Close
The page header's logo
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Testing LANDIS-II to stochastically model spatially abstract vegetation trends in the contiguous United States
(USC Thesis Other) 

Testing LANDIS-II to stochastically model spatially abstract vegetation trends in the contiguous United States

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Copy asset link
Request this asset
Transcript (if available)
Content Copyright
 2013
   
   
 
 
 
 Austin
 V.
 Davis
 

 

 

   
 

 

 
TESTING
 LANDIS-­‐II
 TO
 STOCHASTICALLY
 
MODEL
 SPATIALLY
 ABSTRACT
 VEGETATION
 
TRENDS
 IN
 THE
 CONTIGUOUS
 UNITED
 STATES
 
By
 
Austin
 V.
 Davis
 

 

 
A
 Thesis
 Presented
 to
 the
 
FACULTY
 OF
 THE
 USC
 GRADUATE
 SCHOOL
 
UNIVERSITY
 OF
 SOUTHERN
 CALIFORNIA
 
In
 Partial
 Fulfillment
 of
 the
 
Requirements
 for
 the
 Degree
 
MASTER
 OF
 SCIENCE
 
(GEOGRAPHIC
 INFORMATION
 SCIENCE
 AND
 TECHNOLOGY)
 

 
December
 2013
 

 

  ii
 
Dedication
 
To
 the
 men
 and
 women
 of
 the
 United
 States
 Army.

  iii
 

 
Acknowledgements
 
Special
 thanks
 to
 Dr.
 Travis
 Longcore,
 my
 thesis
 advisor,
 for
 putting
 up
 with
 
my
 pesky
 e-­‐mail
 and
 supporting
 me
 in
 this
 effort.
 Also,
 I
 deeply
 appreciate
 the
 
contributions
 made
 by
 the
 other
 members
 of
 my
 thesis
 committee,
 Dr.
 Karen
 Kemp
 
and
 Dr.
 Edward
 Pultar,
 despite
 my
 interruptions
 to
 their
 summer
 vacations.
 Next,
 I
 
acknowledge
 my
 Branch
 Chief,
 Mr.
 Mark
 Graves,
 for
 providing
 a
 set
 of
 footsteps
 to
 
follow.
 It
 was
 through
 his
 encouragement
 that
 I
 pursue
 this
 degree
 program
 at
 the
 
University
 of
 Southern
 California.
 On
 that
 note,
 I
 must
 also
 thank
 the
 Director
 of
 the
 
United
 States
 Army
 Engineer
 Research
 and
 Development
 Center
 Environmental
 
Laboratory,
 Dr.
 Beth
 Fleming,
 for
 granting
 her
 unwavering
 support
 of
 this
 pursuit.
 
Dr.
 Eric
 Brizke,
 Dr.
 Nathan
 Beane,
 and
 Mr.
 Michael
 Whitby
 also
 deserve
 special
 
thanks
 for
 being
 exceptional
 research
 partners
 and
 colleagues;
 without
 their
 
skepticism
 this
 project
 would
 never
 have
 existed.
 Finally,
 I
 thank
 my
 mother
 for
 
encouraging
 me
 to
 read
 and
 write
 before
 I
 thought
 it
 would
 matter,
 my
 father
 for
 
demonstrating
 the
 importance
 of
 life-­‐long
 education,
 and
 my
 wife
 for
 not
 giving
 up
 
on
 me.
 

 

  iv
 
Table
 of
 Contents
 
Dedication..................................................................................................................................ii
 
Acknowledgements...............................................................................................................iii
 
Abstract......................................................................................................................................vi
 
Chapter
 1:
 Introduction.........................................................................................................1
 
Overview..................................................................................................................................................................1
 
Background.............................................................................................................................................................6
 
LANDIS......................................................................................................................................................................8
 
Chapter
 2:
 Methodology......................................................................................................12
 
Overview...............................................................................................................................................................12
 
Table
 1:
 LANDIS-­‐II
 Input
 Files.....................................................................................................................12
 
Locality
 Dataset..................................................................................................................................................19
 
Building
 a
 Landscape
 Diversity
 Database...............................................................................................21
 
Filtering
 the
 Dataset.........................................................................................................................................22
 
Generating
 Ecological
 Parameters
 for
 LANDIS-­‐II................................................................................26
 
Extracting
 Spatially
 Explicit
 Rasters.........................................................................................................30
 
Generating
 Random
 Rasters.........................................................................................................................31
 
Building
 LANDIS-­‐II
 Input
 Text-­‐Files.........................................................................................................32
 
Executing
 LANDIS-­‐II.........................................................................................................................................33
 
Developing
 Vegetation
 Trends....................................................................................................................34
 
Statistical
 Testing..............................................................................................................................................38
 
Chapter
 3:
 Results.................................................................................................................41
 
Chapter
 4:
 Discussion
 and
 Conclusion...........................................................................45
 
Discussion.............................................................................................................................................................45
 
Conclusion............................................................................................................................................................48
 
References...............................................................................................................................51
 
Appendix
 A:
 Pseudocode
 for
 LANDIS-­II
 Scenario
 Server.........................................54
 
Appendix
 B:
 Pseudocode
 for
 LANDIS-­II
 Scenario
 Client..........................................57
 
Appendix
 C:
 Pseudocode
 for
 Data
 Analysis..................................................................61
 

 

 
 

  v
 
List
 of
 Figures
 

 
Figure
 1–
 An
 Example
 of
 the
 Experimental
 Variables
 and
 Iterations
 Used
 in
 this
 
Research......................................................................................................................................................15
 

 
Figure
 2–
 Research
 Overview............................................................................................................16
 

 
Figure
 3
 -­‐
 NatureServe
 Dataset:
 Ecological
 Systems
 of
 the
 United
 States......................18
 

 
Figure
 4
 –
 Candidate
 Localities
 Resulting
 From
 Hexagonal
 Tessellation
 of
 the
 
Ecological
 Systems
 of
 the
 United
 States
 at
 48-­‐km
2

 Scale.......................................................20
 

 
Figure
 5
 -­‐
 Landscape
 Diversity
 Based
 On
 The
 Ecological
 Systems
 Of
 The
 United
 
States
 Dataset
 And
 The
 Candidate
 Localities
 At
 The
 12-­‐km
2

 Scale...................................22
 

 
Figure
 6
 –
 The
 Localities
 Containing
 Sets
 Of
 Vegetation
 Communities
 Used
 To
 
Understand
 The
 Spatial
 Sensitivity
 Of
 LANDIS-­‐II......................................................................26
 

 
Figure
 7
 –
 An
 Example
 Of
 The
 Three
 Different
 Spatial
 Representations
 Used
 In
 This
 
Experiment
 And
 Their
 Associated
 Succession
 And
 Output..................................................35
 

 
Figure
 8
 -­‐
 Chi-­‐square
 Equation..........................................................................................................39
 

 
Figure
 9
 -­‐
 Succession
 Trajectory
 Based
 On
 Initial
 Area
 Of
 A
 Vegetation
 Community
.........................................................................................................................................................................42
 

 
Figure
 10
 -­‐
 Succession
 Trajectory
 Based
 On
 The
 Total
 Area
 Of
 A
 Vegetation
 
Community.................................................................................................................................................43
 

 
Figure
 11
 -­‐
 End-­‐State
 Analysis...........................................................................................................44
 

 

  vi
 

 Abstract
 
The
 second
 generation
 of
 the
 Landscape
 Disturbance
 and
 Succession
 model
 
(LANDIS-­‐II)
 is
 frequently
 used
 to
 understand
 ecological
 succession
 on
 the
 landscape.
 
LANDIS-­‐II
 is
 an
 important
 simulation
 tool
 but
 it
 can
 be
 difficult
 to
 parameterize
 
properly
 in
 data-­‐poor
 regions.
 By
 examining
 the
 spatial
 sensitivity
 of
 LANDIS-­‐II,
 the
 
model’s
 users
 will
 have
 an
 improved
 understanding
 of
 the
 data
 required
 to
 properly
 
implement
 the
 model.
 Existing
 studies
 have
 tested
 the
 ecological
 sensitivity
 of
 
LANDIS-­‐II
 in
 local
 geographic
 settings,
 but
 a
 robust
 test
 of
 the
 model’s
 spatial
 
sensitivity
 has
 not
 been
 completed.
 This
 research
 tested
 the
 spatial
 sensitivity
 of
 the
 
LANDIS-­‐II
 spatially
 stochastic
 landscape
 model
 using
 a
 broad
 set
 of
 vegetation
 
communities
 found
 within
 the
 contiguous
 United
 States.
 Thirty
 spatially
 explicit,
 
equal-­‐area,
 and
 area-­‐weighted
 iterations
 of
 the
 spatial
 parameters
 of
 the
 LANDIS-­‐II
 
model
 were
 run
 for
 a
 series
 of
 localities
 in
 the
 contiguous
 United
 States,
 where
 the
 
areas
 were
 defined
 by
 the
 spatial
 composition
 of
 vegetation
 community
 values.
 
Ecological
 attributes
 were
 derived
 from
 the
 NatureServe
 Ecological
 Systems
 of
 the
 
United
 States
 dataset.
 A
 test
 of
 the
 spatial
 input
 parameters
 of
 LANDIS-­‐II
 
demonstrated
 that
 the
 model
 is
 aspatial
 under
 certain
 conditions.
 Furthermore,
 
vegetation
 community
 interactions
 may
 be
 effectively
 represented
 in
 LANDIS-­‐II
 by
 a
 
series
 of
 spatially
 stochastic
 input
 rasters;
 such
 that
 assessing
 a
 locality’s
 vegetation
 
trend
 is
 possible
 even
 when
 spatially
 explicit
 land
 classification
 information
 is
 
unavailable,
 thereby
 facilitating
 long-­‐term
 environmental
 planning
 in
 data-­‐poor
 
environments.
 
 

  1
 
Chapter
 1:
 Introduction
 
Overview
 
Landscape
 ecology
 is
 the
 spatial-­‐centric
 sub-­‐discipline
 of
 the
 ecological
 
sciences
 that
 evolved
 to
 embrace
 the
 role
 space
 and
 time
 play
 in
 the
 environment
 
(Turner
 1989;
 Watt
 1947).
 The
 field
 is
 responsible
 for
 the
 development
 of
 many
 
different
 types
 of
 dynamic
 landscape
 models
 including
 models
 with
 dispersion-­‐
based
 drivers.
 In
 a
 dispersion
 model,
 an
 entity
 is
 represented
 at
 an
 initial
 position
 
and
 its
 replicates
 are
 propagated
 to
 surrounding
 locations
 during
 a
 series
 of
 time-­‐
steps.
 Model
 parameters
 can
 be
 used
 to
 attenuate
 the
 dispersion
 process.
 For
 
instance,
 by
 defining
 a
 maximum
 dispersion
 distance,
 an
 initial
 entity
 cannot
 be
 
dispersed
 farther
 than
 the
 set
 distance
 in
 the
 model.
 
The
 representation
 of
 dynamic
 spatio-­‐temporal
 landscape
 phenomena
 has
 
been
 an
 ongoing
 challenge
 for
 spatial
 modelers.
 A
 common
 method
 for
 modeling
 
these
 phenomena
 is
 through
 the
 snapshot
 method.
 The
 snapshot
 method
 represents
 
data
 through
 a
 series
 of
 raster
 grids,
 one
 for
 each
 time-­‐step.
 Each
 raster
 grid
 
displays
 a
 small
 change
 on
 the
 landscape;
 the
 temporally
 ordered,
 iterative
 display
 
of
 these
 rasters
 allows
 the
 modeler
 to
 visualize
 the
 temporal
 processes
 acting
 in
 the
 
model
 (Pultar
 et
 al.
 2009).
 A
 dispersion
 model
 adhering
 to
 the
 snapshot
 method
 
represents
 an
 initial
 entity
 as
 a
 single
 cell,
 or
 series
 of
 cells,
 on
 the
 initial
 raster.
 As
 
time
 progresses,
 new
 raster
 grids
 are
 generated
 that
 show
 the
 entity
 spreading
 to
 
more
 cells
 on
 the
 raster.
 

  2
 
Most
 landscape
 models
 use
 spatially
 explicit
 knowledge
 to
 populate
 the
 input
 
conditions
 of
 the
 model.
 Spatially
 explicit
 knowledge
 is
 defined
 here
 as
 the
 digital
 
representation
 of
 the
 real
 world
 that
 maintains
 a
 recognizable
 depiction
 of
 the
 real
 
world’s
 spatial
 arrangement
 and
 composition.
 Spatial
 arrangement
 is
 the
 unique
 
pattern
 and
 shape
 of
 an
 entity
 or
 series
 of
 entities,
 whereas,
 spatial
 composition
 is
 
considered
 the
 proportion
 of
 area
 each
 entity
 occupies
 in
 a
 defined
 space.
 For
 
example,
 a
 spatially
 explicit
 dataset
 representing
 a
 forested
 landscape
 maintains
 the
 
shape
 of
 each
 forest’s
 boundary,
 as
 well
 as
 the
 same
 proportion
 of
 area
 for
 each
 
forest,
 in
 relation
 to
 the
 spatial
 extent
 of
 the
 landscape
 being
 represented.
 
 
The
 Landscape
 Disturbance
 and
 Succession
 family
 of
 models,
 commonly
 
known
 as
 LANDIS
 models,
 were
 developed
 by
 forest
 ecologists
 to
 understand
 forest
 
succession
 across
 a
 broad
 set
 of
 landscapes.
 LANDIS
 is
 classified
 as
 a
 dispersion
 
model
 adhering
 to
 the
 snapshot
 method
 to
 represent
 the
 spatio-­‐temporal
 ecological
 
succession
 occurring
 in
 the
 model.
 The
 model
 operator
 defines
 a
 series
 of
 species
 
and
 dispersion
 parameters
 to
 represent
 various
 vegetation
 communities
 on
 the
 
landscape.
 In
 most
 (if
 not
 all)
 studies
 (Scheller
 et
 al.
 2008;
 Scheller
 et
 al.
 2011;
 
Scheller
 and
 Mladenoff
 2005;
 Shang
 et
 al.
 2004),
 species
 parameters
 are
 defined
 by
 
iteratively
 testing
 a
 set
 of
 observed
 and
 arbitrary
 values
 in
 preliminary
 LANDIS
 runs,
 
and
 then
 selecting
 parameters
 that
 the
 operator
 deems
 most
 representative
 of
 real
 
world
 properties.
 The
 iterative
 process
 of
 selecting
 ideal
 species
 and
 dispersion
 
parameters
 is
 known
 as
 ecological
 parameter
 optimization.
 While
 ecological
 

  3
 
parameter
 optimization
 is
 common,
 a
 robust
 test
 of
 the
 model’s
 spatial
 sensitivity
 is
 
lacking.
 
Mlandenoff
 and
 He,
 the
 creators
 of
 the
 original
 LANDIS
 model,
 note
 that
 the
 
use
 of
 simulation
 models
 allow
 researchers
 the
 opportunity
 to
 explore
 the
 effects
 of
 
disturbance,
 scale,
 time,
 and
 ecological
 complexity
 on
 an
 environment.
 While
 both
 
claim
 LANDIS
 to
 be
 a
 valid
 tool
 for
 forest
 related
 research,
 they
 have
 stated:
 
“…LANDIS
 is
 not
 designed
 to
 predict
 the
 occurrence
 of
 a
 given
 event
 or
 change
 on
 a
 
single
 real
 location.
 The
 model
 is
 best
 viewed
 as
 a
 tool
 for
 projecting
 plausible
 
landscape
 patterns
 resulting
 from
 different
 simulated
 assumptions
 and
 scenarios”
 
(pp.159,
 Mladenoff
 and
 He
 1999).
 In
 many
 ways,
 this
 statement
 sparked
 the
 
development
 of
 this
 research
 project
 because
 it
 highlights
 a
 direct
 need
 to
 
understand
 the
 model’s
 spatial
 sensitivity
 before
 accepting
 its
 results.
 
 
LANDIS
 simulation
 models
 are
 useful
 for
 understanding
 landscape
 level
 
succession
 for
 a
 given
 set
 of
 vegetation
 communities.
 In
 this
 research,
 a
 vegetation
 
community
 is
 considered
 a
 unique
 set
 of
 collocated
 plant
 species
 occurring
 on
 the
 
landscape,
 regardless
 of
 their
 spatial
 properties
 (e.g.
 adjacency,
 patchiness).
 LANDIS
 
is
 generally
 used
 to
 determine
 non-­‐spatial
 vegetation
 trends
 acting
 in
 the
 model,
 
such
 as
 the
 increase
 or
 decrease
 of
 a
 given
 species’
 (or
 vegetation
 community’s)
 
percentage-­‐area
 shown
 in
 the
 model’s
 output.
 An
 example
 of
 aspatial
 LANDIS
 output
 
visualization
 is
 shown
 in
 LANDIS:
 A
 Spatial
 Model
 of
 Forest,
 Landscape
 Disturbance,
 
Succession,
 and
 Management
 (Mladenoff
 et
 al.
 1996)
 using
 the
 APACK
 software
 

  4
 
package
 for
 summarizing
 landscape
 metrics.
 The
 practice
 of
 chart
 and
 tabular
 
summaries
 of
 LANDIS
 raster
 output
 is
 still
 in
 use
 (Scheller
 et
 al.
 2007),
 which
 
suggests
 that
 only
 non-­‐spatial
 vegetation
 trend
 information
 is
 required
 as
 an
 output
 
by
 the
 model’s
 users.
 
