Close
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected
Invert selection
Deselect all
Deselect all
Click here to refresh results
Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Synthesis, characterization and reaction chemistry of polyazides and cyanometallates
(USC Thesis Other)
Synthesis, characterization and reaction chemistry of polyazides and cyanometallates
PDF
Download
Share
Open document
Flip pages
Contact Us
Contact Us
Copy asset link
Request this asset
Transcript (if available)
Content
SYNTHESIS, CHARACTERIZATION AND REACTION CHEMISTRY OF POLYAZIDES AND CYANOMETALLATES by Piyush Deokar A Dissertation Presented to the FACULTY OF THE USC GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY (CHEMISTRY) December 2016 i To my family and roommates, for their endless support and encouragement… ii Acknowledgements I would like to express my sincere gratitude to my advisors Prof. Ralf Haiges and Prof. Karl O. Christe for their constant support, patience and motivation. Their guidance and immense knowledge helped me throughout my graduate career and writing of this thesis. The five years of PhD would not have been fun if it was not for the ‘Christe and Haiges Research Group’. I would like to especially thank Prof. Ralf Haiges for being an ideal research advisor, giving me the freedom to choose my projects and supporting me to take up new challenges in other fields. Approaching him was as easy as standing in front of his always open office door and calling ‘Ralf’. I would like to thank him for being patient during the early days of my research while I was trying to get a grasp of the new things in his lab. I would also like to extend my gratitude towards Prof. Karl O. Christe who always painstakingly edited all my drafts and presentations and I must say talking to him has always been a pleasure. I am thankful to my colleagues, Martin Rahm, Guillaume Belanger-Chabot, Amanda Baxter, Thomas Saal, Norbert Szimhardt, Dominik Leitz, Max Kaplan, Ross Wagner and Bill Wilson for being such joyous, fun- loving and supportive bunch in all these years. Even when I was out of my lab, I was surrounded by fun-loving and crazy people who made my stay at USC memorable. My roommates, Purnim Dhar, Atanu Acharya, Subodh Tiwari and Amit Samanta were my best stressbusters. My USC story is incomplete without our endless activities such as wide awake nights, late night long drives on PCH, spontaneous road trips and hours of gaming. I would like to thank my friends, Suman Chakrabarty, Debashree Gosh, Saptaparna Das, Anirban Roy, Chayan Dutta, Subhasish Sutradhar, FNU Gaurav Kumar, Dhritiman Bhattacharyya and Parichita Mazumder. I really enjoyed hanging out with them and it was a real privilege to share some "grad school moments" with such good people. I am thankful to my PhD guidance committee for their valuable inputs throughout my grad school journey: Profs. Ralf Haiges, Surya Prakash, Barry Thompson, Alex Benderskii, and Malancha Gupta. It was a real honor to have them evaluate my work and my qualifying exam proposals. I would like to thank Profs. Anindya Dutta, Rita Khullar, Anant Kapdi and V aibhav Wagh for encouraging me to pursue PhD and helping me throughout my application process. I would also like to thank my seniors Soumit Chatterjee, Dipanwita Dey and Siva Subramaniam for getting me interested in research and being patient while I was working on my undergraduate project at IIT-B, India. Here, I would like to acknowledge Office of Naval Research, Loker Hydrocarbon Research Institute and the Department of Chemistry at USC for their financial support. I would like to thank my friends and family who were supportive all the time. I would also like to give credit to Profs. from my undergraduate college, iii Ramniranjan Jhunjhunwala College and Ramnarain Ruia College for teaching me the basics of Chemistry and getting me interested in this subject. At the end, I will forever be thankful to my parents, Ramakant Deokar, Sulbha Deokar and my sibling, Nilesh Deokar for their constant support and motivation. If I will have to choose again, I would like to relive these 5 years over and over again and never ask for anything more. Until that wish comes true… iv Contributions The work presented herein was for the most part published in peer-reviewed journals or was written as manuscripts intended for publications. Each chapter of this dissertation corresponds to one published article or manuscript, with a respective appendix containing the Supplementary Information. The content of these articles or manuscripts is presented herein with minor alterations to fit the format of this dissertation. The CHAPTER 2 is based on article published in Angewandte Chemie International Edition (Haiges, R.; Deokar, P.; Christe, K. O., Coordination Adducts of Niobium(V) and Tantalum(V) Azide M(N 3 ) 5 ( M= Nb, Ta) with Nitrogen Donor Ligands and their Self- Ionization. Angew Chem Int Edit 2014, 53 (21), 5431-5434.). The CHAPTER 3 is written from a full paper published in Zeitschrift für anorganische und allgemeine Chemie (Haiges, R.; Deokar, P.; Christe, K. O., Adduct Formation of Tantalum(V)- and Niobium(V) Fluoride with Neutral Group 15 Donor Ligands, an Example for Ligand Induced Self-Ionization. Z. Anorg. Allg. Chem. 2014, 640 (8-9), 1568-1575). The zirconium and hafnium azides discussed in CHAPTER 4 are based on an accepted manuscript in Angewandte Chemie International Edition (Deokar, P.; Vasiliu, M.; Dixon D. A.; Christe, K. O.; Haiges R., “The Binary Group IV azides [PPh 4 ] 2 [Zr(N 3 ) 6 ] and [PPh 4 ] 2 [Hf(N 3 ) 6 ]” Manuscript accepted in Angew Chem Int Edit) The CHAPTER 6 is written from a full paper published in Chemistry – A European Journal (Deokar, P.; Leitz, D.; Stein, T. H.; Vasiliu, M.; Dixon, D. A.; Christe, K. O.; Haiges, R., Preparation and Characterization of Antimony and Arsenic Tricyanide and Their 2,2′-Bipyridine Adducts. Chem. Eur. J. 2016, 22 (37), 13251-13257). CHAPTER 5 and CHAPTER 7 as written as manuscripts intended for publication. All the computational work throughout was expertly performed by the research group of Prof. Dr. Dave A. Dixon, at the University of Alabama. Profs. Dr. Ralf Haiges and Karl O. Christe were involved in co-writing and proof-reading all the articles. Prof. Dr. Ralf Haiges was extensively consulted in the matters involving X-ray crystallography. v Table of Contents CHAPTER 1 INTRODUCTION ................................................................................................................1 1.1 Azides ..................................................................................................................................................1 1.1.1 Explosophores ..............................................................................................................................1 1.1.2 Stability ........................................................................................................................................2 1.1.3 Sensitivity .....................................................................................................................................3 1.1.4 Overview ......................................................................................................................................5 1.1.5 Significance ..................................................................................................................................6 1.2 Cyanides ..............................................................................................................................................6 1.2.1 Overview ......................................................................................................................................7 1.2.3 Significance ..................................................................................................................................7 1.3 Synthesis ..............................................................................................................................................8 1.4 Safety ...................................................................................................................................................8 1.5 References ...........................................................................................................................................8 CHAPTER 2 ADDUCT FORMATION OF TANTALUM(V)- AND NIOBIUM(V)- AZIDES WITH NEUTRAL GROUP 15 DONOR LIGANDS, AN EXAMPLE FOR LIGAND INDUCED SELF- IONIZATION .............................................................................................................................................15 2.1 Introduction .......................................................................................................................................15 2.2 Synthesis ............................................................................................................................................15 2.3 Structural characterization .................................................................................................................17 2.4 Thermal Stability ...............................................................................................................................20 2.5 Conclusion .........................................................................................................................................21 2.6 Experimental Section .........................................................................................................................21 2.7 References .........................................................................................................................................23 CHAPTER 3 ADDUCTS OF TANTALUM(V)- AND NIOBIUM(V)- FLUORIDE WITH NEUTRAL GROUP 15 DONOR LIGANDS ..........................................................................................26 3.1 Introduction .......................................................................................................................................26 3.2 Synthesis ............................................................................................................................................27 3.3 Spectroscopy ......................................................................................................................................28 3.4 Structural Characterization ................................................................................................................31 3.5 Conclusion .........................................................................................................................................34 3.2 Experimental Section .........................................................................................................................34 3.7 References .........................................................................................................................................38 vi CHAPTER 4 THE BINARY GROUP 4 AZIDES [PPh 4 ] 2 [Zr(N 3 ) 6 ] AND [PPh 4 ] 2 [Hf(N 3 ) 6 ] ................43 4.1 Introduction .......................................................................................................................................43 4.2 Synthesis ............................................................................................................................................43 4.3 Structural Characterization ................................................................................................................44 4.4 Computational Results .......................................................................................................................47 4.5 Spectroscopy ......................................................................................................................................51 4.6 Conclusion .........................................................................................................................................52 4.7 Experimental Section .........................................................................................................................53 4.8 References .........................................................................................................................................54 CHAPTER 5 THE DISPROPORTINATION AND SELF-IONIZATION REACTION OF Mn(CN) 3 IN THE PRESENCE OF 2,2’-BIPYRIDINE TO FORM [Mn(bipy) 3 ][Mn(CN) 6 ] ...............................58 5.1 Introduction .......................................................................................................................................58 5.2 Synthesis ............................................................................................................................................59 5.3 Spectroscopy ......................................................................................................................................60 5.4 Structural Characterization ................................................................................................................61 5.5 Conclusion .........................................................................................................................................62 5.6 Experimental Section .........................................................................................................................62 5.7 References .........................................................................................................................................63 CHAPTER 6 PREPARATION AND CHARACTERIZATION OF ANTIMONY AND ARSENIC TRICYANIDE AND THEIR 2,2’-BIPYRIDINE ADDUCTS ...............................................................65 6.1 Introduction .......................................................................................................................................65 6.2 Synthesis ............................................................................................................................................65 6.3 Spectroscopy ......................................................................................................................................66 6.4 Structural Characterization ................................................................................................................68 6.5 Computational Results .......................................................................................................................76 6.6 Conclusion .........................................................................................................................................77 6.7 Experimental Section .........................................................................................................................78 6.8 References .........................................................................................................................................79 CHAPTER 7 PREPARATION AND CHARACTERIZATION OF GROUP 13 CYANIDES [Ga(CN) 4 ] – , [In(CN) 5 ] 2– AND [Tl(CN) 5 ] 2– .................................................................................................83 7.1 Introduction .......................................................................................................................................83 7.2 Synthesis ............................................................................................................................................83 7.3 Spectroscopy ......................................................................................................................................84 vii 7.4 X-ray Crystallography .......................................................................................................................85 7.5 Computational Section ......................................................................................................................88 7.6 Conclusion .........................................................................................................................................91 7.7 Experimental Section .........................................................................................................................91 7.8 References .........................................................................................................................................92 CHAPTER 8 SUMMARY AND OUTLOOK .........................................................................................95 8.1 Summary, Relevance of Results, and Research Outlook ..................................................................95 APPENDIX 1: ADDITIONAL INFORMATION FOR TANTALUM(V)- AND NIOBIUM(V)- AZIDES WITH NEUTRAL GROUP 15 DONOR LIGANDS (CHAPTER 2) ....................................97 A1.1 Experimental Details ..................................................................................................................97 A1.1.1 Materials and Apparatus ....................................................................................................97 A1.1.2 Crystal structure determinations ........................................................................................98 A1.2 Crystal Structure Data ..............................................................................................................103 APPENDIX 2: ADDITIONAL INFORMATION FOR TANTALUM(V)- AND NIOBIUM(V)- FLUORIDE WITH NEUTRAL GROUP 15 DONOR LIGANDS (CHAPTER 3) ............................174 A2.1 Crystal Structure Data ..............................................................................................................174 APPENDIX 3: ADDITIONAL INFORMATION FOR [PPh 4 ] 2 [Zr(N 3 ) 6 ] AND [PPh 4 ] 2 [Hf(N 3 ) 6 ] (CHAPTER 4). .........................................................................................................................................228 A3.1 Experimental Details ................................................................................................................228 A3.1.1 Materials and Apparatus ..................................................................................................228 A3.1.2 Crystal structure determinations ......................................................................................229 A3.1.3 Preparation of [PPh 4 ] 2 [M(N 3 ) 6 ] (M = Zr, Hf) ..................................................................229 A3.2 X-ray Crystallography ..............................................................................................................230 A3.3 Computational Results .............................................................................................................249 APPENDIX 4: ADDITIONAL INFORMATION FOR [Mn(bipy) 3 ][Mn(CN) 6 ] (CHAPTER 5) .....263 A4.1 Experimental details .................................................................................................................263 A4.1.1 Materials and Apparatus ..................................................................................................263 A4.1.2 Crystal structure determination. .......................................................................................263 A4.1.3 Preparation of [Mn(bipy) 3 ][Mn(CN) 6 ] .............................................................................263 A4.2 Crystal Structure Data ..............................................................................................................264 viii APPENDIX 5: ADDITIONAL INFORMATION FOR ARSENIC AND ANTIMONY CYANIDES (CHAPTER 6). .........................................................................................................................................274 A5.1 Experimental details .................................................................................................................274 A5.1.1 Materials and apparatus ...................................................................................................274 A5.1.2 Crystal structure determination ........................................................................................274 A5.1.3 Preparation of [M(CN) 3 ] (M = As, Sb) ............................................................................275 A5.1.4 Preparation of [M(CN) 3 ·(2,2’-bipy)] (M = As, Sb) .........................................................275 A5.2 Crystal Structure Data ..............................................................................................................276 A5.3 Computational Results .............................................................................................................287 APPENDIX 6: ADDITIONAL INFORMATION FOR GROUP 13 CYANIDES (CHAPTER 7) ...291 A6.1 Crystallographic Information ...................................................................................................291 A6.1.1 Crystal Structure Report for [PPh 4 ][Ga(CN) 4 ] ................................................................291 A6.1.2 Crystal Structure Report for [PPh 4 ] 2 [In(CN) 5 ] ................................................................295 A6.1.3 Crystal Structure Report for [PPh 4 ] 2 [Tl(CN) 5 ] ................................................................302 A6.2 Spectroscopic Data ...................................................................................................................308 A6.2.1 Vibrational Spectrum of [PPh 4 ][Ga(CN) 4 ] ......................................................................308 A6.2.2 Vibrational Spectrum of [PPh 4 ] 2 [In(CN) 5 ] ......................................................................308 A6.2.3 Vibrational Spectrum of [PPh 4 ] 2 [Tl(CN) 5 ] ......................................................................310 A6.3 Computational Studies .............................................................................................................310 A6.3.1 Optimized geometries of Ga(CN) 3 (B3LYP, MP2) .........................................................310 A6.3.2 Optimized geometries of [Ga(CN) 4 ] - (B3LYP, MP2) .....................................................311 A6.3.3 Optimized geometries of [Ga(CN) 5 ] 2- (B3LYP, MP2) ....................................................312 A6.3.4 Optimized geometries of [Ga(CN) 6 ] 3- (B3LYP, MP2) ....................................................312 A6.3.5 Optimized geometries of In(CN) 3 (B3LYP, MP2) ..........................................................313 A6.3.6 Optimized geometries of [In(CN) 4 ] - (B3LYP, MP2) .......................................................314 A6.3.7 Optimized geometries of [In(CN) 5 ] 2- (B3LYP, MP2) .....................................................315 A6.3.8 Optimized geometries of [In(CN) 6 ] 3- (B3LYP, MP2) .....................................................315 A6.3.9 Optimized geometries of Tl(CN) 3 (B3LYP, MP2) ..........................................................316 A6.3.10 Optimized geometries of [Tl(CN) 4 ] - (B3LYP, MP2) ......................................................317 A6.3.11 Optimized geometries of [Tl(CN) 5 ] 2- (B3LYP, MP2) .....................................................317 A6.3.12 Optimized geometries of [Tl(CN) 6 ] 3- (B3LYP, MP2) .....................................................318 ix List of tables Table 2.1 Thermal stability of the polyazido adducts .................................................................. 20 Table 3.1 Selected vibrational data (cm -1 ) for the ν(M-F) vibration modes of [MF 4 (py) 4 ][MF 6 ], [MF 4 (2,2’-bipy) 2 ][MF 6 ] and [MF 4 (dppe) 2 ][MF 6 ] ½ CH 3 CN (M = Nb, Ta). ........................ 30 Table 4.1 Reaction energies in kcal/mol. ..................................................................................... 51 Table 6.1 Observed and unscaled calculated vibrational frequencies [cm –1 ] and intensities for M(CN) 3 a (M = As, Sb) .......................................................................................................... 67 Table 7.1 Reaction energies in kcal/mol at B3LYP//aug-cc-pVDZ(C,N)/ aug-cc-pVDZ-PP(M) and MP2//aug-cc-pVDZ(C,N)/ aug-cc-pwcVDZ-PP(M) for M = Ga, In, Tl ....................... 90 Table A1. 1 Sample and crystal data for [NbF 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] ..................................... 104 Table A1. 2 Data collection and structure refinement for [NbF 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] ........... 105 Table A1. 3 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [NbF 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] ......................................................................................... 105 Table A1. 4 Bond lengths (Å) for [NbF 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] ................................................ 106 Table A1. 5 Bond angles (°) for [NbF 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] .................................................. 107 Table A1. 6 Anisotropic atomic displacement parameters (Å 2 ) for [NbF 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] ............................................................................................................................................. 109 Table A1. 7 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [NbF 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] ............................................................................................... 110 Table A1. 8 Sample and crystal data for [TaF 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] ....................................... 112 Table A1. 9 Data collection and structure refinement for [TaF 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] ............ 112 Table A1. 10 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [TaF 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] ........................................................................................... 113 Table A1. 11 Bond lengths (Å) for [TaF 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] ............................................... 115 Table A1. 12 Bond angles (°) for [TaF 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] .................................................. 117 Table A1. 13 Anisotropic atomic displacement parameters (Å 2 ) for [TaF 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] ............................................................................................................................................. 120 Table A1. 14 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [TaF 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] ........................................................................................... 122 x Table A1. 15 Sample and crystal data for [Nb(N 3 ) 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] ............................... 124 Table A1. 16 Data collection and structure refinement for [Nb(N 3 ) 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] .... 125 Table A1. 17 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [Nb(N 3 ) 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] ..................................................................................... 125 Table A1. 18 Bond lengths (Å) for [Nb(N 3 ) 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] ......................................... 127 Table A1. 19 Bond angles (°) for [Nb(N 3 ) 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] ............................................ 128 Table A1. 20 Anisotropic atomic displacement parameters (Å 2 ) for [Nb(N 3 ) 4 (2,2’- bipy) 2 ][Nb(N 3 ) 6 ] .................................................................................................................. 130 Table A1. 21 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [Nb(N 3 ) 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] ..................................................................................... 131 Table A1. 22 Sample and crystal data for [Ta(N 3 ) 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] ................................ 133 Table A1. 23 Data collection and structure refinement for [Ta(N 3 ) 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] ...... 134 Table A1. 24 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [Ta(N 3 ) 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] ...................................................................................... 134 Table A1. 25 Bond lengths (Å) for [Ta(N 3 ) 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] .......................................... 136 Table A1. 26 Bond angles (°) for [Ta(N 3 ) 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] ............................................. 137 Table A1. 27 Anisotropic atomic displacement parameters (Å 2 ) for [Ta(N 3 ) 4 (2,2’- bipy) 2 ][Ta(N 3 ) 6 ] .................................................................................................................. 139 Table A1. 28 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [Ta(N 3 ) 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] ...................................................................................... 141 Table A1. 29 Sample and crystal data for [Nb(N 3 ) 4 (1,10-phen) 2 ][Nb(N 3 ) 6 ] ............................. 142 Table A1. 30 Data collection and structure refinement for [Nb(N 3 ) 4 (1,10-phen) 2 ][Nb(N 3 ) 6 ] ... 143 Table A1. 31 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [Nb(N 3 ) 4 (1,10-phen) 2 ][Nb(N 3 ) 6 ] ................................................................................... 143 Table A1. 32 Bond lengths (Å) for [Nb(N 3 ) 4 (1,10-phen) 2 ][Nb(N 3 ) 6 ] ........................................ 145 Table A1. 33 Bond angles (°) for [Nb(N 3 ) 4 (1,10-phen) 2 ][Nb(N 3 ) 6 ] .......................................... 146 Table A1. 34 Anisotropic atomic displacement parameters (Å 2 ) for [Nb(N 3 ) 4 (1,10- phen) 2 ][Nb(N 3 ) 6 ] ................................................................................................................. 148 Table A1. 35 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [Nb(N 3 ) 4 (1,10-phen) 2 ][Nb(N 3 ) 6 ] ................................................................................... 150 Table A1. 36 Sample and crystal data for (Nb(N 3 ) 5 ) 2 •(3,3’-bipy) ............................................. 152 xi Table A1. 37 Data collection and structure refinement for (Nb(N 3 ) 5 ) 2 •(3,3’-bipy) ................... 153 Table A1. 38 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for (Nb(N 3 ) 5 ) 2 •(3,3’-bipy) ................................................................................................... 153 Table A1. 39 Bond lengths (Å) for (Nb(N 3 ) 5 ) 2 •(3,3’-bipy) ....................................................... 154 Table A1. 40 Bond angles (°) for (Nb(N 3 ) 5 ) 2 •(3,3’-bipy) .......................................................... 154 Table A1. 41 Anisotropic atomic displacement parameters (Å 2 ) for (Nb(N 3 ) 5 ) 2 •(3,3’-bipy) .... 155 Table A1. 42 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for (Nb(N 3 ) 5 ) 2 •(3,3’-bipy) ................................................................................................... 155 Table A1. 43 Sample and crystal data for (Ta(N 3 ) 5 ) 2 •(3,3’-bipy) .............................................. 157 Table A1. 44 Data collection and structure refinement for (Ta(N 3 ) 5 ) 2 •(3,3’-bipy) ................... 157 Table A1. 45 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for (Ta(N 3 ) 5 ) 2 •(3,3’-bipy) .................................................................................................... 158 Table A1. 46 Bond lengths (Å) for (Ta(N 3 ) 5 ) 2 •(3,3’-bipy) ........................................................ 159 Table A1. 47 Bond angles (°) for (Ta(N 3 ) 5 ) 2 •(3,3’-bipy) ........................................................... 159 Table A1. 48 Anisotropic atomic displacement parameters (Å 2 ) for (Ta(N 3 ) 5 ) 2 •(3,3’-bipy) ..... 160 Table A1. 49 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å2) for (Ta(N 3 ) 5 ) 2 •(3,3’-bipy) .................................................................................................... 160 Table A1. 50 Sample and crystal data for (Nb(N 3 ) 5 ) 2 •(4,4’-bipy) ............................................. 161 Table A1. 51 Data collection and structure refinement for (Nb(N 3 ) 5 ) 2 •(4,4’-bipy) ................... 162 Table A1. 52 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for (Nb(N 3 ) 5 ) 2 •(4,4’-bipy) ................................................................................................... 163 Table A1. 53 Bond lengths (Å) for (Nb(N 3 ) 5 ) 2 •(4,4’-bipy) ....................................................... 164 Table A1. 54 Bond angles (°) for (Nb(N 3 ) 5 ) 2 •(4,4’-bipy) .......................................................... 164 Table A1. 55 Anisotropic atomic displacement parameters (Å 2 ) for (Nb(N 3 ) 5 ) 2 •(4,4’-bipy) .... 165 Table A1. 56 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for (Nb(N 3 ) 5 ) 2 •(4,4’-bipy) ................................................................................................... 166 Table A1. 57 Sample and crystal data for (Ta(N 3 ) 5 ) 2 •(4,4’-bipy) .............................................. 168 Table A1. 58 Data collection and structure refinement for (Ta(N 3 ) 5 ) 2 •(4,4’-bipy) ................... 169 Table A1. 59 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for (Ta(N 3 ) 5 ) 2 •(4,4’-bipy) .................................................................................................... 169 Table A1. 60 Bond lengths (Å) for (Ta(N 3 ) 5 ) 2 •(4,4’-bipy) ........................................................ 170 xii Table A1. 61 Bond angles (°) for (Ta(N 3 ) 5 ) 2 •(4,4’-bipy) ........................................................... 171 Table A1. 62 Anisotropic atomic displacement parameters (Å 2 ) for (Ta(N 3 ) 5 ) 2 •(4,4’-bipy) ..... 172 Table A1. 63 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for (Ta(N 3 ) 5 ) 2 •(4,4’-bipy) .................................................................................................... 173 Table A2. 1 Sample and crystal data for [NbF 4 (C 5 H 5 N) 4 ][NbF 6 ] .............................................. 175 Table A2. 2 Data collection and structure refinement for [NbF 4 (C 5 H 5 N) 4 ][NbF 6 ] ................... 175 Table A2. 3 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [NbF 4 (C 5 H 5 N) 4 ][NbF 6 ] .................................................................................................. 176 Table A2. 4 Bond lengths (Å) for [NbF 4 (C 5 H 5 N) 4 ][NbF 6 ] ........................................................ 176 Table A2. 5 Bond angles (°) for [NbF 4 (C 5 H 5 N) 4 ][NbF 6 ] ........................................................... 177 Table A2. 6 Anisotropic atomic displacement parameters (Å 2 ) for [NbF 4 (C 5 H 5 N) 4 ][NbF 6 ] ..... 179 Table A2. 7 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [NbF 4 (C 5 H 5 N) 4 ][NbF 6 ] ....................................................................................................... 179 Table A2. 8 Sample and crystal data for [TaF 4 (C 5 H 5 N) 4 ][TaF 6 ] ............................................... 181 Table A2. 9 Data collection and structure refinement for [TaF 4 (C 5 H 5 N) 4 ][TaF 6 ] ..................... 181 Table A2. 10 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [TaF 4 (C 5 H 5 N) 4 ][TaF 6 ] ................................................................................................... 182 Table A2. 11 Bond lengths (Å) for [TaF 4 (C 5 H 5 N) 4 ][TaF 6 ] ....................................................... 183 Table A2. 12 Bond angles (°) for [TaF 4 (C 5 H 5 N) 4 ][TaF 6 ] .......................................................... 184 Table A2. 13 Anisotropic atomic displacement parameters (Å 2 ) for [TaF 4 (C 5 H 5 N) 4 ][TaF 6 ] .... 185 Table A2. 14 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [TaF 4 (C 5 H 5 N) 4 ][TaF 6 ] ................................................................................................... 186 Table A2. 15 Sample and crystal data for [NbF 4 (dppe) 2 ][NbF 6 ]•½ CH 3 CN ............................. 188 Table A2. 16 Data collection and structure refinement for [NbF 4 (dppe) 2 ][NbF 6 ]•½ CH 3 CN ... 188 Table A2. 17 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [NbF 4 (dppe) 2 ][NbF 6 ]•½ CH 3 CN ................................................................................... 189 Table A2. 18 Bond lengths (Å) for [NbF 4 (dppe) 2 ][NbF 6 ]•½ CH 3 CN ........................................ 192 Table A2. 19 Bond angles (°) for [NbF 4 (dppe) 2 ][NbF 6 ]•½ CH 3 CN .......................................... 195 Table A2. 20 Anisotropic atomic displacement parameters (Å 2 ) for [NbF 4 (dppe) 2 ][NbF 6 ]•½ CH 3 CN ................................................................................................................................ 201 xiii Table A2. 21 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [NbF 4 (dppe) 2 ][NbF 6 ]•½ CH 3 CN ................................................................................... 204 Table A2. 22 Sample and crystal data for [TaF 4 (dppe) 2 ][TaF 6 ]•½ CH 3 CN ............................... 208 Table A2. 23 Data collection and structure refinement for [TaF 4 (dppe) 2 ][TaF 6 ]•½ CH 3 CN .... 208 Table A2. 24 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [TaF 4 (dppe) 2 ][TaF 6 ]•½ CH 3 CN .................................................................................... 209 Table A2. 25 Bond lengths (Å) for [TaF 4 (dppe) 2 ][TaF 6 ]•½ CH 3 CN ......................................... 212 Table A2. 26 Bond angles (°) for [TaF 4 (dppe) 2 ][TaF 6 ]•½ CH 3 CN ............................................ 215 Table A2. 27 Anisotropic atomic displacement parameters (Å 2 ) for [TaF 4 (dppe) 2 ][TaF 6 ]•½ CH 3 CN ................................................................................................................................ 221 Table A2. 28 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [TaF 4 (dppe) 2 ][TaF 6 ]•½ CH3CN .................................................................................... 224 Table A3. 1 Sample and crystal data for [PPh 4 ] 2 [Zr(N 3 ) 6 ] ......................................................... 231 Table A3. 2 Data collection and structure refinement for [PPh 4 ] 2 [Zr(N 3 ) 6 ] .............................. 231 Table A3. 3 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [Zr(N 3 ) 6 ] ............................................................................................................ 232 Table A3. 4 Bond lengths (Å) for [PPh 4 ] 2 [Zr(N 3 ) 6 ] ................................................................... 234 Table A3. 5 Bond angles (°) for [PPh 4 ] 2 [Zr(N 3 ) 6 ] ...................................................................... 235 Table A3. 6 Torsion angles (°) for [PPh 4 ] 2 [Zr(N 3 ) 6 ] .................................................................. 237 Table A3. 7 Anisotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [Zr(N 3 ) 6 ] ............... 239 Table A3. 8 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [Zr(N 3 ) 6 ] .................................................................................................................. 240 Table A3. 9 Sample and crystal data for [PPh 4 ] 2 [Hf(N 3 ) 6 ]. ....................................................... 243 Table A3. 10 Data collection and structure refinement for [PPh 4 ] 2 [Hf(N 3 ) 6 ]. ........................... 243 Table A3. 11 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [Hf(N 3 ) 6 ] ............................................................................................................ 244 Table A3. 12 Bond lengths (Å) for [PPh 4 ] 2 [Hf(N 3 ) 6 ] ................................................................. 244 Table A3. 13 Bond angles (°) for [PPh 4 ] 2 [Hf(N 3 ) 6 ] ................................................................... 245 Table A3. 14 Torsion angles (°) for [PPh 4 ] 2 [Hf(N 3 ) 6 ] ............................................................... 246 Table A3. 15 Anisotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [Hf(N 3 ) 6 ] ............. 247 xiv Table A3. 16 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [Hf(N 3 ) 6 ] ............................................................................................................ 248 Table A3. 17 XYZ coordinates for T d [Ti(N 3 ) 4 ] at B3LYP ....................................................... 249 Table A3. 18 XYZ coordinates for T d [Ti(N 3 ) 4 ] at SVWN5 ...................................................... 249 Table A3. 19 XYZ coordinates for T d [Zr(N 3 ) 4 ] at B3LYP ....................................................... 249 Table A3. 20 XYZ coordinates for T d [Zr(N 3 ) 4 ] at SVWN5 ..................................................... 250 Table A3. 21 XYZ coordinates for T d [Hf(N 3 ) 4 ] at B3LYP ....................................................... 250 Table A3. 22 XYZ coordinates for T d [Hf(N 3 ) 4 ] at SVWN5 ..................................................... 250 Table A3. 23 XYZ coordinates for C 1 A [Ti(N 3 ) 5 ] - at B3LYP .................................................. 251 Table A3. 24 XYZ coordinates for C 1 B [Ti(N 3 ) 5 ] - at B3LYP .................................................. 251 Table A3. 25 XYZ coordinates for C 1 C [Ti(N 3 ) 5 ] - at SVWN5 ................................................. 251 Table A3. 26 XYZ coordinates for C 1 D [Ti(N 3 ) 5 ] - at SVWN5 ................................................. 252 Table A3. 27 XYZ coordinates for C 3v [Ti(N 3 ) 5 ] - at SVWN5 ................................................... 252 Table A3. 28 XYZ coordinates for D 3h [Ti(N 3 ) 5 ] - at B3LYP ..................................................... 252 Table A3. 29 XYZ coordinates for D 3h [Ti(N 3 ) 5 ] - at SVWN5 ................................................... 253 Table A3. 30 XYZ coordinates for C 1 [Hf(N 3 ) 5 ] - at B3LYP ..................................................... 253 Table A3. 31 XYZ coordinates for C 1 [Hf(N 3 ) 5 ] - at SVWN5 .................................................... 254 Table A3. 32 XYZ coordinates for C S [Hf(N 3 ) 5 ] - at B3LYP ..................................................... 254 Table A3. 33 XYZ coordinates for C 3v [Hf(N 3 ) 5 ] - at B3LYP .................................................... 254 Table A3. 34 XYZ coordinates for D 3h [Hf(N 3 ) 5 ] - at B3LYP .................................................... 255 Table A3. 35 XYZ coordinates for D 3h [Hf(N 3 ) 5 ] - at SVWN5 .................................................. 255 Table A3. 36 XYZ coordinates for C s [Zr(N 3 ) 5 ] - at B3LYP ...................................................... 255 Table A3. 37 XYZ coordinates for C s [Zr(N 3 ) 5 ] - at SVWN5 .................................................... 256 Table A3. 38 XYZ coordinates for C 3v [Zr(N 3 ) 5 ] - at B3LYP ..................................................... 256 Table A3. 39 XYZ coordinates for C 3v [Zr(N 3 ) 5 ] - at SVWN5 ................................................... 256 Table A3. 40 XYZ coordinates for D 3h [Zr(N 3 ) 5 ] - at B3LYP .................................................... 257 Table A3. 41 XYZ coordinates for D 3h [Zr(N 3 ) 5 ] - at SVWN5 ................................................... 257 Table A3. 42 XYZ coordinates for C 1 [Ti(N 3 ) 6 ] 2- at B3LYP ..................................................... 258 Table A3. 43 XYZ coordinates for O h [Ti(N 3 ) 6 ] 2- at B3LYP ..................................................... 258 Table A3. 44 XYZ coordinates for O h [Ti(N 3 ) 6 ] 2- at SVWN5 ................................................... 258 Table A3. 45 XYZ coordinates for C 1 [Hf(N 3 ) 6 ] 2- at B3LYP .................................................... 259 xv Table A3. 46 XYZ coordinates for O h [Hf(N 3 ) 6 ] 2- at B3LYP .................................................... 259 Table A3. 47 XYZ coordinates for O h [Hf(N 3 ) 6 ] 2- at SVWN5 .................................................. 260 Table A3. 48 XYZ coordinates for C 1 [Zr(N 3 ) 6 ] 2- at B3LYP ..................................................... 260 Table A3. 49 XYZ coordinates for C 1 [Zr(N 3 ) 6 ] 2- at SVWN5 ................................................... 260 Table A3. 50 XYZ coordinates for O h [Zr(N 3 ) 6 ] 2- at B3LYP .................................................... 261 Table A3. 51 XYZ coordinates for O h [Zr(N 3 ) 6 ] 2- at SVWN5 ................................................... 261 Table A4. 1 Sample and crystal data for MnCN3_Bipy ............................................................ 265 Table A4. 2 Data collection and structure refinement for MnCN3_Bipy .................................. 265 Table A4. 3 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for MnCN 3 _Bipy ................................................................................................................. 266 Table A4. 4 Bond lengths (Å) for MnCN 3 _Bipy ....................................................................... 267 Table A4. 5 Bond angles (°) for MnCN 3 _Bipy .......................................................................... 268 Table A4. 6 Torsion angles (°) for MnCN 3 _Bipy ...................................................................... 270 Table A4. 7 Anisotropic atomic displacement parameters (Å 2 ) for MnCN 3 _Bipy .................... 271 Table A4. 8 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for MnCN 3 _Bipy ...................................................................................................................... 272 Table A5. 1 Sample and crystal data for As(CN) 3 ..................................................................... 278 Table A5. 2 Data collection and structure refinement for As(CN) 3 ........................................... 279 Table A5. 3 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for As(CN) 3 ......................................................................................................................... 279 Table A5. 4 Bond lengths (Å) for As(CN) 3 ............................................................................... 279 Table A5. 5 Bond angles (°) for As(CN) 3 .................................................................................. 280 Table A5. 6 Anisotropic atomic displacement parameters (Å 2 ) for As(CN) 3 ............................ 280 Table A5. 7 Sample and crystal data for [As(CN) 3 •2,2’-bipy] .................................................. 280 Table A5. 8 Data collection and structure refinement for [As(CN) 3 •(2,2’-bipy)] ..................... 280 Table A5. 9 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [As(CN) 3 •(2,2’-bipy)] ................................................................................................... 281 Table A5. 10 Bond lengths (Å) for [As(CN) 3 •(2,2’-bipy)] ........................................................ 281 Table A5. 11 Bond angles (°) for [As(CN) 3 •(2,2’-bipy)] ........................................................... 282 xvi Table A5. 12 Torsion angles (°) for [As(CN) 3 •(2,2’-bipy)] ....................................................... 282 Table A5. 13 Anisotropic atomic displacement parameters (Å 2 ) for [As(CN) 3 •(2,2’-bipy)] .... 283 Table A5. 14 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [As(CN) 3 •(2,2’-bipy)] ................................................................................................... 283 Table A5. 15 Sample and crystal data for [Sb(CN) 3 •(2,2’-bipy)] .............................................. 283 Table A5. 16 Data collection and structure refinement for [Sb(CN) 3 •(2,2’-bipy)] ................... 284 Table A5. 17 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [Sb(CN) 3 •(2,2’-bipy)] .................................................................................................... 284 Table A5. 18 Bond lengths (Å) for [Sb(CN) 3 •(2,2’-bipy)] ........................................................ 285 Table A5. 19 Bond angles (°) for [Sb(CN) 3 •(2,2’-bipy)] ........................................................... 285 Table A5. 20 Torsion angles (°) for [Sb(CN) 3 •(2,2’-bipy)] ....................................................... 286 Table A5. 21 Anisotropic atomic displacement parameters (Å 2 ) for [Sb(CN) 3 •(2,2’-bipy)] ..... 286 Table A5. 22 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [Sb(CN) 3 •(2,2’-bipy)] .................................................................................................... 287 Table A5. 23 Cartesian Coordinates for As(CN) 3 at the B3LYP//aug-cc-pVDZ(C,N)/ aug-cc- pVDZ-PP(M) level .............................................................................................................. 288 Table A5. 24 Cartesian Coordinates for Sb(CN) 3 at the B3LYP//aug-cc-pVDZ(C,N)/ aug-cc- pVDZ-PP(M) level .............................................................................................................. 288 Table A5. 25 Cartesian Coordinates for [As(CN) 3 •(HCN) 3 ] at the B3LYP// aug-cc- pVDZ(H)/aug-cc-pwCVDZ(C,N)/ aug-cc-pwCVDZ-PP(M) level .................................... 288 Table A5. 26 Cartesian Coordinates for [Sb(CN) 3 •(HCN) 3 ] at the B3LYP// aug-cc- pVDZ(H)/aug-cc-pwCVDZ(C,N)/ aug-cc-pwCVDZ-PP(M) level .................................... 288 Table A5. 27 Cartesian Coordinates for [As(CN) 3 •(2,2’-bipy)] at the B3LYP//aug-cc- pVDZ(C,N)/ aug-cc-pVDZ-PP(M) level ............................................................................ 289 Table A5. 28 Cartesian Coordinates for [Sb(CN) 3 •(2,2’-bipy)] at the B3LYP//aug-cc- pVDZ(C,N)/ aug-cc-pVDZ-PP(M) level ............................................................................ 289 Table A6.1 Sample and crystal data for [PPh 4 ][Ga(CN) 4 ] ......................................................... 292 Table A6.2 Data collection and structure refinement for [PPh 4 ][Ga(CN) 4 ] .............................. 292 Table A6. 3 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for TPP 2 GaCN 5 . .................................................................................................................. 293 xvii Table A6. 4 Bond lengths (Å) for TPP 2 GaCN 5 .......................................................................... 293 Table A6. 5 Bond angles (°) for TPP 2 GaCN 5 ............................................................................ 294 Table A6. 6 Torsion angles (°) for TPP 2 GaCN 5 ........................................................................ 294 Table A6. 7 Anisotropic atomic displacement parameters (Å 2 ) for TPP 2 GaCN 5 ...................... 294 Table A6. 8 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for TPP 2 GaCN 5 ......................................................................................................................... 295 Table A6. 9 Sample and crystal data for [PPh 4 ] 2 [In(CN) 5 ] ........................................................ 296 Table A6. 10 Data collection and structure refinement for [PPh 4 ] 2 [In(CN) 5 ] ........................... 296 Table A6. 11 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [In(CN) 5 ] ............................................................................................................ 297 Table A6. 12 Bond lengths (Å) for [PPh 4 ] 2 [In(CN) 5 ] ................................................................ 298 Table A6. 13 Bond angles (°) for [PPh 4 ] 2 [In(CN) 5 ] ................................................................... 298 Table A6. 14 Torsion angles (°) for [PPh 4 ] 2 [In(CN) 5 ] ............................................................... 300 Table A6. 15 Anisotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [In(CN) 5 ] ............. 300 Table A6. 16 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [In(CN) 5 ] ............................................................................................................ 301 Table A6. 17 Sample and crystal data for [PPh 4 ] 2 [Tl(CN) 5 ] ...................................................... 303 Table A6. 18 Data collection and structure refinement for [PPh 4 ] 2 [Tl(CN) 5 ] ........................... 303 Table A6. 19 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [Tl(CN) 5 ] ........................................................................................................... 304 Table A6. 20 Bond lengths (Å) for [PPh 4 ] 2 [Tl(CN) 5 ] ................................................................ 304 Table A6. 21 Bond angles (°) for [PPh 4 ] 2 [Tl(CN) 5 ] .................................................................. 305 Table A6. 22 Anisotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [Tl(CN) 5 ] ............ 306 Table A6. 23 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [Tl(CN) 5 ] ........................................................................................................... 307 xviii List of figures Figure 1.1 Common explosophores ............................................................................................... 2 Figure1.1.2 DTA trace of [Ti(N 3 ) 4 (bipy)] showing an endotherm and a decomposition exotherm ................................................................................................................................................. 3 Figure 1.3 OZM Research drophammer setup for determination of impact-sensitivity ................ 4 Figure 1.4 OZM Research friction sensitivity apparatus ............................................................... 4 Figure 2.1 Crystal structures of [NbF 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] (A), [TaF 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] (B), [Nb(N 3 ) 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] (C), and [Nb(N 3 ) 4 (phen) 2 ][Nb(N 3 ) 6 ] (D). Ellipsoids are drawn at the 50% probability level and hydrogen atoms have been omitted for clarity. ..... 18 Figure 2.2 Crystal structures of (Nb(N 3 ) 5 ) 2 •(3,3’-bipy) (A) and (Nb(N 3 ) 5 )2•(4,4’-bipy) (B). Ellipsoids are drawn at the 50% probability level and hydrogen atoms have been omitted for clarity. ................................................................................................................................... 19 Figure 3.1 Infrared (upper trace) and Raman spectra (lower trace) of [NbF 4 (py) 4 ][NbF 6 ]. ........ 29 Figure 3.2 Infrared (upper trace) and Raman spectra (lower trace) of [TaF 4 (2,2’-bipy) 2 ][TaF 6 ]. 29 Figure 3.3 Isostructural cations of [MF 4 (py) 4 ][MF 6 ] (M = Nb, Ta). Ellipsoids are drawn at the 50% probability level and hydrogen atoms have been omitted for clarity. .......................... 32 Figure 3.4 Structure of the two non-equivalent cations in [NbF 4 (dppe) 2 ][NbF 6 ] ½ CH 3 CN in the unit cell of the crystal. Ellipsoids are drawn at the 50% probability level and hydrogen atoms have been omitted for clarity. There are two crystallographic distinct cations with different conformation of the dppe ligand; (a) Nb1 centered cation, (b) Nb2 centered cation. ............................................................................................................................................... 33 Figure 4.1 ORTEP drawing of the anion in the crystal structure of [PPh 4 ] 2 [Zr(N 3 ) 6 ]. Thermal ellipsoids are drawn at the 50% probability level. Selected bond lengths [Å] and angles [°]: Zr-N1 2.132(1), Zr-N4 2.137(1), Zr-N7 2.136(1), Zr-N10 2.151(1), Zr-N13 2.178(2), Zr- N16 2.164(1), N4-N5 1.186(2), N5-N6 1.153(2), N7-N8 1.189(2), N8-N9 1.147(2), N10- N11 1.195(2), N11-N12 1.146(2), N13-N14 1.209(2), N14-N15 1.148(2), N16-N17 1.191(2), N17-N18 1.151(2) Zr-N1-N2 165.9(1), Zr-N4-N5 168.3(1), N4-Zr-N16 89.22(6), N4-Zr-N13 87.12(6), N1-Zr-N4 175.58(6). Zr-N7-N8 153.1(1), Zr–N10-N11 140.6(1), Zr- N13-N14 127.1(1), Zr-N16-N17 142.7(1). ........................................................................... 45 xix Figure 4.2 ORTEP drawing of the anion in the crystal structure of [PPh 4 ] 2 [Hf(N 3 ) 6 ]. Thermal ellipsoids are shown at 50% probability. Selected bond lengths [Å] and angles [°]: Hf-N1 2.118(2), Hf-N4 2.160(2), Hf-N7 2.161(2), N1-N2 1.188(2), N2-N3 1.150(2), N4-N5 1.213(3), N5-N6 1.153(3), N7-N8 1.202(3), N8-N9 1.148(4), N1-N2-N3 179.3(3), N4-N5- N6 178.4(2), N7-N8-N9 177.6(3), Hf-N1-N2 164.4(1), Hf-N4-N5 128.2(1), Hf-N7-N8 133.7(1), N1-Hf-N4 91.4(1), N1-Hf-N7 89.6(1), N4-Hf-N7 90.3(1). .................................. 46 Figure 4.3 Optimized structures of zirconium and hafnium tetraazide at the B3LYP and SVWN5 levels. .................................................................................................................................... 48 Figure 4.4 Optimized structures of the pentaazido anions [M(N 3 ) 5 ] - and the energy differences [kcal/mol] at the B3LYP (black) and SVWN5 (red) levels. ................................................. 48 Figure 4.5 Optimized structures of the hexaazido anions [M(N 3 ) 6 ] 2– and the energy differences [kcal/mol] at the B3LYP (black) and SVWN5 (red) levels. ................................................. 49 Figure 4.6 IR (top trace) and Raman (bottom trace) spectra of [PPh 4 ] 2 [Hf(N 3 ) 6 ]. ...................... 52 Figure 5.1 ORTEP drawing of the crystal structure of [Mn(bipy) 3 ][Mn(CN) 6 ]. Thermal ellipsoids are shown at the 50% probability level. ............................................................... 61 Figure 6.1 The redetermined crystal structure of As(CN) 3 . Thermal ellipsoids are shown at the 50% probability level. Selected bond lengths [Å] and angles [°]: As1-C1 1.964(3), As1-C2 1.964(2), As1-C3 1.956(3), C1-N1 1.134(3), As1-N1’ 2.837(3), As1-N2’ 2.704(3), As1-N3’ 2.823(2), C2-N2 1.133(3), C3-N3 1.138(3), C1-As1-C2 89.94(10), C1-As1-C3 90.47(11), C2-As1-C3 90.59(10), As1-C1-N1 174.5(3), As1-C2-N2 175.7(2), As1-C3-N3 174.5(2). 68 Figure 6.2 Highest occupied molecular orbitals (HOMO and HOMO-9) of As(CN) 3 . ............... 69 Figure 6.3 Packing diagram for solid As(CN) 3 viewed in the a/c plane. ..................................... 70 Figure 6.4 HOMO and HOMO-15 of As(CN) 3 (HCN) 3 . .............................................................. 71 Figure 6.5 The crystal structure of [As(CN) 3 •(2,2’-bipy)]. Thermal ellipsoids are drawn at the 50% probability level and hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: As1-C1 1.964(2), As1-C2 2.026(2), As1-C3 1.950(2), As1-N1’ 2.851(2), As1-N2’ 2.944(2), As1-N4 2.592(2), As1-N5 3.002(2), C1-As1-C2 85.96(8), C1-As1-C3 90.91(8), C2-As1-C3 86.94(8), C2-As1-N2’ 100.02(6), C3-As1-N2’ 167.90(6), C3-As1-N4 79.38(6), N1’-As1-N2’ 111.91(5). ........................................................................................ 72 xx Figure 6.6 The basic structural 12-membered As 4 (CN) 4 ring making up the structure of [As(CN) 3 •(2,2’-bipy)]. Most atoms of the bipyridine molecules have been omitted for clarity. For selected bond lengths and bond angles [°] see caption of Fig. 6.5. ................... 73 Figure 6.7 Packing diagram of [As(CN) 3 •(2,2’-bipy)] viewed down the c-axis. The bipyridine molecules have been omitted for clarity. The bipyridine molecules and non-bonding terminal cyano groups occupy the empty spaces in the zig-zag sheets (Figure 6.8) and serve as a buffer. ............................................................................................................................. 74 Figure 6.8 Packing diagram of [As(CN) 3 •(2,2’-bipy)] viewed down the c-axis including the bipyridine molecules. ............................................................................................................ 75 Figure 6.9 The crystal structure of [Sb(CN) 3 •(2,2’-bipy)]. Thermal ellipsoids are drawn at the 50% probability level and hydrogen atoms are omitted for clarity. The sterically active free valence electron pair of Sb (not shown in this figure) shares the second axial position with the very long Sb1-N1’ bridge to a neighboring chain. Selected bond lengths [Å] and angles [°]: Sb1-C1 2.13(1), Sb1-C2 2.21(1), Sb1-C3 2.30(1), Sb1-N1’ 3.41(1), Sb1-N2’ 3.05(1), Sb1-N4 2.56(1), Sb1-N5 2.72(1), C1-Sb1-C2 88.1(6), C1-Sb1-C3 82.3(5), C2-Sb1-C3 75.3(6), C2-Sb1-N2’ 140.5(5), C3-Sb1-N2’ 65.5(5), C2-Sb1-N4 78.5(5), N1’-Sb1-N2’ 105.1(4). ................................................................................................................................ 75 Figure 6.10 A chain along the c-direction in the packing diagram of [Sb(CN) 3 •(2,2’-bipy)]. .... 76 Figure 6.11 Optimized structures of the metal tricyanide species at the B3LYP//aug-cc- pVDZ(C,N)/ aug-cc-pVDZ-PP(M) levels. ........................................................................... 77 Figure 7.1 ORTEP plot of the anion in the crystal structure of [PPh 4 ][Ga(CN) 4 ] Thermal ellipsoids are shown at the 50% probability level. Select bond lengths [Å] and angles [°]: Ga-C1 1.970(1), C1-N1 1.145(2), C1-Ga-C1’ 111.41(7), C1-Ga-C1’ 108.51(3), Ga-C1-N1 178.2(1). ................................................................................................................................ 86 Figure 7.2 ORTEP plot of the anion in the crystal structure of [PPh 4 ] 2 [In(CN) 5 ]Thermal ellipsoids are shown at the 50% probability level. Select bond lengths [Å] and angles [°]: In- C1 2.204(3), In-C2 2.200(2), In-C3 2.342(2), C1-N1 1.121(4), C2-N2 1.142(2), C3-N3 1.146(2), C1-In-C2 122.2(1), C1-In-C3 90.1, C2-In-C3 94.0(1) In-C1-N1 180.0, In-C2-N2 174.8(2) In-C3-N3 173.8(2). ................................................................................................. 87 Figure 7.3 ORTEP plot of the anion in the crystal structure of [PPh 4 ] 2 [Tl(CN) 5 ]. Thermal ellipsoids are shown at the 50% probability level. Select bond lengths [Å] and angles [°]: Tl- xxi C1 2.213(3), Tl-C2 2.462(2), Tl-C3 2.205(2), C1-N1 1.119(5), C2-N2 1.148(3), C3-N3 1.143(3), C1-Tl-C2 90.36(6), C1-Tl-C3 122.16(6), C2-Tl-C3 85.49(8) Tl-C1-N1 180.0, Tl- C2-N2 173.8(2) Tl-C3-N3 175.0(2). ..................................................................................... 88 Figure 7.4 Optimized structures of [M(CN) 3 ] (M = Ga, In, Tl) at the MP2 and B3LYP levels with D 3h symmetry ................................................................................................................ 89 Figure 7.5 Optimized structures of [M(CN) 4 ] – (M = Ga, In, Tl) at the MP2 and B3LYP levels with T d symmetry .................................................................................................................. 89 Figure 7.6 Optimized structures of [M(CN) 5 ] 2– and [M(CN) 5 ] 3– (M = Ga, In, Tl) at the MP2 and B3LYP levels with T d and O h symmetry respectively .......................................................... 90 Figure A1. 1 Asymmetric unit in the crystal structure of [NbF4(2,2’-bipy)2][Nb(N3)6] ......... 103 Figure A1. 2 Packing diagram of [NbF 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ]. View normal to (001) ............ 104 Figure A1. 3 Asymmetric unit in the crystal structure of [TaF 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] ............. 111 Figure A1. 4 Packing diagram of [TaF 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ]. View normal to (001) ............. 111 Figure A1. 5 Asymmetric unit in the crystal structure of [Nb(N 3 ) 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] ....... 123 Figure A1. 6 Packing diagram of [Nb(N 3 ) 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ]. View normal to (001) ....... 124 Figure A1. 7 Asymmetric unit in the crystal structure of [Ta(N 3 ) 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] ........ 132 Figure A1. 8 Packing diagram of [Ta(N 3 ) 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ]. View normal to (001) ........ 133 Figure A1. 9 Asymmetric unit in the crystal structure of [Nb(N 3 ) 4 (1,10-phen) 2 ][Nb(N 3 ) 6 ] ...... 142 Figure A1. 10 Packing diagram of [Nb(N 3 ) 4 (1,10-phen) 2 ][Nb(N 3 ) 6 ]. View normal to (001) .... 142 Figure A1. 11 Asymmetric unit in the crystal structure of (Nb(N 3 ) 5 ) 2 •(3,3’-bipy) ................... 151 Figure A1. 12 Crystal structure of (Nb(N 3 ) 5 ) 2 •(3,3’-bipy) ........................................................ 151 Figure A1. 13 Packing diagram of (Nb(N 3 ) 5 ) 2 •(3,3’-bipy). View normal to (001) ................... 152 Figure A1. 14 Asymmetric unit in the crystal structure of (Ta(N 3 ) 5 ) 2 •(3,3’-bipy) .................... 156 Figure A1. 15 Crystal structure of (Ta(N 3 ) 5 ) 2 •(3,3’-bipy) ......................................................... 156 Figure A1. 16 Packing diagram of (Ta(N 3 ) 5 ) 2 •(3,3’-bipy). View normal to (001) .................... 157 Figure A1. 17 Asymmetric unit in the crystal structure of (Nb(N 3 ) 5 ) 2 •(4,4’-bipy) ................... 161 Figure A1. 18 Packing diagram of (Nb(N 3 ) 5 ) 2 •(4,4’-bipy). View normal to (001) ................... 161 Figure A1. 19 Asymmetric unit in the crystal structure of (Ta(N 3 ) 5 ) 2 •(4,4’-bipy) .................... 167 Figure A1. 20 Packing diagram of (Ta(N 3 ) 5 ) 2 •(4,4’-bipy). View normal to (001) .................... 168 xxii Figure A2. 1 Asymmetric unit in the crystal structure of [NbF 4 (C 5 H 5 N) 4 ][NbF 6 ] .................... 174 Figure A2. 2 Unit cell of [NbF 4 (C 5 H 5 N) 4 ][NbF 6 ]. View normal to (001) ................................. 174 Figure A2. 3 Asymmetric unit in the crystal structure [TaF 4 (C 5 H 5 N) 4 ][TaF 6 ] .......................... 180 Figure A2. 4 Unit cell of [TaF 4 (C 5 H 5 N) 4 ][TaF 6 ]. View normal to (001) .................................. 181 Figure A2. 5 Asymmetric unit in the crystal structure of [NbF 4 (dppe) 2 ][NbF 6 ]•½ CH 3 CN ..... 187 Figure A2. 6 Unit cell of [NbF 4 (dppe) 2 ][NbF 6 ]•½ CH 3 CN. View normal to (001) .................. 187 Figure A2. 7 Atom labeling scheme for [NbF 4 (dppe) 2 ][NbF 6 ]•½ CH 3 CN ................................ 188 Figure A2. 8 Asymmetric unit in the crystal structure of [TaF 4 (dppe) 2 ][TaF 6 ]•½ CH 3 CN ....... 207 Figure A2. 9 Unit cell of [TaF 4 (dppe) 2 ][TaF 6 ]•½ CH 3 CN. View normal to (001) .................... 207 Figure A2. 10 Atom labeling scheme for [TaF 4 (dppe) 2 ][TaF 6 ]•½ CH 3 CN ............................... 208 Figure A3. 1 Asymmetric unit in the crystal structure of [PPh 4 ] 2 [Zr(N 3 ) 6 ] ............................... 230 Figure A3. 2 Crystal packing in the structure of [PPh 4 ] 2 [Zr(N 3 ) 6 ] along the a-axis .................. 