Close
The page header's logo
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected 
Invert selection
Deselect all
Deselect all
 Click here to refresh results
 Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
The development of object recognition in the newborn brain
(USC Thesis Other) 

The development of object recognition in the newborn brain

doctype icon
play button
PDF
 Download
 Share
 Open document
 Flip pages
 More
 Download a page range
 Download transcript
Copy asset link
Request this asset
Transcript (if available)
Content
 

 

 

 

 

 

  THE
 DEVELOPMENT
 OF
 OBJECT
 RECOGNITION
 IN
 THE
 NEWBORN
 BRAIN
 

 

 

 
by
 

 

 

 
Samantha
 M.
 W.
 Wood
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
A
 Dissertation
 Presented
 to
 the
 
FACULTY
 OF
 THE
 USC
 GRADUATE
 SCHOOL
 
UNIVERSITY
 OF
 SOUTHERN
 CALIFORNIA
 
In
 Partial
 Fulfillment
 of
 the
 
Requirements
 for
 the
 Degree
 
DOCTOR
 OF
 PHILOSOPHY
 
(PSYCHOLOGY)
 

 

 
August
 2017
 

 

 

 
Copyright
 2017
   
   
   
   
   
   
  Samantha
 M.
 W.
 Wood

 

  ii
 
Acknowledgements
 

 
I
 would
 like
 to
 thank
 all
 of
 my
 committee
 members,
 Antoine
 Bechara,
 Toben
 Mintz,
 
Irving
  Biederman,
  Stephen
  Read,
  and
  Laurent
  Itti,
  for
  their
  considerable
  insights
  and
 
guidance.
 In
 particular,
 Antoine
 has
 provided
 valuable
 mentorship
 during
 my
 graduate
 
studies.
 I
 have
 learned
 so
 much
 from
 Antoine
 about
 the
 brain,
 decision-­‐making,
 and
 the
 
general
 field
 of
 academics.
 I
 am
 extremely
 grateful
 for
 his
 time
 and
 support.
 I
 would
 also
 
like
 to
 thank
 my
 collaborators
 Susan
 Schembre,
 Qinghua
 He,
 Lin
 Xiao,
 Jeffrey
 Engelmann,
 
Jason
 Goldman,
 and
 Aditya
 Prasad,
 as
 well
 as
 research
 assistants
 and
 lab
 managers
 who
 
have
 contributed
 to
 my
 research
 efforts:
 Alex
 Hollihan,
 Stephanie
 Castillo,
 and
 Lynette
 Tan.
 
Thank
 you
 to
 the
 friends
 I
 have
 made
 in
 graduate
 school,
 especially
 Vanessa
 Singh,
 who
 has
 
proven
 to
 be
 a
 friend
 across
 careers
 and
 time
 zones.
 
I
 also
 offer
 sincere
 gratitude
 to
 Justin
 Wood
 as
 my
 collaborator,
 partner,
 and
 best
 
friend.
 Justin’s
 infectious
 curiosity
 about
 the
 mind
 is
 inspiring
 to
 experience.
 Throughout
 
my
 time
 in
 graduate
 school,
 Justin
 has
 reminded
 me
 of
 my
 capabilities
 when
 I
 needed
 
encouragement,
 and
 held
 me
 to
 my
 capabilities
 as
 a
 mentor.
 I
 thank
 Justin
 for
 his
 unending
 
support
 and
 for
 helping
 me
 grow
 as
 a
 scholar.
 
Finally,
 I’d
 like
 to
 dedicate
 this
 work
 to
 the
 two
 most
 important
 women
 in
 my
 life.
 
First,
 to
 my
 mother,
 Joan
 McCartan,
 who
 instilled
 in
 me
 a
 love
 of
 learning.
 My
 mother
 
taught
 me
 that
 math
 problems
 are
 puzzles
 to
 unravel,
 that
 books
 can
 transport
 us
 to
 new
 
worlds
 and
 times,
 and
 that
 “smart
 kids
 are
 never
 bored.”
 From
 my
 mother,
 I
 learned
 that
 
“the
 good
 life
 is
 one
 inspired
 by
 love
 and
 guided
 by
 knowledge”
 (Bertrand
 Russell,
 What
 I
 
Believe).
 Second,
 to
 my
 daughter,
 Mackenzie
 Waters
 Wood,
 who
 I
 hope
 will
 be
 inspired
 by
 

 

  iii
 
my
 studies
 in
 psychology
 to
 value
 education
 and
 to
 always
 try
 to
 understand
 others.
 
Mackenzie,
 the
 world
 is
 full
 of
 wonders
 and
 riddles
 waiting
 to
 be
 explored.
 

   
 

 

  iv
 
TABLE
 OF
 CONTENTS
 

 
ABSTRACT
   
   
   
   
   
   
   
   
   
   
   
 1
 

 
CHAPTER
 1:
 Introduction
   
   
   
   
   
   
   
   
   
 2
 

 
CHAPTER
 2:
 
 Newborn
 chicks
 segment
 objects
 from
 backgrounds
 at
 the
 onset
 
 

   
 
 
 
 
 
 
 
 
 
 
 
 of
 vision
   
   
   
   
   
   
   
   
  20
 

  Abstract
   
   
   
   
   
   
   
   
   
  20
 

  Introduction
   
   
   
   
   
   
   
   
   
  21
 

  Methods
   
   
   
   
   
   
   
   
   
  24
 

  Results
   
   
   
   
   
   
   
   
   
  30
 

  Discussion
   
   
   
   
   
   
   
   
   
  34
 

 
CHAPTER
 3:
 The
 development
 of
 background-­‐invariant
 object
 recognition
 in
 
 

 
 
 
 
 
 
 
 
 
 
 
 visually
 naïve
 animals
   
   
   
   
   
   
  37
 

  Abstract
   
   
   
   
   
   
   
   
   
  37
 

  Introduction
   
   
   
   
   
   
   
   
   
  38
 

  Methods
   
   
   
   
   
   
   
   
   
  41
 

  Results
   
   
   
   
   
   
   
   
   
  45
 

  Discussion
   
   
   
   
   
   
   
   
   
  51
 

 
CHAPTER
 4:
 Newborn
 chicks
 generate
 view-­‐invariant
 object
 representations
 
 

 
 
 
 
 
 
 
 
 
 
 from
 sparse
 visual
 input
   
   
   
   
   
   
  53
 

  Abstract
   
   
   
   
   
   
   
   
   
  53
 

  Introduction
   
   
   
   
   
   
   
   
   
  54
 

  Methods
   
   
   
   
   
   
   
   
   
  57
 

  Results
   
   
   
   
   
   
   
   
   
  61
 

  Discussion
   
   
   
   
   
   
   
   
   
  75
 

 

 

  v
 
CHAPTER
 5:
 Face
 recognition
 in
 newborn
 chicks
 at
 the
 onset
 of
 vision
 
   
  80
 

  Abstract
   
   
   
   
   
   
   
   
   
  80
 

  Introduction
   
   
   
   
   
   
   
   
   
  81
 

  Methods
   
   
   
   
   
   
   
   
   
  85
 

  Results
   
   
   
   
   
   
   
   
   
  89
 

  Discussion
   
   
   
   
   
   
   
   
   
  94
 

 
CHAPTER
 6:
 A
 slowness
 constraint
 on
 the
 development
 of
 view-­‐invariant
 
 

 
 
 
 
 
 
 
 
 
 
 face
 recognition
   
 
   
   
   
   
   
   
  99
 

  Abstract
   
   
   
   
   
   
   
   
   
  99
 

  Introduction
   
   
   
   
   
   
   
   
   
 
 
 
 
 
 
 
 
 
 
 
 100
 

  Experiment
 1
 
   
   
   
   
   
   
   
   
 
 
 
 
 
 
 
 
 
 
 
 103
 

  Experiment
 2
 
   
   
   
   
   
   
   
   
 
 
 
 
 
 
 
 
 
 
 
 110
 

  Experiment
 3
 
   
   
   
   
   
   
   
   
 
 
 
 
 
 
 
 
 
 
 
 112
 

  Experiment
 4
 
   
   
   
   
   
   
   
   
 
 
 
 
 
 
 
 
 
 
 
 119
 

  General
 Discussion
   
   
   
   
   
   
   
   
 
 
 
 
 
 
 
 
 
 
 
 121
 

 
CHAPTER
 7:
 Conclusion
   
   
   
   
   
   
   
   
 
 
 
 
 
 
 
 
 
 
 
 124
 

 
REFERENCES
 
   
   
   
   
   
   
   
   
   
 
 
 
 
 
 
 
 
 
 
 
 133
 

 

 

  1
 
Abstract
 
A
 central
 goal
 in
 psychology
 and
 neuroscience
 is
 to
 understand
 how
 biological
 visual
 
systems
  recognize
  objects.
  However,
  the
  developmental
  origins
  of
  object
  recognition
 
remain
 poorly
 understood.
 What
 object
 recognition
 abilities
 are
 present
 at
 the
 onset
 of
 
vision,
 and
 what
 visual
 experiences
 are
 necessary
 to
 develop
 these
 abilities?
 To
 address
 
these
  questions,
  my
  dissertation
  used
  an
  automated
  controlled-­‐rearing
  method
  with
 
newborn
 chicks.
 Chapters
 2
 and
 3
 examined
 the
 development
 of
 background-­‐invariant
 
object
 recognition
 in
 newborns.
 These
 studies
 showed
 that
 newborn
 chicks
 can
 begin
 
building
 background-­‐invariant
 object
 representations
 at
 the
 onset
 of
 vision,
 and
 that
 the
 
development
 of
 this
 ability
 requires
 visual
 experience
 with
 objects
 moving
 on
 patterned
 
backgrounds.
  Chapter
  4
  demonstrated
  that
  newborn
  chicks
  can
  begin
  building
  view-­‐
invariant
  representations
  of
  objects
  at
  the
  onset
  of
  vision,
  and
  that
  these
  abstract
 
representations
 can
 be
 built
 from
 sparse
 visual
 input
 (as
 little
 as
 three
 views
 of
 an
 object).
 
Chapter
 5
 showed
 that
 newborn
 chicks
 are
 capable
 of
 face
 recognition
 at
 the
 onset
 of
 
vision.
  Finally,
  Chapter
  6
  showed
  that
  newborn
  chicks
  can
  build
  view-­‐invariant
  face
 
representations,
 and
 that
 the
 development
 of
 this
 ability
 requires
 visual
 experience
 with
 
slowly
 moving
 faces.
 Together
 these
 studies
 show
 that
 newborns
 can
 develop
 high-­‐level
 
visual
 recognition
 abilities
 rapidly,
 within
 the
 first
 few
 days
 of
 life.
 However,
 these
 abilities
 
do
 not
 develop
 automatically;
 rather,
 the
 development
 of
 high-­‐level
 vision
 requires
 visual
 
experience
 with
 a
 natural
 visual
 environment,
 containing
 objects
 and
 faces
 that
 move
 
slowly
  over
  time
  across
  patterned
  backgrounds.
  These
  results
  begin
  to
  reveal
  how
 
foundational
 visual
 abilities
 emerge
 in
 newborn
 brains
 as
 a
 function
 of
 specific
 visual
 
experiences.
 
   
 

 

  2
 
Chapter
 1:
 Introduction
 

 

 Upon
 first
 opening
 their
 eyes,
 a
 newborn
 faces
 a
 monumental
 computational
 task:
 
they
 must
 transform
 streams
 of
 unstructured
 sensory
 input
 into
 meaningful
 information
 
about
 the
 surrounding
 environment.
 Although
 this
 task
 feels
 effortless
 to
 human
 adults,
 the
 
underlying
  mental
  computations
  are
  highly
  complex.
  Visual
  input
  to
  retinal
  cells
  is
 
quantitative
 and
 continuous,
 but
 our
 percepts
 of
 objects
 are
 qualitative
 and
 abstract.
 We
 
perceive
 discrete,
 segmented
 objects
 that
 persist
 through
 visual
 transformations.
 As
 a
 
result,
 understanding
 the
 initial
 state
 of
 postnatal
 vision
 and
 the
 role
 of
 experience
 in
 
shaping
  visual
  cognition
  is
  a
  central
  question
  in
  philosophy,
  cognitive
  science,
  and
 
neuroscience.
  While
  prior
  research
  has
  revealed
  important
  insights
  into
  the
  prenatal
 
development
 of
 neural
 structures
 and
 the
 visual
 abilities
 of
 infants
 with
 months
 of
 visual
 
experience,
  little
  is
  known
  about
  how
  visual
  perception
  and
  cognition
  emerge
  in
  the
 
newborn
 brain.
 
In
  order
  to
  perceive
  objects
  successfully,
  newborns
  must
  solve
  at
  least
  two
 
problems.
 First,
 the
 newborn
 visual
 system
 must
 parse
 objects
 from
 the
 surrounding
 scene.
 
Visual
 input
 is
 comprised
 of
 regions
 with
 different
 luminance,
 hue,
 and
 texture
 values
 that
 
must
 be
 segmented
 into
 meaningful
 entities.
 Second,
 the
 visual
 system
 must
 recognize
 
objects
  across
  novel
  viewing
  situations.
  This
  latter
  ability,
  known
  as
  invariant
  object
 
recognition
1
,
  underlies
  the
  perception
  that
  an
  object’s
  identity
  persists
  across
  novel
 
surroundings,
 viewpoint
 angles,
 lighting
 conditions,
 object
 positions,
 etc.
 These
 abilities
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
In this dissertation, I use “invariant” to mean tolerant to substantial image variation. A
representation may be invariant by this definition without being fully invariant (i.e., recognizable
from any novel viewing condition without performance costs).  

 

  3
 
require
 abstraction
 insofar
 as
 they
 imply
 knowledge
 beyond
 physical
 similarities
 between
 
images
 of
 an
 object.
 Visual
 parsing
 and
 invariant
 recognition
 allow
 individuals
 to
 make
 
inferences
 about
 the
 entities
 in
 the
 environment
 that
 give
 rise
 to
 the
 immediate
 visual
 
input
 (Helmholtz
 &
 Southall,
 1924;
 Hochberg,
 1978;
 Spelke,
 1990).
 
Psychologists
 have
 debated
 the
 origins
 of
 object
 perception
 for
 nearly
 a
 century.
 
Classical
 accounts
 of
 the
 development
 of
 object
 perception
 offered
 two
 competing
 theories.
 
Gestalt
 theory
 posited
 that
 the
 visual
 system
 interprets
 perceptual
 information
 by
 inferring
 
the
 simplest
 and
 most
 regular
 external
 environment
 that
 is
 consistent
 with
 the
 given
 visual
 
input
 (Koffka,
 1935;
 Köhler,
 1929).
 For
 example,
 objects
 in
 the
 world
 tend
 to
 be
 coherent
 
and
  regular,
  rather
  than
  fragmented
  and
  disorganized.
  Because
  Gestalt
  psychologists
 
believed
 that
 these
 principles
 of
 visual
 perception
 arose
 from
 an
 inherent
 tendency
 of
 
neurons
 to
 expend
 minimum
 energy
 (Koffka,
 1935),
 they
 maintained
 that
 newborns
 must
 
also
 perceive
 an
 organized
 and
 coherent
 world.
 Conversely,
 empiricist
 theories
 argued
 that
 
the
  newborn
  visual
  system
  cannot
  initially
  make
  sense
  of
  visual
  input.
  Specifically,
 
empiricists
  claimed
  that
  newborns
  cannot
  transform
  immediate
  visual
  patterns
  into
 
information
 about
 the
 surrounding
 environment
 until
 they
 can
 move
 around
 the
 world
 and
 
manipulate
 objects
 (Berkeley,
 1910;
 Helmholtz
 &
 Southall,
 1924;
 Piaget,
 1952).
 As
 infants
 
act
  upon
  objects,
  they
  learn
  how
  the
  properties
  of
  visual
  input
  map
  onto
  physical
 
properties
  of
  objects.
  These
  competing
  theories
  have
  sparked
  heated
  debate
  in
  the
 
developmental
 literature
 about
 the
 origins
 of
 object
 perception.
 What
 mechanisms
 govern
 
the
 perception
 of
 objects
 at
 the
 onset
 of
 vision,
 and
 how
 are
 those
 mechanisms
 shaped
 by
 
experience?
 
 

 

 

  4
 
Summary
 of
 Previous
 Research
 
Research
 with
 human
 infants
 

  Studies
  of
  parsing
  in
  human
  infants
  have
  generally
  focused
  on
  the
  boundaries
 
between
 two
 objects.
 In
 one
 popular
 paradigm,
 infants
 are
 presented
 with
 two
 adjacent
 
objects
 that
 have
 an
 aligned
 edge.
 A
 researcher
 then
 grasps
 and
 pulls
 on
 one
 of
 the
 objects
 
and
 either
 both
 objects
 move
 together
 as
 a
 single
 unit
 (a
 “move-­‐together
 event”)
 or
 the
 
pulled
 object
 moves
 while
 the
 other
 object
 remains
 stationary
 (a
 “move-­‐apart
 event”).
 If
 
infants
 can
 successfully
 segment
 the
 two
 objects,
 then
 they
 should
 expect
 a
 move-­‐apart
 
event.
 In
 another
 testing
 paradigm,
 infants
 are
 shown
 a
 partly
 occluded
 object
 moving
 back
 
and
 forth.
 If
 infants
 interpret
 the
 display
 as
 a
 single
 coherent
 object
 moving
 behind
 an
 
occluder,
 then
 they
 should
 expect
 to
 see
 a
 single
 continuous
 object
 when
 the
 occluder
 is
 
removed,
 rather
 than
 two
 separate
 objects.
 Studies
 using
 these
 methodologies
 have
 found
 
that
 4-­‐month-­‐old
 infants
 are
 able
 to
 parse
 the
 objects
 in
 these
 displays.
 By
 4
 months
 of
 age,
 
infants
  can
  use
  object
  features
  to
  define
  object
  boundaries
  (Kestenbaum,
  Termine,
  &
 
Spelke,
 1987;
 Needham,
 2000;
 Needham
 &
 Ormsbee,
 2003)
 and
 perceive
 the
 unity
 of
 the
 
visible
  object
  parts
  (Kellman
  &
  Spelke,
  1983).
  Furthermore,
  motion
  is
  particularly
 
informative
  for
  determining
  object
  boundaries
  in
  this
  task
  (Kellman,
  Spelke,
  &
  Short,
 
1986).
  These
  studies
  are
  often
  interpreted
  as
  revealing
  an
  early
  emerging
  ability
  to
 
understand
 boundaries
 within
 a
 scene
 and
 perceive
 segregation
 of
 figure
 and
 ground.
 
However,
 to
 my
 knowledge,
 infant
 studies
 have
 not
 directly
 tested
 infants’
 ability
 to
 parse
 
objects
 from
 background
 scenes
 or
 visual
 clutter.
 In
 my
 dissertation,
 I
 examine
 directly
 
whether
 newborn
 animals
 are
 capable
 of
 segmenting
 objects
 from
 backgrounds
 at
 the
 
onset
 of
 vision.
 

 

  5
 

  In
 contrast
 to
 studies
 of
 visual
 parsing,
 only
 a
 few
 studies
 have
 examined
 invariant
 
object
 recognition
 in
 young
 human
 infants,
 and
 these
 studies
 have
 produced
 mixed
 results
 
(possibly
  due
  to
  differing
  task
  demands).
  An
  early
  study
  reported
  that
  9-­‐month-­‐old
 
infants—but
 not
 6-­‐month-­‐old
 infants—could
 use
 object
 shape
 alone
 to
 recognize
 a
 familiar
 
object
  (Ruff,
  1978).
  Conversely,
  Soska
  &
  Johnson
  (2008)
  found
  evidence
  for
  three-­‐
dimensional
 shape
 representations
 in
 6-­‐month-­‐old
 infants.
 After
 being
 habituated
 to
 an
 
object
 rotating
 15°,
 the
 6-­‐month-­‐old
 infants
 perceived
 the
 object
 as
 a
 solid
 (complete)
 
volume
 rather
 than
 a
 hollow
 form.
 Other
 studies
 have
 reported
 that
 4-­‐month-­‐old
 infants
 
can
 recognize
 objects
 from
 novel
 viewpoints
 if
 the
 original
 presentation
 of
 the
 object
 
provided
 kinetic
 depth
 information
 (Kellman,
 1984;
 Kellman
 &
 Short,
 1987;
 Owsley,
 1983).
 
These
  studies
  suggest
  invariant
  object
  recognition,
  like
  object
  segmentation,
  relies
  on
 
motion
 information.
 In
 addition
 to
 changes
 in
 viewpoints,
 visual
 systems
 must
 also
 learn
 
invariance
 to
 other
 transformations
 such
 as
 changes
 in
 illumination.
 A
 recent
 study
 found
 
that
 3-­‐
 to
 4-­‐month-­‐old
 infants
 are
 highly
 sensitive
 to
 changes
 in
 pixel
 intensity
 caused
 by
 
minute
 illumination
 changes,
 but
 by
 7-­‐
 to
 8-­‐months
 of
 age
 infants
 become
 less
 sensitive
 to
 
illumination
 changes
 and
 more
 sensitive
 to
 changes
 in
 objects’
 surface
 properties
 (Yang,
 
Kanazawa,
 Yamaguchi,
 &
 Motoyoshi,
 2015)
 

  While
  studies
  of
  human
  infants
  have
  provided
  important
  insights
  about
  the
 
development
 of
 object
 perception
 early
 in
 life,
 these
 studies
 are
 subject
 to
 a
 number
 of
 
limitations.
 First,
 studies
 of
 human
 infants
 are
 typically
 able
 to
 collect
 only
 a
 small
 amount
 
of
  test
  data
  per
  subject.
  Thus,
  it
  has
 generally
  not
  been
  possible
  to
  study
  perceptual
 
development
 in
 young
 infants
 with
 high
 precision.
 In
 addition,
 high
 measurement
 error
 
(colloquially,
 “noise”)
 as
 well
 as
 flexibility
 in
 stimuli
 presentation,
 data
 coding,
 and
 subject
 

 

  6
 
exclusion
 produce
 high
 false-­‐positive
 rates
 and
 reduce
 replicability
 of
 findings
 (Loken
 &
 
Gelman,
 2017;
 Simmons,
 Nelson,
 &
 Simonsohn,
 2011).
 Second,
 human
 infants
 cannot
 be
 
raised
 in
 controlled
 environments
 from
 birth.
 Even
 infants
 who
 are
 just
 a
 few
 months
 old
 
have
 already
 acquired
 hundreds
 of
 hours
 of
 patterned
 visual
 experience
 (Johnson,
 Amso,
 &
 
Slemmer,
 2003).
 Thus,
 studies
 of
 human
 infants
 are
 unable
 to
 examine
 (1)
 the
 initial
 state
 
of
 object
 perception
 (i.e.,
 the
 state
 of
 object
 recognition
 machinery
 at
 the
 onset
 of
 vision)
 
and
 (2)
 how
 visual
 experience
 shapes
 that
 initial
 state
 over
 time.
 

 
Studies
 of
 patients
 recovering
 from
 blindness
 

  Another
  approach
  to
  understanding
  the
  development
  of
  object
  perception
  has
 
focused
  on
  congenitally
  blind
  individuals
  who
  have
  had
  their
  sight
  restored.
  Project
 
Prakash
  (Sinha,
  2013)
  treats
  blind
  individuals
  in
  underprivileged
  areas
  of
  India
  and
 
subsequently
 tests
 how
 these
 individuals
 make
 sense
 of
 the
 new
 bombardment
 of
 visual
 
input.
 In
 one
 such
 study,
 newly-­‐sighted
 patients
 (2
 weeks
 to
 3
 months
 post-­‐surgery)
 were
 
tested
 on
 their
 ability
 to
 parse
 objects
 that
 were
 displayed
 as
 static
 images
 (Ostrovsky,
 
Meyers,
 Ganesh,
 Mathur,
 &
 Sinha,
 2009).
 Subjects
 were
 unable
 to
 parse
 simple,
 static
 
illustrations
 of
 overlapping
 shapes
 as
 well
 as
 real-­‐world
 images
 of
 objects.
 However,
 when
 
the
  stimuli
  incorporated
  motion
  cues,
  the
  patients
  were
  able
  to
  parse
  the
  displays
 
successfully.
  Moreover,
  following
  a
  longer
  delay
  post-­‐treatment
  (10-­‐18
  months
  post-­‐
surgery),
 the
 patients
 showed
 significant
 improvement
 in
 parsing
 static
 images,
 suggesting
 
that
 the
 visual
 system
 can
 learn
 to
 parse
 scenes
 through
 natural
 visual
 experience.
 These
 
findings
 reinforce
 the
 results
 from
 studies
 of
 human
 infants
 suggesting
 that
 motion
 is
 a
 
critical
 cue
 for
 the
 visual
 system
 to
 learn
 how
 to
 parse
 objects
 in
 scenes.
 

 

  7
 

  The
  research
  from
  Project
  Prakash
  elegantly
  joins
  humanitarian
  efforts
  with
 
progress
 in
 basic
 science;
 however,
 there
 are
 limitations
 to
 studies
 of
 congenitally
 blind
 
patients.
 First,
 like
 human
 infants,
 patients
 recovering
 from
 blindness
 acquire
 weeks
 to
 
months
 of
 visual
 experiences
 prior
 to
 the
 experiments.
 Thus,
 it
 is
 not
 possible
 to
 determine
 
whether
 the
 visual
 abilities
 found
 during
 testing
 are
 present
 at
 the
 onset
 of
 vision
 or
 
learned
 from
 experience
 with
 a
 natural
 visual
 world.
 Second,
 visual
 deprivation
 leads
 to
 
cross-­‐modal
  reorganization
  of
  the
  visual
  cortex
  (Collignon
  et
  al.,
  2015;
  Maidenbaum,
 
Abboud,
 &
 Amedi,
 2014).
 Therefore,
 in
 blind
 patients,
 the
 visual
 cortex
 has
 been
 shaped
 by
 
the
 natural
 statistics
 of
 perceptual
 input
 from
 other
 modalities.
 The
 initial
 state
 of
 vision
 in
 
a
 blind
 patient
 is
 not
 equivalent
 to
 the
 initial
 state
 of
 vision
 in
 a
 newborn.
 

 
Newborn
 chicks
 as
 a
 model
 system
 for
 studying
 the
 development
 of
 object
 
perception
 

  Animal
  models
  provide
  a
  critical
  tool
  in
  the
  investigation
  of
  visual
  processing
 
machinery.
 To
 date,
 nonhuman
 primates
 have
 been
 the
 model
 of
 choice
 for
 studying
 visual
 
cognition
 because
 their
 visual
 systems
 closely
 mirror
 our
 own.
 Studies
 of
 primates
 have
 
revealed
 many
 important
 characteristics
 about
 object
 recognition,
 including
 the
 nature
 of
 
its
 underlying
 computations
 and
 the
 architecture
 of
 its
 neural
 substrates
 (reviewed
 by
 
DiCarlo,
  Zoccolan,
  &
  Rust,
  2012;
  see
  also
  Yamins
  et
  al.,
  2014).
  There
  is
  also
  growing
 
evidence
  that
  rats
  and
  pigeons
  may
  be
  promising
  animal
  models
  for
  studying
  object
 
recognition
 because
 they,
 too,
 have
 invariant
 object
 recognition
 abilities
 (Alemi-­‐Neissi,
 
Rosselli,
 &
 Zoccolan,
 2013;
 Soto,
 Siow,
 &
 Wasserman,
 2012;
 Tafazoli,
 Di
 Filippo,
 &
 Zoccolan,
 
2012;
 Wasserman
 &
 Biederman,
 2012;
 Zoccolan,
 Oertelt,
 DiCarlo,
 &
 Cox,
 2009).
 These
 

 

  8
 
animal
 models
 enable
 experimental
 techniques
 that
 are
 difficult
 to
 perform
 with
 primates.
 
For
 instance,
 rat
 studies
 allow
 the
 application
 of
 a
 wide
 range
 of
 techniques
 including
 
molecular
 and
 histological
 approaches,
 two-­‐photon
 imaging,
 and
 large-­‐scale
 recordings
 
from
 multiple
 brain
 areas.
 However,
 while
 primates,
 rodents,
 and
 pigeons
 have
 many
 
advantages
 as
 model
 systems,
 these
 animals
 are
 not
 well
 suited
 for
 studying
 the
 initial
 state
 
of
 object
 recognition
 because
 they
 cannot
 be
 raised
 in
 strictly
 controlled
 environments
 
from
 birth.
2

 

  These
 three
 animal
 models
 all
 require
 parental
 care.
 Thus,
 after
 birth
 or
 hatching,
 
the
 newborns
 must
 be
 raised
 in
 environments
 that
 contain
 a
 caregiver.
 Experience
 with
 
this
 caregiver
 could
 significantly
 shape
 the
 newborn’s
 object
 recognition
 mechanisms
 by
 
providing
 clues
 about
 which
 retinal
 image
 changes
 are
 identity-­‐preserving
 transformations
 
and
 which
 are
 not.
 Indeed,
 studies
 of
 monkeys
 and
 humans
 show
 that
 object
 recognition
 
machinery
  changes
  rapidly
  in
  response
  to
  statistical
  redundancies
  in
  the
  organism’s
 
environment
 (e.g.,
 Cox,
 Meier,
 Oertelt,
 &
 DiCarlo,
 2005;
 Wallis
 &
 Bülthoff,
 2001),
 with
 
significant
 neuronal
 rewiring
 occurring
 in
 as
 little
 as
 one
 hour
 of
 experience
 with
 an
 
altered
 visual
 world
 (Li
 &
 DiCarlo,
 2008,
 2010).
 There
 is
 also
 extensive
 behavioral
 evidence
 
that
 primates
 begin
 encoding
 statistical
 redundancies
 soon
 after
 birth
 (Bulf,
 Johnson,
 &
 
Valenza,
 2011;
 Kirkham,
 Slemmer,
 &
 Johnson,
 2002;
 Saffran,
 Aslin,
 &
 Newport,
 1996).
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
Rats and mice can be reared in darkness. However, dark rearing prevents complete microcircuit
maturation in the visual cortex (Ko, Mrsic-Flogel, & Hofer, 2014), produces abnormalities in
local cortical connectivity (Ishikawa, Komatsu, & Yoshimura, 2014), and alters the long-term
development of GABAergic transmission (Morales, Choi, & Kirkwood, 2002). Further, rats and
mice cannot be raised from birth in controlled, lighted environments (i.e., environments devoid
of objects and agents). In contrast, chicks can be raised in controlled, lighted environments
immediately after hatching. Thus, with chicks, it is possible to examine how patterned visual
input drives the emergence of object recognition at the beginning of the post-embryonic phase of
the animal’s life cycle.

 

  9
 
These
 findings
 allow
 for
 the
 possibility
 that
 even
 early
 emerging
 object
 recognition
 abilities
 
(e.g.,
 abilities
 emerging
 days,
 weeks,
 or
 months
 after
 birth)
 are
 learned
 from
 experience
 
with
 objects
 early
 in
 postnatal
 life.
 
 

  Analyzing
 the
 initial
 state
 of
 visual
 cognition
 therefore
 requires
 a
 newborn
 animal
 
model
 with
 two
 characteristics:
 (1)
 the
 animal
 can
 develop
 visual
 cognitive
 abilities
 and
 
(2)
 the
 animal’s
 visual
 environment
 can
 be
 strictly
 controlled
 immediately
 after
 the
 post-­‐
embryonic
  phase
  of
  their
  life
  cycle
  (i.e.,
  to
  prevent
  learning
  from
  visual
  experience).
 
Newborn
  chicks
  meet
  both
  of
  these
  criteria.
  First,
  chicks
  develop
  high-­‐level
  object
 
recognition
 abilities
 rapidly
 (Wood,
 2013,
 2015).
 For
 example,
 chicks
 can
 build
 a
 view-­‐
invariant
 representation
 of
 the
 first
 object
 they
 see
 in
 their
 life
 (Wood,
 2013,
 2015).
 Chicks
 
also
 have
 other
 advanced
 object
 recognition
 abilities,
 including
 the
 ability
 to
 bind
 color
 and
 
shape
  features
  into
  integrated
  color-­‐shape
  units
  at
  the
  onset
  of
  vision
  (Wood,
  2014).
 
Second,
 chicks
 can
 be
 raised
 from
 birth
 in
 environments
 devoid
 of
 objects
 and
 caregivers
 
(Vallortigara,
  2012;
  Wood,
  2013).
  Unlike
  newborn
  primates,
  rodents,
  and
  pigeons,
 
newborn
 chicks
 do
 not
 require
 parental
 care
 and
 are
 immediately
 able
 to
 explore
 their
 
environment.
 
 

  In
 addition,
 chicks
 imprint
 to
 objects
 seen
 soon
 after
 hatching
 (Bateson,
 2000;
 Horn,
 
2004).
 Chicks
 develop
 a
 strong
 attachment
 to
 their
 imprinted
 objects,
 and
 will
 attempt
 to
 
spend
 most
 of
 their
 time
 with
 the
 objects.
 This
 imprinting
 behavior
 can
 be
 used
 to
 test
 
chicks’
 object
 recognition
 abilities
 without
 supervised
 training
 (Bolhuis,
 1999;
 Regolin
 &
 
Vallortigara,
 1995;
 Wood,
 2013).
 
 

  Notably,
 studies
 of
 chicks
 can
 also
 inform
 human
 visual
 development
 because
 birds
 
and
 mammals
 use
 similar
 neural
 mechanisms.
 At
 a
 macro-­‐level,
 avian
 and
 mammalian
 

 

  10
 
brains
 share
 the
 same
 large-­‐scale
 organizational
 principles:
 both
 are
 modular,
 small-­‐world
 
networks
  with
  a
  connective
  core
  of
  hub
  nodes
  that
  includes
  prefrontal-­‐like
  and
 
hippocampal
 structures
 (Shanahan,
 Bingman,
 Shimizu,
 Wild,
 &
 Gunturkun,
 2013).
 Further,
 
avian
  and
  mammalian
  brains
  have
  homologous
  cortical-­‐like
  cells
  and
  circuits
  for
 
processing
 sensory
 information
 (Dugas-­‐Ford,
 Rowell,
 &
 Ragsdale,
 2012;
 Jarvis
 et
 al.,
 2005;
 
Karten,
 2013;
 Wang,
 Brzozowska-­‐Prechtl,
 &
 Karten,
 2010).
 Although
 these
 neural
 circuits
 
are
  organized
  differently
  in
  birds
  and
  mammals
  (nuclear
  versus
  layered
  organization,
 
respectively),
 they
 share
 many
 similarities
 in
 terms
 of
 cell
 morphology,
 the
 connectivity
 
pattern
 of
 the
 input
 and
 output
 neurons,
 gene
 expression,
 and
 function
 (Butler,
 1994;
 
Karten,
 1991,
 1997;
 Karten
 &
 Shimizu,
 1989;
 Medina
 &
 Reiner,
 2000;
 Reiner,
 Yamamoto,
 &
 
Karten,
 2005;
 Saini
 &
 Leppelsack,
 1981).
 For
 instance,
 in
 chicken
 neural
 circuitry,
 sensory
 
inputs
 are
 organized
 in
 a
 radial
 columnar
 manner,
 with
 lamina
 specific
 cell
 morphologies,
 
recurrent
 axonal
 loops,
 and
 re-­‐entrant
 pathways,
 typical
 of
 layers
 2–5a
 of
 mammalian
 
neocortex
 (reviewed
 by
 Karten,
 2013).
 Similarly,
 long
 descending
 telencephalic
 efferents
 in
 
chickens
 contribute
 to
 the
 recurrent
 axonal
 connections
 within
 the
 column,
 akin
 to
 layers
 
5b
  and
  6
  of
  the
  mammalian
  neocortex.
  The
  avian
  visual
  wulst
  also
  has
  circuitry
  and
 
physiological
 properties
 that
 are
 similar
 to
 the
 mammalian
 visual
 cortex
 (Karten,
 1969;
 
Karten,
 2013).
 For
 example,
 like
 the
 cat
 and
 monkey
 visual
 cortex,
 the
 visual
 wulst
 includes
 
precise
 retinotopic
 organization,
 selectivity
 for
 orientation,
 and
 selectivity
 for
 direction
 of
 
movement
 (Pettigrew
 &
 Konishi,
 1976).
 Together,
 these
 studies
 indicate
 that
 birds
 and
 
mammals
 use
 homologous
 neural
 circuits
 to
 process
 visual
 information.
 Thus,
 controlled-­‐
rearing
  experiments
  with
  chicks
  can
  be
  used
  to
  inform
  the
  development
  of
  vision
  in
 
humans.
 
 

 

  11
 

  Finally,
 while
 chickens
 have
 less
 advanced
 visual
 systems
 than
 humans,
 this
 should
 
not
 be
 seen
 as
 a
 problem.
 When
 attempting
 to
 understand
 a
 particular
 phenomenon,
 it
 is
 
often
 valuable
 to
 use
 the
 simplest
 system
 that
 demonstrates
 the
 properties
 of
 interest.
 
Pioneering
 research
 in
 neuroscience
 and
 genetics
 has
 relied
 heavily
 on
 this
 strategy—for
 
example,
 researchers
 have
 used
 Aplysia
 to
 study
 the
 physiological
 basis
 of
 memory
 storage
 
in
 neurons
 (e.g.,
 Kandel,
 2007),
 C.
 Elegans
 to
 study
 the
 mechanisms
 of
 molecular
 and
 
developmental
 biology
 (e.g.,
 Brenner,
 1974),
 and
 Drosophila
 to
 study
 the
 mechanisms
 of
 
genetics
 (e.g.,
 Bellen,
 Tong,
 &
 Tsuda,
 2010).
 In
 a
 similar
 vein,
 the
 study
 of
 newborn
 chicks
 
can
  offer
  an
  important
  window
  onto
  the
  emergence
  of
  high-­‐level
  visual
  abilities
  like
 
invariant
 object
 recognition.
 
 

 
Using
 automated
 controlled
 rearing
 to
 explore
 the
 origins
 of
 object
 perception
 

  Historically,
  newborn
  subjects’
  behavior
  has
  been
  quantified
  through
  direct
 
observation
 by
 trained
 researchers.
 While
 direct
 observation
 has
 revealed
 many
 important
 
insights
 about
 human
 development,
 this
 approach
 has
 limitations:
 researchers
 can
 only
 
observe
 a
 small
 number
 of
 subjects
 simultaneously
 and
 there
 are
 constraints
 on
 the
 extent
 
and
 resolution
 of
 these
 observations.
 

  Recent
  technological
  advances
  in
  automated
  image-­‐based
  tracking
  provide
  a
 
solution
 to
 these
 limitations
 by
 allowing
 researchers
 to
 collect
 large
 amounts
 of
 precise
 and
 
accurate
 behavioral
 data
 (Dell
 et
 al.,
 2014).
 Further,
 image-­‐based
 tracking
 uses
 a
 digital
 
recording
 of
 the
 animal’s
 behavior,
 which
 maintains
 an
 objective
 view
 of
 events.
 This
 
increases
 the
 repeatability
 of
 analyses,
 while
 allowing
 subjects
 to
 be
 tracked
 with
 high
 
spatiotemporal
 resolution.
 Finally,
 and
 perhaps
 most
 importantly,
 automated
 approaches
 

 

  12
 
eliminate
 the
 possibility
 of
 experimenter
 bias
 (e.g.,
 bias
 that
 may
 occur
 when
 coding
 the
 
subject’s
 behavior,
 presenting
 stimuli
 to
 the
 subject,
 or
 deciding
 whether
 to
 include
 the
 
subject
 in
 the
 final
 analysis).
 

  The
  automated
  controlled-­‐rearing
  method
  allows
  researchers
  to
  raise
  newborn
 
chicks
 for
 several
 weeks
 within
 controlled-­‐rearing
 chambers
 (for
 details
 see
 Wood,
 2013).
 
The
  chambers
  track
  and
  record
  all
  of
  the
  chicks’
  behavior
  (9
  samples/second,
  24
 
hours/day,
 7
 days/week),
 providing
 a
 complete
 digital
 record
 of
 each
 subject’s
 behavior
 
across
 their
 lifespan.
 This
 technique
 produces
 hundreds
 of
 hours
 of
 data
 for
 each
 subject,
 
allowing
  researchers
  to
  measure
  chicks’
  emerging
  visual-­‐cognitive
  abilities
  with
  high
 
precision.
 
 For
 example,
 the
 studies
 in
 this
 dissertation
 contain
 a
 combined
 25,200
 hours
 of
 
test
 data.
 In
 contrast,
 previous
 manual
 testing
 approaches
 have
 typically
 collected
 only
 5-­‐
10
 minutes
 of
 test
 data
 from
 each
 newborn
 subject
 (e.g.,
 Martinho
 &
 Kacelnik,
 2016;
 
Mascalzoni,
 Regolin,
 &
 Vallortigara,
 2010;
 Regolin,
 Rugani,
 Stancher,
 &
 Vallortigara,
 2011;
 
Regolin
 &
 Vallortigara,
 1995;
 Rosa-­‐Salva,
 Grassi,
 Lorenzi,
 Regolin,
 &
 Vallortigara,
 2016;
 
Rosa-­‐Salva,
 Regolin,
 &
 Vallortigara,
 2010;
 Vallortigara,
 Regolin,
 &
 Marconato,
 2005).
 The
 
smaller
  amount
  of
  data
  collection
  in
  manual
  approaches
  does
  not
  permit
  analyses
  of
 
individual
 subjects’
 performance
 levels.
 It
 also
 generates
 greater
 variability
 (i.e.,
 standard
 
deviation
 sizes)
 in
 the
 collected
 data,
 which
 can
 produce
 false
 positives
 and
 obscure
 true
 
effects.
 

  Importantly,
 the
 controlled-­‐rearing
 chambers
 also
 make
 it
 possible
 to
 control
 all
 of
 
the
 chicks’
 visual
 object
 experiences.
 The
 chambers
 contain
 no
 real-­‐world
 (solid,
 bounded)
 
objects,
 and
 object
 stimuli
 are
 presented
 to
 the
 chick
 by
 projecting
 virtual
 objects
 onto
 two
 

 

  13
 
display
 walls
 situated
 on
 opposite
 sides
 of
 the
 chamber.
 Thus,
 the
 chicks’
 visual
 object
 
experiences
 are
 limited
 to
 the
 virtual
 objects
 presented
 on
 the
 display
 walls.
 
 
Research
 using
 this
 automated
 controlled-­‐rearing
 method
 with
 newborn
 chicks
 has
 
revealed
 impressive
 visuo-­‐cognitive
 abilities
 at
 the
 onset
 of
 vision.
 Newborn
 chicks
 that
 are
 
raised
 with
 a
 single
 object
 seen
 from
 a
 limited
 range
 of
 viewpoints
 are
 able
 to
 perform
 
viewpoint
  invariant
  recognition,
  identifying
  the
  object
  across
  large
  viewpoint
  changes
 
(Wood,
 2013,
 2015).
 Once
 a
 chick
 has
 formed
 a
 representation
 of
 an
 object,
 that
 object
 can
 
be
 recognized
 rapidly
 (Wood
 &
 Wood,
 2016b).
 Moreover,
 newborn
 chicks
 are
 able
 to
 solve
 
the
 visual
 binding
 problem,
 binding
 together
 color
 and
 shape
 features
 into
 integrated
 
representations
 (Wood,
 2014).
 
 
Are
  specific
  visual
  experiences
  necessary
  for
  the
  development
  of
  these
  robust
 
representations?
 Further
 research
 using
 this
 automated
 controlled-­‐rearing
 method
 has
 
revealed
 a
 number
 of
 constraints
 on
 newborns’
 abilities
 to
 build
 object
 representations.
 
For
 example,
 newborn
 chicks
 require
 visual
 experience
 with
 slowly
 changing
 objects
 in
 
order
 to
 build
 invariant
 object
 representations
 (Wood
 &
 Wood,
 2016a).
 In
 Wood
 &
 Wood
 
(2016)
 we
 raised
 chicks
 with
 a
 single
 object
 that
 rotated
 at
 either
 a
 fast,
 medium,
 or
 slow
 
speed.
 Then
 we
 tested
 (1)
 whether
 chicks
 could
 recognize
 the
 object
 when
 shown
 from
 a
 
novel
 viewpoint
 and
 (2)
 whether
 chicks
 preferred
 the
 original
 object
 shown
 from
 the
 
original
 viewpoint
 range
 or
 the
 original
 object
 shown
 from
 a
 novel
 viewpoint
 range.
 We
 
found
 that
 when
 newborn
 chicks
 are
 raised
 with
 an
 object
 that
 moves
 quickly,
 they
 build
 
view-­‐specific
  representations
  that
  fail
  to
  generalize
  to
  novel
  viewpoints
  and
  rotation
 
speeds.
 Conversely,
 when
 newborn
 chicks
 are
 raised
 with
 a
 slowly
 moving
 object,
 they
 

 

  14
 
build
 representations
 that
 are
 specific
 to
 the
 identity
 of
 the
 object
 and
 tolerant
 to
 changes
 
in
 viewpoint
 and
 rotation
 speed.
 
 
Additionally,
  newborn
  chicks
  require
  visual
  experience
  with
  smoothly
  changing
 
objects
 to
 build
 object
 representations
 (Wood,
 2016;
 Wood,
 Prasad,
 Goldman,
 &
 Wood,
 
2016;
 Wood
 &
 Wood,
 under
 review).
 In
 Wood
 &
 Wood
 (under
 review),
 we
 raised
 chicks
 
with
 either
 a
 smoothly
 rotating
 object
 or
 a
 non-­‐smoothly
 rotating
 object
 (i.e.,
 the
 same
 
animation
 frames
 of
 the
 object,
 but
 with
 the
 order
 of
 the
 frames
 scrambled).
 As
 in
 Wood
 &
 
Wood
 (2016),
 we
 tested
 (1)
 whether
 the
 chicks
 recognized
 the
 object
 when
 presented
 from
 
novel
 viewpoints
 and
 (2)
 whether
 the
 chicks
 preferred
 the
 original
 object
 shown
 from
 the
 
original
 viewpoint
 range
 over
 the
 original
 object
 shown
 from
 a
 novel
 viewpoint
 range.
 
