Close
USC Libraries
University of Southern California
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Folder
Post-traumatic growth among high-risk youth: predictors, impact of stressful life events, and relationship with changes in substance use behaviors
(USC Thesis Other) 

Post-traumatic growth among high-risk youth: predictors, impact of stressful life events, and relationship with changes in substance use behaviors

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Copy asset link
Request this asset
Request accessible transcript
Transcript (if available)
Content
  i
 

 

 
POST-TRAUMATIC GROWTH AMONG HIGH-RISK YOUTH:
PREDICTORS, IMPACT OF STRESSFUL LIFE EVENTS, AND RELATIONSHIP
WITH CHANGES IN SUBSTANCE USE BEHAVIORS

by

Thalida Em Arpawong




A Dissertation Presented to the  
FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the  
Requirements for the Degree
DOCTOR OF PHILOSOPHY
(PREVENTIVE MEDICINE)


August 2013








Copyright 2013 Thalida Em Arpawong
   
 

  ii
 
DEDICATION
 

 
This
 dissertation
 is
 dedicated
 to
 Pat
 and
 Milo,
 and
 our
 attempts
 to
 create
 a
 new
 
conceptualization
 of
 “normal.”
 

   
 

  iii
 
ACKNOWLEDGEMENTS
 

 

  I
 wish
 to
 impart
 a
 huge
 sense
 of
 gratitude
 to
 my
 committee
 members,
 each
 of
 
whom
 provided
 valuable
 feedback
 for
 this
 dissertation
 as
 well
 as
 respected
 advice
 
throughout
 the
 process
 of
 getting
 to
 this
 point.
 To
 Dr.
 Louise
 Ann
 Rohrbach,
 I
 want
 
to
 express
 my
 sincere
 appreciation
 for
 taking
 me
 on
 as
 a
 new
 mentee
 before
 my
 
third
 year
 in
 the
 program
 when
 my
 interests
 and
 research
 foci
 were
 not
 always
 
clear.
 You
 have
 provided
 an
 unwavering
 sense
 of
 stability,
 direction,
 and
 detail-­‐
orientation
 to
 this
 doctoral
 process,
 while
 always
 kindly
 and
 patiently
 reminding
 me
 
to
 be
 guided
 by
 theory.
 
 To
 Dr.
 Steve
 Sussman,
 I
 thank
 for
 providing
 me
 with
 
multiple
 research
 opportunities
 (including
 local
 and
 global
 ones),
 exceedingly
 
timely
 and
 constructive
 feedback
 whenever
 needed,
 and
 encouraging
 words
 about
 
the
 field
 and
 my
 future
 career.
 
 To
 Dr.
 Joel
 Milam,
 I
 am
 grateful
 for
 your
 generosity
 
in
 sharing
 your
 depth
 of
 understanding
 and
 enthusiasm
 for
 this
 dissertation
 topic,
 
your
 infinite
 patience,
 encouragement,
 and
 levity
 in
 my
 training.
 
 To
 Dr.
 Jennifer
 
Unger,
 I
 am
 grateful
 for
 your
 bountiful
 advice
 on
 topics
 from
 data
 analysis
 to
 paper
 
writing
 to
 post-­‐doctoral
 training,
 and
 for
 your
 constant
 encouragement.
 To
 Dr.
 
Helen
 Land,
 I
 thank
 for
 the
 perspectives
 that
 challenged
 my
 thinking
 and
 approach
 
to
 this
 research,
 and
 as
 a
 result
 have
 broadened
 my
 vantage
 point
 and
 improved
 this
 
work.
 

  A
 special
 thanks
 goes
 to
 individuals
 at
 IPR
 and
 Preventive
 Medicine
 who
 
have
 become
 a
 genuine
 circle
 of
 support.
 Thank
 you
 to
 Marny
 Jane
 Barovich
 for
 her
 
inestimable
 support,
 guidance,
 and
 friendship
 throughout
 the
 many
 years
 I
 have
 
been
 connected
 with
 IPR.
 To
 fellow
 students
 who
 have
 become
 esteemed
 colleagues
 
and
 cherished
 friends,
 I
 wish
 to
 thank
 Dr.
 Lilia
 Espinoza,
 Dr.
 Kari-­‐Lyn
 Sakuma,
 and
 
Dr.
 Keosha
 Partlow,
 for
 being
 my
 safety
 net
 and
 role
 models
 in
 many
 realms.
 Thank
 
you
 to
 Kathleen
 Ruccione
 in
 being
 the
 other
 50%
 of
 my
 cohort,
 and
 a
 friend.
 Thank
 
you
 to
 Dr.
 Kathleen
 Meeske,
 Dr.
 Jean
 Richardson,
 Margaret
 Hawkins,
 Dr.
 Selena
 
Nguyen-­‐Rodriguez,
 Claradina
 Soto,
 and
 Grace
 Huang
 for
 their
 support
 and
 
encouragement.
 Thank
 you
 to
 Dr.
 Ping
 Sun
 for
 always
 providing
 statistical
 
advisement
 as
 well
 as
 realistic
 viewpoints
 on
 the
 research
 life.
 Also,
 thank
 you
 to
 
IPR
 staff,
 especially
 Gabriela
 Torres,
 Leah
 Meza,
 and
 Jennifer
 Patch,
 for
 handling
 
logistical
 details
 that
 made
 my
 life
 easier.
 
 

  A
 heart-­‐felt
 thanks
 to
 those
 who
 form
 the
 foundation
 of
 support
 for
 my
 life.
 
To
 my
 mom,
 Ubol
 Arpawong,
 who
 has
 imbued
 in
 me
 the
 understanding
 of
 
unconditional
 love,
 support,
 and
 family
 priorities.
 
 She
 sets
 the
 bar
 far-­‐and-­‐above
 
my
 reach
 as
 a
 person
 and
 mother,
 but
 inspires
 me
 to
 reach
 higher
 when
 I
 can.
 To
 my
 
dad,
 Kumtorn
 Arpawong,
 who
 has
 tacitly
 demonstrated
 a
 strong
 sense
 of
 values,
 

  iv
 
generosity,
 and
 work
 ethic
 that
 compel
 me
 to
 channel
 him
 as
 I
 persist
 though
 my
 
life’s
 work
 and
 tasks.
 
 To
 my
 sister,
 Aer
 Lee,
 and
 brother,
 Ed
 Arpawong,
 with
 their
 
respective
 spouses
 and
 children
 (Ken,
 Lucas,
 and
 Emma
 Lee,
 and
 Hieu,
 Ethan,
 Hailey,
 
and
 Sean
 Arpawong),
 I
 am
 grateful
 for
 all
 your
 love,
 support,
 humor,
 and
 unique
 
personalities
 that
 keep
 life
 interesting
 no
 matter
 what
 the
 circumstance.
 
 A
 
monstrous
 thank
 you
 to
 Tag
 Milo
 who
 amazes
 me
 every
 day
 and
 inspires
 me
 to
 be
 
and
 do
 better
 in
 every
 way
 possible,
 while
 reminding
 me
 to
 pay
 attention
 to
 what
 is
 
truly
 important
 in
 life.
 
 And,
 to
 Pat
 Kouwabunpat,
 who
 decidedly
 began
 this
 
marathon
 journey
 with
 me
 14
 years
 ago,
 has
 tirelessly
 supported
 me
 through
 the
 
multiple
 mini-­‐marathons,
 patiently
 allowed
 me
 space
 and
 time
 to
 pursue
 my
 own
 
goals,
 continues
 to
 encourage
 me
 to
 find
 happiness
 in
 all
 areas
 of
 life,
 and
 has
 
become
 a
 true
 partner
 and
 ally
 against
 challenges
 we
 have
 come
 upon.
 
 

  Lastly,
 but
 certainly
 not
 least,
 thank
 you
 to
 the
 continuation
 high
 school
 
students,
 some
 of
 whom
 surprised
 me
 in
 their
 willingness
 to
 provide
 perspectives
 
on
 this
 research
 that
 was
 above-­‐and-­‐beyond
 what
 I
 had
 asked
 them
 to
 do.
 

 
This
 research
 was
 supported
 by
 the
 Tobacco-­‐Related
 Disease
 Research
 Program
 
Dissertation
 Award
 (Grant
 #20DT-­‐0041).
 

   
 

  v
 
TABLE
 OF
 CONTENTS
 

 
DEDICATION
  ii
 
ACKNOWLEDGEMENTS
  iii
 
LIST
 OF
 TABLES
  vi
 
LIST
 OF
 FIGURES
  vii
 
ABSTRACT
  viii
 
CHAPTER
 1:
 INTRODUCTION
  1
 
Substance
 Use
 and
 Stressful
 Life
 Events
 Among
 High-­‐Risk
 Older
 Youth
  2
 
Post-­‐traumatic
 Growth
 and
 Stressful
 Life
 Events
  3
 
Overview
 of
 the
 Dissertation
  5
 
CHAPTER
 2:
 STUDY
 1
  10
 
Stressful
 Life
 Events
 and
 Predictors
 of
 Posttraumatic
 Growth
  10
 
Method
  17
 
Results
  29
 
Discussion
  33
 
CHAPTER
 3:
 STUDY
 2
  46
 
Posttraumatic
 Growth
 and
 Change
 in
 Substance
 Use
 Behaviors
  46
 
Method
  50
 
Results
  57
 
Discussion
  60
 
CHAPTER
 4:
 CONCLUSION
  68
 
Implications
 for
 Preventive
 Interventions
  68
 
Limitations
  71
 
Future
 Research
 Directions
  72
 
Summary
  76
 
REFERENCES
  77
 

 

   
 

  vi
 
LIST
 OF
 TABLES
 

 

 
Table
 1.
 Selected
 Sample
 Characteristics
 (n=564)
  42
 
Table
 2.
 Correlates
 and
 Predictors
 of
 Post-­‐Traumatic
 Growth
  43
 
Table
 3.
 Regression
 Models
 for
 the
 Associations
 of
 Socio-­‐Demographic
 
Characteristics,
 Stressful
 Life
 Events,
 Personal
 System
 and
 Environmental
 
System
 Characteristics
 with
 Posttraumatic
 Growth
  44
 
Table
 4.
 Prevalence
 of
 Substance
 Use
 Behaviors
 Among
 the
 CHS
 Sample
 at
 Two-­‐
Year
 Follow-­‐Up
  66
 
Table
 5.
 Regression
 Models
 Showing
 the
 Impact
 of
 SLEs
 and
 PTG
 on
 Change
 in
 
Frequency
 of
 Substance
 Use
 Behaviors
  67
 

 

   
 

  vii
 
LIST
 OF
 FIGURES
 

 

 
Figure
 1.
 
 Frequencies
 of
 Stressful
 Life
 Events
 Reported
  44
 
Figure
 2.
 Moderation
 of
 the
 Relationship
 Between
 PTG
 and
 Future
 Time
 Perspective
 
by
 Hispanic
 Ethnicity
  45
 

 

   
 

  viii
 
ABSTRACT
 
Background:
 The
 experience
 of
 a
 highly
 stressful
 life
 event
 (SLE)
 may
 elicit
 positive
 
psychosocial
 change
 in
 some
 individuals,
 referred
 to
 as
 Post-­‐traumatic
 Growth
 
(PTG).
 This
 dissertation
 represents
 novel
 research
 in
 which
 two
 studies
 were
 
designed
 to
 answer
 the
 following
 questions:
 (1)
 what
 predicts
 PTG,
 including
 
personal
 and
 environmental
 characteristics
 as
 well
 as
 the
 number
 and
 severity
 of
 
stressfulness
 of
 SLEs
 experienced?;
 and
 (2)
 how
 do
 SLEs
 and
 PTG
 influence
 changes
 
in
 the
 frequency
 of
 substance
 use
 behaviors
 over
 time
 among
 vulnerable,
 ethnically
 
diverse,
 older
 youth?
 
 In
 addition,
 theoretical
 postulates
 were
 tested
 to
 examine
 
whether
 mean
 scores
 of
 PTG
 in
 this
 sample
 represent
 an
 illusory
 perception
 of
 
growth
 as
 a
 transient
 palliative
 strategy
 to
 regain
 a
 sense
 of
 self-­‐esteem
 post-­‐SLE
 or
 
if
 PTG
 scores
 represent
 an
 attempt
 to
 achieve
 congruence
 through
 growth
 in
 both
 
cognitive
 and
 behavioral
 functioning.
 
 

 
Methods:
 Students
 were
 recruited
 from
 alternative
 high
 schools
 (n=564;
 mean
 
age=16.8),
 where
 they
 participated
 in
 the
 Project
 Toward
 No
 Drug
 Abuse
 
intervention.
 Surveys
 were
 administered
 in-­‐person,
 by
 phone
 or
 mail-­‐back.
 Data
 
regarding
 socio-­‐demographic,
 personal
 and
 environmental
 characteristics
 were
 
collected
 at
 baseline
 and
 1-­‐year
 follow-­‐up.
 Data
 regarding
 SLEs
 and
 PTG
 were
 
collected
 at
 2-­‐year
 follow-­‐up.
 Data
 on
 substance
 use
 behaviors
 were
 collected
 at
 
both
 baseline
 and
 2-­‐year
 follow-­‐up.
 
 For
 both
 studies,
 multi-­‐level
 regression
 models
 
were
 constructed,
 controlled
 for
 sociodemographic
 variables,
 peer
 and
 baseline
 
substance
 use,
 attrition,
 and
 treatment
 group
 where
 relevant.
 For
 the
 exploratory
 

  ix
 
moderation
 in
 Study
 1,
 interaction
 terms
 were
 created
 between
 ethnicity
 and
 each
 
of
 the
 potential
 predictors
 to
 evaluate
 their
 relationship
 with
 PTG.
 

 
Results:
 Nearly
 half
 of
 the
 participants
 were
 female;
 65%
 were
 Hispanic,
 and
 on
 
average,
 all
 reported
 experiencing
 3
 SLEs
 in
 the
 past
 two
 years.
 
 Findings
 from
 Study
 
1
 were
 that
 the
 majority
 of
 participants
 reported
 developing
 PTG
 as
 a
 result
 of
 their
 
most
 life-­‐altering
 SLE.
 Predictors
 of
 PTG
 included
 fewer
 SLEs,
 less
 general
 stress,
 
greater
 identification
 with
 the
 developmental
 stage
 of
 Emerging
 Adulthood,
 and
 an
 
interaction
 between
 Hispanic
 ethnicity
 and
 future
 time
 perspective.
 Findings
 from
 
Study
 2
 were
 that
 a
 greater
 number
 of
 SLEs
 predicted
 greater
 use
 of
 cigarettes,
 
alcohol,
 marijuana,
 hard
 drugs
 and
 substance
 use.
 
 In
 contrast,
 greater
 PTG
 
significantly
 predicted
 less
 use
 of
 alcohol,
 getting
 drunk
 on
 alcohol,
 binge
 drinking,
 
marijuana
 use,
 and
 substance
 abuse.
 
 
 

 
Conclusions:
 Taken
 together,
 findings
 from
 these
 studies
 indicate
 that
 high-­‐risk,
 
older
 youth
 report
 SLEs
 that
 reflect
 their
 unique
 life
 stage
 and
 set
 of
 circumstances.
 
Constructs
 that
 assessed
 stage
 of
 life
 were
 more
 salient
 in
 predicting
 PTG
 than
 were
 
constructs
 reflecting
 mood
 states
 (i.e.,
 depression,
 positive
 affect),
 although
 future
 
time
 perspective
 predicted
 higher
 PTG
 among
 Hispanics
 only.
 
 Regarding
 theoretical
 
postulates,
 the
 finding
 that
 higher
 PTG
 predicted
 less
 substance
 use
 suggests
 that
 
higher
 PTG
 scores
 were
 not
 representative
 of
 transient
 or
 merely
 illusory
 
exaggerations
 of
 post-­‐SLE
 adjustment
 rather
 they
 were
 indicative
 of
 growth
 on
 both
 
the
 cognitive
 and
 behavioral
 levels
 among
 these
 youth.
 
 Furthermore,
 although
 

  x
 
greater
 SLEs
 predicted
 lower
 PTG,
 findings
 from
 these
 studies
 support
 the
 notion
 
that
 positive
 psychosocial
 adjustment
 to
 a
 life-­‐altering
 experience
 may
 counteract
 
the
 negative
 impact
 of
 stress
 from
 SLEs
 on
 substance
 use
 behaviors
 among
 high-­‐risk
 
youth.
 
 

 

  1
 
CHAPTER
 1:
 INTRODUCTION
 

 

  Stress
 from
 significant
 life
 events
 (e.g.,
 medical
 trauma,
 being
 witness
 to
 a
 
crime,
 natural
 disaster,
 relationship
 break-­‐up,
 abuse)
 can
 induce
 substantial
 
cognitive,
 emotional,
 spiritual,
 social,
 and
 behavioral
 change
 within
 an
 individual’s
 
life.
 Particularly
 among
 late
 adolescence
 to
 young
 adulthood,
 a
 time
 period
 
sometimes
 referred
 to
 as
 emerging
 adulthood,
 individuals
 are
 seen
 as
 fulfilling
 a
 
normative
 role
 in
 going
 through
 a
 process
 of
 individuation,
 where
 they
 become
 
psychologically
 and
 socially
 independent
 (Arnett,
 2000;
 Arnett,
 2004;
 Grotevant
 &
 
Cooper,
 1986;
 Steinberg,
 1981).
 
 They
 are
 expected
 to
 progress
 through
 the
 
developmental
 stage
 of
 life
 that
 includes
 experimenting
 with
 taking
 on
 adult
 
responsibilities
 and
 learning
 how
 to
 effectively
 adapt
 to
 circumstances
 that
 occur
 in
 
their
 lives,
 however
 stressful
 (Arnett,
 2000;
 Arnett,
 2004).
 
 Experiencing
 distressing
 
and
 traumatic
 events
 at
 this
 young
 age
 may
 lead
 to
 maladaptive
 coping
 or
 
adjustment
 and
 has
 been
 linked
 to
 psychological
 impairment
 such
 as
 the
 
development
 of
 depressive
 and
 anxiety
 disorders,
 suicidal
 ideation,
 complicated
 
grief
 states,
 post-­‐traumatic
 stress
 disorder
 (PTSD),
 substance
 use
 and
 dependence,
 
and
 chronic
 physical
 problems
 (Buckner,
 Beardslee,
 &
 Bassuk,
 2004;
 Hahn
 &
 Se,
 
2008;
 Kessler,
 2002;
 Wills
 &
 Shiffman,
 1985).
 
 Aside
 from
 such
 psychological
 
consequences,
 substantial
 evidence
 shows
 that
 maladaptive
 coping
 methods
 and
 
adjustment
 to
 stress
 with
 the
 resulting
 emotional
 distress
 causing
 more
 health-­‐
compromising
 behaviors
 among
 adolescents,
 such
 as
 earlier
 initiation
 of
 and
 more
 

  2
 
frequent
 substance
 use
 (e.g.,
 Ursano
 et
 al.,
 2004;
 Wagner
 et
 al.,
 2009;
 Wills,
 1986;
 
Wills,
 Vaccaro,
 &
 McNamara,
 1992).
 
 
Substance
 Use
 and
 Stressful
 Life
 Events
 Among
 High-­‐Risk
 Older
 Youth
 

  With
 respect
 to
 substance
 use,
 estimates
 indicate
 that
 in
 2009,
 approximately
 
69.7,
 130.6,
 and
 21.8
 million
 Americans
 age
 12
 and
 older
 used
 tobacco,
 alcohol,
 or
 
illicit
 drugs
 (i.e.,
 marijuana/hashish,
 cocaine,
 heroin,
 hallucinogens,
 inhalants
 or
 
prescription-­‐type
 psychotherapeutics
 taken
 for
 non-­‐medical
 reasons)
 in
 the
 past
 
month,
 which
 represents
 27.7%,
 51.9%,
 and
 8.7%
 of
 the
 population
 within
 that
 age
 
range,
 respectively
 (SAMHSA,
 2010).
 Further,
 illicit
 drug
 use
 among
 older
 
adolescents
 ages
 16
 to
 17
 reached
 16.7%
 in
 2009
 (SAMHSA,
 2010).
 Adolescents
 
who
 use
 or
 misuse
 substances
 have
 a
 higher
 likelihood
 of
 having
 experienced
 highly
 
stressful
 and
 traumatic
 events
 in
 their
 past
 (e.g.,
 childhood
 sexual
 abuse,
 witnessing
 
violence,
 natural
 disaster),
 tend
 to
 live
 in
 higher-­‐risk
 environments,
 with
 substance-­‐
using
 peers
 and
 substance-­‐using
 role
 models
 in
 close
 proximity
 (Fergusson,
 Boden,
 
&
 Horwood,
 2008;
 Sussman
 &
 Ames,
 2008).
 
 Further,
 substances
 have
 long
 been
 
used
 as
 a
 method
 of
 coping
 and
 relief
 from
 distress
 (e.g.,
 Holahan
 et
 al.,
 2001;
 Wills,
 
1986).
 
 

  Some
 youth
 are
 at
 higher
 risk
 than
 others
 for
 experiencing
 both
 higher
 levels
 
of
 stress/trauma
 as
 well
 as
 engaging
 in
 health-­‐compromising
 behaviors.
 In
 
particular,
 students
 who
 attend
 continuation
 high
 schools
1

 (CHSs)
 may
 experience
 
greater
 levels
 of
 stress/trauma
 than
 their
 regular
 high
 school
 (RHS)
 counterparts,
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
Continuation
 High
 Schools
 may
 be
 called
 alternative,
 contract,
 or
 community
 high
 schools
 in
 states
 
other
 than
 California.
 Generally,
 students
 in
 these
 schools
 have
 left
 regular
 high
 school
 because
 of
 
excessive
 truancy,
 poor
 academic
 performance,
 drug
 use,
 violence,
 other
 illegal
 activity,
 or
 disruptive
 
behavior
 (Rohrbach
 et
 al.,
 2005).
 

  3
 
including
 emotional
 and
 physical
 abuse
 or
 victimization,
 loss
 of
 a
 parent,
 cycling
 in-­‐
and-­‐out
 of
 foster
 care,
 being
 a
 witness
 to
 violence,
 and
 other
 occurrences
 that
 cause
 
them
 to
 feel
 disconnected
 from
 mainstream
 society
 (Zweig
 &
 Institute,
 2003).
 
 In
 
addition,
 CHS
 students
 report
 a
 higher
 prevalence
 of
 tobacco,
 alcohol,
 and
 marijuana
 
use
 (Rohrbach
 et
 al.,
 2005;
 Sussman
 et
 al.,
 1995).
 Although
 the
 relationship
 between
 
self-­‐reported
 stress/trauma
 and
 substance
 use
 disorders
 and
 other
 health-­‐
compromising
 behaviors
 has
 been
 well
 established
 in
 the
 literature
 (Ursano,
 et
 al.,
 
2004;
 Wagner,
 et
 al.,
 2009;
 Wiechelt,
 2007;
 Wills,
 1986;
 Wills,
 et
 al.,
 1992)
 not
 all
 
adolescents
 exhibit
 maladaptive
 behaviors
 after
 having
 experienced
 a
 highly
 
stressful
 life
 event.
 
 
Post-­‐traumatic
 Growth
 and
 Stressful
 Life
 Events
 

  Many
 youth
 are
 able
 to
 adapt
 very
 well
 after
 experiencing
 highly
 stressful
 life
 
events
 (SLEs).
 Such
 youth
 undergo
 a
 process
 in
 which
 they
 emerge
 in
 the
 aftermath
 
of
 a
 traumatic
 experience
 with
 a
 more
 positive
 perspective
 on
 life.
 
 They
 develop
 
Post-­‐traumatic
 Growth
 (PTG).
 PTG
 has
 been
 characterized
 as
 the
 qualities
 of
 having
 
developed
 a
 greater
 investment
 in
 and
 appreciation
 for
 life,
 improved
 interpersonal
 
relationships,
 a
 greater
 sense
 of
 one’s
 spirituality,
 and
 an
 augmented
 sense
 of
 
personal
 strength
 (Tedeschi
 &
 Calhoun,
 1996).
 
 Thus,
 PTG
 represents
 a
 multi-­‐
dimensional
 construct
 such
 that
 an
 individual
 realizes
 cognitive,
 emotional,
 and
 
psychosocial
 change.
 

  In
 order
 for
 one
 to
 develop
 PTG
 following
 a
 SLE,
 one
 needs
 to
 have
 
experienced
 an
 event
 significant
 enough
 such
 that
 the
 event
 itself
 has
 come
 to
 
represent
 a
 significant
 challenge
 to
 the
 adaptive
 resources
 of
 the
 individual.
 
 In
 

  4
 
other
 words,
 that
 event
 has
 come
 to
 represent
 a
 significant
 challenge
 the
 person’s
 
way
 of
 understanding
 of
 themselves,
 the
 world,
 and
 their
 place
 in
 it
 (Janoff-­‐Bulman,
 
2002).
 Such
 a
 highly
 distressing
 experience
 thereby
 results
 in
 the
 process
 of
 
rumination,
 cognitive
 restructuring
 and
 re-­‐building
 of
 the
 life
 perspective
 such
 that
 
one
 is
 not
 only
 able
 to
 cope
 effectively,
 but
 also
 function
 at
 a
 higher
 level
 than
 the
 
pre-­‐SLE
 self
 (Calhoun
 &
 Tedeschi,
 2001;
 Tedeschi
 &
 Calhoun,
 1995).
 The
 
development
 of
 PTG
 varies
 by
 individual,
 and
 may
 be
 influenced
 by
 personal
 and
 
contextual
 factors,
 as
 well
 as
 features
 of
 stress
 from
 SLEs
 experienced.
 These
 factors
 
that
 influence
 PTG
 in
 the
 aftermath
 of
 an
 SLE
 will
 be
 further
 discussed
 in
 Chapter
 2.
 
 

  In
 the
 past
 20
 years,
 there
 has
 been
 a
 steady
 surge
 of
 research
 conducted
 on
 
PTG
 and
 related
 constructs.
 As
 noted
 by
 Park
 (Park,
 2004),
 it
 is
 important
 to
 study
 
growth
 after
 trauma
 due
 to
 its
 demonstrated
 positive
 associations
 with
 health
 
outcomes
 in
 the
 context
 of
 improvements
 in
 well-­‐being
 (e.g.,
 increased
 quality
 of
 life,
 
better
 adjustment,
 reduced
 depression
 symptoms;
 Carver
 &
 Antoni,
 2004;
 Lelorain,
 
Bonnaud-­‐Antignac,
 &
 Florin,
 2010;
 Schuettler
 &
 Boals,
 2011),
 functioning
 (e.g.,
 
socially,
 stress
 resistance,
 immunity
 or
 endocrinology;
 Cruess
 et
 al.,
 2001;
 McGregor
 
et
 al.,
 2004;
 Milam,
 2004),
 and
 behaving
 (e.g.,
 adopting
 healthier
 lifestyles,
 
medication
 adherence,
 interpersonal
 interactions,
 generative
 actions,
 altruism).
 
 
This
 focus
 on
 positive
 valence
 outcomes
 is
 consistent
 with
 the
 growing
 line
 of
 
inquiry
 in
 the
 field
 of
 positive
 psychology
 (Seligman
 &
 Csikszentmihalyi,
 2000),
 
which
 has
 generated
 substantial
 support
 for
 the
 significance
 of
 PTG
 and
 evidence
 of
 
how
 it
 may
 provide
 salutary
 benefit
 to
 overall
 well-­‐being,
 improved
 functionality,
 
and
 promote
 health-­‐related
 behaviors.
 Furthermore,
 research
 is
 beginning
 to
 

  5
 
provide
 a
 growing
 pool
 of
 evidence
 that
 PTG
 is
 related
 to
 better
 health
 behaviors,
 
and
 specifically
 inversely
 related
 to
 substance
 use.
 The
 relationship
 between
 PTG
 
and
 substance
 use
 will
 be
 further
 discussed
 in
 Chapter
 3.
 
Overview
 of
 the
 Dissertation
 
 

   
 Because
 the
 sample
 for
 these
 dissertation
 studies
 is
 highly
 diverse
 in
 
racial/ethnic
 make-­‐up
 and
 is
 comprised
 of
 CHS
 youth
 categorized
 as
 being
 in
 late
 
adolescence/early
 adulthood,
 examining
 specific
 variables
 that
 contribute
 to
 the
 
development
 of
 PTG
 particularly
 in
 this
 sample
 provided
 a
 unique
 opportunity
 for
 
several
 reasons.
 First,
 correlates
 and
 predictors
 of
 PTG
 (i.e.,
 SLEs,
 general
 stress,
 
depression,
 positive
 affect,
 family
 conflict,
 peer
 substance
 use)
 have
 been
 studied
 for
 
their
 relationship
 to
 PTG
 in
 other
 populations,
 but
 had
 not
 yet
 been
 studied
 in
 CHS
 
youth
 prior
 to
 this
 dissertation.
 Second,
 correlates
 that
 assess
 stage
 of
 development,
 
or
 stage
 of
 life
 (e.g.,
 emerging
 adulthood)
 and
 life
 perspective
 (e.g.,
 future
 time
 
perspective,
 motivation
 to
 improve),
 had
 not
 been
 previously
 examined
 for
 their
 
relationship
 to
 PTG
 yet
 are
 highly
 relevant
 for
 CHS
 youth,
 who
 tend
 to
 take
 on
 adult
 
roles
 earlier
 than
 RHS
 youth.
 
 Thus,
 this
 dissertation
 includes
 the
 first
 study
 (Study
 
1,
 presented
 in
 Chapter
 2)
 to
 examine
 such
 correlates
 and
 predictors
 of
 PTG
 among
 
a
 sample
 of
 high-­‐risk,
 older
 youth.
 Third,
 both
 occurrences
 of
 SLEs
 and
 substance
 
use
 behaviors
 tend
 to
 be
 high
 among
 CHS
 youth
 such
 that
 this
 sample
 provided
 an
 
opportunity
 to
 examine
 the
 relationships
 with
 PTG.
 
 Therefore,
 this
 dissertation
 
includes
 the
 first
 study
 (Study
 2,
 presented
 in
 Chapter
 3)
 to
 examine
 the
 behavioral
 
benefit
 of
 PTG
 among
 high-­‐risk
 youth,
 by
 assessing
 the
 direct
 relationship
 between
 
PTG
 and
 change
 in
 substance
 use
 behaviors
 over
 time.
 
 

  6
 

  The
 specific
 aims
 for
 the
 two
 studies
 included
 in
 this
 dissertation
 were
 
guided
 by
 theories
 of
 PTG
 (i.e.,
 Schaefer
 &
 Moos,
 1992;
 Tedeschi
 &
 Calhoun,
 1995;
 
Tedeschi
 &
 Calhoun,
 2004)
 and
 prior
 research.
 
 According
 to
 theories
 of
 PTG
 
(Schaefer
 &
 Moos,
 1992;
 Schaefer
 &
 Moos,
 1998;
 Tedeschi
 &
 Calhoun,
 1995;
 
Tedeschi
 &
 Calhoun,
 2004),
 the
 occurrence
 of
 some
 SLE,
 whether
 or
 not
 it
 qualifies
 
as
 a
 diagnosable
 traumatic
 stressor
2
,
 according
 to
 the
 Diagnostic
 and
 Statistical
 
Manual
 of
 Mental
 Disorders—IV
 (DSM-­‐IV;
 Association
 &
 DSM-­‐IV.,
 2000),
 is
 a
 
prerequisite
 for
 the
 development
 of
 PTG.
 Thus,
 in
 the
 endeavor
 to
 better
 understand
 
PTG,
 it
 is
 important
 to
 further
 explore
 the
 theoretical
 relationship
 with
 SLEs;
 more
 
specifically,
 to
 test
 whether
 or
 not
 PTG
 developed
 in
 relation
 to
 a
 specific
 SLE
 
(rather
 than
 general
 stress
 or
 other
 life
 events).
 
 Numerous
 studies
 have
 been
 
conducted
 to
 assess
 the
 levels
 of
 PTG
 reported
 in
 relation
 to
 a
 specific
 SLE
 that
 is
 a
 
stressor
 common
 to
 all
 participants.
 However,
 only
 a
 handful
 of
 studies
 have
 been
 
conducted
 to
 examine
 all
 types
 of
 SLEs
 reported
 by
 participants
 (e.g.,
 Alisic
 et
 al.,
 
2008;
 Ickovics
 et
 al.,
 2006;
 Milam,
 Ritt-­‐Olson,
 &
 Unger,
 2004).
 Particularly
 among
 
this
 sample
 of
 CHS
 youth,
 who
 experience
 high
 levels
 of
 SLEs
 and
 are
 unlikely
 to
 
experience
 a
 single
 common
 stressor,
 it
 is
 important
 to
 examine
 the
 relationship
 
between
 all
 types
 of
 SLEs
 they
 experience
 and
 PTG.
 
 Thus,
 these
 dissertation
 studies
 
were
 designed
 to
 assess
 a
 range
 of
 SLEs,
 that
 may
 not
 have
 conformed
 to
 the
 
diagnostic
 criteria
 of
 trauma
 defined
 by
 the
 APA
 (i.e.,
 events
 that
 involve
 actual
 or
 
threatened
 death
 or
 serious
 injury),
 yet
 referred
 to
 an
 event,
 and
 the
 circumstances
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2

 An
 event
 qualifies
 as
 a
 traumatic
 stressor
 if
 it
 (a)
 involved
 an
 actual
 or
 threatened
 death
 or
 serious
 
injury,
 or
 a
 threat
 to
 the
 physical
 integrity
 of
 oneself
 or
 to
 others,
 and
 (b)
 if
 the
 individual's
 response
 
involved
 intense
 fear,
 helplessness,
 or
 horror
 (Association
 &
 DSM-­‐IV.,
 2000).
 

  7
 
that
 surround
 the
 event,
 that
 have
 come
 to
 represent
 a
 significant
 challenge
 to
 one’s
 
adaptive
 resources.
 
 

  With
 regard
 to
 Study
 1,
 one
 objective
 was
 to
 document
 the
 types
 and
 number
 
of
 highly
 stressful
 life
 events
 reported
 by
 CHS
 youth
 as
 having
 occurred
 within
 a
 
two-­‐year
 time
 period,
 and
 to
 assess
 the
 degree
 to
 which
 these
 events
 were
 
associated
 with
 more
 positive
 perspectives
 on
 life
 in
 the
 aftermath
 an
 event
 
respondents
 designated
 as
 most
 life-­‐altering
 of
 the
 past
 two
 years.
 