231 Figure A3. 3 Asymmetric unit in the crystal structure of [PPh 4 ] 2 [Hf(N 3 ) 6 ] .............................. 242 Figure A3. 4 Crystal packing in the structure of [PPh 4 ] 2 [Hf(N 3 ) 6 ] along the a-axis .................. 242 Figure A4. 1 Asymmetric unit in the crystal structure of [Mn(bipy) 3 ][Mn(CN) 6 ] .................... 264 Figure A4. 2 Crystal packing in the structure of [Mn(bipy) 3 ][Mn(CN) 6 ] along the a-axis ....... 264 Figure A5. 1 Asymmetric unit in the crystal structure of As(CN) 3 ........................................... 276 Figure A5. 2 Crystal packing in the structure of As(CN) 3 ......................................................... 277 Figure A5. 3 Asymmetric unit in the crystal structure of [As(CN) 3 •2,2’-bipy] ........................ 277 Figure A5. 4 Crystal packing in the structure of [As(CN) 3 •2,2’-bipy]. ..................................... 277 Figure A5. 5 Asymmetric unit in the crystal structure of [Sb(CN) 3 •2,2’-bipy]. ........................ 278 Figure A5. 6 Crystal packing in the structure of [Sb(CN) 3 •2,2’-bipy] ...................................... 278 Figure A5. 7 Optimized structures of the metal tricyanide species at the B3LYP//aug-cc- pVDZ(C,N)/ aug-cc-pVDZ-PP(M) levels .......................................................................... 287 Figure A6.1 Projection of packing of [PPh 4 ][Ga(CN) 4 ] perpendicular to 010 plane ................ 291 Figure A6. 2 Asymmetric unit of [PPh 4 ][Ga(CN) 4 ] ................................................................... 292 Figure A6. 3 Projection of packing of [PPh 4 ] 2 [In(CN) 5 ] perpendicular to 010 plane ............... 295 xxiii Figure A6. 4 Asymmetric unit of [PPh 4 ] 2 [In(CN) 5 ] ................................................................... 296 Figure A6. 5 Projection of packing of [PPh 4 ] 2 [Tl(CN) 5 ] perpendicular to 010 plane ............... 302 Figure A6. 6 Asymmetric unit of [PPh 4 ] 2 [Tl(CN) 5 ] .................................................................. 302 Figure A6. 7 Vibrational Spectrum of [PPh 4 ][Ga(CN) 4 ] ........................................................... 308 Figure A6. 8 Vibrational Spectrum of [PPh 4 ] 2 [In(CN) 5 ] ........................................................... 309 Figure A6. 9 Vibrational Spectrum of [PPh 4 ] 2 [Tl(CN) 5 ] ........................................................... 310 Figure A6. 10 Optimized geometries of Ga(CN) 3 (B3LYP, MP2) ............................................ 310 Figure A6. 11 Optimized geometries of [Ga(CN) 4 ] - (B3LYP, MP2) ........................................ 311 Figure A6. 12 Optimized geometries of [Ga(CN) 5 ] 2- (B3LYP, MP2) ....................................... 312 Figure A6. 13 Optimized geometries of [Ga(CN) 6 ] 3- (B3LYP, MP2) ....................................... 313 Figure A6. 14 Optimized geometries of In(CN)3 (B3LYP, MP2) ............................................ 313 Figure A6. 15 Optimized geometries of [In(CN) 4 ] - (B3LYP, MP2) ......................................... 314 Figure A6. 16 Optimized geometries of [In(CN) 5 ] 2- (B3LYP, MP2) ........................................ 315 Figure A6. 17 Optimized geometries of [In(CN) 6 ] 3- (B3LYP, MP2) ........................................ 315 Figure A6. 18 Optimized geometries of Tl(CN) 3 (B3LYP, MP2) ............................................. 316 Figure A6. 19 Optimized geometries of [Tl(CN) 4 ] - (B3LYP, MP2) ......................................... 317 Figure A6. 20 Optimized geometries of [Tl(CN) 5 ] 2- (B3LYP, MP2) ........................................ 317 Figure A6. 21 Optimized geometries of [Tl(CN) 6 ] 3- (B3LYP, MP2) ........................................ 318 1 CHAPTER 1 INTRODUCTION 1.1 Azides 1-4 Azide is the conjugate base of hydrazoic acid (HN 3 ) with the formula N 3 - . Phenyl azide was the first azide made by Griess in 1864; Curtius obtained sodium azide by the reaction of aqueous hydrazoic acid and sodium chloride in 1890. The azides, both organic and inorganic have always been thought remarkable due to their unusual structure, their instability and wide range of reaction chemistry. As for coordination and organometallic chemistry of azides, it was practically nonexistent until the mid-1960s. The advance scientific instruments like X-ray and electron diffraction methods as well as microwave spectroscopy along with theoretical studies using ab initio SCF and density functional calculations (DFT) have led to a better understanding of the properties and bonding of the extremely shock-sensitive, non-metal and metal azides. A close race still takes place in the field of inorganic azides between our research group (Christe and Haiges Research Group) and Klapötke who with their expertise in highly energetic polynitrogen compounds have laid the foundation in this field. 5-21 1.1.1 Explosophores Explosophores are chemical functional groups with positive heats of formation or highly reactive compounds, which characterize energetic materials. Nitrogen-rich functional groups like azides are useful explosophores due to the highly favorable formation of N≡N triple bond with a bond dissociation energy of ca 226 kcal/mol. 22 Other types of explosophores include oxygen-rich groups such as nitro or nitrato. Molecules with nitrogen containing fragments which decompose to dinitrogen is a major source of energy and gas. The complete oxidation of the fuel fragment such as carbon or hydrogen is often carried out by high oxygen containing functional groups. Figure 1.1 shows some of the commonly used explosophores. 2 Figure 1.1 Common explosophores 1.1.2 Stability Most energetic materials are typically in a thermodynamically metastable state, which means that thermodynamically favored decomposition reaction will occur upon provocation from light, impact and/or friction or heat. One way to measure the stability of an energetic material is the temperature at which the decomposition occurs, also known as decomposition onset temperature. To identify this, techniques like differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA) or a differential thermal analysis (DTA) are used. The exotherm decomposition onset for neutral inorganic metal azides can be well below room temperature. The neutral polyazides, which are usually most sensitive, can be stabilized either by the formation of donor- acceptor adducts with Lewis bases or by anion formation which increases the ionicity of the azido groups. Because an ionic azide possess two double bonds while a covalent azido group has a single triple bond, increasing the iconicity of the existing azido ligands by further addition makes the breaking of N-N bond more difficult and enhances the activation energy barrier towards N 2 elimination. 15 energetic materials with a practical application generally have decomposition onset well above 150℃. 3 Figure1.1.2 DTA trace of [Ti(N 3 ) 4 (bipy)] showing an endotherm and a decomposition exotherm 1.1.3 Sensitivity The Impact sensitivity of an energetic material is measured in joules, which is the amount of energy necessary from an impact of a falling weight required to initiate the explosion of a material. The instrument used for this purpose is known as drophammer (Figure 1.3). A material with an impact sensitivity of 39 J or less is considered hazardous. Friction sensitivity is a similar technique which relates to the ease with which a friction will initiate the explosion of a material. This is typically achieved by placing a sample of material on a ceramic tile and a ceramic peg is horizontally scratched with the material. The weight on the top of the ceramic surface can be controlled thus increasing the friction energy until an explosion is obtained. (Figure 1.4) A material which can be initiated with 353 N or less of frictional energy is considered friction-sensitive and hazardous. 4 Figure 1.3 OZM Research drophammer setup for determination of impact-sensitivity Figure 1.4 OZM Research friction sensitivity apparatus 5 1.1.4 Overview The synthesis of polyazido compounds has sparked much interest during the last two decades. 4 However, molecules containing a large number of azido groups are frequently explosive and shock-sensitive. 23 The synthesis and characterization of polyazido compounds can be regarded as one of the most challenging experimental tasks in synthetic chemistry. Despite or maybe because of these extreme challenges, this group of compounds has always fascinated chemists. Pseudohalogens have been found to be versatile ligands for metal-metal bridges in polynuclear transition metal complexes. 24-27 Among them, the azide ion is the most efficient ligand in regards to superexchange pathways between paramagnetic centers. 28 However, much of the recent attention given to polyazides is focused on their use as highly energetic materials due to the endothermicity of the N 3 group. The extraordinary physical and structural properties as well as the reaction chemistry of polyazido compounds are much less studied. The azido group is highly versatile and can act as a bridging bi-, tri- and tetradentate ligand. 26 Azido complexes exhibit a large variety of structural motifs because the azido ion can form bridges in end-on (µ 1,1 ) or end- to-end (µ 1,3 ) fashion, depending on steric and electronic requirements. 29, 30 It also has been well established that the nature of the magnetic interaction between magnetic metal centers is strongly dependent on the coordination mode between the metal ions and bridging groups, 31-35 as well as the M-N-N angles and the M-N 3 -M dihedral angles. 36 Common methods for the synthesis of azidometallates involve the direct reaction of metal salts, such as metal chlorides or metal bromides, with azide salts like NaN 3 or AgN 3 in aqueous solution, 37, 38 or the reaction of a metal chloride with trimethylsilyl azide. 39 However, these methods are shown to be cumbersome and often require elevated temperatures and/or the handling of dangerous starting materials. In addition, these exchange reactions do not run to completion so that multiple azide treatments are required and/or impure products are obtained. 40, 41 In addition, most of the published methods are not suitable for the preparation of polyazides of metals in high oxidation states. We demonstrated in our laboratory that the fluoride/azide exchange between an element fluoride and trimethylsilyl azide in a suitable solvent is a fast reaction that goes to completion even at temperatures as low as –78°C. 29, 40-51 6 1.1.5 Significance Polyazido compounds are of high interest in complex chemistry because of the unique electronic and magnetic properties of the azido ligand. The N 3 – ion is very versatile and exhibits several possible bonding modes, resulting in a rich structural chemistry of polyazido compounds that has not been explored to its full potential. In addition, polyazides show great potential for environmentally benign, green energetic materials applications. For example, the most widely used primary explosive in gun cartridges is lead diazide. The use of this compound releases large quantities of fine lead dust into the environment. The use of an environmental friendly azide such as Bi(N 3 ) 3 29 instead of Pb(N 3 ) 2 would prevent the exposure of law enforcement personal, soldiers, and civilians to dangerous levels of breathable lead dust during practice shooting. 52 Metal nitrides, and especially noble metal nitrides, are likely to have unusual or even unique properties and are recognized as extremely important materials for key technological applications such as semiconductors, superconductors and corrosion-resistant, super-hard devices. The chemistry of binary and ternary nitrides progressed much slower than the chemistries of metal oxides and metal fluorides. This slower progress can be attributed to the difficulties in obtaining these materials. Synthetic routes for the bulk production of metal nitrides are still limited. Direct synthesis from the elements is restricted to thermally highly stable nitrides because of the great strength of the triple bond in dinitrogen. Other routes from nitrogen compounds such as ammonium, hydrazine or organic azides result in product lower quality and purity. 1.2 Cyanides 53 Prussian Blue was the first coordination complex to be known, it was prepared by the German artist Diesbach in 1704 by heating animal waste and sodium carbonate in iron pot. This led to the isolation of potassium ferrocyanide, K 4 [Fe(CN) 6 ]. Homoleptic cyanometallates are an important class of coordination compounds that are often used as building blocks for more complex structures such as coordination polymers. 54-56 Cyano complexes in general are probably some of the earliest known coordination compounds. 53 7 1.2.1 Overview The ubiquity in classic inorganic chemistry can be explained by the outstanding ligand properties of cyanide, which forms complexes with virtually all metals often in various oxidation states. Over the years, a lot of attention has given to the field of transition metal cyano complexes due to the unique electronic and magnetic properties of the cyano ligand that enable it to act as a magnetic coupler between magnetic transition metal centers. 57-60 Cyanometallates are generally prepared by a direct reaction of cyanide salts, such as KCN or (C 4 H 9 ) 4 NCN with simple metal salts, such as metal chlorides or metal bromides, in aqueous solution. 61-63 However, this method only allows for the preparation of homoleptic cyanometallates with the metal in relatively low oxidation states. The reasons for this restriction are manifold. First of all, chlorides and bromides of elements in their highest oxidation states are often not very stable and not commonly available. Secondly, it already has been well established in metal polyazide chemistry that chloride or bromide compounds, especially of high oxidation state elements, are not very useful starting materials for ligand exchange reactions and that the use of element fluorides is beneficial. 40-51, 64 In addition, high oxidation state compounds are commonly moisture sensitive materials, which prohibit the use of aqueous solutions and it is mandatory to adhere to strict anhydrous conditions. 1.2.3 Significance The study of cyano metallates is of great significance for energy storage and sustainable chemistry using non-petroleum derived compounds of zero global warming through artificial photosynthesis for the conversion of solar energy into fuel and the sequestration of carbon dioxide. In addition, it has the potential to greatly influence science in general through the development of novel electrophilic cyanation reagents and weakly coordinating anions. The bulk preparation of a weakly coordinating cation could enable the synthesis of compounds with elements in so far unknown oxidation states and would revolutionize chemistry. 8 1.3 Synthesis The majority of the reactions were performed using a vacuum-line, glovebox and Schlenk technique. 65 While Schlenk Lines are very common and their design is relatively consistent throughout different research groups, the high vacuum lines used in this work are less wide spread. The main feature includes an integrated U-trap series allowing separation of volatile materials by fractional condensations. Each section of the line is individually connected to the rest of the vacuum line and to a calibrated Heise Gauge, which allows the precise pressure measurement. 1.4 Safety Polyazides are extremely shock-sensitive and often can explode violently upon the slightest provocation. Because of the high energy content and the high detonation velocity of these azides, their explosions are particularly violent and can cause, even on a one mmol scale, significant damage. Hence, the reactions in our study were limited to the milimoles scale. In the event of detonation, high-velocity glass or metal fragments can pose a serious risk. When energetic materials were isolated, we typically used Teflon-FEP reactors. The use of appropriate safety precautions (safety shields, face shields, leather gloves, protective clothing, such as heavy leather welding suits and ear plugs) was ensured as ignoring safety precautions can lead to serious injuries! 1.5 References 1. Gray, P., Chemistry of the inorganic azides. Quart. Rev. (London) 1963, 17 (4), 441-73. 2. Evans, B. L.; Yoffe, A. D.; Gray, P., Physics and chemistry of the inorganic azides. Chem. Rev. (Washington, DC, U. S.) 1959, 59, 515-68. 3. Audrieth, L. F., Hydrazoic acid and its inorganic derivatives. Chem. Rev. 1934, 15, 169- 224. 4. Fehlhammer, W. P.; Beck, W., Azide Chemistry - An Inorganic Perspective, Part I Metal -Azides: Overview, General Trends and Recent Developments. Z. Anorg. Allg. Chem. 2013, 639 (7), 1053-1082. 9 5. Klapotke, T. M., Recent developments in the chemistry of covalent azides. Chem. Ber./Recl. 1997, 130 (4), 443-451. 6. Klapotke, T. M.; Krumm, B.; Scherr, M.; Haiges, R.; Christe, K. O., The binary selenium(IV) Azides Se(N 3 ) 4 , [Se(N 3 ) 5 ] - , and [Se(N 3 ) 6 ] 2- . Angew Chem Int Ed Engl 2007, 46 (45), 8686-90. 7. Seok, W. K.; Klapotke, T. M., Inorganic and transition metal azides. Bull. Korean Chem. Soc. 2010, 31 (4), 781-788. 8. Haiges, R.; Vij, A.; Boatz, J. A.; Schneider, S.; Schroer, T.; Gerken, M.; Christe, K. O., First structural characterization of binary AsIII and SbIII azides. Chemistry 2004, 10 (2), 508-17. 9. Haiges, R.; Schneider, S.; Schroer, T.; Christe, K. O., High-energy-density materials: synthesis and characterization of N 5+ [P(N 3 ) 6 ] - , N 5+ [B(N 3 ) 4 ] - , N 5+ [HF 2 ] - .n HF, N 5+ [BF 4 ] - , N 5+ [PF 6 ] - , and N 5+ [SO 3 F]. Angew Chem Int Ed Engl 2004, 43 (37), 4919-24. 10. Haiges, R.; Boatz, J. A.; Vij, A.; Vij, V.; Gerken, M.; Schneider, S.; Schroer, T.; Yousufuddin, M.; Christe, K. O., Polyazide chemistry: preparation and characterization of As(N 3 ) 5 , Sb(N 3 ) 5 , and [P(C 6 H 5 ) 4 ][Sb(N 3 ) 6 )]. Angew Chem Int Ed Engl 2004, 43 (48), 6676-80. 11. Haiges, R.; Boatz, J. A.; Schneider, S.; Schroer, T.; Yousufuddin, M.; Christe, K. O., The binary group 4 azides [TiN( 3 ) 4 ], [P(C 6 H 5 ) 4 ][Ti(N 3 ) 5 ], and [P(C 6 H 5 ) 4 ] 2 [Ti(N 3 ) 6 ] and on linear Ti-- N--NN coordination. Angew Chem Int Ed Engl 2004, 43 (24), 3148-52. 12. Haiges, R.; Boatz, J. A.; Bau, R.; Schneider, S.; Schroer, T.; Yousufuddin, M.; Christe, K. O., Polyazide chemistry: the first binary group 6 azides, Mo(N 3 ) 6 , W(N 3 ) 6 , [Mo(N 3 ) 7 ] - , and [W(N 3 ) 7 ] - , and the [NW(N 3 ) 4 ] - and [NMo(N 3 ) 4 ] - ions. Angew Chem Int Ed Engl 2005, 44 (12), 1860-5. 13. Haiges, R.; Boatz, J. A.; Yousufuddin, M.; Christe, K. O., Monocapped trigonal- prismatic transition-metal heptaazides: syntheses, properties, and structures of [Nb(N 3 ) 7 ] 2- and [Ta(N 3 ) 7 ] 2 . Angew Chem Int Ed Engl 2007, 46 (16), 2869-74. 14. Haiges, R.; Boatz, J. A.; Christe, K. O., The syntheses and structure of the vanadium(IV) and vanadium(V) binary azides V(N 3 ) 4 , [V(N 3 ) 6 ] 2- , and [V(N 3 ) 6 ]. Angew Chem Int Ed Engl 2010, 49 (43), 8008-12. 15. Haiges, R.; Boatz, J. A.; Williams, J. M.; Christe, K. O., Preparation and characterization of the binary group 13 azides M(N 3 ) 3 and M(N 3 ) 3 .CH 3 CN (M=Ga, In, Tl), [Ga(N 3 ) 5 ] 2- , and [M(N 3 ) 6 ] 3- (M=In, Tl). Angew Chem Int Ed Engl 2011, 50 (38), 8828-33. 10 16. Haiges, R.; Rahm, M.; Dixon, D. A.; Garner, E. B., 3rd; Christe, K. O., Binary group 15 polyazides. structural characterization of [Bi(N 3 ) 4 ] - , [Bi(N 3 ) 5 ] 2- , [bipy.Bi(N 3 ) 5 ] 2- , [Bi(N 3 ) 6 ] 3- , bipy.As(N 3 ) 3 , bipy.Sb(N 3 ) 3 , and [(bipy) 2 .Bi(N 3 ) 3 ] 2 and on the lone pair activation of valence electrons. Inorg Chem 2012, 51 (2), 1127-41. 17. Haiges, R.; Buszek, R. J.; Boatz, J. A.; Christe, K. O., Preparation of the First Manganese(III) and Manganese(IV) Azides. Angew. Chem., Int. Ed. 2014, 53 (31), 8200-8205. 18. Haiges, R.; Skotnitzki, J.; Fang, Z.; Dixon, D. A.; Christe, K. O., The First Molybdenum(VI) and Tungsten(VI) Oxoazides MO 2 (N 3 ) 2 , MO 2 (N 3 )22 CH 3 CN, (bipy)MO 2 (N 3 ) 2 , and [MO 2 (N 3 ) 4 ] 2- (M=Mo, W). Angew Chem Int Ed Engl 2015, 54 (33), 9581-5. 19. Haiges, R.; Skotnitzki, J.; Fang, Z.; Dixon, D. A.; Christe, K. O., The Molybdenum(V) and Tungsten(VI) Oxoazides [MoO(N 3 ) 3 ], [MoO(N 3 ) 3 2 CH 3 CN], [(bipy)MoO(N 3 ) 3 ], [MoO(N 3 ) 5 ] 2- , [WO(N 3 ) 4 ], and [WO(N 3 ) 4 CH 3 CN]. Angew Chem Int Ed Engl 2015, 54 (51), 15550-5. 20. Haiges, R.; Vasiliu, M.; Dixon, D. A.; Christe, K. O., The Vanadium(V) Oxoazides [VO(N 3 ) 3 ], [(bipy)VO(N 3 ) 3 ], and [VO(N 3 ) 5 ] 2- . Angew Chem Int Ed Engl 2015, 54 (31), 9101-5. 21. Haiges, R.; Vasiliu, M.; Dixon, D. A.; Christe, K. O., The niobium oxoazides [NbO(N 3 ) 3 ], [NbO(N 3 ) 3 .2CH 3 CN], [(bipy)NbO(N 3 ) 3 ], Cs 2 [NbO(N 3 ) 5 ] and [PPh 4 ] 2 [NbO(N 3 ) 5 ]. Dalton Trans 2016, 45 (26), 10523-9. 22. Darwent, B. d., Bond Dissociation Energies in Simple Molecules National Standard Reference Data System 1970. 23. Fair, H. D.; Walker, R. F., Energetic materials. Plenum Press: New York, 1977. 24. Maji, T. K.; Laskar, I. R.; Mostafa, G.; Welch, A. J.; Mukherjee, P. S.; Chaudhuri, N. R., A 1D thiocyanato bridge nickel(II) system: crystal structure and magnetic property. Polyhedron 2001, 20 (7-8), 651-655. 25. Maji, T. K.; Mostafa, G.; Sain, S.; Prasad, J. S.; Chaudhuri, N. R., Construction of a 3D array of cadmium(II) using squarate as a building block. Crystengcomm 2001, (37), art. no.-37. 26. Maji, T. K.; Mukherjee, P. S.; Koner, S.; Mostafa, G.; Tuchagues, J. P.; Chaudhuri, N. R., 1D coordination polymer of copper(II) containing mu-1,1,3 azido ligand with alternating ferro- antiferromagnetic interactions. Inorg Chim Acta 2001, 314 (1-2), 111-116. 27. Maji, T. K.; Mukherjee, P. S.; Mostafa, G.; Mallah, T.; Cano-Boquera, J.; Chaudhuri, N. R., First observation of a ferromagnetic interaction through an end-to-end azido bridging pathway in a 1D copper(II) system. Chem Commun 2001, (11), 1012-1013. 11 28. Koner, S.; Saha, S.; Mallah, T.; Okamoto, K. I., End-on double azido bridged copper (II) complex with (N, N, O) schiff base: synthesis, structure and magnetic study. J Phys Chem Solids 2004, 65 (4), 697-700. 29. Haiges, R.; Rahm, M.; Dixon, D. A.; Garner, E. B., III; Christe, K. O., Binary Group 15 Polyazides. Structural Characterization of [Bi(N 3 ) 4 ] - [Bi(N 3 ) 5 ] 2- , [bipy.Bi(N 3 ) 5 ] 2- , [Bi(N 3 ) 6 ] 3- , bipy.As(N 3 ) 3 , bipy.Sb(N 3 ) 3 , and [(bipy) 2 .Bi(N 3 ) 3 ] 2 and on the Lone Pair Activation of Valence Electrons. Inorganic Chemistry 2012, 51 (2), 1127-1141. 30. Thompson, L. K.; Tandon, S. S., Azide bridged dicopper and dinickel complexes: Structure and magnetism. Comment Inorg Chem 1996, 18 (3), 125-144. 31. Kahn, O.; Sikorav, S.; Gouteron, J.; Jeannin, S.; Jeannin, Y., Crystal-Structure and Magnetic-Properties of (Mu-Azido) (Mu-Hydroxo)Bis[(N,N,N',N'- Tetramethylethylenediamine)Copper(Ii)] Perchlorate, a Copper(Ii) Dinuclear Complex with a Large Ferromagnetic Interaction. Inorganic Chemistry 1983, 22 (20), 2877-2883. 32. Comarmond, J.; Plumere, P.; Lehn, J. M.; Agnus, Y.; Louis, R.; Weiss, R.; Kahn, O.; Morgenstern-Badarau, I., Dinuclear Copper(Ii) Cryptates of Macrocyclic Ligands - Synthesis, Crystal-Structure, and Magnetic-Properties - Mechanism of the Exchange Interaction through Bridging Azido Ligands. J Am Chem Soc 1982, 104 (23), 6330-6340. 33. Bkouche-Waksman, I.; Boillot, M. L.; Kahn, O.; Sikorav, S., Crystal-Structure and Magnetic-Properties of [Cu 2 (Tmen) 2 (N 3 ) 3 ](Pf 6 ) (Tmen = N,N,N',N'-Tetramethylenediamine) - a Copper(Ii) Chain Compound with Both Single Symmetrical and Double Dissymmetrical End-to- End Azido Bridges. Inorganic Chemistry 1984, 23 (26), 4454-4459. 34. Mckee, V.; Zvagulis, M.; Dagdigian, J. V.; Patch, M. G.; Reed, C. A., Hemocyanin Models - Synthesis, Structure, and Magnetic-Properties of a Binucleating Copper(Ii) System. J Am Chem Soc 1984, 106 (17), 4765-4772. 35. Agnus, Y.; Louis, R.; Gisselbrecht, J. P.; Weiss, R., Dicopper(Ii) Chloro and Azido Inclusion Complexes of the [24-Ane-N2s4] Binucleating Macrocycle - Synthesis, Crystal and Molecular-Structures, and Spectral, Magnetic, and Electrochemical Properties. J Am Chem Soc 1984, 106 (1), 93-102. 36. Ribas, J.; Escuer, A.; Monfort, M.; Vicente, R.; Cortes, R.; Lezama, L.; Rojo, T., Polynuclear Ni-II and Mn-II azido bridging complexes. Structural trends and magnetic behavior. Coordin Chem Rev 1999, 193-5, 1027-1068. 12 37. Evans, B. L.; Yoffe, A. D.; Gray, P., Physics and Chemistry of the Inorganic Azides. Chem Rev 1959, 59 (4), 515-568. 38. Schmidtke, H.-H.; Garthoff, D., Das Ligandenfeldspektrum Von Ruthenium(2)-Ammin- Komplexen. Helv Chim Acta 1966, 49 (7), 2039-&. 39. Kornath, A., Homoleptic azidometalates. Angewandte Chemie-International Edition 2001, 40 (17), 3135-+. 40. Haiges, R.; Boatz, J.; Bau, R.; Schneider, S.; Schroer, T.; Yousufuddin, M.; Christe, K., Polyazide chemistry: The first binary group 6 azides, Mo(N 3 ) 6 , W(N 3 ) 6 , [Mo(N 3 ) 7 ] - , and [W(N 3 ) 7 ] - , and the [NW(N 3 ) 4 ] - and [NMo(N 3 ) 4 ] - ions. Angewandte Chemie-International Edition 2005, 44 (12), 1860-1865. 41. Haiges, R.; Boatz, J.; Vij, A.; Vij, V.; Gerken, M.; Schneider, S.; Schroer, T.; Yousufuddin, M.; Christe, K., Polyazide chemistry: Preparation and characterization of As(N 3 ) 5 , Sb(N 3 ) 5 , and IP(C 6 H 5 ) 4 ] [Sb(N 3 ) 6 ]. Angewandte Chemie-International Edition 2004, 43 (48), 6676-6680. 42. Haiges, R.; Boatz, J.; Schneider, S.; Schroer, T.; Yousufuddin, M.; Christe, K., The binary group 4 azides [Ti(N 3 ) 4 ] [P(C 6 H 5 ) 4 ][Ti(N 3 ) 5 ], and IP(C 6 H 5 ) 4 ] 2 [Ti(N 3 ) 6 ] and on linear Ti- N-NN coordination. Angewandte Chemie-International Edition 2004, 43 (24), 3148-3152. 43. Haiges, R.; Boatz, J.; Vij, A.; Gerken, M.; Schneider, S.; Schroer, T.; Christe, K., Polyazide chemistry: Preparation and characterization of Te(N 3 ) 4 and [P(C 6 H 5 ) 4 ] 2 [Te(N 3 ) 6 ] nd evidence for [N(CH 3 ) 4 ]Te(N 3 ) 5 ]. Angewandte Chemie-International Edition 2003, 42 (47), 5847- 5851. 44. Haiges, R.; Boatz, J. A.; Christe, K. O., The Syntheses and Structure of the Vanadium(IV) and Vanadium(V) Binary Azides V(N 3 ) 4 , [V(N 3 ) 6 ] 2- , and [V(N 3 ) 6 ] - . Angewandte Chemie-International Edition 2010, 49 (43), 8008-8012. 45. Haiges, R.; Boatz, J. A.; Schroer, T.; Yousufuddin, M.; Christe, K. O., Experimental evidence for linear metal-azido coordination: The binary Group 5 azides [Nb(N 3 ) 5 ], [Ta(N 3 ) 5 ], [Nb(N 3 ) 6 ] - , and [Ta(N 3 ) 6 ] - and 1 : 1 acetonitrile adducts [Nb(N( 3 ) 5 (CH 3 CN)] and [Ta(N 3 ) 5 (CH 3 CN)]. Angewandte Chemie-International Edition 2006, 45 (29), 4830-4835. 46. Haiges, R.; Boatz, J. A.; Williams, J. M.; Christe, K. O., Preparation and Characterization of the Binary Group 13 Azides M(N 3 ) 3 and M(N 3 ) 3 .CH 3 CN (M = Ga, In, Tl), [Ga(N 3 ) 5 ] 2- , and [M(N 3 ) 6 )] 3- (M = In, Tl). Angewandte Chemie-International Edition 2011, 50 (38), 8828-8833. 13 47. Haiges, R.; Buszek, R. J.; Boatz, J. A.; Christe, K. O., Preparation of the First Manganese(III) and Manganese(IV) Azides. Angewandte Chemie International Edition 2014, 53 (31), 8200-8205. 48. Haiges, R.; Deokar, P.; Christe, K. O., Coordination Adducts of Niobium(V) and Tantalum(V) Azide M(N 3 ) 5 ( M= Nb, Ta) with Nitrogen Donor Ligands and their Self- Ionization. Angew Chem Int Edit 2014, 53 (21), 5431-5434. 49. Haiges, R.; Vij, A.; Boatz, J. A.; Schneider, S.; Schroer, T.; Gerken, M.; Christe, K. O., First structural characterization of binary As-III and Sb-III azides. Chem-Eur J 2004, 10 (2), 508-517. 50. Klapoetke, T. M.; Krumm, B.; Scherr, M.; Haiges, R.; Christe, K. O., The binary selenium(IV) azides Se(N 3 ) 4 , [Se(N 3 ) 5 ] - , and [Se(N 3 ) 6 ] 2- . Angewandte Chemie-International Edition 2007, 46 (45), 8686-8690. 51. Wilson, W. W.; Haiges, R.; Boatz, J. A.; Christe, K. O., Synthesis and characterization of (Z)-[N 3 NFO](+) and (E)-[N 3 NFO](+). Angewandte Chemie-International Edition 2007, 46 (17), 3023-3027. 52. Brinck, T., Green energetic materials. John Wiley & Sons Inc.: Chichester, West Sussex, United Kingdom, 2014; p pages cm. 53. Griffith, W. P., Cyanide complexes of the transition metals. Quart. Rev. (London) 1962, 16 (No. 2), 188-207. 54. Dunbar, K. R.; Heintz, R. A., Chemistry of transition metal cyanide compounds: Modern perspectives. Prog Inorg Chem 1997, 45, 283-391. 55. Sharpe, A. G., The chemistry of cyano complexes of the transition metals. Academic Press: London ; New York, 1976; p xi, 302 p. 56. Fehlhammer, W. P.; Fritz, M., Emergence of a Cnh and Cyano Complex Based Organometallic Chemistry. Chem Rev 1993, 93 (3), 1243-1280. 57. Herrera, J. M.; Bachschmidt, A.; Villain, F.; Bleuzen, A.; Marvaud, V.; Wernsdorfer, W.; Verdaguer, M., Mixed valency and magnetism in cyanometallates and Prussian blue analogues. Philos T R Soc A 2008, 366 (1862), 127-138. 58. Culp, J. T.; Park, J. H.; Frye, F.; Huh, Y. D.; Meisel, M. W.; Talham, D. R., Magnetism of metal cyanide networks assembled at interfaces. Coordin Chem Rev 2005, 249 (23), 2642- 2648. 14 59. Wang, X. Y.; Hilfiger, M. G.; Prosvirin, A.; Dunbar, K. R., Trigonal bipyramidal magnetic molecules based on [Mo-III(CN)(6)](3-). Chem Commun 2010, 46 (25), 4484-4486. 60. Karadas, F.; Shatruk, M.; Perez, L. M.; Dunbar, K. R., Cyanide-Bridged [(Co 2 MII)-M-II] and [(Co 2 M2II)-M-II] Complexes Based on the [Co-II(triphos)(CN)( 2 )] Building Block: Syntheses, Structures, Magnetic Properties, and Density Functional Theoretical Studies. Chem- Eur J 2010, 16 (24), 7164-7173. 61. Ormond-Prout, J. E.; Smart, P.; Brammer, L., Cyanometallates as Halogen Bond Acceptors. Cryst Growth Des 2012, 12 (1), 205-216. 62. Maynard, B. A.; Lynn, K. S.; Sykora, R. E.; Gorden, A. E. V., Emission, Raman Spectroscopy, and Structural Characterization of Actinide Tetracyanometallates. Inorg Chem 2013, 52 (9), 4880-4889. 63. Malecki, G.; Ratuszna, A., Crystal structure of cyanometallates Me 3 [Co(CN) 6 ] 2 and KMe[Fe(CN) 6 ] with Me = Mn 2+ , Ni 2+ Cu 2+ . Powder Diffr 1999, 14 (1), 25-30. 64. Haiges, R.; Rahrn, M.; Dixon, D. A.; Garner, E. B., III; Christe, K. O., Binary Group 15 Polyazides. Structural Characterization of [Bi(N 3 ) 4 ] - [Bi(N 3 ) 5 ] 2- , [bipy center dot Bi(N 3 ) 5 ] 2- , [Bi(N 3 ) 6 ] 3- , bipy.As(N 3 ) 3 , bipy.Sb(N 3 ) 3 , and [(bipy) 2 .Bi(N 3 ) 3 ] 2 and on the Lone Pair Activation of Valence Electrons. Inorg Chem 2012, 51 (2), 1127-1141. 65. Shriver, D. F.; Drezdzon, M. A., The Manipulation of Air-Sensitive Compounds J. Wiley and Sons: New York, 1986. 15 CHAPTER 2 ADDUCT FORMATION OF TANTALUM(V)- AND NIOBIUM(V)- AZIDES WITH NEUTRAL GROUP 15 DONOR LIGANDS, AN EXAMPLE FOR LIGAND INDUCED SELF-IONIZATION 2.1 Introduction Azides and polyazides are viable candidates for high-energy-density materials (HEDM) and have received considerable attention in recent years. 1-4 Polyazido compounds have great potential as energetic materials due to their high positive heats of formation. However, the synthesis of molecules with a high number of azido groups is very challenging due to their shock sensitivity and explosive nature. Despite these obstacles, several binary transition-metal-azido complexes have been reported recently. 3, 5-13 In general, polyazido compounds can be obtained from the corresponding covalent fluorides by treatment with Me 3 SiN 3 in a suitable solvent. 14 Neutral binary polyazides are often highly explosive but their sensitivity can be greatly reduced by either anion or adduct formation which increases the ionicity of the azido ligands making the breaking of an N-N bond less favourable and raises the activation energy barrier towards fatal N 2 elimination. [1a] We recently reported the syntheses of the neutral group(V) metal polyazides V(N 3 ) 4 , Nb(N 3 ) 5 and Ta(N 3 ) 5 . 9 These neutral polyazides are very shock sensitive, but can be stabilized through the formation of the corresponding anions [V(N 3 ) 6 ] 2– , [Nb(N 3 ) 6 ] – , [Nb(N 3 ) 7 ] 2– , [Ta(N 3 ) 6 ] – and [Ta(N 3 ) 7 ] 2– . 7, 9, 15 In this work, we report the synthesis and characterization of neutral coordination adducts of Nb(N 3 ) 5 and Ta(N 3 ) 5 with N-donor ligands. 2.2 Synthesis 16 The reactions of NbF 5 and TaF 5 with an excess of Me 3 SiN 3 in the presence of two equivalent of 2,2’-bipyridine (2,2’-bipy) or 1,10-phenanthroline (1,10-phen) in acetonitrile solution at ambient temperature results in self-ionization and fluoride/azide exchange (Scheme 2.1) leading to the formation of products containing a [M(N 3 ) 6 ] – anion as well as a [M(N 3 ) 4 L 2 ] + cation (M = Nb, Ta, L = 2,2’-bipy, 1,10-phen). The 2,2’-bipyridine adducts [M(N 3 ) 4 (2,2’-bipy) 2 ][M(N 3 ) 6 ] were isolated as dark orange solids, while the corresponding 1,10-phenanthroline adducts [M(N 3 ) 4 (1,10- phen) 2 ][M(N 3 ) 6 ] were found to be yellow (Nb) to off-white (Ta) solids. 16 Scheme 2.1. Reactions of niobium and tantalum pentafluoride with an excess of Me 3 SiN 3 in the presence of 2,2’- bipyridine or 1,10-phenanthroline. The four self-ionization products [M(N 3 ) 4 L 2 ] + [M(N 3 ) 6 ] – (M = Nb, Ta; L = 2,2’-bipy, 1,10-phen) were characterized by vibrational spectroscopy (see Supplementary Material), the observed material balances and, for [Nb(N 3 ) 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ], [Ta(N 3 ) 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] and [Nb(N 3 ) 4 (1,10-phen) 2 ][Nb(N 3 ) 6 ] by their crystal structures. The reaction of NbF 5 and TaF 5 with three equivalents of Me 3 SiN 3 in the presence of two equivalents of 2,2’-bipyridine in acetonitrile solution results again in self-ionization and the formation of a hexaazidometalate salt. While with an excess of Me 3 SiN 3 fully azido substituted salts containing tetraazido cations [M(N 3 ) 4 (2,2’-bipy) 2 ] + are obtained, the use of Me 3 SiN 3 in a molar ratio of 1:3, results in the formation of a partially azido substituted salt containing the tetrafluorometal cation [MF 4 (2,2’-bipy) 2 ] + and a hexaazido substituted anion (Scheme 2). Scheme 2.2. Reactions of niobium and tantalum pentafluoride with three equivalents of Me 3 SiN 3 in the presence of 2,2’-bipyridine. The partially azido substituted hexaazidoniobates and -tantalates [MF 4 (2,2’-bipy) 2 ][M(N 3 ) 6 ] were isolated as orange solids that were characterized by their crystal structures, vibrational and NMR spectra, and the observed material balances 17 When the fluoride/azide exchange reactions between the metal pentafluorides and excess trimethylsilyl azide were carried out in the presence of 3,3’-bipyridine (3,3’-bipy) or 4,4’- bipyridine (4,4’-bipy), respectively, only 2:1 adducts of the metal pentaazide with the corresponding bipyridine ligand could be isolated (Scheme 2.3). No evidence for the formation of a self-ionization product was found, not even when a large excess of 3,3’-bipy or 4,4’-bipy was used in the reaction. This difference in reaction behaviour can be rationalized by the increased bite angles of 3,3’- and 4,4’-bipyridine compared to 2,2’-bipyridine or 1,10-phenanthroline. Scheme 2.3. Reactions of niobium and tantalum pentafluoride with Me 3 SiN 3 in the presence of 3,3’- and 4,4’- bipyridine. The niobium and tantalum pentaazide donor adducts (M(N 3 ) 5 ) 2 ·L (L = 3,3’-bipy, 4,4’-bipy) were isolated as orange (Nb) or off-white (Ta) solids that were characterized by their crystal structures, [4] vibrational and NMR spectra, and the observed material balances. The niobium and tantalum azido compounds of this work are moderately moisture sensitive. While the compounds decompose when exposed to moisture for several minutes or when dissolved in moist solvents, short-time air exposure of a few seconds did not result in hydrolysis. 2.3 Structural characterization The details of the crystallographic data collection and refinement parameters for all structurally investigated compounds are given in the Supporting Information. The crystal structures of the partially azido substituted complexes [NbF 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] and [TaF 4 (2,2’- bipy) 2 ][Ta(N 3 ) 6 ] consist of isolated and well separated [MF 4 (2,2’-bipy) 2 ] + cations and pseudo- 18 octahedral [M(N 3 ) 6 ] – anions (Figure 2.1 A and B). In the cations, the central metal atom is coordinated by a total of four fluoride ligands as well as four N-atoms from the two coordinated 2,2’-bipy ligands. This results in a pseudo square anti-prismatic environment around the metal atom in which each of the squares is composed of two fluoride ligands and two N-atoms from two different 2,2’-bipy ligands. Both squares are elongated along the N,N diagonal. The observed M- F bond distances in the [MF 4 (2,2’-bipy) 2 ] + cations (Nb: 1.884(1) - 1.900(1) Å, Ta: 1.886(5) - 1.912(5) Å) are slightly shorter than the ones found in the cations [MF 4 (pyridine) 4 ] + (Nb: 1.898(2) - 1.903(2) Å, Ta: 1.903(2) - 1.910(2) Å) 17 but are in the region of the M-F distances of the parent compounds M 4 F 20 (Nb: 1.75(5) - 2.07(2) Å, Ta: 1.797(9) - 2.073(8) Å). 18, 19 Figure 2.1 Crystal structures of [NbF 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] (A), [TaF 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] (B), [Nb(N 3 ) 4 (2,2’- bipy) 2 ][Nb(N 3 ) 6 ] (C), and [Nb(N 3 ) 4 (phen) 2 ][Nb(N 3 ) 6 ] (D). Ellipsoids are drawn at the 50% probability level and hydrogen atoms have been omitted for clarity. 19 Figure 2.2 Crystal structures of (Nb(N 3 ) 5 ) 2 •(3,3’-bipy) (A) and (Nb(N 3 ) 5 )2•(4,4’-bipy) (B). Ellipsoids are drawn at the 50% probability level and hydrogen atoms have been omitted for clarity. The structures of the complexes [Nb(N 3 ) 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ], [Ta(N 3 ) 4 (2,2’- bipy) 2 ][Ta(N 3 ) 6 ], and [Nb(N 3 ) 4 (1,10-phen) 2 ][Nb(N 3 ) 6 ] consist of well separated [M(N 3 ) 6 ] – anions and [Nb(N 3 ) 4 L 2 ] + cations (Figure 2.1 C and D). The M-N bond distances in the [M(N 3 ) 4 L 2 ] + cations are 0.01 to 0.02 Å longer than the distances found for the [M(N 3 ) 6 ] – anions. The observed structural parameters of the [M(N 3 ) 6 ] – anions in the compounds [MF 4 (2,2’-bipy) 2 ][M(N 3 ) 6 ], [M(N 3 ) 4 (2,2’- bipy) 2 ][M(N 3 ) 6 ], and [Nb(N 3 ) 4 (1,10-phen) 2 ][Nb(N 3 ) 6 ] are in good agreement with the ones previously reported for [PPh 4 ][M(N 3 ) 6 ]. 9 The crystal structures of the neutral metal pentaazide 3,3’-bipy and 4,4’-bipy adducts consist of individual (M(N 3 ) 5 ) 2 ·L (M = Nb, Ta; L = 3,3’-bipy, 4,4’-bipy) molecules (Figure 2.2). The closest intermolecular M-N contacts are 4.029(6) Å (Nb) and 4.042(12) Å (Ta) in the 3,3’-bipyridine 20 adducts and 3.920(3) Å (Nb) and 3.955(12) Å (Ta) for the 4,4’-bipyridine adducts. The closest intermolecular N-N contacts are 2.970(6) and 2.889(3) Å (Nb) and 2.979(12) and 2.905(4) Å (Ta). It is interesting to note that [NbF 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] crystallizes in the monoclinic space group P2 1 /c while the corresponding compound [TaF 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] crystallizes in the triclinic space group P–1 while the two corresponding compounds in the pairs [Nb(N 3 ) 4 (2,2’- bipy) 2 ][Nb(N 3 ) 6 ] and [Ta(N 3 ) 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ], (Nb(N 3 ) 5 ) 2 ·(3,3’-bipy) and (Nb(N 3 ) 5 ) 2 ·(3,3’- bipy), as well as (Nb(N 3 ) 5 ) 2 ·(4,4’-bipy) and (Ta(N 3 ) 5 ) 2 ·(4,4’-bipy) are isostructural. Previously, the related pairs of compounds [NbF 4 (pyridine) 4 ][NbF 6 ] and [TaF 4 (pyridine) 4 ][TaF 6 ], 17 [NbF 4 (dppe) 2 ][NbF 6 ]·½ CH 3 CN and [TaF 4 (dppe) 2 ][TaF 6 ]·½ CH 3 CN, 17 [PPh 4 ][Nb(N 3 ) 6 ] and [PPh 4 ][Ta(N 3 ) 6 ], 15 as well as [PPh 4 ] 2 [Nb(N 3 ) 7 ] and [PPh 4 ] 2 [Ta(N 3 ) 7 ] 9 have been found to be isostructural. 2.4 Thermal Stability Table 2.1 Thermal stability of the polyazido adducts compound T explosion M = Nb M = Ta [MF 4 (2,2‘-bipy) 2 ][M(N 3 ) 6 ] 141 °C 165 °C [M(N 3 ) 4 (2,2‘-bipy) 2 ][M(N 3 ) 6 ] 120 °C 155 °C [M(N 3 ) 4 (1,10-phen) 2 ][M(N 3 ) 6 ] 131 °C 161 °C (M(N 3 ) 5 ) 2 ·3,3‘-bipy 133 °C 155 °C (M(N 3 ) 5 ) 2 ·4,4‘-bipy 129 °C 163 °C The thermal stability of each polyazido compound was determined using Differential Thermal Analysis (DTA) scans. The results of these scans are summarized in Table 2.3. As can be expected for binary polyazides, none of the investigated compounds showed a smooth decomposition upon heating at a rate of 5 °C min –1 . Instead, all compounds exploded. The niobium azides were found to have explosion temperatures between 120 and 141 °C. The tantalum azides are thermally somewhat more stable than the corresponding niobium azides and explode between 155 and 165 °C. 21 2.5 Conclusion In summary, several new donor-acceptor adducts of niobium and tantalum pentaazide with N- donor ligands have been prepared from the pentafluorides by fluoride-azide exchange with Me 3 SiN 3 and the corresponding donor ligand in CH 3 CN solution. With 2,2’-bipyridine and 1,10- phenanthroline as donor ligands, the adducts [M(N 3 ) 4 L 2 ] + [M(N 3 ) 6 ] – were obtained. The formation of these self-ionization products proceeds stepwise and for L = 2,2’-bipy, it was possible the isolate the intermediates [MF 4 L 2 ] + [M(N 3 ) 6 ] – . With the donor ligands 3,3’-bipyridine and 4,4’-bipyridine no evidence for the formation of a self-ionization product was found. Instead, the neutral pentaazide adducts (M(N 3 ) 5 ) 2 ·L (M = Nb, Ta; L = 3,3’-bipy, 4,4’-bipy) were obtained. 2.6 Experimental Section Caution! Polyazides are extremely shock-sensitive and can explode violently upon the slightest provocation. They should be handled only on a scale using appropriate safety precautions. 15 Ignoring safety precautions can lead to serious injuries! Materials and Apparatus: All reactions were carried out in Teflon-FEP ampules that were closed by stainless steel valves. Volatile materials were handled in a Pyrex glass vacuum line. Non- volatile materials were handled in the dry nitrogen atmosphere of a glove box. The starting materials NbF 5 , TaF 5 (Ozark Mahoning), 2,2’-bipyridine (2,2’-bipy), 4,4’-bipyridine (4,4’-bipy), and 1,10-phenanthroline (1,10-phen) (Aldrich) were used without further purification. 3,3’- Bipyridine (3,3’-bipy) was prepared from 3-bromopyridine using a literature method. 20 Solvents were dried by standard methods and freshly distilled prior to use. Crystal structure determinations: The single crystal X-ray diffraction data of [Nb(N 3 ) 4 (1,10- phen) 2 ][Nb(N 3 ) 6 ] and [Ta(N 3 ) 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] were collected on a Bruker SMART APEX diffractometer with the c - axis fixed at 54.74° and using Mo Ka radiation (graphite monochromator) from a fine-focus tube. The diffractometer was equipped with an APEX CCD 22 detector and an LT-3 apparatus for low-temperature data collection. All other single crystal diffraction data were collected on a Bruker SMART APEX DUO diffractometer with the c -axis fixed at 54.74° and using Mo Ka radiation (TRIUMPH curved-crystal monochromator) from a fine- focus tube. The diffractometer was equipped with an APEX II CCD detector and an Oxford Cryosystems Cryostream 700 apparatus for low-temperature data collection. A complete hemisphere of data was scanned on omega and phi (0.5°) at a detector resolution of 512 x 512. The frames were then integrated using the SAINT algorithm to give the hkl files corrected for Lp/decay. The absorption correction was performed using the SADABS program. The structures were solved by the direct method and refined on F 2 using the Bruker SHELXTL Software Package. 21 All non- hydrogen atoms were refined anisotropically. ORTEP drawings were prepared using the ORTEP- 3 for Windows V2.02 program. 22 Preparation of [MF 4 (2,2’-bipy) 2 ][M(N 3 ) 6 ] (M = Nb, Ta): A sample of MF 5 (1.00 mmol) and 2,2’- bipyridine (156 mg, 1.00 mmol) was loaded into a Teflon-FEP ampule, followed by the addition of Me 3 SiN 3 (345 mg, 3.00 mmol) and CH 3 CN (1.5 mL) in vacuo at -196 °C. The mixture was allowed to warm to ambient temperature. After 6 hours, all volatile material was pumped off, leaving behind orange crystals of [MF 4 (2,2’-bipy) 2 ][M(N 3 ) 6 ] in quantitative yield. Preparation of [M(N 3 ) 4 L 2 ][M(N 3 ) 6 ] (M = Nb, Ta; L = 2,2’-bipy, 1,10-phen): A sample of MF 5 (1.00 mmol) and 2,2’-bipyridine (156 mg, 1.00 mmol) was loaded into a Teflon-FEP ampule, followed by the addition of Me 3 SiN 3 (691 mg, 6.00 mmol) and CH 3 CN (1.5 mL) in vacuo at -196 °C. The mixture was allowed to warm to ambient temperature. After 6 hours, all volatile material was pumped off, leaving behind red crystals of [M(N 3 ) 4 L 2 ][M(N 3 ) 6 ] in quantitative yield. Preparation of (M(N 3 ) 5 ) 2 ·L (M = Nb, Ta; L = 3,3’-bipy, 4,4’-bipy): A sample of MF 5 (1.00 mmol) and bipyridine (78 mg, 0.50 mmol) was loaded into a Teflon-FEP ampule, followed by the addition of Me 3 SiN 3 (691 mg, 6.00 mmol) and CH 3 CN (1.5 mL) in vacuo at -196 °C. The mixture was allowed to warm to ambient temperature. After 6 hours, all volatile material was pumped off, 23 leaving behind yellow to orange (Nb) or off-white (Ta) crystals of (M(N 3 ) 5 ) 2 ·L in quantitative yield. 2.7 References 1. Haiges, R.; Rahm, M.; Dixon, D. A.; Garner, E. B.; Christe, K. O., Binary Group 15 Polyazides. Structural Characterization of [Bi(N 3 ) 4 ] - , [Bi(N 3 ) 5 ] 2- , [bipy·Bi(N 3 ) 5 ] 2- , [Bi(N 3 ) 6 ] 3- , bipy·As(N 3 ) 3 , bipy·Sb(N 3 ) 3 , and [(bipy) 2 ·Bi(N 3 ) 3 ] 2 and on the Lone Pair Activation of Valence Electrons. Inorg. Chem. 2012, 51 (2), 1127-1141. 2. Knapp, C.; Passmore, J., On the way to "Solid Nitrogen" at normal temperature and pressure? Binary azides of heavier group 15 and 16 elements. Angew. Chem., Int. Ed. 2004, 43 (37), 4834-4836. 3. Kornath, A., Homoleptic azidometalates. Angew. Chem., Int. Ed. 2001, 40 (17), 3135- 3136. 4. Klapotke, T. M., Recent developments in the chemistry of covalent azides. Chem. Ber./Recl. 1997, 130 (4), 443-451. 5. Lund, H.; Oeckler, O.; Schroeder, T.; Schulz, A.; Villinger, A., Mercury Azides and the Azide of Millon's Base. Angew. Chem., Int. Ed. 2013, 52 (41), 10900-10904. 6. Seok, W. K.; Klapotke, T. M., Inorganic and transition metal azides. Bull. Korean Chem. Soc. 2010, 31 (4), 781-788. 7. Haiges, R.; Boatz, J. A.; Christe, K. O., The syntheses and structure of the vanadium(IV) and vanadium(V) binary azides V(N 3 ) 4 , [V(N 3 ) 6 ] 2- , and [V(N 3 ) 6 ]. Angew Chem Int Ed Engl 2010, 49 (43), 8008-12. 8. Klapoetke, T. M.; Krumm, B.; Scherr, M., The Binary Silver Nitrogen Anion [Ag(N 3 ) 2 ]. J. Am. Chem. Soc. 2009, 131 (1), 72-74. 9. Haiges, R.; Boatz, J. A.; Schroer, T.; Yousufuddin, M.; Christe, K. O., Experimental evidence for linear metal-azido coordination: the binary group 5 azides [Nb(N 3 ) 5 ], [Ta(N 3 ) 5 ], [Nb(N 3 ) 6 ] - , and [Ta(N 3 ) 6 ] - , and 1:1 acetonitrile adducts [Nb(N 3 ) 5 (CH 3 CN)] and [Ta(N3)5(CH3CN)]. Angew Chem Int Ed Engl 2006, 45 (29), 4830-5. 24 10. Karau, F.; Schnick, W., Preparation and crystal structure of cadmium azide Cd(N 3 ) 2 . Z. Anorg. Allg. Chem. 2005, 631 (12), 2315-2320. 11. Haiges, R.; Boatz, J. A.; Bau, R.; Schneider, S.; Schroer, T.; Yousufuddin, M.; Christe, K. O., Polyazide chemistry: the first binary group 6 azides, Mo(N 3 ) 6 , W(N 3 ) 6 , [Mo(N 3 ) 7 ] - , and [W(N 3 ) 7 ] - , and the [NW(N 3 ) 4 ] - and [NMo(N 3 ) 4 ] - ions. Angew Chem Int Ed Engl 2005, 44 (12), 1860-5. 12. Crawford, M.-J.; Ellern, A.; Mayer, P., UN213-: A structurally characterized binary actinide heptaazide anion. Angew. Chem., Int. Ed. 2005, 44 (48), 7874-7878. 13. Haiges, R.; Boatz, J. A.; Schneider, S.; Schroer, T.; Yousufuddin, M.; Christe, K. O., The binary group 4 azides [Ti(N 3 ) 4 ], [P(C 6 H 5 ) 4 ][Ti(N 3 ) 5 ], and [P(C 6 H 5 ) 4 ] 2 [Ti(N 3 ) 6 ] and on linear Ti-- N--NN coordination. Angew Chem Int Ed Engl 2004, 43 (24), 3148-52. 14. Haiges, R.; Boatz, J. A.; Vij, A.; Vij, V.; Gerken, M.; Schneider, S.; Schroer, T.; Yousufuddin, M.; Christe, K. O., Polyazide chemistry: preparation and characterization of As(N 3 ) 5 , Sb(N 3 ) 5 , and [P(C 6 H 5 ) 4 ][Sb(N 3 ) 6 )]. Angew Chem Int Ed Engl 2004, 43 (48), 6676-80. 15. Haiges, R.; Boatz, J. A.; Yousufuddin, M.; Christe, K. O., Monocapped trigonal- prismatic transition-metal heptaazides: syntheses, properties, and structures of [Nb(N 3 ) 7 ] 2- and [Ta(N 3 ) 7 ] 2- . Angew Chem Int Ed Engl 2007, 46 (16), 2869-74. 16. Haiges, R.; Deokar, P.; Christe, K. O., Coordination adducts of niobium(V) and tantalum(V) azide M(N 3 ) 5 (M=Nb, Ta) with nitrogen donor ligands and their self-ionization. Angew Chem Int Ed Engl 2014, 53 (21), 5431-4. 17. Haiges, R.; Deokar, P.; Christe, K. O., Adduct Formation of Tantalum(V)- and Niobium(V) Fluoride with Neutral Group 15 Donor Ligands, an Example for Ligand Induced Self-Ionization. Z. Anorg. Allg. Chem. 2014, 640 (8-9), 1568-1575. 18. Edwards, A. J., The structures of niobium and tantalum pentafluorides. J. Chem. Soc. 1964, (Oct.), 3714-18. 19. Brewer, S. A.; Brisdon, A. K.; Fawcett, J.; Holliman, P. J.; Holloway, J. H.; Hope, E. G.; Russell, D. R., Re-evaluation of the x-ray crystal structure of [Ta 4 F 20 ] and the synthesis and characterization of a series of mixed-metal pentafluorides of niobium and tantalum. Z. Anorg. Allg. Chem. 2006, 632 (2), 325-329. 25 20. Adams, C. J.; Haddow, M. F.; Harding, D. J.; Podesta, T. J.; Waddington, R. E., Iron(II) thio- and selenocyanate coordination networks containing 3,3'-bipyridine. CrystEngComm 2011, 13 (15), 4909-4914. 21. Sheldrick, G. M., A short history of SHELX. Acta Crystallogr., Sect. A Found. Crystallogr. 2008, 64 (1), 112-122. 22. Farrugia, L. J., ORTEP-3 for windows - a version of ORTEP-III with a graphical user interface (GUI). J. Appl. Crystallogr. 1997, 30 (5, Pt. 1), 565. 26 CHAPTER 3 ADDUCTS OF TANTALUM(V)- AND NIOBIUM(V)- FLUORIDE WITH NEUTRAL GROUP 15 DONOR LIGANDS 3.1 Introduction Niobium and tantalum pentahalides MX 5 (X = halide) are strong Lewis acids that form complexes with common donor ligands 1 . The reactivity of the niobium and tantalum pentahalides towards oxygen and sulfur donor ligands has been well studied 2-12 and the compounds have found increasing application in effective metal-directed organic synthesis. 13-17 While there has been an increasing interest in the use of NbCl 5 and TaCl 5 in synthetic chemistry in recent years, transition metal fluorides have been considered as essentially inert towards synthetic and catalytic reactions 18 because of their exceptionally strong M-F bonds. 19, 20 This misconception was proven wrong with the use of Group 4 fluorides in catalysis. 21-23 It was also shown that the pentafluorides NbF 5 and TaF 5 can be utilized in fluorinations, 24, 25 alkylations 26-28 and ring opening polymerizations. 11 Subtle differences in the reaction behaviour towards donor ligands can be found between the pentafluorides and the other pentahalides of niobium and tantalum. For instance, the reaction of dimethyl sulfoxide (dmso) with NbCl 5 results in the formation of NbOCl 3 (dmso) 2 29 and the reaction of TaCl 5 with pyridine (py) efforts TaCl 4 (py). 30 However, such reactions that lead to reduction of the metal are unknown for the corresponding pentafluorides. NbF 5 and TaF 5 Only a limited number of well established adducts of niobium and tantalum pentafluoride have been reported in the literature. 4-6, 9, 12, 31-40 Most reports and all crystallographic studies were limited to complexes of MF 5 with O- and S-donor ligands. 2, 4-11 It was found that NbF 5 and TaF 5 react rapidly with dry pyridine (py) to produce white solids which were identified by elemental analysis as the 1:2 adducts MF 5 (py) 2 (M = Nb, Ta). 3 NMR studies of solutions of these solids in acetonitrile or pyridine indicated the presence of the corresponding MF 6 – anion and it has been suggested that these adducts should be formulated as [MF 4 (py) 4 ] + [MF 6 ] – . 6, 7 However, the solid state structures of these complexes have not been determined. It is well established that melts of metal pentafluorides such as VF 5 , NbF 5 , TaF 5 and MoF 5 conduct electric current, which is associated with autoionisation. 41-45 Selfionisation reactions have previously been observed for ether, thio- and selenoether adducts of NbF 5 and TaF 5 and the 27 compounds [MF 4 (Me 2 S) 4 ][MF 6 ], [MF 4 (MeO(CH 2 ) 2 OMe) 2 ][MF 6 ], and [MF 4 (MeS(CH 2 ) 2 SMe) 2 ][MF 6 ] 2, 10, 11 (M = Nb, Ta) have been structurally characterized. Very recently, the compound [TaF 5 (NH 3 ) 3 ] has been reported. 46 During the course of our ongoing work on group(V) polyazide, we found that the reactions of MF 5 (M = Nb, Ta) with Me 3 SiN 3 in acetonitrile solution in the presence of 2,2’-bipyridine (2,2’- bipy) results in an autoionization and stepwise fluoride/azide exchange reactions leading to the formation of [MF 4 (2,2’-bipy) 2 ][M(N 3 ) 6 ] and [M(N 3 ) 4 (2,2’-bipy) 2 ][M(N 3 ) 6 ]. 47 This prompted us to investigate the reactions of the pentafluorides NbF 5 and TaF 5 with N- and P-donor ligands. In this paper, we wish to communicate the results of this work as well as the first crystal structure determinations for MF 5 adducts with mono- and bidentate N- and P-donor ligands. 3.2 Synthesis The reactions of NbF 5 and TaF 5 with an excess of pyridine (py) in acetonitrile solution at ambient temperature result in colorless solutions (Scheme 3.1) from which the adducts [MF 4 (py) 4 ][MF 6 ] (M = Nb, Ta) are isolated as colorless crystalline solids after pumping off the volatile compounds (CH 3 CN and excess pyridine). Both adducts were identified and characterized by their crystal structures and vibrational spectra, as well as the observed material balances. Scheme 3.1. Reactions of niobium and tantalum pentafluoride with N- and P-donor ligands. 28 When niobium or tantalum pentafluoride are reacted with one equivalent of 2,2’-bipyridine in acetonitrile, the corresponding autoionization products [MF 4 (2,2’-bipy) 2 ][MF 6 ] (M = Nb, Ta) are formed. Both compounds were isolated as amorphous pale yellow (M = Nb) or colorless (M = Ta) solids. All affords of growing single crystals suitable for X-ray structure determinations were unsuccessful. Both compounds were identified and characterized by their vibrational spectra (see Supplementary Material) and the observed material balances. The autoionization adducts [MF 4 (dppe) 2 ][MF 6 ]·½ CH 3 CN (M = Nb, Ta) are obtained by through the reaction of NbF 5 and TaF 5 , respectively, with an equimolar amount of 1,2- bis(diphenylphosphino)ethane (dppe) in acetonitrile solution. Both adducts were isolated as colorless solids after removal of the solvent in a vacuum. Single crystals were grown by recrystallization from acetonitrile solution. The dppe adducts were identified and characterized by their crystal structures, vibrational spectra and the observed material balances. 3.3 Spectroscopy The infrared spectra of the adducts [MF 4 (py) 4 ][MF 6 ], [MF 4 (2,2’-bipy) 2 ][MF 6 ] and [MF 4 (dppe) 2 ][MF 6 ]·½ CH 3 CN (M = Nb, Ta) clearly exhibit the signals of the 𝜈(M-F) vibrational modes in the region 690 – 510 cm –1 (Table 3.1) which account for the strongest absorption bands of the spectra. 2, 12 The Raman spectra of the complexes, on the other hand, are dominated by bands that belong to the donor ligands. While both pyridine adducts show prominent Raman bands between 1020 and 1050 cm –1 (Figure 3.1), the two 2,2-bipyridine adducts show several strong Raman bands in the range of 1640 – 960 cm –1 (Figure 3.2) in addition to bands due to the 𝜈(C-H) vibrational modes in the range of 3200 – 3000 cm –1 . 29 Figure 3.1 Infrared (upper trace) and Raman spectra (lower trace) of [NbF 4 (py) 4 ][NbF 6 ]. Figure 3.2 Infrared (upper trace) and Raman spectra (lower trace) of [TaF 4 (2,2’-bipy) 2 ][TaF 6 ]. 30 Table 3.1 Selected vibrational data (cm -1 ) for the ν(M-F) vibration modes of [MF 4 (py) 4 ][MF 6 ], [MF 4 (2,2’- bipy) 2 ][MF 6 ] and [MF 4 (dppe) 2 ][MF 6 ] ½ CH 3 CN (M = Nb, Ta). [MF 4 (py) 4 ][MF 6 ] [MF 4 (2,2’-bipy) 2 ][MF 6 ] M = Nb M = Ta M = Nb M = Ta IR a Raman b IR a Raman b IR a Raman b IR a Raman b 678 [4.2] 691 [3.1] 676 [2.4] 684 (w, br) 689 [2.0] 653 (sh w) 679 (sh mw) 670 [1.2] 643 [3.5] 652 (vw) 647 [2.5] 658 (ms) 658 [1.3] 661 [1.3] 646 (m sh) 651 [0.5] 638 (sh s) 636 [0.5] 637 (ms) 638 [0.4] 637 [0.4] 636 (m) 637 [0.6] 614 (vs) 608 (vs) 605 [1.7] 601 (vs) 604 [3.0] 585 (sh s) 588 [6.5] 581 (vs) 585 [0.4] 589 (sh vs) 589 [3.2] 578 (vs) 583 [0.3] 575 (vs) 574 [0.3] 573 (sh vs) 566 [0.3] 570 (sh vs) 572 [0.3] 564 (s) 563 [0.2] 569 (sh vs) 548 [0.3] 534 (sh, m) 528 (sh m) 512 (w) [MF 4 (dppe) 2 ][MF 6 ] ½ CH 3 CN M = Nb M = Nb IR a IR a IR a IR a 659 (w) 659 (w) 659 (w) 659 (w) 620 (vs) 620 (vs) 620 (vs) 620 (vs) 612 (vs) 612 (vs) 612 (vs) 612 (vs) 566 (ms) 566 (ms) 566 (ms) 566 (ms) 535 (w) 535 (w) 535 (w) 535 (w) 524 (m) 524 (m) 524 (m) 524 (m) a : m medium, ms medium strong, mw medium weak, s strong, sh shoulder, vs very strong, vw very weak, w weak; b : relative R.A. intensity (0-10) given in brackets. 31 3.4 Structural Characterization The single crystal X-ray diffraction data were collected on a Bruker SMART APEX DUO 3- circle platform diffractometer, equipped with an APEX II CCD detector with the c-axis fixed at 54.74°, and using Mo K a radiation (TRIUMPH curved-crystal monochromator) from a fine-focus tube. The diffractometer was equipped with an Oxford Cryosystems Cryostream 700 apparatus for low-temperature data collection. A complete hemisphere of data was scanned on omega and phi (0.5°) at a detector resolution of 512 x 512 pixels using the BIS software package. 48 The frames were integrated using the SAINT algorithm 49 to give the hkl files corrected for Lp/decay. The semi-empirical absorption correction was performed using the SADABS program. 50 The structures were solved by direct methods and refined on F 2 using the Bruker SHELXTL Software Package. 51, 52 All non-hydrogen atoms were refined anisotropically. ORTEP drawings were prepared using the software ORTEP-3 for Windows V2.02. 53 The crystal structures of the adducts [MF 4 (py) 4 ][MF 6 ] and [NbF 4 (dppe) 2 ][NbF 6 ]·½ CH 3 CN were determined. A summary of the crystallographic data collection and refinement parameters is given in Table 3.2. The complexes [NbF 4 (py) 4 ][NbF 6 ] and [TaF 4 (py) 4 ][TaF 6 ] are isostructural and crystallize in the monoclinic space group P2 1 /c with very similar unit cell parameters. The structures consist of distorted square-antiprismatic [MF 4 (py) 4 ] + cations (Figure 3.3) and distorted octahedral [MF 6 ] – anions. Such a close structural similarity between corresponding niobium and tantalum compounds has previously already been observed for the heptaazido compounds [PPh 4 ] 2 [M(N 3 ) 7 ]·CH 3 CN (M = Nb, Ta). 54 The [MF 4 (py) 4 ] + cations show pairs of longer and shorter M-F distances (Table 3.3). In the [NbF 4 (py) 4 ] + cation, the Nb-F distances are 1.903(2)/1.904(2) Å and 1.893(2)/1.898(2) Å, which is longer than the average Nb-F distance in the [NbF 6 ] – anion (1.883(2) Å) but are well within the range of the Nb-F distances found in the parent compound Nb 4 F 20 (1.75(5) – 2.06(2) Å). 55 . In the [TaF 4 (py) 4 ] + cation, the Ta-F distances are 1.910(2)/1.911(2) Å and 1.903(2)/1.906(2) Å). These are slightly shorter then the Ta-F distances in [TaF 5 (NH 3 ) 3 ] (1.949(3) – 2.017(3) Å) 46 but significantly longer than the average Ta-F distance found in the [TaF 6 ] – anion (1.892(2) Å) and within the region of the Ta-F distances in the parent compound Ta 4 F 20 (1.797(9) – 2.073(8) Å). 46, 56 32 The observed M-F bond distances in the [MF 4 (py) 4 ] + cations are in good agreement with the bond distances found previously for similar cations with S- and O-donor ligands. 2, 11 Figure 3.3 Isostructural cations of [MF 4 (py) 4 ][MF 6 ] (M = Nb, Ta). Ellipsoids are drawn at the 50% probability level and hydrogen atoms have been omitted for clarity. The M-N distances of the [MF 4 (py) 4 ] + cations follow a similar pattern as the M-F distances with two shorter and two slightly longer distances with an average Nb-N distance of 2.360(2) Å and an average Ta-N distance of 2.353(2) Å. The compounds [NbF 4 (dppe) 2 ][NbF 6 ]·½ CH 3 CN and [TaF 4 (dppe) 2 ][TaF 6 ]·½ CH 3 CN crystalize in the triclinic space group P–1. In analogy to the adducts [MF 4 (py) 4 ][MF 6 ], the two adducts [MF 4 (dppe) 2 ][MF 6 ]·½ CH 3 CN (M = Nb, Ta) are isostructural and have almost identical unit cell parameters. The structures consist of two crystallographic non-equivalent [MF 4 (dppe) 2 ] + cations, two [MF 6 ] – anions and one uncoordinated CH 3 CN solvent molecule. As in the case of [MF 4 (py) 4 )] + , the coordination geometry of the central metal atom in the [MF 4 (dppe) 2 ] + cation (M = Nb, Ta) is derived from an square antiprism with four phosphorus atoms and four fluorine atoms at the corners. Both non-equivalent [NbF 4 (dppe) 2 ] + cations in the structure of [NbF 4 (dppe) 2 ][NbF 6 ] ½ CH 3 CN are depicted in Figure 3.4. The average Nb-F distances of the two non-equivalent cations are 1.9421(9) Å and 1.9383(9) Å (Table 3.4), which are longer than the ones observed for the [NbF 4 (dppe) 2 ] + cation. They are also considerably longer than the average Nb-F distance found for the [NbF 6 ] - anions (1.885(2) Å) of [NbF 4 (dppe) 2 ][NbF 6 ]·½ CH 3 CN. The average Nb-P distances in the [NbF 4 (dppe) 2 ] + cations are 2.7289(4) and 2.7201(4) Å (Table 3.4). 33 In the [TaF 4 (dppe) 2 ] + cations, the average Ta-F distances are 1.933(2) and 1.937(2) Å (Table 3.3) which, again, are longer than the ones found for the corresponding [TaF 4 (py) 4 ] + cation. The average Nb-P distances in the [NbF 4 (dppe) 2 ] + cations are 2.7363(8) and 2.7579(8) Å (Table 3.3). The average Ta-F distance in the two [TaF 6 ] – anions is found as 1.891(2) Å. Figure 3.4 Structure of the two non-equivalent cations in [NbF 4 (dppe) 2 ][NbF 6 ] ½ CH 3 CN in the unit cell of the crystal. Ellipsoids are drawn at the 50% probability level and hydrogen atoms have been omitted for clarity. There are two crystallographic distinct cations with different conformation of the dppe ligand; (a) Nb1 centered cation, (b) Nb2 centered cation. 34 3.5 Conclusion The autoionization adducts [MF 4 (py) 4 ][MF 6 ], [MF 4 (2,2’-bipy) 2 ][MF 6 ] and [MF 4 (dppe) 2 ][MF 6 ]·½ CH 3 CN (M = Nb, Ta) were obtained by the reaction of the strong Lewis- acidic Group V pentafluorides NbF 5 and TaF 5 with the N-donor ligands pyridine and 2,2’- bipyridine as well as the P-donor ligand dppe. The compounds were identified and characterized by their vibrational spectra and, in case of the pyridine and dppe adducts, by their crystal structure. The two pairs of structurally characterized niobium and tantalum compounds [NbF 4 (py) 4 ][NbF 6 ] and [TaF 4 (py) 4 ][TaF 6 ], as well as [NbF 4 (dppe) 2 ][NbF 6 ] ½ CH 3 CN and [TaF 4 (dppe) 2 ][TaF 6 ] ½ CH 3 CN are isostructural. The structures consist of distorted square anti-prismatic [MF 4 D 4 ] + cations (D = donor atom) and octahedral [MF 6 ] – anions. The cations and anions in the solid state structures are isolated and well-separated. The observed M-F bond distances in the cations are in good agreement with the ones previously observed for [MF 4 (Me 2 S) 4 ] + , [MF 4 (MeO(CH 2 ) 2 OMe) 2 ] + , and [MF 4 (MeS(CH 2 ) 2 SMe) 2 ] +2, 10, 11 (M = Nb, Ta). 3.2 Experimental Section All reactions were carried out in Teflon-FEP ampules that were closed by stainless steel valves. Volatile materials were handled in a Pyrex glass vacuum line. Nonvolatile materials were handled in the dry nitrogen atmosphere of a glove box. Raman spectra were recorded directly in the Teflon reactors or Pyrex meting point capillaries in the range 4000–80 cm –1 on a Bruker Equinox 55 FT-RA spectrophotometer, using a Nd-YAG laser at 1064 nm. Infrared spectra were recorded in the range 4000-400 cm –1 on a Bruker Alpha FT-IR spectrometer using KBr pellets. The pellets were prepared inside the glove box using an Econo mini-press (Barnes Engineering Co.) and transferred in a closed container to the spectrometer before placing them quickly into the sample compartment which was purged with dry nitrogen to minimize exposure to atmospheric moisture and potential hydrolysis of the sample. The starting materials NbF 5 , TaF 5 (both Ozark Mahoning), pyridine (py), 2,2’-bipyridine (2,2’- bipy) (both Aldrich), and 1,2-bis(diphenylphosphino)ethane (dppe) (Alfa Aesar) were used 35 without further purification. Solvents were dried by standard methods and freshly distilled prior to use. Preparation of [MF 4 (C 5 H 5 N) 4 ][MF 6 ] (M = Nb, Ta). A sample of MF 5 (1.00 mmol) was loaded into a Teflon-FEP ampule, followed by the addition of 1 mL of CH 3 CN and 0.8 ml pyridine in vacuo at –196 °C. The mixture was allowed to warm to ambient temperature and agitated. After 6 h, all volatile material was pumped off, leaving behind solid [MF 4 (C 5 H 5 N) 4 ][MF 6 ]. [NbF 4 (C 5 H 5 N) 4 ][NbF 6 ]: 344.2 mg, weight expected for 0.50 mmol: 346.4 mg; Raman (200 mW): n (intensity) = 3213 (0.2), 3152 (0.7), 3103 (4.0), 3088 (5.0), 3088 (5.1), 3081 (4.9), 3039 (0.3), 3011 (0.2), 2978 (0.2), 1610 (1.3), 1577 (1.2), 1494 (0.4), 1230 (0.2, sh), 1233 (0.8), 1227 (0.8), 1162 (0.3) 1160 (0.4), 1046 (5.7), 1020 (10.0), 952 (0.1), 872 (0.1), 787 (0.1), 761 (0.1), 678 (4.2), 658 (0.3), 651 (1.5), 643 (3.5), 636 (0.5 sh) 588 (6.5), 563 (0.2), 449 (0.1), 392 (0.1), 316 (0.2), 283 (0.6), 272 (0.6), 255 (0.2 sh), 226 (0.1), 217 (0.1), 206 (0.2). 180 (0.2), 159 (0.7), 152 (0.6) cm –1 ; IR (KBr): n (intensity) = 3122 (w), 3106 (w), 3086 (w), 3008 (vw), 2219 (vw), 2004 (vw), 1930 (vw), 1849 (vw), 1632 (w), 1609 (s), 1537 (m), 1490 (ms), 1448 (s), 1392 (vw), 1366 (vw), 1333 (vw), 1240 (w), 1228 (m), 1220 (sh w), 1160 (m), 1072 (m), 1043 (m), 1017 (m), 948 (w), 870 (w), 815 (w), 761 (s), 693 (s), 653 (sh w), 638 (sh s), 614 (vs), 601 (vs), 585 (sh s), 564 (s), 454 (w), 447 (m) cm –1 . [TaF 4 (C 5 H 5 N) 4 ][TaF 6 ]: 431.8 mg, weight expected for 0.50 mmol: 434.2 mg; Raman (200 mW): n (intensity) =3219 (0.2), 3153 (0.6), 3105 (3.1), 3090 (4.2), 3084 (3.6), 3041 (0.4), 3013 (0.3), 2978 (0.3), 2932 (0.3), 2894 (0.1), 2807 (0.1), 2483 (0.1), 1652 (0.2), 1613 (1.2), 1576 (1.0), 1495 (0.4), 1234 (0.8), 1228 (0.8), 1165 (0.4), 1161 (0.5), 1074 (0.3), 1049 (3.0), 1021 (10.0), 953 (0.2), 872 (0.2), 762 (0.2), 691 (2.8), 651 (1.7), 647 (2.5), 638 (0.4), 604 (3.0), 585 (0.4), 574 (0.3), 461 (0.3), 393 (0.4), 333 (0.4), 316 (0.5), 279 (1.0), 245 (0.6), 227 (0.8), 181 (1.1), 162 (1.6), 146 (1.8) cm –1 ; IR (KBr): n (intensity) = 3122 (w), 3089 (w), 3055 (vw), 2005 (vw), 1932 (vw), 1851 (vw), 1633 (mw), 1612 (s), 1537 (mw), 1530 (mw), 1490 (m s), 1449 (s), 1395 (vw), 1395 (vw), 1367 (vw), 1333 (vw), 1240 (vw), 1229 (m), 1221 (vw), 1200 (vw), 1161 (w), 1072 (m), 1045 (m), 1017 (m), 984 (vw), 951 (vw), 892 (m), 872 (m), 762 (s), 693 (s), 679 (sh mw), 652 (vw), 637 (m s), 581 (vs), 575 (vs), 569 (sh vs), 528 (sh m), 456 (vw), 447 (w), 410 (w) cm –1 . 