When
  chicks
  were
  raised
  with
  an
  object
  that
  moved
  non-­‐smoothly,
  they
  built
 
representations
 that
 were
 less
 view-­‐invariant
 (i.e.,
 less
 selective
 for
 the
 identity
 of
 the
 
object
 and
 less
 tolerant
 to
 changes
 in
 viewpoint).
 Similarly,
 in
 Wood
 et.
 al
 (2016),
 we
 raised
 
chicks
 with
 either
 natural
 (smooth)
 or
 unnatural
 (non-­‐smooth)
 sequences
 of
 images.
 Both
 
sequences
  showed
  the
  same
  images,
  but
  the
  natural
  sequences
  showed
  different
 
viewpoints
 of
 the
 same
 object
 and
 the
 unnatural
 sequences
 showed
 different
 images
 of
 
different
 objects.
 While
 the
 chicks
 that
 were
 raised
 with
 natural
 sequences
 were
 able
 to
 
recognize
 the
 images
 from
 the
 familiar
 sequence,
 the
 chicks
 that
 were
 raised
 with
 the
 
unnatural
 sequences
 could
 not
 recognize
 the
 familiar
 images.
 Thus,
 the
 newborn
 visual
 
system
 is
 calibrated
 to
 operate
 over
 natural
 (smooth)
 visual
 input.
 Overall,
 these
 prior
 
studies
 demonstrate
 that
 newborns
 require
 specific
 types
 of
 visual
 inputs
 to
 learn
 invariant
 
representations
 of
 objects.
 
 

 

  15
 

  The
 goal
 of
 the
 studies
 presented
 in
 this
 dissertation
 is
 to
 explore
 (1)
 what
 object
 
recognition
 abilities
 are
 present
 at
 the
 onset
 of
 vision
 and
 (2)
 what
 visual
 experiences
 are
 
necessary
 to
 develop
 these
 abilities.
 The
 studies
 provide
 evidence
 that
 newborn
 animals
 
can
 build
 abstract
 object
 representations
 that
 generalize
 across
 novel
 viewing
 situations.
 
Thus,
 newborn
 visual
 systems
 are
 capable
 of
 impressive
 visual
 recognition
 abilities
 at
 the
 
onset
 of
 vision.
 However
 these
 abilities
 do
 not
 develop
 automatically.
 Instead,
 specific
 
types
 of
 visual
 experiences
 are
 necessary
 for
 newborn
 chicks
 to
 learn
 how
 to
 recognize
 
objects.
 Therefore,
 I
 also
 present
 evidence
 for
 developmental
 constraints
 on
 object
 and
 face
 
recognition.
 

 
Summary
 of
 the
 Current
 Studies
 
Chapter
 2:
 Newborn
 chicks
 segment
 objects
 from
 backgrounds
 at
 the
 onset
 of
 vision
 

  The
 ability
 to
 segment
 objects
 from
 backgrounds
 is
 critical
 for
 real-­‐world
 object
 
recognition.
  Although
  previous
  research
  has
  examined
  object
  segmentation
  in
  human
 
infants
 and
 patients
 recovering
 from
 blindness,
 we
 still
 do
 not
 know
 whether
 the
 newborn
 
brain
 is
 able
 to
 segment
 swaths
 of
 retinal
 input
 into
 objects
 with
 meaningful
 boundaries.
 
One
 possibility
 is
 that
 the
 development
 of
 object
 segmentation
 is
 protracted,
 requiring
 
extensive
  visual
  experiences
  with
  objects
  and
  scenes.
  Another
  possibility
  is
  that
  the
 
newborn
 visual
 system
 can
 begin
 segmenting
 objects
 from
 backgrounds
 at
 the
 onset
 of
 
visual
  experience.
  In
  Chapter
  2,
  we
  used
  an
  automated
  controlled-­‐rearing
  method
  to
 
investigate
 whether
 newborn
 chicks
 can
 segment
 the
 first
 object
 they
 see
 in
 their
 life.
 We
 
presented
 chicks
 with
 a
 single
 object
 rotating
 on
 a
 single
 background,
 and
 tested
 whether
 
the
 chicks
 could
 recognize
 that
 object
 when
 it
 was
 presented
 on
 novel
 backgrounds
 from
 

 

  16
 
novel
  viewpoints.
  Our
  results
  indicate
  that
  the
  ability
  to
  segment
  objects
  from
  the
 
background
 is
 present
 at
 the
 onset
 of
 vision.
 

 
Chapter
 3:
 The
 development
 of
 background-­‐invariant
 object
 recognition
 in
 visually
 naïve
 
animals
 

  Chapter
 2
 demonstrates
 that
 the
 newborn
 visual
 system
 is
 able
 to
 segment
 objects
 
without
 extensive
 visual
 experience.
 What
 experiential
 factors
 drive
 this
 early
 emerging
 
ability?
 Prior
 research
 on
 human
 infants
 and
 patients
 recovering
 from
 blindness
 suggests
 
that
 object
 motion
 is
 necessary
 and
 sufficient
 for
 learning
 how
 to
 segment
 objects.
 In
 
Chapter
 3,
 we
 tested
 this
 hypothesis
 directly
 by
 examining
 whether
 motion
 is
 sufficient
 for
 
building
 background-­‐invariant
 object
 representations
 at
 the
 onset
 of
 vision.
 Specifically,
 we
 
tested
 whether
 chicks
 require
 visual
 experience
 with
 objects
 moving
 on
 backgrounds
 in
 
order
  to
  develop
  background-­‐invariant
  object
  recognition.
  Surprisingly,
  we
  found
  that
 
newborn
 chicks
 that
 were
 raised
 with
 an
 object
 moving
 across
 no
 background
 scene
 (a
 
homogenous
 white
 background)
 were
 impaired
 at
 recognizing
 the
 object
 on
 background
 
scenes
 (relative
 to
 chicks
 raised
 with
 a
 single
 object
 moving
 on
 background
 scenes).
 Thus,
 
visual
 experience
 with
 objects
 moving
 on
 backgrounds
 is
 required
 to
 learn
 background-­‐
invariant
  recognition.
  This
  result
  provides
  evidence
  for
  a
  novel
  constraint
  on
  the
 
development
 of
 background-­‐invariant
 recognition.
 
 

 

   
 

 

  17
 
Chapter
 4:
 Newborn
 chicks
 generate
 view-­‐invariant
 object
 representations
 from
 sparse
 visual
 
input
 

  Previous
  research
  has
  demonstrated
  that
  chicks
  can
  build
  a
  view-­‐invariant
 
representation
 of
 the
 first
 object
 seen
 in
 life.
 However,
 these
 studies
 do
 not
 reveal
 the
 
amount
 of
 visual
 input
 that
 is
 needed
 to
 build
 these
 abstract
 representations.
 Chapter
 2
 
demonstrated
 that
 visual
 input
 of
 a
 single
 object
 moving
 along
 a
 single
 background
 is
 
sufficient
 to
 build
 a
 view-­‐invariant
 representation.
 In
 Chapter
 4,
 we
 investigated
 whether
 
extremely
  sparse
  visual
  input—only
  3
  frames
  of
  object
  motion—is
  sufficient
  for
  the
 
newborn
 brain
 to
 build
 a
 view-­‐invariant
 representation
 of
 the
 first
 object
 seen
 in
 life.
 
 The
 
results
 demonstrate
 that
 chicks
 raised
 with
 only
 3
 frames
 of
 object
 motion
 can
 build
 view-­‐
invariant
 object
 representations.
 Notably,
 however,
 performance
 was
 not
 fully
 invariant
 
across
 all
 test
 viewpoints.
 Chicks’
 performance
 varied
 as
 a
 function
 of
 the
 amount
 of
 self-­‐
occlusion
 in
 a
 given
 test
 viewpoint
 of
 the
 object,
 but
 not
 by
 lower-­‐level
 similarities
 between
 
the
  test
  images
  and
  imprinted
  images
  (i.e.,
  pixel-­‐level
  and
  V1-­‐level
  neuronal
 
representations).
 Taken
 together,
 Chapters
 2
 and
 4
 indicate
 that
 newborn
 visual
 systems
 
are
 highly
 generative,
 building
 representations
 that
 allow
 the
 outputs
 of
 object
 recognition
 
to
 generalize
 beyond
 visual
 input
 acquired
 by
 the
 subject.
 
 

 
Chapter
 5:
 Face
 recognition
 in
 newborn
 chicks
 at
 the
 onset
 of
 vision
 
Thus
 far,
 research
 on
 visual
 recognition
 in
 newborn
 chicks
 has
 focused
 on
 basic-­‐
level
 object
 recognition.
 Chapters
 2-­‐4
 demonstrate
 that
 newborn
 chicks
 can
 build
 invariant
 
object
 representations
 that
 differ
 at
 a
 basic-­‐level,
 i.e.,
 objects
 that
 have
 different
 features
 
and
 overall
 configurations.
 However,
 the
 origins
 of
 subordinate-­‐level
 recognition
 remain
 

 

  18
 
largely
 unknown.
 Objects
 that
 vary
 at
 the
 subordinate
 level
 share
 a
 general
 configuration
 
and
 set
 of
 features.
 Therefore,
 subordinate-­‐level
 recognition
 requires
 more
 fine-­‐grained
 
discrimination
  than
  basic-­‐level
  object
  recognition.
  In
  Chapter
  5,
  we
  use
  faces
  as
  a
 
prototypical
 example
 of
 subordinate-­‐level
 objects.
 Given
 that
 this
 is
 the
 first
 study
 to
 test
 
face
 recognition
 in
 newborn
 chicks,
 Chapter
 5
 was
 primarily
 exploratory.
 We
 tested
 chicks’
 
recognition
 abilities
 across
 a
 wide
 range
 of
 face
 differences
 and
 found
 that
 newborn
 chicks
 
are
 sensitive
 to
 changes
 in
 a
 face’s
 age,
 gender,
 and
 orientation
 (upright
 versus
 inverted).
 
 

 
Chapter
 6:
 A
 slowness
 constraint
 on
 the
 development
 of
 view-­‐invariant
 face
 recognition
 
The
 ability
 to
 recognize
 faces
 in
 novel
 viewing
 situations
 is
 critical
 for
 everyday
 
social
 interaction.
 Invariant
 face
 recognition
 is
 computationally
 complex
 because
 two
 faces
 
can
  look
  extremely
  similar
  from
  matching
  viewpoints
  (since
  all
  faces
  share
  the
  same
 
general
 configuration
 of
 features),
 but
 the
 same
 face
 can
 provide
 vastly
 different
 retinal
 
input
  when
  viewed
  from
  different
  viewpoints.
  The
  results
  of
  Chapter
  5
  indicate
  that
 
newborn
 chicks
 are
 able
 to
 recognize
 faces
 at
 the
 onset
 of
 vision.
 In
 Chapter
 6,
 we
 build
 
upon
 this
 finding
 by
 testing
 newborns’
 ability
 to
 build
 view-­‐invariant
 representations
 of
 
faces.
 
 
Our
 results
 demonstrate
 the
 newborn
 chicks
 are
 able
 to
 build
 a
 view-­‐invariant
 
representation
 of
 the
 first
 face
 they
 see
 in
 their
 life.
 After
 establishing
 that
 newborn
 chicks
 
are
 capable
 of
 view-­‐invariant
 face
 recognition,
 we
 then
 tested
 whether
 the
 development
 of
 
this
 ability
 is
 subject
 to
 the
 same
 constraints
 as
 object
 recognition.
 In
 previous
 work,
 we
 
showed
 that
 the
 development
 of
 object
 recognition
 requires
 visual
 experience
 with
 slowly
 
moving
  objects.
  To
  examine
  whether
  this
  “slowness
  constraint”
  also
  applies
  to
  the
 

 

  19
 
development
 of
 face
 recognition,
 we
 systematically
 manipulated
 the
 speed
 of
 the
 virtual
 
face
 presented
 to
 the
 chicks.
 As
 with
 basic-­‐level
 objects,
 we
 found
 that
 the
 speed
 of
 face
 
motion
 during
 encoding
 directly
 affected
 the
 amount
 of
 identity
 information
 and
 viewpoint
 
information
 contained
 in
 each
 newborn
 face
 representation.
 Thus,
 newborns’
 face
 and
 
object
 representations
 are
 subject
 to
 the
 same
 “slowness
 constraint.”
 These
 results
 suggest
 
that
 newborn
 chicks’
 representations
 of
 objects
 and
 faces
 may
 rely
 on
 some
 shared
 sets
 of
 
computations.
 
 
 

 

   
 

 

  20
 
Chapter
 2:
 Newborn
 chicks
 segment
 objects
 from
 backgrounds
 at
 the
 onset
 of
 vision
 
 

 
Abstract
 
To
 perceive
 the
 world
 successfully,
 the
 visual
 system
 must
 learn
 to
 recognize
 objects
 across
 
novel
 backgrounds.
 To
 date,
 however,
 the
 development
 of
 this
 ability
 is
 poorly
 understood.
 
While
 previous
 studies
 have
 shown
 that
 newborn
 animals
 can
 recognize
 objects
 presented
 
on
 homogenous
 backgrounds,
 it
 is
 unknown
 whether
 newborns
 can
 segment
 objects
 from
 
complex
 backgrounds
 and
 recognize
 those
 objects
 across
 novel
 viewing
 situations.
 To
 
address
  this
  issue,
  we
  raised
  newborn
  chicks
  in
  strictly
  controlled
  environments
  that
 
contained
  a
  single
  virtual
  object
  moving
  on
  a
  single
  background.
  We
  then
  used
  an
 
automated
 testing
 procedure
 to
 examine
 whether
 the
 chicks
 could
 recognize
 that
 object
 
across
 novel
 backgrounds
 and
 novel
 viewpoints.
 Despite
 receiving
 experience
 with
 just
 a
 
single
 object
 moving
 on
 a
 single
 background,
 the
 majority
 of
 chicks
 developed
 robust
 view-­‐
invariant
 and
 background-­‐invariant
 object
 recognition
 abilities.
 These
 results
 show
 that
 
advanced
 object
 recognition
 abilities
 can
 develop
 rapidly
 in
 newborn
 brains
 from
 sparse
 
visual
 input
 about
 objects.
 

 

   
 

 

  21
 
Introduction
 
To
 recognize
 objects
 successfully,
 individuals
 must
 perform
 a
 difficult
 task:
 they
 
must
 segment
 objects
 from
 complex
 background
 scenes
 and
 build
 abstract
 representations
 
that
 generalize
 to
 novel
 viewing
 situations.
 While
 this
 task
 feels
 effortless
 to
 human
 adults,
 
it
 poses
 a
 major
 computational
 challenge
 (Pinto,
 Cox,
 &
 DiCarlo,
 2008).
 The
 retinal
 image
 of
 
an
 object
 can
 change
 radically
 when
 the
 object
 is
 presented
 on
 different
 backgrounds.
 
Thus,
 the
 visual
 system
 must
 build
 “background-­‐invariant”
 object
 representations
 that
 are
 
selective
  for
  object
  identity
  and
  tolerant
  to
  background
  changes
  and
  other
  identity-­‐
preserving
 image
 transformations
 (e.g.,
 changes
 in
 viewpoint).
 These
 background-­‐invariant
 
representations
 are
 abstract
 insofar
 as
 they
 imply
 knowledge
 beyond
 physical
 similarities
 
between
 images
 of
 an
 object.
 What
 are
 the
 origins
 of
 this
 foundational
 visual
 ability?
 Can
 
newborn
 brains
 begin
 building
 background-­‐invariant
 object
 representations
 at
 the
 onset
 of
 
vision,
 or
 does
 this
 ability
 emerge
 gradually
 over
 development?
 
Studies
 of
 blind
 individuals
 who
 recover
 sight
 following
 surgery
 have
 provided
 
important
 insights
 into
 how
 the
 visual
 system
 learns
 to
 recognize
 objects
 (McKyton,
 Ben-­‐
Zion,
  Doron,
  &
  Zohary,
  2015;
  Ostrovsky
  et
  al.,
  2009).
  For
  example,
  newly-­‐sighted
 
individuals
 use
 luminance,
 hue,
 and
 motion
 cues
 to
 segment
 and
 recognize
 objects.
 Studies
 
of
 infants
 also
 suggest
 that
 motion
 cues
 play
 a
 key
 role
 in
 the
 development
 of
 object
 
perception
 (Spelke,
 1990;
 Xu,
 2007).
 However,
 neither
 studies
 of
 infants
 nor
 studies
 of
 
blind
 individuals
 who
 recover
 sight
 can
 fully
 reveal
 the
 experiential
 factors
 that
 enable
 
object
 recognition
 to
 emerge
 in
 the
 brain.
 Human
 infants
 cannot
 ethically
 be
 raised
 in
 
controlled
 environments
 from
 birth,
 so
 it
 is
 not
 possible
 to
 systematically
 manipulate
 their
 
visual
 experiences.
 Even
 infants
 who
 are
 just
 a
 few
 months
 old
 have
 already
 acquired
 

 

  22
 
hundreds
 of
 hours
 of
 experience
 with
 a
 natural
 visual
 world.
 Thus,
 with
 human
 infants,
 it
 is
 
not
 possible
 to
 distinguish
 whether
 early
 emerging
 abilities
 are
 innate
 or
 learned
 from
 
postnatal
  visual
  experience.
  Similarly,
  when
  a
  blind
  patient
  recovers
  sight
  following
 
surgery,
 the
 patient
 is
 immediately
 confronted
 with
 a
 rich
 visual
 world.
 As
 a
 result,
 it
 is
 not
 
possible
 to
 isolate
 the
 specific
 visual
 experiences
 that
 are
 necessary
 to
 develop
 object
 
recognition.
 Additionally,
 in
 studies
 of
 sight-­‐restored
 patients,
 visual
 deprivation
 at
 birth
 
leads
 to
 cross-­‐modal
 reorganization
 that
 makes
 the
 visual
 cortex
 of
 newly-­‐sighted
 patients
 
significantly
 different
 from
 a
 newborn
 visual
 cortex
 (Collignon
 et
 al.,
 2015;
 Maidenbaum
 et
 
al.,
 2014).
 
 
Here,
  we
  offer
  a
  complementary
  approach
  for
  studying
  the
  origins
  of
  object
 
recognition:
 controlled-­‐rearing
 experiments
 with
 newborn
 animals.
 In
 controlled-­‐rearing
 
experiments,
 it
 is
 possible
 to
 systematically
 manipulate
 the
 visual
 experiences
 provided
 to
 
newborn
 subjects
 and
 measure
 the
 effects
 of
 those
 manipulations
 on
 the
 development
 of
 
object
  recognition
  (Wood
  &
  Wood,
  2016a).
  Controlled-­‐rearing
  experiments
  therefore
 
provide
 an
 experimental
 avenue
 for
 probing
 how
 object
 recognition
 emerges
 in
 newborn
 
brains
  as
  a
  function
  of
  specific
  visual
  experiences.
  In
  the
  present
  study,
  we
  used
  an
 
automated
 controlled-­‐rearing
 method
 to
 examine
 whether
 newborn
 animals
 (domestic
 
chicks)
 are
 capable
 of
 background-­‐invariant
 object
 recognition
 at
 the
 onset
 of
 vision.
 
 

 
Controlled-­‐rearing
 experiments
 of
 object
 recognition
 in
 newborn
 chicks
 
We
 used
 newborn
 chicks
 (Gallus
 gallus)
 as
 an
 animal
 model
 because
 they
 are
 an
 
ideal
 model
 system
 for
 studying
 the
 origins
 of
 object
 recognition.
 First,
 newborn
 chicks
 can
 
perform
 advanced
 object
 recognition
 tasks.
 For
 instance,
 newborn
 chicks
 are
 capable
 of
 

 

  23
 
view-­‐invariant
 object
 recognition
 at
 the
 onset
 of
 vision
 (Wood,
 2013;
 Wood
 &
 Wood,
 
2015a)
 and
 can
 build
 integrated
 object
 representations
 with
 bound
 color-­‐shape
 features
 
(Wood,
 2014).
 The
 present
 study
 extends
 this
 work
 by
 examining
 whether
 newborn
 chicks
 
are
 capable
 of
 background-­‐invariant
 object
 recognition.
 This
 is
 an
 important
 extension
 to
 
the
 literature
 because
 background-­‐invariant
 object
 recognition
 is
 necessary
 for
 recognizing
 
objects
 in
 natural
 visual
 environments.
 Second,
 newborn
 chicks
 are
 highly
 precocial
 and
 
can
 be
 raised
 in
 strictly
 controlled
 environments
 immediately
 after
 hatching
 (Horn,
 2004;
 
Vallortigara,
 2012;
 Wood,
 2013).
 As
 a
 result,
 it
 is
 possible
 to
 examine
 the
 specific
 visual
 
inputs
 that
 cause
 object
 recognition
 to
 emerge
 in
 newborn
 brains
 (Wood,
 2016;
 Wood
 et
 
al.,
 2016;
 Wood
 &
 Wood,
 2016a).
 Third,
 chicks
 imprint
 to
 objects
 seen
 soon
 after
 hatching,
 
which
  provides
  a
  natural
  behavioral
  response
  that
  can
  be
  used
  to
  test
  their
  object
 
recognition
 abilities
 without
 training
 (Horn,
 2004).
 Finally,
 avian
 and
 mammalian
 brains
 
use
 homologous
 neural
 circuits
 to
 process
 sensory
 input
 (Karten,
 2013).
 Since
 avian
 and
 
mammalian
 brains
 contain
 common
 neural
 circuits,
 controlled-­‐rearing
 studies
 of
 newborn
 
chicks
 can
 inform
 our
 understanding
 of
 the
 development
 of
 vision
 in
 humans.
 
 

   
 
The
 present
 study
 
During
 the
 input
 phase
 (Days
 1-­‐5),
 we
 raised
 newborn
 chicks
 in
 strictly
 controlled
 
environments
 that
 contained
 a
 single
 virtual
 object
 moving
 on
 a
 single
 background
 scene.
 
During
 the
 test
 phase
 (Days
 6-­‐12),
 we
 tested
 whether
 the
 chicks
 could
 recognize
 that
 object
 
when
 it
 was
 presented
 on
 the
 same
 or
 novel
 background
 scenes.
 Our
 experiments
 used
 
moving
  objects
  as
  stimuli
  during
  the
  input
  and
  test
  phases
  because
  prior
  work
  has
 
demonstrated
 that
 motion
 cues
 are
 critical
 to
 object
 segmentation
 in
 infants
 (Arterberry
 &
 

 

  24
 
Yonas,
  2000;
  Johnson,
  2003)
  and
  newly-­‐sighted
  patients
  (Ostrovsky
  et
  al.,
  2009).
  To
 
preview
 the
 results,
 we
 found
 that
 newborn
 chicks
 are
 capable
 of
 robust
 view-­‐invariant
 
and
 background-­‐invariant
 object
 recognition.
 In
 fact,
 recognition
 performance
 was
 equally
 
good
 whether
 the
 object
 was
 presented
 in
 familiar
 situations
 (familiar
 views,
 familiar
 
backgrounds)
  and
  novel
  situations
  (novel
  views,
  novel
  backgrounds).
  Thus,
  invariant
 
object
 recognition
 can
 develop
 rapidly
 in
 newborn
 brains
 from
 sparse
 visual
 input
 with
 
objects.
 
 

 
Methods
 
Subjects
 
 
Thirty-­‐one
  Rhode
  Island
  Red
  chicks
  of
  unknown
  sex
  were
  tested.
  A
  minimum
 
sample
 size
 was
 determined
 based
 on
 prior
 studies
 (Wood,
 2013),
 and
 the
 ultimate
 sample
 
size
  tested
  in
  the
  present
  study
  was
  about
  three
  times
  the
  minimum
  sample
  size
  to
 
accommodate
  counter-­‐balancing
  of
  the
  stimuli.
  No
  subjects
  were
  excluded
  from
  the
 
analyses.
 The
 eggs
 were
 obtained
 from
 a
 local
 distributer
 and
 incubated
 in
 darkness
 in
 an
 
OVA-­‐Easy
 incubator
 (Brinsea
 Products
 Inc.,
 Titusville,
 FL).
 To
 avoid
 exposing
 the
 chicks
 to
 
any
 extraneous
 visual
 input,
 we
 used
 night
 vision
 goggles
 to
 move
 the
 chicks
 in
 darkness
 
from
 the
 incubation
 room
 to
 the
 controlled-­‐rearing
 chambers.
 Each
 chick
 was
 raised
 within
 
its
 own
 chamber.
 This
 experiment
 was
 approved
 by
 The
 University
 of
 Southern
 California
 
Institutional
 Animal
 Care
 and
 Use
 Committee.
 

 

   
 

 

  25
 
Controlled-­‐Rearing
 Chambers
 
 
The
 controlled-­‐rearing
 chambers
 (66
 cm
 length
 ×
 42
 cm
 width
 ×
 69
 cm
 height)
 were
 
constructed
 from
 white,
 high-­‐density
 polyethylene.
 The
 chambers
 were
 devoid
 of
 all
 real-­‐
world
 (solid,
 bounded)
 objects.
 To
 present
 object
 stimuli
 to
 the
 chicks,
 virtual
 objects
 were
 
projected
 on
 two
 displays
 walls
 situated
 on
 opposite
 sides
 of
 the
 chamber.
 The
 display
 
walls
 were
 19”
 liquid
 crystal
 display
 monitors
 (1440
 ×
 900
 pixel
 resolution).
 Food
 and
 
water
 were
 provided
 ad
 libidum
 in
 transparent
 troughs
 in
 the
 ground.
 We
 used
 grain
 as
 
food
 because
 a
 heap
 of
 grain
 does
 not
 behave
 like
 an
 object
 (i.e.,
 a
 heap
 of
 grain
 does
 not
 
maintain
 a
 rigid,
 bounded
 shape).
 The
 floors
 were
 constructed
 from
 wire
 mesh
 supported
 
by
 transparent
 beams.
 Micro-­‐cameras
 in
 the
 ceilings
 of
 the
 chambers
 recorded
 all
 of
 the
 
chicks’
 behavior,
 and
 the
 video
 feed
 was
 analyzed
 with
 automated
 image-­‐based
 tracking
 
software
 (EthoVision
 XT,
 Noldus
 Information
 Technology,
 Leesburg,
 VA).
 This
 software
 
calculated
 the
 amount
 of
 time
 each
 chick
 spent
 within
 zones
 (22
 cm
 ×
 42
 cm)
 next
 to
 the
 
left
 and
 right
 display
 walls.
 All
 of
 the
 chicks’
 behavior
 (9
 samples/second,
 24
 hours/day,
 7
 
days/week)
 was
 tracked
 and
 recorded
 across
 the
 two-­‐week
 duration
 of
 the
 experiment.
 In
 
total,
 we
 collected
 8,928
 hours
 of
 video
 footage
 for
 this
 experiment
 (24
 hours
 per
 day
 ×
 12
 
days
 ×
 31
 subjects).
 

 
Procedure
 
 
During
 the
 input
 phase
 (Days
 1-­‐5
 of
 post-­‐natal
 visual
 experience
3
),
 the
 chicks
 were
 
raised
 in
 controlled-­‐rearing
 chambers
 that
 contained
 a
 single
 virtual
 object
 rotating
 around
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
All chicks were exposed to the imprinting stimuli for 5 days. Due to a power outage, 20 chicks
spent an additional 2 days in the input phase in complete darkness, but performance during the
test phase was not affected by the power outage in the input phase.

 

  26
 
a
 frontoparallel
 horizontal
 axis
 (Figure
 1).
 The
 object
 rotated
 continuously,
 completing
 a
 
full
 rotation
 every
 15
 seconds.
 The
 object
 was
 presented
 on
 one
 of
 three
 background
 
scenes
 (Figure
 2;
 12
 chicks
 were
 imprinted
 to
 Background
 1;
 8
 chicks
 were
 imprinted
 to
 
Background
 2;
 and
 11
 chicks
 were
 imprinted
 to
 Background
 3).
 The
 object
 and
 background
 
appeared
 on
 one
 display
 wall
 at
 a
 time
 and
 switched
 to
 the
 opposite
 display
 wall
 every
 two
 
Figure 1. Illustration of a controlled-rearing chamber. The chambers contained no real-
world objects. To present object stimuli to the chick, virtual objects were projected on two
display walls situated on opposite sides of the chamber. (A) During the input phase (Days 1-5
of post-natal visual experience), the chicks were raised with a virtual object rotating on a
single background scene. (B) During the test trials (Days 6-14 of post-natal visual
experience), the chicks were presented with the imprinted object on one display wall and a
novel object on the opposite display wall. Each object rotated in front of either a novel
background scene or the imprinted background scene.
 

 

  27
 
hours
 (following
 a
 one-­‐minute
 period
 of
 darkness).
 The
 display
 wall
 that
 was
 not
 showing
 
the
  imprinted
  object
  was
  white.
  Figure
  1
  illustrates
  how
  the
  imprinting
  stimuli
  were
 
presented
 on
 the
 display
 walls
 during
 the
 input
 phase.
 
 
During
  the
  test
  phase
  (Days
  6-­‐12
  of
  post-­‐natal
  visual
  experience),
  we
  tested
 
whether
 the
 chicks
 could
 recognize
 their
 imprinted
 object
 when
 the
 object
 was
 presented
 
on
 familiar
 and
 novel
 backgrounds.
 On
 each
 test
 trial,
 the
 imprinted
 object
 appeared
 on
 one
 
display
 wall,
 and
 a
 novel
 object
 appeared
 on
 the
 opposite
 display
 wall
 (Figure
 3).
 The
 novel
 
Figure 2. The backgrounds and objects. Each chick was imprinted to one of the two objects
(right) rotating 360° along the elevation axis on one of three backgrounds (left). During the
input phase, the chicks only saw a single object rotating on a single background. The
remaining backgrounds were used as novel backgrounds for the test phase, and the remaining
object was used as the unfamiliar object for the test phase. During the test phase, the
imprinted object was shown on one display wall (on either an imprinted or novel background)
and the unfamiliar object was shown on the opposite display wall (on either an imprinted or
novel background). The objects were presented rotating along the elevation rotation at 0°, 30°,
and 60° azimuth viewpoint changes during the test phase.  

 

  28
 
object
 had
 a
 similar
 size,
 color,
 motion
 speed,
 and
 motion
 trajectory
 as
 the
 imprinted
 
object.
 The
 two
 objects
 were
 modeled
 after
 those
 used
 in
 previous
 studies
 that
 tested
 for
 
invariant
  object
  recognition
  in
  adult
  rats
  (Zoccolan
  et
  al.,
  2009)
  and
  newborn
  chicks
 
(Wood,
 2013,
 2015).
 The
 test
 objects
 were
 presented
 on
 all
 possible
 combinations
 of
 the
 
three
 background
 scenes
 (e.g.,
 Background
 1
 versus
 Background
 2,
 Background
 1
 versus
 
Background
 3,
 Background
 2
 versus
 Background
 3,
 etc.).
 During
 test,
 the
 objects
 rotated
 
60°
 around
 a
 fronto-­‐parallel
 horizontal
 axis
 (as
 in
 the
 input
 phase).
 In
 each
 test
 trial,
 the
 
test
 objects
 were
 shown
 from
 three
 possible
 viewing
 angles:
 0°
 change
 in
 azimuth
 rotation,
 
30°
 change
 in
 azimuth
 rotation,
 and
 60°
 change
 in
 azimuth
 rotation.
 The
 imprinted
 object
 
and
 the
 unfamiliar
 object
 were
 always
 shown
 from
 the
 same
 viewing
 angle
 in
 each
 test
 
trial.
 
We
 grouped
 the
 test
 trials
 into
 four
 background
 conditions.
 In
 the
 Both
 Objects
 Old
 
Background
 condition,
 both
 the
 imprinted
 object
 and
 the
 unfamiliar
 object
 were
 shown
 on
 
the
 familiar
 background
 from
 the
 input
 phase.
 In
 the
 Imprinted
 Object
 Old
 Background
 
condition,
 the
 imprinted
 object
 was
 shown
 on
 the
 familiar
 background
 from
 the
 input
 
phase,
 and
 the
 unfamiliar
 object
 was
 shown
 on
 one
 of
 the
 two
 unfamiliar
 backgrounds.
 In
 
the
 Unfamiliar
 Object
 Old
 Background
 condition,
 the
 unfamiliar
 object
 was
 shown
 on
 the
 
familiar
 background
 from
 the
 input
 phase,
 and
 the
 imprinted
 object
 was
 shown
 on
 one
 of
 
the
  two
  unfamiliar
  backgrounds.
  In
  the
  Both
  Objects
  New
  Background
  condition,
  the
 
imprinted
 object
 and
 the
 unfamiliar
 object
 were
 each
 shown
 on
 an
 unfamiliar
 background.
 
 

  This
 set
 of
 conditions
 allowed
 us
 to
 distinguish
 between
 three
 hypotheses
 regarding
 
the
  origins
  of
  object
  segmentation
  and
  background-­‐invariant
  object
  recognition:
  (H1)
 
newborn
 visual
 systems
 are
 able
 to
 segment
 objects
 from
 backgrounds
 and
 recognize
 

 

  29
 
objects
  across
  novel
  backgrounds;
  (H2)
  newborn
  visual
  systems
  are
  able
  to
  segment
 
objects
  from
  backgrounds,
  but
  there
  is
  a
  cost
  for
  recognizing
  objects
  across
  novel
 
backgrounds
  compared
  to
  familiar
  backgrounds;
  (H3)
  newborn
  visual
  systems
  are
 
incapable
 of
 segmenting
 objects
 from
 backgrounds.
 
 
The
 chicks
 received
 24
 test
 trials
 per
 day
 at
 the
 rate
 of
 one
 trial
 per
 hour.
 Each
 test
 
trial
 lasted
 40
 minutes,
 and
 was
 followed
 by
 a
 20-­‐minute
 rest
 period.
 During
 the
 rest
 
Figure 3. The experimental design. This schematic shows how the virtual objects were
presented on the two display walls, during sample four-hour periods. During the input phase,
the chicks were exposed to a single virtual object rotating on a single background image.
During the test phase, we measured the chicks’ object recognition performance when the
imprinted object was presented on the familiar background (“Both Objects Old Background”
and “Imprinted Object Old Background” conditions) and novel backgrounds (“Both Objects
New Background” and “Unfamiliar Object Old Background” conditions). The object was also
presented from familiar viewpoints (0° azimuth rotation) and novel viewpoints (30° & 60°
azimuth rotations) on different test trials.

 

 

  30
 
periods,
 the
 animation
 from
 the
 input
 phase
 appeared
 on
 one
 display
 wall,
 and
 a
 white
 
screen
 appeared
 on
 the
 other
 display
 wall.
 14
 of
 the
 chicks
 were
 imprinted
 to
 Object
 1,
 
with
 Object
 2
 serving
 as
 the
 novel
 object,
 and
 17
 of
 the
 chicks
 were
 imprinted
 to
 Object
 2,
 
with
 Object
 1
 serving
 as
 the
 novel
 object.
 
 

 
Results
 
Overall
 Recognition
 Performance
 

  The
 results
 are
 shown
 in
 Figure
 4.
 Performance
 was
 well
 above
 chance
 level
 (50%)
 
in
 each
 background
 condition
 (one
 sample
 t-­‐tests,
 all
 Ps
 <
 10
-­‐7
).
 Similarly,
 performance
 was
 
also
 well
 above
 chance
 in
 each
 viewpoint
 condition
 (one
 sample
 t-­‐tests,
 all
 Ps
 <
 10
-­‐10
).
 
Thus,
 the
 chicks
 were
 able
 to
 recognize
 their
 imprinted
 object
 whether
 it
 was
 presented
 on
 
familiar
 or
 novel
 backgrounds
 and
 whether
 the
 object
 was
 presented
 from
 familiar
 or
 novel
 
viewpoints.
 
To
  examine
  whether
  performance
  differed
  across
  background
  and
  viewpoint
 
conditions,
 we
 performed
 a
 repeated-­‐measures
 ANOVA
 with
 within-­‐subjects
 factors
 of
 
Background
 Condition
 and
 Viewpoint
 Angle.
 The
 ANOVA
 revealed
 a
 significant
 main
 effect
 
of
  Background
  Condition
  (Greenhouse-­‐Geisser
  adjusted,
  F(1.778,
  53.354)
  =
  9.455,
  p
  =
 
.0005)
 and
 a
 significant
 interaction
 between
 Background
 Condition
 and
 Viewpoint
 Angle
 
(F(6,
 180)
 =
 2.509,
 p
 =
 .023).
 The
 main
 effect
 of
 Viewpoint
 Angle
 was
 not
 significant
 (F(2,
 
60)
  =
  .032,
  p
  =
  .969).
  The
  significant
  interaction
  between
  Background
  Condition
  and
 
Viewpoint
 Angle
 appeared
 to
 be
 driven
 by
 low
 performance
 when
 the
 viewpoint
 angle
 was
 
0°
 and
 the
 imprinted
 object
 was
 presented
 on
 the
 familiar
 background
 (with
 the
 unfamiliar
 
object
 presented
 on
 the
 novel
 background).
 Although
 the
 test
 animation
 of
 the
 imprinted
 
object
  was
  identical
  to
  the
  imprinting
  animation
  shown
  during
  the
  input
  phase,
 

 

  31
 
performance
  in
  this
  viewpoint-­‐background
  combination
  was
  significantly
  lower
  than
 
nearly
 all
 of
 the
 other
 viewpoint-­‐background
 combinations
 (post
 hoc
 paired
 t-­‐tests,
 10
 out
 
of
 11
 Ps
 <
 .01,
 and
 all
 10
 significant
 tests
 survive
 Holm-­‐Bonferroni
 correction
 for
 multiple
 
comparisons).
  Correspondingly,
  performance
  was
  significantly
  lower
  in
  the
  Imprinted
 
Object
 Old
 Background
 condition
 overall
 than
 in
 all
 other
 background
 conditions
 (paired
 t-­‐
tests,
 all
 Ps
 <
 .01,
 and
 all
 three
 tests
 survive
 Holm-­‐Bonferroni
 correction
 for
 multiple
 
Figure 4. Results. The top graph shows the percent of time the chicks spent with the
imprinted object versus novel object for each background condition and viewpoint change.
The dashed line indicates chance performance. Error bars show ±1 standard error (SEM). The
chicks successfully recognized their imprinted object across all background changes and
viewpoint changes. The bottom graphs show the percent of time the chicks spent with the
imprinted object versus the novel object for each (left) background condition and (right)
viewpoint change.

 

 

  32
 
comparisons).
 There
 were
 no
 significant
 differences
 between
 any
 of
 the
 other
 background
 
conditions
 (paired
 t-­‐tests,
 all
 Ps
 >
 .10).
 
 

 
Analysis
 of
 Change
 in
 Performance
 Over
 Time
 

  Overall
  performance
  by
  test
  day
  is
  shown
  in
  Figure
  5.
  To
  determine
  whether
 
performance
 changed
 significantly
 over
 the
 course
 of
 the
 test
 phase,
 we
 performed
 a
 
repeated-­‐measures
  ANOVA
  with
  the
  within-­‐subjects
  effect
  of
  Test
  Day.
  The
  ANOVA
 
revealed
 a
 significant
 main
 effect
 of
 Test
 Day
 (F(6,
 180)
 =
 8.585,
 p
 <
 10
-­‐7
).
 A
 post-­‐hoc
 
correlation
 between
 the
 Test
 Day
 and
 the
 average
 performance
 for
 that
 day
 revealed
 a
 
significant
 positive
 relationship
 between
 Test
 Day
 and
 performance
 (r
 =
 .892,
 p
 =
 .007).
 
Critically,
 however,
 performance
 was
 significantly
 above
 chance
 levels
 on
 Day
 1
 (one-­‐
sample
 t-­‐test,
 t(30)
 =
 6.987,
 p
 <
 10
-­‐7
).
 In
 fact,
 when
 the
 analysis
 only
 included
 the
 test
 trials
 
Figure 5. Change Over Time. The graph shows the percent of time the chicks spent with the
imprinted object versus novel object for each day of testing. The dashed line indicates chance
performance. The blue shaded ribbon shows ±1 standard error (SEM). While performance
improved throughout the test phase, chicks were able to successfully recognize the imprinted
object on all test days.  

 

  33
 
in
 which
 the
 imprinted
 object
 was
 shown
 on
 novel
 backgrounds,
 performance
 was
 still
 
significantly
 above
 chance
 levels
 on
 Day
 1
 (one-­‐sample
 t-­‐test,
 t(30)
 =
 6.736,
 p
 <
 10
-­‐6
).
 

 
Analysis
 of
 Individual
 Subject
 Performance
 

  Since
 we
 collected
 a
 large
 number
 of
 test
 trials
 from
 each
 subject,
 we
 were
 able
 to
 
analyze
  each
  newborn
  chick’s
  object
  recognition
  abilities
  with
  high
  precision.
  We
 
computed
 each
 chick’s
 performance
 on
 each
 test
 trial
 (Figure
 6).
 Collapsing
 across
 all
 test
 
trials,
 all
 of
 the
 chicks
 spent
 more
 time
 with
 the
 imprinted
 object
 than
 with
 the
 unfamiliar
 
object
  (one-­‐sample
  t-­‐tests,
  all
  Ps
  <
  .03;
  all
  Ps
  survive
  Holm-­‐Bonferroni
  correction
  for
 
Figure 6. Individual Subject Performance. The graphs show the percent of time each chick
spent with the imprinted object versus the novel object. Each chick is represented by a single
marker, with error bars around each subject showing ±1 standard error (SEM). The blue boxes
indicate the 1
st
to 2
nd
quartile and the 2
nd
to 3
rd
quartile of performance, respectively. The
dashed line indicates chance performance. The left graph shows performance across all of the
test conditions, while the right graph shows performance only for the test conditions in which
the imprinted object was shown on a novel background.
 

 

  34
 
multiple
 comparisons).
 After
 limiting
 the
 analysis
 to
 the
 test
 trials
 in
 which
 the
 imprinted
 
object
 was
 shown
 on
 a
 novel
 background,
 28
 of
 the
 31
 chicks
 spent
 more
 time
 with
 the
 
imprinted
 object
 than
 with
 the
 unfamiliar
 object
 (one-­‐sample
 t-­‐tests,
 28
 Ps
 <
 .001;
 all
 28
 
significant
 Ps
 survive
 Holm-­‐Bonferroni
 correction
 for
 multiple
 comparisons).
 

 
Discussion
 

  We
 used
 an
 automated
 controlled-­‐rearing
 method
 to
 examine
 whether
 newborn
 
animals
 can
 build
 background-­‐invariant
 and
 view-­‐invariant
 object
 representations
 at
 the
 
onset
 of
 vision.
 During
 the
 input
 phase,
 we
 raised
 newborn
 chicks
 in
 strictly
 controlled
 
environments
 that
 contained
 a
 single
 virtual
 object
 rotating
 on
 a
 single
 background
 scene.
 
During
 the
 test
 phase,
 we
 examined
 whether
 the
 chicks
 could
 recognize
 that
 object
 across
 
novel
 backgrounds
 and
 novel
 viewpoints.
 Our
 results
 indicate
 that
 chicks
 are
 able
 to
 form
 a
 
background-­‐invariant
 and
 view-­‐invariant
 representation
 of
 the
 first
 object
 they
 see
 in
 their
 
life.
  Further,
  the
  chicks
  were
  not
  impaired
  at
  recognizing
  the
  object
  on
  unfamiliar
 
backgrounds
 or
 from
 unfamiliar
 viewpoints.
 Thus,
 newborn
 chicks
 rapidly
 develop
 robust
 
abilities
 for
 object
 segmentation
 and
 invariant
 object
 recognition.
 
 

  It
 is
 important
 to
 emphasize
 that
 while
 some
 researchers
 have
 argued
 that
 visual
 
systems
 solve
 invariant
 object
 recognition
 tasks
 by
 building
 complex
 3D
 representations
 of
 
objects
 (e.g.,
 Biederman,
 1987),
 newborn
 chicks
 could
 achieve
 invariant
 object
 recognition
 
by
 building
 invariant
 representations
 of
 subfeatures
 that
 are
 smaller
 or
 less
 complex
 than
 
the
 entire
 object.
 These
 subfeatures
 might
 correspond
 to
 only
 a
 portion
 of
 the
 object,
 or
 be
 
sensitive
 to
 key
 2D,
 rather
 than
 3D,
 features
 (Alemi-­‐Neissi
 et
 al.,
 2013).
 In
 fact,
 many
 
modern
 computational
 models
 of
 invariant
 object
 recognition
 in
 primates
 explicitly
 rely
 on
 
such
 subfeatures
 (Krizhevsky,
 Sutskever,
 &
 Hinton,
 2012;
 Yamins
 et
 al.,
 2014).
 Regardless
 

 

  35
 
of
 the
 specific
 nature
 of
 these
 features,
 the
 present
 results
 indicate
 that
 newborn
 chicks
 can
 
build
 invariant
 features
 that
 are
 tolerant
 to
 changes
 in
 viewpoint
 and
 background
 features.
 

  These
 findings
 replicate
 previous
 work
 showing
 that
 newborn
 chicks
 are
 capable
 of
 
view-­‐invariant
 object
 recognition
 (Wood,
 2013,
 2015;
 Wood
 &
 Wood,
 2015a),
 and
 extend
 
the
  literature
  by
  showing
  that
  chicks
  are
  also
  capable
  of
  background-­‐invariant
  object
 
recognition.
  Together,
  these
  studies
  suggest
  that
  newborn
  visual
  systems
  can
  be
 
surprisingly
 powerful:
 newborn
 chicks
 can
 build
 invariant
 object
 representations
 from
 
limited
  visual
  experience
  with
  objects.
  Controlled-­‐rearing
  studies
  of
  newborn
  chicks
 
therefore
  offer
  a
  promising
  experimental
  avenue
  for
  probing
  how
  high-­‐level
  vision
 
develops
 in
 the
 newborn
 brain.
 
 

  Furthermore,
  controlled-­‐rearing
  studies
  offer
  an
  important
  complementary
 
approach
 to
 studying
 infants
 and
 newly-­‐sighted
 patients.
 The
 present
 results
 are
 consistent
 
with
  findings
  that
  infants
  and
  blind
  individuals
  who
  recover
  sight
  following
  medical
 
intervention
 are
 able
 to
 determine
 object
 boundaries
 by
 using
 motion
 cues
 (Kellman
 et
 al.,
 
1986;
  Ostrovsky
  et
  al.,
  2009).
  However,
  neither
  of
  these
  populations
  can
  be
  used
  to
 
determine
 whether
 the
 visual
 system
 is
 capable
 of
 object
 segmentation
 and
 recognition
 in
 
the
 absence
 of
 experience
 with
 a
 natural
 visual
 world.
 Our
 results
 provide
 evidence
 that
 
newborn
 visual
 systems
 are
 capable
 of
 segmenting
 objects
 from
 complex
 backgrounds
 and
 
building
 abstract
 representations
 of
 those
 objects.
 