 
Given
 that
 LANDIS-­‐II
 is
 primarily
 an
 ecological
 tool,
 LANDIS-­‐II’s
 developers
 
and
 users
 have
 focused
 more
 on
 the
 sensitivity
 analysis
 of
 ecological
 parameters
 in
 
the
 model
 (He,
 Larsen,
 and
 Mladenoff
 2002)
 instead
 of
 assessing
 how
 spatial
 
properties
 influence
 the
 non-­‐spatial
 vegetation
 trend
 results.
 This
 research
 tested
 
the
 spatial
 sensitivity
 of
 the
 LANDIS-­‐II
 landscape
 simulation
 model
 to
 understand
 
the
 influence
 spatial
 arrangement
 and
 spatial
 composition
 have
 on
 simulation
 
results.
 This
 study
 posits
 that
 LANDIS-­‐II’s
 spatial
 stochasticity
 allows
 it
 to
 accept
 
randomly
 generated
 spatial
 input
 parameters
 and
 produce
 non-­‐spatial
 output
 
results
 similar
 to
 those
 found
 when
 spatially
 explicit
 input
 parameters
 are
 used.
 
Certainly
 non-­‐spatially
 explicit
 input
 layers
 cannot
 be
 used
 to
 predict
 spatially
 
explicit
 trends
 and
 outcomes,
 but
 because
 LANDIS
 output
 results
 are
 traditionally
 
reported
 using
 an
 aspatial
 method,
 spatially
 explicit
 knowledge
 may
 not
 be
 needed.
 
Under
 this
 paradigm,
 vegetation
 communities
 acting
 within
 LANDIS-­‐II
 
simulations
 are
 contained
 by
 an
 interaction
 space
 based
 on
 spatial
 reality,
 rather
 
than
 an
 explicit
 representation
 of
 reality
 itself.
 If
 this
 paradigm
 holds
 true,
 then
 
LANDIS-­‐II
 could
 be
 used
 to
 understand
 vegetation
 trends
 in
 data-­‐poor
 
environments.
 

  5
 
The
 novelty
 of
 this
 research
 is
 the
 adaptive
 application
 of
 the
 LANDIS-­‐II
 
model
 to
 understand
 its
 spatial
 sensitivity.
 In
 previous
 studies
 (Scheller
 and
 
Mladenoff
 2005;
 Scheller
 et
 al.
 2011),
 LANDIS-­‐II
 was
 optimized
 for
 specific
 
ecological
 regimes
 using
 the
 ecological
 parameter
 optimization
 technique
 discussed
 
earlier,
 and
 applied
 to
 fixed,
 spatially
 explicit
 input
 layers
 to
 develop
 a
 set
 of
 non-­‐
spatial
 vegetation
 trend
 results.
 In
 this
 research,
 however,
 the
 results
 of
 spatially
 
explicit
 output
 based
 on
 generic
 ecological
 parameters
 were
 used
 as
 an
 
experimental
 control
 in
 a
 sensitivity
 test
 of
 two
 different,
 random
 spatial
 variables.
 
Because
 non-­‐spatial
 vegetation
 trends
 are
 based
 on
 the
 aggregation
 of
 spatial
 data
 
within
 a
 spatial
 extent,
 the
 experimental
 design
 of
 this
 research
 also
 assesses
 the
 
spatial
 sensitivity
 of
 three
 different
 aggregation
 scales:
 12km
2
,
 24km
2
,
 and
 48km
2
.
 
The
 Chi-­‐square
 statistic
 was
 used
 to
 compare
 the
 similarity
 between
 the
 tabular
 
vegetation
 trend
 patterns
 produced
 by
 the
 experimental
 control
 and
 both
 variables
 
individually
 at
 each
 scale.
 After
 all,
 LANDIS-­‐II
 is
 used
 to
 provide
 non-­‐spatial
 
vegetation
 succession
 trend
 information
 and
 not
 spatially
 accurate
 assessments
 of
 
landscape
 future
 (Mladenoff
 and
 He
 1999).
 This
 exploration
 of
 the
 LANDIS-­‐II
 model
 
adds
 to
 the
 current
 body
 of
 knowledge.
 
Furthermore,
 this
 study
 is
 in
 direct
 support
 of
 U.S.
 Army
 research
 operations
 
concerning
 global
 change,
 land
 management,
 and
 the
 fate
 of
 contaminants
 on
 
military
 installations.
 This
 research
 was
 conducted
 parallel
 to
 the
 development
 of
 a
 
vegetation
 trend
 database
 for
 dominant,
 natural,
 upland
 vegetation
 in
 the
 

  6
 
contiguous
 United
 States.
 Although
 the
 larger
 research
 project
 is
 not
 outlined
 in
 this
 
study,
 it
 served
 as
 the
 impetus
 for
 an
 investigation
 of
 LANDIS-­‐II,
 provided
 the
 
context
 for
 the
 experimental
 parameters
 used,
 and
 served
 as
 an
 opportunity
 to
 
further
 the
 understanding
 of
 spatially
 stochastic
 modeling.
 
 
Background
 
The
 study
 of
 spatially
 variant
 ecosystems
 begins
 with
 Tansley’s
 1935
 paper,
 
The
 Use
 and
 Abuse
 of
 Vegetation
 Concepts
 and
 Terms
 (Tansley
 1935).
 In
 the
 paper,
 
the
 author
 introduces
 the
 idea
 of
 ecosystems
 as
 being
 a
 web
 of
 inter-­‐related
 multi-­‐
layered
 natural
 systems,
 and
 expounds
 upon
 the
 concept
 of
 succession
 found
 in
 
these
 systems.
 By
 1935,
 ecologists
 had
 observed
 that
 not
 only
 do
 plants
 themselves
 
undergo
 transitional
 phases,
 but
 entire
 vegetation
 communities
 undergo
 a
 series
 of
 
transitions
 as
 well.
 These
 patterns
 of
 transition,
 driving
 one
 ecosystem
 to
 transgress
 
upon
 another,
 are
 referred
 to
 as
 succession.
 
 
Watt
 builds
 on
 Tansley’s
 work
 with
 his
 review
 (Watt
 1947)
 of
 vegetation
 
patterns
 and
 processes.
 Contemporaries
 of
 Tansley
 used
 mathematical
 and
 
population
 models
 to
 describe,
 predict,
 and
 understand
 their
 world
 (Morris
 1997).
 
Watt’s
 work
 is
 striking
 in
 that
 he
 notices
 the
 importance
 of
 spatial
 settings
 on
 
vegetation,
 and
 describes
 the
 dynamic
 phases
 of
 an
 ecosystem
 distributed
 on
 the
 
landscape.
 In
 the
 19
th

 century,
 ecologists
 believed
 vegetation
 and
 ecosystems
 were
 
distributed
 uniformly
 across
 the
 local
 landscape,
 but
 advances
 in
 the
 field
 pointed
 to
 
patchy
 distributions
 of
 ecosystems
 (Legendre
 and
 Fortin
 1989).
 Although
 Watt’s
 

  7
 
examples
 largely
 focus
 on
 the
 patchiness
 of
 micro-­‐communities
 as
 situated
 on
 a
 
local
 hill-­‐slope,
 20
th

 century
 ecologists
 would
 begin
 describing
 the
 spatial
 
relationships
 and
 ecological
 settings
 seen
 in
 the
 environment.
 
 
Turner
 (1989)
 articulates
 the
 development
 of
 ecological
 modeling
 from
 the
 
early
 conceptual
 understanding
 provided
 by
 Watt.
 The
 notion
 of
 landscape
 patches
 
in
 different
 phases
 of
 succession
 and
 the
 influence
 of
 scale
 on
 biogeographic
 
understanding
 are
 discussed
 in
 more
 detail
 as
 the
 underpinning
 of
 modern
 spatial
 
landscape
 models.
 The
 quantitative
 revolution
 in
 geography
 brought
 new
 statistical
 
methods,
 such
 as
 Moran’s
 I,
 for
 describing
 spatial
 patterns.
 A
 spatial-­‐centric
 
approach
 to
 ecology
 became
 formally
 developed
 and
 Turner
 presents
 a
 strong
 
argument
 for
 the
 use
 of
 spatial
 ecology
 models
 over
 non-­‐spatial
 models,
 which
 may
 
not
 capture
 the
 full
 range
 of
 important
 processes
 in
 the
 environment.
 Spatial
 
properties
 and
 drivers
 play
 an
 important
 role
 in
 ecosystems
 and
 should
 be
 
represented
 in
 the
 model
 environment
 because
 spatial
 patterns
 do
 affect
 real
 world
 
ecological
 processes.
 
 
With
 the
 advent
 of
 the
 personal
 computers
 becoming
 more
 available
 at
 lower
 
cost,
 the
 possibility
 of
 more
 complex
 modeling
 efforts
 was
 slowly
 realized.
 
Furthermore,
 ecology
 models
 became
 more
 spatial-­‐centric
 and
 incorporated
 new
 
variables,
 including
 disturbance
 and
 human-­‐ordered
 land
 management.
 Paine
 et
 al.
 
(1998)
 discuss
 how
 disturbances
 affect
 landscape
 succession.
 While
 ecological
 
communities
 often
 rebound
 following
 routine
 disturbances,
 Paine
 et
 al.
 note
 that
 

  8
 
after
 a
 catastrophic
 disturbance,
 or
 series
 of
 disturbances,
 the
 landscape
 enters
 a
 
new
 ecological
 domain
 by
 undergoing
 catastrophic
 succession.
 Once
 this
 process
 
has
 occurred,
 ecological
 communities
 rarely
 rebound.
 
 
Although
 this
 research
 tested
 the
 spatial
 sensitivity
 of
 LANDIS-­‐II
 without
 
modeling
 disturbances
 or
 land
 management
 decisions,
 the
 demand
 for
 these
 
variables
 within
 a
 landscape
 modeling
 package
 is
 a
 leading
 reason
 for
 the
 
development,
 evolution,
 and
 use
 of
 the
 LANDIS
 family
 of
 spatial
 models.
 Although
 
the
 LANDIS
 family
 of
 models
 is
 only
 one
 set
 of
 many,
 it
 is
 widely
 used
 to
 predict
 
species-­‐specific
 response
 to
 environmental
 disturbances
 and
 is
 portable
 to
 a
 broad
 
range
 of
 landscapes
 and
 vegetation
 regimes
 (He,
 H.
 S.,
 D.
 R.
 Larsen,
 and
 D.
 J.
 
Mladenoff
 2002).
 
LANDIS
 
LANDIS
 is
 a
 dispersion-­‐based
 system
 used
 to
 model
 dynamic
 ecological
 
succession
 between
 vegetation
 communities.
 The
 model
 internally
 disperses
 species
 
based
 on
 a
 random-­‐seed
 value
 that
 determines
 distance
 and
 direction,
 provided
 the
 
new
 location
 is
 within
 the
 bounds
 set
 by
 the
 species
 and
 dispersion
 parameters.
 
Mladenoff
 et
 al.
 (1996)
 describe
 the
 objectives
 and
 approach
 used
 in
 the
 design
 and
 
production
 of
 the
 original
 LANDIS
 model.
 The
 paper
 provides
 a
 brief
 background
 of
 
the
 original
 research
 goals,
 model
 description,
 and
 model
 outputs.
 The
 creators
 of
 
the
 model
 sought
 to
 develop
 a
 model
 platform
 able
 to
 capture
 the
 spatio-­‐temporal
 
evolution
 of
 large
 forested
 landscapes.
 The
 developers
 also
 desired
 a
 model
 capable
 

  9
 
of
 dynamically
 modeling
 ecological
 disturbances
 based
 on
 spatially
 explicit
 input
 
data.
 The
 LANDIS
 developers
 settled
 on
 a
 dynamic,
 spatially
 stochastic,
 dispersion-­‐
based
 platform
 capable
 of
 meeting
 their
 research
 needs.
 
He
 et
 al.
 (2002)
 present
 a
 persuasive
 argument
 for
 the
 use
 of
 the
 LANDIS
 
family
 of
 models.
 The
 authors
 describe
 LANDIS
 as
 a
 premier
 system
 in
 the
 ecological
 
modeling
 field
 and
 consider
 it
 the
 benchmark
 for
 future
 landscape
 model
 
development.
 The
 model
 is
 object
 oriented
 and
 developed
 in
 C#
 .Net
 allowing
 
developers
 to
 extend
 the
 capabilities
 of
 the
 system
 using
 a
 modern
 computing
 
language.
 The
 extensibility
 of
 the
 model
 through
 the
 use
 of
 open-­‐source
 extension
 
packages
 is
 a
 leading
 reason
 for
 its
 prolific
 use
 (He,
 Larsen,
 and
 Mladenoff
 2002).
 
The
 core
 of
 the
 model,
 however,
 remains
 proprietary.
 It
 is
 this
 proprietary
 nature
 
that
 makes
 the
 current
 research
 necessary.
 
LANDIS’s
 design
 as
 a
 spatially
 stochastic
 model
 lends
 itself
 to
 be
 a
 portable
 
and
 adaptable
 model
 capable
 of
 investigating
 a
 broad
 range
 of
 problems
 (He,
 Larsen,
 
and
 Mladenoff
 2002).
 The
 pedigree
 of
 LANDIS
 and
 its
 many
 applications
 are
 
described
 by
 Mladenoff
 (2004),
 who
 also
 introduces
 the
 second
 generation
 LANDIS
 
model,
 LANDIS-­‐II.
 LANDIS-­‐II
 includes
 new
 features
 such
 as
 time-­‐step
 controls,
 a
 
new
 dispersal
 method
 (double
 exponential
 seed
 dispersal),
 and
 increased
 
mechanistic
 detail
 within
 the
 model.
 
 

  10
 
Like
 LANDIS,
 LANDIS-­‐II’s
 spatial
 drivers
 are
 dispersion
 based.
 During
 
successive
 temporal
 iterations
 of
 the
 model,
 species
 modeled
 in
 LANDIS-­‐II
 are
 
distributed
 throughout
 the
 spatial
 input
 layer
 (initial
 communities
 layer
 model
 
parameter)
 based
 on
 their
 original
 position
 and
 a
 user-­‐supplied
 dispersion
 
parameter.
 The
 distance
 and
 direction
 of
 a
 species’
 dispersion
 from
 its
 original
 
location
 to
 a
 new
 location
 is
 stochastically
 determined.
 The
 probability
 that
 species’
 
establishment
 will
 occur
 at
 a
 new
 location
 is
 calculated
 based
 on
 the
 parameters
 
found
 at
 the
 new
 site
 and
 each
 species’
 establishment
 probability.
 If
 establishment
 
occurs,
 landscape
 succession
 has
 occurred.
 The
 pattern
 created
 through
 this
 
iterative
 dispersion
 process
 is
 considered
 to
 be
 spatially
 stochastic,
 although
 it
 is
 
attenuated
 by
 the
 model’s
 parameters.
 
 
Schaller
 et
 al.
 (2007)
 present
 LANDIS-­‐II,
 describing
 the
 model’s
 basic
 
assumptions,
 purpose,
 features,
 and
 architecture.
 The
 model
 is
 designed
 as
 an
 
object-­‐oriented
 extendable
 landscape
 simulation
 system
 able
 to
 suggest
 a
 range
 of
 
vegetation
 succession
 trajectories
 that
 may
 occur
 for
 a
 given
 landscape.
 LANDIS-­‐II
 
does
 make
 broad
 assumptions,
 such
 as,
 soil,
 elevation
 regime,
 solar
 angle,
 and
 
climate
 conditions
 are
 considered
 to
 be
 homogenous
 across
 the
 input
 grid.
 In
 an
 
effort
 to
 account
 for
 this
 homogeneity,
 many
 LANDIS-­‐II
 users
 define
 different
 
ecoregions
 for
 a
 study
 area
 based
 on
 local
 microclimate
 and
 soil
 patterns.
 Each
 
species
 in
 each
 ecoregion
 is
 then
 assigned
 different,
 arbitrarily
 assigned
 
establishment
 probabilities.
 

  11
 
LANDIS-­‐II
 is
 superior
 to
 LANDIS
 because
 it
 is
 designed
 to
 improve
 its
 
portability
 to
 different
 ecological
 regimes
 and
 provides
 greater
 control
 over
 its
 
spatio-­‐temporal
 parameters.
 This
 is
 evidenced
 by
 the
 user-­‐base
 discussion
 for
 
scaling-­‐up
 the
 modeling
 framework
 to
 run
 at
 the
 regional
 scale
 (LANDIS-­‐II
 User
 
Community
 2012).
 Further,
 its
 modular
 design
 allows
 it
 to
 interact
 with
 other
 
spatial
 modeling
 applications
 (Scheller
 and
 Mladenoff
 2005),
 ultimately
 influencing
 
the
 results
 of
 other
 models.
 
 
Ecologists
 have
 built
 successive
 generations
 of
 LANDIS
 by
 improving
 its
 
ecological
 parameters
 and
 adapting
 its
 geoprocessor
 (e.g.
 new
 dispersal
 method)
 
but
 the
 spatial
 nature
 of
 the
 model
 has
 not
 been
 robustly
 examined.
 Before
 
incorporating
 LANDIS-­‐II
 into
 further
 spatial
 modeling
 workflows,
 LANDIS-­‐II’s
 
spatial
 sensitivity
 should
 be
 examined
 in
 detail.
 This
 research
 examined
 the
 effects
 
of
 spatial
 arrangement
 and
 composition
 within
 the
 model
 by
 performing
 a
 spatial
 
experiment.
 This
 experiment
 compared
 a
 spatially
 explict
 control
 case
 against
 two
 
spatial
 variables
 that
 expressed
 random
 arrangement,
 where
 each
 variable
 
expressed
 a
 different
 degree
 of
 spatial
 composition.
 

