as
 well.
 (B)
 TopBP1
 
loads
 onto
 undamaged
 chromatin
 in
 a
 replication
 and
 damage-­‐independent
 manner,
 
yet
 the
 significance
 of
 this
 is
 not
 yet
 understood.
 (C)
 TopBP1
 is
 essential
 for
 ATR
 
activation
 in
 response
 to
 replication
 stress
 and
 to
 resected
 double-­‐strand
 breaks.
 

   
 
    Replication Initiation           Unperturbed S phase            Replication Stress!
CDT1
CDC6
ORC
MCM 2-7
TOPBP1
TOPBP1
TRESLIN
P
P
TRESLIN
P
P
CDT1
CDC6
ORC
MCM 2-7
CDC 45
RecQ4
TOPBP1 TOPBP1 TOPBP1
911
RPA
TOPBP1
ATR
ATRIP
CHK1
P

 
 10
 
Chapter
 2
 

 
Materials
 and
 Methods
 

 

   
 

 
 11
 
Plasmids
 

 
All
 cloning
 was
 done
 according
 to
 standard
 procedures.
 
 Full-­‐length
 TopBP1
 cDNA
 
used
 was
 TopBP1-­‐B,
 cDNA
 encoding
 NCBI
 accession
 number
 AAP03894
 cloned
 into
 
pCS2+MT.
 This
 protein
 was
 initially
 named
 Xmus101
 (see
 Van
 Hatten
 et
 al.,
 2002).
 
All
 deletion
 mutants
 were
 produced
 by
 PCR,
 using
 TopBP1-­‐B
 cDNA
 as
 template.
 
 
PCR
 primers
 included
 an
 NcoI
 site
 on
 the
 5’
 end
 and
 an
 XhoI
 site
 on
 the
 3’end.
 
 
Fragments
 were
 subcloned
 into
 NcoI/XhoI
 digested
 pCS2+MT,
 and
 verified
 by
 DNA
 
sequencing.
 For
 IVT
 expression,
 TopBP1
 deletion
 mutants
 used
 in
 Figure
 2,
 the
 
amino
 acid
 sequence
 for
 each
 deletion
 mutant
 is
 given
 below:
 BRCT0-­‐5
 (aa
 1-­‐
 758);
 
BRCT6-­‐8
 (aa
 759-­‐
 1513);
 BRCT0-­‐2
 (aa
 1-­‐333);
 BRCT3
 (aa
 333-­‐
 480);
 BRCT4-­‐5
 (aa
 
480-­‐758);
 BRCT0-­‐1
 (aa
 1-­‐191);
 BRCT1
 (aa
 99-­‐
 191);
 BRCT1-­‐2
 (aa
 99-­‐333);
 BRCT2
 
(aa
 191-­‐333);
 BRCT4
 (aa
 527-­‐622);
 BRCT5
 (aa
 627-­‐800);
 BRCT4-­‐5
 (aa
 527-­‐800);
 
BRCT4/5
 delta
 (internal
 deletion
 of
 aa
 588-­‐760).
 Other
 vector
 plasmid
 sequences
 
correspond
 to:
 PTIP-­‐FL,
 amino
 acids
 1-­‐
 820
 of
 the
 Xenopus
 PTIP
 protein,
 and
 PTIP-­‐
BRCT2,
 amino
 acids
 96-­‐
 186
 of
 the
 Xenopus
 PTIP
 protein.
 
 All
 point
 mutants
 were
 
produced
 in
 the
 TopBP1-­‐B
 cDNA.
 
 Mutations
 were
 produced
 using
 a
 QuickChangeII
 
site-­‐directed
 mutagenesis
 kit
 (Agilent
 Technologies).
 For
 E.
 coli
 expression:
 
 GST-­‐
BRCT2,
  either
  wild
  type
  or
  W265R
  BRCT2
  fragments
  described
  above
  were
 
subcloned
  into
  pGEX-­‐4T1,
  and
  His-­‐BRCT2,
  either
  wild
  type
  or
  W265R
  BRCT2
 
fragments
 described
 above
 were
 subcloned
 into
 pET28a.
 

 

 

 
 12
 
Xenopus
 egg
 extracts
 and
 sperm
 chromatin
 isolation
 

 
Egg
 extracts
 and
 sperm
 chromatin
 were
 prepared
 as
 described
 (Yan
 et
 al.,
 2009).
 
 
Briefly,
 fresh
 frog
 eggs
 were
 obtained
 and
 de-­‐jellied
 in
 2%
 cysteine,
 spun
 at
 high
 
speed
 in
 centrifuge
 and
 supplemented
 with:
 10
 ug/ml
 aprotinin,
 5ug/ml
 leupeptin,
 
3.3ug/ml
 nocodazole,
 cytochalasin
 B,
 1
 mM
 DTT,
 and
 0.1
 mg/ml
 cycloheximide.
 
 
Prior
 to
 use,
 an
 energy
 mix
 (375
 mM
 phosphocreatine,
 50
 mM
 ATP,
 5
 mM
 EGTA,
 50
 
mM
 MgCl2,
 pH
 7.4)
 was
 added
 to
 egg
 extracts
 to
 supply
 ATP
 at
 1/50
 volume.
 Sperm
 
chromatin
 was
 isolated
 from
 egg
 extract
 as
 described
 (Yan
 et
 al.,
 2009).
 
 Reactions
 
were
 allowed
 to
 proceed
 at
 room
 temperature
 for
 the
 indicated
 time
 points,
 then
 
diluted
  fourfold
  with
  NIB
  buffer
  and
  carefully
  layered
  in
  30%
  sucrose
  in
  NIB
 
cushion.
   
  Tubes
  then
  washed
  three
  times
  with
  NIB
  and
  chromatin
  pellet
  was
 
resuspended
 in
 2X
 Laemmle
 sample
 buffer
 and
 boiled.
 

 
Expression
 vectors
 and
 IVT
 protein
 production
 

 
All
  of
  the
  expression
  vectors
  used
  for
  IVT
  protein
  production
  were
  based
  on
 
pCS2+MT.
 IVT
 reactions
 were
 performed
 using
 a
 Promega
 TnT®
 SP6
 Quick
 Coupled
 
Transcription/Translation
 System,
 according
 to
 the
 vendor’s
 instructions.
 

 
Recombinant
 proteins
 

 
An
  expression
  vector
  encoding
  the
  Xenopus
  RPA
  trimer
  was
  a
  kind
  gift
  of
  K.
 
Cimprich.
 
 RPA
 plasmid
 was
 expressed
 in
 BL21
 E.
 coli
 cells
 and
 purified
 following
 
previously
  published
  methods.
  Insoluble
  protein
  pellet
  was
  denatured
  in
  urea,
 

 
 13
 
allowed
 to
 refold
 and
 then
 purified
 on
 nickel
 agarose
 column.
 Aliquots
 were
 then
 
frozen
 liquid
 nitrogen
 and
 stored
 at
 -­‐80C.
 
 GST-­‐BRCT2,
 GST-­‐BRCT2
 W265R,
 His-­‐
BRCT2,
  and
  His-­‐BRCT2
  W265R
  were
  expressed
  and
  purified
  from
  E.
 coli
 using
 
standard
 conditions.
 
 An
 expression
 vector
 encoding
 the
 Xenopus
 Rad
 9
 tail
 domain
 
was
 a
 kind
 gift
 of
 K.
 Cimprich.
 
 The
 protein
 was
 expressed
 and
 purified
 from
 E.
 coli
 
using
 standard
 conditions.
 
 
 

 
Replication
 assays
 

 
Replication
  was
  measured
  by
  supplementing
  the
  replicating
  extract
  with
 
radiolabeled
 nucleotides,
 typically
 0.04
 uCi/ul
 of
 
 ∝
32
P-­‐dATP
 that
 are
 incorporated
 
into
 the
 DNA
 through
 the
 replication
 process,
 and
 treated
 with
 different
 conditions.
 
These
 samples
 are
 then
 collected
 at
 various
 timepoints,
 generally
 30,
 60,
 90
 and
 120
 
minutes.
 Samples
 are
 then
 treated
 with
 proteinase
 K
 to
 remove
 any
 associated
 
proteins
 while
 leaving
 the
 DNA
 intact
 and
 then
 samples
 run
 out
 on
 an
 agarose
 gel
 
and
 signals
 detected
 via
 a
 phospho-­‐screen.
 
 
 

 
ssDNA
 binding
 assays
 

 
Biotin-­‐linked
  DNA
  fragments
  of
  varying
  sizes
  were
  produced
  by
  PCR
  and
  then
 
denatured
  prior
  to
  coupling
  to
  Dynabeads®
  Streptavidin
  (Life
  Technologies).
 
 
Biotin-­‐dsDNA
 was
 coupled
 to
 streptavidin
 beads
 in
 BW
 buffer
 (5mM
 Tris,
 pH7.4,
 1M
 
NaCl
 and
 0.5mM
 EDTA),
 
 and
 treated
 with
 0.15N
 NaOH
 to
 make
 ssDNA.
 
 All
 binding
 
reactions
 where
 carried
 out
 in
 Buffer
 A
 (10mM
 Hepes,
 pH7.6,
 80mM
 NaCl,
 20mM
 B-­‐

 
 14
 
glycerol
 phosphate,
 2.5mM
 EGTA
 and
 0.1%
 NP-­‐40).
 
 Incubated
 for
 an
 hour
 at
 room
 
temperature
 for
 an
 hour,
 beads
 then
 washed
 and
 eluted
 in
 2X
 Laemmle
 sample
 
buffer.
 
 
 
 

 
GST
 pull-­‐down
 assays
 

 
Rad9
 Pull-­‐down:
 Target
 proteins
 were
 produced
 by
 IVT
 and
 mixed
 with
 2
 ug
 GST-­‐
Rad9
 Tail
 and
 1
 ul
 recombinant
 casein
 kinase
 II
 (NEB).
 
 Reactions
 were
 incubated
 
for
 60
 minutes
 at
 30°C
 and
 then
 diluted
 into
 500
 ul
 of
 Tris-­‐buffered
 saline
 plus
 0.1%
 
Tween-­‐20
 (TBST).
 
 20
 ul
 of
 washed
 glutathione
 sepharose
 beads
 were
 then
 added
 
and
 incubated
 at
 4°C
 for
 one
 hour.
 
 Beads
 were
 washed
 three
 times
 with
 TBST
 and
 
then
 eluted
 with
 2XSB.
 
TopBP1-­‐TopBP1
  oligomerization:
  Myc-­‐tagged
  and
  his-­‐tagged
  full
  length
  TopBP1
 
either
 wild
 type
 or
 BRCT4/5
 WR
 mutant
 were
 produced
 by
 IVT
 and
 then
 mixed
 and
 
incubated
  for
  one
  hour
  at
  room
  temperature
  to
  allow
  oligomerization.
  Beads
 
coupled
  with
  and
  without
  his-­‐antibodies
  were
  prepared
  and
  then
  these
  were
 
combined
 with
 binding
 buffer
 and
 reactions
 above
 for
 2hrs
 at
 4C
 with
 rotation
 for
 
immunoprecipitation,
  then
  after
  incubation
  washed
  and
  samples
  processed
  for
 
Western
 blot.
 
 
 

 
Immunodepletion
 and
 antibodies
 

 
RPA
 and
 TopBP1
 were
 depleted
 from
 Xenopus
 egg
 extract
 as
 described
 (Yan
 et
 al.,
 
2009).
 
 TopBP1
 antibodies
 have
 been
 described
 (Van
 Hatten
 et
 al.,
 2002).
 
 RPA
 

 
 15
 
antibodies
 were
 a
 kind
 gift
 of
 J.
 Walter.
 
 Monoclonal
 antibody
 9E10
 was
 used
 to
 
detect
 myc-­‐tagged
 IVT
 proteins,
 phosphorylated
 Chk1
 was
 detected
 with
 Phospho-­‐
Chk1
 (Ser345)
 Antibody
 #2341
 (Cell
 Signaling
 Technology),
 and
 GST
 fusion
 proteins
 
were
 detected
 with
 anti-­‐GST
 antibodies
 (Sigma).
 

 

   
 

 
 16
 
Chapter
 3
 

 

 
Direct
 binding
 to
 RPA-­‐coated
 ssDNA
 allows
 recruitment
 of
 the
 checkpoint
 
activator
 TopBP1
 to
 sites
 of
 DNA
 damage
 

 

   
 

 
 17
 
Abstract
 

 

 
A
 critical
 event
 for
 the
 ability
 of
 cells
 to
 tolerate
 DNA
 damage
 and
 replication
 
stress
 is
 activation
 of
 the
 ATR
 kinase.
 
 ATR
 activation
 is
 dependent
 on
 the
 BRCT
 
repeat-­‐containing
 protein
 TopBP1.
 
 Previous
 work
 has
 shown
 that
 recruitment
 of
 
TopBP1
  to
  sites
  of
  DNA
  damage
  and
  stalled
  replication
  forks
  is
  necessary
  for
 
downstream
 events
 in
 ATR
 activation,
 however
 the
 mechanism
 for
 this
 recruitment
 
was
 not
 known.
 
 Here,
 we
 use
 protein
 binding
 assays
 and
 functional
 studies
 in
 
Xenopus
 egg
 extracts
 to
 show
 that
 TopBP1
 makes
 a
 direct
 interaction,
 via
 its
 BRCT2
 
domain,
 with
 RPA-­‐coated
 ssDNA.
 
 We
 identify
 a
 point
 mutant
 that
 abrogates
 this
 
interaction,
 and
 show
 that
 this
 mutant
 fails
 to
 accumulate
 at
 sites
 of
 DNA
 damage,
 
and
 that
 the
 mutant
 cannot
 activate
 ATR.
 
 These
 data
 thus
 supply
 a
 mechanism
 for
 
how
 the
 critical
 ATR
 activator,
 TopBP1,
 senses
 DNA
 damage
 and
 stalled
 replication
 
forks
 to
 initiate
 assembly
 of
 checkpoint
 signaling
 complexes.
 Furthermore,
 we
 find
 
that
 once
 TopBP1
 has
 promoted
 initial
 ATR
 activation,
 further
 chromatin
 loading
 of
 
TopBP1
 to
 damaged
 sites
 is
 prevented
 by
 a
 negative
 feedback
 loop
 of
 ATR
 activity.
 

   
 

 
 18
 
3.1
 Introduction
 

 
The
 maintenance
 of
 genome
 stability
 relies
 on
 faithful
 DNA
 replication
 and
 
the
 ability
 of
 cells
 to
 suppress
 the
 mutagenic
 consequences
 of
 replication
 stress
 and
 
DNA
  damage.
   
  Two
  protein
  kinases,
  ATM
  and
  ATR,
  are
  upstream
  of
  signaling
 
cascades
 that
 control
 cell
 cycle
 progression,
 DNA
 repair,
 replication
 fork
 stability,
 
and
 transcriptional
 responses
 to
 DNA
 damage
 and
 replication
 stress
 (reviewed
 by
 
Nam
 and
 Cortez,
 2011;
 Maréchal
 and
 Zou,
 2013;
 Sirbu
 and
 Cortez,
 2013).
 
 ATM
 is
 
primarily
  activated
  by
  DNA
  double-­‐strand
  breaks
  (DSBs),
  whereas
  stalled
 
replication
 forks
 and
 DSBs
 activate
 ATR.
 
 Upon
 activation,
 ATR
 phosphorylates
 and
 
activates
 numerous
 substrates,
 including
 the
 Chk1
 kinase
 (Liu
 et
 al.,
 2000;
 Guo
 et
 al,
 
2000).
 
 Here,
 we
 address
 the
 mechanism
 for
 ATR
 activation,
 with
 a
 focus
 on
 how
 the
 
critical
 ATR
 activator,
 TopBP1,
 is
 recruited
 to
 sites
 of
 DNA
 damage.
 
 
 

 
TopBP1
 performs
 multiple
 functions
 in
 chromosome
 metabolism
 (reviewed
 
by
 Wardlaw
 et
 al.,
 2014),
 including
 the
 initiation
 of
 DNA
 replication
 (Van
 Hatten
 et
 
al.,
  2002;
  Hashimoto
  and
  Takisawa,
  2003)
  and
  ATR
  activation
  (Kumagai
  et
  al.,
 
2006).
 Previous
 work
 has
 shown
 that
 the
 roles
 of
 TopBP1
 in
 replication
 initiation
 
and
 ATR
 signaling
 are
 distinct
 (Kumagai
 et
 al.,
 2006;
 Yan
 et
 al.,
 2006).
 
 Unlike
 
simpler
 eukaryotes
 such
 as
 the
 budding
 yeast,
 where
 multiple
 factors
 including
 the
 
TopBP1
  ortholog
  Dpb11
  can
  activate
  ATR
  (Wanrooij
  and
  Burgers,
  2015),
  in
 
metazoans
 TopBP1
 is
 the
 sole
 ATR
 activator
 that
 has
 been
 identified
 to
 date.
 
 
 

 

 
 19
 
Previous
 work
 has
 detailed
 important
 aspects
 of
 how
 ATR
 is
 activated
 by
 
stalled
  forks.
   
  For
  this,
  ATR
  associates
  with
  a
  binding
  partner,
  ATR-­‐interacting
 
protein
 (ATRIP),
 and
 the
 complex
 is
 localized
 to
 stalled
 forks
 via
 direct
 interaction
 
between
 ATRIP
 and
 RPA-­‐coated
 single-­‐stranded
 DNA
 (RPA-­‐ssDNA)
 (Cortez
 et
 al.,
 
2001;
 Zou
 et
 al.,
 2003;
 Ball
 et
 al.,
 2005a;
 Namiki
 et
 al.,
 2006;
 Ball
 et
 al.,
 2005b;
 and
 
Ball
 et
 al.,
 2007).
 RPA-­‐ssDNA
 is
 generated
 at
 stalled
 forks
 due
 to
 the
 uncoupling
 of
 
DNA
 helicase
 and
 polymerase
 activities
 that
 occurs
 when
 the
 polymerase
 stalls
 but
 
the
 helicase
 does
 not
 (Byun
 et
 al.,
 2005).
 
 ATRIP-­‐mediated
 ATR
 docking
 is
 necessary
 
but
 not
 sufficient
 for
 kinase
 activation.
 
 Independent
 of
 ATR-­‐ATRIP,
 another
 protein
 
complex
 forms
 on
 RPA-­‐ssDNA,
 and
 then
 joins
 ATR-­‐ATRIP
 to
 activate
 ATR
 (Zou
 et
 al,
 
2002).
   
  This
  second
  complex
  contains,
  minimally,
  the
  Rad9-­‐Rad1-­‐Hus1
  (911)
 
trimeric
 clamp
 protein,
 the
 clamp
 loader
 Rad17-­‐replication
 factor
 C
 (RFC),
 and
 
TopBP1.
 
 Upon
 assembly
 of
 this
 second
 complex,
 TopBP1
 is
 altered
 so
 that
 an
 ATR
 
activation
 domain
 is
 revealed,
 and
 this
 allows
 interaction
 between
 TopBP1
 and
 
ATR-­‐ATRIP
 in
 a
 manner
 that
 activates
 ATR
 kinase
 (Kumagai
 et
 al.,
 2006
 and
 Mordes
 
et
 al.,
 2008).
 
 

 
TopBP1
 and
 ATR
 also
 play
 critical
 roles
 in
 the
 cellular
 response
 to
 DSBs
 in
 
many
  higher
  eukaryotes,
  including
  Drosophila,
 Xenopus,
  C.
 elegans,
  and
  humans
 
(Cliby
 et
 al.,
 1998;
 Wang
 et
 al.,
 2004;
 Garcia-­‐Muse
 and
 Boulton,
 2005;
 Petersen
 et
 al.,
 
2006;
 LaRocque
 et
 al.,
 2007;
 Kondo
 and
 Perrimon,
 2011).
 TopBP1
 and
 ATR
 are
 not
 
only
 required
 for
 the
 DSB
 response
 in
 mitotic
 cells,
 but
 also
 for
 efficient
 completion
 
of
 meiotic
 recombination
 (reviewed
 by
 Cooper
 et
 al.,
 2014).
 
 The
 mechanism
 for
 

 
 20
 
ATR
  activation
  at
  sites
  of
  DSBs
  is
  not
  fully
  understood.
   
  Work
  in
  Xenopus
  has
 
outlined
  a
  pathway
  whereby
  DSBs
  activate
  ATM,
  which
  then
  phosphorylates
 
TopBP1,
 and
 this
 allows
 TopBP1
 to
 activate
 ATR
 (Yoo
 et
 al.,
 2007).
 
 Previous
 work
 
has
 also
 shown
 that
 in
 human
 cells
 containing
 DSBs,
 ATR
 activity
 towards
 different
 
substrates
 requires
 distinct
 activation
 modes.
 
 While
 TopBP1
 is
 required
 for
 ATR
 
activity
 in
 all
 cases,
 Rad17
 (and
 by
 extension
 the
 911
 complex)
 is
 more
 important
 
for
  Chk1
  phosphorylation
  while
  the
  Nbs1
  protein
  is
  more
  important
  for
  ATR-­‐
directed
 phosphorylation
 of
 RPA32
 (Shiotani
 et
 al.,
 2013).
 
 A
 dual
 role
 of
 Rad17
 and
 
Nbs1
 in
 ATR
 activation
 has
 also
 been
 observed
 in
 Xenopus
 (Yoo
 et
 al.,
 2009;
 Lee
 and
 
Dunphy,
 2013).
 
 While
 much
 remains
 to
 be
 learned
 about
 how
 ATR
 is
 activated
 at
 
DSBs,
 what
 is
 clear
 is
 that
 TopBP1
 is
 essential
 to
 this
 critical
 process.
 

 
Given
 the
 central
 role
 of
 TopBP1
 in
 ATR
 signaling
 at
 both
 stalled
 forks
 and
 
DSBs
 it
 is
 important
 to
 understand
 how
 TopBP1
 is
 recruited
 to
 these
 different
 DNA
 
structures.
 