 Another
 
objective
 of
 Study
 1
 was
 to
 assess
 the
 impact
 of
 relative
 severity
 of
 the
 most
 life-­‐
altering
 SLE
 on
 development
 of
 PTG.
 In
 addition,
 remaining
 objectives
 of
 Study
 1
 
were
 to
 examine
 how
 predictors
 of
 psychosocial
 adjustment
 that
 are
 particularly
 
relevant
 to
 CHS
 youth
 may
 influence
 the
 development
 of
 PTG.
 For
 example,
 
constructs
 that
 indicate
 stage
 of
 development,
 or
 stage
 of
 life
 (e.g.,
 emerging
 
adulthood)
 may
 be
 particularly
 relevant
 in
 predicting
 psychosocial
 adjustment
 
among
 CHS
 youth,
 who
 tend
 to
 take
 on
 adult
 roles
 earlier
 than
 RHS
 youth.
 Thus,
 for
 
Study
 1,
 the
 Specific
 Aims
 and
 hypotheses
 were
 as
 follows
 (see
 Chapter
 2
 for
 an
 in-­‐
depth
 presentation
 on
 these
 concepts):
 
Aim
 1.1.
  To
 examine
 predictors
 of
 PTG,
 including
 SLEs,
 Personal
 System
 and
 
Environmental
 System
 characteristics
 in
 a
 sample
 of
 CHS
 youth.
 
 
H1.1a.
  Levels
 of
 PTG
 will
 exhibit
 an
 inverse
 relationship
 with
 the
 
number
 of
 SLEs
 reported.
 
H1.1b.
  Mean
 PTG
 will
 exhibit
 a
 curvilinear
 (inverted
 U-­‐shape)
 
relationship
 with
 severity
 of
 SLEs.
 

  8
 
H1.1c.
  The
 Personal
 System
 characteristics
 of
 general
 stress
 and
 
depression
 will
 be
 negative
 predictors
 of
 PTG.
 In
 contrast,
 
positive
 affect,
 emerging
 adulthood,
 motivation
 to
 improve,
 and
 
future
 time
 perspective
 will
 be
 positive
 predictors
 of
 PTG.
 
 
H1.1d.
  The
 Environmental
 System
 characteristics
 of
 family
 conflict
 and
 
peer
 substance
 use
 will
 be
 negative
 predictors
 of
 PTG.
 
 
Aim
 1.2.
  To
 explore
 whether
 predictors
 of
 PTG
 (Personal
 and
 Environmental
 
System
 characteristics,
 SLEs)
 vary
 by
 race/ethnicity
 (Hispanic
 versus
 non-­‐Hispanic
 
ethnicity).
 

  With
 regard
 to
 Study
 2,
 the
 effect
 of
 PTG
 on
 substance
 use
 behaviors
 was
 
examined
 among
 the
 ethnically
 diverse
 sample
 of
 CHS
 students.
 With
 an
 estimated
 
67%
 of
 youth
 having
 experienced
 at
 least
 one
 traumatic
 event
 by
 the
 age
 of
 16
 
(Copeland
 et
 al.,
 2007)
 and
 substance
 use
 having
 long
 been
 used
 as
 a
 method
 of
 
coping
 with
 stress
 from
 significantly
 distressing
 experiences,
 objectives
 of
 this
 study
 
were
 to
 answer
 the
 question
 of
 how
 stress
 from
 SLEs
 and
 PTG
 influenced
 change
 in
 
the
 frequency
 of
 substance
 use
 behaviors
 over
 time
 among
 these
 highly
 vulnerable,
 
older
 youth.
 
 Specific
 Aims
 and
 hypotheses
 for
 Study
 2
 were
 as
 follows
 (see
 Chapter
 
3
 for
 an
 in-­‐depth
 presentation
 on
 these
 concepts):
 
Aim
 2.1.
  To
 confirm
 the
 relationship
 between
 cumulative
 stress
 from
 SLEs
 and
 
change
 in
 substance
 use
 behaviors
 over
 time.
 
H2.1.
  Greater
 cumulative
 stress
 from
 a
 higher
 number
 of
 SLEs
 will
 be
 
positively
 associated
 with
 increased
 substance
 use
 (cigarette
 use,
 

  9
 
marijuana,
 alcohol,
 hard
 drugs,
 overall
 substance
 use)
 over
 time
 
(baseline
 to
 2-­‐year
 follow-­‐up).
 
Aim
 2.2.
  To
 investigate
 the
 relationship
 between
 PTG
 and
 change
 in
 substance
 use
 
behaviors
 over
 time.
 
H2.2.
  PTG
 will
 be
 positively
 associated
 with
 decreased
 substance
 use
 
(cigarette
 use,
 marijuana,
 alcohol,
 hard
 drugs,
 overall
 substance
 
use)
 over
 time
 (baseline
 to
 2-­‐year
 follow-­‐up).
 

   
 

  10
 
CHAPTER
 2:
 STUDY
 1
 
Stressful
 Life
 Events
 and
 Predictors
 of
 Posttraumatic
 Growth
 
 

 

  Experiencing
 traumatic
 or
 extremely
 stressful
 life
 events
 (SLEs)
 at
 a
 young
 
age
 may
 contribute
 to
 poorer
 psychological
 and
 vulnerable
 emotional
 states,
 
particularly
 as
 one
 attempts
 to
 diminish
 the
 level
 of
 stress
 or
 regain
 a
 sense
 of
 
control
 over
 life
 (Buckner,
 et
 al.,
 2004;
 Wills,
 1986;
 Wills
 &
 Shiffman,
 1985).
 In
 
contrast,
 experiencing
 relatively
 high
 levels
 of
 acute
 stress
 or
 trauma
 may
 elicit
 
positive
 psychosocial
 change
 in
 some
 individuals,
 referred
 to
 as
 Post-­‐traumatic
 
Growth
 (PTG),
 and
 may
 help
 individuals
 avoid
 long-­‐term
 psychological
 and
 
emotional
 distress
 (Tedeschi,
 1995;
 Tedeschi
 &
 Calhoun,
 1996).
 PTG
 entails
 not
 only
 
recovery
 from
 highly
 stressful
 events,
 but
 also
 a
 transformative
 process
 that
 results
 
in
 growth
 to
 a
 higher
 level
 of
 functioning
 than
 the
 pre-­‐trauma
 state
 (Aldwin,
 
Levenson,
 &
 Spiro,
 1994;
 O'Leary
 &
 Ickovics,
 1995).
 It
 has
 been
 characterized
 by
 
changes
 in
 the
 individual’s
 relationships
 with
 others,
 sense
 of
 personal
 strength
 and
 
self-­‐reliance,
 spiritual
 beliefs,
 as
 well
 as
 finding
 new
 possibilities
 and
 having
 a
 greater
 
appreciation
 of
 life
 (Tedeschi
 &
 Calhoun,
 1996).
 
 Examining
 the
 factors
 that
 
contribute
 to
 the
 development
 of
 PTG
 over
 time
 may
 help
 facilitate
 more
 positive
 
psychological
 states
 in
 the
 aftermath
 of
 experiencing
 highly
 stressful
 events.
 

  Most
 studies
 of
 PTG
 have
 been
 conducted
 among
 samples
 in
 which
 all
 
individuals
 in
 the
 group
 have
 experienced
 some
 common
 type
 of
 SLE,
 such
 as
 cancer,
 
loss
 of
 a
 loved
 one,
 or
 natural
 disaster
 (e.g.,
 Arpawong
 et
 al.,
 In
 Press;
 Cieslak
 et
 al.,
 
2009;
 Ho,
 Chu,
 &
 Yiu,
 2008;
 Park
 et
 al.,
 2008).
 
 Only
 a
 handful
 of
 studies
 have
 
assessed
 PTG
 that
 has
 developed
 in
 the
 aftermath
 of
 a
 broad
 range
 of
 stressors
 (e.g.,
 

  11
 
Alisic,
 et
 al.,
 2008;
 Ickovics,
 et
 al.,
 2006;
 Milam,
 et
 al.,
 2004;
 Peterson
 et
 al.,
 2008;
 
Tedeschi
 &
 Calhoun,
 1996).
 
 For
 example,
 in
 one
 study
 that
 was
 used
 to
 validate
 the
 
original
 21-­‐item
 Post-­‐traumatic
 Growth
 Inventory
 (PTGI),
 604
 undergraduate
 
university
 students
 were
 surveyed
 for
 the
 development
 of
 PTG
 after
 having
 
experienced
 one
 of
 the
 following
 in
 the
 past
 5
 years:
 bereavement
 (36%),
 injury-­‐
producing
 accidents
 (16%),
 separation
 or
 divorce
 of
 parents
 (5%),
 relationship
 
break-­‐up
 (7%),
 criminal
 victimization
 (5%),
 academic
 problems
 (4%),
 unwanted
 
pregnancy
 (2%),
 and
 several
 other
 undefined
 experiences
 (25%)
 (Tedeschi
 &
 
Calhoun,
 1996).
 In
 another
 study,
 authors
 assessed
 PTG
 among
 a
 sample
 of
 319
 
urban
 female
 adolescents
 (mean
 age
 =
 17.24
 ±
 1.49)
 who
 were
 requested
 to
 divulge
 
the
 hardest
 thing
 they
 ever
 had
 to
 deal
 with
 (Ickovics,
 et
 al.,
 2006).
 General
 
categories
 for
 these
 stressors
 consisted
 of
 pregnancy/motherhood
 (42%),
 death
 of
 a
 
loved
 one
 (34%),
 physical
 threats
 (i.e.,
 socioeconomic
 problems,
 health
 problems,
 
crime;
 15%
 total),
 and
 interpersonal
 problems
 (i.e.,
 relationship
 problems,
 another
 
person’s
 problems,
 sexual
 abuse/harassment;
 28%
 total).
 Significant
 differences
 in
 
PTG
 were
 demonstrated
 by
 the
 event
 categories
 (p=.002),
 suggesting
 the
 
importance
 of
 assessing
 multiple
 types
 of
 SLEs
 when
 assessing
 positive
 
psychological
 growth
 among
 urban
 youth.
 
 

  For
 the
 present
 study,
 the
 primary
 aim
 was
 to
 examine
 PTG
 among
 an
 
ethnically
 diverse
 youth
 who
 attended
 continuation
 high
 schools
 (CHSs)
 in
 urban
 
settings.
 Typically,
 those
 who
 have
 attended
 CHSs,
 sometimes
 referred
 to
 as
 
alternative
 high
 schools,
 have
 left
 regular
 high
 schools
 (RHSs)
 because
 of
 excessive
 
truancy,
 poor
 academic
 performance,
 drug
 use,
 violence,
 other
 illegal
 activity,
 or
 

  12
 
disruptive
 behavior
 (Rohrbach,
 et
 al.,
 2005).
 Because
 this
 sample
 of
 youth
 
presumably
 experience
 higher
 levels
 of
 SLEs
 compared
 to
 their
 RHS
 counterparts
 
(Zweig
 &
 Institute,
 2003),
 they
 are
 at
 risk
 of
 poorer
 psychological
 and
 emotional
 
outcomes.
 Thus,
 the
 present
 study
 was
 designed
 as
 a
 novel
 examination,
 to
 assess
 
the
 relationship
 between
 PTG
 and
 a
 range
 of
 SLEs,
 broad
 enough
 to
 enable
 a
 
vulnerable
 sample
 to
 report
 any
 event
 that
 they
 considered
 as
 impacting
 enough
 to
 
have
 elicited
 the
 cognitive
 perception
 of
 life
 change.
 
 
 

  Theories
 on
 PTG
 posit
 that
 in
 order
 for
 PTG
 to
 occur,
 one
 needs
 to
 have
 
experienced
 a
 SLE
 that
 has
 come
 to
 represent
 a
 significant
 challenge
 to
 the
 adaptive
 
resources
 of
 the
 individual,
 shattering
 the
 person’s
 way
 of
 understanding
 
themselves,
 their
 assumptions
 about
 the
 world,
 and
 their
 place
 in
 it
 (Janoff-­‐Bulman,
 
2002).
 The
 study
 by
 Ickovics
 et
 al
 (2006)
 supports
 this
 notion
 in
 that
 those
 who
 had
 
experienced
 traumas
 that
 were
 coded
 as
 more
 severe
 (pregnancy/motherhood,
 
death
 of
 a
 loved
 one,
 physical
 threats)
 reported
 significantly
 greater
 PTG
 compared
 
to
 those
 who
 reported
 less
 severe
 traumas
 (interpersonal
 problems).
 However,
 the
 
relationship
 between
 distress
 and
 growth
 may
 be
 more
 complicated,
 and
 thus,
 non-­‐
linear.
 Prior
 research
 suggests
 that
 those
 who
 experience
 a
 very
 low
 or
 very
 high
 
level
 of
 distress
 from
 an
 SLE
 are
 either
 not
 sufficiently
 impacted,
 or
 overwhelmingly
 
impacted,
 respectively,
 and
 thus
 both
 groups
 would
 report
 lower
 levels
 of
 PTG
 (e.g.,
 
Armeli,
 Gunthert,
 &
 Cohen,
 2001;
 Calhoun
 et
 al.,
 2000;
 Carver,
 1998;
 Kleim
 &
 Ehlers,
 
2009;
 Laufer
 &
 Solomon,
 2006;
 McCaslin
 et
 al.,
 2009;
 Tomich
 &
 Helgeson,
 2004).
 
 In
 
contrast,
 those
 who
 report
 that
 an
 SLE
 is
 sufficiently
 challenging
 to
 their
 sense
 of
 
purpose
 and
 meaning
 in
 life
 (moderate
 level
 of
 distress)
 may
 be
 more
 likely
 to
 

  13
 
report
 higher
 levels
 of
 PTG.
 Therefore,
 in
 a
 general
 sample
 PTG
 may
 demonstrate
 a
 
curvilinear
 (inverted
 U-­‐shape)
 relationship
 with
 the
 relative
 severity
 of
 stress
 from
 
the
 SLE
 experienced
 such
 that
 PTG
 is
 more
 likely
 to
 develop
 from
 SLEs
 that
 are
 
sufficiently
 stressful
 yet
 not
 overwhelmingly
 so.
 
 Due
 to
 the
 central
 role
 that
 level
 of
 
distress
 from
 SLEs
 play
 in
 the
 development
 of
 PTG,
 investigating
 aspects
 of
 SLEs
 
that
 influence
 PTG
 will
 help
 to
 better
 characterize
 why
 PTG
 occurs,
 and
 possibly
 
how
 to
 foster
 it.
 
 Thus,
 another
 aim
 of
 this
 study
 was
 to
 examine
 the
 relationship
 
between
 PTG
 and
 severity
 of
 stress
 experienced
 from
 a
 life-­‐altering
 SLE.
 
 

  Increasing
 evidence
 also
 demonstrates
 that
 psychosocial
 adjustment
 to
 
stress
 may
 be
 impacted
 by
 the
 additivity
 of
 events,
 or
 cumulative
 number
 of
 SLEs
 
experienced
 such
 that
 there
 is
 a
 dose-­‐response
 relationship
 between
 the
 number
 of
 
different
 types
 of
 SLEs
 and
 poorer
 health
 outcomes
 (Anda
 et
 al.,
 2006;
 Dong
 et
 al.,
 
2003;
 Larkin,
 Shields,
 &
 Anda,
 2012).
 Thus,
 the
 sum
 total
 of
 SLEs
 experienced
 may
 
serve
 as
 a
 measure
 of
 cumulative
 stress
 and
 may
 negatively
 impact
 the
 development
 
of
 PTG.
 Particularly
 among
 a
 sample
 of
 youth
 who
 have
 a
 higher
 likelihood
 for
 
experiencing
 stressful
 events
 than
 the
 general
 population
 of
 adolescents,
 examining
 
this
 dose-­‐response
 impact
 of
 types
 of
 SLEs
 on
 PTG
 provides
 a
 clearer
 picture
 of
 how
 
stressful
 events
 in
 a
 vulnerable
 subgroup
 impact
 PTG.
 

  With
 regard
 to
 theories
 on
 PTG,
 the
 development
 of
 it
 requires
 processes
 of
 
rumination,
 cognitive
 restructuring
 and
 re-­‐building
 of
 the
 life
 perspective
 (Calhoun
 
&
 Tedeschi,
 2001;
 Tedeschi
 &
 Calhoun,
 1995).
 The
 level
 of
 PTG
 reported
 varies
 by
 
individual
 due
 to
 other
 more
 proximal
 characteristics
 that
 influence
 how
 individuals
 
create
 their
 assumptive
 world
 and
 re-­‐build
 their
 new
 perspectives
 in
 the
 aftermath
 

  14
 
of
 a
 SLE.
 These
 components
 may
 be
 negatively
 or
 positively
 impacted
 by
 what
 can
 
be
 referred
 to
 as
 Personal
 System
 characteristics
 (e.g.,
 cognitive
 ability,
 motivation,
 
affect,
 health
 status;
 see
 Life
 Crises
 and
 Personal
 Growth
 Model;
 Schaefer
 &
 Moos,
 
1992;
 Schaefer
 &
 Moos,
 1998)).
 For
 example,
 greater
 general
 stress
 may
 cause
 
individuals
 to
 interpret
 subsequent
 SLEs
 more
 negatively,
 which
 thereby
 inhibits
 
effective
 cognitive
 processing
 of
 the
 event.
 Additionally,
 in
 previous
 studies,
 
depression
 demonstrated
 a
 weak
 inversely
 significant
 relationship
 with
 PTG
 in
 a
 
meta-­‐analysis
 of
 17
 studies
 (Helgeson,
 Reynolds,
 &
 Tomich,
 2006)
 as
 it
 presumably
 
impacts
 how
 individuals
 are
 able
 to
 re-­‐build
 their
 new
 realities
 post-­‐trauma.
 
 Thus,
 
in
 the
 present
 study,
 these
 two
 pre-­‐trauma
 factors
 will
 be
 examined
 as
 predictors
 of
 
PTG.
 

  In
 contrast,
 theories
 on
 PTG
 presume
 that
 some
 personality
 characteristics
 
may
 protect
 individuals
 from
 become
 too
 immersed
 in
 feelings
 of
 distress
 and
 lead
 
to
 more
 meaningful
 life
 narratives
 that
 result
 in
 a
 higher
 growth
 potential
 (Tedeschi
 
&
 Calhoun,
 1995).
 One
 such
 factor
 is
 positive
 affect.
 Positive
 affect
 has
 shown
 to
 
explain
 up
 to
 19%
 of
 the
 variance
 in
 PTG
 in
 some
 studies
 with
 breast
 cancer
 
patients
 (Lelorain,
 et
 al.,
 2010),
 and
 thus
 may
 be
 worthy
 of
 examination
 for
 its
 
contribution
 to
 PTG
 among
 a
 sample
 of
 youth.
 Another
 possible
 protective
 factor
 is
 
one’s
 motivation
 to
 improve
 one’s
 life
 and
 circumstances
 that
 surround
 the
 crisis.
 In
 
turn,
 motivation-­‐to-­‐improve
 may
 promote
 aspects
 of
 PTG,
 such
 as
 greater
 personal
 
strength,
 cultivating
 one’s
 appreciation
 for
 life
 and
 realizing
 new
 possibilities.
 
 

  Similarly,
 having
 future
 time
 perspective
 (FTP),
 may
 positively
 encourage
 the
 
development
 of
 PTG.
 Generally,
 a
 person
 with
 FTP
 is
 one
 who
 has
 a
 relative
 

  15
 
temporal
 orientation
 that
 motivates
 him/her
 to
 act
 towards
 achieving
 goals
 by
 
focusing
 on
 the
 future
 rather
 than
 dwelling
 on
 the
 past
 or
 the
 present
 (Henson
 et
 al.,
 
2006).
 FTP
 represents
 a
 concept
 that
 has
 garnered
 increasing
 attention
 in
 the
 
literature
 as
 a
 potential
 protective
 factor
 for
 health
 (Barnett
 et
 al.,
 In
 Press)
 and
 may
 
be
 a
 contributor
 of
 PTG.
 
 Lastly,
 a
 factor
 that
 has
 particular
 relevance
 to
 the
 CHS
 
youth
 in
 the
 present
 study
 is
 emerging
 adulthood,
 which
 has
 been
 characterized
 as
 a
 
time
 period
 of
 transition
 during
 which
 individuals
 aged
 18
 to
 25
 gain
 more
 
autonomy,
 continue
 to
 explore
 the
 direction
 of
 their
 lives,
 and
 take
 on
 more
 adult
 
roles
 (e.g.,
 finding
 a
 career,
 getting
 married)
 (Arnett,
 2000).
 CHS
 students
 tend
 to
 
take
 on
 adult
 roles
 earlier
 than
 their
 counterparts
 attending
 RHSs,
 as
 some
 enter
 a
 
CHS
 upon
 becoming
 a
 young
 parent,
 after
 having
 taken
 on
 job
 or
 guardian
 
responsibilities
 in
 the
 home
 in
 the
 absence
 of
 their
 parent,
 or
 while
 cohabitating
 
with
 a
 romantic
 partner
 (Rohrbach,
 et
 al.,
 2005).
 Because
 the
 emerging
 adulthood
 
dimensions
 have
 demonstrated
 positive
 relationships
 with
 resiliency
 constructs
 
(Chassin
 et
 al.,
 1996;
 Masten,
 2004)
 and
 may
 be
 similar
 to
 the
 domains
 of
 PTG
 
(relating
 to
 others,
 realizing
 new
 possibilities,
 greater
 personal
 strength),
 they
 may
 
be
 important
 predictors
 of
 PTG
 among
 the
 sample
 in
 this
 study.
 

  Also
 as
 theorized,
 contextual
 environmental
 factors
 (e.g.,
 family
 and
 social
 
support,
 community
 assets)
 may
 influence
 the
 level
 of
 PTG
 reported
 by
 individuals
 
in
 the
 aftermath
 of
 experiencing
 an
 SLE
 (Schaefer
 &
 Moos,
 1992;
 Schaefer
 &
 Moos,
 
1998).
 One
 factor
 with
 particular
 relevance
 to
 the
 sample
 of
 CHS
 youth
 is
 family
 
conflict.
 The
 presence
 of
 higher
 levels
 of
 family
 conflict
 may
 be
 another
 indicator
 of
 
higher
 stress
 levels,
 as
 well
 as
 family
 relationships
 that
 are
 less
 nurturing,
 more
 

  16
 
tense,
 and
 interpersonally
 distant
 (Wills,
 1986;
 Wills,
 et
 al.,
 1992).
 Peer
 substance
 
use
 is
 an
 indicator
 of
 peer
 relationships
 that
 may
 provide
 for
 less
 adaptive
 ways
 of
 
dealing
 with
 stress,
 and
 thereby
 inhibit
 the
 development
 of
 PTG.
 Peer
 substance
 use
 
has
 been
 widely
 established
 as
 a
 robust
 predictor
 of
 maladaptive
 adjustment
 among
 
adolescents
 (Collins
 et
 al.,
 1987;
 MacKinnon
 et
 al.,
 1991;
 Sussman,
 Dent,
 &
 Leu,
 
2000).
 
 These
 two
 more
 distal
 Environmental
 System
 characteristics
 may
 attenuate
 
gaining
 a
 better
 appreciation
 of
 life,
 finding
 strength
 in
 supportive
 relationships,
 or
 
finding
 new
 life
 possibilities
 as
 a
 result
 of
 SLEs.
 
 

  The
 first
 aim
 of
 this
 study
 is
 to
 examine
 the
 influence
 of
 the
 number
 of
 SLEs
 
and
 their
 relative
 severity
 of
 stressfulness
 on
 the
 development
 of
 PTG.
 We
 
hypothesize
 that
 the
 cumulative
 stress
 from
 a
 higher
 number
 of
 SLEs
 will
 exhibit
 an
 
inverse
 relationship
 with
 PTG
 (hypothesis
 1)
 while
 the
 severity
 of
 SLEs
 will
 exhibit
 a
 
curvilinear
 (inverted
 U-­‐shape)
 relationship
 with
 PTG
 (hypothesis
 2).
 Further,
 we
 
hypothesize
 that
 general
 stress
 and
 depression
 will
 negatively
 impact
 PTG
 while
 
motivation-­‐to-­‐improve,
 positive
 affect,
 Emerging
 Adulthood,
 and
 Future
 Time
 
Perspective
 will
 positively
 impact
 PTG
 (hypothesis
 3).
 With
 regard
 to
 
Environmental
 System
 characteristics,
 we
 hypothesize
 that
 family
 conflict
 and
 peer
 
substance
 use
 will
 demonstrate
 an
 inverse
 relationship
 with
 PTG
 (hypothesis
 4).
 
Lastly,
 empirical
 evidence
 suggests
 that
 adjustment
 to
 stress
 and
 trauma
 through
 
PTG
 differs
 by
 race/ethnicity
 (Weiss
 &
 Berger,
 2010;
 Helgeson,
 et
 al.,
 2006),
 
particularly
 between
 Hispanics
 and
 non-­‐Hispanics
 (J.
 Milam,
 2006;
 Powell,
 Rosner,
 
Butollo,
 Tedeschi,
 &
 Calhoun,
 2003;
 Richard
 G.
 Tedeschi
 &
 Calhoun,
 2004),
 but
 it
 is
 
not
 clear
 why.
 Thus,
 an
 auxiliary
 aim
 of
 this
 study
 is
 to
 replicate
 previous
 findings
 

  17
 
by
 examining
 the
 interactions
 between
 predictors
 of
 PTG
 and
 this
 potential
 
moderator.
 
Method
 
Participants
 

  Participants
 were
 enrolled
 in
 a
 randomized
 controlled
 trial
 of
 Project
 
Towards
 No
 Drug
 Abuse
 (TND),
 a
 12-­‐lesson
 drug
 abuse
 prevention
 curriculum
 that
 
targets
 youth
 in
 continuation
 high
 schools
 (CHSs).
 Project
 TND
 has
 been
 evaluated
 
in
 seven
 randomized
 trials
 that
 have
 shown
 short
 and
 long-­‐term
 effects
 on
 reducing
 
cigarette
 smoking
 and
 other
 drug
 use
 among
 teens
 (Rohrbach,
 et
 al.,
 2005;
 Sussman
 
et
 al.,
 2012).
 The
 most
 recent
 trial
 (Sussman,
 et
 al.,
 2012)
 examined
 the
 efficacy
 of
 a
 
booster
 component
 that
 utilizes
 motivational
 interviewing
 techniques.
 Twenty-­‐four
 
CHSs
 were
 randomly
 assigned
 to
 one
 of
 three
 experimental
 conditions:
 control,
 TND
 
only,
 or
 TND
 plus
 motivational
 interviewing
 booster.
 A
 total
 of
 1704
 (71.1%)
 of
 
students
 enrolled
 in
 classes
 selected
 from
 the
 24
 CHSs
 consented
 to
 participate
 in
 
the
 study.
 
 Reasons
 for
 non-­‐participation
 include
 parent
 decline
 of
 consent
 (0.8%),
 
student
 decline
 of
 consent
 or
 assent
 (5.1%),
 or
 parental
 non-­‐response
 (23.4%).
 
 

  Data
 were
 collected
 at
 baseline,
 which
 was
 immediately
 before
 program
 
implementation,
 and
 at
 two
 follow-­‐up
 time-­‐points
 (1-­‐year
 and
 2-­‐year
 follow-­‐up).
 
 
The
 first
 follow-­‐up
 data
 collection,
 1-­‐year
 follow-­‐up,
 took
 place
 over
 a
 15-­‐month
 
period.
 
 The
 second
 follow-­‐up
 occurred
 12
 months
 later.
 
 Of
 the
 students
 who
 
completed
 a
 survey
 at
 baseline,
 1186
 students
 completed
 the
 1-­‐year
 follow-­‐up
 
survey
 (29.2%
 attrition
 rate)
 and
 703
 students
 completed
 the
 2-­‐year
 follow-­‐up
 

  18
 
survey
 (58.1%
 attrition
 rate).
 For
 this
 study,
 the
 analytic
 sample
 was
 comprised
 
only
 of
 students
 who
 reported
 having
 experienced
 a
 SLE
 within
 the
 past
 two-­‐years
 
and
 answered
 PTG
 items
 referring
 to
 the
 SLE
 (n=564).
 
Attrition
 Analyses
 
To
 assess
 sample
 attrition,
 the
 sample
 retained
 for
 this
 study
 was
 compared
 
to
 the
 group
 that
 was
 lost-­‐to-­‐follow-­‐up
 from
 baseline
 to
 two-­‐year
 follow-­‐up.
 
 The
 
groups
 were
 compared
 for
 all
 variables
 used
 in
 this
 study
 that
 were
 assessed
 at
 
baseline
 (9
 variables)
 using
 the
 Student
 t-­‐test
 or
 chi-­‐square
 test
 in
 order
 to
 detect
 
statistically
 significant
 differences
 between
 samples
 at
 the
 p-­‐value
 alpha
 of
 0.05
 
(two-­‐tailed).
 The
 group
 retained
 for
 this
 study
 was
 comparable
 to
 the
 group
 lost-­‐to-­‐
follow-­‐up
 at
 two-­‐year
 on
 all
 variables
 except
 they
 were
 younger
 and
 more
 likely
 to
 
live
 with
 both
 parents
 at
 baseline
 (p<.0001).
 
 
 
Data
 Collection
 
 

  Data
 were
 collected
 in
 accordance
 with
 IRB
 practices
 at
 the
 University
 of
 
Southern
 California
 (USC).
 Informed
 consent
 was
 obtained
 from
 students
 who
 were
 
at
 least
 18
 years
 of
 age.
 Informed
 assent
 procedures
 were
 followed,
 in
 addition
 to
 
informed
 consent
 for
 parents,
 if
 students
 were
 under
 18
 years
 old.
 Trained
 data
 
collectors
 administered
 a
 paper
 and
 pencil
 survey
 in
 one
 50-­‐minute
 classroom
 
period
 at
 the
 baseline
 and
 one-­‐year
 follow-­‐up
 data
 collection
 sessions.
 At
 one-­‐year
 
follow-­‐up,
 students
 who
 provided
 consent
 but
 were
 absent
 the
 day
 of
 survey
 
administration
 or
 had
 left
 the
 school
 received
 a
 telephone
 call
 and
 were
 given
 the
 
option
 to
 complete
 the
 survey
 verbally
 at
 that
 time.
 The
 majority
 of
 students
 

  19
 
completed
 on-­‐year
 follow-­‐up
 surveys
 by
 phone
 (60.5%).
 For
 the
 two-­‐year
 follow-­‐up
 
data
 collection,
 76.3%
 of
 students
 completed
 surveys
 by
 telephone,
 8.8%
 completed
 
them
 in-­‐person
 (at
 school
 or
 via
 home
 visit),
 and
 14.8%
 completed
 them
 by
 mail.
 
 
Measures
 

  As
 the
 primary
 aim
 of
 this
 study
 was
 to
 examine
 predictors
 of
 PTG,
 we
 
measure
 the
 majority
 of
 variables
 (sociodemographic
 variables,
 general
 stress,
 
depression,
 motivation,
 future
 time
 perspective)
 prior
 to
 the
 assessment
 of
 PTG.
 
However,
 because
 positive
 affect
 has
 shown
 to
 be
 mutable
 from
 adolescence
 to
 
adulthood,
 and
 emerging
 adulthood
 assesses
 ones
 sense
 of
 independence
 and
 
responsibility
 at
 a
 particular
 time
 point,
 we
 measure
 both
 positive
 affect
 and
 
identification
 with
 emerging
 adulthood
 at
 two-­‐year
 follow-­‐up,
 contemporaneous
 
with
 the
 assessment
 of
 PTG.
 

  Demographics.
 
 Socio-­‐demographic
 information
 was
 collected
 at
 baseline
 for
 
age
 (in
 years),
 gender,
 race/ethnicity
 categories
 (Asian
 or
 Asian
 American;
 Latino
 or
 
Hispanic;
 African
 American
 or
 Black;
 White,
 Caucasian,
 Anglo,
 European
 American;
 
not
 Hispanic;
 American
 Indian
 or
 Native
 American;
 Mixed:
 My
 parents
 are
 from
 two
 
different
 groups;
 Other),
 and
 SES
 (a
 single
 variable
 reflecting
 either
 mother’s
 or
 
father’s
 highest
 educational
 attainment,
 whichever
 was
 higher).
 Other
 
characteristics
 included
 current
 living
 and
 job
 situation
 (live
 with
 both
 parents;
 live
 
with
 a
 boyfriend/girlfriend/partner;
 currently
 married;
 currently
 a
 parent;
 have
 a
 
job).
 

  20
 

  Post-­‐traumatic
 Growth.
 The
 instrument
 used
 to
 assess
 Post-­‐traumatic
 Growth
 
at
 2-­‐year
 follow-­‐up
 was
 based
 on
 an
 11-­‐item
 Post-­‐traumatic
 Growth
 Inventory
 
(PTGI),
 a
 modification
 of
 the
 original
 inventory
 by
 Tedeschi
 and
 Calhoun
 (Tedeschi,
 
1995;
 Tedeschi
 &
 Calhoun,
 1996).
 The
 11-­‐item
 version
 of
 the
 scale
 has
 been
 used
 
previously
 among
 both
 adolescent
 and
 adult
 samples
 (Arpawong
 et
 al.,
 2012;
 Milam,
 
2006;
 Milam
 et
 al.,
 2005;
 Milam,
 2004).
 We
 selected
 8
 items
 from
 the
 11-­‐item
 PTGI
 
for
 based
 on
 their
 high
 factor
 loadings
 on
 the
 first
 unrotated
 factor
 at
 or
 above
 0.66
 
with
 an
 Eigenvalue
 of
 5.44
 (Eigenvalue
 for
 the
 second
 factor
 was
 1.40).
 Participants
 
were
 asked
 to
 respond
 to
 items
 in
 reference
 to
 the
 Stressful
 Life
 Event
 they
 
designated
 as
 most-­‐life
 altering
 and
 occurred
 within
 the
 past
 two
 years.
 To
 avoid
 
the
 potential
 bias
 from
 participants
 only
 being
 able
 to
 report
 positive
 valenced
 
change
 that
 may
 have
 resulted
 from
 their
 stressful/traumatic
 event,
 items
 were
 
modified
 to
 allow
 for
 response
 choices
 of
 negative
 change,
 no
 change,
 or
 positive
 
change
 (3-­‐point
 scale).
 A
 composite
 score,
 averaging
 responses
 on
 all
 8
 items,
 was
 
used
 for
 this
 study.
 
 Internal
 consistency
 of
 this
 scale
 was
 high
 (Cronbach
 
alpha=0.81).
 

  Stressful
 Life
 Events
 (SLEs)
 and
 Most
 Impactful
 SLE.
 The
 SLE
 checklist
 
included
 in
 the
 2-­‐year
 follow-­‐up
 survey
 was
 derived
 from
 an
 abbreviated
 (18-­‐item)
 
version
 of
 the
 Adolescent
 Negative
 Life
 Events
 Inventory
 (Wills,
 1986;
 Wills
 &
 
Cleary,
 1996)
 that
 was
 used
 in
 a
 previous
 study
 of
 adolescents
 (mean
 age=14.4
 
years
 ±
 0.8)
 (Rohrbach
 et
 al.,
 2009).
 