  In
 conclusion,
 this
 study
 demonstrates
 that
 newborn
 chicks
 have
 advanced
 visual
 
processing
 machinery.
 Newborn
 chicks
 can
 build
 background-­‐invariant
 and
 view-­‐invariant
 
object
 representations
 after
 acquiring
 visual
 experience
 with
 just
 a
 single
 object
 moving
 on
 
a
  single
  background.
  From
  a
  computer
  vision
  perspective,
  this
  is
  an
  impressive
 

 

  36
 
computational
  feat
  (Pinto
  et
  al.,
  2008).
  Modern
  machine
  learning
  techniques
  typically
 
require
 thousands
 of
 training
 images
 in
 order
 to
 perform
 background-­‐invariant
 and
 view-­‐
invariant
 recognition.
 Conversely,
 our
 findings
 demonstrate
 that
 newborn
 visual
 systems
 
can
  build
  background-­‐invariant
  and
  view-­‐invariant
  representations
  from
  sparse
  visual
 
input.
 Thus,
 controlled-­‐rearing
 studies
 of
 newborns
 can
 provide
 important
 benchmarks
 for
 
building
 computational
 models
 that
 emulate
 the
 biological
 development
 of
 vision.
   
 
 

   
 

 

  37
 
Chapter
 3:
 The
 development
 of
 background-­‐invariant
 object
 recognition
 in
 visually
 naïve
 
animals
 
 

 
Abstract
 

 To
 perceive
 objects
 successfully,
 the
 visual
 system
 segments
 swaths
 of
 pigmentation
 into
 
discrete
 entities.
 The
 visual
 system
 must
 segment
 objects
 from
 backgrounds
 and
 build
 
abstract
 representations
 that
 generalize
 across
 novel
 viewing
 situations.
 How
 does
 this
 
ability—known
 as
 “background-­‐invariant
 object
 recognition”—develop
 in
 newborn
 brains?
 

 While
 prior
 studies
 have
 demonstrated
 that
 object
 motion
 is
 necessary
 for
 learning
 how
 to
 
segment
 objects
 from
 backgrounds,
 it
 is
 unknown
 whether
 object
 motion
 is
 sufficient
 for
 
the
 development
 of
 this
 ability.
 To
 address
 this
 issue,
 we
 raised
 newborn
 chicks
 in
 strictly
 
controlled
  environments
  that
  contained
  a
  single
  virtual
  object
  moving
  either
  on
  no
 
background
 or
 on
 natural
 backgrounds.
 We
 then
 used
 an
 automated
 testing
 procedure
 to
 
examine
 whether
 the
 chicks
 could
 recognize
 that
 object
 across
 novel
 backgrounds
 and
 
novel
 viewpoints.
 We
 found
 that
 chicks
 raised
 without
 experience
 of
 objects
 moving
 on
 
backgrounds
  showed
  impaired
  background-­‐invariant
  object
  recognition.
  Moreover,
  the
 
chicks’
 recognition
 performance
 improved
 throughout
 the
 test
 phase
 as
 they
 acquired
 
more
 experience
 with
 objects
 moving
 on
 backgrounds.
 These
 results
 suggest
 that
 object
 
motion
  is
  insufficient
  for
  the
  development
  of
  background-­‐invariant
  recognition.
  The
 
development
 of
 this
 ability
 requires
 visual
 experience
 with
 objects
 moving
 on
 backgrounds.
 

 

 
 

   
 

 

  38
 
Introduction
 

  How
 does
 object
 perception
 emerge
 in
 newborn
 brains?
 Despite
 significant
 interest
 
in
  the
  origins
  of
  this
  ability,
  methodological
  barriers
  have
  largely
  prevented
  precise
 
empirical
 studies
 of
 object
 perception
 in
 newborn
 humans.
 As
 a
 result,
 little
 is
 known
 about
 
the
 role
 of
 visual
 experience
 in
 the
 development
 of
 this
 ability.
 In
 contrast
 to
 studies
 of
 
human
 infants,
 controlled-­‐rearing
 studies
 of
 newborn
 chicks
 are
 uniquely
 situated
 for
 
examining
 the
 origins
 of
 object
 perception.
 Unlike
 human
 infants,
 chicks
 can
 be
 raised
 from
 
birth
 in
 strictly
 controlled
 visual
 worlds.
 Thus,
 researchers
 can
 systematically
 manipulate
 
the
 visual
 experiences
 provided
 to
 newborn
 chicks
 and
 examine
 which
 abilities
 emerge
 
from
 those
 experiences.
 This
 approach
 makes
 it
 possible
 to
 reveal
 the
 role
 of
 experience
 in
 
the
  development
  of
  perception
  and
  cognition.
  Recent
  developments
  in
  automated
 
controlled
  rearing
  also
  provide
  an
  opportunity
  to
  probe
  the
  initial
  state
  of
  object
 
perception
  with
  an
  unprecedented
  degree
  of
  precision
  (Wood,
  2013;
  Wood
  &
  Wood,
 
2015a).
 

  Human
 adults
 can
 parse
 natural
 visual
 scenes
 with
 relative
 ease;
 yet,
 the
 ability
 to
 
translate
  patches
  of
  different
  hues
  and
  luminance
  into
  unified,
  meaningful
  object
 
representations
 is
 incredibly
 challenging
 from
 a
 computational
 perspective.
 For
 example,
 
to
 recognize
 an
 object
 in
 a
 natural
 setting,
 the
 visual
 system
 must
 solve
 at
 least
 two
 
abstract
  problems.
  First,
  the
  visual
  system
  must
  group
  regions
  of
  different
  color
  and
 
luminance
 into
 individual
 objects.
 Second,
 the
 visual
 system
 must
 then
 be
 able
 to
 recognize
 
those
 objects
 across
 large
 changes
 in
 visual
 appearance
 (for
 example,
 due
 to
 changes
 in
 
viewpoint,
 lighting,
 position,
 and
 size).
 This
 ability,
 known
 as
 invariant
 object
 recognition,
 
has
 been
 studied
 extensively
 in
 adult
 subjects
 (Biederman,
 1987;
 Logothetis
 &
 Sheinberg,
 

 

  39
 
1996;
 Rolls,
 2000;
 Tanaka,
 1996;
 Zoccolan,
 2015).
 However,
 little
 is
 known
 about
 the
 
origins
 of
 visual
 parsing
 and
 invariant
 recognition
 in
 the
 newborn
 brain.
 What
 experiences
 
are
 needed
 for
 the
 newborn
 visual
 system
 to
 segment
 objects
 from
 backgrounds
 and
 
recognize
 those
 objects
 across
 novel
 viewing
 situations?
 
 

  Previous
 research
 examining
 the
 development
 of
 object
 segmentation
 has
 generally
 
focused
 on
 two
 populations:
 human
 infants
 and
 adult
 patients
 recovering
 from
 blindness.
 
Results
 from
 both
 of
 these
 populations
 have
 converged
 on
 an
 important
 finding:
 motion
 
information
 is
 critical
 to
 the
 early
 development
 of
 object
 segmentation
 (Arterberry
 &
 
Yonas,
 2000;
 Johnson,
 Schwarzer,
 &
 Leder,
 2003;
 Ostrovsky
 et
 al.,
 2009;
 Spelke,
 1990).
 
While
 these
 studies
 have
 helped
 to
 elucidate
 the
 development
 of
 background-­‐invariant
 
object
 recognition,
 they
 cannot
 reveal
 how
 background-­‐invariant
 recognition
 emerges
 in
 
the
 brain.
 Although
 infants
 and
 adult
 patients
 recovering
 from
 blindness
 have
 significantly
 
less
 visual
 experience
 than
 sighted
 adults
 with
 normal
 visual
 systems,
 both
 populations
 
have
 still
 acquired
 weeks
 to
 months
 of
 natural
 visual
 experiences
 prior
 to
 testing.
 

  Recently,
 automated
 controlled-­‐rearing
 studies
 of
 newborn
 chicks
 have
 begun
 to
 
tackle
  these
  questions
  by
  examining
  the
  initial
  state
  of
  object
  segmentation
  and
 
recognition.
 For
 instance,
 newborn
 chicks
 are
 able
 to
 build
 view-­‐invariant
 representations
 
of
 the
 first
 object
 seen
 in
 life
 (Wood,
 2013,
 2015;
 Wood
 &
 Wood,
 2015a).
 Moreover,
 these
 
studies
  provide
  converging
  evidence
  that
  motion
  information
  is
  critical
  for
  the
 
development
 of
 object
 perception.
 In
 particular,
 newborn
 chicks
 need
 visual
 experience
 
with
 objects
 that
 move
 smoothly
 and
 slowly
 over
 time
 in
 order
 to
 build
 view-­‐invariant
 
representations
 (Wood,
 2016;
 Wood
 et
 al.,
 2016;
 Wood
 &
 Wood,
 2016a).
 Further,
 newborn
 
chicks
 can
 segment
 moving
 objects
 from
 backgrounds
 (Chapter
 2)
 and
 fail
 to
 develop
 

 

  40
 
background-­‐invariant
 recognition
 when
 objects
 are
 stationary
 (Wood
 &
 Wood,
 in
 prep),
 
consistent
 with
 prior
 work
 on
 infants
 and
 patients
 recovering
 from
 blindness.
 
 

  While
 prior
 studies
 have
 demonstrated
 that
 motion
 information
 is
 necessary
 for
 the
 
development
 of
 object
 segmentation
 abilities,
 it
 is
 unknown
 whether
 motion
 information
 is
 
also
 sufficient.
 Can
 newborns
 build
 a
 background-­‐invariant
 object
 representation
 merely
 
from
 visual
 experience
 with
 a
 moving
 object
 (i.e.,
 in
 the
 absence
 of
 a
 background)?
 To
 
address
 this
 issue,
 we
 raised
 newborn
 chicks
 from
 birth
 with
 a
 single
 moving
 object.
 In
 the
 
No
 Background
 condition,
 the
 chicks
 were
 raised
 with
 an
 object
 moving
 on
 a
 homogenous
 
white
 background.
 Thus,
 chicks
 in
 this
 condition
 had
 visual
 experience
 with
 object
 motion,
 
but
 did
 not
 acquire
 visual
 experience
 with
 objects
 moving
 on
 patterned
 backgrounds
 prior
 
to
 testing.
 In
 the
 Background
 condition,
 chicks
 were
 raised
 with
 an
 object
 moving
 on
 
multiple
 backgrounds.
 
 
 
If
  motion
  information
  is
  both
  necessary
  and
  sufficient
  for
  newborns
  to
  build
 
background-­‐invariant
  object
  representations,
  then
  the
  chicks
  in
  the
  No
  Background
 
condition
 should
 successfully
 recognize
 the
 object
 across
 novel
 backgrounds,
 despite
 never
 
seeing
 the
 object
 move
 across
 a
 patterned
 background.
 According
 to
 this
 hypothesis,
 object
 
motion
 provides
 all
 of
 the
 critical
 information
 needed
 to
 segment
 objects
 and
 recognize
 
objects
 across
 novel
 viewing
 conditions.
 Conversely,
 if
 newborns
 need
 visual
 experience
 
with
  objects
  moving
  over
  patterned
  backgrounds
  to
  develop
  background-­‐invariant
 
recognition,
 then
 the
 chicks
 in
 the
 No
 Background
 condition
 should
 fail
 to
 recognize
 the
 
object
 across
 novel
 backgrounds.
 According
 to
 this
 hypothesis,
 while
 object
 motion
 might
 
be
 necessary
 for
 the
 development
 of
 background-­‐invariant
 recognition,
 it
 might
 not
 be
 
sufficient.
 
 

 

  41
 
To
 preview
 the
 findings,
 our
 results
 support
 the
 latter
 hypothesis.
 Object
 motion
 is
 
not
  sufficient
  for
  newborns
  to
  build
  background-­‐invariant
  representations
  of
  objects.
 
Rather,
  newborn
  chicks
  need
  visual
  experience
  with
  objects
  moving
  over
  patterned
 
backgrounds
 to
 successfully
 develop
 background-­‐invariant
 recognition.
 

 
Methods
 
Subjects
 

  Twenty-­‐one
 Rhode
 Island
 Red
 chicks
 of
 unknown
 sex
 were
 tested
 (11
 chicks
 in
 the
 
No
 Background
 condition
 and
 10
 chicks
 in
 the
 Background
 condition).
 No
 subjects
 were
 
excluded
 from
 the
 analyses.
 The
 sample
 size
 was
 determined
 before
 the
 experiment
 was
 
conducted,
 based
 on
 previous
 automated
 controlled-­‐rearing
 experiments
 with
 newborn
 
chicks
 (Wood,
 2013,
 2014,
 2015).
 The
 eggs
 were
 obtained
 from
 a
 local
 distributer
 and
 
incubated
 in
 darkness
 in
 an
 OVA-­‐Easy
 incubator
 (Brinsea
 Products
 Inc.,
 Titusville,
 FL).
 To
 
avoid
 exposing
 the
 chicks
 to
 any
 extraneous
 visual
 input,
 we
 used
 night
 vision
 goggles
 to
 
move
 the
 chicks
 in
 darkness
 from
 the
 incubation
 room
 to
 the
 controlled-­‐rearing
 chambers.
 
Each
 chick
 was
 raised
 within
 its
 own
 chamber.
 This
 experiment
 was
 approved
 by
 The
 
University
 of
 Southern
 California
 Institutional
 Animal
 Care
 and
 Use
 Committee.
 

 
Controlled-­‐Rearing
 Chambers
 
Each
 subject
 was
 reared
 singly
 in
 a
 controlled-­‐rearing
 chamber
 (66
 cm
 length
 ×
 42
 
cm
 width
 ×
 69
 cm
 height)
 constructed
 from
 high-­‐density
 polyethylene.
 The
 chambers
 were
 
devoid
 of
 all
 solid,
 bounded
 objects.
 Stimuli
 were
 presented
 on
 two
 display
 walls
 situated
 
on
  opposite
  sides
  of
  the
  chamber.
  The
  display
  walls
  were
  19”
  liquid
  crystal
  display
 

 

  42
 
monitors
 (1440
 ×
 900
 pixel
 resolution).
 Food
 and
 water
 were
 provided
 ad
 libidum
 in
 
transparent
 troughs
 in
 the
 ground.
 Micro-­‐cameras
 in
 the
 ceilings
 of
 the
 chambers
 recorded
 
all
 of
 the
 chicks’
 behavior,
 and
 the
 video
 feed
 was
 analyzed
 with
 automated
 image-­‐based
 
tracking
  software
  (EthoVision
  XT,
  Noldus
  Information
  Technology,
  Leesburg,
  VA).
  The
 
software
 calculated
 the
 amount
 of
 time
 each
 chick
 spent
 within
 zones
 (22
 cm
 ×
 42
 cm)
 next
 
to
  the
  left
  and
  right
  display
  walls.
  All
  of
  the
  chicks’
  behavior
  (9
  samples/second,
  24
 
hours/day,
 7
 days/week)
 was
 tracked
 and
 recorded
 across
 the
 two-­‐week
 duration
 of
 the
 
experiment.
 In
 total,
 we
 collected
 7,056
 hours
 of
 video
 footage
 for
 this
 experiment
 (24
 
hours
 per
 day
 ×
 14
 days
 ×
 21
 subjects).
 

 
Procedure
 

  During
 the
 input
 phase
 (Days
 1-­‐5
 of
 life),
 the
 chicks
 were
 raised
 in
 controlled-­‐
rearing
 chambers
 that
 contained
 a
 single
 virtual
 object
 rotating
 around
 a
 frontoparallel
 
horizontal
 axis
 (Figure
 7).
 The
 object
 rotated
 continuously,
 completing
 a
 full
 rotation
 every
 
15
  seconds.
  In
  the
  No
  Background
  condition,
  the
  object
  was
  presented
  on
  a
  white,
 
homogenous
  background.
  In
  the
  Background
  condition,
  the
  object
  was
  presented
  on
 
multiple
 backgrounds,
 which
 changed
 every
 two
 hours.
 The
 object
 appeared
 on
 one
 display
 
wall
 at
 a
 time
 and
 switched
 to
 the
 opposite
 display
 every
 two
 hours.
 In
 both
 conditions,
 the
 
display
 wall
 that
 was
 not
 showing
 the
 imprinted
 object
 was
 white.
 Figure
 8
 illustrates
 how
 
the
 stimuli
 were
 presented
 on
 the
 display
 walls
 during
 the
 input
 phase.
 
 
During
  the
  test
  phase
  (Days
  6-­‐14
  of
  life),
  we
  tested
  whether
  the
  chicks
  could
 
recognize
  their
  imprinted
  object
  when
  the
  object
  was
  presented
  on
  a
  variety
  of
 
backgrounds.
 On
 each
 test
 trial,
 the
 imprinted
 object
 appeared
 on
 one
 display
 wall,
 and
 a
 

 

  43
 
novel
 object
 appeared
 on
 the
 opposite
 display
 wall
 (Figures
 7
 &
 8).
 The
 novel
 object
 had
 a
 
similar
 size,
 color,
 motion
 speed,
 and
 motion
 trajectory
 as
 the
 imprinted
 object.
 The
 two
 
objects
 were
 modeled
 after
 those
 used
 in
 previous
 studies
 that
 tested
 for
 invariant
 object
 
recognition
 in
 adult
 rats
 (Zoccolan
 et
 al.,
 2009)
 and
 newborn
 chicks
 (Wood,
 2013,
 2015).
 
Figure 7. Illustration of a controlled-rearing chamber. The chambers contained no real-
world objects. To present object stimuli to the chick, virtual objects were projected on two
display walls situated on opposite sides of the chamber. (A) During the input phase (Days 1-5
of life), the chicks were raised with a virtual object rotating on no background (No
Background condition) or on multiple backgrounds (Background condition, depicted in A).
(B) During the test trials (Days 6-14 of life), the chicks were presented with the imprinted
object on one display wall and a novel object on the opposite display wall.
 

 

  44
 
The
 test
 objects
 were
 presented
 on
 the
 same
 background
 image,
 from
 the
 same
 viewpoint
 
range,
 and
 rotated
 360°
 around
 a
 frontoparallel
 horizontal
 axis
 (as
 in
 the
 input
 phase).
 
 
In
 total,
 we
 used
 24
 background
 images
 during
 the
 test
 phase.
 Eight
 images
 (2
 
exemplars
 ×
 4
 categories)
 were
 the
 images
 used
 in
 the
 Background
 condition
 during
 the
 
input
 phase.
 Eight
 additional
 images
 (2
 exemplars
 ×
 4
 categories)
 were
 from
 the
 same
 
categories
 as
 the
 Background
 condition
 (i.e.,
 coasts,
 forests,
 highways,
 and
 mountains),
 and
 
Figure 8. The experimental design. This schematic shows how the virtual objects were
presented on the two display walls, during sample four-hour periods. During the input phase,
the chicks were exposed to a single virtual object rotating on a homogenous white background
(A; No Background condition) or eight background images (B; Background condition).
During the test phase (C; both conditions), we measured whether the chicks could recognize
the object across novel backgrounds and novel viewpoints (30° & 60° azimuth rotations) on
different test trials.

 

 

  45
 
the
 final
 eight
 images
 (2
 exemplars
 ×
 4
 categories)
 were
 from
 novel
 categories
 (specifically,
 
open
 countries,
 rivers,
 deserts,
 and
 urban
 cityscapes).
 
In
  addition
  to
  changing
  the
  background
  images
  across
  the
  test
  trials,
  we
  also
 
manipulated
 the
 viewpoint
 of
 the
 objects
 by
 rotating
 the
 test
 objects
 0°,
 30°,
 or
 60°
 along
 
the
 azimuth
 axis.
 Both
 objects
 were
 shown
 from
 the
 same
 viewpoint
 range
 on
 each
 test
 
trial.
 We
 included
 viewpoint
 changes
 in
 the
 design
 to
 examine
 whether
 newborn
 chicks
 are
 
simultaneously
  capable
  of
  both
  background-­‐invariant
  and
  view-­‐invariant
  object
 
recognition.
 Finally,
 to
 control
 for
 the
 brightness
 of
 the
 objects,
 we
 equated
 the
 overall
 
brightness
 of
 the
 imprinted
 object
 and
 unfamiliar
 object
 on
 the
 test
 trials
 by
 decreasing
 the
 
size
 of
 Object
 1
 by
 11.5%
 and
 increasing
 the
 size
 of
 Object
 2
 by
 11.5%.
 
 
 
 

  The
 chicks
 received
 24
 test
 trials
 per
 day
 at
 the
 rate
 of
 one
 trial
 per
 hour.
 Each
 test
 
trial
 lasted
 40
 minutes,
 and
 was
 followed
 by
 a
 20-­‐minute
 rest
 period.
 During
 the
 rest
 
periods,
 the
 animation(s)
 from
 the
 input
 phase
 appeared
 on
 one
 display
 wall,
 and
 a
 white
 
screen
 appeared
 on
 the
 other
 display
 wall.
 Ten
 of
 the
 chicks
 were
 imprinted
 to
 Object
 1,
 
with
 Object
 2
 serving
 as
 the
 novel
 object,
 and
 11
 of
 the
 chicks
 were
 imprinted
 to
 Object
 2,
 
with
 Object
 1
 serving
 as
 the
 novel
 object.
 

 
Results
 
Overall
 Recognition
 Performance
 

  To
 compute
 object
 recognition
 performance,
 we
 measured
 the
 proportion
 of
 time
 
each
 chick
 spent
 with
 the
 imprinted
 object
 compared
 to
 the
 novel
 object
 during
 the
 test
 
trials.
 Results
 are
 shown
 in
 Figure
 9.
 The
 chicks’
 overall
 recognition
 performance
 was
 
significantly
 above
 chance
 levels
 in
 both
 conditions
 (one-­‐sample
 t-­‐tests,
 No
 Background
 

 

  46
 
condition:
 t(10)
 =
 4.469,
 p
 =
 .001,
 Cohen’s
 d
 =
 1.348;
 Background
 condition:
 t(9)
 =
 9.292,
 p
 
=
 .000007,
 Cohen’s
 d
 =
 2.938).
 Performance
 was
 similarly
 high
 in
 the
 Background
 condition
 
after
 removing
 the
 test
 trials
 in
 which
 the
 objects
 were
 presented
 on
 familiar
 backgrounds
 
from
 the
 input
 phase
 (one-­‐sample
 t-­‐test,
 t(9)
 =
 8.547,
 p
 =
 .00001,
 Cohen’s
 d
 =
 2.703).
 A
 
repeated-­‐measures
 ANOVA
 with
 the
 within-­‐subjects
 factor
 of
 Viewpoint
 Change
 and
 the
 
between-­‐subjects
 factor
 of
 Condition
 revealed
 a
 significant
 main
 effect
 of
 Condition
 (F(1,
 
19)
  =
  6.281,
  p
  =
  .021,
  η
2

  =
  .248)
  and
  a
  significant
  main
  effect
  of
  Viewpoint
  Change
 
(Greenhouse-­‐Geisser
  adjusted,
  F(1.535,
  29.172)
  =
  6.478,
  p
  =
  .008,
  η
2

  =
  .254).
  The
 
interaction
 between
 Viewpoint
 Change
 and
 Condition
 was
 not
 significant.
 
To
 further
 investigate
 the
 main
 effect
 of
 Condition,
 we
 performed
 an
 independent
 
samples
 t-­‐test
 comparing
 overall
 recognition
 performance
 across
 the
 conditions.
 We
 found
 
that
  performance
  in
  the
  No
  Background
  condition
  was
  significantly
  lower
  than
 
performance
 in
 the
 Background
 condition
 (t(19)
 =
 2.520,
 p
 =
 .021,
 Cohen’s
 d
 =
 1.107)
4
.
 
Thus,
 performance
 was
 impaired
 when
 the
 chicks
 did
 not
 have
 visual
 experience
 with
 an
 
object
 moving
 along
 patterned
 backgrounds.
 
 

 
Analysis
 of
 Change
 in
 Performance
 Over
 Time
 
To
 determine
 whether
 performance
 changed
 over
 the
 course
 of
 the
 test
 phase,
 we
 
computed
  a
  repeated-­‐measures
  ANOVA
  with
  the
  within-­‐subjects
  factor
  of
  Viewpoint
 
Change
 and
 Test
 Day
 and
 the
 between-­‐subjects
 factor
 of
 Condition
 (see
 Figure
 10
 for
 
performance
 by
 Test
 Day).
 The
 ANOVA
 revealed
 a
 significant
 main
 effect
 of
 Test
 Day
 (F(8,
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
The reported t-test includes test trials from the Background condition in which the objects were
presented on familiar backgrounds from the input phase. However, after removing the trials in
which the objects were presented on familiar backgrounds from the input phase, the t-test is still
significant.  

 

  47
 
152)
 =
 8.609,
 p
 <
 10
-­‐8
,
 η
2

 =
 .312),
 Viewpoint
 Change
 (Greenhouse-­‐Geisser
 adjusted,
 F(1.533,
 
29.132)
 =
 5.936,
 p
 =
 .011,
 η
2

 =
 .238),
 and
 Condition
 (F(1,
 19)
 =
 6.590,
 p
 =
 .019,
 η
2

 =
 .258).
 
None
 of
 the
 interactions
 were
 significant.
 
 
To
  determine
  whether
  the
  significant
  main
  effect
  of
  Test
  Day
  reflected
  an
 
improvement
 in
 recognition
 performance
 over
 time,
 we
 computed
 a
 post-­‐hoc
 correlation
 
between
 test
 day
 and
 performance,
 which
 revealed
 a
 significant
 positive
 correlation
 for
 
both
 conditions
 (No
 Background
 condition:
 r
 =
 .875,
 p
 =
 .002;
 Background
 condition:
 r
 =
 
.814,
 p
 =
 .008).
 Thus,
 chicks’
 recognition
 performance
 improved
 significantly
 across
 the
 test
 
phase
 as
 they
 acquired
 more
 experience
 with
 objects
 moving
 on
 patterned
 backgrounds.
 
Figure 9. Results. The graphs show the percent of time the chicks spent with the imprinted
object versus novel object for each condition and viewpoint change. The dashed line indicates
chance performance. Error bars show ±1 standard error (SEM). The chicks successfully
recognized their imprinted object across all background changes and viewpoint changes.
Overall, performance was lower in the No Background condition than the Background
condition.  

 

 

  48
 
Importantly,
 chicks’
 recognition
 performance
 was
 still
 well
 above
 chance
 levels
 even
 
on
 the
 first
 test
 day
 in
 the
 Background
 condition
 (mean
 =
 68%,
 SEM
 =
 3%,
 two-­‐tailed
 one
 
sample
 t-­‐test:
 t(9)
 =
 6.115,
 p
 <
 .0002,
 d
 =
 1.934).
 However,
 chicks’
 recognition
 performance
 
did
 not
 exceed
 chance
 levels
 in
 the
 No
 Background
 condition
 until
 test
 day
 4
 (all
 Ps
 Holm-­‐
Bonferroni
  corrected,
  day
  1:
  t(10)
  =
  1.978,
  corrected
  p
  =
  .152;
  day
  2:
  t(10)
  =
  1.811,
 
corrected
 p
 =
 .100;
 day
 3:
 t(10)
 =
 2.395,
 corrected
 p
 =
 .113;
 day
 4:
 t(10)
 =
 3.421,
 corrected
 p
 
=
 .026;
 day
 5:
 t(10)
 =
 4.615,
 corrected
 p
 =
 .006;
 day
 6:
 t(10)
 =
 4.269,
 corrected
 p
 =
 .008;
 day
 
7:
 t(10)
 =
 4.803,
 corrected
 p
 =
 .005;
 day
 8:
 t(10)
 =
 4.903,
 corrected
 p
 =
 .005;
 day
 9:
 t(10)
 =
 
Figure 10. Overall performance and change over time. (A) The chicks’ overall object
recognition performance in each condition. Error bars show ±1 standard error (SEM). The
chicks in the Background condition performed significantly better than the chicks in No
Background condition. Critically, both groups of chicks received the same amount of
experience with object motion. (B) Average performance for each test day in the Background
condition (red line) and No Background condition (blue line). The dashed line indicates
chance performance. Shaded ribbons show ±1 standard error (SEM).  

 

 

  49
 
5.100,
 corrected
 p
 =
 .004).
 Thus,
 chicks
 in
 the
 No
 Background
 condition
 were
 significantly
 
impaired
 at
 background-­‐invariant
 recognition
 at
 the
 start
 of
 the
 test
 phase,
 and
 their
 
performance
  improved
  as
  they
  acquired
  greater
  amounts
  of
  experience
  with
  objects
 
moving
 on
 patterned
 backgrounds
 (i.e.,
 during
 the
 test
 trials).
 

 
Analysis
 of
 Individual
 Subject
 Performance
 
Since
 we
 collected
 a
 large
 number
 of
 test
 trials
 from
 each
 subject,
 we
 were
 able
 to
 
analyze
  each
  chick’s
  object
  recognition
  abilities
  with
  high
  precision.
  In
  particular,
  we
 
examined
 whether
 each
 chick
 was
 able
 to
 build
 a
 background-­‐invariant
 representation
 of
 
the
  imprinted
  object
  (Figure
  11).
  In
  the
  Background
  condition,
  all
  10
  of
  the
  chicks
 
successfully
 recognized
 their
 imprinted
 object
 across
 the
 test
 phase
 (two-­‐tailed
 one-­‐sample
 
t-­‐tests
 with
 Holm-­‐Bonferroni
 correction
 for
 multiple
 comparisons,
 all
 corrected
 Ps
 <
 .001)
5
,
 
indicating
 that
 all
 of
 the
 chicks
 built
 a
 background-­‐invariant
 object
 representation.
 In
 the
 
No
 Background
 condition,
 8
 out
 of
 11
 chicks
 performed
 significantly
 above
 chance
 levels
 
(two-­‐tailed
 one-­‐sample
 t-­‐tests
 with
 Holm-­‐Bonferroni
 correction
 for
 multiple
 comparisons,
 
3
 chicks:
 p
 >
 .10;
 remaining
 8
 chicks:
 p
 <
 .05).
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
When the analysis is limited to test trials in which the objects are shown on novel backgrounds,
the results remain the same: all 10 chicks successfully recognized their imprinted object with
Holm-Bonferroni correction for multiple comparisons (all corrected Ps < .02).

 

  50
 

 
Figure 11. Performance of the individual subjects. The graphs show each chick’s mean
recognition performance in the No Background condition (left, blue bars) and the Background
condition (right, red bars) across test days 1-4 (top) and test days 5-9 (bottom). The subjects
are ordered by average overall performance. Asterisks denote performance significantly above
chance levels after Holm-Bonferroni correction. The dashed line indicates chance
performance. Error bars show ±1 standard error (SEM). Most chicks in the No Background
Condition did not exceed chance performance in the first four days of testing but did succeed
in the last five days of testing. Nearly all chicks in the Background Condition exceeded
chance levels for the first four days of testing. In both experiments, there were significant
individual differences across subjects. Some newborn chicks developed better object
recognition abilities than others.  

 

  51
 
Discussion
 
We
 used
 an
 automated
 controlled-­‐rearing
 method
 to
 examine
 whether
 newborns
 
can
 build
 background-­‐invariant
 and
 view-­‐invariant
 object
 representations
 at
 the
 onset
 of
 
vision.
  During
  the
  input
  phase,
  we
  raised
  newborn
  chicks
  in
  strictly
  controlled
 
environments
 that
 contained
 a
 single
 virtual
 object.
 During
 the
 test
 phase,
 we
 examined
 
whether
  the
  chicks
  could
  recognize
  that
  object
  across
  novel
  backgrounds
  and
  novel
 
viewpoints.
 Our
 results
 indicate
 that
 newborn
 chicks
 need
 visual
 experience
 with
 an
 object
 
moving
  across
  patterned
  backgrounds
  in
  order
  to
  develop
  background-­‐invariant
 
recognition.
  When
  newborn
  chicks
  were
  raised
  with
  an
  object
  moving
  on
  patterned
 
backgrounds,
 the
 chicks
 showed
 robust
 recognition
 performance
 across
 the
 entire
 test
 
phase.
  Conversely,
  when
  newborn
  chicks
  were
  raised
  with
  an
  object
  moving
  on
  no
 
background,
 the
 chicks
 were
 impaired
 at
 recognizing
 that
 object
 during
 the
 first
 three
 days
 
of
 the
 test
 phase.
 These
 chicks
 slowly
 developed
 background-­‐invariant
 object
 recognition
 
as
 they
 acquired
 greater
 amounts
 of
 experience
 with
 objects
 moving
 across
 patterned
 
backgrounds.
  Moreover,
  the
  performance
  of
  the
  chicks
  in
  both
  conditions
  improved
 
throughout
  the
  test
  phase,
  suggesting
  that
  background-­‐invariant
  object
  recognition
 
continues
 to
 improve
 across
 the
 first
 two
 weeks
 of
 life.
 
How
 do
 these
 results
 bear
 on
 the
 classic
 ‘nature
 versus
 nurture’
 debate?
 The
 present
 
study
 demonstrates
 that,
 while
 invariant
 object
 recognition
 can
 emerge
 rapidly
 in
 the
 
newborn
 brain,
 specific
 types
 of
 visual
 experiences
 are
 necessary
 to
 develop
 the
 ability
 to
 
segment
 objects
 from
 backgrounds.
 These
 results
 add
 to
 a
 growing
 body
 of
 work
 showing
 
that
 the
 development
 of
 object
 recognition
 requires
 specific
 types
 of
 visual
 experience
 with
 
objects
 (Wood,
 2016;
 Wood
 et
 al.,
 2016;
 Wood
 &
 Wood,
 2016a).
 In
 particular,
 newborn
 

 

  52
 
chicks
 need
 visual
 experience
 with
 objects
 moving
 slowly
 and
 smoothly
 over
 time
 across
 
patterned
 backgrounds
 to
 develop
 object
 recognition.
 Thus,
 newborn
 chicks
 can
 build
 
abstract
 object
 representations,
 but
 only
 when
 provided
 with
 the
 right
 kind
 of
 visual
 input.
 
 
The
 present
 study
 also
 informs
 the
 literature
 on
 the
 development
 of
 visual
 parsing.
 
Studies
 of
 infants
 (Johnson
 &
 Aslin,
 1995;
 Johnson,
 Bremner,
 Slater,
 Mason,
 &
 Foster,
 2002;
 
Kellman
 &
 Spelke,
 1983)
 and
 blind
 patients
 who
 recover
 sight
 (Ostrovsky
 et
 al.,
 2009)
 have
 
demonstrated
 that
 motion
 cues
 are
 critical
 for
 the
 development
 of
 object
 parsing
 abilities.
 
The
 present
 study
 extends
 this
 literature
 by
 demonstrating
 that
 motion
 cues
 alone
 are
 not
 
sufficient
  for
  newborn
  visual
  systems
  to
  segment
  objects
  from
  backgrounds.
  Rather,
 
newborns
  need
  visual
  experience
  with
  objects
  moving
  on
  backgrounds
  to
  build
 
background-­‐invariant
 object
 representations.
 
 
 
To
  conclude,
  this
  study
  shows
  that
  newborn
  chicks
  can
  segment
  objects
  from
 
backgrounds
 within
 the
 first
 few
 days
 of
 life.
 However,
 the
 development
 of
 this
 ability
 
requires
 visual
 experience
 with
 objects
 moving
 on
 patterned
 backgrounds.
 Thus,
 this
 study
 
reveals
 a
 constraint
 on
 the
 development
 of
 object
 recognition.
 These
 results
 add
 to
 a
 
growing
 body
 of
 work
 showing
 that
 the
 development
 of
 object
 recognition
 requires
 visual
 
experience
 with
 a
 natural
 visual
 environment,
 containing
 objects
 that
 move
 slowly
 and
 
smoothly
 over
 time
 over
 patterned
 visual
 scenes.
 In
 the
 absence
 of
 such
 natural
 visual
 
experience,
 newborn
 animals
 develop
 impaired
 object
 recognition
 abilities.
   
 
 

 

 

   
 

 

  53
 
Chapter
 4:
 Newborn
 chicks
 generate
 view-­‐invariant
 object
 representations
 from
 sparse
 
visual
 input
 

 
(Corresponding
 publication:
 Wood,
 S.
 M.
 W.
 &
 Wood,
 J.
 N.
 (2015)
 A
 chicken
 model
 for
 
studying
 the
 emergence
 of
 invariant
 object
 recognition.
 Frontiers
 in
 Neural
 Circuits,
 9,
 7.)
 

 

 
Abstract
 
“Invariant
 object
 recognition”
 refers
 to
 the
 ability
 to
 recognize
 objects
 across
 variation
 in
 
their
  appearance
  on
  the
  retina.
  This
  ability
  is
  central
  to
  visual
  perception,
  yet
  its
 
developmental
 origins
 are
 poorly
 understood.
 Traditionally,
 nonhuman
 primates,
 rats,
 and
 
pigeons
 have
 been
 the
 most
 commonly
 used
 animal
 models
 for
 studying
 invariant
 object
 
recognition.
 Although
 these
 animals
 have
 many
 advantages
 as
 model
 systems,
 they
 are
 not
 
well
 suited
 for
 studying
 the
 emergence
 of
 invariant
 object
 recognition
 in
 the
 newborn
 
brain.
 Here,
 we
 argue
 that
 newborn
 chicks
 (Gallus
 gallus)
 are
 an
 ideal
 model
 system
 for
 
studying
 the
 emergence
 of
 invariant
 object
 recognition.
 Using
 an
 automated
 controlled-­‐
rearing
 approach,
 we
 show
 that
 chicks
 can
 build
 a
 view-­‐invariant
 representation
 of
 the
 first
 
object
  they
  see
  in
  their
  life.
  This
  invariant
  representation
  can
  be
  built
  from
  highly
 
impoverished
 visual
 input
 (3
 images
 of
 an
 object
 separated
 by
 15°
 azimuth
 rotations)
 and
 
cannot
 be
 accounted
 for
 by
 low-­‐level
 retina-­‐like
 or
 V1-­‐like
 neuronal
 representations.
 These
 
results
  indicate
  that
  newborn
  neural
  circuits
  begin
  building
  invariant
  object
 
representations
 at
 the
 onset
 of
 vision
 and
 argue
 for
 an
 increased
 focus
 on
 chicks
 as
 animal
 
models
 for
 studying
 invariant
 object
 recognition.
 
 
 
 

 

   
 

 

  54
 
Introduction
 
Humans
 and
 other
 animals
 can
 recognize
 objects
 despite
 tremendous
 variation
 in
 
how
 objects
 appear
 on
 the
 retina
 (due
 to
 changes
 in
 viewpoint,
 size,
 lighting,
 and
 so
 forth).
 
This
 ability—known
 as
 “invariant
 object
 recognition”
6
—has
 been
 studied
 extensively
 in
 
adult
  animals,
  but
  its
  developmental
  origins
  are
  poorly
  understood.
  We
  have
  not
  yet
 
characterized
 the
 initial
 state
 of
 object
 recognition
 (i.e.,
 the
 state
 of
 object
 recognition
 at
 
the
 onset
 of
 vision),
 nor
 do
 we
 understand
 how
 this
 initial
 state
 changes
 as
 a
 function
 of
 
specific
 visual
 experiences.
 
 

  Researchers
  have
  long
  recognized
  that
  studies
  of
  newborns
  are
  essential
  for
 
characterizing
 the
 initial
 state
 of
 visual
 cognition;
 however,
 methodological
 constraints
 
have
 hindered
 our
 ability
 to
 study
 invariant
 object
 recognition
 in
 newborn
 humans.
 First,
 
human
  infants
  cannot
  ethically
  be
  raised
  in
  controlled
  environments
  from
  birth.
 
Consequently,
 researchers
 have
 been
 unable
 to
 study
 how
 specific
 visual
 experiences
 shape
 
the
 initial
 state
 of
 invariant
 object
 recognition.
 Second,
 it
 is
 typically
 possible
 to
 collect
 just
 
a
 small
 number
 of
 test
 trials
 from
 each
 newborn
 human.
 As
 a
 result,
 researchers
 have
 been
 
unable
 to
 measure
 newborns’
 first
 visual
 object
 representations
 with
 high
 precision.
 The
 
recent
 development
 of
 an
 automated
 controlled-­‐rearing
 approach
 with
 a
 newborn
7

 animal
 
model—the
 domestic
 chick
 (Gallus
 gallus)—overcomes
 these
 two
 limitations.
 

  Recent
 studies
 using
 this
 automated
 controlled-­‐rearing
 method
 have
 revealed
 that
 
newborn
 chicks
 are
 capable
 of
 building
 invariant
 representations
 of
 objects
 and
 faces
 from
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
Here, we use “invariant” to mean tolerant to changes in appearance, but not necessarily fully
invariant (i.e., recognizable across any viewing condition or without performance costs for
changes in viewing condition).
7
The term “newborn” is used to refer to an animal at the beginning of the post-embryonic phase
of their life cycle.

 

  55
 
sparse
 visual
 experience.
 For
 example,
 newborn
 chicks
 raised
 with
 a
 single
 object
 (Wood,
 
2013)
 or
 face
 (Wood
 &
 Wood,
 in
 prep)
 rotating
 through
 a
 single
 viewpoint
 range
 can
 build
 
a
 view-­‐invariant
 representation
 of
 that
 object/face.
 Similarly,
 newborn
 chicks
 that
 are
 
raised
  with
  a
  single
  object
  rotating
  on
  a
  single
  background
  can
  build
  a
  background-­‐
invariant
  representation
  of
  that
  object
  (Chapter
  2).
  While
  newborn
  chicks
  can
  build
 
representations
 that
 generalize
 well
 beyond
 their
 visual
 experiences,
 there
 are
 limits
 to
 the
 
development
 of
 this
 ability.
 To
 illustrate,
 when
 newborn
 chicks
 were
 raised
 without
 visual
 
experience
 of
 an
 object
 moving
 along
 patterned
 backgrounds
 (i.e.,
 an
 object
 that
 rotated
 on
 
a
 white
 homogenous
 background),
 the
 chicks
 were
 significantly
 impaired
 at
 background-­‐
invariant
 recognition
 and
 failed
 to
 recognize
 the
 imprinted
 object
 above
 chance
 levels
 on
 
the
 first
 days
 of
 testing
 (Chapter
 3).
 Thus,
 it
 is
 possible
 that
 visual
 object
 experiences
 that
 
are
 too
 sparse
 can
 impair
 the
 development
 of
 object
 recognition.
 Overall,
 however,
 the
 
limits
 on
 newborns’
 ability
 to
 generalize
 from
 sparse
 visual
 experiences
 remain
 unclear.
 

 
The
 Present
 Experiment
 

  The
 current
 study
 builds
 on
 a
 previous
 study
 that
 examined
 whether
 newborn
 
chicks
 can
 build
 invariant
 object
 representations
 at
 the
 onset
 of
 vision
 (Wood,
 2013).
 In
 
this
 previous
 study,
 chicks
 were
 raised
 for
 one
 week
 in
 environments
 that
 contained
 a
 
single
 virtual
 object
 that
 could
 only
 be
 seen
 from
 a
 limited
 60°
 viewpoint
 range.
 In
 their
 
second
 week
 of
 life,
 Wood
 (2013)
 then
 measured
 whether
 chicks
 could
 recognize
 the
 
virtual
 object
 across
 a
 variety
 of
 novel
 viewpoints.
 The
 majority
 of
 subjects
 successfully
 
recognized
 the
 object
 across
 the
 novel
 viewpoints,
 which
 shows
 that
 chicks
 can
 build
 a
 
view-­‐invariant
 representation
 of
 the
 first
 object
 they
 see
 in
 their
 life.
 
 

 

  56
 

  The
 present
 study
 extends
 this
 finding
 in
 three
 ways.
 First,
 we
 significantly
 reduced
 
the
 amount
 of
 visual
 object
 input
 available
 to
 the
 subjects.
 In
 Wood
 (2013),
 the
 chicks
 were
 
shown
 a
 virtual
 object
 that
 moved
 smoothly
 over
 time
 through
 a
 60°
 viewpoint
 range
 at
 24
 
images/second,
 whereas
 in
 the
 present
 study,
 the
 chicks
 were
 shown
 a
 virtual
 object
 that
 
moved
 abruptly
 over
 time
 through
 a
 30°
 viewpoint
 range
 at
 1
 image/second
 (see
 Figure
 
12).
 Thus,
 compared
 with
 Wood
 (2013),
 the
 chicks
 in
 the
 present
 study
 observed
 a
 smaller
 
number
 of
 unique
 images
 of
 the
 object
 (3
 unique
 images
 versus
 72
 unique
 images),
 a
 
smaller
  range
  of
  movement
  (30°
  viewpoint
  range
  versus
  60°
  viewpoint
  range),
  and
 
unnatural
 (abrupt)
 versus
 natural
 (smooth)
 object
 motion.
 The
 abrupt
 object
 motion
 was
 
unnatural
 because
 it
 caused
 the
 object’s
 features
 to
 move
 large
 distances
 across
 the
 retina
 
instantaneously,
 breaking
 the
 spatiotemporal
 contiguity
 of
 the
 images.
 The
 present
 study
 
therefore
 provided
 a
 particularly
 strong
 test
 of
 whether
 chicks
 can
 build
 invariant
 object
 
representations
 from
 impoverished
 visual
 input.
 
 

  Second,
 we
 tested
 chicks’
 object
 recognition
 abilities
 across
 a
 systematically
 varying
 
recognition
 space.
 Each
 chick’s
 object
 recognition
 abilities
 were
 tested
 across
 27
 different
 
viewpoint
 ranges;
 the
 viewpoint
 ranges
 canvassed
 a
 uniform
 recognition
 space
 in
 which
 
the
 object
 was
 rotated
 -­‐60°
 to
 +60°
 in
 the
 azimuth
 direction
 and
 -­‐60°
 to
 +60°
 in
 the
 
elevation
 direction
 (in
 15°
 increments;
 see
 Figure
 14).
 Thus,
 we
 were
 able
 to
 examine
 
whether
 chicks’
 recognition
 performance
 varied
 as
 a
 function
 of
 the
 object’s
 degree
 of
 
rotation.
 
 

  Third,
 we
 investigated
 whether
 chicks’
 recognition
 abilities
 could
 be
 explained
 by
 
some
 low-­‐level
 features
 of
 the
 test
 animations,
 by
 quantifying
 the
 similarity
 between
 the
 
input
 images
 and
 the
 test
 images.
 We
 quantified
 image
 similarity
 in
 terms
 of
 both
 pixel-­‐like
 

 

  57
 
similarity
 and
 V1-­‐like
 similarity,
 akin
 to
 previous
 studies
 that
 tested
 object
 recognition
 in
 
adult
 rats
 (Tafazoli
 et
 al.,
 2012;
 Zoccolan
 et
 al.,
 2009).
 