 At
 stalled
 forks,
 TopBP1
 can
 form
 a
 complex
 with
 911-­‐Rad17-­‐RFC
 by
 
virtue
 of
 an
 interaction
 between
 the
 BRCT
 1
 and
 2
 domains
 within
 TopBP1
 and
 the
 
C-­‐terminal
 tail
 domain
 of
 Rad9
 (Delacroix
 et
 al.,
 2007;
 Lee
 et
 al.,
 2007;
 Lee
 et
 al.,
 
2010;
 and
 Rappas
 et
 al.,
 2011).
 
 This
 interaction
 requires
 phosphorylation
 of
 Rad9
 
on
  S373
  (in
  the
  Xenopus
 protein),
  a
  site
  which
  is
  thought
  to
  be
  constitutively
 
phosphorylated
 by
 casein
 kinase
 II
 (Takeishi
 et
 al.,
 2010).
 
 The
 TopBP1-­‐Rad9
 tail
 
interaction
 is
 required
 for
 the
 ability
 of
 TopBP1
 to
 contact
 DNA-­‐bound
 ATR-­‐ATRIP
 
complexes,
 and
 for
 ATR
 activation
 (Delacroix
 et
 al.,
 2007
 and
 Lee
 et
 al.,
 2007).
 
 The
 
discovery
  of
  the
  TopBP1-­‐Rad9
  interaction
  led
  to
  a
  simple
  model
  for
  TopBP1
 

 
 21
 
recruitment,
 whereby
 the
 911
 clamp
 is
 loaded
 by
 Rad17-­‐RFC,
 and
 TopBP1
 is
 then
 
recruited
 via
 interaction
 with
 the
 Rad9
 tail.
 
 Four
 recent
 findings,
 however,
 have
 
challenged
 this
 view,
 and
 suggest
 that
 initial
 TopBP1
 recruitment
 to
 sites
 of
 damage
 
is
 independent
 of
 911.
 
 
 

 
First,
 multiple
 lines
 of
 published
 evidence
 point
 to
 a
 direct
 role
 for
 TopBP1
 in
 
911
  loading.
   
  A
  study
  from
  our
  laboratory
  has
  shown
  that
  when
  replicating
 
chromatin
 is
 isolated
 and
 transferred
 to
 Xenopus
 egg
 extract
 lacking
 TopBP1,
 911
 
fails
 to
 load
 onto
 stalled
 replication
 forks
 (Yan
 et
 al.,
 2009).
 
 Furthermore,
 chromatin
 
transfer
 experiments
 showed
 that
 TopBP1
 must
 be
 physically
 present
 with
 911
 for
 
911
 to
 load
 onto
 stalled
 forks.
 
 In
 addition,
 a
 TopBP1
 point
 mutant
 (W265R)
 was
 
identified
 that
 cannot
 accumulate
 at
 sites
 of
 replication
 stress,
 and,
 in
 egg
 extract
 
containing
 this
 mutant
 as
 the
 sole
 source
 of
 TopBP1,
 911
 fails
 to
 load
 onto
 stalled
 
replication
 forks
 and
 ATR
 is
 not
 activated
 (Yan
 et
 al.,
 2009).
 
 And
 finally,
 in
 human
 
cells,
  siRNA-­‐mediated
  depletion
  of
  TopBP1
  prevents
  recruitment
  of
  911
  to
 
chromatin
 after
 hydroxyurea
 treatment
 (Gong
 et
 al.,
 2010)
 or
 UV
 irradiation
 (Ohashi
 
et
 al.,
 2014).
 
 These
 data
 strongly
 suggest
 that
 TopBP1
 recruits
 911,
 and
 not
 the
 
other
 way
 around.
 
 
 

 
Second,
 it
 has
 been
 demonstrated
 that
 the
 TopBP1-­‐Rad9
 tail
 interaction
 is
 
dispensable
 for
 initial
 recruitment
 of
 TopBP1
 to
 stalled
 forks
 (Lee
 et
 al.,
 2010).
 
 In
 
these
 studies,
 TopBP1
 was
 shown
 to
 accumulate
 on
 stalled
 forks
 even
 when
 Rad9
 
tail
 phosphorylation
 was
 prevented
 by
 a
 S373A
 mutation.
 
 Third,
 in
 the
 context
 of
 

 
 22
 
meiotic
 DSBs
 in
 mice,
 TopBP1
 recruitment
 is
 unhindered
 in
 Hus1
 conditional
 knock-­‐
out
 spermatocytes
 (Lyndaker
 et
 al.,
 2013).
 
 Fourth,
 for
 ATR
 activity
 towards
 RPA32
 
at
 DSBs
 in
 human
 cells,
 Rad17
 is
 dispensable
 but
 TopBP1
 is
 not
 (Shiotani
 et
 al.,
 
2013).
 
 
 

 
These
 recent
 findings
 call
 for
 a
 revision
 to
 the
 simple
 model
 where
 TopBP1
 is
 
recruited
 to
 sites
 of
 damage
 by
 virtue
 of
 the
 interaction
 with
 the
 Rad9
 tail.
 
 Rather,
 
TopBP1
  accumulates
  at
  stalled
  forks
  and
  DSBs
  via
  a
  previously
  unknown
 
mechanism,
 and
 once
 it
 is
 there
 then
 911
 loading
 and
 ATR
 activation
 follow.
 
 In
 
order
 to
 fully
 understand
 how
 ATR
 is
 activated
 during
 replication
 stress
 and
 DNA
 
damage,
  it
  is
  therefore
  necessary
  to
  understand
  the
  mechanism
  for
  the
  initial
 
TopBP1
  recruitment
  to
  stalled
  forks
  and
  DSBs.
   
  As
  detailed
  below,
  we
  have
 
elucidated
 this
 mechanism,
 and
 it
 involves
 direct
 interaction
 between
 the
 TopBP1
 
BRCT2
 domain
 and
 RPA-­‐ssDNA.
 

 

   
 

 
 23
 
3.2
 Results
 

 
TopBP1
 binds
 ssDNA
 in
 a
 length-­‐
 and
 RPA-­‐dependent
 manner
 

 
Previous
 studies
 have
 revealed
 that
 the
 platform
 for
 ATR
 signaling
 is
 the
 
RPA-­‐ssDNA
 that
 becomes
 exposed
 upon
 uncoupling
 of
 helicase
 and
 polymerase
 
activities
  during
   
  replication
  stress,
  or
  after
  resection
  of
  DSBs
  (reviewed
  by
 
Marechal
 et
 al,
 2015).
 
 Given
 that
 RPA-­‐ssDNA
 is
 a
 common
 feature
 of
 both
 stalled
 
forks
 and
 DSBs,
 and
 that
 TopBP1
 activates
 ATR
 in
 both
 contexts,
 we
 reasoned
 that
 
interaction
 between
 TopBP1
 and
 RPA-­‐ssDNA
 is
 likely
 to
 be
 important
 for
 how
 
TopBP1
 is
 recruited
 to
 sites
 of
 damage.
 
 We
 therefore
 examined
 the
 ability
 of
 
TopBP1
  to
  bind
  to
  ssDNA
  after
  incubation
  in
  Xenopus
  egg
  extract.
   
  Magnetic
 
streptavidin
 beads
 were
 coupled
 to
 either
 buffer
 or
 equal
 amounts
 of
 either
 dsDNA
 
or
 ssDNA
 and
 then
 incubated
 in
 egg
 extract
 (Fig.
 2A).
 
 Following
 incubation,
 the
 
beads
 were
 isolated,
 washed,
 and
 protein
 binding
 was
 assessed
 by
 Western
 blot.
 
 As
 
shown
 in
 Fig.
 2A,
 TopBP1
 could
 bind
 well
 to
 ssDNA
 beads,
 but
 did
 not
 efficiently
 
bind
 either
 dsDNA
 beads
 or
 beads
 alone.
 
 To
 better
 characterize
 TopBP1’s
 binding
 
to
 ssDNA,
 we
 next
 determined
 size
 requirements
 for
 binding.
 
 We
 produced
 ssDNAs
 
of
 different
 lengths
 and
 these
 were
 incubated
 in
 egg
 extract,
 recovered,
 washed,
 and
 
assayed
 for
 protein
 binding.
 
 As
 shown
 in
 Fig.
 2B,
 efficient
 binding
 of
 TopBP1
 was
 
observed
 for
 ssDNAs
 of
 >250
 nt;
 however,
 binding
 was
 not
 observed
 for
 a
 100
 nt
 
piece
 of
 ssDNA.
 
 Interestingly,
 RPA
 could
 bind
 efficiently
 to
 the
 100
 nt
 ssDNA.
 
 These
 
data
 reveal
 a
 size
 threshold
 for
 efficient
 TopBP1
 binding
 to
 the
 ssDNA,
 between
 100
 
and
 250
 nt
 (Fig.
 2B;
 Experiment
 performed
 by
 Shan
 Yan).
 

 

 
 24
 
To
 pursue
 these
 observations,
 we
 next
 asked
 if
 RPA
 is
 required
 for
 TopBP1
 
interaction
 with
 ssDNA
 in
 egg
 extract.
 
 When
 RPA
 was
 removed
 from
 the
 extract
 by
 
immunodepletion,
  TopBP1
  could
  not
  bind
  efficiently
  to
  ssDNA
  beads,
  although
 
binding
 was
 observed
 in
 the
 mock-­‐depleted
 control
 extract
 (Fig.
 2C;
 Experiment
 
performed
 by
 Shan
 Yan).
 
 This
 suggests
 that
 RPA
 is
 necessary
 for
 TopBP1
 to
 bind
 
ssDNA
 in
 egg
 extract.
 
 To
 ask
 if
 RPA
 is
 sufficient
 for
 TopBP1
 ssDNA
 binding,
 we
 
prepared
 a
 recombinant,
 purified
 form
 of
 the
 RPA
 trimer,
 and
 used
 it
 to
 prepare
 
RPA-­‐ssDNA
  templates
  for
  TopBP1
  binding
  assays.
   
  Recombinant,
  myc-­‐tagged
 
TopBP1
  was
  produced
  by
  in
 vitro
 transcription
  and
  translation
  (IVT)
  in
  rabbit
 
reticulocyte
 lysates.
 
 IVT
 TopBP1
 was
 then
 incubated
 with
 purified
 RPA
 and
 ssDNA
 
and
  assayed
  for
  binding.
   
  We
  observed
  that
  TopBP1
  bound,
  in
  an
  RPA
  dose-­‐
dependent
 manner,
 to
 the
 ssDNA
 beads
 (Fig.
 2D).
 
 Binding
 was
 not
 observed
 when
 
RPA
 was
 omitted
 from
 the
 reactions.
 
 We
 next
 asked
 if
 TopBP1
 could
 bind
 to
 the
 
RPA
 trimer
 in
 the
 absence
 of
 ssDNA.
 
 RPA
 trimer
 was
 immobilized
 on
 nickel
 (NTA)-­‐
agarose
 beads
 by
 virtue
 of
 a
 6-­‐histidine
 tag
 on
 RPA70,
 and
 incubated
 with
 IVT
 
TopBP1.
 
 As
 shown
 in
 Fig.
 2E,
 TopBP1
 did
 not
 bind
 to
 free
 RPA.
 
 Based
 on
 these
 data,
 
we
 conclude
 that
 TopBP1
 binds
 to
 RPA-­‐ssDNA,
 but
 not
 ssDNA
 alone
 or
 RPA
 trimer
 
alone.
 
 We
 next
 asked
 if
 there
 was
 any
 difference
 for
 TopBP1
 binding
 between
 RPA-­‐
ssDNA
 formed
 in
 egg
 extract
 versus
 RPA-­‐ssDNA
 formed
 with
 purified,
 recombinant
 
RPA.
 
 For
 this,
 ssDNA
 beads
 were
 incubated
 either
 with
 egg
 extract
 or
 purified
 RPA.
 
 
RPA-­‐ssDNA
 complexes
 were
 then
 isolated,
 washed,
 and
 incubated
 with
 IVT
 TopBP1.
 
 
As
 shown
 in
 Fig.
 2F,
 recombinant
 RPA
 was
 just
 as
 good
 as
 the
 RPA
 in
 egg
 extract
 in
 
allowing
  TopBP1
  binding
  to
  the
  ssDNA
  beads.
   
  This
  shows
  that
  any
  post-­‐

 
 25
 
translational
 modifications
 on
 RPA
 that
 occur
 in
 egg
 extract
 are
 dispensable
 for
 
TopBP1
 binding.
 

 
TopBP1
 uses
 its
 BRCT2
 domain
 to
 bind
 RPA-­‐ssDNA
 

 
To
 further
 analyze
 the
 TopBP1-­‐RPA-­‐ssDNA
 interaction
 identified
 in
 Fig.
 2,
 we
 
used
 deletion
 analysis
 to
 elucidate
 the
 TopBP1
 sequence
 determinants
 required
 for
 
binding.
 
 TopBP1
 is
 composed
 of
 9
 copies
 of
 the
 BRCT
 domain,
 termed
 0
 through
 8
 
(Rappas
 et
 al.,
 2011),
 that
 are
 scattered
 throughout
 the
 length
 of
 the
 protein
 (Fig.
 
3A).
 
 For
 our
 domain
 delineation
 experiments,
 myc-­‐tagged
 fragments
 of
 TopBP1
 
were
 produced
 by
 IVT
 and
 then
 incubated
 with
 ssDNA
 and,
 optionally,
 purified
 
recombinant
 RPA.
 
 Binding
 was
 then
 assessed
 by
 Western
 blot.
 
 Bifurcation
 of
 the
 
protein
 into
 N-­‐terminal
 and
 C-­‐terminal
 portions
 revealed
 that
 the
 N-­‐terminal
 half,
 
containing
 BRCTs
 0-­‐5,
 bound
 ssDNA
 in
 an
 RPA-­‐dependent
 manner,
 whereas
 the
 C-­‐
terminal
 half
 did
 not
 (Fig.
 3B).
 
 Subdivision
 of
 the
 N-­‐terminal
 half
 revealed
 that
 
fragments
  containing
  BRCTs
  0-­‐2
  and
  4-­‐5
  bound
  ssDNA
  in
  an
  RPA-­‐dependent
 
manner,
 whereas
 a
 fragment
 containing
 BRCT3
 did
 not
 (Fig.
 3C).
 
 Further
 analysis
 of
 
the
 region
 containing
 BRCTs
 0-­‐2
 revealed
 that
 BRCT2
 alone
 can
 bind
 efficiently
 to
 
ssDNA,
 in
 an
 RPA-­‐dependent
 manner,
 whereas
 fragments
 containing
 either
 BRCTs
 
0-­‐1
 or
 BRCT1
 alone
 could
 not
 (Figs.
 3D&E).
 
 These
 data
 reveal
 that
 BRCT2
 binds
 
well
  to
  RPA-­‐ssDNA,
  and
  that
  some
  binding
  is
  also
  observed
  with
  the
  BRCT4-­‐5
 
fragment.
 
 To
 assess
 the
 importance
 of
 the
 BRCT4-­‐5
 domains
 for
 binding
 of
 TopBP1
 
to
 RPA-­‐ssDNA,
 we
 tested
 an
 internal
 deletion
 mutant
 that
 lacks
 these
 sequences
 
(TopBP1
 Δ4&5).
 
 As
 shown
 in
 Fig.
 3F,
 this
 protein
 bound
 as
 well
 as
 its
 wild
 type
 

 
 26
 
counterpart
  to
  RPA-­‐ssDNA.
   
  We
  therefore
  focused
  on
  the
  interaction
  between
 
BRCT2
 and
 RPA-­‐ssDNA
 for
 the
 remainder
 of
 this
 study.
 
Having
  identified
  TopBP1
  BRCT2
  as
  an
  RPA-­‐ssDNA
  binding
  domain,
  we
 
searched
 for
 other
 proteins
 that
 contain
 similar
 BRCT
 domains.
 
 This
 identified
 the
 
second
 BRCT
 domain
 within
 the
 DSB-­‐response
 protein
 PTIP
 as
 a
 candidate
 RPA-­‐
ssDNA
 binding
 domain
 (Figs
 4A-­‐B).
 
 We
 observed
 that
 the
 BRCT2
 domain
 from
 PTIP
 
bound
 ssDNA
 in
 an
 RPA-­‐dependent
 manner,
 and
 that
 binding
 required
 that
 the
 
ssDNA
 be
 larger
 than
 100
 nt
 (Fig.
 4C),
 as
 is
 the
 case
 for
 TopBP1
 BRCT2
 (Fig.
 3E).
 
 
Thus,
 binding
 to
 RPA-­‐ssDNA
 is
 a
 general
 feature
 for
 a
 subclass
 of
 BRCT
 domains.
 
 
Our
  finding
  that
  TopBP1
  BRCT2
  is
  an
  RPA-­‐ssDNA
  binding
  domain
  was
 
intriguing
 given
 previous
 work
 from
 our
 laboratory
 showing
 that
 a
 single
 point
 
mutation
 within
 BRCT2,
 W265R,
 prevents
 TopBP1
 from
 accumulating
 at
 stalled
 
replication
 forks,
 but
 nonetheless
 supports
 replication
 initiation
 (Yan
 et
 al,
 2009).
 
 
To
 pursue
 this
 connection,
 we
 next
 asked
 if
 TopBP1
 W265R
 could
 bind
 RPA-­‐ssDNA
 
using
 the
 assays
 employed
 here.
 
 IVT
 wild
 type
 and
 W265R
 TopBP1
 proteins
 were
 
mixed
 with
 egg
 extract
 and
 either
 no
 DNA,
 dsDNA,
 or
 ssDNA,
 and
 binding
 was
 
assessed
 as
 in
 Fig.
 2A.
 
 As
 expected,
 wild
 type
 TopBP1
 bound
 to
 ssDNA,
 however
 the
 
W265R
 mutant
 did
 not
 show
 detectable
 binding
 (Fig
 5A).
 
 Furthermore,
 when
 the
 
same
 IVT
 TopBP1
 proteins
 were
 mixed
 with
 ssDNA
 and
 purified
 RPA,
 we
 again
 
observed
 that
 wild
 type,
 but
 not
 W265R
 TopBP1,
 could
 bind
 ssDNA
 efficiently,
 in
 an
 
RPA-­‐dependent
 manner
 (Fig.
 5B).
 
 We
 next
 asked
 if
 the
 W265R
 mutation
 in
 the
 
context
 of
 BRCT2
 alone
 would
 impact
 binding
 to
 RPA-­‐ssDNA.
 
 For
 this
 experiment,
 
purified
 recombinant
 forms
 of
 GST-­‐tagged
 BRCT2
 either
 wild
 type
 or
 containing
 the
 

 
 27
 
W265R
 mutation
 were
 prepared
 and
 used
 for
 binding
 assays.
 
 As
 shown
 in
 Fig.
 5C,
 
GST-­‐BRCT2
  bound
  well
  to
  ssDNA
  in
  an
  RPA-­‐dependent
  manner,
  however
  GST-­‐
BRCT2
  W265R
  did
  not.
   
  This
  experiment
  makes
  two
  important
  points.
   
  First,
 
because
 this
 was
 a
 completely
 purified
 system,
 we
 see
 that
 BRCT2
 can
 bind
 directly
 
to
 RPA-­‐ssDNA,
 and
 furthermore,
 because
 all
 proteins
 were
 purified
 from
 E.
 coli,
 no
 
post-­‐translational
 modifications
 on
 either
 BRCT2
 or
 RPA
 are
 required
 for
 binding.
 
 
Second,
 the
 data
 show
 that
 W265
 is
 a
 critical
 determinant
 for
 binding
 to
 RPA-­‐
ssDNA,
 both
 in
 the
 context
 of
 the
 full-­‐length
 protein
 (Fig.
 5A-­‐B)
 and
 for
 BRCT2
 alone
 
(Fig.
 5C).
 
 
 

 
We
 next
 asked
 if
 the
 ssDNA
 size
 restrictions
 observed
 previously
 for
 binding
 
of
 full-­‐length
 TopBP1
 (Fig.
 2B)
 also
 applied
 to
 the
 isolated
 BRCT2
 domain,
 and
 
found
 this
 was
 indeed
 the
 case.
 
 IVT-­‐produced
 BRCT2
 bound
 to
 RPA-­‐ssDNA
 of
 150
 
nt,
 but
 did
 not
 bind
 when
 the
 ssDNA
 was
 smaller
 than
 150
 nt
 (Fig.
 5D).
 
 Based
 on
 the
 
ability
 of
 the
 isolated
 BRCT2
 domain
 to
 compete
 with
 the
 full-­‐length
 protein
 for
 
ssDNA
 binding,
 and
 the
 similarity
 in
 ssDNA
 size
 restrictions
 for
 binding
 in
 both
 full-­‐
length
 protein
 and
 BRCT2
 domain,
 we
 conclude
 that
 the
 isolated
 BRCT2
 domain
 
binds
 to
 RPA-­‐ssDNA
 in
 a
 similar
 manner
 as
 the
 full-­‐length
 protein.
 
 
 
 
 

 
Previous
 work
 has
 shown
 that
 the
 tandem
 BRCT1-­‐2
 repeats
 of
 TopBP1
 bind
 
to
 the
 phosphorylated
 Rad9
 tail
 domain
 (Lee
 et
 al,
 2007;
 Rappas
 et
 al,
 2011),
 and
 we
 
have
 shown
 here
 that
 BRCT2
 alone
 binds
 to
 RPA-­‐ssDNA
 (summarized
 in
 Fig.
 5E).
 
 
The
 amino-­‐terminal
 region
 of
 the
 TopBP1
 protein
 thus
 appears
 to
 interact
 with
 

 
 28
 
multiple
 binding
 partners
 that
 are
 important
 for
 checkpoint
 signaling.
 