 

  12
 

 
Chapter
 2:
 Methodology
 
Overview
 
LANDIS-­‐II
 operates
 with
 a
 series
 of
 text
 and
 raster
 files.
 These
 files
 allow
 the
 
model
 operator
 to
 define
 the
 species-­‐specific
 parameters,
 spatial
 layer
 parameters,
 
dispersion
 parameters,
 and
 general
 runtime
 parameters
 governing
 the
 model
 (Table
 
1).
 The
 model
 uses
 two
 spatial
 layers:
 the
 initial
 community
 layer
 that
 defines
 the
 
location
 of
 each
 species,
 and
 the
 ecoregions
 layer
 that
 (in
 this
 research)
 defines
 the
 
active
 and
 inactive
 areas
 in
 the
 model.
 These
 are
 discussed
 in
 greater
 detail
 in
 a
 
later
 section.
 
TABLE
 1
 -­
 LANDIS-­II
 INPUT
 FILES
 
Input
 File
  Purpose
  Type
 
Scenario.txt
  Defines
 overall
 model
 execution.
  Text
 File
 
Age-­‐only-­‐succession.txt
  Defines
 establishment
 probabilities
 of
 each
 species.
  Text
 File
 
Initial-­‐Communities.txt
  Defines
 species’
 age
 cohorts
 for
 each
 map-­‐code.
  Text
 File
 
Reclass.txt
  Defines
 reclassification
 coefficients.
  Text
 File
 
Species.txt
  Defines
 species’
 ecological
 attributes.
  Text
 File
 
Ecoregions.txt
  Defines
 active
 state
 of
 each
 ecoregion.
  Text
 File
 
Ecoregions.img
  Defines
 the
 areas
 of
 each
 ecoregion.
  Raster
 
Initial-­‐Communities.img
  Defines
 the
 areas
 of
 each
 vegetation
 community
 
represented
 by
 its
 associated
 map-­‐codes
 
Raster
 

 
The
 spatial
 experiment
 executed
 in
 this
 research
 included
 a
 spatial
 control
 
and
 two
 separate
 spatial
 variables.
 Where
 typical
 LANDIS-­‐II
 studies
 focus
 on
 
determining
 optimum
 ecological
 parameters
 using
 the
 ecological
 parameter
 
optimization
 technique
 described
 earlier,
 this
 research
 relied
 on
 a
 variety
 of
 generic
 
ecological
 parameters
 to
 represent
 a
 set
 of
 localities.
 This
 decision
 was
 made
 for
 

  13
 
three
 reasons.
 First,
 it
 is
 a
 requirement
 of
 the
 concurrent
 research
 involving
 the
 
development
 of
 a
 vegetation
 trend
 database
 to
 process
 a
 broad
 range
 of
 ecological
 
parameters.
 Second,
 the
 experimental
 results
 using
 different
 ecological
 regimes
 only
 
serves
 to
 bolster
 the
 validity
 of
 the
 results
 because
 ecological
 parameters
 can
 
remain
 fixed.
 Third,
 ecological
 parameter
 sensitivity
 is
 not
 the
 focus
 of
 this
 research,
 
but
 rather
 the
 spatial
 properties
 of
 the
 underlying
 datasets.
 Therefore,
 any
 
ecological
 parameters
 could
 have
 been
 used
 in
 this
 study,
 provided
 they
 remained
 
constant
 between
 the
 experimental
 control
 and
 variables.
 
For
 this
 study,
 ecological
 regimes
 were
 defined
 as
 the
 set
 of
 dominant,
 
natural,
 terrestrial
 vegetation
 communities
 within
 the
 boundaries
 of
 a
 given
 locality.
 
The
 spatial
 control
 was
 defined
 as
 the
 spatial
 composition
 and
 arrangement
 of
 
vegetation
 communities
 at
 each
 locality.
 Each
 variable,
 at
 each
 locality,
 was
 
processed
 by
 LANDIS
 using
 thirty
 separate
 iterations
 of
 the
 model
 and
 the
 results
 
were
 aggregated
 for
 more
 robust
 comparison.
 The
 spatial
 control
 variable
 used
 the
 
same
 spatial
 input
 layer,
 but
 LANDIS’s
 random-­‐seed
 value
 was
 changed.
 The
 
random-­‐seed
 value
 governs
 the
 stochasticity
 of
 the
 model,
 such
 that
 running
 
LANDIS-­‐II
 with
 the
 same
 set
 of
 input
 parameters,
 layers,
 and
 random-­‐seed
 value
 
always
 produces
 the
 same
 result.
 To
 produce
 a
 range
 of
 results
 with
 the
 same
 input
 
parameters
 and
 layers,
 the
 random-­‐seed
 value
 must
 change.
 Running
 a
 set
 of
 thirty
 
iterations
 of
 each
 variable
 at
 each
 locality
 in
 LANDIS-­‐II
 was
 determined
 to
 
effectively
 capture
 the
 range
 of
 vegetation
 trend
 succession
 occurring
 for
 each
 

  14
 
instance
 of
 each
 variable
 at
 each
 locality.
 This
 acknowledges
 Mlandenoff’s
 earlier
 
quote
 and
 provides
 a
 stable
 dataset
 to
 assess
 vegetation
 trends
 for
 each
 variable.
 
 
The
 control
 is
 compared
 to
 two
 separate
 spatial
 variables.
 The
 first
 spatial
 
variable,
 area-­‐weighted,
 is
 defined
 by
 fixed
 ecological
 spatial
 composition
 similar
 to
 
the
 control
 and
 random
 spatial
 arrangement.
 That
 is,
 the
 same
 proportion
 of
 area
 
for
 each
 vegetation
 community
 found
 in
 the
 control
 was
 represented
 in
 the
 area-­‐
weighted
 variable
 and
 distributed
 randomly
 across
 the
 input
 grid.
 The
 second
 
spatial
 variable,
 equal-­‐area,
 was
 defined
 by
 equal
 spatial
 composition
 and
 random
 
spatial
 arrangement.
 The
 equal-­‐area
 landscape
 contained
 an
 equal
 proportion
 of
 
area
 of
 each
 vegetation
 community
 on
 the
 input
 grid,
 but
 was
 distributed
 randomly
 
(Figure
 1).
 Each
 variable
 had
 a
 subset
 of
 thirty
 unique
 input
 grids
 instead
 of
 thirty
 
different
 random-­‐seed
 values
 as
 noted
 in
 the
 control
 runs.
 Thus,
 for
 each
 locality
 
investigated,
 thirty
 control
 runs,
 area-­‐weighted
 runs,
 and
 equal-­‐area
 runs
 of
 the
 
LANDIS-­‐II
 model
 were
 executed
 before
 final
 analysis
 and
 trend
 comparison
 
occurred
 (Figure
 2).
 

 

  15
 

 
FIGURE
 1–
 AN
 EXAMPLE
 OF
 THE
 EXPERIMENTAL
 VARIABLES
 AND
 ITERATIONS
 USED
 IN
 THIS
 RESEARCH
 
This
 figure
 diagrams
 the
 spatially
 explicit
 control
 and
 two
 spatial
 variables
 used
 to
 test
 the
 spatial
 
sensitivity
 of
 LANDIS-­‐II
 in
 this
 research.
 The
 control
 was
 iterated
 using
 a
 series
 of
 different
 random-­‐
seed
 values
 in
 LANDIS-­‐II.
 The
 two
 variables
 were
 iterated
 by
 creating
 thirty
 different
 input
 grids.

  16
 

 
FIGURE
 2–
 RESEARCH
 OVERVIEW
 
This
 figure
 diagrams
 the
 approach
 used
 to
 test
 the
 spatial
 sensitivity
 of
 LANDIS-­‐II
 in
 this
 research.
 
Data
 was
 prepared
 by
 projecting
 and
 resampling
 it
 to
 a
 10
 acre
 resolution.
 The
 data
 was
 then
 
hexagonally
 tessellated
 into
 localities.
 Next,
 the
 vegetation
 communities
 were
 extracted
 from
 each
 
locality
 and
 filtered
 to
 produce
 the
 final
 set
 of
 localities
 suitable
 for
 processing.
 LANDIS-­‐II
 scenarios
 
were
 generated
 for
 each
 spatial
 case,
 at
 each
 locality,
 and
 the
 results
 were
 analyzed
 using
 the
 Chi-­‐
square
 statistic.
   
 

  17
 
The
 hypothesis
 of
 this
 research
 is
 that,
 significantly
 more
 often
 than
 not,
 
aspatial
 vegetation
 trends
 produced
 by
 LANDIS-­‐II
 based
 on
 a
 spatially
 explicit
 input
 
control
 parameter
 (i.e.
 digital
 representation
 of
 the
 real
 environment)
 are
 similar
 to
 
trends
 generated
 using
 the
 area-­‐weighted
 variable.
 Further,
 succession
 trends
 
generated
 using
 the
 equal-­‐area
 variable
 produce
 trend
 results
 similar
 to
 the
 control
 
case
 significantly
 more
 often
 than
 not,
 but
 less
 often
 than
 the
 area-­‐weighted
 case.
 
Each
 of
 these
 trend
 comparisons
 were
 assessed
 at
 three
 different
 scales
 to
 
determine
 the
 effect
 locality
 size
 has
 on
 each
 result
 (Figure
 1).
 
Testing
 the
 stochasticity
 of
 the
 LANDIS-­‐II
 model
 involves
 a
 significant
 
amount
 of
 computer
 resources
 and
 data
 handling.
 This
 research
 used
 the
 python
 
programming
 language
 and
 numerous
 site-­‐packages.
 The
 site-­‐package
 for
 SQLite
 
(SQLite3)
 was
 used
 to
 store
 large
 datasets
 that
 were
 easily
 queried.
 The
 NumPy
 and
 
SciPy
 site-­‐packages
 were
 used
 to
 generate
 stochastic
 spatial
 arrangements
 and
 
perform
 the
 final
 analysis.
 Esri’s
 ArcPy
 was
 used
 to
 load,
 convert,
 and
 store
 a
 variety
 
of
 raster
 file
 formats.
 Finally,
 the
 Python
 language
 was
 instrumental
 in
 the
 
automation
 of
 LANDIS-­‐II
 simulations.
 A
 simple
 client-­‐server
 environment
 for
 
distributing
 the
 computing
 load
 across
 multiple
 machines
 was
 developed
 for
 this
 
project
 (Figure
 1).
 Pseudo-­‐code
 used
 to
 implement
 many
 of
 the
 more
 complex
 tasks
 
is
 available
 in
 the
 appendicies.
 

  18
 
Vegetation
 Community
 Dataset
 
A
 single
 dataset
 was
 used
 to
 provide
 the
 foundation
 for
 the
 ecological
 
parameters
 used
 in
 the
 spatial
 sensitivity
 analysis.
 NatureServe’s
 Ecological
 Systems
 
of
 the
 United
 States
 (NatureServe
 2012)
 provides
 an
 ecosystem
 classification
 map
 of
 
vegetation
 communities
 distributed
 throughout
 the
 contiguous
 United
 States
 
(Figure
 3).
 The
 dataset
 is
 well
 documented
 and
 provides
 the
 list
 of
 dominant
 species
 
required
 to
 represent
 each
 vegetation
 community
 in
 LANDIS-­‐II.
 The
 NatureServe
 
dataset
 has
 been
 used
 in
 conjunction
 with
 LANDIS-­‐II
 in
 previous
 studies
 on
 land
 fire
 
(Scheller
 et
 al.
 2008;
 Scheller
 et
 al.
 2011).
 

 
FIGURE
 3
 -­
 NATURESERVE
 DATASET:
 ECOLOGICAL
 SYSTEMS
 OF
 THE
 UNITED
 STATES
 
NatureServe’s
 Ecological
 Systems
 of
 the
 United
 States
 was
 used
 as
 the
 data
 source
 for
 this
 research.
 It
 
contains
 a
 complete
 land
 classification
 of
 the
 contiguous
 United
 States
 and
 identifies
 individual
 
vegetation
 communities
 and
 constituent
 vegetation
 species.
 This
 graphic
 displays
 a
 broad
 
classification
 of
 the
 dataset.
 

  19
 
The
 NatureServe
 dataset
 was
 prepared
 for
 further
 processing
 by
 first
 
projecting
 it
 into
 the
 Albers
 Equal
 Area
 coordinate
 system
 (2012a)
 such
 that
 each
 
locality
 contained
 an
 equal
 number
 of
 raster
 cells.
 The
 concurrent
 research
 project
 
had
 a
 10-­‐acre
 minimum
 mapping
 area
 requirement
 (personal
 communication
 with
 
Dr.
 Eric
 Britzke);
 therefore,
 the
 NatureServe
 raster
 was
 resampled
 from
 a
 30-­‐m
2

 
spatial
 resolution,
 to
 a
 10-­‐acre
 spatial
 resolution
 using
 a
 majority-­‐area
 approach.
 
 
The
 resampling
 process
 reduced
 the
 computational
 intensity
 of
 this
 study
 by
 
limiting
 the
 time
 required
 to
 calculate
 each
 locality’s
 vegetation
 community
 regime.
 
It
 should
 be
 noted
 that
 the
 10-­‐acre
 resampling
 procedure
 slightly
 accentuates
 
dominant
 landscape
 communities,
 which
 was
 acceptable
 given
 the
 research
 
preference
 toward
 dominant
 communities.
 
 
Locality
 Dataset
 
The
 NatureServe
 dataset
 was
 tessellated
 into
 three
 continuous
 hexagonal
 
polygon
 shapefiles,
 where
 each
 individual
 polygon
 represents
 a
 candidate
 locality
 
suitable
 for
 investigation
 (e.g.,
 Figure
 4).
 
 

 

  20
 

 
FIGURE
 4
 –
 CANDIDATE
 LOCALITIES
 RESULTING
 FROM
 HEXAGONAL
 TESSELLATION
 OF
 THE
 ECOLOGICAL
 SYSTEMS
 
OF
 THE
 UNITED
 STATES
 AT
 48-­KM
2

 SCALE
 
The
 Contiguous
 United
 States
 was
 hexagonally
 tessellated
 into
 localities
 (48-­‐km
2

 shown
 here)
 to
 
define
 sets
 of
 interacting
 ecosystems
 for
 each
 locality.
 

 
A
 simple
 python
 script
 was
 used
 to
 tessellate
 the
 NatureServe
 layer
 using
 the
 
ArcPy
 site-­‐package
 and
 its
 result
 was
 further
 refined
 manually
 in
 ArcGIS.
 First,
 the
 
script
 creates
 a
 series
 of
 evenly
 distributed
 points
 across
 the
 input
 dataset’s
 spatial
 
extent.
 The
 user
 specifies
 the
 distance
 between
 each
 point
 along
 each
 axis.
 In
 this
 
research,
 the
 script
 was
 executed
 three
 times
 using
 distance
 values
 of
 12-­‐kilometers,
 
24-­‐kilometers,
 and
 48-­‐kilometers
 respectively
 to
 create
 three
 hexagonal
 grids
 of
 
varying
 scale.
 For
 each
 set
 of
 points,
 Thiessen
 polygons
 were
 generated
 using
 each
 
point
 as
 a
 Thiessen
 polygon
 centroid.
 The
 result
 of
 the
 process
 yielded
 three
 
hexagonal
 grids
 that
 define
 candidate
 localities
 at
 different
 scales.
 Localities
 were
 

  21
 
considered
 “candidate”
 because
 a
 series
 of
 vegetation
 filters
 had
 not
 yet
 been
 
applied
 to
 select
 only
 those
 localities
 meeting
 a
 series
 of
 target
 criteria.
 
Building
 a
 Landscape
 Diversity
 Database
 
Before
 the
 set
 of
 candidate
 localities
 was
 filtered,
 the
 vegetation
 community
 
dataset
 needed
 to
 be
 configured
 in
 a
 rapidly
 queriable
 manner.
 For
 each
 locality,
 the
 
ArcGIS
 Extract
 By
 Mask
 tool
 (2012b)
 extracted
 the
 set
 of
 NatureServe
 community
 
values
 found
 within
 the
 hexagonal
 extent.
 The
 ArcPy
 RasterToNumPyArray
 (2013b)
 
function
 converted
 the
 extracted
 result
 into
 an
 array
 suitable
 for
 evaluation
 using
 
the
 NumPy
 Site-­‐Package
 (2013a).
 The
 NumPy
 Unique
 function
 operated
 on
 the
 
returned
 array
 to
 produce
 the
 set
 of
 unique
 community
 values
 found
 in
 each
 
candidate
 locality
 under
 investigation.
 Each
 community
 value
 and
 its
 associated
 cell
 
count
 (or
 area
 in
 10-­‐acre
 units)
 was
 inserted
 into
 a
 SQLite
 table.
 If
 a
 locality
 was
 not
 
contained
 by
 the
 data
 extent
 of
 the
 NatureServe
 raster,
 it
 was
 ignored.
 