 
 

   
 
Methods
 
Subjects
 

  Ten
  chicks
  of
  unknown
  sex
  were
  tested.
  No
  subjects
  were
  excluded
  from
  the
 
analyses.
 Fertilized
 eggs
 were
 incubated
 in
 darkness
 in
 an
 OVA-­‐Easy
 incubator
 (Brinsea
 
Products
 Inc.,
 Titusville,
 FL).
 We
 maintained
 the
 temperature
 and
 humidity
 at
 99.6°F
 and
 
45%,
 respectively,
 for
 the
 first
 19
 days
 of
 incubation.
 On
 day
 19
 of
 incubation,
 the
 humidity
 
was
 increased
 to
 60%.
 The
 eggs
 were
 incubated
 in
 darkness
 to
 ensure
 that
 no
 visual
 input
 
would
 reach
 the
 chicks
 through
 their
 shells.
 After
 hatching,
 we
 moved
 the
 chicks
 from
 the
 
incubator
 room
 to
 the
 controlled-­‐rearing
 chambers
 in
 complete
 darkness.
 Each
 chick
 was
 
raised
 singly
 within
 its
 own
 chamber.
 
   
 

 
Controlled-­‐Rearing
 Chambers
 

  The
 controlled-­‐rearing
 chambers
 measured
 66
 cm
 (length)
 ×
 42
 cm
 (width)
 ×
 69
 cm
 
(height).
 The
 floors
 of
 the
 chambers
 consisted
 of
 black
 wire
 mesh
 suspended
 1”
 over
 a
 
black
  surface
  by
  transparent,
  plexiglass
  beams.
  Object
  stimuli
  were
  presented
  to
  the
 
subjects
 by
 projecting
 virtual
 objects
 onto
 two
 display
 walls
 (19”
 LCD
 monitors
 with
 1440
 
×
 900
 pixel
 resolution)
 situated
 on
 opposite
 sides
 of
 the
 chambers.
 The
 other
 two
 walls
 of
 
the
 chambers
 were
 white,
 high-­‐density
 plastic.
 We
 used
 matte
 (non-­‐reflective)
 materials
 
for
 both
 the
 walls
 and
 the
 floor
 to
 avoid
 incidental
 illumination.
 The
 chambers
 contained
 

 

  58
 
no
 rigid,
 bounded
 objects
 other
 than
 the
 virtual
 objects
 presented
 on
 the
 display
 walls.
 See
 
Figure
 1
 in
 Wood
 (2013)
 for
 a
 picture
 of
 the
 chambers.
 
Food
 and
 water
 were
 provided
 ad
 libitum
 within
 transparent,
 rectangular
 troughs
 in
 
the
 ground
 (66
 cm
 length
 ×
 2.5
 cm
 width
 ×
 2.7
 cm
 height).
 Grain
 was
 used
 as
 food
 because
 
grain
 does
 not
 behave
 like
 a
 rigid,
 bounded
 object
 (i.e.,
 grain
 does
 not
 maintain
 a
 solid,
 
bounded
 shape).
 All
 care
 of
 the
 chicks
 was
 performed
 in
 darkness
 with
 the
 aid
 of
 night
 
vision
 goggles.
 
 

  The
 controlled-­‐rearing
 chambers
 recorded
 all
 of
 the
 chicks’
 behavior
 (24
 hours/day,
 
7
  days/week)
  with
  high
  precision
  (9
  samples/second)
  via
  micro-­‐cameras
  (1.5
  cm
 
diameter)
 embedded
 in
 the
 ceilings
 of
 the
 chambers
 and
 automated
 image-­‐based
 tracking
 
software
 (Ethovision
 XT,
 Noldus
 Information
 Technology,
 Leesburg,
 VA).
 This
 software
 
calculated
 the
 amount
 of
 time
 each
 chick
 spent
 within
 zones
 (22
 cm
 ×
 42
 cm)
 next
 to
 each
 
display
 wall.
 In
 total,
 3,360
 hours
 of
 video
 footage
 (14
 days
 ×
 24
 hours/day
 ×
 10
 subjects)
 
were
 collected
 and
 analyzed
 for
 the
 present
 study.
 
 

 
Input
 Phase
 

  During
 the
 input
 phase
 (the
 first
 week
 of
 life),
 chicks
 were
 raised
 in
 environments
 
that
 contained
 a
 single
 virtual
 object.
 Four
 chicks
 were
 presented
 with
 Object
 1
 and
 six
 
chicks
 were
 presented
 with
 Object
 2
 (see
 Figure
 12).
 The
 object
 animations
 contained
 just
 
three
 unique
 images
 of
 the
 object:
 a
 front
 view
 and
 two
 side
 views
 with
 ±15°
 azimuth
 
rotations.
 The
 images
 changed
 at
 a
 rate
 of
 1
 image/sec.
 From
 a
 human
 adult’s
 perspective,
 
the
 objects
 appeared
 to
 undergo
 apparent
 motion,
 rocking
 back
 and
 forth
 through
 a
 30°
 
viewpoint
 range
 along
 a
 frontoparallel
 vertical
 axis.
 The
 virtual
 object
 was
 displayed
 on
 a
 

 

  59
 
uniform
 white
 background,
 and
 appeared
 for
 an
 equal
 amount
 of
 time
 on
 the
 left
 and
 right
 
display
 walls.
 The
 object
 switched
 walls
 every
 two
 hours,
 following
 a
 one-­‐minute
 period
 of
 
darkness
 (Figure
 13).
 

 
Test
 Phase
 

  During
 the
 test
 phase
 (the
 second
 week
 of
 life),
 we
 examined
 whether
 each
 chick
 
had
 built
 a
 view-­‐invariant
 representation
 of
 their
 imprinted
 object
 by
 using
 an
 automated
 
two-­‐alternative
 forced
 choice
 testing
 procedure.
 On
 each
 test
 trial,
 the
 imprinted
 object
 
was
 shown
 on
 one
 display
 wall
 and
 an
 unfamiliar
 object
 was
 shown
 on
 the
 other
 display
 
Figure 12. The three unique images of Object 1 and Object 2 presented to the chicks
during the input phase. Four chicks were presented with Object 1 and six chicks were
presented with Object 2. Object 2 served as the unfamiliar object for the chicks that
were imprinted to Object 1, and vice versa. The three images changed at a rate of 1
image/second, causing the virtual object to rotate abruptly back and forth through a 30°
viewpoint range. Chicks never observed the virtual object (or any other object) from
another viewpoint during the input phase.

 

  60
 
wall.
 We
 then
 measured
 the
 amount
 of
 time
 chicks
 spent
 in
 proximity
 to
 each
 object.
 If
 
chicks
 successfully
 recognize
 their
 imprinted
 object,
 then
 they
 should
 spend
 a
 greater
 
proportion
 of
 time
 in
 proximity
 to
 the
 imprinted
 object
 compared
 to
 the
 unfamiliar
 object.
 
The
  imprinted
  object
  was
  shown
  from
  81
  different
  test
  viewpoints,
  consisting
  of
  all
 
possible
 combinations
 of
 9
 azimuth
 rotations
 (-­‐60°,
 -­‐45°,
 -­‐30°,
 -­‐15°,
 0°,
 +15°,
 +30°,
 +45°,
 
+60°)
 and
 9
 elevation
 rotations
 (-­‐60°,
 -­‐45°,
 -­‐30°,
 -­‐15°,
 0°,
 +15°,
 +30°,
 +45°,
 +60°).
 To
 equate
 
the
 direction
 of
 object
 motion
 across
 the
 input
 and
 test
 phases,
 the
 81
 viewpoints
 were
 
organized
 into
 27
 different
 viewpoint
 ranges,
 each
 containing
 three
 images.
 Like
 the
 input
 
Figure 13. A schematic showing how the virtual objects were presented on the two display
walls during the input phase (top) and the test phase (bottom). During the input phase, chicks
observed a single virtual object rotating abruptly back and forth through a 30° viewpoint
range. During the test phase, chicks were presented with regularly scheduled test trials.
During the test trials, the imprinted object was shown on one display wall and an unfamiliar
object was shown on the other display wall. The imprinted object was shown from a variety of
novel viewpoints, whereas the unfamiliar object was always shown from the same frontal
viewpoint range as the imprinted object during the input phase. This maximized the pixel-
level and V1-level similarity between the unfamiliar object and the imprinting stimulus. Thus,
to recognize their imprinted object, chicks needed to generalize across large, novel, and
complex changes in the object’s appearance on the retina.  


 

  61
 
object
 animation,
 each
 of
 the
 27
 test
 animations
 showed
 the
 imprinted
 object
 rotating
 back
 
and
 forth
 ±15°
 along
 the
 azimuth
 rotation
 axis.
 Figure
 15
 shows
 how
 the
 81
 individual
 
viewpoints
 were
 organized
 into
 the
 27
 test
 animations.
 
 The
 unfamiliar
 object
 was
 similar
 
to
 the
 imprinted
 object
 in
 terms
 of
 its
 size,
 color,
 motion
 speed,
 and
 motion
 trajectory.
 
Further,
 on
 all
 of
 the
 test
 trials,
 the
 unfamiliar
 object
 was
 presented
 from
 the
 same
 frontal
 
viewpoint
 range
 as
 the
 imprinted
 object
 from
 the
 input
 phase.
 Presenting
 the
 unfamiliar
 
object
 from
 this
 frontal
 viewpoint
 range
 maximized
 the
 similarity
 between
 the
 unfamiliar
 
object
  and
  the
  imprinting
  stimulus.
  Thus,
  to
  recognize
  their
  imprinted
  object,
  chicks
 
needed
 to
 generalize
 across
 large,
 novel,
 and
 complex
 changes
 in
 the
 object’s
 appearance
 
on
 the
 retina.
 The
 test
 trials
 lasted
 17
 minutes
 and
 were
 separated
 from
 one
 another
 by
 32-­‐
minute
 rest
 periods.
 During
 the
 rest
 periods,
 we
 projected
 the
 animation
 from
 the
 input
 
phase
 onto
 one
 display
 wall
 and
 a
 white
 screen
 onto
 the
 other
 display
 wall.
 The
 test
 trials
 
and
 rest
 periods
 were
 separated
 by
 1-­‐minute
 periods
 of
 darkness.
 On
 each
 day
 of
 the
 test
 
phase,
 chicks
 were
 presented
 with
 each
 viewpoint
 range
 one
 time,
 for
 a
 total
 of
 27
 test
 
trials
 per
 day.
 Thus,
 each
 chick
 received
 189
 test
 trials
 over
 the
 course
 of
 the
 experiment.
 
The
 27
 viewpoint
 ranges
 were
 presented
 in
 a
 randomized
 order
 during
 each
 day
 of
 the
 test
 
phase.
 
 

 
Results
 
Overall
 Performance
 

  To
 test
 whether
 performance
 was
 significantly
 above
 chance,
 we
 used
 intercept-­‐
only
 mixed
 effects
 models
 (also
 called
 “multilevel
 models”).
 Since
 we
 collected
 multiple
 
observations
 from
 each
 subject,
 it
 was
 necessary
 to
 use
 an
 analysis
 that
 can
 account
 for
 the
 

 

  62
 
nested
 structure
 of
 the
 data
 (Aarts,
 Verhage,
 Veenvliet,
 Dolan,
 &
 van
 der
 Sluis,
 2014).
 The
 
mixed
 effects
 models
 were
 performed
 using
 R
 (www.r-­‐project.org).
 First,
 we
 computed
 the
 
number
 of
 test
 trials
 in
 which
 chicks
 preferred
 their
 imprinted
 object
 over
 the
 unfamiliar
 
object.
 The
 chick
 was
 rated
 to
 have
 preferred
 their
 imprinted
 object
 on
 a
 trial
 if
 their
 object
 
preference
 score
 was
 greater
 than
 50%.
 The
 object
 preference
 score
 was
 calculated
 with
 
the
 formula:
 
 

 

 

   
 
Accordingly,
 test
 trials
 were
 scored
 as
 “correct”
 when
 subjects
 spent
 a
 greater
 proportion
 
of
 time
 with
 their
 imprinted
 object,
 and
 “incorrect”
 when
 they
 spent
 a
 greater
 proportion
 
of
 time
 with
 the
 unfamiliar
 object.
 Chicks
 spent
 more
 time
 with
 their
 imprinted
 object
 on
 
59%
 (SEM
 =
 3%)
 of
 the
 test
 trials
 (see
 Figure
 14).
 
 

  We
 used
 a
 mixed
 effects
 logistic
 regression
 model
 (R
 package
 lme4)
 to
 test
 whether
 
performance
 was
 significantly
 greater
 than
 chance.
 We
 fitted
 the
 model
 with
 test
 trial
 
outcome
 (binary:
 correct
 or
 incorrect)
 as
 the
 dependent
 variable,
 an
 intercept
 as
 the
 fixed
 
effect,
 and
 a
 random
 intercept
 for
 the
 subject-­‐effect.
 The
 fixed
 effect
 intercept
 was
 positive
 
and
 significant
 (b
 =
 0.394,
 z
 =
 2.857,
 p
 =
 0.004),
 which
 indicates
 that
 chicks’
 recognition
 
performance
 was
 significantly
 greater
 than
 50%
 (chance
 performance).
 Chicks’
 recognition
 
performance
 was
 also
 significantly
 above
 chance
 when
 the
 analysis
 did
 not
 include
 the
 test
 
trials
 where
 the
 imprinted
 object
 was
 shown
 from
 the
 familiar
 viewpoint
 range
 (b
 =
 0.365,
 
z
 =
 2.637,
 p
 =
 0.008).
 
Object
 Preference
 Score
 
 =
 
 
Time
 by
 Imprinted
 Object
 
Time
 by
 Imprinted
 Object
 +
 Time
 by
 Unfamiliar
 Object
 

 

  63
 

  Second,
 we
 confirmed
 these
 results
 with
 a
 similar
 analysis
 on
 the
 object
 preference
 
scores
 (i.e.,
 the
 proportion
 of
 time
 chicks
 spent
 with
 the
 imprinted
 object
 compared
 to
 the
 
unfamiliar
 object).
 Because
 the
 significance
 of
 the
 intercept
 indicates
 whether
 the
 intercept
 
is
 significantly
 different
 than
 0,
 we
 subtracted
 50%
 from
 each
 object
 preference
 score.
 
Thus,
 the
 adjusted
 object
 preference
 scores
 ranged
 from
 -­‐50%
 to
 +50%,
 with
 an
 adjusted
 
Figure
  14.
  Recognition
  performance
  for
  the
  overall
  group
  (top)
  and
  the
  individual
 
subjects
 (bottom).
 The
 dark
 gray
 bars
 denote
 the
 percentage
 of
 correct
 trials,
 and
 the
 light
 
gray
 bars
 denote
 the
 proportion
 of
 time
 subjects
 spent
 with
 the
 imprinted
 object.
 These
 
graphs
 do
 not
 include
 the
 test
 trials
 in
 which
 the
 imprinted
 object
 was
 shown
 from
 the
 
familiar
 viewpoint
 range
 from
 the
 input
 phase.
 The
 subjects
 are
 ordered
 by
 performance.
 
The
 red
 dashed
 lines
 show
 chance
 performance
 (50%).
 P-­‐values
 denote
 the
 statistical
 
difference
 between
 the
 number
 of
 correct
 and
 incorrect
 test
 trials
 as
 computed
 through
 
one-­‐tailed
 binomial
 tests.

 

  64
 
object
 preference
 score
 of
 0
 indicating
 equal
 time
 spent
 with
 the
 imprinted
 object
 and
 
unfamiliar
  object.
  We
  fitted
  a
  linear
  mixed
  effects
  model
  (R
  package
  nlme)
  with
  the
 
adjusted
 object
 preference
 score
 as
 the
 dependent
 variable,
 an
 intercept
 as
 the
 fixed
 effect,
 
and
 a
 random
 intercept
 for
 the
 subject-­‐effect.
 Again,
 the
 fixed
 effect
 intercept
 was
 positive
 
and
 significant
 (b
 =
 0.072,
 t(1878)
 =
 3.015,
 p
 =
 0.003),
 which
 provides
 further
 evidence
 that
 
chicks’
 recognition
 performance
 was
 significantly
 higher
 than
 50%
 (chance
 performance).
 
Chicks’
 recognition
 performance
 was
 also
 significantly
 above
 chance
 when
 the
 analysis
 did
 
not
  include
  the
  test
  trials
  where
  the
  imprinted
  object
  was
  shown
  from
  the
  familiar
 
viewpoint
 range
 (b
 =
 0.068,
 t(1808)
 =
 2.828,
 p
 =
 0.005).
 

  With
 this
 controlled-­‐rearing
 method
 we
 were
 able
 to
 collect
 a
 large
 number
 of
 test
 
trials
 from
 each
 chick.
 Thus,
 we
 were
 able
 to
 examine
 whether
 each
 subject
 was
 able
 to
 
build
 a
 view-­‐invariant
 representation
 of
 their
 imprinted
 object.
 To
 do
 so,
 we
 computed
 
whether
 each
 subject’s
 performance
 across
 the
 test
 trials
 exceeded
 chance
 level
 (using
 one-­‐
tailed
  binomial
  tests).
  Six
  of
  the
  10
  subjects
  successfully
  built
  an
  invariant
  object
 
representation
 (Ps
 ≤
 0.05).
8

 When
 the
 analysis
 did
 not
 include
 the
 familiar
 viewpoint
 range
 
from
 the
 input
 phase,
 5
 of
 the
 10
 chicks
 performed
 significantly
 above
 chance
 (see
 Figure
 
14).
 Thus,
 many
 of
 the
 chicks
 successfully
 built
 an
 invariant
 object
 representation
 that
 
generalized
 across
 novel
 viewpoints.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
Four of the 10 subjects performed significantly higher than chance level after a Bonferroni
correction for 10 independent tests (10 subjects; p < 0.005).

 

  65
 

  To
 ensure
 that
 all
 of
 the
 chicks
 successfully
 imprinted
 to
 the
 virtual
 object
 (i.e.,
 
developed
  an
  attachment
  to
  the
  object),
  we
  examined
  whether
  the
  chicks
  showed
  a
 
preference
 for
 the
 imprinted
 object
 during
 the
 rest
 periods
 in
 the
 test
 phase.
 All
 10
 subjects
 
Figure 15. (Top) The test viewpoints shown during the test phase. The viewpoint range shown
during the input phase is indicated by the blue frames. (Bottom) Chicks’ average percentage of
correct trials across the 27 viewpoint ranges. Chance performance was 50%. Each subject
received 7 test trials for each viewpoint range. Thus, each viewpoint cell in the figure reflects
the data from 28 test trials for Object 1 (7 test trials × 4 subjects) and 42 test trials for Object 2
(7 test trials × 6 subjects), for a total of 1,890 test trials across all viewpoint ranges.

 

  66
 
spent
 the
 majority
 of
 the
 rest
 periods
 in
 proximity
 to
 the
 imprinting
 stimulus
 (mean
 =
 88%
 
of
 trials;
 SEM
 =
 2%;
 one-­‐tailed
 binomial
 tests,
 all
 P
 <
 10
−9
).
 Thus,
 it
 is
 possible
 to
 imprint
 to
 
an
 object
 but
 fail
 to
 build
 a
 view-­‐invariant
 representation
 of
 that
 object
 (see
 also
 Wood,
 
2013).
 

 
Correlations
 of
 Object
 Recognition
 Performance
 Across
 Subjects
 

  As
  shown
  in
  Figure
  14,
  there
  was
  substantial
  variation
  in
  chicks’
  recognition
 
abilities.
  To
  examine
  whether
  chicks’
  recognition
  abilities
  were
  correlated
  with
  one
 
another,
 we
 measured
 the
 correlation
 in
 performance
 across
 the
 viewpoint
 ranges
 for
 each
 
pair
 of
 chicks.
 Specifically,
 we
 computed
 the
 percentage
 of
 time
 spent
 with
 the
 imprinted
 
object
 for
 each
 viewpoint
 range
 for
 each
 chick.
 The
 correlations
 in
 performance
 between
 all
 
pairs
 of
 chicks
 are
 shown
 in
 Figure
 16.
 Performance
 was
 highly
 correlated
 across
 the
 
subjects:
 out
 of
 the
 45
 subject
 pairs,
 44
 were
 positively
 correlated
 and
 only
 1
 pair
 was
 
negatively
 correlated.
 Overall,
 the
 average
 correlation
 between
 subjects
 was
 r
 =
 0.35
 (SEM
 
=
 0.03).
 These
 correlation
 values
 were
 significantly
 different
 from
 0
 (no
 correlation),
 t(44)
 
=
 8.72,
 p
 <
 0.001.
 Despite
 the
 substantial
 range
 of
 variation
 in
 performance
 across
 subjects,
 
the
 chicks’
 recognition
 abilities
 were
 nevertheless
 highly
 correlated
 with
 one
 another.
 
   
 

   
 
Analysis
 of
 Change
 in
 Performance
 Over
 Time
 
 

  To
 examine
 whether
 recognition
 performance
 changed
 over
 the
 course
 of
 the
 test
 
phase,
 we
 calculated
 the
 percentage
 of
 time
 chicks
 spent
 in
 proximity
 to
 the
 imprinted
 
object
 versus
 the
 unfamiliar
 object
 as
 a
 function
 of
 test
 day.
 The
 results
 are
 shown
 in
 Figure
 
17.
 Performance
 remained
 stable
 across
 the
 test
 phase
 (one-­‐way
 ANOVA,
 F(6)
 =
 0.224,
 p
 =
 

 

  67
 
0.968).
 Chicks’
 recognition
 behavior
 was
 spontaneous
 and
 robust,
 and
 cannot
 be
 explained
 
by
 learning
 taking
 place
 across
 the
 test
 phase.
 Chicks
 immediately
 achieved
 their
 maximal
 
performance
 and
 did
 not
 significantly
 improve
 thereafter.
 

 
Analysis
 of
 Viewpoint
 Effects
 

  To
 test
 whether
 recognition
 performance
 varied
 as
 a
 function
 of
 the
 degree
 of
 
viewpoint
 change,
 we
 calculated
 chicks’
 mean
 object
 preference
 scores
 for
 each
 of
 the
 
elevation
 viewpoint
 change
 magnitudes
 (i.e.,
 ±60°,
 ±45°,
 ±30°,
 ±15°,
 0°).
 The
 correlation
 
between
  the
  magnitude
  of
  viewpoint
  change
  and
  performance
  did
  not
  approach
 
Figure 16. A similarity matrix showing the correlation in performance for each pair of subjects.
The order of the subjects in the matrix is determined by a hierarchical cluster analysis. The cells
are color-coded by correlation value: green values = positive correlation in performance; red
values = negative correlation in performance. The color scale reflects the full range of possible
correlation values.

 

  68
 
significance
 (r
 =
 -­‐0.06,
 p
 =
 0.93).
 Thus,
 when
 chicks
 first
 begin
 to
 recognize
 objects,
 their
 
performance
 does
 not
 decline
 with
 larger
 changes
 in
 viewpoint.
 
 

   
 
 
Analysis
 of
 Object
 Stimuli
 and
 Performance
 

  Did
 chicks
 need
 high-­‐level
 (invariant)
 object
 representations
 to
 succeed
 in
 this
 
experiment?
 Previous
 studies
 have
 shown
 that
 chicks
 do
 not
 use
 overall
 brightness
 as
 a
 
low-­‐level
 cue
 to
 distinguish
 between
 these
 two
 virtual
 objects
 (Wood,
 2014a),
 and
 that
 
chicks’
 early
 emerging
 invariant
 object
 recognition
 abilities
 cannot
 be
 explained
 by
 retina-­‐
like
 (pixel-­‐wise)
 representations
 when
 recognition
 is
 tested
 across
 more
 extreme
 azimuth
 
and
 elevation
 rotations
 (Wood,
 2013).
 
Figure 17. Change in chicks’ object recognition performance over time. The graph illustrates
group mean performance over the full set of viewpoint ranges shown during the 7-day test
phase, computed for the first, second, third, etc., day of testing. Chance performance was 50%.
Chicks’ recognition performance did not change significantly across the course of the test
phase.


 

  69
 

  To
 extend
 these
 previous
 analyses,
 we
 quantified
 the
 similarity
 between
 the
 input
 
animations
 and
 the
 test
 animations
 in
 two
 ways.
 First,
 we
 computed
 the
 amount
 of
 image
 
variation
 between
 the
 input
 animations
 and
 the
 test
 animations
 from
 a
 retina-­‐like
 (pixel-­‐
level)
 perspective.
 For
 each
 animation,
 we
 (1)
 measured
 the
 brightness
 level
 of
 each
 pixel
 
in
 each
 of
 the
 3
 unique
 object
 images,
 (2)
 compared
 each
 image
 from
 the
 test
 animation
 to
 
each
  image
  from
  the
  input
  animation
  (i.e.,
  by
  comparing
  the
  brightness
  level
  of
  each
 
corresponding
  pixel
  across
  the
  images
  and
  taking
  the
  absolute
  difference),
  and
  (3)
 
calculated
 the
 average
 pixel-­‐level
 difference
 between
 the
 three
 unique
 images
 from
 the
 
input
 and
 test
 animations
 (i.e.,
 the
 1st
 test
 image
 was
 compared
 to
 the
 1st,
 2nd,
 and
 3rd
 
input
 image;
 the
 2nd
 test
 image
 was
 compared
 to
 the
 1st,
 2nd,
 and
 3rd
 input
 image;
 and
 the
 
3rd
  test
  image
  was
  compared
  to
  the
  1st,
  2nd,
  and
  3rd
  input
  image).
  Recognition
 
performance
 (i.e.,
 the
 object
 preference
 scores)
 did
 not
 vary
 as
 a
 function
 of
 the
 pixel-­‐level
 
difference
 between
 the
 input
 animations
 and
 test
 animations
 (linear
 regression:
 b
 =
 -­‐
7.08×10
-­‐8
,
 t(52)
 =
 -­‐1.29,
 p
 =
 0.20).
 
 

  Second,
 we
 computed
 the
 amount
 of
 image
 variation
 between
 the
 input
 animations
 
and
 the
 test
 animations
 from
 a
 V1-­‐level
 perspective.
 To
 do
 so,
 we
 used
 a
 Gabor
 measure
 of
 
similarity
 with
 the
 Gabor
 jet
 model:
 a
 multi-­‐scale,
 multi-­‐orientation
 model
 of
 V1
 complex-­‐
cell
 filtering
 developed
 by
 Lades
 et
 al.
 (1993).
 The
 general
 parameters
 and
 implementation
 
followed
  those
  used
  by
  Xu
  &
  Biederman
  (2010),
  which
  can
  be
  downloaded
  at
 
http://geon.usc.edu/GWTgrid_simple.m.
  For
  each
  unique
  image
  in
  each
  animation,
  we
 
measured
 the
 magnitude
 of
 activation
 values
 that
 the
 image
 produced
 in
 a
 set
 of
 40
 Gabor
 
jets
 (8
 orientations
 ×
 5
 scales).
 We
 measured
 the
 dissimilarity
 between
 two
 images
 by
 
computing
 1
 minus
 the
 correlation
 between
 their
 Gabor
 jet
 activation
 values.
 Thus,
 the
 

 

  70
 
dissimilarity
 between
 two
 images
 could
 range
 from
 0
 (perfect
 positive
 correlation)
 to
 2
 
(perfect
 negative
 correlation).
 Finally,
 we
 calculated
 the
 average
 Gabor
 jet
 dissimilarity
 
across
 all
 three
 unique
 images
 of
 the
 animations
 (i.e.,
 the
 1st
 test
 image
 was
 compared
 to
 
the
 1st,
 2nd,
 and
 3rd
 input
 image;
 the
 2nd
 test
 image
 was
 compared
 to
 the
 1st,
 2nd,
 and
 3rd
 
input
 image;
 and
 the
 3rd
 test
 image
 was
 compared
 to
 the
 1st,
 2nd,
 and
 3rd
 input
 image).
 
Recognition
 performance
 (i.e.,
 the
 object
 preference
 scores)
 did
 not
 vary
 as
 a
 function
 of
 
Gabor
  jet
  dissimilarity
  between
  the
  input
  animations
  and
  test
  animations
  (linear
 
regression:
 b
 =
 -­‐0.11,
 t(52)
 =
 -­‐1.04,
 p
 
 =
 0.30).
 
 

  Additionally,
 to
 confirm
 that
 chicks’
 recognition
 performance
 could
 not
 be
 explained
 
by
 retina–like
 or
 V1–like
 representations,
 we
 tested
 whether
 models
 based
 on
 pixel-­‐level
 
or
 V1-­‐level
 representations
 could
 successfully
 predict
 object
 identity
 in
 this
 experiment.
 
Specifically,
 we
 generated
 a
 pixel-­‐level
 model
 and
 a
 V1-­‐level
 model
 that
 predicted
 object
 
identity
  based
  on
  the
  image
  differences
  between
  the
  test
  animations
  and
  the
  input
 
animation.
 For
 each
 viewpoint
 range,
 we
 measured
 (1)
 the
 difference
 between
 the
 test
 
animation
 of
 the
 imprinted
 object
 and
 the
 input
 animation
 of
 the
 imprinted
 object
 (within-­‐
object
 difference),
 and
 (2)
 the
 difference
 between
 the
 test
 animation
 of
 the
 unfamiliar
 
object
 and
 the
 input
 animation
 of
 the
 imprinted
 object
 (between-­‐object
 difference;
 see
 
Figure
 18).
 If
 the
 within-­‐object
 difference
 was
 smaller
 than
 the
 between-­‐object
 difference,
 
then
 the
 model
 was
 “correct”
 for
 that
 viewpoint
 range.
 Conversely,
 if
 the
 between-­‐object
 
difference
 was
 smaller
 than
 the
 within-­‐object
 difference,
 then
 the
 model
 was
 “incorrect”
 for
 
that
  viewpoint
  range.
  The
  retina-­‐like
  (pixel-­‐level)
  model
  was
  correct
  for
  20%
  of
  the
 
viewpoint
  ranges,
  while
  the
  V1-­‐level
  (Gabor
  jet)
  model
  was
  correct
  for
  28%
  of
  the
 
viewpoint
  ranges.
  Unlike
  the
  chicks’
  recognition
  performance,
  which
  was
  significantly
 

 

  71
 
above
 chance
 (50%)
 levels,
 both
 low-­‐level
 models
 performed
 significantly
 below
 chance
 
levels
 (pixel-­‐level
 intercept-­‐only
 logistic
 regression:
 b
 =
 -­‐1.36,
 z
 =
 -­‐4.04,
 p
 <
 0.0001;
 V1-­‐
level
 intercept-­‐only
 logistic
 regression:
 b
 =
 -­‐0.96,
 z
 =
 -­‐3.15,
 p
 =
 0.002).
 
 
Figure 18.  The average pixel-level and V1-level differences between the three unique images
of each test animation and the three unique images of the input animation (i.e., the 1st test
image was compared to the 1st, 2nd, and 3rd input image; the 2nd test image was compared to
the 1st, 2nd, and 3rd input image; and the 3rd test image was compared to the 1st, 2nd, and
3rd input image). The orange bars show the between-object differences (i.e., the difference
between the test animation of the unfamiliar object and the input animation of the imprinted
object). The blue bars (ordered by similarity) show the within-object differences (i.e., the
difference between the test animation of the imprinted object and the input animation of the
imprinted object). The top graphs show the differences as measured at the pixel-level, and the
bottom graphs show the differences as measured at the V1-level (using Gabor jet
magnitudes). Overall, the within-object difference was less than the between-object difference
on only 20% (pixel-level) and 28% (V1-level) of the viewpoint ranges (chance performance =
50%). Thus, neither pixel-level nor V1-level representations can be used to reliably predict
object identity in this experiment.

 

  72
 

  To
 compare
 the
 models’
 performance
 to
 the
 chicks’
 performance,
 we
 computed
 the
 
average
 percentage
 of
 time
 chicks
 spent
 with
 the
 imprinted
 object
 versus
 the
 unfamiliar
 
object
 for
 each
 viewpoint
 range.
 If
 chicks
 spent
 more
 time,
 on
 average,
 with
 the
 imprinted
 
object
 than
 the
 unfamiliar
 object,
 then
 the
 chicks
 were
 “correct”
 for
 that
 viewpoint
 range.
 
Conversely,
 if
 chicks
 spent
 more
 time
 with
 the
 unfamiliar
 object
 than
 the
 imprinted
 object,
 
then
 the
 chicks
 were
 “incorrect”
 for
 that
 viewpoint
 range.
 For
 each
 model
 and
 for
 the
 
chicks,
 there
 were
 54
 conditions
 (27
 viewpoint
 ranges
 ×
 2
 imprinted
 objects).
 The
 chicks
 
were
 correct
 on
 35
 conditions
 and
 incorrect
 on
 19
 conditions.
 The
 pixel-­‐level
 model
 was
 
correct
 on
 11
 conditions
 and
 incorrect
 on
 43
 conditions.
 The
 V1-­‐level
 model
 was
 correct
 on
 
15
 conditions
 and
 incorrect
 on
 39
 conditions.
 Chi-­‐square
 tests
 comparing
 the
 number
 of
 
correct
 and
 incorrect
 conditions
 for
 the
 chicks
 and
 the
 models
 found
 significant
 differences
 
between
  chicks’
  recognition
  performance
  and
  both
  models’
  recognition
  performance
 
(pixel-­‐level
 model
 versus
 chick
 performance:
 X
2
(1,
 N
 =
 108)
 =
 21.81,
 p
 <
 10
-­‐5
;
 V1-­‐level
 
model
 versus
 chick
 performance:
 X
2
(1,
 N
 =
 108)
 =
 14.90,
 p
 <
 10
-­‐3
).
 

  Overall,
 the
 within-­‐object
 difference
 was
 greater
 than
 the
 between-­‐object
 difference,
 
both
 at
 the
 pixel-­‐level
 and
 V1-­‐levels.
 Thus,
 in
 principle,
 chicks
 could
 have
 succeeded
 in
 this
 
experiment
 by
 preferring
 the
 test
 animation
 that
 was
 the
 most
 different
 from
 the
 input
 
animation
 (i.e.,
 a
 novelty
 preference).
 To
 test
 this
 possibility,
 we
 analyzed
 the
 test
 trials
 in
 
which
 the
 imprinted
 object
 was
 presented
 from
 the
 familiar
 viewpoint
 range
 from
 the
 
input
  phase.
  If
  chicks
  had
  a
  novelty
  preference,
  then
  they
  should
  have
  avoided
  the
 
imprinted
 object
 on
 the
 trials
 in
 which
 the
 test
 animation
 of
 the
 imprinted
 object
 was
 
identical
 to
 the
 input
 animation
 of
 the
 imprinted
 object.
 Contrary
 to
 this
 prediction,
 chicks
 
spent
 significantly
 more
 time
 with
 the
 imprinted
 object
 than
 the
 unfamiliar
 object
 when
 

 

  73
 
the
 imprinted
 object
 was
 presented
 from
 the
 familiar
 viewpoint
 range
 (logistic
 mixed
 
effects
 regression:
 b
 =
 1.514,
 z
 =
 3.229,
 p
 =
 0.001;
 linear
 mixed
 effects
 regression:
 b
 =
 0.180,
 
t(60)
 =
 3.062,
 p
 =
 0.003).
 Thus,
 chicks
 did
 not
 simply
 have
 a
 preference
 for
 the
 novel
 
animation
 in
 this
 experiment.
 
 
 

  Together,
 these
 analyses
 indicate
 that
 chicks
 build
 invariant
 object
 representations
 
that
  cannot
  be
  explained
  by
  low-­‐level
  retina-­‐like
  (pixel-­‐wise)
  or
  V1-­‐like
  neuronal
 
representations.
 Rather,
 chicks
 build
 selective
 and
 tolerant
 object
 representations,
 akin
 to
 
those
 found
 in
 higher
 levels
 of
 the
 visual
 system.
 
 

 
Effects
 of
 self-­‐occlusion
 

  If
 the
 chicks
 were
 not
 relying
 on
 low-­‐level
 retina-­‐like
 or
 V1-­‐like
 representations,
 
what
  types
  of
  representations
  did
  they
  form?
  What
  explains
  the
  variation
  in
  chicks’
 
performance
  across
  different
  viewpoints?
  One
  possibility
  is
  that
  the
  chicks
  formed
 
representations
 of
 the
 parts
 comprising
 their
 imprinted
 object.
 Thus,
 when
 an
 object
 is
 
highly
 self-­‐occluded,
 fewer
 parts
 of
 the
 object
 are
 visible,
 and
 recognition
 should
 be
 more
 
difficult.
 Under
 conditions
 of
 self-­‐occlusion,
 discriminative
 features
 that
 could
 be
 used
 to
 
recognize
 an
 object
 may
 not
 be
 visible.
 Consistent
 with
 this
 theory,
 chicks’
 recognition
 
performance
 was
 generally
 lower
 when
 the
 object
 was
 presented
 from
 negative
 elevation
 
rotations
  (see
  Figure
  15).
  When
  the
  object
  was
  presented
  from
  negative
  elevation
 
rotations,
 a
 smaller
 portion
 of
 the
 object
 was
 visible
 to
 the
 subject
 (see
 Figure
 15).
 To
 
provide
 a
 quantitative
 measurement
 of
 self-­‐occlusion
 in
 the
 test
 animations,
 we
 computed
 
the
  number
  of
  foreground
  (object)
  pixels
  that
  were
  visible
  on
  the
  screen
  for
  each
 
animation.
 We
 found
 that
 chicks’
 recognition
 performance
 (i.e.,
 the
 percentage
 of
 time
 

 

  74
 
spent
 with
 the
 imprinted
 object
 versus
 unfamiliar
 object)
 was
 positively
 correlated
 with
 
the
 number
 of
 foreground
 (object)
 pixels
 that
 were
 visible
 on
 the
 screen
 (r
 =
 0.41,
 p
 <
 0.01).
 
 
This
 result
 is
 consistent
 with
 a
 recent
 study
 of
 adult
 rats
 who
 were
 trained
 to
 
distinguish
 between
 these
 same
 two
 virtual
 objects
 (Alemi-­‐Neissi
 et
 al.,
 2013).
 Alemi-­‐Neissi
 
et
 al.
 found
 that
 rats
 built
 sub-­‐features
 of
 objects
 that
 were
 smaller
 than
 the
 entire
 object.
 
When
 these
 sub-­‐features
 were
 occluded
 with
 “bubble
 masks”
 (Gosselin
 &
 Schyns,
 2001),
 
rats’
 recognition
 abilities
 declined.
 It
 would
 be
 interesting
 for
 future
 studies
 to
 use
 this
 
bubble
  masking
  approach
  with
  chicks
  to
  characterize
  the
  specific
  features
  used
  to
 
recognize
 objects
 at
 the
 onset
 of
 vision.
 
 
 

 
Comparison
 to
 Prior
 Studies
 

  The
 virtual
 objects
 used
 in
 this
 study
 were
 the
 same
 as
 those
 used
 in
 Wood
 (2013).
 
However,
 in
 the
 current
 study,
 each
 imprinting
 and
 test
 animation
 only
 contained
 3
 unique
 
images
 showing
 the
 objects
 rotating
 abruptly
 at
 a
 rate
 of
 1
 image/sec,
 while
 in
 Wood
 
(2013),
 the
 virtual
 objects
 moved
 smoothly
 over
 time
 through
 a
 60°
 viewpoint
 range
 at
 24
 
images/sec.
  To
  test
  whether
  the
  impoverished
  visual
  stimuli
  used
  in
  the
  current
 
experiment
 impaired
 chicks’
 object
 recognition
 abilities,
 we
 compared
 performance
 in
 the
 
current
  study
  to
  chicks’
  performance
  in
  Wood
  (2013).
  Figure
  19
  shows
  the
  mean
 
recognition
 performance
 from
 both
 studies.
 A
 independent
 samples
 t-­‐test
 showed
 that
 
performance
 was
 significantly
 higher
 in
 Wood
 (2013)
 than
 in
 the
 current
 study
 (t(19.37)
 =
 
2.13,
 p
 =
 0.05).
 Thus,
 experience
 with
 smooth,
 continuous
 object
 motion
 over
 a
 larger
 
viewpoint
 range
 appears
 to
 facilitate
 the
 development
 of
 invariant
 object
 recognition.
 This
 
result
  is
  consistent
  with
  recent
  studies
  demonstrating
  that
  smooth,
  continuous
  object
 

 

  75
 
motion
 facilitates
 object
 recognition
 in
 newborns
 (Wood,
 2016;
 Wood,
 Prasad,
 Goldman,
 &
 
Wood,
 2016;
 Wood
 &
 Wood,
 under
 review).
 
 
Discussion
 

  In
 this
 study,
 we
 examined
 whether
 newborn
 chicks
 can
 build
 invariant
 object
 
representations
 from
 highly
 impoverished
 visual
 input
 (i.e.,
 3
 images
 of
 a
 single
 virtual
 
object
 separated
 by
 15°
 azimuth
 rotations).
 Impressively,
 many
 of
 the
 chicks
 successfully
 
built
 an
 invariant
 object
 representation
 soon
 after
 hatching,
 which
 shows
 that
 experience
 
with
 a
 rich
 visual
 world
 filled
 with
 diverse
 objects
 is
 not
 necessary
 for
 developing
 invariant
 
Figure 19. Average recognition performance for the present study and for Experiment 1 from
Wood (2013). The same two virtual objects were used in both studies. In the present study, the
virtual objects moved abruptly over time through a 30° viewpoint range at 1 image/second,
whereas in Wood (2013), the virtual objects moved smoothly over time through a 60° viewpoint
range at 24 images/second. Thus, compared with Wood (2013), the chicks in the present study
observed a smaller number of unique images of the object (3 unique images versus 72 unique
images), a smaller range of movement (30° viewpoint range versus 60° viewpoint range), and
unnatural (abrupt) versus natural (smooth) object motion. Performance was significantly above
chance in both studies; however, recognition performance was significantly higher in Wood
(2013) than in the present study. Together, these studies show that it is possible to impair
chicks’ object recognition abilities by presenting highly impoverished visual object input at the
onset of vision.

 

  76
 
object
 recognition.
 This
 finding
 opens
 up
 largely
 unexplored
 experimental
 avenues
 for
 
probing
 the
 initial
 state
 of
 invariant
 object
 recognition
 and
 charting
 how
 that
 initial
 state
 
changes
 as
 a
 function
 of
 specific
 visual
 experiences.
 

 
Implications
 of
 Our
 Findings
 and
 Comparison
 with
 Previous
 Studies
 

  We
 have
 previously
 reported
 invariant
 object
 recognition
 in
 newborn
 chicks
 (Wood,
 
2013;
 Wood,
 2014a);
 the
 present
 study
 extends
 this
 previous
 research
 in
 five
 ways.
 First,
 
these
 results
 provide
 an
 existence
 proof
 that
 newborn
 chicks
 can
 build
 invariant
 object
 
representations
 from
 extremely
 impoverished
 visual
 input.
 In
 previous
 studies
 (Wood,
 
2013;
 2014a),
 chicks
 were
 shown
 objects
 that
 moved
 smoothly
 over
 time
 (24
 frames/sec),
 
thereby
 presenting
 large
 numbers
 of
 unique
 and
 gradually
 changing
 images
 of
 the
 objects.
 
Conversely,
 in
 the
 present
 study,
 the
 object
 animations
 were
 far
 more
 sparse
 (i.e.,
 there
 
were
 only
 three
 unique
 images
 of
 the
 object),
 which
 interrupted
 the
 natural
 temporal
 
stability
 of
 the
 visual
 object
 input
 (i.e.,
 the
 objects
 did
 not
 change
 smoothly
 over
 time).
 
Thus,
 the
 chicks
 never
 observed
 their
 imprinted
 object
 (or
 any
 other
 object)
 move
 with
 
smooth,
  continuous
  motion.
  Nevertheless,
  some
  of
  the
  chicks
  were
  able
  to
  build
  an
 
invariant
 object
 representation
 from
 this
 impoverished
 input.
 For
 these
 subjects,
 three
 
unique
 images
 of
 an
 object
 were
 sufficient
 input
 to
 build
 an
 invariant
 object
 representation.
 

  Second,
  these
  results
  suggest
  that
  it
  is
  possible
  to
  impair
  invariant
  object
 
recognition
 in
 newborn
 chicks
 by
 presenting
 abnormally
 patterned
 visual
 input.
 Although
 
group
 performance
 was
 above
 chance,
 performance
 was
 significantly
 lower
 compared
 to
 
previous
 experiments
 in
 which
 the
 virtual
 object
 moved
 smoothly
 over
 time
 and
 rotated
 
through
  a
  larger
  viewpoint
  range
  (Wood,
  2013;
  see
  Figure
  19
  for
  comparison
  of
 

 

  77
 
performance
 between
 studies).
 Thus,
 newborn
 visual
 systems
 appear
 to
 operate
 best
 over
 
a
 specific
 type
 of
 patterned
 visual
 input.
 It
 would
 be
 interesting
 for
 future
 studies
 to
 
characterize
 the
 nature
 of
 this
 ‘optimal
 space’
 of
 visual
 object
 input.
 
 

  Third,
 these
 results
 indicate
 that
 invariant
 object
 recognition
 in
 newborn
 chicks
 is
 
not
 subject
 to
 the
 well-­‐documented
 “viewpoint
 effect”
 observed
 in
 studies
 of
 human
 adults
 
(i.e.,
 larger
 viewpoint
 changes
 lead
 to
 greater
 costs
 in
 object
 recognition
 performance;
 
Hayward
 &
 Williams,
 2000;
 Tarr,
 Williams,
 Hayward,
 &
 Gauthier,
 1998).
 We
 tested
 chicks
 
on
  a
  wide
  range
  of
  viewpoints,
  consisting
  of
  systematic
  15°
  changes
  in
  azimuth
  and
 
elevation
 rotations.
 This
 allowed
 us
 to
 test
 whether
 larger
 viewpoint
 changes
 are
 more
 
difficult
 to
 recognize
 than
 smaller
 viewpoint
 changes.
 We
 found
 no
 significant
 differences
 
in
 chicks’
 recognition
 abilities
 across
 the
 larger
 versus
 smaller
 viewpoint
 changes.
 Chicks
 
were
 able
 to
 build
 invariant
 object
 representations
 that
 generalized
 beyond
 the
 imprinted
 
viewpoint
 range,
 but
 the
 degree
 of
 generalization
 did
 not
 vary
 as
 a
 function
 of
 the
 degree
 of
 
viewpoint
 change.
 