 For
 the
 present
 study,
 at
 two-­‐year
 follow-­‐up,
 
we
 included
 a
 checklist
 of
 the
 8
 life
 events
 that
 were
 most
 prevalently
 reported
 
among
 adolescents
 in
 the
 Rohrbach
 et
 al.,
 (2009)
 study.
 
 Wording
 for
 some
 items
 

  21
 
was
 altered
 in
 order
 to
 be
 more
 relevant
 to
 this
 older
 adolescent
 population
 (mean
 
age
 at
 the
 time
 of
 this
 survey
 =
 18.8
 ±
 9.3).
 For
 example,
 “My
 parents
 had
 problems
 
with
 money”
 was
 changed
 to
 “I
 did
 not
 have
 enough
 money
 for
 basics
 (like
 food)”
 
and
 “I
 had
 a
 lot
 of
 arguments
 with
 my
 parents”
 was
 changed
 to
 “There
 were
 a
 lot
 of
 
arguments
 that
 happened
 at
 home.”
 Participants
 were
 provided
 with
 a
 checklist
 of
 
the
 8
 stressful
 life
 events
 and
 asked
 to
 indicate
 which
 events
 they
 had
 experienced
 
within
 the
 past
 two
 years
 (1=yes
 or
 2=no
 to
 each
 item).
 A
 ninth
 question
 allowed
 for
 
participants
 to
 indicate
 that
 they
 had
 experienced
 other
 events
 not
 listed
 in
 the
 
checklist
 with
 a
 free-­‐entry
 field
 for
 them
 to
 write
 in
 the
 event(s).
 
 Responses
 were
 
summed
 to
 create
 a
 score
 of
 the
 total
 number
 of
 stressful
 life
 events
 experienced
 
within
 the
 past
 two
 years.
 Subsequently,
 participants
 were
 asked
 to
 indicate
 which
 
of
 the
 events
 listed
 (including
 anything
 listed
 in
 the
 “Other”
 category)
 affected
 their
 
life
 the
 most.
 

  Severity
 of
 Stressful
 Life
 Event.
 
 Development
 of
 the
 severity
 or
 relative
 level
 
of
 stressfulness
 score
 for
 the
 most
 impactful
 SLEs
 reported
 by
 participants
 was
 
based
 on
 scores
 from
 the
 Life
 Events
 for
 Students
 Scale
 (LESS),
 a
 36-­‐item
 list
 of
 life
 
events
 (Linden,
 1984).
 
 The
 LESS
 was
 developed
 with
 the
 premise
 that
 different
 
levels
 of
 coping
 efforts
 are
 required
 to
 adjust
 to
 life
 changing
 events
 that
 are
 
stressful.
 
 In
 other
 words,
 events
 ranked
 at
 the
 top
 of
 the
 list
 (i.e.,
 1
 versus
 36)
 
would
 purportedly
 require
 a
 higher
 intensity-­‐level
 of
 adjustment
 to
 mitigate
 
negative
 impact
 of
 the
 life
 event.
 
 The
 LESS
 represents
 a
 revision
 of
 the
 Social
 
Readjustment
 Rating
 Scale
 (Holmes
 &
 Rahe,
 1967)
 developed
 for
 adults,
 although
 
the
 LESS
 includes
 events
 that
 are
 more
 likely
 to
 occur
 during
 the
 young
 adult
 or
 

  22
 
emerging
 adult
 age
 range
 (e.g.,
 17
 to
 25).
 Both
 scales
 include
 scores
 attached
 to
 each
 
event
 that
 represent
 “life
 change
 units”
 thereby
 providing
 a
 relative
 indicator
 of
 
severity
 of
 stressfulness
 for
 the
 respective
 event.
 

  A
 total
 of
 114
 students
 listed
 an
 SLE
 in
 the
 “Other”
 category
 of
 the
 SLE
 
checklist,
 perhaps
 reflecting
 the
 uniqueness
 of
 this
 sample,
 although
 41
 items
 were
 
duplicate
 items
 written
 in
 by
 multiple
 students
 or
 could
 be
 re-­‐categorized
 into
 an
 
existing
 item
 on
 the
 original
 checklist.
 Thus,
 73
 remaining
 items
 plus
 the
 8
 items
 of
 
the
 checklist
 (listed
 in
 Figure
 1)
 yielded
 a
 total
 of
 81
 items
 to
 be
 scored.
 From
 that
 
list,
 30
 items
 were
 matched
 to
 an
 item
 on
 the
 LESS
 (e.g.,
 disciplined
 or
 suspended
 
from
 school,
 serious
 illness
 or
 injury
 in
 the
 family,
 break-­‐up
 with
 
boyfriend/girlfriend/partner)
 and
 assigned
 the
 equivalent
 severity
 of
 stress
 score,
 
thereby
 leaving
 51
 items
 to
 be
 scored
 and
 ranked.
 
 
 

  In
 order
 to
 score
 the
 unmatched
 SLEs,
 five
 independent
 CHS
 raters
 were
 
recruited
 from
 respondents
 of
 the
 TND
 three-­‐year
 follow-­‐up
 data
 collection.
 These
 
study
 participants
 were
 selected
 at
 random
 to
 inquire
 about
 their
 interest
 in
 helping
 
with
 a
 sub-­‐study.
 The
 first
 five
 students
 who
 responded
 were
 selected
 for
 rating
 
assistance,
 and
 provided
 ratings
 in-­‐person.
3

 Raters
 were
 provided
 with
 2
 lists:
 (1)
 a
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3

 Spearman
 correlation
 coefficients
 on
 severity
 ratings
 from
 the
 five
 students
 ranged
 from
 
r=0.53
 to
 0.73,
 indicating
 acceptable
 to
 high
 agreement.
 However
 because
 correlation
 
coefficients
 are
 limited
 by
 not
 being
 able
 to
 take
 into
 account
 the
 agreement
 in
 ordering
 of
 
items
 (versus
 agreement
 in
 scoring),
 Bland-­‐Altman
 plots
 were
 constructed
 (Bland
 &
 Altman,
 
1986)
 to
 ascertain
 the
 range
 of
 agreement
 in
 rater
 coding,
 with
 agreement
 defined
 as
 a
 
mean
 bias
 ±2
 standard
 deviations,
 and
 whether
 or
 not
 coding
 for
 each
 rater
 would
 be
 
retained
 or
 additional
 raters
 would
 be
 needed.
 
 Additional raters were not needed because
Bland-Altman analyses indicated that 95% limits of agreement between each of the five raters
ranged between 2 standard deviations of the mean differences comparing each rater to the other
four.
 

  23
 
list
 of
 the
 matched
 SLEs
 including
 the
 respective
 life
 change
 unit
 for
 each
 SLE
 and
 
(2)
 the
 list
 of
 unmatched
 SLEs
 that
 had
 not
 yet
 been
 assigned
 a
 score.
 Raters
 were
 
asked
 to
 assign
 scores
 to
 each
 item
 on
 the
 unmatched
 SLE
 list
 (list
 #2),
 based
 on
 
how
 much
 stress
 s/he
 felt
 would
 be
 needed
 in
 adjusting
 to
 the
 particular
 SLE.
 Raters
 
were
 asked
 to
 anchor
 their
 ratings
 in
 accordance
 with
 the
 life
 change
 units
 of
 the
 
SLEs
 that
 were
 already
 matched
 (from
 list
 #1).
 Ratings
 from
 all
 students
 were
 
combined
 to
 create
 an
 average
 severity
 score
 for
 each
 of
 the
 items.
 
 Next,
 the
 SLEs
 
were
 placed
 in
 rank
 order,
 according
 to
 their
 average
 severity
 score.
 The
 rank
 
number
 of
 each
 SLE
 on
 the
 final
 list
 was
 used
 to
 create
 an
 ordinal
 severity
 score
 
variable.
 

  General
 stress.
 
 This
 subjective
 perception
 of
 stress
 scale,
 assessed
 at
 
baseline,
 was
 comprised
 of
 4
 items
 that
 were
 adapted
 from
 the
 Perceived
 Stress
 
Scale
 (Cohen,
 Kamarck,
 &
 Mermelstein,
 1983;
 Cohen
 &
 Williamson,
 1988).
 Items
 
inquired
 about
 how
 often
 in
 the
 past
 month
 the
 student
 had
 been
 upset,
 felt
 
difficulties
 were
 piling
 up,
 out
 of
 control,
 or
 stressed.
 Response
 options
 ranged
 from
 
1=Never
 to
 5=Very
 often.
 A
 mean
 of
 the
 4
 items
 was
 calculated
 to
 represent
 a
 
general
 perceived
 stress
 measure
 (Cronbach’s
 alpha
 =
 .88).
 

  Depression.
 
 The
 measure
 for
 depressive
 symptoms,
 collected
 at
 baseline,
 was
 
based
 on
 the
 Center
 for
 Epidemiologic
 Studies
 Depression
 Scale
 (CES-­‐D),
 validated
 
for
 use
 with
 adolescents
 (Radloff,
 1977;
 Radloff,
 1991;
 Sheehan
 et
 al.,
 1995).
 
 This
 
measure
 provides
 an
 indicator
 of
 symptoms
 of
 depression
 over
 the
 past
 7
 days
 and
 
not
 verification
 of
 a
 clinical
 diagnosis
 for
 the
 disorder,
 according
 to
 the
 DSM-­‐IV-­‐TR.
 

  24
 
This
 depressive
 symptoms
 scale
 was
 calculated
 by
 averaging
 five
 survey
 questions
 
that
 each
 have
 a
 response
 option
 provided
 on
 a
 4-­‐point
 Likert-­‐type
 scale.
 The
 
internal
 consistency
 of
 these
 items
 was
 high
 (Cronbach’s
 alpha=0.90).
 

  Positive
 affect.
 The
 items
 assessing
 positive
 affect
 at
 two-­‐year
 follow-­‐up
 were
 
taken
 from
 the
 original
 14-­‐item
 Snaith-­‐Hamilton
 Pleasure
 Scale
 (SHAPS)
 (Snaith
 et
 
al.,
 1995),
 developed
 to
 assess
 four
 domains
 of
 hedonic
 experience:
 
interest/pastimes,
 social
 interaction,
 sensory
 experience,
 and
 food/drink.
 The
 
original
 items
 were
 asked
 in
 reference
 to
 the
 participant’s
 ability
 to
 experience
 
pleasure
 “in
 the
 last
 few
 days.”
 However,
 the
 items
 for
 this
 study
 were
 adapted
 to
 
assess
 “ability
 to
 experience
 pleasure
 in
 general.”
 Each
 item
 of
 the
 scale
 is
 worded
 
such
 that
 a
 higher
 score
 indicates
 greater
 capacity
 to
 experience
 pleasure.
 
Convergent
 validity
 of
 the
 SHAPS
 has
 been
 demonstrated
 by
 its
 correlation
 with
 the
 
positive
 affect
 subscale
 of
 the
 Positive
 and
 Negative
 Affect
 Schedule
 (PANAS;
 
Watson,
 Clark,
 &
 Tellegen,
 1988)
 through
 analysis
 by
 Snaith
 et
 al
 (Snaith,
 et
 al.,
 
1995).
 The
 three
 items
 were
 averaged
 yielding
 a
 scale
 with
 good
 internal
 
consistency
 (alpha=0.75).
 

  Motivation
 to
 improve.
 Three
 questions
 were
 used
 to
 assess
 motivation-­‐to-­‐
improve
 at
 baseline,
 a
 construct
 that
 has
 demonstrated
 negative
 associations
 with
 
behaviors
 such
 as
 cigarette
 smoking
 (McCuller
 et
 al.,
 2006).
 Questions
 were
 asked
 
regarding
 motivation
 to
 improve
 health
 generally,
 the
 belief
 one
 could
 improve,
 and
 
having
 the
 energy
 with
 which
 to
 do
 so
 with
 response
 options
 ranging
 from
 1=”Very”
 

  25
 
to
 4=”Not
 at
 all”.
 
 Items
 were
 averaged
 yielding
 a
 scale
 with
 good
 internal
 
consistency
 (alpha=0.73).
 

  Future
 Time
 Perspective
 (FTP).
 FTP
 was
 measured
 at
 one-­‐year
 follow-­‐up
 
using
 7-­‐items
 taken
 from
 the
 Future
 Time
 Perspective
 scale
 of
 the
 Zimbardo
 Time
 
Perspective
 Inventory
 (ZTPI)
 (Barnett,
 et
 al.,
 In
 Press;
 P.
 G.
 Zimbardo
 &
 J.
 N.
 Boyd,
 
1999;
 P.G.
 Zimbardo
 &
 J.N.
 Boyd,
 1999).
 Students
 were
 asked
 to
 identify
 how
 well
 
the
 item
 describes
 their
 beliefs
 (e.g.,
 “I
 finish
 projects
 on
 time
 by
 working
 on
 them
 a
 
little
 bit
 every
 day,”
 “It
 upsets
 me
 to
 be
 late
 for
 school
 or
 other
 commitments,”
 “I
 
keep
 working
 at
 difficult,
 boring
 tasks
 if
 they
 will
 help
 me
 get
 ahead”)
 using
 5-­‐point
 
Likert
 scales.
 
 Cronbach’s
 alpha
 for
 the
 scale
 was
 .83.
 
 

  Emerging
 Adulthood.
 
 This
 was
 assessed
 with
 items
 from
 the
 Inventory
 of
 the
 
Dimensions
 of
 Emerging
 Adulthood
 (IDEA;
 Reifman,
 Arnett,
 &
 Colwell,
 2003).
 The
 
original
 IDEA
 is
 a
 31-­‐item
 instrument
 used
 to
 assess
 six
 dimensions
 that
 
characterize
 the
 period
 of
 emerging
 adulthood:
 time
 of
 identity
 exploration,
 
experimentation,
 possibility,
 self-­‐focus,
 other-­‐focus,
 and
 feeling
 in-­‐between.
 
 Each
 
question
 item
 is
 assessed
 on
 a
 4-­‐point
 Likert
 scale.
 
 At
 the
 two-­‐year
 follow-­‐up,
 a
 10-­‐
item
 version
 of
 the
 scale
 was
 used,
 including
 items
 selected
 for
 their
 highest
 
loadings
 in
 exploratory
 factor
 analysis
 (EFA)
 to
 represent
 4
 dimensions:
 
experimentation,
 self-­‐focused,
 identity
 exploration,
 and
 feeling-­‐in-­‐between.
 A
 
principal
 components
 EFA
 on
 the
 present
 sample
 showed
 that
 three
 factors
 
emerged
 although
 the
 internal
 consistency
 of
 factors
 two
 and
 three
 was
 not
 
acceptable
 (Cronbach
 alphas
 were
 .70,
 42,
 and
 .44,
 respectively)
 (Lisha
 et
 al.,
 2012).
 

  26
 
Thus,
 a
 maximum
 likelihood
 EFA
 was
 conducted,
 in
 which
 all
 10
 items
 loaded
 onto
 a
 
single
 factor.
 The
 10-­‐item
 one
 factor
 solution
 showed
 good
 internal
 consistency
 
 
(Cronbach’s
 alpha
 =
 .79).
 Thus,
 emerging
 adulthood
 was
 used
 as
 a
 unitary
 scale,
 
calculated
 from
 an
 average
 of
 the
 10
 items.
 

  Family
 Conflict.
 This
 5-­‐item
 subscale,
 assessed
 at
 baseline,
 was
 derived
 from
 
the
 original
 scale
 by
 Bloom
 (Bloom,
 1985).
 
 Items
 on
 the
 subscale
 assess
 
characteristics
 of
 family
 functioning,
 such
 that
 a
 student
 rates
 how
 well
 a
 statement
 
describes
 their
 family
 (i.e.,
 “Family
 members
 sometimes
 get
 so
 angry
 they
 throw
 
things,”
 “Family
 members
 rarely
 criticize
 each
 other”).
 The
 items
 were
 averaged
 to
 
create
 a
 mean
 score
 with
 an
 acceptable
 internal
 consistency
 (Cronbach’s
 alpha
 =
 
.64).
 
 

  Peer
 Substance
 Use.
 Peer
 substance
 use
 is
 a
 well-­‐established
 indicator
 of
 
maladaptive
 adjustment
 by
 its
 relationship
 with
 poor
 health-­‐related
 behaviors
 
(Sussman,
 Dent,
 &
 McCullar,
 2000).
 Four
 items
 were
 used
 at
 baseline
 to
 assess
 each
 
of
 the
 subcategories
 of
 substance
 use
 among
 peers:
 cigarettes,
 alcohol,
 marijuana,
 
and
 hard
 drugs.
 The
 four
 items
 were
 summed
 yielding
 a
 scale
 with
 high
 internal
 
consistency
 (Cronbach’s
 alpha=0.85).
 

  Study
 Condition.
 A
 covariate
 was
 included
 in
 order
 to
 control
 for
 study
 
condition
 to
 which
 students
 were
 assigned.
 Because
 this
 study
 did
 not
 assess
 effects
 
of
 the
 intervention,
 and
 previous
 studies
 have
 not
 shown
 differences
 in
 substance
 
use
 outcomes
 between
 the
 two
 intervention
 conditions
 (see
 Sussman,
 et
 al.,
 2012),
 

  27
 
the
 variable
 for
 study
 condition
 was
 dichotomously
 coded
 as
 TND-­‐any
 (either
 
intervention
 arm)
 or
 Control.
4

 
 
 
Statistical
 Analysis
 

  All
 analyses
 were
 performed
 using
 the
 SAS
 (v.9.3)
 statistical
 package.
 PTG
 
was
 evaluated
 for
 normal
 distribution
 and,
 due
 to
 scores
 being
 negatively
 skewed,
 
PTG
 scores
 were
 reflected
 to
 a
 positive
 skew,
 log-­‐transformed,
 and
 reflected
 again
 
to
 restore
 the
 original
 order
 of
 values
 for
 all
 analyses.
 Correlation
 coefficients
 were
 
calculated
 between
 key
 variables
 in
 order
 to
 determine
 zero-­‐order
 relationships.
 To
 
avoid
 problems
 of
 multicollinearity
 of
 Personal
 and
 Environmental
 System
 
characteristics,
 an
 analyses
 of
 the
 strength
 of
 relationships
 showed
 that
 tolerance
 
levels
 were
 between
 0.67
 to
 0.97
 and
 variance
 inflation
 levels
 (VIF)
 between
 1.04
 
and
 1.51.
 Neither
 posed
 a
 problem
 for
 the
 analyses.
 Means,
 standard
 deviations,
 and
 
frequencies
 for
 selected
 demographic
 characteristics
 and
 key
 variables
 were
 
calculated.
 Because
 of
 insufficient
 numbers
 in
 the
 race
 categories
 other
 than
 
Hispanic
 (35%),
 race/ethnic
 categories
 were
 recoded
 to
 Hispanic
 or
 non-­‐Hispanic.
 
 

  Sociodemographic
 variables,
 variables
 assessing
 the
 number
 and
 severity
 of
 
SLEs
 and
 Personal
 System
 and
 Environmental
 System
 characteristics
 were
 entered
 
into
 a
 series
 of
 hierarchical
 multi-­‐level
 regression
 models
 (PROC
 MIXED).
 
 All
 
models
 were
 run
 as
 multi-­‐level
 models,
 with
 students
 nested
 in
 schools,
 to
 
statistically
 control
 for
 the
 possibility
 that
 students
 within
 schools
 are
 more
 similar
 
than
 students
 across
 schools.
 The
 PTG
 score,
 a
 log-­‐transformed
 continuous
 variable,
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
Mean PTG scores did not significantly differ between treatment conditions (p=.85).

  28
 
was
 entered
 as
 the
 dependent
 variable
 for
 all
 analyses.
 In
 order
 to
 test
 Hypothesis
 2
 
regarding
 a
 curvilinear
 relationship
 between
 severity
 of
 SLEs
 and
 PTG,
 the
 variable
 
for
 severity
 of
 SLEs
 was
 first
 centered,
 then
 squared
 to
 create
 the
 quadratic
 term,
 
and
 then
 both
 the
 linear
 and
 quadratic
 terms
 were
 entered
 into
 the
 regression
 
model
 predicting
 PTG
 (Cohen,
 1978;
 Stimson,
 Carmines,
 &
 Zeller,
 1978).
 All
 models
 
included
 treatment
 condition
 as
 a
 control
 variable,
 as
 well
 as
 relevant
 
sociodemographic
 variables
 commonly
 associated
 with
 PTG
 (i.e.,
 age,
 gender,
 
race/ethnicity).
 
 

  In
 order
 to
 address
 the
 question
 of
 whether
 gender
 or
 race/ethnicity
 
moderates
 the
 relationship
 between
 key
 variables
 and
 PTG,
 9
 interaction
 terms
 
were
 created
 between
 each
 moderator
 and
 each
 personal
 and
 environmental
 
system
 characteristic
 according
 to
 methodology
 outlined
 by
 Frazier
 (Frazier,
 Tix,
 &
 
Barron,
 2004b).
 All
 interaction
 terms
 concerning
 gender
 were
 entered
 into
 a
 single
 
model,
 along
 with
 each
 main
 effect,
 to
 determine
 its
 relationship
 to
 PTG.
 None
 were
 
significant
 at
 the
 p<.05
 level.
 Next,
 all
 interaction
 terms
 concerning
 Hispanic
 
ethnicity
 were
 entered
 into
 a
 single
 model
 along
 with
 each
 main
 effect
 to
 determine
 
its
 relationship
 to
 PTG.
 Only
 one
 interaction,
 between
 Hispanic
 ethnicity
 and
 future
 
time
 perspective
 was
 significant
 at
 the
 p<.05
 level.
 
 Slopes
 between
 regression
 lines
 
representing
 the
 relationships
 between
 Future
 Time
 Perspective
 and
 PTG
 for
 the
 
two
 levels
 of
 ethnicity
 were
 compared
 (Frazier,
 Tix,
 &
 Barron,
 2004a;
 Aiken,
 West,
 &
 
Reno,
 1991),
 shown
 in
 Figure
 2.
 

  29
 

  To
 address
 the
 first
 study
 aim,
 Model
 1
 was
 run
 with
 age,
 gender,
 ethnicity,
 
and
 parents’
 education
 (proxy
 for
 SES)
 as
 correlates.
 To
 address
 the
 second
 study
 
aim,
 Model
 2
 added
 the
 SLE
 variables
 (number
 of
 SLEs
 experienced
 in
 the
 past
 two
 
years,
 severity
 of
 stressfulness
 of
 the
 most
 life-­‐altering
 SLE
 that
 happened
 within
 
the
 past
 two
 years,
 as
 well
 as
 the
 quadratic
 variable
 for
 severity
 of
 stressfulness
 to
 
test
 the
 curvilinear
 relationship)
 to
 Model
 1.
 To
 address
 the
 third
 study
 aim,
 Model
 3
 
added
 Personal
 System
 characteristics
 (general
 stress,
 depression,
 motivation
 to
 
improve,
 positive
 affect,
 emerging
 adulthood,
 future
 time
 perspective)
 and
 the
 
significant
 interaction
 term
 between
 Hispanic
 ethnicity
 and
 future
 time
 perspective
 
to
 Model
 2.
 To
 address
 the
 fourth
 study
 aim,
 Model
 4
 added
 Environmental
 System
 
characteristics
 (family
 conflict,
 peer
 substance
 use)
 to
 Model
 3.
 Lastly,
 because
 the
 
initial
 models
 were
 exploratory
 in
 the
 process
 of
 stepwise
 regression,
 a
 final
 model
 
was
 constructed
 retaining
 all
 control
 variables
 as
 well
 as
 the
 significant
 predictors
 
at
 a
 p<.10
 level
 (Sun,
 Shook,
 &
 Kay,
 1996)
 from
 Model
 4.
 
 
Results
 
Participant
 Characteristics
 
Table
 1
 provides
 the
 demographic
 characteristics
 for
 the
 sample
 (n=564).
 
Slightly
 more
 than
 half
 of
 the
 participants
 were
 male
 (54%)
 and
 were
 living
 with
 
both
 parents
 (53%).
 The
 majority
 of
 participants
 had
 a
 parent
 who
 completed
 high
 
school
 (65%)
 and
 self-­‐identified
 as
 Latino
 or
 Hispanic
 (65%).
 
Stressful
 Life
 Events,
 Personal
 and
 Environmental
 System
 Characteristics
 

  30
 
Table
 2
 provides
 means,
 standard
 deviations,
 and
 ranges,
 for
 correlates
 and
 
predictors
 of
 PTG
 examined
 in
 this
 study.
 The
 average
 number
 of
 SLEs
 reported
 to
 
have
 occurred
 in
 the
 last
 two
 years,
 per
 individual
 was
 3.14
 (SD=1.7).
 During
 the
 
two-­‐year
 period,
 20%
 of
 the
 sample
 reported
 having
 experienced
 between
 1
 and
 3
 
SLEs
 while
 17%
 reported
 experiencing
 4;
 13%
 reported
 experiencing
 5;
 6%
 
reported
 experiencing
 6;
 3%
 reported
 experiencing
 7;
 and
 1%
 reported
 
experiencing
 8
 or
 more
 SLEs
 (data
 not
 shown).
 
 
The
 general
 types
 of
 SLEs
 reported
 by
 participants
 are
 shown
 in
 Figure
 1,
 
listed
 in
 order
 of
 prevalence.
 Examples
 of
 SLEs
 reported
 in
 the
 “Other”
 category
 
included
 having
 a
 miscarriage,
 joining
 the
 Army,
 moving
 away
 from
 home,
 death
 of
 a
 
grandparent
 or
 cousin,
 a
 friend
 passing
 away,
 getting
 caught
 stealing,
 getting
 jaw
 
broken
 in
 a
 fight,
 found
 out
 that
 little
 sister
 was
 deaf,
 putting
 cat
 to
 sleep,
 separating
 
from
 adopted
 family,
 car
 getting
 burglarized,
 OD
 on
 acid
 and
 almost
 died,
 parents’
 
drug
 use,
 might
 have
 borderline
 personality
 disorder,
 got
 shot
 at,
 got
 restraining
 
order
 against
 mom,
 got
 my
 wallet
 stolen,
 quitting
 drugs,
 left
 school
 to
 avoid
 peer
 
pressure
 of
 drug
 use,
 did
 not
 want
 to
 mention,
 among
 others.
 The
 items
 remained
 in
 
the
 umbrella
 category
 of
 “Other”
 rather
 than
 being
 re-­‐categorized
 because
 fewer
 
than
 5
 participants
 reported
 any
 of
 the
 same
 events
 within
 the
 two-­‐year
 period.
 
Overall,
 the
 majority
 of
 SLEs
 reported
 fell
 into
 the
 category
 of
 “Someone
 in
 my
 
family
 had
 a
 serious
 illness,
 accident,
 or
 injury.”
 However,
 of
 those
 who
 reported
 an
 
SLE
 in
 this
 category,
 less
 than
 half
 (40.3%)
 indicated
 the
 event
 was
 the
 most
 life-­‐
altering
 of
 all
 SLEs
 reported
 in
 the
 past
 two
 years.
 
 The
 category
 with
 the
 lowest
 
prevalence
 in
 the
 last
 two
 years
 was
 “I
 was
 a
 victim
 of
 a
 violent
 or
 abusive
 crime”.
 

  31
 
However,
 of
 those
 who
 reported
 an
 SLE
 in
 this
 category,
 almost
 a
 third
 (31.7%)
 
reported
 that
 SLE
 had
 been
 most
 life-­‐altering
 for
 them
 compared
 to
 any
 other
 SLEs
 
reported.
 
Post-­‐traumatic
 Growth
 
PTG
 was
 reported
 only
 among
 those
 who
 reported
 experiencing
 an
 SLE
 
within
 the
 past
 two
 years.
 Participants
 were
 asked
 to
 respond
 to
 PTG
 items
 in
 
regard
 to
 the
 SLE
 they
 designated
 as
 the
 most
 life-­‐altering
 among
 all
 SLEs
 reported.
 
The
 majority
 of
 students
 reported
 that
 some
 aspect
 of
 their
 life
 had
 improved
 in
 
their
 lives
 in
 the
 aftermath
 of
 having
 experienced
 an
 SLE
 with
 the
 mean
 PTG
 score
 of
 
2.64
 (SD=0.38;
 range
 1-­‐3)
 for
 the
 entire
 sample.
 Almost
 a
 third
 of
 the
 students
 
reported
 positive
 changes
 on
 all
 PTG
 items
 (31.7%)
 while
 0.18%
 reported
 only
 
negative
 changes;
 and
 3.6%
 reported
 no
 changes
 on
 all
 items
 (data
 not
 shown).
 
 All
 
students
 reported
 positive
 change
 on
 at
 least
 1
 PTG
 item;
 25.4%
 reported
 negative
 
change
 on
 at
 least
 1
 item;
 and
 67.6%
 reported
 no
 change
 on
 at
 least
 1
 item.
 
Regression
 Analyses
 

  As
 shown
 in
 Table
 3,
 Model
 1
 demonstrated
 that
 demographic
 characteristics
 
did
 not
 significantly
 predict
 PTG,
 with
 parents’
 level
 of
 education
 being
 borderline
 
significant
 (p<.10).
 
 However,
 these
 variables
 were
 retained
 in
 all
 subsequent
 
models
 due
 to
 their
 empirical
 association
 with
 PTG
 (see
 reviews
 by
 Helgeson,
 et
 al.,
 
2006;
 Linley
 &
 Joseph,
 2004;
 Meyerson
 et
 al.,
 2011).
 Model
 2
 demonstrated
 that
 the
 
number
 of
 stressful
 life
 events
 experienced
 was
 inversely
 related
 to
 PTG
 whereas
 
there
 was
 no
 relationship
 between
 severity
 of
 SLE
 and
 PTG.
 Comparing
 the
 variance
 
explained
 by
 both
 the
 linear
 and
 quadratic
 terms,
 adding
 the
 quadratic
 term
 for
 

  32
 
severity
 of
 SLE
 did
 not
 account
 for
 any
 additional
 proportion
 of
 variance
 in
 PTG.
 As
 
this
 is
 the
 recommended
 method
 for
 evaluating
 the
 elimination
 of
 quadratic
 terms
 
in
 regression
 models
 (Cohen,
 1978;
 Stimson,
 et
 al.,
 1978),
 the
 term
 was
 excluded
 
from
 remaining
 models.
 Thus,
 adding
 the
 variable
 of
 number
 of
 SLEs
 in
 Model
 2
 
explained
 an
 additional
 2%
 of
 the
 variance
 in
 PTG
 beyond
 the
 3%
 variance
 
explained
 by
 sociodemographic
 variables
 from
 Model
 1.
 Model
 3
 demonstrated
 that
 
more
 strongly
 identifying
 with
 being
 in
 the
 stage
 of
 emerging
 adulthood
 
significantly
 predicted
 PTG
 (p<.05)
 while
 less
 general
 stress,
 greater
 positive
 affect,
 
and
 the
 interaction
 between
 Hispanic
 ethnicity
 and
 FTP
 approached
 significance
 
(p<.10)
 in
 predicting
 PTG.
 These
 Personal
 System
 characteristics
 added
 explained
 
an
 additional
 8%
 of
 the
 variance
 in
 PTG.
 Model
 4
 demonstrated
 that
 Environmental
 
System
 characteristics
 did
 not
 predict
 PTG,
 nor
 did
 they
 explain
 any
 additional
 
variance
 in
 PTG.
 The
 final
 model
 was
 constructed
 with
 predictors
 that
 explained
 a
 
total
 of
 13%
 of
 the
 variance
 in
 PTG,
 with
 higher
 PTG
 being
 predicted
 by
 fewer
 SLEs
 
experienced,
 less
 general
 stress,
 a
 higher
 score
 on
 the
 emerging
 adulthood
 scale,
 
and
 the
 interaction
 between
 Hispanic
 ethnicity
 and
 FTP.
5

 Positive
 affect
 was
 
borderline
 significant
 in
 predicting
 PTG
 in
 the
 final
 model.
 
 
Moderation
 

  Interaction
 terms
 were
 created
 for
 all
 possible
 variables
 with
 Hispanic
 
ethnicity.
 The
 only
 significant
 interaction
 was
 Hispanic
 ethnicity
 x
 FTP,
 diagrammed
 
in
 Figure
 1.
 The
 moderation
 analysis
 indicates
 that
 there
 is
 no
 difference
 in
 the
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
Multi-level models were run, predicting PTG as the dependent variable. Intraclass correlation of
individual PTG scores that were nested within schools is .007, resulting in a VIF=1.17 and
DEFT=1.08. Thus, standard errors using multi-level models are corrected for, yielding SEs that
are 1.08 times higher than if traditional OLS models had been run.
 
 
 

  33
 
pattern
 of
 predictors
 for
 PTG
 by
 Hispanic
 ethnicity
 in
 this
 sample.
 However,
 because
 
one
 interaction
 term
 was
 significant,
 it
 was
 added
 into
 Model
 3
 as
 a
 predictor.
 When
 
this
 interaction
 term
 was
 added
 into
 Model
 3,
 the
 main
 effect
 between
 FTP
 and
 PTG
 
was
 no
 longer
 significant,
 yet
 the
 interaction
 remained
 significant.
 
 
Discussion
 
Positive
 psychosocial
 growth
 in
 the
 aftermath
 of
 having
 experienced
 a
 highly
 
stressful
 event
 may
 help
 to
 mitigate
 long-­‐term
 psychological
 and
 emotional
 distress.
 
No
 prior
 studies
 have
 examined
 the
 extent
 to
 which
 PTG
 is
 reported
 among
 high-­‐
risk,
 older
 youth.
 Furthermore,
 correlates
 and
 predictors
 of
 PTG
 have
 not
 been
 
assessed
 in
 an
 emerging
 adult
 sample.
 
 In
 particular,
 assessing
 the
 impact
 of
 SLEs
 on
 
PTG
 among
 emerging
 adults
 is
 important
 because
 the
 novelty
 of
 particular
 events
 
faced
 during
 this
 time
 period
 may
 require
 more
 intensive
 psychological
 adjustment
 
than
 for
 older
 adults.
 
 As
 the
 development
 of
 PTG
 varies
 across
 samples
 and
 types
 of
 
SLEs,
 the
 present
 study
 fills
 a
 gap
 in
 knowledge
 regarding
 the
 contributors
 to
 the
 
variation
 in
 PTG,
 particularly
 among
 older
 youth.
 