By
 using
 a
 SQLite
 table,
 filtering
 landscape
 classification
 data
 to
 determine
 
the
 final
 set
 of
 localities
 can
 be
 performed
 through
 the
 use
 of
 SQL
 queries
 rather
 
than
 slower
 more
 complicated
 raster
 based
 queries.
 The
 use
 of
 a
 table
 also
 allows
 
the
 researcher
 to
 retain
 a
 filter
 identifier
 that
 specifies
 the
 criteria
 used
 to
 remove
 a
 
particular
 locality
 from
 consideration.
 
 
As
 byproduct
 of
 the
 research
 approach,
 by
 tallying
 the
 number
 of
 unique
 
communities
 in
 each
 locality,
 it
 was
 possible
 to
 create
 a
 landscape
 diversity
 map
 
(Figure
 5).
 
 

  22
 

 
FIGURE
 5
 -­
 LANDSCAPE
 DIVERSITY
 BASED
 ON
 THE
 ECOLOGICAL
 SYSTEMS
 OF
 THE
 UNITED
 STATES
 DATASET
 AND
 
THE
 CANDIDATE
 LOCALITIES
 AT
 THE
 12-­KM
2

 SCALE
 
The
 number
 of
 unique
 land
 classifications
 taken
 from
 the
 NatureServe
 dataset
 within
 each
 locality
 
was
 calculated
 for
 each
 scale
 (12-­‐km
2

 shown
 here).
 This
 created
 a
 landscape
 diversity
 map
 for
 
further
 filtering
 to
 define
 only
 dominant,
 upland,
 natural
 vegetation
 communities.
 
Filtering
 the
 Dataset
 
Each
 locality
 has
 its
 own
 set
 of
 vegetation
 communities
 that
 may
 be
 similar
 
to
 other
 localities’
 vegetation
 communities,
 or
 may
 be
 a
 unique
 set
 of
 vegetation
 
communities
 found
 only
 in
 the
 locality
 itself.
 The
 remaining
 vegetation
 communities,
 
post-­‐filter,
 were
 used
 to
 define
 species
 parameters
 for
 any
 given
 run
 of
 LANDIS-­‐II
 
that
 used
 those
 vegetation
 communities.
 In
 this
 research,
 the
 only
 vegetation
 
communities
 under
 investigation
 were
 those
 that
 exhibit
 dominant,
 natural,
 and
 
terrestrial
 properties.
 As
 a
 result,
 many
 landscape
 communities
 contained
 in
 the
 

  23
 
NatureServe
 dataset
 were
 removed;
 including,
 agricultural
 lands,
 wetlands,
 barren
 
lands,
 and
 urban
 areas.
 
The
 first
 filter
 removed
 all
 landscape
 communities
 that
 did
 not
 represent
 
natural,
 terrestrial
 vegetation.
 Of
 the
 remaining
 landscape
 communities
 defined
 by
 
the
 NatureServe
 dataset,
 two
 were
 missing
 appropriate
 species
 information
 and
 
were
 removed.
 
 
The
 second
 filter
 focused
 on
 the
 composition
 of
 each
 candidate
 locality.
 
Recall
 that
 vegetation
 communities
 are
 the
 set
 of
 collocated
 species
 occurring
 on
 the
 
landscape
 as
 classified
 by
 NatureServe.
 For
 the
 given
 set
 of
 vegetation
 communities
 
contained
 by
 a
 candidate
 locality,
 the
 total
 area
 of
 each
 individual
 vegetation
 
community
 had
 to
 represent
 at
 least
 3.34%
 of
 the
 total
 locality
 area.
 This
 minimum
 
area
 threshold
 was
 determined
 by
 calculating
 the
 total
 area
 of
 each
 vegetation
 
community
 in
 a
 locality,
 and
 dividing
 it
 by
 the
 total
 area
 of
 that
 locality,
 to
 determine
 
the
 proportional
 area
 of
 each
 vegetation
 community
 in
 each
 locality.
 The
 set
 of
 
proportional
 areas
 for
 all
 vegetation
 communities
 in
 all
 localities
 were
 binned
 into
 
thirty
 bins,
 where
 the
 first
 bin
 represented
 the
 smallest
 proportional
 areas
 found
 
across
 all
 localities.
 Thus,
 the
 first
 bin
 represented
 vegetation
 communities
 on
 the
 
local
 landscape
 considered
 to
 be
 non-­‐dominant
 (i.e.
 a
 vegetation
 community
 
occupied
 less
 than
 3.34%
 of
 the
 locality’s
 area).
 By
 removing
 the
 non-­‐dominant
 
communities
 in
 each
 locality,
 only
 vegetation
 communities
 that
 were
 considered
 to
 

  24
 
be
 dominant
 (the
 targets
 of
 this
 research)
 in
 those
 localities
 remained,
 regardless
 of
 
their
 patchiness
 on
 the
 landscape.
 
 
The
 third
 filter
 applied
 acted
 to
 limit
 the
 number
 of
 communities
 being
 
evaluated.
 If
 a
 candidate
 locality
 had
 more
 than
 six
 unique
 vegetation
 communities
 
remaining
 after
 the
 first
 two
 filters
 were
 applied,
 it
 was
 removed
 from
 
consideration.
 Conceptually,
 areas
 of
 real-­‐world
 landscape
 that
 exhibit
 more
 than
 
six
 different
 dominant
 vegetation
 communities
 at
 a
 given
 locality
 are
 highly
 complex
 
and
 may
 be
 driven
 by
 ecological
 drivers
 other
 than
 vegetation
 dispersion;
 such
 as
 
elevation
 regime
 or
 soil
 patterns
 (personal
 communication,
 Dr.
 Eric
 Britzke).
 Seven
 
localities
 were
 removed
 as
 a
 result
 of
 this
 maximum
 threshold
 filter.
 
 
Also,
 since
 there
 must
 be
 more
 than
 one
 kind
 of
 vegetation
 community
 
represented
 in
 LANDIS
 to
 fuel
 succession,
 all
 localities
 containing
 only
 one
 kind
 of
 
community
 were
 removed
 from
 further
 consideration.
 
 
The
 final
 threshold
 applied
 to
 the
 dataset
 ensured
 that
 candidate
 localities
 
exhibited
 natural,
 terrestrial
 connectivity
 and
 that
 the
 locality
 was
 dominated
 by
 
natural
 systems.
 Candidate
 localities
 were
 removed
 from
 further
 processing
 if
 the
 
collective
 set
 of
 remaining
 communities
 under
 investigation
 occupied
 less
 than
 60%
 
of
 the
 total
 area
 of
 the
 locality.
 The
 60%
 threshold
 was
 used
 based
 on
 the
 
suggestions
 of
 percolation
 theory
 (Majewski
 and
 Malarz
 2008).
 Percolation
 theory
 is
 
a
 branch
 of
 statistical
 physics
 that
 explains
 the
 probability
 of
 connectivity
 in
 a
 lattice.
 

  25
 
The
 theory
 defines
 a
 set
 of
 percolation
 thresholds,
 that
 when
 met,
 predict
 the
 
existence
 of
 a
 single
 path
 between
 one
 side
 of
 a
 lattice
 and
 its
 opposing
 side,
 passing
 
only
 through
 cells
 of
 the
 same
 value;
 in
 this
 case,
 cells
 occupied
 by
 natural
 
vegetation.
 
 
The
 final
 set
 of
 localities
 used
 in
 this
 research
 were
 concentrated
 in
 New
 
England,
 the
 Appalachian
 Mountains,
 scattered
 areas
 in
 the
 Midwest,
 and
 much
 of
 
the
 public
 land-­‐dominated
 regions
 of
 the
 Intermountain
 West,
 and
 open
 spaces
 of
 
the
 West
 Coast.
 Areas
 not
 included
 were
 the
 large
 expanses
 of
 agriculture
 and
 
silvicuture
 in
 the
 Midwest
 and
 Southeast,
 and
 the
 large
 wetland
 ecosystems
 of
 the
 
Gulf
 Coastal
 Plain
 and
 Florida
 (Figure
 6).
 
 

 

  26
 

 
FIGURE
 6
 –
 THE
 LOCALITIES
 CONTAINING
 SETS
 OF
 VEGETATION
 COMMUNITIES
 USED
 TO
 UNDERSTAND
 THE
 
SPATIAL
 SENSITIVITY
 OF
 LANDIS-­II
 
After
 the
 set
 of
 filters
 was
 applied
 to
 each
 locality
 scale,
 the
 remaining
 localities
 were
 determined
 to
 
be
 acceptable
 for
 analysis.
 The
 brightest
 green
 areas
 shown
 on
 this
 map
 are
 regions
 that
 were
 
processed
 for
 all
 scales
 considered.
 Lesser
 green
 shaded
 regions
 were
 only
 partially
 processed
 at
 
different
 scales.
 
Generating
 Ecological
 Parameters
 for
 LANDIS-­II
 
The
 NatureServe
 documentation
 (2012c)
 provides
 a
 list
 of
 species
 that
 are
 
considered
 dominant
 players
 within
 each
 ecological
 community
 found
 on
 the
 
NatureServe
 raster
 (NatureServe
 2012).
 The
 concurrent
 research
 provided
 an
 un-­‐
published
 version
 of
 generic
 species
 attributes
 suitable
 for
 LANDIS-­‐II
 using
 a
 
combination
 of
 expert
 judgment
 and
 literature
 review
 (Beane,
 Whitby,
 and
 Britzke
 
2013).
 LANDIS-­‐II’s
 species
 attributes
 are
 defined
 using
 the
 species
 text-­‐file
 input
 

  27
 
parameter
 and
 govern
 each
 species’
 behavior
 at
 runtime
 (Scheller
 and
 Domingo
 
2011).
 
 
LANDIS-­‐II’s
 initial
 communities
 input
 layer
 is
 a
 raster
 file
 (e.g.
 *.img,
 *.gis)
 
that
 defines
 the
 spatial
 arrangement
 and
 distribution
 of
 vegetation
 communities
 
(Scheller
 and
 Domingo
 2011).
 Each
 cell
 of
 the
 initial
 communities
 input
 raster
 may
 
contain
 multiple
 species
 of
 varying
 ages
 based
 on
 the
 parameters
 found
 in
 the
 initial
 
communities
 text
 file.
 In
 this
 research,
 these
 communities
 were
 identified
 for
 
localities
 within
 the
 contiguous
 United
 States;
 where
 each
 locality
 exhibited
 a
 given
 
set
 of
 vegetation
 communities.
 While
 the
 generation
 of
 initial
 community
 input
 
layers
 is
 discussed
 in
 a
 latter
 section,
 its
 associated
 map-­‐codes
 are
 discussed
 here.
 
Vegetation
 communities
 in
 natural
 systems
 are
 composed
 of
 species
 at
 
different
 stages
 of
 their
 lifecycles
 (Watt
 1947).
 To
 capture
 age
 diversity
 in
 the
 real
 
landscape,
 vegetation
 communities
 were
 parsed
 into
 different
 map-­‐codes
 by
 the
 
researcher
 to
 allow
 species
 age
 variability
 to
 be
 appropriately
 modeled
 in
 LANDIS-­‐II.
 
For
 each
 vegetation
 community,
 a
 set
 of
 twelve
 map-­‐codes
 was
 assigned
 with
 
different
 age
 distributions
 to
 better
 represent
 the
 range
 of
 vegetation
 community
 
age
 structures
 found
 on
 the
 landscape.
 The
 age
 distributions
 were
 based
 on
 the
 
longevity
 of
 each
 constituent
 species.
 Each
 map-­‐code
 represents
 an
 equal
 
proportion
 of
 the
 area
 each
 vegetation
 community
 represents
 in
 a
 given
 spatial
 
variable
 or
 control.
 The
 use
 of
 a
 longevity-­‐based
 metric
 was
 chosen
 over
 a
 sexual-­‐

  28
 
maturity
 based
 metric
 because
 the
 forestry
 profession
 has
 a
 better
 understanding
 of
 
a
 given
 species
 longevity
 over
 a
 species’
 sexual
 maturity.
 
The
 distribution
 of
 input
 species
 age
 was
 set
 at
 80%,
 50%,
 30%,
 and
 10%
 of
 
each
 species’
 longevity.
 In
 LANDIS-­‐II,
 species
 begin
 to
 die
 after
 their
 age
 was
 greater
 
than
 80%
 of
 that
 species’
 longevity.
 This
 age
 class
 was
 used
 to
 represent
 vegetation
 
communities
 at
 the
 end
 of
 their
 lifecycles.
 The
 50%
 and
 30%
 of
 longevity
 age
 classes
 
were
 used
 to
 represent
 two
 different
 mid-­‐growth
 stages.
 The
 10%
 of
 longevity
 age
 
class
 was
 used
 to
 represent
 a
 community
 early
 in
 its
 lifecycle.
 
 
In
 the
 first
 four,
 out
 of
 twelve,
 map-­‐codes,
 species
 ages
 were
 assigned
 as
 80%,
 
50%,
 30%,
 or
 10%
 of
 each
 species’
 longevity
 to
 create
 four
 homogenously
 aged
 
cohorts.
 The
 next
 four
 map-­‐codes
 assigned
 sets
 of
 age
 classes
 to
 each
 species
 to
 
create
 map-­‐codes
 with
 mixed
 ages.
 The
 sets
 were:
 80%
 and
 50%;
 80%
 and
 30%;
 
10%
 and
 30%;
 and
 80%,
 50%,
 30%,
 and
 10%.
 The
 remaining
 four
 map-­‐codes
 
randomly
 assigned
 species
 ages,
 or
 sets
 of
 ages,
 taken
 from
 the
 first
 eight
 map-­‐codes.
 
Map-­‐code
 generation
 was
 repeated
 for
 each
 vegetation
 community
 at
 each
 locality
 
under
 investigation.
 Multiple
 species
 with
 varying
 ages
 can
 occur
 in
 each
 cell
 of
 the
 
raster
 used
 to
 represent
 a
 spatial
 variable
 or
 the
 experimental
 control
 to
 comprise
 a
 
vegetation
 community.
 
LANDIS-­‐II
 uses
 establishment
 probabilities
 to
 determine
 the
 likelihood
 that
 a
 
particular
 species
 will
 establish
 itself
 in
 a
 new
 location
 after
 dispersal
 (Scheller
 and
 

  29
 
Domingo
 2011).
 Often
 these
 values
 are
 optimized
 for
 extremely
 site-­‐specific
 studies
 
using
 the
 ecological
 parameter
 optimization
 process
 discussed
 earlier
 to
 take
 into
 
account
 soil
 and
 climatic
 conditions.
 Because
 this
 research
 tested
 LANDIS-­‐II’s
 spatial
 
sensitivity
 at
 thousands
 of
 different
 sites,
 all
 establishment
 probabilities
 were
 set
 to
 
0.6
 (on
 a
 0
 to
 1.0
 scale).
 This
 ensured
 all
 species
 are
 more
 likely
 than
 not
 to
 establish
 
themselves
 at
 new
 locations
 and
 that
 succession
 was
 more
 likely
 than
 not
 to
 occur.
 
Further,
 by
 fixing
 the
 establishment
 probability
 for
 all
 species,
 at
 all
 localities,
 allows
 
for
 a
 clearer
 picture
 of
 the
 spatial
 sensitivity
 of
 the
 model
 to
 be
 produced.
 
The
 LANDIS-­‐II
 ecoregion
 layer
 parameter
 allows
 the
 user
 to
 define
 different
 
sets
 of
 establishment
 probabilities
 for
 different
 locations
 on
 the
 initial
 communities
 
input
 layer.
 It
 also
 allows
 certain
 areas
 of
 the
 map
 to
 be
 considered
 inactive
 in
 the
 
model
 (Scheller
 and
 Domingo
 2011).
 For
 the
 purposes
 of
 this
 research,
 areas
 of
 the
 
initial
 communities
 layer
 containing
 vegetation
 communities
 under
 investigation
 
were
 part
 of
 the
 “alive”
 region.
 Areas
 of
 the
 initial
 communities
 layer
 containing
 
land
 classification
 values
 not
 under
 investigation
 (those
 areas
 removed
 by
 the
 filter)
 
were
 considered
 part
 of
 the
 “dead”
 region.
 The
 “dead”
 region
 was
 set
 to
 be
 inactive
 
in
 the
 model.
 Once
 again,
 to
 simplify
 the
 ecological
 parameters
 and
 focus
 on
 the
 
spatial
 sensitivity
 of
 LANDIS-­‐II
 the
 ecoregion
 parameter
 was
 effectively
 rendered
 
homogenous
 for
 each
 locality
 regardless
 of
 soil
 and
 microclimate.
 
The
 final
 ecological
 parameter
 defined
 by
 this
 research
 was
 each
 species’
 
reclassification
 coefficient.
 Reclassification
 coefficients
 allow
 LANDIS-­‐II
 to
 

  30
 
determine
 which
 vegetation
 community
 a
 given
 cell
 should
 belong
 to
 on
 the
 initial
 
communities
 layer,
 based
 on
 the
 set
 of
 species
 occurring
 at
 that
 location.
 In
 this
 
research
 the
 succession
 trajectory
 of
 vegetation
 communities
 and
 not
 species
 was
 
assessed.
 In
 LANDIS-­‐II
 vegetation
 communities
 are
 represented
 by
 their
 constituent
 
species,
 therefore,
 vegetation
 communities
 must
 be
 parameterized
 as
 a
 collection
 of
 
species
 in
 LANDIS-­‐II.
 After
 the
 model
 disperses
 each
 vegetation
 community’s
 
constituent
 species,
 its
 initial
 community
 layer
 must
 be
 reclassified
 to
 determine
 the
 
new
 locations
 and
 areas
 where
 each
 vegetation
 community
 resides.
 If
 all
 species
 are
 
given
 equivalent
 reclassification
 values
 for
 each
 community,
 then
 communities
 have
 
an
 equal
 chance
 of
 being
 assigned
 to
 a
 cell
 if
 those
 communities
 happen
 to
 contain
 
the
 same
 species,
 and
 a
 species
 generally
 used
 for
 community
 discrimination
 is
 not
 
present
 (Scheller
 and
 Domingo
 2011).
 All
 reclassification
 values
 for
 this
 study
 were
 
equal
 in
 value
 (set
 to
 0.5
 on
 a
 0
 to
 1.0
 scale).
 