 Although
 
previous
 work
 had
 narrowed
 down
 the
 Rad9
 binding
 region
 of
 TopBP1
 to
 BRCT1-­‐2
 
(Rappas
 et
 al,
 2011),
 to
 our
 knowledge
 the
 ability
 of
 either
 isolated
 BRCT1
 or
 BRCT2
 
to
 bind
 the
 Rad9
 tail
 domain
 has
 not
 yet
 been
 tested.
 
 This
 was
 of
 interest,
 as
 we
 
wanted
 to
 know
 if
 the
 binding
 determinants
 within
 the
 BRCT1-­‐2
 region
 for
 Rad9
 
relative
 to
 RPA-­‐ssDNA
 were
 identical,
 or
 distinct
 despite
 being
 located
 in
 the
 same
 
region
 of
 the
 protein.
 
 To
 examine
 this,
 we
 performed
 a
 pull-­‐down
 assay
 with
 a
 
previously
 described
 GST-­‐Rad9
 tail
 domain
 fusion
 protein
 (Duursma
 et
 al,
 2013)
 
and
 looked
 for
 interaction
 between
 the
 Rad9
 tail
 domain
 and
 TopBP1
 BRCT0-­‐2,
 
BRCT1,
 or
 BRCT2.
 
 As
 shown
 in
 Fig.
 3E,
 the
 BRCT0-­‐2
 fragment
 could
 bind
 well
 to
 the
 
Rad9
 tail
 domain,
 as
 expected,
 however
 neither
 BRCT1
 or
 BRCT2
 alone
 could
 bind.
 
 
It
 thus
 appears
 that
 the
 tandem
 BRCT1-­‐2
 repeats
 bind
 Rad9,
 whereas
 BRCT2
 alone
 
is
 sufficient
 to
 bind
 RPA-­‐ssDNA
 (Fig.
 3E;
 Experiment
 performed
 by
 Matt
 Michael).
 
 
We
 conclude
 that
 distinct
 determinants
 control
 binding
 of
 TopBP1
 to
 Rad9
 and
 
RPA-­‐ssDNA.
 
 

 
TopBP1
 BRCT2
 W265R
 fails
 to
 accumulate
 on
 DNA
 DSB-­‐containing
 chromatin
 
and
 fails
 to
 activate
 ATR
 during
 a
 DSB
 response
 
 

 

  Previous
 work
 has
 shown
 that
 TopBP1
 W265R
 is
 not
 recruited
 efficiently
 to
 
stalled
 replication
 forks
 (Yan
 et
 al,
 2009),
 and
 data
 shown
 here
 demonstrate
 that
 
this
 mutant
 also
 fails
 to
 bind
 efficiently
 to
 RPA-­‐ssDNA
 (Figs.
 5A-­‐C;
 Experiment
 5C
 
performed
 by
 Shan
 Yan).
 
 Taken
 together,
 the
 data
 strongly
 suggest
 that
 a
 BRCT2-­‐

 
 29
 
mediated
 direct
 interaction
 with
 RPA-­‐ssDNA
 allows
 TopBP1
 to
 accumulate
 on
 the
 
RPA-­‐ssDNA
 present
 at
 stalled
 forks.
 
 To
 see
 if
 this
 a
 general
 mechanism
 for
 how
 
TopBP1
 is
 recruited
 to
 sites
 of
 DNA
 damage,
 we
 next
 assessed
 the
 ability
 of
 TopBP1
 
W265R
  to
  accumulate
  on
  chromatin
  during
  a
  DSB
  response,
  given
  that
  DSB-­‐
containing
  chromatin
  also
  contains
  RPA-­‐ssDNA.
   
  Egg
  extracts
  were
  prepared,
 
immunodepleted
 of
 endogenous
 TopBP1,
 and
 optionally
 supplemented
 with
 either
 
blank
 IVT,
 or
 IVTs
 expressing
 wild
 type
 or
 W265R
 TopBP1
 (Fig.
 5F).
 
 These
 extracts
 
were
 then
 mixed
 with
 sperm
 chromatin
 and
 the
 EcoRI
 restriction
 enzyme,
 which
 
activates
 ATR
 by
 inducing
 DSBs
 (Yoo
 et
 al,
 2006).
 
 After
 incubation,
 the
 chromatin
 
was
 isolated
 and
 probed
 for
 myc-­‐tagged
 TopBP1
 proteins
 and,
 as
 a
 loading
 control,
 
the
 Orc2
 protein.
 
 In
 addition,
 samples
 of
 the
 total
 extract
 were
 taken
 to
 blot
 for
 
phosphorylated
 Chk1
 (Chk1-­‐P),
 as
 a
 readout
 for
 ATR
 activity.
 
 As
 shown
 in
 Fig.
 5G,
 
wild
 type
 TopBP1
 was
 bound
 to
 the
 DSB-­‐containing
 chromatin,
 however
 TopBP1
 
W265R
 did
 not
 bind
 to
 DSB-­‐containing
 chromatin.
 
 Furthermore,
 while
 wild
 type
 
TopBP1
 could
 support
 Chk1
 phosphorylation
 during
 the
 DSB
 response,
 TopBP1
 
W265R
 could
 not.
 
 These
 data
 are
 consistent
 with
 our
 previous
 work
 that
 revealed
 
defects
 for
 TopBP1
 W265R
 in
 associating
 with
 stalled
 forks,
 and
 suggest
 that
 direct
 
binding
 to
 RPA-­‐ssDNA
 is
 a
 general
 mechanism
 that
 allows
 TopBP1
 to
 be
 recruited
 to
 
sites
 of
 damage
 to
 promote
 ATR
 activation.
 
 

 
ATR
 regulates
 TopBP1
 association
 with
 chromatin
 
 

 

  In
 a
 final
 experiment,
 we
 asked
 if
 checkpoint
 kinase
 activity
 could
 influence
 
TopBP1
  recruitment
  to
  chromatin
  during
  a
  DNA
  damage
  response.
   
  Sperm
 

 
 30
 
chromatin
 was
 added
 to
 egg
 extract
 and
 the
 samples
 were
 optionally
 treated
 with
 
chemical
 inhibitors
 of
 either
 ATM
 or
 ATR
 (ATMi
 and
 ATRi,
 respectively)
 and
 EcoRI
 
to
 produce
 DSBs.
 
 After
 incubation
 the
 chromatin
 was
 isolated
 and
 probed
 for
 
TopBP1
 and
 Orc2,
 as
 a
 loading
 control.
 
 As
 shown
 in
 Fig.
 16
 lanes
 1
 and
 2,
 the
 
presence
 of
 DSBs
 caused
 increased
 levels
 of
 TopBP1
 on
 chromatin,
 as
 expected.
 
 
Addition
 of
 ATMi
 did
 not
 affect
 the
 amount
 of
 TopBP1
 on
 DSB-­‐containing
 chromatin
 
(lane
 3),
 however
 ATRi
 had
 a
 dramatic
 effect,
 as
 TopBP1
 levels
 were
 substantially
 
increased
 (lane
 4).
 
 ATRi
 also
 increased
 the
 amount
 of
 TopBP1
 on
 undamaged
 
chromatin
  (lane
  5),
  however
  these
  levels
  were
  reduced
  relative
  to
  the
  sample
 
containing
 DSBs
 and
 ATRi.
 
 We
 note
 that
 a
 high
 concentration
 of
 sperm
 chromatin
 
(4,000/ul)
 was
 used
 for
 this
 experiment,
 and
 previous
 work
 has
 shown
 that
 ATR
 is
 
quite
 active
 at
 this
 concentration,
 even
 without
 DNA
 damage
 (Murphy
 and
 Michael,
 
2013).
 
 These
 data
 suggest
 the
 possibility
 of
 a
 negative
 feedback
 loop,
 whereby
 once
 
ATR
 is
 activated
 it
 can
 suppress
 the
 further
 recruitment
 of
 TopBP1,
 and
 thereby
 
limit
 the
 number
 of
 checkpoint
 signaling
 complexes
 that
 assemble
 on
 DSBs.
 Exactly
 
how
 ATR
 activity
 is
 limiting
 TopBP1
 chromatin
 association
 is
 not
 clear,
 but
 it
 is
 
tempting
 to
 speculate
 that
 direct
 inhibition
 of
 TopBP1
 chromatin
 association
 by
 
ATR
 is
 the
 reason.
 When
 DSB’s
 in
 the
 form
 of
 linearized
 plasmid
 DNA
 is
 added
 to
 
extract,
 supplemented
 optionally
 with
 inhibitors
 against
 ATM,
 ATR,
 or
 both,
 we
 see
 
a
 damage
 induced
 phosphorylation
 shift
 is
 lost,
 most
 notably
 by
 the
 inhibition
 of
 
ATR
  activity
  (Figure
  6B).
  Thus,
  it
  is
  possible
  that
  ATR
  directly
  limits
  TopBP1
 
chromatin
 association
 through
 phosphorylation.
 
 

 

   
 

 
 31
 
3.3
 Discussion
 

 

  Here
 we
 sought
 to
 determine
 the
 mechanism
 by
 which
 TopBP1
 senses
 DNA
 
damage
 to
 activate
 the
 checkpoint.
 
 We
 find
 that
 TopBP1
 is
 able
 to
 bind
 RPA-­‐ssDNA
 
directly
 through
 its
 BRCT2
 domain
 to
 activate
 the
 checkpoint,
 both
 to
 stalled
 forks
 
and
 sites
 of
 double
 strand
 breaks.
 We
 found
 that
 there
 is
 a
 size
 requirement
 of
 100-­‐
250
 nucleotides
 for
 TopBP1
 RPA-­‐ssDNA
 binding,
 which
 corresponds
 that
 at
 least
 3-­‐
5
 RPA
 molecules
 on
 the
 DNA.
 We
 find
 that
 RPA-­‐ssDNA
 is
 required,
 as
 TopBP1
 does
 
not
 bind
 either
 DNA
 or
 RPA
 when
 alone
 and
 not
 in
 the
 context
 of
 RPA-­‐ssDNA.
 
 
Additionally,
 we
 find
 that
 no
 post-­‐translational
 modification
 on
 RPA
 is
 required
 for
 
the
 interaction.
 
 We
 further
 showed
 that
 BRCT2
 is
 the
 main
 binding
 domain
 to
 RPA-­‐
ssDNA
 and
 that
 this
 interaction
 is
 direct.
 
 We
 show
 that
 RPA-­‐ssDNA
 binding
 is
 a
 
conserved
 feature
 of
 a
 subset
 of
 BRCT
 domains.
 We
 also
 find
 that
 W265
 within
 
BRCT2
 of
 TopBP1
 is
 a
 critical
 determinant
 for
 RPA-­‐ssDNA
 binding,
 as
 mutating
 this
 
residue
 prevents
 both
 RPA
 binding
 and
 checkpoint
 activation,
 revealing
 that
 direct
 
association
 between
 TopBP1
 and
 RPA-­‐ssDNA
 is
 required
 to
 activate
 ATR.
 
 Once
 ATR
 
activity
 is
 high,
 further
 loading
 of
 TopBP1
 to
 sites
 of
 damage
 decreases,
 suggesting
 a
 
negative
 feedback
 loop
 of
 ATR
 activity
 that
 limits
 TopBP1
 chromatin
 association
 
once
 damage
 has
 been
 detected.
 
 

  Data
 shown
 here
 reveal
 new
 insights
 into
 how
 DSBs
 and
 stalled
 replication
 
forks
 are
 sensed
 by
 the
 ATR
 pathway
 and
 how
 ATR
 is
 activated
 in
 response
 to
 this
 
damage.
 
 In
 Fig.
 7
 we
 present
 a
 new
 model
 for
 ATR
 activation
 at
 stalled
 forks.
 
 This
 
model
  proposes
  that
  an
  early
  event
  in
  ATR
  activation
  is
  the
  direct
  interaction
 

 
 32
 
between
 TopBP1
 and
 RPA-­‐ssDNA
 at
 the
 stalled
 fork.
 
 TopBP1
 binding
 then
 allows
 
recruitment
  of
  Rad17-­‐911,
  perhaps
  through
  an
  interaction
  that
  changes
  the
 
conformation
 of
 Rad17-­‐911,
 thereby
 allowing
 it
 to
 more
 productively
 interact
 with
 
the
 5’-­‐DNA
 junction
 (as
 depicted
 in
 the
 figure),
 or
 through
 clearance
 of
 other
 factors
 
that
  might
  preclude
  interaction
  between
  Rad17-­‐911
  and
  the
  5’-­‐DNA
  junction.
 
 
Clamp
 loading
 then
 ensues,
 and
 we
 propose
 that
 this
 event
 stabilizes
 TopBP1
 at
 the
 
stalled
 fork,
 possibly
 because
 TopBP1
 moves
 from
 its
 binding
 site
 on
 RPA-­‐ssDNA
 to
 
a
 higher-­‐affinity
 binding
 site
 on
 the
 Rad9
 tail
 domain
 (as
 depicted
 in
 the
 figure),
 or
 
because
 additional
 molecules
 of
 TopBP1
 join
 the
 complex
 via
 binding
 to
 Rad9.
 
 
Stabilization
 of
 TopBP1
 at
 the
 stalled
 fork
 after
 clamp
 loading
 is
 consistent
 with
 
previous
 work
 showing
 that
 TopBP1
 recruitment
 to
 stalled
 forks
 is
 reduced
 (but
 not
 
eliminated)
 upon
 Rad17
 depletion
 (Lee
 et
 al.,
 2010).
 
 Finally,
 once
 TopBP1
 is
 bound
 
to
 Rad9,
 it
 can
 interact
 with
 the
 independently
 recruited
 ATR-­‐ATRIP
 complex,
 and
 
ATR
 is
 activated.
 
 In
 summary,
 our
 new
 data,
 combined
 with
 previous
 results,
 show
 
that
 two
 sensors
 independently
 recognize
 stalled
 forks,
 ATRIP
 and
 TopBP1,
 and
 that
 
a
 common
 mechanism
 is
 employed:
 direct
 interaction
 between
 these
 factors
 and
 
RPA-­‐ssDNA.
 
 These
 findings
 underscore
 the
 importance
 of
 RPA-­‐ssDNA
 as
 a
 platform
 
for
 checkpoint
 complex
 assembly
 and
 activation.
 

 

   
 

   
 

 
 33
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure
 2.
 
 TopBP1
 binds
 ssDNA
 in
 an
 RPA-­‐
 and
 length-­‐dependent
 manner.
 
(A)
  The
  depicted
  biotin-­‐coupled
  DNAs
  were
  mixed
  with
  50
  ul
  of
  Xenopus
  egg
 
extract,
  isolated
  using
  streptavidin
  magnetic
  beads,
  washed,
  eluted,
  and
  bound
 
proteins
 detected
 by
 Western
 blot.
 
 Blots
 were
 probed
 with
 the
 indicated
 antibodies.
 
 
XEE
 refers
 to
 1
 ul
 of
 egg
 extract.
 (B)
 Same
 as
 (A)
 except
 the
 size
 of
 ssDNA
 was
 
varied,
 as
 depicted.
 (C)
 Same
 as
 (A)
 except
 Xenopus
 egg
 extract
 was
 either
 mock-­‐
depleted
 or
 depleted
 of
 RPA
 using
 anti-­‐RPA
 antibodies,
 as
 indicated.
 (D)
 IVT
 myc-­‐
tagged
 TopBP1
 was
 mixed
 with
 varying
 amounts
 of
 purified,
 recombinant
 RPA
 and
 
biotin-­‐coupled
  ssDNA
  (1.5
  kb).
   
  The
  ssDNAs
  were
  isolated
  using
  streptavidin
 
magnetic
 beads,
 washed,
 eluted,
 and
 bound
 proteins
 detected
 by
 Western
 blot.
 
 
TopBP1
 was
 detected
 using
 Mab
 9E10,
 which
 recognizes
 the
 myc
 tag,
 and
 RPA
 was
 
detected
  using
  antibodies
  against
  the
  Xenopus
  RPA
  trimer.
  (E)
  Purified,
 
recombinant
 RPA
 trimer
 was
 optionally
 coupled
 to
 nickel
 NTA
 agarose
 beads
 by
 
virtue
 of
 a
 6-­‐histidine
 tag
 on
 the
 70
 kDa
 subunit.
 
 Beads
 were
 mixed
 with
 IVT
 myc-­‐
tagged
 TopBP1,
 washed,
 and
 bound
 proteins
 detected
 by
 Western
 blot.
 
 TopBP1
 and
 
RPA
 were
 detected
 as
 in
 (D).
 
 Input
 refers
 to
 5%
 of
 the
 initial
 reaction
 volume.
 (F)
 
Biotin-­‐linked
  ssDNA
  was
  mixed
  with
  either
  egg
  extract
  (XEE)
  or
  the
  indicated
 
amount
 of
 purified
 RPA.
 
 The
 ssDNAs
 were
 isolated
 using
 streptavidin
 magnetic
 
beads,
 washed,
 and
 then
 incubated
 with
 IVT
 myc-­‐tagged
 TopBP1.
 
 The
 beads
 were
 
isolated
 again,
 washed,
 and
 bound
 proteins
 detected
 as
 in
 (D).
 
 

 

 
 34
 

 

 

 

 

 

 

 
Figure 1!
biotin!
no DNA!
dsDNA (1.5 kbp)!
ssDNA (1.5 kb)!
A!
TopBP1!
RPA70!
ssDNA (kb)!
3! 1! .5! .25! .1! 0!
B!
TopBP1!
RPA70!
TopBP1!
RPA70!
RPA32!
RPA-!
depleted!
mock-!
depleted!
C!
D!
myc-!
TopBP1!
no RPA!
RPA!
RPA70!
+ ssDNA!
input!
RPA70!
RPA!
beads!
empty!
beads!
E!
myc-!
TopBP1!
RPA70!
XEE!
10! 20!
rRPA (ul)!
ssDNA beads + XEE or rRPA!
!
recover ssDNA & wash!
!
+ IVT TopBP1-B!
!
wash & elute bound proteins!
F!
myc-!
TopBP1!

 
 35
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure
 3.
 
 Deletion
 analysis
 of
 TopBP1
 binding
 to
 RPA-­‐ssDNA.
  (A)
 Cartoon
 
depicting
 the
 relative
 positions
 of
 BRCT
 domains
 (numbered)
 within
 the
 TopBP1
 
protein.
 (B-­‐F)
 Myc-­‐tagged
 TopBP1
 dervitives
 corresponding
 to
 the
 indicated
 BRCT
 
domain(s)
 were
 produced
 by
 IVT
 and
 then
 mixed
 with
 biotin-­‐linked
 ssDNA
 (1.5
 kb)
 
and
 binding
 buffer.
 
 Recombinant
 RPA
 was
 optionally
 added,
 as
 indicated.
 
 After
 
incubation,
 the
 ssDNAs
 were
 isolated
 using
 streptavidin
 magnetic
 beads,
 washed,
 
eluted,
 and
 bound
 proteins
 detected
 by
 Western
 blot.
 
 The
 TopBP1
 fragments
 were
 
detected
 using
 Mab
 9E10,
 which
 recognizes
 the
 myc
 tag.
 
 Input
 refers
 to
 1.6%
 of
 the
 
initial
 binding
 reaction.
 

 

 
 36
 

 

 

 
Figure 2!
TopBP1!
0! 1! 2! 3! 4! 5! 6! 7! 8!
A!
0-5 !
C!
-  +!
+ ssDNA!
RPA:!
BOUND!
INPUT!
0-2!
-  +!
3!
-  +!
4-5 !
-  +!
BRCT:!
BOUND!
INPUT!
0-2 !
E!
-  +!
+ ssDNA!
RPA:!
1-2!
-  +!
2!
-  +!
BRCT:!
0-2 !
D!
-  +!
+ ssDNA!
RPA:!
0-1!
-  +!
1!
-  +!
BRCT:!
BOUND!
INPUT!
BOUND!
INPUT!
0-5 !
-  +!
+ ssDNA!
RPA:!
6-8!
-  +!
BRCT:!
B!
-     +! RPA:! -     +!
WT!
BOUND!
TopBP1 + ssDNA!
INPUT!
!4&5!
F!

 
 37
 

 
Figure
 4.
 PTIP
 BRCT2
 binds
 ssDNA
 in
 an
 RPA-­‐
 and
 length-­‐dependent
 manner.
 
(A)
 Cartoons
 depicting
 the
 TopBP1
 and
 PTIP
 proteins
 with
 BRCT
 domains
 boxed
 
and
 numbered.
 (B)
 Amino
 acid
 sequence
 alignment
 for
 the
 indicated
 BRCT
 domains.
 
 
The
 protein
 secondary
 structure
 signatures
 for
 b
 pleated
 sheets
 (b)
 and
 a
 helices
 (a)
 
are
 shown
 above
 the
 alignment.
 (C)
 RPA-­‐ssDNA
 binding
 assays
 with
 the
 indicated
 
proteins
 were
 performed
 exactly
 as
 described
 for
 Figs
 3B-­‐F.
 
 
TopBP1 BRCT2!IFRGCTICVTGLSSLDRKEVQRLTALHGGEYTGQLKMN-ESTHLIV!
PTIP BRCT2 !IFFGVTACLSQVSPDDRNSLWALTTFYGGDC--QLSLNKKCTHLIV!
TopBP1 BRCT3 !LLDGCRIYLCGFGGRKLDKLRKLINNGGGVRFNQLTGDV--THIIV!
TopBP1 BRCT2!QEAKGQKYECAR-KWIVHC-ISVQWFFDSIEKGFCQDETMYKI   !
PTIP BRCT2 !PEPKGNKYEYAFQRGSIKI-VTPDWVLDSVSEKTKKDEALYHP!
TopBP1 BRCT3 !GETDEELKQFLNKTQHRPYVLTVKWLLDSFAKGHLQPEEIYFH   !
!1! "1! !2! !3!
"2! "3! !4!
B!
TopBP1!
0! 1! 2! 3! 4! 5! 6! 7! 8!
1! 2! 3! 4! 5! 6!
PTIP!
A!
C!
-          +       -       +      -       +      -        +!
TopBP1      TopBP1            PTIP              PTIP!
BRCT2       BRCT3            BRCT2         BRCT2!
1.5KB          1.5KB             1.5KB             100bp!
BOUND!
INPUT!
BRCT:!
RPA:!
+ ssDNA!