36 Preparation of [MF 4 (2,2’-bipy) 2 ][MF 6 ] (M = Nb, Ta): A sample of MF 5 (1.00 mmol) and 2,2’- bipyridine (1.00 mmol) was loaded into a Teflon-FEP ampule, followed by the addition of 1.5 ml of CH 3 CN in vacuo at –196 °C. The mixture was allowed to warm to ambient temperature and agitated. After 6 h, all volatile material was pumped off, leaving behind solid [MF 4 (2,2’- bipy) 2 ][MF 6 ]. [NbF 4 (2,2’-bipy) 2 ][NbF 6 ]: 386.5 mg, weight expected for 0.50 mmol: 388.3 mg; Raman (200 mW): n (intensity) = 3207 (0.1), 3154 (0.5), 3143 (0.5), 3110 (1.7), 3089 (3.2), 3077 (1.7), 3065 (1.5), 3046 (0.9), 3029 (0.4), 3007 (0.4), 2957 (0.2), 2922 (0.1), 2824 (0.2), 2648 (0.1), 1798 (0.2), 1618 (1.0), 1604 (10.0), 1590 (3.1), 1572 (7.5), 1504 (3.6), 1504 (3.6), 1504 (3.6), 1483 (1.0), 1461 (0.5), 1447 (1.6), 1426 (0.6), 1358 (0.4), 1326 (8.2), 1302 (1.2), 1276 (1.0), 1254 (0.6), 1237 (1.6), 1219 (0.3), 1182 (0.2), 1159 (1.0), 1147 (0.4), 1091 (0.5), 1075 (1.6), 1048 (0.9), 1028 (5.2), 1014 (1.2), 995 (3.2), 800 (0.9), 784 (2.1), 773 (1.7), 765 (1.4), 676 (2.4), 658 (1.3), 651 (0.4), 637 (0.4), 614 (0.8), 589 (3.2), 566 (0.3), 548 (0.3), 478 (0.2), 441 (0.3), 367 (1.0), 357 (0.4), 339 (0.4), 314 (0.4), 281 (0.7), 269 (0.7), 242 (1.2), 227 (1.1), 218 (1.4), 201 (0.6), 190 (0.6), 114 (3.9) cm – 1 ; IR (KBr): n (intensity) = 3211 (w), 3149 (sh vw), 3128 (m), 3110 (sh vw), 3101 (m), 3073 (sh w), 3055 (sh vw), 3009 (vw), 2015 (w), 1983 (vw), 1953 (w), 1629 (sh vw), 1618 (sh w), 1604 (s), 1587 (ms), 1571 (sh w), 1559 (w), 1531 (m), 1503 (m), 1478 (m), 1458 (m), 1442 (s), 1360 (vw), 1321 (m), 1283 (w), 1250 (sh w), 1243 (mw), 1182 (w), 1159 (m), 1129 (vw), 1110 (vw), 1093 (w), 1074 (w), 1048 (vw), 1040 (w), 1027 (m), 1016 (mw), 996 (mw), 980 (vw), 946 (w), 898 (w), 800 (sh s), 793 (s), 769 (vs), 730 (ms), 658 (ms), 608 (vs), 589 (sh vs), 573 (sh vs), 512 (w), 463 (w), 419 (mw), 403 (vw), 463 (mw), 420 (mw) cm –1 . [TaF 4 (2,2’-bipy) 2 ][TaF 6 ]: 429.7 mg, weight expected for 0.50 mmol: 432.3 mg; Raman (200 mW): n (intensity) = 3154 (0.4), 3143 (0.5), 3112 (1.5), 3091 (2.8), 3075 (1.4), 3048 (0.6), 2928 (0.1), 2825 (0.1), 1695 (0.2), 1656 (0.3), 1631 (0.6), 1618 (1.2), 1606 (10.0), 1590 (1.6), 1572 (6.7), 1554 (0.4), 1532 (0.4), 1506 (3.5), 1483 (0.4), 1462 (0.5), 1447 (0.6), 1438 (0.5), 1428 (0.5), 1359 (0.4), 1326 (8.8), 1320 (3.4), 1303 (0.6), 1277 (0.9), 1254 (0.9), 1238 (0.8), 1160 (0.9), 1092 (0.4), 1076 (1.3), 1047 (0.7), 1030 (4.8), 1014 (1.8), 996 (1.3), 802 (0.4), 774 (1.2), 766 (1.0), 689 (2.0), 670 (1.2), 661 (1.3), 651 (0.5), 637 (0.6), 614 (1.0), 605 (1.7), 583 (0.3), 572 (0.3), 545 (0.3), 479 (0.3), 370 (0.9), 340 (0.6), 270 (0.7), 255 (0.7), 244 (1.0), 219 (1.4), 183 (1.5), 140 (1.8), 116 (3.4) 37 cm –1 ; IR (KBr): n (intensity) = 3215 (vw), 3135 (m), 3095 (m), 3076 (sh w), 2017 (w), 1988 (vw), 1955 (w), 1904 (w), 1870 (w), 1785 (vw), 1752 (vw), 1654 (vw), 1631 (sh vw), 1606 (s), 1588 (w), 1577 (sh w), 1571 (m), 1531 (mw), 1505 (m), 1480 (s), 1459 (vw), 1443 (s), 1323 (ms), 1285 (w), 1243 (m), 1228 (sh w), 1183 (mw), 1160 (m), 1129 (w), 1111 (vw), 1093 (w), 1075 (m), 1050 (w), 1029 (ms), 1018 (sh w), 996 (vw), 981 (vw), 940 (vw), 917 (w), 899 (vw), 879 (vw), 868 (vw), 837 (vw), 803 (w), 771 (vs), 746 (vw), 732 (s), 684 (w br), 657 (ms), 636 (m), 578 (vs), 570 (sh vs), 534 (sh m), 463 (mw), 420 (mw) cm –1 . Preparation of [MF 4 (dppe) 2 ][MF 6 ] ½ CH 3 CN (M = Nb, Ta). A sample of MF 5 (1.00 mmol) and 1,2-bis(diphenylphosphino)ethane (398.4 mg; 1.00 mmol) was loaded into a Teflon-FEP ampule, followed by the addition of 2.0 ml of CH 3 CN in vacuo at –196 °C. The mixture was allowed to warm to ambient temperature and agitated. After 6 hours, all volatile material was pumped off, leaving behind solid [MF 4 (dppe) 2 ][MF 6 ] ½ CH 3 CN. [NbF 4 (dppe) 2 ][NbF 6 ] ½ CH 3 CN: 592.7 mg, weight expected for 0.50 mmol: 596.6 mg; Raman (200 mW): n (intensity) = 3170 (0.3), 3145 (0.4), 3057 (6.1), 3048 (5.9), 3008 (0.3), 2970 (0.5), 2957 (0.8), 2937 (0.5), 2915 (1.5), 2890 (1.0), 2812 (0.3), 2258 (0.2), 1586 (6.5), 1573 (1.1), 1487 (0.2), 1437 (0.5), 1421 (0.4), 1342 (0.2), 1315 (0.2), 1275 (0.3), 1249 (0.2), 1194 (0.7), 1162 (0.9), 1101 (2.7), 1029 (2.7), 1000 (10.0), 870 (0.2), 824 (1.0), 814 (0.5), 766 (0.7), 749 (0.2), 706 (0.4), 689 (0.7), 678 (1.2), 618 (1.0), 538 (4.9), 524 (1.1), 516 (1.1), 476 (0.4), 421 (0.9), 402 (0.4), 369 (0.6), 364 (0.6), 340 (0.5), 325 (0.3), 268 (0.7), 241 (1.5), 231 (1.2), 202 (0.4), 185 (0.4), 158 (0.9), 136 (3.2), 102 (7.7) cm –1 ; IR (KBr): n (intensity) = 3064 (mw), 2995 (w), 2928 (vw), 2292 (vw), 2251 (vw), 2219 (vw), 1586 (mw), 1486 (m), 1439 (s), 1418 (w), 1340 (w), 1316 (w), 1274 (m), 1193 (w), 1102 (ms), 1027 (w), 998 (m), 961 (w), 898 (nw), 869 (mw), 845 (vw), 742 (s), 716 (w), 7047 (m), 692 (vs), 679 (vw), 659 (w), 620 (vs), 611 (vs), 566 (ms), 535 (w), 524 (m), 508 (w), 495 (w) cm –1 . [TaF 4 (dppe) 2 ][TaF 6 ] ½ CH 3 CN: 678.7.7 mg, weight expected for 0.50 mmol: 684.6 mg; Raman (200 mW): n (intensity) = 3972 (0.5), 3244 (0.5), 3140 (0.6), 3047 (10.0), 3004 (0.9), 2982 (1.0), 2913 (2.3), 2890 (2.4), 2814 (0.7), 1585 (4.3), 1572 (1.1), 1521 (0.3), 1503 (0.4), 1191 (0.5), 1161 (0.8), 1129 (0.4), 1098 (1.3), 1027 (2.5), 1012 (0.9), 999 (6.6), 997 (7.0), 876 (0.4), 765 (1.3), 733 38 (0.3), 688 (1.3), 618 (1.0), 571 (0.4), 476 (0.4), 400 (0.9), 340 (0.7), 269 (1.1), 231 (1.2), 196 (1.1), 183 (1.0), 159 (2.0), 103 (7.4) cm –1 ; IR (KBr): n (intensity) = 3068 (m), 3048 (mw), 3023 (mw), 3002 (mw), 2928 (mw), 2895 (w), 2814 (vw), 1964 (vw), 1953 (w), 1885 (w), 1868 (vw), 1809 (vw), 1653 (vw), 1585 (mw), 1570 (w), 1480 (s), 1432 (vs), 1424 (m), 1383 (vw), 1329 (w), 1306 (w), 1274 (w), 1187 (w), 1161 (m), 1122 (vw), 1098 (sh w), 1081 (m), 1067 (m), 1025 (m), 998 (m), 916 (vw), 908 (w), 868 (w), 845 (w), 752 (ms), 741 (s), 727 (vs), 705 (s), 692 (vs), 674 (w), 585 (ms), 556 (m), 547 (vw), 526 (vw), 505 (s), 475 (s), 443 (m) cm –1 . 3.7 References 1. Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M., Advanced Inorganic Chemistry. 6 ed.; John Wiley & Sons, Inc: New York, 1999. 2. Jura, M.; Levason, W.; Ratnani, R.; Reid, G.; Webster, M., Six- and eight-coordinate thio- and seleno-ether complexes of NbF 5 and some comparisons with NbCl 5 and NbBr 5 adducts. Dalton Trans. 2010, 39 (3), 883-891. 3. Clark, H. C.; Emeleus, H. J., Chemical Reactions with Vanadium, Niobium, and Tantalum Pentafluorides. J. Chem. Soc. 1958, (Jan), 190-195. 4. Fairbrother, F.; Grundy, K. H.; Thompson, A., The halides of niobium and tantalum. IX. Dimethyl ether, diethyl ether, dimethyl sulfide, diethyl sulfide, and tetrahydrothiophene complexes of the pentafluorides. J. Chem. Soc. 1965, (Jan.), 765-70. 5. Fairbrother, F.; Grundy, K. H.; Thompson, A., Reactions of Dimethylsulphoxide with Niobium and Tantalum Pentafluorides. J. Less-Common Met. 1966, 10 (1), 38-41. 6. Moss, K. C., Nuclear Magnetic Resonance Studies on Fluorine-Containing Compounds .2. Reactions of Niobium Pentafluoride with Organic Donor Molecules. J. Chem. Soc. A 1970, (8), 1224-1226. 7. Howell, J. A. S.; Moss, K. C., Nuclear magnetic resonance studies on fluorine-containing compounds. Part V. Reactions of tantalum pentafluoride with organic donor molecules. J. Chem. Soc. A 1971, 2483-2487. 8. Marchetti, F.; Pampaloni, G.; Zacchini, S., Fragmentation of oxygen-containing molecules via C-O bond cleavage promoted by coordination to niobium and tantalum pentahalides. Dalton Trans. 2009, (34), 6759-6772. 39 9. Marchetti, F.; Pampaloni, G.; Zacchini, S., 19F NMR spectroscopy as useful tool for determining the structure in solution of coordination compounds of MF 5 (M = Nb, Ta). J. Fluorine Chem. 2010, 131 (1), 21-28. 10. Benjamin, S. L.; Hyslop, A.; Levason, W.; Reid, G., Tantalum(V) fluoride complexes of thio- and seleno-ether ligands and a comparison with the TaX 5 (X = Cl or Br) analogues. J. Fluorine Chem. 2012, 137, 77-84. 11. Bini, R.; Chiappe, C.; Marchetti, F.; Pampaloni, G.; Zacchini, S., Structures and Unusual Rearrangements of Coordination Adducts of MX 5 (M = Nb, Ta; X = F, Cl) with Simple Diethers. A Crystallographic, Spectroscopic, and Computational Study. Inorg. Chem. 2009, 49 (1), 339- 351. 12. Ignatov, M. E.; Grebeshkov, D. B.; Il'in, E. G., Reactions of tantalum and niobium pentafluorides with bipyridines and phenanthroline. Zh. Neorg. Khim. 1983, 28 (3), 617-21. 13. Petrov, V. A., Synthesis of polyfluorinated tertiary alcohols using ring opening, reactions of 2,2-bis(trifluoromethyl)oxirane. Synthesis 2002, (15), 2225-2231. 14. Kim, S. S.; Rajagopal, G., Niobium fluoride (NbF 5 ): A highly efficient catalyst for solvent-free cyanosilylation of aldehydes. Synthesis 2007, (2), 215-218. 15. Kim, S. S.; Rajagopal, G.; George, S. C., Solvent-free cyanosilylation of ketones with (CH 3 ) 3 SiCN (TMSCN) catalyzed by NbF5. Appl. Organomet. Chem. 2007, 21 (5), 368-372. 16. Masuda, T.; Mouri, T.; Higashimura, T., Cyclotrimerization of Phenylacetylene Catalyzed by Halides of Niobium and Tantalum. Bull. Chem. Soc. Jpn. 1980, 53 (4), 1152-1155. 17. Masuda, T.; Takahaski, T.; Niki, A.; Higashimura, T., Polymerization of Aliphatic Acetylenes .10. Polymerization of Internal Octynes and Hexynes by Halides of Niobium(V) and Tantalum(V). J. Polym. Sci. Part A 1986, 24 (4), 809-814. 18. Murugavel, R.; Roesky, H. W., Titanosilicates: Recent developments in synthesis and use as oxidation catalysts. Angewandte Chemie-International Edition in English 1997, 36 (5), 477- 479. 19. Greenwood, N. N.; A., E., Chemistry of the Elements. 2nd ed.; Elsevier: Amsterdam, 1997. 20. Luo, Y.-R., Bond Dissociation Energies. In CRC Handbook of Chemistry and Physics, 88th ed.; Lide, D. R., Ed. Taylor & Francis: Boca Raton, 2007. 40 21. Becke, S.; Rosenthal, U. Fluorine-containing metal complexes for polymerization of olefins and(or) dienes. DE19932409A1, 2001. 22. Becke, S.; Rosenthal, U.; Baumann, W.; Arndt, P.; Spannenberg, A. Metallocyclocumulene olefin polymerization catalysts. DE10110227A1, 2002. 23. Becke, S.; Rosenthal, U.; Baumann, W.; Arndt, P.; Spannenberg, A. Polymerization catalyst composition based on monofluorometal complexes. US20020052446A1, 2002. 24. Feiring, A. E., Chemistry in Hydrogen-Fluoride .5. Catalysts for Reaction of Hf with Halogenated Olefins. J. Fluorine Chem. 1979, 14 (1), 7-18. 25. Bradley, D. E.; Nalewajek, D.; Bell, R. L. Catalytic fluorination process for preparing 1,1,1,3,3-pentafluoropropane. US20070118003A1, 2007. 26. Lien, A. P.; McCaulay, D. A. Refining hydrocarbon oils with hydrofluoric acid and niobium pentafluoride. US2683763, 1954. 27. Sommer, J.; Müller, M.; Laali, K., Alkene-Alkane Alkylation Catalyzed by the HF-TaF 5 Acid System. Nouv. J. Chim. 1982, 6 (1), 3-6. 28. Siskin, M.; Chludzinski, G. R.; Hulme, R.; Porcelli, J. J.; Tyler, W. E., Strong Acid Chemistry .9. Catalytic Isomerization of Hexane in HF-TaF 5 . Ind. Eng. Chem. 1980, 19 (3), 379- 385. 29. Copley, D. B.; Fairbrother, F.; Grundy, K. H.; Thompson, A., The Reactions of Niobium and Tantalum Pentachlorides and Pentabromides with Some Sulphoxides. J. Less-Common Met. 1964, 6 (5), 407-412. 30. Allbutt, M.; Feenan, K.; Fowles, G. W. A., The reactions of Niobium(V) and Tantalum(V) Chlorides and Bromides with some nitrogen ligands. J. Less-Common Met. 1964, 6 (4), 299-306. 31. Fuggle, J. C.; Sharp, D. W. A.; Winfield, J. M., Reactions of Niobium and Tantalum Pentafluorides with Trimethylsilyldiethylamine and with Trimethylsilyl Chloride. J. Chem. Soc. Dalton Trans. 1972, (16), 1766-1768. 32. Buslayev, Y. A.; Ilyin, E. G.; Ignatov, M. E.; Butorina, L. S.; Mastryukova, T. A., Complex-Formation of Polymeric Niobium and Tantalum Pentafluorides in Non-Aqueous Solvents. J. Fluorine Chem. 1978, 12 (5), 381-395. 33. Hatton, J. V.; Saito, Y.; Schneider, W. G., Nuclear Magnetic Resonance Investigations of Some Group V Metal Fluorides and Oxyions. Can. J. Chem. 1965, 43 (1), 47-56. 41 34. Howell, J. A. S.; Moss, K. C., Nuclear Magnetic Resonance Studies on Fluorine- Containing Compounds. 5. Reactions of Tantalum Pentafluoride with Organic Donor Molecules. J. Chem. Soc. A 1971, (15), 2483-2487. 35. Pauli, J.; Storek, W.; Riesel, L., F-19-Nmr Spectroscopic Investigation of Solutions of TiF 4 and TaF 5 in Acetonitrile. Z. Chem. 1988, 28 (6), 226-227. 36. Packer, K. J.; Muetterties, E. L., Nature of Niobium(5) Fluoride Species in Solution. J. Am. Chem. Soc. 1963, 85 (19), 3035-3036. 37. Brownstein, S., Complex Fluoroanions in Solution .6. Complexes of Methyl and Ethyl Fluorides with Group-Vb Pentafluorides. Can. J. Chem. 1974, 52 (24), 4101-4105. 38. Brownstein, S.; Farrall, M. J., Complexes of Tantalum and Antimony Pentafluorides with Dimethyl Ether and Trimethylamine. Can. J. Chem. 1974, 52 (10), 1958-1965. 39. Kolditz, L.; Calov, U., Mixed Halides of Niobium and Tantalum. Z. Anorg. Allg. Chem. 1970, 376 (1), 1-7. 40. Köppel, H.; Schönherr, M.; Kolditz, L., Nuclear Magnetic Resonance Studies on Alcohol Solutions of Niobium Pentafluoride. Z. Chem. 1971, 11 (1), 28-33. 41. Fairbrother, F.; Frith, W. C.; Woolf, A. A., The Halides of Niobium (Columbium) and Tantalum .4. The Electrical Conductivities of Niobium and Tantalum Pentafluorides. J. Chem. Soc. 1954, (Mar), 1031-1033. 42. Fairbrother, F.; Grundy, K. H.; Thompson, A., Halides of Niobium and Tantalum .8. Densities Viscosities and Self-Ionisation of Niobium and Tantalum Pentafluorides. J. Chem. Soc. 1965, (Jan), 761-765. 43. Clark, H. C.; Emeleus, H. J., Some Physical and Chemical Properties of Vanadium Pentafluoride. J. Chem. Soc. 1957, (May), 2119-2122. 44. Opalovskii, A. A.; Khaldoyanidi, K. A., Self-Ionization and Complexing of Liquid Molybdenum Pentafluoride. Izv. Akad. Nauk SSSR, Ser. Khim. 1973, (2), 279-282. 45. Opalovskii, A. A.; Khaldoyanidi, K. A., Autoionization and complex formation of molybdenum pentafluoride in a melt. Russ, Chem, Bull. 1973, 22 (2), 270-272. 46. Baer, S. A.; Lozinsek, M.; Kraus, F., Synthesis and Crystal Structure of Triammine Pentafluorido Tantalum(V) [TaF 5 (NH 3 ) 3 ]. Z. Anorg. Allg. Chem. 2013, 639 (14), 2586-2588. 42 47. Haiges, R.; Deokar, P.; Christe, K. O., Structures of Coordination Adducts of Niobium(V) and Tantalum(V) azide M(N 3 ) 5 (M = Nb, Ta) with Nitrogen Donor Ligands. Angew. Chem. Int. Ed. submitted. 48. Service, B. I. BIS 2013.2-0, 2013.2-0; Bruker AXS Madison, WI: 2013. 49. SAINT+ SAINT+ V8.32B, 8.27B; Bruker AXS: 2013. 50. SADABS SADABS V2012/1, 2012/1; Bruker AXS: 2012. 51. SHELXTL SHELXTL V2013.6-2, 2012.4-3; Bruker AXS: 2013. 52. Sheldrick, G. M., A short history of SHELX. Acta Cryst. A 2008, 64, 112-122. 53. Farrugia, L., ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Cryst. 1997, 30 (5 Part 1), 565. 54. Haiges, R.; Boatz, J. A.; Yousufuddin, M.; Christe, K. O., Monocapped trigonal- prismatic transition-metal heptaazides: Syntheses, properties, and structures of [Nb(N-3)(7)](2-) and [Ta(N 3 ) 7 ] 2- . Angew. Chem. Int. Ed. 2007, 46 (16), 2869-2874. 55. Edwards, A. J., Structures of Niobium + Tantalum Pentafluorides. J. Chem. Soc. 1964, (Oct), 3714-&. 56. Brewer, S. A.; Brisdon, A. K.; Fawcett, J.; Holliman, P. J.; Holloway, J. H.; Hope, E. G.; Russell, D. R., Re-evaluation of the X-ray crystal structure of [Ta 4 F 20 ] and the synthesis and characterization of a series of mixed-metal pentafluorides of niobium and tantalum. Z. Anorg. Allg. Chem. 2006, 632 (2), 325-329. 43 CHAPTER 4 THE BINARY GROUP 4 AZIDES [PPh 4 ] 2 [Zr(N 3 ) 6 ] AND [PPh 4 ] 2 [Hf(N 3 ) 6 ] 4.1 Introduction Polyazides, due to their positive heats of formation and high energy content, are viable candidates for high-energy-density materials (HEDM). 1 However, the synthesis of molecules with a large number of azido groups is difficult due to their explosive nature and shock sensitivity. The chemistry of high-oxidation state metal polyazides is more challenging than the one of lower metal oxidation states because the increased oxidation state of the central metal atom results in higher sensitivity and explosiveness of the compounds. 2-5 The often highly sensitive and explosive nature of neutral binary polyazides can be greatly reduced by either anion formation with ionic azides such as [PPh 4 ][N 3 ] or adduct formation with neutral donor ligands such as 2,2’-bipyridine. Both strengthen the weak N𝛼-N𝛽 bond and raise the activation energy barrier towards fatal N 2 elimination by increasing the ionic character of the azido ligands. 6 Partially azido-substituted titanium and zirconium compounds have been previously reported 7- 10 and the first binary titanium polyazides were prepared in 2004. 11 In a theoretical study, the metal tetraazides [M(N 3 ) 4 ] (M = Ti, Zr, Hf, Th) were predicted to be vibrationally stable, 12 exhibiting tetrahedral structures with unique linear M-N-N coordination of the metal. Linear M-N-N coordination had previously been predicted also for [Nb(N 3 ) 5 ] and [Ta(N 3 ) 5 ]. 13 The first experimental evidence for a near-linear M-N-N coordination was provided by the structural characterization of the acetonitrile adduct [Nb(N 3 ) 5 ·CH 3 CN]. 13 Herein we report the synthesis of the first binary zirconium and hafnium polyazides, [M(N 3 ) 6 ] 2- (M = Zr, Hf), which were isolated and characterized as their tetraphenylphosphonium salts, and comment on the observed and predicted M-N-N bond angles in the anions. 4.2 Synthesis By analogy with our synthesis of other binary metal azides, 14-16 [MF 4 ] was reacted at ambient temperature with an excess of Me 3 SiN 3 and two equivalents of [PPh 4 ][N 3 ] in acetonitrile solution. This resulted in rapid and quantitative fluoride-azide exchange and the formation of light-yellow 44 solutions of hexaazido-zirconate and –hafnate [M(N 3 ) 6 ] 2– (M = Zr, Hf) anions, respectively (Eq. 1). (1) Attempts to react the metal fluorides with an excess of Me 3 SiN 3 in acetonitrile solution without the addition of [PPh 4 ][N 3 ] yielded only unreacted starting material. This might be attributed to the low solubility of the metal fluorides in acetonitrile. Attempts to synthesize [M(N 3 ) 5 ] – (M = Zr, Hf) by reacting [MF 4 ] with an excess of Me 3 SiN 3 and only one equivalent of [PPh 4 ][N 3 ] in acetonitrile at room temperature, yielded a mixture of [PPh 4 ] 2 [M(N 3 ) 6 ] and unreacted [MF 4 ] starting materials. The corresponding tetraphenylphosphonium salts were isolated from the reaction mixtures in quantitative yields after removal of all volatile compounds (Me 3 SiF, CH 3 CN and excess Me 3 SiN 3 ) in vacuo. Both [PPh 4 ] 2 [M(N 3 ) 6 ] salts are room temperature stable, pale orange solids that decompose exothermicly with onset temperatures of 204 °C (M = Zr) and 280 °C (M = Hf) as determined by DTA (5 °C/min heating rate). These relatively high decomposition onset temperatures can be attributed to the increased ionic character of the azido groups due to anion formation as well as the presence of two large organic counter-ions per anion. 17 The hexaazidometallate salts were identified and characterized by their crystal structures, vibrational and 14 N NMR spectra as well as the observed material balances. The experimental and calculated (B3LYP and SVWN5) vibrational frequencies and intensities are given in the Supplementary Information. 4.3 Structural Characterization The X-ray crystal structure of [PPh 4 ] 2 [Zr(N 3 ) 6 ], crystallizing in space group P1, reveals the presence of isolated and well-separated [PPh 4 ] + and [Zr(N 3 ) 6 ] 2– ions. The closest Zr∙∙∙N contacts between neighboring anions are 7.242(1) Å and the closest cation-anion distance is 3.156(1) Å. The [Zr(N 3 ) 6 ] 2- anion has a pseudo-octahedral coordination environment around central zirconium atom (Figure 1). The arrangement of the six azido groups is different than in the related anion [Ti(N 3 ) 6 ] 2– . 11 Out of the four equatorial azido groups of the [Zr(N 3 ) 6 ] 2– anion, two opposing groups are pointing at an angle of about 70° above the equatorial plane. A third N 3 group (N16-N18) 45 points at an angle of 63° steeply below the equatorial plane while the fourth azido group (N10- N12) points at an angle of only 10° slightly below this plane. A similar arrangement of the azido ligands is also found for the hexaazido anions [In(N 3 ) 6 ] 3– and [Tl(N 3 ) 6 ] 3– . 17 The Zr-N bond distances range from 2.132(2) Å to 2.178(3) Å and are significantly shorter than the ones found for [ZrCl 4 (N 3 ) 2 ] 2– (2.20(1) Å) 10 but are in good agreement with typical Zr-N bond distances reported in the literature. 18-20 Figure 4.1 ORTEP drawing of the anion in the crystal structure of [PPh 4 ] 2 [Zr(N 3 ) 6 ]. Thermal ellipsoids are drawn at the 50% probability level. Selected bond lengths [Å] and angles [°]: Zr-N1 2.132(1), Zr-N4 2.137(1), Zr-N7 2.136(1), Zr-N10 2.151(1), Zr-N13 2.178(2), Zr-N16 2.164(1), N4-N5 1.186(2), N5-N6 1.153(2), N7-N8 1.189(2), N8-N9 1.147(2), N10-N11 1.195(2), N11-N12 1.146(2), N13-N14 1.209(2), N14-N15 1.148(2), N16-N17 1.191(2), N17- N18 1.151(2) Zr-N1-N2 165.9(1), Zr-N4-N5 168.3(1), N4-Zr-N16 89.22(6), N4-Zr-N13 87.12(6), N1-Zr-N4 175.58(6). Zr-N7-N8 153.1(1), Zr–N10-N11 140.6(1), Zr-N13-N14 127.1(1), Zr-N16-N17 142.7(1). The most interesting feature of the [Zr(N 3 ) 6 ] 2– structure, however, is the fact that the axial azido ligands exhibit a significantly enlarged average Zr-N-N bond angle of 167.1(2)° while the four equatorial ligands (140.9(2)°) show bond angles that are typical for covalent azides. 1, 11, 13, 21-23 The average N-N bond distances of 1.149(3) Å for the terminal bond and 1.193(3) Å for the internal bond are in good agreement with the bond distances previously reported for similar hexaazido anions. 1, 11, 13, 21-23 The N-Zr-N bond angles are 86.51(5)° - 95.49(5)° and 172.69(6)° - 175.58(6)°. 46 The hafnium azide [(PPh 4 ) 2 [Hf(N 3 ) 6 ] crystallizes also in space group P1 with well-separated [PPh 4 ] + and [Hf(N 3 ) 6 ] 2– ions, but is not isostructural with the zirconium compound. The closest intermolecular Hf∙∙∙N distance is 6.677(3) Å and the shortest cation–anion distance is 3.267(3) Å. The [Hf(N 3 ) 6 ] 2– anion exhibits a pseudo-octahedral ligand arrangement around the central hafnium atom. The ligand arrangement in the [Hf(N 3 ) 6 ] 2– anion is different from that in [Zr(N 3 ) 6 ] 2– but is similar to the one in the related titanium species [Ti(N 3 ) 6 ] 2– . 11 Both consist of asymmetric MN 9 units (M = Ti, Hf) with three covalently bonded azido groups to give a trigonal pyramidal coordination environment around the central metal atom. The remaining azido groups are generated by symmetry (symmetry operation -x+2,-y+1,-z). The anion shows a ligand arrangement similar to other hexaazido anions such as [V(N 3 ) 6 ] – , 24 [Se(N 3 ) 6 ] 2– , 25 [Ti(N 3 ) 6 ] 2– , 11 and [Mn(N 3 ) 6 ] 2– 1 but different to the [Zr(N 3 ) 6 ] 2– anion. Two neighboring equatorial azido ligands point at angles of about 49° and 64° above the equatorial plane while the remaining two symmetry-related N 3 ligands point below this plane. Similar to the related zirconium anion, a noticeable difference in bond distances and angles is observed between the axial and equatorial azido ligands of the [Hf(N 3 ) 6 ] 2- anion. With an Hf-N axial distance of 2.118(2) Å, the two axial azido groups are closer to the metal than the equatorial N 3 ligands with an average Hf-N eq distance of 2.161(2) Å. The average Hf−N distance of 2.147(3) Å is in good agreement with typical Hf-N bond distances reported in the literature. 26-28 Figure 4.2 ORTEP drawing of the anion in the crystal structure of [PPh 4 ] 2 [Hf(N 3 ) 6 ]. Thermal ellipsoids are shown at 50% probability. Selected bond lengths [Å] and angles [°]: Hf-N1 2.118(2), Hf-N4 2.160(2), Hf-N7 2.161(2), N1-N2 1.188(2), N2-N3 1.150(2), N4-N5 1.213(3), N5-N6 1.153(3), N7-N8 1.202(3), N8-N9 1.148(4), N1-N2-N3 179.3(3), N4-N5-N6 178.4(2), N7-N8-N9 177.6(3), Hf-N1-N2 164.4(1), Hf-N4-N5 128.2(1), Hf-N7-N8 133.7(1), N1-Hf-N4 91.4(1), N1-Hf-N7 89.6(1), N4-Hf-N7 90.3(1). 47 The M-N-N angles in [Hf(N 3 ) 6 ] 2– show a similar pattern as the related zirconium anion [Zr(N 3 ) 6 ] 2- . The four equatorial azido ligands exhibit for covalent metal azides typical Hf-N-N angles of 128.2(1)° and 133.7(1)° while the axial N 3 ligands coordinate more linear with Hf-N-N angles of 164.5(1)°. A difference between the axial and equatorial azido ligands is also observed in the N-N distances. While the equatorial N 3 groups exhibit a shorter terminal N-N distance of 1.151(2) Å (average) and a longer internal distance of 1.208(2) Å (average) typical for covalent azides, the N-N distances of the axial ligands are more similar (1.188(2) Å and 1.150(2) Å). This indicates a higher ionic character for the axial N 3 ligands than for the equatorial ones and could explain the more linear arrangement of these groups. 4.4 Computational Results Quantum mechanical calculations were carried out at the B3LYP//DZVP2/aD-PP and SVWN5//DZVP2/cc-pVDZ-PP density functional theory (DFT) levels of theory for the titanium, zirconium and hafnium azides [M(N 3 ) 4 ], as well as for the anions [M(N 3 ) 5 ] - and [M(N 3 ) 6 ] 2- . The obtained structures and the list of calculated vibrational frequencies are given in the Supporting Information. The local DFT functional was included as it often gives better geometries for transition metal compounds than the hybrid functional B3LYP. Previous quantum chemical calculations using the B3LYP exchange-correlation functional with various basis sets predicted the Group 4 tetraazides [M(N 3 ) 4 ] (M = Ti, Zr, Hf) to exhibit a unique linear M-N-N coordination of the metal. 12 These findings are validated by our independent calculations. The B3LYP and SVWN5 functionals predict for [Ti(N 3 ) 4 ], [Zr(N 3 ) 4 ] and [Hf(N 3 ) 4 ] a minimum-energy structure of T d symmetry (Figure 3) with a linear M-N-N ligand arrangement. Our calculated Ti-N bond distances of 1.874 Å (B3LYP) and 1.855 Å (SVWN5) in [Ti(N 3 ) 4 ] are in good agreement with the value from previous predictions. 12 The calculated Hf-N bond distances of 2.007 Å (B3LYP) and 1.986 Å (SVWN5) are shorter than the value predicted previously (2.030 Å). 12 For [Zr(N 3 ) 4 ], the calculated Zr-N bond distance of 2.031 Å at the B3LYP level is in good agreement with the previously predicted value (2.023 Å) 12 whereas the SVWN5 value of 2.010 Å is marginally shorter. 48 Figure 4.3 Optimized structures of zirconium and hafnium tetraazide at the B3LYP and SVWN5 levels. For [M(N 3 ) 5 ] – the B3LYP and SVWN5 functionals predict six different structures with pseudo- trigonal bipyramidal ligand arrangements for the titanium compounds and three different structures for the zirconium and hafnium anion (Figure 4). The structures differ only in the relative arrangement of the azido ligands and are within less than 5.5 kcal/mol in energy. This is in good agreement with previous results that there are only subtle energy differences of less than 5 kcal/mol between various orientations of the azido ligands in metal polyazides. 29, 30 As a result, polyazido compounds may adopt several structures with only very little energy difference among them. 31 Figure 4.4 Optimized structures of the pentaazido anions [M(N 3 ) 5 ] - and the energy differences [kcal/mol] at the B3LYP (black) and SVWN5 (red) levels. 49 For the [Ti(N 3 ) 5 ] – anion, the minimum energy structures predicted by SVWN5 and B3LYP are C 1 symmetric (Figures 4A and 4C) with two of the equatorial N 3 ligands oriented below the equatorial plane. Additional C 1 structures with all three equatorial ligands pointing in the same direction (Figures 4B and 4D) are less than 1.0 kcal/mol higher in energy for both functionals. The major differences between the [Ti(N 3 ) 5 ] – structures predicted by SVWN5 and B3LYP is in the orientation of the axial azido ligands. While the B3LYP functionals predict Ti-N-N angles of 148° - 170° for the axial ligands, the SVWN5 functional predict a linear coordination of the metal by the axial ligands. At the SVWN5 level, a C 3v symmetric structure (Figure 4F) is only 0.2 kcal/mol higher in energy while a fifth structure of D 3h symmetry (Figure 4G) is 2 kcal/mol (5.4 kcal/mol at B3LYP) above the minimum energy structure. At the B3LYP level, the minimum energy structures of [Zr(N 3 ) 5 ] – and [Hf(N 3 ) 5 ] – are of C S symmetry (Figure 4E) with two equatorial azido groups pointing below and the third N 3 group above the equatorial plane. A second, C 3V symmetric structure (Figure 4F) is less than 0.03 kcal/mol higher in energy for both metals. A third structure of D 3h symmetry (Figure 4G) with a linear arrangement for all five azido ligands is only 1.0 kcal/mol (Zr) or 0.5 kcal/mol (Hf) higher in energy at the B3LYP level. At the SVWN5 level of theory, the minimum energy structure for the zirconium compound is of C 3v symmetry but the C S and D 3h symmetric structures are less than 0.1 kcal/mol higher in energy. For the [Hf(N 3 ) 5 ] – anion, the structure predicted by the SVWN5 functional is of D 3h symmetry. Figure 4.5 Optimized structures of the hexaazido anions [M(N 3 ) 6 ] 2– and the energy differences [kcal/mol] at the B3LYP (black) and SVWN5 (red) levels. 50 The B3LYP and SVWN5 functionals predict O h and C 1 symmetric structures for the [M(N 3 ) 6 ] 2– anions (Figure 5). The calculated energy differences between the structures are less than 1 kcal/mol. Again, the major difference between the structures lies in the relative orientations of the azido ligands. The O h structure (Figure 5A) exhibits six linear M-N-N arrangements while the C 1 symmetric structures (Figures 5B and 5C) features bent M-N-N moieties with average angles of 144.1° (B3LYP, M = Ti), 167.3° (B3LYP, M = Zr) and 166.1° (B3LYP, M = Hf). The arrangements of the azido ligands in the predicted minimum energy structures of the [M(N 3 ) 6 ] 2– anions (M = Ti, Zr, Hf) are different than those in the crystal structures. 11 It is also interesting to note that the M-N-N angles in the predicted C 1 structures of the [Zr(N 3 ) 6 ] 2– and [Hf(N 3 ) 6 ] 2– anions agree very well with the experimental angles of about 165° for the axial azido ligands in the crystal structures, while the experimental angles of the equatorial N 3 groups (about 140°) are not found in the predicted structures. However, the calculations show that the azido groups are very fluxional with different configurations separated by less than 5.0 kcal/mol, indicating that solid-state and packing effects easily influence the actual orientation of the azido groups in the crystal. 31 It should be kept in mind that the theoretical predications are for the free ions at 0 K and that the experimental structures will always be dominated by crystal packing effects. The average Ti-N distance of 2.0376 Å for the predicted C 1 structure of [Ti(N 3 ) 6 ] 2– is slightly larger than the experimental value of 2.023(2) Å 11 while the predicted Ti-N distance of the O h structure of 2.0148 Å (B3LYP) is slightly shorter. The Zr-N distance of 2.1667 Å (B3LYP) for the O h [Zr(N 3 ) 6 ] 2– structure is only slightly shorter than the average Zr-N distance for the C 1 structure (2.1693 Å). Both distances fall within the range of the experimental distances from the X-ray crystal structure. The average Hf-N distances at the B3LYP level of 2.1431 Å for the O h structure and 2.1459 Å for the C 1 isomer are in good agreement with the average experimental value of 2.147(2) Å from the crystal structure. The energies of the azide ion addition reactions to various titanium, zirconium and hafnium azide species in the gas phase and in acetonitrile solution were calculated at the B3LYP as well as the MP2 level with augmented correlation consistent basis sets since the MP2 method accounts better for weak interactions than most DFT functionals do. The results of these calculations are summarized in Table 1. The solution calculations were done at the B3LYP level in acetonitrile 51 with the solvent treated by a self-consistent reaction field approach. The addition of N 3 - to [M(N 3 ) 4 ] and formation of the [M(N 3 ) 5 ] - anion is an exothermic process for M = Ti, Zr and Hf in both the gas phase and acetonitrile solution. At the B3LYP level, the addition of another N 3 – to [M(N 3 ) 5 ] – to form the dianion [M(N 3 ) 6 ] 2– is calculated to be exothermic in acetonitrile solution, but not in the gas phase. At the MP2 level, the addition of N 3 – to [Ti(N 3 ) 5 ] – , [Zr(N 3 ) 5 ] – and [Hf(N 3 ) 5 ] – is endothermic in the gas phase, but exothermic in the acetonitrile solution. Table 4.1 Reaction energies in kcal/mol. Reaction B3LYP/DZVP2/aD-PP MP2/aD(-PP) a ∆H 298K ∆G 298K ∆G solv b ∆G sol c ∆H 298K ∆G 298K ∆G sol c [Ti(N 3 ) 4 ] + N 3 - → [Ti(N 3 ) 5 ] - -57.5 -48.7 34.9 -13.8 -65.2 -56.3 -21.4 [Ti(N 3 ) 5 ] - + N 3 - → [Ti(N 3 ) 6 ] 2- 17.8 25.5 -32.8 -7.3 9.3 17.0 -15.8 [Zr(N 3 ) 4 ] + N 3 - → [Zr(N 3 ) 5 ] - -66.3 -59.1 38.8 -20.3 -71.9 -64.6 -25.8 [Zr(N 3 ) 5 ] - + N 3 - → [Zr(N 3 ) 6 ] 2- 5.5 10.1 -27.3 -17.2 -2.6 2.0 -25.3 [Hf(N 3 ) 4 ] + N 3 - → [Hf(N 3 ) 5 ] - -66.4 -59.8 37.9 -21.9 -73.2 -66.6 -28.7 [Hf(N 3 ) 5 ] - + N 3 - → [Hf(N 3 ) 6 ] 2- 5.4 9.7 -27.8 -18.2 -4.1 0.1 -27.7 a MP2/aug-cc-pVDZ/aug-cc-pVDZ-PP at B3LYP optimized geometries b Acetonitrile used as a solvent. The electrostatic values are reported. c ∆G sol = ∆G 298K (gas) + ∆G solv 4.5 Spectroscopy The observed and calculated vibrational data of the investigated zirconium and hafnium azides are listed in the Supporting Information. The Infrared and Raman spectra of [PPh 4 ] 2 [Hf(N 3 ) 6 ] are depicted in Figure 4.6. The IR spectra of the compounds are dominated by strong bands due to the 𝜈 as (N 3 ) vibration modes at about 2000 - 2200 cm –1 with medium-weak counterparts in the Raman spectrum. The much weaker bands of the 𝜈 s (N 3 ) modes at about 1200 - 1350 cm –1 are characteristic for the presence of covalently bound azido groups. The M-N azide stretching modes are observed at about 420 - 470 cm –1 . The presence of covalent azides was also confirmed by the 14 N NMR spectra. 52 Solutions of all compounds in MeCN exhibited resonances with chemical shifts of about -280 ppm, -140 ppm, and -200 ppm for N - , N . , and N / , respectively, characteristic for covalent azido compounds. Figure 4.6 IR (top trace) and Raman (bottom trace) spectra of [PPh 4 ] 2 [Hf(N 3 ) 6 ]. 4.6 Conclusion In conclusion, the first binary zirconium and hafnium polyazides [PPh 4 ] 2 [M(N 3 ) 6 ] (M = Zr, Hf) were prepared from the corresponding metal fluorides [MF 4 ] and two equivalents of [PPh 4 ][N 3 ] by fluoride-azide exchange with Me 3 SiN 3 . Both azido salts were fully characterized by their X-ray crystal structures, vibrational and NMR spectra, and decomposition temperatures. The species [M(N 3 ) 4 ], [M(N 3 ) 5 ] – and [M(N 3 ) 6 ] 2– (M = Ti, Zr, Hf) were studied by quantum chemical calculations at the density functional theory level. Most predicted minimum energy structures exhibit linear or almost linear M-N-N arrangements around the metal while in the crystal structures of the [M(N 3 ) 6 ] 2- anions M-N-N angles of 167.1(2)° and 164.5(1)° are found only for the axial azido ligands. The remaining four equatorial azido ligands exhibit M-N-N angles of about 140° that are typical for covalent metal azides. 53 4.7 Experimental Section Caution! Polyazides are extremely shock-sensitive and can explode violently upon the slightest provocation. Because of the high energy content and the high detonation velocity of these azides, their explosions are particularly violent and can cause, even on a one mmol scale, significant damage. The use of appropriate safety precautions (safety shields, face shields, leather gloves, protective clothing, such as heavy leather welding suits and ear plugs) is mandatory. 32 Ignoring safety precautions can lead to serious injuries! Materials and Apparatus: All reactions were carried out in Teflon-FEP ampules that were closed by stainless steel valves. Volatile materials were handled in a Pyrex glass vacuum line. Non- volatile materials were handled in the dry nitrogen atmosphere of a glove box. The starting materials [ZrF 4 ] and [HfF 4 ] (Aldrich) were used without further purification. Me 3 SiN 3 (Aldrich) was purified by fractional condensation. [PPh 4 ][N 3 ] was prepared according to a literature procedure from [PPh 4 ][Cl] by ion-exchange. 33 Solvents were dried by standard methods and freshly distilled prior to use. Raman spectra were recorded in the Teflon-FEP reactors or in heat- sealed Pyrex glass melting point capillaries in the range of 4000–80 cm –1 on a Bruker Vertex 70/RAM II spectrophotometer using a Nd-YAG laser at 1064 nm with power levels less than 100 mW. Infrared spectra were recorded in the range 4000-400 cm –1 on a Midac, M Series, FT-IR spectrometer using KBr pellets. Infrared spectra were recorded in the range 4000-400 cm -1 on Bruker Alpha, Bruker Vertex 70, or Bruker Tensor FT-IR spectrometers using KBr pellets. The pellets were prepared inside the glove box using an Econo Press (Thermo Scientific) and transferred in a closed container to the spectrometer before placing them quickly into the sample compartment, which was purged with dry nitrogen to minimize exposure to atmospheric moisture and potential hydrolysis of the sample. Grinding of the neat friction sensitive polyazides must be avoided. The azides were added to the finely powdered KBr and blended into the KBr using a non- metallic spatula. NMR spectra were recorded at 298 K on a Bruker AMX-500 spectrometer. The spectra were externally referenced to neat nitromethane for 14 N. Crystal structure determinations: The single-crystal X-ray diffraction data were collected on a Bruker SMART APEX DUO 3-circle platform diffractometer, equipped with an APEX II CCD detector, using Mo Kα radiation (TRIUMPH curved-crystal monochromator) from a fine-focus 54 tube. The diffractometer was equipped with an Oxford Cryosystems Cryostream 700 apparatus for low-temperature data collection. The frames were integrated using the SAINT algorithm to give the hkl files corrected for Lp/decay. 34, 35 The absorption correction was performed using the SADABS program. 36 The structures were solved by intrinsic phasing 34 and refined on F 2 using the Bruker SHELXTL Software Package and ShelXle. 35, 37, 38 All non-hydrogen atoms were refined anisotropically. ORTEP drawings were prepared using the ORTEP-3 for Windows V2.02 program. Further crystallographic details can be obtained from the Cambridge Crystallographic Data Centre (CCDC, 12 Union Road, Cambridge CB21EZ, UK (Fax: (+44) 1223-336-033; e-mail: deposit@ccdc.cam.ac.uk) on quoting the deposition no. Preparation of [PPh 4 ] 2 [M(N 3 ) 6 ] (M = Zr, Hf): A sample of MF 4 (1.00 mmol) and PPh 4 N 3 (762 mg, 2.00 mmol) was loaded into a Teflon-FEP reactor, followed by the addition of Me 3 SiN 3 (460 mg, 4.00 mmol) and CH 3 CN (1.5 mL) in vacuo at -196 °C. The mixture was allowed to warm to ambient temperature. After 6 h, all volatile material was pumped off at -20 °C leaving behind orange crystals of [PPh 4 ] 2 [M(N 3 ) 6 ] in quantitative yield. 4.8 References 1. Haiges, R.; Buszek, R. J.; Boatz, J. A.; Christe, K. O., Preparation of the First Manganese(III) and Manganese(IV) Azides. Angew. Chem. Int. Ed. 2014, 53 (31), 8200-8205. 2. Fehlhammer, W. P.; Beck, W., Azide Chemistry - An Inorganic Perspective, Part I Metal Azides: Overview, General Trends and Recent Developments. Z. Anorg. Allg. Chem. 2013, 639 (7), 1053-1082. 3. Seok, W. K.; Klapötke, T. M., Inorganic and Transition Metal Azides. Bull. Korean Chem. Soc. 2010, 31 (4), 781-788. 4. Klapötke, T. M., Recent developments in the chemistry of covalent azides. Chem. Ber. Recl. 1997, 130 (4), 443-451. 5. Tornieporth-Oetting, I. C.; Klapötke, T. M., Covalent Inorganic Azides. Angew. Chem. Int. Ed. 1995, 34 (5), 511-520. 6. Haiges, R.; Deokar, P.; Christe, K. O., Coordination Adducts of Niobium( V) and Tantalum(V) Azide M(N 3 ) 5 ( M= Nb, Ta) with Nitrogen Donor Ligands and their Self- Ionization. Angew. Chem. Int. Ed. 2014, 53 (21), 5431-5434. 55 7. Choukroun, R.; Gervais, D., Reactivity of New Azido-Complexes of Titanium and Vanadium. J. Chem. Soc. Dalton Trans. 1980, (9), 1800-1802. 8. Dehnicke, K., Darstellung Und Eigenschaften Der Azidchloride Sncl3n3 Ticl3n3 Und Vocl2n3. J. Inorg. Nucl. Chem. 1965, 27 (4), 809-815. 9. Dehnicke, K.; Krüger, N., Azide Halogenides of Titanium and Molybdenum - Tibr2(N3)2,Tii3n3 and Moi2n3. Chem. Ztg. 1982, 106 (4), 187-188. 10. Dÿck, W. M.; Dehnicke, K.; Beyendorff-Gulba, G.; Strähle, J., Azidokomplexe des Zirkoniums: ZrCl 3 N 3 , [ZrCl 4 N 3 ] 2 ⊝ , [ZrCl 4 (N 3 ) 2 ] 2 ⊝ ; die Kristallstruktur von (PPh 4 ) 2 [ZrCl 4 N 3 ] 2- . Z. Anorg. Allg. Chem. 1981, 482 (11), 113-120. 11. Haiges, R.; Boatz, J. A.; Schneider, S.; Schroer, T.; Yousufuddin, M.; Christe, K. O., The binary group 4 azides [Ti(N 3 ) 4 ] [P(C 6 H 5 ) 4 ][Ti(N 3 ) 5 ], and IP(C 6 H 5 ) 4 ] 2 [Ti(N 3 ) 6 ] and on linear Ti-N- NN coordination. Angew. Chem. Int. Ed. 2004, 43 (24), 3148-3152. 12. Gagliardi, L.; Pyykkö, P., Predicted group 4 tetra-azides M(N 3 ) 4 (M = Ti-Hf, Th): The first examples of linear M-NNN coordination. Inorg. Chem. 2003, 42 (9), 3074-3078. 13. Haiges, R.; Boatz, J. A.; Schroer, T.; Yousufuddin, M.; Christe, K. O., Experimental evidence for linear metal-azido coordination: The binary Group 5 azides [Nb(N( 3 ) 5 ], [Ta(N 3 ) 5 ], [Nb(N( 3 ) 6 ] - , and [Ta(N 3 ) 6 ] - and 1 : 1 acetonitrile adducts [Nb(N( 3 ) 5 (CH 3 CN)] and [Ta(N 3 ) 5 (CH 3 CN)]. Angew. Chem. Int. Ed. 2006, 45 (29), 4830-4835. 14. Haiges, R.; Vij, A.; Boatz, J.; Schneider, S.; Schroer, T.; Gerken, M.; Christe, K., First structural characterization of binary As-III and Sb-III azides. Chem. Eur. J. 2004, 10 (2), 508-517. 15. Haiges, R.; Boatz, J.; Bau, R.; Schneider, S.; Schroer, T.; Yousufuddin, M.; Christe, K., Polyazide chemistry: The first binary group 6 azides, Mo(N 3 ) 6 , W(N 3 ) 6 , [Mo(N 3 ) 7 ] - , and [W(N 3 ) 7 ] - , and the [NW(N 3 ) 4 ] - and [NMo(N 3 ) 4 ] - ions. Angew. Chem. Int. Ed. 2005, 44 (12), 1860-1865. 16. Haiges, R.; Boatz, J.; Vij, A.; Vij, V.; Gerken, M.; Schneider, S.; Schroer, T.; Yousufuddin, M.; Christe, K., Polyazide chemistry: Preparation and characterization of As(N 3 ) 5 , Sb(N 3 ) 5 , and IP(C 6 H 5 ) 4 ] [Sb(N 3 ) 6 ]. Angew. Chem. Int. Ed. 2004, 43 (48), 6676-6680. 17. Haiges, R.; Boatz, J. A.; Williams, J. M.; Christe, K. O., Preparation and Characterization of the Binary Group 13 Azides M(N 3 ) 3 and M(N 3 ) 3 center dot CH 3 CN (M = Ga, In, Tl), [Ga(N 3 ) 5 ] 2- , and [M(N 3 ) 6 ] 3- (M = In, Tl). Angew. Chem. Int. Ed. 2011, 50 (38), 8828-8833. 56 18. Chen, G. Q.; Kehr, G.; Daniliuc, C. G.; Wibbeling, B.; Erker, G., Bifunctional Behavior of Unsaturated Intramolecular Phosphane-Borane Frustrated Lewis Pairs Derived from Uncatalyzed 1,4-Hydrophosphination of a Dienylborane. Chem. Eur. J. 2015, 21 (35), 12449-12455. 19. Fromel, S.; Radermacher, G.; Wibbeling, B.; Daniliuc, C. G.; Warren, T. H.; Kehr, G.; Erker, G., P/B Ketene Adduct Formation from Acyl Chlorides at a Vicinal Phosphane/Borane Frustrated Lewis Pair. Isr. J. Chem. 2015, 55 (2), 210-215. 20. Normand, A. T.; Daniliuc, C. G.; Wibbeling, B.; Kehr, G.; Le Gendre, P.; Erker, G., Phosphido- and Amidozirconocene Cation-Based Frustrated Lewis Pair Chemistry. J. Am. Chem. Soc. 2015, 137 (33), 10796-10808. 21. Haiges, R.; Vij, A.; Boatz, J. A.; Schneider, S.; Schroer, T.; Gerken, M.; Christe, K. O., First structural characterization of binary As-III and Sb-III azides. Chem. Eur. J. 2004, 10 (2), 508- 517. 22. Haiges, R.; Boatz, J. A.; Vij, A.; Gerken, M.; Schneider, S.; Schroer, T.; Christe, K. O., Polyazide chemistry: Preparation and characterization of Te(N 3 ) 4 and [P(C 6 H 5 ) 4 ] 2 [Te(N 3 ) 6 ] nd evidence for [N(CH 3 ) 4 ]Te(N 3 ) 5 ]. Angew. Chem. Int. Ed. 2003, 42 (47), 5847-5851. 23. Haiges, R.; Boatz, J. A.; Bau, R.; Schneider, S.; Schroer, T.; Yousufuddin, M.; Christe, K. O., Polyazide chemistry: The first binary group 6 azides, Mo(N 3 ) 6 , W(N 3 ) 6 , [Mo(N 3 ) 7 ] - , and [W(N 3 ) 7 ] - , and the [NW(N 3 ) 4 ]( - ) and [NMo(N 3 ) 4 ] - ions. Angew. Chem. Int. Ed. 2005, 44 (12), 1860- 1865. 24. Haiges, R.; Boatz, J. A.; Christe, K. O., The Syntheses and Structure of the Vanadium(IV) and Vanadium(V) Binary Azides V(N 3 ) 4 , [V(N 3 ) 6 ] 2- , and [V(N 3 ) 6 ] - . Angew. Chem. Int. Ed. 2010, 49 (43), 8008-8012. 25. Klapoetke, T. M.; Krumm, B.; Scherr, M.; Haiges, R.; Christe, K. O., The binary selenium(IV) azides Se(N 3 ) 4 , [Se(N 3 ) 5 ] - , and [Se(N 3 ) 6 ] 2- . Angew. Chem. Int. Ed. 2007, 46 (45), 8686-8690. 26. Schrock, R. R.; Adamchuk, J.; Ruhland, K.; Lopez, L. P. H., Zirconium and hafnium complexes that contain the electron-withdrawing diamido/donor ligands [(2,6- X 2 C 6 H 3 NCH 2 ) 2 C((2)-C 5 H 4 N)(CH 3 )]( 2- ) (X = Cl or F). An evaluation of the role of ortho halides in 1-hexene polymerization. Organometallics 2003, 22 (24), 5079-5091. 27. Semproni, S. P.; Milsmann, C.; Chirik, P. J., Structure and Reactivity of a Hafnocene mu- Nitrido Prepared From Dinitrogen Cleavage. Angew. Chem. Int. Ed. 2012, 51 (21), 5213-5216. 57 28. Yu, X. G.; Chen, S. J.; Wang, X. P.; Chen, X. T.; Xue, Z. L., Synthesis and Characterization of Group 4 Amide Chloride and Amide Imide Complexes. Organometallics 2009, 28 (15), 4269- 4275. 29. Haiges, R.; Vasiliu, M.; Dixon, D. A.; Christe, K. O., The Vanadium(V) Oxoazides [VO(N 3 ) 3 ], [(bipy)VO(N 3 ) 3 ], and [VO(N 3 ) 5 ] 2- . Angew. Chem. Int. Ed. 2015, 54 (31), 9101-9105. 30. Haiges, R.; Vasiliu, M.; Dixon, D. A.; Christe, K. O., The niobium oxoazides [NbO(N 3 ) 3 ], [NbO(N 3 ) 3 .2CH 3 CN], [(bipy)NbO(N 3 ) 3 ], Cs -2 [NbO(N 3 ) 5 ] and [PPh 4 ] 2 [NbO(N 3 ) 5 ]. Dalton Trans. 2016, 45 (26), 10523-10529. 31. Haiges, R.; Rahm, M.; Christe, K. O., Unprecedented Conformational Variability in Main Group Inorganic Chemistry: the Tetraazidoarsenite and -Antimonite Salts A(+)[M(N 3 ) 4 ] - (A = NMe 4 , PPh 4 , (Ph 3 P) 2 N; M = As, Sb), Five Similar Salts, Five Different Anion Structures. Inorg. Chem. 2013, 52 (1), 402-414. 32. Haiges, R.; Boatz, J. A.; Yousufuddin, M.; Christe, K. O., Monocapped trigonal-prismatic transition-metal heptaazides: Syntheses, properties, and structures of [Nb(N 3 ) 7 ] 2- and [Ta(N 3 ) 7 ] 2- . Angew. Chem. Int. Ed. 2007, 46 (16), 2869-2874. 33. Haiges, R.; Schroer, T.; Yousufuddin, M.; Christe, K., The syntheses and structures of Ph 4 EN 3 (E = P, As, Sb), an example for the transition from ionic to covalent azides within the same main group. Z. Anorg. Allg. Chem. 2005, 631 (13-14), 2691-2695. 34. Sheldrick, G. M., SHELXT - Integrated space-group and crystal-structure determination. Acta Cryst. A 2015, 71 (1), 3-8. 35. Sheldrick, G. M., Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71 (1), 3-8. 36. SADABS SADABS V2012/1, 2012-1; Bruker AXS Madison, WI: 2012. 37. Sheldrick, G. M., A short history of SHELX. Acta Cryst. A 2008, 64, 112-122. 38. Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B., ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Cryst. 2011, 44, 1281-1284. 58 CHAPTER 5 THE DISPROPORTINATION AND SELF-IONIZATION REACTION OF Mn(CN) 3 IN THE PRESENCE OF 2,2’-BIPYRIDINE TO FORM [Mn(bipy) 3 ][Mn(CN) 6 ] 5.1 Introduction “Hofmann compounds” have generated considerable interest in cyanide complexes. 1 Molecular structures and the nature of magnetic coupling between neighbouring metal atoms through cyanide bridges can be readily controlled and predicted. As a result, cyanide bridged complexes have received much attention as important magnetic systems. In addition there has been great interest in cyano metallates due to their application in hybrid polymers 2 , and as a starting material for the synthesis of metal organic frameworks 3, 4 , etc. Several cyano compounds of manganese in its various oxidation states and its Prussian blue structural analogues have been prepared and characterized. 5 However, very few examples of self-ionization and disproportionation of Mn(CN) 3 are known. The disproportionation reaction was first reported by Trageser and Eysel for a reaction of Mn(CN) 3 with water (Eq. 5.1). 2 𝑀𝑛(𝐶𝑁) 8 +6 𝐻 < 𝑂 [𝑀𝑛(𝐻 < 𝑂) 8 ] <@ [𝑀𝑛(𝐶𝑁) A ] <B (5.1) Herein we report the preparation and characterization of [Mn(bipy) 3 ] 2+ [Mn(CN) 6 ] 2– through the reaction of MnF 3 with Me 3 SiCN at room temperature by disproportionation and self-ionization in presence of bipy under anhydrous conditions. The product was characterized by single crystal X- ray diffraction and vibrational spectroscopy. The [Mn(CN) 6 ] 2– anion has a near octahedral geometry as most other percyano complexes of the first-row transition metals. 6 This work may provide valuable understanding of the properties of [Mn(CN) 6 ] 2– and disproportionation and self- ionization of Mn(CN) 3 in the presence of bipyridine ligand. [Mn(bipy) 3 ] 2+ [Mn(CN) 6 ] 2– might also be a promising starting material for the synthesis of manganese(IV) cyano-bridged magnetic molecules. 59 5.2 Synthesis Stoichiometric amounts of manganese(III) fluoride and bipy were treated at ambient temperature with an excess of trimethylsilyl cyanide in acetonitrile solution. This resulted in fluoride-cyanide exchange and the formation of the disproportionation and self-ionization product [Mn(bipy) 3 ] 2+ [Mn(CN) 6 ] 2– which is soluble in MeCN (Eq. 5.2). (5.2) In the initial experiments, stoichiometric amounts of the reactants were stirred in acetonitrile at room temperature for 24 h. The product [Mn(CN) 6 ] 2– is reported to be light sensitive 7 and hence the reaction were carried out in dark. The volatile compounds, Me 3 SiF and MeCN, were then removed under vacuum at –20 ℃, resulting in the formation of pale brown crystals. Single crystal X-ray structure determination identified them as co-crystals of [Mn(bipy) 3 ] 2+ [Mn(CN) 6 ] 2– with one additional free molecule of bipyridine. Since the presence of an extra molecule of bipy in the crystal implied an incomplete reaction, it was repeated using a reaction time of 4 d at room temperature. Upon the removal of the volatile compounds, [Mn(bipy) 3 ] 2+ [Mn(CN) 6 ] 2– was obtained. [Mn(bipy) 3 ] 2+ [Mn(CN) 6 ] 2– is a room-temperature stable, moisture sensitive and light sensitive solid. Hence, it was stored and handled in the dry nitrogen atmosphere of a glove box and in the dark. Our experimental findings are in agreement with the previous report indicating that Mn(CN) 3 belongs to the Mn II [Mn IV (CN) 6 ] series where the Mn II can bind with 6 mono dentate ligands like H 2 O 8 or like in our case with 3 bidentate ligands like bipy. A similar disproportionation reaction was observed for Mn III F 3 with bipy and Me 3 SiN 3 which resulted into manganese(II) and manganese (IV) compounds, giving a mixture of (bipy) 2 Mn II (N 3 ) 2 and (bipy)Mn IV (N 3 ) 4 . 9 60 We have also investigated whether Mn III F 3 can undergo self-ionization in the presence of 2,2’- bipyridine. However, only unreacted starting materials were recovered when stoichiometric amounts of MnF 3 and 2,2’-bipyridine in acetonitrile were stirred at ambient temperature for 4 days. Similarly, when MnF 3 was stirred with an excess of Me 3 SiCN in acetonitrile solution for several days at ambient temperature, again only the unreacted starting materials were recovered. Therefore, it appears that 2,2’-bipyridine is needed to solubilize some of the polymeric MnF 3 and afford the F/CN exchange, but that the bipy adduct of Mn(CN) 3 is the crucial intermediate in the disproportionation and self-ionization reaction. The depolymerisation of MnF 3 by bipy is most likely only occurring to a small extent, as indicated by the long reaction time required to drive the F/CN exchange reaction to completion. Furthermore, the reaction of MnF 2 with Me 3 SiCN in the presence of bipy did not result in F/CN exchange, and again only unreacted starting materials were recovered. The driving force behind the formation of [Mn(bipy) 3 ] 2+ [Mn(CN) 6 ] 2– , i.e the disproportionation and self-ionization, is best explained by the manganese atoms seeking a coordination number of 6. With the availability of six monodentate cyano and three bidentate bipy ligands to the two manganese atoms, this goal is best achieved by formation of [Mn(bipy) 3 ] 2+ [Mn(CN) 6 ] 2– . Mixed ligand compounds, such as Mn(CN) 3 (bipy) 1.5 , are less favourable and would require fractional numbers of the bidentate bipy ligand. 5.3 Spectroscopy The vibrational spectra (Fig. 2) of [Mn(bipy) 3 ] 2+ [Mn(CN) 6 ] 2– is primarily dominated by the bipy vibrational modes. In the infrared spectrum C≡N stretching mode is observed at 2130 cm –1 , which is in good agreement with the one of 2132 cm –1 reported previously. 10 The Raman spectrum (Fig. 3) shows the A 1g 𝜈 C≡N in phase stretching vibration at 2133 cm –1 and E g 𝜈 C≡N out of phase stretching vibration at 2138 cm –1 . The sample on exposure to light shows a shift in the C≡N stretching mode to 2110 cm –1 which is in agreement to the C≡N stretching mode of 2112 cm –1 for [Mn(CN) 6 ] 3– reported in literature 11 . Attempts to take Raman spectrum of the sample exposed to light gave a broad fluorescent band. 61 C≡N stretching mode of 2112 cm –1 for [Mn(CN) 6 ] 3– reported in literature 11 . Attempts to take Raman spectrum of the sample exposed to light gave a broad fluorescent band. 5.4 Structural Characterization [Mn(bipy) 3 ][Mn(CN) 6 ] co-crystallizes with one molecule of 2,2’-bipyridine in space group P1 (Fig. 1). The solid state structure contains isolated and well-separated [Mn(bipy) 3 ] 2+ and [Mn(CN) 6 ] 2– ions. The shortest Mn ⋯Mn and Mn ⋯N distances between cations and anions are 6.877(1) Å and 5.090(4) Å, respectively. The three bipy ligands of the [Mn(bipy) 3 ] 2+ cation are essentially bi-dentate, exhibiting Mn-N bond distances ranging from 2.213(4) Å to 2.272(7) Å. Its structure can be described as a distorted octahedron. The distortion is caused by the N-Mn-N bond angles being only about 73.5(3)° instead of the ideal 90° required for a perfect octahedron. The average bond distance and bond angle of 2.244(8) Å and 73.4(2)° respectively are in good agreement with the one previously reported. 12 Figure 5.1 ORTEP drawing of the crystal structure of [Mn(bipy) 3 ][Mn(CN) 6 ]. Thermal ellipsoids are shown at the 50% probability level. 62 The obtained structure of the [Mn(CN) 6 ] 2– anion [Mn(bipy) 3 ][Mn(CN) 6 ] is in good agreement with the one in [N(PPh 3 ) 2 ] 2 [Mn IV (CN) 6 ] previously reported by Buschmann et. al. 10 The [Mn(CN) 6 ] 2– anion is an almost perfect octahedron with an average Mn-C bond distance of 1.997(8) Å, in accord with the one of 2.021(7) Å previously reported. 10 The N- C-Mn bond angles are in the range of 177.23(6)° to 179.4(6)° and the C-Mn-C bond angles deviate only by about 2° or less from the ideal octahedral geometry. 5.5 Conclusion In summary, we have observed a disproportionation and self-ionization reaction of Mn(CN) 3 in the presence of 2,2’-bipyridine to give [Mn(bipy) 3 ] 2+ [Mn(CN) 6 ] 2– as product. The use of bipy is crucial for achieving the F/CN exchange reaction and is attributed to a partial solubilisation of the polymeric MnF 3 . The [Mn(CN) 6 ] 2– anion has a slightly distorted octahedral structure that is in good agreement with the one previously reported by Buschmann et. al. 10 5.6 Experimental Section Materials and apparatus. All reactions were carried out in Teflon-FEP ampules that were closed by stainless steel valves. Volatile materials were handled in a Pyrex glass vacuum line, nonvolatile materials in the dry nitrogen atmosphere of a glove box. AsF 3 (Advanced Research Chemicals) and Me 3 SiCN (Aldrich) were purified by fractional condensation prior to use. SbF 3 (Ozark Mahoning) and 2,2’-bipyridine (Aldrich) were used as received. Solvents were dried by standard methods and freshly distilled prior to use. Raman spectra were recorded in the range 4000–80 cm - 1 on Bruker Equinox 55 or Bruker Vertex 70/RAMII FT-RA spectrophotometers, using a Nd-YAG laser at 1064 nm. Infrared spectra were recorded in the range 4000-400 cm -1 on Bruker Alpha, Bruker Vertex 70 or Midac M Series FT-IR spectrometers using KBr or AgCl pellets. Crystal structure determination. The single-crystal X-ray diffraction data were collected on a Bruker SMART APEX DUO 3-circle platform diffractometer, equipped with an APEX II CCD detector, using Mo Kα or Cu Kα radiation. The frames were integrated using the SAINT algorithm 63 and the absorption correction was performed using the SADABS program. 13 The structures were solved by intrinsic phasing 14 and refined on F 2 using the Bruker SHELXTL Software Package and ShelXle. 14-16 All non-hydrogen atoms were refined anisotropically. Drawings were prepared using the ORTEP-3 for Windows V2.02 and Mercury CSD 3.8 programs. 17 Preparation of [Mn(bipy) 3 ][Mn(CN) 6 ]: A sample of MnF 3 (111 mg; 1mmol) along with bipy (234 mg; 1.5 mmol) was loaded into a glass ampule, followed by the addition of MeCN (3 mL) and Me 3 SiCN (689 mg; 6 mmol) in vacuo at –196℃ The mixture was warmed to RT and stirred over the period of 4 d in dark, a pale brown solution was obtained and the volatile materials were pumped off at –20℃ and then at room temperature leaving behind [Mn(bipy) 3 ][Mn(CN) 6 ]. 5.7 References 1. Entley, W. R.; Treadway, C. R.; Wilson, S. R.; Girolami, G. S., The Hexacyanotitanate Ion: Synthesis and Crystal Structure of [NEt 4 ] 3 [Ti(III)(CN) 6 ]·4MeCN. J. Am. Chem. Soc. 1997, 119 (27), 6251-6258. 2. Hu, M.; Belik, A. A.; Imura, M.; Yamauchi, Y., Tailored Design of Multiple Nanoarchitectures in Metal-Cyanide Hybrid Coordination Polymers. J. Am. Chem. Soc. 2013, 135 (1), 384-391. 3. James, S. L., Metal-organic frameworks. Chem. Soc. Rev. 2003, 32 (5), 276-288. 4. Beauvais, L. G.; Shores, M. P.; Long, J. R., Cyano-Bridged Re6Q8 (Q = S, Se) Cluster- Metal Framework Solids: A New Class of Porous Materials. Chem. Mater. 1998, 10 (12), 3783- 3786. 5. Her, J.-H.; Stephens, P. W.; Kareis, C. M.; Moore, J. G.; Min, K. S.; Park, J.-W.; Bali, G.; Kennon, B. S.; Miller, J. S., Anomalous Non-Prussian Blue Structures and Magnetic Ordering of K 2 MnII[MnII(CN) 6 ] and Rb 2 MnII[MnII(CN) 6 ]. Inorg. Chem. 2010, 49 (4), 1524- 1534. 6. Manson, J. L.; Buschmann, W. E.; Miller, J. S., Tetracyanomanganate(II) and Its Salts of Divalent First-Row Transition Metal Ions. Inorg. Chem. 2001, 40 (8), 1926-1935. 7. Trageser, G.; Eysel, H. H., Potassium hexacyanomanganate(IV): preparation and spectra. Z. Anorg. Allg. Chem. 1976, 420 (3), 273-9. 64 8. Klenze, R.; Kanellakopulos, B.; Trageser, G.; Eysel, H. H., Manganese hexacyanomanganate: magnetic interactions via cyanide in a mixed valence Prussian blue type compound. J. Chem. Phys. 1980, 72 (11), 5819-28. 9. Haiges, R.; Buszek, R. J.; Boatz, J. A.; Christe, K. O., Preparation of the First Manganese(III) and Manganese(IV) Azides. Angew. Chem., Int. Ed. 2014, 53 (31), 8200-8205. 10. Buschmann, W. E.; Vazquez, C.; Ward, M. D.; Jones, N. C.; Miller, J. S., Structure and physical properties of hexacyanomanganate(IV), [MnIV(CN) 6 ] 2- . Chem. Commun. (Cambridge) 1997, (4), 409-410. 11. Weidinger, D.; Sando, G. M.; Owrutsky, J. C., Vibrational dynamics of metal cyanides. Chem. Phys. Lett. 2010, 489 (4-6), 169-174. 12. Campora, J.; Palma, P.; Perez, C. M.; Rodriguez-Delgado, A.; Alvarez, E.; Gutierrez- Puebla, E., Synthesis and Reactions of Manganese(II) Dialkyl Complexes Containing Monodentate and Bidentate Nitrogen Ligands. Organometallics 2010, 29 (13), 2960-2970. 13. Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D., Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48 (1), 3-10. 14. Sheldrick, G. M., Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C Struct. Chem. 2015, 71 (1), 3-8. 15. Huebschle, C. B.; Sheldrick, G. M.; Dittrich, B., ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44 (6), 1281-1284. 16. Sheldrick, G. M., A short history of SHELX. Acta Crystallogr., Sect. A Found. Crystallogr. 2008, 64 (1), 112-122. 17. Farrugia, L. J., ORTEP-3 for windows - a version of ORTEP-III with a graphical user interface (GUI). J. Appl. Crystallogr. 1997, 30 (5, Pt. 1), 565. 65 CHAPTER 6 PREPARATION AND CHARACTERIZATION OF ANTIMONY AND ARSENIC TRICYANIDE AND THEIR 2,2’-BIPYRIDINE ADDUCTS 6.1 Introduction Since the discovery of the “Hofmann compounds” (coordination polymers of the formula Ni(CN) 4 Ni(NH 3 ) 2 ) one hundred years ago, 1 cyanide complexes have attracted considerable interest 2 as magnetic materials, 3 hybrid polymers 4 , or starting materials for metal organic frameworks, 5, 6 etc. The crystal structures 7, 8 and vibrational spectra 9 of arsenic and phosphorus tricyanide have been reported in the early 1960s. The tricyanides M(CN) 3 (M = P, As) have been isolated by the reaction of the corresponding chlorides with AgCN at 100 °C, followed by a relatively tedious purification of the resulting crude products. 7 The formation of Sb(CN) 3 and BiCl(CN) 2 by refluxing the corresponding metal trichloride with a large excess of trimethylsilyl cyanide in xylene was reported. 10 However, the resulting metal cyanides were identified and characterized solely by elemental analyses. To the best of our knowledge, there have been no further reports in the literature concerning group(V) tricyanides which motivated us to study the syntheses and reaction chemistry of arsenic and antimony tricyanide. Herein, we report the preparation and characterization of the antimony cyanides Sb(CN) 3 and [Sb(CN) 3 ·2,2’-bipy], the arsenic cyanides [As(CN) 3 ·2,2’-bipy] and As(CN) 3 , and the crystal structures of [As(CN) 3 ·2,2’-bipy] and [Sb(CN) 3 ·2,2’-bipy], as well as the redetermined crystal structure of As(CN) 3 . 6.2 Synthesis In agreement with our previously reported syntheses of inorganic azides from the corresponding metal fluorides and Me 3 SiN 3 , 11-25 the reactions of arsenic and antimony trifluorides with an excess of trimethylsilyl cyanide in acetonitrile solution resulted in rapid and complete fluoride-cyanide exchanges and the precipitation of arsenic and antimony tricyanide, respectively [Eq. (6.1), M= As, Sb]. 66 (6.1) The removal of the volatile compounds (CH 3 CN, Me 3 SiF and excess Me 3 SiCN) in vacuo at ambient temperature resulted in the isolation of the neat tricyanides as colorless, moisture-sensitive solids. Both compounds were identified and characterized by the observed material balances, their vibrational and NMR spectra and, in the case of As(CN) 3 by an X-ray crystal structure. The single crystals of As(CN) 3 were obtained by sublimation at 80 ℃ in a static vacuum. All attempts to obtain single crystals of Sb(CN) 3 , suitable for X-ray structure determination, were unsuccessful. The reaction of arsenic and antimony trifluoride with Me 3 SiCN in acetonitrile solution in the presence of stoichiometric amounts of 2,2’-bipyridine (2,2’-bipy) resulted in the formation of the corresponding 2,2’-bipyridine adducts [Eq. (6.2), M = As, Sb]. (6.2) Similar adduct formations have previously been observed for the arsenic and antimony triazides M(N 3 ) 3 . The resulting adducts [As(N 3 ) 3 ·(2,2’-bipy)] and [Sb(N 3 ) 3 ·(2,2’-bipy)] were found to be thermally more stable and less sensitive towards friction and impact than the corresponding uncoordinated triazides. 15 [As(CN) 3 ·(2,2’-bipy)] and [Sb(CN 3 )·(2,2’-bipy)] were isolated in quantitative yields as colorless, moisture-sensitive solids after all volatiles had been removed in vacuo. Both compounds were identified and characterized by the observed material balances as well as their vibrational and NMR spectra. Single crystals of [As(CN) 3 ·(2,2’-bipy)] and [Sb(CN) 3 ·(2,2’-bipy)] were obtained by recrystallization from acetonitrile solution. 6.3 Spectroscopy The vibrational spectra of the uncoordinated tricyanides are dominated by the C≡N vibrational modes. The IR and Raman spectra of M(CN) 3 , show strong bands at about 2210 – 2200 cm –1 (M = As) and 2194 – 2188 cm –1 (M = Sb) for the CºN stretching modes. The M–C 3 stretching modes were found in the 440 – 480 cm –1 (M = As) and 340 – 430 cm –1 (M = Sb) regions. The observed 67 spectra are summarized in Table 6.1, and the spectra calculated at the B3LYP/aug-cc-pVDZ- PP(M) level of theory for the free gaseous isolated M(CN) 3 molecules of ideal C 3v . Since the M(CN) 3 compounds are strongly associated in the solid state, the agreement between the observed and calculated spectra is only fair and no efforts were made to improve the fit by scaling. Table 6.1 Observed and unscaled calculated vibrational frequencies [cm –1 ] and intensities for M(CN) 3 a (M = As, Sb) M = As M = Sb approximate obsd. freq B3LYP freq (IR)[Ra] int b,c obsd. freq d B3LYP freq (IR)[Ra] int b,c mode mode description in point group C 3v a Ra (–70°C) IR (RT) Ra (–70°C) A 1 n 1 n C-N in phase 2213 [8.1] 2209 mw 2289 (10.5)[182] 2194 [10] 2277 (18.1)[181] n 2 n sym MC 3 456 [4.2] 457 vs 495 (24.8)[15.8] 340[4.7] 438 (34.5)[23.4] n 3 δ umbrella MC 3 416 [4.9] 397 (0.03)[7.4] 382 [0.4] 337 (0.001)[5.9] n 4 δ M-C-N in pl., in ph. 287 [0.3] 243 (0)[0] 288 [0.1] 211 (0.31)[0.08] n 5 δ M-C-N o.o.pl., in ph. 144 [2.5] 101 (14.8)[3.7] 148 [sh] 86 (14.6)[4.0] E n 6 n C-N o.o.ph. 2205 [8.2] 2201 [10] 2000 m 2285 (30.5)[47.3] 2285 (30.5)[47.3] 2188 [5.0] 2273 (41)[48] n 7 n asym MC 3 2205 [8.2] 2201 [10] 486 mw 445 s 489 (52.8)[5.0] 489 (52.8)[5.0] 360 [3.6] 424 (61)[8.6] n 8 δ sciss MC 3 409 [1.5] 404 [0.1] 405 mw 387 (0.18)[0.9] 387 (0.18)[0.9] 382 [0.4] 324 (0.14)[1.2] n 9 δ M-C-N o.o.ph. 282 [0.2] 277 [0.1] 247 (0.58)[0.2] 247 (0.58)[0.2] 288 [0.1] 211 (0.16)[0.05] n 10 δ M-C-N o.o.ph. 128 [1.9] 114 [3.0] 87 (5.0)[6.0] 87 (5.0)[6.0] 134 [1.0] 75 (4.7)[6.3] [a] The actual point group in the solids is lower than C 3v and therefore the degeneracy of the E-modes can be lifted and splitting into the two degenerate components can be observed, sym = symmetric, pl = plane, ph = phase, o.o.pl. = out of plane, o.o.ph. = out of phase, asym = asymmetric, sciss = scissoring [b] calculated IR in parentheses and Raman intensities in brackets are given in km mol -1 and Å 4 amu -1 , respectively; [c] B3LYP//aug-cc-pVDZ(C,N)/ aug-cc-pVDZ-PP(As,Sb); [d] in the RT IR spectrum of Sb(CN) 3 as a pressed AgCl disk two bands were observed in the 3000 to 400 cm -1 region at 2194 and 432 cm -1 . As expected as a consequence of the strong bridging, the stretching frequencies are lowered while those of the deformation modes have increased. Furthermore, the symmetry in the solid state is lower than C 3v and, therefore, the doubly degenerate E modes are in most cases split into their degenerate components. The vibrational spectra of the adducts [M(CN) 3 ·(2,2’-bipy)] are dominated by bands due to the organic ligand. The CºN stretching modes are slightly shifted to lower wavenumbers compared to the uncoordinated compounds and were observed at 2195 - 2170 cm –1 (M = As) and 2175 - 2140 cm –1 (M = Sb). 