  Importantly,
  variation
  in
  performance
  across
  different
  viewpoints
  could
  be
 
accounted
  for
  by
  the
  amount
  of
  self-­‐occlusion
  produced
  by
  the
  viewpoint
  range.
 
Specifically,
 viewpoint
 changes
 that
 resulted
 in
 higher
 levels
 of
 self-­‐occlusion
 (regardless
 of
 
the
  absolute
  change
  in
  rotation
  degree)
  were
  associated
  with
  lower
  recognition
 
performance.
 When
 objects
 are
 presented
 from
 viewpoints
 with
 greater
 self-­‐occlusion,
 
critical
 2D
 or
 3D
 subfeatures
 used
 for
 recognition
 may
 not
 be
 identifiable.
 
 

   
 
 Fourth,
  we
  demonstrated
  that
  chicks’
  object
  recognition
  abilities
  cannot
  be
 
explained
 by
 low-­‐level
 retina-­‐like
 or
 V1-­‐like
 neuronal
 representations.
 Prior
 experiments
 
have
 confirmed
 that
 chicks’
 object
 recognition
 abilities
 could
 not
 be
 explained
 by
 overall
 

 

  78
 
brightness
  (Wood,
  2014a)
  or
  retina-­‐like
  (pixel-­‐wise)
  similarity
  (Wood,
  2013;
  Wood,
 
2014a).
 Here,
 we
 performed
 additional
 analyses
 using
 simulated
 Gabor
 jet
 activation
 to
 
measure
 the
 V1-­‐like
 similarity
 between
 the
 input
 animations
 and
 the
 test
 animations.
 We
 
found
  that
  chicks’
  recognition
  performance
  did
  not
  vary
  as
  a
  function
  of
  the
  V1-­‐like
 
similarity
 between
 the
 input
 and
 test
 animations.
 Further,
 we
 found
 that
 neither
 a
 model
 
using
 pixel-­‐like
 representations
 nor
 a
 model
 using
 V1-­‐like
 representations
 was
 able
 to
 
successfully
 predict
 object
 identity
 in
 this
 experiment
 (Figure
 18).
 These
 results
 indicate
 
that
 chicks
 build
 selective
 and
 tolerant
 object
 representations,
 akin
 to
 those
 found
 in
 
higher-­‐level
 cortical
 visual
 areas
 (DiCarlo
 et
 al.,
 2012).
 

  Finally,
 our
 results
 provide
 evidence
 that
 invariant
 object
 recognition
 emerges
 in
 a
 
consistent
 manner
 across
 different
 newborn
 subjects.
 The
 chicks’
 patterns
 of
 recognition
 
performance
 across
 the
 individual
 viewpoints
 were
 strongly
 correlated
 with
 one
 another
 
(Figure
 16).
 This
 suggests
 that
 there
 are
 constraints
 on
 the
 development
 of
 invariant
 object
 
recognition
  in
  newborn
  visual
  systems.
  However,
  the
  data
  also
  revealed
  substantial
 
variation
 in
 chicks’
 object
 recognition
 abilities
 (see
 Figure
 14).
 Despite
 being
 raised
 in
 
identical
 visual
 environments,
 some
 chicks
 were
 able
 to
 recognize
 their
 imprinted
 object
 
robustly
 across
 the
 novel
 viewpoints,
 whereas
 other
 chicks
 were
 not.
 Future
 studies
 could
 
use
 this
 controlled-­‐rearing
 method
 to
 further
 examine
 both
 the
 nature
 of
 the
 constraints
 on
 
early
 emerging
 object
 recognition
 abilities
 and
 the
 sources
 of
 the
 individual
 variation
 
across
 subjects.
 
 

  In
  summary,
  the
  present
  study
  provides
  evidence
  that
  the
  domestic
  chick
  is
  a
 
promising
 animal
 model
 for
 studying
 the
 emergence
 of
 invariant
 object
 recognition
 in
 a
 
newborn
  visual
  system.
  We
  have
  shown
  how
  a
  fully
  automated
  controlled-­‐rearing
 

 

  79
 
technique
 can
 be
 used
 to
 study
 the
 initial
 state
 of
 invariant
 object
 recognition
 in
 newborn
 
chicks
 with
 high
 precision.
 Thus
 far,
 our
 approach
 indicates
 that
 newborn
 neural
 circuits
 
are
  surprisingly
  powerful,
  capable
  of
  building
  invariant
  object
  representations
  from
 
impoverished
 input
 at
 the
 onset
 of
 vision.
 

 

 

   
 

 

  80
 
Chapter
 5:
 Face
 recognition
 in
 newborn
 chicks
 at
 the
 onset
 of
 vision
 

 
(Corresponding
 publication:
 Wood,
 S.
 M.
 W.
 &
 Wood,
 J.
 N.
 (2015)
 Face
 recognition
 in
 newly
 
hatched
 chicks
 at
 the
 onset
 of
 vision.
 Journal
 of
 Experimental
 Psychology:
 Animal
 Learning
 
and
 Cognition,
 41(2),
 206.)
 

 

 
Abstract
 
How
 does
 face
 recognition
 emerge
 in
 the
 newborn
 brain?
 To
 address
 this
 question,
 we
 used
 
an
 automated
 controlled-­‐rearing
 method
 with
 a
 newborn
 animal
 model:
 the
 domestic
 chick
 
(Gallus
 gallus).
 This
 automated
 method
 allowed
 us
 to
 examine
 chicks’
 face
 recognition
 
abilities
 at
 the
 onset
 of
 both
 face
 experience
 and
 object
 experience.
 In
 the
 first
 week
 of
 life,
 
newborn
 chicks
 were
 raised
 in
 controlled-­‐rearing
 chambers
 that
 contained
 no
 objects
 
other
 than
 a
 single
 virtual
 human
 face.
 In
 the
 second
 week
 of
 life,
 we
 used
 an
 automated
 
forced-­‐choice
 testing
 procedure
 to
 examine
 whether
 chicks
 could
 distinguish
 that
 familiar
 
face
 from
 a
 variety
 of
 unfamiliar
 faces.
 Chicks
 successfully
 distinguished
 the
 familiar
 face
 
from
 most
 of
 the
 unfamiliar
 faces—for
 example,
 chicks
 were
 sensitive
 to
 changes
 in
 the
 
face’s
 age,
 gender,
 and
 orientation
 (upright
 versus
 inverted).
 Thus,
 chicks
 can
 build
 an
 
accurate
 representation
 of
 the
 first
 face
 they
 see
 in
 their
 life.
 These
 results
 show
 that
 the
 
initial
 state
 of
 face
 recognition
 is
 surprisingly
 powerful:
 newborn
 visual
 systems
 can
 begin
 
encoding
 and
 recognizing
 faces
 at
 the
 onset
 of
 vision.
 

 

   
 

 

  81
 
Introduction
 
Social
 animals
 depend
 heavily
 on
 their
 ability
 to
 recognize
 faces.
 For
 instance,
 face
 
recognition
 (i.e.,
 the
 ability
 to
 encode
 and
 recognize
 specific
 faces)
 allows
 animals
 to
 form
 
and
 maintain
 social
 relationships
 and
 identify
 key
 competitors
 in
 their
 group.
 Previous
 
studies
 have
 examined
 face
 recognition
 abilities
 days,
 months,
 and
 years
 after
 birth
 (e.g.,
 
Carey
 &
 Diamond,
 1977;
 de
 Haan,
 Johnson,
 Maurer,
 &
 Perrett,
 2001;
 Frank,
 Vul,
 &
 Johnson,
 
2009;
 Kelly
 et
 al.,
 2007;
 Pascalis,
 Deschonen,
 Morton,
 Deruelle,
 &
 Fabregrenet,
 1995;
 Sugita,
 
2008).
 To
 date,
 however,
 little
 is
 known
 about
 the
 ‘initial
 state’
 of
 face
 recognition
 (i.e.,
 the
 
state
  of
  face
  recognition
  at
  the
  onset
  of
  vision).
  Can
  newborn
9

 animals
  encode
  and
 
recognize
 faces
 at
 the
 onset
 of
 both
 face
 experience
 and
 object
 experience?
 Or
 does
 face
 
recognition
 have
 a
 protracted
 development,
 requiring
 extensive
 exposure
 to
 faces
 and/or
 
objects
 in
 order
 to
 develop?
 
 
In
 the
 present
 study,
 we
 used
 an
 automated
 controlled-­‐rearing
 method
 to
 address
 
three
 questions:
 (1)
 Can
 newborn
 animals
 build
 an
 accurate
 representation
 of
 the
 first
 face
 
they
 see
 in
 their
 life?
 (2)
 What
 types
 of
 face
 changes
 can
 newborn
 animals
 detect
 at
 the
 
onset
 of
 vision?
 (3)
 Are
 there
 individual
 differences
 in
 newborn
 animals’
 face
 recognition
 
abilities?
 
 
To
  be
  clear
  at
  the
  outset,
  this
  study
  was
  not
  designed
  to
  test
  whether
  face
 
recognition
  depends
  on
  the
  same
  mechanisms
  or
  different
  mechanisms
  than
  object
 
recognition.
 Rather,
 our
 goal
 was
 to
 examine
 whether
 newborn
 animals
 are
 capable
 of
 
encoding
 and
 recognizing
 faces
 at
 the
 onset
 of
 vision.
 In
 the
 discussion,
 we
 return
 to
 the
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
The term “newborn” is used to refer to an animal at the beginning of the post-embryonic phase
of their life cycle.

 

  82
 
issue
 of
 whether
 face
 recognition
 and
 object
 recognition
 depend
 on
 shared
 versus
 unique
 
mechanisms
 at
 the
 onset
 of
 vision.
 

 
Chickens
 as
 an
 animal
 model
 for
 studying
 the
 initial
 state
 of
 face
 recognition
 

  Face
 recognition
 is
 a
 form
 of
 visual
 learning.
 According
 to
 a
 growing
 body
 of
 work
 in
 
the
 neurosciences,
 visual
 learning
 occurs
 rapidly
 within
 the
 visual
 system
 (e.g.,
 DiCarlo
 et
 
al.,
 2012;
 Espinosa
 &
 Stryker,
 2012;
 Gavornik
 &
 Bear,
 2014).
 For
 instance,
 the
 visual
 cortex
 
uses
 statistical
 redundancies
 present
 in
 the
 natural
 environment
 to
 fine-­‐tune
 the
 response
 
properties
  of
  neurons
  (Edelman
  &
  Intrator,
  2003;
  Olshausen
  &
  Field,
  1996).
  Further,
 
studies
 of
 monkeys
 show
 that
 category-­‐selective
 regions
 emerge
 in
 the
 cortex
 on
 the
 basis
 
of
 early
 visual
 experience
 (Srihasam,
 Mandeville,
 Morocz,
 Sullivan,
 &
 Livingstone,
 2012),
 
with
 significant
 changes
 in
 the
 response
 patterns
 of
 neural
 populations
 occurring
 as
 little
 
as
 1
 hour
 after
 exposure
 to
 an
 altered
 visual
 world
 (Li
 &
 DiCarlo,
 2008).
 Since
 the
 visual
 
system
 is
 rapidly
 shaped
 by
 visual
 experience,
 studying
 the
 origins
 of
 a
 visual
 learning
 
ability
 like
 face
 recognition
 requires
 a
 controlled-­‐rearing
 approach
 with
 a
 newborn
 animal
 
model.
 With
 controlled-­‐rearing
 methods,
 it
 is
 possible
 to
 systematically
 manipulate
 an
 
animal’s
 visual
 experiences,
 and
 thus,
 assess
 the
 impact
 of
 specific
 experiences
 on
 the
 
development
 of
 perceptual
 and
 cognitive
 abilities.
 
 

  In
 the
 current
 study,
 we
 used
 a
 controlled-­‐rearing
 method
 with
 domestic
 chicks
 
(Gallus
 gallus).
 Five
 characteristics
 make
 chicks
 an
 ideal
 animal
 model
 for
 studying
 the
 
initial
 state
 of
 face
 recognition.
 First,
 chicks
 can
 be
 raised
 in
 environments
 devoid
 of
 both
 
faces
 and
 objects.
 Unlike
 newborn
 primates,
 newborn
 chicks
 do
 not
 require
 parental
 care
 
and,
  because
  of
  precocial
  motor
  development,
  are
  immediately
  able
  to
  explore
  their
 

 

  83
 
environment.
 Second,
 chicks
 imprint
 to
 conspicuous
 objects
 experienced
 in
 the
 first
 few
 
days
 of
 life
 (e.g.,
 Bateson,
 2000;
 Horn,
 2004).
 Chicks
 develop
 a
 strong
 attachment
 to
 their
 
imprinted
 objects,
 treating
 them
 as
 social
 partners.
 Thus,
 this
 imprinting
 behavior
 can
 be
 
used
 to
 test
 chicks’
 visual
 recognition
 abilities
 without
 training.
 Third,
 adult
 birds
 can
 
discriminate
 between
 human
 faces,
 and
 rely
 on
 similar
 facial
 features
 for
 face
 recognition
 
as
 human
 adults
 (Bogale,
 Aoyama,
 &
 Sugita,
 2011;
 Gibson,
 Wasserman,
 Gosselin,
 &
 Schyns,
 
2005).
 These
 findings
 provide
 evidence
 that
 human
 and
 avian
 visual
 systems
 build
 similar
 
face
 representations
 as
 one
 another.
 Fourth,
 chicks
 show
 a
 preference
 for
 face-­‐like
 stimuli
 
at
 the
 onset
 of
 face
 experience
 (Rosa-­‐Salva,
 Farroni,
 Regolin,
 Vallortigara,
 &
 Johnson,
 2011;
 
Rosa-­‐Salva
  et
  al.,
  2010;
  Rosa-­‐Salva,
  Regolin,
  &
  Vallortigara,
  2012),
  akin
  to
  newborn
 
humans.
 The
 current
 study
 builds
 on
 these
 findings
 by
 examining
 whether
 chicks
 can
 
encode
 and
 recognize
 specific
 faces
 at
 the
 onset
 of
 vision.
 Fifth,
 chickens
 and
 humans
 use
 
similar
  neural
  circuits
  to
  process
  sensory
  information
  (Karten,
  2013).
  Although
 
mammalian
 and
 avian
 brains
 differ
 in
 their
 macroarchitecture
 (i.e.,
 layered
 versus
 nuclear
 
organization,
 respectively),
 they
 are
 nearly
 identical
 from
 the
 perspective
 of
 the
 cells
 and
 
circuits
 that
 process
 sensory
 information
 (reviewed
 by
 Karten,
 2013).
 Together,
 these
 
characteristics
 make
 chicks
 an
 ideal
 and
 unique
 animal
 model
 for
 studying
 the
 emergence
 
of
 face
 recognition
 in
 a
 biological
 visual
 system.
 
 

  Previous
  controlled-­‐rearing
  studies
  have
  also
  demonstrated
  that
  chicks
  are
  a
 
promising
 animal
 model
 for
 studying
 the
 origins
 of
 object
 recognition
 and
 visual
 learning
 
more
 generally.
 For
 instance,
 chicks
 begin
 binding
 color
 and
 shape
 features
 into
 integrated
 
object
 representations
 at
 the
 onset
 of
 vision
 (Wood,
 2014)
 and
 can
 build
 a
 view-­‐invariant
 
representation
 of
 the
 first
 object
 they
 see
 in
 their
 life
 (Wood,
 2013,
 2015).
 Chicks
 also
 

 

  84
 
begin
 encoding
 and
 recognizing
 movements
 and
 movement
 sequences
 within
 the
 first
 few
 
days
 of
 life
 (Goldman
 &
 Wood,
 2015).
 The
 present
 study
 builds
 on
 this
 previous
 work
 by
 
examining
 whether
 newborn
 chicks
 can
 build
 accurate
 representations
 of
 faces
 at
 the
 onset
 
of
 vision.
 Face
 recognition
 is
 a
 prototypical
 example
 of
 subordinate-­‐level
 object
 recognition
 
because
  all
  faces
  share
  a
  general
  configuration
  (Carey,
  1992).
  Thus,
  face
  recognition
 
requires
 more
 fine-­‐grained
 discrimination
 than
 basic-­‐level
 object
 recognition.
 
 

 
An
 automated
 controlled-­‐rearing
 method
 for
 studying
 face
 recognition
 

  In
  the
  past,
  newborn
  animals’
  behavior
  has
  been
  quantified
  through
  direct
 
observation
 by
 trained
 researchers.
 While
 direct
 observation
 has
 revealed
 many
 important
 
insights
 about
 newborn
 cognition,
 there
 are
 limitations
 to
 this
 approach
 (Dell
 et
 al.,
 2014).
 
Direct
  observation
  produces
  a
  limited
  amount
  of
  data
  with
  relatively
  low
  spatial
  and
 
temporal
 resolution.
 Further,
 the
 resulting
 data
 is
 a
 subjective
 description
 of
 the
 subject’s
 
behavior,
 rather
 than
 an
 exact
 record
 of
 events.
 Direct
 observation
 therefore
 allows
 for
 the
 
possibility
  of
  experimenter
  bias,
  a
  well-­‐recognized
  problem
  in
  both
  comparative
  and
 
developmental
  psychology.
  In
  contrast
  to
  direct
  observation,
  automated
  experimental
 
methods
 allow
 researchers
 to
 collect
 large
 amounts
 of
 data
 from
 each
 subject
 and
 quantify
 
behavior
 at
 scales
 not
 previously
 possible.
 Further,
 since
 the
 observations
 are
 not
 made
 by
 
a
 researcher,
 automated
 methods
 remove
 the
 possibility
 of
 experimenter
 bias.
 
 

  Here,
  we
  describe
  an
  automated
  ‘complete
  data’
  controlled-­‐rearing
  method
  for
 
studying
 the
 initial
 state
 of
 face
 recognition.
 This
 automated
 approach
 has
 previously
 been
 
used
 to
 study
 the
 initial
 state
 of
 object
 recognition
 (Wood,
 2013,
 2014,
 2015)
 and
 action
 
recognition
 (Goldman
 &
 Wood,
 2015);
 here,
 we
 extend
 the
 method
 to
 the
 domain
 of
 face
 

 

  85
 
recognition.
 We
 use
 the
 term
 ‘complete
 data’
 because
 the
 method
 involves
 recording
 all
 of
 
the
  newborn
  subjects’
  behavior
  (24
  hours/day,
  7
  days/week)
  with
  high
  precision
  (9
 
samples/second).
  This
  approach
  produces
  a
  complete
  digital
  record
  of
  each
  subject’s
 
behavior
 across
 their
 lifespan.
 
 

  The
 goal
 of
 the
 current
 study
 was
 to
 examine
 the
 initial
 state
 of
 face
 recognition
 by
 
testing
  newborn
  chicks’
  face
  recognition
  abilities
  across
  a
  wide
  range
  of
  face-­‐change
 
conditions.
 In
 their
 first
 week
 of
 life
 (the
 input
 phase),
 chicks
 were
 raised
 in
 controlled-­‐
rearing
 chambers
 that
 contained
 no
 objects
 other
 than
 a
 single
 virtual
 human
 face.
 In
 their
 
second
 week
 of
 life
 (the
 test
 phase),
 we
 tested
 whether
 chicks
 could
 distinguish
 that
 virtual
 
face
 from
 a
 variety
 of
 unfamiliar
 faces.
 Since
 we
 recorded
 all
 of
 the
 chicks’
 behavior,
 it
 was
 
possible
 to
 present
 each
 subject
 with
 a
 large
 number
 of
 test
 trials
 (~140
 test
 trials
 per
 
chick)
 across
 10
 face-­‐change
 conditions.
 As
 a
 result,
 we
 were
 able
 to
 determine
 the
 features
 
used
  by
  each
  chick
  to
  recognize
  faces
  and
  compare
  the
  face
  recognition
  strategies
 
employed
 by
 different
 subjects.
 
 

 
Methods
 

  Thirteen
 domestic
 chicks
 of
 unknown
 sex
 were
 tested.
 No
 subjects
 were
 excluded
 
from
 the
 analyses.
 The
 subjects
 were
 tested
 in
 the
 controlled-­‐rearing
 chambers
 described
 
in
 Chapters
 2-­‐4.
 

  During
 the
 input
 phase
 (the
 first
 week
 of
 life),
 chicks
 were
 raised
 in
 an
 environment
 
that
 contained
 a
 single
 virtual
 face.
 Imprinting
 in
 chickens
 is
 subject
 to
 a
 critical
 period,
 
which
 ends
 approximately
 three
 days
 after
 hatching.
 Thus,
 to
 ensure
 that
 the
 chicks
 had
 
fully
 imprinted
 to
 the
 virtual
 face,
 we
 exposed
 the
 chicks
 to
 the
 virtual
 face
 for
 the
 first
 

 

  86
 
seven
 days
 of
 life.
 Six
 chicks
 were
 shown
 an
 older
 male
 face
 (ear-­‐to-­‐ear
 width
 =
 6.2
 cm,
 
height
 =
 10
 cm)
 and
 seven
 chicks
 were
 shown
 a
 younger
 female
 face
 (ear-­‐to-­‐ear
 width
 =
 6.5
 
cm;
 height
 =
 10
 cm)
 (Figure
 20).
 The
 virtual
 face
 moved
 continuously,
 rotating
 smoothly
 
Figure 20. (A) An illustration of the controlled-rearing chambers from a bird’s eye perspective
(not shown to scale). (B) A schematic of the presentation schedule of the virtual faces on the two
display walls during the input phase (top) and the test phase (bottom). (C) Images from the male
face animation shown during the input phase. (D) Images from the female face animation shown
during the input phase. Each chick was shown either the male face or the female face.


 

  87
 
through
 a
 180°
 viewpoint
 range
 about
 a
 frontoparallel
 vertical
 axis
 passing
 through
 its
 
centroid.
 The
 animations
 contained
 24
 frames/second.
 The
 individual
 face
 frames
 were
 
created
 using
 FaceGen
 software
 (Singular
 Inversions
 Inc.).
 The
 faces
 were
 displayed
 on
 a
 
uniform
 white
 background
 and
 positioned
 1
 cm
 off
 the
 ground
 in
 the
 middle
 of
 the
 display
 
walls.
 The
 imprinted
 face
 appeared
 for
 an
 equal
 amount
 of
 time
 on
 the
 left
 and
 right
 display
 
wall
  and
  switched
  walls
  every
  two
  hours,
  following
  a
  one-­‐minute
  period
  of
  darkness
 
(Figure
 20B).
 

  We
 used
 human
 faces
 (rather
 than
 chicken
 faces)
 because
 the
 face
 images
 could
 be
 
precisely
 manipulated
 along
 a
 variety
 of
 dimensions
 using
 the
 FaceGen
 software.
 More
 
importantly,
 using
 human
 faces
 allows
 for
 a
 more
 direct
 comparison
 with
 studies
 of
 face
 
recognition
 in
 humans
 and
 other
 avian
 species
 (Bogale
 et
 al.,
 2011;
 Gibson
 et
 al.,
 2005;
 
Troje,
 Huber,
 Loidolt,
 Aust,
 &
 Fieder,
 1999).
 

 
Test
 Phase
 

  During
 the
 test
 phase
 (the
 second
 week
 of
 life),
 we
 probed
 the
 informational
 content
 
of
 the
 face
 representation
 built
 by
 each
 chick
 by
 using
 an
 automated
 two-­‐alternative
 forced
 
choice
 testing
 procedure.
 On
 each
 test
 trial,
 the
 imprinted
 face
 was
 projected
 onto
 one
 
display
 wall
 and
 an
 unfamiliar
 face
 was
 projected
 onto
 the
 other
 display
 wall
 (see
 Figure
 
20A).
 If
 chicks
 recognized
 their
 imprinted
 face,
 then
 they
 should
 have
 spent
 a
 greater
 
proportion
 of
 time
 in
 proximity
 to
 the
 imprinted
 face
 compared
 to
 the
 unfamiliar
 face
 
during
  these
  test
  trials.
  The
  unfamiliar
  faces
  had
  the
  same
  size,
  motion
  speed,
  and
 
viewpoint
 range
 as
 the
 imprinted
 face.
 The
 test
 trials
 lasted
 24
 minutes
 and
 were
 separated
 
from
 one
 another
 by
 46-­‐minute
 rest
 periods.
 During
 the
 rest
 periods,
 the
 imprinted
 face
 

 

  88
 
appeared
 on
 one
 display
 wall
 and
 a
 white
 screen
 appeared
 on
 the
 other
 display
 wall.
 Each
 
chick
  received
  20
  test
  trials
  per
  day
  (two
  test
  trials
  for
  each
  of
  the
  10
  face-­‐change
 
conditions
  described
  below).
  The
  conditions
  were
  presented
  in
  randomized
  blocks
 
throughout
 the
 test
 phase.
 

  Since
 this
 was
 the
 first
 study
 to
 examine
 chicks’
 face
 recognition
 abilities
 at
 the
 
onset
 of
 vision,
 we
 presented
 subjects
 with
 a
 wide
 range
 of
 face
 change
 conditions
 to
 obtain
 
a
 general
 sense
 of
 their
 recognition
 abilities
 (Figure
 21).
 In
 the
 “Edges
 Only”
 condition,
 the
 
unfamiliar
 face
 was
 a
 line
 drawing
 of
 the
 imprinted
 face.
 In
 the
 “No
 Color”
 condition,
 the
 
unfamiliar
 face
 was
 created
 by
 removing
 all
 color
 information
 from
 the
 imprinted
 face.
 We
 
included
 these
 two
 conditions
 to
 test
 whether
 chicks
 encode
 only
 the
 edge/shape
 features
 
of
 a
 face
 or
 whether
 they
 also
 encode
 the
 color
 features
 of
 a
 face.
 In
 the
 “Features
 Only”
 
condition,
 the
 unfamiliar
 face
 had
 the
 eyes
 and
 mouth
 of
 the
 imprinted
 face
 but
 without
 
any
  of
  the
  surrounding
  facial
  context.
  In
  the
  “Repositioned
  Features”
  condition,
  the
 
unfamiliar
 face
 was
 created
 by
 moving
 the
 facial
 features
 of
 the
 imprinted
 face
 to
 new
 
positions.
 We
 included
 these
 two
 conditions
 to
 test
 whether
 chicks
 encode
 only
 the
 eye
 and
 
mouth
 features
 of
 a
 face
 or
 whether
 they
 encode
 the
 surrounding
 facial
 context,
 and
 also
 to
 
examine
 whether
 chicks
 encode
 the
 positions
 of
 the
 eyes
 and
 mouth
 within
 the
 face.
 In
 the
 
“Inverted”
 condition,
 the
 unfamiliar
 face
 was
 identical
 to
 the
 imprinted
 face,
 but
 in
 an
 
inverted
 position.
 We
 tested
 chicks
 in
 this
 condition
 to
 examine
 whether
 they
 encode
 the
 
spatial
 orientation
 of
 a
 face.
 In
 the
 “Different
 Age”
 condition,
 we
 changed
 the
 age
 of
 the
 
imprinted
 face
 (i.e.,
 for
 the
 young
 woman
 imprinted
 face,
 the
 unfamiliar
 face
 was
 an
 older
 
woman;
 and
 for
 the
 older
 man
 imprinted
 face,
 the
 unfamiliar
 face
 was
 a
 younger
 man).
 We
 
modified
 the
 gender
 of
 the
 imprinted
 face
 in
 two
 conditions.
 In
 the
 “Different
 Gender
 

 

  89
 
Coloring”
 condition,
 the
 unfamiliar
 face
 had
 the
 same
 shape
 as
 the
 imprinted
 face,
 but
 with
 
color
  features
  that
  were
  more
  characteristic
  of
  the
  opposite
  gender.
  In
  the
  “Different
 
Gender
 Shape”
 condition,
 the
 unfamiliar
 face
 had
 the
 same
 color
 as
 the
 imprinted
 face,
 but
 
with
 shape
 features
 that
 were
 more
 characteristic
 of
 the
 opposite
 gender.
 We
 tested
 chicks
 
in
 these
 conditions
 to
 examine
 whether
 they
 can
 distinguish
 between
 faces
 of
 different
 
identities
 based
 on
 gender
 and
 age
 information.
 Finally,
 we
 tested
 chicks’
 sensitivity
 to
 
facial
 expressions:
 the
 unfamiliar
 face
 was
 identical
 to
 the
 imprinted
 face
 except
 that
 it
 had
 
either
 an
 angry
 (“Angry
 Expression”
 condition)
 or
 fearful
 (“Fearful
 Expression”
 condition)
 
expression.
  We
  tested
  chicks
  in
  these
  conditions
  to
  examine
  whether
  they
  build
 
representations
 of
 faces
 that
 are
 tolerant
 to
 changes
 in
 expression.
 
 

   
 
Results
 
To
 compute
 each
 chick’s
 recognition
 performance,
 we
 first
 computed
 the
 proportion
 
of
 time
 each
 chick
 spent
 with
 the
 correct
 animation
 compared
 to
 the
 incorrect
 animation
 
for
 the
 test
 trials
 in
 which
 the
 imprinted
 face
 switched
 display
 walls
 after
 the
 rest
 period
 
and
 for
 the
 test
 trials
 in
 which
 the
 imprinted
 face
 stayed
 on
 the
 same
 display
 wall
 after
 the
 
rest
  period.
  We
  then
  computed
  the
  average
  of
  these
  two
  values
  to
  obtain
  a
  single
 
recognition
 performance
 score
 for
 each
 chick
 in
 the
 condition.
10

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
Please see the original published data (Wood & Wood, 2015) for a Bayesian analysis of the
data. Here, I have re-analyzed the data using traditional null hypothesis testing to match the other
studies presented in Chapters 2, 3, 4, and 6.

 

  90
 
Results
 are
 shown
 in
 Figure
 21.
 A
 repeated
 measures
 ANOVA
 with
 the
 within-­‐
subjects
 factor
 of
 condition
 and
 the
 between-­‐subjects
 factor
 of
 imprinted
 face
 revealed
 a
 
significant
 main
 effect
 of
 condition
 (F(9,
 99)
 =
 14.505,
 p
 <
 10
-­‐13
),
 but
 no
 significant
 main
 
effect
 of
 imprinted
 face
 or
 the
 interaction
 between
 condition
 and
 imprinted
 face.
 Chicks
 
were
 able
 to
 recognize
 their
 familiar
 face
 in
 7
 of
 the
 10
 conditions:
 Edges
 Only
 (t(12)
 =
 
22.418,
 p
 <
 10
-­‐10
),
 No
 Color
 (t(12)
 =
 22.418,
 p
 <
 10
-­‐9
),
 Features
 Only
 (t(12)
 =
 6.274,
 p
 <
 10
-­‐
4
),
 Different
 Gender
 Coloring
 (t(12)
 =
 4.648,
 p
 <
 .001),
 
 Different
 Gender
 Shape
 (t(12)
 =
 
Figure 21. Results from the 10 face-change conditions. Each bar shows the average percent
of correct trials in each condition for the male (blue bars) and female (green bars) imprinted
face. Chance performance was 50%. Error bars denote standard error.  

 

  91
 
2.283,
 p
 =
 .041)
11
,
 Inverted
 (t(12)
 =
 8.348,
 p
 <
 10
-­‐5
),
 and
 Different
 Age
 conditions
 (t(12)
 =
 
6.593,
  p
  <
  10
-­‐4
).
  Performance
  was
  not
  above
  chance
  levels
  in
  the
  Fearful
  Expression
 
condition,
 Angry
 Expression
 condition,
 or
 Repositioned
 Features
 condition
 (all
 Ps
 >
 .05).
 

 
Analysis
 of
 Effect
 Sizes
 

  To
 quantify
 the
 magnitude
 of
 the
 chicks’
 performance,
 we
 computed
 a
 one
 sample
 
Cohen’s
 d
 for
 each
 condition.
 We
 found
 large
 effect
 sizes
 (i.e.,
 greater
 than
 0.8)
 for
 6
 of
 the
 
10
 conditions:
 Edges
 Only
 (d
 =
 6.2),
 No
 Color
 (d
 =
 5.2),
 Features
 Only
 (d
 =
 1.7),
 Different
 
Gender
 Coloring
 (d
 =
 1.3),
 Inverted
 (d
 =
 2.3),
 and
 Different
 Age
 (d
 =
 1.8).
 We
 also
 found
 a
 
medium
 effect
 size
 for
 the
 Different
 Gender
 Shape
 condition
 (d
 =
 0.6).
 
 

 
Analysis
 of
 Change
 in
 Performance
 Over
 Time
   
 

  To
 compute
 whether
 there
 was
 any
 difference
 in
 performance
 depending
 on
 trial
 
day,
 we
 performed
 a
 repeated
 measures
 ANOVA
 with
 the
 within-­‐subjects
 factor
 of
 trial
 day.
 
The
 ANOVA
 revealed
 a
 significant
 main
 effect
 of
 trial
 day
 (F(6,
 72)
 =
 6.034,
 p
 <
 10
-­‐4
).
 As
 
shown
 in
 Figure
 22,
 performance
 on
 Day
 1
 was
 significantly
 lower
 than
 all
 other
 trial
 days
 
(paired
 t-­‐tests,
 all
 Ps
 <
 .01).
 Notably,
 on
 Days
 2-­‐7
 of
 testing,
 performance
 was
 significantly
 
above
 chance
 on
 8
 of
 the
 10
 conditions
 (Edges
 Only,
 No
 Color,
 Features
 Only,
 Different
 
Gender
  Coloring,
  Different
  Gender
  Shape,
  Inverted,
  Different
  Age,
  and
  Angry
  Face
 
conditions;
  all
  Ps
  <
  .05;
  all
  conditions
  surviving
  Holm-­‐Bonferroni
  correction).
  Thus,
 
additional
 research
 is
 necessary
 to
 determine
 the
 extent
 to
 which
 chicks’
 face
 recognition
 
abilities
 improve
 over
 time
 in
 these
 impoverished
 visual
 environments.
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
However, note that after applying a Holm-Bonferroni correction, performance in the Different
Gender Shape condition was no longer statistically significant.  

 

  92
 

 
Analysis
 of
 Individual
 Subject
 Performance
 

  With
 this
 controlled-­‐rearing
 method,
 we
 were
 able
 to
 collect
 a
 large
 number
 of
 test
 
trials
 from
 each
 chick.
 This
 made
 it
 possible
 to
 measure
 each
 chick’s
 face
 recognition
 
abilities
 with
 high
 precision.
 First,
 we
 examined
 whether
 all
 of
 the
 chicks
 were
 able
 to
 build
 
an
 accurate
 representation
 of
 their
 imprinted
 face,
 by
 computing
 whether
 each
 chick’s
 
performance
 across
 the
 test
 trials
 exceeded
 chance
 level.
 As
 shown
 in
 Figure
 23,
 12
 of
 the
 
13
 chicks
 spent
 more
 time
 with
 the
 imprinted
 face
 compared
 to
 the
 unfamiliar
 face
 on
 the
 
test
 trials
 (one-­‐sample
 t-­‐tests,
 all
 Ps
 <
 .001).
 This
 result
 indicates
 that
 almost
 all
 of
 the
 
chicks
 were
 able
 to
 build
 an
 accurate
 representation
 of
 the
 virtual
 face.
 
 
Figure 22. Change over time results. The graph illustrates group mean performance
over the full set of face change conditions shown during the test phase, computed for
the first, second, third, etc., test day. Chance performance was 50%. Error bars denote
standard error.

 
40%$
45%$
50%$
55%$
60%$
65%$
70%$
75%$
80%$
1$ 2$ 3$ 4$ 5$ 6$ 7$
Propor%on'of'%me'with'Imprinted'Face'
versus'Unfamiliar'Face'
Day'

 

  93
 

  Second,
 we
 examined
 whether
 the
 chicks
 used
 the
 same
 general
 strategy
 as
 one
 
another
 to
 distinguish
 the
 imprinted
 face
 from
 the
 unfamiliar
 faces.
 Figure
 23B
 shows
 each
 
chick’s
 sensitivity
 to
 each
 of
 the
 face
 changes.
 Visual
 inspection
 of
 Figure
 23B
 shows
 that
 
the
 majority
 of
 the
 chicks
 were
 sensitive
 to
 the
 same
 face
 changes.
 To
 examine
 whether
 the
 
Figure
 23.
 (A)
 Performance
 of
 each
 individual
 subject
 (ordered
 by
 performance).
 The
 
graph
 shows
 the
 total
 number
 of
 correct
 and
 incorrect
 test
 trials
 for
 each
 chick
 across
 
the
 test
 phase.
 P-­‐values
 denote
 the
 statistical
 difference
 between
 the
 number
 of
 correct
 
and
  incorrect
  test
  trials
  (computed
  through
  one-­‐tailed
  binomial
  tests).
  (B)
  The
 
percentage
 of
 correct
 trials
 for
 each
 chick
 in
 each
 condition.
 Chance
 performance
 was
 
50%.
  Subjects
  are
  ordered
  by
  overall
  performance
  for
  each
  imprinted
  face.
  (C)
  A
 
correlation
 matrix
 showing
 the
 correlation
 in
 face
 recognition
 performance
 for
 each
 pair
 
of
 chicks.
 Each
 box
 shows
 the
 correlation
 between
 two
 chicks’
 percent
 of
 successful
 
trials
  in
  each
  condition.
 The
 subjects
  are
 ordered
  by
 overall
 performance
  for
  each
 
imprinted
 face.
 The
 cells
 are
 color-­‐coded
 by
 correlation
 value:
 green
 values
 =
 positive
 
correlation
 in
 performance;
 red
 values
 =
 negative
 correlation
 in
 performance.
 The
 color
 
scale
 reflects
 the
 full
 range
 of
 possible
 correlation
 values.
 

 

 

  94
 
chicks’
 face
 recognition
 abilities
 were
 correlated
 with
 one
 another,
 we
 created
 a
 correlation
 
matrix
 (Figure
 23C).
 This
 matrix
 shows
 the
 correlation
 in
 face
 recognition
 performance
 for
 
each
 pair
 of
 chicks
 across
 the
 conditions
 (i.e.,
 each
 box
 shows
 the
 correlation
 between
 two
 
chicks’
  percent
  of
  correct
  trials
  in
  each
  condition).
  Green
  values
  indicate
  a
  positive
 
correlation
 in
 performance,
 red
 values
 indicate
 a
 negative
 correlation
 in
 performance,
 and
 
yellow
 values
 indicate
 a
 weak
 correlation.
 Chicks’
 face
 recognition
 abilities
 were
 highly
 
correlated
 across
 the
 conditions,
 with
 an
 average
 between-­‐subject
 correlation
 of
 r
 =
 .58
 
(SEM
 =
 0.02).
 
 

 
Analysis
 of
 Stimuli
 Features
 

  What
  visual
  features
  are
  the
  chicks
  using
  to
  recognize
  their
  imprinted
  face?
 
Research
 on
 human
 subjects
 has
 found
 that
 adults
 use
 Gabor
 Jet
 features
 to
 recognize
 faces
 
(Yue,
 Biederman,
 Mangini,
 von
 der
 Malsburg,
 &
 Amir,
 2012).
 To
 determine
 whether
 the
 
chicks
 also
 rely
 on
 Gabor
 Jet
 features,
 we
 computed
 Gabor
 Jet
 dissimilarity
 (using
 the
 
online
 applet
 provided
 at
 http://geon.usc.edu/GJW/)
 between
 the
 imprinted
 face
 and
 the
 
test
 faces.
 For
 each
 animation,
 the
 applet
 computed
 the
 Gabor
 Jet
 magnitudes
 for
 the
 frame
 
of
 the
 animation
 in
 which
 the
 face
 is
 at
 a
 0°
 angle
 to
 the
 viewer.
 Finally,
 the
 applet
 
computed
 the
 Euclidean
 distance
 between
 the
 imprinted
 faces
 and
 each
 of
 their
 respective
 
test
  faces.
  Overall,
  performance
  was
  not
  correlated
  with
  Gabor
  Jet
  dissimilarity
 
(Spearman’s
 r
 =
 -­‐.029,
 p
 =
 .905).
 Thus,
 newborn
 chicks
 do
 not
 appear
 to
 rely
 on
 the
 same
 
features
 as
 adult
 humans
 to
 recognize
 faces.
 

   
 

   
 

 

  95
 
Discussion
 

  This
 study
 examined
 whether
 newborn
 chicks
 can
 encode
 and
 recognize
 faces
 at
 the
 
onset
 of
 vision.
 Specifically,
 chicks
 were
 raised
 in
 automated
 controlled-­‐rearing
 chambers
 
that
 recorded
 all
 of
 their
 behavior
 with
 high
 precision.
 In
 their
 first
 week
 of
 life,
 chicks’
 
visual
 experience
 with
 faces
 and
 objects
 was
 limited
 to
 a
 single
 virtual
 face
 rotating
 around
 
a
 single
 axis.
 In
 their
 second
 week
 of
 life,
 we
 tested
 whether
 chicks
 could
 distinguish
 that
 
virtual
 face
 from
 a
 variety
 of
 unfamiliar
 faces.
 Three
 main
 findings
 emerged.
 

  First,
 despite
 lacking
 any
 prior
 face
 and
 object
 experience,
 chicks
 were
 able
 to
 build
 
an
 accurate
 representation
 that
 supported
 face
 recognition
 across
 a
 range
 of
 conditions.
 
While
  previous
  studies
  have
  shown
  that
  newborn
  animals
  can
  detect
  face-­‐like
 
configurations
 soon
 after
 birth
 (Johnson,
 Dziurawiec,
 Ellis,
 &
 Morton,
 1991;
 Rosa-­‐Salva
 et
 
al.,
 2011;
 Rosa-­‐Salva
 et
 al.,
 2010),
 the
 current
 study
 indicates
 that
 newborn
 animals
 can
 
also
 encode
 and
 recognize
 specific
 faces
 at
 the
 onset
 of
 vision.
 For
 instance,
 chicks
 were
 
sensitive
 to
 changes
 in
 their
 imprinted
 face’s
 age,
 gender,
 and
 orientation
 (upright
 vs.
 
inverted).
 Further,
 chicks
 showed
 little
 to
 no
 sensitivity
 to
 changes
 in
 facial
 expression,
 
which
 suggests
 that
 a
 chick’s
 first
 face
 representation
 can
 be
 tolerant
 to
 some
 identity-­‐
preserving
 facial
 transformations.
 Together,
 this
 pattern
 of
 results
 shows
 that
 chicks
 can
 
build
 a
 selective
 and
 tolerant
 representation
 of
 a
 face.
 This
 study
 extends
 the
 existing
 
literature
  concerning
  chicks’
  visual
  learning
  abilities.
  Previous
  controlled-­‐rearing
 
experiments
 show
 that
 chicks
 can
 build
 an
 integrated
 and
 invariant
 representation
 of
 the
 
first
 object
 they
 see
 in
 their
 environment
 (Wood,
 2013,
 2014).
 The
 present
 study
 shows
 
that
 chicks
 can
 also
 build
 an
 accurate
 representation
 of
 the
 first
 face
 they
 see.
 Thus,
 chicks
 
can
 learn
 rapidly
 about
 a
 variety
 of
 entities
 at
 the
 onset
 of
 vision.
 

 

  96
 

  Second,
 these
 results
 provide
 evidence
 that
 chicks
 build
 similar
 face
 representations
 
as
 one
 another
 at
 the
 onset
 of
 face
 and
 object
 experience.
 As
 shown
 in
 Figure
 23B,
 most
 of
 
the
 chicks
 were
 sensitive
 to
 the
 same
 visual
 features
 when
 recognizing
 faces,
 and
 as
 shown
 
in
 Figure
 23C,
 most
 of
 the
 chicks’
 face
 recognition
 abilities
 were
 highly
 correlated
 with
 one
 
another.
 Thus,
 different
 chicks
 use
 a
 common
 strategy
 to
 distinguish
 between
 faces.
 

  Third,
 these
 results
 begin
 to
 reveal
 the
 types
 of
 face
 information
 that
 can
 be
 encoded
 
at
 the
 onset
 of
 vision.
 Our
 results
 provide
 evidence
 that
 color
 information
 is
 an
 important
 
cue
  for
  chicks’
  face
  recognition
  abilities
  because
  subjects
  reliably
  distinguished
  their
 
imprinted
 face
 from
 unfamiliar
 faces
 that
 had
 different
 color
 features,
 but
 identical
 shape
 
features
 (i.e.,
 Edges
 Only,
 No
 Color,
 and
 Different
 Gender
 Coloring
 conditions).
 Likewise,
 
many
 studies
 have
 shown
 that
 color
 information
 plays
 an
 important
 role
 in
 human
 adults’
 
face
  recognition
  abilities
  (e.g.,
  Farah,
  Wilson,
  Drain,
  &
  Tanaka,
  1998;
  Hill,
  Bruce,
  &
 
Akamatsu,
 1995;
 Said
 &
 Todorov,
 2011).
 Our
 results
 also
 provide
 suggestive
 evidence
 that
 
chicks
  use
  shape/position
  information
  to
  recognize
  faces,
  because
  subjects
  reliably
 
distinguished
 the
 imprinted
 face
 from
 an
 inverted
 version
 of
 the
 imprinted
 face.
 More
 
generally,
 these
 results
 accord
 with
 previous
 controlled
 rearing
 experiments
 of
 object
 
recognition,
 which
 show
 that
 chicks
 can
 encode
 both
 the
 color
 and
 shape
 of
 objects
 (Wood,
 
2014).
 
 
While
 the
 current
 study
 focused
 on
 the
 initial
 state
 of
 face
 recognition,
 previous
 
developmental
 studies
 have
 shown
 that
 experience
 and
 maturation
 play
 an
 important
 role
 
in
 shaping
 and
 calibrating
 face
 recognition
 machinery,
 with
 significant
 changes
 occurring
 
over
 the
 first
 16
 years
 of
 life
 in
 humans
 (Bruce
 et
 al.,
 2000;
 Carey
 &
 Diamond,
 1977;
 
Mondloch,
  Le
  Grand,
  &
  Maurer,
  2010).
  Some
  researchers
  have
  suggested
  that
  the
 

 

  97
 
development
 of
 face
 recognition
 is
 protracted
 because
 sensitivity
 to
 configural
 effects
 does
 
not
 emerge
 until
 relatively
 late
 in
 development
 (Carey
 &
 Diamond,
 1977).
 Our
 findings
 are
 
consistent
 with
 this
 suggestion
 because
 chicks
 were
 not
 able
 to
 distinguish
 their
 imprinted
 
face
 from
 an
 unfamiliar
 face
 in
 which
 the
 features
 of
 the
 imprinted
 face
 were
 located
 at
 
different
 positions
 (i.e.,
 Repositioned
 Features
 condition).
 