 
 38
 

 

 

 

 

 

 

 
Figure
 5.
 
 Functional
 characterization
 of
 the
 TopBP1
 BRCT2
 interaction
 with
 
RPA-­‐ssDNA.
 (A)
 Myc-­‐tagged
 full-­‐length
 TopBP1
 proteins,
 either
 wild
 type
 or
 the
 
W265R
 point
 mutant,
 were
 produced
 by
 IVT
 and
 then
 mixed
 with
 egg
 extract
 and
 
the
 indicated
 DNAs.
 
 Samples
 were
 then
 processed
 exactly
 as
 in
 Fig.
 2A.
 
 Proteins
 
were
  detected
  with
  Mab
  9E10
  against
  the
  myc
  tag.
  (B)
  Myc-­‐tagged
  full-­‐length
 
TopBP1
 proteins,
 either
 wild
 type
 or
 the
 W265R
 point
 mutant,
 were
 produced
 by
 
IVT
 and
 then
 utilized
 for
 the
 ssDNA
 binding
 assay,
 as
 described
 in
 Figs.
 3B-­‐F.
 (C)
 
Purified,
 recombinant
 purified
 GST-­‐BRCT2
 fusion
 proteins,
 either
 wild
 type
 or
 the
 
W265R
 mutant,
 were
 mixed
 with
 biotin-­‐linked
 ssDNA
 (1.5
 kb)
 and
 binding
 buffer.
 
 
Recombinant
 RPA
 was
 optionally
 added,
 as
 indicated.
 
 After
 incubation,
 the
 ssDNAs
 
were
  isolated
  using
  streptavidin
  magnetic
  beads,
  washed,
  eluted,
  and
  bound
 
proteins
 detected
 by
 Western
 blot
 using
 anti-­‐GST
 antibodies.
 
 Input
 refers
 to
 1.6%
 of
 
the
 initial
 binding
 reaction.
 (D)
 Myc-­‐tagged
 TopBP1
 BRCT2
 fragment
 was
 produced
 
by
 IVT
 and
 then
 mixed
 with
 recombinant
 RPA
 and
 biotin-­‐linked
 ssDNAs
 of
 the
 
indicated
 size.
 
 The
 samples
 were
 then
 processed
 as
 in
 Figs.
 3
 B-­‐F.
 
 Input
 refers
 to
 
1.6%
 of
 the
 initial
 binding
 reaction.
 (E)
 Cartoon
 depicting
 the
 N-­‐terminal
 region
 of
 
TopBP1
 and
 binding
 determinants
 for
 Rad9
 and
 RPA-­‐ssDNA.
 
 Myc-­‐tagged
 TopBP1
 
fragments,
 corresponding
 to
 the
 indicated
 BRCT
 domains,
 were
 produced
 by
 IVT
 
and
 then
 mixed
 with
 purified
 Xenopus
 Rad9
 tail
 domain
 fused
 to
 GST
 (GST-­‐Rad9-­‐T).
 
 
Recombinant
 casein
 kinase
 2
 was
 also
 included
 in
 the
 reaction.
 
 After
 incubation,
 
proteins
 bound
 to
 GST-­‐Rad9-­‐T
 were
 recovered
 and
 analyzed
 by
 Western
 blotting.
 
 
Input
 refers
 to
 3.3%
 of
 the
 initial
 reaction
 volume.
 
 (F)
 Egg
 extract
 was
 either
 mock
 
depleted
  (“mock”),
  or
  immunodepleted
  of
  TopBP1
  using
  TopBP1
  antibodies
 
(TopBP1
-­‐
).
 
 TopBP1-­‐depleted
 extract
 was
 then
 supplemented
 with
 either
 blank
 IVT
 
(-­‐),
 or
 IVTs
 expressing
 the
 indicated
 myc-­‐tagged
 TopBP1
 protein.
 
 The
 samples
 were
 
then
 blotted
 with
 antibodies
 against
 TopBP1.
 (G)
 The
 egg
 extracts
 from
 (A)
 were
 
supplemented
 with
 sperm
 chromatin
 and,
 optionally,
 EcoRI
 to
 produce
 DSBs
 (“+
 
DSB”).
 
 After
 incubation,
 the
 sperm
 chromatin
 was
 isolated
 as
 described
 (Yan
 et
 al,
 
2009)
 and
 the
 samples
 blotted
 with
 either
 Mab
 9E10,
 to
 detect
 myc-­‐tagged
 TopBP1,
 
or
 antibodies
 against
 Orc2,
 as
 a
 loading
 control
 (panel
 “chromatin
 fraction”).
 
 In
 
addition,
 samples
 of
 the
 total
 extract
 were
 blotted
 for
 S345-­‐phosphorylated
 Chk1
 
(Chk1-­‐P)
 or
 Chk1
 as
 a
 loading
 control
 (panel
 “total
 extract”).
 

 

 
 39
 

 
Figure 3!
Rad9!
binding!
0! 1! 2!
RPA-ssDNA!
binding!
E!
GST-Rad9-T+!
TopBP1  BRCT:!
1! 2! 0-2!
BOUND!
INPUT!
D!
BRCT2 + RPA-ssDNA!
75! 100! 150! 50! (nt)!
INPUT!
BOUND!
C!
WT! W265R!
-      +! -     +!
GST-BRCT2 + ssDNA!
RPA:!
INPUT!
BOUND!
TopBP1 + ssDNA!
BOUND!
INPUT!
-     +! RPA:!
WT!
-     +!
W265R!
B!
WT!
W265R!
A!
myc-TopBP1 + XEE +:!
Chk1-P!
TopBP1
-
extract +:!
WT! W265R! -!
mock!
DSB:! -! +! +! +! +!
Chk1!
G!
myc-!
TopBP1!
Orc2!
chromatin fraction!
total extract!
F!
TopBP1
-
extract +:!
TopBP1!
WT! W265R! -! mock!

 
 40
 

 

 
Figure
 6.
 
 ATR
 activity
 limits
 TopBP1
 chromatin
 recruitment.
 (A)
 Egg
 extracts
 
were
 supplemented
 with
 sperm
 chromatin
 and
 optionally
 EcoRI
 to
 produce
 DSB’s,
 
ATM,
 ATR,
 or
 ATM/ATR
 inhibitors.
 After
 one
 hour
 incubation,
 the
 sperm
 chromatin
 
was
 isolated
 by
 layering
 it
 on
 top
 of
 30%
 sucrose
 +
 NIB
 (refer
 to
 Materials
 and
 
Methods
  for
  recipe)
  solution,
  spun
  down,
  and
  washed
  three
  times
  with
  NIB.
 
 
Samples
 were
 processed
 for
 Western
 blot
 and
 then
 probed
 with
 antibodies
 against
 
endogenous
 TopBP1
 or
 orc2
 (as
 loading
 control).
 (B)
 Xenopus
 egg
 extracts
 were
 
incubated
 optionally
 with
 linearized
 plasmid
 DNA
 to
 introduce
 DSB’s
 and
 optionally
 
ATM,
 ATR,
 or
 ATM/ATR
 inhibitors.
 After
 a
 30
 minute
 incubation,
 samples
 were
 
resolved
  on
  an
  SDS
  gel
  where
  the
  conditions
  were
  optimized
  to
  detect
  a
 
phosphorylation
  shift
  and
  prepared
  for
  Western
  blot.
  Blots
  were
  probed
  with
 
antibodies
 against
 endogenous
 TopBP1
 and
 Mab
 9E10,
 which
 recognizes
 the
 myc
 
tag.
 Inhibition
 of
 ATR
 activity
 by
 ATRi
 promotes
 TopBP1
 chromatin
 association
 
under
 normal
 and
 damage
 conditions.
 
 
 These
 data
 suggest
 the
 possibility
 of
 a
 
negative
 feedback
 loop,
 whereby
 once
 ATR
 is
 activated
 it
 can
 suppress
 the
 further
 
recruitment
 of
 TopBP1.
 
 
 

 

 

 
Figure 4 !
Orc2!
chromatin fraction!
TopBP1!
+DSB!
+DSB!
+ATMi!
+DSB!
+ATRi! +ATRi!
XEE + sperm chromatin +:!
A!
ATR!
ATRIP!
TopBP1!
Rad17!
B!
5’!
TopBP1!
TopBP1!
Rad17!
9-1-1!
ATR!
ATRIP!
Rad17!
ATR!
ATRIP!
TopBP1!
TopBP1!
5’!
TopBP1!
Rad17!
ATR!
ATRIP!
TopBP1!
TopBP1 senses stalled fork!
TopBP1 recruits Rad17!
9-1-1 loading stabilizes TopBP1!
ATR activated!
1! 2! 3! 4! 5!
!"#$%&'
'
'
())''''''''''''''*'''''''''''''''+''''''''''''''''+'''''''''''''+''''''''''''''''+''''''''''',-.'
/!01''''''/!21''''''''.3!4'
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"#$%!!!!!"#&'!
())!!!!!!!!!!#*+,!!!!!!!!!!-./-0!!!!-./-0!!!!-./-0!!!!!!!-./-0!!!!!-.1-/!!!!!-.-20!!!!!-.-/0!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3)!4*56$+!789!:;<=4!789!65>?@!
A=;B'1!
.'
/'
!"#$$
$
$
%&'#()$
B
 
A
 

 
 41
 
Figure
 7.
 
 Revised
 model
 for
 ATR
 activation
 during
 checkpoint
 response.
 
 
 
Please
 refer
 to
 text
 for
 details.
 
 

 
Figure 4 !
Orc2!
chromatin fraction!
TopBP1!
+DSB!
+DSB!
+ATMi!
+DSB!
+ATRi! +ATRi!
XEE + sperm chromatin +:!
A!
ATR!
ATRIP!
TopBP1!
Rad17!
B!
5’!
TopBP1!
TopBP1!
Rad17!
9-1-1!
ATR!
ATRIP!
Rad17!
ATR!
ATRIP!
TopBP1!
TopBP1!
5’!
TopBP1!
Rad17!
ATR!
ATRIP!
TopBP1!
TopBP1 senses stalled fork!
TopBP1 recruits Rad17!
9-1-1 loading stabilizes TopBP1!
ATR activated!
1! 2! 3! 4! 5!

 
 42
 

 

 
Chapter
 4
 

 
Analysis
 of
 TopBP1
 structure
 regulation
 during
 checkpoint
 signaling
 

 

 

   
 

 
 43
 
Abstract
 

 

 
TopBP1
 has
 many
 functions
 inside
 of
 cells
 so
 which
 protein
 partner
 it
 binds
 
to
 and
 when
 must
 be
 under
 strict
 control
 by
 the
 cell
 cycle.
 One
 way
 to
 do
 this
 that
 
does
 not
 require
 the
 limiting
 of
 its
 binding
 partners
 during
 the
 cell
 cycle
 is
 control
 of
 
its
  overall
  structure,
  since
  how
  this
  is
  controlled
  can
  become
  important
  in
 
determining
 which
 partners
 it
 will
 favor
 over
 others.
 
 It
 is
 known
 that
 TopBP1
 
structure
 is
 controlled
 directly
 by
 AKT
 through
 phosphorylation,
 so
 in
 cancers
 with
 
high
  AKT
  activity,
  AKT-­‐mediated
  TopBP1
  dimerization
  enhances
  its
  role
  in
 
preventing
 apoptosis
 while
 also
 preventing
 its
 role
 in
 checkpoint
 signaling.
 
 TopBP1
 
function
 is
 also
 controlled
 by
 the
 availability
 of
 nutrients,
 since
 limited
 nutrients
 
leads
 to
 its
 de-­‐acetylation,
 which
 prevents
 its
 role
 in
 DNA
 replication
 and
 checkpoint
 
signaling.
 
 
 
Here
 we’ve
 identified
 and
 studied
 a
 point
 mutant,
 BRCT4/5
 WR,
 that
 seems
 
to
 have
 a
 different
 structure
 to
 the
 wild-­‐type
 protein
 and
 strongly
 enhances
 the
 
checkpoint
 in
 the
 absence
 of
 DNA
 damage
 or
 even
 DNA.
 
 This
 is
 possibly
 due
 to
 a
 
greater
 accessibility
 of
 its
 AAD
 to
 ATR,
 but
 further
 work
 is
 needed
 to
 confirm
 this
 or
 
any
  other
  possibility.
   
  Given
  the
  fact
  that
  this
  mutant
  strongly
  enhances
  the
 
checkpoint,
 it
 might
 in
 the
 future
 prove
 useful
 in
 allowing
 us
 to
 gain
 a
 clearer
 
understanding
  of
  the
  changes
  TopBP1
  normally
  undergoes
  in
  the
  process
  of
 
checkpoint
 activation
 and
 might
 be
 important
 in
 further
 describing
 the
 order
 in
 
sequence
 of
 events
 that
 lead
 to
 checkpoint
 activation.
 

 

 

 
 44
 
4.1
 Introduction
 

 
TopBP1
 is
 required
 for
 many
 processes
 inside
 a
 cell.
 Thus,
 how
 its
 structure
 is
 
regulated
 to
 affect
 its
 function
 in
 its
 many
 roles
 has
 been
 studied,
 since
 its
 proper
 
control
 may
 be
 essential
 to
 prevent
 breast
 cancer
 development
 (Pedram,
 2009;
 
Chowdhury,
  2014).
  TopBP1
  controls
  E2F1
  and
  p53
  activities
  through
  a
  direct
 
interaction
 (Liu,
 2009;
 Liu,
 2003).
 Studies
 show
 that
 77%
 of
 all
 breast
 cancers
 have
 
a
  genetic
  alteration
  in
  PI3K/AKT
  pathway,
  while
  nearly
  half
  have
  altered
  p53
 
(Chowdhury,
 2014).
 
 This
 is
 important
 because
 a
 significant
 portion
 of
 solid
 tumors
 
show
 deregulation
 in
 these
 common
 pathways.
 For
 example,
 many
 of
 these
 changes
 
in
  tumors
  result
  in
  hyper-­‐activation
  of
  AKT
  activity,
  which
  prevents
  apoptosis
 
(Chowdhury,
 2014;
 Xu,
 2012).
 AKT
 phosphorylation
 of
 S1159
 on
 human
 TopBP1
 
causes
 TopBP1
 oligomerization,
 mediated
 by
 BRCT
 7-­‐8
 on
 TopBP1
 (Liu,
 2013;
 Liu,
 
2006).
  TopBP1
  oligomers
  are
  able
  to
  bind
  E2F1
  to
  inactivate
  its
  pro-­‐apoptotic
 
ability
  to
  allow
  cancerous
  cells
  to
  survive
  (Liu,
  2006).
   
  In
  addition,
  this
 
phosphorylation
  prevents
  TopBP1
  chromatin
  association
  and
  thus
  inhibits
 
checkpoint
  activation,
  promoting
  genomic
  instability
 (Chowdhury,
  2014).
   
 After
 
many
 years
 of
 research
 by
 this
 group
 into
 understanding
 how
 AKT
 affects
 TopBP1
 
function
 by
 regulating
 its
 structure,
 a
 recent
 study
 shows
 how
 directly
 targeting
 
TopBP1
 and
 modulating
 its
 activity
 by
 novel
 compounds,
 calcein
 and
 others
 which
 
they
  hope
  to
  develop,
  can
  potentially
  lead
  to
  new
  advances
  in
  cancer
  therapy
 
(Chowdhury,
  2014).
  Thus,
  understanding
  how
  this
  protein
  is
  controlled
  and
 
regulated
 by
 changes
 to
 its
 overall
 structure
 is
 important.
 
Other
  work
  in
  human
  cell
  lines,
  has
  also
  recently
  explored
  how
  TopBP1
 

 
 45
 
structure
 is
 controlled
 under
 different
 metabolic
 conditions
 to
 affect
 its
 function.
 
The
 SIRT1
 deacetylase
 is
 an
 important
 regulator
 of
 energy
 homeostasis,
 where
 its
 
activity
  is
  promoted
  by
  glucose
  starvation
  or
  caloric
  restriction
  but
  negatively
 
controlled
 by
 DNA
 damage
 and
 oxidative
 stress
 (Liu,
 2014).
 A
 screen
 identified
 that
 
the
  acetyltranferases
  P300/CBP
  acetylate
  TopBP1
  at
  the
  same
  residues
  where
 
SIRT1
 deacetylates
 TopBP1.
 They
 suggest
 a
 model
 where
 the
 active
 monomeric
 
form
 of
 TopBP1
 allows
 DNA
 replication
 and
 enhances
 the
 checkpoint;
 this,
 they
 
conclude,
 is
 accomplished
 by
 acetylation
 of
 TopBP1
 at
 several
 residues,
 the
 main
 
ones
 being
 K475,
 789,
 825.
 They
 found
 that
 active,
 acetylated
 TopBP1
 monomer
 
lead
  to
  increased
  binding
  to
  Treslin,
  resulting
  in
  increased
  cdc45
  loading
  and
 
subsequent
 DNA
 replication.
 Checkpoint
 response
 to
 HU
 is
 also
 positively
 affected
 
by
  acetylation
  in
  increasing
  TopBP1/Rad9
  association
  and
  ultimately
  Chk1
 
activation.
 Deacetylation
 led
 to
 TopBP1
 oligomerization
 and
 prevented
 its
 function
 
in
 both
 replication
 and
 checkpoint.
 
 
 
TopBP1’s
 role
 in
 checkpoint
 activation
 is
 as
 a
 scaffold
 and
 activator
 protein
 that
 
recruits
 checkpoint
 components
 to
 DNA,
 and
 together
 with
 these,
 activates
 ATR
 
kinase
 ability.
 TopBP1
 contains
 an
 ATR
 Activating
 Domain
 (AAD)
 that
 when
 directly
 
contacting
 ATR,
 activates
 its
 kinase
 ability
 (Kumagai,
 2006).
 Although
 the
 full-­‐length
 
TopBP1
 protein
 is
 a
 poor
 ATR
 activator
 in
 the
 absence
 of
 DNA,
 a
 small
 fragment
 of
 
the
 protein
 containing
 the
 AAD
 of
 TopBP1
 is
 a
 potent
 activator
 of
 ATR
 in
 solution
 
even
 in
 the
 absence
 of
 DNA
 (Kumagai,
 2006).
 However,
 the
 exact
 mechanism
 by
 
which
 TopBP1’s
 AAD
 is
 revealed
 to
 make
 contact
 with
 ATR
 on
 DNA
 is
 not
 fully
 
understood.
 
 Data
 has
 shown
 that
 TopBP1’s
 ability
 to
 bind
 to
 Rad9
 is
 important
 for
 

 
 46
 
its
 ability
 to
 make
 contact
 with
 ATR-­‐ATRIP
 (Lee,
 2007).
 
 Experiments
 show
 that
 
BRCT
 1-­‐2
 of
 TopBP1
 mediate
 binding
 between
 Rad9
 and
 TopBP1
 and
 that
 a
 deletion
 
mutant
 in
 these
 domains
 prevents
 TopBP1-­‐911
 complex
 association
 to
 ATR/ATRIP
 
on
 the
 DNA,
 which
 ultimately
 prevents
 checkpoint
 activation
 (Lee,
 2007).
 
 They
 
speculate
  that
  binding
  of
  TopBP1
  to
  the
  911
  complex
  on
  DNA
  triggers
  a
 
conformational
 change
 in
 TopBP1
 that
 allows
 exposure
 of
 its
 AAD
 to
 ATR-­‐ATRIP.
 
 
Here
  we
  identify
  a
  TopBP1
  mutant
  that
  is
  able
  to
  cause
  an
  increase
  in
  ATR
 
activation,
 even
 in
 the
 absence
 of
 any
 DNA,
 and
 explore
 the
 possibility
 that
 this
 
phenotype
 is
 due
 to
 changes
 in
 its
 structure
 that
 allow
 the
 AAD
 to
 be
 exposed
 
without
 the
 need
 for
 TopBP1
 to
 be
 on
 DNA.
 Hence,
 this
 mutant
 seems
 to
 be
 stuck
 in
 
a
 conformation
 that
 mimics
 the
 conformation
 TopBP1
 normally
 undergoes
 when
 it
 
is
 serving
 in
 its
 role
 in
 activating
 the
 checkpoint.
 
 

 

   
 

 
 47
 
4.2
 Results
 

 
A
 TopBP1
 4/5WR
 mutant
 leads
 to
 increased
 checkpoint
 signaling
 

 
We
 were
 interested
 in
 the
 role
 the
 BRCT4-­‐5
 region
 of
 TopBP1
 plays
 in
 ATR
 
activation.
 
 To
 study
 this,
 we
 decided
 to
 introduce
 point
 mutations
 in
 a
 conserved
 
tryptophan
 residue
 in
 each
 BRCT
 domain
 (W603
 in
 BRCT4
 and
 W708
 in
 BRCT5)
 to
 
change
 them
 into
 arginine
 to
 destabilize
 these
 domains.
 For
 the
 rest
 of
 the
 study,
 
this
 mutant
 will
 be
 referred
 to
 as
 BRCT4/5
 WR
 mutant.
 We
 then
 decided
 to
 test
 the
 
functional
 significance
 of
 these
 mutations
 in
 checkpoint
 signaling
 using
 egg
 extracts.
 
To
 do
 this,
 Xenopus
 egg
 extracts
 were
 supplemented
 with
 sperm
 chromatin,
 myc-­‐
tagged
  full-­‐length
  either
  wild
  type
  or
  with
  BRCT
  4/5
  WR
  mutant
  IVT
  TopBP1
 
protein
 and
 optionally
 aphidicolin
 (10uM)
 to
 inhibit
 polymerase
 activity.
 Reactions
 
were
 incubated
 for
 30
 minutes
 at
 room
 temperature
 and
 a
 sample
 of
 the
 whole
 
reaction
 was
 taken
 and
 processed
 for
 Western
 blot.
 Surprisingly,
 we
 see
 an
 over
 
fourfold
  increase
  in
  ATR
  activation,
  as
  measured
  by
  increased
  Chk1
 
phosphorylation,
 when
 the
 BRCT
 4/5
 WR
 mutant
 is
 added,
 with
 a
 slight
 increase
 
observed
 even
 in
 conditions
 where
 no
 DNA
 damage
 is
 present
 versus
 wild
 type
 
(Figure
 8A).
 