68 The 13 C NMR spectra of As(CN) 3 and Sb(CN) 3 in THF solution display signals due to the cyano groups at 114 ppm and 122 ppm, respectively, while those of their 2,2’-bipyridine adducts in THF display signals at 114 ppm (M = As) and 121 ppm (M = Sb) besides the ones due to the organic ligand. In the 14 N NMR spectra of As(CN) 3 , Sb(CN) 3 , [As(CN) 3 ·(2,2’-bipy)], and Sb(CN) 3 ·(2,2’- bipy)] in THF solution, the signals of the cyano groups are found as broad resonances at -125 ppm, -134 ppm, -121 ppm and -131 ppm, respectively. 6.4 Structural Characterization The crystal structure of As(CN) 3 , prepared from AsCl 3 and AgCN, has previously been reported by Emerson and Britton. 7 Although the reported space group and gross structural features were correct, their structure was determined using Weissenberg photographs taken at room temperature and suffered from a high uncertainty in the positions of the C and N atoms, resulting in inaccurate bond distances and bond angles for the molecule. They reported a distorted C 3v symmetry with large differences in the As-C bond distances of 1.82(5), 1.85(5) and 1.96(5) Å which were attributed to strong intermolecular interaction in the crystal. In view of these issues, it was interesting to redetermine the structure of the As(CN) 3 molecule at 100 K. Figure 6.1 The redetermined crystal structure of As(CN) 3 . Thermal ellipsoids are shown at the 50% probability level. Selected bond lengths [Å] and angles [°]: As1-C1 1.964(3), As1-C2 1.964(2), As1-C3 1.956(3), C1-N1 1.134(3), As1- N1’ 2.837(3), As1-N2’ 2.704(3), As1-N3’ 2.823(2), C2-N2 1.133(3), C3-N3 1.138(3), C1-As1-C2 89.94(10), C1- As1-C3 90.47(11), C2-As1-C3 90.59(10), As1-C1-N1 174.5(3), As1-C2-N2 175.7(2), As1-C3-N3 174.5(2). 69 As reported previously, 7 As(CN) 3 crystallizes with four symmetry-related molecules in the non- centrosymmetric space group C 2 . The dimensions of the monoclinic unit cell at 100 K are in good agreement with those of the previous room temperature structure. As depicted in Figure 6.1, the newly determined structure reveals an As(CN) 3 molecule with the approximate C 3v symmetry expected for an isolated trivalent As atom containing three ligands and a sterically active free valence electron pair. The As-C bond distances of 1.956(3), 1.964(3) and 1.964(2) Å, the C-N distances of 1.133(3), 1.134(3) and 1.138(3) Å, as well as the C-As-C and As-C-N angles are very similar. The arsenic atom of As(CN) 3 is additionally coordinated by three N-atoms from neighboring cyano groups, resulting in a coordination number of either six for the arsenic atom or seven if the As free valence electron pair is included in the count. With an average angle of 174.8(4)°, the As-C-N groups deviate significantly from linearity. A similar non-linear geometry of the X-CN group has also been observed for P(CN) 3 8 and Se(SeCN) 2 , 26 and was initially attributed to packing effects in the crystal lattice. 8 In subsequent quantum-chemical calculations for free gaseous molecules, this could not be confirmed. 27 Our calculations clearly show the As- C-N angles to be nonlinear. Kornath et al. reported the N-C-S angle in the SO 2 CN – anion to be 173.6°. An NBO analysis demonstrated that the non-linear arrangement of the S-C≡N fragment is due to negative hyperconjugation. 28 The three As-N bridge-bond distances of 2.704(3), 2.823(2) and 2.837 Å are much shorter than the van der Waals value of 3.40 Å, indicative of strong association in the solid state. When the three N-bridge atoms are included in the coordination, the structure of As(CN) 3 can be considered as a distorted octahedron or as a monocapped octahedron, if the As free valence electron pair is included. Figure 6.2 Highest occupied molecular orbitals (HOMO and HOMO-9) of As(CN) 3 . 70 There is significant interest in the steric activity of free lone valence electron pairs in hexa- coordinated main group molecules, such as XeF 6 and IF 6 – . 29 Although the steric activity of a free valence electron pair can be readily established experimentally if a molecule has six identical ligands, by the opening of the angles in one of the cones, 30 this is not convincing proof if the six ligands are not identical. Thus, in solid As(CN) 3 it is impossible to say whether the angle of the AsN 3 cone is widened because of the presence of a sterically free valence electron pair or because of the longer As-N bond distances resulting in diminished mutual repulsion of the nitrogen ligands. Obviously, free As(CN) 3 should have a stereoactive lone pair and a pseudo-tetrahedral C 3v geometry. This assumption is supported by molecular orbital theory, and the lone pair in free As(CN) 3 is found in the HOMO and HOMO-9. As can be seen from Figure 6.2, the lone pair is concentrated in the axial position and mixes with the CN π-bonds. In view of the strong As-N bridges, the crystal packing in solid As(CN) 3 is of particular interest. As can be seen from Figure 6.3, the As(CN) 3 molecules are strongly associated forming a polymeric three-dimensional lattice. Figure 6.3 Packing diagram for solid As(CN) 3 viewed in the a/c plane. The As(CN) 3 molecules are perfectly stacked in columns along the b-axis with the three cyano ligands in each column pointing alternatingly up or down. The a/c-plane consists of puckered 12- 71 membered As 4 (CN) 4 rings, involving shorter 2.704 Å As-N bridge bonds to form ribbons along the a-axis and connects with longer 2.837 Å As-N bridge bonds to neighboring columns. Although head-on projections down the b-axis can be misleading, giving the appearance of parallelograms for the two As-C-N-As bridges between the same two As atoms, in reality, the two bridges involve As atoms from other sheets. Therefore, the association in As(CN) 3 differs significantly from the “Mitsubishi” type association found for As(N 3 ) 3 in which the two As atoms bridge directly with each other. 22 Figure 6.4 HOMO and HOMO-15 of As(CN) 3 (HCN) 3 . In an effort to model the crystal structure of solid As(CN) 3 containing three strong As-N bridges, the structures of an As(CN) 3 complex with 3 HCN molecules were explored. As the starting geometry, the average experimental AsN 3 cone angle value of 117° was used. On optimization, the HCN molecules moved away from the lone pair giving an angle of the AsN 3 cone of ~ 140°. The As ⋯N (non-bonded) distance was somewhat method dependent and was predicted to be 3.05 Å at the B3LYP/aug-cc-pVDZ-(PP)(As) level and 2.98 Å at the ωB97x-D/aug-cc-pVDZ-(PP)(As) level. Clearly, the inclusion of methods that enable the appropriate treatment of van der Waals interactions leads to shorter As-N bond distances. Nevertheless, the HOMO (Figure 6.4) is dominated by the lone pair on As, accompanied by a small mixing with CN π-bonds from the CN group directly bonded to the As atom. There is also a small component of the As lone pair, mixing with the lone pairs on all of the N atoms in HOMO-13. These results suggest that the inter-actions 72 of the CN groups from the other As(CN) 3 molecules with an individual As(CN) 3 molecule are driven substantially by solid state effects in the crystal. Figure 6.5 The crystal structure of [As(CN) 3 •(2,2’-bipy)]. Thermal ellipsoids are drawn at the 50% probability level and hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: As1-C1 1.964(2), As1-C2 2.026(2), As1-C3 1.950(2), As1-N1’ 2.851(2), As1-N2’ 2.944(2), As1-N4 2.592(2), As1-N5 3.002(2), C1-As1-C2 85.96(8), C1-As1-C3 90.91(8), C2-As1-C3 86.94(8), C2-As1-N2’ 100.02(6), C3-As1-N2’ 167.90(6), C3-As1-N4 79.38(6), N1’-As1-N2’ 111.91(5). The adduct [As(CN) 3 ·(2,2’-bipy)] crystallizes in the monoclinic space group P2 1 /c with four formula units in the unit cell. The solid state structure consists of [As(CN) 3 ·(2,2’-bipy)] units depicted in Figure 6.5. Each As atom is coordinated by three cyano groups and the two nitrogen atoms of the 2,2’-bipy ligand with As-N bond distances of 2.592(2) and 3.002(2) Å, shorter than the sum of van der Waal’s radii (3.40 Å). 31 The coordination of the As atom is completed by two nitrogen atoms of CN-groups from neighboring molecules, resulting in a coordination number for the central As atom of either seven (Figure 6.5) or eight if the free valence electron pair on As is considered to be a sterically active eighth ligand. It is interesting to note that similar interatomic metal-nitrogen contacts and a formal coordination number of either seven or eight are observed 73 for the antimony triazide [Sb(N 3 ) 3 ·(2,2’-bipy)]. 15 The ligand arrangement around the central atom in [As(CN) 3 ·(2,2’-bipy)] can be derived from a pseudo-trigonal pyramid with the As free valence electron pair occupying the axial position. Four nitrogen-bridges, two from neighboring cyano groups and two from the bipyridine ligand, complete the co-ordination around As. The packing arrangement in [As(CN) 3 ·(2,2’-bipy)] differs from that in As(CN) 3 because only two of the cyano ligands in the former are involved in bridges contrary to three in the latter. The third cyano-N-bridge in As(CN) 3 is replaced by two N-bridges from the bipyridine ligand. The two bipyridine bridges differ significantly in length, one being 2,592 Å and the other one 3.002 Å. Furthermore, the three As-C distances and the two As-N bridges from the neighboring cyano groups are slightly different due to crystal packing effects. While the structure of As(CN) 3 is a triply-bridged three-dimensional polymer (Figure 6.3), [As(CN) 3 ·(2,2’-bipy)] possesses a sheet structure because it contains only two bridging cyano groups. Figure 6.6 The basic structural 12-membered As 4 (CN) 4 ring making up the structure of [As(CN) 3 •(2,2’-bipy)]. Most atoms of the bipyridine molecules have been omitted for clarity. For selected bond lengths and bond angles [°] see caption of Fig. 6.5. 74 Similar to As(CN) 3 , the basic structural element in its bipyridine adduct is a 12-membered As 4 (CN) 4 ring (Figure 6.6) with alternating directions (in/out and up/down) of the As(CN) 3 groups for more efficient packing. The 12-membered As 4 (CN) 4 rings form nearly planar ribbons along the c-axis, and the ribbons are interconnected at almost right angles to form zig-zag sheets in the b/c plane (Figure 6.7). Figure 6.7 Packing diagram of [As(CN) 3 •(2,2’-bipy)] viewed down the c-axis. The bipyridine molecules have been omitted for clarity. The bipyridine molecules and non-bonding terminal cyano groups occupy the empty spaces in the zig-zag sheets (Figure 6.8) and serve as a buffer. For [Sb(CN) 3 ·(2,2’-bipy)], only needles of less than 0.01 x 0.01 x 0.05 mm 3 were obtained. The structure determination was carried-out using Cu K𝛼 radiation from a micro-source as there were virtually no detectable X-ray diffraction spots at better than 1.5 Å resolution using Mo K𝛼 = radiation from a sealed tube. As a result, only a structure with R 1 = 7.23 % (wR 2 = 17.82%) and relatively large error margins in bond distances and angles was obtained. In agreement with the corresponding arsenic cyanide adduct, [Sb(CN) 3 ·(2,2’-bipy)] crystallizes in the monoclinic space group P2 1 /c with four formula units in the unit cell. However, the crystal structures are not isostructural and different unit cell parameters are found for the two compounds. It is interesting to note that the unit cell volume of V = 1242.1(2) Å 3 of the arsenic compound is slightly larger (V = 1294.3(2) Å 3 ) than the one of the antimony adduct. 75 Figure 6.8 Packing diagram of [As(CN) 3 •(2,2’-bipy)] viewed down the c-axis including the bipyridine molecules. Figure 6.9 The crystal structure of [Sb(CN) 3 •(2,2’-bipy)]. Thermal ellipsoids are drawn at the 50% probability level and hydrogen atoms are omitted for clarity. The sterically active free valence electron pair of Sb (not shown in this figure) shares the second axial position with the very long Sb1-N1’ bridge to a neighboring chain. Selected bond lengths [Å] and angles [°]: Sb1-C1 2.13(1), Sb1-C2 2.21(1), Sb1-C3 2.30(1), Sb1-N1’ 3.41(1), Sb1-N2’ 3.05(1), Sb1- N4 2.56(1), Sb1-N5 2.72(1), C1-Sb1-C2 88.1(6), C1-Sb1-C3 82.3(5), C2-Sb1-C3 75.3(6), C2-Sb1-N2’ 140.5(5), C3- Sb1-N2’ 65.5(5), C2-Sb1-N4 78.5(5), N1’-Sb1-N2’ 105.1(4). 76 The coordination and packing in [Sb(CN) 3 ·(2,2’-bipy)] are different from those in the corresponding arsenic compound. The antimony atom is heptacoordinated and the ligands are arranged in a pentagonal bipyramidal fashion. The bidentate bipyridine, one nonbridging and one bridging cyano group, and one N-bridge from the cyano group of a neighboring molecule form a pentagonal almost perfect plane, while the two axial positions are occupied by a weakly bridging cyano ligand and a combination of the sterically active free valence electron pair of Sb and a very long (3.41 Å) N-bridge which weakly connects neighboring chains (Figure 6.9). Because the free electron pair is more repulsive than the axial cyano ligand, the pentagonal plane is somewhat tilted towards the axial cyano ligand. The presence of only one strongly bridging cyano group results in chains of molecules along the c-direction of the crystal (Figure 6.10). Neighboring chains are weakly connected to each other through the axial cyano groups with long Sb-N bonds of 3.41 Å approaching the van der Waals bond limit of ~ 3.55 Å. Figure 6.10 A chain along the c-direction in the packing diagram of [Sb(CN) 3 •(2,2’-bipy)]. 6.5 Computational Results Geometries were optimized at the B3LYP//aug-cc-pVDZ(C,N)/ aug-cc-pVDZ-PP(M) level. The obtained geometries are given in the Supporting Information together with the calculated vibrational frequencies and intensities. The calculated structures of the 2,2’-bipyridine adducts, [M(CN) 3 ·(2,2’-bipy)] (M = As, Sb), deviate noticeably from the crystal structures due to the intermolecular M-N contacts in the experimental structure, resulting in different coordination numbers for the experimental and calculated structures. For the calculated structures, the coordination with 2,2’-bipyridine results in an increase of the average M-C bond distance by 0.034 77 Figure 6.11 Optimized structures of the metal tricyanide species at the B3LYP//aug-cc-pVDZ(C,N)/ aug-cc-pVDZ- PP(M) levels. Å for M = As and by 0.056Å for M = Sb. The calculated C-N distances are virtually identical for the uncoordinated tricyanides and their bipyridine adducts. The major difference between the calculated structures of the arsenic and antimony adducts is found in the bipyridine ligand. While both six-membered rings of the ligand are almost co-planar (5.4° torsion angle) in the Sb compound, the N-C-C-N torsion angle of the bipy ligand of the As compound is 23.4°. The average M-N bipy bond distances at the B3LYP level are 2.886 Å in the As compound, and 2.863 Å for the Sb compound. 6.6 Conclusion In summary, As(CN) 3 and the novel compounds Sb(CN) 3 , [As(CN) 3 ·(2,2’-bipy)] and [Sb(CN) 3 ·(2,2’-bipy)] have been prepared and characterized. The reaction of the trifluorides AsF 3 and SbF 3 with trimethylsilyl cyanide in acetonitrile solution resulted in facile quantitative fluoride- cyanide exchange under formation of the corresponding tricyanides As(CN) 3 and Sb(CN) 3 . The corresponding 2,2’-bi-pyridine adducts, M(CN) 3 ·(2,2’-bipy), were obtained when the fluoride- 78 cyanide exchange reaction was carried-out in the presence of stoichiometric amounts of 2,2’- bipyridine. The re-determined crystal structure of As(CN) 3 reveals an only slight deviation of the molecule from the expected C 3v symmetry with a hexa- or hepta-coordinated (if the free valence electron pair of As is included in the count) central atom, while the arsenic atom in the adduct [As(CN) 3 ·(2,2’-bipy)] is hepta- or octa-coordinated. The crystal structures of As(CN) 3 , [As(CN) 3 ·(2,2’-bipy)] and [Sb(CN) 3 ·(2,2’-bipy)] are surprisingly different. As(CN) 3 possesses a polymeric three-dimensional structure, [As(CN) 3 ·(2,2’-bipy)] exhibits a two-dimensional sheet structure, and [Sb(CN) 3 ·(2,2’-bipy)] has a chain structure. Although azides and cyanides are both pseudo-halides, their structures bear no resemblance. 6.7 Experimental Section Materials and apparatus. All reactions were carried out in Teflon-FEP ampules that were closed by stainless steel valves. Volatile materials were handled in a Pyrex glass vacuum line, nonvolatile materials in the dry nitrogen atmosphere of a glove box. AsF 3 (Advanced Research Chemicals) and Me 3 SiCN (Aldrich) were purified by fractional condensation prior to use. SbF 3 (Ozark Mahoning) and 2,2’-bipyridine (Aldrich) were used as received. Solvents were dried by standard methods and freshly distilled prior to use. Raman spectra were recorded in the range 4000–80 cm – 1 on Bruker Equinox 55 or Bruker Vertex 70/RAMII FT-RA spectrophotometers, using a Nd-YAG laser at 1064 nm. Infrared spectra were recorded in the range 4000-400 cm -1 on Bruker Alpha, Bruker Vertex 70 or Midac M Series FT-IR spectrometers using KBr or AgCl pellets. Crystal structure determination. The single-crystal X-ray diffraction data were collected on a Bruker SMART APEX DUO 3-circle platform diffractometer, equipped with an APEX II CCD detector, using Mo Kα or Cu Kα radiation. The frames were integrated using the SAINT algorithm and the absorption correction was performed using the SADABS program. 32 The structures were solved by intrinsic phasing 33 and refined on F 2 using the Bruker SHELXTL Software Package and ShelXle. 33-35 All non-hydrogen atoms were refined anisotropically. Drawings were prepared using the ORTEP-3 for Windows V2.02 and Mercury CSD 3.8 programs. 36 Further crystallographic details can be obtained from the Cambridge Crystallographic Data Centre (CCDC, 12 Union Road, 79 Cambridge CB21EZ, UK (Fax: (+44) 1223-336-033; e-mail: deposit@ccdc.cam.ac.uk) on quoting the deposition no. CCDC 1456400 – 1456402. Preparation of [M(CN) 3 ] (M = As, Sb). To a frozen mixture of MF 3 (1.0 mmol) and CH 3 CN (1.5 mL) in a Teflon-FEP ampule at –196 ℃, Me 3 SiCN (317 mg, 3.2 mmol) was condensed in vacuo. The mixture was allowed to warm to ambient temperature and stirred for 1 h. All volatile compounds (Me 3 SiF, CH 3 CN, excess Me 3 SiCN) were pumped off first at –20 °C and then at ambient temperature, leaving behind [M(CN) 3 ] as a colorless solid in quantitative yield. Preparation of [M(CN) 3 ·(2,2’-bipy)] (M = As, Sb). To a frozen mixture of MF 3 (1.00 mmol), 2,2’- bipyridine (156 mg, 1.00 mmol) and CH 3 CN (1.5 mL) in a Teflon-FEP ampule at –196 ℃, Me 3 SiCN (317 mg, 3.2 mmol) was condensed in vacuo. The mixture was allowed to warm to ambient temperature and stirred for 1 h. All volatile compounds (Me 3 SiF, CH 3 CN, excess Me 3 SiCN) were pumped off first at –20 °C and then at ambient temperature, leaving behind [M(CN) 3 ·(2,2’-bipy)] as a colorless solid in quantitative yield. 6.8 References 1. Hofmann, K. A.; Kuespert, F., Compounds of hydrocarbons with metal salts. [machine translation]. Z. anorg. Ch. 1897, 15, 204-7. 2. Entley, W. R.; Treadway, C. R.; Wilson, S. R.; Girolami, G. S., The Hexacyanotitanate Ion: Synthesis and Crystal Structure of [NEt 4 ] 3 [TiIII(CN) 6 ]·4MeCN. J. Am. Chem. Soc. 1997, 119 (27), 6251-6258. 3. Culp, J. T.; Park, J.-H.; Benitez, I. O.; Meisel, M. W.; Talham, D. R., Two applications of metal cyanide square grid monolayers: studies of evolving magnetic properties in layered films and templating Prussian blue family thin films. Polyhedron 2003, 22 (14-17), 2125-2131. 4. Hu, M.; Belik, A. A.; Imura, M.; Yamauchi, Y., Tailored Design of Multiple Nanoarchitectures in Metal-Cyanide Hybrid Coordination Polymers. J. Am. Chem. Soc. 2013, 135 (1), 384-391. 5. James, S. L., Metal-organic frameworks. Chem. Soc. Rev. 2003, 32 (5), 276-288. 80 6. Beauvais, L. G.; Shores, M. P.; Long, J. R., Cyano-Bridged Re 6 Q 8 (Q = S, Se) Cluster- Metal Framework Solids: A New Class of Porous Materials. Chem. Mater. 1998, 10 (12), 3783- 3786. 7. Emerson, K.; Britton, D., The crystal and molecular structure of arsenic tricyanide. Acta Crystallographica 1963, 16 (2), 113-118. 8. Emerson, K.; Britton, D., The crystal and molecular structure of phosphorus tricyanide. Acta Crystallographica 1964, 17 (9), 1134-1139. 9. Miller, F. A.; Frankiss, S. G.; Sala, O., Infrared and Raman spectra of P(CN) 3 , and As(CN)3. Spectrochim. Acta 1965, 21 (4), 775-81. 10. Bither, T. A.; Knoth, W. H.; Lindsey, R. V., Jr.; Sharkey, W. H., Trialkyl- and triaryl(iso)cyanosilanes. J. Am. Chem. Soc. 1958, 80, 4151-3. 11. Haiges, R.; Vasiliu, M.; Dixon, D. A.; Christe, K. O., The Vanadium(V) Oxoazides [VO(N 3 ) 3 ], [(bipy)VO(N 3 ) 3 ], and [VO(N 3 ) 5 ] 2- . Angew Chem Int Ed Engl 2015, 54 (31), 9101-5. 12. Haiges, R.; Skotnitzki, J.; Fang, Z.; Dixon, D. A.; Christe, K. O., The Molybdenum(V) and Tungsten(VI) Oxoazides [MoO(N 3 ) 3 ], [MoO(N 3 ) 3 2 CH 3 CN], [(bipy)MoO(N 3 ) 3 ], [MoO(N 3 ) 5 ] 2- , [WO(N 3 ) 4 ], and [WO(N 3 ) 4 CH 3 CN]. Angew Chem Int Ed Engl 2015, 54 (51), 15550-5. 13. Haiges, R.; Skotnitzki, J.; Fang, Z.; Dixon, D. A.; Christe, K. O., The First Molybdenum(VI) and Tungsten(VI) Oxoazides MO 2 (N 3 ) 2 , MO 2 (N 3 ) 2 2 CH 3 CN, (bipy)MO 2 (N 3 ) 2 , and [MO 2 (N 3 ) 4 ] 2- (M=Mo, W). Angew Chem Int Ed Engl 2015, 54 (33), 9581-5. 14. Haiges, R.; Buszek, R. J.; Boatz, J. A.; Christe, K. O., Preparation of the First Manganese(III) and Manganese(IV) Azides. Angew. Chem., Int. Ed. 2014, 53 (31), 8200-8205. 15. Haiges, R.; Rahm, M.; Dixon, D. A.; Garner, E. B., 3rd; Christe, K. O., Binary group 15 polyazides. structural characterization of [Bi(N 3 ) 4 ] - , [Bi(N 3 ) 5 ] 2- , [bipy.Bi(N 3 ) 5 ] 2- , [Bi(N 3 ) 6 ] 3- , bipy.As(N 3 ) 3 , bipy.Sb(N 3 ) 3 , and [(bipy) 2 .Bi(N 3 ) 3 ] 2 and on the lone pair activation of valence electrons. Inorg Chem 2012, 51 (2), 1127-41. 16. Haiges, R.; Boatz, J. A.; Williams, J. M.; Christe, K. O., Preparation and characterization of the binary group 13 azides M(N 3 ) 3 and M(N 3 ) 3 .CH 3 CN (M=Ga, In, Tl), [Ga(N 3 ) 5 ] 2- , and [M(N 3 ) 6 ] 3- (M=In, Tl). Angew Chem Int Ed Engl 2011, 50 (38), 8828-33. 17. Haiges, R.; Boatz, J. A.; Christe, K. O., The syntheses and structure of the vanadium(IV) and vanadium(V) binary azides V(N 3 ) 4 , [V(N 3 ) 6 ] 2- , and [V(N 3 ) 6 ]. Angew Chem Int Ed Engl 2010, 49 (43), 8008-12. 81 18. Klapotke, T. M.; Krumm, B.; Scherr, M.; Haiges, R.; Christe, K. O., The binary selenium(IV) Azides Se(N 3 ) 4 , [Se(N 3 ) 5 ] - , and [Se(N 3 ) 6 ] 2- . Angew Chem Int Ed Engl 2007, 46 (45), 8686-90. 19. Haiges, R.; Boatz, J. A.; Yousufuddin, M.; Christe, K. O., Monocapped trigonal- prismatic transition-metal heptaazides: syntheses, properties, and structures of [Nb(N3)7]2- and [Ta(N3)7]2. Angew Chem Int Ed Engl 2007, 46 (16), 2869-74. 20. Haiges, R.; Boatz, J. A.; Schroer, T.; Yousufuddin, M.; Christe, K. O., Experimental evidence for linear metal-azido coordination: the binary group 5 azides [Nb(N 3 ) 5 ], [Ta(N 3 ) 5 ], [Nb(N 3 ) 6 ] - , and [Ta(N 3 ) 6 ] - , and 1:1 acetonitrile adducts [Nb(N 3 ) 5 (CH 3 CN)] and [Ta(N 3 ) 5 (CH 3 CN)]. Angew Chem Int Ed Engl 2006, 45 (29), 4830-5. 21. Haiges, R.; Boatz, J. A.; Bau, R.; Schneider, S.; Schroer, T.; Yousufuddin, M.; Christe, K. O., Polyazide chemistry: the first binary group 6 azides, Mo(N 3 ) 6 , W(N 3 ) 6 , [Mo(N 3 ) 7 ] - , and [W(N 3 ) 7 ] - , and the [NW(N 3 ) 4 ] - and [NMo(N 3 ) 4 ] - ions. Angew Chem Int Ed Engl 2005, 44 (12), 1860-5. 22. Haiges, R.; Vij, A.; Boatz, J. A.; Schneider, S.; Schroer, T.; Gerken, M.; Christe, K. O., First structural characterization of binary AsIII and SbIII azides. Chemistry 2004, 10 (2), 508-17. 23. Haiges, R.; Boatz, J. A.; Vij, A.; Vij, V.; Gerken, M.; Schneider, S.; Schroer, T.; Yousufuddin, M.; Christe, K. O., Polyazide chemistry: preparation and characterization of As(N 3 ) 5 , Sb(N 3 ) 5 , and [P(C 6 H 5 ) 4 ][Sb(N 3 ) 6 )]. Angew Chem Int Ed Engl 2004, 43 (48), 6676-80. 24. Haiges, R.; Boatz, J. A.; Schneider, S.; Schroer, T.; Yousufuddin, M.; Christe, K. O., The binary group 4 azides [Ti(N 3 ) 4 ], [P(C 6 H 5 ) 4 ][Ti(N 3 ) 5 ], and [P(C 6 H 5 ) 4 ] 2 [Ti(N 3 ) 6 ] and on linear Ti-- N--NN coordination. Angew Chem Int Ed Engl 2004, 43 (24), 3148-52. 25. Haiges, R.; Boatz, J. A.; Vij, A.; Gerken, M.; Schneider, S.; Schroer, T.; Christe, K. O., Polyazide chemistry: preparation and characterization of Te(N 3 ) 4 and [P(C 6 H 5 ) 4 ] 2 [Te(N 3 ) 6 ] and evidence for [N(CH 3 ) 4 ][Te(N 3 ) 5 ]. Angew Chem Int Ed Engl 2003, 42 (47), 5847-51. 26. Aksnes, O.; Foss, O., Crystal structure of selenium diselenocyanate. Acta Chem. Scand. 1954, 8, 1787-95. 27. Christen, D.; Mack, H. G.; Marsden, C. J.; Oberhammer, H.; Schatte, G.; Seppelt, K.; Willner, H., Experimental and theoretical evidence for nonlinear coordination of sp-hybridized carbon atoms. The gas-phase structure of (trifluoroethylidyne)sulfur trifluoride, CF 3 C≡SF 3 . J. Am. Chem. Soc. 1987, 109 (13), 4009-18. 82 28. Kornath, A.; Blecher, O.; Ludwig, R., Synthesis and Characterization of Tetramethylammonium Cyanosulfite, (CH 3 ) 4 N+SO 2 CN. J. Am. Chem. Soc. 1999, 121 (16), 4019-4022. 29. Dixon, D. A.; Grant, D. J.; Christe, K. O.; Peterson, K. A., Structure and Heats of Formation of Iodine Fluorides and the Respective Closed-Shell Ions from CCSD(T) Electronic Structure Calculations and Reliable Prediction of the Steric Activity of the Free-Valence Electron Pair in ClF6-, BrF6-, and IF6. Inorg. Chem. 2008, 47 (12), 5485-5494. 30. Christe, K. O.; Wilson, W. W., Steric activity of the central atom free valence electron pairs in free hexafluorobromate(1-) and hexafluoroiodate(1-) ions. Inorg. Chem. 1989, 28 (17), 3275-7. 31. Bondi, A., van der Waals volumes and radii. J. Phys. Chem. 1964, 68 (3), 441-51. 32. Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D., Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48 (1), 3-10. 33. Sheldrick, G. M., Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C Struct. Chem. 2015, 71 (1), 3-8. 34. Huebschle, C. B.; Sheldrick, G. M.; Dittrich, B., ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44 (6), 1281-1284. 35. Sheldrick, G. M., A short history of SHELX. Acta Crystallogr., Sect. A Found. Crystallogr. 2008, 64 (1), 112-122. 36. Farrugia, L. J., ORTEP-3 for windows - a version of ORTEP-III with a graphical user interface (GUI). J. Appl. Crystallogr. 1997, 30 (5, Pt. 1), 565. 83 CHAPTER 7 PREPARATION AND CHARACTERIZATION OF GROUP 13 CYANIDES [Ga(CN) 4 ] – , [In(CN) 5 ] 2– AND [Tl(CN) 5 ] 2– 7.1 Introduction There is an ongoing interest in cyanometallates 1 due to their unique fundamental properties with porous inclusion materials exhibiting ideal M(CN) 3 stoichiometry and octahedral coordination 2-4 and applications in the field of hybrid polymers, 5 magnetic material. 6 Cyanometallates are generally prepared by a direct reaction of cyanide salts, such as KCN or [(n-Bu) 4 N][CN] with simple metal salts, like metal chlorides or metal bromides, in aqueous solution. 7-9 But, this method limits the preparation only to homoleptic cyanometallates. Tricyanides of metals like indium, have been reported a long time ago, but their syntheses involved aqueous solutions with poor yields because of the extensive solvolysis which occurred or needed harsher reaction conditions. 10 While a significant number of thallium cyanides have been reported before, 11, 12 the reported synthetic methodology was based on metal chlorides or bromides in aqueous solutions, limiting the number of accessible and resulting in impure products. Ga(CN) 3 and adducts such as [L] x [Ga(CN) 3 ] have been reported recently, but higher substituted salts [Ga(CN) 4 ] – are still unknown. 13 To the best of our knowledge, there have been no further reports on highly substituted group 13 metal cyanides in the literature. This motivated us to study the syntheses and reaction chemistry of [Ga(CN) 4 ] – , and [M(CN) 5 ] 2– (M = In, Tl). Here in we report the preparation and characterization of the Group 13 cyanometallates [PPh 4 ][Ga(CN) 4 ], [PPh 4 ] 2 [In(CN) 5 ] and [PPh 4 ] 2 [Tl(CN) 5 ] by their crystal structure, vibrational data and compare it with the theoretically calculated vibrational frequencies. 7.2 Synthesis In accordance with our previous reported synthesis of inorganic cyanides from the corresponding metal fluorides by fluoride-cyanide exchange with Me 3 SiCN, 14 we attempted the synthesis of gallium, indium and thallium tricyanide by fluoride-cyanide exchange from the metal fluorides with Me 3 SiCN. However, when using acetonitrile as solvent, mostly unreacted starting 84 materials could be recovered. This is attributed to the insolubility of the polymeric metal tricyanides in acetonitrile, resulting in an even coating of the metal fluoride surfaces and preventing a complete conversion. The reaction of gallium, indium and thallium trifluoride with Me 3 SiCN and stoichiometric amounts of [PPh 4 ][CN] in acetonitrile solution resulted again in rapid and complete fluoride-cyanide exchange and clear, pale yellow solutions of the corresponding cyanometalates were obtained (Eq. 1 and 2). (1) (2) The salts [PPh 4 ][Ga(CN) 4 ], [PPh 4 ] 2 [In(CN) 5 ], and [PPh 4 ] 2 [Tl(CN) 5 ] were isolated as pale yellow, moisture sensitive solids after removal of the volatile materials (MeCN, Me 3 SiF and excess Me 3 SiCN) in vacuo. Single crystals were obtained from acetonitrile solutions by slow evaporation of the solvent at –20 °C in vacuo. Attempts to prepare a salt of the pentacyanogallanate anion by the reaction of [GaF 3 ] with two equivalents of [PPh 4 ][CN] and an excess of Me 3 SiCN were unsuccessful and resulted in the isolation of an equimolare mixture of [PPh 4 ][Ga(CN) 4 ] and [PPh 4 ][CN]. The reactions of [InF 3 ] and [TlF 3 ] with three equivalents of [PPh 4 ][CN] and an excess of Me 3 SiCN in acetonitrile solution resulted in equimolare mixtures of [PPh 4 ][CN] and [PPh 4 ] 2 [In(CN) 5 ] or [PPh 4 ] 2 [Tl(CN) 5 ], respectively. This is in contrast to the chemistry of the corresponding group 13 azides for which prefer the formation of the anions [Ga(N 3 ) 5 ] 2– , [In(N 3 ) 6 ] 3– and [Tl(N 3 ) 6 ] 3– over [Ga(N 3 ) 4 ] – , [In(N 3 ) 5 ] 2– and [Tl(N 3 ) 5 ] 2– . 15 The obtained Group 13 cyanide compounds were identified and characterized by their crystal structures and vibrational spectra as well as the observed material balances. 7.3 Spectroscopy The experimental and calculated vibrational frequencies and intensities are listed in the Supplementary Information. The vibrational assignments are supported by DFT calculations. The IR and Raman spectra of the investigated cyano compounds are dominated by the organic cation. 85 The strong C≡N stretch vibration modes are observed at about 2100 to 2250 cm –1 . For the [Ga(CN) 4 ] – anion, the IR spectrum shows a sharp C≡N stretch at 2183 and 2200 cm –1 which is in good agreement with the value of 2180cm –1 reported in literature whereas the antisymmetric Raman stretch is seen at 2185 and 2207 cm –1 . For the [In(CN) 5 ] 2– the IR spectrum shows a sharp C≡N stretch at 2190 and 2200 cm –1 whereas the Raman stretches are seen at 2121, 2158, 2185, 2207 and 2232 cm –1 . [Tl(CN) 5 ] 2– shows IR stretches at 2200, 2167 and 2140 cm –1 and a sharp Raman stretch at 2187 cm –1 . 7.4 X-ray Crystallography Details of the crystallographic data collection and refinement parameters for the structurally characterized compounds [PPh 4 ][Ga(CN) 4 ], [PPh 4 ] 2 [In(CN) 5 ] and [PPh 4 ] 2 [Tl(CN) 5 ] are given in the Supplementary Information. The tetracyanogallate [PPh 4 ][Ga(CN) 4 ] crystallizes in the tetragonal space group I4 1 /a with four formula units per unit cell (Z = 4). The solid-state structure reveals the presence of isolated and well separated [PPh 4 ] + and [Ga(CN) 4 ] – ions. The closest N ⋯N and Ga ⋯N contacts between neighboring anions are 4.776(2) Å and 6.271(2) Å, respectively. The closest cation-anion distance is 3.463(1) Å. The [Ga(CN) 4 ] – anion (Figure 7.1) consists of an asymmetric Ga-CN unit with the Ga atom located on a 4-fold rotoinversion axis. The remaining three cyano groups are generated by symmetry (symmetry operations 1-x,1.5-y,z; 1.25- y,0.25+x,0.25-z; -0.25+y,1.25-x,0.25-z) resulting in a pseudo-tetrahedral ligand arrangement around the central gallium atom. While the average angle between the cyano ligands of 109.5(1)° is the ideal tetrahedral angle, the individual angles deviate from it. Two C-Ga-C angles are slightly widened to 111.41(7)° while the remaining four C-Ga-C angles are slightly contracted to 108.51(3)°. The observed Ga-C distance in [PPh 4 ](Ga(CN) 4 ] of 1.970(1) Å is significantly shorter than the one in the Li[Ga(CN) 4 ] salt (2.021(5)/2.00(1) Å) 3 and [Ga(CN) 3 (NC 5 H 5 ) 2 )] (1.991(4) Å]. 13 The observed C-N distance of 1.145(2) Å in [PPh 4 ](Ga(CN) 4 ] is significantly longer than the 1.07(1) Å reported for Li[Ga(CN) 4 ] 3 and 1.075(5) Å reported for [Ga(CN) 3 (NC 5 H 5 ) 2 )] 13 but in good agreement with the one in open-framework [Ga(CN) 3 ] (1.148(1) Å). 3 86 Figure 7.1 ORTEP plot of the anion in the crystal structure of [PPh 4 ][Ga(CN) 4 ] Thermal ellipsoids are shown at the 50% probability level. Select bond lengths [Å] and angles [°]: Ga-C1 1.970(1), C1-N1 1.145(2), C1-Ga-C1’ 111.41(7), C1-Ga-C1’ 108.51(3), Ga-C1-N1 178.2(1). The salt [PPh 4 ] 2 [In(CN) 5 ] crystallizes in the monoclinic space group C2/c (Z = 4) with well separated [PPh 4 ] + and [In(CN) 5 ] 2– ions. The closest N ⋯N and In ⋯N contacts between neighboring anions are 4.946(2) Å and 6.830(2) Å, respectively. The closest cation-anion distance is 3.238(3) Å. The [In(CN) 5 ] 2- anion (Figure 7.2) consists of a pyramidal-shaped, asymmetric In(CN) 3 unit. The remaining two cyano groups are generated by a two-fold rotation (symmetry operation 1- x,y,0.5-z) resulting in a pseudo-trigonal bipyramidal ligand arrangement around the central metal atom. While the C-In-C angle between the axial cyano ligands is undistorted from the ideal linear arrangement (179.8(2)°), the C-In-C angles between the equatorial ligands deviate from the ideal value (120°) with one smaller angle of 115.6(2)° and two larger angles of 122.2(2)°. The C-In-C angles between the axial and equatorial ligands of 85.6(2)°, 90.1(2)° and 94.1(2)° are distorted from the ideal value (90°), too. The average In-C distances of 2.342(2) Å for the axial and 2.201(2) Å for the equatorial ligands as well as the average C-N distance of 1.139(2) Å are in good agreement with the values observed for other indium cyanide compounds. 16 87 Figure 7.2 ORTEP plot of the anion in the crystal structure of [PPh 4 ] 2 [In(CN) 5 ]Thermal ellipsoids are shown at the 50% probability level. Select bond lengths [Å] and angles [°]: In-C1 2.204(3), In-C2 2.200(2), In-C3 2.342(2), C1-N1 1.121(4), C2-N2 1.142(2), C3-N3 1.146(2), C1-In-C2 122.2(1), C1-In-C3 90.1, C2-In-C3 94.0(1) In-C1-N1 180.0, In-C2-N2 174.8(2) In-C3-N3 173.8(2). The salt [PPh 4 ] 2 [Tl(CN) 5 ] is isostructural to [PPh 4 ] 2 [In(CN) 5 ] and crystallizes in space group C2/c (Z = 4) with a slightly larger unit cell volume of 4357.6(7) Å 3 than the related indium compound (V = 4342.1(9) Å 3 ). The solid-state structure consists of with well separated [PPh 4 ] + and [Tl(CN) 5 ] 2- ions. The closest N ⋯N and Tl ⋯N contacts between neighboring anions are 4.951(2) Å and 6.838(2) Å, respectively. The closest cation-anion distance is 3.233(3) Å. The structure of the [Tl(CN) 5 ] 2- anion (Figure 7.3) is identical to the one of the [In(CN) 5 ] 2– anion. The C-In-C angle between the axial cyano ligands is 179.3(2)°. The ones between the equatorial ligands are 115.7(2)°, 122.2(2)° and 122.2(2)°, and between the axial and equatorial ligands are 85.5(2)°, 90.4(2)° and 94.1(2)°. The average Tl-C distances of 2.462(2) Å for the axial and 2.207(2) Å for the equatorial ligands as well as the average C-N distance of 1.140(2) Å are in good agreement with the values observed for other thallium cyanide compounds. 17 88 Figure 7.3 ORTEP plot of the anion in the crystal structure of [PPh 4 ] 2 [Tl(CN) 5 ]. Thermal ellipsoids are shown at the 50% probability level. Select bond lengths [Å] and angles [°]: Tl-C1 2.213(3), Tl-C2 2.462(2), Tl-C3 2.205(2), C1- N1 1.119(5), C2-N2 1.148(3), C3-N3 1.143(3), C1-Tl-C2 90.36(6), C1-Tl-C3 122.16(6), C2-Tl-C3 85.49(8) Tl-C1- N1 180.0, Tl-C2-N2 173.8(2) Tl-C3-N3 175.0(2). 7.5 Computational Section Quantum mechanical calculations were carried out at the B3LYP//aug-cc-pVDZ(C,N)/ aug-cc- pVDZ-PP(M) and MP2//aug-cc-pVDZ(C,N)/ aug-cc-pVDZ-PP(M) density functional theory (DFT) levels for the metal cyanides [M(CN) 3 ], [M(CN) 4 ] – , [M(CN) 5 ] 2– and [M(CN) 6 ] 3– (M = Ga, In, Tl). The obtained structures and the calculated vibrational frequencies and intensities are given in the SI. The B3LYP and MP2 functionals predict for the tricyanide species [M(CN) 3 ] a minimum-energy structure of D 3h symmetry (Figure 7.4). The calculated Ga-C bond distances of 1.892 Å (MP2) and 1.917 Å (B3LYP) are shorter than the experimentally observed value of1.996 Å for [Et 4 N][mesGa(CN) 3 ]. For [In(CN) 3 ], the calculated In-C bond distances are 2.074 Å (MP2) and 2.107 Å (B3LYP). The calculated Tl-C bond distance of 2.093 Å (MP2) is slightly smaller than the bond length predicted previously (2.15 Å) for the hydrated tricyano complex of thallium [Tl(CN) 3 (H 2 O)]. 12 89 Figure 7.4 Optimized structures of [M(CN) 3 ] (M = Ga, In, Tl) at the MP2 and B3LYP levels with D 3h symmetry For the [M(CN) 4 ] - (M = Ga, In, Tl) anion the MP2 and B3LYP levels predict a minimum energy structure of T d symmetry. The calculated Ga-C distances of 1.953 Å (MP2) and 1.984 Å (B3LYP) are in good agreement with the observed experimental bond distance of 1.97 Å. The C-N bond distance was calculated to 1.164 Å (B3LYP) and 1.191 Å (MP2), and is marginally longer than the experimental value of 1.14 Å. For [In(CN) 4 ] – , the calculated In-C bond distances are 2.139 Å (MP2) and 2.175 Å (B3LYP). The calculated Tl-C bond distance is 2.160 Å (MP2) is in good agreement with the previously predicted value (2.19 Å) whereas the B3LYP value of 2.217 Å is slightly larger. 12 Figure 7.5 Optimized structures of [M(CN) 4 ] – (M = Ga, In, Tl) at the MP2 and B3LYP levels with T d symmetry A minimum energy structure with D 3h symmetry was predicted for the pentacyano anions [M(CN) 5 ] 2– (M = Ga, In, Tl) by MP2 and B3LYP. For [Ga(CN) 5 ] 2– , the calculated Ga-C bond distances are 2.002 Å (MP2) and 2.038 Å (B3LYP). For [In(CN) 5 ] 2– , the In-C distances of 2.339 and 2.202 (MP2) and 2.366 Å and 2.248 Å (B3LYP) are in good agreement with the experimental bond distances of 2.204 Å and 2.342 Å. The C-N bond distances of 1.195 and 1.199 (MP2) and 1.169 Å and 1.172 Å (B3LYP) are slightly larger than the experimentally observed bond distances of 1.121 Å and 1.142 Å. The calculated Tl-C distances of 2.193 and 2.468 (MP2) and 2.284 Å and 2.471 Å (B3LYP) level are in good agreement with the experimental bon distances of 2.212 Å and 90 2.462 Å. The C-N bond distances of 1.195 Å and 1.201 Å (MP2) and 1.169 Å and 1.173 Å (B3LYP) are slightly larger than the experimental value of 1.119 Å and 1.148 Å. Figure 7.6 Optimized structures of [M(CN) 5 ] 2– and [M(CN) 5 ] 3– (M = Ga, In, Tl) at the MP2 and B3LYP levels with T d and O h symmetry respectively Table 7.1 Reaction energies in kcal/mol at B3LYP//aug-cc-pVDZ(C,N)/ aug-cc-pVDZ-PP(M) and MP2//aug-cc- pVDZ(C,N)/ aug-cc-pwcVDZ-PP(M) for M = Ga, In, Tl M 0K B3LYP 298K B3LYP 0K MP2 298K MP2 M(CN) 4 - → M(CN) 3 + CN - Ga 91.3 91.9 98.9 99.3 In 87.9 88.2 93.9 94.3 Tl 79.3 79.5 84.6 84.9 M(CN) 6 3- → M(CN) 5 -2 + CN - Ga -111.2 -111.1 -107.2 -107.1 In -100.1 -100.0 -96.8 -96.7 Tl -103.4 -103.4 -104.1 -104.3 M(CN) 5 2- → M(CN) 4 - + CN - Ga -43.8 -43.7 -41.5 -41.5 In -32.7 -32.6 -30.8 -30.7 Tl -37.5 -37.7 -37.8 -38.0 M(CN) 5 2- → M(CN) 3 + 2 CN - Ga 47.6 48.2 57.4 57.9 In 55.2 55.6 63.2 63.5 Tl 41.8 41.9 46.8 46.9 a MP2//aug-cc-pVDZ(C,N)/ aug-cc-pwcVDZ-PP(M) at B3LYP optimized geometries For [M(CN) 6 ] 3– the MP2 and B3LYP predict a minimum energy structure of O h symmetry. The calculated Ga-C bond distances are 2.167 Å (MP2) and 2.207 Å (B3LYP). For [In(CN) 6 ] 3– , the calculated In-C bond distances are 2.351 Å (MP2) and 2.395 Å (B3LYP). Whereas for [Tl(CN) 6 ] 3– , the Tl-C bond distances are 2.408 Å (MP2) and 2.476 Å (B3LYP). 91 The reaction energies of the cyanide ion dissociation for various gallium, indium and thallium cyanide species in the gas phase were calculated at the B3LYP as well as the MP2 level with augmented correlation consistent basis sets since the MP2 method accounts better for weak interactions than most DFT functionals do. The results of these calculations are summarized in Table 7.1. 7.6 Conclusion In summary, the Group 13 cyanometallates [Ga(CN) 4 ] – , [[In(CN) 5 ] 2– and [Tl(CN) 5 ] 2– were prepared from the corresponding metal fluorides [MF 3 ] by reaction with Me 3 SiCN and stoichiometric amounts of [PPh 4 ][CN] for indium and thallium, by fluoride cyanide exchange with Me 3 SiCN. The cyano compounds were scharacterized by their X-ray crystal structures and vibrational spectra. The species [M(CN) 3 ], [M(CN) 4 ] – , [M(CN) 5 ] 2– and [M(CN) 6 ] 3– were studied by quantum chemical calculations at the density functional theory level. 7.7 Experimental Section Materials and apparatus. All reactions were carried out in Teflon-FEP ampules that were closed by stainless steel valves. Volatile materials were handled in a Pyrex glass vacuum line, nonvolatile materials in the dry nitrogen atmosphere of a glove box. GaF 3 , InF 3 and TlF 3 (Aldrich), Me 3 SiCN (Aldrich) were purified by fractional condensation prior to use. Solvents were dried by standard methods and freshly distilled prior to use. Raman spectra were recorded in the range 4000–80 cm – 1 on Bruker Equinox 55 or Bruker Vertex 70/RAMII FT-RA spectrophotometers, using a Nd-YAG laser at 1064 nm. Infrared spectra were recorded in the range 4000-400 cm –1 on Bruker Alpha, Bruker Vertex 70 or Midac M Series FT-IR spectrometers using KBr or AgCl pellets. Crystal structure determinations: The single-crystal X-ray diffraction data were collected on a Bruker SMART APEX DUO 3-circle platform diffractometer, equipped with an APEX II CCD detector, using Mo Kα radiation (TRIUMPH curved-crystal monochromator) from a fine-focus tube. The diffractometer was equipped with an Oxford Cryosystems Cryostream 700 apparatus for low-temperature data collection. The frames were integrated using the SAINT algorithm to give the hkl files corrected for Lp/decay. The absorption correction was performed using the SADABS 92 program. 18 The structures were solved by intrinsic phasing and refined on F 2 using the Bruker SHELXTL Software Package and ShelXle. 19-22 All non-hydrogen atoms were refined anisotropically. ORTEP drawings were prepared using the ORTEP-3 for Windows V2.02 program. 23 Further crystallographic details can be obtained from the Cambridge Crystallographic Data Centre (CCDC, 12 Union Road, Cambridge CB21EZ, UK (Fax: (+44) 1223-336-033; e-mail: deposit@ccdc.cam.ac.uk) on quoting the deposition no. Preparation of [PPh 4 ][Ga(CN) 4 ] A sample of GaF 3 (126mg, 1.00 mmol) and tetraphenylphosphonium cyanide (365mg, 1.00 mmol) was loaded in a Teflon reactor in a glove box, followed by addition of CH 3 CN (3 mL) as a solvent in vacuo at –196 ℃. The reaction mixture was allowed to warm to ambient temperature. After 4 h of stirring at room temperature, all the volatiles were pumped off at –20℃ in dynamic vacuum leaving behind pale yellow colored product [PPh 4 ][Ga(CN) 4 ] in quantitative yield. Preparation of [PPh 4 ] 2 [In(CN) 5 ] A sample of InF 3 (172mg, 1.00 mmol) and tetraphenylphosphonium cyanide (731mg, 2.00 mmol) was loaded in a Teflon reactor in a glove box, followed by addition of CH 3 CN (3 mL) as a solvent in vacuo at –196 ℃. The reaction mixture was allowed to warm to ambient temperature. After 4 h of stirring at room temperature, all the volatiles were pumped off at –20℃ in dynamic vacuum leaving behind pale yellow colored product [PPh 4 ] 2 [In(CN) 5 ] in quantitative yield. Preparation of [PPh 4 ] 2 [Tl(CN) 5 ] A sample of TlF 3 (261mg, 1.00 mmol) and tetraphenylphosphonium cyanide (731mg, 2.00 mmol) was loaded in a Teflon reactor in a glove box, followed by addition of CH 3 CN (3 mL) as a solvent in vacuo at –196 ℃. The reaction mixture was allowed to warm to ambient temperature. After 4 h of stirring at room temperature, all the volatiles were pumped off at –20℃ in dynamic vacuum leaving behind pale yellow colored product [PPh 4 ] 2 [Tl(CN) 5 ] in quantitative yield. 7.8 References 1. Entley, W. R.; Treadway, C. R.; Wilson, S. R.; Girolami, G. S., The Hexacyanotitanate Ion: Synthesis and Crystal Structure of [NEt 4 ] 3 [TiIII(CN) 6 ]·4MeCN. J. Am. Chem. Soc. 1997, 119 (27), 6251-6258. 93 2. Kaye, S. S.; Long, J. R., The role of vacancies in the hydrogen storage properties of Prussian blue analogues. Catal. Today 2007, 120 (3-4), 311-316. 3. Brousseau, L. C.; Williams, D.; Kouvetakis, J.; O'Keeffe, M., Synthetic Routes to Ga(CN) 3 and MGa(CN) 4 (M = Li, Cu) Framework Structures. J. Am. Chem. Soc. 1997, 119 (27), 6292-6296. 4. Williams, D.; Kouvetakis, J.; O'Keeffe, M., Synthesis of Nanoporous Cubic In(CN) 3 and In1-xGax(CN) 3 and Corresponding Inclusion Compounds. Inorg. Chem. 1998, 37 (18), 4617- 4620. 5. Hu, M.; Belik, A. A.; Imura, M.; Yamauchi, Y., Tailored Design of Multiple Nanoarchitectures in Metal-Cyanide Hybrid Coordination Polymers. J. Am. Chem. Soc. 2013, 135 (1), 384-391. 6. Culp, J. T.; Park, J.-H.; Benitez, I. O.; Meisel, M. W.; Talham, D. R., Two applications of metal cyanide square grid monolayers: studies of evolving magnetic properties in layered films and templating Prussian blue family thin films. Polyhedron 2003, 22 (14-17), 2125-2131. 7. Ormond-Prout, J. E.; Smart, P.; Brammer, L., Cyanometallates as Halogen Bond Acceptors. Crystal Growth & Design 2012, 12 (1), 205-216. 8. Maynard, B. A.; Lynn, K. S.; Sykora, R. E.; Gorden, A. E. V., Emission, Raman Spectroscopy, and Structural Characterization of Actinide Tetracyanometallates. Inorg. Chem. 2013, 52 (9), 4880-4889. 9. Malecki, G.; Ratuszna, A., Crystal structure of cyanometallates Me 3 [Co(CN) 6 ] 2 and KMe[Fe(CN) 6 ] with Me = Mn 2+ , Ni 2+ Cu 2+ . Powder Diffr 1999, 14 (1), 25-30. 10. Goggin, P. L.; McColm, I. J.; Shore, R., Indium tricyanide and indium trithiocyanate. J. Chem. Soc. A 1966, (10), 1314-17. 11. Nagy, P.; Fischer, A.; Glaser, J.; Ilyukhin, A.; Maliarik, M.; Toth, I., Solubility, Complex Formation, and Redox Reactions in the Tl 2 O 3 -HCN/CN--H 2 O System. Crystal Structures of the Cyano Compounds Tl(CN) 3 ·H 2 O, Na[Tl(CN) 4 ]·3H 2 O, K[Tl(CN) 4 ], and TlI[TlIII(CN) 4 ] and of TlI 2 C 2 O 4 . Inorg. Chem. 2005, 44 (7), 2347-2357. 12. Blixt, J.; Glaser, J.; Mink, J.; Persson, I.; Persson, P.; Sandstroem, M., Structure of Thallium(III) Chloride, Bromide, and Cyanide Complexes in Aqueous Solution. J. Am. Chem. Soc. 1995, 117 (18), 5089-104. 94 13. Chizmeshya, A. V. G.; Ritter, C. J.; Groy, T. L.; Tice, J. B.; Kouvetakis, J., Synthesis of Molecular Adducts of Beryllium, Boron, and Gallium Cyanides: Theoretical and Experimental Correlations between Solid-State and Molecular Analogues. Chem. Mater. 2007, 19 (24), 5890- 5901. 14. Deokar, P.; Leitz, D.; Stein, T. H.; Vasiliu, M.; Dixon, D. A.; Christe, K. O.; Haiges, R., Preparation and Characterization of Antimony and Arsenic Tricyanide and Their 2,2′-Bipyridine Adducts. Chemistry – A European Journal 2016, 22 (37), 13251-13257. 15. Haiges, R.; Boatz, J. A.; Williams, J. M.; Christe, K. O., Preparation and characterization of the binary group 13 azides M(N 3 ) 3 and M(N 3 ) 3 .CH 3 CN (M=Ga, In, Tl), [Ga(N 3 ) 5 ] 2- , and [M(N 3 ) 6 ] 3- (M=In, Tl). Angew. Chem. Int. Ed. 2011, 50 (38), 8828-33. 16. Blank, J.; Hausen, H. D.; Weidlein, J., The crystal structure of dimethylindium cyanide. J. Organomet. Chem. 1993, 444 (1-2), C4-C6. 17. Ma, G.; Fischer, A.; Ilyukhin, A.; Glaser, J., Formation and structure of novel ternary complexes of thallium(III)-cyanide-amine (ethylenediamine and triethylenetetramine) in solution and in solid. Inorg. Chim. Acta 2003, 344, 117-122. 18. SADABS SADABS V2012/1, 2012-1; Bruker AXS Madison, WI: 2012. 19. Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B., ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Cryst. 2011, 44, 1281-1284. 20. Sheldrick, G. M., A short history of SHELX. Acta Cryst. A 2008, 64, 112-122. 21. Sheldrick, G. M., SHELXT - Integrated space-group and crystal-structure determination. Acta Cryst. A 2015, 71 (1), 3-8. 22. Sheldrick, G. M., Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71 (1), 3-8. 23. Farrugia, L., ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Cryst. 1997, 30 (5 Part 1), 565. 95 CHAPTER 8 SUMMARY AND OUTLOOK 8.1 Summary, Relevance of Results, and Research Outlook In CHAPTER 2, several new donor-acceptor adducts of niobium and tantalum pentaazide with N-donor ligands have been prepared from the pentafluorides by fluoride-azide exchange with Me 3 SiN 3 in the presence of the corresponding donor ligand was described. With 2,2’-bipyridine and 1,10-phenanthroline, the self-ionization products [MF 4 (2,2’-bipy) 2 ] + [M(N 3 ) 6 ] - , [M(N 3 ) 4 (2,2’- bipy) 2 ] + [M(N 3 ) 6 ] - and [M(N 3 ) 4 (1,20-phen) 2 ] + [M(N 3 ) 6 ] - were obtained. With the donor ligands 3,3’- bipyridine and 4,4’-bipyridine the neutral pentaazide adducts (M(N 3 ) 5 ) 2 ·L (M = Nb, Ta; L = 3,3’- bipy, 4,4’-bipy) were formed. CHAPTER 3 describes the complexes [MF 4 (py) 4 ][MF 6 ], [MF 4 (2,2’-bipy) 2 ][MF 6 ] and [MF 4 (dppe) 2 ][MF 6 ]·½ CH 3 CN (M = Nb, Ta) that were obtained from niobium and tantalum pentafluoride by reaction with the donor ligands pyridine (py), 2,2’-bipyridine (2,2’-bipy) and bis(diphenylphosphino)ethane (dppe) in acetonitrile solution. The complexes were characterized by their vibrational spectra and, in case of the pyridine and dppe adducts, by their crystal structure. The pairs of corresponding niobium and tantalum compounds [NbF 4 (py) 4 ][NbF 6 ] and [TaF 4 (py) 4 ][TaF 6 ], as well as [NbF 4 (dppe) 2 ][NbF 6 ] ½ CH 3 CN and [TaF 4 (dppe) 2 ][TaF 6 ] ½ CH 3 CN were found to be isostructural and to consist of isolated, distorted square anti-prismatic cations [MF 4 D 4 ] + (D = donor atom) and octahedral [MF 6 ] - anions. In CHAPTER 4, the binary zironium and hafnium polyazides [PPh 4 ] 2 [M(N 3 ) 6 ] (M = Zr, Hf) were obtained in near quantitative yields from the corresponding metal fluorides MF4 by fluoride- azide exchange reactions with Me 3 SiN 3 in the presence of two equivalents of [PPh 4 ][N 3 ] was described. The novel polyazido compounds were characterized by their vibrational spectra and their X-ray crystal structures. Both anion structures provide experimental evidence for near-linear M-N-N coordination of metal azides. The species [M(N 3 ) 4 ], [M(N 3 ) 5 ] – and [M(N 3 ) 6 ] 2 – (M = Ti, Zr, Hf) were studied by quantum chemical calculations at the electronic structure density functional theory and MP2 levels. 96 CHAPTER 5 describes fluoride-cyanide exchange of Me 3 SiCN with MnF 3 in the presence of 2,2’-bipyridine (bipy) and acetonitrile as solvent that resulted in the disproportination and self- ionization product [Mn(bipy) 3 ] 2+ [Mn(CN) 6 ] 2- . The composition of the product was confirmed by single crystal X-ray diffraction analysis and vibrational spectroscopy. [Mn(bipy) 3 ] 2+ [Mn(CN) 6 ] 2– co-crystallizes with one molecule of bipy in space group P𝟏. The average Mn-CN bond length is 1.997(8) Å, and the C-N bond length of the cyano group is 1.147(1) Å In CHAPTER 6, the arsenic(III) and antimony(III) cyanides M(CN) 3 (M = As, Sb) have been prepared in quantitative yield from the corresponding trifluoride through fluoride-cyanide exchange with Me 3 SiCN in acetonitrile. When the reaction was carried-out in the presence of one equivalent of 2,2’-bipyridine, the adducts [M(CN) 3 ·(2,2’-bipy)] were obtained. The crystal structures of As(CN) 3 , [As(CN) 3 ·(2,2’-bipy)] and [Sb(CN) 3 ·(2,2’-bipy)] were determined and are surprisingly different. As(CN) 3 possesses a polymeric three-dimensional structure, [As(CN) 3 ·(2,2’-bipy)] exhibits a two-dimensional sheet structure, and [Sb(CN) 3 ·(2,2’-bipy)] has a chain structure, and none of the structures resembles those found for the corresponding arsenic and antimony triazides. CHAPTER 7 describes the novel binary Group 13 cyanides [PPh 4 ][Ga(CN) 4 ], [PPh 4 ] 2 [In(CN) 5 ] and [PPh 4 ] 2 [Tl(CN) 5 ] obtained in near quantitative yields from the corresponding metal fluorides [MF 3 ] (M = Ga, In, Tl) by fluoride-cyanide exchange reactions with Me 3 SiCN in the presence of stoichiometric amounts of [PPh 4 ][CN] in acetonitrile solution. The polycyano compounds were characterized by their vibrational spectra and their X-ray crystal structures. The species [M(CN) 4 ] – , [M(CN) 5 ] 2– , and [M(CN) 6 ] 3– were studied by quantum chemical calculations at the electronic structure density functional theory level. 97 APPENDIX 1: ADDITIONAL INFORMATION FOR TANTALUM(V)- AND NIOBIUM(V)- AZIDES WITH NEUTRAL GROUP 15 DONOR LIGANDS (CHAPTER 2) A1.1 Experimental Details Caution! Polyazides are extremely shock-sensitive and can explode violently upon the slightest provocation. Because of the high energy content and high detonation velocities of these azides, their explosions are particularly violent and can cause, even on a one mmol scale, significant damage. The use of appropriate safety precautions (safety shields, face shields, leather gloves, protective clothing, such as heavy leather welding suits and ear plugs) is mandatory. Teflon containers should be used, whenever possible, to avoid hazardous shrapnel formation. The manipulation of these materials is facilitated by handling them, whenever possible, in solution to avoid detonation propagation, the use of large inert counter-ions as spacers, and anion formation which increases the partial negative charges on the terminal N g atoms and thereby reduces the N b - N g triple bond character. Ignoring safety precautions can lead to serious injuries! A1.1.1 Materials and Apparatus All reactions were carried out in Teflon-FEP ampules that were closed by stainless steel valves. Volatile materials were handled in a Pyrex glass vacuum line. Non-volatile materials were handled in the dry nitrogen atmosphere of a glove box. The starting materials NbF 5 , TaF 5 (Ozark Mahoning), 2,2’-bipyridine (2,2’-bipy), 4,4’-bipyridine (4,4’-bipy), and 1,10-phenanthroline (1,10-phen) (Aldrich) were used without further purification. 3,3’-Bipyridine (3,3’-bipy) was prepared from 3-bromopyridine using a literature method. [1] Solvents were dried by standard methods and freshly distilled prior to use. Nonvolatile materials were handled in the dry argon atmosphere of a glove box. Raman spectra were recorded directly in the Teflon reactors in the range 4000–80 cm -1 on a Bruker Equinox 55 FT-RA spectrophotometer, using a Nd-YAG laser at 1064 nm with power levels of less than 50 mW(!). Infrared spectra were recorded in the range 4000-400 cm -1 on Bruker Alpha, Bruker Vertex 70 or Midac M Series FT-IR spectrometers using KBr pellets. The pellets were prepared inside the glove box using an Econo Press (Thermo Scientific) and transferred in a closed container to the spectrometer before placing them quickly 98 into the sample compartment which was purged with dry nitrogen to minimize exposure to atmospheric moisture and potential hydrolysis of the sample. Neat grinding of the friction sensitive polyazides must be avoided. The azides were added to the finely powdered KBr and blended into the KBr using a non-metallic spatula. The mixture was then gently ground. DTA curves were recorded with a purge of dry nitrogen gas on an OZM Research DTA552-Ex instrument with the Meavy 2.2.0 software. The heating rate was 5 °C/min and the sample size was 3-15 mg. 14 N NMR spectra were recorded unlocked at 36.13 MHz on a Bruker AMX 500 spectrometer using solutions of the compounds in THF in sealed J.Young NMR tubes. Neat CH 3 NO 2 (0.00 ppm) was used as the external reference. A1.1.2 Crystal structure determinations The single crystal X-ray diffraction data were collected on a Bruker SMART APEX DUO 3-circle platform diffractometer, equipped with an APEX II CCD detector with the c-axis fixed at 54.74°, and using Mo K a radiation (TRIUMPH curved-crystal monochromator) from a fine-focus tube. The diffractometer was equipped with an Oxford Cryosystems Cryostream 700 apparatus for low- temperature data collection. A complete hemisphere of data was scanned on omega and phi (0.5°) at a detector resolution of 512 x 512 pixels using the BIS software package. [2] The frames were then integrated using the SAINT [3] algorithm to give the hkl files corrected for Lp/decay. The absorption correction was performed using the SADABS program. [4] The structures were solved by the direct method and refined on F 2 using the Bruker SHELXTL Software Package. [5] All non- hydrogen atoms were refined anisotropically. ORTEP drawings were prepared using the ORTEP- 3 for Windows V2.02 program. [6] Preparation of [MF 4 (2,2’-bipy) 2 ][M(N 3 ) 6 ] (M = Nb, Ta): A sample of MF 5 (1.00 mmol) and 2,2’- bipyridine (156 mg, 1.00 mmol) was loaded into a Teflon-FEP ampule, followed by the addition of Me 3 SiN 3 (345 mg, 3.00 mmol) and CH 3 CN (1.5 ml) in vacuo at -196 °C. The mixture was allowed to warm to ambient temperature. After 6 hours, all volatile material was pumped off, leaving behind orange crystals of [MF 4 (2,2’-bipy) 2 ][M(N 3 ) 6 ] in quantitative yield. [NbF 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ]: ]: orange crystals; 0.818 g, weight expected for 1.00 mmol: 0.826 g; DTA explosion temperature: 151 °C; 14 N NMR (THF, 25°C) d = -140 ppm (Dn ½ = 60 Hz) (N b ), - 99 161 ppm (Dn ½ = 90 Hz) (N g ), -220 ppm (Dn ½ = 700 Hz) (N a ), -177 ppm (Dn ½ = 20 Hz) (bipy); Raman (10 mW) n = 3086 (2.0), 3074 (2.0), 2132 (10.0), 2115 (2.3), 2094 (1.3), 2074 (0.9), 1604 (6.3), 1571 (3.0), 1500 (1.7), 1448 (0.7), 1325 (3.3), 1320 (2.7), 1270 (0.8), 1239 (0.8), 1162 (0.8), 1077 (0.6), 1027 (3.8), 996 (1.1), 920 (2.4), 770 (1.3), 661 (0.5 br), 641 (0.1), 620 (0.2), 602 (1.1), 435 (5.0), 421 (5.0), 249 (1.2), 226 (1.0) cm -1 ; IR (KBr) n = 3112 (vw), 3083 (vw), 3062 (w), 3008 (vw), 2115 (s sh), 2078 (vs), 2067 (vs sh), 2037 (s), 1600 (ms), 1583 (ms), 1558 (w), 1495 (w), 1473 (m), 1456 (m), 1442 (ms), 1422 (w), 1379 (w sh), 1345 (s), 1325 (s), 1305 (m sh), 1268 (vw), 1251 (vw), 1242 (vw), 1223 (vw), 1178 (w), 1158 (w), 1104 (vw), 1090 (w), 1073 (vw), 1063 (w), 1040 (m), 1025 (w), 1015 (w), 991 (w), 919 (ms), 897 (m), 767 (s), 733 (m), 655 (m), 635 (w), 620 (mw), 602 (w), 593 (vw), 572 (vw) cm -1 . [TaF 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ]: orange crystals; 1.009 g, weight expected for 1.00 mmol: 1.002 g; DTA explosion temperature: 165 °C; 14 N NMR (THF, 25°C) d = -145 ppm (Dn ½ = 30 Hz) (N b ), - 181 ppm (Dn ½ = 80 Hz) (N g ), -240 ppm (Dn ½ = 400 Hz) (N a ), -192 ppm (Dn ½ = 20 Hz) (bipy); Raman (10 mW) n = 3076 (3.3), 2155 (7.5), 2096 (1.7), 1606 (10.0), 1592 (3.3), 1572 (8.3), 1505 (4.2), 1484 (1.7), 1448 (1.7), 1430 (1.7), 1360 (1.7), 1326 (8.3), 1303 (1.7), 1274 (1.7), 1238 (1.7), 1164 (1.7), 1097 (0.8), 1077 (2.5), 1046 (0.8), 1029 (5.8), 996 (2.5), 773 (1.7), 663 (1.7 br), 653 (1.0), 637 (0.8), 615 (2.5), 552 (0.8), 451 (3.3), 371 (1.7), 219 (4.2) cm -1 ; IR (KBr) n = 3129 (w), 3086 (vw), 3071 (vw), 2153 (s sh), 2094 (vs), 2078 (vs sh), 2037 (s), 1611 (m sh), 1604 (m), 1577 (w), 1570 (w), 1560 (vw), 1529 (vw), 1502 (mw), 1480 (m), 1443 (m), 1346 (s), 1321 (m), 1285 (vw), 1240 (w), 1226 (vw), 1179 (mw), 1161 (mw), 1114 (w), 1090 (vw), 1074 (w), 1040 (vw), 1026 (m), 1018 (w sh), 991 (vw), 979 (vw), 897 (vw), 806 (vw), 769 (s), 733 (m), 654 (m), 635 (mw), 615 (m sh), 587 (s), 574 (m sh), 463 (w), 452 (vw) cm -1 . Preparation of [M(N 3 ) 4 L 2 ][M(N 3 ) 6 ] (M = Nb, Ta; L = 2,2’-bipy, 1,10-phen): A sample of MF 5 (1.00 mmol) and the corresponding ligand (1.00 mmol) was loaded into a Teflon-FEP ampule, followed by the addition of Me 3 SiN 3 (691 mg, 6.00 mmol) and CH 3 CN (1.5 ml) in vacuo at -196 °C. The mixture was allowed to warm to ambient temperature. After 6 hours, all volatile material was pumped off, leaving behind red crystals of [M(N 3 ) 4 L 2 ][M(N 3 ) 6 ] in quantitative yield. [Nb(N 3 ) 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ]: dark orange crystals; 0.921 g, weight expected for 1.00 mmol: 0.918 g; DTA explosion temperature: 120 °C; 14 N NMR (THF, 25°C) d = -145 ppm (Dn ½ = 60 Hz) (N b ), -162 ppm (Dn ½ = 90 Hz) (N g ), -220 ppm (Dn ½ = 800 Hz) (N a ), -178 ppm (Dn ½ = 30 Hz) 100 (bipy); Raman (10 mW) n = 3139 (0.4), 3113 (0.8), 3102 (1.2), 3072 (1.6), 2132 (10.0), 2117 (0.9), 2094 (1.2), 2078 (1.2), 2063 (0.4), 1605 (5.2), 1571 (3.2), 1505 (1.6), 1432 (0.4), 1326 (4.4), 1295 (0.4), 1274 (0.4), 1244 (0.4), 1163 (0.4), 1077 (1.2), 1027 (2.8), 773 (0.8), 660 (0.4), 619 (0.4), 601 (1.6), 436 (4.8), 370 (0.4), 345 (0.4), 243 (1.2), 214 (1.2), 186 (1.6) cm -1 ; IR (KBr) n = 3124 (vw), 3085 (vw), 2129 (m sh), 2083 (vs), 2060 (s sh), 2038 (m sh), 1602 (m), 1569 (w), 1502 (w), 1480 (w), 1442 (m sh), 1344 (s), 1321 (m sh), 1308 (m sh), 1241 (vw), 1178 (w), 1161 (w), 1112 (vw), 1074 (vw), 1024 (mw), 1016 (w sh), 978 (vw), 925 (vw), 896 (vw), 805 (vw), 769 (s), 732 (m), 654 (m), 636 (mw), 627 (w sh), 613 (m), 602 (m), 582 (w sh), 572 (m) cm -1 . [Ta(N 3 ) 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ]: dark orange crystals; 1.088 g, weight expected for 1.00 mmol: 1.095 g; DTA explosion temperature: 155 °C; 14 N NMR (THF, 25°C) d = -148 ppm (Dn ½ = 60 Hz) (N b ), -191 ppm (Dn ½ = 80 Hz) (N g ), -231 ppm (Dn ½ = 500 Hz) (N a ), -186 ppm (Dn ½ = 35 Hz) (bipy); Raman (10 mW) n = 3115 (1.8), 3088 (2.3), 3072 (2.3), 2153 (8.8), 2093 (1.3), 2084 (0.9), 1605 (10.0), 1571 (6.5), 1503 (4.5), 1433 (0.5), 1325 (8.1), 1272 (0.6), 1162 (0.9), 1075 (1.8), 1027 (5.3), 772 (1.2), 661 (0.7), 612 (1.5), 451 (2.4), 369 (0.7), 234 (1.4), 217 (1.9), 173 (0.8), 169 (0.6) cm -1 ; IR (KBr) n = 3132 (w), 3092 (vw), 3073 (vw), 2148 (m sh), 2095 (vs), 2038 (ms), 1694 (vw), 1605 (m), 1576 (w), 1570 (w), 1503 (m), 1480 (m), 1443 (s), 1346 (ms), 1321 (m), 1285 (vw), 1241 (w), 1225 (w sh), 1179 (w), 1160 (w), 1128 (vw), 1113 (w), 1075 (w), 1050 (vw), 1027 (ms), 1018 (m sh), 980 (vw), 898 (vw), 832 (vw), 803 (vw), 770 (s), 732 (ms), 656 (m), 636 (w), 582 (s), 462 (w) cm -1 . [Nb(N 3 ) 4 (1,10-phen) 2 ][Nb(N 3 ) 6 ]: yellow crystals; 0.953 g, weight expected for 1.00 mmol: 0.967 g; DTA explosion temperature: 131 °C; Raman (10 mW) n = 3108 (1.1), 3082 (2.2), 3001 (0.6), 2131 (10.0), 2100 (1.1), 2078 (1.1), 2061 (0.6), 1633 (1.1), 1611 (1.7), 1591 (1.1), 1523 (1.1), 1460 (7.2), 1430 (4.4), 1312 (3.3), 1259 (0.6), 1147 (0.6), 1115 (0.6), 1065 (1.7), 870 (0.6), 741 (1.7), 593 (2.8), 560 (0.6), 428 (4.4), 403 (0.6), 239 (1.7), 223 (1.1), 171 (1.1) cm -1 ; IR (KBr) n = 3101 (w), 3069 (vw), 2130 (m sh), 2077 (vs), 1631 (w), 1608 (vw), 1588 (w), 1523 (m), 1497 (w), 1427 (m), 1357 (m sh), 1346 (s), 1250 (vw), 1227 (w), 1202 (vw), 1176 (vw), 1146 (w), 1111 (w), 1042 (vw), 995 (vw), 971 (vw), 922 (vw), 871 (w), 847 (ms), 776 (vw), 737 (w), 722 (ms), 648 (m), 614 (ms), 597 (m sh), 573 (m), 554 (vw), 515 (vw) cm -1 . 101 [Ta(N 3 ) 4 (1,10-phen) 2 ][Ta(N 3 ) 6 ]: off-white crystals; 1.140 g, weight expected for 1.00 mmol: 1.143 g; DTA explosion temperature: 161 °C; Raman (10 mW) n = 3108 (1.8), 3082 (2.9), 3068 (3.5), 2996 (0.6), 2158 (10.0), 2127 (7.1), 2106 (1.0), 2095 (1.8), 1634 (1.8), 1609 (2.4), 1588 (1.8), 1522 (1.2), 1495 (0.6), 1459 (8.2), 1427 (7.6), 1361 (1.8), 1310 (2.4), 1299 (1.8), 1251 (1.2), 1226 (0.0), 1205 (0.6), 1147 (0.0), 1109 (1.2), 1067 (2.4), 966 (0.0), 870 (0.6), 856 (0.0), 800 (0.0), 733 (2.9), 611 (1.2), 581 (0.0), 560 (1.2), 546 (0.0), 513 (0.0), 494 (0.0), 444 (2.9), 432 (4.7), 426 (4.1), 407 (1.2), 379 (0.6), 320 (0.6), 258 (1.8), 235 (1.8), 225 (2.4), 176 (4.7) cm -1 ; IR (KBr) n = 3106 (vw), 3071 (vw), 2104 (vs), 2095 (vs), 2080 (vs), 2035 (m), 1633 (w), 1608 (vw), 1586 (w), 1520 (mw), 1495 (w), 1421 (m), 1392 (m), 1359 (s), 1253 (vw), 1225 (w), 1209 (w), 1145 (w), 1112 (w), 1044 (vw), 995 (vw), 958 (vw), 929 (vw), 868 (w), 848 (m), 800 (vw), 783 (w), 738 (vw), 723 (m), 649 (vw), 642 (vw), 615 (mw), 598 (w sh), 584 (m), 578 (m), 456 (vw) cm -1 . Preparation of (M(N 3 ) 5 ) 2 ·L (M = Nb, Ta; L = 3,3’-bipy, 4,4’-bipy): A sample of MF 5 (1.00 mmol) and bipyridine (78 mg, 0.50 mmol) was loaded into a Teflon-FEP ampule, followed by the addition of Me 3 SiN 3 (691 mg, 6.00 mmol) and CH 3 CN (1.5 ml) in vacuo at -196 °C. The mixture was allowed to warm to ambient temperature. After 6 hours, all volatile material was pumped off, leaving behind orange (Nb) or colorless (Ta) crystals of (M(N 3 ) 5 ) 2 ·L in quantitative yield. (Nb(N 3 ) 5 ) 2 ·3,3’-bipy: orange crystals; 0.768 g, weight expected for 1.00 mmol: 0.762 g; DTA explosion temperature: 133 °C; 14 N NMR (THF, 25°C) d = -141 ppm (Dn ½ = 50 Hz) (N b ), -170 ppm (Dn ½ = 90 Hz) (N g ), -220 ppm (Dn ½ = 800 Hz) (N a ), -175 ppm (Dn ½ = 30 Hz) (bipy); Raman (10 mW) n = 3097 (1.3), 3086 (1.3), 3073 (1.3), 2860 (1.3), 2132 (10.0), 2114 (2.5), 2094 (0.5), 2077 (0.5), 1605 (5.7), 1571 (2.6), 1504 (1.1), 1327 (4.3), 1164 (3.6), 1078 (0.6), 1027 (2.3), 1017 (0.8), 921 (0.5), 771 (0.5), 601 (0.6), 479 (0.6), 436 (4.2), 421 (4.4), 249 (0.7), 171 (0.4) cm -1 ; IR (KBr) n = 3125 (vw), 3085 (vw), 3048 (vw), 2146 (s), 2105 (s sh), 2073 (vs), 1602 (mw), 1575 (vw), 1557 (vw), 1469 (w), 1424 (m), 1393 (s), 1337 (s), 1249 (vw), 1196 (w), 1142 (mw), 1118 (vw), 1082 (vw), 1037 (w), 1010 (w), 985 (vw), 943 (vw), 900 (vw), 794 (mw), 701 (m), 661 (mw), 647 (mw), 608 (m), 572 (m), 562 (mw) cm -1 . (Ta(N 3 ) 5 ) 2 ·3,3’-bipy: off-white crystals; 0.931 g, weight expected for 1.00 mmol: 0.938 g; DTA explosion temperature: 155 °C; 14 N NMR (THF, 25°C) d = -145 ppm (Dn ½ = 50 Hz) (N b ), -186 ppm (Dn ½ = 90 Hz) (N g ), -230 ppm (Dn ½ = 500 Hz) (N a ), -185 ppm (Dn ½ = 30 Hz) (bipy); Raman 102 (10 mW) n = 3096 (1.1), 3085 (1.1), 2859 (1.7), 2165 (10.0), 2137 (1.1), 2109 (2.2), 2103 (2.2), 2085 (1.1), 1611 (2.2), 1589 (1.7), 1411 (1.7), 1344 (1.1), 1303 (2.2), 1212 (1.1), 1074 (1.1), 1039 (2.2), 988 (1.1), 791 (1.1), 648 (1.1), 614 (1.1), 579 (1.1), 448 (2.1), 427 (3.3), 395 (2.2), 346 (1.7), 248 (1.8), 220 (2.2), 192 (2.2), 167 (2.2) cm -1 ; IR (KBr) n = 3127 (vw), 3088 (vw), 2672 (vw), 2457 (vw), 2172 (s), 2127 (s sh), 2097 (vs), 1742 (vw), 1605 (mw), 1577 (vw), 1543 (vw), 1471 (w), 1439 (m), 1410 (s), 1397 (s), 1345 (s), 1250 (vw), 1198 (w), 1144 (w), 1117 (vw), 1083 (vw), 1039 (mw), 1012 (w), 985 (vw), 968 (vw), 943 (vw), 901 (vw), 845 (vw), 795 (m), 700 (m), 681 (vw), 662 (m), 648 (vw), 610 (w), 586 (w), 574 (m), 564 (mw) cm -1 . (Nb(N 3 ) 5 ) 2 ·4,4’-bipy: orange crystals; 0.757 g, weight expected for 1.00 mmol: 0.762 g; DTA explosion temperature: 129 °C; 14 N NMR (THF, 25°C) d = -146 ppm (Dn ½ = 80 Hz)/-149 ppm (Dn ½ = 100 Hz) (N b ), -171 ppm (Dn ½ = 50 Hz)/-181 ppm (Dn ½ = 60 Hz) (N g ), -220 ppm (Dn ½ = 800 Hz) (N a ), -178 ppm (Dn ½ = 20 Hz) (bipy); Raman (20 mW) n = 3096 (0.4), 3078 (0.1), 2133 (10.0), 2123 (1.2), 2102 (1.0), 2074 (0.7), 2054 (0.6), 1650 (0.1), 1620 (1.9), 1517 (0.3), 1342 (0.1), 1298 (1.3), 1236 (0.3), 1226 (0.1), 1074 (0.1), 1026 (1.0), 864 (0.1), 783 (0.0), 660 (0.1), 616 (0.1), 592 (0.1), 573 (0.3), 438 (3.4), 281 (0.1), 271 (0.0), 231 (0.4), 203 (0.7), 203 (0.7) cm - 1 ; IR (KBr) n = 3094 (vw), 3075 (vw), 3057 (vw), 2136 (ms), 2079 (vs), 2052 (s sh), 1636 (m), 1608 (vw), 1527 (vw), 1488 (w), 1402 (m), 1364 (m sh), 1337 (ms), 1222 (vw), 1178 (vw), 1069 (w), 1009 (w), 861 (vw), 817 (m), 728 (w), 639 (m), 601 (m), 589 (w sh), 579 (w), 566 (mw), 496 (w), 411 (vw) cm -1 . (Ta(N 3 ) 5 ) 2 ·4,4’-bipy: off-white crystals; 0.934 g, weight expected for 1.00 mmol: 0.938 g; DTA explosion temperature: 163 °C; 14 N NMR (THF, 25°C) d = -146 ppm (Dn ½ = 20 Hz)/-148 ppm (Dn ½ = 20 Hz) (N b ), -186 ppm (Dn ½ = 50 Hz) (N g ), -239 ppm (Dn ½ = 500 Hz) (N a ), -192 ppm (Dn ½ = 20 Hz) (bipy); Raman (20 mW) n = 3097 (0.9), 3080 (0.5), 2158 (10.0), 2140 (1.2), 2121 (1.2), 2098 (0.9), 2075 (0.7), 1654 (0.7), 1623 (4.2), 1518 (0.9), 1375 (0.7), 1359 (0.7), 1299 (3.0), 1237 (0.9), 1226 (0.7), 1074 (0.7), 1028 (2.6), 882 (0.5), 865 (0.5), 785 (0.5), 660 (0.7), 618 (0.7), 595 (0.7), 577 (0.7), 449 (3.5), 402 (0.9), 379 (0.9), 322 (0.7), 268 (1.2), 227 (2.1), 203 (3.3), 183 (2.8) cm -1 ; IR (KBr) n = 3111 (vw), 3060 (vw), 2159 (s sh), 2102 (vs), 2075 (s sh), 2037 (m), 1636 (vw), 1611 (m), 1527 (vw), 1489 (vw), 1414 (m), 1377 (m sh), 1348 (ms), 1223 (vw), 1181 (vw), 103 1070 (w), 1011 (vw), 848 (vw), 819 (mw), 727 (vw), 641 (mw), 602 (w), 591 (vw), 581 (w), 575 (w), 569 (vw), 496 (vw) cm -1 . A1.2 Crystal Structure Data Figure A1. 