 
 

  It
 is
 important
 to
 emphasize
 two
 potential
 limitations
 of
 the
 current
 study.
 First,
 
these
 chicks
 observed
 the
 imprinted
 face
 for
 an
 extended
 period
 of
 time
 throughout
 the
 
input
 phase.
 Thus,
 additional
 studies
 are
 needed
 to
 determine
 whether
 chicks
 can
 build
 an
 
accurate
 face
 representation
 after
 seeing
 a
 face
 briefly,
 akin
 to
 human
 adults,
 or
 whether
 
they
 need
 to
 see
 a
 face
 for
 an
 extended
 period
 of
 time.
 
 

  Second,
 this
 experiment
 was
 not
 designed
 to
 test
 whether
 chicks’
 face
 recognition
 
abilities
 depend
 on
 domain-­‐specific
 versus
 domain-­‐general
 recognition
 mechanisms.
 Some
 
researchers
  have
  proposed
  that
  face
  recognition
  and
  object
  recognition
  depend
  on
 
separate,
  domain-­‐specific
  systems
  from
  birth
  (Carey,
  2009;
  Spelke
  &
  Kinzler,
  2007;
 
Vallortigara,
 2012).
 Conversely,
 other
 researchers
 have
 proposed
 that
 face
 recognition
 and
 
object
  recognition
  initially
  depend
  on
  common
  domain-­‐general
  computations,
  with
 
domain-­‐specific
  neural
  populations
  emerging
  in
  the
  cortex
  on
  the
  basis
  of
  visual
 
experience.
 According
 to
 this
 second
 proposal,
 domain-­‐specific
 face
 recognition
 should
 
emerge
 relatively
 late
 in
 development,
 only
 after
 the
 animal
 has
 been
 exposed
 to
 different
 
classes
 of
 objects
 and
 faces
 (reviewed
 by
 Wallis,
 2013).
 Support
 for
 this
 domain-­‐general
 
position
  comes
  from
  studies
  showing
  that
  face
  memory
  undergoes
  domain-­‐specific
 
development
 during
 the
 first
 10
 years
 of
 human
 life
 (Weigelt
 et
 al.,
 2014),
 that
 newborns’
 
early-­‐emerging
  face
  preferences
  can
  be
  explained
  by
  domain-­‐general
  computations
 

 

  98
 
operating
 over
 binocular
 input
 (Wilkinson,
 Paikan,
 Gredeback,
 Rea,
 &
 Metta,
 2014),
 and
 
that
 category-­‐selective
 regions
 (e.g.,
 regions
 selective
 for
 faces
 or
 letter
 symbols)
 emerge
 in
 
the
 cortex
 on
 the
 basis
 of
 early
 visual
 experiences
 (Roder,
 Ley,
 Shenoy,
 Kekunnaya,
 &
 
Bottari,
 2013;
 Srihasam
 et
 al.,
 2012).
 It
 would
 be
 interesting
 for
 future
 studies
 to
 use
 this
 
automated
  controlled-­‐rearing
  method
  to
  examine
  whether
  face
  recognition
  and
  object
 
recognition
  depend
  on
  shared
  versus
  unique
  computations
  at
  the
  onset
  of
  vision,
  by
 
examining
 whether
 newborn
 chicks
 use
 similar
 computations
 when
 building
 their
 first
 face
 
and
 object
 representations.
 
 

  Future
 studies
 could
 also
 use
 this
 controlled-­‐rearing
 approach
 to
 explore
 a
 range
 of
 
other
 questions
 about
 the
 initial
 state
 of
 face
 recognition.
 For
 example,
 what
 facial
 features
 
do
 newborn
 animals
 use
 to
 recognize
 faces
 at
 the
 onset
 of
 vision?
 How
 do
 these
 features
 
change
  as
  the
  animal
  acquires
  experiences
  with
  faces
  and/or
  objects?
  Are
  some
  face
 
changes
 easier
 to
 detect
 on
 male
 faces
 versus
 female
 faces?
 And
 how
 do
 more
 abstract
 
facial
 categories
 (e.g.,
 categories
 for
 race,
 gender,
 and
 age)
 emerge
 in
 the
 visual
 system
 as
 a
 
function
 of
 specific
 face
 and
 object
 experiences?
 
 

  In
 sum,
 our
 study
 provides
 systematic
 evidence
 that
 newborn
 chicks
 are
 capable
 of
 
recognizing
 faces.
 Impressively,
 chicks
 are
 able
 to
 distinguish
 different
 faces
 from
 one
 
another
 soon
 after
 hatching,
 which
 shows
 that
 experience
 with
 a
 rich
 visual
 world
 is
 not
 
necessary
 for
 developing
 face
 recognition.
 

   
 

 

  99
 
Chapter
 6:
 A
 slowness
 constraint
 on
 the
 development
 of
 view-­‐invariant
 face
 recognition
 

 
Abstract
 
The
 ability
 to
 recognize
 faces
 is
 central
 to
 social
 behavior.
 To
 date,
 however,
 little
 is
 known
 
about
 how
 invariant
 face
 recognition
 emerges
 in
 the
 newborn
 brain.
 Can
 newborns
 begin
 
building
 invariant
 face
 representations
 at
 the
 onset
 of
 vision?
 If
 so,
 does
 the
 development
 
of
 this
 ability
 require
 a
 particular
 type
 of
 visual
 experience
 with
 faces?
 To
 address
 these
 
questions,
 we
 used
 an
 automated
 controlled-­‐rearing
 method
 with
 newborn
 chicks.
 In
 the
 
first
 week
 of
 life,
 we
 raised
 chicks
 with
 a
 single
 virtual
 face
 rotating
 through
 a
 single
 
viewpoint
 range.
 In
 the
 second
 week
 of
 life,
 we
 tested
 whether
 the
 chicks
 built
 view-­‐
invariant
 face
 representations.
 We
 found
 that
 newborn
 chicks
 successfully
 recognized
 the
 
familiar
 face
 across
 novel
 viewpoints.
 Moreover,
 we
 found
 that
 this
 ability
 was
 impaired
 
when
 newborn
 chicks
 were
 raised
 with
 a
 face
 that
 moved
 quickly
 over
 time.
 Thus,
 the
 
development
 of
 view-­‐invariant
 face
 recognition
 is
 subject
 to
 a
 ‘slowness
 constraint.’
 These
 
results
 indicate
 that
 invariant
 face
 recognition
 can
 emerge
 rapidly
 in
 newborns
 and
 that
 
the
 development
 of
 this
 ability
 requires
 visual
 experience
 with
 slowly
 moving
 faces,
 akin
 to
 
the
 development
 of
 object
 recognition.
 
 
 
 
 
 

 

   
 

 

  100
 
Introduction
 

  The
 ability
 to
 recognize
 faces
 quickly
 and
 accurately
 is
 critical
 to
 social
 interactions.
 
Unlike
 inanimate
 objects,
 faces
 (and
 other
 body
 parts)
 are
 self-­‐propelled,
 and
 thus
 uniquely
 
dynamic.
 Thus,
 like
 objects,
 faces
 in
 natural
 settings
 appear
 across
 tremendous
 variation
 in
 
viewing
 situations
 (e.g.,
 changes
 in
 facial
 expression,
 viewpoint,
 background,
 and
 occluding
 
objects).
  The
  ability
  to
  recognize
  faces
  across
  these
  identity-­‐preserving
  image
 
transformations
 is
 a
 computationally
 complex
 task
 known
 as
 “invariant
 face
 recognition”
 
(Hasselmo,
 Rolls,
 Baylis,
 &
 Nalwa,
 1989;
 Hill,
 Schyns,
 &
 Akamatsu,
 1997;
 Moses,
 Ullman,
 &
 
Edelman,
 1996;
 Wallis
 &
 Rolls,
 1997).
 Since
 each
 encounter
 with
 a
 face
 is
 almost
 entirely
 
unique
 (in
 terms
 of
 the
 image
 projected
 on
 the
 retina),
 the
 visual
 system
 must
 link
 these
 
different
 retinal
 patterns
 to
 the
 same
 face
 stored
 in
 memory.
 While
 numerous
 studies
 have
 
investigated
 face
 recognition
 in
 adults,
 little
 is
 known
 about
 the
 origins
 of
 invariant
 face
 
recognition.
 
 

  Due
 to
 challenges
 associated
 with
 testing
 newborns
 experimentally,
 it
 has
 generally
 
not
  been
  possible
  to
  study
  the
  initial
  state
 of
  face
  recognition
  (i.e.,
  the
  state
  of
  face
 
recognition
  machinery
  at
  the
  onset
  of
  vision).
  Two
  major
  limitations
  have
  hindered
 
progress.
 First,
 most
 newborn
 animals
 cannot
 be
 raised
 in
 controlled
 environments
 from
 
birth.
  This
  limitation
  has
  prevented
  researchers
  from
  studying
  how
  specific
  visual
 
experiences
 shape
 the
 initial
 state
 of
 face
 recognition.
 Second,
 researchers
 can
 typically
 
collect
 only
 a
 few
 test
 trials
 from
 each
 newborn
 subject.
 This
 limitation
 has
 prevented
 
researchers
 from
 obtaining
 precise
 measurements
 of
 face
 recognition
 in
 newborns.
 
 

   
 
Using
 automated
 controlled
 rearing
 to
 explore
 the
 origins
 of
 face
 recognition
 

 

  101
 
In
 previous
 studies
 of
 object
 recognition,
 Wood
 (2013)
 addressed
 these
 limitations
 
by
 using
 an
 automated
 controlled-­‐rearing
 technique.
 In
 particular,
 Wood
 (2013)
 was
 able
 
to
 study
 the
 initial
 state
 of
 object
 recognition
 by
 raising
 newborn
 chicks
 in
 automated
 
controlled-­‐rearing
  chambers
  that
  provided
  complete
  control
  over
  all
  visual
  object
 
experiences.
 The
 automated
 chambers
 used
 computers
 to
 perform
 all
 stimuli
 presentation
 
and
 data
 collection.
 Unlike
 studies
 that
 have
 observed
 newborn
 birds
 for
 5-­‐10
 minutes
 
(e.g.,
 Martinho
 &
 Kacelnik,
 2016;
 Mascalzoni
 et
 al.,
 2010;
 Regolin
 et
 al.,
 2011;
 Regolin
 &
 
Vallortigara,
 1995;
 Rosa-­‐Salva
 et
 al.,
 2016;
 Rosa-­‐Salva
 et
 al.,
 2010;
 Vallortigara
 et
 al.,
 2005),
 
this
 method
 enables
 researchers
 to
 measure
 a
 newborn’s
 first
 visual
 representation
 with
 
high
 precision,
 by
 collecting
 thousands
 of
 minutes
 of
 test
 data
 during
 the
 experiment.
 
 

  This
 methodology
 has
 been
 fruitful
 for
 examining
 the
 developmental
 origins
 of
 
object
 recognition.
 For
 example,
 studies
 using
 this
 automated
 method
 have
 found
 that
 
newborn
 chicks
 are
 able
 to
 build
 view-­‐invariant
 representations
 of
 objects
 (Wood,
 2013;
 
Wood
 &
 Wood,
 2015a).
 However,
 the
 development
 of
 this
 ability
 is
 subject
 to
 a
 “slowness
 
constraint.”
 In
 order
 for
 newborn
 chicks
 to
 develop
 view-­‐invariant
 object
 recognition,
 they
 
must
 be
 raised
 in
 environments
 containing
 slowly
 moving
 objects
 (Wood
 &
 Wood,
 2016a).
 
Specifically,
  the
  information
  content
  of
  chicks’
  object
  representations
  (i.e.,
  viewpoint-­‐
specific
 and
 identity
 information)
 can
 be
 experimentally
 manipulated
 by
 altering
 the
 speed
 
of
 object
 motion
 when
 the
 object
 is
 being
 encoded
 in
 memory.
 The
 slower
 an
 object
 moves
 
during
 encoding,
 the
 more
 identity
 information
 (and
 less
 viewpoint-­‐specific
 information)
 
becomes
 encoded
 in
 the
 chick’s
 representation
 of
 the
 object.
 While
 previous
 research
 has
 
begun
 to
 reveal
 the
 developmental
 origins
 of
 object
 recognition,
 the
 state
 of
 invariant
 face
 
recognition
 at
 the
 onset
 of
 vision
 remains
 unknown.
 Can
 newborn
 chicks
 build
 view-­‐

 

  102
 
invariant
  face
  representations,
  and
  are
  those
  representations
  subject
  to
  the
  same
 
constraints
 as
 view-­‐invariant
 representations
 of
 objects?
 
 
It
 has
 previously
 been
 shown
 that
 newborn
 chicks
 are
 able
 to
 recognize
 human
 
faces
 shown
 from
 familiar
 viewing
 angles
 (Wood
 &
 Wood,
 2015b).
 Thus,
 chicks
 are
 able
 to
 
discriminate
 the
 first
 face
 seen
 in
 life
 from
 some
 other
 faces.
 However,
 discriminating
 
familiar
 animations
 of
 faces
 could
 be
 accomplished
 by
 using
 a
 simple
 pattern-­‐matching
 
strategy
  rather
  than
  building
  a
  view-­‐invariant
  representation
  of
  faces.
  Faces
  pose
  a
 
particularly
 complex
 case
 of
 invariant
 recognition
 because
 faces
 must
 be
 recognized
 at
 the
 
subordinate,
 or
 individual,
 level
 while
 most
 objects
 are
 generally
 recognized
 at
 the
 “basic”
 
level
 (Damasio,
 Damasio,
 &
 Vanhoesen,
 1982;
 Diamond
 &
 Carey,
 1986;
 Tarr
 &
 Gauthier,
 
2000).
  Faces
  are
  a
  prototypical
  example
  of
  subordinate-­‐level
  recognition
  because
  all
 
individual
 faces
 share
 the
 same
 general
 configuration
 (Carey,
 1992;
 Leibo,
 Mutch,
 &
 Poggio,
 
2011).
 Thus,
 face
 recognition
 is
 an
 especially
 difficult
 task,
 requiring
 more
 fine-­‐tuned
 
recognition
 than
 basic
 object
 recognition.
 

 
The
 Present
 Experiments
 

  Our
 study
 is
 divided
 into
 two
 parts.
 First,
 we
 tested
 whether
 newborn
 chicks
 can
 
build
 view-­‐invariant
 representations
 of
 the
 first
 face
 seen
 in
 life
 (Experiments
 1
 &
 2).
 
Second,
 we
 examined
 whether
 the
 development
 of
 this
 ability
 is
 subject
 to
 a
 slowness
 
constraint.
 In
 particular,
 we
 tested
 whether
 it
 is
 possible
 to
 systematically
 manipulate
 the
 
information
 content
 of
 a
 newborn
 chick’s
 first
 face
 representation
 by
 changing
 the
 speed
 of
 
object
 motion
 during
 encoding
 (Experiments
 3
 &
 4).
 
 

 

  103
 
In
 Experiment
 1,
 we
 imprinted
 newborn
 chicks
 to
 a
 single
 human
 face
 rotating
 20
 
degrees
 and
 tested
 the
 chicks’
 ability
 to
 recognize
 the
 imprinted
 face
 across
 20
 viewpoints
 
(19
 novel,
 1
 familiar).
 The
 chicks
 were
 able
 to
 distinguish
 the
 imprinted
 face
 from
 the
 two
 
unfamiliar
 test
 faces
 across
 novel
 viewpoints.
 In
 Experiment
 2,
 we
 controlled
 for
 possible
 
differences
 in
 color
 across
 the
 imprinted
 and
 unfamiliar
 faces
 by
 converting
 all
 of
 the
 faces
 
to
 the
 same
 shade
 of
 red.
 Despite
 removing
 a
 significant
 amount
 of
 information
 about
 the
 
faces,
 the
 chicks
 were
 still
 able
 to
 recognize
 their
 imprinted
 face
 across
 the
 viewpoint
 
changes.
 In
 Experiment
 3,
 we
 tested
 whether
 the
 speed
 of
 face
 motion
 during
 encoding
 
affects
  the
  face
  representation
  built
  by
  the
  subject.
  Specifically,
  newborn
  chicks
  were
 
imprinted
 to
 a
 single
 face
 that
 rotated
 at
 one
 of
 three
 possible
 speeds—fast,
 medium,
 or
 
slow.
 Akin
 to
 the
 development
 of
 object
 recognition,
 we
 found
 a
 trade-­‐off
 between
 the
 
amount
  of
  identity
  information
  and
  viewpoint-­‐specific
  information
  in
  the
  chicks’
  face
 
representations.
 The
 amount
 of
 identity
 and
 viewpoint-­‐specific
 information
 in
 the
 chicks’
 
face
 representations
 was
 directly
 related
 to
 the
 speed
 of
 the
 face
 during
 encoding.
 Finally,
 
in
 Experiment
 4
 we
 confirmed
 that
 chicks
 can
 extract
 identity
 information
 from
 quickly
 
moving
 faces,
 provided
 that
 the
 face
 was
 moving
 slowly
 when
 being
 encoded
 into
 memory.
 
Thus,
 identity
 information
 is
 available
 when
 a
 face
 moves
 quickly
 or
 slowly,
 but
 more
 
identity
 information
 is
 encoded
 when
 a
 face
 moves
 slowly.
 Overall,
 our
 findings
 indicate
 
that
  invariant
  face
  recognition
  and
  invariant
  object
  recognition
  develop
  from
  some
 
common
 machinery
 and
 are
 subject
 to
 the
 same
 developmental
 constraint.
 

 

   
 

 

  104
 
Experiment
 1
 
Methods
 
Subjects
 

  Ten
 Rhode
 Island
 Red
 chicks
 of
 unknown
 sex
 were
 tested
 in
 Experiment
 1.
 No
 
subjects
 were
 excluded
 from
 the
 analyses.
 The
 eggs
 were
 obtained
 from
 a
 local
 distributer
 
and
 incubated
 in
 darkness
 in
 an
 OVA-­‐Easy
 incubator
 (Brinsea
 Products
 Inc.,
 Titusville,
 FL).
 
The
 temperature
 was
 maintained
 at
 99.6°F
 and
 the
 humidity
 was
 maintained
 at
 45%
 for
 
the
 first
 19
 days
 of
 incubation.
 On
 day
 19,
 we
 increased
 the
 humidity
 to
 60%.
 On
 day
 1
 of
 
life,
 the
 subjects
 were
 moved
 from
 the
 incubator
 room
 to
 the
 controlled-­‐rearing
 chambers
 
in
 darkness
 with
 the
 aid
 of
 night
 vision
 goggles.
 All
 care
 of
 the
 subjects
 was
 also
 done
 in
 
darkness
 with
 night
 vision
 goggles.
 Each
 chick
 was
 housed
 singly
 in
 its
 own
 chamber.
 All
 of
 
the
 experiments
 presented
 here
 were
 approved
 by
 the
 University
 of
 Southern
 California
 
Institutional
 Animal
 Care
 and
 Use
 Committee.
 

 
Controlled-­‐Rearing
 Chambers
 

  Subjects
 were
 raised
 from
 birth
 for
 two
 weeks
 within
 controlled-­‐rearing
 chambers
 
(66
 cm
 length
 x
 42
 cm
 width
 x
 69
 cm
 height).
 The
 chambers
 were
 constructed
 from
 white,
 
high-­‐density
 plastic.
 For
 a
 picture
 of
 the
 chambers,
 see
 Figure
 1
 in
 Wood
 (2013).
 Face
 
stimuli
 were
 presented
 to
 the
 subjects
 by
 projecting
 animated
 videos
 onto
 two
 display
 
walls
 (19”
 liquid
 crystal
 display
 monitors
 with
 1440
 x
 900
 pixel
 resolution)
 situated
 on
 
opposite
 sides
 of
 the
 chamber.
 The
 chambers
 contained
 no
 rigid,
 bounded
 objects
 other
 
than
 the
 virtual
 face
 presented
 on
 the
 display
 walls.
 All
 care
 of
 the
 subjects
 was
 performed
 
in
 darkness
 with
 the
 aid
 of
 night
 vision
 goggles.
 Food
 and
 water
 were
 provided
 ad
 libitum
 

 

  105
 
in
 transparent,
 rectangular
 holes
 in
 the
 ground
 (66
 cm
 length
 x
 2.5
 cm
 width
 x
 2.7
 cm
 
height).
 We
 used
 grain
 as
 food
 because
 grain
 does
 not
 behave
 like
 an
 object
 (i.e.,
 grain
 does
 
not
 maintain
 a
 rigid,
 bounded
 shape).
 The
 floors
 were
 black
 wire
 mesh
 supported
 over
 a
 
black
 surface
 by
 thin,
 transparent
 beams.
 
 
The
 chicks’
 behavior
 was
 tracked
 by
 micro-­‐cameras
 (1.5
 cm
 diameter)
 embedded
 in
 
the
 ceilings
 of
 the
 chambers
 and
 Ethovision
 XT
 software
 (Noldus
 Information
 Technology).
 
This
 software
 calculated
 the
 amount
 of
 time
 each
 subject
 spent
 within
 zones
 (22
 cm
 ×
 42
 
cm)
 next
 to
 the
 left
 and
 right
 display
 walls.
 
 

 
Input
 Phase
 

  In
  the
  input
  phase
  (the
  first
  week
  of
  life),
  subjects
  were
  raised
  in
  a
  visual
 
environment
 that
 contained
 a
 single
 virtual
 face
 (ear-­‐to-­‐ear
 width
 =
 6.2-­‐6.5
 cm;
 height
 =
 10
 
cm;
 distance
 above
 flooring
 unit
 =
 1
 cm).
  Six
 of
 the
 chicks
 were
 imprinted
 to
 Face
 A,
 and
 
four
  were
  imprinted
  to
  Face
  B
  (see
  Figure
  24).
  The
  virtual
  face
  moved
  continuously,
 
rotating
 through
 a
 20°
 viewing
 range
 about
 a
 vertical
 axis
 passing
 through
 its
 centroid.
 The
 
individual
  frames
  of
  face
  movement
  were
  created
  using
  FaceGen
  software
  (Singular
 
Inversion,
 Inc.)
 and
 concatenated
 into
 an
 animation
 using
 QTCoffee
 (3AM
 Coffee
 Software).
 
The
 face
 was
 shown
 on
 a
 uniform
 white
 background.
 During
 the
 input
 phase,
 the
 imprinted
 
face
 switched
 display
 walls
 every
 2
 hours,
 following
 a
 one-­‐minute
 period
 of
 darkness
 
(Figure
 25).
 The
 face
 appeared
 for
 an
 equal
 amount
 of
 time
 on
 each
 display
 wall.
 

 

  106
 

 
Test
 Phase
 

  In
 the
 test
 phase
 (the
 second
 week
 of
 life),
 we
 tested
 whether
 the
 chicks
 were
 able
 
to
 build
 a
 view-­‐invariant
 representation
 of
 their
 imprinted
 face.
 To
 do
 so,
 we
 used
 a
 two-­‐
alternative
 forced
 choice
 test.
 On
 each
 test
 trial,
 the
 imprinted
 face
 was
 projected
 on
 one
 
display
 wall
 and
 an
 unfamiliar
 face
 was
 projected
 on
 the
 other
 display
 wall.
 The
 familiar
 
face
 was
 presented
 rotating
 through
 a
 20°
 viewpoint
 range
 from
 one
 of
 20
 possible
 viewing
 
angles
 (the
 imprinted
 viewing
 angle
 plus
 19
 novel
 viewing
 angles).
 The
 unfamiliar
 faces
 
Figure
 24.
 Images
 from
 the
 Face
 A
 animation
 and
 Face
 B
 animation
 shown
 during
 the
 
input
  phase
  in
  Experiment
  1
  (top)
  and
  Experiment
  2
  (bottom).
  The
  faces
  rotated
 
smoothly
 and
 continuously
 through
 a
 20
 degree
 viewpoint
 range.
 Each
 chick
 saw
 a
 
single
 face
 (either
 Face
 A
 or
 Face
 B)
 during
 the
 input
 phase.
 

 

  107
 
had
 the
 same
 size,
 motion
 speed,
 and
 viewpoint
 range
 as
 the
 imprinted
 face
 from
 the
 input
 
phase.
 Consequently,
 on
 most
 of
 the
 test
 trials,
 the
 unfamiliar
 face
 was
 more
 similar
 to
 the
 
imprinting
 stimulus
 than
 the
 imprinted
 face
 was
 to
 the
 imprinting
 stimulus
 (from
 a
 pixel-­‐
wise
  perspective).
  To
  recognize
  their
  imprinted
  face,
  the
  chicks
  therefore
  needed
  to
 
generalize
 across
 large
 changes
 in
 the
 face’s
 appearance.
 If
 the
 chicks
 could
 recognize
 their
 
imprinted
 face,
 then
 they
 should
 spend
 a
 greater
 proportion
 of
 time
 in
 proximity
 to
 the
 
imprinted
 face
 compared
 to
 the
 unfamiliar
 face
 during
 these
 test
 trials.
 
 
Figure
 25.
 A
 schematic
 of
 the
 presentation
 of
 the
 virtual
 faces
 during
 the
 input
 phase
 
(top)
 and
 test
 phase
 (bottom).
 During
 the
 input
 phase
 the
 chicks
 were
 raised
 with
 a
 
single
 face
 rotating
 20
 degrees
 back
 and
 forth
 about
 a
 frontoparallel
 axis
 through
 the
 
face’s
 centroid.
  The
  test
  phase
  consisted
  of
  alternating
  test
  trials
  and
  rest
  periods.
 
During
  each
  test
  trial,
  the
  imprinted
  face
  was
  shown
  on
  one
  display
  wall
  and
  an
 
unfamiliar
 face
 was
 shown
 on
 the
 opposite
 display
 wall.
 The
 imprinted
 face
 was
 shown
 
from
 a
 variety
 of
 novel
 viewpoints
 across
 the
 test
 trials,
 while
 the
 unfamiliar
 face
 was
 
always
 shown
 from
 the
 same
 viewpoint
 range
 as
 the
 imprinted
 face
 during
 the
 rest
 
periods
  (to
  maximize
  the
  image-­‐level
  similarity
  between
  the
  unfamiliar
  face
  and
 
imprinted
 stimulus).
 
 
 

 

  108
 
The
 test
 trials
 were
 12
 minutes
 in
 duration
 followed
 by
 24-­‐minute
 rest
 trials
 (Figure
 
25).
 During
 the
 rest
 trials,
 the
 imprinted
 face
 appeared
 on
 one
 display
 wall
 and
 a
 white
 
screen
 appeared
 on
 the
 other
 display
 wall.
 Each
 subject
 received
 40
 test
 trials
 per
 day.
 

 
Figure
  26.
  Results
 from
 Experiments
 1
 &
 2.
 The
 circle
 charts
 (top)
 depict
 the
 test
 
viewpoints
  of
  the
  imprinted
  face.
  Each
  test
  viewpoint
  is
  color-­‐coded
  based
  on
  the
 
average
  performance.
  White
  represents
  chance
  performance
  (50%)
  and
  green
 
represents
 ceiling
 performance
 (defined
 as
 the
 average
 preference
 for
 the
 imprinted
 
face
 over
 the
 blank
 display
 wall
 during
 rest
 trials
 for
 that
 experiment).
 The
 bar
 graphs
 
(bottom)
 show
 performance
 by
 degree
 of
 viewpoint
 change
 (i.e.,
 the
 degrees
 of
 change
 
between
 the
 middle
 frame
 of
 the
 imprinted
 face
 animation
 and
 the
 middle
 frame
 of
 the
 
test
  face
  animation).
  Chicks’
  performance
  was
  above
  chance
  for
  all
  three
  of
  the
 
viewpoint
 change
 categories
 (0°,
 25°,
 and
 50°)
 in
 Experiments
 1
 &
 2.
 
 

 

  109
 
Results
 

  Results
 are
 shown
 in
 Figure
 26.
 To
 measure
 the
 chicks’
 performance,
 we
 computed
 
the
 percent
 of
 time
 the
 chicks
 spent
 with
 the
 imprinted
 face
 compared
 to
 the
 unfamiliar
 
face
 on
 the
 trials
 in
 which
 the
 imprinted
 face
 switched
 display
 walls
 from
 the
 preceding
 
rest
 period
 and
 the
 trials
 in
 which
 the
 imprinted
 face
 did
 not
 switch
 display
 walls
 from
 the
 
preceding
 rest
 period.
 Then
 we
 computed
 the
 average
 of
 these
 two
 values
 to
 obtain
 a
 single
 
recognition
 performance
 score
 for
 each
 chick.
 Across
 all
 of
 the
 test
 trials,
 the
 newborn
 
chicks
 spent
 significantly
 more
 time
 with
 their
 imprinted
 face
 than
 the
 unfamiliar
 face
 (M
 =
 
67%,
 SD
 =
 5%;
 one-­‐sample
 t-­‐test,
 t(9)
 =
 10.76,
 p
 =
 0.000002,
 d
 
 =
 3.40).
 Mean
 performance
 
was
 the
 same
 after
 removing
 test
 trials
 in
 which
 the
 imprinted
 face
 was
 shown
 from
 the
 
familiar
 viewpoint
 range
 and
 remained
 well-­‐above
 chance
 levels
 (M
 =
 67%,
 SD
 =
 5%;
 one-­‐
sample
 t-­‐test,
 t(9)
 =
 11.13,
 p
 =
 0.000001,
 d
 =
 3.52).
 

  To
 examine
 whether
 chicks
 showed
 impaired
 performance
 for
 larger
 viewpoint
 
changes,
 we
 classified
 each
 of
 the
 test
 trial
 viewpoint
 ranges
 into
 three
 categories:
 0°
 
viewpoint
 change
 (the
 middle
 frame
 of
 the
 viewpoint
 range
 in
 the
 test
 animation
 was
 the
 
same
  as
  the
  middle
  frame
  of
  the
  viewpoint
  range
  in
  the
  imprinted
  animation),
  ±25°
 
viewpoint
 change
 (the
 middle
 frame
 of
 the
 viewpoint
 range
 in
 the
 test
 animation
 was
 ±25°
 
from
 the
 middle
 frame
 of
 the
 viewpoint
 range
 in
 the
 imprinted
 animation),
 and
 ±50°
 
viewpoint
 change
 (the
 middle
 frame
 of
 the
 viewpoint
 range
 in
 the
 test
 animation
 was
 ±50°
 
from
  the
  middle
  frame
  of
  the
  viewpoint
  range
  in
  the
  imprinted
  animation).
  We
  then
 
performed
 a
 repeated-­‐measures
 ANOVA
 with
 the
 within-­‐subjects
 main
 effect
 of
 viewpoint
 
change.
 We
 found
 a
 significant
 effect
 of
 viewpoint
 change
 (F(2,
 18)
 =
 6.89,
 p
 =
 .006,
 η
2

 =
 
.43).
 Post-­‐hoc
 paired-­‐sample
 t-­‐tests
 revealed
 that
 performance
 in
 the
 0°
 test
 trials
 was
 

 

  110
 
significantly
 higher
 than
 both
 the
 ±25°
 test
 trials
 (t(9)
 =
 2.66,
 p
 =
 .026,
 d
 =
 .84)
 and
 the
 ±50°
 
test
 trials
 (t(9)
 =
 3.26,
 p
 =
 .010,
 d
 =
 1.03).
 However,
 it
 is
 important
 to
 note
 that
 performance
 
was
 still
 well
 above
 chance
 levels
 in
 all
 of
 these
 viewpoint
 ranges
 (one-­‐sample
 t-­‐tests,
 0°:
 
t(9)
 =
 9.76,
 p
 =
 .000004,
 d
 =
 3.09;
 ±25°:
 t(9)
 =
 10.35,
 p
 =
 .000003,
 d
 =
 3.27;
 ±50°:
 t(9)
 =
 8.20,
 
p
 =
 .00002,
 d
 =
 2.59).
 

  To
  test
  whether
  performance
  varied
  as
  a
  function
  of
  the
  day
  of
  testing,
  we
 
performed
 a
 repeated-­‐measures
 ANOVA
 with
 the
 within-­‐subjects
 main
 effect
 of
 test
 day.
 
The
 ANOVA
 did
 not
 reveal
 a
 significant
 main
 effect
 of
 test
 day
 (F(6,
 54)
 =
 .83,
 p
 =
 .55).
 
Moreover,
 performance
 was
 above
 chance
 levels
 on
 all
 test
 days
 (one-­‐sample
 t-­‐tests,
 Holm-­‐
Bonferroni
 corrected
 for
 multiple
 comparisons,
 all
 Ps
 <
 .001).
 Therefore,
 performance
 did
 
not
 vary
 significantly
 by
 test
 day.
 

 
Discussion
 

  The
 results
 of
 Experiment
 1
 suggest
 that
 newborn
 chicks
 are
 able
 to
 build
 a
 view-­‐
invariant
 representation
 of
 the
 first
 face
 seen
 in
 life.
 However,
 the
 face
 stimuli
 used
 in
 
Experiment
 1
 had
 slightly
 different
 colors.
 Thus,
 based
 on
 Experiment
 1,
 we
 could
 not
 
exclude
  the
  possibility
  that
  the
  chicks
  were
  relying
  on
  color
  alone
  to
  recognize
  their
 
imprinted
 face.
 To
 control
 for
 this
 possibility,
 in
 Experiment
 2,
 we
 converted
 all
 of
 the
 faces
 
to
 red-­‐scale
 to
 remove
 any
 hue-­‐based
 identity
 cues.
 

 

   
 

 

  111
 
Experiment
 2
 
Methods
 

  The
 methods
 in
 Experiment
 2
 were
 identical
 to
 Experiment
 1,
 with
 the
 following
 
two
 exceptions.
 First,
 a
 new
 group
 of
 12
 chicks
 were
 tested.
 Second,
 the
 face
 stimuli
 were
 
converted
 to
 red-­‐scale
 to
 control
 for
 color
 differences
 (see
 Figure
 24).
 

 
Results
 

  The
 results
 are
 shown
 in
 Figure
 26.
 Newborn
 chicks
 were
 able
 to
 recognize
 their
 
imprinted
 face
 across
 the
 test
 trials,
 despite
 the
 removal
 of
 any
 hue
 differences
 (M
 =
 56%,
 
SD
 =
 6%;
 one-­‐sample
 t-­‐test,
 t(11)
 =
 3.83,
 p
 =
 .003,
 d
 =
 1.11).
 Mean
 performance
 remained
 
above
 chance
 levels
 even
 after
 removing
 the
 test
 trials
 in
 which
 the
 imprinted
 face
 was
 
shown
 from
 the
 familiar
 (imprinted)
 viewpoint
 range
 (M
 =
 57%,
 SD
 =
 6%;
 one-­‐sample
 t-­‐
test,
 t(11)
 =
 3.95,
 p
 =
 .002,
 d
 =
 1.14).
 

  As
 in
 Experiment
 1,
 we
 tested
 whether
 chicks
 showed
 impaired
 performance
 for
 
larger
  viewpoint
  changes.
  A
  repeated-­‐measures
  ANOVA
  with
  the
  within-­‐subjects
  main
 
effect
 of
 viewpoint
 range
 did
 not
 reveal
 a
 main
 effect
 of
 viewpoint
 angle
 (F(2,
 22)
 =
 .94,
 p
 =
 
.41).
 Performance
 was
 above
 chance
 on
 all
 viewpoint
 range
 groups
 (one-­‐sample
 t-­‐tests,
 0°:
 
t(11)
 =
 3.07,
 p
 =
 .01,
 d
 =
 .89;
 ±25°:
 t(11)
 =
 3.72,
 p
 =
 .003,
 d
 =
 1.07;
 ±50°:
 t(11)
 =
 3.57,
 p
 =
 
.004,
 d
 =
 1.03).
 

  We
 also
 tested
 whether
 performance
 varied
 as
 a
 function
 of
 the
 day
 of
 testing.
 A
 
repeated-­‐measures
 ANOVA
 with
 the
 within-­‐subjects
 main
 effect
 of
 test
 day
 revealed
 a
 non-­‐
significant
 (but
 trending)
 main
 effect
 of
 test
 day
 (F(6,
 66)
 =
 2.12,
  p
 =
 .06,
 η
2

 =
 .16).
 
Performance
 was
 above
 chance
 levels
 on
 all
 test
 days
 (one-­‐sample
 t-­‐tests,
 all
 Ps
 <
 .05);
 

 

  112
 
however,
 only
 performance
 on
 day
 1
 and
 day
 3
 were
 above
 chance
 levels
 after
 Holm-­‐
Bonferroni
 correction.
 
 

  Finally,
 we
 tested
 whether
 performance
 was
 hindered
 by
 the
 removal
 of
 color
 cues
 
of
 facial
 identity.
 Independent
 samples
 t-­‐tests
 showed
 that
 performance
 was
 significantly
 
higher
 in
 Experiment
 1
 (i.e.,
 with
 color
 cues)
 than
 in
 Experiment
 2
 (i.e.,
 without
 color
 cues),
 
(t(20)
 =
 4.60,
 p
 =
 .0002).
 Thus,
 while
 color
 cues
 are
 not
 necessary
 for
 chicks
 to
 perform
 
invariant
 face
 recognition,
 color
 cues
 can
 improve
 performance
 significantly.
 

 
Discussion
 

  Performance
 in
 Experiment
 2
 was
 significantly
 lower
 than
 Experiment
 1;
 however,
 
performance
 in
 both
 experiments
 was
 above
 chance
 levels.
 The
 decrease
 in
 performance
 
from
 Experiment
 1
 to
 Experiment
 2
 is
 unsurprising
 given
 that
 color
 is
 an
 important
 cue
 for
 
face
 recognition
 even
 in
 mature
 visual
 systems
 (Farah
 et
 al.,
 1998;
 Hill
 et
 al.,
 1995;
 Said
 &
 
Todorov,
 2011).
 Taken
 together,
 Experiments
 1
 and
 2
 provide
 evidence
 that
 newborn
 
chicks
 are
 able
 to
 build
 a
 view-­‐invariant
 representation
 of
 the
 first
 face
 seen
 in
 life.
 In
 
Experiments
 3
 &
 4,
 we
 tested
 whether
 the
 development
 of
 invariant
 face
 representations
 is
 
hard-­‐wired
 or
 dependent
 on
 the
 chicks’
 visual
 experiences
 with
 faces.
 
 
 
 

 

   
 

 

  113
 
Experiment
 3
 
Methods
 
Subjects
 
 

  Thirty-­‐five
 Rhode
 Island
 Red
 chicks
 of
 unknown
 sex
 were
 tested
 in
 Experiment
 3
 
(11
 to
 12
 subjects
 per
 speed
 condition).
 No
 subjects
 were
 excluded
 from
 the
 analyses.
 The
 
incubation
 procedure
 and
 the
 test
 chambers
 were
 identical
 to
 Experiments
 1
 and
 2.
 
 
Figure
 27.
 A
 schematic
 of
 the
 presentation
 of
 the
 virtual
 faces
 during
 the
 input
 phase
 
(top)
 and
 test
 phase
 (bottom)
 for
 Experiment
 3.
 During
 the
 input
 phase
 the
 chicks
 were
 
raised
 with
 a
 single
 face
 rotating
 120
 degrees
 back
 and
 forth
 about
 a
 frontoparallel
 axis
 
through
 the
 face’s
 centroid.
 The
 test
 phase
 consisted
 of
 alternating
 test
 trials
 and
 rest
 
periods.
 During
 each
 Viewpoint
 test
 trial,
 the
 imprinted
 face
 was
 shown
 from
 the
 
familiar
 viewpoint
 range
 on
 one
 display
 wall
 and
 from
 an
 unfamiliar
 viewpoint
 range
 on
 
the
 opposite
 display
 wall.
 During
 each
 Identity
 test
 trial,
 the
 imprinted
 face
 was
 shown
 
from
 an
 unfamiliar
 viewpoint
 range
 on
 one
 display
 wall
 and
 the
 opposite
 display
 
showed
 an
 unfamiliar
 face
 from
 the
 same
 viewpoint
 range
 as
 the
 imprinted
 face
 during
 
the
 rest
 periods.
 
 
 

 

 

  114
 
Input
 Phase
 
In
  the
  input
  phase
  (the
  first
  week
  of
  life),
  subjects
  were
  raised
  in
  a
  visual
 
environment
 that
 contained
 a
 single
 virtual
 face.
 The
 virtual
 face
 moved
 continuously,
 
rotating
 through
 a
 120°
 viewing
 range
 about
 a
 vertical
 axis
 passing
 through
 its
 centroid.
 
Each
 chick
 was
 randomly
 assigned
 to
 either
 the
 Slow,
 Medium
 or
 Fast
 Condition.
 In
 the
 
Slow
  Condition,
  the
  virtual
  face
  rotated
  back
  and
  forth
  120°
  in
  20s.
  In
  the
  Medium
 
Condition,
 the
 virtual
 face
 rotated
 back
 and
 forth
 120°
 in
 5s.
 In
 the
 Fast
 Condition,
 the
 
virtual
 face
 rotated
 back
 and
 forth
 120°
 in
 1s.
 
 
The
 same
 two
 imprinted
 faces
 were
 used
 as
 in
 Experiment
 1,
 with
 half
 of
 the
 chicks
 
imprinted
 to
 Face
 A
 and
 the
 other
 half
 imprinted
 to
 Face
 B.
 All
 faces
 were
 shown
 on
 a
 
uniform
 white
 background.
 During
 the
 input
 phase,
 the
 imprinted
 face
 switched
 display
 
walls
 every
 2
 hours,
 following
 a
 one-­‐minute
 period
 of
 darkness
 (Figure
 27).
 The
 face
 
appeared
 for
 an
 equal
 amount
 of
 time
 on
 each
 display
 wall.
 

 
Test
 Phase
 

  During
 the
 test
 phase
 (the
 second
 week
 of
 life),
 we
 probed
 the
 informational
 content
 
of
 the
 face
 representation
 built
 by
 each
 subject,
 by
 using
 an
 automated
 two-­‐alternative
 
forced
 choice
 testing
 procedure.
 Subjects
 were
 expected
 to
 spend
 a
 greater
 proportion
 of
 
time
 in
 proximity
 to
 the
 object
 that
 they
 perceived
 to
 be
 their
 imprinted
 object.
 The
 test
 
trials
 lasted
 20
 minutes
 and
 were
 separated
 from
 one
 another
 by
 40-­‐minute
 rest
 periods
 
(see
 Figure
 27).
 During
 the
 rest
 periods,
 the
 imprinted
 face
 appeared
 on
 one
 display
 wall
 
and
 a
 white
 screen
 appeared
 on
 the
 other
 display
 wall.
 Each
 subject
 received
 up
 to
 24
 test
 

 

  115
 
trials
 per
 day.
 The
 conditions
 were
 presented
 in
 randomized
 blocks
 throughout
 the
 test
 
phase.
 

  Subjects
  were
  presented
  with
  two
  types
  of
  test
  trials
  (see
  Figure
  28
  for
 
illustrations):
 
1. Identity
 Trials:
 The
 imprinted
 face
 was
 paired
 with
 an
 unfamiliar
 face
 that
 had
 a
 
similar
 size
 and
 motion
 speed
 as
 the
 imprinted
 face.
 In
 each
 Identity
 Trial,
 the
 
imprinted
 face
 rotated
 120°
 degrees
 through
 a
 novel
 axis
 (an
 axis
 tilted
 45°
 
Figure
 28.
 A
 visualization
 of
 the
 imprinted
 animations
 and
 the
 test
 trial
 stimuli.
 The
 top
 
images
 show
 frames
 from
 the
 imprinting
 animation
 for
 the
 female
 face
 (A)
 and
 male
 face
 
(B).
 During
 the
 test
 phase,
 subjects
 were
 given
 Viewpoint
 Trials
 and
 Identity
 Trials.
 In
 
the
 Viewpoint
 Trials
 (blue
 boxes),
 one
 display
 wall
 showed
 the
 imprinted
 face
 from
 the
 
familiar
 viewpoint
 and
 the
 other
 display
 wall
 showed
 the
 imprinted
 face
 from
 an
 
unfamiliar
 viewpoint.
 In
 the
 Identity
 Trials
 (green
 boxes),
 one
 display
 wall
 showed
 the
 
imprinted
 face
 from
 an
 unfamiliar
 viewpoint
 and
 the
 other
 display
 wall
 showed
 an
 
unfamiliar
 face
 from
 the
 familiar
 viewpoint.
 A
 fully
 invariant
 face
 representation
 should
 
be
 sensitive
 to
 identity
 cues
 but
 not
 viewpoint-­‐specific
 cues.
 

 

  116
 
diagonally
 or
 a
 perpendicular
 axis),
 and
 the
 unfamiliar
 face
 rotated
 identically
 to
 
the
 imprinting
 animation.
 In
 each
 Identity
 Trial,
 the
 unfamiliar
 face
 was
 either
 
the
 face
 that
 the
 other
 half
 of
 the
 chicks
 were
 imprinted
 to
 (e.g.,
 Face
 B
 if
 a
 
subject
 was
 imprinted
 to
 Face
 A)
 or
 a
 novel
 elderly
 face.
 
 
2. Viewpoint
 Trials:
 One
 display
 wall
 showed
 the
 imprinted
 face
 rotating
 around
 
the
 familiar
 axis,
 while
 the
 other
 display
 wall
 showed
 the
 imprinted
 face
 rotating
 
around
 a
 novel
 axis.
 The
 two
 novel
 axes
 were
 an
 axis
 tilted
 45°
 diagonally
 and
 a
 
perpendicular
 axis.
 

 
Results
 

  Our
 main
 research
 hypothesis
 was
 that
 the
 speed
 of
 face
 motion
 would
 affect
 the
 
informational
 content
 (identity
 versus
 viewpoint-­‐specific
 information)
 of
 the
 chicks’
 face
 
representations.
 To
 test
 this
 hypothesis,
 we
 performed
 a
 repeated-­‐measures
 ANOVA
 with
 
the
  within-­‐subjects
  main
  effect
  of
  Trial
  Type
  (Identity
  vs.
  Viewpoint
  trials)
  and
  the
 
between-­‐subjects
 main
 effect
 of
 Face
 Speed
 (Slow,
 Medium,
 or
 Fast).
 The
 ANOVA
 revealed
 a
 
significant
 main
 effect
 of
 Trial
 Type
 (F(1,
 32)
 =
 24.85,
 p
 =
 .00002,
 η
2

 =
 .44)
 and
 a
 significant
 
interaction
 between
 Trial
 Type
 and
 Face
 Speed
 (F(2,
 32)
 =
 22.72,
 p
 =
 .00000007,
 η
2

 =
 .59).
 