 
LANDIS-­‐II’s
 reclassification
 calculation
 also
 considers
 species
 age
 as
 a
 
proportion
 of
 its
 longevity.
 Older
 species
 on
 the
 landscape
 are
 given
 higher
 
reclassification
 values
 in
 LANDIS-­‐II
 by
 default.
 By
 structuring
 the
 parameter
 as
 
described
 above,
 a
 vegetation
 community
 must
 complete
 its
 ecological
 succession
 
before
 it
 is
 reclassified
 to
 a
 new
 community.
 
Extracting
 Spatially
 Explicit
 Rasters
 
The
 spatially
 explicit
 rasters
 required
 for
 the
 experimental
 control
 were
 
extracted
 using
 a
 python
 script
 that
 iteratively
 selected
 a
 given
 locality
 hexagon,
 

  31
 
extracted
 values
 from
 the
 NatureServe
 dataset
 using
 the
 Extract
 By
 Mask
 tool
 and
 
classified
 the
 resulting
 layer
 using
 the
 NumPy
 site-­‐package.
 The
 classification
 
scheme
 used
 divides
 each
 vegetation
 community
 area
 into
 twelve
 zones,
 one
 for
 
each
 map-­‐code,
 to
 represent
 the
 age
 mixes
 of
 each
 species
 in
 the
 vegetation
 
community
 in
 LANDIS-­‐II.
 The
 map-­‐code
 values
 were
 recycled
 between
 runs
 
representing
 different
 localities
 with
 different
 sets
 of
 vegetation
 communities.
 
Regions
 of
 the
 grid
 that
 were
 missing
 vegetation
 community
 values,
 or
 exhibited
 
community
 values
 that
 were
 filtered
 out,
 were
 given
 a
 value
 of
 zero
 and
 defined
 as
 
inactive
 areas
 using
 the
 ecoregion
 parameter
 layer
 in
 LANDIS-­‐II.
 The
 spatially
 
explicit
 layer
 was
 processed
 in
 LANDIS-­‐II
 using
 different
 random-­‐seed
 values
 for
 
each
 run
 to
 capture
 the
 spatial
 variation
 of
 model
 results.
 Every
 extracted
 raster
 
was
 stored
 in
 its
 own
 uniquely
 named
 folder.
 
Generating
 Random
 Rasters
 
The
 area-­‐weighted
 spatial
 variable
 maintains
 the
 proportion
 of
 area
 each
 
ecological
 community
 represents
 in
 a
 locality.
 The
 ecological
 community
 
composition
 was
 extracted
 from
 the
 SQLite
 database
 created
 during
 the
 initial
 phase
 
of
 this
 research.
 The
 spatial
 arrangement
 was
 generated
 randomly
 using
 the
 NumPy
 
Random
 Choice
 function
 of
 the
 NumPy
 site-­‐package.
 The
 total
 number
 of
 cells
 on
 the
 
input
 raster
 was
 equivalent
 to
 the
 number
 of
 cells
 contained
 in
 the
 total
 area
 of
 a
 
given
 locality.
 Thirty
 different
 area-­‐weighted
 spatial
 scenarios
 were
 generated
 for
 
each
 locality
 to
 provide
 a
 range
 of
 inputs
 into
 the
 model.
 

  32
 
The
 equal-­‐area
 variable
 represents
 equal
 areas
 of
 vegetation
 communities
 in
 
a
 locality
 with
 random
 spatial
 arrangement.
 This
 dataset
 was
 generated
 in
 a
 similar
 
fashion
 to
 the
 area-­‐weighted
 rasters;
 the
 exception
 being,
 post-­‐filter
 vegetation
 
communities
 were
 given
 an
 equivalent
 amount
 of
 area
 on
 the
 generated
 raster.
 
Thirty
 equal-­‐area
 spatial
 scenarios
 were
 generated
 for
 each
 locality
 as
 well.
 Every
 
random
 grid
 generated
 was
 stored
 in
 its
 own
 uniquely
 named
 folder.
 
 
Building
 LANDIS-­II
 Input
 Text-­Files
 
LANDIS-­‐II
 is
 operated
 using
 a
 series
 of
 text-­‐files.
 The
 LANDIS-­‐II
 text-­‐files
 
used
 as
 input
 and
 parameter
 files
 were
 generated
 for
 each
 uniquely
 named
 folder
 
containing
 an
 input
 raster
 (Table
 1).
 These
 text-­‐files
 were
 generated
 using
 object-­‐
oriented
 python
 code
 that
 represented
 each
 text-­‐file
 as
 a
 different
 method
 within
 a
 
LandisInput
 class.
 The
 class
 parsed
 a
 dictionary
 of
 model
 variables
 for
 each
 input
 
file
 passed
 to
 the
 script
 as
 input
 arguments.
 Then
 a
 Create
 method
 was
 called
 that
 
generated
 all
 of
 the
 input
 text-­‐files
 and
 saved
 each
 set
 of
 text-­‐files
 to
 its
 associated
 
uniquely
 named
 folder,
 containing
 its
 initial
 communities
 input
 raster.
 
 
An
 ecoregion
 raster
 was
 generated
 for
 each
 initial
 communities
 raster
 by
 
assigning
 a
 value
 of
 one
 to
 each
 cell
 that
 was
 not
 equal
 to
 zero.
 Each
 initial
 
communities
 raster
 file
 was
 read-­‐in
 using
 the
 ArcPy
 site-­‐package.
 It
 was
 then
 
converted
 to
 a
 NumPy
 array
 for
 further
 processing.
 Once
 the
 array
 was
 classified
 as
 
one
 or
 zero
 it
 was
 saved
 as
 a
 different
 filename.
 This
 created
 the
 spatial
 parameter
 

  33
 
that
 defined
 the
 active
 or
 inactive
 state
 of
 certain
 areas
 in
 the
 model
 (i.e.
 the
 
ecoregion
 parameter
 layer).
 
The
 model
 scenario
 was
 further
 established
 such
 that
 the
 time-­‐step
 for
 
succession
 in
 the
 model
 occurred
 every
 3-­‐years.
 The
 temporal
 duration
 of
 the
 
scenario
 was
 set
 to
 80-­‐years
 to
 match
 the
 time
 horizon
 of
 the
 concurrent
 research
 
project.
 The
 Age
 Reclass
 Output
 Extension
 time-­‐step
 was
 set
 to
 40-­‐years
 such
 that
 
the
 model
 output
 initial-­‐state,
 mid-­‐state,
 and
 end-­‐state
 output.
 
Executing
 LANDIS-­II
 
The
 large
 number
 of
 LANDIS-­‐II
 runs
 required
 development
 of
 simple
 server
 
and
 client
 scripts
 in
 python
 to
 distribute
 the
 processing
 load
 across
 multiple
 
computers.
 First,
 all
 of
 the
 folders
 containing
 LANDIS-­‐II
 input
 files
 were
 copied
 to
 a
 
network
 drive
 that
 all
 computers
 had
 access
 to.
 Because
 each
 folder
 represents
 a
 
different
 run
 of
 LANDIS-­‐II,
 the
 server
 script
 built
 the
 list
 of
 required
 LANDIS-­‐II
 runs
 
by
 populating
 a
 list
 of
 folders
 on
 the
 network
 file-­‐share.
 Next,
 the
 server
 script
 
extended
 python’s
 SocketServer
 site-­‐package
 and
 overrode
 the
 handle
 method
 to
 
handle
 each
 request
 made
 to
 the
 server.
 When
 a
 client
 computer
 signaled
 it
 was
 
ready
 to
 process
 a
 LANDIS-­‐II
 run,
 the
 server
 sent
 a
 filename
 of
 a
 given
 folder
 on
 the
 
network
 share.
 The
 client
 copied
 the
 folder
 to
 the
 local
 machine,
 executed
 the
 
LANDIS-­‐II
 run
 and
 copied
 the
 results
 back
 to
 the
 network
 file-­‐share.
 
 
The
 client
 was
 also
 able
 to
 execute
 multiple
 runs
 of
 LANDIS-­‐II
 simultaneously
 
by
 using
 python’s
 multiprocessing
 site-­‐package.
 A
 pool
 of
 workers
 was
 defined
 such
 

  34
 
that
 each
 worker
 downloaded
 a
 LANDIS-­‐II
 run
 and
 executed
 it
 in
 a
 sub-­‐process.
 This
 
allowed
 the
 client
 to
 take
 advantage
 of
 the
 multi-­‐core
 processors
 found
 on
 each
 
computer.
 For
 any
 given
 scenario
 of
 the
 LANDIS-­‐II
 model,
 the
 average
 execution
 
time
 was
 approximately
 4
 seconds.
 The
 processing
 of
 all
 runs
 took
 nearly
 200
 hours
 
on
 eleven
 different
 machines.
 
 
The
 server
 and
 client
 code
 is
 shown
 in
 the
 Appendicies
 A
 and
 B.
 
Developing
 Vegetation
 Trends
 
The
 spatially
 explicit
 control
 case
 was
 represented
 as
 a
 hexagon
 due
 to
 the
 
tessellation
 method
 used.
 The
 spatial
 variables
 were
 represented
 as
 square
 rasters
 
to
 reduce
 computational
 complexity
 during
 variable
 generation.
 The
 shape
 of
 the
 
spatial
 variables
 is
 considered
 irrelevant
 because
 each
 was
 constructed
 randomly
 
based
 on
 a
 proportional
 representation
 of
 ecological
 communities.
 As
 an
 example,
 
consider
 a
 locality
 occupied
 by
 two
 habitats;
 Mediterranean
 California
 Lower
 
Montane
 Black
 Oak-­‐Conifer
 Forest
 and
 Woodland,
 and
 North
 Pacific
 Dry
 Douglas-­‐fir-­‐
(Madrone)
 Forest
 and
 Woodland
 (Figure
 7).
 This
 research
 demonstrated
 a
 slight
 
increase
 in
 the
 Mediterranean
 California
 Lower
 Montane
 Black
 Oak-­‐Conifer
 Forest
 
and
 Woodland
 habitat
 in
 each
 spatial
 variable.
 By
 examining
 the
 proportional
 
representation
 of
 landscape
 succession
 trends
 in
 each
 spatial
 variable
 and
 
comparing
 it
 to
 the
 proportional
 representation
 of
 trends
 in
 the
 spatial
 control,
 it
 is
 
possible
 to
 demonstrate
 that
 the
 trends
 are
 similar.
 
 

 

  35
 

 
FIGURE
 7
 –
 AN
 EXAMPLE
 OF
 THE
 THREE
 DIFFERENT
 SPATIAL
 REPRESENTATIONS
 USED
 IN
 THIS
 EXPERIMENT
 AND
 
THEIR
 ASSOCIATED
 SUCCESSION
 AND
 OUTPUT
 
The
 type
 of
 succession
 occurring
 between
 the
 initial
 and
 final
 time
 steps
 of
 the
 area-­‐weighted
 and
 
equal-­‐area
 variables
 is
 compared
 to
 the
 succession
 occurring
 in
 the
 spatially
 explicit
 control.
 Note
 
that
 the
 actual
 analysis
 used
 an
 aggregation
 of
 grids
 at
 each
 locality
 to
 improve
 the
 robustness
 of
 the
 
analysis.
 In
 this
 example,
 Mediterranean
 California
 Lower
 Montane
 Black
 Oak-­‐Conifer
 Forest
 and
 
Woodland
 is
 shown
 to
 transgress
 upon
 habitat
 previously
 defined
 as
 North
 Pacific
 Dry
 Douglas-­‐fir-­‐
(Madrone)
 Forest
 and
 Woodland.
 This
 succession
 trajectory
 occurs
 in
 all
 spatial
 cases.
 The
 scale
 
shown
 here
 is
 12-­‐km
2
.
 
LANDIS-­‐II
 outputs
 raster
 results
 for
 its
 initialization
 (year
 0)
 and
 end-­‐state
 
(year
 80)
 through
 the
 Age
 Reclass
 Output
 Extension.
 These
 outputs
 were
 classified
 
by
 their
 ecological
 community
 values.
 This
 means
 that
 the
 twelve
 map-­‐codes
 
defined
 to
 generate
 different
 age
 cohorts
 and
 species
 mixes
 for
 a
 particular
 
vegetation
 community
 were
 assigned
 the
 same
 value,
 because
 they
 belong
 to
 the
 
same
 community.
 The
 value
 each
 community
 was
 assigned
 to
 was
 based
 on
 the
 
order
 it
 occured
 in
 the
 reclass
 text-­‐file.
 Because
 the
 community
 values
 for
 the
 
initialization-­‐state
 output
 and
 the
 end-­‐state
 output
 were
 classified
 by
 LANDIS-­‐II
 

  36
 
using
 the
 same
 method,
 the
 comparison
 between
 the
 two
 layers
 produced
 the
 
switching
 trend
 for
 each
 LANDIS-­‐II
 run.
 
 
Because
 the
 maximum
 number
 of
 communities
 that
 could
 occur
 on
 an
 output
 
raster
 is
 six
 due
 to
 the
 initial
 filtering
 procedure,
 the
 values
 on
 the
 output
 raster
 
were
 always
 less
 than
 or
 equal
 to
 six.
 The
 initialization-­‐state
 raster
 was
 multiplied
 
by
 ten
 and
 added
 to
 the
 end-­‐state
 raster.
 A
 python
 script
 cast
 each
 raster
 to
 a
 
NumPy
 array
 to
 complete
 this
 process.
 
 
The
 result
 produced
 an
 array
 of
 values,
 where
 the
 first
 digit
 of
 each
 value
 
represents
 the
 initial
 state
 and
 the
 second
 digit
 of
 each
 value
 represents
 the
 final
 
state.
 Values
 that
 are
 zero
 represent
 inactive
 areas
 of
 the
 grid.
 Values
 that
 are
 
cleanly
 divisible
 by
 ten
 (e.g.,
 10,
 20,
 30)
 represent
 areas
 where
 all
 species
 
experienced
 a
 die-­‐off,
 and
 succession
 has
 yet
 to
 occur.
 This
 comparison
 was
 
completed
 for
 every
 set
 of
 LANDIS-­‐II
 output.
 In
 these
 experiments,
 ecological
 
disturbances
 were
 not
 modeled.
 Isolated
 incidences
 of
 a
 few
 cells
 experiencing
 a
 
die-­‐off
 due
 to
 a
 species
 reaching
 its
 maximum
 age
 may
 occur;
 but
 in
 reality,
 discrete
 
ecological
 transitions
 are
 rarely
 seen
 in
 undisturbed
 environments
 and
 were
 an
 
artifact
 of
 the
 model’s
 representation
 of
 ecological
 processes.
 
 
The
 result
 of
 each
 comparison
 was
 compiled
 in
 a
 SQLite
 table.
 The
 
comparison
 table
 used
 scale,
 locality,
 run-­‐type,
 and
 iteration
 fields
 to
 uniquely
 
describe
 each
 run.
 Values
 for
 the
 scale
 column
 (i.e.,
 12,
 24,
 and
 48)
 were
 associated
 

  37
 
to
 the
 spatial
 extent
 of
 each
 model
 run.
 The
 locality
 column
 stored
 the
 feature
 
identifier
 of
 the
 associated
 initial
 input
 locality.
 The
 run-­‐type
 field
 described
 
whether
 or
 not
 the
 run
 was
 spatially
 explicit,
 area-­‐weighted,
 or
 equal-­‐area.
 The
 
iteration
 column
 held
 a
 value
 that
 noted
 which
 iteration
 the
 run
 represented
 (i.e.
 1
 
through
 30).
 The
 table
 also
 included
 a
 column
 for
 the
 initial
 vegetation
 community
 
values,
 final
 vegetation
 community
 values,
 and
 the
 area
 of
 each
 change
 between
 an
 
initial
 and
 final
 vegetation
 community
 pair.
 These
 changes
 represent
 the
 landscape
 
succession.
 

 By
 storing
 the
 comparison
 data
 in
 a
 SQLite
 table,
 it
 is
 possible
 to
 perform
 
rapid
 queries
 for
 each
 unique
 set
 of
 runs.
 Each
 experimental
 variable
 and
 the
 
control
 were
 comprised
 of
 thirty
 individual
 runs
 to
 form
 an
 aggregate
 assessment
 of
 
vegetation
 trends.
 Aggregates
 were
 made
 for
 each
 combination
 of
 scale,
 locality,
 and
 
run-­‐type.
 To
 generate
 the
 aggregate
 vegetation
 community
 succession
 trend,
 each
 
succession
 trend’s
 area
 was
 summed
 for
 all
 thirty
 runs
 and
 stored
 in
 an
 aggregation
 
table;
 such
 that,
 the
 original
 and
 final
 fields
 in
 the
 aggregation
 table
 represented
 the
 
total
 number
 of
 cells
 transitioning
 from
 the
 initial
 vegetation
 community
 to
 the
 final
 
vegetation
 community
 across
 all
 thirty
 iterations.
 An
 analysis
 of
 these
 trends
 
yielded
 the
 evidence
 necessary
 to
 partially
 accept
 and
 reject
 the
 research
 
hypotheses.
 