1 Asymmetric unit in the crystal structure of [NbF4(2,2’-bipy)2][Nb(N3)6] 104 Figure A1. 2 Packing diagram of [NbF 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ]. View normal to (001) Table A1. 1 Sample and crystal data for [NbF 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] Identification code NbN15Bipy Chemical formula C 20 H 16 F 4 N 22 Nb 2 Formula weight 826.37 Temperature 100(2) K Wavelength 0.71073 Å Crystal size 0.258 x 0.407 x 0.454 mm Crystal habit clear yellow block Crystal system monoclinic Space group P 1 21/c 1 Unit cell dimensions a = 15.0038(6) Å α = 90° b = 14.7739(5) Å β = 97.5000(6)° c = 13.4653(5) Å γ = 90° Volume 2959.25(19) Å 3 Z 4 Density (calculated) 1.855 g/cm 3 Absorption coefficient 0.857 mm -1 F(000) 1632 105 Table A1. 2 Data collection and structure refinement for [NbF 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] Diffractometer Bruker APEX DUO Radiation source fine-focus tube, MoKα Theta range for data collection 1.37 to 30.52° Index ranges -20<=h<=21, -21<=k<=20, -19<=l<=19 Reflections collected 71911 Independent reflections 9004 [R(int) = 0.0276] Coverage of independent reflections 99.5% Absorption correction multi-scan Max. and min. transmission 0.8090 and 0.6970 Structure solution technique direct methods Structure solution program SHELXTL XS 2013/1 (Sheldrick, 2013) Refinement method Full-matrix least-squares on F 2 Refinement program SHELXTL XL 2013/3 (Bruker AXS, 2013) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 9004 / 0 / 433 Goodness-of-fit on F 2 1.071 Δ/σ max 0.002 Final R indices 8269 data; I>2σ(I) R1 = 0.0186, wR2 = 0.0468 all data R1 = 0.0215, wR2 = 0.0482 Weighting scheme w=1/[σ 2 (F o 2 )+(0.0198P) 2 +1.7722P] where P=(F o 2 +2F c 2 )/3 Largest diff. peak and hole 0.401 and -0.578 eÅ -3 R.M.S. deviation from mean 0.066 eÅ -3 Table A1. 3 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [NbF 4 (2,2’- bipy) 2 ][Nb(N 3 ) 6 ] C1 0.06770(8) 0.39802(9) 0.26462(9) 0.0171(2) C2 0.97859(9) 0.39749(9) 0.22130(10) 0.0190(2) C3 0.91158(8) 0.39525(9) 0.28271(10) 0.0181(2) C4 0.93572(8) 0.39200(9) 0.38538(10) 0.0169(2) C5 0.02644(8) 0.39005(8) 0.42430(9) 0.0124(2) C6 0.05700(8) 0.37893(8) 0.53210(9) 0.0127(2) C7 0.99749(8) 0.36393(9) 0.60188(10) 0.0180(2) C8 0.03141(9) 0.34770(10) 0.70107(10) 0.0204(2) C9 0.12358(9) 0.34788(9) 0.72865(9) 0.0189(2) C10 0.17875(8) 0.36524(9) 0.65589(9) 0.0164(2) C11 0.34249(9) 0.59842(9) 0.41254(10) 0.0195(2) C12 0.40398(9) 0.66156(9) 0.38601(11) 0.0219(3) C13 0.48286(9) 0.63146(10) 0.35475(10) 0.0203(2) C14 0.49780(8) 0.53883(10) 0.35107(9) 0.0183(2) C15 0.43365(8) 0.47921(9) 0.37868(9) 0.0143(2) C16 0.44678(8) 0.38037(9) 0.38068(9) 0.0148(2) 106 C17 0.52589(9) 0.33977(10) 0.35878(10) 0.0205(2) C18 0.53594(9) 0.24703(10) 0.36849(10) 0.0233(3) C19 0.46646(9) 0.19670(10) 0.39885(10) 0.0220(3) C20 0.38878(9) 0.24112(9) 0.41738(9) 0.0179(2) F1 0.19238(5) 0.51951(5) 0.45384(6) 0.01626(14) F2 0.24487(5) 0.41199(5) 0.29708(5) 0.01527(14) F3 0.31761(5) 0.40763(5) 0.56107(5) 0.01682(14) F4 0.21785(5) 0.27837(5) 0.43256(5) 0.01501(13) N1 0.18034(9) 0.56602(8) 0.14178(9) 0.0237(2) N2 0.18697(8) 0.62896(8) 0.19908(9) 0.0218(2) N3 0.18999(11) 0.68656(11) 0.25573(11) 0.0377(3) N4 0.09839(8) 0.45978(8) 0.97055(9) 0.0211(2) N5 0.05201(8) 0.39240(8) 0.96519(8) 0.0201(2) N6 0.00630(10) 0.33084(9) 0.95877(11) 0.0311(3) N7 0.27914(8) 0.45986(8) 0.90157(9) 0.0215(2) N8 0.29956(7) 0.50222(8) 0.83082(9) 0.0200(2) N9 0.31771(8) 0.53945(10) 0.76209(10) 0.0289(3) N10 0.35281(9) 0.51579(9) 0.10068(10) 0.0272(3) N11 0.42415(8) 0.47754(9) 0.10146(9) 0.0252(2) N12 0.49324(9) 0.44484(12) 0.10473(12) 0.0382(3) N13 0.22069(9) 0.62338(8) 0.95230(9) 0.0240(2) N14 0.21505(8) 0.69682(8) 0.98739(9) 0.0235(2) N15 0.21040(11) 0.76867(9) 0.01869(13) 0.0409(4) N16 0.23102(8) 0.37004(7) 0.08506(8) 0.0185(2) N17 0.29159(7) 0.32693(7) 0.13139(8) 0.0164(2) N18 0.34608(8) 0.28371(8) 0.17507(9) 0.0240(2) N19 0.09201(7) 0.39442(7) 0.36437(7) 0.01261(18) N20 0.14690(7) 0.38027(7) 0.55925(7) 0.01279(18) N21 0.35615(7) 0.50903(7) 0.40906(8) 0.01462(19) N22 0.37836(7) 0.33110(7) 0.40870(7) 0.01357(18) Nb1 0.24328(2) 0.40377(2) 0.43649(2) 0.01014(3) Nb2 0.22427(2) 0.49924(2) 0.02749(2) 0.01512(3) Table A1. 4 Bond lengths (Å) for [NbF 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] C1-N19 1.3461(15) C1-C2 1.3872(17) C1-H1 0.95 C2-C3 1.3830(18) C2-H2 0.95 C3-C4 1.3835(18) C3-H3 0.95 C4-C5 1.3935(16) C4-H4 0.95 C5-N19 1.3529(15) C5-C6 1.4732(16) C6-N20 1.3509(15) C6-C7 1.3959(16) C7-C8 1.3867(18) C7-H7 0.95 C8-C9 1.3842(18) C8-H8 0.95 C9-C10 1.3866(17) C9-H9 0.95 C10-N20 1.3449(15) 107 C10-H10 0.95 C11-N21 1.3382(16) C11-C12 1.3910(18) C11-H11 0.95 C12-C13 1.3805(19) C12-H12 0.95 C13-C14 1.389(2) C13-H13 0.95 C14-C15 1.3906(17) C14-H14 0.95 C15-N21 1.3556(15) C15-C16 1.4734(18) C16-N22 1.3517(15) C16-C17 1.3953(17) C17-C18 1.383(2) C17-H17 0.95 C18-C19 1.385(2) C18-H18 0.95 C19-C20 1.3883(18) C19-H19 0.95 C20-N22 1.3419(16) C20-H20 0.95 F1-Nb1 1.8997(7) F2-Nb1 1.8844(7) F3-Nb1 1.8902(7) F4-Nb1 1.8908(7) N1-N2 1.2040(17) N1-Nb2 2.0102(12) N2-N3 1.1397(18) N4-N5 1.2113(17) N4-Nb2 2.0290(12) N5-N6 1.1356(18) N7-N8 1.2122(16) N7-Nb2 2.0629(11) N8-N9 1.1397(17) N10-N11 1.2092(19) N10-Nb2 2.0626(13) N11-N12 1.139(2) N13-N14 1.1908(18) N13-Nb2 2.0922(12) N14-N15 1.1476(19) N16-N17 1.2135(15) N16-Nb2 2.0578(11) N17-N18 1.1386(16) N19-Nb1 2.3533(10) N20-Nb1 2.3597(10) N21-Nb1 2.3635(10) N22-Nb1 2.3660(10) Table A1. 5 Bond angles (°) for [NbF 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] N19-C1-C2 122.68(12) N19-C1-H1 118.7 C2-C1-H1 118.7 C3-C2-C1 119.00(12) C3-C2-H2 120.5 C1-C2-H2 120.5 C2-C3-C4 118.84(11) C2-C3-H3 120.6 C4-C3-H3 120.6 C3-C4-C5 119.47(11) C3-C4-H4 120.3 C5-C4-H4 120.3 N19-C5-C4 121.69(11) N19-C5-C6 115.85(10) C4-C5-C6 122.40(11) N20-C6-C7 121.60(11) N20-C6-C5 115.87(10) C7-C6-C5 122.47(11) C8-C7-C6 119.29(12) C8-C7-H7 120.4 C6-C7-H7 120.4 C9-C8-C7 119.10(12) C9-C8-H8 120.5 C7-C8-H8 120.5 C8-C9-C10 118.58(12) C8-C9-H9 120.7 C10-C9-H9 120.7 N20-C10-C9 123.01(12) N20-C10-H10 118.5 C9-C10-H10 118.5 N21-C11-C12 122.90(12) N21-C11-H11 118.6 C12-C11-H11 118.6 C13-C12-C11 119.08(13) C13-C12-H12 120.5 C11-C12-H12 120.5 C12-C13-C14 118.50(12) C12-C13-H13 120.8 108 C14-C13-H13 120.8 C13-C14-C15 119.61(12) C13-C14-H14 120.2 C15-C14-H14 120.2 N21-C15-C14 121.72(12) N21-C15-C16 115.75(10) C14-C15-C16 122.48(11) N22-C16-C17 121.71(12) N22-C16-C15 115.74(10) C17-C16-C15 122.52(11) C18-C17-C16 119.42(12) C18-C17-H17 120.3 C16-C17-H17 120.3 C17-C18-C19 118.87(12) C17-C18-H18 120.6 C19-C18-H18 120.6 C18-C19-C20 118.77(13) C18-C19-H19 120.6 C20-C19-H19 120.6 N22-C20-C19 122.93(12) N22-C20-H20 118.5 C19-C20-H20 118.5 N2-N1-Nb2 149.50(11) N3-N2-N1 176.55(16) N5-N4-Nb2 139.27(10) N6-N5-N4 177.81(15) N8-N7-Nb2 132.01(10) N9-N8-N7 177.49(15) N11-N10-Nb2 136.07(11) N12-N11-N10 176.76(16) N14-N13-Nb2 127.25(10) N15-N14-N13 177.98(15) N17-N16-Nb2 132.63(10) N18-N17-N16 177.28(14) C1-N19-C5 118.27(10) C1-N19-Nb1 122.04(8) C5-N19-Nb1 119.59(8) C10-N20-C6 118.40(10) C10-N20-Nb1 121.96(8) C6-N20-Nb1 119.61(8) C11-N21-C15 118.20(11) C11-N21-Nb1 121.85(8) C15-N21-Nb1 119.58(8) C20-N22-C16 118.27(11) C20-N22-Nb1 121.88(8) C16-N22-Nb1 119.82(8) F2-Nb1-F3 143.08(3) F2-Nb1-F4 93.67(3) F3-Nb1-F4 98.51(3) F2-Nb1-F1 97.01(3) F3-Nb1-F1 93.66(3) F4-Nb1-F1 143.37(3) F2-Nb1-N19 74.31(3) F3-Nb1-N19 142.52(3) F4-Nb1-N19 75.56(3) F1-Nb1-N19 73.86(3) F2-Nb1-N20 142.74(3) F3-Nb1-N20 74.17(3) F4-Nb1-N20 74.67(3) F1-Nb1-N20 75.72(3) N19-Nb1-N20 68.55(3) F2-Nb1-N21 72.51(3) F3-Nb1-N21 76.53(3) F4-Nb1-N21 141.85(3) F1-Nb1-N21 74.61(3) N19-Nb1-N21 130.26(4) N20-Nb1-N21 136.34(4) F2-Nb1-N22 75.48(3) F3-Nb1-N22 74.68(3) F4-Nb1-N22 74.03(3) F1-Nb1-N22 142.59(3) N19-Nb1-N22 135.07(4) N20-Nb1-N22 131.30(3) N21-Nb1-N22 68.15(4) N1-Nb2-N4 92.77(5) N1-Nb2-N16 99.89(5) N4-Nb2-N16 82.73(5) N1-Nb2-N10 87.46(5) N4-Nb2-N10 168.75(5) N16-Nb2-N10 86.15(5) N1-Nb2-N7 166.80(5) N4-Nb2-N7 93.44(5) N16-Nb2-N7 92.44(5) N10-Nb2-N7 88.71(5) N1-Nb2-N13 87.14(5) N4-Nb2-N13 96.04(5) N16-Nb2-N13 172.90(5) N10-Nb2-N13 95.20(5) 109 N7-Nb2-N13 80.63(5) Table A1. 6 Anisotropic atomic displacement parameters (Å 2 ) for [NbF 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] C1 0.0149(5) 0.0236(6) 0.0125(5) 0.0026(4) 0.0014(4) 0.0005(5) C2 0.0165(5) 0.0254(6) 0.0141(5) 0.0026(5) -0.0018(4) 0.0006(5) C3 0.0124(5) 0.0214(6) 0.0194(6) 0.0022(5) -0.0017(4) 0.0008(4) C4 0.0119(5) 0.0203(6) 0.0186(6) 0.0015(4) 0.0023(4) 0.0000(4) C5 0.0116(5) 0.0120(5) 0.0138(5) 0.0004(4) 0.0024(4) -0.0006(4) C6 0.0123(5) 0.0130(5) 0.0130(5) -0.0005(4) 0.0026(4) -0.0003(4) C7 0.0131(5) 0.0248(6) 0.0167(6) -0.0003(5) 0.0046(4) -0.0018(5) C8 0.0183(6) 0.0282(7) 0.0158(6) 0.0004(5) 0.0071(5) -0.0034(5) C9 0.0193(6) 0.0253(6) 0.0124(5) 0.0011(5) 0.0035(4) -0.0006(5) C10 0.0149(5) 0.0219(6) 0.0125(5) 0.0003(4) 0.0019(4) 0.0001(4) C11 0.0166(5) 0.0171(6) 0.0257(6) -0.0004(5) 0.0057(5) -0.0017(5) C12 0.0209(6) 0.0182(6) 0.0264(7) 0.0010(5) 0.0023(5) -0.0051(5) C13 0.0174(6) 0.0255(6) 0.0173(6) 0.0035(5) 0.0004(5) -0.0088(5) C14 0.0124(5) 0.0276(6) 0.0151(5) 0.0014(5) 0.0023(4) -0.0038(5) C15 0.0110(5) 0.0204(6) 0.0113(5) 0.0004(4) 0.0011(4) -0.0010(4) C16 0.0116(5) 0.0213(6) 0.0113(5) 0.0000(4) 0.0011(4) 0.0005(4) C17 0.0133(5) 0.0292(7) 0.0196(6) -0.0011(5) 0.0048(4) 0.0020(5) C18 0.0164(6) 0.0313(7) 0.0224(6) -0.0034(5) 0.0037(5) 0.0083(5) C19 0.0227(6) 0.0222(6) 0.0213(6) 0.0010(5) 0.0035(5) 0.0087(5) C20 0.0183(6) 0.0186(6) 0.0171(5) 0.0017(4) 0.0036(4) 0.0037(5) F1 0.0133(3) 0.0139(3) 0.0225(4) -0.0016(3) 0.0063(3) 0.0007(3) F2 0.0131(3) 0.0218(4) 0.0112(3) 0.0014(3) 0.0028(2) 0.0008(3) F3 0.0114(3) 0.0269(4) 0.0119(3) -0.0013(3) 0.0006(2) -0.0015(3) F4 0.0145(3) 0.0128(3) 0.0181(3) 0.0005(3) 0.0036(3) -0.0002(3) N1 0.0338(6) 0.0194(5) 0.0193(5) -0.0001(4) 0.0084(5) 0.0046(5) N2 0.0208(5) 0.0242(6) 0.0204(5) 0.0006(4) 0.0021(4) 0.0059(4) N3 0.0449(8) 0.0352(7) 0.0315(7) -0.0124(6) -0.0005(6) 0.0064(6) N4 0.0192(5) 0.0223(5) 0.0212(5) 0.0043(4) 0.0008(4) 0.0025(4) N5 0.0226(5) 0.0224(5) 0.0156(5) 0.0018(4) 0.0035(4) 0.0058(4) N6 0.0346(7) 0.0250(6) 0.0336(7) -0.0004(5) 0.0041(6) -0.0033(5) N7 0.0246(6) 0.0210(5) 0.0201(5) -0.0008(4) 0.0075(4) 0.0020(4) N8 0.0135(5) 0.0274(6) 0.0193(5) -0.0034(4) 0.0030(4) 0.0023(4) N9 0.0203(6) 0.0442(8) 0.0235(6) 0.0038(5) 0.0082(5) -0.0001(5) N10 0.0243(6) 0.0291(6) 0.0266(6) -0.0023(5) -0.0023(5) -0.0053(5) N11 0.0236(6) 0.0317(6) 0.0191(5) -0.0011(5) -0.0020(4) -0.0109(5) N12 0.0231(6) 0.0520(9) 0.0384(8) -0.0020(7) -0.0005(6) -0.0049(6) N13 0.0315(6) 0.0199(5) 0.0215(6) 0.0062(4) 0.0067(5) 0.0040(5) N14 0.0221(5) 0.0222(6) 0.0284(6) 0.0103(5) 0.0118(5) 0.0017(4) N15 0.0534(9) 0.0166(6) 0.0595(10) 0.0014(6) 0.0336(8) 0.0014(6) N16 0.0250(5) 0.0155(5) 0.0144(5) 0.0007(4) 0.0006(4) 0.0034(4) 110 N17 0.0220(5) 0.0140(5) 0.0137(5) -0.0020(4) 0.0046(4) 0.0006(4) N18 0.0259(6) 0.0231(6) 0.0226(6) -0.0005(4) 0.0018(5) 0.0086(5) N19 0.0114(4) 0.0137(4) 0.0128(4) 0.0008(3) 0.0020(3) 0.0003(3) N20 0.0115(4) 0.0151(4) 0.0120(4) -0.0006(3) 0.0025(3) -0.0003(4) N21 0.0123(4) 0.0169(5) 0.0151(5) 0.0003(4) 0.0032(4) -0.0014(4) N22 0.0125(4) 0.0168(5) 0.0115(4) 0.0009(4) 0.0020(3) 0.0015(4) Nb1 0.00873(4) 0.01226(5) 0.00965(5) 0.00001(3) 0.00202(3) 0.00005(3) Nb2 0.01880(5) 0.01334(5) 0.01335(5) 0.00166(4) 0.00261(4) 0.00228(4) Table A1. 7 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [NbF 4 (2,2’- bipy) 2 ][Nb(N 3 ) 6 ] H1 0.1134 0.4010 0.2221 0.02 H2 -0.0362 0.3987 0.1505 0.023 H3 -0.1500 0.3959 0.2549 0.022 H4 -0.1092 0.3911 0.4290 0.02 H7 -0.0656 0.3648 0.5816 0.022 H8 -0.0081 0.3366 0.7494 0.024 H9 0.1485 0.3364 0.7960 0.023 H10 0.2419 0.3666 0.6752 0.02 H11 0.2884 0.6197 0.4341 0.023 H12 0.3919 0.7245 0.3893 0.026 H13 0.5260 0.6732 0.3362 0.024 H14 0.5515 0.5163 0.3298 0.022 H17 0.5724 0.3755 0.3374 0.025 H18 0.5896 0.2183 0.3546 0.028 H19 0.4719 0.1330 0.4069 0.026 H20 0.3409 0.2063 0.4371 0.021 111 Figure A1. 3 Asymmetric unit in the crystal structure of [TaF 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] Figure A1. 4 Packing diagram of [TaF 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ]. View normal to (001) 112 Table A1. 8 Sample and crystal data for [TaF 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] Identification code TaF4TaN18Bipy Chemical formula C 20 H 16 F 4 N 22 Ta 2 Formula weight 1002.45 Temperature 100(2) K Wavelength 0.71073 Å Crystal size 0.205 x 0.229 x 0.381 mm Crystal system triclinic Space group P -1 Unit cell dimensions a = 9.1723(8) Å α = 92.7240(13)° b = 15.7653(14) Å β = 92.9850(13)° c = 21.0305(19) Å γ = 102.6630(13)° Volume 2957.7(5) Å 3 Z 4 Density (calculated) 2.251 g/cm 3 Absorption coefficient 7.476 mm -1 F(000) 1888 Table A1. 9 Data collection and structure refinement for [TaF 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] Diffractometer Bruker APEX DUO Radiation source fine-focus tube, MoKα Theta range for data collection 0.97 to 29.57° Index ranges -12<=h<=112 -21<=k<=21, -29<=l<=29 Reflections collected 71406 Independent reflections 16643 [R(int) = 0.1302] Coverage of independent reflections 99.8% Absorption correction multi-scan Max. and min. transmission 0.2540 and 0.2270 Structure solution technique direct methods Structure solution program SHELXTL XT 2013/5 (Sheldrick, 2013) Refinement method Full-matrix least-squares on F 2 Refinement program SHELXTL XL 2013/3 (Bruker AXS, 2013) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 16643 / 0 / 865 Goodness-of-fit on F 2 1.026 Δ/σ max 0.001 Final R indices 12078 data; I>2σ(I) R1 = 0.0556, wR2 = 0.1385 113 all data R1 = 0.0808, wR2 = 0.1482 Weighting scheme w=1/[σ 2 (F o 2 )+(0.0708P) 2 ] where P=(F o 2 +2F c 2 )/3 Largest diff. peak and hole 8.201 and -5.244 eÅ -3 R.M.S. deviation from mean 0.277 eÅ -3 Table A1. 10 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [TaF 4 (2,2’- bipy) 2 ][Ta(N 3 ) 6 ] x/a y/b z/c U(eq) C1 0.0599(10) 0.1876(6) 0.6227(4) 0.0270(19) C2 0.1253(11) 0.1398(6) 0.6650(4) 0.031(2) C3 0.0892(10) 0.0509(6) 0.6557(4) 0.0272(19) C4 0.9848(9) 0.0109(5) 0.6079(4) 0.0235(17) C5 0.9217(9) 0.0623(5) 0.5682(4) 0.0176(15) C6 0.8021(9) 0.0251(5) 0.5185(4) 0.0218(17) C7 0.7395(10) 0.9369(5) 0.5097(4) 0.0263(18) C8 0.6242(10) 0.9062(6) 0.4640(4) 0.030(2) C9 0.5780(10) 0.9651(6) 0.4250(4) 0.0286(19) C10 0.6448(10) 0.0521(6) 0.4368(4) 0.0270(18) C11 0.7081(9) 0.3831(5) 0.5566(4) 0.0225(17) C12 0.6554(11) 0.4584(6) 0.5605(4) 0.031(2) C13 0.6867(10) 0.5182(6) 0.5160(4) 0.0280(19) C14 0.7731(9) 0.5020(5) 0.4671(4) 0.0222(17) C15 0.8237(8) 0.4239(5) 0.4644(4) 0.0185(15) C16 0.9257(8) 0.4057(5) 0.4176(4) 0.0179(15) C17 0.9702(9) 0.4605(5) 0.3692(4) 0.0224(17) C18 0.0721(10) 0.4410(6) 0.3287(4) 0.0280(19) C19 0.1312(10) 0.3694(6) 0.3380(4) 0.0268(18) C20 0.0807(9) 0.3159(6) 0.3858(4) 0.0251(18) C21 0.3564(9) 0.4450(5) 0.9361(4) 0.0237(17) C22 0.4093(9) 0.5311(6) 0.9221(4) 0.0239(17) C23 0.3582(9) 0.5947(5) 0.9548(4) 0.0244(18) C24 0.2600(10) 0.5711(5) 0.0013(4) 0.0273(19) C25 0.2124(8) 0.4841(5) 0.0131(4) 0.0161(15) C26 0.1098(8) 0.4544(5) 0.0636(4) 0.0175(15) C27 0.0626(9) 0.5107(5) 0.1056(4) 0.0209(16) C28 0.9740(10) 0.4788(6) 0.1537(4) 0.0273(19) C29 0.9382(10) 0.3900(6) 0.1593(4) 0.0251(18) C30 0.9870(9) 0.3357(6) 0.1153(4) 0.0247(18) C31 0.9589(10) 0.1736(6) 0.8658(4) 0.0267(18) C32 0.9071(11) 0.1119(6) 0.8156(5) 0.035(2) C33 0.9560(12) 0.0346(6) 0.8171(5) 0.039(2) C34 0.0435(12) 0.0200(6) 0.8681(5) 0.042(3) 114 x/a y/b z/c U(eq) C35 0.0887(10) 0.0846(6) 0.9167(4) 0.0294(19) C36 0.1846(10) 0.0726(6) 0.9737(4) 0.0276(19) C37 0.2184(12) 0.9935(6) 0.9852(5) 0.041(2) C38 0.3025(13) 0.9875(7) 0.0406(6) 0.047(3) C39 0.3525(12) 0.0603(6) 0.0827(5) 0.039(2) C40 0.3130(10) 0.1363(6) 0.0677(5) 0.0283(19) N1 0.9617(7) 0.1502(4) 0.5743(3) 0.0204(14) N2 0.7548(7) 0.0838(4) 0.4815(3) 0.0197(14) N3 0.7888(7) 0.3650(4) 0.5082(3) 0.0201(14) N4 0.9785(7) 0.3329(4) 0.4241(3) 0.0197(14) N5 0.2602(7) 0.4199(4) 0.9800(3) 0.0176(13) N6 0.0711(7) 0.3675(4) 0.0678(3) 0.0187(13) N7 0.0465(8) 0.1619(5) 0.9147(3) 0.0250(15) N8 0.2313(8) 0.1443(4) 0.0140(3) 0.0224(14) N9 0.4926(11) 0.1572(6) 0.3065(5) 0.047(2) N10 0.3921(9) 0.0974(6) 0.3083(4) 0.040(2) N11 0.3006(13) 0.0342(9) 0.3103(6) 0.083(4) N12 0.7670(8) 0.2590(5) 0.2850(3) 0.0237(15) N13 0.8229(9) 0.1979(5) 0.2957(3) 0.0268(16) N14 0.8808(11) 0.1436(6) 0.3079(4) 0.044(2) N15 0.5335(8) 0.3311(5) 0.3558(4) 0.0276(16) N16 0.4730(8) 0.2989(5) 0.4006(4) 0.0278(16) N17 0.4188(9) 0.2729(5) 0.4460(4) 0.0358(19) N18 0.5716(10) 0.2239(6) 0.1763(4) 0.045(2) N19 0.6591(10) 0.1864(5) 0.1545(4) 0.0374(19) N20 0.7370(10) 0.1497(6) 0.1321(4) 0.044(2) N21 0.3402(10) 0.2663(6) 0.2408(5) 0.048(3) N22 0.2252(9) 0.2229(6) 0.2150(4) 0.0340(18) N23 0.1154(11) 0.1866(7) 0.1903(5) 0.053(3) N24 0.6303(9) 0.4014(5) 0.2454(3) 0.0292(17) N25 0.6414(9) 0.4699(6) 0.2730(4) 0.0330(18) N26 0.6545(12) 0.5375(6) 0.2994(5) 0.051(3) N27 0.4159(10) 0.6049(7) 0.1778(4) 0.046(2) N28 0.3649(9) 0.5370(7) 0.1995(4) 0.043(2) N29 0.3173(12) 0.4705(8) 0.2170(6) 0.062(3) N30 0.6645(9) 0.7429(6) 0.2093(4) 0.039(2) N31 0.7491(9) 0.6949(6) 0.2019(3) 0.0328(18) N32 0.8351(10) 0.6542(6) 0.1937(4) 0.043(2) N33 0.4121(13) 0.7704(8) 0.1272(5) 0.065(3) N34 0.4094(10) 0.7819(6) 0.0719(4) 0.039(2) N35 0.4083(14) 0.7946(7) 0.0204(5) 0.065(3) N36 0.2187(11) 0.7056(7) 0.2257(5) 0.052(3) N37 0.1403(10) 0.6762(6) 0.2701(4) 0.0374(19) 115 x/a y/b z/c U(eq) N38 0.0657(10) 0.6489(6) 0.3075(4) 0.040(2) N39 0.4559(10) 0.6918(7) 0.3058(4) 0.045(2) N40 0.5479(10) 0.6930(6) 0.3494(5) 0.042(2) N41 0.6275(10) 0.6898(7) 0.3926(5) 0.051(3) N42 0.4849(13) 0.8581(7) 0.2493(5) 0.061(3) N43 0.5326(12) 0.9280(7) 0.2318(4) 0.051(3) N44 0.5786(18) 0.0001(9) 0.2186(8) 0.100(5) Ta1 0.87098(3) 0.23309(2) 0.49890(2) 0.01666(8) Ta2 0.15164(3) 0.27265(2) 0.99495(2) 0.01722(8) Ta3 0.55653(4) 0.27565(2) 0.26673(2) 0.02656(10) Ta4 0.44036(5) 0.73088(3) 0.21466(2) 0.04010(12) F1 0.7219(5) 0.2145(3) 0.5602(2) 0.0261(11) F2 0.0248(5) 0.3134(3) 0.5490(2) 0.0239(10) F3 0.0099(5) 0.1806(3) 0.4562(2) 0.0218(10) F4 0.7263(5) 0.2246(3) 0.4293(2) 0.0227(10) F5 0.0061(5) 0.3160(3) 0.9461(2) 0.0222(10) F6 0.2987(5) 0.2702(3) 0.9353(2) 0.0241(10) F7 0.3014(5) 0.3036(3) 0.0637(2) 0.0195(9) F8 0.9963(5) 0.1995(3) 0.0366(2) 0.0257(11) Table A1. 11 Bond lengths (Å) for [TaF 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] C1-N1 1.344(10) C1-C2 1.390(11) C1-H1 0.95 C2-C3 1.370(12) C2-H2 0.95 C3-C4 1.377(12) C3-H3 0.95 C4-C5 1.385(11) C4-H4 0.95 C5-N1 1.350(10) C5-C6 1.475(11) C6-N2 1.366(10) C6-C7 1.381(12) C7-C8 1.378(13) C7-H7 0.95 C8-C9 1.390(12) C8-H8 0.95 C9-C10 1.378(12) C9-H9 0.95 C10-N2 1.337(11) C10-H10 0.95 C11-N3 1.351(10) C11-C12 1.379(12) C11-H11 0.95 C12-C13 1.361(13) C12-H12 0.95 C13-C14 1.385(12) C13-H13 0.95 C14-C15 1.409(11) C14-H14 0.95 C15-N3 1.344(10) C15-C16 1.460(11) C16-N4 1.352(10) C16-C17 1.391(11) C17-C18 1.376(12) C17-H17 0.95 C18-C19 1.374(12) C18-H18 0.95 C19-C20 1.381(12) C19-H19 0.95 C20-N4 1.335(10) C20-H20 0.95 C21-N5 1.331(10) C21-C22 1.390(12) 116 C21-H21 0.95 C22-C23 1.370(12) C22-H22 0.95 C23-C24 1.380(12) C23-H23 0.95 C24-C25 1.385(11) C24-H24 0.95 C25-N5 1.366(9) C25-C26 1.486(11) C26-N6 1.346(10) C26-C27 1.377(11) C27-C28 1.382(12) C27-H27 0.95 C28-C29 1.380(12) C28-H28 0.95 C29-C30 1.391(11) C29-H29 0.95 C30-N6 1.349(10) C30-H30 0.95 C31-N7 1.317(11) C31-C32 1.390(12) C31-H31 0.95 C32-C33 1.390(14) C32-H32 0.95 C33-C34 1.366(14) C33-H33 0.95 C34-C35 1.387(13) C34-H34 0.95 C35-N7 1.360(11) C35-C36 1.494(13) C36-N8 1.355(11) C36-C37 1.380(12) C37-C38 1.384(15) C37-H37 0.95 C38-C39 1.392(15) C38-H38 0.95 C39-C40 1.374(12) C39-H39 0.95 C40-N8 1.350(11) C40-H40 0.95 N1-Ta1 2.340(7) N2-Ta1 2.362(7) N3-Ta1 2.367(7) N4-Ta1 2.384(7) N5-Ta2 2.362(6) N6-Ta2 2.352(6) N7-Ta2 2.372(7) N8-Ta2 2.344(6) N9-N10 1.169(11) N9-Ta3 2.065(9) N10-N11 1.158(13) N12-N13 1.213(9) N12-Ta3 2.027(7) N13-N14 1.135(10) N15-N16 1.203(10) N15-Ta3 2.074(7) N16-N17 1.156(10) N18-N19 1.196(11) N18-Ta3 2.062(8) N19-N20 1.124(11) N21-N22 1.208(11) N21-Ta3 2.003(8) N22-N23 1.129(12) N24-N25 1.182(11) N24-Ta3 2.031(8) N25-N26 1.156(11) N27-N28 1.196(13) N27-Ta4 2.056(10) N28-N29 1.132(14) N30-N31 1.210(11) N30-Ta4 2.037(8) N31-N32 1.138(11) N33-N34 1.190(13) N33-Ta4 1.998(11) N34-N35 1.113(12) N36-N37 1.257(11) N36-Ta4 2.018(9) N37-N38 1.116(11) N39-N40 1.211(13) N39-Ta4 2.055(9) N40-N41 1.146(13) N42-N43 1.180(14) N42-Ta4 2.045(11) N43-N44 1.175(16) Ta1-F4 1.903(4) Ta1-F2 1.905(4) Ta1-F3 1.910(4) Ta1-F1 1.923(5) 117 Ta2-F6 1.904(5) Ta2-F5 1.907(4) Ta2-F7 1.909(4) Ta2-F8 1.913(5) Table A1. 12 Bond angles (°) for [TaF 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] N1-C1-C2 122.8(8) N1-C1-H1 118.6 C2-C1-H1 118.6 C3-C2-C1 117.9(8) C3-C2-H2 121.1 C1-C2-H2 121.1 C2-C3-C4 120.4(8) C2-C3-H3 119.8 C4-C3-H3 119.8 C3-C4-C5 118.7(8) C3-C4-H4 120.6 C5-C4-H4 120.6 N1-C5-C4 121.9(7) N1-C5-C6 115.7(7) C4-C5-C6 122.3(7) N2-C6-C7 121.4(8) N2-C6-C5 115.6(7) C7-C6-C5 123.0(8) C8-C7-C6 120.4(8) C8-C7-H7 119.8 C6-C7-H7 119.8 C7-C8-C9 118.6(8) C7-C8-H8 120.7 C9-C8-H8 120.7 C10-C9-C8 117.7(8) C10-C9-H9 121.1 C8-C9-H9 121.1 N2-C10-C9 124.8(8) N2-C10-H10 117.6 C9-C10-H10 117.6 N3-C11-C12 121.6(8) N3-C11-H11 119.2 C12-C11-H11 119.2 C13-C12-C11 120.5(8) C13-C12-H12 119.8 C11-C12-H12 119.8 C12-C13-C14 118.6(8) C12-C13-H13 120.7 C14-C13-H13 120.7 C13-C14-C15 119.2(8) C13-C14-H14 120.4 C15-C14-H14 120.4 N3-C15-C14 121.1(7) N3-C15-C16 116.5(7) C14-C15-C16 122.2(7) N4-C16-C17 120.8(7) N4-C16-C15 116.5(7) C17-C16-C15 122.7(7) C18-C17-C16 119.2(8) C18-C17-H17 120.4 C16-C17-H17 120.4 C19-C18-C17 119.4(8) C19-C18-H18 120.3 C17-C18-H18 120.3 C18-C19-C20 119.2(8) C18-C19-H19 120.4 C20-C19-H19 120.4 N4-C20-C19 121.8(8) N4-C20-H20 119.1 C19-C20-H20 119.1 N5-C21-C22 124.3(8) N5-C21-H21 117.9 C22-C21-H21 117.9 C23-C22-C21 118.3(8) C23-C22-H22 120.8 C21-C22-H22 120.8 C22-C23-C24 118.9(8) C22-C23-H23 120.5 C24-C23-H23 120.5 C23-C24-C25 119.8(8) C23-C24-H24 120.1 C25-C24-H24 120.1 N5-C25-C24 121.9(7) N5-C25-C26 115.5(7) C24-C25-C26 122.6(7) N6-C26-C27 121.5(7) N6-C26-C25 115.2(7) C27-C26-C25 123.2(7) C26-C27-C28 120.3(8) C26-C27-H27 119.9 C28-C27-H27 119.9 C29-C28-C27 118.3(8) 118 C29-C28-H28 120.8 C27-C28-H28 120.8 C28-C29-C30 119.2(8) C28-C29-H29 120.4 C30-C29-H29 120.4 N6-C30-C29 121.9(8) N6-C30-H30 119.1 C29-C30-H30 119.1 N7-C31-C32 124.1(9) N7-C31-H31 118.0 C32-C31-H31 118.0 C33-C32-C31 116.8(9) C33-C32-H32 121.6 C31-C32-H32 121.6 C34-C33-C32 120.1(9) C34-C33-H33 119.9 C32-C33-H33 119.9 C33-C34-C35 119.4(10) C33-C34-H34 120.3 C35-C34-H34 120.3 N7-C35-C34 121.1(9) N7-C35-C36 117.0(8) C34-C35-C36 121.9(9) N8-C36-C37 122.8(9) N8-C36-C35 114.9(7) C37-C36-C35 122.3(8) C36-C37-C38 118.3(9) C36-C37-H37 120.9 C38-C37-H37 120.9 C37-C38-C39 120.1(9) C37-C38-H38 119.9 C39-C38-H38 119.9 C40-C39-C38 117.8(10) C40-C39-H39 121.1 C38-C39-H39 121.1 N8-C40-C39 123.5(9) N8-C40-H40 118.3 C39-C40-H40 118.3 C1-N1-C5 118.1(7) C1-N1-Ta1 121.6(5) C5-N1-Ta1 120.2(5) C10-N2-C6 116.9(7) C10-N2-Ta1 124.0(6) C6-N2-Ta1 119.1(5) C15-N3-C11 118.9(7) C15-N3-Ta1 119.3(5) C11-N3-Ta1 121.8(6) C20-N4-C16 119.5(7) C20-N4-Ta1 122.0(6) C16-N4-Ta1 118.3(5) C21-N5-C25 116.8(7) C21-N5-Ta2 123.5(5) C25-N5-Ta2 119.3(5) C26-N6-C30 118.8(7) C26-N6-Ta2 120.8(5) C30-N6-Ta2 120.4(5) C31-N7-C35 118.4(8) C31-N7-Ta2 123.5(6) C35-N7-Ta2 117.9(6) C40-N8-C36 117.6(7) C40-N8-Ta2 121.8(5) C36-N8-Ta2 120.4(5) N10-N9-Ta3 142.7(9) N11-N10-N9 174.7(13) N13-N12-Ta3 135.7(6) N14-N13-N12 176.3(10) N16-N15-Ta3 130.3(6) N17-N16-N15 175.6(9) N19-N18-Ta3 131.9(7) N20-N19-N18 177.2(10) N22-N21-Ta3 147.9(7) N23-N22-N21 176.2(11) N25-N24-Ta3 134.8(7) N26-N25-N24 178.7(11) N28-N27-Ta4 130.9(8) N29-N28-N27 176.3(12) N31-N30-Ta4 137.2(7) N32-N31-N30 175.6(11) N34-N33-Ta4 167.4(9) N35-N34-N33 178.5(13) N37-N36-Ta4 133.3(8) N38-N37-N36 177.0(11) N40-N39-Ta4 140.5(8) N41-N40-N39 175.1(11) N43-N42-Ta4 138.9(9) N44-N43-N42 175.3(13) F4-Ta1-F2 142.9(2) F4-Ta1-F3 97.85(19) 119 F2-Ta1-F3 93.1(2) F4-Ta1-F1 93.0(2) F2-Ta1-F1 98.7(2) F3-Ta1-F1 143.8(2) F4-Ta1-N1 142.3(2) F2-Ta1-N1 74.8(2) F3-Ta1-N1 74.9(2) F1-Ta1-N1 75.5(2) F4-Ta1-N2 73.7(2) F2-Ta1-N2 143.3(2) F3-Ta1-N2 74.1(2) F1-Ta1-N2 76.0(2) N1-Ta1-N2 68.7(2) F4-Ta1-N3 75.5(2) F2-Ta1-N3 74.0(2) F3-Ta1-N3 141.4(2) F1-Ta1-N3 74.8(2) N1-Ta1-N3 132.3(2) N2-Ta1-N3 135.8(2) F4-Ta1-N4 72.7(2) F2-Ta1-N4 76.7(2) F3-Ta1-N4 73.5(2) F1-Ta1-N4 142.5(2) N1-Ta1-N4 135.7(2) N2-Ta1-N4 128.8(2) N3-Ta1-N4 68.2(2) F6-Ta2-F5 101.6(2) F6-Ta2-F7 91.5(2) F5-Ta2-F7 142.83(19) F6-Ta2-F8 142.8(2) F5-Ta2-F8 90.3(2) F7-Ta2-F8 100.1(2) F6-Ta2-N8 76.2(2) F5-Ta2-N8 142.1(2) F7-Ta2-N8 74.7(2) F8-Ta2-N8 73.1(2) F6-Ta2-N6 141.8(2) F5-Ta2-N6 76.1(2) F7-Ta2-N6 72.4(2) F8-Ta2-N6 75.2(2) N8-Ta2-N6 128.7(2) F6-Ta2-N5 74.3(2) F5-Ta2-N5 73.5(2) F7-Ta2-N5 76.9(2) F8-Ta2-N5 142.7(2) N8-Ta2-N5 138.0(2) N6-Ta2-N5 68.4(2) F6-Ta2-N7 72.6(2) F5-Ta2-N7 73.8(2) F7-Ta2-N7 143.2(2) F8-Ta2-N7 77.3(2) N8-Ta2-N7 69.4(2) N6-Ta2-N7 138.7(2) N5-Ta2-N7 126.8(2) N21-Ta3-N12 167.9(3) N21-Ta3-N24 96.8(4) N12-Ta3-N24 92.8(3) N21-Ta3-N18 86.0(4) N12-Ta3-N18 85.9(3) N24-Ta3-N18 94.9(4) N21-Ta3-N9 87.5(4) N12-Ta3-N9 84.4(3) N24-Ta3-N9 168.8(3) N18-Ta3-N9 95.7(4) N21-Ta3-N15 91.6(3) N12-Ta3-N15 96.7(3) N24-Ta3-N15 83.7(3) N18-Ta3-N15 177.0(3) N9-Ta3-N15 85.9(3) N33-Ta4-N36 92.1(4) N33-Ta4-N30 93.5(4) N36-Ta4-N30 172.9(4) N33-Ta4-N42 89.0(5) N36-Ta4-N42 96.4(4) N30-Ta4-N42 88.1(4) N33-Ta4-N39 176.2(4) N36-Ta4-N39 84.4(4) N30-Ta4-N39 90.1(3) N42-Ta4-N39 90.0(4) N33-Ta4-N27 90.3(4) N36-Ta4-N27 88.9(4) N30-Ta4-N27 86.7(3) N42-Ta4-N27 174.7(4) N39-Ta4-N27 91.0(4) 120 Table A1. 13 Anisotropic atomic displacement parameters (Å 2 ) for [TaF 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] U 11 U 22 U 33 U 23 U 13 U 12 C1 0.030(5) 0.022(4) 0.028(5) -0.001(3) -0.010(4) 0.008(4) C2 0.046(6) 0.024(5) 0.023(4) 0.003(4) -0.007(4) 0.014(4) C3 0.032(5) 0.029(5) 0.023(4) 0.007(4) -0.001(4) 0.011(4) C4 0.027(4) 0.020(4) 0.026(4) 0.003(3) 0.004(3) 0.009(3) C5 0.021(4) 0.016(4) 0.016(4) -0.004(3) 0.001(3) 0.006(3) C6 0.028(4) 0.022(4) 0.018(4) 0.000(3) 0.004(3) 0.011(3) C7 0.025(4) 0.021(4) 0.034(5) 0.002(4) 0.009(4) 0.005(3) C8 0.028(5) 0.017(4) 0.041(5) 0.002(4) 0.005(4) -0.001(3) C9 0.025(4) 0.036(5) 0.023(4) -0.003(4) -0.002(3) 0.006(4) C10 0.030(5) 0.025(5) 0.027(5) 0.001(4) 0.002(4) 0.009(4) C11 0.025(4) 0.023(4) 0.021(4) -0.006(3) 0.003(3) 0.011(3) C12 0.033(5) 0.032(5) 0.032(5) -0.004(4) 0.008(4) 0.013(4) C13 0.027(4) 0.022(4) 0.035(5) -0.013(4) -0.007(4) 0.012(3) C14 0.018(4) 0.021(4) 0.027(4) 0.001(3) -0.004(3) 0.005(3) C15 0.016(4) 0.019(4) 0.020(4) -0.003(3) -0.002(3) 0.006(3) C16 0.014(3) 0.020(4) 0.021(4) 0.001(3) -0.003(3) 0.005(3) C17 0.017(4) 0.021(4) 0.030(4) 0.002(3) -0.003(3) 0.006(3) C18 0.030(5) 0.031(5) 0.019(4) 0.003(4) 0.005(3) -0.001(4) C19 0.022(4) 0.027(5) 0.029(5) 0.001(4) 0.000(3) 0.003(3) C20 0.022(4) 0.026(4) 0.029(5) -0.009(3) 0.001(3) 0.009(3) C21 0.022(4) 0.020(4) 0.029(4) -0.002(3) -0.001(3) 0.006(3) C22 0.021(4) 0.029(5) 0.018(4) 0.004(3) 0.001(3) 0.000(3) C23 0.024(4) 0.021(4) 0.028(4) 0.011(3) 0.004(3) 0.001(3) C24 0.029(5) 0.020(4) 0.035(5) 0.004(4) 0.003(4) 0.008(3) C25 0.015(3) 0.016(4) 0.018(4) 0.001(3) 0.001(3) 0.004(3) C26 0.014(3) 0.017(4) 0.020(4) 0.001(3) -0.002(3) 0.003(3) C27 0.022(4) 0.022(4) 0.020(4) 0.001(3) -0.006(3) 0.009(3) C28 0.023(4) 0.032(5) 0.030(5) -0.004(4) 0.002(4) 0.013(4) C29 0.029(4) 0.030(5) 0.021(4) 0.004(3) 0.009(3) 0.015(4) C30 0.024(4) 0.030(5) 0.023(4) 0.005(3) 0.006(3) 0.010(3) C31 0.026(4) 0.023(4) 0.030(5) -0.005(4) -0.001(4) 0.005(3) C32 0.036(5) 0.036(5) 0.030(5) -0.004(4) 0.002(4) 0.006(4) C33 0.045(6) 0.033(5) 0.035(5) -0.017(4) -0.005(5) 0.006(4) C34 0.050(7) 0.027(5) 0.046(6) -0.013(4) -0.005(5) 0.007(5) C35 0.030(5) 0.022(4) 0.036(5) -0.006(4) 0.001(4) 0.006(4) C36 0.029(5) 0.021(4) 0.035(5) 0.000(4) 0.001(4) 0.011(3) C37 0.052(7) 0.020(5) 0.048(6) -0.011(4) -0.005(5) 0.010(4) C38 0.050(7) 0.027(5) 0.070(8) 0.005(5) -0.003(6) 0.024(5) C39 0.040(6) 0.032(5) 0.047(6) 0.012(5) -0.002(5) 0.014(4) C40 0.025(4) 0.019(4) 0.041(5) 0.000(4) -0.003(4) 0.007(3) N1 0.017(3) 0.022(4) 0.022(3) -0.001(3) -0.003(3) 0.006(3) N2 0.016(3) 0.024(4) 0.020(3) -0.001(3) 0.002(3) 0.007(3) 121 U 11 U 22 U 33 U 23 U 13 U 12 N3 0.015(3) 0.027(4) 0.019(3) -0.005(3) 0.001(3) 0.008(3) N4 0.019(3) 0.020(3) 0.020(3) -0.003(3) 0.000(3) 0.006(3) N5 0.017(3) 0.017(3) 0.017(3) -0.004(2) -0.002(2) 0.004(2) N6 0.016(3) 0.017(3) 0.024(3) 0.003(3) 0.005(3) 0.002(2) N7 0.025(4) 0.023(4) 0.027(4) -0.001(3) 0.006(3) 0.005(3) N8 0.025(4) 0.016(3) 0.027(4) 0.001(3) -0.003(3) 0.009(3) N9 0.046(5) 0.027(5) 0.063(6) -0.008(4) 0.008(5) 0.002(4) N10 0.029(4) 0.044(5) 0.040(5) 0.001(4) -0.008(4) -0.004(4) N11 0.054(7) 0.098(10) 0.086(9) 0.027(8) 0.012(7) -0.016(7) N12 0.017(3) 0.026(4) 0.028(4) -0.002(3) -0.002(3) 0.006(3) N13 0.035(4) 0.026(4) 0.022(4) 0.002(3) -0.001(3) 0.014(3) N14 0.051(6) 0.039(5) 0.047(5) 0.000(4) -0.010(4) 0.023(4) N15 0.030(4) 0.028(4) 0.028(4) -0.001(3) 0.008(3) 0.010(3) N16 0.018(4) 0.029(4) 0.036(4) 0.000(3) -0.002(3) 0.008(3) N17 0.025(4) 0.042(5) 0.043(5) 0.011(4) 0.011(4) 0.009(3) N18 0.049(5) 0.056(6) 0.033(5) -0.029(4) -0.022(4) 0.031(5) N19 0.044(5) 0.031(5) 0.033(5) -0.011(4) -0.003(4) 0.005(4) N20 0.038(5) 0.037(5) 0.053(6) -0.012(4) 0.009(4) 0.004(4) N21 0.031(5) 0.042(5) 0.067(6) -0.033(5) -0.023(4) 0.016(4) N22 0.023(4) 0.043(5) 0.036(5) -0.005(4) -0.005(3) 0.010(3) N23 0.050(6) 0.054(6) 0.051(6) 0.009(5) -0.016(5) 0.003(5) N24 0.040(5) 0.028(4) 0.024(4) 0.001(3) 0.005(3) 0.017(3) N25 0.024(4) 0.042(5) 0.038(5) 0.010(4) -0.004(3) 0.017(3) N26 0.075(7) 0.024(5) 0.053(6) -0.009(4) -0.017(5) 0.016(5) N27 0.031(5) 0.063(7) 0.041(5) 0.002(5) 0.009(4) 0.001(4) N28 0.019(4) 0.068(7) 0.045(5) -0.006(5) 0.003(4) 0.020(4) N29 0.040(6) 0.076(8) 0.074(8) 0.025(6) 0.002(5) 0.018(6) N30 0.030(4) 0.054(6) 0.033(4) -0.025(4) -0.001(3) 0.015(4) N31 0.029(4) 0.046(5) 0.020(4) -0.009(3) -0.006(3) 0.005(4) N32 0.040(5) 0.045(5) 0.046(5) 0.005(4) -0.002(4) 0.017(4) N33 0.058(7) 0.097(9) 0.054(7) 0.022(6) 0.026(5) 0.036(6) N34 0.046(5) 0.039(5) 0.038(5) 0.012(4) 0.006(4) 0.019(4) N35 0.096(9) 0.061(7) 0.051(7) 0.002(5) 0.006(6) 0.046(7) N36 0.041(5) 0.070(7) 0.050(6) 0.030(5) 0.028(5) 0.013(5) N37 0.042(5) 0.044(5) 0.031(4) 0.008(4) 0.003(4) 0.017(4) N38 0.041(5) 0.049(5) 0.033(5) 0.009(4) 0.007(4) 0.014(4) N39 0.035(5) 0.077(7) 0.031(5) 0.003(4) 0.009(4) 0.026(5) N40 0.036(5) 0.046(5) 0.044(6) -0.003(4) 0.020(4) 0.006(4) N41 0.035(5) 0.073(7) 0.038(5) -0.004(5) 0.004(4) 0.000(5) N42 0.073(8) 0.058(7) 0.065(7) 0.012(6) 0.034(6) 0.032(6) N43 0.065(7) 0.056(7) 0.040(5) 0.006(5) 0.016(5) 0.030(6) N44 0.107(12) 0.063(9) 0.129(13) -0.002(9) 0.040(10) 0.011(8) 122 U 11 U 22 U 33 U 23 U 13 U 12 Ta1 0.01591(15) 0.01695(16) 0.01832(16) - 0.00006(12) 0.00042(11) 0.00671(12) Ta2 0.01766(16) 0.01592(16) 0.01886(16) - 0.00029(12) 0.00079(12) 0.00586(12) Ta3 0.02212(18) 0.02638(19) 0.0315(2) - 0.00698(15) - 0.00120(14) 0.00885(14) Ta4 0.0324(2) 0.0538(3) 0.0387(2) 0.0074(2) 0.00864(18) 0.0170(2) F1 0.024(2) 0.029(3) 0.029(3) 0.002(2) 0.009(2) 0.011(2) F2 0.021(2) 0.019(2) 0.029(3) -0.0010(19) -0.007(2) 0.0018(19) F3 0.021(2) 0.027(3) 0.022(2) -0.0004(19) 0.0029(19) 0.0149(19) F4 0.021(2) 0.021(2) 0.027(3) -0.0009(19) -0.0040(19) 0.0083(19) F5 0.025(2) 0.019(2) 0.024(2) -0.0049(18) -0.0060(19) 0.0096(19) F6 0.025(2) 0.024(3) 0.024(2) -0.0004(19) 0.004(2) 0.008(2) F7 0.020(2) 0.017(2) 0.021(2) -0.0004(18) -0.0066(18) 0.0040(18) F8 0.025(3) 0.018(2) 0.033(3) 0.001(2) 0.007(2) 0.0009(19) Table A1. 14 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [TaF 4 (2,2’- bipy) 2 ][Ta(N 3 ) 6 ] x/a y/b z/c U(eq) H1 1.0856 0.2494 0.6283 0.032 H2 1.1929 0.1680 0.6993 0.037 H3 1.1364 0.0166 0.6823 0.033 H4 0.9567 -0.0509 0.6022 0.028 H7 0.7761 -0.1027 0.5353 0.032 H8 0.5773 -0.1540 0.4593 0.036 H9 0.5029 -0.0540 0.3913 0.034 H10 0.6101 0.0925 0.4112 0.032 H11 0.6872 0.3429 0.5888 0.027 H12 0.5968 0.4687 0.5946 0.038 H13 0.6499 0.5700 0.5184 0.034 H14 0.7980 0.5430 0.4358 0.027 H17 0.9307 0.5108 0.3642 0.027 H18 1.1013 0.4767 0.2946 0.034 H19 1.2059 0.3570 0.3120 0.032 H20 1.1197 0.2655 0.3914 0.03 H21 0.3912 0.4012 0.9127 0.028 H22 0.4792 0.5455 0.8907 0.029 H23 0.3898 0.6540 0.9456 0.029 H24 0.2251 0.6144 1.0252 0.033 H27 0.0910 0.5718 1.1014 0.025 H28 -0.0613 0.5171 1.1822 0.033 H29 -0.1191 0.3662 1.1929 0.03 H30 -0.0397 0.2744 1.1187 0.03 H31 -0.0707 0.2276 0.8649 0.032 123 x/a y/b z/c U(eq) H32 -0.1586 0.1221 0.7819 0.041 H33 -0.0715 -0.0081 0.7826 0.047 H34 0.0731 -0.0339 0.8702 0.051 H37 0.1849 -0.0556 0.9558 0.049 H38 0.3262 -0.0664 1.0500 0.056 H39 0.4119 0.0575 1.1205 0.047 H40 0.3448 0.1860 1.0967 0.034 Figure A1. 5 Asymmetric unit in the crystal structure of [Nb(N 3 ) 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] 124 Figure A1. 6 Packing diagram of [Nb(N 3 ) 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ]. View normal to (001) Table A1. 15 Sample and crystal data for [Nb(N 3 ) 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] Identification code NbN15_Bipy2 Chemical formula C 20 H 16 N 34 Nb 2 Formula weight 918.49 Temperature 100(2) K Wavelength 0.71073 Å Crystal size 0.211 x 0.217 x 0.330 mm Crystal habit clear intense orange prism Crystal system monoclinic 125 Space group C 1 2/c 1 Unit cell dimensions a = 18.164(3) Å α = 90° b = 18.136(3) Å β = 103.909(3)° c = 20.588(3) Å γ = 90° Volume 6583.3(18) Å 3 Z 8 Density (calculated) 1.853 g/cm 3 Absorption coefficient 0.774 mm -1 F(000) 3648 Table A1. 16 Data collection and structure refinement for [Nb(N 3 ) 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] Diffractometer Bruker APEX DUO Radiation source fine-focus tube, MoKα Theta range for data collection 1.61 to 27.88° Index ranges -24<=h<=24, -24<=k<=24, -27<=l<=27 Reflections collected 3717 Independent reflections 7699 [R(int) = 0.0903] Coverage of independent reflections 98.0% Absorption correction multi-scan Max. and min. transmission 0.8540 and 0.7840 Structure solution technique direct methods Structure solution program SHELXTL XS 2013/1 (Sheldrick, 2013) Refinement method Full-matrix least-squares on F 2 Refinement program SHELXTL XL 2013/3 (Bruker AXS, 2013) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 7699 / 36 / 526 Goodness-of-fit on F 2 1.077 Final R indices 4336 data; I>2σ(I) R1 = 0.0764, wR2 = 0.1762 all data R1 = 0.1500, wR2 = 0.2084 Weighting scheme w=1/[σ 2 (F o 2 )+(0.0740P) 2 +142.8353P] where P=(F o 2 +2F c 2 )/3 Largest diff. peak and hole 1.009 and -1.435 eÅ -3 R.M.S. deviation from mean 0.218 eÅ -3 Table A1. 17 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [Nb(N 3 ) 4 (2,2’- bipy) 2 ][Nb(N 3 ) 6 ] C1 0.5952(4) 0.9256(4) 0.3481(4) 0.0122(14) C2 0.6266(4) 0.8842(4) 0.4042(4) 0.0139(15) C3 0.6295(4) 0.9153(4) 0.4669(4) 0.0179(16) C4 0.5967(4) 0.9840(4) 0.4694(4) 0.0147(15) C5 0.5638(4) 0.0212(4) 0.4115(4) 0.0121(14) C6 0.5256(4) 0.0929(4) 0.4112(4) 0.0124(15) C7 0.5246(5) 0.1306(4) 0.4690(4) 0.0197(17) C8 0.4930(4) 0.2003(4) 0.4660(4) 0.0199(17) C9 0.4626(4) 0.2297(4) 0.4027(4) 0.0157(15) 126 C10 0.4617(4) 0.1874(4) 0.3470(4) 0.0178(16) C11 0.3916(4) 0.6293(4) 0.3444(4) 0.0138(15) C12 0.3655(4) 0.6463(4) 0.4003(4) 0.0182(17) C13 0.4123(4) 0.6352(4) 0.4633(4) 0.0172(16) C14 0.4825(4) 0.6045(4) 0.4676(4) 0.0159(15) C15 0.5044(4) 0.5860(4) 0.4094(4) 0.0148(15) C16 0.5760(4) 0.5463(4) 0.4116(4) 0.0128(14) C17 0.6290(4) 0.5297(4) 0.4714(4) 0.0189(16) C18 0.6960(4) 0.4958(4) 0.4687(4) 0.0175(16) C19 0.7104(4) 0.4803(4) 0.4087(4) 0.0204(17) C20 0.6550(4) 0.4964(4) 0.3508(4) 0.0147(15) N1 0.229(3) 0.3130(16) 0.1505(10) 0.016(4) N2 0.2147(11) 0.3138(14) 0.0911(7) 0.028(4) N3 0.2001(16) 0.3149(9) 0.0349(7) 0.057(6) N1A 0.229(10) 0.300(6) 0.149(3) 0.016(4) N2A 0.236(4) 0.308(5) 0.093(2) 0.028(4) N3A 0.246(4) 0.312(3) 0.042(2) 0.057(6) N4 0.282(3) 0.308(3) 0.3497(12) 0.015(4) N5 0.3007(17) 0.3073(13) 0.4100(11) 0.020(3) N6 0.3218(16) 0.3048(16) 0.4663(11) 0.041(5) N4A 0.274(3) 0.315(4) 0.3531(16) 0.015(4) N5A 0.296(2) 0.2878(16) 0.4080(14) 0.020(3) N6A 0.316(2) 0.2704(19) 0.4621(14) 0.041(5) N7 0.3648(4) 0.3172(3) 0.2443(4) 0.0201(15) N8 0.3974(4) 0.3269(3) 0.1998(4) 0.0205(15) N9 0.4301(5) 0.3367(4) 0.1600(4) 0.035(2) N10 0.2621(4) 0.1968(3) 0.2581(3) 0.0172(14) N11 0.2822(4) 0.1524(4) 0.3028(4) 0.0189(14) N12 0.3020(4) 0.1077(4) 0.3425(4) 0.0292(18) N13 0.1381(4) 0.3022(3) 0.2395(3) 0.0180(14) N14 0.0813(4) 0.2948(3) 0.1950(4) 0.0217(15) N15 0.0288(4) 0.2888(4) 0.1523(4) 0.0322(19) N16 0.2483(3) 0.4232(3) 0.2580(3) 0.0158(13) N17 0.2496(4) 0.4660(3) 0.3035(3) 0.0172(14) N18 0.2510(4) 0.5074(4) 0.3455(4) 0.0325(19) N19 0.4224(3) 0.9869(3) 0.2778(3) 0.0135(13) N20 0.4088(3) 0.9672(3) 0.3298(3) 0.0137(13) N21 0.3944(4) 0.9481(4) 0.3783(3) 0.0193(14) N22 0.5929(3) 0.1246(3) 0.2777(3) 0.0151(13) N23 0.6318(3) 0.1458(3) 0.3308(3) 0.0141(13) N24 0.6710(4) 0.1677(4) 0.3790(4) 0.0250(16) N25 0.5646(3) 0.9928(3) 0.3497(3) 0.0087(12) N26 0.4908(3) 0.1199(3) 0.3497(3) 0.0102(12) N27 0.5760(3) 0.6479(3) 0.2780(3) 0.0122(12) 127 N28 0.6129(3) 0.6731(3) 0.3312(3) 0.0121(12) N29 0.6484(4) 0.6983(4) 0.3788(4) 0.0221(15) N30 0.5627(3) 0.4791(3) 0.2243(3) 0.0128(13) N31 0.5693(3) 0.4527(3) 0.1712(3) 0.0132(13) N32 0.5778(4) 0.4255(4) 0.1238(3) 0.0153(13) N33 0.4613(3) 0.6009(3) 0.3482(3) 0.0151(13) N34 0.5882(3) 0.5265(3) 0.3512(3) 0.0126(13) Nb1 0.25329(4) 0.30988(3) 0.25023(3) 0.01083(17) Nb2 0.5 0.05672(5) 0.25 0.0087(2) Nb3 0.5 0.56404(5) 0.25 0.0091(2) Table A1. 18 Bond lengths (Å) for [Nb(N 3 ) 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] C1-N25 1.342(9) C1-C2 1.380(10) C1-H1 0.95 C2-C3 1.399(11) C2-H2 0.95 C3-C4 1.387(10) C3-H3 0.95 C4-C5 1.375(10) C4-H4 0.95 C5-N25 1.376(9) C5-C6 1.473(10) C6-N26 1.363(9) C6-C7 1.376(11) C7-C8 1.385(11) C7-H7 0.95 C8-C9 1.394(11) C8-H8 0.95 C9-C10 1.376(11) C9-H9 0.95 C10-N26 1.331(9) C10-H10 0.95 C11-N33 1.351(9) C11-C12 1.381(10) C11-H11 0.95 C12-C13 1.384(11) C12-H12 0.95 C13-C14 1.375(11) C13-H13 0.95 C14-C15 1.392(10) C14-H14 0.95 C15-N33 1.342(10) C15-C16 1.478(10) C16-N34 1.362(9) C16-C17 1.401(10) C17-C18 1.376(10) C17-H17 0.95 C18-C19 1.352(11) C18-H18 0.95 C19-C20 1.395(11) C19-H19 0.95 C20-N34 1.334(9) C20-H20 0.95 N1-N2 1.187(18) N1-Nb1 1.99(2) N2-N3 1.124(14) N1A-N2A 1.19(2) N1A-Nb1 2.04(7) N2A-N3A 1.13(2) N4-N5 1.206(17) N4-Nb1 1.99(2) N5-N6 1.131(15) N4A-N5A 1.206(19) N4A-Nb1 2.06(3) N5A-N6A 1.131(16) N7-N8 1.218(10) N7-Nb1 2.062(6) N8-N9 1.136(10) N10-N11 1.211(9) N10-Nb1 2.061(6) N11-N12 1.147(9) N13-N14 1.212(9) N13-Nb1 2.055(6) N14-N15 1.136(10) N16-N17 1.212(9) 128 N16-Nb1 2.066(6) N17-N18 1.142(9) N19-N20 1.210(9) N19-Nb2 2.074(6) N20-N21 1.145(9) N22-N23 1.212(9) N22-Nb2 2.056(6) N23-N24 1.145(9) N25-Nb2 2.404(6) N26-Nb2 2.391(6) N27-N28 1.226(8) N27-Nb3 2.042(6) N28-N29 1.133(9) N30-N31 1.225(8) N30-Nb3 2.059(6) N31-N32 1.137(8) N33-Nb3 2.389(6) N34-Nb3 2.401(6) Nb2-N22 2.056(6) Nb2-N19 2.074(6) Nb2-N26 2.391(6) Nb2-N25 2.404(6) Nb3-N27 2.042(6) Nb3-N30 2.059(6) Nb3-N33 2.389(6) Nb3-N34 2.401(6) Table A1. 19 Bond angles (°) for [Nb(N 3 ) 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] N25-C1-C2 124.3(7) N25-C1-H1 117.9 C2-C1-H1 117.9 C1-C2-C3 118.0(7) C1-C2-H2 121.0 C3-C2-H2 121.0 C4-C3-C2 118.3(7) C4-C3-H3 120.8 C2-C3-H3 120.8 C5-C4-C3 120.7(7) C5-C4-H4 119.7 C3-C4-H4 119.7 C4-C5-N25 121.2(7) C4-C5-C6 122.9(7) N25-C5-C6 115.9(6) N26-C6-C7 121.7(7) N26-C6-C5 115.7(6) C7-C6-C5 122.6(7) C6-C7-C8 120.4(7) C6-C7-H7 119.8 C8-C7-H7 119.8 C7-C8-C9 117.3(7) C7-C8-H8 121.4 C9-C8-H8 121.4 C10-C9-C8 119.3(7) C10-C9-H9 120.4 C8-C9-H9 120.4 N26-C10-C9 123.6(7) N26-C10-H10 118.2 C9-C10-H10 118.2 N33-C11-C12 122.8(7) N33-C11-H11 118.6 C12-C11-H11 118.6 C11-C12-C13 119.5(7) C11-C12-H12 120.2 C13-C12-H12 120.2 C14-C13-C12 118.0(7) C14-C13-H13 121.0 C12-C13-H13 121.0 C13-C14-C15 119.7(7) C13-C14-H14 120.1 C15-C14-H14 120.1 N33-C15-C14 122.5(7) N33-C15-C16 116.0(6) C14-C15-C16 121.5(7) N34-C16-C17 121.1(7) N34-C16-C15 115.8(6) C17-C16-C15 123.1(7) C18-C17-C16 119.3(7) C18-C17-H17 120.4 C16-C17-H17 120.4 C19-C18-C17 119.8(7) C19-C18-H18 120.1 C17-C18-H18 120.1 C18-C19-C20 118.7(7) C18-C19-H19 120.7 C20-C19-H19 120.7 N34-C20-C19 123.4(7) N34-C20-H20 118.3 C19-C20-H20 118.3 129 N2-N1-Nb1 179.(4) N3-N2-N1 179.(3) N2A-N1A-Nb1 158.(10) N3A-N2A-N1A 175.(10) N5-N4-Nb1 179.(4) N6-N5-N4 176.(4) N5A-N4A-Nb1 152.(5) N6A-N5A-N4A 172.(4) N8-N7-Nb1 135.8(6) N9-N8-N7 177.5(9) N11-N10-Nb1 136.4(6) N12-N11-N10 176.2(9) N14-N13-Nb1 138.5(6) N15-N14-N13 178.3(10) N17-N16-Nb1 134.7(6) N18-N17-N16 178.6(9) N20-N19-Nb2 136.2(5) N21-N20-N19 178.5(8) N23-N22-Nb2 134.5(5) N24-N23-N22 176.2(8) C1-N25-C5 117.4(6) C1-N25-Nb2 122.5(5) C5-N25-Nb2 119.8(5) C10-N26-C6 117.4(6) C10-N26-Nb2 121.0(5) C6-N26-Nb2 120.9(4) N28-N27-Nb3 135.8(5) N29-N28-N27 177.1(8) N31-N30-Nb3 134.4(5) N32-N31-N30 176.4(8) C15-N33-C11 117.3(6) C15-N33-Nb3 120.9(5) C11-N33-Nb3 121.4(5) C20-N34-C16 117.5(6) C20-N34-Nb3 121.9(5) C16-N34-Nb3 119.8(5) N4-Nb1-N13 96.7(14) N1-Nb1-N13 85.4(15) N1A-Nb1-N13 85.(5) N4-Nb1-N10 84.7(15) N1-Nb1-N10 95.9(9) N1A-Nb1-N10 89.(3) N13-Nb1-N10 89.9(2) N13-Nb1-N4A 92.5(17) N10-Nb1-N4A 88.2(18) N4-Nb1-N7 92.5(14) N1-Nb1-N7 85.3(15) N1A-Nb1-N7 85.(5) N13-Nb1-N7 170.7(3) N10-Nb1-N7 90.6(2) N4A-Nb1-N7 96.7(17) N4-Nb1-N16 86.6(15) N1-Nb1-N16 92.8(9) N1A-Nb1-N16 100.(3) N13-Nb1-N16 90.7(2) N10-Nb1-N16 171.3(3) N4A-Nb1-N16 83.1(18) N7-Nb1-N16 90.1(2) N22-Nb2-N22 106.4(4) N22-Nb2-N19 82.8(2) N22-Nb2-N19 148.8(3) N22-Nb2-N19 148.8(3) N22-Nb2-N19 82.8(2) N19-Nb2-N19 104.8(3) N22-Nb2-N26 74.3(2) N22-Nb2-N26 72.3(2) N19-Nb2-N26 82.2(2) N19-Nb2-N26 136.1(2) N22-Nb2-N26 72.3(2) N22-Nb2-N26 74.3(2) N19-Nb2-N26 136.1(2) N19-Nb2-N26 82.2(2) N26-Nb2-N26 122.7(3) N22-Nb2-N25 81.5(2) N22-Nb2-N25 136.5(2) N19-Nb2-N25 73.5(2) N19-Nb2-N25 72.2(2) N26-Nb2-N25 147.54(19) N26-Nb2-N25 67.58(19) N22-Nb2-N25 136.5(2) N22-Nb2-N25 81.5(2) N19-Nb2-N25 72.2(2) N19-Nb2-N25 73.5(2) N26-Nb2-N25 67.57(19) N26-Nb2-N25 147.54(19) N25-Nb2-N25 122.3(3) N27-Nb3-N27 83.7(3) N27-Nb3-N30 149.6(2) 130 N27-Nb3-N30 104.6(2) N27-Nb3-N30 104.6(2) N27-Nb3-N30 149.6(2) N30-Nb3-N30 83.1(3) N27-Nb3-N33 82.5(2) N27-Nb3-N33 73.4(2) N30-Nb3-N33 72.5(2) N30-Nb3-N33 136.1(2) N27-Nb3-N33 73.4(2) N27-Nb3-N33 82.5(2) N30-Nb3-N33 136.1(2) N30-Nb3-N33 72.5(2) N33-Nb3-N33 147.5(3) N27-Nb3-N34 72.6(2) N27-Nb3-N34 136.1(2) N30-Nb3-N34 81.9(2) N30-Nb3-N34 73.5(2) N33-Nb3-N34 67.4(2) N33-Nb3-N34 122.9(2) N27-Nb3-N34 136.1(2) N27-Nb3-N34 72.6(2) N30-Nb3-N34 73.5(2) N30-Nb3-N34 81.9(2) N33-Nb3-N34 122.9(2) N33-Nb3-N34 67.4(2) N34-Nb3-N34 147.1(3) Table A1. 20 Anisotropic atomic displacement parameters (Å 2 ) for [Nb(N 3 ) 4 (2,2’-bipy) 2 ][Nb(N 3 ) 6 ] U 11 U 22 U 33 U 23 U 13 U 12 C1 0.010(3) 0.005(3) 0.022(4) 0.000(3) 0.005(3) -0.001(3) C2 0.015(4) 0.009(3) 0.016(4) -0.002(3) -0.001(3) 0.000(3) C3 0.013(4) 0.021(4) 0.018(4) 0.006(3) 0.000(3) -0.001(3) C4 0.016(4) 0.013(4) 0.013(4) -0.001(3) 0.001(3) -0.001(3) C5 0.009(3) 0.018(3) 0.011(3) 0.000(3) 0.006(3) -0.008(3) C6 0.007(3) 0.016(4) 0.015(4) 0.003(3) 0.003(3) -0.002(3) C7 0.027(4) 0.023(4) 0.012(4) 0.007(3) 0.009(3) 0.001(3) C8 0.022(4) 0.013(4) 0.028(5) -0.009(3) 0.012(3) -0.007(3) C9 0.021(4) 0.013(4) 0.015(4) -0.001(3) 0.006(3) 0.000(3) C10 0.009(3) 0.017(4) 0.026(4) -0.001(3) 0.001(3) -0.007(3) C11 0.012(3) 0.021(4) 0.008(4) -0.003(3) 0.002(3) 0.003(3) C12 0.017(4) 0.014(4) 0.027(5) 0.008(3) 0.012(3) 0.004(3) C13 0.025(4) 0.016(4) 0.013(4) -0.003(3) 0.009(3) -0.005(3) C14 0.023(4) 0.013(4) 0.011(4) 0.001(3) 0.003(3) 0.000(3) C15 0.018(4) 0.012(4) 0.014(4) -0.002(3) 0.003(3) 0.000(3) C16 0.013(4) 0.015(4) 0.009(4) 0.000(3) -0.001(3) -0.002(3) C17 0.023(4) 0.018(4) 0.017(4) 0.000(3) 0.007(3) -0.004(3) C18 0.015(4) 0.018(4) 0.019(4) 0.006(3) 0.002(3) 0.008(3) C19 0.013(4) 0.021(4) 0.028(5) 0.000(3) 0.006(3) 0.002(3) C20 0.020(4) 0.014(4) 0.010(4) -0.002(3) 0.002(3) 0.002(3) N1 0.022(3) 0.008(13) 0.018(4) 0.000(5) 0.007(3) -0.004(11) N2 0.034(12) 0.023(6) 0.021(5) -0.003(4) -0.004(6) 0.013(8) N3 0.097(17) 0.052(7) 0.014(6) 0.004(5) -0.003(9) 0.013(11) N1A 0.022(3) 0.008(13) 0.018(4) 0.000(5) 0.007(3) -0.004(11) N2A 0.034(12) 0.023(6) 0.021(5) -0.003(4) -0.004(6) 0.013(8) N3A 0.097(17) 0.052(7) 0.014(6) 0.004(5) -0.003(9) 0.013(11) N4 0.013(7) 0.013(7) 0.018(4) 0.000(4) 0.005(4) 0.000(5) N5 0.021(4) 0.018(8) 0.019(4) 0.000(5) 0.003(3) -0.002(6) 131 U 11 U 22 U 33 U 23 U 13 U 12 N6 0.045(7) 0.051(14) 0.025(6) -0.002(10) 0.004(5) 0.000(13) N4A 0.013(7) 0.013(7) 0.018(4) 0.000(4) 0.005(4) 0.000(5) N5A 0.021(4) 0.018(8) 0.019(4) 0.000(5) 0.003(3) -0.002(6) N6A 0.045(7) 0.051(14) 0.025(6) -0.002(10) 0.004(5) 0.000(13) N7 0.017(3) 0.015(3) 0.028(4) -0.001(3) 0.006(3) -0.003(3) N8 0.019(3) 0.011(3) 0.030(4) -0.007(3) 0.004(3) 0.005(3) N9 0.043(5) 0.030(4) 0.045(5) -0.007(4) 0.034(4) -0.002(4) N10 0.018(3) 0.011(3) 0.021(4) 0.001(3) 0.002(3) -0.005(2) N11 0.012(3) 0.018(3) 0.029(4) -0.003(3) 0.009(3) -0.003(3) N12 0.017(4) 0.030(4) 0.042(5) 0.015(4) 0.009(3) 0.003(3) N13 0.016(3) 0.015(3) 0.022(4) -0.008(3) 0.002(3) -0.002(3) N14 0.019(3) 0.006(3) 0.039(5) 0.003(3) 0.005(3) 0.005(3) N15 0.015(4) 0.028(4) 0.045(5) -0.004(4) -0.008(3) 0.002(3) N16 0.010(3) 0.014(3) 0.023(4) 0.002(3) 0.002(3) -0.003(3) N17 0.014(3) 0.015(3) 0.024(4) -0.005(3) 0.006(3) 0.000(3) N18 0.023(4) 0.030(4) 0.047(5) -0.016(4) 0.011(4) -0.003(3) N19 0.012(3) 0.015(3) 0.014(3) 0.002(2) 0.004(2) -0.005(2) N20 0.007(3) 0.015(3) 0.017(4) -0.001(3) 0.000(2) 0.001(2) N21 0.020(4) 0.020(3) 0.019(4) 0.001(3) 0.007(3) -0.003(3) N22 0.010(3) 0.020(3) 0.015(3) -0.002(3) 0.004(3) -0.001(2) N23 0.015(3) 0.016(3) 0.015(3) 0.000(3) 0.010(3) -0.002(3) N24 0.021(4) 0.036(4) 0.018(4) -0.007(3) 0.005(3) -0.007(3) N25 0.010(3) 0.010(3) 0.006(3) 0.000(2) 0.002(2) 0.000(2) N26 0.014(3) 0.008(3) 0.010(3) 0.001(2) 0.007(2) 0.005(2) N27 0.018(3) 0.011(3) 0.010(3) 0.001(2) 0.008(2) -0.003(2) N28 0.019(3) 0.008(3) 0.010(3) -0.001(2) 0.005(3) 0.001(2) N29 0.033(4) 0.013(3) 0.021(4) -0.002(3) 0.009(3) -0.012(3) N30 0.013(3) 0.008(3) 0.014(3) -0.004(2) -0.003(2) -0.001(2) N31 0.014(3) 0.012(3) 0.009(3) 0.001(2) -0.006(2) 0.000(2) N32 0.018(3) 0.020(3) 0.005(3) 0.001(2) -0.003(2) 0.007(3) N33 0.016(3) 0.011(3) 0.017(3) -0.002(2) 0.001(3) 0.000(2) N34 0.010(3) 0.010(3) 0.017(3) 0.002(2) 0.003(2) 0.001(2) Nb1 0.0127(3) 0.0068(3) 0.0128(4) 0.0004(3) 0.0026(2) 0.0007(3) Nb2 0.0094(4) 0.0083(4) 0.0084(5) 0 0.0023(3) 0 Nb3 0.0119(4) 0.0055(4) 0.0094(5) 0 0.0017(3) 0 Table A1. 21 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [Nb(N 3 ) 4 (2,2’- bipy) 2 ][Nb(N 3 ) 6 ] x/a y/b z/c U(eq) H1 0.5953 -0.0947 0.3056 0.015 H2 0.6457 -0.1639 0.4003 0.017 H3 0.6533 -0.1100 0.5068 0.022 H4 0.5970 0.0056 0.5115 0.018 132 x/a y/b z/c U(eq) H7 0.5458 0.1086 0.5113 0.024 H8 0.4921 0.2271 0.5055 0.024 H9 0.4428 0.2784 0.3980 0.019 H10 0.4390 0.2076 0.3043 0.021 H11 0.3592 0.6380 0.3015 0.017 H12 0.3158 0.6655 0.3956 0.022 H13 0.3963 0.6485 0.5025 0.021 H14 0.5159 0.5959 0.5101 0.019 H17 0.6188 0.5416 0.5133 0.023 H18 0.7321 0.4834 0.5089 0.021 H19 0.7574 0.4589 0.4061 0.024 H20 0.6654 0.4852 0.3088 0.018 Figure A1. 7 Asymmetric unit in the crystal structure of [Ta(N 3 ) 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] 133 Figure A1. 8 Packing diagram of [Ta(N 3 ) 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ]. View normal to (001) Table A1. 22 Sample and crystal data for [Ta(N 3 ) 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] Identification code TaN15Bipy_2 Chemical formula C 20 H 16 N 34 Ta 2 Formula weight 1094.57 Temperature 120(2) K Wavelength 0.71073 Å Crystal system monoclinic Space group C 1 2/c 1 Unit cell dimensions a = 18.281(2) Å α = 90° 134 b = 18.2223(19) Å β = 104.000(2)° c = 20.536(2) Å γ = 90° Volume 6637.8(12) Å 3 Z 8 Density (calculated) 2.191 g/cm 3 Absorption coefficient 6.666 mm -1 F(000) 4160 Table A1. 23 Data collection and structure refinement for [Ta(N 3 ) 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] Diffractometer Bruker SAPEX Radiation source fine-focus tube, MoKα Theta range for data collection 1.60 to 27.50° Index ranges -22<=h<=23, -23<=k<=20, -24<=l<=26 Reflections collected 20153 Independent reflections 7483 [R(int) = 0.0241] Absorption correction multi-scan Structure solution technique direct methods Structure solution program SHELXTL XS 2013/1 (Sheldrick, 2013) Refinement method Full-matrix least-squares on F 2 Refinement program SHELXTL XL 2013/3 (Bruker AXS, 2013) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 7483 / 6 / 526 Goodness-of-fit on F 2 1.021 Δ/σ max 0.317 Final R indices 5179 data; I>2σ(I) R1 = 0.0288, wR2 = 0.0718 all data R1 = 0.0466, wR2 = 0.0824 Weighting scheme w=1/[σ 2 (F o 2 )+(0.0324P) 2 +14.8551P] where P=(F o 2 +2F c 2 )/3 Largest diff. peak and hole 1.138 and -0.800 eÅ -3 R.M.S. deviation from mean 0.123 eÅ -3 Table A1. 24 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [Ta(N 3 ) 4 (2,2’- bipy) 2 ][Ta(N 3 ) 6 ] x/a y/b z/c U(eq) C1 0.3933(2) 0.1302(2) 0.8443(2) 0.0278(10) C2 0.3672(3) 0.1469(2) 0.8999(2) 0.0300(10) C3 0.4136(3) 0.1359(2) 0.9626(2) 0.0324(11) C4 0.4826(3) 0.1043(2) 0.9671(2) 0.0313(11) C5 0.5049(2) 0.0859(2) 0.9096(2) 0.0241(9) C6 0.5764(3) 0.0461(2) 0.9115(2) 0.0247(10) C7 0.6278(3) 0.0303(2) 0.9709(2) 0.0298(10) C8 0.6943(3) 0.9966(2) 0.9692(2) 0.0325(11) C9 0.7086(3) 0.9802(2) 0.9072(2) 0.0307(10) C10 0.6534(2) 0.9954(2) 0.8501(2) 0.0265(10) C11 0.9047(2) 0.9271(2) 0.6524(2) 0.0283(10) 135 x/a y/b z/c U(eq) C12 0.8732(3) 0.8868(2) 0.5958(2) 0.0303(10) C13 0.8708(3) 0.9167(2) 0.5339(2) 0.0310(10) C14 0.9029(2) 0.9845(2) 0.5311(2) 0.0284(10) C15 0.9362(2) 0.0212(2) 0.5891(2) 0.0235(9) C16 0.9749(2) 0.0922(2) 0.5898(2) 0.0230(9) C17 0.9749(3) 0.1302(2) 0.5312(2) 0.0303(10) C18 0.0079(3) 0.1986(2) 0.5348(2) 0.0326(11) C19 0.0383(3) 0.2275(2) 0.5971(2) 0.0296(10) C20 0.0394(2) 0.1865(2) 0.6537(2) 0.0274(10) N1 0.228(7) 0.808(7) 0.651(2) 0.033(2) N2 0.2136(6) 0.8121(7) 0.5923(4) 0.040(2) N3 0.1972(9) 0.8152(5) 0.5347(4) 0.086(4) N1A 0.230(17) 0.814(16) 0.647(5) 0.033(2) N2A 0.2424(14) 0.8108(19) 0.5943(12) 0.040(2) N3A 0.253(2) 0.8158(15) 0.5418(11) 0.086(4) N4 0.276(4) 0.815(4) 0.8505(12) 0.029(5) N5 0.3022(15) 0.8068(14) 0.9080(10) 0.040(4) N6 0.3205(12) 0.8050(15) 0.9658(8) 0.081(5) N4A 0.283(7) 0.805(6) 0.851(2) 0.029(5) N5A 0.292(3) 0.787(2) 0.9075(16) 0.040(4) N6A 0.313(2) 0.7650(19) 0.9615(14) 0.081(5) N7 0.1389(2) 0.80316(19) 0.7410(2) 0.0318(9) N8 0.0830(2) 0.7959(2) 0.6969(2) 0.0376(10) N9 0.0289(3) 0.7894(3) 0.6560(3) 0.0642(15) N10 0.2619(2) 0.6981(2) 0.7578(2) 0.0336(10) N11 0.2808(2) 0.6517(2) 0.8006(2) 0.0366(10) N12 0.2985(3) 0.6060(3) 0.8392(3) 0.0597(14) N13 0.3639(2) 0.81675(19) 0.7455(2) 0.0334(9) N14 0.3983(2) 0.8264(2) 0.7025(2) 0.0356(10) N15 0.4330(3) 0.8356(3) 0.6640(3) 0.0582(14) N16 0.2478(2) 0.9218(2) 0.7570(2) 0.0330(10) N17 0.2507(2) 0.9658(2) 0.8022(2) 0.0365(10) N18 0.2526(3) 0.0089(3) 0.8421(3) 0.0594(14) N19 0.5754(2) 0.14683(19) 0.77905(18) 0.0275(8) N20 0.6119(2) 0.1734(2) 0.8315(2) 0.0309(9) N21 0.6470(3) 0.1991(2) 0.8789(2) 0.0435(12) N22 0.5613(2) 0.98024(19) 0.72335(18) 0.0262(8) N23 0.5679(2) 0.9529(2) 0.6702(2) 0.0286(9) N24 0.5778(2) 0.9263(2) 0.6234(2) 0.0315(9) N25 0.4615(2) 0.10105(18) 0.84789(17) 0.0236(8) N26 0.58724(19) 0.02657(18) 0.85063(17) 0.0232(8) N27 0.0908(2) 0.1242(2) 0.77740(18) 0.0263(8) N28 0.1322(2) 0.1450(2) 0.8305(2) 0.0322(9) 136 x/a y/b z/c U(eq) N29 0.1715(2) 0.1668(3) 0.8788(2) 0.0438(11) N30 0.0755(2) 0.98827(19) 0.72182(17) 0.0262(8) N31 0.0902(2) 0.9690(2) 0.66950(19) 0.0258(8) N32 0.1054(2) 0.9485(2) 0.6226(2) 0.0326(10) N33 0.93554(19) 0.99420(18) 0.65071(17) 0.0225(8) N34 0.00980(19) 0.11878(18) 0.65085(17) 0.0217(8) Ta1 0.25316(2) 0.80994(2) 0.75008(2) 0.02220(6) Ta2 0.5 0.06430(2) 0.75 0.01829(7) Ta3 0.0 0.05700(2) 0.75 0.01797(7) Table A1. 25 Bond lengths (Å) for [Ta(N 3 ) 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] C1-N25 1.341(5) C1-C2 1.373(6) C1-H1 0.95 C2-C3 1.375(6) C2-H2 0.95 C3-C4 1.368(6) C3-H3 0.95 C4-C5 1.381(6) C4-H4 0.95 C5-N25 1.351(5) C5-C6 1.487(6) C6-N26 1.360(5) C6-C7 1.377(6) C7-C8 1.369(6) C7-H7 0.95 C8-C9 1.392(6) C8-H8 0.95 C9-C10 1.377(6) C9-H9 0.95 C10-N26 1.339(5) C10-H10 0.95 C11-N33 1.350(5) C11-C12 1.379(6) C11-H11 0.95 C12-C13 1.373(6) C12-H12 0.95 C13-C14 1.374(6) C13-H13 0.95 C14-C15 1.374(6) C14-H14 0.95 C15-N33 1.360(5) C15-C16 1.473(6) C16-N34 1.352(5) C16-C17 1.389(6) C17-C18 1.380(6) C17-H17 0.95 C18-C19 1.370(6) C18-H18 0.95 C19-C20 1.377(6) C19-H19 0.95 C20-N34 1.344(5) C20-H20 0.95 N1-N2 1.16(4) N1-Ta1 1.98(4) N2-N3 1.148(9) N1A-N2A 1.17(4) N1A-Ta1 2.05(9) N2A-N3A 1.140(16) N4-N5 1.173(18) N4-Ta1 2.00(3) N5-N6 1.155(11) N4A-N5A 1.17(2) N4A-Ta1 2.02(4) N5A-N6A 1.155(15) N7-N8 1.198(5) N7-Ta1 2.055(4) N8-N9 1.137(6) N10-N11 1.209(5) N10-Ta1 2.047(4) N11-N12 1.140(5) N13-N14 1.215(5) N13-Ta1 2.052(4) N14-N15 1.138(6) N16-N17 1.218(5) 137 N16-Ta1 2.048(4) N17-N18 1.131(5) N19-N20 1.221(5) N19-Ta2 2.030(3) N20-N21 1.129(5) N22-N23 1.232(5) N22-Ta2 2.049(3) N23-N24 1.129(5) N25-Ta2 2.381(3) N26-Ta2 2.386(3) N27-N28 1.227(5) N27-Ta3 2.030(4) N28-N29 1.146(5) N30-N31 1.221(5) N30-Ta3 2.048(3) N31-N32 1.128(5) N33-Ta3 2.386(3) N34-Ta3 2.371(3) Ta2-N19 2.030(3) Ta2-N22 2.049(3) Ta2-N25 2.381(3) Ta2-N26 2.386(3) Ta3-N27 2.030(4) Ta3-N30 2.048(3) Ta3-N34 2.371(3) Ta3-N33 2.386(3) Table A1. 26 Bond angles (°) for [Ta(N 3 ) 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] N25-C1-C2 123.3(4) N25-C1-H1 118.4 C2-C1-H1 118.4 C1-C2-C3 119.1(4) C1-C2-H2 120.5 C3-C2-H2 120.5 C4-C3-C2 118.4(4) C4-C3-H3 120.8 C2-C3-H3 120.8 C3-C4-C5 120.1(4) C3-C4-H4 119.9 C5-C4-H4 119.9 N25-C5-C4 121.6(4) N25-C5-C6 115.9(4) C4-C5-C6 122.4(4) N26-C6-C7 122.6(4) N26-C6-C5 115.2(4) C7-C6-C5 122.2(4) C8-C7-C6 119.4(4) C8-C7-H7 120.3 C6-C7-H7 120.3 C7-C8-C9 118.9(4) C7-C8-H8 120.5 C9-C8-H8 120.5 C10-C9-C8 118.3(4) C10-C9-H9 120.8 C8-C9-H9 120.8 N26-C10-C9 123.8(4) N26-C10-H10 118.1 C9-C10-H10 118.1 N33-C11-C12 123.5(4) N33-C11-H11 118.3 C12-C11-H11 118.2 C13-C12-C11 118.8(4) C13-C12-H12 120.6 C11-C12-H12 120.6 C12-C13-C14 118.5(4) C12-C13-H13 120.7 C14-C13-H13 120.7 C15-C14-C13 120.3(4) C15-C14-H14 119.9 C13-C14-H14 119.8 N33-C15-C14 122.0(4) N33-C15-C16 114.9(4) C14-C15-C16 123.1(4) N34-C16-C17 121.8(4) N34-C16-C15 116.2(4) C17-C16-C15 122.0(4) C18-C17-C16 119.7(4) C18-C17-H17 120.2 C16-C17-H17 120.2 C19-C18-C17 118.1(4) C19-C18-H18 120.9 C17-C18-H18 120.9 C18-C19-C20 119.9(4) C18-C19-H19 120.0 C20-C19-H19 120.0 N34-C20-C19 122.6(4) N34-C20-H20 118.7 C19-C20-H20 118.7 138 N2-N1-Ta1 176.(10) N3-N2-N1 178.(6) N2A-N1A-Ta1 157.(10) N3A-N2A-N1A 172.(10) N5-N4-Ta1 164.(4) N6-N5-N4 170.(4) N5A-N4A-Ta1 164.(10) N6A-N5A-N4A 167.(7) N8-N7-Ta1 137.6(4) N9-N8-N7 178.4(6) N11-N10-Ta1 139.1(4) N12-N11-N10 177.5(5) N14-N13-Ta1 137.1(4) N15-N14-N13 177.5(6) N17-N16-Ta1 135.5(3) N18-N17-N16 177.0(6) N20-N19-Ta2 137.8(3) N21-N20-N19 177.9(5) N23-N22-Ta2 135.7(3) N24-N23-N22 176.1(5) C1-N25-C5 117.3(4) C1-N25-Ta2 121.8(3) C5-N25-Ta2 120.6(3) C10-N26-C6 116.8(4) C10-N26-Ta2 122.1(3) C6-N26-Ta2 120.4(3) N28-N27-Ta3 136.0(3) N29-N28-N27 177.4(5) N31-N30-Ta3 137.1(3) N32-N31-N30 176.9(5) C11-N33-C15 116.7(4) C11-N33-Ta3 122.3(3) C15-N33-Ta3 120.5(3) C20-N34-C16 117.6(4) C20-N34-Ta3 120.9(3) C16-N34-Ta3 120.6(3) N1-Ta1-N10 93.(4) N4-Ta1-N10 88.7(17) N4A-Ta1-N10 83.(3) N1A-Ta1-N10 96.(8) N1-Ta1-N16 95.(4) N4-Ta1-N16 83.1(17) N4A-Ta1-N16 89.(3) N1A-Ta1-N16 92.(8) N10-Ta1-N16 171.84(15) N1-Ta1-N13 87.(3) N4-Ta1-N13 95.(2) N4A-Ta1-N13 91.(3) N1A-Ta1-N13 85.(8) N10-Ta1-N13 90.24(14) N16-Ta1-N13 90.40(14) N1-Ta1-N7 86.(3) N4-Ta1-N7 93.(2) N4A-Ta1-N7 96.(3) N1A-Ta1-N7 88.(8) N10-Ta1-N7 90.34(15) N16-Ta1-N7 90.10(14) N13-Ta1-N7 172.40(16) N19-Ta2-N19 84.4(2) N19-Ta2-N22 104.82(15) N19-Ta2-N22 148.41(15) N19-Ta2-N22 148.41(15) N19-Ta2-N22 104.82(15) N22-Ta2-N22 83.2(2) N19-Ta2-N25 82.05(13) N19-Ta2-N25 73.83(13) N22-Ta2-N25 136.73(13) N22-Ta2-N25 72.09(13) N19-Ta2-N25 73.83(13) N19-Ta2-N25 82.05(13) N22-Ta2-N25 72.09(13) N22-Ta2-N25 136.73(13) N25-Ta2-N25 147.32(16) N19-Ta2-N26 72.22(13) N19-Ta2-N26 137.08(13) N22-Ta2-N26 73.84(13) N22-Ta2-N26 81.23(13) N25-Ta2-N26 67.78(12) N25-Ta2-N26 122.71(12) N19-Ta2-N26 137.08(13) N19-Ta2-N26 72.22(13) N22-Ta2-N26 81.23(13) N22-Ta2-N26 73.84(13) N25-Ta2-N26 122.71(12) N25-Ta2-N26 67.78(12) N26-Ta2-N26 146.51(16) N27-Ta3-N27 105.7(2) N27-Ta3-N30 148.48(14) 139 N27-Ta3-N30 83.44(14) N27-Ta3-N30 83.44(15) N27-Ta3-N30 148.48(14) N30-Ta3-N30 104.6(2) N27-Ta3-N34 74.03(13) N27-Ta3-N34 72.66(13) N30-Ta3-N34 136.81(13) N30-Ta3-N34 81.47(13) N27-Ta3-N34 72.66(13) N27-Ta3-N34 74.03(13) N30-Ta3-N34 81.47(13) N30-Ta3-N34 136.81(13) N34-Ta3-N34 123.31(16) N27-Ta3-N33 136.72(13) N27-Ta3-N33 81.43(13) N30-Ta3-N33 73.80(13) N30-Ta3-N33 72.09(13) N34-Ta3-N33 67.55(12) N34-Ta3-N33 146.85(11) N27-Ta3-N33 81.43(13) N27-Ta3-N33 136.72(13) N30-Ta3-N33 72.09(13) N30-Ta3-N33 73.80(13) N34-Ta3-N33 146.85(12) N34-Ta3-N33 67.55(12) N33-Ta3-N33 122.68(16) Table A1. 27 Anisotropic atomic displacement parameters (Å 2 ) for [Ta(N 3 ) 4 (2,2’-bipy) 2 ][Ta(N 3 ) 6 ] U 11 U 22 U 33 U 23 U 13 U 12 C1 0.026(2) 0.024(2) 0.034(3) - 0.0001(19) 0.007(2) 0.0027(17) C2 0.026(3) 0.027(2) 0.040(3) 0.000(2) 0.014(2) 0.0004(18) C3 0.037(3) 0.030(3) 0.034(3) -0.007(2) 0.015(2) -0.003(2) C4 0.031(3) 0.037(3) 0.025(3) -0.003(2) 0.005(2) -0.001(2) C5 0.026(2) 0.020(2) 0.024(2) - 0.0025(18) 0.0025(18) - 0.0056(17) C6 0.027(3) 0.024(2) 0.025(2) 0.0007(18) 0.0082(19) - 0.0041(18) C7 0.028(3) 0.036(3) 0.022(2) 0.006(2) 0.0003(19) -0.002(2) C8 0.025(3) 0.037(3) 0.033(3) 0.004(2) 0.001(2) - 0.0017(19) C9 0.024(2) 0.034(3) 0.033(3) 0.000(2) 0.004(2) 0.0004(19) C10 0.024(2) 0.028(2) 0.027(2) - 0.0016(19) 0.0055(19) 0.0016(18) C11 0.028(3) 0.025(2) 0.033(3) 0.0038(19) 0.009(2) - 0.0037(18) C12 0.028(3) 0.030(2) 0.033(3) -0.002(2) 0.009(2) - 0.0008(19) C13 0.027(3) 0.033(3) 0.031(3) -0.007(2) 0.002(2) 0.0004(19) C14 0.025(2) 0.035(3) 0.023(2) 0.0003(19) 0.0011(19) - 0.0010(19) C15 0.022(2) 0.027(2) 0.022(2) 0.0032(18) 0.0052(18) 0.0043(17) C16 0.022(2) 0.028(2) 0.019(2) 0.0015(18) 0.0030(17) 0.0042(17) C17 0.037(3) 0.032(2) 0.023(2) - 0.0027(19) 0.007(2) 0.004(2) C18 0.040(3) 0.030(2) 0.031(3) 0.009(2) 0.014(2) 0.001(2) C19 0.033(3) 0.026(2) 0.030(3) 0.0044(19) 0.007(2) - 0.0001(19) 140 U 11 U 22 U 33 U 23 U 13 U 12 C20 0.024(2) 0.026(2) 0.032(3) - 0.0052(19) 0.0064(19) 0.0006(18) N1 0.038(4) 0.033(5) 0.026(5) 0.002(8) 0.006(8) 0.001(3) N2 0.041(7) 0.044(3) 0.033(3) -0.001(2) 0.003(4) 0.006(6) N3 0.124(11) 0.096(6) 0.026(4) -0.002(4) 0.000(6) 0.011(8) N1A 0.038(4) 0.033(5) 0.026(5) 0.002(8) 0.006(8) 0.001(3) N2A 0.041(7) 0.044(3) 0.033(3) -0.001(2) 0.003(4) 0.006(6) N3A 0.124(11) 0.096(6) 0.026(4) -0.002(4) 0.000(6) 0.011(8) N4 0.024(13) 0.032(17) 0.029(2) 0.005(3) 0.004(3) 0.004(9) N5 0.027(8) 0.057(13) 0.038(3) -0.008(6) 0.012(3) -0.012(6) N6 0.076(7) 0.134(17) 0.031(4) -0.008(10) 0.011(4) 0.006(12) N4A 0.024(13) 0.032(17) 0.029(2) 0.005(3) 0.004(3) 0.004(9) N5A 0.027(8) 0.057(13) 0.038(3) -0.008(6) 0.012(3) -0.012(6) N6A 0.076(7) 0.134(17) 0.031(4) -0.008(10) 0.011(4) 0.006(12) N7 0.023(2) 0.027(2) 0.047(3) - 0.0026(18) 0.0112(19) 0.0005(15) N8 0.027(2) 0.028(2) 0.056(3) 0.0001(19) 0.007(2) 0.0032(17) N9 0.037(3) 0.051(3) 0.090(4) -0.004(3) -0.014(3) 0.007(2) N10 0.029(2) 0.027(2) 0.045(3) 0.0001(18) 0.0086(19) - 0.0031(16) N11 0.028(2) 0.029(2) 0.057(3) 0.004(2) 0.018(2) - 0.0007(17) N12 0.056(3) 0.047(3) 0.080(4) 0.031(3) 0.025(3) 0.011(2) N13 0.031(2) 0.030(2) 0.041(3) - 0.0004(18) 0.0116(19) - 0.0011(16) N14 0.031(2) 0.026(2) 0.052(3) - 0.0004(19) 0.014(2) 0.0025(16) N15 0.053(3) 0.054(3) 0.083(4) -0.002(3) 0.045(3) 0.003(2) N16 0.028(2) 0.029(2) 0.043(3) - 0.0005(18) 0.0107(19) - 0.0004(16) N17 0.029(2) 0.030(2) 0.050(3) -0.005(2) 0.011(2) - 0.0055(17) N18 0.050(3) 0.047(3) 0.081(4) -0.032(3) 0.017(3) -0.007(2) N19 0.034(2) 0.0247(19) 0.023(2) - 0.0038(15) 0.0047(17) - 0.0071(16) N20 0.034(2) 0.026(2) 0.034(2) - 0.0009(17) 0.0110(19) - 0.0024(16) N21 0.060(3) 0.037(2) 0.027(2) - 0.0050(19) -0.002(2) -0.019(2) N22 0.031(2) 0.0250(19) 0.024(2) - 0.0040(15) 0.0083(16) 0.0060(15) N23 0.026(2) 0.0262(19) 0.030(2) 0.0043(17) -0.0002(17) 0.0011(16) N24 0.039(3) 0.034(2) 0.022(2) - 0.0054(17) 0.0067(18) 0.0085(18) N25 0.025(2) 0.0215(18) 0.024(2) - 0.0004(15) 0.0050(15) - 0.0003(14) 141 U 11 U 22 U 33 U 23 U 13 U 12 N26 0.022(2) 0.0223(18) 0.024(2) 0.0013(15) 0.0033(15) 0.0006(14) N27 0.024(2) 0.034(2) 0.021(2) - 0.0014(16) 0.0067(16) - 0.0040(16) N28 0.028(2) 0.041(2) 0.031(2) 0.0022(18) 0.0137(19) - 0.0023(17) N29 0.034(3) 0.067(3) 0.028(2) -0.013(2) 0.0018(19) -0.020(2) N30 0.028(2) 0.032(2) 0.019(2) - 0.0030(16) 0.0081(16) 0.0057(16) N31 0.022(2) 0.030(2) 0.025(2) 0.0044(17) 0.0048(16) - 0.0016(15) N32 0.034(2) 0.042(2) 0.022(2) - 0.0020(17) 0.0064(18) 0.0067(18) N33 0.0185(19) 0.0232(18) 0.026(2) - 0.0019(15) 0.0059(15) - 0.0004(14) N34 0.0193(19) 0.0219(18) 0.025(2) 0.0008(15) 0.0074(15) 0.0012(14) Ta1 0.02051(11) 0.02015(11) 0.02589(11) 0.00014(7) 0.00552(8) 0.00008(7) Ta2 0.02076(14) 0.01618(13) 0.01730(14) 0 0.00340(10) 0 Ta3 0.01589(13) 0.02117(14) 0.01701(14) 0 0.00430(10) 0 Table A1. 28 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [Ta(N 3 ) 4 (2,2’- bipy) 2 ][Ta(N 3 ) 6 ] x/a y/b z/c U(eq) H1 0.3615 0.1397 0.8013 0.033 H2 0.3177 0.1658 0.8950 0.036 H3 0.3981 0.1498 1.0018 0.039 H4 0.5152 0.0951 1.0099 0.038 H7 0.6173 0.0427 1.0126 0.036 H8 0.7300 -0.0155 1.0097 0.039 H9 0.7552 -0.0410 0.9044 0.037 H10 0.6629 -0.0170 0.8080 0.032 H11 0.9046 -0.0933 0.6950 0.034 H12 0.8536 -0.1609 0.5995 0.036 H13 0.8475 -0.1089 0.4940 0.037 H14 0.9020 0.0061 0.4888 0.034 H17 0.9523 0.1091 0.4888 0.036 H18 1.0094 0.2250 0.4953 0.039 H19 1.0587 0.2757 0.6012 0.036 H20 1.0620 0.2070 0.6963 0.033 142 Figure A1. 9 Asymmetric unit in the crystal structure of [Nb(N 3 ) 4 (1,10-phen) 2 ][Nb(N 3 ) 6 ] Figure A1. 10 Packing diagram of [Nb(N 3 ) 4 (1,10-phen) 2 ][Nb(N 3 ) 6 ]. View normal to (001) Table A1. 29 Sample and crystal data for [Nb(N 3 ) 4 (1,10-phen) 2 ][Nb(N 3 ) 6 ] Identification code NbN15Phen Chemical formula C 24 H 16 N 34 Nb 2 143 Formula weight 966.53 Temperature 153(2) K Wavelength 0.71073 Å Crystal size 0.100 x 0.110 x 0.210 mm Crystal habit orange prism Crystal system monoclinic Space group C 1 2/c 1 Unit cell dimensions a = 18.539(3) Å α = 90° b = 18.188(3) Å β = 113.1920(17)° c = 22.950(3) Å γ = 90° Volume 7113.1(17) Å 3 Z 8 Density (calculated) 1.805 g/cm 3 Absorption coefficient 0.721 mm -1 F(000) 3840 Table A1. 30 Data collection and structure refinement for [Nb(N 3 ) 4 (1,10-phen) 2 ][Nb(N 3 ) 6 ] Diffractometer Bruker SMART APEX Radiation source fine-focus tube, MoKα Theta range for data collection 1.65 to 28.70° Index ranges -23<=h<=19, -17<=k<=24, -30<=l<=29 Reflections collected 22431 Independent reflections 8405 [R(int) = 0.0299] Coverage of independent reflections 91.5% Absorption correction multi-scan Max. and min. transmission 0.9310 and 0.8630 Structure solution technique direct methods Structure solution program SHELXTL XS 2013/1 (Sheldrick, 2013) Refinement method Full-matrix least-squares on F 2 Refinement program SHELXTL XL 2013/3 (Bruker AXS, 2013) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 8405 / 27 / 552 Goodness-of-fit on F 2 1.061 Δ/σ max 0.002 Final R indices 6917 data; I>2σ(I) R1 = 0.0299, wR2 = 0.0728 all data R1 = 0.0385, wR2 = 0.0802 Weighting scheme w=1/[σ 2 (F o 2 )+(0.0315P) 2 +6.3606P] where P=(F o 2 +2F c 2 )/3 Largest diff. peak and hole 0.491 and -0.846 eÅ -3 R.M.S. deviation from mean 0.099 eÅ -3 Table A1. 