The
 main
 effect
 of
 Face
 Speed
 was
 not
 significant.
 The
 significant
 interaction
 was
 driven
 by
 
higher
  performance
  in
  Identity
  Trials
  for
  slower
  speeds
  of
  face
  motion
  and
  higher
 
performance
 in
 Viewpoint
 Trials
 for
 faster
 speeds
 of
 face
 motion
 (see
 Figure
 29).
 
Additionally,
 we
 performed
 planned
 follow-­‐up
 analyses
 to
 determine
 the
 conditions
 
in
  which
  the
  chicks
  performed
  above
  chance
  levels.
  We
  found
  that
  chicks
  performed
 
significantly
 above
 chance
 levels
 on
 Identity
 Trials
 in
 the
 Slow
 Condition
 (t(10)
 =
 13.56,
 p
 =
 

 

  117
 
.0000001,
 d
 =
 4.09),
 the
 Medium
 Condition
 (t(11)
 =
 7.15,
 p
 =
 .00002,
 d
 =
 2.06),
 and
 the
 Fast
 
Condition
 (t(11)
 =
 3.48,
 p
 =
 .005,
 d
 =
 1.01).
 Conversely,
 we
 found
 that
 the
 chicks
 performed
 
significantly
 above
 chance
 levels
 on
 Viewpoint
 Trials
 in
 the
 Fast
 Condition
 (t(11)
 =
 11.19,
 p
 
=
 .0000002,
 d
 =
 3.23)
 and
 the
 Medium
 Condition
 (t(11)
 =
 3.58,
 p
 =
 .004,
 d
 =
 1.03),
 but
 not
 in
 
the
 Slow
 Condition
 (t(10)
 =
 1.66,
 p
 =
 .13,
 d
 =
 -­‐.50).
 
Figure
 29.
 Results
 of
 Experiment
 3
 (A)
 and
 Experiment
 4
 (B).
 In
 Experiment
 3,
 chicks
 
were
 imprinted
 to
 a
 face
 that
 rotated
 at
 a
 slow,
 medium,
 or
 fast
 speed,
 and
 the
 speed
 of
 
face
 motion
 during
 the
 test
 trials
 matched
 the
 speed
 of
 face
 motion
 during
 imprinting.
 
Performance
 in
 the
 test
 trials
 was
 directly
 related
 to
 the
 speed
 of
 the
 imprinted
 face.
 The
 
slower
 the
 imprinted
 face
 moved,
 the
 better
 the
 performance
 in
 the
 Identity
 Trials
 and
 
the
 worse
 the
 performance
 in
 the
 Viewpoint
 Trials.
 In
 Experiment
 4,
 all
 chicks
 were
 
imprinted
 to
 a
 slowly
 moving
 face,
 but
 the
 speed
 of
 the
 face
 varied
 across
 test
 trials.
 
When
 the
 face
 moved
 slowly
 during
 the
 input
 phase,
 chicks
 performed
 similarly
 to
 the
 
chicks
 in
 the
 slow
 condition
 of
 Experiment
 3,
 regardless
 of
 the
 speed
 of
 the
 object
 during
 
the
 test
 trial.
 

 

  118
 

  To
 test
 whether
 performance
 varied
 as
 a
 function
 of
 the
 test
 day,
 we
 computed
 a
 
repeated-­‐measures
 ANOVA
 with
 the
 within-­‐in
 subjects
 main
 effects
 of
 Trial
 Type
 and
 Test
 
Day
 and
 the
 between-­‐subjects
 main
 effect
 of
 Face
 Speed.
 As
 above,
 the
 ANOVA
 revealed
 a
 
significant
 main
 effect
 of
 Trial
 Type
 (F(1,
 31)
 =
 22.28,
 p
 =
 .00005,
 η
2

 =
 .42)
 and
 a
 significant
 
interaction
 between
 Trial
 Type
 and
 Face
 Speed
 (F(2,
 31)
 =
 19.23,
 p
 =
 .000004,
 η
2

 =
 .55).
 The
 
ANOVA
 also
 showed
 a
 significant
 main
 effect
 of
 Test
 Day
 (F(6,
 186)
 =
 2.22,
 p
 =
 .04,
 η
2

 =
 .07)
 
and
 a
 significant
 interaction
 of
 Test
 Day
 and
 Face
 Speed
 (F(12,
 186)
 =
 2.39,
 p
 =
 .007,
 η
2

 =
 
.13).
 The
 main
 effect
 of
 Face
 Speed,
 the
 interaction
 of
 Trial
 Type
 and
 Test
 Day,
 and
 the
 
interaction
  of
  Trial
  Type,
  Test
  Day,
  and
  Face
  Speed
  were
  not
  significant
  (Ps
  >
  .05).
 
However,
 overall
 performance
 was
 above
 chance
 on
 the
 first
 day
 of
 testing
 for
 all
 imprinted
 
face
 speeds
 (two-­‐tailed
 one
 sample
 t-­‐tests,
 all
 Ps
 <
 .01).
 

 
Discussion
 

  Experiment
 3
 tested
 whether
 the
 speed
 of
 face
 movement
 affected
 newborn
 chicks’
 
ability
 to
 perform
 view-­‐invariant
 face
 recognition.
 Two
 main
 findings
 emerged.
 First,
 we
 
found
  a
  trade-­‐off
  between
  the
  amount
  of
  identity
  and
  view-­‐specific
  face
  information
 
encoded
 by
 the
 chicks.
 Second,
 we
 found
 a
 relationship
 between
 the
 speed
 of
 face
 motion
 
and
 the
 information
 encoded
 in
 the
 chicks’
 representations.
 When
 the
 faces
 moved
 slowly,
 
newborn
 chicks
 built
 view-­‐invariant
 face
 representations
 that
 were
 highly
 sensitive
 to
 
identity
 information
 and
 tolerant
 to
 changes
 in
 viewpoint.
 Conversely,
 when
 the
 faces
 
moved
  quickly,
  newborn
  chicks
  built
  face
  representations
  that
  were
  less
  sensitive
  to
 
identity
 information
 and
 more
 selective
 for
 familiar
 viewpoints.
 Thus,
 there
 is
 a
 slowness
 
constraint
 on
 the
 development
 of
 invariant
 face
 recognition.
 

 

  119
 

  Because
 the
 faces
 in
 Experiment
 3
 moved
 at
 the
 same
 speed
 during
 the
 input
 and
 
test
 phases,
 it
 is
 possible
 that
 the
 chicks’
 impairment
 at
 recognizing
 quickly
 moving
 faces
 is
 
due
 to
 is
 due
 to
 limitations
 in
 their
 ability
 to
 attend
 to
 or
 perceive
 quickly
 moving
 faces.
 We
 
have
 previously
 found
 that
 this
 explanation
 cannot
 account
 for
 the
 slowness
 constraint
 in
 
the
 domain
 of
 object
 recognition
 (Wood
 &
 Wood,
 2016a).
 In
 particular,
 newborn
 chicks
 can
 
successfully
 recognize
 quickly
 moving
 objects
 provided
 that
 the
 object
 moved
 slowly
 when
 
being
 encoded
 into
 memory.
 In
 Experiment
 4,
 we
 tested
 whether
 a
 similar
 pattern
 occurs
 
in
 the
 development
 of
 face
 recognition.
 

 
Experiment
 4
 
Methods
 
The
  methods
  for
  Experiment
  4
  were
  identical
  to
  Experiment
  3
  with
  three
 
exceptions.
 First,
 a
 new
 group
 of
 12
 chicks
 were
 tested.
 Second,
 all
 of
 the
 chicks
 were
 
imprinted
 to
 the
 slowly
 moving
 face
 during
 the
 input
 phase
 (i.e.,
 the
 input
 phase
 for
 all
 
chicks
 in
 Experiment
 4
 was
 identical
 to
 the
 Slow
 Condition
 input
 phase
 in
 Experiment
 3).
 
Third,
 during
 the
 test
 phase,
 the
 chicks
 were
 tested
 with
 faces
 that
 moved
 at
 the
 fast,
 
medium,
 and
 slow
 speeds
 from
 Experiment
 3.
 Thus,
 in
 Experiment
 4,
 each
 chick
 received
 6
 
types
 of
 trials:
 Slow
 Identity,
 Slow
 Viewpoint,
 Medium
 Identity,
 Medium
 Viewpoint,
 Fast
 
Identity,
 and
 Fast
 Viewpoint
 (see
 Figure
 29).
 If
 fast
 motion
 impairs
 newborn
 chicks’
 ability
 
to
 perceive
 faces,
 then
 performance
 in
 the
 Identity
 Trials
 should
 be
 lower
 during
 the
 Fast
 
test
  trials
  than
  the
  Slow
  test
  trials.
  Conversely,
  if
  fast
  motion
  primarily
  affects
  face
 
encoding,
 then
 performance
 should
 be
 equally
 high
 in
 the
 Identity
 Trials
 across
 all
 of
 the
 
test
 speeds
 (because
 the
 face
 moved
 slowly
 when
 being
 encoded
 into
 memory).
 

 

  120
 

 
Results
 

  Results
  are
  shown
  in
  Figure
  29.
  The
  main
  analysis
  of
  interest
  is
  whether
 
performance
 in
 the
 Identity
 Trials
 varied
 as
 a
 function
 of
 the
 face
 speed
 during
 testing.
 To
 
assess
 this
 question,
 we
 performed
 a
 repeated
 measures
 ANOVA
 with
 the
 within-­‐subjects
 
factors
 of
 Face
 Speed
 (Slow,
 Medium,
 Fast)
 and
 Trial
 Type
 (Identity
 and
 Viewpoint).
 The
 
main
 effect
 of
 Trial
 Type
 was
 significant
 (F(1,
 11)
 =
 90.85,
 p
 =
 .000001,
 η
2

 =
 .89)
 as
 was
 the
 
main
 effect
 of
 Face
 Speed
 (F(2,
 22)
 =
 4.07,
 p
 =
 .03,
 η
2

 =
 .27).
 The
 interaction
 of
 Trial
 Type
 
and
 Face
 Speed
 was
 not
 significant
 (F(2,
 22)
 =
 2.60,
 p
 =
 .10,
 η
2

 =
 .19).
 
 
For
  the
  main
  effect
  of
  Trial
  Type,
  performance
  was
  significantly
  higher
  on
  the
 
Identity
 Trials
 than
 the
 Viewpoint
 Trials
 (paired
 t-­‐test,
 t(11)
 =
 9.27,
 p
 =
 .000002,
 d
 =
 2.68).
 
Performance
 was
 significantly
 higher
 on
 the
 Identity
 Trials
 than
 Viewpoint
 Trials
 at
 every
 
testing
 speed
 (paired
 t-­‐tests,
 all
 Ps
 Holm-­‐Bonferroni
 corrected;
 Slow:
 t(11)
 =
 7.67,
 p
 =
 
.00002,
 d
 =
 2.21;
 Medium:
 t(11)
 =
 8.02,
 p
 =
 .00002,
 d
 =
 2.31;
 Fast:
 t(11)
 =
 4.14,
 p
 =
 .002,
 d
 =
 
1.20).
 These
 results
 are
 consistent
 with
 performance
 in
 the
 Slow
 Condition
 of
 Experiment
 
3.
 
For
 the
 main
 effect
 of
 Face
 Speed,
 was
 performance
 significantly
 hindered
 by
 fast
 
moving
 faces?
 Paired
 t-­‐tests
 revealed
 that
 overall
 performance
 was
 not
 lower
 for
 faster
 
face
 speeds.
 In
 fact,
 overall
 performance
 was
 significantly
 higher
 for
 the
 Fast
 trials
 than
 
Slow
 trials
 (t(11)
 =
 2.91,
 p
 =
 .01,
 d
 =
 .84;
 Fast
 vs.
 Medium
 and
 Slow
 vs.
 Medium
 were
 not
 
significant,
 p
 >
 .05).
 
To
 directly
 test
 whether
 performance
 in
 the
 Identity
 Trials
 varied
 according
 to
 the
 
Face
 Speed
 during
 testing,
 we
 conducted
 a
 repeated
 measures
 ANOVA
 on
 the
 Identity
 

 

  121
 
Trials
  alone
  (no
  Viewpoint
  Trials)
  with
  the
  within-­‐subjects
  factor
  of
  Face
  Speed.
  The
 
ANOVA
 found
 no
 significant
 differences
 in
 performance
 across
 the
 three
 face
 speeds
 in
 the
 
Identity
 Trials
 (F(2,
 22)
 =
 2.14,
 p
 =
 .14,
 η
2

 =
 .16).
 

 
Discussion
 
When
 chicks
 were
 raised
 with
 a
 slowly
 moving
 face,
 they
 built
 face
 representations
 
that
 were
 highly
 sensitive
 to
 identity
 information
 and
 insensitive
 to
 viewpoint-­‐specific
 
information,
 regardless
 of
 the
 speed
 of
 face
 motion
 during
 testing.
 Therefore,
 the
 results
 of
 
Experiment
 3
 cannot
 be
 explained
 by
 a
 limitation
 in
 chicks’
 ability
 to
 perceive
 or
 attend
 to
 
quickly
 moving
 faces.
 Overall,
 the
 results
 of
 Experiments
 3
 and
 4
 demonstrate
 that
 it
 is
 
possible
 to
 manipulate
 a
 newborn’s
 first
 face
 representation
 by
 changing
 the
 rotation
 
speed
 of
 the
 face
 during
 encoding.
 

 
General
 Discussion
 

  This
 study
 examined
 whether
 a
 newborn
 animal—the
 domestic
 chick—is
 capable
 of
 
building
 an
 invariant
 representation
 of
 the
 first
 face
 seen
 in
 life.
 We
 found
 that
 newborn
 
chicks
 can
 build
 view-­‐invariant
 face
 representations
 at
 the
 onset
 of
 vision,
 successfully
 
recognizing
 familiar
 faces
 across
 a
 wide
 range
 of
 novel
 viewpoints.
 Additionally,
 we
 found
 
that
 the
 development
 of
 this
 ability
 is
 subject
 to
 a
 slowness
 constraint.
 When
 newborn
 
chicks
 were
 raised
 with
 a
 slowly
 moving
 face,
 they
 built
 invariant
 face
 representations
 that
 
were
 sensitive
 to
 identity
 information
 and
 tolerant
 to
 viewpoint
 changes.
 Conversely,
 when
 
newborn
  chicks
  were
  raised
  with
  a
  quickly
  moving
  face,
  they
  built
  inaccurate
  face
 
representations
 that
 were
 sensitive
 to
 viewpoint
 information
 but
 not
 identity
 information.
 

 

  122
 
Thus,
 it
 is
 possible
 to
 systematically
 manipulate
 the
 information
 content
 of
 a
 newborn
 
chick’s
  first
  face
  representation
  simply
  by
  changing
  the
  speed
  of
  face
  motion
  during
 
encoding.
 

  The
 present
 study
 builds
 on
 prior
 work
 showing
 that
 newborn
 chicks
 are
 sensitive
 
to
 face-­‐like
 configurations
 of
 features
 (Rosa-­‐Salva
 et
 al.,
 2010)
 and
 can
 recognize
 human
 
faces
 at
 the
 onset
 of
 vision
 (Wood
 &
 Wood,
 2015b).
 Our
 work
 extends
 these
 findings
 by
 
demonstrating
  that
  newborn
  chicks
  are
  able
  to
  recognize
  their
  imprinted
  face
  over
 
significant
 variation
 in
 the
 retinal
 image
 produced
 by
 the
 face.
 These
 results
 also
 extend
 
prior
 work
 by
 showing
 that
 the
 development
 of
 face
 recognition,
 like
 the
 development
 of
 
object
 recognition,
 is
 subject
 to
 a
 slowness
 constraint
 (Wood
 &
 Wood,
 2016a).
 In
 order
 to
 
build
 invariant
 representations,
 newborn
 brains
 require
 visual
 experience
 with
 slowly
 
moving
 objects
 and
 faces.
 This
 finding
 indicates
 that
 object
 and
 face
 recognition
 emerge
 
from
 some
 similar
 computational
 operations.
 
 
 

  In
 particular,
 these
 findings
 are
 compatible
 with
 unsupervised
 temporal
 learning
 
(UTL)
 models
 of
 vision
 (Li
 &
 DiCarlo,
 2008).
 According
 to
 UTL
 models,
 the
 brain
 constructs
 
invariant
 object
 representations
 by
 encoding
 the
 spatiotemporal
 statistics
 produced
 by
 
consecutive
 retinal
 images
 of
 an
 object
 (Masquelier
 &
 Thorpe,
 2007;
 Wallis
 &
 Rolls,
 1997;
 
Wiskott
 &
 Sejnowski,
 2002;
 Wyss,
 Konig,
 &
 Verschure,
 2006).
 Since
 an
 object’s
 identity
 is
 
temporally
 stable,
 different
 retinal
 images
 of
 the
 same
 object
 tend
 to
 be
 contiguous
 over
 
time.
  UTL
  models
  capitalize
  on
  this
  principle
  by
  associating
  inputs
  that
  occur
  closely
 
together
 in
 time.
 Thus,
 slower
 movement
 may
 produce
 more
 precise
 features
 (as
 fewer
 
photoreceptor
 cells
 are
 activated
 in
 a
 single
 time
 window),
 while
 faster
 movement
 may
 

 

  123
 
produce
 features
 that
 are
 more
 blurred
 (as
 more
 photoreceptor
 cells
 are
 activated
 in
 a
 
single
 time
 window).
 
 
To
  what
  extent
  can
  our
  results
  illuminate
  the
  development
  of
  invariant
  face
 
recognition
 in
 humans?
 Our
 study
 focused
 on
 chicks
 as
 an
 animal
 model
 for
 invariant
 
recognition
  because
  chicks
  can
  be
  raised
  from
  birth
  in
  controlled-­‐rearing
  chambers
 
without
  parental
  care,
  allowing
  full
  control
  of
  their
  visual
  development.
  Importantly,
 
mammalian
  and
  avian
  brains
  share
  basic
  neuronal
  types
  and
  anatomical
  connectivity
 
patterns
 (Dugas-­‐Ford
 et
 al.,
 2012;
 Shanahan
 et
 al.,
 2013;
 Wang
 et
 al.,
 2010).
 Chickens
 also
 
share
  a
  number
  of
  cognitive
  abilities
  with
  humans
  (Vallortigara,
  2012)
  including
 
recognizing
 partly
 occluded
 objects
 (Regolin
 &
 Vallortigara,
 1995),
 tracking
 hidden
 objects
 
(Prasad,
 Wood,
 &
 Wood,
 in
 prep;
 Vallortigara,
 Regolin,
 Rigoni,
 &
 Zanforlin,
 1998),
 and
 
reasoning
 about
 physical
 interactions
 between
 objects
 (Chiandetti
 &
 Vallortigara,
 2011).
 
These
  similarities
  suggest
  that
  our
  results
  may
  have
  broader
  implications
  for
  the
 
development
 of
 face
 recognition
 abilities
 in
 humans
 as
 well.
 

  More
 generally,
 this
 study
 provides
 the
 first
 systematic
 examination
 of
 newborns’
 
ability
 to
 build
 invariant
 face
 representations.
 Our
 findings
 demonstrate
 that
 newborn
 
visual
 systems
 can
 create
 face
 representations
 that
 are
 highly
 generative,
 extending
 beyond
 
raw
  retinal
  inputs.
  However,
  newborns’
  development
  of
  invariant
  face
  recognition
  is
 
subject
 to
 a
 slowness
 constraint.
 Experience
 viewing
 slowly
 moving
 faces
 is
 critical
 to
 the
 
development
 of
 invariant
 face
 recognition.
 Thus,
 newborns
 learn
 invariant
 face
 recognition
 
through
 experience
 with
 a
 slowly
 changing
 visual
 world.
 
 
 

 

   
 

 

  124
 
Chapter
 7:
 Conclusion
 
“No
 phenomenon
 in
 nature
 is
 harder
 to
 explain
 than
 the
 transactions
 that
 are
 carried
 on
 
between
 the
 mind
 and
 the
 external
 world;
 there
 is
 no
 phenomenon
 that
 philosophical
 
minds
 have
 been
 more
 eager
 to
 dig
 into
 and
 to
 resolve.”
 
Thomas
 Reid,
 An
 Inquiry
 into
 the
 Human
 Mind,
 1764
 
“There
 is
 no
 doubt
 whatever
 that
 all
 our
 cognition
 begins
 with
 experience;
 for
 how
 else
 
should
 the
 cognitive
 faculty
 be
 awakened
 into
 exercise
 if
 not
 through
 objects
 that
 stimulate
 
our
 senses
 and
 in
 part
 themselves
 produce
 representations…
 But
 although
 all
 our
 cognition
 
commences
 with
 experience
 yet
 it
 does
 not
 on
 that
 account
 all
 arise
 from
 experience.
 For
 it
 
could
 well
 be
 that
 even
 our
 experiential
 cognition
 is
 a
 composite
 of
 that
 which
 we
 receive
 
through
 impressions
 and
 that
 which
 our
 own
 cognitive
 faculty…
 provides
 out
 of
 itself…
 It
 is
 
therefore
 at
 least
 a
 question
 requiring
 closer
 investigation,
 and
 one
 not
 to
 be
 dismissed
 at
 
first
 glance,
 whether
 there
 is
 any
 cognition
 independent
 of
 all
 experience
 and
 even
 of
 all
 
impressions
 of
 the
 senses.”
 
Immanuel
 Kant,
 A
 Critique
 of
 Pure
 Reason,
 1787
 

 

  For
 centuries,
 philosophers
 have
 debated
 the
 origins
 of
 perception
 and
 cognition.
 
The
  adult
  mind
  instinctively
  translates
  a
  barrage
  of
  sensory
  input
  into
  meaningful
 
information
 about
 the
 external
 world.
 To
 rapidly
 and
 automatically
 interpret
 visual
 input,
 
however,
 the
 brain
 must
 solve
 a
 major
 computational
 problem.
 While
 the
 appearance
 of
 
objects
 on
 the
 retina
 may
 vary
 radically
 due
 to
 changes
 in
 viewpoint,
 background,
 position,
 
lighting,
 etc.,
 we
 nonetheless
 perceive
 enduring
 and
 unified
 objects
 that
 persist
 through
 
time.
 Until
 recently,
 it
 has
 been
 impossible
 to
 investigate
 how
 this
 ability
 emerges,
 due
 to
 
the
 difficulty
 of
 testing
 newborn
 subjects
 experimentally.
 The
 goal
 of
 this
 dissertation
 was
 
to
 use
 a
 recently
 developed
 automated
 controlled-­‐rearing
 method
 to
 investigate
 which
 
object
 recognition
 abilities
 are
 present
 at
 birth
 and
 how
 those
 abilities
 are
 shaped
 by
 visual
 
experiences.
 

 

   
 

 

  125
 
Main
 findings
 
Newborns
 are
 able
 to
 build
 an
 invariant
 representation
 of
 the
 first
 object
 seen
 in
 life
 

  The
 results
 of
 this
 dissertation
 provide
 evidence
 that
 newborns
 are
 capable
 of
 
forming
 object
 representations
 that
 generalize
 to
 novel
 viewing
 situations.
 The
 results
 
from
 Chapter
 2
 demonstrate
 that
 newborn
 chicks
 can
 build
 a
 background-­‐invariant
 object
 
representation
 of
 the
 first
 object
 seen
 in
 life.
 While
 other
 researchers
 have
 examined
 visual
 
parsing
 in
 infants
 and
 patients
 recovering
 from
 blindness,
 this
 is
 the
 first
 experiment
 to
 
test
 background-­‐invariant
 recognition
 at
 the
 onset
 of
 vision.
 We
 imprinted
 newborn
 chicks
 
to
 a
 single
 object
 rotating
 on
 a
 single
 background.
 We
 then
 tested
 whether
 the
 chicks
 could
 
recognize
 the
 object
 when
 it
 was
 presented
 from
 novel
 viewpoints
 and
 novel
 backgrounds.
 
The
 chicks
 successfully
 recognized
 their
 imprinted
 object
 across
 novel
 viewpoints
 and
 
backgrounds,
 with
 no
 cost
 in
 performance
 compared
 to
 when
 the
 object
 was
 presented
 
from
 the
 familiar
 viewpoint
 on
 the
 familiar
 background.
 Additionally,
 the
 chicks
 showed
 no
 
evidence
 of
 imprinting
 to
 the
 background.
 These
 results
 show
 that
 newborn
 chicks
 are
 
capable
  of
  segmenting
  objects
  from
  backgrounds
  and
  building
  abstract
  object
 
representations
 that
 generalize
 across
 novel
 viewing
 situations.
 

  Furthermore,
 the
 results
 from
 Chapter
 4
 demonstrate
 that
 newborn
 chicks
 can
 build
 
view-­‐invariant
 representations
 from
 extremely
 sparse
 visual
 input.
 In
 Chapter
 4,
 chicks
 
were
 imprinted
 to
 three
 frames
 of
 a
 single
 object
 during
 the
 input
 phase.
 During
 the
 test
 
phase,
 the
 chicks
 were
 tested
 on
 their
 ability
 to
 recognize
 the
 object
 across
 26
 novel
 
viewpoint
 ranges.
 Thus,
 to
 recognize
 their
 imprinted
 object,
 the
 chicks
 needed
 to
 build
 a
 
view-­‐invariant
  representation
  of
  the
  object
  from
  only
  three
  object
  images.
  This
  is
 
extremely
  sparse
  input,
  even
  relative
  to
  the
  previous
  automated
  controlled-­‐rearing
 

 

  126
 
experiments
 discussed
 in
 the
 Introduction.
 For
 example,
 in
 Wood
 (2013)
 the
 imprinted
 
object
 rotated
 60°
 presenting
 72
 unique
 views
 of
 the
 object.
 Despite
 receiving
 only
 three
 
views
 of
 the
 object,
 the
 chicks
 still
 successfully
 recognized
 their
 imprinted
 object
 across
 
novel
 viewpoints.
 (Although
 notably,
 their
 representations
 were
 not
 fully
 invariant—the
 
chicks
 were
 unable
 to
 recognize
 the
 familiar
 object
 when
 the
 viewpoint
 angle
 produced
 too
 
much
 self-­‐occlusion.)
 These
 results
 indicate
 that
 newborn
 neural
 circuits
 are
 surprisingly
 
powerful,
 capable
 of
 building
 invariant
 object
 representations
 from
 impoverished
 input
 at
 
the
 onset
 of
 vision.
 
 

  Finally,
 the
 results
 from
 Chapters
 5
 &
 6
 demonstrate
 that
 newborn
 chicks
 can
 build
 
representations
  of
  subordinate-­‐level
  objects.
  In
  Chapter
  5,
  we
  tested
  whether
  this
 
automated
 controlled-­‐rearing
 method
 could
 be
 used
 to
 test
 face
 recognition
 in
 newborn
 
chicks.
 Face
 recognition
 is
 a
 prototypical
 example
 of
 subordinate-­‐level
 object
 recognition
 
because
 all
 faces
 share
 the
 same
 basic
 configuration.
 We
 found
 that
 newborn
 chicks
 can
 
distinguish
 a
 familiar
 face
 from
 a
 variety
 of
 unfamiliar
 faces.
 These
 results
 suggest
 that
 
chicks
 can
 perform
 fine-­‐grained
 differentiation,
 discriminating
 objects
 that
 share
 the
 same
 
general
 configuration
 of
 features.
 Chapter
 6
 extended
 the
 results
 from
 Chapter
 5
 by
 testing
 
whether
  newborn
  chicks
  can
  perform
  view-­‐invariant
  face
  recognition.
  We
  found
  that
 
newborn
 chicks
 can
 build
 a
 view-­‐invariant
 representation
 of
 the
 first
 face
 seen
 in
 life.
 
Impressively,
 the
 chicks
 were
 able
 to
 succeed
 in
 this
 task
 even
 when
 color
 information
 was
 
not
 available
 as
 a
 cue
 for
 recognition.
 Taken
 as
 a
 whole,
 Chapters
 2-­‐6
 demonstrate
 that
 
newborn
 chicks
 are
 capable
 of
 impressive
 object
 and
 face
 recognition
 abilities
 prior
 to
 
extensive
 visual
 experience
 with
 objects.
 

 

 

  127
 
Experiential
 constraints
 on
 the
 development
 of
 object
 recognition
 

  Although
 invariant
 object
 recognition
 can
 emerge
 rapidly
 (within
 the
 first
 days
 of
 
life),
  this
  dissertation
  also
  provides
  evidence
  that
  this
  ability
  does
  not
  develop
 
automatically.
 Instead,
 newborn
 chicks
 require
 a
 specific
 type
 of
 visual
 input
 to
 learn
 to
 
recognize
 objects
 across
 novel
 viewing
 situations.
 While
 Chapter
 2
 demonstrated
 that
 
newborn
 chicks
 can
 build
 a
 background-­‐invariant
 representation
 of
 the
 first
 object
 seen
 in
 
life,
 Chapter
 3
 showed
 that
 this
 ability
 fails
 to
 develop
 properly
 when
 newborn
 chicks
 are
 
deprived
 of
 visual
 experience
 with
 objects
 moving
 on
 patterned
 backgrounds.
 Specifically,
 
newborn
 chicks
 were
 raised
 with
 a
 single
 object
 rotating
 either
 on
 no
 background
 (a
 white
 
homogenous
 screen)
 or
 on
 multiple
 patterned
 backgrounds.
 When
 raised
 with
 an
 object
 
moving
 on
 no
 background,
 the
 chicks
 generally
 failed
 to
 recognize
 the
 object
 across
 novel
 
backgrounds
 for
 the
 first
 few
 days
 of
 testing.
 Conversely,
 when
 raised
 with
 an
 object
 
moving
 on
 patterned
 backgrounds,
 the
 chicks
 successfully
 recognized
 the
 object
 across
 
novel
  backgrounds
  at
  the
  onset
  of
  testing.
  Furthermore,
  in
  both
  rearing
  conditions,
 
recognition
  performance
  continued
  to
  increase
  across
  the
  test
  phase,
  suggesting
  that
 
background-­‐invariant
  object
  recognition
  continues
  to
  improve
  as
  newborns
  acquire
 
greater
 amounts
 of
 experience
 with
 objects
 moving
 on
 backgrounds.
 
 
These
 results
 point
 to
 a
 previously
 unknown
 constraint
 on
 the
 development
 of
 
object
  segmentation
  and
  recognition:
  newborns
  need
  experience
  with
  patterned
 
backgrounds
 to
 build
 background-­‐invariant
 object
 representations.
 Prior
 research
 with
 
infants
 and
 patients
 recovering
 from
 blindness
 had
 determined
 that
 object
 motion
 is
 a
 
critical
 cue
 for
 segmenting
 objects;
 however,
 it
 was
 unknown
 whether
 object
 motion
 alone
 
is
  sufficient
  for
  a
  developing
  visual
  system
  to
  learn
  how
  to
  segment
  objects
  from
 

 

  128
 
backgrounds.
 Our
 results
 demonstrate
 that
 object
 motion
 alone
 is
 not
 sufficient
 to
 learn
 
how
 to
 segment
 objects
 from
 the
 background.
 Experience
 with
 patterned
 backgrounds
 is
 
also
 critical
 for
 learning
 background-­‐invariant
 recognition.
 

  Previous
 studies
 of
 newborn
 chicks
 have
 demonstrated
 other
 constraints
 on
 the
 
development
 of
 object
 recognition.
 For
 instance,
 we
 have
 found
 that
 objects
 must
 move
 
smoothly
  (Wood
  &
  Wood,
  under
  review)
  and
  slowly
  (Wood
  &
  Wood,
  2016a)
  during
 
encoding
 for
 newborns
 to
 build
 view-­‐invariant
 representations
 of
 those
 objects.
 However,
 
all
 of
 these
 studies
 focused
 on
 basic-­‐level
 recognition.
 No
 studies
 thus
 far
 have
 investigated
 
whether
 the
 same
 developmental
 constraints
 also
 affect
 other
 levels
 of
 recognition.
 To
 
address
 this
 question,
 in
 Chapter
 6,
 we
 tested
 whether
 there
 is
 a
 slowness
 constraint
 on
 the
 
development
 of
 face
 recognition.
 We
 used
 faces
 because
 they
 are
 a
 prototypical
 example
 of
 
subordinate-­‐level
 recognition.
 Newborn
 chicks
 were
 raised
 for
 the
 first
 week
 of
 life
 with
 a
 
single
 face
 that
 rotated
 back
 and
 forth
 at
 a
 slow,
 medium,
 or
 fast
 speed.
 The
 same
 pattern
 of
 
results
 emerged
 for
 faces
 as
 was
 found
 for
 basic-­‐level
 objects.
 Specifically,
 newborn
 chicks
 
that
 were
 raised
 with
 a
 quickly
 moving
 face
 built
 face
 representations
 that
 were
 highly
 
sensitive
 to
 view-­‐specific
 information,
 but
 completely
 insensitive
 to
 identity
 information.
 
Conversely,
 newborn
 chicks
 that
 were
 raised
 with
 a
 slowly
 moving
 face
 built
 accurate
 face
 
representations
  that
  were
  highly
  sensitive
  to
  identity
  information,
  but
  completely
 
insensitive
 to
 viewpoint-­‐specific
 information.
 Overall,
 this
 pattern
 of
 results
 indicates
 that
 
newborn
 chicks
 leverage
 the
 spatiotemporal
 statistics
 of
 their
 visual
 environment
 to
 learn
 
about
 the
 external
 world.
 

 

   
 

 

  129
 
Future
 Directions
 

  These
 results
 raise
 several
 additional
 questions
 about
 the
 developmental
 origins
 of
 
object
 recognition.
 First,
 what
 are
 the
 object
 features
 extracted
 by
 newborn
 visual
 systems?
 
While
 this
 dissertation
 presents
 evidence
 that
 newborn
 chicks
 can
 perform
 background-­‐
 
and
 view-­‐invariant
 object
 recognition,
 these
 results
 do
 not
 necessarily
 warrant
 the
 claim
 
that
 newborns
 can
 build
 geometric
 three-­‐dimensional
 representations
 of
 whole
 objects.
 
For
 example,
 newborn
 chicks
 could
 rely
 on
 one
 or
 more
 subfeatures
 of
 an
 object
 to
 perform
 
recognition.
 In
 future
 studies,
 I
 plan
 to
 study
 newborn
 visual
 recognition
 strategies
 by
 
using
 an
 image
 masking
 technique
 (Alemi-­‐Neissi
 et
 al.,
 2013;
 Gosselin
 &
 Schyns,
 2001).
 
This
 technique
 reveals
 the
 diagnostic
 features
 used
 by
 subjects
 to
 discriminate
 objects.
 To
 
date,
 this
 methodology
 has
 been
 impossible
 to
 use
 with
 newborns
 because
 the
 image
 
masking
 technique
 requires
 presenting
 hundreds
 of
 test
 trials
 and
 adapting
 the
 stimuli
 as
 a
 
function
 of
 performance.
 In
 image
 masking
 studies,
 an
 opaque
 mask
 with
 a
 number
 of
 
transparent
 windows
 (or
 “bubbles”)
 is
 superimposed
 on
 a
 visual
 stimulus.
 During
 testing,
 
the
 number
 of
 bubbles
 is
 adjusted
 until
 performance
 reaches
 a
 predetermined
 threshold.
 
Thus,
  the
  experimenter
  must
  test
  each
  subject
  on
  a
  range
  of
  bubble
  configurations,
 
determine
 the
 appropriate
 number
 of
 bubbles
 for
 each
 individual
 subject,
 and
 then
 modify
 
the
 remaining
 test
 trials
 to
 utilize
 the
 correct
 number
 of
 bubbles
 for
 that
 subject.
 While
 the
 
current
 automated
 controlled-­‐rearing
 chambers
 are
 not
 equipped
 to
 adjust
 the
 stimuli
 as
 a
 
function
 of
 the
 chicks’
 performance,
 recent
 methodological
 developments
 from
 the
 lab
 
should
 enable
 such
 a
 study
 in
 the
 near
 future.
 Specifically,
 the
 lab
 has
 recently
 developed
 
the
 first
 automated
 virtual
 reality
 (VR)
 system
 for
 testing
 newborn
 subjects;
 these
 VR
 
chambers
  update
  the
  virtual
  environment
  in
  response
  to
  subjects’
  movements
 

 

  130
 
(performance)
 in
 real
 time.
 With
 this
 new
 advance,
 it
 is
 now
 possible
 to
 create
 test
 stimuli
 
that
 interact
 contingently
 with
 the
 newborn
 chicks.
 Studies
 testing
 newborn
 chicks
 on
 
masked
 images
 would
 provide
 the
 first
 glimpse
 into
 the
 features
 used
 by
 newborn
 visual
 
systems
 to
 recognize
 objects.
 

  Second,
 how
 does
 the
 newborn
 brain
 leverage
 experience
 with
 backgrounds
 to
 learn
 
background-­‐invariant
 object
 recognition?
 In
 Chapter
 3,
 we
 found
 that
 newborn
 chicks
 were
 
impaired
 at
 background-­‐invariant
 object
 recognition
 when
 they
 did
 not
 have
 experience
 
viewing
 an
 object
 moving
 across
 a
 patterned
 background
 prior
 to
 testing.
 However,
 the
 
exact
 amount
 and
 type
 of
 background
 experience
 that
 is
 necessary
 for
 newborns
 to
 succeed
 
in
 this
 task
 is
 unknown.
 Do
 newborns
 need
 visual
 experience
 with
 an
 object
 moving
 across
 
a
 patterned
 background
 or
 is
 viewing
 a
 moving
 object
 and
 a
 background
 scene
 separately
 
sufficient
  for
  background-­‐invariant
  recognition?
  What
  amount
  or
  type
  of
  background
 
features
  is
  sufficient
  to
  enable
  background-­‐invariant
  recognition?
  For
  example,
  do
 
background
 images
 need
 to
 vary
 along
 specific
 ranges
 of
 spatial
 frequency?
 Addressing
 
these
 questions
 will
 shed
 light
 on
 the
 mechanisms
 of
 object
 segmentation
 in
 the
 newborn
 
brain.
 

  Third,
 are
 newborn
 object
 representations
 invariant
 to
 other
 transformations
 in
 
appearance
 (besides
 backgrounds
 and
 viewpoints)?
 For
 example,
 changes
 in
 lighting
 can
 
create
 massive
 differences
 in
 low-­‐level
 features
 such
 as
 hue
 and
 overall
 brightness.
 Mature
 
human
 visual
 systems
 automatically
 estimate
 actual
 reflectance
 independent
 of
 the
 lighting
 
conditions,
  a
  task
  called
  “lightness
  constancy”
  (Adelson,
  2000).
  Are
  newborn
  visual
 
systems
 capable
 of
 lightness
 constancy
 at
 the
 onset
 of
 vision?
 Are
 slow
 and
 smooth
 changes
 
in
 lighting
 important
 for
 developing
 lightness
 constancy
 (akin
 to
 the
 relationship
 between
 

 

  131
 
slow
 and
 smooth
 motion
 and
 viewpoint
 invariance)?
 Do
 changes
 in
 illumination
 have
 
similar
 effects
 on
 newborns’
 perception
 of
 both
 the
 three-­‐dimensional
 structure
 of
 an
 
object
 and
 the
 object’s
 texture?
 
 

  Finally,
 what
 neural
 algorithms
 give
 rise
 to
 object
 recognition
 in
 the
 newborn
 brain?
 
The
 results
 presented
 here
 provide
 a
 unique
 glimpse
 into
 the
 visuo-­‐cognitive
 abilities
 of
 
the
 newborn
 brain,
 but
 the
 computational
 architecture
 of
 the
 newborn
 mind
 remains
 
unknown.
 Indeed,
 modeling
 the
 visual
 abilities
 of
 newborn
 animals
 is
 a
 unique
 endeavor.
 
While
 many
 computational
 models
 of
 object
 recognition
 exist,
 the
 goal
 of
 these
 models
 is
 
typically
 either
 (1)
 to
 optimize
 overall
 accuracy
 of
 performance
 and/or
 (2)
 to
 optimize
 the
 
similarity
 between
 the
 performance
 of
 the
 models
 and
 adult
 human
 performance
 (Borji
 &
 
Itti,
 2014).
 However,
 since
 adults
 have
 had
 years
 of
 experience
 learning
 about
 the
 visual
 
world,
 models
 designed
 to
 match
 adult
 vision
 do
 not
 provide
 information
 about
 the
 initial
 
state
 of
 object
 recognition,
 nor
 do
 these
 models
 reveal
 how
 that
 initial
 state
 is
 shaped
 by
 
visual
 experience.
 

  To
 address
 this
 gap
 in
 the
 literature,
 I
 have
 begun
 building
 biologically-­‐inspired
 
convolutional
 neural
 networks
 that
 learn
 about
 visual
 input
 using
 unsupervised
 temporal
 
learning
 algorithms.
 Since
 an
 object’s
 identity
 is
 temporally
 stable,
 different
 retinal
 images
 
of
 the
 same
 object
 tend
 to
 be
 contiguous
 over
 time.
 Thus,
 the
 visual
 system
 might
 build
 
invariant
  representations
  by
  learning
  the
  spatiotemporal
  statistics
  produced
  by
 
consecutive
 retinal
 images
 of
 an
 object.
 The
 work
 presented
 in
 my
 dissertation
 provides
 
preliminary
 evidence
 for
 this
 class
 of
 models.
 My
 ultimate
 goal
 is
 to
 identify
 computational
 
models
 that
 produce
 the
 same
 patterns
 of
 behavioral
 performance
 as
 the
 newborn
 chicks
 
tested
 in
 our
 controlled-­‐rearing
 experiments.
 
 

 

  132
 

  So
 far,
 this
 has
 proven
 to
 be
 a
 herculean
 task.
 Newborn
 chicks’
 visual
 systems
 are
 
generative
 enough
 to
 build
 object
 representations
 from
 just
 three
 images
 of
 an
 object
 
(Chapter
 4),
 but
 flexible
 enough
 to
 respond
 to
 the
 spatiotemporal
 information
 provided
 by
 
object
 motion
 (Chapter
 6;
 Wood,
 2016;
 Wood
 et
 al.,
 2016;
 Wood
 &
 Wood,
 2016a;
 Wood
 &
 
Wood,
 under
 review).
 I
 have
 found
 that
 models
 using
 unsupervised
 temporal
 learning
 
mechanisms
 are
 subject
 to
 the
 same
 constraints
 on
 object
 recognition
 as
 newborn
 chicks.
 
Namely,
 unsupervised
 temporal
 learning
 models
 are
 better
 able
 to
 learn
 about
 objects
 that
 
move
 smoothly
 and
 slowly
 over
 time.
 However,
 while
 these
 models
 are
 promising
 in
 some
 
respects,
 they
 are
 still
 not
 sufficient
 to
 account
 for
 the
 impressive
 generative
 recognition
 
abilities
 found
 in
 newborn
 chicks.
 Future
 research
 will
 need
 to
 explore
 whether
 other
 
computational
 mechanisms
 (such
 as
 prior
 connection
 weights
 and
 recurrent
 layers)
 can
 
enable
 models
 to
 learn
 from
 such
 impoverished
 visual
 input.
 

  In
 summary,
 these
 studies
 used
 an
 automated
 controlled-­‐rearing
 method
 to
 study
 
the
 development
 of
 object
 and
 face
 recognition
 in
 newborns.
 The
 results
 demonstrate
 that
 
newborn
 brains
 contain
 advanced
 visual
 processing
 machinery:
 newborn
 visual
 systems
 
can
 build
 abstract
 representations
 of
 objects
 and
 faces
 from
 highly
 impoverished
 visual
 
input.
   
 

 

  133
 
References
 
Adelson,
 E.
 H.
 (2000).
 Lightness
 Perception
 and
 Lightness
 Illusions.
 In
 M.
 Gazzaniga
 (Ed.),
 
The
 New
 Cognitive
 Neurosciences
 (2nd
 ed.
 ed.,
 pp.
 339-­‐351).
 Cambridge,
 MA:
 MIT
 
Press.
 
Alemi-­‐Neissi,
 A.,
 Rosselli,
 F.
 B.,
 &
 Zoccolan,
 D.
 (2013).
 Multifeatural
 shape
 processing
 in
 rats
 
engaged
 in
 invariant
 visual
 object
 recognition.
 Journal
 of
 Neuroscience,
 33(14),
 
5939-­‐5956.
 doi:10.1523/JNEUROSCI.3629-­‐12.2013
 
Arterberry,
 M.
 E.,
 &
 Yonas,
 A.
 (2000).
 Perception
 of
 three-­‐dimensional
 shape
 specified
 by
 
optic
 flow
 by
 8-­‐week-­‐old
 infants.
 Perception
 and
 Psychophysics,
 62(3),
 550-­‐556.
 
doi:Doi
 10.3758/Bf03212106
 
Bateson,
 P.
 (2000).
 What
 must
 be
 known
 in
 order
 to
 understand
 imprinting?
 In
 C.
 Heyes
 &
 
L.
 Huber
 (Eds.),
 The
 evolution
 of
 cognition
 (pp.
 85-­‐102).
 Cambridge,
 MA:
 The
 MIT
 
Press.
 
Bellen,
 H.
 J.,
 Tong,
 C.,
 &
 Tsuda,
 H.
 (2010).
 100
 years
 of
 Drosophila
 research
 and
 its
 impact
 
on
 vertebrate
 neuroscience:
 a
 history
 lesson
 for
 the
 future.
 Nature
 Reviews
 
Neuroscience,
 11(7),
 514-­‐522.
 doi:10.1038/nrn2839
 
Berkeley,
 G.
 (1910).
 A
 new
 theory
 of
 vision,
 and
 other
 writings.
 London:
 Dent.
 
Biederman,
 I.
 (1987).
 Recognition-­‐by-­‐Components
 -­‐
 a
 Theory
 of
 Human
 Image
 
Understanding.
 Psychological
 Review,
 94(2),
 115-­‐147.
 doi:Doi
 10.1037/0033-­‐
295x.94.2.115
 
Bogale,
 B.
 A.,
 Aoyama,
 M.,
 &
 Sugita,
 S.
 (2011).
 Categorical
 learning
 between
 'male'
 and
 
'female'
 photographic
 human
 faces
 in
 jungle
 crows
 (Corvus
 macrorhynchos).
 
Behavioural
 Processes,
 86(1),
 109-­‐118.
 doi:Doi
 10.1016/J.Beproc.2010.10.002
 
Bolhuis,
 J.
 J.
 (1999).
 Early
 learning
 and
 the
 development
 of
 filial
 preferences
 in
 the
 chick.
 
Behavioural
 Brain
 Research,
 98(2),
 245-­‐252.
 
 
Borji,
 A.,
 &
 Itti,
 L.
 (2014).
 Human
 vs.
 computer
 in
 scene
 and
 object
 recognition.
 Paper
 
presented
 at
 the
 Proceedings
 of
 the
 IEEE
 Conference
 on
 Computer
 Vision
 and
 
Pattern
 Recognition.
 