 To
 test
 to
 see
 if
 these
 mutations
 have
 any
 effect
 on
 DNA
 replication
 as
 
an
 increase
 in
 origin
 firing
 can
 also
 lead
 to
 an
 increase
 in
 ATR
 activation,
 we
 used
 
egg
 extracts
 supplemented
 with
 sperm
 chromatin,
 myc-­‐tagged
 TopBP1
 full-­‐length
 
wild
  type
  or
  with
  BRCT
  4/5
  WR
  mutant
  and
  radiolabeled
  dATP
  P
32

  to
  allow
 
detection
 of
 newly
 synthesized
 DNA
 and
 looked
 for
 any
 changes
 in
 signal
 during
 the
 
first
 30
 minutes.
 We
 find
 that
 BRCT4/5
 WR
 does
 not
 affect
 replication
 when
 added
 

 
 48
 
under
  the
  same
  conditions
  as
  Figure
  8A
  above,
  showing
  addition
  of
  TopBP1
 
BRCT4/5
 WR
 mutant
 does
 not
 lead
 to
 increased
 replication
 at
 early
 origins
 (Figure
 
8B).
 
 Thus,
 an
 increase
 in
 DNA
 replication
 does
 not
 explain
 the
 strong
 increase
 in
 
checkpoint
 activation
 phenotype
 we
 observed.
 
Because
  we
  saw
  an
  increase
  in
  ATR
  activation
  when
  we
  added
  TopBP1
 
BRCT4/5
 WR
 mutant
 to
 extract,
 we
 wanted
 to
 find
 an
 explanation
 for
 this
 ability.
 
First,
 we
 reasoned
 that
 this
 might
 be
 due
 to
 an
 enhanced
 ability
 to
 bind
 sites
 of
 
replication
 stress.
 To
 test
 this
 possibility,
 Xenopus
 egg
 extracts
 were
 supplemented
 
with
  sperm
  chromatin,
  myc-­‐tagged
  full-­‐length
  wild
  type
  or
  BRCT
  4/5
  WR
  IVT
 
TopBP1
 protein,
 and
 optionally
 aphidicolin
 (10uM
 or
 300uM)
 as
 indicated
 to
 inhibit
 
polymerase
  activity.
  Reactions
  were
  incubated
  again
  for
  30
  minutes,
  same
  as
 
conditions
 above,
 at
 room
 temperature.
 After
 incubation,
 the
 sperm
 chromatin
 was
 
isolated
 and
 chromatin
 bound
 proteins
 analyzed
 by
 Western
 blot.
 We
 see
 that
 the
 
BRCT4/5
 WR
 mutant
 does
 not
 bind
 better
 to
 stalled
 forks
 compared
 to
 wild
 type
 
(Figure
 9A).
 We
 therefore
 conclude
 that
 binding
 better
 to
 stalled
 forks
 is
 not
 the
 
reason
 4/5
 WR
 mutant
 hyper-­‐activates
 ATR.
 
 To
 try
 to
 determine
 if
 the
 increase
 in
 
ATR
 signaling
 was
 due
 to
 enhanced
 checkpoint
 complex
 assembly,
 we
 looked
 at
 
whether
 addition
 of
 excess
 BRCT
 4/5
 WR
 mutant
 TopBP1
 was
 able
 to
 increase
 
recruitment
  of
  checkpoint
  complex
  components
  to
  chromatin,
  since
  TopBP1
  is
 
required
 for
 the
 recruitment
 of
 Rad17
 and
 Rad9
 to
 chromatin
 when
 damage
 is
 
present.
 We
 see
 that
 when
 BRCT
 4/5
 WR
 mutant
 TopBP1
 is
 added,
 no
 increase
 in
 
checkpoint
 complex
 components,
 either
 Rad
 17
 or
 Rad9,
 in
 either
 low
 or
 high
 
damage
 conditions
 is
 seen
 (Figure
 9A).
 To
 confirm
 this
 result,
 we
 looked
 at
 the
 

 
 49
 
ability
 of
 the
 4/5WR
 mutant
 to
 bind
 the
 phosphorylated
 Rad9
 tail.
 To
 do
 this,
 we
 
used
 in
 vitro
 CK2-­‐phosphorylated
 Rad9
 tail,
 previously
 purified
 from
 E.
 coli,
 and
 
incubated
 this
 with
 either
 wild
 type
 or
 4/5
 WR
 TopBP1
 IVT
 proteins
 at
 30C
 for
 one
 
hour,
 after
 this
 incubation
 the
 above
 reactions
 were
 allowed
 to
 bind
 to
 glutathione
 
sepharose
 beads
 at
 4C
 for
 one
 hour,
 samples
 washed,
 and
 proteins
 detected
 by
 
Western
 blot.
 We
 see
 that
 BRCT
 4/5
 WR
 mutant
 TopBP1
 binds
 less
 well
 than
 WT
 to
 
purified
  phosphorylated
  Rad9
  tail
  (Figure
  9B;
  Experiment
  performed
  by
  Matt
 
Michael).
 
 Thus,
 the
 mechanism
 of
 enhanced
 increased
 checkpoint
 signaling
 is
 likely
 
not
 due
 to
 increase
 checkpoint
 complex
 assembly.
 

 
BRCT4/5
 WR
 does
 not
 hyper-­‐accumulate
 on
 chromatin
 in
 the
 absence
 of
 ATR
 
activity
 and
 can
 activate
 ATR
 in
 the
 absence
 of
 DNA
 damage
 

 
As
 shown
 in
 Chapter
 3,
 Figure
 8B,
 ATR
 activity
 limits
 TopBP1
 chromatin
 
association
 so
 we
 therefore
 wanted
 to
 know
 the
 BRCT4/5
 WR
 mutant
 behaved
 in
 a
 
similar
 way.
 Sperm
 chromatin
 was
 added
 to
 egg
 extract,
 supplemented
 with
 either
 
wild-­‐type
 or
 4/5WR
 mutant
 TopBP1
 and
 the
 samples
 were
 optionally
 treated
 with
 
chemical
 inhibitors
 of
 either
 ATM
 or
 ATR
 (ATMi
 and
 ATRi,
 respectively)
 and
 EcoRI
 
to
 produce
 DSBs.
 
 After
 incubation
 the
 chromatin
 was
 isolated
 and
 probed
 for
 
TopBP1
 and
 Orc2,
 as
 a
 loading
 control.
 
 WT
 TopBP1
 shows
 an
 increase
 in
 chromatin
 
binding
 in
 response
 to
 double
 strand
 breaks,
 and
 this
 chromatin
 accumulation
 is
 
further
 enhanced
 in
 the
 presence
 of
 an
 ATR
 inhibitor
 (Figure
 10).
 
 In
 contrast,
 we
 
see
 that
 BRCT
 4/5
 WR
 mutant
 TopBP1
 does
 not
 hyper-­‐accumulate
 in
 the
 presence
 
of
 an
 ATR
 inhibitor
 and
 again
 see
 more
 clearly
 that
 no
 DNA
 damage
 is
 required
 to
 

 
 50
 
see
 an
 enhanced
 ATR
 activation,
 as
 seen
 by
 phosphorylated
 Chk1
 signaling.
 
 This
 
suggests,
 that
 although
 ATR
 activity
 normally
 inhibits
 the
 amount
 of
 wild
 type
 
TopBP1
 on
 chromatin,
 the
 BRCT4/5WR
 mutant
 does
 not
 respond
 to
 this
 inhibition
 
and
 seems
 to
 act
 in
 a
 manner
 that
 does
 not
 require
 its
 presence
 on
 chromatin
 to
 
activate
 the
 checkpoint.
 
 
 

 
The
 4/5
 WR
 mutant
 is
 able
 activate
 ATR
 in
 the
 absence
 of
 DNA
 
 

 

  Since
 we
 see
 that
 BRCT
 4/5
 WR
 mutant
 does
 not
 show
 enhanced
 chromatin
 
association
 even
 when
 ATR
 activity
 is
 inhibited,
 checkpoint
 complex
 assembly,
 or
 
Rad9
 binding,
 we
 wondered
 if
 DNA
 was
 even
 necessary
 for
 the
 ability
 of
 the
 4/5
 WR
 
mutant
  to
  hyperactivate
  ATR.
  For
  this,
  Xenopus
  egg
  extracts
  were
  incubated
 
optionally
 with
 linearized
 plasmid
 DNA
 to
 introduce
 DSB’s
 as
 a
 positive
 control,
 or
 
simply
 supplemented
 with
 myc-­‐tagged
 full-­‐length
 wild
 type
 or
 4/5WR
 mutant
 IVT
 
TopBP1
 proteins
 with
 no
 added
 DNA
 at
 all.
 After
 room
 temperature
 incubation
 at
 
indicated
 time
 points,
 samples
 were
 taken
 and
 processed
 for
 Western
 blots.
 We
 see
 
TopBP1
 BRCT4/5
 WR
 mutant
 is
 in
 fact
 able
 to
 activate
 ATR
 independently
 of
 any
 
DNA,
 but
 only
 after
 around
 60
 minutes,
 where
 previously
 we
 saw
 a
 strong
 effect
 as
 
early
 as
 30
 minutes
 when
 DNA
 was
 present
 (Figure
 11).
 
 

  We
 therefore
 decided
 to
 see
 if
 by
 inhibiting
 de-­‐phosphorylation
 we
 would
 be
 
better
  able
  to
  study
  the
  phenotype
  of
  the
  TOPBP1
  mutant
  without
  DNA
  we
 
observed.
  We
  used
  Xenopus
  egg
  extracts
  incubated
  optionally
  with
  linearized
 
plasmid
 DNA
 to
 introduce
 DSB’s,
 an
 ATR
 inhibitor,
 and/or
 okadaic
 acid
 (OA)
 at
 a
 

 
 51
 
concentration
 that
 preferentially
 inhibits
 the
 PP2A
 phosphatase,
 as
 indicated.
 After
 
a
 30
 minute
 incubation,
 samples
 were
 processed
 for
 Western
 blot.
 We
 see
 that
 in
 
the
 presence
 of
 OA,
 the
 checkpoint
 response
 is
 greatly
 increased
 after
 linearized
 
plasmid
 is
 added,
 thus
 this
 shows
 that
 this
 method
 can
 allow
 us
 to
 look
 at
 the
 slight
 
changes
 in
 checkpoint
 activation
 the
 mutant
 exhibits
 in
 a
 more
 consistent
 manner
 
(Figure
 12A).
 
 We
 then
 next
 tested
 wild
 type
 and
 BRCT
 4/5
 WR
 mutant
 IVT
 proteins
 
under
 the
 same
 conditions
 and
 experiment
 set
 up
 as
 above
 and
 looked
 for
 any
 
changes.
 Like
 we
 saw
 previously,
 OA
 leads
 to
 a
 similar
 increase
 in
 phosphorylated
 
Chk1
 in
 the
 wild
 type
 and
 mutant
 after
 damage,
 but
 the
 mutant
 showed
 nearly
 a
 
60%
 increase
 in
 signal
 in
 the
 absence
 of
 any
 DNA
 at
 30
 minutes,
 a
 lot
 sooner
 than
 
without
 OA
 we
 saw
 previously
 after
 an
 hour
 (Figure
 12B).
 First,
 this
 suggests
 that
 
although
 DNA
 helps
 amplify
 the
 signal
 by
 providing
 a
 scaffold
 for
 full
 checkpoint
 
activation,
 it
 is
 not
 absolutely
 necessary
 for
 checkpoint
 activation
 in
 this
 case,
 as
 the
 
mutant
  does
  not
  require
  DNA
  for
  its
  effect
  in
  ATR
  activation.
  This
  result
  is
 
significant
 since
 it
 shows
 that
 the
 BRCT4/5WR
 unlike
 wild
 type
 is
 able
 to
 directly
 
activate
 the
 checkpoint
 in
 the
 absence
 of
 any
 DNA.
 Second,
 this
 result
 suggests
 that
 
the
 effect
 of
 the
 BRCT4/5WR
 mutant
 in
 ATR
 activation
 likely
 has
 something
 to
 do
 
with
 a
 conformational
 change
 when
 compared
 to
 wild
 type.
 Evidence
 that
 the
 4/5
 
mutant
 is
 conformationally
 different
 than
 the
 wild-­‐type
 can
 be
 gained
 from
 the
 fact
 
the
 mutant
 protein
 does
 not
 bind
 Rad
 9
 as
 well
 as
 the
 wild
 type.
 
 We
 suspect
 that
 the
 
BRCT4/5
 WR
 mutant
 is
 locked
 in
 a
 conformation
 that
 the
 wild
 type
 protein
 only
 
assumes
 when
 it
 is
 on
 the
 DNA
 to
 allow
 it
 to
 activate
 ATR.
 
 
 

  To
 gain
 further
 evidence
 that
 the
 BRCT4/5
 WR
 mutant
 is
 conformationally
 

 
 52
 
different
 than
 the
 wild-­‐
 type
 protein,
 we
 asked
 whether
 the
 BRCT
 4/5
 WR
 mutant
 
shows
  a
  different
  phosphorylation
  pattern
  than
  wild-­‐type
  in
  response
  to
  ATR
 
activity.
 
 To
 test
 this,
 Xenopus
 egg
 extracts
 were
 supplemented
 with
 TopBP1
 either
 
wild-­‐type
 or
 indicated
 mutant
 and
 incubated
 with
 or
 without
 linearized
 plasmid
 
DNA
 to
 introduce
 a
 DSB
 for
 checkpoint
 activation.
 After
 a
 30
 minute
 incubation,
 
samples
 were
 resolved
 on
 a
 SDS
 gel
 where
 the
 conditions
 were
 optimized
 to
 detect
 a
 
phosphorylation
 shift
 and
 prepared
 for
 Western
 blot.
 Wild
 type
 TopBP1
 shows
 
damage
  dependent
  shift,
  in
  contrast,
  BRCT2
  265WR
  mutant
  does
  not
  get
 
phosphorylated
 after
 damage.
 This
 could
 be
 due
 to
 its
 inability
 to
 bind
 to
 chromatin
 
and
 get
 phosphorylated
 there
 or
 because
 its
 in
 a
 state
 that
 covers
 up
 the
 sites
 that
 
get
  phosphorylated
  after
  damage.
  TopBP1
  BRCT4/5WR
  lacks
  some
  damage
 
independent
  phosphorylation,
  but
  still
  retains
  some
  damage
  dependent
 
phosphorylation,
 as
 seen
 by
 the
 fact
 that
 it
 migrates
 faster
 than
 wild-­‐type
 under
 no
 
damage
  conditions
  although
  nothing
  close
  to
  the
  wild
  type
  (Figure
  13).
  This
 
suggests
 that
 the
 mutations
 on
 BRCT4/5
 WR
 make
 it
 unable
 to
 get
 easily
 modified
 
after
 damage,
 implying
 a
 conformational
 change
 where
 the
 ATR
 phosphor-­‐acceptor
 
sites
 are
 hidden.
 
These
  data
  suggest
  that
  the
  4/5
  WR
  mutant
  assumes
  a
  very
  different
 
conformation
  than
  the
  wild-­‐type
  protein.
   
  How
  might
  this
  be
  happening?
  As
 
mentioned
 earlier,
 previous
 work
 has
 shown
 that
 TopBP1
 can
 self-­‐associate
 and
 
that
  self-­‐association
  regulates
  its
  function.
  We
  wondered
  whether
  perhaps
  the
 
conformation
 difference
 between
 wild-­‐type
 and
 4/5
 WR
 is
 due
 to
 changes
 in
 self-­‐
association.
  Thus,
  we
  decided
  to
  test
  whether
  there
  is
  any
  difference
  in
  self-­‐

 
 53
 
association
 between
 wild-­‐type
 and
 4/5
 WR
 mutant.
 
 
 To
 do
 this,
 myc-­‐tagged
 and
 his-­‐
tagged
 full
 length
 TopBP1
 either
 wild
 type
 or
 BRCT4/5
 WR
 mutant
 were
 produced
 
by
 IVT
 and
 then
 mixed
 and
 incubated
 for
 one
 hour
 at
 room
 temperature
 to
 allow
 
oligomerization.
 Beads
 coupled
 with
 and
 without
 his-­‐antibodies
 were
 prepared
 and
 
then
 these
 were
 combined
 with
 binding
 buffer
 and
 reactions
 above
 for
 2hrs
 at
 4C
 
with
 rotation
 for
 immunoprecipitation,
 then
 after
 incubation
 washed
 and
 samples
 
processed
  for
  Western
  blot.
  A
  preliminary
  pull-­‐down
  experiment
  of
  his
  tagged
 
proteins
 (either
 wildtype
 or
 BRCT
 4/5
 WR
 mutant
 as
 described)
 show
 that
 although
 
wild
  type
  TopBP1
  is
  capable
  of
  forming
  oligomers
  with
  itself,
  BRCT4/5
  WR
 
mutations
 lead
 to
 an
 enhancement
 in
 this
 oligomerization
 ability
 (Figure
 14).
 
 Thus,
 
it
 seems
 possible
 that
 the
 phenotype
 of
 the
 mutant
 can
 be
 explained
 by
 its
 ability
 to
 
better
 oligomerize
 such
 that
 two
 proteins
 binding
 together
 can
 reveal
 the
 AAD.
 

 

   
 

 
 54
 
4.3
 Discussion
 
 

 

  Although
 we
 still
 don’t
 completely
 understand
 the
 full
 details
 of
 how
 TopBP1
 
is
 controlled
 during
 a
 checkpoint
 response
 and
 what
 conformational
 changes
 it
 
normally
  undergoes
  during
  and
  after
  ATR
  activation,
  the
  study
  of
  the
  4/5WR
 
mutant
 seems
 promising
 in
 allowing
 us
 to
 gain
 a
 clearer
 understanding
 of
 this
 event.
 
Our
 initial
 observation
 that
 the
 BRCT
 4/5
 WR
 mutant
 led
 to
 a
 significant
 increase
 in
 
ATR
 activation
 after
 damage
 in
 response
 to
 stalled
 forks
 led
 us
 to
 want
 to
 study
 it
 
further.
 
 We
 saw
 that
 when
 we
 add
 BRCT
 4/5
 WR
 mutant
 to
 extract,
 it
 seems
 that
 
neither
 a
 great
 increase
 in
 DNA
 replication
 nor
 an
 increase
 in
 checkpoint
 complex
 
assembly
 were
 able
 to
 explain
 the
 phenotype.
 In
 fact,
 we
 see
 that
 the
 mutant
 seems
 
to
 bind
 less
 readily
 to
 the
 phosphorylated
 Rad9
 tail,
 which
 is
 the
 main
 binding
 site
 
between
 TopBP1-­‐911
 for
 checkpoint
 complex
 assembly,
 in
 pull
 down
 experiments.
 
 
 
Typically,
 when
 we
 add
 an
 ATR
 inhibitor
 to
 extract,
 we
 see
 a
 big
 increase
 in
 
TopBP1
 chromatin
 association
 under
 normal
 conditions,
 double-­‐strand
 breaks,
 or
 
stalled
 forks,
 suggesting
 that
 ATR
 activity
 normally
 controls
 the
 amount
 of
 TopBP1
 
on
 chromatin,
 yet
 we
 lack
 to
 see
 this
 hyper-­‐accumulation
 with
 the
 BRCT4/5
 WR
 
mutant.
 Importantly,
 we
 see
 that
 the
 mutant
 is
 able
 to
 activate
 ATR
 even
 in
 the
 
absence
 of
 any
 DNA.
 Whereas
 we
 see
 ATR
 activation
 by
 the
 mutant
 after
 around
 an
 
hour
 without
 any
 DNA
 present,
 when
 we
 add
 OA
 to
 inhibit
 phosphatases,
 we
 see
 an
 
earlier
 activation
 at
 30
 minutes.
 Additionally,
 when
 we
 look
 at
 the
 phosphorylation
 
status
 of
 the
 mutant
 in
 comparison
 to
 wild
 type,
 we
 see
 there
 is
 a
 loss
 in
 post-­‐
translational
 modification
 after
 damage.
 Altogether,
 these
 data
 suggest
 that
 the
 4/5
 
WR
 mutant
 is
 in
 a
 conformation
 or
 state
 that
 mimics
 the
 physiological
 state
 TopBP1
 

 
 55
 
is
 in
 when
 ATR
 activity
 is
 high.
 
The
 available
 data
 thus
 suggest
 a
 couple
 of
 possibilities
 for
 how
 the
 mutant
 
can
 lead
 to
 an
 increase
 in
 ATR
 activation:
 (1)
 Model
 1-­‐
 transition
 from
 monomer
 to
 
oligomer
 and
 (2)
 Model
 2-­‐
 lack
 of
 negative
 feedback
 by
 ATR.
 
 For
 Model
 1
 (monomer
 
versus
  oligomer)
  to
  be
  correct,
  we
  would
  expect
  the
  wild-­‐type
  TopBP1
  to
  be
 
monomeric
  in
  solution.
   
  The
  monomeric
  form
  would
  have
  a
  hidden
  AAD
  and
 
exposed
 ATR
 phosphor-­‐acceptor
 sites.
 
 Perhaps
 the
 AAD,
 in
 this
 case,
 would
 be
 
hidden
 through
 intra-­‐molecular
 interactions.
 During
 a
 checkpoint
 response,
 the
 wild
 
type
 protein
 transitions
 from
 monomer
 to
 oligomer
 only
 when
 it
 is
 bound
 to
 DNA.
 
By
 contrast,
 in
 solution
 4/5
 WR
 is
 oligomeric.
 