31 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [Nb(N 3 ) 4 (1,10- phen) 2 ][Nb(N 3 ) 6 ] x/a y/b z/c U(eq) C1 0.56638(12) 0.16724(11) 0.65073(9) 0.0230(4) 144 x/a y/b z/c U(eq) C2 0.57281(13) 0.14938(12) 0.59396(10) 0.0275(5) C3 0.51827(12) 0.17459(11) 0.53747(10) 0.0263(4) C4 0.45863(11) 0.22143(11) 0.53842(9) 0.0210(4) C5 0.40276(12) 0.25560(11) 0.48298(9) 0.0250(4) C6 0.34509(12) 0.29892(12) 0.48584(9) 0.0263(4) C7 0.33705(11) 0.31033(11) 0.54473(9) 0.0217(4) C8 0.27234(12) 0.34613(11) 0.54955(9) 0.0256(4) C9 0.26682(12) 0.34802(11) 0.60739(9) 0.0247(4) C10 0.32837(11) 0.32183(11) 0.66094(9) 0.0216(4) C11 0.39452(11) 0.28124(10) 0.60080(9) 0.0185(4) C12 0.45575(11) 0.23634(10) 0.59781(9) 0.0174(4) C13 0.46807(11) 0.38744(11) 0.34274(9) 0.0208(4) C14 0.47976(12) 0.42845(11) 0.39712(9) 0.0245(4) C15 0.53060(12) 0.40355(11) 0.45489(9) 0.0251(4) C16 0.57194(11) 0.33798(11) 0.45786(9) 0.0207(4) C17 0.62847(12) 0.30893(12) 0.51611(9) 0.0248(4) C18 0.66528(12) 0.24417(11) 0.51683(9) 0.0250(4) C19 0.64960(11) 0.20341(11) 0.45961(9) 0.0195(4) C20 0.68058(11) 0.13308(11) 0.45847(9) 0.0243(4) C21 0.66014(12) 0.09784(11) 0.40139(9) 0.0248(4) C22 0.61362(11) 0.13381(11) 0.34545(9) 0.0216(4) C23 0.59818(11) 0.23381(11) 0.40148(9) 0.0175(4) C24 0.55748(10) 0.30032(10) 0.40074(8) 0.0176(4) N1 0.29074(11) 0.50484(11) 0.34390(9) 0.0331(5) N2 0.31041(11) 0.49298(10) 0.39868(9) 0.0264(4) N3 0.33035(14) 0.48245(14) 0.45174(10) 0.0490(6) N4 0.1874(9) 0.5060(10) 0.1522(4) 0.0242(15) N5 0.1720(7) 0.5027(6) 0.0963(3) 0.0411(18) N6 0.1547(8) 0.5049(5) 0.0428(3) 0.078(3) N4A 0.198(2) 0.498(3) 0.1538(11) 0.0242(15) N5A 0.1579(18) 0.5146(14) 0.0996(8) 0.0411(18) N6A 0.1224(16) 0.5188(11) 0.0471(7) 0.078(3) N7 0.25223(10) 0.39263(10) 0.25344(8) 0.0285(4) N8 0.27801(10) 0.34318(9) 0.29072(8) 0.0248(4) N9 0.30154(12) 0.29406(11) 0.32421(9) 0.0379(5) N10 0.13185(10) 0.49894(9) 0.24658(9) 0.0259(4) N11 0.06421(11) 0.49546(9) 0.20965(9) 0.0264(4) N12 0.99935(12) 0.49155(12) 0.17672(11) 0.0422(5) N13 0.23983(10) 0.61753(10) 0.25399(8) 0.0243(4) N14 0.25550(10) 0.66682(9) 0.29196(8) 0.0232(4) N15 0.26897(12) 0.71548(11) 0.32597(9) 0.0406(5) N16 0.34800(10) 0.51221(9) 0.23990(9) 0.0264(4) N17 0.38484(10) 0.51609(9) 0.20704(9) 0.0259(4) 145 x/a y/b z/c U(eq) N18 0.42233(13) 0.52002(12) 0.17802(11) 0.0442(5) N19 0.58208(9) 0.16592(9) 0.77564(7) 0.0199(3) N20 0.62498(9) 0.14156(9) 0.82681(7) 0.0202(3) N21 0.66690(11) 0.11663(10) 0.87337(8) 0.0296(4) N22 0.44653(9) 0.33231(9) 0.77957(7) 0.0203(3) N23 0.44842(9) 0.35724(9) 0.82926(7) 0.0205(3) N24 0.44757(11) 0.38280(10) 0.87430(8) 0.0292(4) N25 0.50856(9) 0.20850(8) 0.65367(7) 0.0176(3) N26 0.39271(9) 0.29116(8) 0.65904(7) 0.0178(3) N27 0.40410(9) 0.33012(9) 0.22173(7) 0.0198(3) N28 0.35218(9) 0.34871(9) 0.17248(7) 0.0195(3) N29 0.30228(10) 0.36856(10) 0.12727(8) 0.0283(4) N30 0.43067(9) 0.19051(9) 0.27570(7) 0.0199(3) N31 0.43233(9) 0.16857(9) 0.32630(7) 0.0195(3) N32 0.43071(11) 0.14589(10) 0.37210(8) 0.0282(4) N33 0.50479(9) 0.32427(8) 0.34339(7) 0.0175(3) N34 0.58405(9) 0.20098(9) 0.34449(7) 0.0174(3) Nb1 0.24280(2) 0.50496(2) 0.24804(2) 0.01762(6) Nb2 0.5 0.24944(2) 0.75 0.01370(6) Nb3 0.5 0.26084(2) 0.25 0.01381(6) Table A1. 32 Bond lengths (Å) for [Nb(N 3 ) 4 (1,10-phen) 2 ][Nb(N 3 ) 6 ] C1-N25 1.332(2) C1-C2 1.393(3) C1-H1 0.95 C2-C3 1.372(3) C2-H2 0.95 C3-C4 1.403(3) C3-H3 0.95 C4-C12 1.411(3) C4-C5 1.428(3) C5-C6 1.350(3) C5-H5 0.95 C6-C7 1.432(3) C6-H6 0.95 C7-C8 1.407(3) C7-C11 1.411(3) C8-C9 1.371(3) C8-H8 0.95 C9-C10 1.391(3) C9-H9 0.95 C10-N26 1.333(2) C10-H10 0.95 C11-N26 1.362(2) C11-C12 1.422(3) C12-N25 1.368(2) C13-N33 1.333(2) C13-C14 1.396(3) C13-H13 0.95 C14-C15 1.367(3) C14-H14 0.95 C15-C16 1.405(3) C15-H15 0.95 C16-C24 1.408(3) C16-C17 1.436(3) C17-C18 1.358(3) C17-H17 0.95 C18-C19 1.435(3) C18-H18 0.95 C19-C20 1.407(3) C19-C23 1.412(3) C20-C21 1.371(3) C20-H20 0.95 C21-C22 1.396(3) 146 C21-H21 0.95 C22-N34 1.336(2) C22-H22 0.95 C23-N34 1.366(2) C23-C24 1.422(3) C24-N33 1.365(2) N1-N2 1.183(3) N1-Nb1 2.0224(19) N2-N3 1.141(3) N4-N5 1.201(8) N4-Nb1 2.028(9) N5-N6 1.140(6) N4A-N5A 1.210(15) N4A-Nb1 1.99(2) N5A-N6A 1.125(14) N7-N8 1.203(2) N7-Nb1 2.0500(19) N8-N9 1.147(2) N10-N11 1.207(2) N10-Nb1 2.0470(18) N11-N12 1.143(3) N13-N14 1.203(2) N13-Nb1 2.0543(18) N14-N15 1.141(2) N16-N17 1.202(2) N16-Nb1 2.0354(17) N17-N18 1.139(2) N19-N20 1.213(2) N19-Nb2 2.0650(16) N20-N21 1.139(2) N22-N23 1.215(2) N22-Nb2 2.0603(16) N23-N24 1.139(2) N25-Nb2 2.3966(15) N26-Nb2 2.3706(15) N27-N28 1.209(2) N27-Nb3 2.0643(16) N28-N29 1.143(2) N30-N31 1.217(2) N30-Nb3 2.0573(15) N31-N32 1.141(2) N33-Nb3 2.4048(15) N34-Nb3 2.3779(15) Nb2-N22 2.0604(16) Nb2-N19 2.0650(16) Nb2-N26 2.3707(15) Nb2-N25 2.3966(15) Nb3-N30 2.0573(16) Nb3-N27 2.0643(16) Nb3-N34 2.3780(15) Nb3-N33 2.4047(15) Table A1. 33 Bond angles (°) for [Nb(N 3 ) 4 (1,10-phen) 2 ][Nb(N 3 ) 6 ] N25-C1-C2 123.09(18) N25-C1-H1 118.5 C2-C1-H1 118.5 C3-C2-C1 120.23(19) C3-C2-H2 119.9 C1-C2-H2 119.9 C2-C3-C4 118.72(18) C2-C3-H3 120.6 C4-C3-H3 120.6 C3-C4-C12 117.50(18) C3-C4-C5 123.36(18) C12-C4-C5 119.13(18) C6-C5-C4 121.39(18) C6-C5-H5 119.3 C4-C5-H5 119.3 C5-C6-C7 120.61(18) C5-C6-H6 119.7 C7-C6-H6 119.7 C8-C7-C11 117.56(17) C8-C7-C6 123.37(18) C11-C7-C6 118.98(18) C9-C8-C7 118.59(18) C9-C8-H8 120.7 C7-C8-H8 120.7 C8-C9-C10 119.91(19) C8-C9-H9 120.0 C10-C9-H9 120.0 N26-C10-C9 123.21(18) N26-C10-H10 118.4 C9-C10-H10 118.4 N26-C11-C7 122.93(18) N26-C11-C12 116.89(16) C7-C11-C12 120.11(17) N25-C12-C4 123.29(18) 147 N25-C12-C11 117.24(16) C4-C12-C11 119.45(17) N33-C13-C14 123.51(18) N33-C13-H13 118.2 C14-C13-H13 118.2 C15-C14-C13 119.70(19) C15-C14-H14 120.2 C13-C14-H14 120.2 C14-C15-C16 118.89(18) C14-C15-H15 120.6 C16-C15-H15 120.6 C15-C16-C24 117.87(17) C15-C16-C17 122.81(18) C24-C16-C17 119.31(18) C18-C17-C16 120.63(18) C18-C17-H17 119.7 C16-C17-H17 119.7 C17-C18-C19 121.15(18) C17-C18-H18 119.4 C19-C18-H18 119.4 C20-C19-C23 117.87(17) C20-C19-C18 123.35(17) C23-C19-C18 118.73(18) C21-C20-C19 118.79(18) C21-C20-H20 120.6 C19-C20-H20 120.6 C20-C21-C22 119.86(19) C20-C21-H21 120.1 C22-C21-H21 120.1 N34-C22-C21 123.02(18) N34-C22-H22 118.5 C21-C22-H22 118.5 N34-C23-C19 122.49(18) N34-C23-C24 117.36(16) C19-C23-C24 120.14(17) N33-C24-C16 122.95(17) N33-C24-C23 117.25(16) C16-C24-C23 119.79(17) N2-N1-Nb1 167.41(17) N3-N2-N1 178.8(3) N5-N4-Nb1 164.5(13) N6-N5-N4 174.7(10) N5A-N4A-Nb1 158.(3) N6A-N5A-N4A 169.(3) N8-N7-Nb1 142.05(16) N9-N8-N7 177.2(2) N11-N10-Nb1 140.66(15) N12-N11-N10 177.2(2) N14-N13-Nb1 141.78(14) N15-N14-N13 177.2(2) N17-N16-Nb1 149.63(16) N18-N17-N16 177.3(2) N20-N19-Nb2 132.30(13) N21-N20-N19 176.7(2) N23-N22-Nb2 137.94(13) N24-N23-N22 176.9(2) C1-N25-C12 117.03(16) C1-N25-Nb2 124.67(12) C12-N25-Nb2 117.82(12) C10-N26-C11 117.11(16) C10-N26-Nb2 123.81(12) C11-N26-Nb2 119.03(12) N28-N27-Nb3 137.27(13) N29-N28-N27 177.1(2) N31-N30-Nb3 133.92(13) N32-N31-N30 176.6(2) C13-N33-C24 117.02(16) C13-N33-Nb3 124.36(12) C24-N33-Nb3 117.87(12) C22-N34-C23 117.47(16) C22-N34-Nb3 123.45(12) C23-N34-Nb3 118.86(12) N4A-Nb1-N1 176.1(11) N1-Nb1-N4 176.1(4) N4A-Nb1-N16 84.7(13) N1-Nb1-N16 94.21(8) N4-Nb1-N16 89.7(5) N4A-Nb1-N10 89.7(13) N1-Nb1-N10 91.49(8) N4-Nb1-N10 84.6(5) N16-Nb1-N10 174.26(7) N4A-Nb1-N7 89.6(13) N1-Nb1-N7 86.71(7) N4-Nb1-N7 94.0(5) N16-Nb1-N7 90.47(7) N10-Nb1-N7 90.51(7) N4A-Nb1-N13 97.1(13) N1-Nb1-N13 86.59(7) 148 N4-Nb1-N13 92.7(5) N16-Nb1-N13 89.62(7) N10-Nb1-N13 90.07(7) N7-Nb1-N13 173.29(7) N22-Nb2-N22 85.97(9) N22-Nb2-N19 103.64(6) N22-Nb2-N19 147.19(6) N22-Nb2-N19 147.19(6) N22-Nb2-N19 103.64(6) N19-Nb2-N19 85.28(9) N22-Nb2-N26 73.16(6) N22-Nb2-N26 79.72(6) N19-Nb2-N26 73.49(6) N19-Nb2-N26 139.03(6) N22-Nb2-N26 79.72(6) N22-Nb2-N26 73.16(6) N19-Nb2-N26 139.03(6) N19-Nb2-N26 73.49(6) N26-Nb2-N26 142.67(8) N22-Nb2-N25 138.28(6) N22-Nb2-N25 73.03(6) N19-Nb2-N25 79.49(6) N19-Nb2-N25 74.05(6) N26-Nb2-N25 67.94(5) N26-Nb2-N25 125.06(5) N22-Nb2-N25 73.03(6) N22-Nb2-N25 138.28(6) N19-Nb2-N25 74.05(6) N19-Nb2-N25 79.49(6) N26-Nb2-N25 125.06(5) N26-Nb2-N25 67.94(5) N25-Nb2-N25 143.79(7) N30-Nb3-N30 103.12(9) N30-Nb3-N27 147.93(6) N30-Nb3-N27 84.93(6) N30-Nb3-N27 84.93(6) N30-Nb3-N27 147.93(6) N27-Nb3-N27 104.76(9) N30-Nb3-N34 73.32(6) N30-Nb3-N34 73.61(6) N27-Nb3-N34 79.57(6) N27-Nb3-N34 137.74(6) N30-Nb3-N34 73.61(6) N30-Nb3-N34 73.32(6) N27-Nb3-N34 137.74(6) N27-Nb3-N34 79.57(6) N34-Nb3-N34 125.51(8) N30-Nb3-N33 138.23(6) N30-Nb3-N33 81.41(6) N27-Nb3-N33 73.27(6) N27-Nb3-N33 72.67(6) N34-Nb3-N33 144.43(5) N34-Nb3-N33 68.03(5) N30-Nb3-N33 81.42(6) N30-Nb3-N33 138.23(6) N27-Nb3-N33 72.67(6) N27-Nb3-N33 73.27(6) N34-Nb3-N33 68.03(5) N34-Nb3-N33 144.43(5) N33-Nb3-N33 122.66(7) Table A1. 34 Anisotropic atomic displacement parameters (Å 2 ) for [Nb(N 3 ) 4 (1,10-phen) 2 ][Nb(N 3 ) 6 ] U 11 U 22 U 33 U 23 U 13 U 12 C1 0.0233(10) 0.0207(10) 0.0246(10) 0.0045(8) 0.0091(8) 0.0052(8) C2 0.0299(11) 0.0263(11) 0.0319(11) 0.0030(9) 0.0182(9) 0.0088(9) C3 0.0309(11) 0.0284(11) 0.0240(10) -0.0033(8) 0.0155(9) 0.0003(9) C4 0.0216(10) 0.0210(10) 0.0202(9) -0.0025(8) 0.0081(8) -0.0027(8) C5 0.0263(11) 0.0314(12) 0.0158(9) -0.0010(8) 0.0068(8) -0.0024(8) C6 0.0270(11) 0.0290(11) 0.0185(9) 0.0034(8) 0.0041(8) 0.0007(9) C7 0.0211(10) 0.0212(10) 0.0190(9) 0.0013(8) 0.0039(8) 0.0008(8) C8 0.0221(10) 0.0236(10) 0.0245(10) 0.0015(8) 0.0020(8) 0.0042(8) C9 0.0199(10) 0.0231(10) 0.0278(10) -0.0034(8) 0.0060(8) 0.0039(8) C10 0.0217(10) 0.0213(10) 0.0218(9) -0.0023(8) 0.0087(8) 0.0006(8) 149 U 11 U 22 U 33 U 23 U 13 U 12 C11 0.0200(9) 0.0166(9) 0.0180(9) -0.0008(7) 0.0066(8) -0.0027(7) C12 0.0174(9) 0.0154(9) 0.0178(9) -0.0004(7) 0.0054(8) -0.0038(7) C13 0.0188(9) 0.0210(10) 0.0211(9) 0.0013(8) 0.0062(8) 0.0030(8) C14 0.0239(10) 0.0215(10) 0.0287(10) -0.0028(8) 0.0111(9) 0.0030(8) C15 0.0255(11) 0.0271(11) 0.0240(10) -0.0063(8) 0.0114(8) -0.0019(8) C16 0.0186(9) 0.0237(10) 0.0205(9) -0.0009(8) 0.0084(8) -0.0021(8) C17 0.0264(11) 0.0301(11) 0.0169(9) -0.0017(8) 0.0074(8) -0.0024(9) C18 0.0229(11) 0.0324(12) 0.0165(9) 0.0039(8) 0.0041(8) -0.0005(8) C19 0.0159(9) 0.0239(10) 0.0187(9) 0.0050(8) 0.0068(7) -0.0013(7) C20 0.0196(10) 0.0262(11) 0.0240(10) 0.0075(8) 0.0054(8) 0.0034(8) C21 0.0245(11) 0.0209(10) 0.0286(10) 0.0049(8) 0.0100(9) 0.0059(8) C22 0.0226(10) 0.0207(10) 0.0222(9) 0.0002(8) 0.0094(8) 0.0021(8) C23 0.0155(9) 0.0199(9) 0.0176(9) 0.0023(7) 0.0071(7) -0.0014(7) C24 0.0148(9) 0.0201(9) 0.0176(9) 0.0011(7) 0.0060(7) -0.0022(7) N1 0.0256(10) 0.0474(13) 0.0238(9) 0.0041(8) 0.0072(8) -0.0017(8) N2 0.0222(9) 0.0277(10) 0.0271(10) -0.0015(7) 0.0075(8) -0.0039(7) N3 0.0469(14) 0.0666(16) 0.0255(11) 0.0031(10) 0.0058(10) - 0.0069(12) N4 0.030(4) 0.018(4) 0.0227(10) 0.0001(12) 0.0074(16) 0.005(2) N5 0.079(5) 0.017(3) 0.0283(14) - 0.0073(14) 0.0223(17) -0.011(2) N6 0.162(8) 0.050(3) 0.0263(15) - 0.0155(16) 0.041(3) -0.035(4) N4A 0.030(4) 0.018(4) 0.0227(10) 0.0001(12) 0.0074(16) 0.005(2) N5A 0.079(5) 0.017(3) 0.0283(14) - 0.0073(14) 0.0223(17) -0.011(2) N6A 0.162(8) 0.050(3) 0.0263(15) - 0.0155(16) 0.041(3) -0.035(4) N7 0.0266(10) 0.0214(10) 0.0394(11) 0.0071(7) 0.0149(8) 0.0035(7) N8 0.0249(9) 0.0228(9) 0.0288(9) -0.0014(8) 0.0128(7) -0.0018(7) N9 0.0450(12) 0.0319(11) 0.0350(11) 0.0095(9) 0.0139(9) 0.0059(9) N10 0.0203(9) 0.0252(10) 0.0332(10) -0.0005(7) 0.0116(8) -0.0020(7) N11 0.0275(10) 0.0208(9) 0.0348(10) 0.0006(7) 0.0163(8) 0.0017(7) N12 0.0233(11) 0.0458(13) 0.0497(13) 0.0004(10) 0.0061(10) 0.0024(9) N13 0.0243(9) 0.0195(9) 0.0294(9) -0.0032(7) 0.0108(7) -0.0009(7) N14 0.0233(9) 0.0210(9) 0.0247(8) 0.0022(7) 0.0087(7) 0.0010(7) N15 0.0500(13) 0.0322(11) 0.0321(10) -0.0093(9) 0.0082(10) 0.0009(10) N16 0.0212(9) 0.0239(9) 0.0379(10) 0.0009(8) 0.0158(8) 0.0000(7) N17 0.0227(9) 0.0197(9) 0.0360(10) -0.0006(7) 0.0123(8) 0.0004(7) N18 0.0518(14) 0.0389(12) 0.0593(14) - 0.0044(10) 0.0406(12) - 0.0018(10) N19 0.0208(8) 0.0194(8) 0.0179(8) 0.0009(6) 0.0057(7) 0.0032(6) N20 0.0182(8) 0.0180(8) 0.0230(8) -0.0007(7) 0.0068(7) 0.0017(6) N21 0.0278(10) 0.0298(10) 0.0230(9) 0.0025(8) 0.0012(8) 0.0058(8) 150 U 11 U 22 U 33 U 23 U 13 U 12 N22 0.0224(8) 0.0193(8) 0.0178(8) -0.0010(6) 0.0066(7) 0.0024(7) N23 0.0210(8) 0.0178(8) 0.0218(8) 0.0019(7) 0.0076(7) 0.0021(6) N24 0.0410(11) 0.0251(10) 0.0231(9) -0.0017(7) 0.0144(8) 0.0060(8) N25 0.0175(8) 0.0168(8) 0.0190(8) -0.0004(6) 0.0079(6) -0.0004(6) N26 0.0189(8) 0.0146(8) 0.0192(8) -0.0007(6) 0.0067(6) 0.0007(6) N27 0.0188(8) 0.0226(8) 0.0157(7) -0.0002(6) 0.0045(6) 0.0040(6) N28 0.0199(8) 0.0192(8) 0.0197(8) -0.0034(6) 0.0081(7) 0.0007(6) N29 0.0251(9) 0.0328(10) 0.0200(8) -0.0001(7) 0.0013(7) 0.0064(8) N30 0.0197(8) 0.0226(9) 0.0174(8) -0.0001(6) 0.0072(7) -0.0040(7) N31 0.0176(8) 0.0195(8) 0.0208(8) -0.0033(7) 0.0070(7) -0.0032(6) N32 0.0330(10) 0.0327(10) 0.0210(8) 0.0012(7) 0.0128(8) -0.0057(8) N33 0.0169(8) 0.0178(8) 0.0175(7) -0.0005(6) 0.0063(6) 0.0004(6) N34 0.0161(8) 0.0185(8) 0.0170(7) 0.0005(6) 0.0058(6) -0.0003(6) Nb1 0.01706(10) 0.01586(10) 0.02031(10) 0.00054(6) 0.00776(8) - 0.00025(6) Nb2 0.01440(12) 0.01295(12) 0.01321(12) 0 0.00484(9) 0 Nb3 0.01281(12) 0.01545(12) 0.01226(11) 0 0.00397(9) 0 Table A1. 35 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [Nb(N 3 ) 4 (1,10- phen) 2 ][Nb(N 3 ) 6 ] x/a y/b z/c U(eq) H1 0.6051 0.1491 0.6892 0.028 H2 0.6151 0.1196 0.5944 0.033 H3 0.5208 0.1606 0.4984 0.032 H5 0.4062 0.2477 0.4433 0.03 H6 0.3095 0.3220 0.4484 0.032 H8 0.2333 0.3685 0.5135 0.031 H9 0.2210 0.3672 0.6109 0.03 H10 0.3244 0.3260 0.7008 0.026 H13 0.4320 0.4055 0.3031 0.025 H14 0.4525 0.4735 0.3940 0.029 H15 0.5379 0.4301 0.4924 0.03 H17 0.6402 0.3353 0.5545 0.03 H18 0.7021 0.2255 0.5559 0.03 H20 0.7150 0.1104 0.4966 0.029 H21 0.6776 0.0490 0.3999 0.03 H22 0.6025 0.1094 0.3063 0.026 151 Figure A1. 11 Asymmetric unit in the crystal structure of (Nb(N 3 ) 5 ) 2 •(3,3’-bipy) Figure A1. 12 Crystal structure of (Nb(N 3 ) 5 ) 2 •(3,3’-bipy) 152 Figure A1. 13 Packing diagram of (Nb(N 3 ) 5 ) 2 •(3,3’-bipy). View normal to (001) Table A1. 36 Sample and crystal data for (Nb(N 3 ) 5 ) 2 •(3,3’-bipy) Identification code NbN13_33Bipy Chemical formula C 10 H 8 N 32 Nb 2 Formula weight 762.30 Temperature 100(2) K Wavelength 0.71073 Å Crystal size 0.262 x 0.323 x 0.345 mm Crystal habit clear orange prism Crystal system monoclinic Space group P 1 21/c 1 Unit cell dimensions a = 7.4909(4) Å α = 90° b = 11.1469(7) Å β = 99.1670(10)° c = 15.5256(9) Å γ = 90° Volume 1279.84(13) Å 3 Z 2 Density (calculated) 1.978 g/cm 3 Absorption coefficient 0.970 mm -1 F(000) 748 153 Table A1. 37 Data collection and structure refinement for (Nb(N 3 ) 5 ) 2 •(3,3’-bipy) Diffractometer Bruker APEX DUO Radiation source fine-focus tube, MoKα Theta range for data collection 2.26 to 30.58° Absorption correction multi-scan Max. and min. transmission 0.7850 and 0.7310 Structure solution technique direct methods Structure solution program SHELXTL XS 2013/1 (Sheldrick, 2013) Refinement method Full-matrix least-squares on F 2 Refinement program SHELXTL XL 2013/3 (Bruker AXS, 2013) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 3888 / 0 / 199 Goodness-of-fit on F 2 1.300 Final R indices 3667 data; I>2σ(I) R1 = 0.0520, wR2 = 0.1195 all data R1 = 0.0556, wR2 = 0.1204 Weighting scheme w=1/[σ 2 (F o 2 )+10.0144P] where P=(F o 2 +2F c 2 )/3 Largest diff. peak and hole 0.978 and -1.389 eÅ -3 R.M.S. deviation from mean 0.132 eÅ -3 Table A1. 38 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for (Nb(N 3 ) 5 ) 2 •(3,3’-bipy) x/a y/b z/c U(eq) C1 0.3388(5) 0.4215(4) 0.5636(2) 0.0126(7) C2 0.4702(5) 0.4381(4) 0.5099(3) 0.0130(7) C3 0.5393(5) 0.3350(4) 0.4774(3) 0.0175(8) C4 0.4768(5) 0.2232(4) 0.4974(3) 0.0174(8) C5 0.3429(5) 0.2169(4) 0.5493(3) 0.0155(7) N1 0.8080(5) 0.2767(4) 0.7083(3) 0.0220(8) N2 0.6871(5) 0.2805(3) 0.7492(2) 0.0179(7) N3 0.5703(6) 0.2839(5) 0.7878(3) 0.0343(10) N4 0.9334(5) 0.4487(3) 0.5848(2) 0.0157(6) N5 0.9672(5) 0.5529(4) 0.5997(2) 0.0177(7) N6 0.9959(6) 0.6528(4) 0.6108(3) 0.0264(9) N7 0.1525(5) 0.4075(4) 0.7419(3) 0.0246(8) N8 0.2407(6) 0.4532(4) 0.8049(3) 0.0243(8) N9 0.3224(8) 0.4965(5) 0.8645(4) 0.0509(16) N10 0.1584(5) 0.1559(4) 0.7117(3) 0.0223(8) N11 0.2796(5) 0.0979(3) 0.7499(2) 0.0207(7) N12 0.3898(8) 0.0403(4) 0.7867(3) 0.0433(13) N13 0.9259(5) 0.1946(4) 0.5496(3) 0.0224(8) N14 0.9001(5) 0.1343(3) 0.4850(3) 0.0200(7) N15 0.8697(7) 0.0749(4) 0.4245(3) 0.0322(10) 154 x/a y/b z/c U(eq) N16 0.2731(4) 0.3149(3) 0.5818(2) 0.0126(6) Nb1 0.02423(5) 0.29570(4) 0.65257(2) 0.01528(10) Table A1. 39 Bond lengths (Å) for (Nb(N 3 ) 5 ) 2 •(3,3’-bipy) C1-N16 1.333(5) C1-C2 1.399(5) C1-H1 0.95 C2-C3 1.388(6) C2-C2 1.498(8) C3-C4 1.384(6) C3-H3 0.95 C4-C5 1.385(5) C4-H4 0.95 C5-N16 1.344(5) C5-H5 0.95 N1-N2 1.186(5) N1-Nb1 1.966(4) N2-N3 1.137(5) N4-N5 1.204(5) N4-Nb1 2.061(4) N5-N6 1.142(6) N7-N8 1.202(6) N7-Nb1 1.994(4) N8-N9 1.133(6) N10-N11 1.192(5) N10-Nb1 1.997(4) N11-N12 1.127(6) N13-N14 1.197(6) N13-Nb1 1.999(4) N14-N15 1.143(6) N16-Nb1 2.320(3) Table A1. 40 Bond angles (°) for (Nb(N 3 ) 5 ) 2 •(3,3’-bipy) N16-C1-C2 124.2(4) N16-C1-H1 117.9 C2-C1-H1 117.9 C3-C2-C1 116.5(4) C3-C2-C2 123.1(4) C1-C2-C2 120.4(5) C4-C3-C2 120.3(4) C4-C3-H3 119.9 C2-C3-H3 119.9 C3-C4-C5 118.6(4) C3-C4-H4 120.7 C5-C4-H4 120.7 N16-C5-C4 122.6(4) N16-C5-H5 118.7 C4-C5-H5 118.7 N2-N1-Nb1 169.8(4) N3-N2-N1 179.4(5) N5-N4-Nb1 131.2(3) N6-N5-N4 177.5(5) N8-N7-Nb1 166.4(4) N9-N8-N7 179.4(6) N11-N10-Nb1 159.9(4) N12-N11-N10 177.6(5) N14-N13-Nb1 167.6(3) N15-N14-N13 177.4(5) C1-N16-C5 117.8(3) C1-N16-Nb1 122.3(3) C5-N16-Nb1 119.5(3) N1-Nb1-N7 95.77(17) N1-Nb1-N10 95.90(16) N7-Nb1-N10 90.95(18) N1-Nb1-N13 93.83(16) N7-Nb1-N13 169.87(16) N10-Nb1-N13 91.27(18) N1-Nb1-N4 94.94(15) N7-Nb1-N4 85.48(16) N10-Nb1-N4 168.88(15) N13-Nb1-N4 90.48(16) N1-Nb1-N16 177.75(15) N7-Nb1-N16 86.41(14) N10-Nb1-N16 84.62(14) N13-Nb1-N16 83.97(13) N4-Nb1-N16 84.64(13) 155 Table A1. 41 Anisotropic atomic displacement parameters (Å 2 ) for (Nb(N 3 ) 5 ) 2 •(3,3’-bipy) U 11 U 22 U 33 U 23 U 13 U 12 C1 0.0098(15) 0.0140(17) 0.0141(16) -0.0017(13) 0.0022(13) -0.0016(13) C2 0.0084(15) 0.0166(18) 0.0139(16) 0.0026(14) 0.0013(12) -0.0020(14) C3 0.0136(17) 0.0208(19) 0.0194(19) 0.0023(16) 0.0062(14) 0.0018(15) C4 0.0152(17) 0.0136(19) 0.025(2) 0.0009(15) 0.0077(15) 0.0017(14) C5 0.0137(16) 0.0130(18) 0.0202(18) 0.0055(15) 0.0036(14) -0.0006(14) N1 0.0216(17) 0.023(2) 0.0243(18) 0.0064(15) 0.0114(14) 0.0041(15) N2 0.0181(16) 0.0155(17) 0.0207(17) 0.0030(13) 0.0050(13) -0.0032(13) N3 0.026(2) 0.041(3) 0.041(3) 0.003(2) 0.0202(19) 0.000(2) N4 0.0161(15) 0.0148(16) 0.0163(15) 0.0019(13) 0.0029(12) -0.0001(13) N5 0.0172(16) 0.0243(19) 0.0126(15) 0.0041(14) 0.0052(12) -0.0007(14) N6 0.038(2) 0.021(2) 0.0205(18) 0.0021(15) 0.0080(16) -0.0045(17) N7 0.0237(18) 0.033(2) 0.0165(17) -0.0033(16) 0.0008(14) 0.0048(17) N8 0.030(2) 0.0157(18) 0.0256(19) -0.0023(15) -0.0021(16) 0.0081(15) N9 0.053(3) 0.041(3) 0.050(3) -0.025(3) -0.017(3) 0.014(3) N10 0.0212(17) 0.026(2) 0.0205(17) 0.0092(15) 0.0060(14) 0.0051(15) N11 0.0290(19) 0.0125(16) 0.0195(17) 0.0019(13) 0.0003(14) -0.0024(14) N12 0.054(3) 0.024(2) 0.043(3) 0.001(2) -0.021(2) 0.010(2) N13 0.0154(16) 0.030(2) 0.0219(18) -0.0010(16) 0.0033(13) -0.0034(15) N14 0.0173(16) 0.0184(18) 0.0236(18) 0.0061(14) 0.0008(13) 0.0016(14) N15 0.045(3) 0.022(2) 0.026(2) -0.0037(17) -0.0025(19) 0.0023(19) N16 0.0116(14) 0.0108(15) 0.0153(15) 0.0011(12) 0.0016(11) -0.0019(11) Nb1 0.01251(16) 0.02083(18) 0.01322(16) 0.00418(14) 0.00423(11) 0.00060(14) Table A1. 42 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for (Nb(N 3 ) 5 ) 2 •(3,3’- bipy) x/a y/b z/c U(eq) H1 0.2934 0.4907 0.5886 0.015 H3 0.6298 0.3413 0.4411 0.021 H4 0.5248 0.1523 0.4761 0.021 H5 0.2986 0.1403 0.5624 0.019 156 Figure A1. 14 Asymmetric unit in the crystal structure of (Ta(N 3 ) 5 ) 2 •(3,3’-bipy) Figure A1. 15 Crystal structure of (Ta(N 3 ) 5 ) 2 •(3,3’-bipy) 157 Figure A1. 16 Packing diagram of (Ta(N 3 ) 5 ) 2 •(3,3’-bipy). View normal to (001) Table A1. 43 Sample and crystal data for (Ta(N 3 ) 5 ) 2 •(3,3’-bipy) Identification code TaN15_33Bipy_A Chemical formula C 10 H 8 N 32 Ta 2 Formula weight 938.38 Temperature 100(2) K Wavelength 0.71073 Å Crystal size 0.263 x 0.336 x 0.422 mm Crystal habit yellow prism Crystal system monoclinic Space group P 1 21/c 1 Unit cell dimensions a = 7.5153(9) Å α = 90° b = 11.1569(14) Å β = 99.374(2)° c = 15.5558(18) Å γ = 90° Volume 1286.9(3) Å 3 Z 2 Density (calculated) 2.422 g/cm 3 Absorption coefficient 8.571 mm -1 F(000) 876 Table A1. 44 Data collection and structure refinement for (Ta(N 3 ) 5 ) 2 •(3,3’-bipy) Diffractometer Bruker APEX DUO 158 Radiation source fine-focus tube, MoKα Theta range for data collection 2.26 to 30.52° Absorption correction multi-scan Max. and min. transmission 0.2110 and 0.1230 Structure solution technique direct methods Structure solution program SHELXTL XS 2013/1 (Sheldrick, 2013) Refinement method Full-matrix least-squares on F 2 Refinement program SHELXTL XL 2013/3 (Bruker AXS, 2013) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 3905 / 0 / 199 Goodness-of-fit on F 2 1.345 Δ/σ max 0.001 Final R indices 3691 data; I>2σ(I) R1 = 0.0540, wR2 = 0.1341 all data R1 = 0.0587, wR2 = 0.1363 Weighting scheme w=1/[σ 2 (F o 2 )+47.5704P] where P=(F o 2 +2F c 2 )/3 Largest diff. peak and hole 2.630 and -3.111 eÅ -3 R.M.S. deviation from mean 0.326 eÅ -3 Table A1. 45 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for (Ta(N 3 ) 5 ) 2 •(3,3’-bipy) x/a y/b z/c U(eq) C1 0.3436(12) 0.7832(8) 0.0485(6) 0.0155(16) C2 0.4784(13) 0.7763(8) 0.9976(7) 0.0192(18) C3 0.5393(13) 0.6643(9) 0.9766(7) 0.0179(17) C4 0.4713(11) 0.5618(9) 0.0102(6) 0.0150(17) C5 0.3394(11) 0.5782(8) 0.0631(6) 0.0137(16) N1 0.8166(11) 0.7227(8) 0.2091(6) 0.0224(18) N2 0.6934(11) 0.7240(8) 0.2488(5) 0.0182(16) N3 0.5760(14) 0.7243(10) 0.2857(8) 0.034(2) N4 0.9366(11) 0.5526(7) 0.0847(5) 0.0158(15) N5 0.9655(11) 0.4478(8) 0.0993(5) 0.0161(15) N6 0.9913(14) 0.3477(9) 0.1106(6) 0.0265(19) N7 0.1604(13) 0.5901(9) 0.2406(6) 0.0260(19) N8 0.2478(13) 0.5473(8) 0.3032(6) 0.0259(19) N9 0.3303(19) 0.5036(12) 0.3638(8) 0.050(3) N10 0.1647(12) 0.8444(9) 0.2112(6) 0.0228(18) N11 0.2799(12) 0.9049(8) 0.2508(6) 0.0195(16) N12 0.3856(16) 0.9656(10) 0.2874(8) 0.041(3) N13 0.9329(14) 0.8084(10) 0.0525(7) 0.032(2) N14 0.9000(11) 0.8654(8) 0.9860(6) 0.0209(17) N15 0.8674(15) 0.9245(9) 0.9250(7) 0.032(2) N16 0.2742(10) 0.6858(7) 0.0815(5) 0.0142(14) 159 x/a y/b z/c U(eq) Ta1 0.03017(5) 0.70420(4) 0.15272(2) 0.01504(11) Table A1. 46 Bond lengths (Å) for (Ta(N 3 ) 5 ) 2 •(3,3’-bipy) C1-N16 1.343(12) C1-C2 1.386(13) C1-H1 0.95 C2-C3 1.388(13) C2-H2 0.95 C3-C4 1.390(13) C3-H3 0.95 C4-C5 1.399(12) C4-C4 1.494(19) C5-N16 1.345(12) C5-H5 0.95 N1-N2 1.193(11) N1-Ta1 1.962(8) N2-N3 1.128(12) N4-N5 1.204(12) N4-Ta1 2.057(8) N5-N6 1.142(13) N7-N8 1.182(13) N7-Ta1 2.003(10) N8-N9 1.150(14) N10-N11 1.188(12) N10-Ta1 1.999(9) N11-N12 1.126(13) N13-N14 1.204(13) N13-Ta1 1.987(10) N14-N15 1.148(13) N16-Ta1 2.302(8) Table A1. 47 Bond angles (°) for (Ta(N 3 ) 5 ) 2 •(3,3’-bipy) N16-C1-C2 122.6(9) N16-C1-H1 118.7 C2-C1-H1 118.7 C1-C2-C3 119.0(9) C1-C2-H2 120.5 C3-C2-H2 120.5 C2-C3-C4 119.8(8) C2-C3-H3 120.1 C4-C3-H3 120.1 C3-C4-C5 116.9(9) C3-C4-C4 122.9(10) C5-C4-C4 120.2(11) N16-C5-C4 124.0(9) N16-C5-H5 118.0 C4-C5-H5 118.0 N2-N1-Ta1 173.1(9) N3-N2-N1 179.2(12) N5-N4-Ta1 131.7(7) N6-N5-N4 178.0(10) N8-N7-Ta1 164.3(9) N9-N8-N7 178.5(12) N11-N10-Ta1 162.3(9) N12-N11-N10 177.7(12) N14-N13-Ta1 168.6(10) N15-N14-N13 176.7(12) C1-N16-C5 117.7(8) C1-N16-Ta1 120.1(6) C5-N16-Ta1 121.9(6) N1-Ta1-N13 93.8(4) N1-Ta1-N10 96.0(4) N13-Ta1-N10 89.6(4) N1-Ta1-N7 96.1(4) N13-Ta1-N7 169.8(4) N10-Ta1-N7 91.8(4) N1-Ta1-N4 94.6(3) N13-Ta1-N4 91.5(4) N10-Ta1-N4 169.3(3) N7-Ta1-N4 85.2(4) N1-Ta1-N16 177.7(4) N13-Ta1-N16 83.9(4) N10-Ta1-N16 84.6(3) N7-Ta1-N16 86.2(3) N4-Ta1-N16 84.9(3) 160 Table A1. 48 Anisotropic atomic displacement parameters (Å 2 ) for (Ta(N 3 ) 5 ) 2 •(3,3’-bipy) U 11 U 22 U 33 U 23 U 13 U 12 C1 0.013(4) 0.012(4) 0.023(4) -0.002(3) 0.005(3) 0.000(3) C2 0.019(4) 0.011(4) 0.030(5) -0.003(4) 0.009(4) -0.003(3) C3 0.014(4) 0.018(4) 0.024(4) -0.001(4) 0.008(3) -0.001(3) C4 0.006(3) 0.019(4) 0.019(4) -0.003(3) 0.002(3) 0.002(3) C5 0.010(3) 0.016(4) 0.015(4) 0.000(3) 0.001(3) 0.001(3) N1 0.016(4) 0.024(4) 0.031(5) -0.009(4) 0.015(3) -0.004(3) N2 0.017(4) 0.018(4) 0.021(4) -0.003(3) 0.004(3) 0.003(3) N3 0.024(5) 0.036(6) 0.046(6) -0.002(5) 0.018(4) 0.006(4) N4 0.019(4) 0.012(3) 0.016(3) 0.001(3) 0.003(3) -0.001(3) N5 0.014(3) 0.022(4) 0.013(3) -0.002(3) 0.005(3) 0.000(3) N6 0.036(5) 0.019(4) 0.024(4) -0.006(3) 0.004(4) 0.000(4) N7 0.025(4) 0.034(5) 0.018(4) 0.000(4) -0.001(3) -0.005(4) N8 0.031(5) 0.017(4) 0.027(5) 0.000(3) 0.001(4) -0.010(4) N9 0.064(8) 0.041(7) 0.037(6) 0.017(5) -0.018(6) -0.008(6) N10 0.024(4) 0.025(4) 0.020(4) -0.004(3) 0.007(3) -0.006(4) N11 0.023(4) 0.014(4) 0.020(4) 0.000(3) 0.001(3) 0.001(3) N12 0.043(6) 0.025(5) 0.045(6) -0.003(5) -0.019(5) -0.007(5) N13 0.031(5) 0.032(5) 0.029(5) 0.005(4) -0.007(4) -0.005(4) N14 0.015(4) 0.017(4) 0.029(4) -0.007(3) 0.000(3) 0.001(3) N15 0.040(6) 0.021(5) 0.031(5) 0.005(4) -0.001(4) -0.003(4) N16 0.011(3) 0.011(3) 0.021(4) -0.002(3) 0.001(3) 0.001(3) Ta1 0.01274(16) 0.01927(18) 0.01389(17) - 0.00485(14) 0.00449(11) - 0.00139(15) Table A1. 49 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å2) for (Ta(N 3 ) 5 ) 2 •(3,3’- bipy) x/a y/b z/c U(eq) H1 0.2985 0.8599 0.0606 0.019 H2 0.5283 0.8471 -0.0226 0.023 H3 0.6273 0.6578 -0.0606 0.021 H5 0.2930 0.5091 0.0875 0.016 161 Figure A1. 17 Asymmetric unit in the crystal structure of (Nb(N 3 ) 5 ) 2 •(4,4’-bipy) Figure A1. 18 Packing diagram of (Nb(N 3 ) 5 ) 2 •(4,4’-bipy). View normal to (001) Table A1. 50 Sample and crystal data for (Nb(N 3 ) 5 ) 2 •(4,4’-bipy) Identification code NbN15_44Bipy_2 162 Chemical formula C 10 H 8 N 32 Nb 2 Formula weight 762.30 Temperature 100(2) K Wavelength 0.71073 Å Crystal size 0.162 x 0.307 x 0.327 mm Crystal habit clear orange prism Crystal system monoclinic Space group P 1 21/c 1 Unit cell dimensions a = 11.9711(6) Å α = 90° b = 17.9726(8) Å β = 95.7050(10)° c = 12.2996(6) Å γ = 90° Volume 2633.2(2) Å 3 Z 4 Density (calculated) 1.923 g/cm 3 Absorption coefficient 0.943 mm -1 F(000) 1496 Table A1. 51 Data collection and structure refinement for (Nb(N 3 ) 5 ) 2 •(4,4’-bipy) Diffractometer Bruker APEX II CCD Radiation source fine-focus tube, MoKα Theta range for data collection 1.71 to 26.37° Index ranges -14<=h<=14, -22<=k<=22, -15<=l<=15 Reflections collected 50369 Independent reflections 5375 [R(int) = 0.0417] Coverage of independent reflections 100.0% Absorption correction multi-scan Max. and min. transmission 0.8620 and 0.7480 Structure solution technique direct methods Structure solution program SHELXS-97 (Sheldrick, 2008) Refinement method Full-matrix least-squares on F 2 Refinement program SHELXL 2012-9 (Sheldrick, 2013) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 5375 / 0 / 397 Goodness-of-fit on F 2 1.062 Δ/σ max 0.003 Final R indices 4834 data; I>2σ(I) R1 = 0.0196, wR2 = 0.0454 all data R1 = 0.0242, wR2 = 0.0470 Weighting scheme w=1/[σ 2 (F o 2 )+(0.0190P) 2 +1.4971P] where P=(F o 2 +2F c 2 )/3 Largest diff. peak and hole 0.319 and -0.373 eÅ -3 R.M.S. deviation from mean 0.056 eÅ -3 163 Table A1. 52 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for (Nb(N 3 ) 5 ) 2 •(4,4’-bipy) x/a y/b z/c U(eq) C1 0.36120(16) 0.59833(12) 0.79966(16) 0.0242(4) C2 0.28505(16) 0.61599(12) 0.87244(15) 0.0237(4) C3 0.31894(15) 0.61896(10) 0.98372(14) 0.0152(4) C4 0.43210(16) 0.60573(11) 0.01512(15) 0.0214(4) C5 0.50364(16) 0.58950(11) 0.93728(15) 0.0213(4) C6 0.05012(16) 0.63968(11) 0.11485(15) 0.0213(4) C7 0.12363(16) 0.62313(11) 0.03915(15) 0.0199(4) C8 0.23796(15) 0.63484(10) 0.06431(14) 0.0152(4) C9 0.27180(16) 0.66166(11) 0.16899(15) 0.0212(4) C10 0.19322(16) 0.67685(11) 0.24045(15) 0.0204(4) N1 0.69998(14) 0.52600(10) 0.59884(14) 0.0257(4) N2 0.77522(14) 0.49889(9) 0.55449(14) 0.0236(4) N3 0.84593(18) 0.47478(11) 0.51064(19) 0.0455(5) N4 0.64304(14) 0.66245(9) 0.72894(14) 0.0233(4) N5 0.59336(13) 0.72156(9) 0.72835(13) 0.0200(3) N6 0.55077(15) 0.77801(10) 0.72907(14) 0.0279(4) N7 0.47719(14) 0.59411(10) 0.58543(13) 0.0252(4) N8 0.43550(13) 0.64244(10) 0.52614(13) 0.0233(4) N9 0.39316(16) 0.68575(12) 0.46813(16) 0.0376(5) N10 0.50941(13) 0.45798(9) 0.69746(13) 0.0217(4) N11 0.41669(14) 0.43521(9) 0.66479(12) 0.0214(4) N12 0.33162(16) 0.41203(12) 0.63355(15) 0.0379(5) N13 0.70385(13) 0.52714(9) 0.83043(13) 0.0194(3) N14 0.78870(13) 0.55032(9) 0.88069(13) 0.0198(3) N15 0.86819(17) 0.56998(13) 0.92990(16) 0.0419(5) N16 0.83817(14) 0.72597(10) 0.43428(13) 0.0237(4) N17 0.74574(14) 0.73579(9) 0.46304(12) 0.0226(4) N18 0.65975(16) 0.74536(13) 0.49207(15) 0.0388(5) N19 0.83067(13) 0.69240(9) 0.20142(13) 0.0205(3) N20 0.77186(13) 0.64132(9) 0.16408(12) 0.0200(3) N21 0.71523(15) 0.59513(11) 0.12594(14) 0.0299(4) N22 0.97658(14) 0.80181(9) 0.28066(13) 0.0218(4) N23 0.94123(13) 0.83809(9) 0.20132(13) 0.0210(3) N24 0.91001(16) 0.87429(11) 0.12909(15) 0.0335(4) N25 0.07951(14) 0.70145(9) 0.45186(13) 0.0218(4) N26 0.13138(13) 0.68357(9) 0.53602(13) 0.0189(3) N27 0.18147(16) 0.66829(11) 0.61623(15) 0.0332(4) N28 0.93568(14) 0.58778(9) 0.34350(13) 0.0222(4) N29 0.93498(14) 0.53276(9) 0.28731(14) 0.0246(4) N30 0.93568(19) 0.47981(11) 0.23678(18) 0.0457(5) N31 0.47050(12) 0.58487(8) 0.82986(12) 0.0162(3) 164 x/a y/b z/c U(eq) N32 0.08188(12) 0.66715(8) 0.21497(12) 0.0155(3) Nb1 0.59380(2) 0.55477(2) 0.70147(2) 0.01550(5) Nb2 0.95056(2) 0.69893(2) 0.33539(2) 0.01553(5) Table A1. 53 Bond lengths (Å) for (Nb(N 3 ) 5 ) 2 •(4,4’-bipy) C1-N31 1.346(2) C1-C2 1.377(3) C1-H1 0.95 C2-C3 1.389(3) C2-H2 0.95 C3-C4 1.392(3) C3-C8 1.482(2) C4-C5 1.378(3) C4-H4 0.95 C5-N31 1.344(2) C5-H5 0.95 C6-N32 1.346(2) C6-C7 1.376(3) C6-H6 0.95 C7-C8 1.389(3) C7-H7 0.95 C8-C9 1.397(3) C9-C10 1.377(3) C9-H9 0.95 C10-N32 1.350(2) C10-H10 0.95 N1-N2 1.202(2) N1-Nb1 1.9482(16) N2-N3 1.134(2) N4-N5 1.217(2) N4-Nb1 2.0415(16) N5-N6 1.136(2) N7-N8 1.210(2) N7-Nb1 2.0223(16) N8-N9 1.140(2) N10-N11 1.213(2) N10-Nb1 2.0096(16) N11-N12 1.132(2) N13-N14 1.209(2) N13-Nb1 2.0206(15) N14-N15 1.132(2) N16-N17 1.208(2) N16-Nb2 1.9625(16) N17-N18 1.136(2) N19-N20 1.219(2) N19-Nb2 2.0782(16) N20-N21 1.143(2) N22-N23 1.214(2) N22-Nb2 2.0027(16) N23-N24 1.134(2) N25-N26 1.197(2) N25-Nb2 1.9993(16) N26-N27 1.136(2) N28-N29 1.206(2) N28-Nb2 2.0089(17) N29-N30 1.137(3) N31-Nb1 2.3299(15) N32-Nb2 2.3354(15) Table A1. 54 Bond angles (°) for (Nb(N 3 ) 5 ) 2 •(4,4’-bipy) N31-C1-C2 123.39(17) N31-C1-H1 118.3 C2-C1-H1 118.3 C1-C2-C3 120.13(17) C1-C2-H2 119.9 C3-C2-H2 119.9 C2-C3-C4 116.60(17) C2-C3-C8 121.34(16) C4-C3-C8 122.06(16) C5-C4-C3 119.90(17) C5-C4-H4 120.1 C3-C4-H4 120.1 N31-C5-C4 123.59(17) N31-C5-H5 118.2 C4-C5-H5 118.2 N32-C6-C7 123.85(17) N32-C6-H6 118.1 C7-C6-H6 118.1 C6-C7-C8 119.93(17) C6-C7-H7 120.0 165 C8-C7-H7 120.0 C7-C8-C9 116.54(17) C7-C8-C3 121.17(16) C9-C8-C3 122.28(16) C10-C9-C8 120.19(17) C10-C9-H9 119.9 C8-C9-H9 119.9 N32-C10-C9 123.20(17) N32-C10-H10 118.4 C9-C10-H10 118.4 N2-N1-Nb1 165.58(16) N3-N2-N1 178.2(2) N5-N4-Nb1 133.91(14) N6-N5-N4 177.4(2) N8-N7-Nb1 153.01(16) N9-N8-N7 177.0(2) N11-N10-Nb1 137.84(14) N12-N11-N10 178.0(2) N14-N13-Nb1 139.96(14) N15-N14-N13 177.7(2) N17-N16-Nb2 157.27(14) N18-N17-N16 178.7(2) N20-N19-Nb2 131.99(13) N21-N20-N19 177.4(2) N23-N22-Nb2 135.43(14) N24-N23-N22 177.4(2) N26-N25-Nb2 155.61(15) N27-N26-N25 178.4(2) N29-N28-Nb2 141.49(14) N30-N29-N28 178.1(2) C5-N31-C1 116.36(16) C5-N31-Nb1 122.40(12) C1-N31-Nb1 121.24(12) C6-N32-C10 116.26(16) C6-N32-Nb2 121.55(12) C10-N32-Nb2 122.17(12) N1-Nb1-N10 96.50(7) N1-Nb1-N13 91.55(7) N10-Nb1-N13 95.37(6) N1-Nb1-N7 94.85(7) N10-Nb1-N7 88.58(7) N13-Nb1-N7 172.06(7) N1-Nb1-N4 99.36(7) N10-Nb1-N4 163.90(7) N13-Nb1-N4 87.02(7) N7-Nb1-N4 87.31(7) N1-Nb1-N31 177.29(6) N10-Nb1-N31 82.35(6) N13-Nb1-N31 86.13(6) N7-Nb1-N31 87.58(6) N4-Nb1-N31 81.93(6) N16-Nb2-N25 94.50(7) N16-Nb2-N22 96.82(7) N25-Nb2-N22 94.88(7) N16-Nb2-N28 98.39(7) N25-Nb2-N28 93.04(7) N22-Nb2-N28 162.23(7) N16-Nb2-N19 92.49(7) N25-Nb2-N19 173.01(6) N22-Nb2-N19 84.48(7) N28-Nb2-N19 85.73(6) N16-Nb2-N32 178.94(6) N25-Nb2-N32 86.53(6) N22-Nb2-N32 82.85(6) N28-Nb2-N32 81.77(6) N19-Nb2-N32 86.48(6) Table A1. 55 Anisotropic atomic displacement parameters (Å 2 ) for (Nb(N 3 ) 5 ) 2 •(4,4’-bipy) U 11 U 22 U 33 U 23 U 13 U 12 C1 0.0180(10) 0.0377(12) 0.0159(9) 0.0015(8) -0.0030(7) 0.0047(9) C2 0.0149(9) 0.0360(12) 0.0193(10) 0.0029(8) -0.0032(7) 0.0063(8) C3 0.0173(9) 0.0116(9) 0.0164(9) 0.0010(7) -0.0001(7) -0.0005(7) C4 0.0185(10) 0.0301(11) 0.0147(9) -0.0034(8) -0.0026(7) 0.0011(8) C5 0.0140(9) 0.0308(11) 0.0180(9) -0.0033(8) -0.0042(7) 0.0004(8) C6 0.0156(9) 0.0292(11) 0.0187(9) -0.0038(8) -0.0010(7) -0.0032(8) C7 0.0192(10) 0.0251(10) 0.0149(9) -0.0023(7) -0.0017(7) -0.0023(8) 166 U 11 U 22 U 33 U 23 U 13 U 12 C8 0.0157(9) 0.0124(9) 0.0172(9) 0.0022(7) -0.0004(7) 0.0011(7) C9 0.0141(9) 0.0248(11) 0.0238(10) -0.0040(8) -0.0025(7) -0.0005(8) C10 0.0174(9) 0.0248(10) 0.0183(9) -0.0060(8) -0.0023(7) -0.0002(8) N1 0.0239(9) 0.0303(10) 0.0237(9) -0.0024(7) 0.0064(7) -0.0011(8) N2 0.0264(9) 0.0175(8) 0.0269(9) -0.0002(7) 0.0021(7) 0.0002(7) N3 0.0471(13) 0.0279(11) 0.0646(15) -0.0034(10) 0.0213(11) 0.0113(10) N4 0.0231(9) 0.0175(9) 0.0300(9) 0.0030(7) 0.0061(7) -0.0021(7) N5 0.0203(8) 0.0218(9) 0.0180(8) 0.0006(6) 0.0023(6) -0.0053(7) N6 0.0264(10) 0.0265(10) 0.0305(10) -0.0005(8) 0.0012(8) 0.0025(8) N7 0.0221(9) 0.0378(10) 0.0151(8) 0.0027(7) -0.0003(7) 0.0042(8) N8 0.0155(8) 0.0364(10) 0.0177(8) -0.0010(8) 0.0004(6) -0.0006(7) N9 0.0317(11) 0.0442(12) 0.0355(11) 0.0108(9) -0.0035(9) 0.0044(9) N10 0.0201(9) 0.0197(9) 0.0249(9) -0.0025(7) 0.0004(7) -0.0048(7) N11 0.0248(9) 0.0232(9) 0.0160(8) 0.0039(6) 0.0014(7) -0.0045(7) N12 0.0295(11) 0.0488(13) 0.0330(10) 0.0129(9) -0.0086(8) -0.0153(9) N13 0.0162(8) 0.0186(8) 0.0226(8) 0.0022(7) -0.0027(6) -0.0004(6) N14 0.0194(9) 0.0219(9) 0.0180(8) -0.0008(6) 0.0021(7) -0.0009(7) N15 0.0304(11) 0.0613(15) 0.0324(11) -0.0037(10) -0.0048(9) -0.0165(10) N16 0.0216(9) 0.0288(9) 0.0211(8) -0.0027(7) 0.0043(7) 0.0009(7) N17 0.0232(9) 0.0292(10) 0.0146(8) -0.0046(7) -0.0014(7) -0.0004(7) N18 0.0237(10) 0.0647(15) 0.0285(10) -0.0124(9) 0.0038(8) 0.0014(9) N19 0.0177(8) 0.0238(9) 0.0192(8) 0.0002(7) -0.0013(6) 0.0018(7) N20 0.0173(8) 0.0275(9) 0.0144(8) 0.0012(7) -0.0020(6) 0.0072(7) N21 0.0245(9) 0.0347(11) 0.0283(10) -0.0058(8) -0.0078(7) -0.0003(8) N22 0.0260(9) 0.0176(8) 0.0217(9) 0.0000(7) 0.0012(7) 0.0003(7) N23 0.0183(8) 0.0179(8) 0.0268(9) -0.0054(7) 0.0030(7) 0.0009(7) N24 0.0367(11) 0.0326(11) 0.0297(10) 0.0050(8) -0.0042(8) 0.0055(8) N25 0.0214(9) 0.0255(9) 0.0176(8) -0.0021(7) -0.0025(7) -0.0001(7) N26 0.0177(8) 0.0195(8) 0.0196(9) -0.0045(6) 0.0012(7) -0.0007(7) N27 0.0311(10) 0.0394(11) 0.0270(10) 0.0016(8) -0.0073(8) 0.0032(9) N28 0.0233(9) 0.0206(9) 0.0224(8) 0.0022(7) 0.0009(7) -0.0013(7) N29 0.0242(9) 0.0197(9) 0.0287(9) 0.0056(8) -0.0035(7) 0.0037(7) N30 0.0577(14) 0.0268(11) 0.0506(13) -0.0080(10) -0.0049(11) 0.0092(10) N31 0.0146(8) 0.0165(8) 0.0173(8) 0.0013(6) 0.0006(6) -0.0007(6) N32 0.0148(8) 0.0157(8) 0.0155(7) -0.0007(6) -0.0007(6) -0.0001(6) Nb1 0.01529(9) 0.01661(9) 0.01439(8) 0.00032(6) 0.00043(6) -0.00270(6) Nb2 0.01528(9) 0.01669(9) 0.01424(9) -0.00076(6) -0.00044(6) -0.00051(6) Table A1. 56 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for (Nb(N 3 ) 5 ) 2 •(4,4’- bipy) x/a y/b z/c U(eq) H1 0.3353 0.5955 -0.2758 0.029 167 x/a y/b z/c U(eq) H2 0.2092 0.6262 -0.1535 0.028 H4 0.4600 0.6079 0.0901 0.026 H5 0.5806 0.5811 -0.0392 0.026 H6 -0.0276 0.6312 0.0953 0.026 H7 0.0962 0.6037 -0.0303 0.024 H9 0.3493 0.6694 0.1910 0.025 H10 0.2186 0.6950 0.3111 0.025 Figure A1. 19 Asymmetric unit in the crystal structure of (Ta(N 3 ) 5 ) 2 •(4,4’-bipy) 168 Figure A1. 20 Packing diagram of (Ta(N 3 ) 5 ) 2 •(4,4’-bipy). View normal to (001) Table A1. 57 Sample and crystal data for (Ta(N 3 ) 5 ) 2 •(4,4’-bipy) Identification code TaN15_44Bipy Chemical formula C 10 H 8 N 32 Ta 2 Formula weight 938.28 Temperature 100(2) K Wavelength 0.71073 Å Crystal size 0.219 x 0.241 x 0.389 mm Crystal habit clear colourless prism Crystal system monoclinic Space group P 1 21/c 1 Unit cell dimensions a = 11.9727(6) Å α = 90° b = 18.0260(9) Å β = 95.8400(10)° c = 12.2979(6) Å γ = 90° Volume 2640.4(2) Å 3 Z 4 Density (calculated) 2.361 g/cm 3 Absorption coefficient 8.355 mm -1 F(000) 1752 169 Table A1. 58 Data collection and structure refinement for (Ta(N 3 ) 5 ) 2 •(4,4’-bipy) Diffractometer Bruker APEX DUO Radiation source fine-focus tube, MoKα Theta range for data collection 1.71 to 30.54° Index ranges -17<=h<=17, -25<=k<=25, -17<=l<=17 Reflections collected 50040 Independent reflections 7983 [R(int) = 0.0438] Coverage of independent reflections 98.8% Absorption correction multi-scan Max. and min. transmission 0.1320 and 0.1100 Structure solution technique direct methods Structure solution program SHELXTL XS 2013/1 (Bruker AXS) Refinement method Full-matrix least-squares on F 2 Refinement program SHELXL-2013 (Sheldrick, 2013) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 7983 / 0 / 397 Goodness-of-fit on F 2 1.165 Δ/σ max 0.004 Final R indices 7441 data; I>2σ(I) R1 = 0.0228, wR2 = 0.0530 all data R1 = 0.0257, wR2 = 0.0540 Weighting scheme w=1/[σ 2 (F o 2 )+(0.0172P) 2 +4.3136P] where P=(F o 2 +2F c 2 )/3 Largest diff. peak and hole 1.564 and -1.625 eÅ -3 R.M.S. deviation from mean 0.145 eÅ -3 Table A1. 59 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for (Ta(N 3 ) 5 ) 2 •(4,4’-bipy) x/a y/b z/c U(eq) C1 0.8097(2) 0.32496(18) 0.2596(2) 0.0198(6) C2 0.7308(2) 0.34027(18) 0.3310(3) 0.0203(6) C3 0.7648(2) 0.36595(14) 0.4361(2) 0.0135(5) C4 0.8792(3) 0.37688(18) 0.4621(2) 0.0207(6) C5 0.9537(2) 0.36077(19) 0.3871(2) 0.0213(6) C6 0.4986(2) 0.41031(18) 0.5628(2) 0.0206(6) C7 0.5710(2) 0.39474(18) 0.4851(2) 0.0202(6) C8 0.6837(2) 0.38091(15) 0.5167(2) 0.0131(5) C9 0.7177(3) 0.3825(2) 0.6287(3) 0.0237(6) C10 0.6419(3) 0.3993(2) 0.7018(3) 0.0246(7) N1 0.3040(2) 0.47099(16) 0.9012(2) 0.0242(5) N2 0.2303(2) 0.50033(15) 0.9450(2) 0.0230(5) N3 0.1615(3) 0.52608(19) 0.9892(4) 0.0471(9) N4 0.5267(2) 0.40474(17) 0.9151(2) 0.0244(6) N5 0.5676(2) 0.35779(16) 0.9764(2) 0.0224(5) 170 x/a y/b z/c U(eq) N6 0.6082(3) 0.3157(2) 0.0360(3) 0.0369(7) N7 0.3610(2) 0.33591(14) 0.7718(2) 0.0227(5) N8 0.4094(2) 0.27674(15) 0.7738(2) 0.0184(5) N9 0.4508(2) 0.22012(16) 0.7737(2) 0.0265(6) N10 0.3002(2) 0.47132(14) 0.6690(2) 0.0181(5) N11 0.2142(2) 0.44969(14) 0.6209(2) 0.0198(5) N12 0.1332(3) 0.4313(2) 0.5723(3) 0.0426(9) N13 0.4918(2) 0.54048(14) 0.8006(2) 0.0206(5) N14 0.5829(2) 0.56487(14) 0.8343(2) 0.0201(5) N15 0.6661(3) 0.5896(2) 0.8654(3) 0.0376(8) N16 0.1625(2) 0.27521(16) 0.0672(2) 0.0236(5) N17 0.2542(2) 0.26432(16) 0.0383(2) 0.0221(5) N18 0.3399(3) 0.2540(2) 0.0088(3) 0.0373(8) N19 0.9221(2) 0.29852(15) 0.0502(2) 0.0215(5) N20 0.8707(2) 0.31526(14) 0.9658(2) 0.0175(5) N21 0.8214(3) 0.32935(18) 0.8853(2) 0.0306(6) N22 0.0247(2) 0.19983(14) 0.2210(2) 0.0211(5) N23 0.0607(2) 0.16222(14) 0.2986(2) 0.0206(5) N24 0.0922(3) 0.12561(18) 0.3695(3) 0.0345(7) N25 0.1715(2) 0.31000(15) 0.2994(2) 0.0203(5) N26 0.2302(2) 0.36075(15) 0.3374(2) 0.0193(5) N27 0.2870(2) 0.40633(18) 0.3764(3) 0.0294(6) N28 0.0648(2) 0.41311(15) 0.1559(2) 0.0220(5) N29 0.0660(2) 0.46875(16) 0.2103(2) 0.0253(6) N30 0.0662(4) 0.52190(19) 0.2593(3) 0.0493(10) N31 0.92133(19) 0.33398(13) 0.28613(19) 0.0144(4) N32 0.53258(19) 0.41376(13) 0.67099(19) 0.0142(4) Ta1 0.40986(2) 0.44300(2) 0.79843(2) 0.01373(3) Ta2 0.05156(2) 0.30240(2) 0.16672(2) 0.01415(3) Table A1. 60 Bond lengths (Å) for (Ta(N 3 ) 5 ) 2 •(4,4’-bipy) C1-N31 1.353(4) C1-C2 1.382(4) C1-H1 0.95 C2-C3 1.395(4) C2-H2 0.95 C3-C4 1.388(4) C3-C8 1.481(4) C4-C5 1.378(4) C4-H4 0.95 C5-N31 1.351(4) C5-H5 0.95 C6-N32 1.353(4) C6-C7 1.382(4) C6-H6 0.95 C7-C8 1.388(4) C7-H7 0.95 C8-C9 1.396(4) C9-C10 1.375(4) C9-H9 0.95 C10-N32 1.350(4) C10-H10 0.95 N1-N2 1.202(4) N1-Ta1 1.946(3) N2-N3 1.132(4) N4-N5 1.204(4) N4-Ta1 2.021(3) 171 N5-N6 1.130(4) N7-N8 1.213(4) N7-Ta1 2.034(3) N8-N9 1.135(4) N10-N11 1.200(4) N10-Ta1 2.023(2) N11-N12 1.136(4) N13-N14 1.210(4) N13-Ta1 2.011(3) N14-N15 1.123(4) N16-N17 1.204(4) N16-Ta2 1.959(3) N17-N18 1.137(4) N19-N20 1.190(4) N19-Ta2 2.003(3) N20-N21 1.129(4) N22-N23 1.214(4) N22-Ta2 2.003(3) N23-N24 1.128(4) N25-N26 1.218(4) N25-Ta2 2.065(3) N26-N27 1.141(4) N28-N29 1.205(4) N28-Ta2 2.008(3) N29-N30 1.132(4) N31-Ta2 2.319(2) N32-Ta1 2.315(2) Table A1. 61 Bond angles (°) for (Ta(N 3 ) 5 ) 2 •(4,4’-bipy) N31-C1-C2 123.0(3) N31-C1-H1 118.5 C2-C1-H1 118.5 C1-C2-C3 120.1(3) C1-C2-H2 120.0 C3-C2-H2 120.0 C4-C3-C2 116.7(3) C4-C3-C8 121.3(3) C2-C3-C8 122.1(3) C5-C4-C3 120.4(3) C5-C4-H4 119.8 C3-C4-H4 119.8 N31-C5-C4 123.1(3) N31-C5-H5 118.5 C4-C5-H5 118.5 N32-C6-C7 122.8(3) N32-C6-H6 118.6 C7-C6-H6 118.6 C6-C7-C8 120.2(3) C6-C7-H7 119.9 C8-C7-H7 119.9 C7-C8-C9 116.7(3) C7-C8-C3 122.0(3) C9-C8-C3 121.2(3) C10-C9-C8 120.3(3) C10-C9-H9 119.9 C8-C9-H9 119.9 N32-C10-C9 123.0(3) N32-C10-H10 118.5 C9-C10-H10 118.5 N2-N1-Ta1 164.1(3) N3-N2-N1 177.4(4) N5-N4-Ta1 153.2(3) N6-N5-N4 177.5(4) N8-N7-Ta1 134.7(2) N9-N8-N7 177.3(3) N11-N10-Ta1 139.6(2) N12-N11-N10 177.3(4) N14-N13-Ta1 138.0(2) N15-N14-N13 177.9(4) N17-N16-Ta2 157.3(2) N18-N17-N16 178.6(3) N20-N19-Ta2 155.3(2) N21-N20-N19 178.3(3) N23-N22-Ta2 136.2(2) N24-N23-N22 178.0(4) N26-N25-Ta2 132.9(2) N27-N26-N25 177.1(3) N29-N28-Ta2 141.9(2) N30-N29-N28 178.4(4) C5-N31-C1 116.7(3) C5-N31-Ta2 121.40(19) C1-N31-Ta2 121.93(19) C10-N32-C6 116.9(3) C10-N32-Ta1 121.18(19) C6-N32-Ta1 121.90(19) N1-Ta1-N13 96.53(12) N1-Ta1-N4 94.43(12) 172 N13-Ta1-N4 89.27(12) N1-Ta1-N10 91.87(11) N13-Ta1-N10 93.80(11) N4-Ta1-N10 172.64(11) N1-Ta1-N7 98.93(11) N13-Ta1-N7 164.41(11) N4-Ta1-N7 87.56(12) N10-Ta1-N7 87.70(11) N1-Ta1-N32 177.48(10) N13-Ta1-N32 82.28(10) N4-Ta1-N32 87.80(10) N10-Ta1-N32 86.00(9) N7-Ta1-N32 82.34(10) N16-Ta2-N19 93.96(11) N16-Ta2-N22 96.85(12) N19-Ta2-N22 93.87(11) N16-Ta2-N28 98.29(12) N19-Ta2-N28 92.74(11) N22-Ta2-N28 163.01(11) N16-Ta2-N25 92.82(11) N19-Ta2-N25 173.22(11) N22-Ta2-N25 85.42(11) N28-Ta2-N25 86.18(11) N16-Ta2-N31 179.39(11) N19-Ta2-N31 86.57(10) N22-Ta2-N31 82.80(10) N28-Ta2-N31 81.99(10) N25-Ta2-N31 86.65(9) Table A1. 62 Anisotropic atomic displacement parameters (Å 2 ) for (Ta(N 3 ) 5 ) 2 •(4,4’-bipy) U 11 U 22 U 33 U 23 U 13 U 12 C1 0.0149(13) 0.0274(15) 0.0164(13) -0.0049(11) -0.0015(10) 0.0000(11) C2 0.0112(12) 0.0290(16) 0.0202(14) -0.0058(12) -0.0016(10) 0.0000(11) C3 0.0139(12) 0.0109(11) 0.0156(12) 0.0016(9) 0.0011(9) 0.0011(9) C4 0.0172(13) 0.0299(16) 0.0148(13) -0.0064(11) -0.0001(10) -0.0022(11) C5 0.0134(13) 0.0335(17) 0.0171(14) -0.0068(12) 0.0014(10) -0.0039(11) C6 0.0119(12) 0.0327(16) 0.0165(13) -0.0041(12) -0.0021(10) 0.0007(11) C7 0.0141(13) 0.0325(16) 0.0135(13) -0.0032(11) -0.0010(10) 0.0001(11) C8 0.0132(12) 0.0132(12) 0.0128(12) 0.0012(9) 0.0007(9) 0.0001(9) C9 0.0134(13) 0.0412(19) 0.0158(14) 0.0037(13) -0.0016(10) 0.0069(12) C10 0.0150(13) 0.045(2) 0.0135(13) 0.0030(13) -0.0015(10) 0.0064(13) N1 0.0253(13) 0.0276(14) 0.0207(13) -0.0034(11) 0.0077(10) -0.0015(11) N2 0.0247(13) 0.0170(12) 0.0275(14) 0.0003(10) 0.0037(11) 0.0010(10) N3 0.051(2) 0.0274(17) 0.066(3) -0.0063(17) 0.024(2) 0.0122(16) N4 0.0219(13) 0.0397(16) 0.0111(11) 0.0027(11) -0.0006(9) 0.0030(11) N5 0.0164(12) 0.0347(15) 0.0161(12) -0.0004(11) 0.0008(9) -0.0010(10) N6 0.0272(15) 0.0469(19) 0.0352(18) 0.0123(15) -0.0043(13) 0.0035(14) N7 0.0220(13) 0.0160(12) 0.0310(14) 0.0028(10) 0.0071(11) -0.0028(10) N8 0.0182(11) 0.0200(12) 0.0175(12) 0.0004(9) 0.0035(9) -0.0041(9) N9 0.0263(14) 0.0226(14) 0.0303(15) -0.0006(11) 0.0021(11) 0.0030(11) N10 0.0157(11) 0.0185(12) 0.0193(12) 0.0025(9) -0.0020(9) 0.0012(9) N11 0.0191(12) 0.0219(12) 0.0191(12) -0.0024(10) 0.0055(10) -0.0017(10) N12 0.0285(16) 0.067(2) 0.0309(17) -0.0052(16) -0.0056(13) -0.0172(16) N13 0.0206(12) 0.0175(12) 0.0238(13) -0.0017(10) 0.0019(10) -0.0051(10) N14 0.0228(13) 0.0212(12) 0.0161(12) 0.0041(9) 0.0010(10) -0.0051(10) N15 0.0299(16) 0.047(2) 0.0327(17) 0.0127(15) -0.0102(13) -0.0193(14) N16 0.0209(12) 0.0283(14) 0.0222(13) -0.0030(11) 0.0054(10) -0.0006(11) 173 U 11 U 22 U 33 U 23 U 13 U 12 N17 0.0224(13) 0.0314(14) 0.0122(11) -0.0050(10) 0.0001(9) -0.0010(11) N18 0.0231(14) 0.064(2) 0.0256(15) -0.0143(15) 0.0042(12) 0.0023(14) N19 0.0204(12) 0.0276(14) 0.0155(12) -0.0033(10) -0.0022(10) 0.0002(10) N20 0.0163(11) 0.0169(11) 0.0196(12) -0.0042(9) 0.0030(9) 0.0014(9) N21 0.0276(15) 0.0383(17) 0.0240(14) 0.0015(12) -0.0058(11) 0.0053(13) N22 0.0247(13) 0.0170(12) 0.0216(13) -0.0018(9) 0.0022(10) 0.0005(10) N23 0.0199(12) 0.0189(12) 0.0233(13) -0.0034(10) 0.0031(10) 0.0016(10) N24 0.0362(17) 0.0323(16) 0.0333(17) 0.0060(13) -0.0048(13) 0.0075(13) N25 0.0142(11) 0.0245(13) 0.0212(13) -0.0005(10) -0.0026(9) 0.0022(9) N26 0.0157(11) 0.0267(13) 0.0148(11) 0.0001(10) -0.0011(9) 0.0050(10) N27 0.0238(14) 0.0341(16) 0.0288(15) -0.0079(12) -0.0052(11) -0.0012(12) N28 0.0235(13) 0.0200(13) 0.0228(13) 0.0026(10) 0.0026(10) -0.0024(10) N29 0.0229(13) 0.0196(13) 0.0324(15) 0.0046(11) -0.0014(11) 0.0034(10) N30 0.064(3) 0.0250(17) 0.056(2) -0.0100(16) -0.006(2) 0.0113(17) N31 0.0139(10) 0.0155(11) 0.0131(11) -0.0003(8) -0.0012(8) -0.0017(8) N32 0.0125(10) 0.0161(11) 0.0136(11) 0.0017(8) -0.0008(8) -0.0008(8) Ta1 0.01400(6) 0.01445(6) 0.01274(6) 0.00020(4) 0.00132(4) -0.00283(4) Ta2 0.01370(6) 0.01557(6) 0.01299(6) -0.00099(4) 0.00048(4) -0.00046(4) Table A1. 63 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for (Ta(N 3 ) 5 ) 2 •(4,4’- bipy) x/a y/b z/c U(eq) H1 0.7844 0.3073 0.1885 0.024 H2 0.6532 0.3333 0.3084 0.024 H4 0.9063 0.3956 0.5321 0.025 H5 1.0314 0.3689 0.4072 0.026 H6 0.4217 0.4190 0.5391 0.025 H7 0.5435 0.3935 0.4099 0.024 H9 0.7935 0.3719 0.6545 0.028 H10 0.6676 0.4008 0.7774 0.029 References [1] C. J. Adams, M. F. Haddow, D. J. Harding, T. J. Podesta, R. E. Waddington, CrystEngComm 2011, 13, 4909-4914. [2] B. I. Service, 2012-12 ed., Bruker AXS Madison, WI, 2012. [3] SAINT+, 8.27B ed., Bruker AXS Madison, WI, 2011. [4] SADABS, 2012-1 ed., Bruker AXS Madison, WI, 2012. [5] aG. M. Sheldrick, Acta Crystallogr A 2008, 64, 112-122; bSHELXL, Vol. 2012-4, 2012-1 ed., Sheldrick, G. M., 2012. [6] L. Farrugia, Journal of Applied Crystallography 1997, 30, 565. 174 APPENDIX 2: ADDITIONAL INFORMATION FOR TANTALUM(V)- AND NIOBIUM(V)- FLUORIDE WITH NEUTRAL GROUP 15 DONOR LIGANDS (CHAPTER 3) A2.1 Crystal Structure Data Figure A2. 1 Asymmetric unit in the crystal structure of [NbF 4 (C 5 H 5 N) 4 ][NbF 6 ] Figure A2. 2 Unit cell of [NbF 4 (C 5 H 5 N) 4 ][NbF 6 ]. View normal to (001) 175 Table A2. 1 Sample and crystal data for [NbF 4 (C 5 H 5 N) 4 ][NbF 6 ] Identification code NbF5Py Chemical formula C 20 H 207 F 10 N 4 Nb 2 Formula weight 230.74 Temperature 100(2) K Wavelength 0.71073 Å Crystal size 0.020 x 0.080 x 0.300 mm Crystal habit clear colourless plate Crystal system monoclinic Space group P 1 21/c 1 Unit cell dimensions a = 7.8953(6) Å α = 90° b = 14.1503(10) Å β = 98.6390(10)° c = 21.9203(15) Å γ = 90° Volume 2421.2(3) Å 3 Z 4 Density (calculated) 1.899 g/cm 3 Absorption coefficient 1.040 mm -1 F(000) 1360 Table A2. 2 Data collection and structure refinement for [NbF 4 (C 5 H 5 N) 4 ][NbF 6 ] Diffractometer Bruker APEX DUO Radiation source fine-focus tube, MoKα Theta range for data collection 1.72 to 30.34° Index ranges -11<=h<=11, -19<=k<=15, -29<=l<=30 Reflections collected 24491 Independent reflections 6727 [R(int) = 0.0938] Coverage of independent reflections 92.6% Absorption correction multi-scan Max. and min. transmission 0.9790 and 0.7450 Structure solution technique direct methods Structure solution program SHELXTL XT 2013/1 (Bruker AXS) Refinement method Full-matrix least-squares on F 2 Refinement program SHELXL-2013 (Sheldrick, 2013) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 6726 / 0 / 325 Goodness-of-fit on F 2 0.962 Δ/σ max 0.001 Final R indices 4294 data; I>2σ(I) R1 = 0.0439, wR2 = 0.0677 all data R1 = 0.0960, wR2 = 0.0801 Weighting scheme w=1/[σ 2 (F o 2 )+(0.0251P) 2 ] where P=(F o 2 +2F c 2 )/3 Largest diff. peak and hole 0.795 and -0.883 eÅ -3 R.M.S. deviation from mean 0.150 eÅ -3 176 Table A2. 3 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [NbF 4 (C 5 H 5 N) 4 ][NbF 6 ] x/a y/b z/c U(eq) C1 0.1801(5) 0.1134(3) 0.59296(17) 0.0190(9) C2 0.1827(5) 0.1108(3) 0.65579(18) 0.0248(9) C3 0.2223(5) 0.1921(3) 0.68991(18) 0.0249(9) C4 0.2618(5) 0.2727(3) 0.66003(18) 0.0232(9) C5 0.2563(5) 0.2706(3) 0.59665(18) 0.0193(9) C6 0.8695(4) 0.2649(3) 0.49984(16) 0.0145(8) C7 0.7332(5) 0.3253(3) 0.50311(16) 0.0177(8) C8 0.7321(5) 0.4129(3) 0.47525(17) 0.0201(9) C9 0.8684(5) 0.4374(3) 0.44592(17) 0.0184(8) C10 0.0008(5) 0.3739(3) 0.44484(17) 0.0166(8) C11 0.2775(5) 0.9668(3) 0.41496(17) 0.0177(8) C12 0.2989(5) 0.8876(3) 0.38048(18) 0.0216(9) C13 0.2713(5) 0.8948(3) 0.31686(18) 0.0242(10) C14 0.2226(5) 0.9801(3) 0.28974(18) 0.0222(9) C15 0.2058(4) 0.0572(3) 0.32780(16) 0.0164(8) C16 0.5792(5) 0.1434(3) 0.39691(16) 0.0150(8) C17 0.7133(5) 0.1616(3) 0.36522(16) 0.0173(8) C18 0.7141(5) 0.2448(3) 0.33171(16) 0.0186(9) C19 0.5782(5) 0.3066(3) 0.33117(16) 0.0180(8) C20 0.4484(5) 0.2830(3) 0.36416(17) 0.0173(8) F1 0.4030(2) 0.10733(14) 0.49646(9) 0.0159(5) F2 0.0420(2) 0.10049(14) 0.46822(9) 0.0146(5) F3 0.3333(2) 0.29993(14) 0.47877(9) 0.0154(5) F4 0.1144(2) 0.22628(14) 0.37710(9) 0.0148(5) F5 0.8424(3) 0.93793(16) 0.19449(10) 0.0330(6) F6 0.6547(3) 0.17852(16) 0.15301(12) 0.0348(6) F7 0.5654(3) 0.03002(17) 0.21655(12) 0.0399(7) F8 0.8743(3) 0.10894(17) 0.24691(11) 0.0352(6) F9 0.9347(3) 0.08491(16) 0.13224(11) 0.0329(6) F10 0.6263(3) 0.00797(17) 0.10130(10) 0.0353(6) N1 0.2152(4) 0.1926(2) 0.56270(13) 0.0143(6) N2 0.0026(4) 0.2881(2) 0.47081(13) 0.0129(7) N3 0.2339(4) 0.0516(2) 0.38942(13) 0.0126(6) N4 0.4470(4) 0.2033(2) 0.39659(13) 0.0128(7) Nb1 0.22272(4) 0.18365(2) 0.45518(2) 0.01148(8) Nb2 0.74917(5) 0.05920(3) 0.17408(2) 0.01654(9) Table A2. 4 Bond lengths (Å) for [NbF 4 (C 5 H 5 N) 4 ][NbF 6 ] C1-N1 1.352(5) C1-C2 1.375(5) C1-H1 0.95 C2-C3 1.382(5) C2-H2 0.95 C3-C4 1.374(6) 177 C3-H3 0.95 C4-C5 1.384(5) C4-H4 0.95 C5-N1 1.344(5) C5-H5 0.95 C6-N2 1.349(4) C6-C7 1.385(5) C6-H6 0.95 C7-C8 1.381(5) C7-H7 0.95 C8-C9 1.378(5) C8-H8 0.95 C9-C10 1.382(5) C9-H9 0.95 C10-N2 1.339(4) C10-H10 0.95 C11-N3 1.347(4) C11-C12 1.377(5) C11-H11 0.95 C12-C13 1.383(5) C12-H12 0.95 C13-C14 1.374(5) C13-H13 0.95 C14-C15 1.392(5) C14-H14 0.95 C15-N3 1.338(4) C15-H15 0.95 C16-N4 1.344(4) C16-C17 1.375(5) C16-H16 0.95 C17-C18 1.388(5) C17-H17 0.95 C18-C19 1.382(5) C18-H18 0.95 C19-C20 1.381(5) C19-H19 0.95 C20-N4 1.334(4) C20-H20 0.95 F1-Nb1 1.9034(19) F2-Nb1 1.904(2) F3-Nb1 1.898(2) F4-Nb1 1.893(2) F5-Nb2 1.894(2) F6-Nb2 1.875(2) F7-Nb2 1.884(2) F8-Nb2 1.883(2) F9-Nb2 1.877(2) F10-Nb2 1.883(2) N1-Nb1 2.370(3) N2-Nb1 2.346(3) N3-Nb1 2.370(3) N4-Nb1 2.354(3) Table A2. 5 Bond angles (°) for [NbF 4 (C 5 H 5 N) 4 ][NbF 6 ] N1-C1-C2 122.7(4) N1-C1-H1 118.7 C2-C1-H1 118.7 C1-C2-C3 119.2(4) C1-C2-H2 120.4 C3-C2-H2 120.4 C4-C3-C2 118.8(4) C4-C3-H3 120.6 C2-C3-H3 120.6 C3-C4-C5 119.1(4) C3-C4-H4 120.5 C5-C4-H4 120.5 N1-C5-C4 122.8(4) N1-C5-H5 118.6 C4-C5-H5 118.6 N2-C6-C7 122.7(3) N2-C6-H6 118.6 C7-C6-H6 118.6 C8-C7-C6 119.0(3) C8-C7-H7 120.5 C6-C7-H7 120.5 C9-C8-C7 118.6(4) C9-C8-H8 120.7 C7-C8-H8 120.7 C8-C9-C10 119.4(4) C8-C9-H9 120.3 C10-C9-H9 120.3 N2-C10-C9 122.8(3) N2-C10-H10 118.6 C9-C10-H10 118.6 N3-C11-C12 122.8(3) N3-C11-H11 118.6 C12-C11-H11 118.6 C11-C12-C13 118.7(4) 178 C11-C12-H12 120.7 C13-C12-H12 120.7 C14-C13-C12 119.5(4) C14-C13-H13 120.2 C12-C13-H13 120.2 C13-C14-C15 118.3(4) C13-C14-H14 120.8 C15-C14-H14 120.8 N3-C15-C14 122.9(4) N3-C15-H15 118.6 C14-C15-H15 118.6 N4-C16-C17 122.5(3) N4-C16-H16 118.8 C17-C16-H16 118.8 C16-C17-C18 119.4(3) C16-C17-H17 120.3 C18-C17-H17 120.3 C19-C18-C17 118.4(3) C19-C18-H18 120.8 C17-C18-H18 120.8 C20-C19-C18 118.6(4) C20-C19-H19 120.7 C18-C19-H19 120.7 N4-C20-C19 123.3(4) N4-C20-H20 118.3 C19-C20-H20 118.3 C5-N1-C1 117.4(3) C5-N1-Nb1 123.7(2) C1-N1-Nb1 118.8(2) C10-N2-C6 117.5(3) C10-N2-Nb1 118.0(2) C6-N2-Nb1 124.2(2) C15-N3-C11 117.8(3) C15-N3-Nb1 123.5(2) C11-N3-Nb1 118.7(2) C20-N4-C16 117.8(3) C20-N4-Nb1 117.2(2) C16-N4-Nb1 124.8(2) F4-Nb1-F3 95.56(9) F4-Nb1-F1 144.53(8) F3-Nb1-F1 94.69(9) F4-Nb1-F2 94.93(8) F3-Nb1-F2 145.03(8) F1-Nb1-F2 95.83(9) F4-Nb1-N2 71.78(9) F3-Nb1-N2 74.60(9) F1-Nb1-N2 143.66(9) F2-Nb1-N2 77.25(9) F4-Nb1-N4 75.16(9) F3-Nb1-N4 72.16(9) F1-Nb1-N4 75.91(9) F2-Nb1-N4 142.81(9) N2-Nb1-N4 129.77(10) F4-Nb1-N3 75.79(9) F3-Nb1-N3 142.35(9) F1-Nb1-N3 75.42(9) F2-Nb1-N3 72.61(9) N2-Nb1-N3 133.00(10) N4-Nb1-N3 70.21(10) F4-Nb1-N1 143.76(9) F3-Nb1-N1 76.22(10) F1-Nb1-N1 71.71(9) F2-Nb1-N1 75.67(9) N2-Nb1-N1 72.01(10) N4-Nb1-N1 132.02(10) N3-Nb1-N1 130.99(10) F6-Nb2-F9 90.92(11) F6-Nb2-F8 90.62(11) F9-Nb2-F8 89.61(11) F6-Nb2-F10 90.16(11) F9-Nb2-F10 90.07(11) F8-Nb2-F10 179.16(11) F6-Nb2-F7 90.66(11) F9-Nb2-F7 178.42(11) F8-Nb2-F7 90.44(11) F10-Nb2-F7 89.85(11) F6-Nb2-F5 179.21(11) F9-Nb2-F5 89.24(11) F8-Nb2-F5 90.14(10) F10-Nb2-F5 89.08(10) F7-Nb2-F5 89.17(11) 179 Table A2. 6 Anisotropic atomic displacement parameters (Å 2 ) for [NbF 4 (C 5 H 5 N) 4 ][NbF 6 ] U 11 U 22 U 33 U 23 U 13 U 12 C1 0.022(2) 0.016(2) 0.019(2) -0.0002(17) 0.0001(17) 0.0005(17) C2 0.028(2) 0.025(2) 0.021(2) 0.0041(19) 0.0041(18) -0.002(2) C3 0.025(2) 0.035(3) 0.015(2) 0.0001(19) 0.0031(17) 0.004(2) C4 0.027(2) 0.024(2) 0.019(2) -0.0078(18) 0.0036(18) -0.0022(19) C5 0.022(2) 0.017(2) 0.020(2) -0.0014(17) 0.0060(17) -0.0035(17) C6 0.0116(18) 0.018(2) 0.0134(18) -0.0005(16) 0.0011(14) -0.0051(16) C7 0.0175(19) 0.025(2) 0.0109(18) -0.0033(17) 0.0043(15) 0.0002(18) C8 0.017(2) 0.025(2) 0.017(2) -0.0068(17) -0.0002(16) 0.0091(17) C9 0.023(2) 0.014(2) 0.0174(19) 0.0018(17) 0.0002(16) 0.0038(18) C10 0.018(2) 0.013(2) 0.021(2) -0.0011(16) 0.0078(16) -0.0020(16) C11 0.023(2) 0.012(2) 0.018(2) 0.0007(15) 0.0028(16) 0.0000(16) C12 0.029(2) 0.013(2) 0.023(2) -0.0008(17) 0.0047(18) -0.0007(18) C13 0.030(2) 0.019(2) 0.024(2) -0.0092(18) 0.0082(19) 0.0007(19) C14 0.029(2) 0.024(2) 0.015(2) -0.0029(17) 0.0064(17) -0.0008(19) C15 0.0191(19) 0.016(2) 0.0146(18) 0.0022(16) 0.0041(15) -0.0007(17) C16 0.0147(19) 0.015(2) 0.0150(19) -0.0035(15) 0.0006(15) 0.0011(16) C17 0.0148(19) 0.022(2) 0.0149(19) -0.0018(16) 0.0032(15) 0.0045(17) C18 0.019(2) 0.026(2) 0.0116(19) -0.0066(17) 0.0061(16) -0.0037(18) C19 0.021(2) 0.018(2) 0.0146(19) -0.0015(16) 0.0038(15) -0.0019(18) C20 0.0168(19) 0.018(2) 0.0165(19) -0.0014(16) 0.0009(15) 0.0021(17) F1 0.0164(11) 0.0191(12) 0.0113(11) -0.0005(9) -0.0009(9) 0.0038(9) F2 0.0180(11) 0.0113(11) 0.0144(11) 0.0000(8) 0.0023(9) -0.0003(9) F3 0.0136(10) 0.0136(11) 0.0197(11) -0.0028(9) 0.0045(9) 0.0002(9) F4 0.0135(11) 0.0136(11) 0.0175(11) 0.0013(9) 0.0033(9) 0.0022(9) F5 0.0496(16) 0.0182(13) 0.0297(14) 0.0028(11) 0.0007(12) 0.0063(12) F6 0.0363(15) 0.0181(13) 0.0501(16) 0.0060(12) 0.0067(12) 0.0050(12) F7 0.0418(16) 0.0381(16) 0.0456(17) 0.0042(13) 0.0250(13) -0.0090(13) F8 0.0383(15) 0.0388(16) 0.0262(14) -0.0163(12) -0.0032(12) 0.0041(13) F9 0.0312(14) 0.0347(15) 0.0367(15) -0.0036(12) 0.0173(12) -0.0056(12) F10 0.0453(16) 0.0323(15) 0.0241(14) 0.0035(11) -0.0090(12) -0.0160(13) N1 0.0114(15) 0.0145(17) 0.0168(16) 0.0004(14) 0.0017(12) 0.0023(13) N2 0.0134(16) 0.0124(17) 0.0127(15) -0.0023(12) 0.0019(12) -0.0017(13) N3 0.0106(15) 0.0125(16) 0.0144(15) -0.0021(13) 0.0013(12) -0.0019(13) N4 0.0123(15) 0.0149(17) 0.0111(15) 0.0002(12) 0.0009(12) 0.0008(13) Nb1 0.01171(16) 0.01021(17) 0.01264(16) - 0.00032(14) 0.00218(12) 0.00108(14) Nb2 0.02173(19) 0.01283(18) 0.01522(17) 0.00018(15) 0.00333(14) - 0.00194(16) Table A2. 7 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [NbF 4 (C 5 H 5 N) 4 ][NbF 6 ] x/a y/b z/c U(eq) H1 0.1526 0.0572 0.5699 0.023 180 x/a y/b z/c U(eq) H2 0.1575 0.0539 0.6755 0.03 H3 0.2222 0.1923 0.7332 0.03 H4 0.2925 0.3290 0.6826 0.028 H5 0.2827 0.3268 0.5763 0.023 H6 -0.1308 0.2046 0.5188 0.017 H7 -0.3582 0.3068 0.5242 0.021 H8 -0.3606 0.4554 0.4763 0.024 H9 -0.1288 0.4974 0.4266 0.022 H10 0.0946 0.3918 0.4248 0.02 H11 0.2942 -0.0386 0.4587 0.021 H12 0.3319 -0.1709 0.4000 0.026 H13 0.2859 -0.1588 0.2921 0.029 H14 0.2010 -0.0137 0.2461 0.027 H15 0.1729 0.1163 0.3092 0.02 H16 0.5802 0.0865 0.4199 0.018 H17 0.8046 0.1176 0.3662 0.021 H18 0.8057 0.2590 0.3097 0.022 H19 0.5743 0.3641 0.3086 0.022 H20 0.3554 0.3257 0.3637 0.021 Figure A2. 3 Asymmetric unit in the crystal structure [TaF 4 (C 5 H 5 N) 4 ][TaF 6 ] 181 Figure A2. 4 Unit cell of [TaF 4 (C 5 H 5 N) 4 ][TaF 6 ]. View normal to (001) Table A2. 8 Sample and crystal data for [TaF 4 (C 5 H 5 N) 4 ][TaF 6 ] Identification code TaF5Py Chemical formula C 20 H 20 F 10 N 4 Ta 2 Formula weight 868.30 Temperature 100(2) K Wavelength 0.71073 Å Crystal size 0.102 x 0.141 x 0.336 mm Crystal habit clear colourless prism Crystal system monoclinic Space group P 1 21/c 1 Unit cell dimensions a = 7.8984(11) Å α = 90° b = 14.184(3) Å β = 98.667(7)° c = 21.926(3) Å γ = 90° Volume 2428.3(7) Å 3 Z 4 Density (calculated) 2.375 g/cm 3 Absorption coefficient 9.099 mm -1 F(000) 1616 Table A2. 9 Data collection and structure refinement for [TaF 4 (C 5 H 5 N) 4 ][TaF 6 ] Diffractometer Bruker APEX DUO Radiation source fine-focus tube, MoKα 182 Theta range for data collection 1.72 to 30.50° Index ranges -11<=h<=11, -20<=k<=20, -31<=l<=31 Reflections collected 58410 Independent reflections 7366 [R(int) = 0.0379] Coverage of independent reflections 99.4% Absorption correction multi-scan Max. and min. transmission 0.4570 and 0.1500 Structure solution technique direct methods Structure solution program SHELXTL XT 2013/1 (Sheldrick, 2013) Refinement method Full-matrix least-squares on F 2 Refinement program SHELXTL XL 2013/2 (Bruker AXS, 2013) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 7366 / 0 / 325 Goodness-of-fit on F 2 1.066 Δ/σ max 0.005 Final R indices 6650 data; I>2σ(I) R1 = 0.0179, wR2 = 0.0344 all data R1 = 0.0226, wR2 = 0.0354 Weighting scheme w=1/[σ 2 (F o 2 )+(0.0090P) 2 +2.8725P] where P=(F o 2 +2F c 2 )/3 Largest diff. peak and hole 0.974 and -0.842 eÅ -3 R.M.S. deviation from mean 0.118 eÅ -3 Table A2. 10 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [TaF 4 (C 5 H 5 N) 4 ][TaF 6 ] x/a y/b z/c U(eq) C1 0.0778(3) 0.14362(17) 0.39685(11) 0.0157(4) C2 0.2120(3) 0.16172(18) 0.36490(11) 0.0177(5) C3 0.2131(3) 0.24465(19) 0.33144(11) 0.0195(5) C4 0.0771(3) 0.30654(18) 0.33111(11) 0.0178(5) C5 0.9470(3) 0.28391(16) 0.36405(11) 0.0161(4) C6 0.7065(3) 0.05745(17) 0.32765(11) 0.0165(4) C7 0.7232(3) 0.98082(18) 0.29012(12) 0.0221(5) C8 0.7709(3) 0.89516(19) 0.31697(12) 0.0237(5) C9 0.7978(3) 0.88826(17) 0.38075(12) 0.0199(5) C10 0.7765(3) 0.96767(16) 0.41524(11) 0.0173(5) C11 0.6811(3) 0.11266(17) 0.59223(11) 0.0185(5) C12 0.6827(3) 0.11042(19) 0.65543(12) 0.0236(5) C13 0.7221(3) 0.1917(2) 0.68963(12) 0.0254(5) C14 0.7599(3) 0.2725(2) 0.65921(12) 0.0237(5) C15 0.7547(3) 0.26966(17) 0.59586(11) 0.0183(5) C16 0.3707(3) 0.26384(17) 0.49958(11) 0.0153(4) C17 0.2338(3) 0.32382(18) 0.50296(11) 0.0178(5) C18 0.2325(3) 0.41184(18) 0.47521(12) 0.0204(5) 183 x/a y/b z/c U(eq) C19 0.3687(3) 0.43647(18) 0.44569(12) 0.0200(5) C20 0.5014(3) 0.37352(16) 0.44434(11) 0.0159(4) F1 0.90336(17) 0.10718(10) 0.49652(6) 0.0157(3) F2 0.54130(17) 0.10025(9) 0.46792(6) 0.0145(3) F3 0.83344(16) 0.29981(9) 0.47872(6) 0.0139(3) F4 0.61360(16) 0.22621(9) 0.37629(6) 0.0139(3) F5 0.3407(2) 0.56157(11) 0.69491(8) 0.0328(4) F6 0.1553(2) 0.32028(11) 0.65240(9) 0.0347(4) F7 0.3744(2) 0.39061(13) 0.74728(8) 0.0356(4) F8 0.0631(2) 0.46830(14) 0.71642(9) 0.0409(5) F9 0.1249(2) 0.49164(12) 0.60072(8) 0.0354(4) F10 0.4352(2) 0.41547(12) 0.63195(8) 0.0327(4) N1 0.9462(2) 0.20390(13) 0.39666(9) 0.0136(4) N2 0.7337(2) 0.05222(13) 0.38961(9) 0.0131(4) N3 0.7153(2) 0.19191(14) 0.56232(9) 0.0146(4) N4 0.5031(2) 0.28724(13) 0.47069(9) 0.0131(4) Ta1 0.72252(2) 0.18358(2) 0.45495(2) 0.01077(2) Ta2 0.24826(2) 0.44019(2) 0.67393(2) 0.01580(3) Table A2. 11 Bond lengths (Å) for [TaF 4 (C 5 H 5 N) 4 ][TaF 6 ] C1-N1 1.345(3) C1-C2 1.380(3) C1-H1 0.95 C2-C3 1.387(4) C2-H2 0.95 C3-C4 1.386(3) C3-H3 0.95 C4-C5 1.380(3) C4-H4 0.95 C5-N1 1.342(3) C5-H5 0.95 C6-N2 1.345(3) C6-C7 1.382(3) C6-H6 0.95 C7-C8 1.378(4) C7-H7 0.95 C8-C9 1.386(4) C8-H8 0.95 C9-C10 1.381(3) C9-H9 0.95 C10-N2 1.346(3) C10-H10 0.95 C11-N3 1.349(3) C11-C12 1.384(3) C11-H11 0.95 C12-C13 1.385(4) C12-H12 0.95 C13-C14 1.381(4) C13-H13 0.95 C14-C15 1.384(3) C14-H14 0.95 C15-N3 1.336(3) C15-H15 0.95 C16-N4 1.343(3) C16-C17 1.386(3) C16-H16 0.95 C17-C18 1.388(4) C17-H17 0.95 C18-C19 1.381(4) C18-H18 0.95 C19-C20 1.380(3) C19-H19 0.95 C20-N4 1.353(3) C20-H20 0.95 F1-Ta1 1.9113(13) F2-Ta1 1.9103(13) F3-Ta1 1.9025(13) F4-Ta1 1.9059(13) 184 F5-Ta2 1.8996(16) F6-Ta2 1.8841(16) F7-Ta2 1.8949(16) F8-Ta2 1.8910(17) F9-Ta2 1.8939(15) F10-Ta2 1.8866(16) N1-Ta1 2.3489(19) N2-Ta1 2.3601(19) N3-Ta1 2.366(2) N4-Ta1 2.3376(19) Table A2. 12 Bond angles (°) for [TaF 4 (C 5 H 5 N) 4 ][TaF 6 ] N1-C1-C2 122.2(2) N1-C1-H1 118.9 C2-C1-H1 118.9 C1-C2-C3 119.5(2) C1-C2-H2 120.2 C3-C2-H2 120.2 C4-C3-C2 118.2(2) C4-C3-H3 120.9 C2-C3-H3 120.9 C5-C4-C3 119.2(2) C5-C4-H4 120.4 C3-C4-H4 120.4 N1-C5-C4 122.6(2) N1-C5-H5 118.7 C4-C5-H5 118.7 N2-C6-C7 122.9(2) N2-C6-H6 118.6 C7-C6-H6 118.6 C8-C7-C6 118.9(2) C8-C7-H7 120.5 C6-C7-H7 120.5 C7-C8-C9 118.9(2) C7-C8-H8 120.5 C9-C8-H8 120.5 C10-C9-C8 118.8(2) C10-C9-H9 120.6 C8-C9-H9 120.6 N2-C10-C9 122.8(2) N2-C10-H10 118.6 C9-C10-H10 118.6 N3-C11-C12 122.2(2) N3-C11-H11 118.9 C12-C11-H11 118.9 C11-C12-C13 119.4(2) C11-C12-H12 120.3 C13-C12-H12 120.3 C14-C13-C12 118.5(2) C14-C13-H13 120.8 C12-C13-H13 120.8 C13-C14-C15 119.0(2) C13-C14-H14 120.5 C15-C14-H14 120.5 N3-C15-C14 123.1(2) N3-C15-H15 118.5 C14-C15-H15 118.5 N4-C16-C17 122.8(2) N4-C16-H16 118.6 C17-C16-H16 118.6 C16-C17-C18 118.9(2) C16-C17-H17 120.6 C18-C17-H17 120.6 C19-C18-C17 118.6(2) C19-C18-H18 120.7 C17-C18-H18 120.7 C20-C19-C18 119.6(2) C20-C19-H19 120.2 C18-C19-H19 120.2 N4-C20-C19 122.3(2) N4-C20-H20 118.8 C19-C20-H20 118.8 C5-N1-C1 118.3(2) C5-N1-Ta1 117.25(15) C1-N1-Ta1 124.36(16) C6-N2-C10 117.6(2) C6-N2-Ta1 123.69(15) C10-N2-Ta1 118.68(15) C15-N3-C11 117.9(2) C15-N3-Ta1 123.39(16) C11-N3-Ta1 118.59(16) C16-N4-C20 117.8(2) C16-N4-Ta1 124.15(15) C20-N4-Ta1 117.78(15) F3-Ta1-F4 95.71(6) F3-Ta1-F2 145.06(6) 185 F4-Ta1-F2 94.87(6) F3-Ta1-F1 94.62(6) F4-Ta1-F1 144.53(6) F2-Ta1-F1 95.80(6) F3-Ta1-N4 74.66(6) F4-Ta1-N4 71.97(6) F2-Ta1-N4 77.20(6) F1-Ta1-N4 143.47(6) F3-Ta1-N1 71.93(6) F4-Ta1-N1 75.10(6) F2-Ta1-N1 143.01(6) F1-Ta1-N1 76.10(6) N4-Ta1-N1 129.66(7) F3-Ta1-N2 142.44(6) F4-Ta1-N2 75.77(6) F2-Ta1-N2 72.50(6) F1-Ta1-N2 75.42(6) N4-Ta1-N2 133.04(6) N1-Ta1-N2 70.53(6) F3-Ta1-N3 76.31(6) F4-Ta1-N3 144.01(6) F2-Ta1-N3 75.64(6) F1-Ta1-N3 71.46(6) N4-Ta1-N3 72.07(7) N1-Ta1-N3 131.90(7) N2-Ta1-N3 130.69(7) F6-Ta2-F10 90.80(8) F6-Ta2-F8 90.73(8) F10-Ta2-F8 178.46(8) F6-Ta2-F9 90.24(8) F10-Ta2-F9 89.91(8) F8-Ta2-F9 89.95(8) F6-Ta2-F7 90.74(8) F10-Ta2-F7 89.72(8) F8-Ta2-F7 90.40(8) F9-Ta2-F7 178.95(8) F6-Ta2-F5 179.43(8) F10-Ta2-F5 89.19(8) F8-Ta2-F5 89.27(8) F9-Ta2-F5 89.19(8) F7-Ta2-F5 89.83(8) Table A2. 13 Anisotropic atomic displacement parameters (Å 2 ) for [TaF 4 (C 5 H 5 N) 4 ][TaF 6 ] U 11 U 22 U 33 U 23 U 13 U 12 C1 0.0144(11) 0.0161(11) 0.0160(11) -0.0011(9) 0.0003(8) 0.0030(8) C2 0.0136(11) 0.0254(12) 0.0138(11) -0.0047(9) 0.0009(8) 0.0048(9) C3 0.0165(11) 0.0284(13) 0.0143(11) -0.0018(10) 0.0044(9) -0.0004(9) C4 0.0188(11) 0.0196(11) 0.0158(11) 0.0006(9) 0.0054(9) -0.0002(9) C5 0.0170(11) 0.0149(10) 0.0159(11) -0.0009(9) 0.0011(9) 0.0014(8) C6 0.0185(11) 0.0149(11) 0.0155(11) -0.0012(9) 0.0010(9) -0.0030(9) C7 0.0302(14) 0.0225(12) 0.0133(11) -0.0014(9) 0.0029(10) -0.0019(10) C8 0.0319(14) 0.0195(12) 0.0202(13) -0.0060(10) 0.0057(11) 0.0020(10) C9 0.0266(13) 0.0139(11) 0.0194(12) -0.0007(9) 0.0042(10) 0.0031(9) C10 0.0224(12) 0.0130(10) 0.0166(11) 0.0017(9) 0.0033(9) 0.0012(9) C11 0.0221(12) 0.0164(11) 0.0163(12) 0.0018(9) 0.0010(9) 0.0002(9) C12 0.0274(14) 0.0242(13) 0.0187(12) 0.0044(10) 0.0016(10) 0.0004(10) C13 0.0295(14) 0.0323(14) 0.0141(12) 0.0006(11) 0.0023(10) 0.0011(11) C14 0.0265(13) 0.0262(13) 0.0181(12) -0.0050(10) 0.0022(10) 0.0000(10) C15 0.0194(12) 0.0180(11) 0.0169(12) -0.0021(9) 0.0007(9) -0.0004(9) C16 0.0141(11) 0.0177(11) 0.0140(11) -0.0006(9) 0.0018(8) -0.0009(8) C17 0.0131(10) 0.0243(12) 0.0156(11) -0.0032(9) 0.0012(8) 0.0005(9) C18 0.0177(11) 0.0233(12) 0.0192(12) -0.0037(10) -0.0006(9) 0.0087(9) C19 0.0215(12) 0.0173(11) 0.0204(12) -0.0012(9) 0.0007(9) 0.0035(9) C20 0.0163(11) 0.0140(10) 0.0178(11) 0.0002(9) 0.0038(9) -0.0001(8) 186 U 11 U 22 U 33 U 23 U 13 U 12 F1 0.0152(6) 0.0174(7) 0.0134(7) -0.0001(5) -0.0012(5) 0.0058(5) F2 0.0157(6) 0.0123(6) 0.0154(7) 0.0000(5) 0.0019(5) -0.0013(5) F3 0.0124(6) 0.0125(6) 0.0167(7) -0.0023(5) 0.0020(5) -0.0013(5) F4 0.0125(6) 0.0151(6) 0.0136(6) 0.0022(5) -0.0001(5) 0.0024(5) F5 0.0475(10) 0.0180(8) 0.0305(9) -0.0016(7) -0.0014(8) -0.0051(7) F6 0.0350(9) 0.0194(8) 0.0487(11) -0.0069(7) 0.0029(8) -0.0045(7) F7 0.0371(10) 0.0406(10) 0.0257(9) 0.0181(8) -0.0060(7) -0.0047(8) F8 0.0401(10) 0.0428(11) 0.0452(11) -0.0045(9) 0.0246(9) 0.0077(8) F9 0.0472(11) 0.0323(9) 0.0219(8) 0.0001(7) -0.0108(7) 0.0175(8) F10 0.0310(9) 0.0355(9) 0.0352(10) 0.0028(8) 0.0162(7) 0.0063(7) N1 0.0123(9) 0.0146(9) 0.0135(9) -0.0028(7) 0.0006(7) 0.0005(7) N2 0.0129(9) 0.0133(9) 0.0127(9) 0.0012(7) 0.0005(7) 0.0006(7) N3 0.0138(9) 0.0151(9) 0.0146(9) 0.0006(7) 0.0015(7) 0.0017(7) N4 0.0107(8) 0.0138(9) 0.0144(9) -0.0010(7) 0.0004(7) 0.0005(7) Ta1 0.01047(4) 0.00999(4) 0.01152(4) -0.00016(3) 0.00053(3) 0.00092(3) Ta2 0.02050(5) 0.01269(4) 0.01387(5) -0.00013(3) 0.00149(3) 0.00209(3) Table A2. 14 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [TaF 4 (C 5 H 5 N) 4 ][TaF 6 ] x/a y/b z/c U(eq) H1 1.0783 0.0867 0.4197 0.019 H2 1.3030 0.1177 0.3658 0.021 H3 1.3046 0.2587 0.3093 0.023 H4 1.0736 0.3638 0.3085 0.021 H5 0.8542 0.3267 0.3636 0.019 H6 0.6743 0.1164 0.3089 0.02 H7 0.7022 -0.0129 0.2465 0.026 H8 0.7852 -0.1583 0.2922 0.028 H9 0.8303 -0.1701 0.4004 0.024 H10 0.7929 -0.0376 0.4589 0.021 H11 0.6549 0.0565 0.5691 0.022 H12 0.6571 0.0537 0.6752 0.028 H13 0.7230 0.1919 0.7330 0.03 H14 0.7891 0.3291 0.6814 0.028 H15 0.7802 0.3256 0.5753 0.022 H16 0.3709 0.2036 0.5185 0.018 H17 0.1425 0.3050 0.5239 0.021 H18 0.1400 0.4542 0.4765 0.025 H19 0.3711 0.4964 0.4264 0.024 H20 0.5948 0.3914 0.4242 0.019 187 Figure A2. 5 Asymmetric unit in the crystal structure of [NbF 4 (dppe) 2 ][NbF 6 ]•½ CH 3 CN Figure A2. 6 Unit cell of [NbF 4 (dppe) 2 ][NbF 6 ]•½ CH 3 CN. View normal to (001) 188 Figure A2. 7 Atom labeling scheme for [NbF 4 (dppe) 2 ][NbF 6 ]•½ CH 3 CN Table A2. 15 Sample and crystal data for [NbF 4 (dppe) 2 ][NbF 6 ]•½ CH 3 CN Identification code NbF5dppe Chemical formula C 106 H 99 F 20 NNb 4 P 8 Formula weight 2386.26 Temperature 100(2) K Wavelength 0.71073 Å Crystal size 0.289 x 0.328 x 0.337 mm Crystal system triclinic Space group P -1 Unit cell dimensions a = 10.8541(4) Å α = 66.5070(10)° b = 21.5561(7) Å β = 77.0890(10)° c = 24.1603(8) Å γ = 81.9000(10)° Volume 5044.7(3) Å 3 Z 2 Density (calculated) 1.571 g/cm 3 Absorption coefficient 0.655 mm -1 F(000) 2412 Table A2. 16 Data collection and structure refinement for [NbF 4 (dppe) 2 ][NbF 6 ]•½ CH 3 CN Diffractometer Bruker APEX II CCD Radiation source fine-focus tube, MoKα Theta range for data collection 1.64 to 30.52° Index ranges -15<=h<=15, -30<=k<=30, -34<=l<=34 Reflections collected 125637 Independent reflections 30285 [R(int) = 0.0331] Absorption correction multi-scan Max. and min. transmission 0.8330 and 0.8090 Structure solution technique direct methods Structure solution program SHELXS-97 (Sheldrick, 2008) 189 Refinement method Full-matrix least-squares on F 2 Refinement program SHELXL 2012-9 (Sheldrick, 2013) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 30285 / 24 / 1256 Goodness-of-fit on F 2 1.022 Δ/σ max 0.004 Final R indices 25299 data; I>2σ(I) R1 = 0.0289, wR2 = 0.0664 all data R1 = 0.0394, wR2 = 0.0711 Weighting scheme w=1/[σ 2 (F o 2 )+(0.0291P) 2 +3.8402P] where P=(F o 2 +2F c 2 )/3 Largest diff. peak and hole 0.998 and -1.282 eÅ -3 R.M.S. deviation from mean 0.077 eÅ -3 Table A2. 