  38
 
Statistical
 Testing
 
Through
 the
 use
 of
 the
 SQLite
 and
 SciPy
 python
 site-­‐packages
 it
 was
 possible
 
to
 perform
 a
 Chi-­‐square
 analysis
 at
 each
 locality
 using
 the
 experimental
 control
 as
 
the
 expected
 value
 and
 each
 experimental
 variable
 as
 separate
 observed
 cases.
 The
 
SQLite
 table
 containing
 the
 aggregated
 values
 of
 vegetation
 community
 trends
 for
 
each
 locality
 supplied
 the
 input
 data
 for
 the
 Chi-­‐square
 analyses.
 
 
Three
 categories
 of
 Chi-­‐square
 analysis
 were
 used
 to
 compare
 the
 
experimental
 control
 to
 the
 experimental
 variables.
 The
 first
 analysis
 focused
 on
 the
 
succession
 trajectory
 of
 the
 landscape
 by
 assessing
 each
 trend
 as
 a
 proportion
 of
 its
 
initial
 starting
 area.
 The
 second
 Chi-­‐square
 analysis
 considered
 the
 succession
 
trajectory
 of
 each
 trend
 as
 a
 proportion
 of
 the
 total
 landscape
 area.
 The
 final
 Chi-­‐
square
 analysis
 evaluated
 the
 model
 end-­‐states
 for
 each
 trend
 to
 determine
 the
 
overall
 sensitivity
 of
 the
 model
 using
 the
 end-­‐state
 proportion
 of
 each
 vegetation
 
community
 out
 of
 the
 total
 area.
 
 
By
 comparing
 proportions
 instead
 of
 actual
 cell
 counts
 it
 was
 possible
 to
 
ignore
 inactive
 areas
 in
 the
 spatially
 explicit
 experimental
 control
 and
 focus
 only
 on
 
the
 aspect
 of
 the
 landscape
 that
 was
 of
 interest.
 
 
For
 the
 first
 Chi-­‐square
 analysis
 at
 a
 given
 locality,
 the
 degrees
 of
 freedom
 
were
 defined
 as
 the
 total
 number
 of
 succession
 trends
 occurring
 across
 all
 spatial
 
cases
 (spatially
 explicit,
 area-­‐weighted,
 equal-­‐area)
 at
 a
 particular
 scale,
 minus
 one.
 
Next,
 the
 total
 area
 of
 the
 input
 vegetation
 community
 at
 its
 initial
 state
 divided
 the
 

  39
 
area
 represented
 by
 each
 trend.
 The
 trends
 generated
 using
 spatially
 explicit
 input
 
were
 compared
 to
 the
 trends
 produced
 in
 the
 area-­‐weighted
 variable,
 and
 
separately
 the
 equal-­‐area
 variable
 using
 the
 Chi-­‐square
 formula
 (Figure
 8).
 This
 
analysis
 was
 carried
 out
 by
 querying
 the
 SQLite
 table
 of
 aggregated
 data
 in
 Python,
 
calculating
 the
 degrees
 of
 freedom
 and
 the
 Chi-­‐square
 statistic,
 and
 using
 SciPy
 to
 
determine
 each
 statistic’s
 associated
 alpha
 value.
 The
 results
 of
 the
 comparisons
 
were
 stored
 in
 a
 SQLite
 table
 and
 represented
 the
 trajectory
 of
 landscape
 change
 as
 
a
 proportion
 of
 each
 vegetation
 community’s
 initial
 state.
 

 
FIGURE
 8
 -­
 CHI-­SQUARE
 EQUATION
 
The
 Chi-­‐square
 equation
 was
 used
 to
 determine
 the
 trends
 produced
 when
 the
 experimental
 control
 
(i.e.
 spatially
 explicit
 case)
 was
 compared
 to
 the
 two
 experimental
 variables;
 area-­‐weighted
 and
 
equal-­‐area.
 
The
 second
 analysis
 was
 similar
 to
 the
 first,
 except
 that
 instead
 of
 calculating
 
the
 initial
 area
 proportions
 as
 a
 percentage
 of
 each
 vegetation
 community’s
 initial
 
state,
 the
 calculation
 represents
 the
 area
 proportion
 of
 the
 succession
 trend
 to
 the
 
total
 area
 of
 the
 active
 grid.
 The
 degrees
 of
 freedom
 were
 still
 defined
 by
 the
 
number
 of
 succession
 trends
 across
 all
 runs
 at
 a
 given
 locality.
 The
 results
 of
 this
 
analysis
 were
 stored
 in
 a
 separate
 SQLite
 table
 and
 represented
 the
 trajectory
 of
 
succession
 of
 each
 vegetation
 community
 as
 a
 proportion
 of
 the
 total
 area
 of
 the
 grid.
 
The
 final
 analysis
 compared
 the
 experimental
 control
 and
 variables
 at
 the
 
output
 end-­‐state
 to
 determine
 the
 amount
 of
 equifinality
 that
 occurred
 in
 the
 results.
 

  40
 
The
 aggregated
 data
 for
 each
 locality
 was
 extracted
 from
 the
 SQLite
 table.
 The
 
proportion
 each
 vegetation
 community
 represented
 as
 a
 ratio
 to
 the
 total
 active
 area
 
of
 the
 grid
 at
 the
 model’s
 end-­‐state
 was
 calculated.
 This
 calculation
 was
 made
 by
 
summing
 the
 areas
 of
 each
 vegetation
 community
 using
 the
 SQL
 SUM
 function
 and
 
the
 GROUP
 BY
 aggregator;
 these
 sums
 were
 further
 divided
 by
 the
 total
 area
 of
 the
 
active
 grid.
 The
 degrees
 of
 freedom
 were
 defined
 by
 the
 total
 number
 of
 unique
 
vegetation
 communities
 occurring
 at
 the
 end-­‐state
 minus
 one.
 Next,
 the
 Chi-­‐square
 
statistic
 was
 calculated
 between
 the
 spatially
 explicit
 experimental
 control
 and
 each
 
variable
 and
 the
 result
 was
 stored
 in
 a
 new
 SQLite
 table.
 
The
 python
 pseudocode
 used
 to
 implement
 these
 analyses
 may
 be
 found
 in
 
Appendix
 C.
 

  41
 
Chapter
 3:
 Results
 
 
Recall
 that
 the
 first
 test
 used
 the
 Chi-­‐square
 statistic
 to
 determine
 the
 
similarity
 between
 the
 spatially
 explicit
 case
 and
 the
 two
 spatial
 variables
 
individually.
 The
 analysis
 focused
 on
 the
 succession
 trajectories
 as
 a
 proportion
 of
 
each
 vegetation
 community’s
 initial
 area.
 This
 analysis
 was
 completed
 at
 every
 
locality
 under
 investigation
 at
 each
 scale.
 At
 the
 95%
 confidence
 level,
 there
 is
 less
 
than
 1%
 difference
 between
 the
 comparisons
 of
 each
 spatial
 variable
 to
 the
 spatial
 
control
 at
 any
 given
 scale;
 but,
 there
 is
 approximately
 a
 10%
 difference
 between
 the
 
results
 at
 each
 scale.
 The
 results
 also
 indicate
 that
 a
 dataset
 containing
 random
 
spatial
 arrangements
 and
 percentage-­‐area
 compositions
 can
 substitute
 for
 spatially
 
explicit
 data
 between
 40%
 and
 60%,
 or
 on
 average
 half,
 of
 the
 time.
 The
 full
 range
 of
 
confidence
 levels
 for
 the
 chi-­‐square
 analysis
 was
 calculated
 due
 to
 the
 requirements
 
of
 the
 concurrent
 research.
 The
 full
 range
 is
 shown
 here
 to
 indicate
 a
 slightly
 
decreasing
 number
 of
 runs
 considered
 to
 be
 different
 from
 the
 control
 at
 increasing
 
levels
 of
 confidence
 (Figure
 9).
 
 

  42
 

 
FIGURE
 9
 -­
 SUCCESSION
 TRAJECTORY
 BASED
 ON
 INITIAL
 AREA
 OF
 A
 VEGETATION
 COMMUNITY
 
This
 graph
 displays
 the
 result
 of
 the
 succession
 trajectory
 analysis
 based
 on
 the
 proportion
 of
 initial
 
community
 area
 to
 the
 total
 area.
 It
 is
 the
 result
 of
 the
 Chi-­‐square
 analysis
 calculated
 for
 a
 range
 of
 
confidence
 values
 (alpha).
 As
 confidence
 increases,
 the
 number
 of
 localities
 that
 have
 experimental
 
variables
 that
 are
 significantly
 different
 from
 the
 experimental
 control
 decreases.
 
 
The
 second
 test
 used
 the
 Chi-­‐square
 statistic
 to
 determine
 the
 similarity
 
between
 the
 experimental
 control
 and
 both
 experimental
 variables
 based
 on
 the
 
proportion
 of
 each
 succession
 trend
 to
 the
 total
 active
 area
 in
 the
 model.
 This
 test
 
was
 also
 used
 at
 each
 scale
 for
 every
 locality.
 This
 analysis,
 as
 expected,
 yields
 
similar
 succession
 trajectory
 results
 as
 those
 shown
 in
 the
 first
 analysis
 (Figure
 9).
 
By
 assessing
 succession
 trajectory
 as
 a
 proportion
 of
 the
 total
 area,
 LANDIS-­‐II
 is
 
shown
 to
 be
 even
 less
 sensitive
 to
 spatial
 arrangement
 and
 percentage-­‐area
 spatial
 
composition
 at
 every
 confidence
 level
 (Figure
 10).
 
 

  43
 

 
FIGURE
 10
 -­
 SUCCESSION
 TRAJECTORY
 BASED
 ON
 THE
 TOTAL
 AREA
 OF
 A
 VEGETATION
 COMMUNITY
 
This
 graph
 displays
 the
 result
 of
 the
 succession
 trajectory
 analysis
 based
 on
 the
 total
 area.
 It
 is
 the
 
result
 of
 the
 Chi-­‐square
 analysis
 being
 calculated
 for
 a
 range
 of
 confidence
 values
 (alpha).
 As
 
confidence
 increases,
 the
 number
 of
 localities
 that
 have
 experimental
 variables
 that
 are
 significantly
 
different
 from
 the
 experimental
 control
 decreases.
 
 
Finally,
 the
 third
 test
 used
 the
 Chi-­‐square
 statistic
 to
 determine
 the
 similarity
 
between
 the
 end-­‐states
 of
 the
 experimental
 control
 and
 experimental
 variables.
 At
 
the
 95%
 confidence
 level
 it
 is
 shown
 that
 the
 model
 is
 extremely
 insensitive
 to
 
spatial
 arrangement
 and
 percentage-­‐area
 composition
 over
 80%
 of
 the
 time.
 
Furthermore,
 although
 differences
 in
 succession
 trajectory
 were
 shown
 between
 
scales
 (Figures
 8
 &
 9),
 at
 the
 95%
 confidence
 level
 there
 is
 less
 than
 5%
 difference
 
between
 model
 end-­‐states
 across
 the
 three
 scales
 evaluated
 in
 this
 study.
 At
 the
 
99%
 confidence
 level
 there
 is
 even
 less
 difference,
 4%,
 between
 spatial
 cases
 
(Figure
 11).
 

  44
 

 

 
FIGURE
 11
 -­
 END-­STATE
 ANALYSIS
 COMPARING
 MODEL
 RUNS
 
This
 graph
 displays
 the
 result
 of
 the
 end-­‐state
 analysis,
 which
 is
 a
 comparison
 between
 the
 
proportions
 of
 each
 community
 at
 the
 80-­‐year
 spatially
 explicit
 output
 and
 each
 experimental
 
variable.
 It
 is
 the
 result
 of
 the
 Chi-­‐square
 analysis
 being
 calculated
 for
 a
 range
 of
 confidence
 values
 
(alpha).
 This
 graph
 shows
 a
 high
 confidence
 that
 a
 small
 percentage
 (e.g.
 <20%)
 of
 localities
 exhibit
 
differences
 between
 the
 experimental
 control
 and
 each
 variable.
 
 

 

  45
 

 
Chapter
 4:
 Discussion
 and
 Conclusion
 
Discussion
 
A
 review
 of
 the
 literature
 on
 the
 LANDIS-­‐II
 model’s
 use
 and
 application
 
suggests
 that
 the
 spatial
 sensitivity
 of
 the
 model
 has
 largely
 been
 untested.
 Although
 
the
 current
 research
 does
 not
 test
 every
 possible
 avenue
 of
 spatial
 and
 ecological
 
parameterization
 of
 the
 LANDIS-­‐II
 model,
 the
 spatial
 sensitivity
 of
 the
 model’s
 
fundamental
 spatial
 function
 (i.e.
 dispersion)
 has
 been
 assessed
 for
 a
 range
 of
 
spatial
 and
 ecological
 settings
 to
 understand
 the
 processes
 acting
 within
 the
 model’s
 
proprietary
 core.
 The
 results
 suggest
 that
 LANDIS-­‐II
 is
 a
 spatially
 insensitive
 model
 
for
 determining
 vegetation
 succession
 trends.
 While
 the
 model
 does
 produce
 a
 
spatial
 output
 layer,
 the
 developer
 and
 user
 communities
 both
 consider
 it
 to
 be
 an
 
imaginary
 representation
 of
 reality,
 rather
 than
 an
 accurate
 prediction
 of
 a
 future
 
end-­‐state
 (Mladenoff
 and
 He
 1999).
 
 
The
 results
 do
 have
 two
 important
 caveats.
 On
 further
 review
 of
 the
 
underlying
 LANDIS-­‐II
 runs
 where
 the
 Chi-­‐square
 statistic
 returned
 a
 value
 of
 zero,
 it
 
appears
 that
 localities
 exhibiting
 only
 grass
 communities
 experience
 a
 complete
 die-­‐
off
 in
 the
 model.
 Although
 not
 scientifically
 sound,
 it
 occurs
 in
 all
 spatial
 cases.
 By
 
slightly
 adjusting
 the
 grass
 species
 parameters
 to
 have
 maximum
 dispersion
 
distances
 greater
 than
 half
 the
 cell-­‐size
 (i.e.
 >100m)
 dispersion
 occurs
 and
 species
 
die-­‐off
 no
 longer
 happens.
 Also,
 due
 to
 longevity
 values
 less
 than
 80
 years
 (the
 time
 
horizon
 of
 this
 analysis)
 it
 appears
 that
 the
 grass
 longevity
 parameter
 does
 not
 

  46
 
allow
 the
 grass
 species
 to
 survive
 in
 an
 undisturbed
 environment
 (one
 of
 the
 
assumptions
 in
 this
 study).
 While
 this
 caveat
 points
 to
 a
 flaw
 in
 the
 generic
 species
 
attributes
 used
 to
 model
 grass
 species
 in
 this
 research,
 since
 the
 same
 response
 
occurs
 for
 all
 spatial
 cases,
 the
 model
 can
 be
 shown
 to
 be
 spatially
 insensitive
 in
 
these
 instances.
 As
 such,
 the
 result
 is
 still
 valuable
 to
 this
 analysis.
 
The
 second
 caveat
 is
 the
 special
 case
 that
 occurs
 when
 the
 expected
 area
 of
 a
 
succession
 trend
 is
 zero
 and
 the
 observed
 succession
 trend
 area
 is
 greater
 than
 zero.
 
This
 special
 case
 was
 handled
 by
 adding
 a
 value
 of
 one
 to
 the
 expected
 and
 observed
 
values
 when
 performing
 the
 Chi-­‐square
 evaluation.
 The
 squared
 difference
 between
 
the
 adjusted-­‐expected
 and
 adjusted-­‐observed
 value
 in
 the
 Chi-­‐square
 statistic
 was
 
divided
 by
 the
 adjusted-­‐expected
 value
 (one).
 This
 simplified
 the
 formula
 to
 be
 the
 
square
 of
 the
 original
 observed
 value.
 This
 case
 “explodes”
 the
 Chi-­‐square
 results
 
and
 inflated
 the
 perceived
 differences
 between
 the
 spatial
 control
 and
 each
 spatial
 
variable.
 Thus,
 differences
 shown
 in
 the
 results
 are
 artificially
 inflated
 as
 a
 direct
 
result
 of
 the
 analytical
 mechanism
 used
 (i.e.
 the
 Chi-­‐square
 statistic)
 and
 model
 
output
 is
 more
 similar
 than
 these
 results
 suggest.
 The
 Chi-­‐square
 statistic
 was
 
chosen
 based
 on
 its
 low
 computational
 intensity
 and
 its
 ability
 to
 compare
 sets
 of
 
categories.
 Although
 the
 use
 of
 Chi-­‐square
 is
 shown
 to
 affect
 the
 results,
 this
 is
 
acceptable
 because
 the
 elimination
 of
 the
 inflated
 values
 would
 only
 serve
 to
 
strengthen
 trends
 produced.
 