 The
 oligomeric
 form
 has
 an
 exposed
 
AAD
 and
 hidden
 ATR
 phosphor-­‐acceptor
 sites.
 
 To
 accept
 this
 model,
 it
 will
 be
 
necessary
  to
  confirm,
  with
  better
  experiments,
  that
  4/5
  WR
  does
  indeed
  self-­‐
associate
 more
 readily
 than
 WT.
 
 If
 this
 is
 the
 case,
 future
 experiments
 can
 be
 done
 
to
 determine
 the
 domains
 within
 the
 4/5
 WR
 mutant
 that
 are
 required
 for
 self-­‐
association.
 Then,
 it
 will
 be
 possible
 to
 identify
 mutations
 that
 prevent
 the
 4/5
 WR
 
mutant
 from
 self-­‐associating
 and
 ask
 if
 these
 mutants
 can
 still
 activate
 ATR
 in
 a
 
DNA-­‐independent
 manner.
 These
 mutations
 could
 then
 be
 made
 in
 the
 wild
 type
 
and
 used
 to
 ask
 if
 it
 too
 can
 still
 activate
 ATR
 during
 a
 checkpoint
 response,
 to
 show
 
that
 dimerization
 is
 essential
 for
 ATR
 activation
 by
 TopBP1.
 
 
For
 model
 2
 (negative
 feedback
 by
 ATR),
 it
 can
 be
 possible
 that
 the
 wild
 type
 
protein
  can
  indeed
  activate
  ATR
  in
  solution,
  but
  it
  is
  then
  immediately
 
phosphorylated
 by
 ATR
 to
 prevent
 further
 activation
 through
 a
 negative
 feedback
 
loop.
 If
 this
 is
 the
 case,
 the
 4/5
 WR
 mutant
 cannot
 be
 phosphorylated
 by
 ATR,
 and
 

 
 56
 
thus
 there
 is
 no
 negative
 feedback,
 and
 ATR
 gets
 hyper-­‐activated.
 To
 test
 this
 model,
 
it
 would
 be
 necessary
 to
 identify
 the
 ATR
 phospho-­‐acceptor
 sites
 in
 TopBP1
 and
 
mutate
 them.
 Then
 the
 question
 can
 be
 asked
 if
 the
 ATR
 phosphor-­‐acceptor
 mutant
 
can
 activate
 ATR
 in
 a
 DNA-­‐independent
 manner.
 Irrespective
 of
 which
 of
 these
 two
 
models
  proves
  to
  be
  correct,
  the
  study
  of
  this
  mutant
  will
  allow
  a
  better
 
understanding
 of
 how
 TopBP1
 is
 controlled
 during
 its
 role
 in
 ATR
 activation.
 

   
 

 
 57
 

 
Figure
 8.
 TopBP1
 4/5WR
 mutant
 leads
 to
 an
 enhanced
 checkpoint
 response
 
that
 cannot
 be
 explained
 by
 an
 increase
 in
 DNA
 replication.
 (A)
 Xenopus
 egg
 
extracts
 were
 supplemented
 with
 sperm
 chromatin,
 myc-­‐tagged
 full-­‐length
 either
 
wild
 type
 or
 with
 the
 4/5
 WR
 mutant
 IVT
 TopBP1
 protein
 or
 IVT
 “blank”
 lysate
 
(negative
 control),
 and
 optionally
 aphidicolin
 (10uM)
 to
 inhibit
 polymerase
 activity.
 
Reactions
 were
 incubated
 for
 30
 minutes
 at
 room
 temperature
 and
 sample
 of
 whole
 
reaction
 was
 taken
 and
 processed
 for
 Western
 blots.
 
 Checkpoint
 activation
 was
 
measured
 by
 looking
 at
 amount
 of
 phosphorylated
 Chk1
 using
 antibodies
 specific
 
for
  serine
  345-­‐
  phosphorylated
  Chk1
  (Chk1-­‐P)
  and
  Chk1
  (as
  loading
  control).
 
TopBP1
 was
 detected
 using
 Mab
 9E10,
 which
 recognizes
 the
 myc
 tag.
 (B)
 Xenopus
 
egg
 extracts
 were
 supplemented
 with
 sperm
 chromatin,
 myc-­‐tagged
 TopBP1
 full-­‐
length
 wild
 type
 or
 with
 the
 4/5
 WR
 mutant
 and
 radiolabeled
 dATP
 p32
 to
 allow
 
detection
 of
 newly
 synthesized
 DNA.
 After
 indicated
 times,
 samples
 were
 collected,
 
treated
 with
 proteinase
 K,
 to
 remove
 chromatin
 associated
 proteins,
 for
 1
 hour
 at
 
37C
  and
  then
  resolved
  on
  an
  agarose
  gel.
   
  Gel
  was
  then
  dried,
  exposed
  to
  a
 
phosphoscreen,
 and
 developed.
 
 
 
Chk1-P!
Chk1!
blank!
WT!
TopBP1!
Aphidicolin!
myc-TopBP1!
-        +! -        +! -        +! -!
4/5 WR!
TopBP1!
A!
Figure 4!
E!
10! 15! 20! 25! 30! 35! 10! 15! 20! 25! 30! 35! (min.)!
WT! W603R,W708R!
32
P!
C!
GST-Rad9-T+!
TopBP1!
BOUND!
INPUT!
WT!
W603R!
W708R!
A!
FL TopBP1 + ssDNA!
BOUND!
INPUT!
-     +! RPA:!
WT!
-     +! -     +!
W603R!
W708R!
W265R!
W603R!
W708R!
D!
Chk1-P!
Chk1!
WT!
Aphidicolin!
myc-TopBP1!
-        +! -        +!
W603R!
W708R!
relative amount!
of Chk1-P signal!
1! 13! 3! 53!
TopBP1!
B!
myc-TopBP1!
RPA (32)!
Orc2!
isolated chromatin!
WT!
W603R!
W708R!
TopBP1
-
XEE + aphid.!
W265R!
myc-TopBP1!
total extract!
Chk1-P!
Chk1!
B!
WT TopBP1! 4/5 WR TopBP1!

 
 58
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure
 9.
 TopBP1
 BRCT4/5
 WR
 mutant
 does
 not
 enhance
 checkpoint
 complex
 
assembly.
 (A)
 Xenopus
 egg
 extracts
 were
 supplemented
 with
 sperm
 chromatin,
 
myc-­‐tagged
 full-­‐length
 wild
 type
 or
 with
 BRCT4/5
 WR
 IVT
 TopBP1
 protein,
 and
 
optionally
 aphidicolin
 (10uM
 or
 300uM)
 as
 indicated
 to
 inhibit
 polymerase
 activity.
 
Reactions
 were
 incubated
 for
 30
 minutes
 at
 room
 temperature.
 After
 incubation,
 the
 
sperm
 chromatin
 was
 isolated
 by
 layering
 it
 on
 top
 of
 30%
 sucrose
 +
 NIB
 (refer
 to
 
Materials
 and
 Methods
 for
 recipe)
 solution,
 spun
 down,
 and
 washed
 three
 times
 
with
 NIB
 and
 analyzed
 by
 Western
 blot.
 
 Chromatin
 bound
 proteins
 were
 then
 
probed
 with
 specific
 antibodies:
 Mab
 9E10,
 which
 recognizes
 the
 myc
 tag,
 Rad17,
 
Rad9,
 RPA32,
 Orc2
 (as
 loading
 control).
 (B)
 Myc-­‐tagged,
 full-­‐length
 TopBP1
 either
 
wild
 type
 or
 indicated
 point
 mutations
 were
 produced
 by
 IVT
 and
 then
 mixed
 with
 
purified
 GST-­‐Rad9T
 previously
 phosphorylated
 by
 CK2
 and
 incubated
 for
 one
 hour
 
at
 30C.
 Beads
 coupled
 with
 GST-­‐antibodies
 were
 prepared
 and
 then
 these
 were
 
combined
 with
 binding
 buffer
 and
 reactions
 above
 for
 one
 hour
 at
 4C
 with
 rotation.
 
After
  incubation,
  beads
  were
  pelleted
  by
  centrifugation,
  washed,
  eluted,
  and
 
proteins
 detected
 by
 Western
 blot.
 
 The
 TopBP1
 fragments
 were
 detected
 anti-­‐GST
 
antibodies.
 
 
 

 

 
 59
 

 

 

 

   
 
A!
!"#$%&$
'()*)%$
!"#$+$
(!,-$
!)"$.-$
$$/$$$$$$$$$%/$$$$$$$.//$$$$$$$$$$/$$$$$$$$$$$%/$$$$$$$.//$$$$$$01$")2$$
3'$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$14'"5'$
GST-Rad9-T+!
FL TopBP1!
BOUND!
INPUT!
WT!
!
4/5 WR!
B!
A!
!"#$%&$
'()*)%$
!"#$+$
(!,-$
!)"$.-$
$$/$$$$$$$$$%/$$$$$$$.//$$$$$$$$$$/$$$$$$$$$$$%/$$$$$$$.//$$$$$$01$")2$$
3'$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$14'"5'$
GST-Rad9-T+!
FL TopBP1!
BOUND!
INPUT!
WT!
!
4/5 WR!
B!

 
 60
 

 

 

 

 
Figure
 10.
 TopBP1
 BRCT4/5
 WR
 mutant
 does
 not
 respond
 to
 ATR
 activity
 as
 
the
 wild
 type
 and
 shows
 no
 enhanced
 recruitment
 to
 sites
 of
 damage.
 
 Xenopus
 
egg
 extracts
 were
 supplemented
 with
 sperm
 chromatin,
 IVT
 myc-­‐tagged
 TopBP1
 or
 
4/5WR
 mutant,
 and
 incubated
 optionally
 with
 EcoRI
 to
 introduce
 DSB’s
 and
 an
 ATR
 
inhibitor,
 as
 indicated.
 After
 a
 30
 minute
 incubation,
 samples
 of
 total
 extract
 were
 
taken
 to
 look
 at
 checkpoint
 activation
 and
 the
 sperm
 chromatin
 was
 isolated
 by
 
layering
 it
 on
 top
 of
 30%
 sucrose
 +
 NIB
 (refer
 to
 Materials
 and
 Methods
 for
 recipe)
 
solution,
 spun
 down,
 and
 washed
 three
 times
 with
 NIB
 and
 samples
 processed
 and
 
analyzed
 by
 Western
 blot.
 
 Chromatin
 bound
 proteins
 were
 then
 detected
 with
 
specific
 antibodies:
 Mab
 9E10,
 which
 recognizes
 the
 myc
 tag
 and
 Orc2
 (as
 loading
 
control).
  Checkpoint
  activation
  was
  measured
  by
  looking
  at
  amount
  of
 
phosphorylated
  Chk1
  in
  total
  extract
  using
  antibodies
  specific
  for
  serine
  345-­‐
 
phosphorylated
 Chk1
 (Chk1-­‐P)
 and
 Chk1
 (as
 loading
 control).
 

 
Figure 5  !
DSB:!
ATRi:!
-!
-!
+!
-!
+!
+!
-!
-!
+!
-!
+!
+!
+OA!
Chk1-P!
(pSer345)!
D!
DSB:! -     +     -     +! -     +     -     +!
Chk1-P!
(pSer345)!
+OA! +OA!
WT!
W603R!
W708R!
TopBP1 + XEE +:!
E!
G!
Chk1-P!
(pSer345)!
mock XEE + OA:! TopBP1
-
XEE + OA:!
DSB:! -     +     -     +     -     +!
WT!
W603R!
W708R!
W265R!
W603R!
W708R!
-     +     -     +     -     +!
WT!
W603R!
W708R!
W265R!
W603R!
W708R!
F!
WT!
W603R!
W708R!
W265R!
W603R!
W708R!
-! mock!
TopBP1
-
XEE + IVT:!
TopBP1!
WT! W603,708R!
myc-TopBP1!
A!
ORC2!
myc-!
TopBP1!
chromatin-bound!
WT! W603,708R!
+DSB!
+ATRi!
+DSB! +DSB!
+ATRi!
+DSB!
total extract!
Chk1!
B!
Chk1-P!
(pSer345)!
myc-TopBP1 + XEE + SC:!
WT!
W603R!
W708R!
C!
WT!
W603R!
W708R!
Chk1-P!
(pSer345)!
Chk1!
buffer! + geminin!
myc-!
TopBP1!
DNA synthesis (a.u.)!
!"################################$%&#!'############################

 
 61
 
.
 
 

 

 
Figure
 11.
 
 TopBP1
 BRCT4/5
 WR
 mutant’s
 ability
 to
 activate
 the
 checkpoint
 is
 
not
  dependent
  on
  damage
  or
  DNA.
  Xenopus
  egg
  extracts
  were
  incubated
 
optionally
 with
 linearized
 plasmid
 DNA
 to
 introduce
 DSB’s
 as
 a
 positive
 control,
 or
 
simply
 supplemented
 with
 myc-­‐tagged
 full-­‐length
 wild
 type
 or
 4/5WR
 mutant
 IVT
 
TopBP1
 protein
 with
 no
 DNA.
 After
 room
 temperature
 incubation
 at
 indicated
 time
 
points,
 samples
 were
 taken
 and
 processed
 for
 Western
 blots.
 Checkpoint
 activation
 
was
 measured
 by
 looking
 at
 amount
 of
 phosphorylated
 Chk1
 in
 total
 extract
 using
 
antibodies
 specific
 for
 serine
 345-­‐
 phosphorylated
 Chk1
 (Chk1-­‐P)
 and
 Chk1
 (as
 
loading
 control).
 

 
!"########$%#########&%########!"#########$%########&%#######!"########$%########&%#########'()*+,-#
./01!#
#
#
12345!#
#####6#789#######################:;"<=######################<.#
!"#$%&'(
(
%)*+,-(
(
(
(
,.(/01-(

 
 62
 

 
Figure
 12.
 
 
 
 TopBP1
 BRCT4/5
 WR
 mutant
 ability
 to
 activate
 the
 checkpoint
 is
 
enhanced
 by
 the
 addition
 of
 a
 phosphatase
 inhibitor.
 (A)
 Xenopus
 egg
 extracts
 
were
  incubated
  optionally
  with
  linearized
  plasmid
  DNA
  to
  introduce
  DSB’s,
 
optionally
  an
  ATR
  inhibitor,
  and/or
  okadaic
  acid
  (OA)
  at
  a
  concentration
  that
 
preferentially
  inhibits
  the
  PP2A
  phosphatase,
  as
  indicated.
  After
  a
  30
  minute
 
incubation,
 samples
 were
 processed
 for
 Western
 blot.
 Checkpoint
 activation
 was
 
measured
  by
  looking
  at
  amount
  of
  phosphorylated
  Chk1
  in
  total
  extract
  using
 
antibodies
 specific
 for
 serine
 345-­‐
 phosphorylated
 Chk1
 (Chk1-­‐P).
 (B)
 Xenopus
 egg
 
extracts
  were
  supplemented
  with
  myc-­‐tagged
  full-­‐length
  wild
  type
  or
  4/5WR
 
mutant
  IVT
  TopBP1
  and
  incubated
  optionally
  with
  linearized
  plasmid
  DNA
  to
 
introduce
  DSB’s
  and
  optionally
  an
  ATR
  inhibitor
  and
  okadaic
  acid
  (OA)
  at
  a
 
concentration
 that
 preferentially
 inhibits
 the
 PP2A
 phosphatase,
 as
 indicated.
 After
 
a
 30
 minute
 incubation,
 samples
 were
 processed
 for
 Western
 blots.
 Checkpoint
 
activation
 was
 measured
 by
 looking
 at
 amount
 of
 phosphorylated
 Chk1
 in
 total
 
extract
 using
 antibodies
 specific
 for
 serine
 345-­‐
 phosphorylated
 Chk1
 (Chk1-­‐P).
 
Percent
 signal
 for
 Chk1-­‐P
 was
 calculated
 by
 assigning
 band
 with
 highest
 intensity
 
100%
 and
 used
 for
 normalizing
 rest
 of
 signals.
 

 

 
!"#$%&'
"''''''''('''''''''('''''''"'''''''''('''''''''''('
)*+,'
-./'01,2345'61478,9:'
(;)'
"''''''''"'''''''''(''''''''"'''''''''"''''''''''''('
B!
A!
"''''''''('''''''''"''''''''''''''(''''''''''''"''''''''''('''''''''''"''''''''''''(''''''''-./'
(;)' (;)'
'''''''<*''*;!/!&''''''''''''''''''''''''''''=>?<+'*;!/!&'
!"#$%&'
@'''''''''''ABC''''''''''''''''''''''''''''''D@C''''''&@@C'

 
 63
 

 

 
Figure
 13.
 TopBP1
 phosphorylation
 status
 in
 response
 to
 damage
 is
 different
 
in
 TopBP1
 mutants.
 Myc-­‐tagged
 wild
 type,
 W265R,
 4/5WR
 mutant
 IVT
 TopBP1
 
proteins
 were
 incubated
 in
 Xenopus
 egg
 extracts
 for
 30
 minutes
 in
 the
 presence
 of
 
linear
 DNA
 to
 introduce
 DSB.
 After
 a
 30
 minute
 incubation,
 samples
 were
 resolved
 
on
 an
 SDS
 gel
 where
 the
 conditions
 were
 optimized
 to
 detect
 a
 phosphorylation
 shift
 
and
 prepared
 for
 Western
 blot.
 Blots
 were
 probed
 with
 antibodies
 against
 Mab
 
9E10,
 which
 recognizes
 the
 myc
 tag.
 

 

 

 

 

 

 

 
Figure
 14.
 TopBP1
 BRCT4/5
 WR
 shows
 possible
 enhanced
 oligomerization.
 
Myc-­‐tagged
 and
 his-­‐tagged
 full
 length
 TopBP1
 either
 wild
 type
 or
 4/5
 WR
 mutant
 
were
  produced
  by
  IVT
  and
  then
  mixed
  and
  incubated
  for
  one
  hour
  at
  room
 
temperature.
 Beads
 coupled
 with
 and
 without
 his-­‐antibodies
 were
 prepared
 and
 
then
 these
 were
 combined
 with
 binding
 buffer
 and
 reactions
 above
 for
 1hr
 at
 room
 
temperature
 with
 rotation.
 After
 incubation,
 beads
 were
 pelleted
 by
 centrifugation,
 
washed,
 eluted,
 and
 proteins
 detected
 by
 Western
 blot.
 
 The
 TopBP1
 fragments
 
were
 detected
 using
 Mab
 9E10,
 which
 recognizes
 the
 myc
 tag.
 
 Input
 refers
 to
 1.6%
 
of
 the
 initial
 binding
 reaction.
 
!!"!!!!!!!!!!!#!!!!!!!!!!"!!!!!!!!!!!#!!!!!!!!!"!!!!!!!!!!!!!#!!!!!!!!!!"!!!!!!!!!!#!!!!!!!!!$%&!
!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'()&*+!
!!!!!!,'!!!!!!!!!!!!!!!!!!,-./0!!!!!!!!!!!12/!,0!!!!!!!!!!!!!!!,'!!!!!!!!
3!
!
!
!
!
!
'()4*+!
!
!
566!!!!!!!!!!!"!!!!!!!!!!!!!!!#!!!!!!!!!!!!!!#!!!!!!!!!!!!!#!!!!!!!!!!!!!!!!#!!!!!!!!!!!$%&!
3'78!!!!!!!3'08!!!!!!!!&9':!
&!
!
+ ssDNA!
BOUND!
INPUT!
-     +! RPA:!
WT!
-     +! -     +!
4/5 WR! 2/4/5 WR!
0! 1! 2! 3! 4! 5!
W603!W708! W265!
A!
BOUND!
INPUT!
WT!
+ RPA-ssDNA!
4/5 WR!
FL TopBP1!
B!
BOUND!
INPUT!
WT!
+ RPA-ssDNA!
!
4/5 WR!
BRCT4-5!
C!
!"#$%&'##
!"#()*#
+',#!-#./0120#$%&'##
+',#!-#./0120#()*#
##3##############4####################3############4#########$56#783891:6#
D!
!"#$%&'(&
!"""""""""#"""""""""!""""""""""#""""""""$%&""""""""""
'()*+"
"
"
,*%)-"
.-""""""""""""""/"012"
345"
"
345"
!"""""""""""""""""""""""""""""""""""""""""""""#"

 
 64
 
Bibliography
 

 

 
Ball,
 H.L.,
 and
 Cortez,
 D.
 (2005a).
 ATRIP
 oligomerization
 is
 required
 for
 ATR-­‐
dependent
 checkpoint
 signaling.
 J.
 Biol.
 Chem.
 280,
 31390–31396.
 

 
Ball,
 H.L.,
 Myers,
 J.S.,
 and
 Cortez,
 D.
 (2005b).
 ATRIP
 binding
 to
 replication
 protein
 A-­‐
single-­‐stranded
 DNA
 promotes
 ATR-­‐ATRIP
 localization
 but
 is
 dispensable
 for
 Chk1
 
phosphorylation.
 Mol.
 Biol.
 Cell
 16,
 2372–2381.
 

 
Ball,
 H.L.,
 Ehrhardt,
 M.R.,
 Mordes,
 D.A.,
 Glick,
 G.G.,
 Chazin,
 W.J.,
 and
 Cortez,
 D.
 (2007).
 
Function
 of
 a
 conserved
 checkpoint
 recruitment
 domain
 in
 ATRIP
 proteins.
 Mol.
 
Cell.
 Biol.
 27,
 3367–3377.
 

 
Bartkova,
 J.,
 Horejsí,
 Z.,
 Koed,
 K.,
 Krämer,
 A.,
 Tort,
 F.,
 Zieger,
 K.,
 Guldberg,
 P.,
 
Sehested,
 M.,
 Nesland,
 J.M.,
 Lukas,
 C.,
 et
 al.
 (2005).
 DNA
 damage
 response
 as
 a
 
candidate
 anti-­‐cancer
 barrier
 in
 early
 human
 tumorigenesis.
 Nature
 434,
 864–870.
 