17 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [NbF 4 (dppe) 2 ][NbF 6 ]•½ CH 3 CN x/a y/b z/c U(eq) C1 0.55768(15) 0.12408(8) 0.79553(7) 0.0141(3) C2 0.67602(15) 0.08156(8) 0.78040(7) 0.0140(3) C3 0.44132(15) 0.26027(8) 0.75604(8) 0.0150(3) C4 0.45122(17) 0.32922(9) 0.72097(8) 0.0184(3) C5 0.38023(19) 0.37704(10) 0.74189(9) 0.0251(4) C6 0.2999(2) 0.35656(11) 0.79845(10) 0.0315(5) C7 0.2901(2) 0.28822(11) 0.83367(11) 0.0362(5) C8 0.35982(19) 0.23963(10) 0.81319(10) 0.0279(4) C9 0.41912(15) 0.17514(8) 0.69337(7) 0.0132(3) C10 0.31463(16) 0.21896(9) 0.67527(8) 0.0196(3) C11 0.23029(17) 0.20185(10) 0.64870(9) 0.0242(4) C12 0.24925(18) 0.14127(10) 0.63998(9) 0.0240(4) C13 0.35361(18) 0.09831(9) 0.65644(9) 0.0224(4) C14 0.43896(16) 0.11496(9) 0.68282(8) 0.0174(3) C15 0.93373(15) 0.07550(8) 0.72216(7) 0.0136(3) C16 0.01384(17) 0.03947(9) 0.76347(8) 0.0198(3) C17 0.09796(18) 0.98795(10) 0.75403(9) 0.0249(4) C18 0.10414(18) 0.97299(10) 0.70290(9) 0.0239(4) C19 0.02676(17) 0.00976(9) 0.66071(9) 0.0214(4) C20 0.94119(16) 0.06076(9) 0.67005(8) 0.0175(3) C21 0.85696(16) 0.15791(8) 0.79652(8) 0.0153(3) C22 0.80304(17) 0.13059(10) 0.85899(8) 0.0200(3) C23 0.8345(2) 0.15390(11) 0.89981(9) 0.0268(4) C24 0.9198(2) 0.20371(11) 0.87892(10) 0.0297(4) C25 0.9768(2) 0.22956(10) 0.81748(10) 0.0288(4) C26 0.94487(18) 0.20734(9) 0.77617(9) 0.0212(4) C27 0.83059(17) 0.39446(8) 0.49127(7) 0.0165(3) 190 x/a y/b z/c U(eq) C28 0.89938(17) 0.33528(8) 0.47525(8) 0.0179(3) C29 0.96914(15) 0.38668(8) 0.58508(8) 0.0160(3) C30 0.07228(17) 0.40744(9) 0.53677(9) 0.0213(4) C31 0.18943(18) 0.41267(10) 0.54858(10) 0.0274(4) C32 0.20335(19) 0.39896(10) 0.60804(10) 0.0287(4) C33 0.10109(18) 0.37946(9) 0.65621(10) 0.0250(4) C34 0.98475(17) 0.37214(9) 0.64517(8) 0.0194(3) C35 0.70348(15) 0.43796(8) 0.58878(7) 0.0143(3) C36 0.73015(17) 0.47896(9) 0.61660(9) 0.0209(3) C37 0.6413(2) 0.52881(10) 0.62587(10) 0.0272(4) C38 0.52533(19) 0.53818(10) 0.60740(9) 0.0261(4) C39 0.49763(17) 0.49721(9) 0.58030(8) 0.0206(3) C40 0.58555(16) 0.44694(8) 0.57129(8) 0.0168(3) C41 0.92467(16) 0.19095(9) 0.51088(7) 0.0163(3) C42 0.05347(17) 0.19111(10) 0.51137(9) 0.0230(4) C43 0.13859(19) 0.14111(10) 0.50008(10) 0.0274(4) C44 0.0959(2) 0.09023(10) 0.48900(9) 0.0289(4) C45 0.9684(2) 0.08862(10) 0.49059(10) 0.0300(4) C46 0.88205(19) 0.13838(9) 0.50184(9) 0.0220(4) C47 0.68437(16) 0.26276(9) 0.48444(8) 0.0165(3) C48 0.69810(18) 0.29227(9) 0.42054(8) 0.0208(3) C49 0.5981(2) 0.29506(10) 0.39230(9) 0.0253(4) C50 0.4849(2) 0.26864(12) 0.42697(10) 0.0333(5) C51 0.4705(2) 0.23889(15) 0.49003(11) 0.0438(6) C52 0.5697(2) 0.23593(12) 0.51899(9) 0.0322(5) C53 0.93737(15) 0.34147(9) 0.14637(8) 0.0154(3) C54 0.02705(15) 0.29022(9) 0.12533(8) 0.0155(3) C55 0.67942(16) 0.37852(8) 0.18805(7) 0.0142(3) C56 0.71342(17) 0.40491(9) 0.22667(8) 0.0179(3) C57 0.64017(19) 0.45768(9) 0.23888(9) 0.0226(4) C58 0.53257(19) 0.48414(10) 0.21354(9) 0.0244(4) C59 0.49803(18) 0.45789(10) 0.17558(9) 0.0239(4) C60 0.57137(17) 0.40537(9) 0.16253(8) 0.0188(3) C61 0.78031(16) 0.24548(8) 0.25068(7) 0.0142(3) C62 0.66920(17) 0.21143(9) 0.28219(8) 0.0178(3) C63 0.66373(18) 0.16362(9) 0.34157(8) 0.0211(4) C64 0.76739(19) 0.14908(9) 0.37016(8) 0.0228(4) C65 0.87722(19) 0.18239(10) 0.33933(9) 0.0252(4) C66 0.88438(17) 0.23068(10) 0.27983(8) 0.0211(4) C67 0.01006(15) 0.34894(8) 0.99550(7) 0.0138(3) C68 0.09158(17) 0.39639(9) 0.99028(9) 0.0218(4) C69 0.12558(19) 0.44937(10) 0.93402(9) 0.0276(4) C70 0.08104(18) 0.45486(10) 0.88297(9) 0.0241(4) 191 x/a y/b z/c U(eq) C71 0.00018(17) 0.40803(9) 0.88766(8) 0.0211(4) C72 0.96283(16) 0.35576(9) 0.94382(8) 0.0166(3) C73 0.05427(15) 0.20370(8) 0.05740(8) 0.0146(3) C74 0.06839(17) 0.14529(9) 0.10951(9) 0.0213(4) C75 0.12984(18) 0.08709(10) 0.10241(10) 0.0270(4) C76 0.17417(18) 0.08573(10) 0.04469(11) 0.0293(4) C77 0.16090(19) 0.14320(11) 0.99308(10) 0.0289(4) C78 0.10160(17) 0.20204(9) 0.99951(9) 0.0208(3) C79 0.49833(16) 0.15770(8) 0.06032(8) 0.0162(3) C80 0.41709(16) 0.22433(8) 0.05145(8) 0.0170(3) C81 0.48639(16) 0.11153(8) 0.19188(8) 0.0157(3) C82 0.36036(17) 0.09944(9) 0.19703(9) 0.0224(4) C83 0.28343(19) 0.07311(10) 0.25446(10) 0.0297(4) C84 0.3316(2) 0.05785(10) 0.30709(10) 0.0317(5) C85 0.4563(2) 0.06987(10) 0.30269(9) 0.0286(4) C86 0.53362(18) 0.09697(9) 0.24538(8) 0.0207(3) C87 0.70048(15) 0.06988(8) 0.11675(8) 0.0137(3) C88 0.67628(16) 0.00462(9) 0.16002(9) 0.0190(3) C89 0.75759(17) 0.94978(9) 0.15618(9) 0.0225(4) C90 0.86143(17) 0.95917(9) 0.10916(9) 0.0208(4) C91 0.88652(17) 0.02414(9) 0.06643(8) 0.0203(3) C92 0.80773(16) 0.07932(9) 0.07055(8) 0.0170(3) C93 0.58122(16) 0.31828(9) 0.94880(8) 0.0166(3) C94 0.5558(2) 0.28348(10) 0.91489(9) 0.0250(4) C95 0.6091(2) 0.30273(11) 0.85279(10) 0.0327(5) C96 0.6852(2) 0.35688(12) 0.82378(9) 0.0314(5) C97 0.71032(18) 0.39218(11) 0.85666(9) 0.0259(4) C98 0.66084(17) 0.37224(9) 0.91903(8) 0.0198(3) C99 0.41722(15) 0.36281(8) 0.04246(8) 0.0151(3) C100 0.41093(16) 0.42772(9) 0.99718(9) 0.0196(3) C101 0.33366(17) 0.47915(9) 0.01059(10) 0.0246(4) C102 0.26083(17) 0.46579(10) 0.06859(10) 0.0260(4) C103 0.26624(17) 0.40142(10) 0.11417(10) 0.0231(4) C104 0.34517(16) 0.35009(9) 0.10135(8) 0.0185(3) C105 0.2941(3) 0.23735(19) 0.32699(15) 0.0646(9) C106 0.2427(2) 0.24000(13) 0.27533(11) 0.0346(5) F1 0.74154(9) 0.28751(5) 0.69769(4) 0.01377(18) F2 0.70998(9) 0.16166(5) 0.63264(4) 0.01341(18) F3 0.59786(9) 0.29394(5) 0.60905(4) 0.01387(18) F4 0.92871(9) 0.23128(5) 0.62730(4) 0.01435(18) F5 0.79013(9) 0.17921(5) 0.15637(4) 0.01330(18) F6 0.78384(9) 0.23534(5) 0.02598(4) 0.01311(18) F7 0.71126(9) 0.35379(5) 0.05103(4) 0.01347(18) 192 x/a y/b z/c U(eq) F8 0.56250(9) 0.26043(5) 0.15753(4) 0.01361(18) F9 0.22339(16) 0.42302(14) 0.27792(9) 0.0889(8) F10 0.05745(15) 0.44308(8) 0.37097(6) 0.0477(4) F11 0.04002(18) 0.33953(8) 0.33876(7) 0.0579(4) F12 0.86998(14) 0.44021(10) 0.31964(8) 0.0559(4) F13 0.03422(14) 0.42526(8) 0.22457(6) 0.0444(4) F14 0.0519(2) 0.52797(9) 0.25640(7) 0.0787(6) F15 0.34631(11) 0.96830(6) 0.00065(6) 0.0287(3) F16 0.43051(10) 0.00673(5) 0.07687(5) 0.0216(2) F17 0.55645(11) 0.90948(6) 0.04182(5) 0.0285(3) F18 0.61340(12) 0.99819(7) 0.42894(6) 0.0346(3) F19 0.62015(14) 0.04350(8) 0.51516(7) 0.0448(4) F20 0.42866(13) 0.08452(7) 0.45218(6) 0.0404(3) N1 0.20264(18) 0.24253(11) 0.23538(9) 0.0393(5) Nb1 0.74546(2) 0.24319(2) 0.64165(2) 0.00936(3) Nb2 0.71211(2) 0.25682(2) 0.09797(2) 0.00921(3) Nb3 0.04705(2) 0.43529(2) 0.29729(2) 0.02693(4) Nb4 0.5 0.0 0.0 0.01337(4) Nb5 0.5 0.0 0.5 0.01959(5) P1 0.53068(4) 0.19848(2) 0.72679(2) 0.01094(7) P2 0.81029(4) 0.13507(2) 0.73979(2) 0.01131(7) P3 0.81659(4) 0.37318(2) 0.57358(2) 0.01220(8) P4 0.81456(4) 0.25848(2) 0.52227(2) 0.01316(8) P5 0.77857(4) 0.30901(2) 0.17401(2) 0.01156(7) P6 0.96466(4) 0.27758(2) 0.06682(2) 0.01111(7) P7 0.59355(4) 0.14273(2) 0.11842(2) 0.01163(7) P8 0.52086(4) 0.29326(2) 0.03068(2) 0.01218(8) Table A2. 18 Bond lengths (Å) for [NbF 4 (dppe) 2 ][NbF 6 ]•½ CH 3 CN C1-C2 1.533(2) C1-P1 1.8378(16) C1-H1A 0.99 C1-H1B 0.99 C2-P2 1.8300(16) C2-H2A 0.99 C2-H2B 0.99 C3-C4 1.392(2) C3-C8 1.401(2) C3-P1 1.8151(17) C4-C5 1.389(2) C4-H4 0.95 C5-C6 1.385(3) C5-H5 0.95 C6-C7 1.382(3) C6-H6 0.95 C7-C8 1.392(3) C7-H7 0.95 C8-H8 0.95 C9-C14 1.398(2) C9-C10 1.400(2) C9-P1 1.8177(16) C10-C11 1.390(2) C10-H10 0.95 C11-C12 1.384(3) C11-H11 0.95 C12-C13 1.382(3) C12-H12 0.95 193 C13-C14 1.390(2) C13-H13 0.95 C14-H14 0.95 C15-C16 1.391(2) C15-C20 1.399(2) C15-P2 1.8226(16) C16-C17 1.394(2) C16-H16 0.95 C17-C18 1.382(3) C17-H17 0.95 C18-C19 1.387(3) C18-H18 0.95 C19-C20 1.392(2) C19-H19 0.95 C20-H20 0.95 C21-C26 1.395(2) C21-C22 1.400(2) C21-P2 1.8156(16) C22-C23 1.391(2) C22-H22 0.95 C23-C24 1.380(3) C23-H23 0.95 C24-C25 1.387(3) C24-H24 0.95 C25-C26 1.388(3) C25-H25 0.95 C26-H26 0.95 C27-C28 1.527(2) C27-P3 1.8291(17) C27-H27A 0.99 C27-H27B 0.99 C28-P4 1.8279(17) C28-H28A 0.99 C28-H28B 0.99 C29-C30 1.399(2) C29-C34 1.402(2) C29-P3 1.8192(17) C30-C31 1.392(3) C30-H30 0.95 C31-C32 1.386(3) C31-H31 0.95 C32-C33 1.388(3) C32-H32 0.95 C33-C34 1.390(2) C33-H33 0.95 C34-H34 0.95 C35-C36 1.396(2) C35-C40 1.401(2) C35-P3 1.8210(17) C36-C37 1.392(3) C36-H36 0.95 C37-C38 1.390(3) C37-H37 0.95 C38-C39 1.387(3) C38-H38 0.95 C39-C40 1.391(2) C39-H39 0.95 C40-H40 0.95 C41-C46 1.391(2) C41-C42 1.401(3) C41-P4 1.8181(17) C42-C43 1.390(3) C42-H42 0.95 C43-C44 1.386(3) C43-H43 0.95 C44-C45 1.381(3) C44-H44 0.95 C45-C46 1.392(3) C45-H45 0.95 C46-H46 0.95 C47-C52 1.391(3) C47-C48 1.397(2) C47-P4 1.8205(17) C48-C49 1.389(3) C48-H48 0.95 C49-C50 1.375(3) C49-H49 0.95 C50-C51 1.378(3) C50-H50 0.95 C51-C52 1.391(3) C51-H51 0.95 C52-H52 0.95 C53-C54 1.533(2) C53-P5 1.8330(16) C53-H53A 0.99 C53-H53B 0.99 C54-P6 1.8218(16) C54-H54A 0.99 194 C54-H54B 0.99 C55-C60 1.392(2) C55-C56 1.402(2) C55-P5 1.8183(17) C56-C57 1.386(2) C56-H56 0.95 C57-C58 1.385(3) C57-H57 0.95 C58-C59 1.389(3) C58-H58 0.95 C59-C60 1.391(2) C59-H59 0.95 C60-H60 0.95 C61-C66 1.396(2) C61-C62 1.402(2) C61-P5 1.8147(17) C62-C63 1.387(2) C62-H62 0.95 C63-C64 1.384(3) C63-H63 0.95 C64-C65 1.382(3) C64-H64 0.95 C65-C66 1.391(3) C65-H65 0.95 C66-H66 0.95 C67-C68 1.395(2) C67-C72 1.401(2) C67-P6 1.8164(17) C68-C69 1.395(3) C68-H68 0.95 C69-C70 1.380(3) C69-H69 0.95 C70-C71 1.384(3) C70-H70 0.95 C71-C72 1.392(2) C71-H71 0.95 C72-H72 0.95 C73-C78 1.391(2) C73-C74 1.401(2) C73-P6 1.8132(17) C74-C75 1.390(3) C74-H74 0.95 C75-C76 1.381(3) C75-H75 0.95 C76-C77 1.382(3) C76-H76 0.95 C77-C78 1.389(3) C77-H77 0.95 C78-H78 0.95 C79-C80 1.539(2) C79-P7 1.8265(17) C79-H79A 0.99 C79-H79B 0.99 C80-P8 1.8310(17) C80-H80A 0.99 C80-H80B 0.99 C81-C82 1.398(2) C81-C86 1.400(2) C81-P7 1.8171(17) C82-C83 1.390(3) C82-H82 0.95 C83-C84 1.383(3) C83-H83 0.95 C84-C85 1.387(3) C84-H84 0.95 C85-C86 1.391(3) C85-H85 0.95 C86-H86 0.95 C87-C92 1.395(2) C87-C88 1.396(2) C87-P7 1.8250(16) C88-C89 1.393(2) C88-H88 0.95 C89-C90 1.382(3) C89-H89 0.95 C90-C91 1.389(3) C90-H90 0.95 C91-C92 1.388(2) C91-H91 0.95 C92-H92 0.95 C93-C98 1.399(3) C93-C94 1.400(2) C93-P8 1.8174(18) C94-C95 1.393(3) C94-H94 0.95 C95-C96 1.377(3) C95-H95 0.95 C96-C97 1.386(3) 195 C96-H96 0.95 C97-C98 1.390(3) C97-H97 0.95 C98-H98 0.95 C99-C100 1.395(2) C99-C104 1.401(2) C99-P8 1.8209(17) C100-C101 1.393(2) C100-H100 0.95 C101-C102 1.385(3) C101-H101 0.95 C102-C103 1.389(3) C102-H102 0.95 C103-C104 1.393(2) C103-H103 0.95 C104-H104 0.95 C105-C106 1.455(3) C105-H10A 0.98 C105-H10B 0.98 C105-H10C 0.98 C106-N1 1.123(3) F1-Nb1 1.9343(9) F2-Nb1 1.9539(9) F3-Nb1 1.9409(9) F4-Nb1 1.9393(9) F5-Nb2 1.9389(9) F6-Nb2 1.9445(9) F7-Nb2 1.9404(9) F8-Nb2 1.9295(9) F9-Nb3 1.8730(17) F10-Nb3 1.8825(12) F11-Nb3 1.9058(16) F12-Nb3 1.8765(15) F13-Nb3 1.8903(13) F14-Nb3 1.8447(17) F15-Nb4 1.8844(11) F16-Nb4 1.8967(10) F17-Nb4 1.8899(11) F18-Nb5 1.8866(12) F19-Nb5 1.8831(13) F20-Nb5 1.8915(12) Nb1-P4 2.7084(4) Nb1-P2 2.7252(4) Nb1-P1 2.7395(4) Nb1-P3 2.7424(4) Nb2-P6 2.7269(4) Nb2-P7 2.7545(4) Nb2-P8 2.7568(4) Nb2-P5 2.7621(4) Nb4-F15 1.8844(11) Nb4-F17 1.8898(11) Nb4-F16 1.8967(10) Nb5-F19 1.8831(13) Nb5-F18 1.8865(12) Nb5-F20 1.8915(12) Table A2. 19 Bond angles (°) for [NbF 4 (dppe) 2 ][NbF 6 ]•½ CH 3 CN C2-C1-P1 110.59(11) C2-C1-H1A 109.5 P1-C1-H1A 109.5 C2-C1-H1B 109.5 P1-C1-H1B 109.5 H1A-C1-H1B 108.1 C1-C2-P2 110.54(11) C1-C2-H2A 109.5 P2-C2-H2A 109.5 C1-C2-H2B 109.5 P2-C2-H2B 109.5 H2A-C2-H2B 108.1 C4-C3-C8 119.12(16) C4-C3-P1 119.99(13) C8-C3-P1 120.87(13) C5-C4-C3 120.60(17) C5-C4-H4 119.7 C3-C4-H4 119.7 C6-C5-C4 120.21(18) C6-C5-H5 119.9 C4-C5-H5 119.9 C7-C6-C5 119.51(18) C7-C6-H6 120.2 C5-C6-H6 120.2 C6-C7-C8 121.01(19) C6-C7-H7 119.5 C8-C7-H7 119.5 C7-C8-C3 119.53(18) 196 C7-C8-H8 120.2 C3-C8-H8 120.2 C14-C9-C10 118.99(15) C14-C9-P1 120.83(12) C10-C9-P1 120.12(13) C11-C10-C9 120.31(17) C11-C10-H10 119.8 C9-C10-H10 119.8 C12-C11-C10 120.10(17) C12-C11-H11 120.0 C10-C11-H11 120.0 C13-C12-C11 120.08(17) C13-C12-H12 120.0 C11-C12-H12 120.0 C12-C13-C14 120.37(17) C12-C13-H13 119.8 C14-C13-H13 119.8 C13-C14-C9 120.11(16) C13-C14-H14 119.9 C9-C14-H14 119.9 C16-C15-C20 119.22(15) C16-C15-P2 120.06(13) C20-C15-P2 120.43(12) C15-C16-C17 120.39(17) C15-C16-H16 119.8 C17-C16-H16 119.8 C18-C17-C16 120.25(17) C18-C17-H17 119.9 C16-C17-H17 119.9 C17-C18-C19 119.73(17) C17-C18-H18 120.1 C19-C18-H18 120.1 C18-C19-C20 120.54(17) C18-C19-H19 119.7 C20-C19-H19 119.7 C19-C20-C15 119.84(16) C19-C20-H20 120.1 C15-C20-H20 120.1 C26-C21-C22 119.18(16) C26-C21-P2 118.24(13) C22-C21-P2 122.49(13) C23-C22-C21 120.20(18) C23-C22-H22 119.9 C21-C22-H22 119.9 C24-C23-C22 120.06(19) C24-C23-H23 120.0 C22-C23-H23 120.0 C23-C24-C25 120.17(17) C23-C24-H24 119.9 C25-C24-H24 119.9 C24-C25-C26 120.27(19) C24-C25-H25 119.9 C26-C25-H25 119.9 C25-C26-C21 120.08(18) C25-C26-H26 120.0 C21-C26-H26 120.0 C28-C27-P3 109.12(11) C28-C27-H27A 109.9 P3-C27-H27A 109.9 C28-C27-H27B 109.9 P3-C27-H27B 109.9 H27A-C27-H27B 108.3 C27-C28-P4 109.31(11) C27-C28-H28A 109.8 P4-C28-H28A 109.8 C27-C28-H28B 109.8 P4-C28-H28B 109.8 H28A-C28-H28B 108.3 C30-C29-C34 119.30(16) C30-C29-P3 122.36(14) C34-C29-P3 118.25(13) C31-C30-C29 120.11(18) C31-C30-H30 119.9 C29-C30-H30 119.9 C32-C31-C30 120.07(18) C32-C31-H31 120.0 C30-C31-H31 120.0 C31-C32-C33 120.32(18) C31-C32-H32 119.8 C33-C32-H32 119.8 C32-C33-C34 120.05(19) C32-C33-H33 120.0 C34-C33-H33 120.0 C33-C34-C29 120.10(17) C33-C34-H34 119.9 C29-C34-H34 119.9 C36-C35-C40 119.12(15) C36-C35-P3 122.68(13) 197 C40-C35-P3 118.20(13) C37-C36-C35 120.32(17) C37-C36-H36 119.8 C35-C36-H36 119.8 C38-C37-C36 120.20(18) C38-C37-H37 119.9 C36-C37-H37 119.9 C39-C38-C37 119.83(17) C39-C38-H38 120.1 C37-C38-H38 120.1 C38-C39-C40 120.33(17) C38-C39-H39 119.8 C40-C39-H39 119.8 C39-C40-C35 120.19(16) C39-C40-H40 119.9 C35-C40-H40 119.9 C46-C41-C42 119.22(16) C46-C41-P4 120.45(14) C42-C41-P4 120.33(13) C43-C42-C41 120.38(18) C43-C42-H42 119.8 C41-C42-H42 119.8 C44-C43-C42 119.97(19) C44-C43-H43 120.0 C42-C43-H43 120.0 C45-C44-C43 119.76(18) C45-C44-H44 120.1 C43-C44-H44 120.1 C44-C45-C46 120.88(19) C44-C45-H45 119.6 C46-C45-H45 119.6 C41-C46-C45 119.71(18) C41-C46-H46 120.1 C45-C46-H46 120.1 C52-C47-C48 118.97(17) C52-C47-P4 120.21(13) C48-C47-P4 120.81(14) C49-C48-C47 120.19(18) C49-C48-H48 119.9 C47-C48-H48 119.9 C50-C49-C48 120.30(18) C50-C49-H49 119.8 C48-C49-H49 119.8 C49-C50-C51 120.07(19) C49-C50-H50 120.0 C51-C50-H50 120.0 C50-C51-C52 120.3(2) C50-C51-H51 119.9 C52-C51-H51 119.9 C51-C52-C47 120.17(19) C51-C52-H52 119.9 C47-C52-H52 119.9 C54-C53-P5 108.32(11) C54-C53-H53A 110.0 P5-C53-H53A 110.0 C54-C53-H53B 110.0 P5-C53-H53B 110.0 H53A-C53-H53B 108.4 C53-C54-P6 108.27(11) C53-C54-H54A 110.0 P6-C54-H54A 110.0 C53-C54-H54B 110.0 P6-C54-H54B 110.0 H54A-C54-H54B 108.4 C60-C55-C56 119.55(15) C60-C55-P5 122.34(13) C56-C55-P5 118.11(13) C57-C56-C55 120.04(16) C57-C56-H56 120.0 C55-C56-H56 120.0 C58-C57-C56 120.25(17) C58-C57-H57 119.9 C56-C57-H57 119.9 C57-C58-C59 119.94(17) C57-C58-H58 120.0 C59-C58-H58 120.0 C58-C59-C60 120.35(17) C58-C59-H59 119.8 C60-C59-H59 119.8 C59-C60-C55 119.86(16) C59-C60-H60 120.1 C55-C60-H60 120.1 C66-C61-C62 119.20(15) C66-C61-P5 123.40(13) C62-C61-P5 117.37(12) C63-C62-C61 119.99(16) C63-C62-H62 120.0 C61-C62-H62 120.0 198 C64-C63-C62 120.51(17) C64-C63-H63 119.7 C62-C63-H63 119.7 C65-C64-C63 119.79(17) C65-C64-H64 120.1 C63-C64-H64 120.1 C64-C65-C66 120.54(17) C64-C65-H65 119.7 C66-C65-H65 119.7 C65-C66-C61 119.97(17) C65-C66-H66 120.0 C61-C66-H66 120.0 C68-C67-C72 119.09(15) C68-C67-P6 122.32(13) C72-C67-P6 118.58(12) C69-C68-C67 119.92(17) C69-C68-H68 120.0 C67-C68-H68 120.0 C70-C69-C68 120.66(17) C70-C69-H69 119.7 C68-C69-H69 119.7 C69-C70-C71 119.85(17) C69-C70-H70 120.1 C71-C70-H70 120.1 C70-C71-C72 120.24(17) C70-C71-H71 119.9 C72-C71-H71 119.9 C71-C72-C67 120.20(16) C71-C72-H72 119.9 C67-C72-H72 119.9 C78-C73-C74 119.14(16) C78-C73-P6 121.45(13) C74-C73-P6 119.26(13) C75-C74-C73 119.48(18) C75-C74-H74 120.3 C73-C74-H74 120.3 C76-C75-C74 120.79(18) C76-C75-H75 119.6 C74-C75-H75 119.6 C75-C76-C77 120.03(18) C75-C76-H76 120.0 C77-C76-H76 120.0 C76-C77-C78 119.76(19) C76-C77-H77 120.1 C78-C77-H77 120.1 C77-C78-C73 120.78(18) C77-C78-H78 119.6 C73-C78-H78 119.6 C80-C79-P7 109.12(11) C80-C79-H79A 109.9 P7-C79-H79A 109.9 C80-C79-H79B 109.9 P7-C79-H79B 109.9 H79A-C79-H79B 108.3 C79-C80-P8 109.11(11) C79-C80-H80A 109.9 P8-C80-H80A 109.9 C79-C80-H80B 109.9 P8-C80-H80B 109.9 H80A-C80-H80B 108.3 C82-C81-C86 118.98(16) C82-C81-P7 122.56(14) C86-C81-P7 118.42(13) C83-C82-C81 120.40(19) C83-C82-H82 119.8 C81-C82-H82 119.8 C84-C83-C82 120.18(19) C84-C83-H83 119.9 C82-C83-H83 119.9 C83-C84-C85 120.06(18) C83-C84-H84 120.0 C85-C84-H84 120.0 C84-C85-C86 120.2(2) C84-C85-H85 119.9 C86-C85-H85 119.9 C85-C86-C81 120.21(18) C85-C86-H86 119.9 C81-C86-H86 119.9 C92-C87-C88 119.14(15) C92-C87-P7 119.34(12) C88-C87-P7 121.51(13) C89-C88-C87 120.04(17) C89-C88-H88 120.0 C87-C88-H88 120.0 C90-C89-C88 120.54(17) C90-C89-H89 119.7 C88-C89-H89 119.7 C89-C90-C91 119.54(16) 199 C89-C90-H90 120.2 C91-C90-H90 120.2 C92-C91-C90 120.42(17) C92-C91-H91 119.8 C90-C91-H91 119.8 C91-C92-C87 120.27(16) C91-C92-H92 119.9 C87-C92-H92 119.9 C98-C93-C94 118.60(17) C98-C93-P8 118.94(13) C94-C93-P8 122.39(14) C95-C94-C93 120.2(2) C95-C94-H94 119.9 C93-C94-H94 119.9 C96-C95-C94 120.54(19) C96-C95-H95 119.7 C94-C95-H95 119.7 C95-C96-C97 119.88(19) C95-C96-H96 120.1 C97-C96-H96 120.1 C96-C97-C98 120.1(2) C96-C97-H97 119.9 C98-C97-H97 119.9 C97-C98-C93 120.58(18) C97-C98-H98 119.7 C93-C98-H98 119.7 C100-C99-C104 119.27(16) C100-C99-P8 123.51(14) C104-C99-P8 117.15(13) C101-C100-C99 120.13(18) C101-C100-H100 119.9 C99-C100-H100 119.9 C102-C101-C100 120.20(18) C102-C101-H101 119.9 C100-C101-H101 119.9 C101-C102-C103 120.30(17) C101-C102-H102 119.8 C103-C102-H102 119.8 C102-C103-C104 119.75(18) C102-C103-H103 120.1 C104-C103-H103 120.1 C103-C104-C99 120.32(17) C103-C104-H104 119.8 C99-C104-H104 119.8 C106-C105-H10A 109.5 C106-C105-H10B 109.5 H10A-C105-H10B 109.5 C106-C105-H10C 109.5 H10A-C105-H10C 109.5 H10B-C105-H10C 109.5 N1-C106-C105 179.5(3) F1-Nb1-F4 92.98(4) F1-Nb1-F3 95.53(4) F4-Nb1-F3 146.16(4) F1-Nb1-F2 146.30(4) F4-Nb1-F2 97.89(4) F3-Nb1-F2 92.93(4) F1-Nb1-P4 143.10(3) F4-Nb1-P4 74.75(3) F3-Nb1-P4 78.91(3) F2-Nb1-P4 70.58(3) F1-Nb1-P2 80.19(3) F4-Nb1-P2 72.65(3) F3-Nb1-P2 141.11(3) F2-Nb1-P2 72.92(3) P4-Nb1-P2 126.190(14) F1-Nb1-P1 76.98(3) F4-Nb1-P1 143.50(3) F3-Nb1-P1 70.30(3) F2-Nb1-P1 75.36(3) P4-Nb1-P1 132.202(13) P2-Nb1-P1 71.088(13) F1-Nb1-P3 71.99(3) F4-Nb1-P3 77.69(3) F3-Nb1-P3 74.01(3) F2-Nb1-P3 141.52(3) P4-Nb1-P3 71.416(13) P2-Nb1-P3 137.793(13) P1-Nb1-P3 129.387(13) F8-Nb2-F5 93.66(4) F8-Nb2-F7 95.52(4) F5-Nb2-F7 146.55(4) F8-Nb2-F6 146.45(4) F5-Nb2-F6 96.75(4) F7-Nb2-F6 93.13(4) F8-Nb2-P6 142.68(3) F5-Nb2-P6 74.72(3) F7-Nb2-P6 78.58(3) 200 F6-Nb2-P6 70.86(3) F8-Nb2-P7 77.29(3) F5-Nb2-P7 71.36(3) F7-Nb2-P7 142.08(3) F6-Nb2-P7 76.05(3) P6-Nb2-P7 128.598(13) F8-Nb2-P8 76.82(3) F5-Nb2-P8 142.12(3) F7-Nb2-P8 71.33(3) F6-Nb2-P8 75.42(3) P6-Nb2-P8 132.872(13) P7-Nb2-P8 70.778(12) F8-Nb2-P5 72.78(3) F5-Nb2-P5 76.31(3) F7-Nb2-P5 75.87(3) F6-Nb2-P5 140.73(3) P6-Nb2-P5 70.034(12) P7-Nb2-P5 133.838(13) P8-Nb2-P5 132.225(13) F14-Nb3-F9 92.06(11) F14-Nb3-F12 92.40(10) F9-Nb3-F12 175.54(10) F14-Nb3-F10 90.59(7) F9-Nb3-F10 91.46(8) F12-Nb3-F10 88.72(7) F14-Nb3-F13 90.80(7) F9-Nb3-F13 89.22(7) F12-Nb3-F13 90.50(7) F10-Nb3-F13 178.43(6) F14-Nb3-F11 179.05(9) F9-Nb3-F11 88.51(10) F12-Nb3-F11 87.03(8) F10-Nb3-F11 90.15(7) F13-Nb3-F11 88.45(7) F15-Nb4-F15 180.0 F15-Nb4-F17 88.96(5) F15-Nb4-F17 91.04(5) F15-Nb4-F17 91.04(5) F15-Nb4-F17 88.96(5) F17-Nb4-F17 180.0 F15-Nb4-F16 90.43(5) F15-Nb4-F16 89.57(5) F17-Nb4-F16 90.79(5) F17-Nb4-F16 89.22(5) F15-Nb4-F16 89.57(5) F15-Nb4-F16 90.43(5) F17-Nb4-F16 89.21(5) F17-Nb4-F16 90.79(5) F16-Nb4-F16 180.0 F19-Nb5-F19 180.0 F19-Nb5-F18 90.78(6) F19-Nb5-F18 89.22(6) F19-Nb5-F18 89.22(6) F19-Nb5-F18 90.78(6) F18-Nb5-F18 180.0 F19-Nb5-F20 89.07(7) F19-Nb5-F20 90.93(7) F18-Nb5-F20 89.52(6) F18-Nb5-F20 90.48(6) F19-Nb5-F20 90.93(7) F19-Nb5-F20 89.07(7) F18-Nb5-F20 90.48(6) F18-Nb5-F20 89.52(6) F20-Nb5-F20 180.00(6) C3-P1-C9 104.24(8) C3-P1-C1 104.88(8) C9-P1-C1 106.62(7) C3-P1-Nb1 115.39(6) C9-P1-Nb1 110.43(5) C1-P1-Nb1 114.43(5) C21-P2-C15 106.85(8) C21-P2-C2 106.03(8) C15-P2-C2 102.42(7) C21-P2-Nb1 114.06(6) C15-P2-Nb1 116.07(5) C2-P2-Nb1 110.34(5) C29-P3-C35 107.43(8) C29-P3-C27 106.77(8) C35-P3-C27 104.03(8) C29-P3-Nb1 112.15(5) C35-P3-Nb1 114.08(5) C27-P3-Nb1 111.79(6) C41-P4-C47 105.83(8) C41-P4-C28 103.74(8) C47-P4-C28 105.73(8) C41-P4-Nb1 113.11(5) C47-P4-Nb1 114.98(6) C28-P4-Nb1 112.50(6) 201 C61-P5-C55 103.23(7) C61-P5-C53 105.73(8) C55-P5-C53 103.68(7) C61-P5-Nb2 111.95(5) C55-P5-Nb2 118.25(5) C53-P5-Nb2 112.79(5) C73-P6-C67 106.29(8) C73-P6-C54 105.11(8) C67-P6-C54 106.55(8) C73-P6-Nb2 110.18(5) C67-P6-Nb2 114.50(5) C54-P6-Nb2 113.55(5) C81-P7-C87 104.81(8) C81-P7-C79 105.76(8) C87-P7-C79 104.76(7) C81-P7-Nb2 114.07(5) C87-P7-Nb2 114.70(5) C79-P7-Nb2 111.85(6) C93-P8-C99 107.97(8) C93-P8-C80 105.76(8) C99-P8-C80 105.42(8) C93-P8-Nb2 112.35(6) C99-P8-Nb2 112.01(5) C80-P8-Nb2 112.86(5) Table A2. 20 Anisotropic atomic displacement parameters (Å 2 ) for [NbF 4 (dppe) 2 ][NbF 6 ]•½ CH 3 CN U 11 U 22 U 33 U 23 U 13 U 12 C1 0.0142(7) 0.0134(7) 0.0113(7) -0.0015(6) -0.0013(6) -0.0015(6) C2 0.0141(7) 0.0116(7) 0.0132(7) -0.0013(6) -0.0022(6) -0.0019(5) C3 0.0131(7) 0.0156(8) 0.0171(8) -0.0081(6) -0.0013(6) -0.0005(6) C4 0.0211(8) 0.0160(8) 0.0169(8) -0.0071(7) -0.0004(6) 0.0005(6) C5 0.0306(10) 0.0182(9) 0.0258(10) -0.0109(8) -0.0005(8) 0.0016(7) C6 0.0318(11) 0.0270(10) 0.0372(12) -0.0213(9) 0.0065(9) 0.0010(8) C7 0.0371(12) 0.0302(11) 0.0337(12) -0.0174(9) 0.0211(9) -0.0068(9) C8 0.0282(10) 0.0212(9) 0.0286(10) -0.0108(8) 0.0112(8) -0.0057(7) C9 0.0116(7) 0.0146(7) 0.0123(7) -0.0036(6) -0.0007(6) -0.0039(5) C10 0.0160(8) 0.0201(8) 0.0234(9) -0.0088(7) -0.0055(7) 0.0013(6) C11 0.0156(8) 0.0315(10) 0.0261(9) -0.0098(8) -0.0078(7) -0.0002(7) C12 0.0196(8) 0.0321(10) 0.0234(9) -0.0105(8) -0.0050(7) -0.0097(7) C13 0.0269(9) 0.0201(9) 0.0229(9) -0.0089(7) -0.0040(7) -0.0088(7) C14 0.0185(8) 0.0159(8) 0.0179(8) -0.0056(6) -0.0044(6) -0.0023(6) C15 0.0123(7) 0.0122(7) 0.0154(7) -0.0047(6) -0.0016(6) -0.0008(5) C16 0.0212(8) 0.0184(8) 0.0210(8) -0.0083(7) -0.0079(7) 0.0036(6) C17 0.0218(9) 0.0221(9) 0.0319(10) -0.0102(8) -0.0119(8) 0.0067(7) C18 0.0194(8) 0.0191(9) 0.0334(10) -0.0129(8) -0.0032(7) 0.0040(7) C19 0.0224(9) 0.0199(9) 0.0225(9) -0.0112(7) -0.0003(7) 0.0002(7) C20 0.0189(8) 0.0163(8) 0.0166(8) -0.0059(6) -0.0034(6) 0.0005(6) C21 0.0170(7) 0.0159(8) 0.0156(8) -0.0072(6) -0.0079(6) 0.0027(6) C22 0.0206(8) 0.0248(9) 0.0152(8) -0.0078(7) -0.0060(7) 0.0016(7) C23 0.0306(10) 0.0348(11) 0.0192(9) -0.0147(8) -0.0100(8) 0.0068(8) C24 0.0412(12) 0.0283(10) 0.0321(11) -0.0200(9) -0.0228(9) 0.0098(9) C25 0.0362(11) 0.0221(9) 0.0344(11) -0.0099(8) -0.0191(9) -0.0042(8) C26 0.0241(9) 0.0195(8) 0.0203(9) -0.0042(7) -0.0090(7) -0.0041(7) C27 0.0209(8) 0.0142(8) 0.0122(7) -0.0022(6) -0.0018(6) -0.0040(6) C28 0.0221(8) 0.0159(8) 0.0138(8) -0.0053(6) 0.0033(6) -0.0073(6) C29 0.0137(7) 0.0107(7) 0.0222(8) -0.0038(6) -0.0043(6) -0.0022(6) 202 U 11 U 22 U 33 U 23 U 13 U 12 C30 0.0195(8) 0.0162(8) 0.0239(9) -0.0024(7) -0.0025(7) -0.0050(6) C31 0.0173(8) 0.0206(9) 0.0345(11) -0.0004(8) -0.0012(8) -0.0067(7) C32 0.0199(9) 0.0203(9) 0.0413(12) -0.0014(8) -0.0123(8) -0.0072(7) C33 0.0249(9) 0.0199(9) 0.0303(10) -0.0037(8) -0.0138(8) -0.0053(7) C34 0.0185(8) 0.0168(8) 0.0221(9) -0.0050(7) -0.0050(7) -0.0038(6) C35 0.0164(7) 0.0106(7) 0.0135(7) -0.0029(6) -0.0012(6) -0.0007(6) C36 0.0204(8) 0.0202(9) 0.0259(9) -0.0120(7) -0.0065(7) 0.0002(7) C37 0.0322(10) 0.0219(9) 0.0336(11) -0.0177(8) -0.0068(8) 0.0021(8) C38 0.0258(9) 0.0202(9) 0.0314(10) -0.0119(8) -0.0038(8) 0.0056(7) C39 0.0176(8) 0.0171(8) 0.0224(9) -0.0031(7) -0.0036(7) 0.0007(6) C40 0.0182(8) 0.0121(7) 0.0181(8) -0.0030(6) -0.0036(6) -0.0025(6) C41 0.0199(8) 0.0159(8) 0.0116(7) -0.0051(6) -0.0004(6) -0.0011(6) C42 0.0203(8) 0.0234(9) 0.0260(9) -0.0123(8) 0.0002(7) -0.0021(7) C43 0.0215(9) 0.0288(10) 0.0301(10) -0.0129(8) 0.0003(8) 0.0021(7) C44 0.0367(11) 0.0246(10) 0.0256(10) -0.0133(8) -0.0064(8) 0.0105(8) C45 0.0432(12) 0.0202(9) 0.0342(11) -0.0156(8) -0.0177(9) 0.0077(8) C46 0.0280(9) 0.0182(8) 0.0229(9) -0.0087(7) -0.0111(7) 0.0017(7) C47 0.0207(8) 0.0163(8) 0.0145(7) -0.0073(6) -0.0042(6) -0.0016(6) C48 0.0280(9) 0.0179(8) 0.0148(8) -0.0051(7) -0.0030(7) -0.0012(7) C49 0.0383(11) 0.0229(9) 0.0167(8) -0.0073(7) -0.0118(8) 0.0022(8) C50 0.0331(11) 0.0474(13) 0.0293(11) -0.0197(10) -0.0145(9) -0.0041(9) C51 0.0318(12) 0.0794(19) 0.0271(11) -0.0207(12) -0.0045(9) -0.0253(12) C52 0.0313(11) 0.0511(13) 0.0165(9) -0.0097(9) -0.0041(8) -0.0199(10) C53 0.0159(7) 0.0180(8) 0.0152(7) -0.0086(6) -0.0008(6) -0.0064(6) C54 0.0131(7) 0.0198(8) 0.0147(7) -0.0073(6) -0.0025(6) -0.0030(6) C55 0.0171(7) 0.0114(7) 0.0135(7) -0.0044(6) -0.0003(6) -0.0037(6) C56 0.0211(8) 0.0168(8) 0.0180(8) -0.0086(7) -0.0043(6) -0.0017(6) C57 0.0311(10) 0.0190(9) 0.0225(9) -0.0123(7) -0.0061(7) -0.0007(7) C58 0.0293(10) 0.0182(9) 0.0286(10) -0.0138(8) -0.0062(8) 0.0052(7) C59 0.0231(9) 0.0216(9) 0.0305(10) -0.0135(8) -0.0086(8) 0.0048(7) C60 0.0219(8) 0.0162(8) 0.0212(8) -0.0096(7) -0.0059(7) 0.0001(6) C61 0.0176(7) 0.0128(7) 0.0123(7) -0.0054(6) -0.0013(6) -0.0014(6) C62 0.0191(8) 0.0184(8) 0.0154(8) -0.0054(6) -0.0023(6) -0.0041(6) C63 0.0259(9) 0.0195(8) 0.0163(8) -0.0048(7) -0.0010(7) -0.0068(7) C64 0.0334(10) 0.0200(9) 0.0133(8) -0.0039(7) -0.0049(7) -0.0025(7) C65 0.0253(9) 0.0304(10) 0.0189(9) -0.0062(8) -0.0098(7) 0.0011(8) C66 0.0191(8) 0.0274(9) 0.0152(8) -0.0056(7) -0.0032(6) -0.0035(7) C67 0.0130(7) 0.0127(7) 0.0138(7) -0.0041(6) -0.0004(6) -0.0008(5) C68 0.0226(9) 0.0203(9) 0.0207(9) -0.0041(7) -0.0041(7) -0.0072(7) C69 0.0285(10) 0.0195(9) 0.0283(10) 0.0002(8) -0.0037(8) -0.0121(7) C70 0.0206(9) 0.0203(9) 0.0195(9) 0.0023(7) 0.0021(7) -0.0029(7) C71 0.0190(8) 0.0245(9) 0.0146(8) -0.0029(7) -0.0024(6) 0.0006(7) C72 0.0149(7) 0.0175(8) 0.0153(8) -0.0048(6) -0.0020(6) -0.0004(6) 203 U 11 U 22 U 33 U 23 U 13 U 12 C73 0.0101(7) 0.0155(8) 0.0185(8) -0.0063(6) -0.0037(6) -0.0003(5) C74 0.0193(8) 0.0189(8) 0.0229(9) -0.0045(7) -0.0062(7) 0.0010(6) C75 0.0198(9) 0.0175(9) 0.0369(11) -0.0034(8) -0.0080(8) 0.0041(7) C76 0.0183(9) 0.0204(9) 0.0491(13) -0.0166(9) -0.0036(8) 0.0051(7) C77 0.0253(10) 0.0285(10) 0.0339(11) -0.0184(9) 0.0021(8) 0.0028(8) C78 0.0213(8) 0.0199(9) 0.0203(8) -0.0087(7) -0.0012(7) 0.0013(7) C79 0.0177(8) 0.0131(7) 0.0213(8) -0.0079(6) -0.0082(6) -0.0005(6) C80 0.0146(7) 0.0123(7) 0.0254(9) -0.0060(6) -0.0090(6) -0.0005(6) C81 0.0185(8) 0.0093(7) 0.0177(8) -0.0051(6) 0.0011(6) -0.0033(6) C82 0.0194(8) 0.0185(8) 0.0282(10) -0.0083(7) -0.0005(7) -0.0059(7) C83 0.0241(9) 0.0240(10) 0.0368(11) -0.0118(9) 0.0086(8) -0.0100(8) C84 0.0388(12) 0.0224(10) 0.0268(10) -0.0090(8) 0.0141(9) -0.0123(8) C85 0.0432(12) 0.0206(9) 0.0190(9) -0.0067(7) 0.0020(8) -0.0076(8) C86 0.0263(9) 0.0164(8) 0.0189(8) -0.0066(7) -0.0014(7) -0.0039(7) C87 0.0154(7) 0.0118(7) 0.0169(7) -0.0073(6) -0.0063(6) 0.0003(6) C88 0.0160(8) 0.0134(8) 0.0254(9) -0.0060(7) -0.0017(7) -0.0017(6) C89 0.0218(9) 0.0115(8) 0.0318(10) -0.0050(7) -0.0071(7) 0.0002(6) C90 0.0182(8) 0.0172(8) 0.0312(10) -0.0132(7) -0.0080(7) 0.0036(6) C91 0.0193(8) 0.0218(9) 0.0217(9) -0.0116(7) -0.0018(7) -0.0002(7) C92 0.0216(8) 0.0148(8) 0.0161(8) -0.0076(6) -0.0029(6) -0.0011(6) C93 0.0177(8) 0.0166(8) 0.0165(8) -0.0069(6) -0.0082(6) 0.0054(6) C94 0.0330(10) 0.0241(9) 0.0231(9) -0.0113(8) -0.0145(8) 0.0040(8) C95 0.0453(13) 0.0351(11) 0.0249(10) -0.0180(9) -0.0175(9) 0.0122(10) C96 0.0318(11) 0.0423(12) 0.0162(9) -0.0104(8) -0.0081(8) 0.0141(9) C97 0.0194(9) 0.0329(11) 0.0178(9) -0.0038(8) -0.0031(7) 0.0047(7) C98 0.0178(8) 0.0223(9) 0.0192(8) -0.0076(7) -0.0058(7) 0.0020(6) C99 0.0111(7) 0.0137(7) 0.0233(8) -0.0087(6) -0.0052(6) -0.0007(5) C100 0.0168(8) 0.0142(8) 0.0274(9) -0.0073(7) -0.0048(7) -0.0006(6) C101 0.0183(8) 0.0130(8) 0.0428(12) -0.0106(8) -0.0074(8) 0.0012(6) C102 0.0149(8) 0.0232(9) 0.0497(13) -0.0242(9) -0.0071(8) 0.0017(7) C103 0.0135(8) 0.0300(10) 0.0338(10) -0.0216(8) -0.0022(7) -0.0018(7) C104 0.0139(7) 0.0207(8) 0.0237(9) -0.0105(7) -0.0046(6) -0.0018(6) C105 0.0596(19) 0.096(3) 0.0606(19) -0.0504(19) -0.0368(16) 0.0280(18) C106 0.0256(10) 0.0455(13) 0.0334(12) -0.0154(10) -0.0091(9) 0.0030(9) F1 0.0159(4) 0.0138(4) 0.0136(4) -0.0066(4) -0.0032(4) -0.0020(3) F2 0.0163(4) 0.0117(4) 0.0132(4) -0.0053(4) -0.0021(4) -0.0034(3) F3 0.0134(4) 0.0132(4) 0.0139(4) -0.0029(4) -0.0044(4) -0.0008(3) F4 0.0112(4) 0.0141(5) 0.0164(5) -0.0047(4) -0.0014(4) -0.0016(3) F5 0.0152(4) 0.0100(4) 0.0135(4) -0.0023(4) -0.0042(4) -0.0012(3) F6 0.0142(4) 0.0137(4) 0.0124(4) -0.0061(4) -0.0021(3) -0.0010(3) F7 0.0157(4) 0.0097(4) 0.0147(4) -0.0036(4) -0.0037(4) -0.0014(3) F8 0.0125(4) 0.0143(4) 0.0142(4) -0.0063(4) 0.0002(3) -0.0027(3) F9 0.0303(8) 0.185(2) 0.0665(12) -0.0640(15) 0.0071(8) -0.0314(12) 204 U 11 U 22 U 33 U 23 U 13 U 12 F10 0.0659(10) 0.0669(10) 0.0160(6) -0.0126(6) 0.0017(6) -0.0467(8) F11 0.0886(13) 0.0436(9) 0.0333(8) -0.0153(7) 0.0046(8) -0.0013(8) F12 0.0333(8) 0.0946(13) 0.0534(10) -0.0444(10) -0.0088(7) 0.0044(8) F13 0.0559(9) 0.0589(9) 0.0248(7) -0.0238(7) -0.0129(6) 0.0090(7) F14 0.1511(15) 0.0462(9) 0.0306(8) -0.0098(7) 0.0038(9) -0.0276(10) F15 0.0207(5) 0.0383(7) 0.0349(7) -0.0205(6) -0.0030(5) -0.0095(5) F16 0.0276(6) 0.0211(5) 0.0161(5) -0.0091(4) 0.0004(4) -0.0026(4) F17 0.0324(6) 0.0177(5) 0.0262(6) -0.0039(5) 0.0002(5) 0.0054(5) F18 0.0395(7) 0.0363(7) 0.0226(6) -0.0126(5) 0.0081(5) -0.0030(6) F19 0.0464(8) 0.0553(9) 0.0403(8) -0.0218(7) -0.0038(6) -0.0229(7) F20 0.0351(7) 0.0304(7) 0.0324(7) 0.0033(5) 0.0060(6) 0.0055(5) N1 0.0300(10) 0.0555(13) 0.0296(10) -0.0105(9) -0.0077(8) -0.0074(9) Nb1 0.00990(6) 0.00891(6) 0.00906(6) -0.00306(5) -0.00148(5) -0.00136(4) Nb2 0.00992(6) 0.00795(6) 0.01011(6) -0.00345(5) -0.00199(5) -0.00135(4) Nb3 0.02666(9) 0.04163(11) 0.01275(7) -0.00915(7) 0.00069(6) -0.01339(8) Nb4 0.01448(9) 0.01268(9) 0.01349(9) -0.00616(8) -0.00096(7) -0.00149(7) Nb5 0.02296(11) 0.01886(11) 0.01426(10) -0.00532(8) 0.00149(8) -0.00358(8) P1 0.01052(17) 0.01014(17) 0.01127(18) - 0.00346(14) - 0.00096(14) - 0.00134(13) P2 0.01193(18) 0.01068(18) 0.01049(18) - 0.00307(14) - 0.00246(14) - 0.00032(14) P3 0.01300(18) 0.01012(18) 0.01275(18) - 0.00325(15) - 0.00218(15) - 0.00209(14) P4 0.01630(19) 0.01263(19) 0.01000(18) - 0.00421(15) - 0.00007(15) - 0.00316(15) P5 0.01278(18) 0.01153(18) 0.01113(18) - 0.00493(15) - 0.00109(14) - 0.00301(14) P6 0.01064(17) 0.01196(18) 0.01082(18) - 0.00426(15) - 0.00167(14) - 0.00169(14) P7 0.01255(18) 0.00886(17) 0.01430(18) - 0.00465(15) - 0.00320(15) - 0.00124(14) P8 0.01217(18) 0.00995(18) 0.01541(19) - 0.00481(15) - 0.00488(15) - 0.00005(14) Table A2. 21 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [NbF 4 (dppe) 2 ][NbF 6 ]•½ CH 3 CN x/a y/b z/c U(eq) H1A 0.5684 0.1391 0.8279 0.017 H1B 0.4832 0.0961 0.8115 0.017 H2A 0.6590 0.0590 0.7545 0.017 H2B 0.6969 0.0460 0.8188 0.017 H4 0.5070 0.3437 0.6824 0.022 H5 0.3868 0.4239 0.7173 0.03 H6 0.2519 0.3893 0.8129 0.038 H7 0.2350 0.2742 0.8725 0.043 205 x/a y/b z/c U(eq) H8 0.3522 0.1928 0.8378 0.033 H10 0.3013 0.2606 0.6812 0.024 H11 0.1595 0.2318 0.6365 0.029 H12 0.1905 0.1292 0.6227 0.029 H13 0.3671 0.0572 0.6497 0.027 H14 0.5109 0.0854 0.6937 0.021 H16 1.0112 0.0500 0.7983 0.024 H17 1.1512 -0.0370 0.7829 0.03 H18 1.1612 -0.0623 0.6967 0.029 H19 1.0322 0.0001 0.6251 0.026 H20 0.8880 0.0855 0.6411 0.021 H22 0.7448 0.0960 0.8735 0.024 H23 0.7972 0.1355 0.9421 0.032 H24 0.9396 0.2203 0.9067 0.036 H25 1.0378 0.2626 0.8036 0.035 H26 0.9830 0.2258 0.7340 0.025 H27A 0.7453 0.4036 0.4804 0.02 H27B 0.8784 0.4357 0.4676 0.02 H28A 0.9870 0.3286 0.4830 0.021 H28B 0.9034 0.3452 0.4312 0.021 H30 1.0624 0.4180 0.4958 0.026 H31 1.2599 0.4256 0.5158 0.033 H32 1.2832 0.4029 0.6159 0.034 H33 1.1107 0.3711 0.6968 0.03 H34 0.9157 0.3573 0.6784 0.023 H36 0.8093 0.4728 0.6293 0.025 H37 0.6600 0.5565 0.6449 0.033 H38 0.4652 0.5726 0.6133 0.031 H39 0.4182 0.5035 0.5678 0.025 H40 0.5655 0.4186 0.5532 0.02 H42 1.0828 0.2256 0.5195 0.028 H43 1.2260 0.1418 0.5000 0.033 H44 1.1542 0.0566 0.4803 0.035 H45 0.9392 0.0531 0.4839 0.036 H46 0.7944 0.1364 0.5033 0.026 H48 0.7761 0.3105 0.3963 0.025 H49 0.6078 0.3153 0.3488 0.03 H50 0.4166 0.2709 0.4074 0.04 H51 0.3925 0.2203 0.5138 0.053 H52 0.5591 0.2155 0.5625 0.039 H53A 0.9358 0.3859 0.1117 0.019 H53B 0.9668 0.3477 0.1797 0.019 H54A 1.0330 0.2467 0.1606 0.019 206 x/a y/b z/c U(eq) H54B 1.1128 0.3075 0.1083 0.019 H56 0.7867 0.3866 0.2445 0.021 H57 0.6639 0.4758 0.2647 0.027 H58 0.4824 0.5202 0.2221 0.029 H59 0.4239 0.4759 0.1584 0.029 H60 0.5478 0.3878 0.1362 0.023 H62 0.5977 0.2211 0.2629 0.021 H63 0.5883 0.1407 0.3628 0.025 H64 0.7630 0.1163 0.4108 0.027 H65 0.9484 0.1722 0.3589 0.03 H66 0.9601 0.2536 0.2591 0.025 H68 1.1239 0.3926 0.0250 0.026 H69 1.1799 0.4820 -0.0692 0.033 H70 1.1058 0.4907 -0.1553 0.029 H71 0.9701 0.4116 -0.1476 0.025 H72 0.9051 0.3246 -0.0529 0.02 H74 1.0362 0.1454 0.1494 0.026 H75 1.1415 0.0478 0.1377 0.032 H76 1.2138 0.0453 0.0405 0.035 H77 1.1922 0.1425 -0.0467 0.035 H78 1.0933 0.2416 -0.0360 0.025 H79A 0.5543 0.1606 0.0210 0.019 H79B 0.4430 0.1196 0.0736 0.019 H80A 0.3566 0.2202 0.0899 0.02 H80B 0.3682 0.2341 0.0186 0.02 H82 0.3271 0.1093 0.1611 0.027 H83 0.1976 0.0656 0.2576 0.036 H84 0.2792 0.0391 0.3463 0.038 H85 0.4891 0.0596 0.3389 0.034 H86 0.6187 0.1056 0.2426 0.025 H88 0.6043 -0.0024 0.1921 0.023 H89 0.7415 -0.0944 0.1861 0.027 H90 0.9153 -0.0785 0.1061 0.025 H91 0.9581 0.0308 0.0342 0.024 H92 0.8269 0.1237 0.0418 0.02 H94 0.5021 0.2466 -0.0657 0.03 H95 0.5928 0.2783 -0.1697 0.039 H96 0.7204 0.3700 -0.2187 0.038 H97 0.7615 0.4301 -0.1635 0.031 H98 0.6813 0.3955 -0.0583 0.024 H100 0.4594 0.4369 -0.0429 0.023 H101 0.3309 0.5235 -0.0201 0.03 H102 0.2069 0.5008 0.0772 0.031 207 x/a y/b z/c U(eq) H103 0.2163 0.3924 0.1539 0.028 H104 0.3502 0.3063 0.1327 0.022 H10A 0.2255 0.2465 0.3573 0.097 H10B 0.3570 0.2715 0.3125 0.097 H10C 0.3344 0.1923 0.3459 0.097 Figure A2. 8 Asymmetric unit in the crystal structure of [TaF 4 (dppe) 2 ][TaF 6 ]•½ CH 3 CN Figure A2. 9 Unit cell of [TaF 4 (dppe) 2 ][TaF 6 ]•½ CH 3 CN. View normal to (001) 208 Figure A2. 10 Atom labeling scheme for [TaF 4 (dppe) 2 ][TaF 6 ]•½ CH 3 CN Table A2. 22 Sample and crystal data for [TaF 4 (dppe) 2 ][TaF 6 ]•½ CH 3 CN Identification code TaF5dppe Chemical formula C 106 H 99 F 20 NP 8 Ta 4 Formula weight 2738.42 Temperature 100(2) K Wavelength 0.71073 Å Crystal size 0.132 x 0.192 x 0.340 mm Crystal habit clear colourless prism Crystal system triclinic Space group P -1 Unit cell dimensions a = 10.8349(3) Å α = 66.3390(10)° b = 21.5844(5) Å β = 77.2640(10)° c = 24.2118(6) Å γ = 81.7830(10)° Volume 5049.3(2) Å 3 Z 2 Density (calculated) 1.801 g/cm 3 Absorption coefficient 4.532 mm -1 F(000) 2668 Table A2. 23 Data collection and structure refinement for [TaF 4 (dppe) 2 ][TaF 6 ]•½ CH 3 CN Diffractometer Bruker APEX DUO Radiation source fine-focus tube, MoKα Theta range for data collection 1.03 to 30.52° Index ranges -15<=h<=15, -30<=k<=30, -34<=l<=34 Reflections collected 102392 Independent reflections 30801 [R(int) = 0.0365] Coverage of independent reflections 99.7% Absorption correction multi-scan 209 Max. and min. transmission 0.5860 and 0.3080 Structure solution technique direct methods Structure solution program SHELXTL XT 2013/5 (Bruker AXS) Refinement method Full-matrix least-squares on F 2 Refinement program SHELXL-2013 (Sheldrick, 2013) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 30801 / 0 / 1256 Goodness-of-fit on F 2 1.021 Δ/σ max 0.006 Final R indices 25596 data; I>2σ(I) R1 = 0.0271, wR2 = 0.0559 all data R1 = 0.0394, wR2 = 0.0599 Weighting scheme w=1/[σ 2 (F o 2 )+(0.0229P) 2 +5.4407P] where P=(F o 2 +2F c 2 )/3 Largest diff. peak and hole 3.323 and -2.733 eÅ -3 R.M.S. deviation from mean 0.129 eÅ -3 Table A2. 24 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [TaF 4 (dppe) 2 ][TaF 6 ]•½ CH 3 CN x/a y/b z/c U(eq) C1 0.4227(3) 0.69154(13) 0.01062(12) 0.0158(5) C2 0.5515(3) 0.69195(16) 0.01052(14) 0.0232(6) C3 0.6369(3) 0.64182(16) 0.99960(15) 0.0269(7) C4 0.5941(3) 0.59063(17) 0.98959(16) 0.0297(7) C5 0.4661(3) 0.58848(16) 0.99173(16) 0.0295(7) C6 0.3794(3) 0.63859(14) 0.00253(14) 0.0208(6) C7 0.1815(3) 0.76341(14) 0.98388(13) 0.0159(5) C8 0.0656(3) 0.73822(19) 0.01795(15) 0.0300(7) C9 0.9668(4) 0.7414(2) 0.98901(17) 0.0417(10) C10 0.9815(3) 0.77002(19) 0.92579(16) 0.0322(8) C11 0.0965(3) 0.79447(15) 0.89149(14) 0.0247(6) C12 0.1960(3) 0.79137(14) 0.91992(13) 0.0199(6) C13 0.4681(2) 0.88726(13) 0.08478(13) 0.0153(5) C14 0.4838(3) 0.87271(14) 0.14483(14) 0.0184(6) C15 0.6003(3) 0.87992(15) 0.15585(15) 0.0240(6) C16 0.7030(3) 0.89911(15) 0.10779(16) 0.0268(7) C17 0.6881(3) 0.91285(15) 0.04866(15) 0.0260(7) C18 0.5710(3) 0.90780(14) 0.03673(14) 0.0205(6) C19 0.2016(2) 0.93891(12) 0.08856(12) 0.0133(5) C20 0.2293(3) 0.98023(14) 0.11573(14) 0.0195(6) C21 0.1406(3) 0.02968(16) 0.12493(16) 0.0267(7) C22 0.0236(3) 0.03910(15) 0.10689(15) 0.0253(7) C23 0.9952(3) 0.99788(14) 0.08051(14) 0.0205(6) 210 x/a y/b z/c U(eq) C24 0.0832(3) 0.94764(13) 0.07152(13) 0.0164(5) C25 0.3958(3) 0.83582(14) 0.97553(13) 0.0181(6) C26 0.3272(3) 0.89497(13) 0.99159(12) 0.0164(5) C27 0.9162(2) 0.67547(13) 0.19352(12) 0.0138(5) C28 0.9365(3) 0.61508(14) 0.18319(13) 0.0173(5) C29 0.8517(3) 0.59850(15) 0.15663(14) 0.0222(6) C30 0.7466(3) 0.64212(16) 0.13932(14) 0.0231(6) C31 0.7275(3) 0.70264(16) 0.14815(14) 0.0230(6) C32 0.8114(3) 0.71902(15) 0.17537(14) 0.0196(6) C33 0.9380(2) 0.76076(13) 0.25572(12) 0.0145(5) C34 0.8556(3) 0.74060(16) 0.31214(15) 0.0270(7) C35 0.7858(3) 0.78877(18) 0.33258(17) 0.0345(8) C36 0.7963(3) 0.85726(17) 0.29756(16) 0.0302(7) C37 0.8776(3) 0.87752(15) 0.24174(15) 0.0243(6) C38 0.9484(3) 0.82971(14) 0.22090(13) 0.0180(5) C39 0.3571(2) 0.65789(14) 0.29634(12) 0.0151(5) C40 0.3033(3) 0.63093(15) 0.35883(13) 0.0196(6) C41 0.3349(3) 0.65420(17) 0.39943(15) 0.0257(7) C42 0.4204(3) 0.70393(17) 0.37852(16) 0.0298(7) C43 0.4765(3) 0.72977(16) 0.31714(16) 0.0285(7) C44 0.4451(3) 0.70719(14) 0.27616(14) 0.0205(6) C45 0.4327(2) 0.57509(13) 0.22263(12) 0.0136(5) C46 0.5129(3) 0.53878(14) 0.26425(14) 0.0200(6) C47 0.5967(3) 0.48702(15) 0.25498(15) 0.0249(7) C48 0.6031(3) 0.47263(15) 0.20391(15) 0.0227(6) C49 0.5259(3) 0.51012(14) 0.16117(14) 0.0199(6) C50 0.4407(3) 0.56112(14) 0.17064(13) 0.0174(5) C51 0.0570(2) 0.62507(13) 0.29540(12) 0.0139(5) C52 0.1748(2) 0.58246(13) 0.28038(12) 0.0139(5) C53 0.0130(3) 0.38936(13) 0.30785(13) 0.0158(5) C54 0.1392(3) 0.40163(15) 0.30281(15) 0.0223(6) C55 0.2160(3) 0.42798(16) 0.24531(17) 0.0298(7) C56 0.1673(3) 0.44320(16) 0.19292(16) 0.0310(8) C57 0.0426(3) 0.43107(16) 0.19766(15) 0.0281(7) C58 0.9650(3) 0.40374(14) 0.25460(13) 0.0203(6) C59 0.7996(2) 0.43055(13) 0.38344(12) 0.0129(5) C60 0.8233(3) 0.49598(13) 0.34023(14) 0.0182(6) C61 0.7414(3) 0.55072(14) 0.34424(15) 0.0221(6) C62 0.6380(3) 0.54103(14) 0.39110(14) 0.0204(6) C63 0.6134(3) 0.47599(15) 0.43372(14) 0.0201(6) C64 0.6924(3) 0.42070(14) 0.42962(13) 0.0169(5) C65 0.0847(2) 0.13650(13) 0.45831(13) 0.0145(5) C66 0.1557(2) 0.14864(14) 0.39987(14) 0.0186(6) 211 x/a y/b z/c U(eq) C67 0.2342(3) 0.09672(16) 0.38751(15) 0.0228(6) C68 0.2387(3) 0.03262(16) 0.43338(17) 0.0279(7) C69 0.1663(3) 0.01985(15) 0.49110(17) 0.0251(7) C70 0.0902(3) 0.07158(14) 0.50414(14) 0.0192(6) C71 0.9218(3) 0.18209(14) 0.55126(13) 0.0164(5) C72 0.9493(3) 0.21648(16) 0.58463(15) 0.0251(6) C73 0.8964(4) 0.19816(18) 0.64649(16) 0.0328(8) C74 0.8187(3) 0.14448(19) 0.67582(15) 0.0323(8) C75 0.7919(3) 0.10928(17) 0.64361(14) 0.0260(7) C76 0.8411(3) 0.12881(15) 0.58152(13) 0.0187(6) C77 0.0030(3) 0.34173(13) 0.43942(13) 0.0164(5) C78 0.0844(3) 0.27531(13) 0.44796(14) 0.0170(5) C79 0.4441(2) 0.29577(13) 0.44319(13) 0.0149(5) C80 0.3972(3) 0.29719(15) 0.50075(14) 0.0215(6) C81 0.3385(3) 0.35603(17) 0.50695(16) 0.0283(7) C82 0.3255(3) 0.41384(16) 0.45556(17) 0.0284(7) C83 0.3691(3) 0.41251(15) 0.39814(16) 0.0273(7) C84 0.4302(3) 0.35434(15) 0.39110(14) 0.0210(6) C85 0.4898(2) 0.15066(13) 0.50493(12) 0.0141(5) C86 0.5376(2) 0.14387(14) 0.55644(12) 0.0162(5) C87 0.5011(3) 0.09165(15) 0.61263(13) 0.0202(6) C88 0.4205(3) 0.04450(15) 0.61755(14) 0.0239(6) C89 0.3750(3) 0.05015(16) 0.56679(15) 0.0280(7) C90 0.4086(3) 0.10320(15) 0.51044(14) 0.0228(6) C91 0.7183(2) 0.25466(13) 0.24931(12) 0.0132(5) C92 0.8287(3) 0.28932(14) 0.21777(13) 0.0171(5) C93 0.8341(3) 0.33685(15) 0.15869(13) 0.0213(6) C94 0.7299(3) 0.35150(15) 0.13005(14) 0.0226(6) C95 0.6205(3) 0.31757(16) 0.16079(14) 0.0248(6) C96 0.6142(3) 0.26932(16) 0.22018(13) 0.0217(6) C97 0.8201(3) 0.12164(13) 0.31149(12) 0.0149(5) C98 0.7856(3) 0.09535(14) 0.27343(13) 0.0176(5) C99 0.8584(3) 0.04295(15) 0.26108(14) 0.0224(6) C100 0.9675(3) 0.01654(15) 0.28588(15) 0.0253(6) C101 0.0031(3) 0.04267(15) 0.32322(15) 0.0238(6) C102 0.9299(3) 0.09490(14) 0.33645(14) 0.0192(6) C103 0.4728(2) 0.20943(14) 0.37524(12) 0.0151(5) C104 0.5625(2) 0.15876(14) 0.35401(13) 0.0155(5) C105 0.2065(5) 0.2654(3) 0.1727(2) 0.0645(15) C106 0.2555(3) 0.2613(2) 0.22538(17) 0.0336(8) F1 0.09622(14) 0.79484(7) 0.10863(7) 0.0133(3) F2 0.20688(14) 0.66226(7) 0.13319(7) 0.0125(3) F3 0.42654(13) 0.73174(7) 0.12691(7) 0.0137(3) 212 x/a y/b z/c U(eq) F4 0.23979(14) 0.78703(7) 0.19771(7) 0.0134(3) F5 0.70875(14) 0.32022(7) 0.34387(7) 0.0127(3) F6 0.93784(14) 0.23982(7) 0.34312(7) 0.0135(3) F7 0.78859(14) 0.14638(7) 0.44890(7) 0.0124(3) F8 0.71801(14) 0.26468(7) 0.47365(7) 0.0126(3) F9 0.07187(19) 0.41531(10) 0.04878(9) 0.0398(5) F10 0.88615(19) 0.50286(10) 0.07079(9) 0.0338(5) F11 0.1212(2) 0.54392(12) 0.01444(11) 0.0440(6) F12 0.94258(18) 0.59070(9) 0.45789(8) 0.0287(4) F13 0.06857(17) 0.49287(8) 0.42329(8) 0.0223(4) F14 0.15476(16) 0.53199(10) 0.49858(9) 0.0281(4) F15 0.4621(2) 0.07626(13) 0.27481(10) 0.0496(6) F16 0.4426(5) 0.97389(15) 0.24313(12) 0.1080(15) F17 0.2741(3) 0.0814(2) 0.21964(15) 0.0971(13) F18 0.4426(2) 0.05842(13) 0.12804(9) 0.0500(7) F19 0.6287(2) 0.05986(16) 0.18091(13) 0.0609(7) F20 0.4611(3) 0.16243(13) 0.15967(11) 0.0631(8) N1 0.2945(3) 0.25764(18) 0.26609(14) 0.0395(8) P1 0.31163(6) 0.75890(3) 0.02204(3) 0.01302(13) P2 0.31465(6) 0.87376(3) 0.07365(3) 0.01166(12) P3 0.02789(6) 0.69913(3) 0.22667(3) 0.01082(12) P4 0.30973(6) 0.63521(3) 0.23999(3) 0.01099(12) P5 0.90636(6) 0.35777(3) 0.38134(3) 0.01133(12) P6 0.98070(6) 0.20635(3) 0.46955(3) 0.01229(13) P7 0.53472(6) 0.22210(3) 0.43366(3) 0.01080(12) P8 0.72145(6) 0.19106(3) 0.32596(3) 0.01156(12) Ta1 0.24332(2) 0.74348(2) 0.14161(2) 0.00891(2) Ta2 0.78802(2) 0.24319(2) 0.40217(2) 0.00899(2) Ta3 0.0 0.5 0.0 0.01892(4) Ta4 0.0 0.5 0.5 0.01313(3) Ta5 0.45103(2) 0.06612(2) 0.20196(2) 0.02857(3) Table A2. 25 Bond lengths (Å) for [TaF 4 (dppe) 2 ][TaF 6 ]•½ CH 3 CN C1-C6 1.392(4) C1-C2 1.396(4) C1-P1 1.821(3) C2-C3 1.390(4) C2-H2 0.95 C3-C4 1.380(5) C3-H3 0.95 C4-C5 1.383(5) C4-H4 0.95 C5-C6 1.396(4) C5-H5 0.95 C6-H6 0.95 C7-C8 1.390(4) C7-C12 1.399(4) C7-P1 1.820(3) C8-C9 1.383(4) C8-H8 0.95 C9-C10 1.383(5) C9-H9 0.95 C10-C11 1.378(5) 213 C10-H10 0.95 C11-C12 1.383(4) C11-H11 0.95 C12-H12 0.95 C13-C18 1.396(4) C13-C14 1.403(4) C13-P2 1.822(3) C14-C15 1.388(4) C14-H14 0.95 C15-C16 1.392(4) C15-H15 0.95 C16-C17 1.382(5) C16-H16 0.95 C17-C18 1.391(4) C17-H17 0.95 C18-H18 0.95 C19-C20 1.397(4) C19-C24 1.398(4) C19-P2 1.824(3) C20-C21 1.384(4) C20-H20 0.95 C21-C22 1.391(4) C21-H21 0.95 C22-C23 1.384(4) C22-H22 0.95 C23-C24 1.391(4) C23-H23 0.95 C24-H24 0.95 C25-C26 1.527(4) C25-P1 1.826(3) C25-H25A 0.99 C25-H25B 0.99 C26-P2 1.829(3) C26-H26A 0.99 C26-H26B 0.99 C27-C32 1.396(4) C27-C28 1.402(4) C27-P3 1.817(3) C28-C29 1.387(4) C28-H28 0.95 C29-C30 1.395(4) C29-H29 0.95 C30-C31 1.386(5) C30-H30 0.95 C31-C32 1.389(4) C31-H31 0.95 C32-H32 0.95 C33-C38 1.392(4) C33-C34 1.396(4) C33-P3 1.814(3) C34-C35 1.386(5) C34-H34 0.95 C35-C36 1.384(5) C35-H35 0.95 C36-C37 1.380(4) C36-H36 0.95 C37-C38 1.389(4) C37-H37 0.95 C38-H38 0.95 C39-C44 1.396(4) C39-C40 1.403(4) C39-P4 1.811(3) C40-C41 1.389(4) C40-H40 0.95 C41-C42 1.381(5) C41-H41 0.95 C42-C43 1.387(5) C42-H42 0.95 C43-C44 1.386(4) C43-H43 0.95 C44-H44 0.95 C45-C50 1.390(4) C45-C46 1.394(4) C45-P4 1.826(3) C46-C47 1.395(4) C46-H46 0.95 C47-C48 1.377(5) C47-H47 0.95 C48-C49 1.394(4) C48-H48 0.95 C49-C50 1.391(4) C49-H49 0.95 C50-H50 0.95 C51-C52 1.529(4) C51-P3 1.837(3) C51-H51A 0.99 C51-H51B 0.99 C52-P4 1.828(3) 214 C52-H52A 0.99 C52-H52B 0.99 C53-C58 1.399(4) C53-C54 1.400(4) C53-P5 1.820(3) C54-C55 1.394(4) C54-H54 0.95 C55-C56 1.381(5) C55-H55 0.95 C56-C57 1.384(5) C56-H56 0.95 C57-C58 1.390(4) C57-H57 0.95 C58-H58 0.95 C59-C64 1.397(4) C59-C60 1.398(4) C59-P5 1.824(3) C60-C61 1.395(4) C60-H60 0.95 C61-C62 1.379(4) C61-H61 0.95 C62-C63 1.389(4) C62-H62 0.95 C63-C64 1.390(4) C63-H63 0.95 C64-H64 0.95 C65-C66 1.394(4) C65-C70 1.398(4) C65-P6 1.823(3) C66-C67 1.397(4) C66-H66 0.95 C67-C68 1.386(5) C67-H67 0.95 C68-C69 1.383(5) C68-H68 0.95 C69-C70 1.389(4) C69-H69 0.95 C70-H70 0.95 C71-C72 1.394(4) C71-C76 1.397(4) C71-P6 1.817(3) C72-C73 1.392(5) C72-H72 0.95 C73-C74 1.382(5) C73-H73 0.95 C74-C75 1.381(5) C74-H74 0.95 C75-C76 1.387(4) C75-H75 0.95 C76-H76 0.95 C77-C78 1.535(4) C77-P5 1.830(3) C77-H77A 0.99 C77-H77B 0.99 C78-P6 1.829(3) C78-H78A 0.99 C78-H78B 0.99 C79-C80 1.385(4) C79-C84 1.400(4) C79-P7 1.815(3) C80-C81 1.386(4) C80-H80 0.95 C81-C82 1.380(5) C81-H81 0.95 C82-C83 1.377(5) C82-H82 0.95 C83-C84 1.389(4) C83-H83 0.95 C84-H84 0.95 C85-C90 1.392(4) C85-C86 1.401(4) C85-P7 1.817(3) C86-C87 1.392(4) C86-H86 0.95 C87-C88 1.387(4) C87-H87 0.95 C88-C89 1.378(5) C88-H88 0.95 C89-C90 1.397(4) C89-H89 0.95 C90-H90 0.95 C91-C96 1.392(4) C91-C92 1.404(4) C91-P8 1.816(3) C92-C93 1.380(4) C92-H92 0.95 C93-C94 1.386(4) C93-H93 0.95 215 C94-C95 1.385(4) C94-H94 0.95 C95-C96 1.390(4) C95-H95 0.95 C96-H96 0.95 C97-C98 1.394(4) C97-C102 1.398(4) C97-P8 1.819(3) C98-C99 1.380(4) C98-H98 0.95 C99-C100 1.388(4) C99-H99 0.95 C100-C101 1.382(4) C100-H100 0.95 C101-C102 1.387(4) C101-H101 0.95 C102-H102 0.95 C103-C104 1.527(4) C103-P7 1.818(3) C103-H10A 0.99 C103-H10B 0.99 C104-P8 1.834(3) C104-H10C 0.99 C104-H10D 0.99 C105-C106 1.453(5) C105-H10E 0.98 C105-H10F 0.98 C105-H10G 0.98 C106-N1 1.126(5) F1-Ta1 1.9371(14) F2-Ta1 1.9470(15) F3-Ta1 1.9362(14) F4-Ta1 1.9293(15) F5-Ta2 1.9332(14) F6-Ta2 1.9264(15) F7-Ta2 1.9360(14) F8-Ta2 1.9365(15) F9-Ta3 1.8997(19) F10-Ta3 1.8959(19) F11-Ta3 1.889(2) F12-Ta4 1.8943(17) F13-Ta4 1.9009(17) F14-Ta4 1.8911(17) F15-Ta5 1.893(2) F16-Ta5 1.840(3) F17-Ta5 1.881(3) F18-Ta5 1.885(2) F19-Ta5 1.880(2) F20-Ta5 1.921(3) P1-Ta1 2.7187(7) P2-Ta1 2.7494(6) P3-Ta1 2.7463(6) P4-Ta1 2.7311(6) P5-Ta2 2.7630(6) P6-Ta2 2.7636(7) P7-Ta2 2.7344(6) P8-Ta2 2.7707(7) Ta3-F11 1.889(2) Ta3-F10 1.8959(19) Ta3-F9 1.8997(19) Ta4-F14 1.8911(17) Ta4-F12 1.8943(17) Ta4-F13 1.9009(17) Table A2. 26 Bond angles (°) for [TaF 4 (dppe) 2 ][TaF 6 ]•½ CH 3 CN C6-C1-C2 119.3(3) C6-C1-P1 120.1(2) C2-C1-P1 120.6(2) C3-C2-C1 120.6(3) C3-C2-H2 119.7 C1-C2-H2 119.7 C4-C3-C2 119.9(3) C4-C3-H3 120.1 C2-C3-H3 120.1 C3-C4-C5 120.0(3) C3-C4-H4 120.0 C5-C4-H4 120.0 C4-C5-C6 120.7(3) C4-C5-H5 119.7 C6-C5-H5 119.7 C1-C6-C5 119.5(3) C1-C6-H6 120.3 C5-C6-H6 120.3 C8-C7-C12 118.5(3) C8-C7-P1 120.4(2) 216 C12-C7-P1 121.1(2) C9-C8-C7 120.5(3) C9-C8-H8 119.8 C7-C8-H8 119.8 C10-C9-C8 120.6(3) C10-C9-H9 119.7 C8-C9-H9 119.7 C11-C10-C9 119.5(3) C11-C10-H10 120.3 C9-C10-H10 120.3 C10-C11-C12 120.4(3) C10-C11-H11 119.8 C12-C11-H11 119.8 C11-C12-C7 120.5(3) C11-C12-H12 119.8 C7-C12-H12 119.8 C18-C13-C14 119.4(3) C18-C13-P2 122.6(2) C14-C13-P2 117.9(2) C15-C14-C13 120.0(3) C15-C14-H14 120.0 C13-C14-H14 120.0 C14-C15-C16 120.2(3) C14-C15-H15 119.9 C16-C15-H15 119.9 C17-C16-C15 120.0(3) C17-C16-H16 120.0 C15-C16-H16 120.0 C16-C17-C18 120.4(3) C16-C17-H17 119.8 C18-C17-H17 119.8 C17-C18-C13 120.0(3) C17-C18-H18 120.0 C13-C18-H18 120.0 C20-C19-C24 119.3(2) C20-C19-P2 122.7(2) C24-C19-P2 118.1(2) C21-C20-C19 120.1(3) C21-C20-H20 119.9 C19-C20-H20 119.9 C20-C21-C22 120.5(3) C20-C21-H21 119.7 C22-C21-H21 119.7 C23-C22-C21 119.6(3) C23-C22-H22 120.2 C21-C22-H22 120.2 C22-C23-C24 120.4(3) C22-C23-H23 119.8 C24-C23-H23 119.8 C23-C24-C19 120.1(3) C23-C24-H24 119.9 C19-C24-H24 119.9 C26-C25-P1 109.67(18) C26-C25-H25A 109.7 P1-C25-H25A 109.7 C26-C25-H25B 109.7 P1-C25-H25B 109.7 H25A-C25-H25B 108.2 C25-C26-P2 109.28(18) C25-C26-H26A 109.8 P2-C26-H26A 109.8 C25-C26-H26B 109.8 P2-C26-H26B 109.8 H26A-C26-H26B 108.3 C32-C27-C28 118.9(3) C32-C27-P3 120.1(2) C28-C27-P3 120.9(2) C29-C28-C27 120.2(3) C29-C28-H28 119.9 C27-C28-H28 119.9 C28-C29-C30 120.3(3) C28-C29-H29 119.8 C30-C29-H29 119.8 C31-C30-C29 119.8(3) C31-C30-H30 120.1 C29-C30-H30 120.1 C30-C31-C32 120.0(3) C30-C31-H31 120.0 C32-C31-H31 120.0 C31-C32-C27 120.7(3) C31-C32-H32 119.6 C27-C32-H32 119.6 C38-C33-C34 118.7(3) C38-C33-P3 119.9(2) C34-C33-P3 121.3(2) C35-C34-C33 120.1(3) C35-C34-H34 119.9 C33-C34-H34 119.9 217 C36-C35-C34 120.8(3) C36-C35-H35 119.6 C34-C35-H35 119.6 C37-C36-C35 119.4(3) C37-C36-H36 120.3 C35-C36-H36 120.3 C36-C37-C38 120.4(3) C36-C37-H37 119.8 C38-C37-H37 119.8 C37-C38-C33 120.6(3) C37-C38-H38 119.7 C33-C38-H38 119.7 C44-C39-C40 118.7(3) C44-C39-P4 118.5(2) C40-C39-P4 122.7(2) C41-C40-C39 120.5(3) C41-C40-H40 119.8 C39-C40-H40 119.8 C42-C41-C40 120.1(3) C42-C41-H41 120.0 C40-C41-H41 120.0 C41-C42-C43 119.9(3) C41-C42-H42 120.0 C43-C42-H42 120.0 C44-C43-C42 120.5(3) C44-C43-H43 119.8 C42-C43-H43 119.8 C43-C44-C39 120.3(3) C43-C44-H44 119.8 C39-C44-H44 119.8 C50-C45-C46 119.4(3) C50-C45-P4 120.6(2) C46-C45-P4 119.8(2) C45-C46-C47 120.1(3) C45-C46-H46 119.9 C47-C46-H46 119.9 C48-C47-C46 120.2(3) C48-C47-H47 119.9 C46-C47-H47 119.9 C47-C48-C49 119.9(3) C47-C48-H48 120.1 C49-C48-H48 120.1 C50-C49-C48 120.1(3) C50-C49-H49 119.9 C48-C49-H49 119.9 C45-C50-C49 120.1(3) C45-C50-H50 119.9 C49-C50-H50 119.9 C52-C51-P3 110.78(18) C52-C51-H51A 109.5 P3-C51-H51A 109.5 C52-C51-H51B 109.5 P3-C51-H51B 109.5 H51A-C51-H51B 108.1 C51-C52-P4 110.81(18) C51-C52-H52A 109.5 P4-C52-H52A 109.5 C51-C52-H52B 109.5 P4-C52-H52B 109.5 H52A-C52-H52B 108.1 C58-C53-C54 119.3(3) C58-C53-P5 118.3(2) C54-C53-P5 122.4(2) C55-C54-C53 120.3(3) C55-C54-H54 119.9 C53-C54-H54 119.9 C56-C55-C54 120.1(3) C56-C55-H55 119.9 C54-C55-H55 119.9 C55-C56-C57 119.9(3) C55-C56-H56 120.1 C57-C56-H56 120.1 C56-C57-C58 120.9(3) C56-C57-H57 119.5 C58-C57-H57 119.5 C57-C58-C53 119.5(3) C57-C58-H58 120.2 C53-C58-H58 120.2 C64-C59-C60 119.3(2) C64-C59-P5 119.2(2) C60-C59-P5 121.5(2) C61-C60-C59 119.9(3) C61-C60-H60 120.0 C59-C60-H60 120.0 C62-C61-C60 120.5(3) C62-C61-H61 119.7 C60-C61-H61 119.7 C61-C62-C63 119.6(3) 218 C61-C62-H62 120.2 C63-C62-H62 120.2 C62-C63-C64 120.6(3) C62-C63-H63 119.7 C64-C63-H63 119.7 C63-C64-C59 120.0(3) C63-C64-H64 120.0 C59-C64-H64 120.0 C66-C65-C70 119.5(3) C66-C65-P6 117.2(2) C70-C65-P6 123.1(2) C65-C66-C67 120.3(3) C65-C66-H66 119.9 C67-C66-H66 119.9 C68-C67-C66 119.6(3) C68-C67-H67 120.2 C66-C67-H67 120.2 C69-C68-C67 120.5(3) C69-C68-H68 119.8 C67-C68-H68 119.8 C68-C69-C70 120.3(3) C68-C69-H69 119.9 C70-C69-H69 119.9 C69-C70-C65 119.8(3) C69-C70-H70 120.1 C65-C70-H70 120.1 C72-C71-C76 118.4(3) C72-C71-P6 122.6(2) C76-C71-P6 118.9(2) C73-C72-C71 120.4(3) C73-C72-H72 119.8 C71-C72-H72 119.8 C74-C73-C72 120.3(3) C74-C73-H73 119.9 C72-C73-H73 119.9 C75-C74-C73 120.0(3) C75-C74-H74 120.0 C73-C74-H74 120.0 C74-C75-C76 119.8(3) C74-C75-H75 120.1 C76-C75-H75 120.1 C75-C76-C71 121.0(3) C75-C76-H76 119.5 C71-C76-H76 119.5 C78-C77-P5 109.44(19) C78-C77-H77A 109.8 P5-C77-H77A 109.8 C78-C77-H77B 109.8 P5-C77-H77B 109.8 H77A-C77-H77B 108.2 C77-C78-P6 109.14(18) C77-C78-H78A 109.9 P6-C78-H78A 109.9 C77-C78-H78B 109.9 P6-C78-H78B 109.9 H78A-C78-H78B 108.3 C80-C79-C84 119.3(3) C80-C79-P7 121.5(2) C84-C79-P7 119.0(2) C79-C80-C81 120.6(3) C79-C80-H80 119.7 C81-C80-H80 119.7 C82-C81-C80 120.1(3) C82-C81-H81 119.9 C80-C81-H81 119.9 C83-C82-C81 119.8(3) C83-C82-H82 120.1 C81-C82-H82 120.1 C82-C83-C84 120.8(3) C82-C83-H83 119.6 C84-C83-H83 119.6 C83-C84-C79 119.4(3) C83-C84-H84 120.3 C79-C84-H84 120.3 C90-C85-C86 119.0(2) C90-C85-P7 122.6(2) C86-C85-P7 118.5(2) C87-C86-C85 120.3(3) C87-C86-H86 119.8 C85-C86-H86 119.8 C88-C87-C86 120.2(3) C88-C87-H87 119.9 C86-C87-H87 119.9 C89-C88-C87 119.7(3) C89-C88-H88 120.1 C87-C88-H88 120.1 C88-C89-C90 120.6(3) C88-C89-H89 119.7 219 C90-C89-H89 119.7 C85-C90-C89 120.1(3) C85-C90-H90 119.9 C89-C90-H90 119.9 C96-C91-C92 118.9(2) C96-C91-P8 123.7(2) C92-C91-P8 117.4(2) C93-C92-C91 120.4(3) C93-C92-H92 119.8 C91-C92-H92 119.8 C92-C93-C94 120.4(3) C92-C93-H93 119.8 C94-C93-H93 119.8 C95-C94-C93 119.6(3) C95-C94-H94 120.2 C93-C94-H94 120.2 C94-C95-C96 120.5(3) C94-C95-H95 119.8 C96-C95-H95 119.8 C95-C96-C91 120.2(3) C95-C96-H96 119.9 C91-C96-H96 119.9 C98-C97-C102 119.4(3) C98-C97-P8 118.5(2) C102-C97-P8 122.1(2) C99-C98-C97 120.2(3) C99-C98-H98 119.9 C97-C98-H98 119.9 C98-C99-C100 120.3(3) C98-C99-H99 119.9 C100-C99-H99 119.9 C101-C100-C99 119.9(3) C101-C100-H100 120.0 C99-C100-H100 120.0 C100-C101-C102 120.3(3) C100-C101-H101 119.8 C102-C101-H101 119.8 C101-C102-C97 119.9(3) C101-C102-H102 120.1 C97-C102-H102 120.1 C104-C103-P7 108.72(18) C104-C103-H10A 109.9 P7-C103-H10A 109.9 C104-C103-H10B 109.9 P7-C103-H10B 109.9 H10A-C103-H10B 108.3 C103-C104-P8 108.78(18) C103-C104-H10C 109.9 P8-C104-H10C 109.9 C103-C104-H10D 109.9 P8-C104-H10D 109.9 H10C-C104-H10D 108.3 C106-C105-H10E 109.5 C106-C105-H10F 109.5 H10E-C105-H10F 109.5 C106-C105-H10G 109.5 H10E-C105-H10G 109.5 H10F-C105-H10G 109.5 N1-C106-C105 179.2(5) C7-P1-C1 105.83(13) C7-P1-C25 105.72(13) C1-P1-C25 103.75(13) C7-P1-Ta1 115.36(9) C1-P1-Ta1 113.20(9) C25-P1-Ta1 112.02(10) C13-P2-C19 107.35(12) C13-P2-C26 106.82(13) C19-P2-C26 103.89(12) C13-P2-Ta1 112.48(8) C19-P2-Ta1 114.27(8) C26-P2-Ta1 111.40(9) C33-P3-C27 104.27(12) C33-P3-C51 104.80(13) C27-P3-C51 106.94(12) C33-P3-Ta1 115.72(9) C27-P3-Ta1 110.49(9) C51-P3-Ta1 113.82(8) C39-P4-C45 107.02(13) C39-P4-C52 106.11(13) C45-P4-C52 102.47(12) C39-P4-Ta1 114.20(9) C45-P4-Ta1 116.16(9) C52-P4-Ta1 109.81(8) C53-P5-C59 104.84(12) C53-P5-C77 105.74(13) C59-P5-C77 104.90(12) C53-P5-Ta2 114.24(9) C59-P5-Ta2 115.02(8) 220 C77-P5-Ta2 111.23(9) C71-P6-C65 108.02(13) C71-P6-C78 105.64(14) C65-P6-C78 105.34(12) C71-P6-Ta2 112.65(9) C65-P6-Ta2 112.25(9) C78-P6-Ta2 112.45(9) C79-P7-C85 106.02(13) C79-P7-C103 105.32(13) C85-P7-C103 106.59(13) C79-P7-Ta2 110.36(8) C85-P7-Ta2 114.71(9) C103-P7-Ta2 113.18(9) C91-P8-C97 102.91(12) C91-P8-C104 105.67(12) C97-P8-C104 103.70(12) C91-P8-Ta2 112.17(9) C97-P8-Ta2 118.85(9) C104-P8-Ta2 112.27(9) F4-Ta1-F3 93.14(6) F4-Ta1-F1 95.67(6) F3-Ta1-F1 145.47(6) F4-Ta1-F2 145.68(6) F3-Ta1-F2 98.20(6) F1-Ta1-F2 93.07(6) F4-Ta1-P1 143.47(5) F3-Ta1-P1 74.53(5) F1-Ta1-P1 78.67(5) F2-Ta1-P1 70.83(5) F4-Ta1-P4 79.72(5) F3-Ta1-P4 72.83(5) F1-Ta1-P4 141.63(5) F2-Ta1-P4 73.01(5) P1-Ta1-P4 126.26(2) F4-Ta1-P3 76.72(5) F3-Ta1-P3 143.95(5) F1-Ta1-P3 70.53(5) F2-Ta1-P3 75.11(5) P1-Ta1-P3 132.11(2) P4-Ta1-P3 71.353(19) F4-Ta1-P2 72.16(5) F3-Ta1-P2 77.39(5) F1-Ta1-P2 73.75(4) F2-Ta1-P2 141.95(5) P1-Ta1-P2 71.62(2) P4-Ta1-P2 137.40(2) P3-Ta1-P2 129.22(2) F6-Ta2-F5 93.84(6) F6-Ta2-F7 95.72(6) F5-Ta2-F7 145.81(6) F6-Ta2-F8 145.72(6) F5-Ta2-F8 97.01(6) F7-Ta2-F8 93.31(6) F6-Ta2-P7 143.09(5) F5-Ta2-P7 74.59(4) F7-Ta2-P7 78.15(4) F8-Ta2-P7 71.17(4) F6-Ta2-P5 77.04(5) F5-Ta2-P5 71.64(5) F7-Ta2-P5 142.54(5) F8-Ta2-P5 75.77(4) P7-Ta2-P5 128.60(2) F6-Ta2-P6 76.51(5) F5-Ta2-P6 142.59(5) F7-Ta2-P6 71.59(5) F8-Ta2-P6 75.17(5) P7-Ta2-P6 132.71(2) P5-Ta2-P6 70.981(19) F6-Ta2-P8 72.98(5) F5-Ta2-P8 75.95(5) F7-Ta2-P8 75.67(5) F8-Ta2-P8 141.26(4) P7-Ta2-P8 70.24(2) P5-Ta2-P8 133.64(2) P6-Ta2-P8 132.08(2) F11-Ta3-F11 180.00(12) F11-Ta3-F10 90.90(10) F11-Ta3-F10 89.10(10) F11-Ta3-F10 89.10(10) F11-Ta3-F10 90.90(10) F10-Ta3-F10 180.00(11) F11-Ta3-F9 90.95(10) F11-Ta3-F9 89.05(10) F10-Ta3-F9 90.39(9) F10-Ta3-F9 89.60(9) F11-Ta3-F9 89.04(10) F11-Ta3-F9 90.96(10) F10-Ta3-F9 89.60(9) 221 F10-Ta3-F9 90.40(9) F9-Ta3-F9 180.0 F14-Ta4-F14 180.0 F14-Ta4-F12 91.11(9) F14-Ta4-F12 88.89(9) F14-Ta4-F12 88.89(9) F14-Ta4-F12 91.11(9) F12-Ta4-F12 180.00(11) F14-Ta4-F13 89.44(8) F14-Ta4-F13 90.56(8) F12-Ta4-F13 90.68(8) F12-Ta4-F13 89.32(8) F14-Ta4-F13 90.56(8) F14-Ta4-F13 89.44(8) F12-Ta4-F13 89.32(8) F12-Ta4-F13 90.68(8) F13-Ta4-F13 180.00(11) F16-Ta5-F19 92.90(18) F16-Ta5-F17 92.5(2) F19-Ta5-F17 174.55(17) F16-Ta5-F18 90.62(12) F19-Ta5-F18 88.43(11) F17-Ta5-F18 91.97(12) F16-Ta5-F15 90.93(12) F19-Ta5-F15 90.71(11) F17-Ta5-F15 88.74(12) F18-Ta5-F15 178.26(10) F16-Ta5-F20 179.28(16) F19-Ta5-F20 86.74(13) F17-Ta5-F20 87.83(17) F18-Ta5-F20 89.99(11) F15-Ta5-F20 88.45(11) Table A2. 27 Anisotropic atomic displacement parameters (Å 2 ) for [TaF 4 (dppe) 2 ][TaF 6 ]•½ CH 3 CN U 11 U 22 U 33 U 23 U 13 U 12 C1 0.0211(13) 0.0153(12) 0.0109(12) -0.0065(10) -0.0007(10) 0.0005(10) C2 0.0205(14) 0.0240(15) 0.0259(16) -0.0127(13) 0.0012(12) -0.0030(11) C3 0.0250(15) 0.0260(16) 0.0280(17) -0.0123(13) -0.0003(13) 0.0025(12) C4 0.0362(18) 0.0259(16) 0.0277(17) -0.0145(14) -0.0073(14) 0.0111(13) C5 0.0430(19) 0.0199(15) 0.0343(19) -0.0161(14) -0.0181(15) 0.0060(13) C6 0.0288(15) 0.0161(13) 0.0206(14) -0.0078(11) -0.0114(12) 0.0016(11) C7 0.0215(13) 0.0153(12) 0.0140(13) -0.0085(10) -0.0042(10) -0.0001(10) C8 0.0322(17) 0.045(2) 0.0168(15) -0.0110(14) -0.0045(13) -0.0174(15) C9 0.0327(18) 0.074(3) 0.0266(18) -0.0207(19) -0.0041(14) -0.0247(19) C10 0.0338(18) 0.044(2) 0.0284(18) -0.0186(16) -0.0127(14) -0.0076(15) C11 0.0388(17) 0.0203(14) 0.0179(14) -0.0081(12) -0.0123(13) 0.0023(12) C12 0.0272(14) 0.0169(13) 0.0153(13) -0.0065(11) -0.0028(11) -0.0012(11) C13 0.0133(11) 0.0093(11) 0.0222(14) -0.0041(10) -0.0044(10) -0.0011(9) C14 0.0193(13) 0.0144(12) 0.0222(14) -0.0052(11) -0.0080(11) -0.0023(10) C15 0.0260(15) 0.0184(14) 0.0283(16) -0.0039(12) -0.0143(13) -0.0038(11) C16 0.0188(14) 0.0179(14) 0.0391(19) -0.0011(13) -0.0112(13) -0.0076(11) C17 0.0175(13) 0.0194(14) 0.0320(17) 0.0000(12) -0.0015(12) -0.0071(11) C18 0.0185(13) 0.0148(12) 0.0238(15) -0.0015(11) -0.0042(11) -0.0042(10) C19 0.0153(12) 0.0096(11) 0.0129(12) -0.0028(9) -0.0011(9) -0.0011(9) C20 0.0204(13) 0.0191(13) 0.0237(15) -0.0118(12) -0.0068(11) -0.0001(10) C21 0.0323(16) 0.0227(15) 0.0343(18) -0.0201(14) -0.0083(14) 0.0010(12) C22 0.0277(15) 0.0170(13) 0.0289(17) -0.0092(12) -0.0025(13) 0.0031(11) C23 0.0176(13) 0.0162(13) 0.0225(15) -0.0026(11) -0.0040(11) 0.0010(10) C24 0.0193(12) 0.0126(12) 0.0159(13) -0.0030(10) -0.0042(10) -0.0027(10) C25 0.0245(14) 0.0166(13) 0.0120(13) -0.0053(10) 0.0032(10) -0.0080(10) 222 U 11 U 22 U 33 U 23 U 13 U 12 C26 0.0218(13) 0.0136(12) 0.0118(12) -0.0019(10) -0.0035(10) -0.0030(10) C27 0.0154(12) 0.0126(11) 0.0120(12) -0.0031(9) -0.0006(9) -0.0045(9) C28 0.0199(13) 0.0141(12) 0.0174(13) -0.0042(10) -0.0048(10) -0.0028(10) C29 0.0271(15) 0.0206(14) 0.0222(15) -0.0091(12) -0.0042(12) -0.0089(11) C30 0.0200(13) 0.0316(16) 0.0207(15) -0.0096(13) -0.0048(11) -0.0104(12) C31 0.0166(13) 0.0301(16) 0.0241(15) -0.0103(13) -0.0070(11) -0.0014(11) C32 0.0180(13) 0.0206(13) 0.0211(14) -0.0087(11) -0.0050(11) -0.0004(10) C33 0.0140(11) 0.0160(12) 0.0156(13) -0.0090(10) -0.0012(10) -0.0014(9) C34 0.0286(16) 0.0209(14) 0.0272(17) -0.0109(13) 0.0111(13) -0.0080(12) C35 0.0364(18) 0.0292(17) 0.0309(18) -0.0146(15) 0.0163(15) -0.0053(14) C36 0.0316(17) 0.0260(16) 0.0355(19) -0.0212(15) 0.0063(14) 0.0002(13) C37 0.0318(16) 0.0155(13) 0.0243(16) -0.0086(12) -0.0030(13) 0.0021(11) C38 0.0199(13) 0.0178(13) 0.0167(13) -0.0079(11) -0.0025(10) 0.0006(10) C39 0.0163(12) 0.0165(12) 0.0138(12) -0.0050(10) -0.0078(10) 0.0011(10) C40 0.0199(13) 0.0257(14) 0.0139(13) -0.0078(11) -0.0060(10) 0.0016(11) C41 0.0286(16) 0.0344(17) 0.0179(15) -0.0138(13) -0.0105(12) 0.0075(13) C42 0.0392(18) 0.0289(17) 0.0327(18) -0.0189(15) -0.0225(15) 0.0091(14) C43 0.0355(17) 0.0215(15) 0.0346(18) -0.0101(13) -0.0169(14) -0.0060(13) C44 0.0246(14) 0.0173(13) 0.0203(14) -0.0042(11) -0.0093(11) -0.0044(11) C45 0.0137(11) 0.0103(11) 0.0154(12) -0.0038(10) -0.0021(9) -0.0006(9) C46 0.0229(14) 0.0184(13) 0.0216(14) -0.0095(11) -0.0096(11) 0.0036(11) C47 0.0246(15) 0.0200(14) 0.0324(17) -0.0107(13) -0.0143(13) 0.0076(11) C48 0.0172(13) 0.0170(13) 0.0337(17) -0.0122(12) -0.0028(12) 0.0045(10) C49 0.0233(14) 0.0154(13) 0.0223(15) -0.0102(11) -0.0013(11) -0.0005(10) C50 0.0192(13) 0.0167(12) 0.0155(13) -0.0055(10) -0.0034(10) -0.0004(10) C51 0.0149(11) 0.0131(11) 0.0110(12) -0.0021(9) -0.0016(9) -0.0018(9) C52 0.0152(12) 0.0123(11) 0.0124(12) -0.0018(9) -0.0042(9) -0.0012(9) C53 0.0182(12) 0.0096(11) 0.0197(14) -0.0067(10) -0.0003(10) -0.0031(9) C54 0.0203(13) 0.0176(13) 0.0304(16) -0.0107(12) -0.0020(12) -0.0052(11) C55 0.0242(15) 0.0232(15) 0.040(2) -0.0140(14) 0.0084(14) -0.0098(12) C56 0.0387(18) 0.0212(15) 0.0260(17) -0.0072(13) 0.0118(14) -0.0122(13) C57 0.0422(19) 0.0206(15) 0.0176(15) -0.0051(12) 0.0016(13) -0.0072(13) C58 0.0257(14) 0.0156(13) 0.0179(14) -0.0051(11) -0.0009(11) -0.0049(11) C59 0.0144(11) 0.0105(11) 0.0171(13) -0.0071(10) -0.0074(10) 0.0013(9) C60 0.0160(12) 0.0114(12) 0.0263(15) -0.0072(11) -0.0008(11) -0.0024(9) C61 0.0230(14) 0.0096(12) 0.0322(17) -0.0058(11) -0.0067(12) -0.0005(10) C62 0.0183(13) 0.0159(13) 0.0312(16) -0.0123(12) -0.0088(12) 0.0030(10) C63 0.0188(13) 0.0233(14) 0.0211(14) -0.0135(12) -0.0019(11) 0.0018(11) C64 0.0221(13) 0.0155(12) 0.0151(13) -0.0078(10) -0.0032(10) -0.0016(10) C65 0.0108(11) 0.0129(11) 0.0221(14) -0.0080(10) -0.0053(10) 0.0001(9) C66 0.0128(12) 0.0179(13) 0.0269(15) -0.0093(11) -0.0053(11) -0.0018(10) C67 0.0131(12) 0.0290(15) 0.0335(17) -0.0204(14) -0.0019(11) -0.0024(11) C68 0.0163(13) 0.0254(15) 0.054(2) -0.0272(16) -0.0076(14) 0.0018(11) 223 U 11 U 22 U 33 U 23 U 13 U 12 C69 0.0189(13) 0.0128(12) 0.045(2) -0.0115(13) -0.0090(13) 0.0008(10) C70 0.0167(12) 0.0131(12) 0.0270(15) -0.0065(11) -0.0043(11) -0.0015(10) C71 0.0169(12) 0.0163(12) 0.0162(13) -0.0054(10) -0.0083(10) 0.0041(10) C72 0.0352(17) 0.0217(14) 0.0228(16) -0.0093(12) -0.0149(13) 0.0027(12) C73 0.048(2) 0.0346(18) 0.0250(17) -0.0181(15) -0.0200(15) 0.0123(16) C74 0.0335(17) 0.045(2) 0.0146(15) -0.0108(14) -0.0084(13) 0.0149(15) C75 0.0196(14) 0.0336(17) 0.0178(15) -0.0037(13) -0.0040(11) 0.0022(12) C76 0.0177(13) 0.0218(14) 0.0162(13) -0.0066(11) -0.0061(10) 0.0025(10) C77 0.0180(12) 0.0120(12) 0.0220(14) -0.0065(10) -0.0097(11) -0.0008(9) C78 0.0162(12) 0.0120(12) 0.0240(14) -0.0050(11) -0.0093(11) -0.0020(9) C79 0.0115(11) 0.0134(12) 0.0199(13) -0.0054(10) -0.0056(10) 0.0004(9) C80 0.0223(14) 0.0189(13) 0.0219(15) -0.0080(11) -0.0028(11) 0.0019(11) C81 0.0271(16) 0.0282(16) 0.0303(18) -0.0172(14) 0.0012(13) 0.0042(13) C82 0.0157(13) 0.0198(14) 0.049(2) -0.0160(14) -0.0015(13) 0.0037(11) C83 0.0208(14) 0.0173(14) 0.0376(19) -0.0033(13) -0.0096(13) 0.0032(11) C84 0.0191(13) 0.0195(13) 0.0215(15) -0.0048(11) -0.0060(11) 0.0023(10) C85 0.0130(11) 0.0132(11) 0.0119(12) -0.0016(9) -0.0004(9) -0.0004(9) C86 0.0148(12) 0.0171(12) 0.0150(13) -0.0049(10) -0.0019(10) -0.0007(10) C87 0.0200(13) 0.0225(14) 0.0130(13) -0.0029(11) -0.0020(10) 0.0012(11) C88 0.0231(14) 0.0180(13) 0.0189(14) 0.0036(11) 0.0007(11) -0.0041(11) C89 0.0276(16) 0.0207(15) 0.0303(17) -0.0005(13) -0.0048(13) -0.0133(12) C90 0.0250(14) 0.0219(14) 0.0199(15) -0.0036(12) -0.0062(12) -0.0065(11) C91 0.0181(12) 0.0113(11) 0.0114(12) -0.0057(9) -0.0017(9) -0.0022(9) C92 0.0209(13) 0.0160(12) 0.0153(13) -0.0058(10) -0.0032(10) -0.0049(10) C93 0.0293(15) 0.0186(13) 0.0157(14) -0.0052(11) -0.0014(11) -0.0087(11) C94 0.0337(16) 0.0192(14) 0.0134(13) -0.0040(11) -0.0058(12) -0.0008(12) C95 0.0268(15) 0.0288(16) 0.0173(14) -0.0046(12) -0.0086(12) -0.0019(12) C96 0.0213(14) 0.0267(15) 0.0167(14) -0.0067(12) -0.0036(11) -0.0046(11) C97 0.0194(12) 0.0122(11) 0.0120(12) -0.0042(10) 0.0010(10) -0.0050(9) C98 0.0234(13) 0.0148(12) 0.0171(13) -0.0079(10) -0.0056(11) -0.0002(10) C99 0.0326(16) 0.0183(13) 0.0213(15) -0.0124(12) -0.0064(12) -0.0001(12) C100 0.0340(17) 0.0180(14) 0.0264(16) -0.0134(12) -0.0044(13) 0.0037(12) C101 0.0260(15) 0.0203(14) 0.0283(16) -0.0127(13) -0.0093(12) 0.0058(11) C102 0.0237(14) 0.0174(13) 0.0203(14) -0.0096(11) -0.0057(11) -0.0030(11) C103 0.0142(12) 0.0202(13) 0.0121(12) -0.0059(10) -0.0039(9) -0.0026(10) C104 0.0159(12) 0.0190(13) 0.0142(12) -0.0080(10) -0.0001(10) -0.0077(10) C105 0.062(3) 0.096(4) 0.059(3) -0.051(3) -0.040(3) 0.032(3) C106 0.0246(16) 0.044(2) 0.0329(19) -0.0148(16) -0.0081(14) 0.0004(14) F1 0.0149(7) 0.0118(7) 0.0126(7) -0.0032(6) -0.0042(6) -0.0010(5) F2 0.0169(7) 0.0101(7) 0.0112(7) -0.0045(6) -0.0022(6) -0.0026(5) F3 0.0113(7) 0.0135(7) 0.0152(8) -0.0043(6) -0.0017(6) -0.0020(5) F4 0.0179(7) 0.0106(7) 0.0141(7) -0.0066(6) -0.0042(6) -0.0007(6) F5 0.0154(7) 0.0112(7) 0.0107(7) -0.0024(6) -0.0030(6) -0.0026(5) 224 U 11 U 22 U 33 U 23 U 13 U 12 F6 0.0144(7) 0.0124(7) 0.0134(7) -0.0050(6) -0.0008(6) -0.0027(5) F7 0.0145(7) 0.0086(7) 0.0137(7) -0.0031(6) -0.0037(6) -0.0015(5) F8 0.0152(7) 0.0119(7) 0.0118(7) -0.0045(6) -0.0036(6) -0.0020(5) F9 0.0338(11) 0.0314(11) 0.0311(11) 0.0037(9) 0.0053(9) 0.0048(8) F10 0.0390(11) 0.0347(11) 0.0226(10) -0.0117(8) 0.0065(8) -0.0033(9) F11 0.0454(13) 0.0539(14) 0.0413(13) -0.0218(11) -0.0065(10) -0.0213(11) F12 0.0355(10) 0.0155(8) 0.0255(10) -0.0028(7) 0.0001(8) 0.0040(7) F13 0.0304(9) 0.0199(8) 0.0169(8) -0.0083(7) -0.0013(7) -0.0038(7) F14 0.0200(8) 0.0386(11) 0.0332(11) -0.0208(9) -0.0016(7) -0.0091(8) F15 0.0622(15) 0.0676(16) 0.0250(11) -0.0247(11) -0.0138(11) 0.0079(13) F16 0.246(5) 0.0448(16) 0.0208(13) -0.0069(12) 0.017(2) -0.050(2) F17 0.0349(14) 0.203(4) 0.077(2) -0.079(3) 0.0064(14) -0.032(2) F18 0.0706(16) 0.0704(16) 0.0148(10) -0.0118(10) 0.0033(10) -0.0532(13) F19 0.0388(13) 0.102(2) 0.0574(17) -0.0480(17) -0.0111(12) 0.0059(14) F20 0.101(2) 0.0477(15) 0.0338(13) -0.0169(12) 0.0073(14) -0.0084(14) N1 0.0320(16) 0.055(2) 0.0288(16) -0.0107(15) -0.0082(13) -0.0076(14) P1 0.0167(3) 0.0119(3) 0.0101(3) -0.0039(2) -0.0005(2) -0.0035(2) P2 0.0133(3) 0.0095(3) 0.0116(3) -0.0026(2) -0.0028(2) -0.0021(2) P3 0.0112(3) 0.0098(3) 0.0106(3) -0.0031(2) -0.0016(2) -0.0016(2) P4 0.0125(3) 0.0098(3) 0.0096(3) -0.0023(2) -0.0027(2) -0.0007(2) P5 0.0129(3) 0.0081(3) 0.0139(3) -0.0043(2) -0.0034(2) -0.0017(2) P6 0.0129(3) 0.0095(3) 0.0155(3) -0.0046(2) -0.0053(2) -0.0001(2) P7 0.0107(3) 0.0115(3) 0.0100(3) -0.0037(2) -0.0017(2) -0.0017(2) P8 0.0137(3) 0.0117(3) 0.0105(3) -0.0050(2) -0.0012(2) -0.0037(2) Ta1 0.01029(4) 0.00804(4) 0.00832(5) -0.00261(3) -0.00189(3) -0.00158(3) Ta2 0.01044(4) 0.00751(4) 0.00951(5) -0.00311(3) -0.00231(3) -0.00179(3) Ta3 0.02302(8) 0.01819(8) 0.01312(7) -0.00470(6) 0.00068(6) -0.00377(6) Ta4 0.01503(7) 0.01225(7) 0.01280(7) -0.00574(5) -0.00132(5) -0.00198(5) Ta5 0.02848(7) 0.04592(8) 0.01217(6) -0.01010(5) 0.00074(5) -0.01497(6) Table A2. 