 
 

  On
 average,
 students
 reported
 having
 experienced
 3
 or
 more
 SLEs
 in
 the
 past
 
two
 years.
 As
 we
 do
 not
 have
 comparison
 data,
 it
 is
 unclear
 whether
 this
 represents
 
a
 norm
 for
 other
 students
 of
 the
 same
 age
 range.
 However,
 students
 who
 attend
 
CHSs
 tend
 to
 exhibit
 more
 difficult
 living
 situations
 than
 their
 counterparts
 who
 
attend
 RHSs,
 including
 emotional
 and
 physical
 abuse
 or
 victimization,
 loss
 of
 a
 
parent,
 becoming
 a
 parent,
 cycling
 in-­‐and-­‐out
 of
 foster
 care,
 being
 a
 witness
 to
 
violence,
 or
 other
 occurrences
 that
 cause
 them
 to
 feel
 disconnected
 from
 
mainstream
 society
 (Zweig
 &
 Institute,
 2003).
 Because
 20%
 of
 students
 opted
 to
 

  34
 
disclose
 SLEs
 that
 were
 not
 included
 on
 the
 survey
 checklist,
 instead
 writing
 in
 their
 
own
 item,
 this
 suggests
 that
 a
 broader
 checklist
 containing
 items
 that
 would
 better
 
capture
 events
 occurring
 in
 the
 lives
 of
 high-­‐risk
 emerging
 adults
 may
 be
 warranted
 
in
 future
 studies
 (see
 Cleary,
 1981).
 Although
 some
 researchers
 argue
 that
 
checklists
 should
 provide
 a
 general
 categories
 versus
 a
 detailed
 list
 of
 events
 (e.g.,
 
provide
 the
 category
 of
 “marriage”
 versus
 listing
 “planning
 a
 wedding”,
 “moving
 in
 
with
 spouse”;
 see
 Dohrenwend,
 2006),
 it
 is
 possible
 that
 if
 checklist
 items
 were
 not
 
as
 specific,
 students
 may
 not
 have
 reported
 all
 events
 either
 because
 they
 did
 not
 
want
 to
 or
 did
 not
 think
 of
 it
 at
 the
 time.
 Regardless,
 providing
 a
 write-­‐in
 response
 
option
 proved
 useful
 for
 capturing
 a
 broad
 range
 of
 SLEs
 experienced
 by
 
participants.
 
Overall,
 the
 majority
 of
 these
 CHS
 youth
 reported
 having
 garnered
 positive
 
change
 resulting
 from
 their
 SLE.
 
 Adolescence,
 and
 particularly
 emerging
 adulthood,
 
characterizes
 a
 unique
 time-­‐point
 in
 development
 and
 carries
 associated
 stressors
 
(Arnett,
 2000).
 
 Authors
 of
 one
 review
 of
 25
 studies
 conducted
 among
 children
 and
 
adolescent
 samples
 noted
 that
 because
 older
 youth
 begin
 to
 establish
 their
 own
 
cognitive
 schemata
 that
 although
 may
 be
 more
 vulnerable
 to
 the
 impact
 of
 SLEs,
 it
 is
 
possible
 they
 more
 fluidly
 integrate
 meaning
 of
 the
 SLE
 into
 their
 post-­‐trauma
 
identity,
 and
 thus
 develop
 greater
 PTG
 compared
 to
 children
 or
 adults
 (Meyerson,
 et
 
al.,
 2011).
 As
 this
 represents
 the
 first
 study
 on
 levels
 of
 PTG
 reported
 among
 older
 
youth,
 future
 studies
 are
 needed
 to
 assess
 the
 variation
 in
 levels
 of
 PTG
 reported
 
across
 age
 groups.
 

  35
 
Findings
 regarding
 the
 number
 of
 SLEs
 indicate
 that
 the
 fewer
 SLEs
 
experienced
 in
 the
 past
 2
 years
 is
 positively
 related
 to
 PTG,
 supporting
 Hypothesis
 
1.
 Interestingly,
 the
 number
 of
 SLEs
 reported
 was
 significantly
 related
 to
 the
 
increasing
 level
 of
 severity
 of
 the
 most
 life-­‐altering
 SLE.
 This
 may
 be
 due
 to
 the
 fact
 
that
 those
 who
 have
 experienced
 a
 SLE
 that
 was
 rated
 higher
 in
 stress
 severity
 were
 
also
 more
 likely
 to
 experience
 other
 SLEs
 that
 were
 related
 to
 the
 initial
 event.
 For
 
example,
 one
 who
 experiences
 death
 of
 a
 parent
 or
 guardian
 may,
 as
 a
 result,
 
experience
 financial
 difficulties,
 changes
 in
 living
 situations,
 or
 changes
 in
 
relationship
 status
 as
 a
 result.
 
 Thus,
 the
 number
 of
 SLEs
 in
 this
 study
 may
 serve
 as
 
one
 indicator
 of
 cumulative
 distress
 that
 these
 vulnerable
 youth
 experience.
 An
 
alternative
 explanation
 may
 be
 that
 life
 circumstances
 have
 predisposed
 these
 CHS
 
youth
 to
 experience
 SLEs
 in
 both
 greater
 severity
 and
 quantity.
 Future
 studies
 that
 
assess
 dates
 of
 SLE
 occurrence
 as
 well
 as
 use
 a
 comparison
 group
 of
 RHS
 youth
 may
 
help
 to
 decipher
 this.
 
Findings
 regarding
 severity
 of
 the
 most
 life-­‐altering
 SLE
 showed
 that
 neither
 
the
 linear
 nor
 quadratic
 relationship
 between
 severity
 of
 SLEs
 and
 PTG
 were
 
significant.
 
 Thus,
 Hypothesis
 2,
 in
 which
 a
 curvilinear
 relationship
 (inverted
 U-­‐
shape)
 between
 severity
 of
 SLE
 and
 PTG
 was
 proposed,
 was
 not
 supported.
 A
 
possible
 explanation
 for
 this
 is
 that
 the
 severity
 rating
 for
 SLEs
 represents
 an
 
objective
 rating
 of
 severity
 of
 SLE
 and
 not
 a
 perceived
 severity
 score
 designated
 by
 
the
 participants
 themselves.
 
 The
 importance
 of
 this
 distinction
 partly
 rests
 on
 the
 
notion
 that
 SLEs
 may
 elicit
 different
 stress
 reactions
 from
 individuals
 based
 on
 
certain
 variables
 such
 as
 the
 chronicity
 or
 novelty,
 the
 proximal
 nature
 of
 the
 

  36
 
stressor,
 other
 stressors,
 personal
 and
 contextual
 variables.
 
 For
 example,
 the
 break-­‐
up
 of
 a
 relationship
 may
 require
 different
 levels
 of
 psychosocial
 adjustment
 
depending
 on
 variables
 such
 as
 this
 being
 an
 individual’s
 first
 versus
 fifth
 
experience
 of
 a
 break-­‐up,
 the
 intensity
 of
 the
 relationship,
 who
 initiated
 the
 break-­‐
up,
 social
 support
 received
 in
 the
 wake
 of
 the
 break-­‐up,
 among
 other
 variables.
 
 
These
 factors
 would
 impact
 the
 severity
 rating
 of
 the
 SLE
 as
 well
 as
 the
 relationship
 
between
 severity
 and
 PTG.
 
 Therefore,
 a
 measure
 of
 perceived
 severity
 should
 be
 
considered
 for
 future
 studies
 attempting
 to
 characterize
 the
 relationship
 between
 
severity
 and
 PTG.
 

  Looking
 beyond
 the
 impact
 of
 stress
 on
 PTG,
 the
 Personal
 System
 
characteristic
 that
 positively
 predicted
 PTG
 in
 the
 final
 model
 was
 Emerging
 
Adulthood.
 In
 contrast,
 depression
 and
 motivation
 did
 not
 predict
 PTG,
 while
 
positive
 affect
 was
 borderline
 significant.
 Thus
 Hypothesis
 3
 was
 only
 partially
 
supported.
 With
 respect
 to
 Emerging
 Adulthood,
 this
 study
 provides
 novel
 evidence
 
that
 this
 stage
 may
 positively
 coincide
 with
 components
 of
 positive
 psychological
 
growth.
 While
 emerging
 adults
 may
 be
 more
 pessimistic
 about
 society,
 they
 may
 
also
 be
 more
 optimistic
 about
 their
 own
 goals,
 prospective
 relationships,
 and
 job
 
opportunities;
 thus
 they
 perceive
 their
 lives
 as
 being
 ripe
 with
 possibilities
 (Arnett,
 
2004;
 Hornblower,
 1997;
 Lisha,
 et
 al.,
 2012).
 With
 such
 conceptual
 overlap
 in
 
components
 encompassed
 by
 PTG,
 it
 would
 be
 surprising
 to
 find
 no
 relationship
 
between
 the
 two.
 

  Regarding
 the
 lack
 of
 relationship
 between
 pre-­‐existing
 depression
 and
 PTG,
 
this
 finding
 is
 not
 surprising
 given
 previous
 studies
 that
 also
 reported
 null
 findings
 

  37
 
(Arpawong,
 et
 al.,
 2012;
 Cordova
 et
 al.,
 2001;
 Milam,
 et
 al.,
 2004).
 In
 contrast,
 the
 
weak
 relationship
 between
 positive
 affect
 and
 PTG
 was
 unexpected
 as
 previous
 
studies
 among
 younger
 children
 and
 adults
 have
 shown
 a
 positive
 relationship
 
(Currier,
 Hermes,
 &
 Phipps,
 2009;
 Helgeson,
 et
 al.,
 2006).
 
 The
 lack
 of
 relationship
 
between
 PTG
 and
 depression
 and
 weak
 relationship
 between
 PTG
 and
 positive
 
affect
 in
 this
 study
 suggest
 that
 the
 development
 of
 PTG
 may
 not
 be
 dependent
 upon
 
mood
 states
 among
 older
 at-­‐risk
 youth.
 
 Rather,
 their
 stage
 of
 life
 may
 be
 more
 
pertinent
 to
 positive
 psychological
 growth
 than
 mood.
 Similarly,
 the
 lack
 of
 
relationship
 between
 family
 conflict
 and
 peer
 substance
 use
 may
 be
 due
 to
 their
 
being
 more
 distal
 to
 other
 variables
 that
 are
 more
 relevant
 to
 PTG.
 For
 example,
 
family
 conflict
 may
 not
 explain
 any
 additional
 variance
 in
 PTG
 after
 having
 added
 
general
 stress
 to
 the
 model.
 Similarly,
 peer
 substance
 use
 may
 not
 have
 explained
 
any
 additional
 variance
 in
 PTG
 after
 SLE
 variables
 had
 already
 been
 added.
 Thus,
 
these
 findings
 suggest
 that
 these
 contextual
 variables
 may
 be
 less
 relevant
 when
 
predicting
 PTG
 among
 older
 youth.
 Future
 studies
 may
 consider
 including
 other
 
contextual
 variables,
 such
 as
 levels
 of
 family
 and
 social
 support,
 that
 have
 been
 
shown
 to
 positively
 predict
 PTG
 among
 other
 young
 samples
 (Meyerson,
 et
 al.,
 
2011).
 
Lastly,
 our
 exploratory
 aim
 yielded
 one
 significant
 interaction
 in
 the
 
prediction
 of
 PTG.
 Both
 variables,
 being
 of
 Hispanic
 ethnicity
 and
 FTP
 encompass
 
factors
 that
 make
 conceptual
 sense
 in
 their
 contribution
 to
 PTG.
 First,
 it
 is
 consistent
 
with
 several
 other
 studies
 conducted
 among
 adolescents
 (e.g.,
 Milam,
 et
 al.,
 2005;
 
Milam,
 2006;
 Powell
 et
 al.,
 2003;
 Tedeschi
 &
 Calhoun,
 2004;),
 that
 Hispanics
 

  38
 
generally
 report
 higher
 levels
 of
 PTG
 compared
 to
 non-­‐Hispanics
 (depicted
 in
 Figure
 
2).
 Despite
 there
 being
 a
 high
 level
 of
 diversity
 within
 the
 Hispanic
 grouping,
 given
 
historical
 experiences
 and
 migration
 background,
 there
 tend
 to
 be
 common
 cultural
 
characteristics,
 norms,
 and
 values.
 Those
 characteristics,
 norms,
 and
 values
 may
 be
 
driving
 the
 interaction
 between
 Hispanics
 and
 FTP.
 
 The
 highest
 levels
 of
 PTG
 
reported
 among
 Hispanics
 who
 also
 have
 high
 levels
 of
 FTP
 may
 be
 due
 to
 the
 fact
 
that
 Hispanics
 conceptualize
 their
 own
 goals
 and
 commitments
 through
 a
 family
 
lens
 rather
 than
 solely
 with
 respect
 to
 the
 individual.
 Item-­‐level
 analysis
 indicate
 
Hispanics
 identify
 better
 than
 non-­‐Hispanics
 with
 the
 FTP
 item
 that
 inquires
 about
 
wanting
 to
 meet
 obligations
 to
 friends,
 parents,
 teachers
 and
 other
 authority
 figures.
 
Similarly,
 Hispanics
 identified
 better
 with
 the
 statement
 “Finishing
 homework
 and
 
doing
 other
 jobs
 at
 home
 comes
 before
 play.”
 Overall,
 Hispanics
 who
 reported
 lower
 
levels
 of
 FTP
 still
 reported
 higher
 levels
 of
 PTG
 compared
 to
 non-­‐Hispanics,
 yet
 at
 
lower
 levels
 than
 Hispanics
 with
 high
 FTP.
 This
 may
 be
 due
 to
 the
 cultural
 norm
 of
 
relying
 less
 on
 seeking
 independence
 during
 this
 life
 stage
 than
 non-­‐Hispanics,
 
rather
 relying
 on
 family
 and
 spiritual
 values
 upon
 making
 decisions
 for
 their
 future,
 
and
 thus
 constructing
 a
 life
 narrative.
 This
 could
 result
 in
 Hispanics
 reporting
 
higher
 PTG
 in
 the
 areas
 of
 relating
 to
 others
 and
 spiritual
 change
 following
 SLEs
 
(Berger
 &
 Weiss,
 2010;
 Skogrand,
 Hatch,
 &
 Singh,
 2005).
 
 Nevertheless,
 that
 PTG
 
may
 be
 influenced
 by
 both
 cultural
 interpretations
 of
 change
 in
 the
 aftermath
 of
 
SLEs
 and
 unique
 perspectives
 during
 the
 developmental
 stage
 of
 Emerging
 
Adulthood,
 research
 may
 benefit
 from
 further
 study
 that
 characterizes
 these
 culture
 
and
 stage
 specific
 influences
 on
 psychological
 growth.
 

  39
 
Limitations
 

  One
 limitation
 of
 this
 study
 concerns
 self-­‐disclosure
 of
 SLEs.
 Some
 
participants
 may
 not
 have
 disclosed
 the
 more
 traumatic
 SLEs.
 For
 all
 students
 
surveyed
 at
 two-­‐year
 follow-­‐up
 time
 point,
 80.2%
 reported
 having
 experienced
 an
 
SLE
 and
 thus
 were
 included
 in
 the
 analytic
 sample
 for
 this
 study.
 It
 is
 unknown
 why
 
19.8%
 of
 the
 sample
 did
 not
 report
 any
 SLEs,
 either
 because
 they
 truly
 did
 not
 
experience
 any
 or
 were
 reluctant
 to
 report
 them.
 Future
 research
 may
 consider
 
using
 different
 methods
 for
 inquiring
 about
 SLEs,
 such
 as
 a
 Traumatic
 Life
 Event
 
Questionnaire
 (TLEQ)
 which
 includes
 more
 descriptive
 categories
 of
 life
 events
 (e.g.,
 
physical
 abuse
 by
 an
 intimate
 partner,
 being
 stalked,
 robbery
 involving
 a
 weapon,
 
being
 threatened
 with
 death
 or
 serious
 bodily
 harm;
 see
 Kubany
 et
 al.,
 2000).
 A
 
second
 limitation
 is
 the
 specific
 time
 point
 at
 which
 the
 most
 life-­‐altering
 SLE
 
occurred
 was
 not
 assessed.
 We
 assessed
 SLEs
 that
 occurred
 anytime
 within
 the
 past
 
two-­‐years.
 
 As
 some
 evidence
 shows
 that
 the
 age
 at
 the
 time
 of
 SLE
 occurrence
 may
 
impact
 the
 level
 of
 PTG,
 future
 studies
 may
 wish
 to
 include
 a
 variable
 that
 assesses
 
age
 at
 the
 time
 the
 event
 occurred
 rather
 than
 using
 age
 at
 time
 of
 assessment
 in
 
order
 to
 determine
 if
 age
 at
 event
 is
 a
 stronger
 predictor
 of
 PTG.
 
 Third,
 the
 
additivity
 of
 events
 (sum)
 may
 not
 adequately
 reflect
 the
 cumulative
 level
 of
 stress
 
experienced
 over
 a
 finite
 period
 of
 time
 as
 some
 events
 may
 be
 insignificant
 with
 
regard
 to
 distress
 levels
 whereas
 others
 that
 may
 be
 pivotal.
 However,
 in
 this
 study,
 
PTG
 was
 assessed
 with
 regard
 to
 the
 SLE
 participants
 thought
 was
 most
 life-­‐
altering.
 Also,
 as
 previously
 mentioned,
 the
 relationship
 between
 severity
 of
 SLE
 
and
 PTG
 may
 be
 better
 characterized
 by
 including
 a
 perceived
 severity
 variable
 

  40
 
obtained
 from
 the
 participants
 themselves.
 
 Lastly,
 it
 is
 possible
 that
 mean
 PTG
 
scores
 in
 this
 sample
 were
 higher
 than
 would
 be
 reported
 among
 other
 CHS
 youth
 
because
 of
 an
 impact
 of
 the
 substance
 use
 intervention.
 Although
 this
 study
 was
 not
 
designed
 to
 assess
 what
 components
 of
 the
 intervention
 may
 have
 influenced
 PTG
 
among
 the
 sample,
 results
 of
 this
 study
 provide
 promising
 evidence
 that
 CHS
 youth
 
may
 be
 adapting
 relatively
 well
 to
 the
 stressful
 events
 that
 arise
 from
 living
 in
 
higher-­‐risk
 and
 higher
 stress
 environments.
 
Implications
 and
 Future
 Research
 Directions
 

  Despite
 limitations,
 one
 novelty
 of
 this
 study
 is
 the
 inclusion
 of
 high-­‐risk
 
youth.
 Prior
 research
 has
 shown
 that
 social
 environmental
 risk
 factors
 may
 
exacerbate
 impact
 of
 SLEs
 on
 health
 outcomes
 for
 youth
 (e.g.,
 feeling
 marginalized,
 
socially
 isolated,
 and
 socioeconomic
 status
 inconsistencies;
 Caplan,
 1974).
 
 
However,
 evidence
 from
 this
 study
 demonstrates
 that
 youth
 who
 are
 more
 likely
 to
 
experience
 these
 social
 risk
 factors
 may
 be
 adapting
 quite
 well
 psychologically,
 
despite
 experiencing
 a
 number
 of
 acutely
 stressful
 events.
 
 Because
 multiple
 studies
 
demonstrate
 negative
 psychological
 effects
 of
 cumulative
 stress
 from
 experiencing
 
multiple
 SLEs,
 implications
 of
 these
 findings
 are
 that
 the
 development
 of
 PTG
 may
 
develop
 in
 contrast
 to
 the
 deleterious
 mental
 health
 effects
 of
 accumulated
 stress.
 
Further
 studies
 need
 to
 assess
 the
 long-­‐term
 impact
 of
 PTG
 on
 mitigating
 those
 
deleterious
 outcomes
 (e.g.,
 depression,
 anxiety,
 post-­‐traumatic
 stress)
 among
 
vulnerable,
 older
 youth.
 As
 this
 study
 attests,
 one
 factor
 that
 may
 be
 contributing
 to
 
PTG
 is
 developmental
 stage
 while
 another
 may
 be
 having
 future
 time
 orientation,
 
particularly
 for
 Hispanics.
 Thus,
 one
 future
 research
 direction
 includes
 examining
 

  41
 
the
 relationship
 between
 PTG
 and
 indicators
 of
 developmental
 stage
 among
 high-­‐
risk
 samples
 with
 a
 broader
 range
 of
 age
 categories,
 using
 a
 prospective
 study
 
design
 in
 order
 to
 assess
 how
 changing
 developmental
 stage
 impacts
 the
 level
 of
 
PTG
 reported.
 Other
 directions
 for
 this
 research
 include
 examining
 factors
 that
 
indicate
 a
 perception
 of
 social
 status
 and
 marginality,
 social
 support,
 coping
 skills,
 
cognitive
 processing,
 ethnic
 and
 cultural
 differences,
 perceived
 severity
 of
 SLEs,
 and
 
time
 since
 SLE
 as
 possible
 mediators
 between
 the
 SLE
 and
 PTG
 are
 warranted
 for
 a
 
clearer
 understanding
 how
 PTG
 develops
 in
 more
 vulnerable
 groups.
 
In
 conclusion,
 theoretical
 frameworks
 posit
 that
 PTG
 develops
 from
 some
 
definable
 life
 events
 although
 it
 is
 possible
 that
 PTG
 develops
 through
 the
 chronicity
 
of
 stress
 and
 life
 circumstances
 relating
 to
 the
 SLE.
 
 For
 instance,
 the
 break-­‐up
 of
 a
 
relationship
 itself
 may
 be
 the
 eliciting
 event
 cited
 yet
 the
 social
 support
 and
 changed
 
relationships
 with
 others
 in
 the
 aftermath
 of
 the
 break-­‐up
 may
 be
 the
 cause
 for
 
developing
 PTG.
 Thus,
 although
 many
 problems
 have
 been
 noted
 with
 using
 life
 
events
 checklists
 to
 simply
 evaluate
 the
 occurrence
 of
 a
 life
 event,
 or
 the
 number
 of
 
events
 experienced,
 this
 method
 is
 limited
 in
 the
 information
 that
 can
 be
 gleaned.
 It
 
is
 the
 interpretation
 of
 the
 event
 impact
 on
 some
 aspect
 of
 well-­‐being
 that
 provides
 
more
 usable
 data
 for
 researchers.
 Findings
 from
 this
 study
 attest
 that
 older
 youth
 
are
 able
 to
 attribute
 aspects
 of
 positive
 change
 in
 their
 lives
 to
 specific
 SLEs
 and
 
certain
 personality
 variables
 may
 better
 predict
 the
 development
 of
 PTG
 in
 
response
 to
 a
 life
 stressor.
 

   
 

  42
 
Table
 1.
 Selected
 Sample
 Characteristics
 (n=564)
 

 
Variable
 
%
 or
 
 
Mean
 (SD)
 
Gender
   
 
 
Male
  54.4
 
Female
  45.6
 
Age
 at
 2-­‐year
 follow-­‐up
 (range
 16-­‐22
 years)
  18.78
 (0.90)
 
Race/Ethnicity
   
 
 
Asian
 or
 Asian
 American
  2.9
 
Latino
 or
 Hispanic
  65.3
 
African
 American
 or
 Black
  3.4
 
White,
 Caucasian,
 Anglo,
 European
 American;
 not
 Hispanic
  11.9
 
American
 Indian
 or
 Native
 American
  0.4
 
Mixed:
 My
 parents
 are
 from
 two
 different
 groups
  14.5
 
Other
  1.6
 
Highest
 education
 completed
 by
 either
 mother
 or
 father
 
Did
 not
 complete
 8th
 grade
  9.6
 
Did
 not
 complete
 high
 school
 (12th
 grade)
  25.0
 
Completed
 high
 school
 (received
 a
 diploma)
  26.5
 
Some
 college
 or
 job
 training
 (1
 to
 3
 years)
  20.2
 
Completed
 college
 (4
 years)
  13.9
 
Attended
 or
 completed
 graduate
 school
 (Doctor,
 Lawyer)
  4.8
 
Post-­‐traumatic
 Growth
  2.64
 (0.38)
 
Notes.
 
 
Age,
 peer
 substance
 use,
 number
 of
 stressful
 life
 events,
 and
 Post-­‐traumatic
 Growth
 
were
 assessed
 at
 2-­‐year
 follow-­‐up.
 All
 other
 variables
 were
 assessed
 at
 baseline.
 

   
 

  43
 
Table
 2.
 Correlates
 and
 Predictors
 of
 Post-­‐Traumatic
 Growth
 

 
Variable
  Mean
 (SD)
  Range
 
Stressful
 Life
 Events
 (SLEs)
   
 
   
 
 
Number
 of
 SLEs
  3.14
 (1.70)
  1-­‐8
 
Severity
 of
 SLE
 that
 was
 most
 life-­‐
altering
a

  27.08
 (13.94)
  1-­‐60
 
Personal
 System
 Characteristics
 
General
 Stress
  3.01
 (1.05)
  1-­‐5
 
Depression
  1.78
 (0.90)
  1-­‐4
 
Motivation
 to
 Improve
  3.39
 (0.62)
  1-­‐4
 
Positive
 Affect
  9.86
 (1.49)
  3-­‐12
 
Emerging
 Adulthood
  3.57
 (0.39)
  1-­‐4
 
Future
 Time
 Perspective
  3.65
 (0.87)
  1-­‐5
 
Environmental
 System
 Characteristics
 
Family
 Conflict
  2.99
 (0.59)
  1-­‐4
 
Peer
 Substance
 Use
  3.71
 (1.55)
  1-­‐6
 
Notes.
 
 
a

 Value
 indicates
 1=most
 stressful
 to
 60=least
 stressful
 

 

 

   
 

  44
 
Table
 3.
 Regression
 Models
 for
 the
 Associations
 of
 Socio-­‐Demographic
 
Characteristics,
 Stressful
 Life
 Events,
 Personal
 System
 and
 Environmental
 System
 
Characteristics
 with
 Posttraumatic
 Growth
 
Variable
  β
   
 
  SE
  R
2

 
Model
 1:
 Demographics
   
 
   
 
   
 
  0.03
 
Age
  0.010
   
 
  0.05
   
 
 
Female
  0.096
   
 
  0.09
   
 
 
Hispanic
 Ethnicity
  0.151
   
 
  0.10
   
 
 
Parents'
 education
 
  0.064
  #
  0.04
   
 
 
Model
 2:
 Add
 Stressful
 Life
 Events
 (SLEs)
   
 
   
 
  0.05
 
Number
 of
 Stressful
 Life
 Events
  -­‐0.090
  ***
  0.02
   
 
 
Severity
 of
 SLE
  0.001
   
 
  0.00
   
 
 
Quadratic
 Severity
 of
 SLE
  0.000
   
 
  0.00
   
 
 
Model
 3:
 Add
 Personal
 System
 Characteristics
   
 
   
 
  0.13
 
General
 stress
  -­‐0.097
  #
  0.05
   
 
 
Depression
  -­‐0.025
   
 
  0.06
   
 
 
Motivation
 to
 improve
  0.103
   
 
  0.08
   
 
 
Positive
 Affect
  0.055
  #
  0.03
   
 
 
Emerging
 Adulthood
  0.401
  **
  0.13
   
 
 
Future
 Time
 Perspective
  0.011
   
 
  0.09
   
 
 
Hispanic
 x
 Future
 Time
 Perspective
  0.183
  #
  0.11
   
 
 
Model
 4:
 Add
 Environmental
 System
 Characteristics
   
 
  0.13
 
Family
 conflict
  0.022
   
 
  0.08
   
 
 
Peer
 substance
 use
  0.007
   
 
  0.03
   
 
 
Final
 Model:
 Predicting
 Post-­‐traumatic
 Growth
   
 
   
 
  0.13
 
Age
  -­‐0.065
   
 
  0.05
   
 
 
Female
  0.101
   
 
  0.09
   
 
 
Hispanic
 Ethnicity
  0.090
   
 
  0.10
   
 
 
Parents'
 education
 
  0.034
   
 
  0.04
   
 
 
Number
 of
 Stressful
 Life
 Events
  -­‐0.090
  ***
  0.03
   
 
 
General
 stress
  -­‐0.108
  *
  0.04
   
 
 
Positive
 Affect
  0.053
  #
  0.03
   
 
 
Emerging
 Adulthood
  0.427
  ***
  0.12
   
 
 
Future
 Time
 Perspective
  0.026
   
 
  0.09
   
 
 
Hispanic
 x
 Future
 Time
 Perspective
  0.187
  *
  0.11
   
 
 
Notes.
 
All
 models
 include
 age,
 gender,
 Hispanic
 ethnicity,
 parents'
 education,
 and
 treatment
 
condition
 as
 control
 variables.
 All
 continuous
 variables
 were
 standardized
 to
 the
 global
 
mean.
 Model
 1
 F
 =
 3.51**;
 Model
 2
 F
 =
 4.53***;
 Model
 3
 F
 =
 5.60***;
 Model
 4
 F
 =
 5.36***;
 
Final
 Model
 F
 =
 6.91***.
 
 #
 p
 <
 .10;
 *
 p
 <
 .05;
 **
 p
 <
 .01;
 ***
 p
 <
 .001
 

 44
 

 
Figure
 1.
 
 Frequencies
 of
 Stressful
 Life
 Events
 Reported
 
Categories
 of
 Stressful
 Life
 Events
 (SLEs)
 are
 listed
 in
 order
 of
 highest
 to
 lowest
 prevalence
 with
 the
 “Other”
 category
 
capturing
 a
 range
 of
 SLEs
 that
 were
 written
 in
 by
 the
 participant.
 The
 percentage
 of
 students
 reported
 having
 experienced
 an
 
SLE
 in
 the
 past
 two
 years,
 in
 each
 of
 the
 categories
 is
 shown
 (light
 bars).
 Of
 the
 students
 who
 reported
 experiencing
 an
 SLE
 in
 
each
 category,
 the
 percentage
 who
 indicated
 the
 SLE
 of
 that
 category
 was
 most
 life-­‐altering
 is
 also
 shown
 (dark
 bars).
 
31.7%
15.3%
17.5%
29.1%
63.6%
25.8%
24.0%
24.9%
40.3%
11.4%
24.4%
29.2%
34.8%
40.3%
44.0%
48.7%
49.9%
66.2%
0.0% 20.0% 40.0% 60.0% 80.0%
Vic0m%of%a%violent%or%abusive%crime.%
Disciplined%or%suspended%from%school%or%work.%
Did%not%have%enough%money%for%basics%
Someone%in%my%family%or%I%was%arrested.%
Other%[wriJen%in%by%par0cipant].%
New%person%joined%the%household.%
Broke%up%with%my%partner.%
A%lot%of%arguments%at%home.%
Family%member:%serious%illness,%accident,%or%injury.%
Percentage)of)students)who)experienced)the)type)of)SLE)
Types)of)Stressful)Life)Events)(SLEs))Reported)
%%repor0ng%SLE% %%reported%as%most%lifeValtering%SLE%

   
   
 

 

 45
 

 
Figure
 2.
 Moderation
 of
 the
 Relationship
 Between
 PTG
 and
 Future
 Time
 Perspective
 
by
 Hispanic
 Ethnicity
 
Hispanic
 ethnicity
 moderates
 the
 relationship
 between
 Future
 Time
 Perspective
 
(FTP)
 and
 Post-­‐traumatic
 Growth
 (PTG)
 at
 p<.05.
 Hispanics
 with
 higher
 levels
 of
 
FTP
 experienced
 the
 highest
 levels
 of
 PTG
 compared
 to
 Hispanics
 with
 lower
 levels
 
of
 FTP.
 In
 contrast,
 no
 difference
 was
 seen
 in
 PTG
 among
 non-­‐Hispanics
 with
 
varying
 levels
 of
 FTP.
 Overall,
 Hispanics
 reported
 higher
 levels
 of
 PTG
 than
 non-­‐
Hispanics.
 

 

   
 
2.20$
2.30$
2.40$
2.50$
2.60$
2.70$
2.80$
low$ mid$ high$
Post%trauma*c,Growth,
Levels,of,Future,Time,Perspec*ve,
Hispanic$
Non:Hispanic$
p:value$for$the$
interacAon$<$.05$

 

  46
 
CHAPTER
 3:
 STUDY
 2
 
Posttraumatic
 Growth
 and
 Change
 in
 Substance
 Use
 Behaviors
 
 

  Substance
 use
 is
 one
 of
 the
 most
 problematic
 health
 concerns
 for
 adolescents
 
and
 young
 adults
 in
 the
 U.S.
 
 It
 has
 been
 estimated
 that
 by
 the
 10
th

 grade,
 over
 27%
 
of
 youth
 have
 smoked
 cigarettes,
 54%
 have
 tried
 alcohol,
 35%
 have
 been
 drunk
 on
 
alcohol,
 34%
 have
 tried
 marijuana,
 and
 15%
 have
 used
 illicit
 drugs
 in
 their
 lifetime
 
(Johnston
 et
 al.,
 2013).
 Adolescents
 who
 use
 or
 misuse
 substances
 have
 a
 higher
 
likelihood
 of
 having
 experienced
 highly
 stressful
 and
 traumatic
 events
 in
 their
 past
 
(e.g.,
 childhood
 sexual
 abuse,
 witnessing
 violence,
 natural
 disaster)
 as
 substances
 
have
 long
 been
 used
 as
 a
 method
 of
 coping
 and
 relief
 from
 distress
 (e.g.,
 Holahan,
 et
 
al.,
 2001;
 Wills,
 1986).
 Unsuccessful
 coping
 with
 stressful
 life
 events
 (SLEs)
 and
 the
 
resulting
 emotional
 distress
 are
 consistent
 predictors
 of
 earlier
 and
 more
 frequent
 
substance
 use
 among
 adolescents
 (e.g.,
 Booker
 et
 al.,
 2004;
 Dube
 et
 al.,
 2006;
 
Newcomb
 &
 Harlow,
 1986;
 Unger
 et
 al.,
 1998;
 Wagner,
 et
 al.,
 2009;
 Wills,
 1986).
 
 
However,
 use
 of
 any
 of
 the
 three
 most
 accessible
 drugs—tobacco,
 alcohol
 or
 
marijuana—during
 adolescence
 increases
 the
 likelihood
 that
 an
 individual
 will
 
develop
 a
 substance
 use
 dependence
 disorder
 later
 in
 life
 (Palmer
 et
 al.,
 2009).
 
 
 

  Some
 youth
 are
 at
 greater
 risk
 than
 others
 for
 engaging
 in
 substance
 use
 
behaviors
 and
 experiencing
 higher
 levels
 of
 stress/trauma.
 In
 particular,
 students
 
who
 attend
 continuation
 high
 schools
6

 (CHSs)
 experience
 greater
 levels
 of
 
stress/trauma
 than
 their
 regular
 high
 school
 (RHS)
 counterparts,
 including
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
Continuation High Schools may be called alternative, contract, or community high schools in states other
than California. Generally, students in these schools have left regular high school because of excessive
truancy, poor academic performance, drug use, violence, other illegal activity, or disruptive behavior
(Rohrbach et al., 2005).

 

  47
 
emotional
 and
 physical
 abuse
 or
 victimization,
 loss
 of
 a
 parent,
 cycling
 in-­‐and-­‐out
 of
 
foster
 care,
 being
 a
 witness
 to
 violence,
 and
 other
 occurrences
 that
 cause
 them
 to
 
feel
 disconnected
 from
 mainstream
 society
 (Zweig
 &
 Institute,
 2003).
 
 Overall,
 CHS
 
students
 report
 a
 higher
 prevalence
 of
 tobacco,
 alcohol,
 and
 marijuana
 use
 
(Rohrbach,
 et
 al.,
 2005;
 Sussman,
 et
 al.,
 1995).
 