  47
 
The
 results
 of
 this
 study
 indicate
 that
 succession
 trajectories
 between
 the
 
experimental
 control
 and
 both
 variables
 are
 likely
 to
 increase
 in
 difference
 as
 scale
 
increases.
 This
 is
 consistent
 with
 expectation
 because
 dispersion
 distance
 
parameters
 for
 any
 given
 species
 cover
 a
 larger
 proportion
 of
 the
 small
 12-­‐km
2

 grid
 
than
 the
 larger
 24-­‐km
2

 grid.
 Further,
 the
 differences
 in
 succession
 trajectory
 are
 
directly
 related
 to
 scale
 as
 a
 proportion
 of
 the
 total
 active
 area,
 and
 as
 a
 proportion
 
of
 the
 initial
 area
 of
 each
 vegetation
 community.
 
Although
 the
 succession
 trends
 seem
 to
 indicate
 reduced
 similarity
 as
 scale
 
increases,
 the
 end-­‐state
 analysis
 suggests
 that
 the
 end-­‐states
 are
 very
 similar
 
regardless
 of
 how
 the
 underlying
 changes
 are
 occurring.
 This
 would
 suggest
 that
 
there
 is
 some
 degree
 of
 equifinality
 occurring
 in
 the
 model.
 The
 differences
 between
 
the
 area-­‐weighted
 results
 and
 the
 equal-­‐area
 results
 are
 very
 small,
 less
 than
 1%
 at
 
the
 99%
 confidence
 level
 for
 differences
 between
 runs.
 This
 end-­‐state
 metric
 is
 
considered
 to
 be
 more
 important
 because
 the
 proportion
 of
 vegetation
 communities
 
occurring
 at
 the
 end-­‐state
 condition
 is
 typically
 used
 to
 document
 succession
 trends.
 
 
In
 acknowledging
 the
 research
 results,
 it
 appears
 that
 spatial
 arrangement
 
and
 percentage-­‐area
 composition
 are
 not
 a
 requirement
 of
 the
 successful
 use
 of
 
LANDIS-­‐II
 approximately
 80%
 of
 the
 time
 at
 the
 95%
 confidence
 level,
 provided
 the
 
ecological
 communities
 are
 known.
 These
 results
 represent
 a
 conservative
 estimate,
 
because
 of
 the
 artificial
 inflation
 of
 the
 Chi-­‐square
 statistic
 discussed
 earlier.
 Stated
 
differently,
 the
 Chi-­‐square
 null
 hypothesis
 that
 the
 experimental
 control
 is
 the
 same
 

  48
 
as
 an
 experimental
 variable
 was
 rejected
 roughly
 20%
 of
 the
 time
 with
 95%
 
confidence.
 
 
The
 size
 of
 a
 given
 study
 area,
 however,
 is
 directly
 related
 to
 the
 method
 of
 
succession
 trajectory
 the
 vegetation
 communities
 undergo.
 The
 results
 of
 the
 first
 
two
 analyses
 (Figures
 8
 &
 9)
 demonstrate
 that
 as
 processing
 area
 increases,
 the
 
difference
 between
 succession
 trajectories
 in
 the
 experimental
 variables
 and
 the
 
spatial
 control
 increase
 as
 well.
 Therefore,
 as
 the
 size
 of
 a
 study
 area
 increases,
 
succession
 may
 occur
 differently
 at
 different
 scales
 but
 the
 final
 end-­‐state
 results
 
will
 be
 similar.
Conclusion
This
 research
 assessed
 the
 spatial
 sensitivity
 of
 the
 LANDIS-­‐II
 model
 to
 
spatial
 arrangement
 and
 spatial
 composition
 in
 homogenous
 spatial
 settings
 (the
 
LANDIS-­‐II
 basic
 assumptions).
 No
 effort
 was
 taken
 to
 capture
 microclimate,
 solar
 
angle,
 elevation,
 or
 soils
 using
 variable
 establishment
 probabilities
 and
 ecoregions
 
to
 ensure
 all
 ecological
 parameters
 in
 the
 model
 remain
 fixed.
 The
 research
 
approach
 used
 the
 aggregate
 of
 thirty
 runs
 for
 the
 experimental
 control
 and
 each
 
experimental
 variable.
 Further,
 thousands
 of
 different
 localities
 were
 assessed
 with
 
different
 generically
 parameterized
 dominant,
 upland
 vegetation
 communities.
 
Although
 the
 results
 of
 this
 research
 point
 to
 caveats
 in
 the
 generalization
 of
 
ecological
 parameters,
 to
 understand
 the
 spatial
 sensitivity
 of
 the
 model
 in
 a
 
simplified
 environment
 optimum
 ecological
 parameters
 were
 not
 needed.
 

  49
 
The
 first
 hypothesis
 of
 this
 research
 states
 that
 aspatial
 end-­‐state
 vegetation
 
community
 succession
 trends
 based
 on
 spatially
 explicit
 parameters
 are
 similar
 to
 
results
 produced
 by
 parameters
 that
 maintain
 ecological
 composition
 but
 possess
 
random
 arrangement.
 Given
 the
 result
 of
 the
 end-­‐state
 Chi-­‐square
 analysis,
 this
 
hypothesis
 may
 be
 accepted.
 The
 second
 hypothesis
 of
 this
 research
 states
 that
 
aspatial
 end-­‐state
 vegetation
 community
 succession
 trends
 based
 on
 spatially
 
explicit
 parameters
 are
 similar
 to
 results
 produced
 by
 parameters
 that
 do
 not
 
maintain
 ecological
 composition
 or
 arrangement,
 but
 exhibit
 less
 comparison
 than
 
the
 area-­‐weighted
 case.
 The
 second
 hypothesis
 is
 accepted
 and
 rejected
 in
 part.
 
The
 equal-­‐area
 variable
 did
 produce
 end-­‐state
 results
 similar
 to
 that
 of
 the
 
spatially
 explicit
 control
 and
 in
 this
 sense
 the
 second
 hypothesis
 is
 accepted
 in
 part.
 
The
 equal-­‐area
 variable,
 however,
 was
 not
 shown
 definitively
 to
 be
 more
 similar
 to
 
the
 control
 case
 than
 the
 area-­‐weighted
 variable,
 therefore
 the
 second
 hypothesis
 is
 
rejected
 in
 part.
 
In
 conclusion,
 this
 research
 suggests
 that
 the
 spatial
 composition
 and
 
arrangement
 of
 an
 input
 layer
 into
 the
 LANDIS-­‐II
 model
 may
 not
 be
 as
 important
 as
 
originally
 thought.
 These
 results
 suggest
 that
 LANDIS-­‐II
 could
 be
 used
 to
 model
 
areas
 where
 spatially
 explicit
 information
 is
 poorly
 known,
 or
 in
 cases
 where
 
producing
 spatially
 explicit
 information
 is
 cost
 prohibitive.
 It
 is
 suggested
 that
 
future
 LANDIS-­‐II
 studies
 assess
 the
 spatial
 sensitivity
 of
 their
 results
 when
 using
 
less
 generic
 ecological
 parameters.
 Future
 spatial
 tests
 of
 LANDIS-­‐II
 could
 also
 be
 

  50
 
done
 to
 determine
 the
 effects
 of
 spatial
 arrangement
 and
 composition
 when
 
microclimate
 or
 soils
 are
 defined
 by
 ecoregions
 and
 variable
 establishment
 
probabilities
 are
 used
 in
 the
 model.
 Finally,
 successive
 studies
 may
 also
 see
 value
 in
 
assessing
 spatial
 sensitivity
 for
 longer
 time
 durations
 and
 different
 scales
 than
 used
 
in
 this
 research.
 
 

 

  51
 

 
References
 
Albers
 equal
 area
 conic.
 in
 Esri
 Inc.
 [database
 online].
 2012a
 [cited
 May
 2013].
 
Available
 from
 
http://resources.arcgis.com/en/help/main/10.1/index.html#/Albers_Equal_
Area_Conic/003r0000001n000000/.
 

 
Extract
 by
 mask
 [database
 online].
 2012b
 [cited
 May
 2013].
 Available
 from
 
http://resources.arcgis.com/en/help/main/10.1/index.html#//009z000000
2n000000.
 Esri
 Inc
 

 
He,
 H.
 S.,
 D.
 R.
 Larsen,
 and
 D.
 J.
 Mladenoff.
 2002.
 Exploring
 component-­‐based
 
approaches
 in
 forest
 landscape
 modeling.
 Environmental
 Modelling
 &
 
Software
 17
 (6):
 519–529.
 

 
LANDIS-­‐II
 User
 Community,
 "Moderated
 Discussion:
 Scaling
 Up
 LANDIS
 Results
 for
 
Regional
 Inference"
 (LANDIS-­‐II
 Users
 Discussion,
 LANDIS-­‐II,
 2012).
 

 
Legendre,
 Pierre,
 and
 Marie-­‐Josree
 Fortin.
 1989.
 Spatial
 pattern
 and
 ecological
 
analysis.
 Vegetatio
 80
 (2):
 107–138.
 

 
Majewski,
 Mariusz,
 and
 Krzysztof
 Malarz.
 2008.
 Square
 latice
 site
 percolation
 
thresholds
 for
 complex
 neighborhoods.
 Krakow,
 Poland:
 AGH
 University
 of
 
Science
 and
 Technology.
 

 
Mladenoff,
 David
 J.,
 and
 Hong
 S.
 He.
 1999.
 Design,
 behavior
 and
 application
 of
 
LANDIS,
 an
 object-­‐oriented
 model
 of
 forest
 landscape
 disturbance
 and
 
succession.
 In
 Spatial
 modeling
 of
 forest
 landscape
 change:
 Approaches
 and
 
applications.,
 eds.
 David
 J.
 Mladenoff,
 William
 L.
 Baker,
 125–162.
 Cambridge,
 
U.K.:
 Cambridge
 University
 Press.
 

 
Mladenoff,
 David
 J.,
 George
 E.
 Host,
 Joel
 Boeder,
 and
 Thomas
 R.
 Crow.
 1996.
 Landis:
 
A
 spatial
 model
 of
 forest
 landscape
 disturbance,
 succession,
 and
 management.
 
In
 GIS
 and
 environmental
 modeling:
 Progress
 and
 research
 issues.,
 eds.
 Michael
 
F.
 Goodchild,
 Louis
 T.
 Steyaert,
 Bradley
 O.
 Parks,
 Carol
 Johnston,
 David
 
Maidment,
 Michael
 Crane
 and
 Sandi
 Glendinning,
 175–179.
 GIS
 World
 Books.
 

 
Morris,
 Andrew
 J.
 1997.
 Representing
 spatial
 interactions
 in
 simple
 ecological
 
models.
 University
 of
 Warwick.
 

 

  52
 
Nathan
 Beane,
 Michael
 Whitby
 and
 Eric
 Britzke,
 "Species
 Attributes"
 (Dataset,
 US
 
Army
 ERDC,
 2013),
 https://docs.google.com/file/d/0B4stw1Lkj0-­‐
dVXo2NTdUdk1WeGM/edit?usp=sharing.
 

 
NatureServe.
 NatureServe
 explorer.
 in
 NatureServe
 [database
 online].
 2012
 [cited
 
March/2
 2013].
 Available
 from
 http://www.natureserve.org/explorer/.
 

 
NatureServe
 explorer.
 in
 NatureServe
 [database
 online].
 2012c
 [cited
 May
 2013].
 
Available
 from
 
http://www.natureserve.org/explorer/servlet/NatureServe?init=Ecol.
 

 
NumPy
 reference.
 in
 The
 SciPy
 Community
 [database
 online].
 2013a
 [cited
 May
 
2013].
 Available
 from
 http://docs.scipy.org/doc/numpy/reference/.
 

 
Paine,
 Robert
 T.,
 Mia
 J.
 Tegner,
 and
 Edward
 A.
 Johnson.
 1998.
 Compounded
 
perturbations
 yield
 ecological
 surprises.
 Ecosystems
 1
 (6)
 :
 535–545.
 

 
Pultar,
 Edward,
 Martin
 Raubal,
 Thomas
 J.
 Cova,
 and
 Michael
 F.
 Goodchild.
 2009.
 
Dynamic
 GIS
 case
 studies:
 Wildfire
 evacuation
 and
 volunteered
 geographic
 
information.
 Transactions
 in
 GIS
 13
 :
 85–104.
 

 
Raster
 to
 NumPy
 array.
 in
 Esri
 Inc.
 [database
 online].
 2013b
 [cited
 May
 2013].
 
Available
 from
 
http://resources.arcgis.com/en/help/main/10.1/index.html#//018v00000
023000000.
 

 
Scheller,
 Robert
 M.,
 and
 James
 B.
 Domingo.
 2011.
 LANDIS-­II
 model
 v6.0
 user
 guide.
 
 

 
Scheller,
 Robert
 M.,
 James
 B.
 Domingo,
 Brian
 R.
 Sturtevant,
 Jeremy
 S.
 Williams,
 
Arnold
 Rudy,
 Eric
 J.
 Gustafson,
 and
 David
 J.
 Mladenoff.
 2007.
 Design,
 
development,
 and
 application
 of
 LANDIS-­‐II,
 a
 spatial
 landscape
 simulation
 
model
 with
 flexible
 temporal
 and
 spatial
 resolution.
 Ecological
 Modelling
 201
 
(3–4)
 :
 409–419.
 

 
Scheller,
 Robert
 M.,
 and
 David
 J.
 Mladenoff.
 2005.
 A
 spatially
 interactive
 simulation
 
of
 climate
 change,
 harvesting,
 wind,
 and
 tree
 species
 migration
 and
 projected
 
changes
 to
 forest
 composition
 and
 biomass
 in
 northern
 Wisconsin,
 USA.
 
Global
 Change
 Biology
 11
 (2):
 307–321.
 

 
Scheller,
 Robert
 M.,
 Steve
 Van
 Tuyl,
 Kenneth
 L.
 Clark,
 John
 Hom,
 and
 Inga
 La
 Puma.
 
2011.
 Carbon
 sequestration
 in
 the
 new
 jersey
 pine
 barrens
 under
 different
 
scenarios
 of
 fire
 management.
 Ecosystems
 14
 (6):
 987–1004.
 

 

  53
 
Scheller,
 Robert
 M.,
 Steve
 Van
 Tuyl,
 Kenneth
 Clark,
 Nicholas
 G.
 Hayden,
 John
 Hom,
 
and
 David
 J.
 Mladenoff.
 2008.
 Simulation
 of
 forest
 change
 in
 the
 new
 jersey
 
pine
 barrens
 under
 current
 and
 pre-­‐colonial
 conditions.
 Forest
 Ecology
 and
 
Management
 255
 (5–6)
 :
 1489–1500.
 

 
Shang,
 Bo
 Z.,
 Hong
 S.
 He,
 Thomas
 R.
 Crow,
 and
 Stephen
 R.
 Shifley.
 2004.
 Fuel
 load
 
reductions
 and
 fire
 risk
 in
 central
 hardwood
 forests
 of
 the
 united
 states:
 A
 
spatial
 simulation
 study.
 Ecological
 Modelling
 180
 (1)
 :
 89–102.
 

 
Tansley,
 A.
 G.
 1935.
 The
 use
 and
 abuse
 of
 vegetational
 concepts
 and
 terms.
 Ecology
 
16
 (3)
 :
 284–307,
 
 

 
Turner,
 Monica
 Goigel.
 1989.
 Landscape
 ecology:
 The
 effect
 of
 pattern
 on
 process.
 
Annual
 Review
 of
 Ecology
 and
 Systematics
 20
 :
 171–197.
 

 
Watt,
 Alex
 S.
 1947.
 Pattern
 and
 process
 in
 the
 plant
 community.
 Journal
 of
 Ecology
 
35
 (1/2)
 :
 1–22.
 