 
Blackford,
 A.N.,
 Nieminuszczy,
 J.,
 Schwab,
 R.A.,
 Galanty,
 Y.,
 Jackson,
 S.P.,
 and
 
Niedzwiedz,
 W.
 (2015).
 TopBP1
 interacts
 with
 BLM
 to
 maintain
 genome
 stability
 
but
 is
 dispensable
 for
 preventing
 BLM
 degradation.
 Mol.
 Cell
 57,
 1133–1141.
 

 
Boos,
 D.,
 Yekezare,
 M.,
 and
 Diffley,
 J.F.X.
 (2013).
 Identification
 of
 a
 heteromeric
 
complex
 that
 promotes
 DNA
 replication
 origin
 firing
 in
 human
 cells.
 Science
 340,
 
981–984.
 

 
Burrows,
 A.E.,
 and
 Elledge,
 S.J.
 (2008).
 How
 ATR
 turns
 on:
 TopBP1
 goes
 on
 ATRIP
 
with
 ATR.
 Genes
 Dev.
 22,
 1416–1421.
 

 
Byun,
 T.S.,
 Pacek,
 M.,
 Yee,
 M.,
 Walter,
 J.C.,
 and
 Cimprich,
 K.A.
 (2005).
 Functional
 
uncoupling
 of
 MCM
 helicase
 and
 DNA
 polymerase
 activities
 activates
 the
 ATR-­‐
dependent
 checkpoint.
 Genes
 Dev.
 19,
 1040–1052.
 

 
Caldecott,
 K.W.
 (2003).
 Cell
 signaling.
 The
 BRCT
 domain:
 signaling
 with
 friends?
 
Science
 302,
 579–580.
 

 
Cescutti,
 R.,
 Negrini,
 S.,
 Kohzaki,
 M.,
 and
 Halazonetis,
 T.D.
 (2010).
 TopBP1
 functions
 
with
 53BP1
 in
 the
 G1
 DNA
 damage
 checkpoint.
 EMBO
 J.
 29,
 3723–3732.
 

 
Choi,
 J.-­‐H.,
 Lindsey-­‐Boltz,
 L.A.,
 and
 Sancar,
 A.
 (2007).
 Reconstitution
 of
 a
 human
 
ATR-­‐mediated
 checkpoint
 response
 to
 damaged
 DNA.
 Proc.
 Natl.
 Acad.
 Sci.
 U.S.A.
 
104,
 13301–13306.
 

 
Choi,
 J.-­‐H.,
 Lindsey-­‐Boltz,
 L.A.,
 and
 Sancar,
 A.
 (2009a).
 Cooperative
 activation
 of
 the
 
ATR
 checkpoint
 kinase
 by
 TopBP1
 and
 damaged
 DNA.
 Nucleic
 Acids
 Res.
 37,
 1501–
1509.
 

 
 65
 

 
Choi,
 J.-­‐H.,
 Sancar,
 A.,
 and
 Lindsey-­‐Boltz,
 L.A.
 (2009b).
 The
 human
 ATR-­‐mediated
 
DNA
 damage
 checkpoint
 in
 a
 reconstituted
 system.
 Methods
 48,
 3–7.
 

 
Choi,
 J.-­‐H.,
 Lindsey-­‐Boltz,
 L.A.,
 Kemp,
 M.,
 Mason,
 A.C.,
 Wold,
 M.S.,
 and
 Sancar,
 A.
 
(2010).
 Reconstitution
 of
 RPA-­‐covered
 single-­‐stranded
 DNA-­‐activated
 ATR-­‐Chk1
 
signaling.
 Proc.
 Natl.
 Acad.
 Sci.
 U.S.A.
 107,
 13660–13665.
 

 
Chowdhury,
 P.,
 Lin,
 G.E.,
 Liu,
 K.,
 Song,
 Y.,
 Lin,
 F.-­‐T.,
 and
 Lin,
 W.-­‐C.
 (2014).
 Targeting
 
TopBP1
 at
 a
 convergent
 point
 of
 multiple
 oncogenic
 pathways
 for
 cancer
 therapy.
 
Nat
 Commun
 5,
 5476.
 

 
Cimprich,
 K.A.,
 and
 Cortez,
 D.
 (2008).
 ATR:
 an
 essential
 regulator
 of
 genome
 
integrity.
 Nat.
 Rev.
 Mol.
 Cell
 Biol.
 9,
 616–627.
 

 
Cliby,
 W.A.,
 Roberts,
 C.J.,
 Cimprich,
 K.A.,
 Stringer,
 C.M.,
 Lamb,
 J.R.,
 Schreiber,
 S.L.,
 and
 
Friend,
 S.H.
 (1998).
 Overexpression
 of
 a
 kinase-­‐inactive
 ATR
 protein
 causes
 
sensitivity
 to
 DNA-­‐damaging
 agents
 and
 defects
 in
 cell
 cycle
 checkpoints.
 EMBO
 J.
 
17,
 159–169.
 

 
Cooper,
 T.J.,
 Wardell,
 K.,
 Garcia,
 V.,
 and
 Neale,
 M.J.
 (2014).
 Homeostatic
 regulation
 of
 
meiotic
 DSB
 formation
 by
 ATM/ATR.
 Exp.
 Cell
 Res.
 329,
 124–131.
 

 
Cortez,
 D.,
 Guntuku,
 S.,
 Qin,
 J.,
 and
 Elledge,
 S.J.
 (2001).
 ATR
 and
 ATRIP:
 partners
 in
 
checkpoint
 signaling.
 Science
 294,
 1713–1716.
 

 
Delacroix,
 S.,
 Wagner,
 J.M.,
 Kobayashi,
 M.,
 Yamamoto,
 K.,
 and
 Karnitz,
 L.M.
 (2007).
 
The
 Rad9-­‐Hus1-­‐Rad1
 (9-­‐1-­‐1)
 clamp
 activates
 checkpoint
 signaling
 via
 TopBP1.
 
Genes
 Dev.
 21,
 1472–1477.
 

 
Duursma,
 A.M.,
 Driscoll,
 R.,
 Elias,
 J.E.,
 and
 Cimprich,
 K.A.
 (2013).
 A
 role
 for
 the
 MRN
 
complex
 in
 ATR
 activation
 via
 TOPBP1
 recruitment.
 Mol.
 Cell
 50,
 116–122.
 

 
Fan,
 J.,
 and
 Pavletich,
 N.P.
 (2012).
 Structure
 and
 conformational
 change
 of
 a
 
replication
 protein
 A
 heterotrimer
 bound
 to
 ssDNA.
 Genes
 Dev.
 26,
 2337–2347.
 

 
Garcia-­‐Muse,
 T.,
 and
 Boulton,
 S.J.
 (2005).
 Distinct
 modes
 of
 ATR
 activation
 after
 
replication
 stress
 and
 DNA
 double-­‐strand
 breaks
 in
 Caenorhabditis
 elegans.
 EMBO
 J.
 
24,
 4345–4355.
 

 
Gerloff,
 D.L.,
 Woods,
 N.T.,
 Farago,
 A.A.,
 and
 Monteiro,
 A.N.A.
 (2012).
 BRCT
 domains:
 
A
 little
 more
 than
 kin,
 and
 less
 than
 kind.
 FEBS
 Lett.
 586,
 2711–2716.
 

 
Germann,
 S.M.,
 Oestergaard,
 V.H.,
 Haas,
 C.,
 Salis,
 P.,
 Motegi,
 A.,
 and
 Lisby,
 M.
 (2011).
 
Dpb11/TopBP1
 plays
 distinct
 roles
 in
 DNA
 replication,
 checkpoint
 response
 and
 
homologous
 recombination.
 DNA
 Repair
 (Amst.)
 10,
 210–224.
 

 
 66
 

 
Going,
 J.J.,
 Nixon,
 C.,
 Dornan,
 E.S.,
 Boner,
 W.,
 Donaldson,
 M.M.,
 and
 Morgan,
 I.M.
 
(2007).
 Aberrant
 expression
 of
 TopBP1
 in
 breast
 cancer.
 Histopathology
 50,
 418–
424.
 

 
Gong,
 Z.,
 Kim,
 J.-­‐E.,
 Leung,
 C.C.Y.,
 Glover,
 J.N.M.,
 and
 Chen,
 J.
 (2010).
 BACH1/FANCJ
 
acts
 with
 TopBP1
 and
 participates
 early
 in
 DNA
 replication
 checkpoint
 control.
 Mol.
 
Cell
 37,
 438–446.
 

 
Guo,
 Z.,
 Kumagai,
 A.,
 Wang,
 S.X.,
 and
 Dunphy,
 W.G.
 (2000).
 Requirement
 for
 Atr
 in
 
phosphorylation
 of
 Chk1
 and
 cell
 cycle
 regulation
 in
 response
 to
 DNA
 replication
 
blocks
 and
 UV-­‐damaged
 DNA
 in
 Xenopus
 egg
 extracts.
 Genes
 Dev.
 14,
 2745–2756.
 

 
Hashimoto,
 Y.,
 Tsujimura,
 T.,
 Sugino,
 A.,
 and
 Takisawa,
 H.
 (2006).
 The
 
phosphorylated
 C-­‐terminal
 domain
 of
 Xenopus
 Cut5
 directly
 mediates
 ATR-­‐
dependent
 activation
 of
 Chk1.
 Genes
 Cells
 11,
 993–1007.
 

 
Herold,
 S.,
 Hock,
 A.,
 Herkert,
 B.,
 Berns,
 K.,
 Mullenders,
 J.,
 Beijersbergen,
 R.,
 Bernards,
 
R.,
 and
 Eilers,
 M.
 (2008).
 Miz1
 and
 HectH9
 regulate
 the
 stability
 of
 the
 checkpoint
 
protein,
 TopBP1.
 EMBO
 J.
 27,
 2851–2861.
 

 
Hills,
 S.A.,
 and
 Diffley,
 J.F.X.
 (2014).
 DNA
 replication
 and
 oncogene-­‐induced
 
replicative
 stress.
 Curr.
 Biol.
 24,
 R435–R444.
 

 
Huo,
 Y.-­‐G.,
 Bai,
 L.,
 Xu,
 M.,
 and
 Jiang,
 T.
 (2010).
 Crystal
 structure
 of
 the
 N-­‐terminal
 
region
 of
 human
 Topoisomerase
 IIβ
 binding
 protein
 1.
 Biochem.
 Biophys.
 Res.
 
Commun.
 401,
 401–405.
 

 
Im,
 J.-­‐S.,
 Ki,
 S.-­‐H.,
 Farina,
 A.,
 Jung,
 D.-­‐S.,
 Hurwitz,
 J.,
 and
 Lee,
 J.-­‐K.
 (2009).
 Assembly
 of
 
the
 Cdc45-­‐Mcm2-­‐7-­‐GINS
 complex
 in
 human
 cells
 requires
 the
 Ctf4/And-­‐1,
 RecQL4,
 
and
 Mcm10
 proteins.
 Proc.
 Natl.
 Acad.
 Sci.
 U.S.A.
 106,
 15628–15632.
 

 
Kim,
 J.-­‐E.,
 McAvoy,
 S.A.,
 Smith,
 D.I.,
 and
 Chen,
 J.
 (2005).
 Human
 TopBP1
 ensures
 
genome
 integrity
 during
 normal
 S
 phase.
 Mol.
 Cell.
 Biol.
 25,
 10907–10915.
 

 
Kobayashi,
 J.,
 Tauchi,
 H.,
 Sakamoto,
 S.,
 Nakamura,
 A.,
 Morishima,
 K.,
 Matsuura,
 S.,
 
Kobayashi,
 T.,
 Tamai,
 K.,
 Tanimoto,
 K.,
 and
 Komatsu,
 K.
 (2002).
 NBS1
 localizes
 to
 
gamma-­‐H2AX
 foci
 through
 interaction
 with
 the
 FHA/BRCT
 domain.
 Curr.
 Biol.
 12,
 
1846–1851.
 

 
Kondo,
 S.,
 and
 Perrimon,
 N.
 (2011).
 A
 genome-­‐wide
 RNAi
 screen
 identifies
 core
 
components
 of
 the
 G₂-­‐M
 DNA
 damage
 checkpoint.
 Sci
 Signal
 4,
 rs1.
 

 
Kumagai,
 A.,
 and
 Dunphy,
 W.G.
 (2006).
 How
 cells
 activate
 ATR.
 Cell
 Cycle
 5,
 1265–
1268.
 

 

 
 67
 
Kumagai,
 A.,
 Lee,
 J.,
 Yoo,
 H.Y.,
 and
 Dunphy,
 W.G.
 (2006).
 TopBP1
 activates
 the
 ATR-­‐
ATRIP
 complex.
 Cell
 124,
 943–955.
 

 
Kumagai,
 A.,
 Shevchenko,
 A.,
 Shevchenko,
 A.,
 and
 Dunphy,
 W.G.
 (2010).
 Treslin
 
collaborates
 with
 TopBP1
 in
 triggering
 the
 initiation
 of
 DNA
 replication.
 Cell
 140,
 
349–359.
 

 
LaRocque,
 J.R.,
 Jaklevic,
 B.,
 Su,
 T.T.,
 and
 Sekelsky,
 J.
 (2007).
 Drosophila
 ATR
 in
 
Double-­‐Strand
 Break
 Repair.
 Genetics
 175,
 1023–1033.
 

 
Lee,
 J.,
 and
 Dunphy,
 W.G.
 (2010).
 Rad17
 plays
 a
 central
 role
 in
 establishment
 of
 the
 
interaction
 between
 TopBP1
 and
 the
 Rad9-­‐Hus1-­‐Rad1
 complex
 at
 stalled
 replication
 
forks.
 Mol.
 Biol.
 Cell
 21,
 926–935.
 

 
Lee,
 J.,
 and
 Dunphy,
 W.G.
 (2013).
 The
 Mre11-­‐Rad50-­‐Nbs1
 (MRN)
 complex
 has
 a
 
specific
 role
 in
 the
 activation
 of
 Chk1
 in
 response
 to
 stalled
 replication
 forks.
 Mol.
 
Biol.
 Cell
 24,
 1343–1353.
 

 
Lee,
 J.,
 Kumagai,
 A.,
 and
 Dunphy,
 W.G.
 (2007).
 The
 Rad9-­‐Hus1-­‐Rad1
 checkpoint
 
clamp
 regulates
 interaction
 of
 TopBP1
 with
 ATR.
 J.
 Biol.
 Chem.
 282,
 28036–28044.
 

 
Leung,
 C.C.Y.,
 Kellogg,
 E.,
 Kuhnert,
 A.,
 Hänel,
 F.,
 Baker,
 D.,
 and
 Glover,
 J.N.M.
 (2010).
 
Insights
 from
 the
 crystal
 structure
 of
 the
 sixth
 BRCT
 domain
 of
 topoisomerase
 IIbeta
 
binding
 protein
 1.
 Protein
 Sci.
 19,
 162–167.
 

 
Leung,
 C.C.Y.,
 Gong,
 Z.,
 Chen,
 J.,
 and
 Glover,
 J.N.M.
 (2011).
 Molecular
 basis
 of
 
BACH1/FANCJ
 recognition
 by
 TopBP1
 in
 DNA
 replication
 checkpoint
 control.
 J.
 Biol.
 
Chem.
 286,
 4292–4301.
 

 
Leung,
 C.C.Y.,
 Sun,
 L.,
 Gong,
 Z.,
 Burkat,
 M.,
 Edwards,
 R.,
 Assmus,
 M.,
 Chen,
 J.,
 and
 
Glover,
 J.N.M.
 (2013).
 Structural
 insights
 into
 recognition
 of
 MDC1
 by
 TopBP1
 in
 
DNA
 replication
 checkpoint
 control.
 Structure
 21,
 1450–1459.
 

 
Lin,
 S.-­‐J.,
 Wardlaw,
 C.P.,
 Morishita,
 T.,
 Miyabe,
 I.,
 Chahwan,
 C.,
 Caspari,
 T.,
 Schmidt,
 U.,
 
Carr,
 A.M.,
 and
 Garcia,
 V.
 (2012).
 The
 Rad4(TopBP1)
 ATR-­‐activation
 domain
 
functions
 in
 G1/S
 phase
 in
 a
 chromatin-­‐dependent
 manner.
 PLoS
 Genet.
 8,
 
e1002801.
 

 
Liu,
 K.,
 Lin,
 F.-­‐T.,
 Ruppert,
 J.M.,
 and
 Lin,
 W.-­‐C.
 (2003).
 Regulation
 of
 E2F1
 by
 BRCT
 
domain-­‐containing
 protein
 TopBP1.
 Mol.
 Cell.
 Biol.
 23,
 3287–3304.
 

 
Liu,
 K.,
 Paik,
 J.C.,
 Wang,
 B.,
 Lin,
 F.-­‐T.,
 and
 Lin,
 W.-­‐C.
 (2006).
 Regulation
 of
 TopBP1
 
oligomerization
 by
 Akt/PKB
 for
 cell
 survival.
 EMBO
 J.
 25,
 4795–4807.
 

 

 
 68
 
Liu,
 K.,
 Bellam,
 N.,
 Lin,
 H.-­‐Y.,
 Wang,
 B.,
 Stockard,
 C.R.,
 Grizzle,
 W.E.,
 and
 Lin,
 W.-­‐C.
 
(2009).
 Regulation
 of
 p53
 by
 TopBP1:
 a
 potential
 mechanism
 for
 p53
 inactivation
 in
 
cancer.
 Mol.
 Cell.
 Biol.
 29,
 2673–2693.
 

 
Liu,
 K.,
 Graves,
 J.D.,
 Scott,
 J.D.,
 Li,
 R.,
 and
 Lin,
 W.-­‐C.
 (2013).
 Akt
 switches
 TopBP1
 
function
 from
 checkpoint
 activation
 to
 transcriptional
 regulation
 through
 
phosphoserine
 binding-­‐mediated
 oligomerization.
 Mol.
 Cell.
 Biol.
 33,
 4685–4700.
 

 
Liu,
 Q.,
 Guntuku,
 S.,
 Cui,
 X.S.,
 Matsuoka,
 S.,
 Cortez,
 D.,
 Tamai,
 K.,
 Luo,
 G.,
 Carattini-­‐
Rivera,
 S.,
 DeMayo,
 F.,
 Bradley,
 A.,
 et
 al.
 (2000).
 Chk1
 is
 an
 essential
 kinase
 that
 is
 
regulated
 by
 Atr
 and
 required
 for
 the
 G(2)/M
 DNA
 damage
 checkpoint.
 Genes
 Dev.
 
14,
 1448–1459.
 

 
Liu,
 S.,
 Bekker-­‐Jensen,
 S.,
 Mailand,
 N.,
 Lukas,
 C.,
 Bartek,
 J.,
 and
 Lukas,
 J.
 (2006b).
 
Claspin
 operates
 downstream
 of
 TopBP1
 to
 direct
 ATR
 signaling
 towards
 Chk1
 
activation.
 Mol.
 Cell.
 Biol.
 26,
 6056–6064.
 

 
Liu,
 S.,
 Shiotani,
 B.,
 Lahiri,
 M.,
 Maréchal,
 A.,
 Tse,
 A.,
 Leung,
 C.C.Y.,
 Glover,
 J.N.M.,
 Yang,
 
X.H.,
 and
 Zou,
 L.
 (2011).
 ATR
 autophosphorylation
 as
 a
 molecular
 switch
 for
 
checkpoint
 activation.
 Mol.
 Cell
 43,
 192–202.
 

 
Liu,
 T.,
 Lin,
 Y.-­‐H.,
 Leng,
 W.,
 Jung,
 S.Y.,
 Zhang,
 H.,
 Deng,
 M.,
 Evans,
 D.,
 Li,
 Y.,
 Luo,
 K.,
 Qin,
 
B.,
 et
 al.
 (2014).
 A
 divergent
 role
 of
 the
 SIRT1-­‐TopBP1
 axis
 in
 regulating
 metabolic
 
checkpoint
 and
 DNA
 damage
 checkpoint.
 Mol.
 Cell
 56,
 681–695.
 

 
Lopes,
 M.,
 Foiani,
 M.,
 and
 Sogo,
 J.M.
 (2006).
 Multiple
 mechanisms
 control
 
chromosome
 integrity
 after
 replication
 fork
 uncoupling
 and
 restart
 at
 irreparable
 
UV
 lesions.
 Mol.
 Cell
 21,
 15–27.
 

 
Lyndaker,
 A.M.,
 Lim,
 P.X.,
 Mleczko,
 J.M.,
 Diggins,
 C.E.,
 Holloway,
 J.K.,
 Holmes,
 R.J.,
 Kan,
 
R.,
 Schlafer,
 D.H.,
 Freire,
 R.,
 Cohen,
 P.E.,
 et
 al.
 (2013).
 Conditional
 inactivation
 of
 the
 
DNA
 damage
 response
 gene
 Hus1
 in
 mouse
 testis
 reveals
 separable
 roles
 for
 
components
 of
 the
 RAD9-­‐RAD1-­‐HUS1
 complex
 in
 meiotic
 chromosome
 
maintenance.
 PLoS
 Genet.
 9,
 e1003320.
 

 
Majka,
 J.,
 and
 Burgers,
 P.M.J.
 (2007).
 Clamping
 the
 Mec1/ATR
 checkpoint
 kinase
 into
 
action.
 Cell
 Cycle
 6,
 1157–1160.
 

 
Manke,
 I.A.,
 Lowery,
 D.M.,
 Nguyen,
 A.,
 and
 Yaffe,
 M.B.
 (2003).
 BRCT
 repeats
 as
 
phosphopeptide-­‐binding
 modules
 involved
 in
 protein
 targeting.
 Science
 302,
 636–
639.
 