 

  Although
 the
 relationship
 between
 self-­‐reported
 SLEs
 and
 substance
 use
 
disorders
 has
 been
 well
 established
 (Wagner,
 et
 al.,
 2009;
 Wiechelt,
 2007;
 Wills,
 
1986;
 Wills,
 et
 al.,
 1992),
 not
 all
 adolescents
 exhibit
 maladaptive
 behaviors
 after
 
having
 experienced
 a
 highly
 stressful
 life
 event.
 Instead,
 many
 youth
 undergo
 a
 
process
 of
 reevaluation
 and
 redefinition
 of
 their
 life’s
 priorities,
 allowing
 them
 to
 
successfully
 adapt
 despite
 their
 high-­‐risk
 environment
 and
 potentially
 more
 
vulnerable
 backgrounds
 (Austin,
 2004;
 Masten,
 2004)
 such
 that
 they
 emerge
 in
 the
 
aftermath
 of
 a
 traumatic
 experience
 with
 a
 more
 positive
 perspective
 on
 life.
 Such
 
individuals
 develop
 Post-­‐traumatic
 Growth
 (PTG).
 
 

  PTG
 has
 been
 defined
 as
 having
 garnered
 positive
 life
 changes
 and
 developed
 
a
 level
 of
 psychological
 functioning
 and
 awareness
 beyond
 pre-­‐trauma
 level
 as
 a
 
result
 of
 struggling
 with
 and
 managing
 a
 highly
 stressful
 event
 (Calhoun
 &
 Tedeschi,
 
2001;
 Tedeschi
 &
 Calhoun,
 1995).
 
 Manifestations
 of
 PTG
 include
 a
 greater
 
investment
 in
 and
 appreciation
 for
 life,
 improved
 interpersonal
 relationships,
 a
 
greater
 sense
 of
 one’s
 spirituality,
 and
 an
 augmented
 sense
 of
 personal
 strength
 
(Tedeschi
 &
 Calhoun,
 1996).
 PTG
 is
 a
 multi-­‐dimensional
 construct
 involving
 
cognitive,
 emotional,
 and
 psychosocial
 change.
 
 

 

  48
 

  Several
 theories
 can
 explain
 the
 phenomenon
 of
 PTG.
 Joseph’s
 person-­‐
centered
 theory
 (Joseph,
 2003;
 Joseph
 &
 Linley,
 2006)
 posits
 that
 individuals
 are
 
intrinsically
 motivated
 to
 become
 fully
 functioning;
 this
 means
 that
 in
 the
 aftermath
 
of
 SLEs
 they
 strive
 to
 become
 fully
 accepting
 of
 themselves,
 find
 purpose
 and
 
meaning
 in
 life,
 experience
 life
 as
 a
 process,
 find
 value
 in
 trusting
 relationships,
 and
 
thereby,
 develop
 PTG.
 In
 addition,
 fully
 functioning
 individuals
 accommodate
 new
 
experiences,
 including
 the
 trauma-­‐related
 ones,
 in
 order
 to
 develop
 their
 new
 sense
 
of
 an
 improved
 self
 who
 functions
 at
 a
 higher
 level
 than
 the
 pre-­‐trauma
 self
 (Joseph,
 
2003;
 Joseph
 &
 Linley,
 2006).
 Yet,
 there
 also
 may
 be
 illusory
 components
 of
 PTG
 
such
 that
 reports
 of
 greater
 growth
 may
 reflect
 exaggerations,
 or
 mild
 distortions,
 of
 
post-­‐SLE
 improvement
 as
 a
 palliative
 strategy
 to
 help
 one
 regain
 self-­‐esteem
 and
 a
 
sense
 of
 control
 over
 circumstances
 surrounding
 the
 event
 (see
 Cognitive
 
Adaptation
 Theory:
 Taylor,
 1983;
 Taylor
 &
 Armor,
 1996;
 Taylor
 et
 al.,
 2000;
 and
 
Janus-­‐Face
 model:
 Maercker
 &
 Zoellner,
 2004;
 Zoellner
 &
 Maercker,
 2006),
 while
 
still
 exhibiting
 risky
 behavior
 such
 as
 substance
 use.
 
 Because
 those
 who
 strive
 to
 
become
 fully
 functioning
 will
 find
 certain
 behaviors
 as
 incongruent,
 or
 threatening,
 
to
 their
 perception
 of
 their
 improved
 post-­‐trauma
 self,
 it
 follows
 that
 such
 
individuals
 would
 likely
 engage
 in
 fewer
 health-­‐compromising
 behaviors.
 
 It
 is
 
unclear
 whether
 developing
 PTG
 in
 the
 aftermath
 of
 a
 significant
 SLE
 reflects
 efforts
 
to
 be
 fully
 functioning,
 and
 is
 associated
 with
 fewer
 substance
 use
 behaviors,
 or
 if
 
reports
 on
 PTG
 represent
 an
 illusory
 psychological
 perspective
 that
 does
 not
 
coincide
 with
 a
 change
 towards
 better
 health
 behaviors.
 
 

 

  49
 

  Many
 of
 the
 prior
 studies
 on
 the
 relationship
 between
 PTG
 and
 health-­‐
compromising
 behaviors
 have
 been
 conducted
 with
 adult
 samples.
 For
 example,
 
Siegel
 and
 Scrimshaw
 (Siegel
 &
 Schrimshaw,
 2000)
 interviewed
 54
 women
 living
 
with
 HIV/AIDS
 and
 found
 that
 many
 had
 made
 a
 number
 of
 changes
 in
 their
 lives
 
after
 being
 diagnosed;
 that
 being
 diagnosed
 with
 their
 disease
 served
 as
 a
 “wake-­‐up
 
call”.
 
 Women
 reported
 behavioral
 changes
 including
 reduced
 use
 of
 alcohol
 and
 
other
 drugs,
 less
 risky
 sex,
 improved
 stress
 management,
 and
 change
 to
 a
 healthier
 
diet.
 Similarly,
 Updegraff
 et
 al
 (Updegraff
 et
 al.,
 2002)
 found
 that
 among
 189
 HIV-­‐
positive
 women,
 many
 had
 become
 less
 involved
 with
 drugs
 and
 alcohol
 post-­‐
diagnosis.
 In
 a
 study
 by
 Tsourtos
 et
 al
 (Tsourtos
 et
 al.,
 2011),
 successful
 ex-­‐smokers
 
reported
 that
 specific
 traumatic
 events
 in
 their
 lives,
 such
 as
 the
 break-­‐up
 of
 a
 long-­‐
term
 relationship,
 had
 provided
 them
 with
 the
 necessary
 motivation
 to
 quit.
 
 Milam
 
(Milam,
 2006)
 reported
 that
 among
 adults
 diagnosed
 with
 HIV/AIDS,
 PTG
 was
 
inversely
 related
 to
 alcohol
 use
 (r=-­‐.14,
 p<.01).
 
 Stump
 and
 Smith
 (Stump
 &
 Smith,
 
2008)
 demonstrated
 that
 among
 adults
 reporting
 various
 types
 of
 trauma,
 there
 was
 
an
 inverse
 relationship
 between
 PTG
 and
 substance
 use
 (r=-­‐.28,
 p<.05).
 Similarly,
 
Urcuyo
 et
 al
 (Urcuyo
 et
 al.,
 2005)
 reported
 that
 among
 breast
 cancer
 patients,
 PTG
 
was
 inversely
 related
 to
 substance
 use
 (b=-­‐.13,
 p<.05).
 Thus,
 although
 there
 is
 some
 
evidence
 for
 an
 inverse
 relationship
 between
 PTG
 and
 substance
 use
 among
 adults,
 
relatively
 little
 is
 known
 about
 these
 relationships
 among
 adolescents.
 

  Only
 two
 quantitative
 studies
 have
 looked
 at
 the
 direct
 relationship
 between
 
PTG
 and
 substance
 use
 among
 youth.
 The
 first
 study,
 conducted
 among
 RHS
 
students
 with
 an
 average
 age
 of
 15.8
 years
 (SD=1.52),
 found
 that
 PTG
 was
 inversely
 

 

  50
 
related
 to
 substance
 use
 (a
 composite
 index
 of
 tobacco,
 alcohol,
 and
 marijuana)
 
(Milam,
 et
 al.,
 2004).
 
 The
 second
 study
 reported
 an
 inverse
 relationship
 between
 
PTG
 and
 alcohol
 use
 (r=-­‐.15,
 p<.001)
 and
 inverse
 but
 non-­‐significant
 relationships
 
between
 PTG
 and
 cigarette
 smoking
 and
 marijuana
 use
 (Milam,
 et
 al.,
 2005).
 
However,
 the
 sample
 was
 comprised
 of
 younger
 adolescents
 in
 8
th

 grade,
 an
 average
 
age
 of
 13.5
 years
 old
 (SD=0.52),
 who
 reported
 relatively
 low
 prevalence
 rates
 of
 use:
 
5.8%
 for
 past
 30-­‐day
 cigarette
 use,
 10.3%
 for
 prior
 year
 marijuana
 use,
 and
 34.4%
 
for
 prior
 year
 alcohol
 use
 (Milam,
 et
 al.,
 2005).
 The
 current
 study
 aims
 to
 expand
 the
 
empirical
 literature
 by
 testing
 the
 hypothesis
 that
 in
 accordance
 with
 the
 person-­‐
centered
 theory,
 older
 at-­‐risk
 youth
 who
 report
 higher
 levels
 of
 PTG
 in
 the
 
aftermath
 of
 a
 life-­‐altering
 SLE
 will
 reduce
 their
 substance
 use
 behaviors
 over
 time.
 
Method
 
Participants
 

  Participants
 were
 enrolled
 in
 a
 randomized
 controlled
 trial
 of
 Project
 
Towards
 No
 Drug
 Abuse
 (TND),
 a
 12-­‐lesson
 drug-­‐abuse
 prevention
 curriculum
 that
 
targets
 youth
 in
 CHSs.
 Project
 TND
 has
 been
 evaluated
 in
 seven
 randomized
 trials
 
that
 have
 shown
 short
 and
 long-­‐term
 effects
 on
 reducing
 cigarette
 smoking
 and
 
other
 drug
 use
 among
 teens
 (Sussman,
 et
 al.,
 2012).
 The
 current
 trial
 (Sussman,
 et
 
al.,
 2012)
 examined
 the
 efficacy
 of
 a
 booster
 component
 that
 utilizes
 motivational
 
interviewing
 techniques.
 Twenty-­‐four
 CHSs
 were
 randomly
 assigned
 to
 one
 of
 three
 
experimental
 conditions:
 control,
 TND
 only,
 or
 TND
 plus
 motivational
 interviewing
 
booster.
 A
 total
 of
 1704
 (71.1%)
 of
 students
 enrolled
 in
 classes
 selected
 from
 the
 24
 
CHSs
 consented
 to
 participate
 in
 the
 intervention
 study,
 for
 which
 results
 are
 

 

  51
 
reported
 elsewhere
 (see
 Sussman,
 et
 al.,
 2012).
 
 Reasons
 for
 non-­‐participation
 
include
 parent
 decline
 of
 consent
 (0.8%),
 student
 decline
 of
 consent
 or
 assent
 
(5.1%),
 or
 parental
 non-­‐response
 (23.4%).
 
 
Data
 Collection
 
 

  Data
 for
 this
 study
 were
 collected
 before
 program
 implementation
 (baseline)
 
and
 at
 two-­‐year
 follow-­‐up.
 
 Data
 were
 collected
 in
 accordance
 with
 IRB
 practices
 at
 
the
 University
 of
 Southern
 California
 (USC).
 Informed
 consent
 was
 obtained
 from
 
students
 who
 were
 at
 least
 18
 years
 of
 age.
 For
 those
 under
 18,
 informed
 consent
 
was
 obtained
 from
 parents,
 in
 addition
 to
 student
 assent.
 Trained
 data
 collectors
 
administered
 a
 paper
 and
 pencil
 survey
 in
 one
 50-­‐minute
 classroom
 period
 at
 the
 
baseline.
 Students
 who
 provided
 consent
 but
 were
 absent
 the
 day
 of
 survey
 
administration
 received
 a
 telephone
 call
 and
 were
 given
 the
 option
 to
 complete
 the
 
survey
 verbally
 at
 that
 time.
 Of
 the
 1704
 participants
 who
 were
 consented,
 1676
 
completed
 the
 baseline
 survey.
 
 For
 the
 two-­‐year
 follow-­‐up
 data
 collection,
 703
 
(41.9%)
 of
 students
 completed
 surveys
 that
 were
 administered
 by
 telephone
 
(76.3%),
 in-­‐person
 (at
 school
 or
 via
 home
 visit;
 8.8%),
 or
 by
 mail-­‐back
 (14.8%).
 For
 
this
 study,
 the
 analytic
 sample
 was
 comprised
 only
 of
 students,
 from
 both
 
intervention
 and
 control
 groups,
 who
 reported
 having
 experienced
 a
 SLE
 within
 the
 
past
 two-­‐years
 and
 answered
 PTG
 items
 referring
 to
 the
 SLE
 (n=564).
 
Measures
 
Study
 Condition.
 A
 covariate
 was
 included
 in
 order
 to
 control
 for
 the
 study
 
condition
 to
 which
 students
 were
 assigned.
 Because
 this
 study
 did
 not
 assess
 effects
 

 

  52
 
of
 the
 intervention,
 and
 previous
 studies
 have
 not
 shown
 differences
 in
 substance
 
use
 outcomes
 between
 the
 two
 intervention
 conditions
 (see
 Sussman,
 et
 al.,
 2012),
 
the
 variable
 for
 study
 condition
 was
 dichotomously
 coded
 as
 TND-­‐any
 (either
 
intervention
 arm)
 or
 Control.
7

 
 
Demographics.
 
 Socio-­‐demographic
 information
 was
 collected
 at
 baseline
 for
 
age
 (in
 years),
 gender,
 race/ethnicity
 categories
 (Asian
 or
 Asian
 American;
 Latino
 or
 
Hispanic;
 African
 American
 or
 Black;
 White,
 Caucasian,
 Anglo,
 European
 American;
 
not
 Hispanic;
 American
 Indian
 or
 Native
 American;
 Mixed:
 My
 parents
 are
 from
 two
 
different
 groups;
 Other),
 and
 socioeconomic
 status
 (a
 single
 variable
 reflecting
 
either
 mother’s
 or
 father’s
 highest
 educational
 attainment,
 whichever
 was
 higher).
 
Additional
 items
 assessed
 current
 living
 and
 job
 situation
 (live
 with
 both
 parents;
 
live
 with
 a
 boyfriend/girlfriend/partner;
 currently
 married;
 currently
 a
 parent;
 have
 
a
 job).
 
Stressful
 Life
 Events
 (SLEs).
 The
 SLE
 checklist
 included
 in
 the
 2-­‐year
 follow-­‐up
 
survey
 was
 derived
 from
 an
 abbreviated
 (18-­‐item)
 version
 of
 the
 Adolescent
 
Negative
 Life
 Events
 Inventory
 (Wills,
 1986;
 Wills
 &
 Cleary,
 1996)
 that
 was
 used
 in
 a
 
previous
 study
 among
 adolescents
 (mean
 age=14.4
 years
 ±
 0.8)
 (Rohrbach,
 et
 al.,
 
2009).
 
 For
 the
 present
 study,
 we
 included
 a
 checklist
 of
 the
 8
 life
 events
 that
 were
 
most
 commonly
 reported
 among
 adolescents
 in
 the
 Rohrbach
 et
 al.,
 (2009)
 study.
 
 
Wording
 for
 some
 items
 was
 altered
 in
 order
 to
 be
 more
 relevant
 to
 this
 older
 
adolescent
 population
 (mean
 age
 at
 the
 time
 of
 the
 2-­‐year
 follow-­‐up
 survey
 =
 18.8
 ±
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
Sensitivity analysis demonstrated that results of this study were the same when treatment condition was
coded dichotomously (0=control, 1=intervention) or categorically with 3-levels (0=control, 1=intervention
only, 2=intervention+MI booster).

 

  53
 
9.3).
 For
 example,
 “My
 parents
 had
 problems
 with
 money”
 was
 changed
 to
 “I
 did
 not
 
have
 enough
 money
 for
 basics
 (like
 food)”
 and
 “I
 had
 a
 lot
 of
 arguments
 with
 my
 
parents”
 was
 changed
 to
 “There
 were
 a
 lot
 of
 arguments
 that
 happened
 at
 home.”
 
Participants
 were
 provided
 with
 a
 checklist
 of
 the
 8
 stressful
 life
 events
 and
 asked
 
to
 indicate
 which
 events
 they
 had
 experienced
 within
 the
 past
 two
 years
 (1=yes
 or
 
2=no
 to
 each
 item).
 A
 ninth
 question
 allowed
 for
 participants
 to
 indicate
 that
 they
 
had
 experienced
 other
 events
 not
 listed
 in
 the
 checklist
 with
 a
 free-­‐entry
 field
 for
 
them
 to
 write
 in
 the
 event(s).
 
 Responses
 were
 summed
 to
 create
 a
 score
 of
 the
 total
 
number
 of
 stressful
 life
 events
 experienced
 within
 the
 past
 two
 years.
 Subsequently,
 
participants
 were
 asked
 to
 indicate
 which
 of
 the
 events
 listed
 (including
 anything
 
listed
 in
 the
 “Other”
 category)
 affected
 their
 life
 the
 most.
 
 
Post-­‐traumatic
 Growth.
 The
 instrument
 used
 to
 assess
 Post-­‐traumatic
 Growth
 
at
 2-­‐year
 follow-­‐up
 was
 based
 on
 an
 11-­‐item
 Post-­‐traumatic
 Growth
 Inventory
 
(PTGI),
 a
 modification
 of
 the
 original
 inventory
 by
 Tedeschi
 and
 Calhoun
 (Tedeschi,
 
1995;
 Tedeschi
 &
 Calhoun,
 1996).
 The
 11-­‐item
 version
 of
 the
 scale
 has
 been
 used
 
previously
 among
 both
 adolescent
 and
 adult
 samples
 (Arpawong,
 et
 al.,
 2012;
 
Milam,
 2006;
 Milam,
 et
 al.,
 2005;
 Milam,
 2004).
 We
 selected
 8
 items
 from
 the
 11-­‐
item
 PTGI
 based
 on
 their
 high
 factor
 loadings
 on
 the
 first
 unrotated
 factor
 at
 or
 
above
 0.66
 with
 an
 Eigenvalue
 of
 5.44.
 Participants
 were
 asked
 to
 respond
 to
 items
 
in
 reference
 to
 the
 SLE
 they
 designated
 as
 most-­‐life
 altering
 and
 occurring
 within
 
the
 past
 two
 years.
 To
 avoid
 the
 potential
 bias
 from
 participants
 only
 being
 able
 to
 
report
 positive
 valenced
 change
 that
 may
 have
 resulted
 from
 their
 
stressful/traumatic
 event,
 items
 were
 modified
 to
 allow
 for
 response
 choices
 of
 

 

  54
 
negative
 change,
 no
 change,
 or
 positive
 change
 (3-­‐point
 scale).
 A
 composite
 score,
 
averaging
 responses
 on
 all
 8
 items,
 was
 used
 for
 this
 study.
 
 Internal
 consistency
 of
 
this
 scale
 was
 high
 (Cronbach
 alpha=0.81).
 

  Peer
 Substance
 Use.
 use
 is
 a
 well-­‐established
 indicator
 of
 maladaptive
 
adjustment
 by
 its
 relationship
 with
 poor
 health-­‐related
 behaviors
 (Sussman,
 Dent,
 &
 
McCullar,
 2000).
 Four
 items
 were
 used
 at
 baseline
 to
 assess
 each
 of
 the
 
subcategories
 of
 substance
 use
 among
 peers:
 cigarettes,
 alcohol,
 marijuana,
 and
 
hard
 drugs.
 The
 four
 items
 were
 averaged
 yielding
 a
 scale
 with
 high
 internal
 
consistency
 (Cronbach’s
 alpha=0.85)
 

  Substance
 Use.
 Items
 assessing
 substance
 use,
 used
 as
 dependent
 variables
 in
 
this
 study,
 were
 measured
 at
 both
 baseline
 and
 2-­‐year
 follow-­‐up.
 Eight
 separate
 
substance
 use
 variables
 were
 assessed
 through
 use
 of
 cigarettes
 (2
 outcomes),
 
alcohol
 (3
 outcomes),
 marijuana
 (1
 outcome),
 hard
 drugs
 (1
 outcome),
 and
 overall
 
substance
 abuse
 (1
 outcome).
 
 

  Cigarette
 use
 was
 measured
 by
 2
 single-­‐item
 continuous
 variables,
 and
 used
 
as
 two
 separate
 outcomes:
 average
 daily
 cigarette
 use
 (“How
 many
 cigarettes
 do
 you
 
smoke
 per
 day
 on
 average?”)
 and
 past
 month
 use
 of
 cigarettes.
 To
 assess
 past
 month
 
use,
 the
 question
 “How
 many
 times
 have
 you
 used
 each
 of
 these
 drugs
 in
 the
 last
 
month
 (last
 30
 days)?”
 was
 posed
 with
 a
 checklist
 of
 substances
 (e.g.,
 cigarettes,
 
alcohol,
 drunk
 on
 alcohol,
 marijuana,
 cocaine,
 hallucinogens,
 etc.).
 Response
 options
 
were
 provided
 to
 indicate
 0
 to
 over
 100
 times
 (1=0
 times,
 2=1-­‐10
 times,
 3=11-­‐20
 
times,…,
 12=Over
 100
 times).
 Alcohol
 use
 was
 measured
 by
 3
 continuous
 variables,
 

 

  55
 
used
 as
 separate
 outcomes:
 drinking
 alcohol
 in
 the
 past
 month,
 getting
 drunk
 in
 the
 
past
 month,
 and
 binge
 drinking
 in
 the
 past
 month
 (“How
 many
 days
 have
 you
 had
 5
 
or
 more
 alcoholic
 drinks
 within
 a
 5
 hour
 period
 over
 the
 last
 30
 days?”).
 Marijuana
 
use
 was
 measured
 using
 1
 continuous
 variable:
 using
 marijuana
 in
 the
 past
 month.
 
For
 hard
 drug
 use,
 the
 responses
 to
 8
 questions
 regarding
 past
 month
 use
 of
 cocaine,
 
hallucinogens,
 stimulants,
 inhalants,
 ecstasy,
 pain
 killers,
 tranquilizers,
 or
 other
 
hard
 drugs
 were
 summed
 to
 create
 a
 hard
 drug
 use
 index
 (Cronbach
 alpha
 =.73).
 
Finally,
 a
 dichotomous
 index
 of
 overall
 substance
 abuse
 (yes/no)
 in
 the
 past
 year
 
was
 created
 using
 4
 questions
 (e.g.,
 “In
 the
 last
 12
 months,
 have
 you
 kept
 using
 
alcohol
 or
 drugs
 even
 though
 it
 was
 keeping
 you
 from
 meeting
 your
 responsibilities
 
at
 work,
 school,
 or
 home?”),
 serving
 as
 proxy
 items
 of
 the
 DSM-­‐IV
 substance
 abuse
 
disorder
 categories.
 Responses
 from
 the
 4
 items
 were
 summed
 into
 a
 single
 variable
 
(Cronbach
 alpha
 =.66),
 and
 if
 the
 score
 was
 1
 or
 more,
 the
 participant
 was
 coded
 as
 
having
 a
 substance
 use
 disorder.
 The
 reliability
 of
 the
 substance
 use
 item
 format
 
used
 has
 been
 demonstrated
 previously
 (Graham
 et
 al.,
 1984;
 Needle
 et
 al.,
 1983;
 
Stacy
 et
 al.,
 1990).
 For
 analysis,
 all
 outcome
 variables
 were
 log-­‐transformed
 due
 to
 
the
 data
 not
 being
 normally
 distributed.
 
 
 
 
Statistical
 Analysis
 

  All
 analyses
 were
 performed
 using
 the
 SAS
 (v.9.1.3)
 statistical
 package.
 
Because
 the
 distribution
 of
 the
 PTG
 variable
 was
 negatively
 skewed,
 PTG
 was
 
reflected
 and
 log-­‐transformed
 for
 all
 analyses.
 Correlation
 coefficients
 were
 
calculated
 between
 key
 variables.
 Means,
 standard
 deviations,
 and
 frequencies
 for
 

 

  56
 
selected
 demographic
 characteristics
 and
 key
 variables
 were
 calculated.
 Because
 of
 
insufficient
 numbers
 in
 the
 race
 categories
 other
 than
 Hispanic
 (35%),
 
race/ethnicity
 was
 recoded
 to
 Hispanic
 or
 non-­‐Hispanic.
 The
 PTG
 score,
 a
 log-­‐
transformed
 continuous
 variable,
 was
 entered
 as
 the
 dependent
 variable
 for
 all
 
analyses.
 
To
 account
 for
 possible
 differential
 attrition
 on
 important
 baseline
 variables
 
in
 the
 analytic
 models,
 a
 propensity-­‐to-­‐attrition
 score
 (PTA)
 was
 calculated
 for
 each
 
participant
 retained
 in
 the
 sample
 (vs.
 those
 lost-­‐to-­‐follow-­‐up
 at
 2
 years)
 and
 
included
 as
 a
 covariate
 in
 regression
 models
 such
 that
 results
 could
 be
 interpreted
 
as
 if
 there
 was
 no
 imbalance
 in
 attrition
 on
 key
 variables
 within
 the
 sample.
 The
 
PTA
 score
 was
 calculated
 by
 associating
 the
 difference
 on
 key
 variables
 (18
 
variables)
 to
 actual
 attrition
 status
 (0=not
 retained
 in
 the
 sample,
 1=retained
 in
 the
 
sample)
 from
 baseline
 to
 2-­‐year
 follow-­‐up
 in
 a
 logistic
 regression
 analysis.
 The
 
variables
 that
 were
 significantly
 associated
 with
 attrition
 were
 age,
 whether
 the
 
participant
 lived
 with
 both
 parents,
 and
 a
 4-­‐item
 scale
 on
 attitudes
 of
 drug
 use
 (i.e.,
 
if
 they
 used
 drugs,
 they
 would
 feel
 wrong,
 guilty
 or
 ashamed;
 see
 Sussman,
 Dent,
 &
 
Galaif,
 1997);
 these
 variables
 were
 included
 in
 the
 calculation
 of
 the
 PTA
 score.
 This
 
method
 has
 been
 used
 previously
 to
 control
 for
 the
 effects
 of
 differential
 attrition
 
(Berger,
 2005;
 Grunkemeier
 et
 al.,
 2002;
 Sun
 et
 al.,
 2007;
 Sussman
 et
 al.,
 2011).
 
 
Multilevel
 regression
 (PROC
 MIXED)
 models
 were
 run,
 controlling
 for
 
covariates,
 to
 examine
 the
 primary
 study
 hypothesis
 (whether
 higher
 PTG
 predicts
 a
 
change
 towards
 less
 substance
 use
 over
 time).
 To
 model
 change
 in
 substance
 use,
 

 

  57
 
change
 scores
 were
 created
 by
 subtracting
 the
 frequency
 of
 use
 at
 baseline
 from
 the
 
frequency
 of
 use
 at
 two-­‐year
 follow-­‐up.
 
 Also,
 models
 controlled
 for
 baseline
 by
 
entering
 baseline
 frequency
 of
 use
 of
 the
 substance
 as
 one
 of
 the
 independent
 
variables.
 The
 independent
 variables
 of
 interest
 for
 these
 models,
 number
 of
 SLEs
 
and
 PTG,
 were
 both
 entered
 into
 the
 models
 as
 continuous
 variables,
 predicting
 
substance
 use
 outcomes.
 The
 models
 included
 a
 propensity-­‐to-­‐attrition
 score,
 
intervention
 condition,
 socio-­‐demographic
 variables
 (i.e.,
 age,
 gender,
 and
 
race/ethnicity,
 parents’
 education
 as
 a
 proxy
 for
 socio-­‐economic
 status),
 and
 peer
 
substance
 use
 as
 covariates.
 Additionally,
 analyses
 included
 random
 effects
 
modeling
 which
 is
 important
 due
 to
 the
 nested
 structure
 of
 the
 data
 (i.e.,
 students
 
being
 nested
 within
 schools).
 
 
Results
 
Attrition
 Analysis
 

  Of
 the
 1,676
 students
 who
 completed
 a
 survey
 at
 baseline,
 703
 students
 
completed
 the
 2-­‐year
 follow-­‐up
 survey
 (58.1%
 attrition
 rate).
 To
 assess
 the
 impact
 
of
 attrition,
 the
 group
 retained
 was
 compared
 to
 the
 group
 that
 was
 lost-­‐to-­‐follow-­‐
up
 at
 the
 two-­‐year
 data
 collection.
 
 Groups
 were
 compared
 for
 all
 variables
 used
 in
 
this
 study
 using
 the
 Student
 t-­‐test
 or
 chi-­‐square
 test
 in
 order
 to
 detect
 statistically
 
significant
 differences
 between
 samples
 at
 the
 p-­‐value
 alpha
 of
 0.05
 (two-­‐tailed).
 
The
 group
 retained
 at
 two-­‐year
 follow-­‐up
 was
 similar
 to
 the
 group
 lost-­‐to-­‐follow-­‐up
 
on
 all
 variables
 except
 they
 were
 younger,
 more
 likely
 to
 live
 with
 both
 parents,
 and
 

 

  58
 
had
 more
 negative
 attitudes
 towards
 drug
 use
 at
 baseline
 (p<.0001).
 Therefore,
 
these
 variables
 were
 included
 in
 the
 calculation
 of
 the
 PTA
 score.
 
 
Participant
 Characteristics
 
Slightly
 more
 than
 half
 of
 the
 participants
 were
 male
 (54%)
 and
 living
 with
 
both
 parents
 (53%).
 The
 majority
 of
 participants
 had
 a
 parent
 who
 completed
 high
 
school
 (65%)
 and
 self-­‐identified
 as
 Latino
 or
 Hispanic
 (65%).
 On
 average,
 students
 
reported
 that
 at
 least
 3
 of
 their
 5
 closest
 friends
 used
 cigarettes,
 alcohol,
 marijuana,
 
or
 hard
 drugs
 in
 the
 last
 30
 days.
 Also,
 students
 reported
 experiencing
 a
 mean
 of
 3
 
SLEs
 in
 the
 last
 two
 years.
 The
 most-­‐life
 altering
 SLEs
 reported
 in
 order
 of
 greatest
 
to
 least
 frequency
 were
 someone
 in
 the
 family
 having
 a
 serious
 illness,
 accident,
 or
 
injury
 (28%);
 conflict
 at
 home
 (13%);
 relationship
 problem
 (12%);
 being
 or
 having
 
someone
 in
 the
 family
 be
 arrested
 (11%);
 having
 a
 new
 person
 join
 the
 household
 
(11%);
 not
 having
 enough
 money
 for
 basics
 such
 as
 food
 (6%);
 job
 or
 school
 
change/problem
 (6%);
 being
 a
 victim
 of
 a
 violent
 or
 abusive
 crime
 (4%);
 personal
 
injury,
 illness,
 accident
 or
 change
 in
 health
 status
 (2%);
 death
 of
 an
 extended
 family
 
member
 (2%);
 being
 displaced
 from
 home
 (2%);
 injury
 or
 death
 of
 a
 friend
 (2%);
 as
 
well
 as
 other
 SLEs,
 of
 which
 each
 was
 reported
 by
 less
 than
 1%
 of
 participants
 
(pregnancy,
 miscarriage
 of
 self
 or
 partner;
 change
 in
 religious
 faith;
 death
 of
 a
 
parent
 or
 both;
 witnessing
 a
 violent
 crime;
 getting
 robbed).
 
 
The
 majority
 of
 students
 reported
 that
 some
 aspect
 of
 their
 life
 had
 improved
 
in
 the
 aftermath
 of
 having
 experienced
 the
 most-­‐life
 altering
 SLE
 of
 the
 past
 two
 
years,
 demonstrated
 by
 a
 mean
 PTG
 score
 of
 2.64
 (SD=0.38),
 on
 a
 scale
 of
 1
 to
 3.
 

 

  59
 
Participants
 were
 most
 likely
 to
 report
 positive
 changes
 on
 items
 in
 order
 of
 
greatest
 to
 least
 frequency:
 my
 own
 inner
 strength
 (83%),
 appreciation
 for
 the
 value
 
of
 my
 own
 life
 (77%),
 direction
 for
 my
 life
 (75%),
 handling
 my
 difficulties
 (72%),
 
involvement
 in
 things
 that
 interest
 me
 (69%),
 my
 compassion
 for
 others
 (69%),
 my
 
sense
 of
 closeness
 with
 others
 (65%),
 and
 my
 understanding
 of
 spiritual
 matters
 
(56%).
 
Table
 4
 provides
 means,
 standard
 deviations,
 and
 frequencies
 for
 substance
 
use
 behaviors
 assessed
 at
 two-­‐year
 follow-­‐up.
 
 Students
 were
 most
 likely
 to
 use
 
alcohol
 (58%),
 then
 cigarettes
 (38%),
 then
 marijuana
 (34%)
 in
 the
 past
 month;
 
however,
 the
 number
 of
 times
 of
 use
 in
 the
 past
 month,
 among
 those
 who
 reported
 
any
 use
 in
 the
 past
 month,
 was
 most
 frequent
 for
 cigarettes
 (5.2±3.9),
 then
 
marijuana
 (3.9±3.1),
 hard
 drugs
 (2.8±2.3),
 and
 alcohol
 (2.4±1.3).
 
Multi-­‐level
 Regression
 Models
 

  Several
 sociodemographic
 characteristics
 predicted
 an
 increase
 in
 use
 of
 
certain
 substances.
 Being
 male
 predicted
 greater
 frequency
 in
 the
 use
 of
 cigarettes,
 
alcohol,
 and
 marijuana
 use
 as
 well
 as
 substance
 abuse;
 being
 of
 non-­‐Hispanic
 
ethnicity
 predicted
 greater
 frequency
 in
 daily
 and
 30-­‐day
 cigarette
 use
 and
 
marijuana
 use;
 and
 higher
 parental
 education
 predicted
 more
 binge
 drinking
 
(p’s<.05).
 Regarding
 substance
 use
 variables,
 baseline
 was
 a
 strong
 predictor
 of
 use
 
of
 all
 substances
 2-­‐years
 later
 (p’s<.01).
 Greater
 peer
 substance
 use
 predicted
 a
 
greater
 use
 of
 alcohol
 and
 marijuana
 (p’s<.05),
 and
 weakly
 predicted
 greater
 
frequency
 of
 getting
 drunk
 on
 alcohol,
 binge
 drinking,
 and
 hard
 drug
 use
 (p<.10).
 