Brenner,
 S.
 (1974).
 The
 genetics
 of
 Caenorhabditis
 elegans.
 Genetics,
 77(1),
 71-­‐94.
 
 
Bruce,
 V.,
 Campbell,
 R.
 N.,
 Doherty-­‐Sneddon,
 G.,
 Import,
 A.,
 Langton,
 S.,
 McAuley,
 S.,
 &
 
Wright,
 R.
 (2000).
 Testing
 face
 processing
 skills
 in
 children.
 British
 Journal
 of
 
Developmental
 Psychology,
 18,
 319-­‐333.
 
 
Bulf,
 H.,
 Johnson,
 S.
 P.,
 &
 Valenza,
 E.
 (2011).
 Visual
 statistical
 learning
 in
 the
 newborn
 
infant.
 Cognition,
 121(1),
 127-­‐132.
 doi:10.1016/j.cognition.2011.06.010
 

 

  134
 
Butler,
 A.
 B.
 (1994).
 The
 evolution
 of
 the
 dorsal
 pallium
 in
 the
 telencephalon
 of
 amniotes:
 
cladistic
 analysis
 and
 a
 new
 hypothesis.
 Brain
 Research
 Reviews,
 19(1),
 66-­‐101.
 
 
Carey,
 S.
 (1992).
 Becoming
 a
 Face
 Expert.
 Philosophical
 Transactions
 of
 the
 Royal
 Society
 of
 
London
 Series
 B-­‐Biological
 Sciences,
 335(1273),
 95-­‐103.
 
doi:10.1098/Rstb.1992.0012
 
Carey,
 S.
 (2009).
 The
 origin
 of
 concepts.
 Oxford
 ;
 New
 York:
 Oxford
 University
 Press.
 
Carey,
 S.,
 &
 Diamond,
 R.
 (1977).
 From
 Piecemeal
 to
 Configurational
 Representation
 of
 
Faces.
 Science,
 195(4275),
 312-­‐314.
 doi:Doi
 10.1126/Science.831281
 
Chiandetti,
 C.,
 &
 Vallortigara,
 G.
 (2011).
 Intuitive
 physical
 reasoning
 about
 occluded
 objects
 
by
 inexperienced
 chicks.
 Proceedings
 of
 the
 Royal
 Society
 B-­‐Biological
 Sciences,
 
278(1718),
 2621-­‐2627.
 doi:10.1098/rspb.2010.2381
 
Collignon,
 O.,
 Dormal,
 G.,
 de
 Heering,
 A.,
 Lepore,
 F.,
 Lewis,
 T.
 L.,
 &
 Maurer,
 D.
 (2015).
 Long-­‐
Lasting
 Crossmodal
 Cortical
 Reorganization
 Triggered
 by
 Brief
 Postnatal
 Visual
 
Deprivation.
 Current
 Biology,
 25(18),
 2379-­‐2383.
 
 
Cox,
 D.
 D.,
 Meier,
 P.,
 Oertelt,
 N.,
 &
 DiCarlo,
 J.
 J.
 (2005).
 'Breaking'
 position-­‐invariant
 object
 
recognition.
 Nature
 Neuroscience,
 8(9),
 1145-­‐1147.
 doi:10.1038/nn1519
 
Damasio,
 A.
 R.,
 Damasio,
 H.,
 &
 Vanhoesen,
 G.
 W.
 (1982).
 Prosopagnosia
 -­‐
 Anatomic
 Basis
 
and
 Behavioral
 Mechanisms.
 Neurology,
 32(4),
 331-­‐341.
 
 
de
 Haan,
 M.,
 Johnson,
 M.
 H.,
 Maurer,
 D.,
 &
 Perrett,
 D.
 I.
 (2001).
 Recognition
 of
 individual
 
faces
 and
 average
 face
 prototypes
 by
 1-­‐and
 3-­‐month-­‐old
 infants.
 Cognitive
 
Development,
 16(2),
 659-­‐678.
 
 
Dell,
 A.
 I.,
 Bender,
 J.
 A.,
 Branson,
 K.,
 Couzin,
 I.
 D.,
 de
 Polavieja,
 G.
 G.,
 Noldus,
 L.
 P.,
 .
 .
 .
 Brose,
 U.
 
(2014).
 Automated
 image-­‐based
 tracking
 and
 its
 application
 in
 ecology.
 Trends
 in
 
Ecology
 &
 Evolution.
 doi:10.1016/j.tree.2014.05.004
 
Diamond,
 R.,
 &
 Carey,
 S.
 (1986).
 Why
 Faces
 Are
 and
 Are
 Not
 Special
 -­‐
 an
 Effect
 of
 Expertise.
 
Journal
 of
 Experimental
 Psychology-­‐General,
 115(2),
 107-­‐117.
 
 
DiCarlo,
 J.
 J.,
 Zoccolan,
 D.,
 &
 Rust,
 N.
 C.
 (2012).
 How
 does
 the
 brain
 solve
 visual
 object
 
recognition?
 Neuron,
 73(3),
 415-­‐434.
 doi:10.1016/J.Neuron.2012.01.010
 
Dugas-­‐Ford,
 J.,
 Rowell,
 J.
 J.,
 &
 Ragsdale,
 C.
 W.
 (2012).
 Cell-­‐type
 homologies
 and
 the
 origins
 of
 
the
 neocortex.
 Proceedings
 of
 the
 National
 Academy
 of
 Sciences
 of
 the
 United
 States
 of
 
America,
 109(42),
 16974-­‐16979.
 doi:10.1073/Pnas.1204773109
 
Edelman,
 S.,
 &
 Intrator,
 N.
 (2003).
 Towards
 structural
 systematicity
 in
 distributed,
 
statically
 bound
 visual
 representations.
 Cognitive
 Science,
 27(1),
 73-­‐109.
 
 

 

  135
 
Espinosa,
 J.
 S.,
 &
 Stryker,
 M.
 P.
 (2012).
 Development
 and
 plasticity
 of
 the
 primary
 visual
 
cortex.
 Neuron,
 75(2),
 230-­‐249.
 
 
Farah,
 M.
 J.,
 Wilson,
 K.
 D.,
 Drain,
 M.,
 &
 Tanaka,
 J.
 N.
 (1998).
 What
 is
 "special"
 about
 face
 
perception?
 Psychological
 Review,
 105(3),
 482-­‐498.
 
 
Frank,
 M.
 C.,
 Vul,
 E.,
 &
 Johnson,
 S.
 P.
 (2009).
 Development
 of
 infants'
 attention
 to
 faces
 
during
 the
 first
 year.
 Cognition,
 110(2),
 160-­‐170.
 
doi:10.1016/j.cognition.2008.11.010
 
Gavornik,
 J.
 P.,
 &
 Bear,
 M.
 F.
 (2014).
 Learned
 spatiotemporal
 sequence
 recognition
 and
 
prediction
 in
 primary
 visual
 cortex.
 Nature
 Neuroscience,
 17(5),
 732.
 
doi:10.1038/Nn.3683
 
Gibson,
 B.
 M.,
 Wasserman,
 E.
 A.,
 Gosselin,
 F.,
 &
 Schyns,
 P.
 G.
 (2005).
 Applying
 bubbles
 to
 
localize
 features
 that
 control
 pigeons'
 visual
 discrimination
 behavior.
 Journal
 of
 
Experimental
 Psychology:
 Animal
 Behavior
 Processes,
 31(3),
 376-­‐382.
 
doi:10.1037/0097-­‐7403.31.3.376
 
Goldman,
 J.
 G.,
 &
 Wood,
 J.
 N.
 (2015).
 An
 automated
 controlled-­‐rearing
 method
 for
 studying
 
the
 origins
 of
 movement
 recognition
 in
 newly
 hatched
 chicks.
 Animal
 Cognition,
 
18(3),
 723-­‐731.
 doi:10.1007/s10071-­‐015-­‐0839-­‐3
 
Gosselin,
 F.,
 &
 Schyns,
 P.
 G.
 (2001).
 Bubbles:
 a
 technique
 to
 reveal
 the
 use
 of
 information
 in
 
recognition
 tasks.
 Vision
 Research,
 41(17),
 2261-­‐2271.
 doi:10.1016/S0042-­‐
6989(01)00097-­‐9
 
Hasselmo,
 M.
 E.,
 Rolls,
 E.
 T.,
 Baylis,
 G.
 C.,
 &
 Nalwa,
 V.
 (1989).
 Object-­‐Centered
 Encoding
 by
 
Face-­‐Selective
 Neurons
 in
 the
 Cortex
 in
 the
 Superior
 Temporal
 Sulcus
 of
 the
 
Monkey.
 Experimental
 Brain
 Research,
 75(2),
 417-­‐429.
 
 
Helmholtz,
 H.
 v.,
 &
 Southall,
 J.
 P.
 C.
 (1924).
 Helmholtz's
 treatise
 on
 physiological
 optics.
 
Rochester,
 N.Y.:
 The
 Optical
 Society
 of
 America.
 
Hill,
 H.,
 Bruce,
 V.,
 &
 Akamatsu,
 S.
 (1995).
 Perceiving
 the
 Sex
 and
 Race
 of
 Faces
 -­‐
 the
 Role
 of
 
Shape
 and
 Color.
 Proceedings
 of
 the
 Royal
 Society
 of
 London
 Series
 B-­‐Biological
 
Sciences,
 261(1362),
 367-­‐373.
 
 
Hill,
 H.,
 Schyns,
 P.
 G.,
 &
 Akamatsu,
 S.
 (1997).
 Information
 and
 viewpoint
 dependence
 in
 face
 
recognition.
 Cognition,
 62(2),
 201-­‐222.
 doi:10.1016/S0010-­‐0277(96)00785-­‐8
 
Hochberg,
 J.
 E.
 (1978).
 Perception
 (2d
 ed.).
 Englewood
 Cliffs,
 N.J.:
 Prentice-­‐Hall.
 
Horn,
 G.
 (2004).
 Pathways
 of
 the
 past:
 The
 imprint
 of
 memory.
 Nature
 Reviews:
 
Neuroscience,
 5(2),
 108-­‐U113.
 
 

 

  136
 
Ishikawa,
 A.
 W.,
 Komatsu,
 Y.,
 &
 Yoshimura,
 Y.
 (2014).
 Experience-­‐Dependent
 Emergence
 of
 
Fine-­‐Scale
 Networks
 in
 Visual
 Cortex.
 Journal
 of
 Neuroscience,
 34(37),
 12576-­‐12586.
 
doi:10.1523/Jneurosci.1346-­‐14.2014
 
Jarvis,
 E.
 D.,
 Gunturkun,
 O.,
 Bruce,
 L.,
 Csillag,
 A.,
 Karten,
 H.,
 Kuenzel,
 W.,
 .
 .
 .
 Butler,
 A.
 B.
 
(2005).
 Avian
 brains
 and
 a
 new
 understanding
 of
 vertebrate
 brain
 evolution.
 Nature
 
Reviews:
 Neuroscience,
 6(2),
 151-­‐159.
 doi:10.1038/nrn1606
 
Johnson,
 M.
 H.,
 Dziurawiec,
 S.,
 Ellis,
 H.,
 &
 Morton,
 J.
 (1991).
 Newborns
 preferential
 tracking
 
of
 face-­‐like
 stimuli
 and
 its
 subsequent
 decline.
 Cognition,
 40(1-­‐2),
 1-­‐19.
 
 
Johnson,
 S.
 P.,
 Amso,
 D.,
 &
 Slemmer,
 J.
 A.
 (2003).
 Development
 of
 object
 concepts
 in
 infancy:
 
Evidence
 for
 early
 learning
 in
 an
 eye-­‐tracking
 paradigm.
 Proceedings
 of
 the
 National
 
Academy
 of
 Sciences,
 100(18),
 10568-­‐10573.
 
 
Johnson,
 S.
 P.,
 &
 Aslin,
 R.
 N.
 (1995).
 Perception
 of
 Object
 Unity
 in
 2-­‐Month-­‐Old
 Infants.
 
Developmental
 Psychology,
 31(5),
 739-­‐745.
 doi:10.1037/0012-­‐1649.31.5.739
 
Johnson,
 S.
 P.,
 Bremner,
 J.
 G.,
 Slater,
 A.
 M.,
 Mason,
 U.
 C.,
 &
 Foster,
 K.
 (2002).
 Young
 infants'
 
perception
 of
 unity
 and
 form
 in
 occlusion
 displays.
 Journal
 of
 Experimental
 Child
 
Psychology,
 81(3),
 358-­‐374.
 doi:10.1006/jecp.2002.2657
 
Johnson,
 S.
 P.,
 Schwarzer,
 G.,
 &
 Leder,
 H.
 (2003).
 Development
 of
 fragmented
 versus
 holistic
 
object
 perception.
 The
 development
 of
 face
 processing,
 3-­‐17.
 
 
Kandel,
 E.
 R.
 (2007).
 In
 search
 of
 memory:
 The
 emergence
 of
 a
 new
 science
 of
 mind:
 WW
 
Norton
 &
 Company.
 
Kant,
 I.,
 Guyer,
 P.,
 &
 Wood,
 A.
 W.
 (1998).
 Critique
 of
 pure
 reason.
 Cambridge
 ;
 New
 York:
 
Cambridge
 University
 Press.
 
Karten,
 H.
 J.
 (1969).
 The
 organization
 of
 the
 avian
 telencephalon
 and
 some
 speculations
 on
 
the
 phylogeny
 of
 the
 amniote
 telencephalon.
 Annals
 of
 the
 New
 York
 Academy
 of
 
Sciences,
 167(1),
 164-­‐179.
 
 
Karten,
 H.
 J.
 (1991).
 Homology
 and
 evolutionary
 origins
 of
 the'neocortex'.
 Brain,
 Behavior
 
and
 Evolution,
 38(4-­‐5),
 264-­‐272.
 
 
Karten,
 H.
 J.
 (1997).
 Evolutionary
 developmental
 biology
 meets
 the
 brain:
 the
 origins
 of
 
mammalian
 cortex.
 Proceedings
 of
 the
 National
 Academy
 of
 Sciences,
 94(7),
 2800-­‐
2804.
 
 
Karten,
 H.
 J.
 (2013).
 Neocortical
 evolution:
 neuronal
 circuits
 arise
 independently
 of
 
lamination.
 Current
 Biology,
 23(1),
 R12-­‐15.
 doi:10.1016/j.cub.2012.11.013
 
Karten,
 H.
 J.,
 &
 Shimizu,
 T.
 (1989).
 The
 origins
 of
 neocortex:
 connections
 and
 lamination
 as
 
distinct
 events
 in
 evolution.
 Journal
 of
 Cognitive
 Neuroscience,
 1(4),
 291-­‐301.
 
 

 

  137
 
Kellman,
 P.
 J.
 (1984).
 Perception
 of
 three-­‐dimensional
 form
 by
 human
 infants.
 Perception
 
and
 Psychophysics,
 36(4),
 353-­‐358.
 
 
Kellman,
 P.
 J.,
 &
 Short,
 K.
 R.
 (1987).
 Development
 of
 three-­‐dimensional
 form
 perception.
 
Journal
 of
 Experimental
 Psychology:
 Human
 Perception
 and
 Performance,
 13(4),
 545.
 
 
Kellman,
 P.
 J.,
 &
 Spelke,
 E.
 S.
 (1983).
 Perception
 of
 Partly
 Occluded
 Objects
 in
 Infancy.
 
Cognitive
 Psychology,
 15(4),
 483-­‐524.
 doi:10.1016/0010-­‐0285(83)90017-­‐8
 
Kellman,
 P.
 J.,
 Spelke,
 E.
 S.,
 &
 Short,
 K.
 R.
 (1986).
 Infant
 Perception
 of
 Object
 Unity
 from
 
Translatory
 Motion
 in
 Depth
 and
 Vertical
 Translation.
 Child
 Development,
 57(1),
 72-­‐
86.
 doi:10.1111/j.1467-­‐8624.1986.tb00008.x
 
Kelly,
 D.
 J.,
 Quinn,
 P.
 C.,
 Slater,
 A.
 M.,
 Lee,
 K.,
 Ge,
 L.
 Z.,
 &
 Pascalis,
 O.
 (2007).
 The
 other-­‐race
 
effect
 develops
 during
 infancy
 -­‐
 Evidence
 of
 perceptual
 narrowing.
 Psychological
 
Science,
 18(12),
 1084-­‐1089.
 doi:10.1111/j.1467-­‐9280.2007.02029.x
 
Kestenbaum,
 R.,
 Termine,
 N.,
 &
 Spelke,
 E.
 S.
 (1987).
 Perception
 of
 Objects
 and
 Object
 
Boundaries
 by
 3-­‐Month-­‐Old
 Infants.
 British
 Journal
 of
 Developmental
 Psychology,
 5,
 
367-­‐383.
 
 
Kirkham,
 N.
 Z.,
 Slemmer,
 J.
 A.,
 &
 Johnson,
 S.
 P.
 (2002).
 Visual
 statistical
 learning
 in
 infancy:
 
evidence
 for
 a
 domain
 general
 learning
 mechanism.
 Cognition,
 83(2),
 B35-­‐42.
 
 
Ko,
 H.,
 Mrsic-­‐Flogel,
 T.
 D.,
 &
 Hofer,
 S.
 B.
 (2014).
 Emergence
 of
 feature-­‐specific
 connectivity
 
in
 cortical
 microcircuits
 in
 the
 absence
 of
 visual
 experience.
 Journal
 of
 Neuroscience,
 
34(29),
 9812-­‐9816.
 
 
Koffka,
 K.
 (1935).
 Principles
 of
 Gestalt
 psychology.
 London:
 K.
 Paul,
 Trench.
 
Köhler,
 W.
 (1929).
 Gestalt
 psychology.
 New
 York,:
 H.
 Liveright.
 
Krizhevsky,
 A.,
 Sutskever,
 I.,
 &
 Hinton,
 G.
 E.
 (2012).
 Imagenet
 classification
 with
 deep
 
convolutional
 neural
 networks.
 Paper
 presented
 at
 the
 Advances
 in
 Neural
 
Information
 Processing
 Systems.
 
Leibo,
 J.
 Z.,
 Mutch,
 J.,
 &
 Poggio,
 T.
 (2011).
 Why
 The
 Brain
 Separates
 Face
 Recognition
 From
 
Object
 Recognition.
 NIPS,
 711-­‐719.
 
 
Li,
 N.,
 &
 DiCarlo,
 J.
 J.
 (2008).
 Unsupervised
 natural
 experience
 rapidly
 alters
 invariant
 object
 
representation
 in
 visual
 cortex.
 Science,
 321(5895),
 1502-­‐1507.
 
 
Li,
 N.,
 &
 DiCarlo,
 J.
 J.
 (2010).
 Unsupervised
 natural
 visual
 experience
 rapidly
 reshapes
 size-­‐
invariant
 object
 representation
 in
 inferior
 temporal
 cortex.
 Neuron,
 67(6),
 1062-­‐
1075.
 doi:10.1016/j.neuron.2010.08.029
 
Logothetis,
 N.
 K.,
 &
 Sheinberg,
 D.
 L.
 (1996).
 Visual
 object
 recognition.
 Annual
 Review
 of
 
Neuroscience,
 19,
 577-­‐621.
 doi:10.1146/annurev.ne.19.030196.003045
 

 

  138
 
Loken,
 E.,
 &
 Gelman,
 A.
 (2017).
 Measurement
 error
 and
 the
 replication
 crisis.
 Science,
 
355(6325),
 584-­‐585.
 
 
Maidenbaum,
 S.,
 Abboud,
 S.,
 &
 Amedi,
 A.
 (2014).
 Sensory
 substitution:
 Closing
 the
 gap
 
between
 basic
 research
 and
 widespread
 practical
 visual
 rehabilitation.
 Neuroscience
 
and
 Biobehavioral
 Reviews,
 41,
 3-­‐15.
 
 
Martinho,
 A.,
 &
 Kacelnik,
 A.
 (2016).
 Ducklings
 imprint
 on
 the
 relational
 concept
 of
 "same
 or
 
different".
 Science,
 353(6296),
 286-­‐288.
 doi:10.1126/science.aaf4247
 
Mascalzoni,
 E.,
 Regolin,
 L.,
 &
 Vallortigara,
 G.
 (2010).
 Innate
 sensitivity
 for
 self-­‐propelled
 
causal
 agency
 in
 newly
 hatched
 chicks.
 Proceedings
 of
 the
 National
 Academy
 of
 
Sciences
 of
 the
 United
 States
 of
 America,
 107(9),
 4483-­‐4485.
 
doi:10.1073/pnas.0908792107
 
Masquelier,
 T.,
 &
 Thorpe,
 S.
 J.
 (2007).
 Unsupervised
 learning
 of
 visual
 features
 through
 
spike
 timing
 dependent
 plasticity.
 PLoS
 Computational
 Biology,
 3(2),
 e31.
 
doi:10.1371/journal.pcbi.0030031
 
McKyton,
 A.,
 Ben-­‐Zion,
 I.,
 Doron,
 R.,
 &
 Zohary,
 E.
 (2015).
 The
 Limits
 of
 Shape
 Recognition
 
following
 Late
 Emergence
 from
 Blindness.
 Current
 Biology,
 25(18),
 2373-­‐2378.
 
doi:10.1016/j.cub.2015.06.040
 
Medina,
 L.,
 &
 Reiner,
 A.
 (2000).
 Do
 birds
 possess
 homologues
 of
 mammalian
 primary
 visual,
 
somatosensory
 and
 motor
 cortices?
 Trends
 in
 Neurosciences,
 23(1),
 1-­‐12.
 
 
Mondloch,
 C.
 J.,
 Le
 Grand,
 R.,
 &
 Maurer,
 D.
 (2010).
 Development
 of
 expertise
 in
 face
 
recognition.
 In
 I.
 Gauthier,
 M.
 J.
 Tarr,
 &
 D.
 Bub
 (Eds.),
 Perceptual
 expertise;
 Bridging
 
brain
 and
 behavior
 (pp.
 67-­‐106):
 Oxford
 University
 Press.
 
Morales,
 B.,
 Choi,
 S.-­‐Y.,
 &
 Kirkwood,
 A.
 (2002).
 Dark
 rearing
 alters
 the
 development
 of
 
GABAergic
 transmission
 in
 visual
 cortex.
 Journal
 of
 Neuroscience,
 22(18),
 8084-­‐
8090.
 
 
Moses,
 Y.,
 Ullman,
 S.,
 &
 Edelman,
 S.
 (1996).
 Generalization
 to
 novel
 images
 in
 upright
 and
 
inverted
 faces.
 Perception,
 25(4),
 443-­‐461.
 doi:10.1068/p250443
 
Needham,
 A.
 (2000).
 Improvements
 in
 Object
 Exploration
 Skills
 May
 Facilitate
 the
 
Development
 of
 Object
 Segregation
 in
 Early
 Infancy.
 Journal
 of
 Cognition
 and
 
Development,
 1(2),
 131-­‐156.
 doi:10.1207/S15327647jcd010201
 
Needham,
 A.,
 &
 Ormsbee,
 S.
 M.
 (2003).
 The
 development
 of
 object
 segregation
 during
 the
 
first
 year
 of
 life.
 In
 R.
 Kimchi,
 M.
 Behrmann,
 &
 C.
 R.
 Olson
 (Eds.),
 Perceptual
 
organization
 in
 vision:
 Behavioral
 and
 neural
 perspectives
 (pp.
 205-­‐232).
 Mahwah,
 
NJ:
 Lawrence
 Erlbaum
 Associates
 Publishers.
 

 

  139
 
Olshausen,
 B.
 A.,
 &
 Field,
 D.
 J.
 (1996).
 Emergence
 of
 simple-­‐cell
 receptive
 field
 properties
 by
 
learning
 a
 sparse
 code
 for
 natural
 images.
 Nature,
 381(6583),
 607-­‐609.
 
 
Ostrovsky,
 Y.,
 Meyers,
 E.,
 Ganesh,
 S.,
 Mathur,
 U.,
 &
 Sinha,
 P.
 (2009).
 Visual
 Parsing
 After
 
Recovery
 From
 Blindness.
 Psychological
 Science,
 20(12),
 1484-­‐1491.
 
 
Owsley,
 C.
 (1983).
 The
 role
 of
 motion
 in
 infants'
 perception
 of
 solid
 shape.
 Perception,
 
12(6),
 707-­‐717.
 
 
Pascalis,
 O.,
 Deschonen,
 S.,
 Morton,
 J.,
 Deruelle,
 C.,
 &
 Fabregrenet,
 M.
 (1995).
 Mothers
 Face
 
Recognition
 by
 Neonates
 -­‐
 a
 Replication
 and
 an
 Extension.
 Infant
 Behavior
 &
 
Development,
 18(1),
 79-­‐85.
 
 
Pettigrew,
 J.
 D.,
 &
 Konishi,
 M.
 (1976).
 Neurons
 selective
 for
 orientation
 and
 binocular
 
disparity
 in
 the
 visual
 Wulst
 of
 the
 barn
 owl
 (Tyto
 alba).
 Science,
 193(4254),
 675-­‐
678.
 
 
Piaget,
 J.
 (1952).
 The
 origins
 of
 intelligence
 in
 children.
 New
 York:
 International
 Universities
 
Press.
 
Pinto,
 N.,
 Cox,
 D.
 D.,
 &
 DiCarlo,
 J.
 J.
 (2008).
 Why
 is
 real-­‐world
 visual
 object
 recognition
 hard?
 
PLoS
 Computational
 Biology,
 4(1),
 27.
 doi:10.1371/journal.pcbi.0040027.sg004
 
Regolin,
 L.,
 Rugani,
 R.,
 Stancher,
 G.,
 &
 Vallortigara,
 G.
 (2011).
 Spontaneous
 discrimination
 of
 
possible
 and
 impossible
 objects
 by
 newly
 hatched
 chicks.
 Biology
 Letters,
 7(5),
 654-­‐
657.
 doi:10.1098/rsbl.2011.0051
 
Regolin,
 L.,
 &
 Vallortigara,
 G.
 (1995).
 Perception
 of
 Partly
 Occluded
 Objects
 by
 Young
 
Chicks.
 Perception
 and
 Psychophysics,
 57(7),
 971-­‐976.
 doi:10.3758/Bf03205456
 
Reid,
 T.
 (1764).
 An
 Inquiry
 into
 the
 Human
 Mind:
 in
 the
 version
 by
 Jonathan
 Bennett
 
presented
 at
 http://www.earlymoderntexts.com.
 
Reiner,
 A.,
 Yamamoto,
 K.,
 &
 Karten,
 H.
 J.
 (2005).
 Organization
 and
 evolution
 of
 the
 avian
 
forebrain.
 The
 Anatomical
 Record,
 287(1),
 1080-­‐1102.
 
 
Roder,
 B.,
 Ley,
 P.,
 Shenoy,
 B.
 H.,
 Kekunnaya,
 R.,
 &
 Bottari,
 D.
 (2013).
 Sensitive
 periods
 for
 
the
 functional
 specialization
 of
 the
 neural
 system
 for
 human
 face
 processing.
 
Proceedings
 of
 the
 National
 Academy
 of
 Sciences
 of
 the
 United
 States
 of
 America,
 
110(42),
 16760-­‐16765.
 doi:10.1073/pnas.1309963110
 
Rolls,
 E.
 T.
 (2000).
 Functions
 of
 the
 primate
 temporal
 lobe
 cortical
 visual
 areas
 in
 invariant
 
visual
 object
 and
 face
 recognition.
 Neuron,
 27(2),
 205-­‐218.
 doi:10.1016/s0896-­‐
6273(00)00030-­‐1
 

 

  140
 
Rosa-­‐Salva,
 O.,
 Farroni,
 T.,
 Regolin,
 L.,
 Vallortigara,
 G.,
 &
 Johnson,
 M.
 H.
 (2011).
 The
 
Evolution
 of
 Social
 Orienting:
 Evidence
 from
 Chicks
 (Gallus
 gallus)
 and
 Human
 
Newborns.
 PloS
 One,
 6(4).
 
 
Rosa-­‐Salva,
 O.,
 Grassi,
 M.,
 Lorenzi,
 E.,
 Regolin,
 L.,
 &
 Vallortigara,
 G.
 (2016).
 Spontaneous
 
preference
 for
 visual
 cues
 of
 animacy
 in
 naive
 domestic
 chicks:
 The
 case
 of
 speed
 
changes.
 Cognition,
 157,
 49-­‐60.
 doi:10.1016/j.cognition.2016.08.014
 
Rosa-­‐Salva,
 O.,
 Regolin,
 L.,
 &
 Vallortigara,
 G.
 (2010).
 Faces
 are
 special
 for
 newly
 hatched
 
chicks:
 evidence
 for
 inborn
 domain-­‐specific
 mechanisms
 underlying
 spontaneous
 
preferences
 for
 face-­‐like
 stimuli.
 Developmental
 Science,
 13(4),
 565-­‐577.
 
doi:10.1111/J.1467-­‐7687.2009.00914.X
 
Rosa-­‐Salva,
 O.,
 Regolin,
 L.,
 &
 Vallortigara,
 G.
 (2012).
 Inversion
 of
 contrast
 polarity
 abolishes
 
spontaneous
 preferences
 for
 face-­‐like
 stimuli
 in
 newborn
 chicks.
 Behavioural
 Brain
 
Research,
 228(1),
 133-­‐143.
 
 
Ruff,
 H.
 A.
 (1978).
 Infant
 recognition
 of
 the
 invariant
 form
 of
 objects.
 Child
 Development,
 
293-­‐306.
 
 
Saffran,
 J.
 R.,
 Aslin,
 R.
 N.,
 &
 Newport,
 E.
 L.
 (1996).
 Statistical
 learning
 by
 8-­‐month-­‐old
 
infants.
 Science,
 274(5294),
 1926-­‐1928.
 
 
Said,
 C.
 P.,
 &
 Todorov,
 A.
 (2011).
 A
 Statistical
 Model
 of
 Facial
 Attractiveness.
 Psychological
 
Science,
 22(9),
 1183-­‐1190.
 doi:10.1177/0956797611419169
 
Saini,
 K.,
 &
 Leppelsack,
 H.
 J.
 (1981).
 Cell
 types
 of
 the
 auditory
 caudomedial
 neostriatum
 of
 
the
 starling
 (Sturnus
 vulgaris).
 Journal
 of
 Comparative
 Neurology,
 198(2),
 209-­‐229.
 
 
Shanahan,
 M.,
 Bingman,
 V.
 P.,
 Shimizu,
 T.,
 Wild,
 M.,
 &
 Gunturkun,
 O.
 (2013).
 Large-­‐scale
 
network
 organization
 in
 the
 avian
 forebrain:
 a
 connectivity
 matrix
 and
 theoretical
 
analysis.
 Frontiers
 in
 Computational
 Neuroscience,
 7,
 89.
 
doi:10.3389/fncom.2013.00089
 
Simmons,
 J.
 P.,
 Nelson,
 L.
 D.,
 &
 Simonsohn,
 U.
 (2011).
 False-­‐positive
 psychology:
 
Undisclosed
 flexibility
 in
 data
 collection
 and
 analysis
 allows
 presenting
 anything
 as
 
significant.
 Psychological
 Science,
 22(11),
 1359-­‐1366.
 
 
Sinha,
 P.
 (2013).
 Once
 blind
 and
 now
 they
 see.
 Scientific
 American,
 309(1),
 48-­‐55.
 
 
Soska,
 K.
 C.,
 &
 Johnson,
 S.
 P.
 (2008).
 Development
 of
 three-­‐dimensional
 object
 completion
 
in
 infancy.
 Child
 Development,
 79(5),
 1230-­‐1236.
 doi:10.1111/j.1467-­‐
8624.2008.01185.x
 
Soto,
 F.
 A.,
 Siow,
 J.
 Y.,
 &
 Wasserman,
 E.
 A.
 (2012).
 View-­‐invariance
 learning
 in
 object
 
recognition
 by
 pigeons
 depends
 on
 error-­‐driven
 associative
 learning
 processes.
 
Vision
 Research,
 62,
 148-­‐161.
 
 

 

  141
 
Spelke,
 E.
 S.
 (1990).
 Principles
 of
 object
 perception.
 Cognitive
 Science,
 14(1),
 29-­‐56.
 
 
Spelke,
 E.
 S.,
 &
 Kinzler,
 K.
 D.
 (2007).
 Core
 knowledge.
 Developmental
 Science,
 10(1),
 89-­‐96.
 
 
Srihasam,
 K.,
 Mandeville,
 J.
 B.,
 Morocz,
 I.
 A.,
 Sullivan,
 K.
 J.,
 &
 Livingstone,
 M.
 S.
 (2012).
 
Behavioral
 and
 Anatomical
 Consequences
 of
 Early
 versus
 Late
 Symbol
 Training
 in
 
Macaques.
 Neuron,
 73(3),
 608-­‐619.
 
 
Sugita,
 Y.
 (2008).
 Face
 perception
 in
 monkeys
 reared
 with
 no
 exposure
 to
 faces.
 
Proceedings
 of
 the
 National
 Academy
 of
 Sciences,
 105(1),
 394-­‐398.
 
 
Tafazoli,
 S.,
 Di
 Filippo,
 A.,
 &
 Zoccolan,
 D.
 (2012).
 Transformation-­‐tolerant
 object
 recognition
 
in
 rats
 revealed
 by
 visual
 priming.
 Journal
 of
 Neuroscience,
 32(1),
 21-­‐34.
 
doi:10.1523/JNEUROSCI.3932-­‐11.2012
 
Tanaka,
 K.
 (1996).
 Inferotemporal
 cortex
 and
 object
 vision.
 Annual
 Review
 of
 Neuroscience,
 
19,
 109-­‐139.
 doi:10.1146/Annurev.Ne.19.030196.000545
 
Tarr,
 M.
 J.,
 &
 Gauthier,
 I.
 (2000).
 FFA:
 a
 flexible
 fusiform
 area
 for
 subordinate-­‐level
 visual
 
processing
 automatized
 by
 expertise.
 Nature
 Neuroscience,
 3(8),
 764-­‐769.
 
doi:10.1038/77666
 
Troje,
 N.
 F.,
 Huber,
 L.,
 Loidolt,
 M.,
 Aust,
 U.,
 &
 Fieder,
 M.
 (1999).
 Categorical
 learning
 in
 
pigeons:
 the
 role
 of
 texture
 and
 shape
 in
 complex
 static
 stimuli.
 Vision
 Research,
 
39(2),
 353-­‐366.
 doi:10.1016/S0042-­‐6989(98)00153-­‐9
 
Vallortigara,
 G.
 (2012).
 Core
 knowledge
 of
 object,
 number,
 and
 geometry:
 A
 comparative
 
and
 neural
 approach.
 Cognitive
 Neuropsychology,
 29(1-­‐2),
 213-­‐236.
 
 
Vallortigara,
 G.,
 Regolin,
 L.,
 &
 Marconato,
 F.
 (2005).
 Visually
 inexperienced
 chicks
 exhibit
 
spontaneous
 preference
 for
 biological
 motion
 patterns.
 PLoS
 Biology,
 3(7),
 1312-­‐
1316.
 doi:10.1371/journal.pbio.0030208
 
Vallortigara,
 G.,
 Regolin,
 L.,
 Rigoni,
 M.,
 &
 Zanforlin,
 M.
 (1998).
 Delayed
 search
 for
 a
 
concealed
 imprinted
 object
 in
 the
 domestic
 chick.
 Animal
 Cognition,
 1(1),
 17-­‐24.
 
 
Wallis,
 G.
 (2013).
 Toward
 a
 unified
 model
 of
 face
 and
 object
 recognition
 in
 the
 human
 
visual
 system.
 Frontiers
 in
 Psychology,
 4.
 doi:10.3389/Fpsyg.2013.00497
 
Wallis,
 G.,
 &
 Bülthoff,
 H.
 H.
 (2001).
 Effects
 of
 temporal
 association
 on
 recognition
 memory.
 
Proceedings
 of
 the
 National
 Academy
 of
 Sciences
 of
 the
 United
 States
 of
 America,
 
98(8),
 4800-­‐4804.
 doi:10.1073/pnas.071028598
 
Wallis,
 G.,
 &
 Rolls,
 E.
 T.
 (1997).
 Invariant
 face
 and
 object
 recognition
 in
 the
 visual
 system.
 
Progress
 in
 Neurobiology,
 51(2),
 167-­‐194.
 
 

 

  142
 
Wang,
 Y.,
 Brzozowska-­‐Prechtl,
 A.,
 &
 Karten,
 H.
 J.
 (2010).
 Laminar
 and
 columnar
 auditory
 
cortex
 in
 avian
 brain.
 Proceedings
 of
 the
 National
 Academy
 of
 Sciences
 of
 the
 United
 
States
 of
 America,
 107(28),
 12676-­‐12681.
 doi:10.1073/pnas.1006645107
 
Wasserman,
 E.,
 &
 Biederman,
 I.
 (2012).
 Recognition-­‐by-­‐components:
 A
 bird's
 eye
 view.
 In
 
O.
 F.
 Lazareva,
 T.
 Shimizu,
 &
 E.
 A.
 Wasserman
 (Eds.),
 How
 Animals
 See
 the
 World:
 
Comparative
 Behavior,
 Biology
 and
 Evolution
 of
 Vision
 (pp.
 191-­‐216):
 Oxford
 
University
 Press.
 
Weigelt,
 S.,
 Koldewyn,
 K.,
 Dilks,
 D.
 D.,
 Balas,
 B.,
 McKone,
 E.,
 &
 Kanwisher,
 N.
 (2014).
 Domain-­‐
specific
 development
 of
 face
 memory
 but
 not
 face
 perception.
 Developmental
 
Science,
 17(1),
 47-­‐58.
 doi:10.1111/desc.12089
 
Wilkinson,
 N.,
 Paikan,
 A.,
 Gredeback,
 G.,
 Rea,
 F.,
 &
 Metta,
 G.
 (2014).
 Staring
 us
 in
 the
 face?
 
An
 embodied
 theory
 of
 innate
 face
 preference.
 Developmental
 Science,
 17(6),
 809-­‐
825.
 doi:10.1111/desc.12159
 
Wiskott,
 L.,
 &
 Sejnowski,
 T.
 J.
 (2002).
 Slow
 feature
 analysis:
 Unsupervised
 learning
 of
 
invariances.
 Neural
 Computation,
 14(4),
 715-­‐770.
 
doi:10.1162/089976602317318938
 
Wood,
 J.
 N.
 (2013).
 Newborn
 chickens
 generate
 invariant
 object
 representations
 at
 the
 
onset
 of
 visual
 object
 experience.
 Proceedings
 of
 the
 National
 Academy
 of
 Sciences
 of
 
the
 United
 States
 of
 America,
 110(34),
 14000-­‐14005.
 
 
Wood,
 J.
 N.
 (2014).
 Newly
 hatched
 chicks
 solve
 the
 visual
 binding
 problem.
 Psychological
 
Science,
 25(7),
 1475-­‐1481.
 doi:10.1177/0956797614528955
 
Wood,
 J.
 N.
 (2015).
 Characterizing
 the
 information
 content
 of
 a
 newly
 hatched
 chick's
 first
 
visual
 object
 representation.
 Developmental
 Science,
 18(2),
 194-­‐205.
 
doi:10.1111/desc.12198
 
Wood,
 J.
 N.
 (2016).
 A
 smoothness
 constraint
 on
 the
 development
 of
 object
 recognition.
 
Cognition,
 153,
 140-­‐145.
 
 
Wood,
 J.
 N.,
 Prasad,
 A.,
 Goldman,
 J.
 G.,
 &
 Wood,
 S.
 M.
 W.
 (2016).
 Enhanced
 learning
 of
 
natural
 visual
 sequences
 in
 newborn
 chicks.
 Animal
 Cognition,
 19(4),
 835–845.
 
 
Wood,
 J.
 N.,
 &
 Wood,
 S.
 M.
 W.
 (2016a).
 The
 development
 of
 newborn
 object
 recognition
 in
 
fast
 and
 slow
 visual
 worlds.
 Proceedings
 of
 the
 Royal
 Society
 B-­‐Biological
 Sciences,
 
283(1829),
 20160166.
 
 
Wood,
 J.
 N.,
 &
 Wood,
 S.
 M.
 W.
 (2016b).
 Measuring
 the
 speed
 of
 newborn
 object
 recognition
 
in
 controlled
 visual
 worlds.
 Developmental
 Science.
 doi:10.1111/desc.12470
 

 

  143
 
Wood,
 S.
 M.
 W.,
 &
 Wood,
 J.
 N.
 (2015a).
 A
 chicken
 model
 for
 studying
 the
 emergence
 of
 
invariant
 object
 recognition.
 Frontiers
 in
 Neural
 Circuits,
 9,
 7.
 
doi:10.3389/fncir.2015.00007
 
Wood,
 S.
 M.
 W.,
 &
 Wood,
 J.
 N.
 (2015b).
 Face
 recognition
 in
 newly
 hatched
 chicks
 at
 the
 
onset
 of
 vision.
 Journal
 of
 Experimental
 Psychology:
 Animal
 Learning
 and
 Cognition,
 
41(2),
 206.
 
 
Wyss,
 R.,
 Konig,
 P.,
 &
 Verschure,
 P.
 F.
 M.
 J.
 (2006).
 A
 model
 of
 the
 ventral
 visual
 system
 
based
 on
 temporal
 stability
 and
 local
 memory.
 PLoS
 Biology,
 4(5),
 836-­‐843.
 
doi:ARTN
 e12010.1371/journal.pbio.0040120
 
Xu,
 F.
 (2007).
 Sortal
 concepts,
 object
 individuation,
 and
 language.
 Trends
 in
 Cognitive
 
Sciences,
 11(9),
 400-­‐406.
 
 
Yamins,
 D.
 L.
 K.,
 Hong,
 H.,
 Cadieu,
 C.
 F.,
 Solomon,
 E.
 A.,
 Seibert,
 D.,
 &
 DiCarlo,
 J.
 J.
 (2014).
 
Performance-­‐optimized
 hierarchical
 models
 predict
 neural
 responses
 in
 higher
 
visual
 cortex.
 Proceedings
 of
 the
 National
 Academy
 of
 Sciences
 of
 the
 United
 States
 of
 
America,
 111(23),
 8619-­‐8624.
 doi:10.1073/pnas.1403112111
 
Yang,
 J.
 L.,
 Kanazawa,
 S.,
 Yamaguchi,
 M.
 K.,
 &
 Motoyoshi,
 I.
 (2015).
 Pre-­‐constancy
 Vision
 in
 
Infants.
 Current
 Biology,
 25(24),
 3209-­‐3212.
 doi:10.1016/j.cub.2015.10.053
 
Yue,
 X.
 M.,
 Biederman,
 I.,
 Mangini,
 M.
 C.,
 von
 der
 Malsburg,
 C.,
 &
 Amir,
 O.
 (2012).
 Predicting
 
the
 psychophysical
 similarity
 of
 faces
 and
 non-­‐face
 complex
 shapes
 by
 image-­‐based
 
measures.
 Vision
 Research,
 55,
 41-­‐46.
 doi:10.1016/j.visres.2011.12.012
 
Zoccolan,
 D.
 (2015).
 Invariant
 visual
 object
 recognition
 and
 shape
 processing
 in
 rats.
 
Behavioural
 Brain
 Research,
 285,
 10-­‐33.
 doi:10.1016/j.bbr.2014.12.053
 
Zoccolan,
 D.,
 Oertelt,
 N.,
 DiCarlo,
 J.
 J.,
 &
 Cox,
 D.
 D.
 (2009).
 A
 rodent
 model
 for
 the
 study
 of
 
invariant
 visual
 object
 recognition.
 Proceedings
 of
 the
 National
 Academy
 of
 Sciences
 
of
 the
 United
 States
 of
 America,
 106(21),
 8748-­‐8753.
 doi:10.1073/pnas.0811583106 
Asset Metadata
Creator Wood, Samantha Marie Waters (author) 
Core Title The development of object recognition in the newborn brain 
Contributor Electronically uploaded by the author (provenance) 
School College of Letters, Arts and Sciences 
Degree Doctor of Philosophy 
Degree Program Psychology 
Publication Date 06/29/2017 
Defense Date 05/15/2017 
Publisher University of Southern California (original), University of Southern California. Libraries (digital) 
Tag controlled rearing,Gallus gallus,Newborn,OAI-PMH Harvest,object recognition 
Language English
Advisor Bechara, Antoine (committee chair), Biederman, Irving (committee member), Itti, Laurent (committee member), Mintz, Toben (committee member), Read, Stephen (committee member) 
Creator Email samantha.m.w.wood@gmail.com,samantha.m.w.wood@usc.edu 
Permanent Link (DOI) https://doi.org/10.25549/usctheses-c40-392768 
Unique identifier UC11265695 
Identifier etd-WoodSamant-5470.pdf (filename),usctheses-c40-392768 (legacy record id) 
Legacy Identifier etd-WoodSamant-5470.pdf 
Dmrecord 392768 
Document Type Dissertation 
Rights Wood, Samantha Marie Waters 
Type texts
Source University of Southern California (contributing entity), University of Southern California Dissertations and Theses (collection) 
Access Conditions The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law.  Electronic access is being provided by the USC Libraries in agreement with the a... 
Repository Name University of Southern California Digital Library
Repository Location USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Abstract (if available)
Abstract A central goal in psychology and neuroscience is to understand how biological visual systems recognize objects. However, the developmental origins of object recognition remain poorly understood. What object recognition abilities are present at the onset of vision, and what visual experiences are necessary to develop these abilities? To address these questions, my dissertation used an automated controlled-rearing method with newborn chicks. Chapters 2 and 3 examined the development of background-invariant object recognition in newborns. These studies showed that newborn chicks can begin building background-invariant object representations at the onset of vision, and that the development of this ability requires visual experience with objects moving on patterned backgrounds. Chapter 4 demonstrated that newborn chicks can begin building view-invariant representations of objects at the onset of vision, and that these abstract representations can be built from sparse visual input (as little as three views of an object). Chapter 5 showed that newborn chicks are capable of face recognition at the onset of vision. Finally, Chapter 6 showed that newborn chicks can build view-invariant face representations, and that the development of this ability requires visual experience with slowly moving faces. Together these studies show that newborns can develop high-level visual recognition abilities rapidly, within the first few days of life. However, these abilities do not develop automatically 
Tags
controlled rearing
Gallus gallus
object recognition
Linked assets
University of Southern California Dissertations and Theses
doctype icon
University of Southern California Dissertations and Theses 
Action button