 
Mäkiniemi,
 M.,
 Hillukkala,
 T.,
 Tuusa,
 J.,
 Reini,
 K.,
 Vaara,
 M.,
 Huang,
 D.,
 Pospiech,
 H.,
 
Majuri,
 I.,
 Westerling,
 T.,
 Mäkelä,
 T.P.,
 et
 al.
 (2001).
 BRCT
 domain-­‐containing
 protein
 
TopBP1
 functions
 in
 DNA
 replication
 and
 damage
 response.
 J.
 Biol.
 Chem.
 276,
 
30399–30406.
 

 
 69
 

 
Maréchal,
 A.,
 and
 Zou,
 L.
 (2013).
 DNA
 damage
 sensing
 by
 the
 ATM
 and
 ATR
 kinases.
 
Cold
 Spring
 Harb
 Perspect
 Biol
 5.
 

 
Maréchal,
 A.,
 and
 Zou,
 L.
 (2015).
 RPA-­‐coated
 single-­‐stranded
 DNA
 as
 a
 platform
 for
 
post-­‐translational
 modifications
 in
 the
 DNA
 damage
 response.
 Cell
 Res.
 25,
 9–23.
 

 
Mirzoeva,
 O.K.,
 and
 Petrini,
 J.H.
 (2001).
 DNA
 damage-­‐dependent
 nuclear
 dynamics
 of
 
the
 Mre11
 complex.
 Mol.
 Cell.
 Biol.
 21,
 281–288.
 

 
Mirzoeva,
 O.K.,
 and
 Petrini,
 J.H.J.
 (2003).
 DNA
 replication-­‐dependent
 nuclear
 
dynamics
 of
 the
 Mre11
 complex.
 Mol.
 Cancer
 Res.
 1,
 207–218.
 

 
Mordes,
 D.A.,
 Glick,
 G.G.,
 Zhao,
 R.,
 and
 Cortez,
 D.
 (2008).
 TopBP1
 activates
 ATR
 
through
 ATRIP
 and
 a
 PIKK
 regulatory
 domain.
 Genes
 Dev.
 22,
 1478–1489.
 

 
Moreau,
 S.,
 Ferguson,
 J.R.,
 and
 Symington,
 L.S.
 (1999).
 The
 nuclease
 activity
 of
 Mre11
 
is
 required
 for
 meiosis
 but
 not
 for
 mating
 type
 switching,
 end
 joining,
 or
 telomere
 
maintenance.
 Mol.
 Cell.
 Biol.
 19,
 556–566.
 

 
Muñoz,
 I.M.,
 and
 Rouse,
 J.
 (2009).
 Control
 of
 histone
 methylation
 and
 genome
 
stability
 by
 PTIP.
 EMBO
 Rep.
 10,
 239–245.
 

 
Murphy,
 C.M.,
 and
 Michael,
 W.M.
 (2013).
 Control
 of
 DNA
 replication
 by
 the
 
nucleus/cytoplasm
 ratio
 in
 Xenopus.
 J.
 Biol.
 Chem.
 288,
 29382–29393.
 

 
Nam,
 E.A.,
 and
 Cortez,
 D.
 (2011).
 ATR
 signalling:
 more
 than
 meeting
 at
 the
 fork.
 
Biochem.
 J.
 436,
 527–536.
 

 
Namiki,
 Y.,
 and
 Zou,
 L.
 (2006).
 ATRIP
 associates
 with
 replication
 protein
 A-­‐coated
 
ssDNA
 through
 multiple
 interactions.
 Proc.
 Natl.
 Acad.
 Sci.
 U.S.A.
 103,
 580–585.
 

 
Ohashi,
 E.,
 Takeishi,
 Y.,
 Ueda,
 S.,
 and
 Tsurimoto,
 T.
 (2014).
 Interaction
 between
 
Rad9-­‐Hus1-­‐Rad1
 and
 TopBP1
 activates
 ATR-­‐ATRIP
 and
 promotes
 TopBP1
 
recruitment
 to
 sites
 of
 UV-­‐damage.
 DNA
 Repair
 (Amst.)
 21,
 1–11.
 

 
Paull,
 T.T.
 (2015).
 Mechanisms
 of
 ATM
 Activation.
 Annu.
 Rev.
 Biochem.
 84,
 711–738.
 

 
Pedram,
 A.,
 Razandi,
 M.,
 Evinger,
 A.J.,
 Lee,
 E.,
 and
 Levin,
 E.R.
 (2009).
 Estrogen
 
inhibits
 ATR
 signaling
 to
 cell
 cycle
 checkpoints
 and
 DNA
 repair.
 Mol.
 Biol.
 Cell
 20,
 
3374–3389.
 

 
Petersen,
 P.,
 Chou,
 D.M.,
 You,
 Z.,
 Hunter,
 T.,
 Walter,
 J.C.,
 and
 Walter,
 G.
 (2006).
 
Protein
 phosphatase
 2A
 antagonizes
 ATM
 and
 ATR
 in
 a
 Cdk2-­‐
 and
 Cdc7-­‐
independent
 DNA
 damage
 checkpoint.
 Mol.
 Cell.
 Biol.
 26,
 1997–2011.
 

 

 
 70
 
Pospiech,
 H.,
 Grosse,
 F.,
 and
 Pisani,
 F.M.
 (2010).
 The
 initiation
 step
 of
 eukaryotic
 
DNA
 replication.
 Subcell.
 Biochem.
 50,
 79–104.
 

 
Qu,
 M.,
 Rappas,
 M.,
 Wardlaw,
 C.P.,
 Garcia,
 V.,
 Ren,
 J.-­‐Y.,
 Day,
 M.,
 Carr,
 A.M.,
 Oliver,
 
A.W.,
 Du,
 L.-­‐L.,
 and
 Pearl,
 L.H.
 (2013).
 Phosphorylation-­‐dependent
 assembly
 and
 
coordination
 of
 the
 DNA
 damage
 checkpoint
 apparatus
 by
 Rad4(TopBP
1
).
 Mol.
 Cell
 
51,
 723–736.
 

 
Ramírez-­‐Lugo,
 J.S.,
 Yoo,
 H.Y.,
 Yoon,
 S.J.,
 and
 Dunphy,
 W.G.
 (2011a).
 CtIP
 interacts
 
with
 TopBP1
 and
 Nbs1
 in
 the
 response
 to
 double-­‐stranded
 DNA
 breaks
 (DSBs)
 in
 
Xenopus
 egg
 extracts.
 Cell
 Cycle
 10,
 469–480.
 

 
Rappas,
 M.,
 Oliver,
 A.W.,
 and
 Pearl,
 L.H.
 (2011).
 Structure
 and
 function
 of
 the
 Rad9-­‐
binding
 region
 of
 the
 DNA-­‐damage
 checkpoint
 adaptor
 TopBP1.
 Nucleic
 Acids
 Res.
 
39,
 313–324.
 

 
Shiotani,
 B.,
 Nguyen,
 H.D.,
 Håkansson,
 P.,
 Maréchal,
 A.,
 Tse,
 A.,
 Tahara,
 H.,
 and
 Zou,
 L.
 
(2013).
 Two
 distinct
 modes
 of
 ATR
 activation
 orchestrated
 by
 Rad17
 and
 Nbs1.
 Cell
 
Rep
 3,
 1651–1662.
 

 
Sirbu,
 B.M.,
 and
 Cortez,
 D.
 (2013).
 DNA
 damage
 response:
 three
 levels
 of
 DNA
 repair
 
regulation.
 Cold
 Spring
 Harb
 Perspect
 Biol
 5,
 a012724.
 

 
Sokka,
 M.,
 Parkkinen,
 S.,
 Pospiech,
 H.,
 and
 Syväoja,
 J.E.
 (2010).
 Function
 of
 TopBP1
 in
 
genome
 stability.
 Subcell.
 Biochem.
 50,
 119–141.
 

 
Takeishi,
 Y.,
 Ohashi,
 E.,
 Ogawa,
 K.,
 Masai,
 H.,
 Obuse,
 C.,
 and
 Tsurimoto,
 T.
 (2010).
 
Casein
 kinase
 2-­‐dependent
 phosphorylation
 of
 human
 Rad9
 mediates
 the
 
interaction
 between
 human
 Rad9-­‐Hus1-­‐Rad1
 complex
 and
 TopBP1.
 Genes
 Cells
 15,
 
761–771.
 

 
Tanaka,
 S.,
 Komeda,
 Y.,
 Umemori,
 T.,
 Kubota,
 Y.,
 Takisawa,
 H.,
 and
 Araki,
 H.
 (2013).
 
Efficient
 initiation
 of
 DNA
 replication
 in
 eukaryotes
 requires
 Dpb11/TopBP1-­‐GINS
 
interaction.
 Mol.
 Cell.
 Biol.
 33,
 2614–2622.
 

 
Taricani,
 L.,
 and
 Wang,
 T.S.F.
 (2006).
 Rad4TopBP1,
 a
 scaffold
 protein,
 plays
 separate
 
roles
 in
 DNA
 damage
 and
 replication
 checkpoints
 and
 DNA
 replication.
 Mol.
 Biol.
 
Cell
 17,
 3456–3468.
 

 
Taylor,
 M.,
 Moore,
 K.,
 Murray,
 J.,
 Aves,
 S.J.,
 and
 Price,
 C.
 (2011).
 Mcm10
 interacts
 with
 
Rad4/Cut5(TopBP1)
 and
 its
 association
 with
 origins
 of
 DNA
 replication
 is
 
dependent
 on
 Rad4/Cut5(TopBP1).
 DNA
 Repair
 (Amst.)
 10,
 1154–1163.
 

 
Uziel,
 T.,
 Lerenthal,
 Y.,
 Moyal,
 L.,
 Andegeko,
 Y.,
 Mittelman,
 L.,
 and
 Shiloh,
 Y.
 (2003).
 
Requirement
 of
 the
 MRN
 complex
 for
 ATM
 activation
 by
 DNA
 damage.
 The
 EMBO
 
Journal
 22,
 5612–5621.
 

 
 71
 

 
Van
 Hatten,
 R.A.,
 Tutter,
 A.V.,
 Holway,
 A.H.,
 Khederian,
 A.M.,
 Walter,
 J.C.,
 and
 Michael,
 
W.M.
 (2002).
 The
 Xenopus
 Xmus101
 protein
 is
 required
 for
 the
 recruitment
 of
 
Cdc45
 to
 origins
 of
 DNA
 replication.
 J.
 Cell
 Biol.
 159,
 541–547.
 

 
Wang,
 H.,
 Wang,
 H.,
 Powell,
 S.N.,
 Iliakis,
 G.,
 and
 Wang,
 Y.
 (2004).
 ATR
 affecting
 cell
 
radiosensitivity
 is
 dependent
 on
 homologous
 recombination
 repair
 but
 independent
 
of
 nonhomologous
 end
 joining.
 Cancer
 Res.
 64,
 7139–7143.
 

 
Wang,
 J.,
 Gong,
 Z.,
 and
 Chen,
 J.
 (2011).
 MDC1
 collaborates
 with
 TopBP1
 in
 DNA
 
replication
 checkpoint
 control.
 J.
 Cell
 Biol.
 193,
 267–273.
 

 
Wang,
 J.,
 Chen,
 J.,
 and
 Gong,
 Z.
 (2013).
 TopBP1
 controls
 BLM
 protein
 level
 to
 
maintain
 genome
 stability.
 Mol.
 Cell
 52,
 667–678.
 

 
Wang,
 J.,
 Chen,
 J.,
 and
 Gong,
 Z.
 (2015).
 TopBP1
 Stabilizes
 BLM
 Protein
 to
 Suppress
 
Sister
 Chromatid
 Exchange.
 Molecular
 Cell
 57,
 955–956.
 

 
Wang,
 R.-­‐H.,
 Lahusen,
 T.J.,
 Chen,
 Q.,
 Xu,
 X.,
 Jenkins,
 L.M.M.,
 Leo,
 E.,
 Fu,
 H.,
 Aladjem,
 M.,
 
Pommier,
 Y.,
 Appella,
 E.,
 et
 al.
 (2014).
 SIRT1
 deacetylates
 TopBP1
 and
 modulates
 
intra-­‐S-­‐phase
 checkpoint
 and
 DNA
 replication
 origin
 firing.
 Int.
 J.
 Biol.
 Sci.
 10,
 1193–
1202.
 

 
Wanrooij,
 P.H.,
 and
 Burgers,
 P.M.
 (2015).
 Yet
 another
 job
 for
 Dna2:
 Checkpoint
 
activation.
 DNA
 Repair
 (Amst.).
 

 
Wardlaw,
 C.P.,
 Carr,
 A.M.,
 and
 Oliver,
 A.W.
 (2014).
 TopBP1:
 A
 BRCT-­‐scaffold
 protein
 
functioning
 in
 multiple
 cellular
 pathways.
 DNA
 Repair
 (Amst.)
 22,
 165–174.
 

 

 
Wright,
 R.H.G.,
 Dornan,
 E.S.,
 Donaldson,
 M.M.,
 and
 Morgan,
 I.M.
 (2006).
 TopBP1
 
contains
 a
 transcriptional
 activation
 domain
 suppressed
 by
 two
 adjacent
 BRCT
 
domains.
 Biochem.
 J.
 400,
 573–582.
 

 
Xu,
 Y.,
 and
 Leffak,
 M.
 (2010).
 ATRIP
 from
 TopBP1
 to
 ATR-­‐-­‐in
 vitro
 activation
 of
 a
 
DNA
 damage
 checkpoint.
 Proc.
 Natl.
 Acad.
 Sci.
 U.S.A.
 107,
 13561–13562.
 

 
Xu,
 N.,
 Lao,
 Y.,
 Zhang,
 Y.,
 and
 Gillespie,
 D.A.
 (2012).
 Akt:
 a
 double-­‐edged
 sword
 in
 cell
 
proliferation
 and
 genome
 stability.
 J
 Oncol
 2012,
 951724.
 

 
Xu,
 X.,
 Vaithiyalingam,
 S.,
 Glick,
 G.G.,
 Mordes,
 D.A.,
 Chazin,
 W.J.,
 and
 Cortez,
 D.
 (2008).
 
The
 basic
 cleft
 of
 RPA70N
 binds
 multiple
 checkpoint
 proteins,
 including
 RAD9,
 to
 
regulate
 ATR
 signaling.
 Mol.
 Cell.
 Biol.
 28,
 7345–7353.
 

 

 
 72
 
Yamane,
 K.,
 Kawabata,
 M.,
 and
 Tsuruo,
 T.
 (1997).
 A
 DNA-­‐topoisomerase-­‐II-­‐binding
 
protein
 with
 eight
 repeating
 regions
 similar
 to
 DNA-­‐repair
 enzymes
 and
 to
 a
 cell-­‐
cycle
 regulator.
 Eur.
 J.
 Biochem.
 250,
 794–799.
 

 
Yamane,
 K.,
 Wu,
 X.,
 and
 Chen,
 J.
 (2002).
 A
 DNA
 damage-­‐regulated
 BRCT-­‐containing
 
protein,
 TopBP1,
 is
 required
 for
 cell
 survival.
 Mol.
 Cell.
 Biol.
 22,
 555–566.
 

 
Yan,
 S.,
 and
 Michael,
 W.M.
 (2009a).
 TopBP1
 and
 DNA
 polymerase-­‐alpha
 directly
 
recruit
 the
 9-­‐1-­‐1
 complex
 to
 stalled
 DNA
 replication
 forks.
 J.
 Cell
 Biol.
 184,
 793–804.
 

 
Yan,
 S.,
 and
 Michael,
 W.M.
 (2009b).
 TopBP1
 and
 DNA
 polymerase
 alpha-­‐mediated
 
recruitment
 of
 the
 9-­‐1-­‐1
 complex
 to
 stalled
 replication
 forks:
 implications
 for
 a
 
replication
 restart-­‐based
 mechanism
 for
 ATR
 checkpoint
 activation.
 Cell
 Cycle
 8,
 
2877–2884.
 

 
Yan,
 S.,
 Lindsay,
 H.D.,
 and
 Michael,
 W.M.
 (2006).
 Direct
 requirement
 for
 Xmus101
 in
 
ATR-­‐mediated
 phosphorylation
 of
 Claspin
 bound
 Chk1
 during
 checkpoint
 signaling.
 
J.
 Cell
 Biol.
 173,
 181–186.
 

 
Yoo,
 H.Y.,
 Jeong,
 S.-­‐Y.,
 and
 Dunphy,
 W.G.
 (2006).
 Site-­‐specific
 phosphorylation
 of
 a
 
checkpoint
 mediator
 protein
 controls
 its
 responses
 to
 different
 DNA
 structures.
 
Genes
 Dev.
 20,
 772–783.
 

 
Yoo,
 H.Y.,
 Kumagai,
 A.,
 Shevchenko,
 A.,
 Shevchenko,
 A.,
 and
 Dunphy,
 W.G.
 (2007).
 
Ataxia-­‐telangiectasia
 mutated
 (ATM)-­‐dependent
 activation
 of
 ATR
 occurs
 through
 
phosphorylation
 of
 TopBP1
 by
 ATM.
 J.
 Biol.
 Chem.
 282,
 17501–17506.
 

 
Yoo,
 H.Y.,
 Kumagai,
 A.,
 Shevchenko,
 A.,
 Shevchenko,
 A.,
 and
 Dunphy,
 W.G.
 (2009a).
 
The
 Mre11-­‐Rad50-­‐Nbs1
 complex
 mediates
 activation
 of
 TopBP1
 by
 ATM.
 Mol.
 Biol.
 
Cell
 20,
 2351–2360.
 

 
Yu,
 X.,
 Chini,
 C.C.S.,
 He,
 M.,
 Mer,
 G.,
 and
 Chen,
 J.
 (2003).
 The
 BRCT
 domain
 is
 a
 
phospho-­‐protein
 binding
 domain.
 Science
 302,
 639–642.
 

 
Zeman,
 M.K.,
 and
 Cimprich,
 K.A.
 (2014).
 Causes
 and
 consequences
 of
 replication
 
stress.
 Nat.
 Cell
 Biol.
 16,
 2–9.
 

 
Zimmermann,
 M.,
 and
 de
 Lange,
 T.
 (2014).
 53BP1:
 pro
 choice
 in
 DNA
 repair.
 Trends
 
Cell
 Biol.
 24,
 108–117.
 

 
Zou,
 L.,
 and
 Elledge,
 S.J.
 (2003).
 Sensing
 DNA
 damage
 through
 ATRIP
 recognition
 of
 
RPA-­‐ssDNA
 complexes.
 Science
 300,
 1542–1548.
 

 
Zou,
 L.,
 Cortez,
 D.,
 and
 Elledge,
 S.J.
 (2002).
 Regulation
 of
 ATR
 substrate
 selection
 by
 
Rad17-­‐dependent
 loading
 of
 Rad9
 complexes
 onto
 chromatin.
 Genes
 Dev.
 16,
 198–
208. 
Asset Metadata
Creator Acevedo, Julyana (author) 
Core Title Biochemical mechanism of TopBP1 recruitment to sites of DNA damage 
Contributor Electronically uploaded by the author (provenance) 
School College of Letters, Arts and Sciences 
Degree Doctor of Philosophy 
Degree Program Molecular Biology 
Publication Date 11/16/2015 
Defense Date 08/26/2015 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag ATR activation,DNA damage,OAI-PMH Harvest,replication stress,TopBP1 
Format application/pdf (imt) 
Language English
Advisor Michael, Matthew (committee chair), Aparicio, Oscar (committee member), Chen, Lin (committee member), Curran, Sean (committee member), Forsburg, Susan (committee member) 
Creator Email acejuli@gmail.com,julyanaa@usc.edu 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c40-199941 
Unique identifier UC11277836 
Identifier etd-AcevedoJul-4043.pdf (filename),usctheses-c40-199941 (legacy record id) 
Legacy Identifier etd-AcevedoJul-4043.pdf 
Dmrecord 199941 
Document Type Dissertation 
Format application/pdf (imt) 
Rights Acevedo, Julyana 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law.  Electronic access is being provided by the USC Libraries in agreement with the a... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Abstract (if available)
Abstract During a replication stress response or after double strand break resection, the ATR protein kinase is activated to allow a delay in cell cycle progression, a block to further origin firing, and stabilization of the stalled fork. ATR is recruited to stalled forks via an interaction between its binding partner ATRIP and RPA-coated single-stranded DNA (ssDNA). However, binding of ATR-ATRIP to RPA-coated ssDNA is not sufficient for ATR activation as both the 9-1-1 clamp protein and the checkpoint activator TopBP1 must also be recruited so that TopBP1 may activate ATR. The biochemical mechanism for assembly of the checkpoint-signaling complex has been an important unanswered question in the cell cycle field for many years. ❧ Previous work from our laboratory, and other groups, has shown that ATR/ATRIP and TopBP1/9-1-1 are recruited independently to stalled forks, and then come together on the DNA to form an active checkpoint-signaling complex. Furthermore, we have previously shown that TopBP1 is required for loading of the 9-1-1 clamp, however the means by which TopBP1 senses the stalled fork to allow checkpoint complex assembly was not previously known. Our data shows that direct interaction between TopBP1 BRCT repeat 2 and RPA-coated ssDNA is the mechanism for TopBP1 recruitment. Importantly, we determined that direct interaction with RPA-coated ssDNA is a general feature of a subclass of BRCT domains from other proteins, such as PTIP. Furthermore, we find that once TopBP1 has promoted initial ATR activation, further chromatin loading of TopBP1 to damaged sites is prevented by a negative feedback loop of ATR activity. ❧ Lastly, we’ve also identified and studied a point mutant, BRCT4/5 WR, that seems to have a different structure to the wild-type protein and strongly enhances the checkpoint in the absence of DNA damage or even DNA. This is possibly due to a greater accessibility of its AAD to ATR, but further work is needed to confirm this or any other possibility. Given the fact that this mutant strongly enhances the checkpoint, it might in the future prove useful in allowing us to gain a clearer understanding of the changes TopBP1 normally undergoes in the process of checkpoint activation and might be important in further describing the order in sequence of events that lead to checkpoint activation. 
Tags
ATR activation
DNA damage
replication stress
TopBP1
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button