 
 

 

  60
 
Table
 5
 shows
 the
 results
 of
 hypotheses
 testing.
 Experiencing
 a
 higher
 
number
 of
 SLEs
 predicted
 greater
 frequency
 (times
 per
 month)
 of
 cigarette,
 alcohol,
 
marijuana,
 and
 hard
 drug
 use,
 higher
 frequency
 of
 getting
 drunk
 on
 alcohol,
 and
 
greater
 substance
 abuse
 at
 two-­‐year
 follow-­‐up
 (p’s<.05).
 The
 relationship
 between
 
higher
 number
 of
 SLEs
 and
 higher
 average
 number
 of
 cigarettes
 used
 per
 day,
 
among
 those
 who
 had
 smoked
 in
 the
 past
 month,
 approached
 significance
 (p<.10);
 
however,
 a
 higher
 number
 of
 SLEs
 did
 not
 predict
 more
 frequent
 binge
 drinking
 in
 
the
 past
 month.
 Overall,
 results
 supported
 the
 assertion
 that
 greater
 PTG
 predicted
 
a
 change
 towards
 lower
 frequency
 in
 substance
 use
 over
 time
 for
 several
 
substances.
 A
 higher
 PTG
 score
 predicted
 lower
 frequency
 in
 alcohol
 and
 marijuana
 
use,
 reduced
 frequency
 of
 getting
 drunk
 on
 alcohol,
 less
 binge
 drinking,
 as
 well
 as
 
less
 past
 year
 substance
 abuse
 (p’s<.05).
 However,
 PTG
 did
 not
 impact
 frequency
 in
 
use
 for
 cigarettes,
 either
 average
 daily
 use
 or
 past
 30-­‐day
 use,
 or
 hard
 drug
 use.
8

 
Discussion
 
This
 is
 the
 first
 longitudinal
 study
 to
 demonstrate
 that
 PTG
 is
 associated
 with
 
a
 change
 towards
 less
 substance
 use
 over
 time.
 Positive
 psychosocial
 adjustment
 to
 
a
 life-­‐altering
 experience
 may
 counteract
 the
 negative
 impact
 of
 stress
 from
 SLEs
 on
 
substance
 use
 behaviors
 among
 high-­‐risk
 youth.
 Thus
 fostering
 PTG
 among
 older
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
Regression results modeling change scores as the dependent variable were the same as when frequencies
of use at two-year follow-up were used as the dependent variable. Also, these results were supported by an
examination of differences in mean PTG scores when the dependent substance use variable was coded
categorically with respect to change in use from baseline to two-year follow-up (0=no use maintained,
1=reduced/quit use, 2=stayed at the same level of use, and 3=increased/initiated use). Directions of
relationship with PTG were as hypothesized in that participants categorized as ‘increasing/initiating use’
had lower mean PTG scores whereas participants categorized as ‘reducing/quitting use’ had higher mean
PTG scores. This pattern of relationships was true for all substances except for change in frequency of
cigarette use in the past 30 days and average cigarettes smoked per day.

 

  61
 
youth
 may
 be
 one
 approach
 for
 augmenting
 the
 efficacy
 of
 substance
 use
 prevention
 
programs.
 
 

  Developing
 a
 higher
 level
 of
 PTG,
 as
 a
 result
 of
 experiencing
 a
 life-­‐altering
 
event,
 predicts
 a
 change
 towards
 lower
 frequency
 of
 substance
 use
 over
 time.
 
Higher
 PTG
 predicted
 changes
 towards
 less
 use
 of
 alcohol
 and
 marijuana,
 getting
 
drunk
 on
 alcohol,
 binge
 drinking
 and
 past
 year
 substance
 abuse.
 
 In
 order
 to
 develop
 
PTG,
 one
 needs
 to
 have
 experienced
 an
 event
 significant
 enough
 to
 have
 shattered
 
one’s
 assumptions
 about
 the
 world
 and
 one’s
 place
 in
 it.
 Successfully
 managing
 the
 
stress
 from
 such
 an
 event
 then
 facilitates
 cognitive
 processing
 and
 re-­‐building
 of
 a
 
more
 positive
 perspective
 such
 that
 one
 is
 able
 to
 function
 at
 a
 higher
 level
 than
 the
 
pre-­‐crisis
 self.
 Because
 PTG
 was
 associated
 with
 changes
 in
 self-­‐reported
 behavior
 
over
 a
 two-­‐year
 period,
 this
 suggests
 that
 any
 self-­‐enhancing
 perceptions
 of
 the
 
post-­‐trauma
 self
 in
 this
 sample
 were
 not
 merely
 illusory
 or
 transitory.
 Rather,
 in
 
support
 of
 the
 person-­‐centered
 theory,
 participants
 in
 this
 study
 demonstrated
 
congruence
 between
 improved
 psychological
 functioning
 (i.e.,
 PTG)
 and
 improved
 
behaviors.
 
 
 

  Experiencing
 SLEs
 contributed
 to
 greater
 use
 of
 cigarettes,
 alcohol,
 
marijuana,
 hard
 drugs,
 getting
 drunk
 on
 alcohol
 and
 substance
 use.
 The
 finding
 is
 
consistent
 with
 prior
 research
 findings
 among
 younger
 adolescents
 that
 show
 SLEs
 
are
 related
 to
 higher
 substance
 use
 rates
 overall
 (e.g.,
 Booker,
 et
 al.,
 2004;
 Dube,
 et
 
al.,
 2006;
 Low
 et
 al.,
 2012;
 Newcomb
 &
 Harlow,
 1986).
 Therefore,
 the
 method
 in
 
which
 youth
 attempt
 to
 release
 or
 avoid
 stress
 stemming
 from
 SLEs
 is
 an
 important
 

 

  62
 
modifiable
 target
 for
 intervention/
 prevention
 programs,
 which
 can
 include
 skills
 
for
 engaging
 in
 alternate
 behaviors
 and
 activities
 to
 relieve
 stress.
 
 

  A
 common
 approach
 of
 efficacious
 school-­‐based
 programs
 for
 at-­‐risk,
 older
 
youth
 is
 the
 incorporation
 of
 modules
 that
 focus
 on
 coping
 with
 stress
 and
 
decreasing
 stress
 levels
 (Sussman
 et
 al.,
 2004;
 Sussman
 &
 Sun,
 2009).
 Future
 
modules
 may
 be
 more
 effective
 if
 they
 include
 recognizing
 cues
 to
 emotional
 and
 
mental
 distress
 stemming
 from
 an
 SLE,
 facilitating
 cognitive
 processing,
 as
 well
 as
 
augmenting
 skills
 with
 which
 to
 engage
 in
 activities
 that
 have
 demonstrated
 effect
 
on
 promoting
 PTG,
 such
 as
 expressive
 writing,
 physical
 activity,
 or
 meditation
 
(Cameron
 et
 al.,
 2007;
 Sabiston,
 McDonough,
 &
 Crocker,
 2007;
 Smyth,
 Hockemeyer,
 
&
 Tulloch,
 2008).
 Augmenting
 such
 skills
 in
 order
 to
 facilitate
 PTG
 may
 assist
 with
 
buffering
 the
 impact
 of
 SLEs
 on
 substance
 use.
 

  There
 was
 no
 association
 between
 PTG
 and
 cigarette
 or
 hard
 drug
 use.
 For
 
cigarettes,
 this
 corroborates
 the
 study
 conducted
 among
 younger
 adolescents
 that
 
showed
 a
 relationship
 between
 PTG
 and
 less
 alcohol
 use,
 but
 not
 less
 cigarette
 use
 
(Milam,
 et
 al.,
 2005).
 
 One
 explanation
 for
 the
 lack
 of
 relationship
 between
 PTG
 and
 
cigarette
 use
 may
 be
 that
 continuing
 to
 smoke
 cigarettes
 may
 not
 elicit
 the
 same
 
level
 of
 cognitive
 dissonance
 with
 the
 perception
 of
 an
 improved
 sense
 of
 self
 as
 
does
 continuing
 to
 use
 other
 substances.
 
 One
 method
 of
 testing
 this
 speculation
 
may
 be
 to
 inquire
 about
 perceived
 social
 norms
 for
 smoking
 cigarettes
 and
 use
 of
 
other
 substances
 among
 these
 youth
 to
 assess
 the
 difference.
 One
 explanation
 for
 
the
 lack
 of
 relationship
 between
 PTG
 and
 hard
 drug
 use
 may
 be
 that
 there
 was
 a
 
relatively
 low
 prevalence
 of
 hard
 drug
 use
 overall
 (13%).
 

 

  63
 
Although
 prevalence
 of
 hard
 drug
 use
 was
 relatively
 low
 compared
 to
 other
 
substance
 use
 among
 this
 sample,
 on
 average,
 this
 sample
 reported
 higher
 rates
 of
 
substance
 use
 than
 national
 averages.
 
 According
 to
 nationally
 representative
 
surveys
 of
 older
 youth,
 age
 18
 and
 older,
 30-­‐day
 prevalence
 rates
 were:
 31.9%
 for
 
cigarette
 use,
 48.9%
 for
 alcohol
 use,
 33.3%
 for
 binge
 drinking,
 18.5%
 for
 marijuana
 
use
 (SAHMSA,
 2011),
 28.1%
 for
 having
 gotten
 drunk
 on
 alcohol,
 and
 8.4%
 for
 hard
 
drugs
 use
 in
 the
 last
 30
 days
 (Johnston,
 et
 al.,
 2013).
 
 As
 these
 comparisons
 support
 
the
 perception
 that
 these
 CHS
 youth
 represent
 a
 high-­‐risk
 sample
 with
 regard
 to
 
substance
 use,
 integrating
 assessments
 of
 and
 promoting
 positive
 psychosocial
 
adjustment
 may
 be
 useful
 to
 augment
 efforts
 aimed
 at
 lowering
 substance
 use
 
among
 those
 attending
 CHSs.
 
 
 
Limitations
 

  The
 generalizability
 of
 these
 findings
 is
 applicable
 to
 older,
 mostly
 Hispanic
 
youth
 who
 attend
 continuation
 or
 alternative
 high
 schools.
 
 In
 addition,
 the
 data
 for
 
these
 studies
 are
 based
 on
 self-­‐reports,
 which
 are
 subject
 to
 memory
 lapses
 or
 
selective
 disclosure
 on
 the
 types
 or
 number
 of
 SLEs
 experienced
 (Dohrenwend,
 
2006).
 Also,
 because
 those
 who
 did
 not
 report
 experiencing
 an
 SLE
 could
 not
 be
 
included
 in
 the
 sample,
 we
 are
 uncertain
 whether
 the
 level
 of
 PTG
 reported
 would
 
represent
 all
 older,
 at-­‐risk
 youth.
 
 Similarly,
 there
 is
 no
 corroborating
 evidence
 to
 
validate
 levels
 of
 positive
 growth
 reported
 by
 participants
 (e.g.,
 reports
 by
 
significant
 others,
 a
 trusted
 family
 member)
 and
 levels
 of
 growth
 may
 be
 subject
 to
 
issues
 of
 social
 desirability.
 However,
 the
 associations
 between
 PTG
 and
 reduced
 

 

  64
 
substance
 use
 suggest
 that
 positive
 growth
 is
 evident
 and
 manifested
 in
 less
 drug
 
use.
 
 
Future
 Research
 

  Future
 directions
 for
 this
 research
 include
 examining
 these
 relationships
 
among
 different
 samples
 of
 youth
 comprised
 of
 varying
 age
 ranges
 and
 race/ethnic
 
compositions
 and
 including
 a
 secondary
 informant
 on
 reports
 of
 PTG.
 Including
 
more
 extensive
 checklists
 of
 both
 positive
 and
 negative
 valenced
 SLEs
 or
 using
 a
 
semi-­‐structured
 interview
 format
 to
 assess
 SLEs
 may
 be
 useful.
 
 Also,
 there
 may
 be
 
other
 factors
 contributing
 to
 the
 level
 of
 positive
 psychosocial
 adjustment
 that
 need
 
to
 be
 accounted
 for
 in
 future
 studies,
 given
 the
 low
 proportion
 of
 variance
 in
 change
 
in
 substance
 use
 explained
 in
 each
 of
 our
 models.
 Because
 alcohol
 misuse
 and
 
dependence
 indicators
 in
 early
 to
 late
 adulthood
 may
 be
 influenced
 by
 interactions
 
between
 stress
 susceptibility
 and
 SLEs
 encountered
 during
 childhood
 (e.g.,
 Dawson,
 
Grant,
 &
 Li,
 2007;
 Lee
 et
 al.,
 2012;
 Young-­‐Wolff,
 Kendler,
 &
 Prescott,
 2012),
 the
 
inclusion
 of
 assessments
 of
 coping
 with
 SLEs,
 evaluating
 interactions
 between
 prior
 
SLEs
 and
 coping
 with
 subsequent
 SLEs
 are
 needed.
 
In
 conclusion,
 this
 study
 finds
 SLEs
 to
 be
 related
 to
 an
 increase
 in
 use
 of
 all
 
substances
 from
 baseline
 to
 two-­‐year
 follow-­‐up.
 Positive
 psychosocial
 adjustment
 to
 
a
 life-­‐altering
 SLE,
 indicated
 by
 self-­‐reported
 PTG,
 predicted
 a
 decrease
 in
 use
 of
 
alcohol
 and
 marijuana,
 and
 substance
 abuse.
 The
 results
 have
 implications
 for
 
substance
 use
 interventions.
 Collectively,
 findings
 from
 the
 present
 study
 and
 prior
 
studies
 demonstrate
 that
 individuals
 may
 seek
 to
 achieve
 congruence
 between
 
thought
 and
 action
 such
 that
 having
 undergone
 positive
 psychological
 

 

  65
 
transformation
 following
 extreme
 stress
 manifests
 in
 less
 use
 of
 certain
 substances.
 
 
Because
 PTG
 can
 be
 augmented
 through
 brief
 cognitive-­‐behavioral
 stress
 reduction
 
approaches
 (Cryder
 et
 al.,
 2006;
 Garland
 et
 al.,
 2007;
 Lechner
 &
 Antoni,
 2004),
 
facilitating
 PTG
 represents
 a
 unique,
 potentially
 salutogenic,
 intervention
 target
 that
 
may
 help
 to
 counteract
 the
 negative
 effect
 of
 SLEs
 on
 substance
 use
 among
 higher
 
risk
 youth.
   

 

  66
 
Table
 4.
 Prevalence
 of
 Substance
 Use
 Behaviors
 Among
 the
 CHS
 Sample
 at
 Two-­‐
Year
 Follow-­‐Up
 

 
Substance
 Use
 Variable
 
%
 or
 
 
Mean
 (SD)
  Range
 
Cigarette
 use
 (past
 month)
  38
  -­‐-­‐
 
Alcohol
 use
 (past
 month)
  58
  -­‐-­‐
 
Drunk
 on
 alcohol
 (past
 month)
  34
  -­‐-­‐
 
Binge
 drinking
 (past
 month)
  36
   
 
 
Marijuana
 use
 (past
 month)
  34
  -­‐-­‐
 
Hard
 drug
 use
 (past
 month)
  14
  -­‐-­‐
 
Substance
 abuse
 (past
 year)
 
31
  -­‐-­‐
 
Average
 number
 of
 cigarettes
 smoked
 per
 day

 
(among
 those
 who
 smoked
 at
 least
 once
 in
 the
 
past
 month)
  6.07
 (5.95)
  1-­‐40
 
Number
 of
 times
 smoked
 cigarettes
 (past
 
month)
  32.71
 (19.46)
  1-­‐90
 
Number
 of
 times
 drank
 alcohol
 (past
 month)
  4.78
 (2.34)
  1-­‐100
 
Number
 of
 times
 drunk
 on
 alcohol
 (past
 month)
  6.66
 (0.86)
  1-­‐50
 
Number
 of
 days
 binge
 drinking
 (past
 month)
  4.68
 (5.38)
  1-­‐30
 
Number
 of
 times
 used
 marijuana
 (past
 month)
  19.10
 (11.63)
  1-­‐100
 
Number
 of
 times
 used
 hard
 drugs
 (past
 month)
  8.29
 (3.43)
  1-­‐100
 
Number
 of
 times
 abused
 substances
 (past
 year)
 
1.77
 (0.89)
  1-­‐4
 
Notes.
 
Frequencies
 of
 substance
 use
 variables
 were
 only
 calculated
 among
 those
 who
 
reported
 using
 in
 the
 past
 month.
 

 

 

  67
 
Table
 5.
 Regression
 Models
 Showing
 the
 Impact
 of
 SLEs
 and
 PTG
 on
 Change
 in
 Frequency
 of
 Substance
 Use
 Behaviors
 
Substance
 use
 change
 
a

 
Number
 of
 
stressful
 life
 events
 
(SLEs)
 
Post-­‐traumatic
 
Growth
 (PTG)
 
Model
 F
 
d

  β
b

   
 
  SE
 
c

  β
b

   
 
  SE
 
c

 
Average
 daily
 cigarette
 use
  0.08
 #
  0.02
  0.00
   
 
  0.04
  3.16
 **
 
Cigarette
 use
 (past
 30
 days)
  0.07
 **
  0.02
  0.04
 
 
  0.04
  12.71
 ***
 
Alcohol
 use
 (past
 30
 days)
  0.04
 *
  0.02
  -­‐0.06
 *
  0.03
  89.99
 ***
 
Drunk
 on
 alcohol
 (past
 30
 days)
  0.03
 *
  0.02
  -­‐0.08
 **
  0.03
  99.85
 ***
 
Binge
 drinking
 (past
 30
 days)
  -­‐0.02
 
 
  0.04
  -­‐0.18
 **
  0.06
  14.35
 ***
 
Marijuana
 use
 (past
 30
 days)
  0.06
 **
  0.02
  -­‐0.07
 *
  0.03
  51.27
 ***
 
Hard
 drug
 use
 (past
 30
 days)
  0.05
 **
  0.02
  0.01
 
 
  0.03
  109.88
 ***
 
Substance
 abuse
 (past
 12
 
months)
  0.14
 ***
  0.03
  -­‐0.13
 **
  0.05
  7.04
 ***
 
Notes.
 
a
 
Dependent
 variables
 for
 substance
 use
 were
 modeled
 as
 change
 in
 frequency
 of
 use
 from
 baseline
 to
 two-­‐year
 follow-­‐up
 
(number
 of
 times
 or
 days
 use
 in
 the
 past
 30
 days)
 except
 for
 average
 daily
 cigarettes
 (assessed
 average
 number
 of
 cigarettes
 
smoked
 per
 day)
 and
 substance
 abuse
 (assessed
 substance
 abuse
 within
 the
 past
 12
 months).
 
 
b
 
β=Standardized
 beta.
 
c

 SE=Standard
 error.
 
d
 
All
 models
 are
 controlled
 for
 age,
 gender,
 ethnicity,
 parents'
 education,
 peer
 substance
 use,
 baseline
 use,
 propensity-­‐to-­‐
attrition
 score,
 and
 treatment
 condition.
 
#
 p
 <
 .10;
 *
 p
 <
 .05;
 **
 p
 <
 .01;
 ***
 p
 <
 .001
 

 

 

  68
 
CHAPTER
 4:
 CONCLUSION
 

  Research
 surrounding
 positive
 psychosocial
 adjustment
 to
 SLEs
 is
 promising,
 
and
 this
 is
 demonstrated
 by
 the
 recent
 surge
 in
 research
 on
 Post-­‐traumatic
 Growth
 
and
 related
 constructs
 in
 the
 empirical
 literature
 over
 the
 past
 two
 decades.
 A
 
review
 of
 the
 current
 literature
 indicates
 that
 PTG
 represents
 a
 resiliency
 construct
 
and
 developing
 PTG
 in
 the
 aftermath
 of
 having
 experienced
 significantly
 stressful
 
life
 events
 may
 have
 salutary
 benefits
 to
 health
 outcomes.
 
 The
 objectives
 of
 these
 
dissertation
 studies
 were
 to
 answer
 the
 questions
 of
 (1)
 what
 predicts
 the
 
development
 of
 PTG,
 including
 characteristics
 of
 stressful
 life
 events,
 one’s
 personal
 
and
 environmental
 system?;
 and
 (2)
 how
 do
 SLEs
 and
 PTG
 impact
 change
 in
 
substance
 use
 behaviors
 over
 time?
 This
 dissertation
 expands
 the
 current
 literature
 
by
 conducting
 novel
 examinations
 on
 the
 predictors
 of
 PTG,
 including
 indicators
 of
 
developmental
 stage
 and
 influence
 of
 cultural
 context,
 as
 well
 as
 the
 relationship
 
between
 PTG
 and
 change
 in
 substance
 use
 behaviors
 over
 a
 two-­‐year
 period
 among
 
a
 high-­‐risk,
 older
 youth
 sample.
 
 Findings
 of
 these
 studies
 have
 implications
 for
 
prevention
 interventions,
 most
 particularly
 substance
 use
 interventions.
 
 Also,
 given
 
certain
 limitations
 and
 the
 implications
 of
 the
 findings,
 there
 are
 ample
 possibilities
 
for
 future
 research
 on
 PTG.
 
Implications
 for
 Preventive
 Interventions
 

  Implications
 of
 PTG
 for
 prevention
 interventions
 have
 far-­‐reaching
 potential,
 
from
 public
 health
 work
 (e.g.,
 interventions
 for
 major
 disasters,
 or
 man-­‐made
 
destruction),
 to
 behavioral
 research
 (e.g.,
 community
 or
 school-­‐based
 interventions),
 

 

  69
 
to
 clinical
 settings
 (e.g.,
 individual
 client-­‐centered
 therapy,
 group-­‐level
 primary
 and
 
secondary
 interventions).
 Cognitive
 transformation,
 of
 which
 PTG
 is
 a
 measure,
 has
 
demonstrated
 relationships
 with
 enhanced
 ability
 to
 adapt
 to
 adverse
 
circumstances
 (Tebes
 et
 al.,
 2004).
 Thus,
 it
 is
 considered
 a
 possible
 agent
 with
 
which
 to
 strengthen
 resilience,
 and
 thus
 one’s
 ability
 to
 cope
 effectively
 with
 life
 
challenges.
 Furthermore,
 interventions
 that
 foster
 PTG
 have
 shown
 that
 developing
 
greater
 PTG
 confers
 not
 only
 benefits
 on
 psychosocial
 functioning,
 but
 also
 benefits
 
in
 biological
 and
 immune
 functioning.
 
 Such
 findings,
 taken
 together
 with
 findings
 
from
 this
 dissertation
 work,
 suggest
 several
 implications
 for
 preventive
 
interventions.
 

  Thus
 far,
 a
 handful
 of
 studies
 exist
 on
 interventions
 that
 specifically
 measure
 
PTG
 and
 related
 outcomes,
 all
 with
 promising
 results.
 Among
 adults,
 PTG
 
interventions
 were
 first
 implemented
 in
 the
 clinical
 settings
 among
 individuals
 
diagnosed
 with
 cancer.
 In
 the
 first
 randomized
 control
 trial
 conducted
 to
 assess
 
intervention-­‐related
 results
 specifically
 on
 PTG,
 a
 cognitive-­‐behavioral
 stress
 
management
 (CBSM)
 program
 was
 implemented
 for
 women
 being
 treated
 for
 early-­‐
stage
 breast
 cancer
 (Antoni
 et
 al.,
 2001).
 Study
 aims
 were
 to
 decrease
 the
 
prevalence
 of
 depression
 while
 enhancing
 PTG
 among
 participants.
 Antoni
 et
 al
 
demonstrated
 that
 the
 CBSM
 intervention
 not
 only
 succeeded
 in
 enhancing
 
measured
 levels
 of
 PTG,
 but
 a
 follow-­‐up
 study
 demonstrated
 that
 the
 women
 
experienced
 physiological
 benefits
 as
 well
 such
 as
 greater
 lymphocyte
 proliferative
 
responses
 suggesting
 faster
 immune
 system
 recovery
 at
 3-­‐month
 follow-­‐up
 
(McGregor,
 et
 al.,
 2004).
 
 Similarly,
 other
 studies
 have
 demonstrated
 diminished
 

 

  70
 
distress
 among
 intervention
 groups
 when
 conducted
 with
 breast
 cancer
 patients
 
(Phillips
 et
 al.,
 2008;
 Garland,
 et
 al.,
 2007),
 prostate
 cancer
 survivors
 (Penedo
 et
 al.,
 
2006),
 survivors
 of
 motor
 vehicle
 accidents
 (Zoellner
 et
 al.,
 2011),
 and
 adults
 who
 
had
 reported
 experiencing
 personal
 trauma
 (e.g.,
 were
 crime
 victims,
 sexual
 abuse
 
victims,
 bereaved
 parents)
 up
 to
 8
 years
 prior
 (Knaevelsrud,
 Liedl,
 &
 Maercker,
 
2010).
 Thus,
 findings
 from
 the
 dissertation
 studies
 as
 well
 as
 current
 literature
 on
 
PTG
 interventions
 demonstrates
 that
 there
 are
 identifiable
 targets
 with
 which
 to
 
foster
 PTG
 (i.e.,
 future
 time
 perspective,
 motivation,
 stress
 management
 skills)
 and
 
that
 higher
 PTG
 may
 be
 beneficial
 in
 promoting
 other
 health
 outcomes.
 
 

  In
 particular,
 results
 from
 Study
 2
 taken
 together
 with
 prior
 research
 
findings
 discussed
 in
 Chapter
 3
 have
 promising
 implications
 for
 substance
 use
 
interventions.
 
 As
 greater
 PTG
 was
 related
 to
 less
 substance
 use
 over
 time,
 PTG
 may
 
be
 viewed
 as
 a
 possible
 mediator
 of
 other
 constructs
 that
 assist
 in
 recovery
 from
 
substance
 misuse
 and
 addictive
 behaviors.
 
 For
 example,
 enhancing
 PTG
 through
 
intervention
 may
 also
 strengthen
 an
 individual’s
 spiritual
 beliefs,
 and
 thereby
 
compel
 them
 to
 reduce
 behaviors
 that
 do
 not
 align
 with
 those
 beliefs
 (Sussman
 et
 al.,
 
Provisionally
 accepted).
 
 Also,
 as
 previously
 mentioned
 in
 Chapter
 3,
 the
 more
 
efficacious
 school-­‐based
 programs
 for
 at-­‐risk,
 older
 youth
 tend
 to
 include
 modules
 
that
 focus
 on
 coping
 with
 stress
 and
 decreasing
 overall
 stress
 levels
 (Sussman,
 et
 al.,
 
2004;
 Sussman
 &
 Sun,
 2009).
 
 However,
 these
 modules
 may
 be
 strengthened
 by
 
included
 modalities
 to
 cope
 specifically
 with
 acute
 stress
 from
 life
 events.
 As
 PTG
 
can
 be
 fostered
 through
 brief
 cognitive-­‐behavioral
 stress
 reduction
 approaches
 
(Cryder,
 et
 al.,
 2006;
 Garland,
 et
 al.,
 2007;
 Lechner
 &
 Antoni,
 2004),
 it
 represents
 a
 

 

  71
 
malleable
 strength-­‐based
 intervention
 target
 that
 may
 assist
 youth
 in
 establishing
 a
 
type
 of
 resilience
 to
 SLEs.
 
 Thus,
 integrating
 assessments
 of
 and
 the
 promotion
 of
 
PTG
 into
 substance
 use
 intervention
 modules,
 may
 facilitate
 a
 reduction
 in
 
substance
 use
 among
 youth,
 particularly
 those
 who
 frequently
 experience
 
significant
 SLEs.
 
 
Limitations
 
 

  Several
 limitations
 have
 been
 highlighted
 regarding
 the
 studies
 presented
 in
 
this
 dissertation.
 From
 Study
 1,
 limitations
 include
 potential
 problems
 of
 lack
 of
 self-­‐
disclosure
 of
 SLEs
 experienced
 within
 the
 past
 two
 years;
 that
 the
 specific
 time-­‐
point
 that
 the
 most
 life-­‐altering
 SLE
 occurred
 was
 not
 assessed;
 a
 perceived
 severity
 
measure
 of
 the
 most
 life-­‐altering
 SLE
 was
 not
 included;
 and
 other
 measures
 of
 
coping
 or
 adjustment
 to
 SLEs
 were
 not
 included
 for
 their
 prediction
 of
 PTG.
 
 From
 
Study
 2,
 limitations
 not
 aforementioned
 in
 Study
 1
 include
 the
 generalizability
 of
 
findings
 among
 this
 high-­‐risk
 older
 youth,
 mostly
 Hispanic,
 sample
 to
 other
 samples
 
and
 that
 all
 data
 relied
 on
 self-­‐report.
 
 
 

  In
 addition,
 broader
 limitations
 for
 research
 can
 be
 drawn
 in
 order
 to
 
highlight
 potential
 areas
 for
 further
 research.
 First,
 these
 studies
 were
 not
 designed
 
to
 assess
 simultaneous
 levels
 of
 distress
 (i.e.,
 post-­‐traumatic
 stress
 symptoms,
 
anxiety,
 depression)
 that
 may
 be
 incurred
 from
 experiencing
 highly
 stressful
 life
 
events.
 Thus,
 the
 extent
 to
 which
 these
 highly
 vulnerable
 older
 youth
 developed
 
problems
 of
 distress
 from
 the
 SLEs
 is
 unclear,
 as
 is
 the
 relationship
 between
 distress
 
and
 impact
 on
 substance
 use
 changes
 over
 time.
 Second,
 the
 studies
 were
 not
 
designed
 to
 examine
 influences
 of
 stress
 susceptibility
 and
 earlier
 SLEs,
 during
 

 

  72
 
childhood,
 on
 the
 development
 of
 PTG.
 
 Thus,
 it
 is
 unclear
 how
 the
 interactions
 
between
 prior
 life
 stress
 and
 stress
 susceptibility
 influenced
 either
 the
 development
 
of
 PTG
 or
 the
 substance
 use
 behaviors
 for
 the
 sample
 in
 these
 studies.
 Third,
 these
 
studies
 were
 designed
 to
 assess
 PTG
 and
 change
 in
 substance
 use
 behaviors
 during
 
a
 specific
 developmental
 time
 period
 in
 life.
 
 Therefore,
 it
 is
 unknown
 how
 the
 
development
 of
 PTG
 and
 changes
 in
 substance
 use
 behaviors
 during
 emerging
 
adulthood
 would
 impact
 other
 constructs
 of
 psychosocial
 adjustment,
 PTG
 and
 
substance
 use
 later
 in
 adulthood.
 
 Lastly,
 these
 studies
 were
 not
 designed
 to
 assess
 
more
 comprehensive
 measures
 of
 cultural
 context
 that
 may
 impact
 the
 degree
 to
 
which
 PTG
 is
 reported.
 Thus,
 it
 is
 unclear
 as
 to
 why
 those
 who
 identified
 as
 Hispanic
 
or
 Latino
 generally
 reported
 higher
 levels
 of
 PTG
 than
 those
 of
 other
 ethnicities.
 
 
Future
 Research
 Directions
 

  Given
 the
 implications
 of
 this
 research
 and
 the
 limitations
 noted,
 the
 
adaptive
 significance
 of
 PTG
 and
 potential
 research
 areas
 may
 have
 much
 wider
 
implications
 to
 overall
 health
 and
 prevention
 research
 (e.g.,
 improved
 self-­‐efficacy
 
or
 hardiness,
 higher
 resistance
 to
 distress,
 immunological
 and
 biological
 
improvements).
 
 Findings
 from
 these
 studies
 have
 implications
 for
 further
 research
 
on
 both
 mental
 health
 and
 health
 behavior
 outcomes.
 
 
 

  From
 prior
 research,
 PTG
 has
 been
 examined
 for
 its
 relationship
 to
 other
 
mental
 health
 constructs
 over
 time.
 For
 example,
 in
 a
 longitudinal
 study
 conducted
 
among
 breast
 cancer
 patients,
 investigators
 found
 that
 PTG
 predicted
 lower
 distress
 
and
 depression
 between
 4
 and
 7
 years
 later
 (Carver
 &
 Antoni,
 2004).
 
 In
 another
 
longitudinal
 study
 conducted
 among
 HIV/AIDS
 patients,
 PTG
 predicted
 lower
 levels
 

 

  73
 
of
 depression
 over
 time,
 assessed
 approximately
 1.6
 year
 later
 (Milam,
 2004).
 
Because
 studies
 described
 in
 this
 dissertation
 did
 not
 examine
 PTG
 with
 respect
 to
 
mental
 health
 outcomes,
 an
 area
 of
 future
 research
 among
 high-­‐risk
 youth
 is
 to
 
examine
 the
 relationship
 between
 PTG
 and
 indicators
 of
 distress
 (e.g.,
 depression,
 
anxiety,
 post-­‐traumatic
 stress
 symptoms)
 and
 other
 outcomes
 commonly
 observed
 
as
 a
 result
 of
 experiencing
 significant
 SLEs.
 Such
 studies
 may
 help
 to
 elucidate
 
mechanisms
 by
 which
 older
 youth
 are
 able
 to
 positive
 adapt
 to
 life
 events
 despite
 
being
 surrounded
 by
 potentially
 more
 distressing
 environments.
 

  In
 addition,
 assessing
 the
 time-­‐point
 of
 when
 the
 most
 life-­‐altering
 SLE
 
occurred
 and
 repeat
 measures
 of
 PTG
 may
 be
 useful
 in
 order
 to
 better
 distinguish
 
the
 mechanistic
 pathway
 of
 positive
 psychosocial
 adjustment.
 For
 example,
 it
 is
 
possible
 that
 the
 Cognitive
 Adaptation
 Theory
 (i.e.,
 PTG
 represents
 an
 illusory
 
exaggeration
 of
 post-­‐trauma
 improvement)
 is
 true
 earlier
 on,
 but
 then
 changes
 in
 
behavior
 follow
 to
 achieve
 psychological
 congruence,
 in
 support
 of
 the
 Person-­‐
Centered
 Theory
 (i.e.,
 individuals
 strive
 to
 become
 fully
 functional,
 with
 
consistencies
 in
 both
 cognition
 and
 behavior).
 
 Thus,
 it
 may
 be
 true
 that
 both
 
constructive
 and
 illusory
 components
 are
 reflected
 in
 PTG,
 supporting
 the
 Janus-­‐
Face
 Model
 of
 PTG,
 that
 there
 are
 both
 illusory
 and
 functional
 components
 to
 PTG
 
(see
 Maercker
 &
 Zoellner,
 2004;
 Zoellner
 &
 Maercker,
 2006),
 although
 it
 is
 unclear
 
as
 to
 what
 time-­‐point
 one
 “face”
 shows
 versus
 the
 other
 when
 individuals
 respond
 
to
 survey
 items
 regarding
 growth
 from
 their
 stressful/traumatic
 experiences.
 The
 
key
 aspect
 that
 distinguishes
 the
 constructive
 from
 the
 illusory
 component
 of
 PTG
 is
 
the
 temporal
 nature
 of
 these
 responses
 to
 trauma.
 