 

 
Copyright
 2013
   
   
 
 
 
 Austin
 V.
 Davis
 
Appendix
 A:
 Pseudocode
 for
 LANDIS-­‐II
 Scenario
 Server
 
# load modules
import os, sys, ast, time, pickle
import threading as t
import Tkinter as tk

# set up address
HOST = sys.argv[1] # user specifies ip
PORT = 10003

# set up log file
log = r’pathToLogFile’
   
# load list of LANDIS-II scenarios
# this is a python list of LANDIS-II scenario paths on the
network drive
LandisPackages=[]
with open(‘ListAsPickle’,'r') as serializedRuns:
 LandisPackages.extend( pickle.load( serializedRuns ) )

##########
# Functions #
##########
def LOGGER( msg ):
global log
fullmsg = '{%s} %s'%(time.asctime(), msg)
with open( log, 'a') as flog:
flog.write( fullmsg )

def CONNECT():
LOGGER('Server booted...\n')
server = SocketServer.TCPServer( (HOST, PORT),
LandisHandler)
server.serve_forever()

def JOINEVENT( ip ):
   LOGGER('A Node Has Been Connected @%s\n'%(ip))

#########
# Run List #
#########
class LandisRoster( list ):
def __init__( self ):

  55
 
super( LandisRoster, self )
global LandisPackages
for ix, package in enumerate(LandisPackages):
output = package+'_processed'
self.append( {ix:[package, output]})

# make the pop() user friendly
def pop(self):
p = super(LandisRoster, self).pop()
LOGGER('[*] Number of Runs Remaining: %s\n'%(len(self)))
return p

LIST_OF_RUNS = LandisRoster()
LOGGER( 'TOTAL: %s\n'%(len( LandisPackages )))


class LandisHandler(SocketServer.BaseRequestHandler):      
def handle(self):
global LIST_OF_RUNS
         
         rcv = str(self.request.recv(1024))
         data = ast.literal_eval( rcv.strip() )

         code = data.keys()[0]
         payload = data.values()[0]
       
         if code==0:
              # show a join
              JOINEVENT( payload )
           
         elif code==1:
              # completed a package
              LOGGER('[*] DONE
ID: %s\n'%(payload.keys()[0]))
  else:
              # send a new package
              try:
                 pkg = LIST_OF_RUNS.pop()
                 
self.request.sendall( str(pkg)+'\n')
                             LOGGER('[+] SENT
ID: %s\n'%(pkg.keys()[0]))
              except:
                  pass


  56
 
if __name__ == "__main__":
   CONNECT()  

  57
 

Appendix
 B:
 Pseudocode
 for
 LANDIS-­‐II
 Scenario
 Client
 
# load modules
import os
import shutil
import getpass
import subprocess
import signal
import sys
import socket
import time
import ast
import tempfile
import multiprocessing as mp

#########
# Setup #
#########
# IP of server host and number of CPU on local
HOST, POOL = sys.argv[1:]
PORT = 10003
LOCK = mp.Lock()

USER = getpass.getuser()
WORKSPACE = os.path.join(r'C:\Users', USER, 'LandisClient')
   
#############
# Functions #
#############
def worker( run ):
   global WORKSPACE, LOCK
   # input looks like: {ix:[package, output]}
   runNo = run.keys()[0]
   landisinputdir = run.values()[0][0]
   landisoutputdir= run.values()[0][1]
   landisinputfiles= [os.path.join( landisinputdir, f) for
f in os.listdir( landisinputdir )]

   # create workspace and outputdir
   temp = tempfile.mkdtemp(suffix='_landis',dir=WORKSPACE)
   
   if not os.path.exists( landisoutputdir ):
       os.makedirs( landisoutputdir )

  58
 
       
   # copy to workspace and outputdir    
   for lif in landisinputfiles:
       shutil.copy2( lif, temp )
       shutil.copy2( lif, landisoutputdir )

   # popen -- run landis
   p = subprocess.Popen(['landis-ii',
'scenario.txt'],cwd=temp,
                        stdin=subprocess.PIPE,
                        stdout=subprocess.PIPE,
                        stderr=subprocess.PIPE,
                        shell=True)
   while True:
       line = p.stdout.readline()
       if line =='' and p.poll()!=None:
           break
       
       LOCK.acquire()
       if 'Error' not in line and ''!=line.strip():
           sys.stdout.write( '{PID:%s} %s'%(p.pid,line ))
       elif 'Error' in line:
           sys.stderr.write('[!] LANDIS
ERROR: %s\n'%( landisinputdir ))
           fobj =
open(os.path.join(landisoutputdir,'error.txt'),'w')
           fobj.write(line)
           fobj.close()
           LOCK.release()
           p.wait()
           return
       LOCK.release()
       
   # wait for death
   p.wait()

   ######################################################
   # If you want to do something with the landis output #
   # add that code here.                                #
   ######################################################

   # copy landis output to outputdir
   files = [ os.path.join(temp, of) for of in ['Landis-
log.txt', 'reclass\\reclass1-0.img', 'reclass\\reclass1-
40.img', 'reclass\\reclass1-80.img']]

  59
 
   for of in files:
       shutil.copy2( of, landisoutputdir )

   # delete workspace
   shutil.rmtree( temp )
 

def Client():
   global HOST, PORT, POOL
   while True:
       try:
           ## CONNECT CLIENT ##
           sys.stdout.write('[+] CONNECT
TO: %s@%s...'%(HOST, PORT))
           thisIP =
socket.gethostbyname(socket.gethostname())
           sock = socket.socket( socket.AF_INET,
socket.SOCK_STREAM )
           sys.stdout.write('SUCCESS!\n')

           ## MAKE FIRST PAYLOAD ##
           data = '{0:"%s"}'%( thisIP )
           sock.connect((HOST,PORT))
           sock.sendall( data+'\n' )
           sock.close()

           PROCESSES = list()
           for node in range( POOL ):
               try:
                   data = '{2:"Acquire"}'
                   
                   ## COMMUNICATE ##
                   sock = socket.socket( socket.AF_INET,
socket.SOCK_STREAM )
                   sock.connect((HOST,PORT))
                   sock.sendall( data+'\n'  )
                   rcvd = sock.recv(1024)
                   sock.close()
                   
                   received = ast.literal_eval( rcvd )
                     
                   sys.stdout.write(' [*] Acquired
(%s)\n'%(node))
                   
                   PROCESSES.append( received )

  60
 

               except:
                   pass
               
           
           if len( PROCESSES ) > 0:
               # Process
               pool = mp.Pool( POOL )
               pool.map( worker, PROCESSES )
               pool.terminate()
               del pool
               
               for node in range( POOL ):
                   data =
'{1:%s}'%( str(PROCESSES[node]) )

                   ## COMMUNICATE ##
                   sock = socket.socket( socket.AF_INET,
socket.SOCK_STREAM )
                   sock.connect((HOST,PORT))
                   sock.sendall( data+'\n')
                   sock.close()
                   
           else:
               sys.stderr.write('[!] FAIL: No Payload\n
[*] Recovering...\n')
               time.sleep(10)

       except:
           sys.stderr.write('[!] FAIL: Connection\n [*]
Recovering...\n')
           time.sleep( 10 )
           
       
if __name__=='__main__':
   if not os.path.exists( WORKSPACE ):
       os.makedirs( WORKSPACE )

   # run client    
   Client()


  61
 

 
Appendix
 C:
 Pseudocode
 for
 Data
 Analysis
 
import sqlite3 as sql
import os,time
PATH = os.getcwd()

def FetchIter( cur ):
   while True:
       rows = cur.fetchmany( 1000 )
       if not rows:
           break
       for row in rows:
           yield row
           
def fetch( cur ):
   data=[]
   for item in FetchIter(cur):
       data.append( item )
   return data

def desc( cur ):
   return map( lambda i:i[0], cur.description)

# connect
print 'connect...'
DB = PATH + os.sep + 'data.db'
db = sql.connect(DB)
cur=db.cursor()

# This script calculates a Chi-squared measure (o-e)/e  for
each orig/final proportion
print 'Create metric 1...'
print ' -Aquire localities of interest'
cur.execute("SELECT scale, locality FROM dataset WHERE
filterid=0 GROUP BY scale, locality")
dataset=fetch( cur )
print ' -There are ', len( dataset ) ,' localities of
interest.'

records=[]
for scale, locality in dataset:

  62
 
   cur.execute("SELECT orig, final, ratio FROM
proportion_switch WHERE scale=? AND locality=? AND
runtype='SpatiallyExplicit'", (scale, locality))
   se={}
   for orig, final, ratio in fetch( cur ):
       if ratio!=None:
           se[(orig, final)]= ratio

   cur.execute("SELECT orig, final, ratio FROM
proportion_switch WHERE scale=? AND locality=? AND
runtype='AreaWeighted'", (scale, locality))
   aw={}
   for orig, final, ratio in fetch( cur ):
       if ratio!=None:
           aw[(orig, final)]= ratio

   cur.execute("SELECT orig, final, ratio FROM
proportion_switch WHERE scale=? AND locality=? AND
runtype='EqualArea'", (scale, locality))
   ea={}
   for orig, final, ratio in fetch( cur ):
       if ratio!=None:
           ea[(orig, final)]= ratio

   # get all possible pairs
   switches=se.keys()
   switches.extend( aw.keys())
   switches.extend( ea.keys())
   switches=list( set( switches ))
   for orig, final in switches:
       # get expected
       if (orig, final) not in se.keys():
           E=0.0
       else:
           E=se[(orig, final)]

       # get aw observed
       if (orig, final) not in aw.keys():
           AWO=0.0
       else:
           AWO=aw[(orig, final)]

       # get ea observed
       if (orig, final) not in ea.keys():
           EAO=0.0

  63
 
       else:
           EAO=ea[(orig, final)]

       # calculate
       if E==0:
           # do a value shift o+1, E+1 for calculation
           AW=(AWO)**2
           EA=(EAO)**2
       else:
           AW = ((AWO-E)**2.)/float(E)
           EA = ((EAO-E)**2.)/float(E)
       
       # create rows
       records.append( (scale, locality, 'AreaWeighted',
orig, final, AW) )
       records.append( (scale, locality, 'EqualArea', orig,
final, EA) )


cur.execute("CREATE TABLE metric_1( scale int, locality
double, runtype string, orig double, final double, chisq
double)")
cur.executemany("INSERT INTO metric_1 VALUES (?,?,?,?,?,?)",
records)
cur.execute("CREATE INDEX metric_1_index ON metric_1(scale,
locality, runtype, orig, final)")
db.commit()

print 'Calculate Chisquare on metric 1...'

cur.executescript(
"""
CREATE TABLE chisquare_m1( scale int, locality double,
runtype string, x2 double, k int);

INSERT INTO chisquare_m1
SELECT scale, locality, runtype, SUM( chisq ) AS calc,
(COUNT(*)-1) AS degfree
FROM metric_1
GROUP BY scale, locality, runtype;

CREATE INDEX chisquare_m1_index ON chisquare_m1( scale,
locality, runtype);
""")


  64
 
db.commit()

# metric 2
print 'Create metric 2...'
print ' -Aquire localities of interest'
cur.execute("SELECT scale, locality FROM dataset WHERE
filterid=0 GROUP BY scale, locality")
dataset=fetch( cur )
print ' -There are ', len( dataset ) ,' localities of
interest.'


records=[]
for scale, locality in dataset:
   cur.execute("SELECT orig, final, ratio FROM
proportion_totalarea WHERE scale=? AND locality=? AND
runtype='SpatiallyExplicit'", (scale, locality))
   se={}
   for orig, final, ratio in fetch( cur ):
       if ratio!=None:
           se[(orig, final)]= ratio

   cur.execute("SELECT orig, final, ratio FROM
proportion_totalarea WHERE scale=? AND locality=? AND
runtype='AreaWeighted'", (scale, locality))
   aw={}
   for orig, final, ratio in fetch( cur ):
       if ratio!=None:
           aw[(orig, final)]= ratio

   cur.execute("SELECT orig, final, ratio FROM
proportion_totalarea WHERE scale=? AND locality=? AND
runtype='EqualArea'", (scale, locality))
   ea={}
   for orig, final, ratio in fetch( cur ):
       if ratio!=None:
           ea[(orig, final)]= ratio

   # get all possible pairs
   switches=se.keys()
   switches.extend( aw.keys())
   switches.extend( ea.keys())
   switches=list( set( switches ))
   for orig, final in switches:
       # get expected

  65
 
       if (orig, final) not in se.keys():
           E=0.0
       else:
           E=se[(orig, final)]

       # get aw observed
       if (orig, final) not in aw.keys():
           AWO=0.0
       else:
           AWO=aw[(orig, final)]

       # get ea observed
       if (orig, final) not in ea.keys():
           EAO=0.0
       else:
           EAO=ea[(orig, final)]

       # calculate
       if E==0:
           # do a value shift o+1, E+1 for calculation
           AW=(AWO)**2
           EA=(EAO)**2
       else:
           AW = ((AWO-E)**2.)/float(E)
           EA = ((EAO-E)**2.)/float(E)
       
       # create rows
       records.append( (scale, locality, 'AreaWeighted',
orig, final, AW) )
       records.append( (scale, locality, 'EqualArea', orig,
final, EA) )

cur.execute("CREATE TABLE metric_2( scale int, locality
double, runtype string, orig double, final double, chisq
double)")
cur.executemany("INSERT INTO metric_2 VALUES (?,?,?,?,?,?)",
records)
cur.execute("CREATE INDEX metric_2_index ON metric_2(scale,
locality, runtype, orig, final)")
db.commit()

print 'Calculate Chisquare on metric 2...'

cur.executescript(
"""

  66
 
CREATE TABLE chisquare_m2( scale int, locality double,
runtype string, x2 double, k int);

INSERT INTO chisquare_m2
SELECT scale, locality, runtype, SUM( chisq ) AS calc,
(COUNT(*)-1) AS degfree
FROM metric_2
GROUP BY scale, locality, runtype;

CREATE INDEX chisquare_m2_index ON chisquare_m2( scale,
locality, runtype);
""")
db.commit()

print 'Create metric 3...'
print ' -Aquire localities of interest'
cur.execute("SELECT scale, locality FROM dataset WHERE
filterid=0 GROUP BY scale, locality")
dataset=fetch( cur )
print ' -There are ', len( dataset ) ,' localities of
interest.'

records=[]
for scale, locality in dataset:
   cur.execute("SELECT final, ratio FROM
proportion_endstate WHERE scale=? AND locality=? AND
runtype='SpatiallyExplicit'", (scale, locality))
   se={}
   for final, ratio in fetch( cur ):
       if ratio!=None:
           se[final]= ratio

   cur.execute("SELECT final, ratio FROM
proportion_endstate WHERE scale=? AND locality=? AND
runtype='AreaWeighted'", (scale, locality))
   aw={}
   for final, ratio in fetch( cur ):
       if ratio!=None:
           aw[final]= ratio

   cur.execute("SELECT final, ratio FROM
proportion_endstate WHERE scale=? AND locality=? AND
runtype='EqualArea'", (scale, locality))
   ea={}
   for final, ratio in fetch( cur ):

  67
 
       if ratio!=None:
           ea[final]= ratio

   # get all possible pairs
   switches=se.keys()
   switches.extend( aw.keys())
   switches.extend( ea.keys())
   switches=list( set( switches ))
   for final in switches:
       # get expected
       if final not in se.keys():
           E=0.0
       else:
           E=se[final]

       # get aw observed
       if final not in aw.keys():
           AWO=0.0
       else:
           AWO=aw[final]

       # get ea observed
       if final not in ea.keys():
           EAO=0.0
       else:
           EAO=ea[final]

       # calculate
       if E==0:
           # do a value shift o+1, E+1 for calculation
           AW=(AWO)**2
           EA=(EAO)**2
       else:
           AW = ((AWO-E)**2.)/float(E)
           EA = ((EAO-E)**2.)/float(E)
       
       # create rows
       records.append( (scale, locality, 'AreaWeighted',
final, AW) )
       records.append( (scale, locality, 'EqualArea',
final, EA) )

cur.execute("CREATE TABLE metric_3( scale int, locality
double, runtype string, final double, chisq double)")

  68
 
cur.executemany("INSERT INTO metric_3 VALUES (?,?,?,?,?)",
records)
cur.execute("CREATE INDEX metric_3_index ON metric_3(scale,
locality, runtype, final)")
db.commit()

print 'Calculate Chisquare on metric 3...'

cur.executescript(
"""
CREATE TABLE chisquare_m3( scale int, locality double,
runtype string, x2 double, k int);

INSERT INTO chisquare_m3
SELECT scale, locality, runtype, SUM( chisq ) AS calc,
(COUNT(*)-1) AS degfree
FROM metric_3
GROUP BY scale, locality, runtype;

CREATE INDEX chisquare_m3_index ON chisquare_m3( scale,
locality, runtype);
""")
db.commit()
db.close() 
Asset Metadata
Creator Davis, Austin V. (author) 
Core Title Testing LANDIS-II to stochastically model spatially abstract vegetation trends in the contiguous United States 
Contributor Electronically uploaded by the author (provenance) 
School College of Letters, Arts and Sciences 
Degree Master of Science 
Degree Program Geographic Information Science and Technology 
Publication Date 09/13/2013 
Defense Date 08/06/2013 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag LANDIS-II,OAI-PMH Harvest,spatial modeling,spatial sensitivity testing 
Format application/pdf (imt) 
Language English
Advisor Longcore, Travis R. (committee chair), Kemp, Karen K. (committee member), Pultar, Edward (committee member) 
Creator Email austinda@usc.edu,austinvdavis@gmail.com 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c3-328099 
Unique identifier UC11293580 
Identifier etd-DavisAusti-2040.pdf (filename),usctheses-c3-328099 (legacy record id) 
Legacy Identifier etd-DavisAusti-2040.pdf 
Dmrecord 328099 
Document Type Thesis 
Format application/pdf (imt) 
Rights Davis, Austin V. 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law.  Electronic access is being provided by the USC Libraries in agreement with the a... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Abstract (if available)
Abstract The second generation of the Landscape Disturbance and Succession model (LANDIS-II) is frequently used to understand ecological succession on the landscape. LANDIS-II is an important simulation tool but it can be difficult to parameterize properly in data-poor regions. By examining the spatial sensitivity of LANDIS-II, the model’s users will have an improved understanding of the data required to properly implement the model. Existing studies have tested the ecological sensitivity of LANDIS-II in local geographic settings, but a robust test of the model's spatial sensitivity has not been completed. This research tested the spatial sensitivity of the LANDIS-II spatially stochastic landscape model using a broad set of vegetation communities found within the contiguous United States. Thirty spatially explicit, equal-area, and area-weighted iterations of the spatial parameters of the LANDIS-II model were run for a series of localities in the contiguous United States, where the areas were defined by the spatial composition of vegetation community values. Ecological attributes were derived from the NatureServe Ecological Systems of the United States dataset. A test of the spatial input parameters of LANDIS-II demonstrated that the model is aspatial under certain conditions. Furthermore, vegetation community interactions may be effectively represented in LANDIS-II by a series of spatially stochastic input rasters 
Tags
LANDIS-II
spatial modeling
spatial sensitivity testing
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button