 For
 future
 study,
 there
 is
 a
 need
 

 

  74
 
for
 a
 process-­‐oriented
 investigation
 in
 order
 to
 better
 understand
 the
 two
 
components
 in
 PTG
 scores.
 In
 order
 to
 do
 this,
 future
 examinations
 could
 include
 
repeated
 assessments
 of
 PTG
 over
 time,
 including
 immediately
 after
 an
 SLE
 and
 at
 
multiple
 follow-­‐up
 time
 points.
 They
 might
 also
 include
 assessments
 of
 the
 
relationship
 between
 PTG
 and
 the
 following:
 active
 coping
 and
 situational
 coping
 
(vs.
 dispositional
 coping),
 indicators
 of
 well-­‐being
 and
 quality
 of
 life
 cross-­‐
sectionally
 and
 at
 follow-­‐up
 time
 points,
 changes
 in
 self-­‐perceptions
 on
 self-­‐esteem,
 
coherence,
 and
 degree
 of
 personal
 control.
 Such
 analyses
 may
 help
 to
 discern
 which
 
component
 of
 PTG
 is
 being
 captured
 by
 the
 measure,
 and
 whether
 there
 is
 a
 
temporal
 difference
 detectable
 for
 when
 PTG
 reflects
 either
 the
 constructive
 or
 
illusory
 component.
 
 

  With
 regard
 to
 examining
 predictors
 of
 PTG,
 the
 estimated
 proportion
 of
 
variance
 explained
 by
 predictors
 was
 relatively
 low
 (13%).
 
 Influences
 of
 earlier
 life
 
SLEs
 and
 susceptibility
 have
 not
 been
 assessed
 for
 their
 influence
 on
 the
 
development
 of
 PTG,
 despite
 burgeoning
 evidence
 that
 demonstrates
 SLEs
 in
 
childhood
 can
 impact
 subsequent
 stress
 processing
 depending
 on
 genetic
 
polymorphisms
 or
 also
 via
 epigenetic
 mechanisms.
 For
 example,
 childhood
 
maltreatment
 early
 in
 life
 may
 interact
 with
 genetic
 susceptibility
 (i.e.,
 genetic
 
polymorphisms
 in
 the
 promoter
 region
 (5-­‐HTTLPR)
 of
 the
 serotonin-­‐transporter
 
gene
 or
 a
 monoamine
 oxidase
 A
 (MAOA)
 gene;
 see
 Caspi
 et
 al.,
 2010;
 Rutter,
 Kim-­‐
Cohen,
 &
 Maughan,
 2006)
 to
 influence
 stress-­‐related
 mental
 health
 later
 in
 life.
 
Similarly,
 childhood
 trauma
 has
 been
 shown
 to
 impact
 immediate
 genetic
 
expression
 such
 that
 the
 stress-­‐response
 system
 may
 be
 altered
 throughout
 the
 

 

  75
 
remainder
 of
 life
 (Klengel
 et
 al.,
 2012).
 
 Thus,
 it
 may
 be
 important
 to
 examine
 how
 
the
 development
 of
 PTG
 is
 influenced
 by
 stress
 susceptibility
 (genetic
 variants)
 or
 if
 
earlier
 SLEs
 during
 childhood
 interact
 with
 one’s
 predisposed
 susceptibility
 to
 
impact
 the
 development
 of
 PTG
 and
 other
 indicators
 of
 psychosocial
 adaptation
 to
 
SLEs
 in
 later
 adolescence
 and
 into
 adulthood.
 

  With
 regard
 to
 higher
 levels
 of
 PTG
 reported
 among
 Hispanics
 with
 higher
 
future
 time
 perspective,
 there
 are
 strong
 empirical
 and
 conceptual
 reasons
 to
 
further
 examine
 the
 relationships
 between
 predictors
 of
 positive
 psychosocial
 
change
 and
 PTG
 among
 Hispanics.
 
 Several
 studies
 have
 demonstrated
 that
 
Hispanics
 report
 higher
 levels
 of
 PTG
 than
 non-­‐Hispanics
 across
 various
 types
 of
 
SLEs
 (Milam,
 2006;
 Milam,
 et
 al.,
 2005;
 Powell,
 et
 al.,
 2003;
 Smith
 et
 al.,
 2008;
 
Tedeschi
 &
 Calhoun,
 2004;
 Urcuyo,
 et
 al.,
 2005),
 yet
 this
 finding
 has
 not
 been
 
consistent
 across
 all
 studies
 (Milam,
 2004;
 Milam,
 et
 al.,
 2004).
 
 A
 recent
 study
 found
 
that
 PTG
 among
 older
 youth
 was
 lowest
 among
 Hispanics
 who
 primarily
 spoke
 
English
 as
 their
 primary
 language
 at
 home
 whereas
 PTG
 was
 highest
 among
 
Hispanics
 who
 spoke
 another
 language
 at
 home,
 compared
 to
 White,
 non-­‐Hispanic
 
and
 other
 ethnicities
 (Arpawong,
 et
 al.,
 In
 Press).
 
 Such
 findings
 suggest
 that
 aside
 
from
 cultural
 norms
 and
 values
 (e.g.,
 spirituality/religiosity,
 responsibilities
 
towards
 family)
 shared
 among
 the
 diverse
 grouping
 of
 Hispanics,
 there
 may
 be
 
other
 factors,
 such
 as
 acculturation
 levels,
 that
 influence
 the
 development
 of
 PTG.
 
 
Further
 investigation
 of
 concepts
 related
 to
 cultural
 context
 may
 provide
 more
 
insight
 into
 positive
 psychosocial
 adaptation
 to
 SLEs
 among
 Hispanics.
 

 

  76
 
Summary
 

  Novel
 contributions
 of
 these
 studies
 include
 the
 examination
 of
 predictors
 of
 
PTG
 and
 analysis
 of
 PTG-­‐related
 changes
 in
 substance
 use
 behaviors
 among
 older,
 
vulnerable
 youth
 through
 a
 longitudinal
 study
 design.
 Among
 this
 sample,
 findings
 
demonstrate
 that
 PTG
 is
 less
 reflective
 of
 mood
 states
 (depression
 and
 positive
 
affect),
 rather
 individuals
 who
 identify
 more
 with
 being
 in
 the
 stage
 of
 Emerging
 
Adulthood
 engage
 in
 the
 processes
 of
 cognitive
 restructuring
 and
 re-­‐building
 of
 the
 
life
 perspective
 such
 that
 they
 are
 able
 to
 function
 at
 a
 higher
 level
 than
 the
 pre-­‐
trauma
 self.
 Further,
 reports
 of
 PTG
 tend
 to
 be
 higher
 among
 those
 who
 orient
 to
 
their
 daily
 roles
 and
 responsibilities
 with
 a
 future
 (vs.
 past
 or
 present)
 time
 
perspective.
 Findings
 from
 this
 study
 indicate
 that
 those
 who
 identify
 as
 being
 
Hispanic
 report
 higher
 levels
 of
 both
 future
 time
 perspective
 and
 overall
 PTG.
 Lastly,
 
findings
 of
 these
 studies
 demonstrate
 that
 levels
 of
 PTG
 do
 not
 reflect
 illusory
 or
 
transitory
 exaggerations
 of
 post-­‐trauma
 improvement,
 rather
 levels
 of
 PTG
 reported
 
are
 consistent
 with
 post-­‐trauma
 improvement
 in
 behaviors.
 Older
 youth
 in
 these
 
studies
 demonstrated
 both
 improvements
 in
 perceptions
 of
 themselves,
 their
 
relationships,
 their
 possibilities
 in
 life,
 and
 substance
 use
 behaviors
 
contemporaneously.
 Lastly,
 while
 less
 cumulative
 stress
 from
 SLEs
 was
 predictive
 of
 
higher
 PTG,
 findings
 of
 these
 studies
 support
 the
 notion
 that
 positive
 psychosocial
 
adjustment
 to
 a
 life-­‐altering
 experience
 may
 be
 protective
 against
 consequences
 of
 
stress
 from
 SLEs
 on
 substance
 use
 behaviors
 among
 high-­‐risk
 youth.
 Given
 these
 
findings,
 there
 are
 important
 implications
 for
 both
 substance
 use
 prevention
 
interventions
 and
 many
 avenues
 for
 future
 research
 on
 PTG.
   
 

 

  77
 
REFERENCES
 

 
Aiken,
 L.
 S.,
 West,
 S.
 G.,
 &
 Reno,
 R.
 R.
 (1991).
 Multiple
 regression:
 Testing
 and
 
interpreting
 interactions:
 Sage
 Publications,
 Inc.
 
Aldwin,
 C.
 M.,
 Levenson,
 M.
 R.,
 &
 Spiro,
 A.,
 3rd.
 (1994).
 Vulnerability
 and
 resilience
 to
 
combat
 exposure:
 can
 stress
 have
 lifelong
 effects?
 Psychology
 and
 aging,
 9(1),
 
34-­‐44.
 
Alisic,
 E.,
 van
 der
 Schoot,
 T.
 A.,
 van
 Ginkel,
 J.
 R.,
 &
 Kleber,
 R.
 J.
 (2008).
 Looking
 
beyond
 posttraumatic
 stress
 disorder
 in
 children:
 posttraumatic
 stress
 
reactions,
 posttraumatic
 growth,
 and
 quality
 of
 life
 in
 a
 general
 population
 
sample.
 The
 Journal
 of
 clinical
 psychiatry,
 69(9),
 1455-­‐1461.
 
Anda,
 R.
 F.,
 Felitti,
 V.
 J.,
 Bremner,
 J.
 D.,
 Walker,
 J.
 D.,
 Whitfield,
 C.,
 Perry,
 B.
 D.,
 Dube,
 S.
 
R.,
 &
 Giles,
 W.
 H.
 (2006).
 The
 enduring
 effects
 of
 abuse
 and
 related
 adverse
 
experiences
 in
 childhood.
 A
 convergence
 of
 evidence
 from
 neurobiology
 and
 
epidemiology.
 European
 archives
 of
 psychiatry
 and
 clinical
 neuroscience,
 
256(3),
 174-­‐186.
 
Antoni,
 M.
 H.,
 Lehman,
 J.
 M.,
 Kilbourn,
 K.
 M.,
 Boyers,
 A.
 E.,
 Culver,
 J.
 L.,
 Alferi,
 S.
 M.,
 
Yount,
 S.
 E.,
 McGregor,
 B.
 A.,
 Arena,
 P.
 L.,
 Harris,
 S.
 D.,
 Price,
 A.
 A.,
 &
 Carver,
 C.
 
S.
 (2001).
 Cognitive-­‐behavioral
 stress
 management
 intervention
 decreases
 
the
 prevalence
 of
 depression
 and
 enhances
 benefit
 finding
 among
 women
 
under
 treatment
 for
 early-­‐stage
 breast
 cancer.
 Health
 psychology
 :
 official
 
journal
 of
 the
 Division
 of
 Health
 Psychology,
 American
 Psychological
 
Association,
 20(1),
 20-­‐32.
 
Armeli,
 S.,
 Gunthert,
 K.
 C.,
 &
 Cohen,
 L.
 H.
 (2001).
 Stressor
 appraisals,
 coping,
 and
 
post-­‐event
 outcomes:
 The
 dimensionality
 and
 antecedents
 of
 stress-­‐related
 
growth.
 Journal
 of
 Social
 and
 Clinical
 Psychology,
 20(3),
 366-­‐395.
 
Arnett,
 J.
 J.
 (2000).
 Emerging
 adulthood.
 A
 theory
 of
 development
 from
 the
 late
 teens
 
through
 the
 twenties.
 The
 American
 psychologist,
 55(5),
 469-­‐480.
 
Arnett,
 J.
 J.
 (2004).
 Adolescence
 and
 emerging
 adulthood:
 Pearson
 Prentice
 Hall.
 
Arpawong,
 T.
 E.,
 Oland,
 A.,
 Milam,
 J.
 E.,
 Ruccione,
 K.
 S.,
 &
 Meeske,
 K.
 A.
 (In
 Press).
 
Posttraumatic
 Growth
 Among
 an
 Ethnically
 Diverse
 Sample
 of
 Adolescent
 
and
 Young
 Adult
 Cancer
 Survivors.
 Psycho-­‐Oncology.
 

 

  78
 
Arpawong,
 T.
 E.,
 Richeimer,
 S.
 H.,
 Weinstein,
 F.,
 Elghamrawy,
 A.,
 &
 Milam,
 J.
 E.
 (2012).
 
Posttraumatic
 Growth,
 Quality
 of
 Life,
 and
 Treatment
 Symptoms
 Among
 
Cancer
 Chemotherapy
 Outpatients.
 Health
 psychology(Epub
 ahead
 of
 print).
 
Association,
 A.
 P.,
 &
 DSM-­‐IV.,
 A.
 P.
 A.
 T.
 F.
 o.
 (2000).
 Diagnostic
 and
 statistical
 manual
 
of
 mental
 disorders:
 DSM-­‐IV-­‐TR:
 American
 Psychiatric
 Publishing,
 Inc.
 
Austin,
 A.
 A.
 (2004).
 Alcohol,
 tobacco,
 other
 drug
 use,
 and
 violent
 behavior
 among
 
Native
 Hawaiians:
 ethnic
 pride
 and
 resilience.
 Substance
 use
 &
 misuse,
 39(5),
 
721-­‐746.
 
Barnett,
 E.,
 Spruijt-­‐Metz,
 D.,
 Unger,
 J.
 B.,
 Rohrbach,
 L.
 A.,
 Sun,
 P.,
 &
 Sussman,
 S.
 (In
 
Press).
 Bi-­‐directional
 Study
 of
 Future
 Time
 Perspective
 and
 Substance
 Use
 
Among
 Continuation
 High
 School
 Students.
 Substance
 Use
 &
 Misuse.
 
Berger,
 R.,
 &
 Weiss,
 T.
 (2010).
 Posttraumatic
 Growth
 in
 U.S.
 Latinos.
 Posttraumatic
 
growth
 and
 culturally
 competent
 practice:
 Lessons
 learned
 from
 around
 the
 
globe,
 113-­‐127.
 
Berger,
 V.
 W.
 (2005).
 The
 reverse
 propensity
 score
 to
 detect
 selection
 bias
 and
 
correct
 for
 baseline
 imbalances.
 Statistics
 in
 medicine,
 24(18),
 2777-­‐2787.
 
Bland,
 J.
 M.,
 &
 Altman,
 D.
 G.
 (1986).
 Statistical
 methods
 for
 assessing
 agreement
 
between
 two
 methods
 of
 clinical
 measurement.
 Lancet,
 1(8476),
 307-­‐310.
 
Bloom,
 B.
 L.
 (1985).
 A
 factor
 analysis
 of
 self-­‐report
 measures
 of
 family
 functioning.
 
Family
 Process,
 24(2),
 225-­‐239.
 
Booker,
 C.
 L.,
 Gallaher,
 P.,
 Unger,
 J.
 B.,
 Ritt-­‐Olson,
 A.,
 &
 Johnson,
 C.
 A.
 (2004).
 Stressful
 
life
 events,
 smoking
 behavior,
 and
 intentions
 to
 smoke
 among
 and
 
multiethnic
 sample
 of
 sixth
 graders.
 Ethnicity
 &
 Health,
 9(4),
 369-­‐397.
 
Buckner,
 J.
 C.,
 Beardslee,
 W.
 R.,
 &
 Bassuk,
 E.
 L.
 (2004).
 Exposure
 to
 violence
 and
 low-­‐
income
 children's
 mental
 health:
 direct,
 moderated,
 and
 mediated
 relations.
 
The
 American
 journal
 of
 orthopsychiatry,
 74(4),
 413-­‐423.
 
Calhoun,
 L.
 G.,
 Cann,
 A.,
 Tedeschi,
 R.
 G.,
 &
 McMillan,
 J.
 (2000).
 A
 correlational
 test
 of
 
the
 relationship
 between
 posttraumatic
 growth,
 religion,
 and
 cognitive
 
processing.
 Journal
 of
 traumatic
 stress,
 13(3),
 521-­‐527.
 
Calhoun,
 L.
 G.,
 &
 Tedeschi,
 R.
 G.
 (2001).
 Posttraumatic
 growth:
 The
 positive
 lessons
 
of
 loss.
 

 

  79
 
Cameron,
 L.
 D.,
 Booth,
 R.
 J.,
 Schlatter,
 M.,
 Ziginskas,
 D.,
 &
 Harman,
 J.
 E.
 (2007).
 
Changes
 in
 emotion
 regulation
 and
 psychological
 adjustment
 following
 use
 of
 
a
 group
 psychosocial
 support
 program
 for
 women
 recently
 diagnosed
 with
 
breast
 cancer.
 Psycho-­‐Oncology,
 16(3),
 171-­‐180.
 
Caplan,
 G.
 (1974).
 Support
 systems
 and
 community
 mental
 health:
 Lectures
 on
 
concept
 development:
 Behavioral
 Publications.
 
Carver,
 C.
 S.
 (1998).
 Resilience
 and
 thriving:
 Issues,
 models,
 and
 linkages.
 Journal
 of
 
Social
 Issues,
 54(2),
 245-­‐266.
 
Carver,
 C.
 S.,
 &
 Antoni,
 M.
 H.
 (2004).
 Finding
 Benefit
 in
 Breast
 Cancer
 During
 the
 
Year
 After
 Diagnosis
 Predicts
 Better
 Adjustment
 5
 to
 8
 Years
 After
 Diagnosis.
 
Health
 Psychology,
 23(6),
 595-­‐598.
 
Caspi,
 A.,
 Hariri,
 A.
 R.,
 Holmes,
 A.,
 Uher,
 R.,
 &
 Moffitt,
 T.
 E.
 (2010).
 Genetic
 sensitivity
 
to
 the
 environment:
 the
 case
 of
 the
 serotonin
 transporter
 gene
 and
 its
 
implications
 for
 studying
 complex
 diseases
 and
 traits.
 Focus,
 8(3),
 398.
 
Chassin,
 L.,
 Presson,
 C.
 C.,
 Rose,
 J.
 S.,
 &
 Sherman,
 S.
 J.
 (1996).
 The
 natural
 history
 of
 
cigarette
 smoking
 from
 adolescence
 to
 adulthood:
 demographic
 predictors
 of
 
continuity
 and
 change.
 Health
 psychology
 :
 official
 journal
 of
 the
 Division
 of
 
Health
 Psychology,
 American
 Psychological
 Association,
 15(6),
 478-­‐484.
 
Cieslak,
 R.,
 Benight,
 C.,
 Schmidt,
 N.,
 Luszczynska,
 A.,
 Curtin,
 E.,
 Clark,
 R.
 A.,
 &
 
Kissinger,
 P.
 (2009).
 Predicting
 posttraumatic
 growth
 among
 Hurricane
 
Katrina
 survivors
 living
 with
 HIV:
 The
 role
 of
 self-­‐efficacy,
 social
 support,
 and
 
PTSD
 symptoms.
 Anxiety,
 Stress
 &
 Coping:
 An
 International
 Journal,
 22(4),
 
449-­‐463.
 
Cohen,
 J.
 (1978).
 Partialed
 products
 are
 interactions;
 partialed
 powers
 are
 curve
 
components.
 Psychological
 Bulletin,
 85(4),
 858.
 
Cohen,
 S.,
 Kamarck,
 T.,
 &
 Mermelstein,
 R.
 (1983).
 A
 Global
 Measure
 of
 Perceived
 
Stress.
 Journal
 of
 health
 and
 social
 behavior,
 24(4),
 385-­‐396.
 
Cohen,
 S.,
 &
 Williamson,
 G.
 M.
 (1988).
 Perceived
 Stress
 in
 a
 Probability
 Sample
 of
 the
 
United-­‐States.
 Social
 Psychology
 of
 Health,
 31-­‐67.
 
Collins,
 L.
 M.,
 Sussman,
 S.,
 Rauch,
 J.
 M.,
 Dent,
 C.
 W.,
 Johnson,
 C.
 A.,
 Hansen,
 W.
 B.,
 &
 
Flay,
 B.
 R.
 (1987).
 Psychosocial
 Predictors
 of
 Young
 Adolescent
 Cigarette
 
Smoking:
 A
 Sixteen‚ÄêMonth,
 Three‚ÄêWave
 Longitudinal
 Study1.
 Journal
 of
 
Applied
 Social
 Psychology,
 17(6),
 554-­‐573.
 

 

  80
 
Copeland,
 W.
 E.,
 Keeler,
 G.,
 Angold,
 A.,
 &
 Costello,
 E.
 J.
 (2007).
 Traumatic
 events
 and
 
posttraumatic
 stress
 in
 childhood.
 Archives
 of
 general
 psychiatry,
 64(5),
 577-­‐
584.
 
Cordova,
 M.
 J.,
 Cunningham,
 L.
 L.
 C.,
 Carlson,
 C.
 R.,
 &
 Andrykowski,
 M.
 A.
 (2001).
 
Posttraumatic
 growth
 following
 breast
 cancer:
 A
 controlled
 comparison
 
study.
 Health
 Psychology,
 20(3),
 176-­‐185.
 
Cruess,
 D.
 G.,
 Antoni,
 M.
 H.,
 Kumar,
 M.,
 McGregor,
 B.,
 Alferi,
 S.,
 Boyers,
 A.
 E.,
 Carver,
 C.
 
S.,
 &
 Kilbourn,
 K.
 (2001).
 Effects
 of
 stress
 management
 on
 testosterone
 levels
 
in
 women
 with
 early-­‐stage
 breast
 cancer.
 International
 Journal
 of
 Behavioral
 
Medicine,
 8(3),
 194-­‐207.
 
Cryder,
 C.
 H.,
 Kilmer,
 R.
 P.,
 Tedeschi,
 R.
 G.,
 &
 Calhoun,
 L.
 G.
 (2006).
 An
 exploratory
 
study
 of
 posttraumatic
 growth
 in
 children
 following
 a
 natural
 disaster.
 The
 
American
 journal
 of
 orthopsychiatry,
 76(1),
 65-­‐69.
 
Currier,
 J.
 M.,
 Hermes,
 S.,
 &
 Phipps,
 S.
 (2009).
 Brief
 report:
 Children's
 response
 to
 
serious
 illness:
 perceptions
 of
 benefit
 and
 burden
 in
 a
 pediatric
 cancer
 
population.
 Journal
 of
 Pediatric
 Psychology,
 34(10),
 1129-­‐1134.
 
Dawson,
 D.
 A.,
 Grant,
 B.
 F.,
 &
 Li,
 T.
 K.
 (2007).
 Impact
 of
 age
 at
 first
 drink
 on
 stress-­‐
reactive
 drinking.
 Alcoholism,
 clinical
 and
 experimental
 research,
 31(1),
 69-­‐77.
 
Dohrenwend,
 B.
 P.
 (2006).
 Inventorying
 stressful
 life
 events
 as
 risk
 factors
 for
 
psychopathology:
 Toward
 resolution
 of
 the
 problem
 of
 intracategory
 
variability.
 Psychological
 Bulletin,
 132(3),
 477.
 
Dong,
 M.,
 Anda,
 R.
 F.,
 Dube,
 S.
 R.,
 Giles,
 W.
 H.,
 &
 Felitti,
 V.
 J.
 (2003).
 The
 relationship
 
of
 exposure
 to
 childhood
 sexual
 abuse
 to
 other
 forms
 of
 abuse,
 neglect,
 and
 
household
 dysfunction
 during
 childhood.
 Child
 abuse
 &
 neglect,
 27(6),
 625-­‐
639.
 
Dube,
 S.
 R.,
 Miller,
 J.
 W.,
 Brown,
 D.
 W.,
 Giles,
 W.
 H.,
 Felitti,
 V.
 J.,
 Dong,
 M.,
 &
 Anda,
 R.
 F.
 
(2006).
 Adverse
 childhood
 experiences
 and
 the
 association
 with
 ever
 using
 
alcohol
 and
 initiating
 alcohol
 use
 during
 adolescence.
 The
 Journal
 of
 
adolescent
 health
 :
 official
 publication
 of
 the
 Society
 for
 Adolescent
 Medicine,
 
38(4),
 444
 e441-­‐410.
 
Fergusson,
 D.
 M.,
 Boden,
 J.
 M.,
 &
 Horwood,
 L.
 J.
 (2008).
 The
 developmental
 
antecedents
 of
 illicit
 drug
 use:
 Evidence
 from
 a
 25-­‐year
 longitudinal
 study.
 
Drug
 and
 Alcohol
 Dependence,
 96(1-­‐2),
 165-­‐177.
 

 

  81
 
Frazier,
 P.
 A.,
 Tix,
 A.
 P.,
 &
 Barron,
 K.
 E.
 (2004a).
 Testing
 moderator
 and
 mediator
 
effects
 in
 counseling
 psychology
 research.
 Journal
 of
 Counseling
 Psychology,
 
51(1),
 115-­‐134.
 
Frazier,
 P.
 A.,
 Tix,
 A.
 P.,
 &
 Barron,
 K.
 E.
 (2004b).
 Testing
 moderator
 and
 mediator
 
effects
 in
 counseling
 psychology
 research
 (vol
 51,
 pg
 115,
 2004).
 Journal
 of
 
Counseling
 Psychology,
 51(2),
 157-­‐157.
 
Garland,
 S.
 N.,
 Carlson,
 L.
 E.,
 Cook,
 S.,
 Lansdell,
 L.,
 &
 Speca,
 M.
 (2007).
 A
 non-­‐
randomized
 comparison
 of
 mindfulness-­‐based
 stress
 reduction
 and
 healing
 
arts
 programs
 for
 facilitating
 post-­‐traumatic
 growth
 and
 spirituality
 in
 
cancer
 outpatients.
 Supportive
 care
 in
 cancer
 :
 official
 journal
 of
 the
 
Multinational
 Association
 of
 Supportive
 Care
 in
 Cancer,
 15(8),
 949-­‐961.
 
Graham,
 J.
 W.,
 Flay,
 B.
 R.,
 Johnson,
 C.
 A.,
 Hansen,
 W.
 B.,
 Grossman,
 L.,
 &
 Sobel,
 J.
 L.
 
(1984).
 Reliability
 of
 Self-­‐Report
 Measures
 of
 Drug-­‐Use
 in
 Prevention
 
Research
 -­‐
 Evaluation
 of
 the
 Project
 Smart
 Questionnaire
 Via
 the
 Test-­‐Retest
 
Reliability
 Matrix.
 Journal
 of
 drug
 education,
 14(2),
 175-­‐193.
 
Grotevant,
 H.
 D.,
 &
 Cooper,
 C.
 R.
 (1986).
 Individuation
 in
 Family
 Relationships
 -­‐
 a
 
Perspective
 on
 Individual-­‐Differences
 in
 the
 Development
 of
 Identity
 and
 
Role-­‐Taking
 Skill
 in
 Adolescence.
 Human
 Development,
 29(2),
 82-­‐100.
 
Grunkemeier,
 G.
 L.,
 Payne,
 N.,
 Jin,
 R.,
 &
 Handy,
 J.
 R.,
 Jr.
 (2002).
 Propensity
 score
 
analysis
 of
 stroke
 after
 off-­‐pump
 coronary
 artery
 bypass
 grafting.
 The
 Annals
 
of
 thoracic
 surgery,
 74(2),
 301-­‐305.
 
Hahn,
 R.
 A.,
 &
 Se,
 T.
 F.
 C.
 P.
 (2008).
 Recommendations
 to
 reduce
 psychological
 harm
 
from
 traumatic
 events
 among
 children
 and
 adolescents.
 American
 Journal
 of
 
Preventive
 Medicine,
 35(3),
 314-­‐316.
 
Helgeson,
 V.
 S.,
 Reynolds,
 K.
 A.,
 &
 Tomich,
 P.
 L.
 (2006).
 A
 meta-­‐analytic
 review
 of
 
benefit
 finding
 and
 growth.
 Journal
 of
 Consulting
 and
 Clinical
 Psychology,
 
74(5),
 797-­‐816.
 
Henson,
 J.
 M.,
 Carey,
 M.
 P.,
 Carey,
 K.
 B.,
 &
 Maisto,
 S.
 A.
 (2006).
 Associations
 among
 
health
 behaviors
 and
 time
 perspective
 in
 young
 adults:
 model
 testing
 with
 
boot-­‐strapping
 replication.
 Journal
 of
 Behavioral
 Medicine,
 29(2),
 127-­‐137.
 
Ho,
 S.
 M.
 Y.,
 Chu,
 K.
 W.,
 &
 Yiu,
 J.
 (2008).
 The
 relationship
 between
 explanatory
 style
 
and
 posttraumatic
 growth
 after
 bereavement
 in
 a
 non-­‐clinical
 sample.
 Death
 
Studies,
 32(5),
 461-­‐478.
 

 

  82
 
Holahan,
 C.
 J.,
 Moos,
 R.
 H.,
 Holahan,
 C.
 K.,
 Cronkite,
 R.
 C.,
 &
 Randall,
 P.
 K.
 (2001).
 
Drinking
 to
 cope,
 emotional
 distress
 and
 alcohol
 use
 and
 abuse:
 A
 ten-­‐year
 
model.
 Journal
 of
 studies
 on
 alcohol
 and
 drugs,
 62(2),
 190.
 
Holmes,
 T.
 H.,
 &
 Rahe,
 R.
 H.
 (1967).
 The
 social
 readjustment
 rating
 scale.
 Journal
 of
 
Psychosomatic
 Research.
 
Hornblower,
 M.
 (1997).
 Great
 xpectations.
 Time,
 149,
 58-­‐69.
 
Ickovics,
 J.
 R.,
 Meade,
 C.
 S.,
 Kershaw,
 T.
 S.,
 Milan,
 S.,
 Lewis,
 J.
 B.,
 &
 Ethier,
 K.
 A.
 (2006).
 
Urban
 teens:
 Trauma,
 posttraumatic
 growth,
 and
 emotional
 distress
 among
 
female
 adolescents.
 Journal
 of
 Consulting
 and
 Clinical
 Psychology,
 74(5),
 841-­‐
850.
 
Janoff-­‐Bulman,
 R.
 (2002).
 Shattered
 assumptions:
 Free
 Pr.
 
Johnston,
 L.
 D.,
 O'Malley,
 P.
 M.,
 Bachman,
 J.
 G.,
 &
 Schulenberg,
 J.
 E.
 (2013).
 
Monitoring
 the
 Future
 national
 results
 on
 adolescent
 drug
 use:
 Overview
 of
 
key
 findings,
 2012.
 Ann
 Arbor:
 Institute
 for
 Social
 Research,
 The
 University
 of
 
Michigan.
 
Joseph,
 S.
 (2003).
 Person
 centred
 approach
 to
 understanding
 posttraumatic
 stress.
 
Person
 Centred
 Practice,
 11,
 70-­‐75.
 
Joseph,
 S.,
 &
 Linley,
 P.
 A.
 (2006).
 Growth
 following
 adversity:
 theoretical
 
perspectives
 and
 implications
 for
 clinical
 practice.
 Clinical
 Psychology
 Review,
 
26(8),
 1041-­‐1053.
 
Kessler,
 R.
 C.
 (2002).
 National
 Comorbidity
 Survey,
 1990-­‐1992.
 Inter-­‐university
 
Consortium
 for
 Political
 and
 Social
 Research,
 Ann
 Arbor.
 
Kleim,
 B.,
 &
 Ehlers,
 A.
 (2009).
 Evidence
 for
 a
 curvilinear
 relationship
 between
 
posttraumatic
 growth
 and
 posttrauma
 depression
 and
 PTSD
 in
 assault
 
survivors.
 Journal
 of
 traumatic
 stress,
 22(1),
 45-­‐52.
 
Klengel,
 T.,
 Mehta,
 D.,
 Anacker,
 C.,
 Rex-­‐Haffner,
 M.,
 Pruessner,
 J.
 C.,
 Pariante,
 C.
 M.,
 
Pace,
 T.
 W.
 W.,
 Mercer,
 K.
 B.,
 Mayberg,
 H.
 S.,
 &
 Bradley,
 B.
 (2012).
 Allele-­‐
specific
 FKBP5
 DNA
 demethylation
 mediates
 gene-­‐childhood
 trauma
 
interactions.
 Nature
 Neuroscience,
 16(1),
 33-­‐41.
 
Knaevelsrud,
 C.,
 Liedl,
 A.,
 &
 Maercker,
 A.
 (2010).
 Posttraumatic
 growth,
 optimism
 
and
 openness
 as
 outcomes
 of
 a
 cognitive-­‐behavioural
 intervention
 for
 

 

  83
 
posttraumatic
 stress
 reactions.
 Journal
 of
 Health
 Psychology,
 15(7),
 1030-­‐
1038.
 
Kubany,
 E.
 S.,
 Leisen,
 M.
 B.,
 Kaplan,
 A.
 S.,
 Watson,
 S.
 B.,
 Haynes,
 S.
 N.,
 Owens,
 J.
 A.,
 &
 
Burns,
 K.
 (2000).
 Development
 and
 preliminary
 validation
 of
 a
 brief
 broad-­‐
spectrum
 measure
 of
 trauma
 exposure:
 The
 Traumatic
 Life
 Events
 
Questionnaire.
 Psychological
 Assessment,
 12(2),
 210.
 
Larkin,
 H.,
 Shields,
 J.
 J.,
 &
 Anda,
 R.
 F.
 (2012).
 The
 health
 and
 social
 consequences
 of
 
adverse
 childhood
 experiences
 (ACE)
 across
 the
 lifespan:
 an
 introduction
 to
 
prevention
 and
 intervention
 in
 the
 community.
 Journal
 of
 prevention
 &
 
intervention
 in
 the
 community,
 40(4),
 263-­‐270.
 
Laufer,
 A.,
 &
 Solomon,
 Z.
 (2006).
 Posttraumatic
 symptoms
 and
 posttraumatic
 
growth
 among
 Israeli
 youth
 exposed
 to
 terror
 incidents.
 Journal
 of
 Social
 and
 
Clinical
 Psychology,
 25(4),
 429-­‐447.
 
Lechner,
 S.
 C.,
 &
 Antoni,
 M.
 H.
 (2004).
 Posttraumatic
 growth
 and
 group-­‐based
 
interventions
 for
 persons
 dealing
 with
 cancer:
 What
 have
 we
 learned
 so
 far?
 
Psychological
 Inquiry,
 15(1),
 35-­‐41.
 
Lee,
 L.
 O.,
 Young-­‐Wolff,
 K.
 C.,
 Kendler,
 K.
 S.,
 &
 Prescott,
 C.
 A.
 (2012).
 The
 effects
 of
 age
 
at
 drinking
 onset
 and
 stressful
 life
 events
 on
 alcohol
 use
 in
 adulthood:
 a
 
replication
 and
 extension
 using
 a
 population-­‐based
 twin
 sample.
 Alcoholism,
 
clinical
 and
 experimental
 research,
 36(4),
 693-­‐704.
 
Lelorain,
 S.,
 Bonnaud-­‐Antignac,
 A.,
 &
 Florin,
 A.
 (2010).
 Long
 term
 posttraumatic
 
growth
 after
 breast
 cancer:
 Prevalence,
 predictors
 and
 relationships
 with
 
psychological
 health.
 Journal
 of
 Clinical
 Psychology
 in
 Medical
 Settings,
 17(1),
 
14-­‐22.
 
Linden,
 W.
 (1984).
 Development
 and
 initial
 validation
 of
 a
 life
 event
 scale
 for
 
students.
 Canadian
 Journal
 of
 Counselling
 and
 Psychotherapy/Revue
 
canadienne
 de
 counseling
 et
 de
 psychoth √©rapie,
 18(3).
 
Linley,
 P.
 A.,
 &
 Joseph,
 S.
 (2004).
 Positive
 Change
 Following
 Trauma
 and
 Adversity:
 A
 
Review.
 Journal
 of
 traumatic
 stress,
 17(1),
 11-­‐21.
 
Lisha,
 N.
 E.,
 Grana,
 R.,
 Sun,
 P.,
 Rohrbach,
 L.,
 Spruijt-­‐Metz,
 D.,
 Reifman,
 A.,
 &
 Sussman,
 
S.
 (2012).
 Evaluation
 of
 the
 Psychometric
 Properties
 of
 the
 Revised
 Inventory
 
of
 the
 Dimensions
 of
 Emerging
 Adulthood
 (IDEA-­‐R)
 in
 a
 Sample
 of
 
Continuation
 High
 School
 Students.
 Evaluation
 &
 the
 health
 professions.
 

 

  84
 
Low,
 N.
 C.,
 Dugas,
 E.,
 O'Loughlin,
 E.,
 Rodriguez,
 D.,
 Contreras,
 G.,
 Chaiton,
 M.,
 &
 
O'Loughlin,
 J.
 (2012).
 Common
 stressful
 life
 events
 and
 difficulties
 are
 
associated
 with
 mental
 health
 symptoms
 and
 substance
 use
 in
 young
 
adolescents.
 BMC
 Psychiatry,
 12,
 116.
 
MacKinnon,
 D.
 P.,
 Johnson,
 C.
 A.,
 Pentz,
 M.
 A.,
 Dwyer,
 J.
 H.,
 Hansen,
 W.
 B.,
 Flay,
 B.
 R.,
 &
 
Wang,
 E.
 Y.
 I.
 (1991).
 Mediating
 mechanisms
 in
 a
 school-­‐based
 drug
 
prevention
 program:
 First-­‐year
 effects
 of
 the
 Midwestern
 Prevention
 Project.
 
Health
 Psychology,
 10(3),
 164.
 
Maercker,
 A.,
 &
 Zoellner,
 T.
 (2004).
 The
 Janus
 face
 of
 self-­‐perceived
 growth:
 Toward
 
a
 two-­‐component
 model
 of
 posttraumatic
 growth.
 Psychological
 Inquiry,
 
15(1),
 41-­‐48.
 
Masten,
 A.
 S.
 (2004).
 Regulatory
 processes,
 risk,
 and
 resilience
 in
 adolescent
 
development.
 Annals
 of
 the
 New
 York
 Academy
 of
 Sciences,
 1021,
 310-­‐319.
 
McCaslin,
 S.
 E.,
 de
 Zoysa,
 P.,
 Butler,
 L.
 D.,
 Hart,
 S.,
 Marmar,
 C.
 R.,
 Metzler,
 T.
 J.,
 &
 
Koopman,
 C.
 (2009).
 The
 relationship
 of
 posttraumatic
 growth
 to
 
peritraumatic
 reactions
 and
 posttraumatic
 stress
 symptoms
 among
 Sri
 
Lankan
 university
 students.
 Journal
 of
 traumatic
 stress,
 22(4),
 334-­‐339.
 
McCuller,
 W.
 J.,
 Sussman,
 S.,
 Wapner,
 M.,
 Dent,
 C.,
 &
 Weiss,
 D.
 J.
 (2006).
 Motivation
 to
 
quit
 as
 a
 mediator
 of
 tobacco
 cessation
 among
 at-­‐risk
 youth.
 Addictive
 
behaviors,
 31(5),
 880-­‐888.
 
McGregor,
 B.
 A.,
 Antoni,
 M.
 H.,
 Boyers,
 A.,
 Alferi,
 S.
 M.,
 Blomberg,
 B.
 B.,
 &
 Carver,
 C.
 S.
 
(2004).
 Cognitive-­‐behavioral
 stress
 management
 increases
 benefit
 finding
 
and
 immune
 function
 among
 women
 with
 early-­‐stage
 breast
 cancer.
 Journal
 
of
 Psychosomatic
 Research,
 56(1),
 1-­‐8.
 
Meyerson,
 D.
 A.,
 Grant,
 K.
 E.,
 Carter,
 J.
 S.,
 &
 Kilmer,
 R.
 P.
 (2011).
 Posttraumatic
 
growth
 among
 children
 and
 adolescents:
 A
 systematic
 review.
 Clinical
 
Psychology
 Review,
 31(6),
 949-­‐964.
 
Milam,
 J.
 (2006).
 Posttraumatic
 growth
 and
 HIV
 disease
 progression.
 Journal
 of
 
Consulting
 and
 Clinical
 Psychology,
 74(5),
 817-­‐827.
 
Milam,
 J.,
 Ritt-­‐Olson,
 A.,
 Tan,
 S.,
 Unger,
 J.,
 &
 Nezami,
 E.
 (2005).
 The
 September
 11th
 
2001
 Terrorist
 Attacks
 and
 Reports
 of
 Posttraumatic
 Growth
 among
 a
 Multi-­‐
Ethnic
 Sample
 of
 Adolescents.
 Traumatology,
 11(4),
 233-­‐246.
 

 

  85
 
Milam,
 J.
 E.
 (2004).
 Posttraumatic
 Growth
 Among
 HIV/AIDS
 Patients.
 Journal
 of
 
Applied
 Social
 Psychology,
 34(11),
 2353-­‐2376.
 
Milam,
 J.
 E.,
 Ritt-­‐Olson,
 A.,
 &
 Unger,
 J.
 B.
 (2004).
 Posttraumatic
 Growth
 Among
 
Adolescents.
 Journal
 of
 Adolescent
 Research,
 19(2),
 192-­‐204.
 
Needle,
 R.,
 McCubbin,
 H.,
 Lorence,
 J.,
 &
 Hochhauser,
 M.
 (1983).
 Reliability
 and
 
validity
 of
 adolescent
 self-­‐reported
 drug
 use
 in
 a
 family-­‐based
 study:
 a
 
methodological
 report.
 The
 International
 journal
 of
 the
 addictions,
 18(7),
 901-­‐
912.
 
Newcomb,
 M.
 D.,
 &
 Harlow,
 L.
 (1986).
 Life
 events
 and
 substance
 use
 among
 
adolescents:
 Mediating
 effects
 of
 perceived
 loss
 of
 control
 and
 
meaninglessness
 in
 life.
 Journal
 of
 Personality
 and
 Social
 Psychology,
 51(3),
 
564.
 
O'Leary,
 V.
 E.,
 &
 Ickovics,
 J.
 R.
 (1995).
 Resilience
 and
 thriving
 in
 response
 to
 
challenge:
 an
 opportunity
 for
 a
 paradigm
 shift
 in
 women's
 health.
 Women's
 
health,
 1(2),
 121-­‐142.
 
Palmer,
 R.
 H.
 C.,
 Young,
 S.
 E.,
 Hopfer,
 C.
 J.,
 Corley,
 R.
 P.,
 Stallings,
 M.
 C.,
 Crowley,
 T.
 J.,
 &
 
Hewitt,
 J.
 K.
 (2009).
 Developmental
 epidemiology
 of
 drug
 use
 and
 abuse
 in
 
adolescence
 and
 young
 adulthood:
 Evidence
 of
 generalized
 risk.
 Drug
 and
 
Alcohol
 Dependence,
 102(1-­‐3),
 78-­‐87.
 
Park,
 C.
 L.
 (2004).
 The
 notion
 of
 growth
 following
 stressful
 life
 experiences:
 
Problems
 and
 prospects.
 Psychological
 Inquiry,
 15(1),
 69-­‐76.
 
Park,
 C.
 L.,
 Edmondson,
 D.,
 Fenster,
 J.
 R.,
 &
 Blank,
 T.
 O.
 (2008).
 Meaning
 making
 and
 
psychological
 adjustment
 following
 cancer:
 The
 mediating
 roles
 of
 growth,
 
life
 meaning,
 and
 restored
 just-­‐world
 beliefs.
 Journal
 of
 Consulting
 and
 
Clinical
 Psychology,
 76(5),
 863-­‐875.
 
Penedo,
 F.
 J.,
 Molton,
 I.,
 Dahn,
 J.
 R.,
 Shen,
 B.-­‐J.,
 Kinsinger,
 D.,
 Traeger,
 L.,
 Siegel,
 S.,
 
Schneiderman,
 N.,
 &
 Antoni,
 M.
 (2006).
 A
 Randomized
 Clinical
 Trial
 of
 Group-­‐
Based
 Cognitive-­‐Behavioral
 Stress
 Management
 in
 Localized
 Prostate
 Cancer:
 
Development
 of
 Stress
 Management
 Skills
 Improves
 Quality
 of
 Life
 and
 
Benefit
 Finding.
 Annals
 of
 Behavioral
 Medicine,
 31(3),
 261-­‐270.
 
Peterson,
 C.,
 Park,
 N.,
 Pole,
 N.,
 D'Andrea,
 W.,
 &
 Seligman,
 M.
 E.
 P.
 (2008).
 Strengths
 of
 
character
 and
 posttraumatic
 growth.
 Journal
 of
 traumatic
 stress,
 21(2),
 214-­‐
217.
 

 

  86
 
Phillips,
 K.
 M.,
 Antoni,
 M.
 H.,
 Lechner,
 S.
 C.,
 Blomberg,
 B.
 B.,
 Llabre,
 M.
 M.,
 Avisar,
 E.,
 
Gl ück,
 S.,
 DerHagopian,
 R.,
 &
 Carver,
 C.
 S.
 (2008).
 Stress
 management
 
intervention
 reduces
 serum
 cortisol
 and
 increases
 relaxation
 during
 
treatment
 for
 nonmetastatic
 breast
 cancer.
 Psychosomatic
 Medicine,
 70(9),
 
1044-­‐1049.
 
Powell,
 S.,
 Rosner,
 R.,
 Butollo,
 W.,
 Tedeschi,
 R.
 G.,
 &
 Calhoun,
 L.
 G.
 (2003).
 
Posttraumatic
 growth
 after
 war:
 a
 study
 with
 former
 refugees
 and
 displaced
 
people
 in
 Sarajevo.
 Journal
 of
 clinical
 psychology,
 59(1),
 71-­‐83.
 
Radloff,
 L.
 S.
 (1977).
 the
 Ces-­‐D
 scale.
 Applied
 psychological
 measurement,
 1(3),
 385-­‐
401.
 
Radloff,
 L.
 S.
 (1991).
 The
 Use
 of
 the
 Center
 for
 Epidemiologic
 Studies
 Depression
 
Scale
 in
 Adolescents
 and
 Young-­‐Adults.
 Journal
 of
 youth
 and
 adolescence,
 
20(2),
 149-­‐166.
 
Reifman,
 A.,
 Arnett,
 J.,
 &
 Colwell,
 M.
 (2003).
 The
 IDEA:
 Inventory
 of
 the
 Dimensions
 
of
 Emerging
 Adulthood.
 Retrieved
 November
 25,
 2005.
 
Rohrbach,
 L.
 A.,
 Grana,
 R.,
 Vernberg,
 E.,
 Sussman,
 S.,
 &
 Sun,
 P.
 (2009).
 Impact
 of
 
hurricane
 Rita
 on
 adolescent
 substance
 use.
 Psychiatry,
 72(3),
 222-­‐237.
 
Rohrbach,
 L.
 A.,
 Sussman,
 S.,
 Dent,
 C.
 W.,
 &
 Sun,
 P.
 (2005).
 Tobacco,
 alcohol,
 and
 
other
 drug
 use
 among
 high-­‐risk
 young
 people:
 A
 five-­‐year
 longitudinal
 study
 
from
 adolescence
 to
 emerging
 adulthood.
 Journal
 of
 Drug
 Issues,
 35(2),
 333-­‐
355.
 
Rutter,
 M.,
 Kim-­‐Cohen,
 J.,
 &
 Maughan,
 B.
 (2006).
 Continuities
 and
 discontinuities
 in
 
psychopathology
 between
 childhood
 and
 adult
 life.
 Journal
 of
 Child
 
Psychology
 and
 Psychiatry,
 47(3‚Äê4),
 276-­‐295.
 
Sabiston,
 C.
 M.,
 McDonough,
 M.
 H.,
 &
 Crocker,
 P.
 R.
 E.
 (2007).
 Psychosocial
 
experiences
 of
 breast
 cancer
 survivors
 involved
 in
 a
 dragon
 boat
 program:
 
Exploring
 links
 to
 positive
 psychological
 growth.
 Journal
 of
 Sport
 &
 Exercise
 
Psychology,
 29(4),
 419-­‐438.
 
SAHMSA.
 (2011).
 Results
 From
 the
 2010
 National
 Survey
 on
 Drug
 Use
 and
 Health:
 
Summary
 of
 National
 Findings
 HHS
 Publication
 No.:(SMA)
 11-­‐4658
 (pp.
 156).
 
Rockville,
 MD.
 
SAMHSA.
 (2010).
 Substance
 Abuse
 Mental
 Health
 Services
 Administration
 (2010)
 
Results
 from
 the
 2009
 National
 Survey
 on
 Drug
 Use
 and
 Health:
 Volume
 I.
 

 

  87
 
Summary
 of
 National
 Findings
 (Substance
 Abuse
 and
 Mental
 Health
 Services
 
Administration,
 Rockville,
 MD)
 Series
 H-­‐38A,
 HHS
 Publ
 No
 SMA,
 48.
 
Schaefer,
 J.
 A.,
 &
 Moos,
 R.
 H.
 (1992).
 Life
 crises
 and
 personal
 growth.
 In
 B.
 N.
 
Carpenter
 (Ed.),
 Personal
 coping:
 Theory
 research
 and
 application
 (pp.
 149-­‐
170).
 Westport,
 CT:
 Praeger.
 
Schaefer,
 J.
 A.,
 &
 Moos,
 R.
 H.
 (1998).
 The
 context
 for
 posttraumatic
 growth:
 Life
 crises,
 
individual
 and
 social
 resources,
 and
 coping.
 Mahwah,
 NJ,
 US:
 Lawrence
 
Erlbaum
 Associates
 Publishers.
 
Schuettler,
 D.,
 &
 Boals,
 A.
 (2011).
 The
 path
 to
 posttraumatic
 growth
 versus
 
posttraumatic
 stress
 disorder:
 Contributions
 of
 event
 centrality
 and
 coping.
 
Journal
 of
 Loss
 and
 Trauma,
 16(2),
 180-­‐194.
 
Seligman,
 M.
 E.,
 &
 Csikszentmihalyi,
 M.
 (2000).
 Positive
 psychology.
 An
 introduction.
 
The
 American
 psychologist,
 55(1),
 5-­‐14.
 
Sheehan,
 T.
 J.,
 Fifield,
 J.,
 Reisine,
 S.,
 &
 Tennen,
 H.
 (1995).
 The
 Measurement
 Structure
 
of
 the
 Center
 for
 Epidemiologic
 Studies
 Depression
 Scale.
 Journal
 of
 
Personality
 Assessment,
 64(3),
 507-­‐521.
 
Siegel,
 K.,
 &
 Schrimshaw,
 E.
 W.
 (2000).
 Perceiving
 benefits
 in
 adversity:
 Stress-­‐
related
 growth
 in
 women
 living
 with
 HIV/AIDS.
 Social
 Science
 &
 Medicine,
 
51(10),
 1543-­‐1554.
 
Skogrand,
 L.,
 Hatch,
 D.,
 &
 Singh,
 A.
 (2005).
 Understanding
 Latino
 families,
 
implications
 for
 family
 education.
 Retrieved
 August,
 2,
 2010.
 
Smith,
 B.
 W.,
 Dalen,
 J.,
 Bernard,
 J.
 F.,
 &
 Baumgartner,
 K.
 B.
 (2008).
 Posttraumatic
 
growth
 in
 Non-­‐Hispanic
 White
 and
 Hispanic
 Women
 with
 cervical
 cancer.
 
Journal
 of
 Psychosocial
 Oncology,
 26(4),
 91-­‐109.
 
Smyth,
 J.
 M.,
 Hockemeyer,
 J.
 R.,
 &
 Tulloch,
 H.
 (2008).
 Expressive
 writing
 and
 post-­‐
traumatic
 stress
 disorder:
 Effects
 on
 trauma
 symptoms,
 mood
 states,
 and
 
cortisol
 reactivity.
 British
 Journal
 of
 Health
 Psychology,
 13(1),
 85-­‐93.
 
Snaith,
 R.
 P.,
 Hamilton,
 M.,
 Morley,
 S.,
 Humayan,
 A.,
 Hargreaves,
 D.,
 &
 Trigwell,
 P.
 
(1995).
 A
 scale
 for
 the
 assessment
 of
 hedonic
 tone
 the
 Snaith-­‐Hamilton
 
Pleasure
 Scale.
 The
 British
 journal
 of
 psychiatry
 :
 the
 journal
 of
 mental
 science,
 
167(1),
 99-­‐103.
 

 

  88
 
Stacy,
 A.
 W.,
 Flay,
 B.
 R.,
 Sussman,
 S.,
 Brown,
 K.
 S.,
 Santi,
 S.,
 &
 Best,
 J.
 A.
 (1990).
 
Validity
 of
 alternative
 self-­‐report
 indices
 of
 smoking
 among
 adolescents.
 
Psychological
 Assessment:
 A
 Journal
 of
 Consulting
 and
 Clinical
 Psychology,
 2(4),
 
442.
 
Steinberg,
 L.
 D.
 (1981).
 Transformations
 in
 Family-­‐Relations
 at
 Puberty.
 
Developmental
 Psychology,
 17(6),
 833-­‐840.
 
Stimson,
 J.
 A.,
 Carmines,
 E.
 G.,
 &
 Zeller,
 R.
 A.
 (1978).
 Interpreting
 polynomial
 
regression.
 Sociological
 Methods
 &
 Research,
 6(4),
 515-­‐524.
 
Stump,
 M.
 J.,
 &
 Smith,
 J.
 E.
 (2008).
 The
 relationship
 between
 posttraumatic
 growth
 
and
 substance
 use
 in
 homeless
 women
 with
 histories
 of
 traumatic
 experience.
 
The
 American
 journal
 on
 addictions
 /
 American
 Academy
 of
 Psychiatrists
 in
 
Alcoholism
 and
 Addictions,
 17(6),
 478-­‐487.
 
Sun,
 G.
 W.,
 Shook,
 T.
 L.,
 &
 Kay,
 G.
 L.
 (1996).
 Inappropriate
 use
 of
 bivariable
 analysis
 
to
 screen
 risk
 factors
 for
 use
 in
 multivariable
 analysis.
 Journal
 of
 clinical
 
epidemiology,
 49(8),
 907-­‐916.
 
Sun,
 P.,
 Unger,
 J.
 B.,
 Guo,
 Q.,
 Gong,
 J.,
 Ma,
 H.,
 Palmer,
 P.
 H.,
 Chou,
 C.
 P.,
 Li,
 Y.,
 Sussman,
 
S.,
 Ritt-­‐Olson,
 A.,
 Xiao,
 L.,
 &
 Johnson,
 C.
 A.
 (2007).
 Comorbidity
 between
 
depression
 and
 smoking
 moderates
 the
 effect
 of
 a
 smoking
 prevention
 
program
 among
 boys
 in
 China.
 Nicotine
 &
 tobacco
 research
 :
 official
 journal
 of
 
the
 Society
 for
 Research
 on
 Nicotine
 and
 Tobacco,
 9
 Suppl
 4,
 S599-­‐609.
 
Sussman,
 S.,
 Dent,
 C.
 W.,
 &
 Galaif,
 E.
 R.
 (1997).
 The
 correlates
 of
 substance
 abuse
 and
 
dependence
 among
 adolescents
 at
 high
 risk
 for
 drug
 abuse.
 Journal
 of
 
substance
 abuse,
 9,
 241-­‐255.
 
Sussman,
 S.,
 Dent,
 C.
 W.,
 &
 Leu,
 L.
 (2000).
 The
 one-­‐year
 prospective
 prediction
 of
 
substance
 abuse
 and
 dependence
 among
 high-­‐risk
 adolescents.
 Journal
 of
 
substance
 abuse,
 12(4),
 373-­‐386.
 
Sussman,
 S.,
 Dent,
 C.
 W.,
 &
 McCullar,
 W.
 J.
 (2000).
 Group
 self-­‐identification
 as
 a
 
prospective
 predictor
 of
 drug
 use
 and
 violence
 in
 high-­‐risk
 youth.
 Psychology
 
of
 Addictive
 Behaviors,
 14(2),
 192.
 
Sussman,
 S.,
 Earleywine,
 M.,
 Wills,
 T.,
 Cody,
 C.,
 Biglan,
 T.,
 Dent,
 C.
 W.,
 &
 Newcomb,
 M.
 
D.
 (2004).
 The
 motivation,
 skills,
 and
 decision-­‐making
 model
 of
 "drug
 abuse"
 
prevention.
 Substance
 use
 &
 misuse,
 39(10-­‐12),
 1971-­‐2016.
 

 

  89
 
Sussman,
 S.,
 Milam,
 J.,
 Arpawong,
 T.
 E.,
 Tsai,
 J.,
 &
 Black,
 D.
 S.
 (Provisionally
 accepted).
 
Spirituality
 in
 Addictions
 Treatment:
 Wisdom
 to
 Know…What
 It
 Is.
 Substance
 
use
 &
 misuse.
 
Sussman,
 S.,
 Stacy,
 A.
 W.,
 Dent,
 C.
 W.,
 Simon,
 T.
 R.,
 Galaif,
 E.
 R.,
 Moss,
 M.
 A.,
 Craig,
 S.,
 &
 
Johnson,
 C.
 A.
 (1995).
 Continuation
 high
 schools:
 youth
 at
 risk
 for
 drug
 abuse.
 
Journal
 of
 drug
 education,
 25(3),
 191-­‐209.
 
Sussman,
 S.,
 &
 Sun,
 P.
 (2009).
 Youth
 tobacco
 use
 cessation:
 2008
 update.
 Tobacco
 
induced
 diseases,
 5,
 3.
 
Sussman,
 S.,
 Sun,
 P.,
 Rohrbach,
 L.
 A.,
 &
 Spruijt-­‐Metz,
 D.
 (2011).
 One-­‐year
 outcomes
 of
 
a
 drug
 abuse
 prevention
 program
 for
 older
 teens
 and
 emerging
 adults:
 
Evaluating
 a
 motivational
 interviewing
 booster
 component.
 Health
 
psychology
 :
 official
 journal
 of
 the
 Division
 of
 Health
 Psychology,
 American
 
Psychological
 Association.
 
Sussman,
 S.,
 Sun,
 P.,
 Rohrbach,
 L.
 A.,
 &
 Spruijt-­‐Metz,
 D.
 (2012).
 One-­‐year
 outcomes
 of
 
a
 drug
 abuse
 prevention
 program
 for
 older
 teens
 and
 emerging
 adults:
 
Evaluating
 a
 motivational
 interviewing
 booster
 component.
 Health
 
Psychology,
 31(4),
 476.
 
Sussman,
 S.
 Y.,
 &
 Ames,
 S.
 L.
 (2008).
 Drug
 abuse:
 concepts,
 prevention,
 and
 cessation:
 
Cambridge
 Univ
 Pr.
 
Taylor,
 S.
 E.
 (1983).
 Adjustment
 to
 Threatening
 Events
 -­‐
 a
 Theory
 of
 Cognitive
 
Adaptation.
 American
 Psychologist,
 38(11),
 1161-­‐1173.
 
Taylor,
 S.
 E.,
 &
 Armor,
 D.
 A.
 (1996).
 Positive
 illusions
 and
 coping
 with
 adversity.
 
Journal
 of
 Personality,
 64(4),
 873-­‐898.
 
Taylor,
 S.
 E.,
 Kemeny,
 M.
 E.,
 Reed,
 G.
 M.,
 Bower,
 J.
 E.,
 &
 Gruenewald,
 T.
 L.
 (2000).
 
Psychological
 resources,
 positive
 illusions,
 and
 health.
 The
 American
 
psychologist,
 55(1),
 99-­‐109.
 
Tebes,
 J.
 K.,
 Irish,
 J.
 T.,
 Puglisi
 Vasquez,
 M.
 J.,
 &
 Perkins,
 D.
 V.
 (2004).
 Cognitive
 
transformation
 as
 a
 marker
 of
 resilience.
 Substance
 use
 &
 misuse,
 39(5),
 769-­‐
788.
 
Tedeschi,
 R.
 G.
 (1995).
 Trauma
 &
 transformation
 :
 growing
 in
 the
 aftermath
 of
 
suffering.
 Thousand
 Oaks,
 Calif.:
 Sage
 Publications.
 

 

  90
 
Tedeschi,
 R.
 G.,
 &
 Calhoun,
 L.
 G.
 (1995).
 Trauma
 &
 transformation:
 Growing
 in
 the
 
aftermath
 of
 suffering:
 Sage
 Publications,
 Inc.
 
Tedeschi,
 R.
 G.,
 &
 Calhoun,
 L.
 G.
 (1996).
 The
 Posttraumatic
 Growth
 Inventory:
 
measuring
 the
 positive
 legacy
 of
 trauma.
 Journal
 of
 traumatic
 stress,
 9(3),
 
455-­‐471.
 
Tedeschi,
 R.
 G.,
 &
 Calhoun,
 L.
 G.
 (2004).
 Target
 Article:
 "Posttraumatic
 Growth:
 
Conceptual
 Foundations
 and
 Empirical
 Evidence".
 Psychological
 Inquiry,
 
15(1),
 1-­‐18.
 
Tomich,
 P.
 L.,
 &
 Helgeson,
 V.
 S.
 (2004).
 Is
 Finding
 Something
 Good
 in
 the
 Bad
 Always
 
Good?
 Benefit
 Finding
 Among
 Women
 With
 Breast
 Cancer.
 Health
 Psychology,
 
23(1),
 16-­‐23.
 
Tsourtos,
 G.,
 Ward,
 P.
 R.,
 Muller,
 R.,
 Lawn,
 S.,
 Winefield,
 A.
 H.,
 Hersh,
 D.,
 &
 Coveney,
 J.
 
(2011).
 The
 importance
 of
 resilience
 and
 stress
 to
 maintaining
 smoking
 
abstinence
 and
 cessation:
 a
 qualitative
 study
 in
 Australia
 with
 people
 
diagnosed
 with
 depression.
 Health
 &
 social
 care
 in
 the
 community,
 19(3),
 299-­‐
306.
 
Unger,
 J.
 B.,
 Kipke,
 M.
 D.,
 Simon,
 T.
 R.,
 Johnson,
 C.
 J.,
 Montgomery,
 S.
 B.,
 &
 Iverson,
 E.
 
(1998).
 Stress,
 coping,
 and
 social
 support
 among
 homeless
 youth.
 Journal
 of
 
Adolescent
 Research,
 13(2),
 134-­‐157.
 
Updegraff,
 J.
 A.,
 Taylor,
 S.
 E.,
 Kemeny,
 M.
 E.,
 &
 Wyatt,
 G.
 E.
 (2002).
 Positive
 and
 
negative
 effects
 of
 HIV
 infection
 in
 women
 with
 low
 socioeconomic
 resources.
 
Personality
 and
 Social
 Psychology
 Bulletin,
 28(3),
 382-­‐394.
 
Urcuyo,
 K.
 R.,
 Boyers,
 A.
 E.,
 Carver,
 C.
 S.,
 &
 Antoni,
 M.
 H.
 (2005).
 Finding
 benefit
 in
 
breast
 cancer:
 Relations
 with
 personality,
 coping,
 and
 concurrent
 well-­‐being.
 
Psychology
 &
 Health,
 20(2),
 175-­‐192.
 
Ursano,
 R.
 J.,
 Bell,
 C.,
 Eth,
 S.,
 Friedman,
 M.,
 Norwood,
 A.,
 Pfefferbaum,
 B.,
 Pynoos,
 J.,
 
Zatzick,
 D.,
 Benedek,
 D.,
 &
 McIntyre,
 J.
 (2004).
 Practice
 guideline
 for
 the
 
treatment
 of
 patients
 with
 acute
 stress
 disorder
 and
 posttraumatic
 stress
 
disorder.
 The
 American
 journal
 of
 psychiatry,
 161(11
 Suppl),
 3-­‐31.
 
Wagner,
 K.
 D.,
 Brief,
 D.
 J.,
 Vielhauer,
 M.
 J.,
 Sussman,
 S.,
 Keane,
 T.
 M.,
 &
 Malow,
 R.
 
(2009).
 The
 potential
 for
 PTSD,
 substance
 use,
 and
 HIV
 risk
 behavior
 among
 
adolescents
 exposed
 to
 Hurricane
 Katrina.
 Substance
 use
 &
 misuse,
 44(12),
 
1749-­‐1767.
 

 

  91
 
Watson,
 D.,
 Clark,
 L.
 A.,
 &
 Tellegen,
 A.
 (1988).
 Development
 and
 validation
 of
 brief
 
measures
 of
 positive
 and
 negative
 affect:
 the
 PANAS
 scales.
 Journal
 of
 
Personality
 and
 Social
 Psychology,
 54(6),
 1063-­‐1070.
 
Wiechelt,
 S.
 A.
 (2007).
 Trauma
 and
 substance
 misuse:
 critical
 considerations
 in
 
understanding
 the
 maelstrom.
 Substance
 use
 &
 misuse,
 42(2-­‐3),
 527-­‐533.
 
Wills,
 T.
 A.
 (1986).
 Stress
 and
 coping
 in
 early
 adolescence:
 relationships
 to
 
substance
 use
 in
 urban
 school
 samples.
 Health
 psychology
 :
 official
 journal
 of
 
the
 Division
 of
 Health
 Psychology,
 American
 Psychological
 Association,
 5(6),
 
503-­‐529.
 
Wills,
 T.
 A.,
 &
 Cleary,
 S.
 D.
 (1996).
 How
 are
 social
 support
 effects
 mediated?
 A
 test
 
with
 parental
 support
 and
 adolescent
 substance
 use.
 Journal
 of
 Personality
 
and
 Social
 Psychology,
 71(5),
 937-­‐952.
 
Wills,
 T.
 A.,
 &
 Shiffman,
 S.
 (1985).
 Coping
 and
 substance
 use:
 A
 conceptual
 
framework.
 Coping
 and
 substance
 use,
 3-­‐24.
 
Wills,
 T.
 A.,
 Vaccaro,
 D.,
 &
 McNamara,
 G.
 (1992).
 The
 role
 of
 life
 events,
 family
 
support,
 and
 competence
 in
 adolescent
 substance
 use:
 a
 test
 of
 vulnerability
 
and
 protective
 factors.
 American
 journal
 of
 community
 psychology,
 20(3),
 
349-­‐374.
 
Young-­‐Wolff,
 K.
 C.,
 Kendler,
 K.
 S.,
 &
 Prescott,
 C.
 A.
 (2012).
 Interactive
 effects
 of
 
childhood
 maltreatment
 and
 recent
 stressful
 life
 events
 on
 alcohol
 
consumption
 in
 adulthood.
 Journal
 of
 studies
 on
 alcohol
 and
 drugs,
 73(4),
 
559-­‐569.
 
Zimbardo,
 P.
 G.,
 &
 Boyd,
 J.
 N.
 (1999).
 Putting
 time
 in
 perspective:
 A
 valid,
 reliable
 
individual-­‐differences
 metric.
 Journal
 of
 Personality
 and
 Social
 Psychology,
 
77(6),
 1271-­‐1288.
 
Zimbardo,
 P.
 G.,
 &
 Boyd,
 J.
 N.
 (1999).
 Putting
 time
 in
 perspective:
 A
 valid,
 reliable
 
individual-­‐differences
 metric.
 Journal
 of
 Personality
 and
 Social
 Psychology,
 
77(6),
 1271.
 
Zoellner,
 T.,
 &
 Maercker,
 A.
 (2006).
 Posttraumatic
 growth
 in
 clinical
 psychology-­‐-­‐A
 
critical
 review
 and
 introduction
 of
 a
 two
 component
 model.
 Clinical
 
Psychology
 Review,
 26(5),
 626-­‐653.
 
Zoellner,
 T.,
 Rabe,
 S.,
 Karl,
 A.,
 &
 Maercker,
 A.
 (2011).
 Post-­‐traumatic
 growth
 as
 
outcome
 of
 a
 cognitive-­‐behavioural
 therapy
 trial
 for
 motor
 vehicle
 accident
 

 

  92
 
survivors
 with
 PTSD.
 Psychology
 and
 Psychotherapy:
 Theory,
 Research
 and
 
Practice,
 84(2),
 201-­‐213.
 
Zweig,
 J.
 M.,
 &
 Institute,
 U.
 (2003).
 Vulnerable
 youth:
 Identifying
 their
 need
 for
 
alternative
 educational
 settings:
 Urban
 Institute
 Washington
 DC. 
Asset Metadata
Creator Arpawong, Thalida Em (author) 
Core Title Post-traumatic growth among high-risk youth: predictors, impact of stressful life events, and relationship with changes in substance use behaviors 
Contributor Electronically uploaded by the author (provenance) 
School Keck School of Medicine 
Degree Doctor of Philosophy 
Degree Program Preventive Medicine (Health Behavior) 
Publication Date 07/12/2013 
Defense Date 03/15/2013 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag Adolescents,alternative high school,emerging adults,Ethnicity,OAI-PMH Harvest,post-traumatic growth,stressful life events,substance use 
Format application/pdf (imt) 
Language English
Advisor Rohrbach, Louise Ann (committee chair), Sussman, Steven (committee chair), Land, Helen (committee member), Milam, Joel E. (committee member), Unger, Jennifer B. (committee member) 
Creator Email arpawong@usc.edu 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c3-287431 
Unique identifier UC11292697 
Identifier etd-ArpawongTh-1763.pdf (filename),usctheses-c3-287431 (legacy record id) 
Legacy Identifier etd-ArpawongTh-1763.pdf 
Dmrecord 287431 
Document Type Dissertation 
Format application/pdf (imt) 
Rights Arpawong, Thalida Em 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law.  Electronic access is being provided by the USC Libraries in agreement with the a... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Abstract (if available)
Abstract Background: The experience of a highly stressful life event (SLE) may elicit positive psychosocial change in some individuals, referred to as Post-traumatic Growth (PTG). This dissertation represents novel research in which two studies were designed to answer the following questions: (1) what predicts PTG, including personal and environmental characteristics as well as the number and severity of stressfulness of SLEs experienced? 
Tags
alternative high school
emerging adults
post-traumatic growth
stressful life events
substance use
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button