28 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [TaF 4 (dppe) 2 ][TaF 6 ]•½ CH3CN x/a y/b z/c U(eq) H2 0.5810 0.7268 0.0180 0.028 H3 0.7246 0.6428 -0.0010 0.032 H4 0.6526 0.5569 -0.0188 0.036 H5 0.4369 0.5525 -0.0142 0.035 H6 0.2915 0.6366 0.0044 0.025 H8 0.0541 0.7187 0.0614 0.036 H9 -0.1118 0.7237 0.0128 0.05 H10 -0.0871 0.7728 -0.0939 0.039 H11 0.1074 0.8136 -0.1520 0.03 H12 0.2749 0.8084 -0.1042 0.024 225 x/a y/b z/c U(eq) H14 0.4147 0.8579 0.1779 0.022 H15 0.6100 0.8717 0.1963 0.029 H16 0.7832 0.9028 0.1156 0.032 H17 0.7584 0.9258 0.0160 0.031 H18 0.5609 0.9183 -0.0041 0.025 H20 0.3091 0.9744 0.1279 0.023 H21 0.1596 1.0574 0.1437 0.032 H22 -0.0363 1.0736 0.1126 0.03 H23 -0.0848 1.0039 0.0685 0.025 H24 0.0628 0.9192 0.0538 0.02 H25A 0.4837 0.8289 -0.0167 0.022 H25B 0.3996 0.8461 -0.0685 0.022 H26A 0.2415 0.9041 -0.0191 0.02 H26B 0.3748 0.9363 -0.0322 0.02 H28 0.0084 0.5854 0.1944 0.021 H29 -0.1347 0.5573 0.1502 0.027 H30 -0.3118 0.6304 0.1215 0.028 H31 -0.3429 0.7329 0.1356 0.028 H32 -0.2026 0.7603 0.1817 0.023 H34 -0.1528 0.6938 0.3366 0.032 H35 -0.2699 0.7746 0.3711 0.041 H36 -0.2521 0.8900 0.3118 0.036 H37 -0.1148 0.9244 0.2174 0.029 H38 0.0044 0.8442 0.1825 0.022 H40 0.2449 0.5965 0.3735 0.024 H41 0.2977 0.6359 0.4416 0.031 H42 0.4408 0.7204 0.4062 0.036 H43 0.5368 0.7632 0.3031 0.034 H44 0.4838 0.7253 0.2342 0.025 H46 0.5105 0.5493 0.2990 0.024 H47 0.6497 0.4616 0.2840 0.03 H48 0.6600 0.4372 0.1978 0.027 H49 0.5314 0.5008 0.1255 0.024 H50 0.3879 0.5865 0.1415 0.021 H51A 0.0687 0.6404 0.3272 0.017 H51B -0.0175 0.5970 0.3119 0.017 H52A 0.1573 0.5602 0.2545 0.017 H52B 0.1958 0.5466 0.3188 0.017 H54 1.1727 0.3920 0.3387 0.027 H55 1.3021 0.4355 0.2421 0.036 H56 1.2192 0.4620 0.1537 0.037 H57 1.0095 0.4416 0.1615 0.034 H58 0.8800 0.3949 0.2573 0.024 226 x/a y/b z/c U(eq) H60 0.8950 0.5032 0.3082 0.022 H61 0.7570 0.5950 0.3144 0.027 H62 0.5838 0.5786 0.3942 0.025 H63 0.5421 0.4692 0.4659 0.024 H64 0.6735 0.3762 0.4582 0.02 H66 1.1508 0.1924 0.3683 0.022 H67 1.2841 0.1053 0.3479 0.027 H68 1.2919 -0.0028 0.4251 0.034 H69 1.1685 -0.0245 0.5220 0.03 H70 1.0421 0.0629 0.5441 0.023 H72 1.0045 0.2526 0.5651 0.03 H73 0.9138 0.2227 0.6686 0.039 H74 0.7837 0.1318 0.7182 0.039 H75 0.7400 0.0718 0.6639 0.031 H76 0.8196 0.1056 0.5592 0.022 H77A 1.0584 0.3797 0.4264 0.02 H77B 0.9474 0.3385 0.4788 0.02 H78A 1.1348 0.2655 0.4803 0.02 H78B 1.1438 0.2795 0.4093 0.02 H80 0.4054 0.2575 0.5363 0.026 H81 0.3071 0.3566 0.5466 0.034 H82 0.2867 0.4544 0.4598 0.034 H83 0.3571 0.4519 0.3629 0.033 H84 0.4624 0.3543 0.3513 0.025 H86 0.5953 0.1751 0.5530 0.019 H87 0.5315 0.0883 0.6477 0.024 H88 0.3967 0.0085 0.6558 0.029 H89 0.3203 0.0176 0.5701 0.034 H90 0.3760 0.1069 0.4758 0.027 H92 0.9003 0.2800 0.2372 0.021 H93 0.9096 0.3597 0.1375 0.026 H94 0.7336 0.3846 0.0896 0.027 H95 0.5492 0.3273 0.1411 0.03 H96 0.5388 0.2463 0.2409 0.026 H98 0.7116 0.1136 0.2559 0.021 H99 0.8339 0.0249 0.2355 0.027 H100 1.0176 -0.0194 0.2772 0.03 H101 1.0781 0.0248 0.3399 0.029 H102 0.9544 0.1125 0.3624 0.023 H10A 0.3872 0.1919 0.3923 0.018 H10B 0.4661 0.2530 0.3401 0.018 H10C 0.5323 0.1527 0.3209 0.019 H10D 0.5648 0.1143 0.3885 0.019 227 x/a y/b z/c U(eq) H10E 0.1716 0.3116 0.1523 0.097 H10F 0.1396 0.2336 0.1863 0.097 H10G 0.2752 0.2538 0.1440 0.097 228 APPENDIX 3: ADDITIONAL INFORMATION FOR [PPh 4 ] 2 [Zr(N 3 ) 6 ] AND [PPh 4 ] 2 [Hf(N 3 ) 6 ] (CHAPTER 4) A3.1 Experimental Details Polyazides are extremely shock-sensitive and can explode violently upon the slightest provocation. Because of the high energy content and the high detonation velocity of these azides, their explosions are particularly violent and can cause, even on a one mmol scale, significant damage. The use of appropriate safety precautions (safety shields, face shields, leather gloves, protective clothing, such as heavy leather welding suits and ear plugs) is mandatory. Ignoring safety precautions can lead to serious injuries! A3.1.1 Materials and Apparatus All reactions were carried out in Teflon-FEP ampules that were closed by stainless steel valves. Volatile materials were handled in a Pyrex glass vacuum line. Non-volatile materials were handled in the dry nitrogen atmosphere of a glove box. materials ZrF 4 , HfF 4 (Aldrich), were used without further purification and Me 3 SiCN (Aldrich) were purified by fractional condensation prior to use. Solvents were dried by standard methods and freshly distilled prior to use. The NMR spectra were recorded at 298 K on Bruker AMX-500 spectrometer. Spectra were externally referenced to neat nitromethane for 14 N NMR spectra. Raman spectra were recorded in J.Young NMR tubes in the range 4000–80 cm -1 on a Bruker Equinox 55 FT-RA or Bruker Vertex 70/RAMII FT-RA spectrophotometers, using a Nd-YAG laser at 1064 nm. Infrared spectra were recorded in the range 4000-400 cm -1 on Bruker Alpha, Bruker Vertex 70 or Midac M Series FT-IR spectrometers using KBr pellets. The pellets were prepared inside the glove box using an Econo Press (Thermo Scientific) and transferred in a closed container to the spectrometer before placing them quickly into the sample compartment which was purged with dry nitrogen to minimize exposure to atmospheric moisture and potential hydrolysis of the sample. 229 A3.1.2 Crystal structure determinations The single-crystal X-ray diffraction data were collected on a Bruker SMART APEX DUO 3-circle platform diffractometer, equipped with an APEX II CCD detector, using Mo Kα radiation (TRIUMPH curved-crystal monochromator) from a fine-focus tube. The diffractometer was equipped with an Oxford Cryosystems Cryostream 700 apparatus for low-temperature data collection. The frames were integrated using the SAINT algorithm to give the hkl files corrected for Lp/decay. 1 The absorption correction was performed using the SADABS program. 2, 3 The structures were solved by intrinsic phasing 4, 5 and refined on F 2 using the Bruker SHELXTL Software Package and ShelXle. 6-9 All non-hydrogen atoms were refined anisotropically. ORTEP drawings were prepared using the ORTEP-3 for Windows V2.02 program. 10 Further crystallographic details can be obtained from the Cambridge Crystallographic Data Centre (CCDC, 12 Union Road, Cambridge CB21EZ, UK (Fax: (+44) 1223-336-033; e-mail: deposit@ccdc.cam.ac.uk) on quoting the deposition no. A3.1.3 Preparation of [PPh 4 ] 2 [M(N 3 ) 6 ] (M = Zr, Hf) A sample of MF 4 (1.00 mmol) and PPh 4 N 3 (762 mg, 2.00 mmol) was loaded into a Teflon-FEP ampule, followed by the addition of Me 3 SiN 3 (460 mg, 4.00 mmol) and CH 3 CN (1.5 mL) in vacuo at -196 °C. The mixture was allowed to warm to ambient temperature. After 6 hours, all volatile material was pumped off, at -20℃ leaving behind orange crystals of [PPh 4 ] 2 [M(N 3 ) 6 ]. [PPh 4 ] 2 [Zr(N 3 ) 6 ]: pale orange crystals, DTA exotherm onset 204℃ Raman (50mW): n [cm -1 ] = 3062(3.3), 2141(2.4), 1587(5.9), 1575(1.9), 1391(1.6), 1370(1.4), 1340(0.7), 1316(1.1), 1186(1.0), 1110(1.4), 1099(2.7), 1028(5.1), 1004(10.0), 725(0.6), 679(2.2), 615(1.7), 380(1.0), 283(1.3), 252(2.6), 196(0.8). IR (KBr) n [cm -1 ] =3075(w), 2139(m), 2079(vs), 1999(s), 1585(m), 1483(m), 1436(s), 1377(s), 1364(s), 1341(m), 1316(m1245(vw), 1187(m), 1162(w), 1108(s), 1027(w), 997(m), 845(w), 755(m), 722(s), 688(s), 600(m), 528(vs), 457(w), 433(vw). [PPh 4 ] 2 [Hf(N 3 ) 6 ]: pale orange crystals, DTA exotherm onset 280℃ 230 Raman (50mW): n [cm -1 ] = 3062(3.4), 2144(1.1), 2084(0.2), 1586(6.3), 1576(1.8), 1388(1.1), 1362(0.8), 1344(0.6), 1316(1.7), 1186(1.0), 1165(1.0), 1110(1.4), 1099(2.7), 1028(4.6), 1000(10.0), 724(0.5), 680(2.1), 615(1.7), 400(7.7), 335(0.2), 283(0.6), 252(2.4), 197(1.8). IR (KBr) n [cm -1 ] =3060(vw), 2092(vs), 2072(m), 2040(w), 1999(m), 1585(m), 1483(m), 1436(m), 1381(m), 1354(m), 1336(m), 1187(m), 1162(w), 1108(s), 1027(w), 997(m), 845(w), 755(m), 722(s), 688(s), 614(w), 600(w), 528(vs), 476(w), 436(vw). A3.2 X-ray Crystallography Figure A3. 1 Asymmetric unit in the crystal structure of [PPh 4 ] 2 [Zr(N 3 ) 6 ] 231 Figure A3. 2 Crystal packing in the structure of [PPh 4 ] 2 [Zr(N 3 ) 6 ] along the a-axis Table A3. 1 Sample and crystal data for [PPh 4 ] 2 [Zr(N 3 ) 6 ] Chemical formula C 48 H 40 N 18 P 2 Zr Formula weight 1022.14 g/mol Temperature 100(2) K Wavelength 0.71073 Å Crystal size 0.226 x 0.385 x 0.455 mm Crystal habit colorless prism Crystal system triclinic Space group P -1 Unit cell dimensions a = 11.9740(7) Å b = 13.1945(8) Å α = 83.4000(10)° c = 16.1479(9) Å β = 84.8600(10)° Volume 2357.1(2) Å 3 γ = 68.6420(10)° Z 2 Density (calculated) 1.440 g/cm 3 Absorption coefficient 0.358 mm -1 F(000) 1048 Table A3. 2 Data collection and structure refinement for [PPh 4 ] 2 [Zr(N 3 ) 6 ] Diffractometer Bruker APEX DUO 232 Radiation source fine-focus tube, MoKα Theta range for data collection 1.66 to 30.54° Index ranges -17<=h<=16, -18<=k<=18, -23<=l<=23 Reflections collected 58946 Independent reflections 14202 [R(int) = 0.0345] Coverage of independent reflections 98.4% Absorption correction multi-scan Max. and min. transmission 0.9230 and 0.8540 Structure solution technique direct methods Structure solution program SHELXTL XT 2013/1 (Bruker AXS, 2014) Refinement method Full-matrix least-squares on F 2 Refinement program SHELXTL XL 2014/7 (Bruker AXS, 2014) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 14202 / 0 / 622 Goodness-of-fit on F 2 1.026 Δ/σ max 0.002 Final R indices 11893 data; I>2σ(I) R1 = 0.0307, wR2 = 0.0725 all data R1 = 0.0412, wR2 = 0.0772 Weighting scheme w=1/[σ 2 (F o 2 )+(0.0336P) 2 +0.9488P] where P=(F o 2 +2F c 2 )/3 Largest diff. peak and hole 0.697 and -0.617 eÅ -3 R.M.S. deviation from mean 0.059 eÅ -3 Table A3. 3 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [Zr(N 3 ) 6 ] x/a y/b z/c U(eq) C1 0.61627(12) 0.81575(10) 0.68545(8) 0.0159(2) C2 0.62838(13) 0.88058(11) 0.61249(9) 0.0207(3) C3 0.55030(14) 0.98844(12) 0.60168(10) 0.0246(3) C4 0.46165(13) 0.03175(12) 0.66266(10) 0.0251(3) C5 0.44980(13) 0.96762(12) 0.73494(10) 0.0238(3) C6 0.52647(12) 0.85919(11) 0.74669(9) 0.0189(3) C7 0.69795(11) 0.58923(10) 0.63541(8) 0.0154(2) C8 0.62549(12) 0.63035(11) 0.56720(8) 0.0169(2) C9 0.61294(12) 0.55855(12) 0.51524(8) 0.0198(3) C10 0.67249(13) 0.44679(12) 0.53115(9) 0.0214(3) C11 0.74413(13) 0.40571(12) 0.59906(9) 0.0226(3) C12 0.75704(12) 0.47643(11) 0.65172(9) 0.0192(3) C13 0.70903(11) 0.62727(10) 0.80831(8) 0.0152(2) C14 0.63001(12) 0.57133(11) 0.83155(8) 0.0175(2) C15 0.61430(12) 0.53766(11) 0.91491(9) 0.0198(3) C16 0.67446(13) 0.56134(11) 0.97560(8) 0.0204(3) 233 x/a y/b z/c U(eq) C17 0.75329(13) 0.61633(11) 0.95249(9) 0.0215(3) C18 0.77216(12) 0.64877(11) 0.86886(8) 0.0190(3) C19 0.86903(12) 0.68614(11) 0.67616(8) 0.0169(2) C20 0.95993(13) 0.60307(12) 0.63770(10) 0.0261(3) C21 0.07140(13) 0.61239(13) 0.61756(11) 0.0307(4) C22 0.09196(13) 0.70418(13) 0.63504(10) 0.0263(3) C23 0.00170(14) 0.78696(14) 0.67297(10) 0.0277(3) C24 0.89023(13) 0.77836(13) 0.69411(9) 0.0240(3) P1 0.72239(3) 0.67873(3) 0.70116(2) 0.01375(6) C25 0.91719(11) 0.98893(10) 0.83047(8) 0.0147(2) C26 0.81380(12) 0.04637(11) 0.78644(9) 0.0203(3) C27 0.70884(12) 0.02485(12) 0.80785(9) 0.0228(3) C28 0.70669(12) 0.94608(12) 0.87227(9) 0.0203(3) C29 0.80954(12) 0.88794(11) 0.91504(8) 0.0193(3) C30 0.91478(12) 0.90915(11) 0.89462(8) 0.0176(2) C31 0.17167(11) 0.92771(11) 0.86339(8) 0.0157(2) C32 0.20516(12) 0.81512(11) 0.85593(9) 0.0187(3) C33 0.30119(13) 0.74167(12) 0.89938(9) 0.0237(3) C34 0.36299(13) 0.77876(13) 0.95036(9) 0.0265(3) C35 0.33135(13) 0.88973(13) 0.95701(9) 0.0258(3) C36 0.23552(12) 0.96449(12) 0.91359(9) 0.0198(3) C37 0.01791(11) 0.15853(10) 0.84008(8) 0.0153(2) C38 0.94107(12) 0.19196(11) 0.91023(8) 0.0174(2) C39 0.92315(13) 0.29290(11) 0.93816(9) 0.0214(3) C40 0.97920(13) 0.36027(12) 0.89598(10) 0.0245(3) C41 0.05376(14) 0.32800(12) 0.82556(11) 0.0295(3) C42 0.07444(13) 0.22636(12) 0.79771(10) 0.0247(3) C43 0.08767(11) 0.02873(10) 0.69734(8) 0.0153(2) C44 0.01295(13) 0.11171(12) 0.64344(9) 0.0228(3) C45 0.03773(15) 0.11126(13) 0.55777(9) 0.0285(3) C46 0.13615(14) 0.02898(13) 0.52571(9) 0.0249(3) C47 0.21183(13) 0.94786(12) 0.57889(9) 0.0219(3) C48 0.18837(12) 0.94751(11) 0.66477(8) 0.0176(2) P2 0.04879(3) 0.02530(3) 0.80735(2) 0.01323(6) N1 0.24429(12) 0.47955(11) 0.81942(8) 0.0292(3) N2 0.15571(11) 0.54734(10) 0.84537(7) 0.0203(2) N3 0.07082(13) 0.61176(13) 0.87197(10) 0.0385(4) N4 0.52115(12) 0.26769(10) 0.66746(9) 0.0273(3) N5 0.61183(11) 0.21893(9) 0.63078(7) 0.0192(2) N6 0.69968(13) 0.17033(12) 0.59541(9) 0.0325(3) N7 0.25626(11) 0.35750(10) 0.66269(8) 0.0223(2) N8 0.22845(13) 0.31573(12) 0.61058(8) 0.0287(3) N9 0.2018(2) 0.2754(2) 0.56024(11) 0.0682(7) 234 x/a y/b z/c U(eq) N10 0.35984(12) 0.23100(11) 0.82138(8) 0.0275(3) N11 0.38795(10) 0.17964(10) 0.88698(8) 0.0211(2) N12 0.41356(14) 0.12785(14) 0.94916(9) 0.0393(4) N13 0.51836(13) 0.35775(12) 0.82854(9) 0.0313(3) N14 0.62543(12) 0.32773(10) 0.81269(8) 0.0266(3) N15 0.72728(13) 0.30070(12) 0.79880(10) 0.0361(3) N16 0.40426(13) 0.51133(10) 0.67766(8) 0.0281(3) N17 0.39219(10) 0.60372(9) 0.68443(7) 0.0185(2) N18 0.38221(12) 0.69320(11) 0.68828(10) 0.0314(3) Zr1 0.38024(2) 0.36868(2) 0.74524(2) 0.01672(4) Table A3. 4 Bond lengths (Å) for [PPh 4 ] 2 [Zr(N 3 ) 6 ] C1-C6 1.3977(18) C1-C2 1.4032(19) C1-P1 1.7962(13) C2-C3 1.390(2) C2-H2 0.95 C3-C4 1.387(2) C3-H3 0.95 C4-C5 1.389(2) C4-H4 0.95 C5-C6 1.3921(19) C5-H5 0.95 C6-H6 0.95 C7-C8 1.3969(18) C7-C12 1.4005(18) C7-P1 1.7897(13) C8-C9 1.3904(19) C8-H8 0.95 C9-C10 1.389(2) C9-H9 0.95 C10-C11 1.388(2) C10-H10 0.95 C11-C12 1.3887(19) C11-H11 0.95 C12-H12 0.95 C13-C18 1.4002(18) C13-C14 1.4008(18) C13-P1 1.7999(13) C14-C15 1.3867(18) C14-H14 0.95 C15-C16 1.392(2) C15-H15 0.95 C16-C17 1.389(2) C16-H16 0.95 C17-C18 1.3932(19) C17-H17 0.95 C18-H18 0.95 C19-C20 1.392(2) C19-C24 1.3958(19) C19-P1 1.8013(13) C20-C21 1.391(2) C20-H20 0.95 C21-C22 1.384(2) C21-H21 0.95 C22-C23 1.383(2) C22-H22 0.95 C23-C24 1.389(2) C23-H23 0.95 C24-H24 0.95 C25-C30 1.3957(18) C25-C26 1.4011(18) C25-P2 1.8046(13) C26-C27 1.3926(19) C26-H26 0.95 C27-C28 1.389(2) C27-H27 0.95 C28-C29 1.387(2) C28-H28 0.95 C29-C30 1.3915(18) C29-H29 0.95 C30-H30 0.95 235 C31-C36 1.3959(18) C31-C32 1.4074(18) C31-P2 1.7980(13) C32-C33 1.3894(19) C32-H32 0.95 C33-C34 1.389(2) C33-H33 0.95 C34-C35 1.387(2) C34-H34 0.95 C35-C36 1.394(2) C35-H35 0.95 C36-H36 0.95 C37-C42 1.3945(19) C37-C38 1.3989(18) C37-P2 1.7921(13) C38-C39 1.3912(18) C38-H38 0.95 C39-C40 1.385(2) C39-H39 0.95 C40-C41 1.387(2) C40-H40 0.95 C41-C42 1.392(2) C41-H41 0.95 C42-H42 0.95 C43-C48 1.3977(18) C43-C44 1.4014(19) C43-P2 1.7954(13) C44-C45 1.389(2) C44-H44 0.95 C45-C46 1.387(2) C45-H45 0.95 C46-C47 1.388(2) C46-H46 0.95 C47-C48 1.3899(19) C47-H47 0.95 C48-H48 0.95 N1-N2 1.1901(17) N1-Zr1 2.1316(13) N2-N3 1.1474(18) N4-N5 1.1863(17) N4-Zr1 2.1372(13) N5-N6 1.1529(17) N7-N8 1.1888(18) N7-Zr1 2.1358(12) N8-N9 1.147(2) N10-N11 1.1947(17) N10-Zr1 2.1511(13) N11-N12 1.1462(18) N13-N14 1.2087(19) N13-Zr1 2.1785(13) N14-N15 1.1477(19) N16-N17 1.1910(16) N16-Zr1 2.1639(13) N17-N18 1.1510(17) Table A3. 5 Bond angles (°) for [PPh 4 ] 2 [Zr(N 3 ) 6 ] C6-C1-C2 120.30(12) C6-C1-P1 120.63(10) C2-C1-P1 119.00(10) C3-C2-C1 119.41(13) C3-C2-H2 120.3 C1-C2-H2 120.3 C4-C3-C2 120.30(14) C4-C3-H3 119.9 C2-C3-H3 119.9 C3-C4-C5 120.29(13) C3-C4-H4 119.9 C5-C4-H4 119.9 C4-C5-C6 120.32(14) C4-C5-H5 119.8 C6-C5-H5 119.8 C5-C6-C1 119.38(13) C5-C6-H6 120.3 C1-C6-H6 120.3 C8-C7-C12 120.28(12) C8-C7-P1 121.14(10) C12-C7-P1 118.53(10) C9-C8-C7 119.56(12) C9-C8-H8 120.2 C7-C8-H8 120.2 C10-C9-C8 120.02(13) C10-C9-H9 120.0 C8-C9-H9 120.0 C11-C10-C9 120.53(13) 236 C11-C10-H10 119.7 C9-C10-H10 119.7 C10-C11-C12 120.07(13) C10-C11-H11 120.0 C12-C11-H11 120.0 C11-C12-C7 119.53(13) C11-C12-H12 120.2 C7-C12-H12 120.2 C18-C13-C14 120.21(12) C18-C13-P1 119.94(10) C14-C13-P1 119.74(10) C15-C14-C13 119.65(12) C15-C14-H14 120.2 C13-C14-H14 120.2 C14-C15-C16 120.36(13) C14-C15-H15 119.8 C16-C15-H15 119.8 C17-C16-C15 119.96(13) C17-C16-H16 120.0 C15-C16-H16 120.0 C16-C17-C18 120.49(13) C16-C17-H17 119.8 C18-C17-H17 119.8 C17-C18-C13 119.29(13) C17-C18-H18 120.4 C13-C18-H18 120.4 C20-C19-C24 119.80(13) C20-C19-P1 121.21(11) C24-C19-P1 118.98(10) C21-C20-C19 119.79(14) C21-C20-H20 120.1 C19-C20-H20 120.1 C22-C21-C20 120.28(15) C22-C21-H21 119.9 C20-C21-H21 119.9 C23-C22-C21 120.03(14) C23-C22-H22 120.0 C21-C22-H22 120.0 C22-C23-C24 120.33(14) C22-C23-H23 119.8 C24-C23-H23 119.8 C23-C24-C19 119.76(14) C23-C24-H24 120.1 C19-C24-H24 120.1 C7-P1-C1 111.89(6) C7-P1-C13 108.63(6) C1-P1-C13 109.30(6) C7-P1-C19 109.57(6) C1-P1-C19 106.55(6) C13-P1-C19 110.90(6) C30-C25-C26 119.69(12) C30-C25-P2 120.99(10) C26-C25-P2 119.20(10) C27-C26-C25 119.85(13) C27-C26-H26 120.1 C25-C26-H26 120.1 C28-C27-C26 120.18(13) C28-C27-H27 119.9 C26-C27-H27 119.9 C29-C28-C27 120.02(13) C29-C28-H28 120.0 C27-C28-H28 120.0 C28-C29-C30 120.36(13) C28-C29-H29 119.8 C30-C29-H29 119.8 C29-C30-C25 119.88(12) C29-C30-H30 120.1 C25-C30-H30 120.1 C36-C31-C32 119.89(12) C36-C31-P2 119.46(10) C32-C31-P2 120.64(10) C33-C32-C31 119.37(13) C33-C32-H32 120.3 C31-C32-H32 120.3 C34-C33-C32 120.41(14) C34-C33-H33 119.8 C32-C33-H33 119.8 C35-C34-C33 120.41(13) C35-C34-H34 119.8 C33-C34-H34 119.8 C34-C35-C36 119.87(14) C34-C35-H35 120.1 C36-C35-H35 120.1 C35-C36-C31 120.03(13) C35-C36-H36 120.0 C31-C36-H36 120.0 C42-C37-C38 120.40(12) C42-C37-P2 119.89(10) 237 C38-C37-P2 119.66(10) C39-C38-C37 119.30(13) C39-C38-H38 120.4 C37-C38-H38 120.4 C40-C39-C38 120.25(13) C40-C39-H39 119.9 C38-C39-H39 119.9 C39-C40-C41 120.49(13) C39-C40-H40 119.8 C41-C40-H40 119.8 C40-C41-C42 119.98(14) C40-C41-H41 120.0 C42-C41-H41 120.0 C41-C42-C37 119.57(13) C41-C42-H42 120.2 C37-C42-H42 120.2 C48-C43-C44 119.87(12) C48-C43-P2 120.87(10) C44-C43-P2 119.21(10) C45-C44-C43 119.77(13) C45-C44-H44 120.1 C43-C44-H44 120.1 C46-C45-C44 120.09(14) C46-C45-H45 120.0 C44-C45-H45 120.0 C45-C46-C47 120.37(13) C45-C46-H46 119.8 C47-C46-H46 119.8 C46-C47-C48 120.17(13) C46-C47-H47 119.9 C48-C47-H47 119.9 C47-C48-C43 119.71(13) C47-C48-H48 120.1 C43-C48-H48 120.1 C37-P2-C43 108.38(6) C37-P2-C31 109.38(6) C43-P2-C31 109.99(6) C37-P2-C25 108.92(6) C43-P2-C25 110.98(6) C31-P2-C25 109.16(6) N2-N1-Zr1 165.91(12) N3-N2-N1 178.64(17) N5-N4-Zr1 168.34(12) N6-N5-N4 179.13(16) N8-N7-Zr1 153.06(12) N9-N8-N7 179.9(3) N11-N10-Zr1 140.60(11) N12-N11-N10 177.74(16) N14-N13-Zr1 127.07(11) N15-N14-N13 178.55(17) N17-N16-Zr1 142.70(11) N18-N17-N16 177.69(15) N1-Zr1-N7 93.89(5) N1-Zr1-N4 175.57(5) N7-Zr1-N4 87.65(5) N1-Zr1-N10 91.12(6) N7-Zr1-N10 88.63(5) N4-Zr1-N10 93.07(5) N1-Zr1-N16 86.50(5) N7-Zr1-N16 95.49(5) N4-Zr1-N16 89.22(5) N10-Zr1-N16 175.37(5) N1-Zr1-N13 91.70(5) N7-Zr1-N13 172.69(5) N4-Zr1-N13 87.12(5) N10-Zr1-N13 86.55(5) N16-Zr1-N13 89.55(6) Table A3. 6 Torsion angles (°) for [PPh 4 ] 2 [Zr(N 3 ) 6 ] C6-C1-C2-C3 0.0(2) P1-C1-C2-C3 -176.85(11) C1-C2-C3-C4 0.3(2) C2-C3-C4-C5 -0.2(2) C3-C4-C5-C6 -0.3(2) C4-C5-C6-C1 0.6(2) C2-C1-C6-C5 -0.5(2) P1-C1-C6-C5 176.31(10) C12-C7-C8-C9 -0.39(19) P1-C7-C8-C9 177.06(10) C7-C8-C9-C10 -0.2(2) C8-C9-C10-C11 0.4(2) C9-C10-C11-C12 -0.1(2) C10-C11-C12-C7 -0.4(2) 238 C8-C7-C12-C11 0.7(2) P1-C7-C12-C11 -176.83(11) C18-C13-C14-C15 0.22(19) P1-C13-C14-C15 -176.03(10) C13-C14-C15-C16 1.5(2) C14-C15-C16-C17 -1.8(2) C15-C16-C17-C18 0.4(2) C16-C17-C18-C13 1.2(2) C14-C13-C18-C17 -1.6(2) P1-C13-C18-C17 174.69(10) C24-C19-C20-C21 0.1(2) P1-C19-C20-C21 178.59(12) C19-C20-C21-C22 -0.5(2) C20-C21-C22-C23 0.2(2) C21-C22-C23-C24 0.3(2) C22-C23-C24-C19 -0.6(2) C20-C19-C24-C23 0.4(2) P1-C19-C24-C23 -178.07(12) C8-C7-P1-C1 15.04(13) C12-C7-P1-C1 -167.48(10) C8-C7-P1-C13 135.79(11) C12-C7-P1-C13 -46.72(12) C8-C7-P1-C19 -102.91(11) C12-C7-P1-C19 74.58(12) C6-C1-P1-C7 109.40(11) C2-C1-P1-C7 -73.72(12) C6-C1-P1-C13 -10.96(13) C2-C1-P1-C13 165.91(10) C6-C1-P1-C19 -130.86(11) C2-C1-P1-C19 46.02(12) C18-C13-P1-C7 151.90(10) C14-C13-P1-C7 -31.84(12) C18-C13-P1-C1 -85.76(12) C14-C13-P1-C1 90.50(11) C18-C13-P1-C19 31.42(13) C14-C13-P1-C19 -152.32(10) C20-C19-P1-C7 -23.08(14) C24-C19-P1-C7 155.38(11) C20-C19-P1-C1 -144.31(12) C24-C19-P1-C1 34.15(13) C20-C19-P1-C13 96.84(13) C24-C19-P1-C13 -84.70(12) C30-C25-C26-C27 1.1(2) P2-C25-C26-C27 -175.19(11) C25-C26-C27-C28 -0.5(2) C26-C27-C28-C29 -0.5(2) C27-C28-C29-C30 0.9(2) C28-C29-C30-C25 -0.3(2) C26-C25-C30-C29 -0.68(19) P2-C25-C30-C29 175.53(10) C36-C31-C32-C33 0.5(2) P2-C31-C32-C33 179.41(11) C31-C32-C33-C34 0.6(2) C32-C33-C34-C35 -1.5(2) C33-C34-C35-C36 1.2(2) C34-C35-C36-C31 -0.1(2) C32-C31-C36-C35 -0.8(2) P2-C31-C36-C35 -179.66(11) C42-C37-C38-C39 -1.1(2) P2-C37-C38-C39 176.22(10) C37-C38-C39-C40 1.1(2) C38-C39-C40-C41 0.0(2) C39-C40-C41-C42 -1.2(3) C40-C41-C42-C37 1.3(3) C38-C37-C42-C41 -0.1(2) P2-C37-C42-C41 -177.40(13) C48-C43-C44-C45 1.6(2) P2-C43-C44-C45 -175.84(12) C43-C44-C45-C46 0.0(2) C44-C45-C46-C47 -1.3(2) C45-C46-C47-C48 1.0(2) C46-C47-C48-C43 0.5(2) C44-C43-C48-C47 -1.8(2) P2-C43-C48-C47 175.57(10) C42-C37-P2-C43 -28.82(13) C38-C37-P2-C43 153.89(10) C42-C37-P2-C31 91.11(13) C38-C37-P2-C31 -86.18(11) C42-C37-P2-C25 -149.66(12) C38-C37-P2-C25 33.05(12) C48-C43-P2-C37 132.67(11) C44-C43-P2-C37 -49.93(12) C48-C43-P2-C31 13.13(13) C44-C43-P2-C31 -169.48(11) C48-C43-P2-C25 -107.77(11) C44-C43-P2-C25 69.63(12) C36-C31-P2-C37 -8.13(13) C32-C31-P2-C37 172.97(10) 239 C36-C31-P2-C43 110.80(11) C32-C31-P2-C43 -68.10(12) C36-C31-P2-C25 -127.21(11) C32-C31-P2-C25 53.89(12) C30-C25-P2-C37 -108.45(11) C26-C25-P2-C37 67.78(12) C30-C25-P2-C43 132.31(11) C26-C25-P2-C43 -51.46(12) C30-C25-P2-C31 10.92(12) C26-C25-P2-C31 -172.85(10) Table A3. 7 Anisotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [Zr(N 3 ) 6 ] U 11 U 22 U 33 U 23 U 13 U 12 C1 0.0172(6) 0.0155(6) 0.0174(6) -0.0020(5) -0.0034(5) -0.0082(5) C2 0.0269(7) 0.0185(6) 0.0195(7) -0.0012(5) -0.0021(5) -0.0112(6) C3 0.0325(8) 0.0198(7) 0.0245(7) 0.0039(5) -0.0096(6) -0.0128(6) C4 0.0212(7) 0.0161(6) 0.0393(9) -0.0012(6) -0.0109(6) -0.0064(5) C5 0.0159(6) 0.0206(7) 0.0351(8) -0.0068(6) 0.0003(5) -0.0060(5) C6 0.0163(6) 0.0195(6) 0.0225(7) -0.0023(5) 0.0000(5) -0.0084(5) C7 0.0161(6) 0.0166(6) 0.0153(6) -0.0032(5) 0.0011(4) -0.0079(5) C8 0.0178(6) 0.0189(6) 0.0152(6) -0.0013(5) 0.0013(5) -0.0082(5) C9 0.0211(6) 0.0267(7) 0.0151(6) -0.0028(5) -0.0001(5) -0.0127(6) C10 0.0233(7) 0.0248(7) 0.0208(7) -0.0096(5) 0.0035(5) -0.0129(6) C11 0.0229(7) 0.0174(6) 0.0278(7) -0.0067(5) 0.0006(5) -0.0068(5) C12 0.0200(6) 0.0171(6) 0.0209(7) -0.0023(5) -0.0028(5) -0.0067(5) C13 0.0162(6) 0.0134(5) 0.0147(6) -0.0018(4) -0.0007(4) -0.0036(5) C14 0.0174(6) 0.0185(6) 0.0168(6) -0.0015(5) -0.0008(5) -0.0067(5) C15 0.0199(6) 0.0194(6) 0.0190(6) -0.0004(5) 0.0023(5) -0.0067(5) C16 0.0241(7) 0.0179(6) 0.0144(6) -0.0007(5) 0.0004(5) -0.0024(5) C17 0.0275(7) 0.0199(6) 0.0171(6) -0.0026(5) -0.0055(5) -0.0071(6) C18 0.0226(6) 0.0171(6) 0.0186(6) -0.0016(5) -0.0034(5) -0.0082(5) C19 0.0161(6) 0.0212(6) 0.0154(6) 0.0008(5) -0.0009(4) -0.0095(5) C20 0.0199(7) 0.0166(6) 0.0387(9) 0.0014(6) 0.0032(6) -0.0050(5) C21 0.0170(7) 0.0217(7) 0.0462(10) 0.0050(6) 0.0056(6) -0.0024(6) C22 0.0173(6) 0.0364(8) 0.0264(8) 0.0079(6) -0.0042(5) -0.0134(6) C23 0.0300(8) 0.0419(9) 0.0224(7) -0.0089(6) 0.0015(6) -0.0249(7) C24 0.0254(7) 0.0333(8) 0.0202(7) -0.0106(6) 0.0046(5) -0.0176(6) P1 0.01475(15) 0.01419(14) 0.01349(15) -0.00157(11) -0.00039(11) -0.00653(12) C25 0.0150(6) 0.0146(5) 0.0155(6) -0.0034(4) -0.0001(4) -0.0062(5) C26 0.0189(6) 0.0194(6) 0.0227(7) 0.0029(5) -0.0040(5) -0.0076(5) C27 0.0165(6) 0.0249(7) 0.0274(7) -0.0009(6) -0.0039(5) -0.0075(5) C28 0.0190(6) 0.0247(7) 0.0215(7) -0.0079(5) 0.0033(5) -0.0119(5) C29 0.0232(7) 0.0204(6) 0.0165(6) -0.0027(5) 0.0020(5) -0.0108(5) C30 0.0187(6) 0.0180(6) 0.0168(6) -0.0023(5) -0.0017(5) -0.0071(5) C31 0.0131(5) 0.0170(6) 0.0153(6) -0.0023(5) 0.0000(4) -0.0033(5) C32 0.0184(6) 0.0176(6) 0.0195(6) -0.0028(5) -0.0003(5) -0.0055(5) C33 0.0207(7) 0.0193(6) 0.0250(7) -0.0001(5) 0.0004(5) -0.0010(5) C34 0.0174(6) 0.0295(8) 0.0229(7) -0.0017(6) -0.0019(5) 0.0029(6) C35 0.0179(6) 0.0338(8) 0.0230(7) -0.0092(6) -0.0042(5) -0.0032(6) 240 U 11 U 22 U 33 U 23 U 13 U 12 C36 0.0164(6) 0.0222(6) 0.0198(6) -0.0073(5) -0.0008(5) -0.0041(5) C37 0.0140(5) 0.0131(5) 0.0187(6) -0.0040(5) -0.0010(4) -0.0040(5) C38 0.0196(6) 0.0164(6) 0.0150(6) -0.0013(5) -0.0014(5) -0.0049(5) C39 0.0242(7) 0.0177(6) 0.0189(6) -0.0062(5) -0.0002(5) -0.0024(5) C40 0.0256(7) 0.0160(6) 0.0326(8) -0.0089(6) -0.0013(6) -0.0064(6) C41 0.0298(8) 0.0205(7) 0.0425(9) -0.0109(6) 0.0111(7) -0.0146(6) C42 0.0238(7) 0.0205(7) 0.0326(8) -0.0109(6) 0.0105(6) -0.0113(6) C43 0.0164(6) 0.0153(6) 0.0157(6) -0.0021(4) 0.0006(4) -0.0077(5) C44 0.0233(7) 0.0210(7) 0.0193(7) 0.0008(5) 0.0010(5) -0.0033(6) C45 0.0323(8) 0.0303(8) 0.0188(7) 0.0049(6) -0.0025(6) -0.0082(7) C46 0.0324(8) 0.0306(8) 0.0154(6) -0.0033(5) 0.0035(5) -0.0162(7) C47 0.0233(7) 0.0238(7) 0.0210(7) -0.0078(5) 0.0065(5) -0.0114(6) C48 0.0181(6) 0.0182(6) 0.0188(6) -0.0037(5) 0.0011(5) -0.0089(5) P2 0.01297(14) 0.01261(14) 0.01423(15) -0.00286(11) -0.00011(11) -0.00435(12) N1 0.0284(7) 0.0320(7) 0.0230(6) -0.0100(5) 0.0015(5) -0.0041(6) N2 0.0254(6) 0.0217(6) 0.0174(6) -0.0049(4) -0.0020(4) -0.0114(5) N3 0.0295(7) 0.0386(8) 0.0431(9) -0.0196(7) -0.0005(6) -0.0027(6) N4 0.0243(6) 0.0201(6) 0.0347(7) -0.0077(5) 0.0049(5) -0.0045(5) N5 0.0246(6) 0.0156(5) 0.0185(6) -0.0036(4) -0.0019(4) -0.0079(5) N6 0.0331(7) 0.0292(7) 0.0361(8) -0.0161(6) 0.0085(6) -0.0106(6) N7 0.0241(6) 0.0234(6) 0.0191(6) -0.0011(5) -0.0029(5) -0.0078(5) N8 0.0372(7) 0.0368(7) 0.0205(6) 0.0013(5) -0.0001(5) -0.0247(6) N9 0.1057(17) 0.1076(18) 0.0340(9) -0.0138(10) 0.0024(10) -0.0879(16) N10 0.0322(7) 0.0255(6) 0.0262(7) 0.0078(5) -0.0084(5) -0.0134(6) N11 0.0168(5) 0.0218(6) 0.0241(6) 0.0015(5) 0.0002(4) -0.0077(5) N12 0.0335(8) 0.0487(9) 0.0316(8) 0.0180(7) -0.0059(6) -0.0152(7) N13 0.0295(7) 0.0392(8) 0.0302(7) -0.0056(6) -0.0076(5) -0.0159(6) N14 0.0327(7) 0.0203(6) 0.0294(7) 0.0042(5) -0.0137(5) -0.0117(5) N15 0.0282(7) 0.0273(7) 0.0511(9) 0.0044(6) -0.0160(6) -0.0073(6) N16 0.0452(8) 0.0198(6) 0.0222(6) -0.0040(5) 0.0042(6) -0.0156(6) N17 0.0163(5) 0.0204(5) 0.0185(5) -0.0037(4) -0.0014(4) -0.0056(4) N18 0.0245(6) 0.0193(6) 0.0505(9) -0.0116(6) 0.0037(6) -0.0067(5) Zr1 0.01938(7) 0.01540(6) 0.01497(6) -0.00141(4) -0.00105(4) -0.00566(5) Table A3. 8 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [Zr(N 3 ) 6 ] x/a y/b z/c U(eq) H2 0.6894 0.8510 0.5709 0.025 H3 0.5577 1.0327 0.5523 0.03 H4 0.4088 1.1056 0.6550 0.03 H5 0.3891 0.9979 0.7766 0.029 H6 0.5178 0.8151 0.7959 0.023 H8 0.5850 0.7068 0.5564 0.02 241 x/a y/b z/c U(eq) H9 0.5636 0.5860 0.4688 0.024 H10 0.6641 0.3981 0.4953 0.026 H11 0.7844 0.3291 0.6095 0.027 H12 0.8056 0.4485 0.6985 0.023 H14 0.5874 0.5565 0.7904 0.021 H15 0.5622 0.4982 0.9307 0.024 H16 0.6616 0.5399 1.0328 0.024 H17 0.7946 0.6319 0.9940 0.026 H18 0.8273 0.6851 0.8531 0.023 H20 0.9459 0.5402 0.6252 0.031 H21 1.1337 0.5555 0.5917 0.037 H22 1.1681 0.7103 0.6210 0.032 H23 1.0160 0.8500 0.6846 0.033 H24 0.8287 0.8350 0.7207 0.029 H26 0.8153 0.0999 0.7421 0.024 H27 0.6385 0.0642 0.7783 0.027 H28 0.6348 -0.0680 0.8870 0.024 H29 0.8081 -0.1666 0.9585 0.023 H30 0.9849 -0.1306 0.9243 0.021 H32 1.1625 -0.2104 0.8215 0.022 H33 1.3247 -0.3344 0.8942 0.028 H34 1.4273 -0.2722 0.9808 0.032 H35 1.3749 -0.0853 0.9911 0.031 H36 1.2136 0.0405 0.9182 0.024 H38 0.9016 0.1462 0.9385 0.021 H39 0.8723 0.3157 0.9863 0.026 H40 0.9665 0.4291 0.9154 0.029 H41 1.0907 0.3752 0.7963 0.035 H42 1.1267 0.2034 0.7502 0.03 H44 0.9456 0.1681 0.6654 0.027 H45 0.9872 0.1674 0.5211 0.034 H46 1.1518 0.0281 0.4670 0.03 H47 1.2798 -0.1076 0.5565 0.026 H48 1.2406 -0.1077 0.7012 0.021 242 Figure A3. 3 Asymmetric unit in the crystal structure of [PPh 4 ] 2 [Hf(N 3 ) 6 ] Figure A3. 4 Crystal packing in the structure of [PPh 4 ] 2 [Hf(N 3 ) 6 ] along the a-axis 243 Table A3. 9 Sample and crystal data for [PPh 4 ] 2 [Hf(N 3 ) 6 ]. Chemical formula C 48 H 40 HfN 18 P 2 Formula weight 1109.41 g/mol Temperature 100(2) K Wavelength 0.71073 Å Crystal size 0.084 x 0.197 x 0.253 mm Crystal habit colorless Prism Crystal system triclinic Space group P -1 Unit cell dimensions a = 10.1243(10) Å α = 88.9330(10)° b = 10.1264(10) Å β = 75.6150(10)° c = 12.4150(12) Å γ = 74.1980(10)° Volume 1184.7(2) Å 3 Z 1 Density (calculated) 1.555 g/cm 3 Absorption coefficient 2.326 mm -1 F(000) 556 Table A3. 10 Data collection and structure refinement for [PPh 4 ] 2 [Hf(N 3 ) 6 ]. Diffractometer Bruker APEX DUO Radiation source fine-focus tube, MoKα Theta range for data collection 1.70 to 30.54° Index ranges -14<=h<=14, -14<=k<=14, -17<=l<=17 Reflections collected 25158 Independent reflections 7109 [R(int) = 0.0413] Coverage of independent reflections 97.8% Absorption correction multi-scan Max. and min. transmission 0.8290 and 0.5910 Structure solution technique direct methods Structure solution program SHELXTL XT 2013/1 (Bruker AXS, 2014) Refinement method Full-matrix least-squares on F 2 Refinement program SHELXTL XL 2014/7 (Bruker AXS, 2014) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 7109 / 0 / 313 Goodness-of-fit on F 2 1.027 Δ/σ max 0.001 Final R indices 6696 data; I>2σ(I) R1 = 0.0304, wR2 = 0.0612 all data R1 = 0.0357, wR2 = 0.0632 Weighting scheme w=1/[σ 2 (F o 2 )+(0.0275P) 2 +0.7960P] where P=(F o 2 +2F c 2 )/3 Largest diff. peak and hole 2.194 and -1.515 eÅ -3 R.M.S. deviation from mean 0.112 eÅ -3 244 Table A3. 11 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [Hf(N 3 ) 6 ] x/a y/b z/c U(eq) C1 0.2886(2) 0.7098(2) 0.44213(18) 0.0184(4) C2 0.4028(2) 0.7482(2) 0.46236(18) 0.0191(4) C3 0.3795(3) 0.8394(2) 0.5526(2) 0.0234(5) C4 0.2448(3) 0.8898(2) 0.6229(2) 0.0262(5) C5 0.1315(3) 0.8516(3) 0.6024(2) 0.0295(6) C6 0.1518(3) 0.7631(3) 0.5123(2) 0.0287(5) C7 0.1798(2) 0.6772(2) 0.25235(18) 0.0177(4) C8 0.1718(2) 0.8134(2) 0.2226(2) 0.0218(5) C9 0.0737(3) 0.8793(2) 0.1645(2) 0.0228(5) C10 0.9832(2) 0.8114(2) 0.13765(19) 0.0221(5) C11 0.9912(2) 0.6771(2) 0.16646(19) 0.0220(5) C12 0.0897(2) 0.6091(2) 0.22421(18) 0.0194(4) C13 0.2795(2) 0.4339(2) 0.37640(18) 0.0176(4) C14 0.2229(2) 0.4164(3) 0.48909(19) 0.0229(5) C15 0.2024(3) 0.2893(3) 0.5219(2) 0.0264(5) C16 0.2361(2) 0.1819(3) 0.4430(2) 0.0244(5) C17 0.2933(3) 0.1984(2) 0.3311(2) 0.0232(5) C18 0.3165(2) 0.3239(2) 0.29806(18) 0.0201(4) C19 0.4849(2) 0.5545(2) 0.23688(18) 0.0162(4) C20 0.5970(2) 0.4735(2) 0.27689(19) 0.0201(4) C21 0.7330(2) 0.4357(2) 0.20766(19) 0.0210(4) C22 0.7568(2) 0.4773(2) 0.09843(19) 0.0206(4) C23 0.6460(2) 0.5572(2) 0.05896(18) 0.0203(4) C24 0.5084(2) 0.5970(2) 0.12776(18) 0.0177(4) P1 0.30866(6) 0.59484(6) 0.32686(4) 0.01608(11) N1 0.5808(2) 0.1574(2) 0.05335(17) 0.0241(4) N2 0.6909(2) 0.14343(19) 0.08024(16) 0.0210(4) N3 0.7957(2) 0.1330(2) 0.10480(19) 0.0289(5) N4 0.2883(2) 0.1247(2) 0.05467(17) 0.0256(4) N5 0.1851(2) 0.2167(2) 0.09031(17) 0.0201(4) N6 0.0851(2) 0.3060(3) 0.1237(2) 0.0396(6) N7 0.4865(2) 0.9149(2) 0.16201(16) 0.0215(4) N8 0.5674(2) 0.8847(2) 0.22063(16) 0.0221(4) N9 0.6410(3) 0.8545(3) 0.2794(2) 0.0438(7) Hf1 0.5 0.0 0.0 0.01758(4) Table A3. 12 Bond lengths (Å) for [PPh 4 ] 2 [Hf(N 3 ) 6 ] C1-C2 1.394(3) C1-C6 1.407(3) 245 C1-P1 1.798(2) C2-C3 1.398(3) C2-H2 0.95 C3-C4 1.388(4) C3-H3 0.95 C4-C5 1.386(4) C4-H4 0.95 C5-C6 1.385(3) C5-H5 0.95 C6-H6 0.95 C7-C12 1.393(3) C7-C8 1.407(3) C7-P1 1.798(2) C8-C9 1.388(3) C8-H8 0.95 C9-C10 1.389(3) C9-H9 0.95 C10-C11 1.385(3) C10-H10 0.95 C11-C12 1.395(3) C11-H11 0.95 C12-H12 0.95 C13-C18 1.400(3) C13-C14 1.402(3) C13-P1 1.804(2) C14-C15 1.396(4) C14-H14 0.95 C15-C16 1.389(4) C15-H15 0.95 C16-C17 1.392(3) C16-H16 0.95 C17-C18 1.390(3) C17-H17 0.95 C18-H18 0.95 C19-C24 1.397(3) C19-C20 1.402(3) C19-P1 1.797(2) C20-C21 1.384(3) C20-H20 0.95 C21-C22 1.395(3) C21-H21 0.95 C22-C23 1.385(3) C22-H22 0.95 C23-C24 1.396(3) C23-H23 0.95 C24-H24 0.95 N1-N2 1.212(3) N1-Hf1 2.161(2) N2-N3 1.152(3) N4-N5 1.189(3) N4-Hf1 2.117(2) N5-N6 1.149(3) N7-N8 1.203(3) N7-Hf1 2.1608(19) N8-N9 1.148(3) Hf1-N4 2.117(2) Hf1-N7 2.1608(19) Hf1-N1 2.161(2) Table A3. 13 Bond angles (°) for [PPh 4 ] 2 [Hf(N 3 ) 6 ] C2-C1-C6 119.9(2) C2-C1-P1 122.22(17) C6-C1-P1 117.91(18) C1-C2-C3 119.3(2) C1-C2-H2 120.4 C3-C2-H2 120.4 C4-C3-C2 120.6(2) C4-C3-H3 119.7 C2-C3-H3 119.7 C5-C4-C3 119.9(2) C5-C4-H4 120.0 C3-C4-H4 120.0 C6-C5-C4 120.4(2) C6-C5-H5 119.8 C4-C5-H5 119.8 C5-C6-C1 119.9(2) C5-C6-H6 120.1 C1-C6-H6 120.1 C12-C7-C8 120.3(2) C12-C7-P1 121.41(17) C8-C7-P1 118.29(17) C9-C8-C7 119.5(2) C9-C8-H8 120.2 C7-C8-H8 120.2 246 C8-C9-C10 119.9(2) C8-C9-H9 120.0 C10-C9-H9 120.0 C11-C10-C9 120.7(2) C11-C10-H10 119.7 C9-C10-H10 119.7 C10-C11-C12 120.1(2) C10-C11-H11 119.9 C12-C11-H11 119.9 C7-C12-C11 119.4(2) C7-C12-H12 120.3 C11-C12-H12 120.3 C18-C13-C14 119.9(2) C18-C13-P1 117.74(16) C14-C13-P1 122.34(18) C15-C14-C13 119.5(2) C15-C14-H14 120.3 C13-C14-H14 120.3 C16-C15-C14 120.0(2) C16-C15-H15 120.0 C14-C15-H15 120.0 C15-C16-C17 120.8(2) C15-C16-H16 119.6 C17-C16-H16 119.6 C18-C17-C16 119.5(2) C18-C17-H17 120.2 C16-C17-H17 120.2 C17-C18-C13 120.2(2) C17-C18-H18 119.9 C13-C18-H18 119.9 C24-C19-C20 120.9(2) C24-C19-P1 120.63(16) C20-C19-P1 118.43(16) C21-C20-C19 119.7(2) C21-C20-H20 120.2 C19-C20-H20 120.2 C20-C21-C22 119.7(2) C20-C21-H21 120.2 C22-C21-H21 120.2 C23-C22-C21 120.6(2) C23-C22-H22 119.7 C21-C22-H22 119.7 C22-C23-C24 120.5(2) C22-C23-H23 119.8 C24-C23-H23 119.8 C23-C24-C19 118.7(2) C23-C24-H24 120.7 C19-C24-H24 120.7 C19-P1-C7 110.73(10) C19-P1-C1 111.65(10) C7-P1-C1 107.32(10) C19-P1-C13 106.55(10) C7-P1-C13 110.29(10) C1-P1-C13 110.32(10) N2-N1-Hf1 128.15(16) N3-N2-N1 178.4(2) N5-N4-Hf1 164.48(19) N6-N5-N4 179.3(3) N8-N7-Hf1 133.71(17) N9-N8-N7 177.5(2) N4-Hf1-N4 180.0 N4-Hf1-N7 89.62(8) N4-Hf1-N7 90.38(8) N4-Hf1-N7 90.38(8) N4-Hf1-N7 89.62(8) N7-Hf1-N7 180.0 N4-Hf1-N1 91.50(8) N4-Hf1-N1 88.50(8) N7-Hf1-N1 90.38(8) N7-Hf1-N1 89.62(8) N4-Hf1-N1 88.50(8) N4-Hf1-N1 91.50(8) N7-Hf1-N1 89.62(8) N7-Hf1-N1 90.38(8) N1-Hf1-N1 180.0 Table A3. 14 Torsion angles (°) for [PPh 4 ] 2 [Hf(N 3 ) 6 ] C6-C1-C2-C3 0.1(3) P1-C1-C2-C3 179.14(17) C1-C2-C3-C4 1.2(3) C2-C3-C4-C5 -1.3(4) C3-C4-C5-C6 0.2(4) C4-C5-C6-C1 1.0(4) 247 C2-C1-C6-C5 -1.1(4) P1-C1-C6-C5 179.7(2) C12-C7-C8-C9 -0.3(3) P1-C7-C8-C9 179.68(17) C7-C8-C9-C10 0.9(3) C8-C9-C10-C11 -1.1(3) C9-C10-C11-C12 0.7(3) C8-C7-C12-C11 -0.1(3) P1-C7-C12-C11 179.92(17) C10-C11-C12-C7 -0.1(3) C18-C13-C14-C15 -0.8(3) P1-C13-C14-C15 179.74(18) C13-C14-C15-C16 -0.9(4) C14-C15-C16-C17 1.4(4) C15-C16-C17-C18 -0.2(4) C16-C17-C18-C13 -1.5(4) C14-C13-C18-C17 2.0(3) P1-C13-C18-C17 -178.49(18) C24-C19-C20-C21 0.3(3) P1-C19-C20-C21 177.09(18) C19-C20-C21-C22 -0.7(3) C20-C21-C22-C23 0.6(3) C21-C22-C23-C24 -0.3(3) C22-C23-C24-C19 -0.1(3) C20-C19-C24-C23 0.0(3) P1-C19-C24-C23 -176.67(17) C24-C19-P1-C7 5.2(2) C20-C19-P1-C7 -171.55(18) C24-C19-P1-C1 -114.33(19) C20-C19-P1-C1 68.9(2) C24-C19-P1-C13 125.15(18) C20-C19-P1-C13 -51.6(2) C12-C7-P1-C19 107.85(19) C8-C7-P1-C19 -72.09(19) C12-C7-P1-C1 -130.05(18) C8-C7-P1-C1 50.0(2) C12-C7-P1-C13 -9.8(2) C8-C7-P1-C13 170.22(17) C2-C1-P1-C19 -6.4(2) C6-C1-P1-C19 172.70(19) C2-C1-P1-C7 -127.92(19) C6-C1-P1-C7 51.2(2) C2-C1-P1-C13 111.9(2) C6-C1-P1-C13 -69.0(2) C18-C13-P1-C19 -47.0(2) C14-C13-P1-C19 132.52(19) C18-C13-P1-C7 73.3(2) C14-C13-P1-C7 -107.2(2) C18-C13-P1-C1 -168.34(17) C14-C13-P1-C1 11.2(2) Table A3. 15 Anisotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [Hf(N 3 ) 6 ] U 11 U 22 U 33 U 23 U 13 U 12 C1 0.0181(10) 0.0214(10) 0.0160(10) -0.0004(8) -0.0036(8) -0.0066(8) C2 0.0204(11) 0.0190(10) 0.0189(10) 0.0038(8) -0.0066(8) -0.0058(8) C3 0.0298(12) 0.0233(11) 0.0223(11) 0.0044(9) -0.0133(10) -0.0101(10) C4 0.0408(15) 0.0221(11) 0.0171(11) 0.0011(9) -0.0091(10) -0.0097(10) C5 0.0275(13) 0.0311(13) 0.0247(12) -0.0087(10) 0.0034(10) -0.0079(11) C6 0.0220(12) 0.0345(13) 0.0284(13) -0.0100(10) -0.0022(10) -0.0087(10) C7 0.0139(10) 0.0213(10) 0.0157(10) -0.0022(8) -0.0013(8) -0.0031(8) C8 0.0190(11) 0.0214(11) 0.0247(11) -0.0020(9) -0.0053(9) -0.0050(9) C9 0.0227(11) 0.0201(10) 0.0235(11) 0.0007(9) -0.0048(9) -0.0034(9) C10 0.0182(11) 0.0254(11) 0.0196(11) -0.0023(9) -0.0052(9) -0.0001(9) C11 0.0184(11) 0.0264(11) 0.0223(11) -0.0046(9) -0.0065(9) -0.0065(9) C12 0.0188(10) 0.0204(10) 0.0182(10) -0.0013(8) -0.0024(8) -0.0062(8) C13 0.0140(10) 0.0215(10) 0.0160(10) 0.0015(8) -0.0029(8) -0.0036(8) C14 0.0189(11) 0.0329(13) 0.0150(10) 0.0001(9) -0.0030(8) -0.0053(10) C15 0.0219(12) 0.0379(14) 0.0181(11) 0.0109(10) -0.0033(9) -0.0084(10) 248 U 11 U 22 U 33 U 23 U 13 U 12 C16 0.0191(11) 0.0260(12) 0.0270(12) 0.0102(9) -0.0056(9) -0.0051(9) C17 0.0223(11) 0.0197(10) 0.0252(11) 0.0028(9) -0.0051(9) -0.0026(9) C18 0.0204(11) 0.0229(11) 0.0146(10) 0.0022(8) -0.0031(8) -0.0032(9) C19 0.0151(10) 0.0158(9) 0.0169(10) -0.0001(8) -0.0036(8) -0.0034(8) C20 0.0196(11) 0.0217(10) 0.0172(10) 0.0047(8) -0.0034(8) -0.0043(9) C21 0.0175(10) 0.0189(10) 0.0243(11) 0.0020(9) -0.0046(9) -0.0018(8) C22 0.0175(10) 0.0195(10) 0.0220(11) -0.0039(8) 0.0009(9) -0.0057(8) C23 0.0235(11) 0.0225(11) 0.0148(10) 0.0007(8) -0.0010(8) -0.0098(9) C24 0.0211(11) 0.0153(9) 0.0170(10) 0.0003(8) -0.0059(8) -0.0045(8) P1 0.0143(3) 0.0189(3) 0.0141(2) -0.0010(2) -0.0026(2) -0.0038(2) N1 0.0303(11) 0.0178(9) 0.0264(10) -0.0001(8) -0.0115(9) -0.0060(8) N2 0.0335(11) 0.0131(8) 0.0160(9) 0.0020(7) -0.0067(8) -0.0056(8) N3 0.0365(12) 0.0257(10) 0.0299(11) 0.0032(9) -0.0169(10) -0.0098(9) N4 0.0238(10) 0.0220(10) 0.0265(10) -0.0017(8) -0.0058(8) 0.0006(8) N5 0.0169(9) 0.0193(9) 0.0259(10) -0.0014(7) -0.0080(8) -0.0053(7) N6 0.0202(11) 0.0344(13) 0.0588(16) -0.0163(12) -0.0090(11) 0.0015(10) N7 0.0263(10) 0.0197(9) 0.0189(9) 0.0033(7) -0.0095(8) -0.0040(8) N8 0.0247(10) 0.0239(10) 0.0196(9) 0.0065(8) -0.0034(8) -0.0123(8) N9 0.0340(13) 0.076(2) 0.0356(13) 0.0281(13) -0.0195(11) -0.0303(13) Hf1 0.01986(7) 0.01371(6) 0.01728(7) -0.00030(4) -0.00562(5) -0.00060(5) Table A3. 16 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [Hf(N 3 ) 6 ] x/a y/b z/c U(eq) H2 0.4955 0.7127 0.4153 0.023 H3 0.4566 0.8673 0.5660 0.028 H4 0.2303 0.9503 0.6849 0.031 H5 0.0393 0.8864 0.6504 0.035 H6 0.0735 0.7384 0.4979 0.034 H8 0.2330 0.8599 0.2421 0.026 H9 0.0685 0.9708 0.1432 0.027 H10 -0.0849 0.8575 0.0991 0.027 H11 -0.0705 0.6313 0.1469 0.026 H12 0.0953 0.5171 0.2442 0.023 H14 0.1987 0.4904 0.5427 0.027 H15 0.1654 0.2762 0.5983 0.032 H16 0.2199 0.0964 0.4656 0.029 H17 0.3163 0.1244 0.2776 0.028 H18 0.3577 0.3349 0.2221 0.024 H20 0.5798 0.4448 0.3511 0.024 H21 0.8096 0.3816 0.2344 0.025 H22 0.8499 0.4506 0.0507 0.025 249 x/a y/b z/c U(eq) H23 0.6637 0.5852 -0.0155 0.024 H24 0.4322 0.6519 0.1009 0.021 A3.3 Computational Results Table A3. 17 XYZ coordinates for T d [Ti(N 3 ) 4 ] at B3LYP N 1.08218 1.08218 1.08218 N 1.78461 1.78461 1.78461 N 2.44905 2.44905 2.44905 N -1.08218 -1.08218 1.08218 N -1.78461 -1.78461 1.78461 N -2.44905 -2.44905 2.44905 N 1.08218 -1.08218 -1.08218 N 1.78461 -1.78461 -1.78461 N 2.44905 -2.44905 -2.44905 N -1.08218 1.08218 -1.08218 N -1.78461 1.78461 -1.78461 N -2.44905 2.44905 -2.44905 Ti 0.00000 0.00000 0.00000 Table A3. 18 XYZ coordinates for T d [Ti(N 3 ) 4 ] at SVWN5 N 1.07091 1.07091 1.07091 N 1.77122 1.77122 1.77122 N 2.44051 2.44051 2.44051 N -1.07091 -1.07091 1.07091 N -1.77122 -1.77122 1.77122 N -2.44051 -2.44051 2.44051 N 1.07091 -1.07091 -1.07091 N 1.77122 -1.77122 -1.77122 N 2.44051 -2.44051 -2.44051 N -1.07091 1.07091 -1.07091 N -1.77122 1.77122 -1.77122 N -2.44051 2.44051 -2.44051 Ti 0.00000 0.00000 0.00000 Table A3. 19 XYZ coordinates for T d [Zr(N 3 ) 4 ] at B3LYP N 1.17252 1.17252 1.17252 N 1.87705 1.87705 1.87705 N 2.54107 2.54107 2.54107 N -1.17252 -1.17252 1.17252 N -1.87705 -1.87705 1.87705 N -2.54107 -2.54107 2.54107 N 1.17252 -1.17252 -1.17252 N 1.87705 -1.87705 -1.87705 N 2.54107 -2.54107 -2.54107 N -1.17252 1.17252 -1.17252 250 N -1.87705 1.87705 -1.87705 N -2.54107 2.54107 -2.54107 Zr 0.00000 0.00000 0.00000 Table A3. 20 XYZ coordinates for T d [Zr(N 3 ) 4 ] at SVWN5 N 1.16038 1.16038 1.16038 N 1.86260 1.86260 1.86260 N 2.53141 2.53141 2.53141 N -1.16038 -1.16038 1.16038 N -1.86260 -1.86260 1.86260 N -2.53141 -2.53141 2.53141 N 1.16038 -1.16038 -1.16038 N 1.86260 -1.86260 -1.86260 N 2.53141 -2.53141 -2.53141 N -1.16038 1.16038 -1.16038 N -1.86260 1.86260 -1.86260 N -2.53141 2.53141 -2.53141 Zr 0.00000 0.00000 0.00000 Table A3. 21 XYZ coordinates for T d [Hf(N 3 ) 4 ] at B3LYP N 1.15902 1.15902 1.15902 N 1.86271 1.86271 1.86271 N 2.52625 2.52625 2.52625 N -1.15902 -1.15902 1.15902 N -1.86271 -1.86271 1.86271 N -2.52625 -2.52625 2.52625 N 1.15902 -1.15902 -1.15902 N 1.86271 -1.86271 -1.86271 N 2.52625 -2.52625 -2.52625 N -1.15902 1.15902 -1.15902 N -1.86271 1.86271 -1.86271 N -2.52625 2.52625 -2.52625 Hf 0.00000 0.00000 0.00000 Table A3. 22 XYZ coordinates for T d [Hf(N 3 ) 4 ] at SVWN5 N 1.14654 1.14654 1.14654 N 1.84796 1.84796 1.84796 N 2.51622 2.51622 2.51622 N -1.14654 -1.14654 1.14654 N -1.84796 -1.84796 1.84796 N -2.51622 -2.51622 2.51622 N 1.14654 -1.14654 -1.14654 N 1.84796 -1.84796 -1.84796 N 2.51622 -2.51622 -2.51622 N -1.14654 1.14654 -1.14654 N -1.84796 1.84796 -1.84796 N -2.51622 2.51622 -2.51622 Hf 0.00000 0.00000 0.00000 251 Table A3. 23 XYZ coordinates for C 1 A [Ti(N 3 ) 5 ] - at B3LYP N 0.57405 -1.55608 -0.96398 N 1.60808 -2.13472 -1.24835 N 2.54812 -2.73445 -1.56276 N -0.42144 -0.32882 2.03248 N -1.44207 -0.56872 2.65166 N -2.37086 -0.79801 3.30414 N -1.77822 -0.24512 -0.43546 N -2.55891 -0.73814 -1.21738 N -3.33876 -1.19953 -1.94394 N -1.49787 3.34293 -1.48790 N -0.76239 2.58353 -1.01401 N 0.06990 1.84375 -0.51960 N 4.03957 1.44727 0.62548 N 3.03212 0.86832 0.61559 N 1.99887 0.24245 0.63436 Ti 0.09539 -0.00785 0.16853 Table A3. 24 XYZ coordinates for C 1 B [Ti(N 3 ) 5 ] - at B3LYP N 0.07542 -1.24026 -1.67234 N -0.84909 -1.48936 -2.42396 N -1.67865 -1.76760 -3.18359 N 0.06044 -1.23235 1.68567 N -0.87175 -1.47726 2.42919 N -1.70921 -1.75113 3.18166 N -1.51562 0.34061 -0.00400 N -2.59145 0.88794 -0.01627 N -3.63824 1.39184 -0.02738 N -0.00612 3.82117 -0.00198 N 0.41488 2.74088 0.00002 N 0.93704 1.64115 0.00218 N 4.53873 -0.00508 -0.00545 N 3.42465 -0.33603 0.00378 N 2.28053 -0.72537 0.01456 Ti 0.35904 -0.25428 0.00570 Table A3. 25 XYZ coordinates for C 1 C [Ti(N 3 ) 5 ] - at SVWN5 N 0.76381 -0.15439 -1.73728 N 1.81101 -0.21314 -2.34519 N 2.78079 -0.27442 -2.99268 N -0.27064 -1.60250 1.10480 N -1.17583 -2.35543 1.39098 N -2.00308 -3.11680 1.70514 N -1.70484 -0.03637 -0.60935 N -2.69655 -0.06589 -1.29082 N -3.66703 -0.09527 -1.94451 N -1.94499 3.35475 1.20517 N -1.13032 2.54088 1.01350 252 N -0.23711 1.73869 0.84881 N 4.15339 0.16234 1.54224 N 3.05854 0.09953 1.13182 N 1.93046 0.03296 0.72139 Ti 0.10576 -0.00476 0.08145 Table A3. 26 XYZ coordinates for C 1 D [Ti(N 3 ) 5 ] - at SVWN5 N 0.33145 -0.76770 -1.77982 N -0.42188 -1.13532 -2.65408 N -1.09156 -1.50670 -3.53564 N 0.33149 -1.16962 1.54575 N -0.42161 -1.73514 2.30732 N -1.09108 -2.30607 3.07504 N -1.55797 0.00864 0.00119 N -2.76195 0.02419 0.00310 N -3.93226 0.03862 0.00490 N -1.04584 3.82128 0.46142 N -0.38766 2.86365 0.34580 N 0.35442 1.91332 0.23108 N 4.68597 0.00276 0.00014 N 3.51413 -0.00764 -0.00100 N 2.31324 -0.01960 -0.00231 Ti 0.37581 -0.00785 -0.00091 Table A3. 27 XYZ coordinates for C 3v [Ti(N 3 ) 5 ] - at SVWN5 N -0.00000 1.93471 0.33948 N -0.00000 2.88572 -0.41061 N -0.00000 3.84478 -1.07673 N 1.67551 -0.96735 0.33948 N 2.49911 -1.44286 -0.41061 N 3.32968 -1.92239 -1.07673 N 0.00000 0.00000 -1.55796 N 0.00000 0.00000 -2.76203 N 0.00000 0.00000 -3.93245 N -3.32968 -1.92239 -1.07673 N -2.49911 -1.44286 -0.41061 N -1.67551 -0.96735 0.33948 N 0.00000 0.00000 4.68629 N 0.00000 0.00000 3.51441 N 0.00000 0.00000 2.31347 Ti 0.00000 0.00000 0.37604 Table A3. 28 XYZ coordinates for D 3h [Ti(N 3 ) 5 ] - at B3LYP N 0.00000 1.93664 0.00000 N 0.00000 3.13939 0.00000 N 0.00000 4.30273 0.00000 253 N -1.67718 -0.96832 0.00000 N -2.71879 -1.56970 0.00000 N -3.72627 -2.15136 0.00000 N 0.00000 0.00000 1.97438 N 0.00000 0.00000 3.17471 N 0.00000 0.00000 4.34131 N 3.72627 -2.15136 0.00000 N 2.71879 -1.56970 0.00000 N 1.67718 -0.96832 0.00000 N 0.00000 0.00000 -4.34131 N 0.00000 0.00000 -3.17471 N 0.00000 0.00000 -1.97438 Ti 0.00000 0.00000 0.00000 Table A3. 29 XYZ coordinates for D 3h [Ti(N 3 ) 5 ] - at SVWN5 N 0.00000 1.90966 0.00000 N 0.00000 3.11149 0.00000 N 0.00000 4.28217 0.00000 N -1.65382 -0.95483 0.00000 N -2.69463 -1.55574 0.00000 N -3.70847 -2.14109 0.00000 N 0.00000 0.00000 1.94278 N 0.00000 0.00000 3.14290 N 0.00000 0.00000 4.31632 N 3.70847 -2.14109 0.00000 N 2.69463 -1.55574 0.00000 N 1.65382 -0.95483 0.00000 N 0.00000 0.00000 -4.31632 N 0.00000 0.00000 -3.14290 N 0.00000 0.00000 -1.94278 Ti 0.00000 0.00000 0.00000 Table A3. 30 XYZ coordinates for C 1 [Hf(N 3 ) 5 ] - at B3LYP N 0.70425 -0.02063 -1.95890 N 1.63100 -0.02882 -2.74218 N 2.47722 -0.03709 -3.53362 N -0.25760 -1.79643 1.03161 N -1.03506 -2.67190 1.35030 N -1.73378 -3.53422 1.68275 N -1.92417 -0.00561 -0.62600 N -3.00002 -0.00904 -1.17313 N -4.03965 -0.01236 -1.69162 N -1.72691 3.56885 1.61599 N -1.03030 2.69923 1.29844 N -0.25496 1.81668 0.99460 N 4.23076 0.01678 1.63322 N 3.16722 0.01118 1.16492 N 2.06584 0.00519 0.67382 Hf 0.07060 -0.00018 0.02720 254 Table A3. 31 XYZ coordinates for C 1 [Hf(N 3 ) 5 ] - at SVWN5 N -0.00888 1.96313 -0.54677 N -0.01523 3.12256 -0.87412 N -0.02138 4.24651 -1.19100 N 0.01607 -0.50519 1.97518 N 0.03762 -0.80358 3.14222 N 0.05722 -1.09240 4.27352 N 2.07334 0.00357 -0.01702 N 3.27743 0.00639 -0.03049 N 4.44771 0.00911 -0.04303 N -0.02668 -3.15591 -3.08059 N -0.01820 -2.32062 -2.26454 N -0.00929 -1.45864 -1.42291 N -4.44908 -0.00516 0.03121 N -3.27875 -0.00485 0.02338 N -2.07463 -0.00431 0.01573 Hf -0.00071 -0.00006 0.00090 Table A3. 32 XYZ coordinates for C S [Hf(N 3 ) 5 ] - at B3LYP N 1.55273 1.38750 -0.00000 N 1.92722 2.54182 -0.00000 N 2.33997 3.62445 -0.00000 N -0.84189 -0.61705 1.80706 N -0.84189 -1.45411 2.68553 N -0.88386 -2.22321 3.55102 N 1.30284 -1.54977 0.00000 N 2.21795 -2.33681 0.00000 N 3.09246 -3.10160 0.00000 N -0.88386 -2.22321 -3.55102 N -0.84189 -1.45411 -2.68553 N -0.84189 -0.61705 -1.80706 N -3.10618 3.30242 -0.00000 N -2.27004 2.49540 -0.00000 N -1.39827 1.66213 -0.00000 Hf -0.05089 0.05476 -0.00000 Table A3. 33 XYZ coordinates for C 3v [Hf(N 3 ) 5 ] - at B3LYP N 0.00000 2.08316 0.20495 N 0.00000 3.11728 -0.42933 N 0.00000 4.13389 -0.98520 N 1.80407 -1.04158 0.20495 N 2.69964 -1.55864 -0.42933 N 3.58006 -2.06695 -0.98520 N 0.00000 0.00000 -1.87608 N 0.00000 0.00000 -3.08361 N 0.00000 0.00000 -4.24525 N -3.58006 -2.06695 -0.98520 N -2.69964 -1.55864 -0.42933 N -1.80407 -1.04158 0.20495 N 0.00000 0.00000 4.68782 255 N 0.00000 0.00000 3.52526 N 0.00000 0.00000 2.32047 Hf 0.00000 0.00000 0.22362 Table A3. 34 XYZ coordinates for D 3h [Hf(N 3 ) 5 ] - at B3LYP N 0.00000 2.06637 0.00000 N 0.00000 3.27225 0.00000 N 0.00000 4.43302 0.00000 N -1.78953 -1.03318 0.00000 N -2.83385 -1.63613 0.00000 N -3.83911 -2.21651 0.00000 N 0.00000 0.00000 2.10360 N 0.00000 0.00000 3.30806 N 0.00000 0.00000 4.47179 N 3.83911 -2.21651 0.00000 N 2.83385 -1.63613 0.00000 N 1.78953 -1.03318 0.00000 N 0.00000 0.00000 -4.47179 N 0.00000 0.00000 -3.30806 N 0.00000 0.00000 -2.10360 Hf 0.00000 0.00000 0.00000 Table A3. 35 XYZ coordinates for D 3h [Hf(N 3 ) 5 ] - at SVWN5 N 0.00000 2.03823 0.00000 N 0.00000 3.24298 0.00000 N 0.00000 4.41075 0.00000 N -1.76516 -1.01911 0.00000 N -2.80850 -1.62149 0.00000 N -3.81982 -2.20538 0.00000 N 0.00000 0.00000 2.07419 N 0.00000 0.00000 3.27835 N 0.00000 0.00000 4.44868 N 3.81982 -2.20538 0.00000 N 2.80850 -1.62149 0.00000 N 1.76516 -1.01911 0.00000 N 0.00000 0.00000 -4.44868 N 0.00000 0.00000 -3.27835 N 0.00000 0.00000 -2.07419 Hf 0.00000 0.00000 0.00000 Table A3. 36 XYZ coordinates for C s [Zr(N 3 ) 5 ] - at B3LYP N 1.59074 1.38663 -0.00000 N 1.96021 2.54397 -0.00000 N 2.36780 3.62926 -0.00000 N -0.87170 -0.58702 1.83208 N -0.87170 -1.44623 2.69087 N -0.91239 -2.23583 3.53867 N 1.26226 -1.58070 0.00000 N 2.15170 -2.39816 0.00000 N 3.00312 -3.18894 0.00000 256 N -0.91239 -2.23583 -3.53867 N -0.87170 -1.44623 -2.69087 N -0.87170 -0.58702 -1.83208 N -3.05382 3.40946 -0.00000 N -2.23555 2.58392 -0.00000 N -1.38353 1.72894 -0.00000 Zr -0.06148 0.07416 -0.00000 Table A3. 37 XYZ coordinates for C s [Zr(N 3 ) 5 ] - at SVWN5 N 1.05305 1.78469 0.00000 N 1.36893 2.95024 0.00000 N 1.70382 4.06919 0.00000 N -0.57820 -0.83588 1.79820 N -0.57820 -1.53130 2.78563 N -0.60554 -2.19009 3.74972 N 1.72145 -1.08821 -0.00000 N 2.75458 -1.70968 -0.00000 N 3.75825 -2.31172 -0.00000 N -0.60554 -2.19009 -3.74972 N -0.57820 -1.53130 -2.78563 N -0.57820 -0.83588 -1.79820 N -3.88110 2.33134 0.00000 N -2.86756 1.74591 0.00000 N -1.82409 1.14282 0.00000 Zr -0.04611 0.03499 0.00000 Table A3. 38 XYZ coordinates for C 3v [Zr(N 3 ) 5 ] - at B3LYP N 0.00000 2.10826 0.26419 N 0.00000 3.12448 -0.40099 N 0.00000 4.12506 -0.98656 N 1.82580 -1.05413 0.26419 N 2.70588 -1.56224 -0.40099 N 3.57240 -2.06253 -0.98656 N 0.00000 0.00000 -1.83054 N 0.00000 0.00000 -3.03917 N 0.00000 0.00000 -4.20102 N -3.57240 -2.06253 -0.98656 N -2.70588 -1.56224 -0.40099 N -1.82580 -1.05413 0.26419 N 0.00000 0.00000 4.77515 N 0.00000 0.00000 3.61226 N 0.00000 0.00000 2.40630 Zr 0.00000 0.00000 0.28825 Table A3. 39 XYZ coordinates for C 3v [Zr(N 3 ) 5 ] - at SVWN5 N 0.00000 2.06737 0.15418 N 0.00000 3.20462 -0.25339 257 N 0.00000 4.31497 -0.61542 N 1.79039 -1.03368 0.15418 N 2.77528 -1.60231 -0.25339 N 3.73688 -2.15749 -0.61542 N 0.00000 0.00000 -1.91019 N 0.00000 0.00000 -3.11639 N 0.00000 0.00000 -4.28659 N -3.73688 -2.15749 -0.61542 N -2.77528 -1.60231 -0.25339 N -1.79039 -1.03368 0.15418 N 0.00000 0.00000 4.65328 N 0.00000 0.00000 3.48273 N 0.00000 0.00000 2.27789 Zr 0.00000 0.00000 0.18256 Table A3. 40 XYZ coordinates for D 3h [Zr(N 3 ) 5 ] - at B3LYP N 0.00000 2.09004 0.00000 N 0.00000 3.29725 0.00000 N 0.00000 4.45853 0.00000 N -1.81002 -1.04502 0.00000 N -2.85550 -1.64862 0.00000 N -3.86120 -2.22926 0.00000 N 0.00000 0.00000 2.12468 N 0.00000 0.00000 3.33012 N 0.00000 0.00000 4.49415 N 3.86120 -2.22926 0.00000 N 2.85550 -1.64862 0.00000 N 1.81002 -1.04502 0.00000 N 0.00000 0.00000 -4.49415 N 0.00000 0.00000 -3.33012 N 0.00000 0.00000 -2.12468 Zr 0.00000 0.00000 0.00000 Table A3. 41 XYZ coordinates for D 3h [Zr(N 3 ) 5 ] - at SVWN5 N 0.00000 2.06237 0.00000 N 0.00000 3.26830 0.00000 N 0.00000 4.43676 0.00000 N -1.78607 -1.03119 0.00000 N -2.83043 -1.63415 0.00000 N -3.84235 -2.21838 0.00000 N 0.00000 0.00000 2.09616 N 0.00000 0.00000 3.30113 N 0.00000 0.00000 4.47199 N 3.84235 -2.21838 0.00000 N 2.83043 -1.63415 0.00000 N 1.78607 -1.03119 0.00000 N 0.00000 0.00000 -4.47199 N 0.00000 0.00000 -3.30113 N 0.00000 0.00000 -2.09616 Zr 0.00000 0.00000 0.00000 258 Table A3. 42 XYZ coordinates for C 1 [Ti(N 3 ) 6 ] 2- at B3LYP N 1.35727 -0.13818 -1.52348 N 2.27910 -0.77612 -1.95785 N 3.18380 -1.35698 -2.42181 N 1.19121 -1.18529 1.14657 N 1.70782 -1.27225 2.22944 N 2.23820 -1.40782 3.26439 N -1.33840 0.02973 1.52089 N -2.07528 -0.65640 2.17879 N -2.81225 -1.27530 2.84551 N -0.96243 -1.59732 -0.81156 N -1.38101 -2.06023 -1.83960 N -1.81108 -2.55760 -2.80865 N -2.92431 2.87825 -0.99698 N -2.06456 2.08313 -1.00626 N -1.18330 1.26841 -1.07459 N 2.06965 3.68110 0.16051 N 1.52410 2.67369 0.40432 N 0.97962 1.64747 0.71374 Ti 0.00695 0.00691 -0.00744 Table A3. 43 XYZ coordinates for O h [Ti(N 3 ) 6 ] 2- at B3LYP N 0.00000 0.00000 2.01476 N 0.00000 0.00000 3.20716 N 0.00000 0.00000 4.38287 N 0.00000 -0.00000 -2.01476 N 0.00000 -0.00000 -3.20716 N 0.00000 -0.00000 -4.38287 N -0.00000 2.01476 -0.00000 N -0.00000 3.20716 -0.00000 N -0.00000 4.38287 -0.00000 N -2.01476 0.00000 -0.00000 N -3.20716 0.00000 -0.00000 N -4.38287 0.00000 -0.00000 N 0.00000 -2.01476 0.00000 N 0.00000 -3.20716 0.00000 N 0.00000 -4.38287 0.00000 N 2.01476 0.00000 0.00000 N 3.20716 0.00000 0.00000 N 4.38287 0.00000 0.00000 Ti 0.00000 0.00000 0.00000 Table A3. 44 XYZ coordinates for O h [Ti(N 3 ) 6 ] 2- at SVWN5 N -0.00000 0.00000 1.97785 N -0.00000 0.00000 3.17148 N -0.00000 0.00000 4.35308 N -0.00000 -0.00000 -1.97785 N -0.00000 -0.00000 -3.17148 N -0.00000 -0.00000 -4.35308 N -0.00000 1.97785 -0.00000 259 N -0.00000 3.17148 -0.00000 N -0.00000 4.35308 -0.00000 N -1.97785 0.00000 -0.00000 N -3.17148 0.00000 -0.00000 N -4.35308 0.00000 -0.00000 N -0.00000 -1.97785 0.00000 N -0.00000 -3.17148 0.00000 N -0.00000 -4.35308 0.00000 N 1.97785 0.00000 0.00000 N 3.17148 0.00000 0.00000 N 4.35308 0.00000 0.00000 Ti 0.00000 0.00000 0.00000 Table A3. 45 XYZ coordinates for C 1 [Hf(N 3 ) 6 ] 2- at B3LYP N 1.25313 0.39814 1.69520 N 1.97427 0.33566 2.65016 N 2.67983 0.30059 3.58481 N -1.25552 -0.46098 -1.67912 N -1.98370 -0.97499 -2.48006 N -2.69566 -1.45489 -3.27721 N 1.21148 -1.70096 -0.49721 N 1.90994 -2.51303 -1.03459 N 2.59340 -3.32089 -1.53738 N 1.24820 1.24685 -1.22001 N 1.96343 2.10236 -1.65882 N 2.66383 2.92555 -2.11088 N -1.21149 1.71535 0.43726 N -1.90550 2.69132 0.39496 N -2.58467 3.64582 0.37963 N -1.24800 -1.20645 1.26329 N -1.95712 -1.63670 2.12815 N -2.65143 -2.07981 2.96133 Hf -0.00043 -0.00126 0.00005 Table A3. 46 XYZ coordinates for O h [Hf(N 3 ) 6 ] 2- at B3LYP N -0.00000 -0.00000 2.14307 N -0.00000 -0.00000 3.33987 N -0.00000 -0.00000 4.51228 N -0.00000 -0.00000 -2.14307 N -0.00000 -0.00000 -3.33987 N -0.00000 -0.00000 -4.51228 N -0.00000 2.14307 -0.00000 N -0.00000 3.33987 -0.00000 N -0.00000 4.51228 -0.00000 N -2.14307 -0.00000 -0.00000 N -3.33987 -0.00000 -0.00000 N -4.51228 -0.00000 -0.00000 N 0.00000 -2.14307 0.00000 N 0.00000 -3.33987 0.00000 N 0.00000 -4.51228 0.00000 N 2.14307 -0.00000 0.00000 N 3.33987 -0.00000 0.00000 260 N 4.51228 -0.00000 0.00000 Hf 0.00000 0.00000 0.00000 Table A3. 47 XYZ coordinates for O h [Hf(N 3 ) 6 ] 2- at SVWN5 N 0.00000 -0.00000 2.10843 N 0.00000 -0.00000 3.30637 N 0.00000 -0.00000 4.48459 N 0.00000 -0.00000 -2.10843 N 0.00000 -0.00000 -3.30637 N 0.00000 -0.00000 -4.48459 N 0.00000 2.10843 -0.00000 N 0.00000 3.30637 -0.00000 N 0.00000 4.48459 -0.00000 N -2.10843 -0.00000 -0.00000 N -3.30637 -0.00000 -0.00000 N -4.48459 -0.00000 -0.00000 N 0.00000 -2.10843 0.00000 N 0.00000 -3.30637 0.00000 N 0.00000 -4.48459 0.00000 N 2.10843 -0.00000 0.00000 N 3.30637 -0.00000 0.00000 N 4.48459 -0.00000 0.00000 Hf 0.00000 0.00000 0.00000 Table A3. 48 XYZ coordinates for C 1 [Zr(N 3 ) 6 ] 2- at B3LYP N 1.87405 -1.05323 -0.28326 N 2.97801 -1.42942 -0.56043 N 4.05390 -1.81440 -0.82089 N -1.85325 1.09807 0.24020 N -2.80124 1.83111 0.21366 N -3.73683 2.53693 0.20109 N 0.99596 1.88804 -0.38096 N 1.36708 3.02707 -0.42750 N 1.74724 4.13412 -0.48677 N 0.44395 0.17389 2.11642 N 0.80608 -0.03230 3.24098 N 1.15159 -0.20843 4.34688 N -1.05336 -1.85025 0.41972 N -1.83454 -2.69189 0.76477 N -2.58393 -3.53121 1.09259 N -0.40836 -0.26777 -2.11639 N -0.51451 -0.70237 -3.22900 N -0.62948 -1.10388 -4.32403 Zr -0.00042 -0.00072 -0.00124 Table A3. 49 XYZ coordinates for C 1 [Zr(N 3 ) 6 ] 2- at SVWN5 N -1.56645 -0.50819 1.35366 261 N -2.44884 -0.79785 2.11159 N -3.31590 -1.08262 2.85744 N 1.56635 0.51074 -1.35472 N 2.45156 0.79619 -2.11100 N 3.32186 1.07701 -2.85452 N -1.40354 1.02512 -1.23791 N -2.19233 1.60116 -1.93291 N -2.96692 2.16769 -2.61711 N -0.35495 -1.79833 -1.08814 N -0.55484 -2.81176 -1.69643 N -0.75089 -3.80821 -2.29460 N 1.40275 -1.02238 1.23683 N 2.19124 -1.60179 1.92932 N 2.96645 -2.17176 2.61000 N 0.35438 1.80122 1.08667 N 0.55299 2.81119 1.70110 N 0.74830 3.80436 2.30495 Zr -0.00021 0.00144 -0.00074 Table A3. 50 XYZ coordinates for O h [Zr(N 3 ) 6 ] 2- at B3LYP N -0.00000 -0.00000 2.16669 N -0.00000 -0.00000 3.36425 N -0.00000 -0.00000 4.53705 N -0.00000 -0.00000 -2.16669 N -0.00000 -0.00000 -3.36425 N -0.00000 -0.00000 -4.53705 N -0.00000 2.16669 -0.00000 N -0.00000 3.36425 -0.00000 N -0.00000 4.53705 -0.00000 N -2.16669 0.00000 -0.00000 N -3.36425 0.00000 -0.00000 N -4.53705 0.00000 -0.00000 N 0.00000 -2.16669 0.00000 N 0.00000 -3.36425 0.00000 N 0.00000 -4.53705 0.00000 N 2.16669 -0.00000 0.00000 N 3.36425 -0.00000 0.00000 N 4.53705 -0.00000 0.00000 Zr 0.00000 0.00000 0.00000 Table A3. 51 XYZ coordinates for O h [Zr(N 3 ) 6 ] 2- at SVWN5 N 0.00000 0.00000 2.13262 N 0.00000 0.00000 3.33132 N 0.00000 0.00000 4.50997 N 0.00000 -0.00000 -2.13262 N 0.00000 -0.00000 -3.33132 N 0.00000 -0.00000 -4.50997 N 0.00000 2.13262 -0.00000 N 0.00000 3.33132 -0.00000 N 0.00000 4.50997 -0.00000 N -2.13262 0.00000 -0.00000 262 N -3.33132 0.00000 -0.00000 N -4.50997 0.00000 -0.00000 N -0.00000 -2.13262 0.00000 N -0.00000 -3.33132 0.00000 N -0.00000 -4.50997 0.00000 N 2.13262 0.00000 0.00000 N 3.33132 0.00000 0.00000 N 4.50997 0.00000 0.00000 Zr 0.00000 0.00000 0.00000 References 1. SAINT+, V8.27B: Bruker AXS, Madison, WI, 2011. 2. SADABS, V2012-1: Bruker AXS, Madison, WI, 2012. 3. Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D., J. Appl. Crystallogr. 2015, 48, 3-10. 4. Sheldrick, G. M., Acta Crystallogr. 2015, A71, 3-8. 5. SHELXL, 2014/7: G. M. Sheldrick, 2014. 6. Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B., J. Appl. Crystallogr. 2011, 1281-1284. 7. SHELXTL, V2014/1: Bruker AXS, Madison, WI, 2014. 8. Sheldrick, G. M., Acta Crystallogr. 2008, A64, 112-122. 9. Sheldrick, G. M., Acta Crystallogr. 2015, C71, 3-8. 10. Farrugia, L. J., J. Appl. Crystallogr. 1997, 30, 565-565. 263 APPENDIX 4: ADDITIONAL INFORMATION FOR [Mn(bipy) 3 ][Mn(CN) 6 ] (CHAPTER 5) A4.1 Experimental details A4.1.1 Materials and Apparatus All reactions were carried out in Teflon-FEP ampules that were closed by stainless steel valves. Volatile materials were handled in a Pyrex glass vacuum line, nonvolatile materials in the dry nitrogen atmosphere of a glove box. AsF 3 (Advanced Research Chemicals) and Me 3 SiCN (Aldrich) were purified by fractional condensation prior to use. SbF 3 (Ozark Mahoning) and 2,2’- bipyridine (Aldrich) were used as received. Solvents were dried by standard methods and freshly distilled prior to use. Raman spectra were recorded in the range 4000–80 cm -1 on Bruker Equinox 55 or Bruker Vertex 70/RAMII FT-RA spectrophotometers, using a Nd-YAG laser at 1064 nm. Infrared spectra were recorded in the range 4000-400 cm -1 on Bruker Alpha, Bruker Vertex 70 or Midac M Series FT-IR spectrometers using KBr or AgCl pellets. A4.1.2 Crystal structure determination. The single-crystal X-ray diffraction data were collected on a Bruker SMART APEX DUO 3-circle platform diffractometer, equipped with an APEX II CCD detector, using Mo Kα or Cu Kα radiation. The frames were integrated using the SAINT algorithm and the absorption correction was performed using the SADABS program. 1 . The structures were solved by intrinsic phasing 2 and refined on F 2 using the Bruker SHELXTL Software Package and ShelXle. 2-4 All non-hydrogen atoms were refined anisotropically. Drawings were prepared using the ORTEP-3 for Windows V2.02 and Mercury CSD 3.8 programs. 5 A4.1.3 Preparation of [Mn(bipy) 3 ][Mn(CN) 6 ] A sample of MnF 3 (111 mg; 1mmol) along with bipy (234 mg; 1.5 mmol) was loaded into a glass ampule, followed by the addition of MeCN (3 mL) and Me 3 SiCN (689 mg; 6 mmol) in vacuo at - 196℃ The mixture was warmed to RT and stirred over the period of 4 days in dark, a pale brown solution was obtained and the volatile materials were pumped off at -20℃ and then at room temperature leaving behind [Mn(bipy) 3 ][Mn(CN) 6 ]. 264 A4.2 Crystal Structure Data Figure A4. 1 Asymmetric unit in the crystal structure of [Mn(bipy) 3 ][Mn(CN) 6 ] Figure A4. 2 Crystal packing in the structure of [Mn(bipy) 3 ][Mn(CN) 6 ] along the a-axis 265 Table A4. 1 Sample and crystal data for MnCN3_Bipy Identification code MnCN3_Bipy Chemical formula C 41 H 28 Mn 2 N 13 Formula weight 812.64 g/mol Temperature 100(2) K Wavelength 1.54178 Å Crystal size 0.061 x 0.065 x 0.165 mm Crystal habit clear orange-brown prism Crystal system triclinic Space group P -1 Unit cell dimensions a = 11.4020(3) Å α = 71.015(2)° b = 12.1710(3) Å β = 76.569(2)° c = 16.3321(4) Å γ = 71.846(2)° Volume 2014.77(9) Å 3 Z 2 Density (calculated) 1.340 g/cm 3 Absorption coefficient 5.475 mm -1 F(000) 830 Table A4. 2 Data collection and structure refinement for MnCN3_Bipy Diffractometer Bruker APEX DUO Radiation source IuS microsource, CuKα Theta range for data collection 3.97 to 69.56° Index ranges -13<=h<=13, -14<=k<=14, -19<=l<=18 Reflections collected 28387 Independent reflections 7099 [R(int) = 0.1152] Coverage of independent reflections 93.6% Absorption correction multi-scan Max. and min. transmission 0.7310 and 0.4650 Structure solution technique direct methods Structure solution program SHELXTL XT 2014/4 (Bruker AXS, 2014) Refinement method Full-matrix least-squares on F 2 Refinement program SHELXTL XL 2014/7 (Bruker AXS, 2014) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 7099 / 0 / 505 Goodness-of-fit on F 2 1.041 Final R indices 4261 data; I>2σ(I) R1 = 0.0612, wR2 = 0.1508 all data R1 = 0.1195, wR2 = 0.1800 Weighting scheme w=1/[σ 2 (F o 2 )+(0.0895P) 2 +0.3314P] where P=(F o 2 +2F c 2 )/3 Largest diff. peak and hole 0.865 and -0.622 eÅ -3 R.M.S. deviation from mean 0.076 eÅ -3 266 Table A4. 3 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for MnCN 3 _Bipy x/a y/b z/c U(eq) C1 0.8599(5) 0.3228(4) 0.2542(3) 0.0394(12) C2 0.6530(5) 0.5218(5) 0.2525(3) 0.0427(13) C3 0.5160(5) 0.4015(4) 0.1968(3) 0.0399(12) C4 0.7271(5) 0.2053(5) 0.2017(4) 0.0483(14) C5 0.7478(5) 0.4435(4) 0.1031(4) 0.0453(13) C6 0.6266(4) 0.2902(4) 0.3503(4) 0.0375(12) C7 0.4376(5) 0.7997(5) 0.1262(4) 0.0535(15) C8 0.5140(6) 0.7588(6) 0.0572(4) 0.0628(17) C9 0.4702(6) 0.6993(5) 0.0172(4) 0.0551(16) C10 0.3540(5) 0.6800(4) 0.0483(3) 0.0475(14) C11 0.2809(5) 0.7221(4) 0.1179(3) 0.0383(12) C12 0.1557(5) 0.7061(4) 0.1548(3) 0.0411(13) C13 0.1123(6) 0.6187(5) 0.1413(3) 0.0542(15) C14 0.9894(7) 0.6120(6) 0.1747(4) 0.0651(18) C15 0.9135(6) 0.6921(5) 0.2194(4) 0.0556(15) C16 0.9627(5) 0.7733(5) 0.2329(4) 0.0493(14) C17 0.3387(4) 0.6153(4) 0.3661(3) 0.0388(12) C18 0.3780(4) 0.5256(4) 0.4376(3) 0.0388(12) C19 0.3104(4) 0.5305(4) 0.5187(3) 0.0397(12) C20 0.2042(4) 0.6244(4) 0.5249(3) 0.0374(12) C21 0.1710(4) 0.7123(4) 0.4494(3) 0.0335(11) C22 0.0597(4) 0.8155(4) 0.4493(3) 0.0328(11) C23 0.9784(4) 0.8298(4) 0.5257(3) 0.0398(12) C24 0.8756(5) 0.9259(4) 0.5207(4) 0.0438(13) C25 0.8539(5) 0.0063(4) 0.4409(4) 0.0470(14) C26 0.9382(4) 0.9885(4) 0.3679(3) 0.0406(13) C27 0.0517(5) 0.0874(5) 0.1186(4) 0.0504(15) C28 0.0271(6) 0.2021(5) 0.0593(4) 0.0598(17) C29 0.0968(6) 0.2765(5) 0.0552(4) 0.0593(17) C30 0.1855(6) 0.2404(5) 0.1102(4) 0.0552(17) C31 0.2037(5) 0.1248(4) 0.1686(3) 0.0425(13) C32 0.2955(5) 0.0777(4) 0.2306(4) 0.0449(14) C33 0.3620(6) 0.1474(5) 0.2431(4) 0.0574(16) C34 0.4441(6) 0.0979(6) 0.3023(5) 0.0642(19) C35 0.4600(5) 0.9785(6) 0.3506(5) 0.0629(17) C36 0.3909(5) 0.9133(5) 0.3354(4) 0.0505(15) C37 0.2109(5) 0.2864(5) 0.5394(4) 0.0510(15) C38 0.2706(5) 0.2844(5) 0.4567(4) 0.0520(15) C39 0.2190(5) 0.3708(5) 0.3865(4) 0.0502(15) C40 0.1094(5) 0.4574(4) 0.4032(3) 0.0419(13) 267 x/a y/b z/c U(eq) C41 0.0568(4) 0.4539(4) 0.4893(3) 0.0347(11) Mn1 0.68814(7) 0.36448(6) 0.22576(5) 0.0377(2) Mn2 0.18469(7) 0.86356(6) 0.25658(5) 0.0361(2) N1 0.9593(4) 0.2983(4) 0.2701(3) 0.0477(11) N2 0.6344(4) 0.6132(4) 0.2659(3) 0.0472(11) N3 0.4184(4) 0.4175(4) 0.1807(3) 0.0467(11) N4 0.7497(5) 0.1121(4) 0.1902(4) 0.0663(15) N5 0.7825(5) 0.4919(4) 0.0313(3) 0.0531(12) N6 0.5897(4) 0.2450(4) 0.4225(3) 0.0426(11) N7 0.3231(4) 0.7825(4) 0.1560(3) 0.0402(10) N8 0.0810(4) 0.7805(3) 0.2027(3) 0.0403(10) N9 0.2385(3) 0.7076(3) 0.3701(3) 0.0358(10) N10 0.0391(3) 0.8946(3) 0.3712(3) 0.0343(10) N11 0.1366(4) 0.0496(3) 0.1709(3) 0.0414(11) N12 0.3113(4) 0.9599(4) 0.2772(3) 0.0434(11) N13 0.1062(4) 0.3680(4) 0.5572(3) 0.0426(11) Table A4. 4 Bond lengths (Å) for MnCN 3 _Bipy C1-N1 1.147(6) C1-Mn1 1.990(6) C2-N2 1.150(6) C2-Mn1 2.000(6) C3-N3 1.146(6) C3-Mn1 2.005(6) C4-N4 1.150(7) C4-Mn1 1.996(6) C5-N5 1.165(7) C5-Mn1 1.980(6) C6-N6 1.166(6) C6-Mn1 1.996(6) C7-N7 1.339(7) C7-C8 1.385(8) C7-H7 0.95 C8-C9 1.373(9) C8-H8 0.95 C9-C10 1.368(8) C9-H9 0.95 C10-C11 1.386(7) C10-H10 0.95 C11-N7 1.348(6) C11-C12 1.461(7) C12-N8 1.351(6) C12-C13 1.398(7) C13-C14 1.399(9) C13-H13 0.95 C14-C15 1.370(9) C14-H14 0.95 C15-C16 1.373(8) C15-H15 0.95 C16-N8 1.344(6) C16-H16 0.95 C17-N9 1.335(6) C17-C18 1.366(7) C17-H17 0.95 C18-C19 1.379(7) C18-H18 0.95 C19-C20 1.392(6) C19-H19 0.95 C20-C21 1.383(7) C20-H20 0.95 C21-N9 1.353(6) C21-C22 1.482(6) C22-N10 1.345(6) C22-C23 1.396(7) C23-C24 1.371(6) C23-H23 0.95 268 C24-C25 1.373(7) C24-H24 0.95 C25-C26 1.377(7) C25-H25 0.95 C26-N10 1.343(6) C26-H26 0.95 C27-N11 1.314(7) C27-C28 1.403(7) C27-H27 0.95 C28-C29 1.357(9) C28-H28 0.95 C29-C30 1.382(9) C29-H29 0.95 C30-C31 1.404(7) C30-H30 0.95 C31-N11 1.350(6) C31-C32 1.481(8) C32-N12 1.363(6) C32-C33 1.387(8) C33-C34 1.365(9) C33-H33 0.95 C34-C35 1.386(9) C34-H34 0.95 C35-C36 1.386(8) C35-H35 0.95 C36-N12 1.334(7) C36-H36 0.95 C37-N13 1.336(6) C37-C38 1.369(8) C37-H37 0.95 C38-C39 1.382(8) C38-H38 0.95 C39-C40 1.398(7) C39-H39 0.95 C40-C41 1.387(7) C40-H40 0.95 C41-N13 1.345(6) C41-C41 1.482(9) Mn2-N11 2.216(4) Mn2-N9 2.221(4) Mn2-N8 2.237(4) Mn2-N10 2.243(4) Mn2-N7 2.245(4) Mn2-N12 2.261(4) Table A4. 5 Bond angles (°) for MnCN 3 _Bipy N1-C1-Mn1 179.4(5) N2-C2-Mn1 178.3(5) N3-C3-Mn1 177.0(4) N4-C4-Mn1 178.1(6) N5-C5-Mn1 178.8(4) N6-C6-Mn1 178.4(5) N7-C7-C8 122.6(6) N7-C7-H7 118.7 C8-C7-H7 118.7 C9-C8-C7 118.7(6) C9-C8-H8 120.7 C7-C8-H8 120.7 C10-C9-C8 118.8(5) C10-C9-H9 120.6 C8-C9-H9 120.6 C9-C10-C11 120.5(5) C9-C10-H10 119.7 C11-C10-H10 119.7 N7-C11-C10 120.5(5) N7-C11-C12 115.4(4) C10-C11-C12 124.0(5) N8-C12-C13 120.3(5) N8-C12-C11 117.4(4) C13-C12-C11 122.3(5) C12-C13-C14 119.5(5) C12-C13-H13 120.3 C14-C13-H13 120.3 C15-C14-C13 119.1(6) C15-C14-H14 120.4 C13-C14-H14 120.4 C14-C15-C16 118.6(6) C14-C15-H15 120.7 C16-C15-H15 120.7 N8-C16-C15 123.4(5) N8-C16-H16 118.3 C15-C16-H16 118.3 N9-C17-C18 123.9(5) N9-C17-H17 118.1 269 C18-C17-H17 118.1 C17-C18-C19 118.1(4) C17-C18-H18 120.9 C19-C18-H18 120.9 C18-C19-C20 119.3(5) C18-C19-H19 120.3 C20-C19-H19 120.3 C21-C20-C19 119.0(5) C21-C20-H20 120.5 C19-C20-H20 120.5 N9-C21-C20 121.3(4) N9-C21-C22 115.7(4) C20-C21-C22 122.9(4) N10-C22-C23 121.2(4) N10-C22-C21 116.6(4) C23-C22-C21 122.3(4) C24-C23-C22 119.2(5) C24-C23-H23 120.4 C22-C23-H23 120.4 C23-C24-C25 119.6(5) C23-C24-H24 120.2 C25-C24-H24 120.2 C24-C25-C26 118.6(5) C24-C25-H25 120.7 C26-C25-H25 120.7 N10-C26-C25 122.8(5) N10-C26-H26 118.6 C25-C26-H26 118.6 N11-C27-C28 123.6(6) N11-C27-H27 118.2 C28-C27-H27 118.2 C29-C28-C27 117.6(6) C29-C28-H28 121.2 C27-C28-H28 121.2 C28-C29-C30 120.4(5) C28-C29-H29 119.8 C30-C29-H29 119.8 C29-C30-C31 118.7(6) C29-C30-H30 120.7 C31-C30-H30 120.7 N11-C31-C30 120.9(6) N11-C31-C32 116.1(4) C30-C31-C32 123.0(5) N12-C32-C33 120.4(6) N12-C32-C31 116.3(5) C33-C32-C31 123.3(5) C34-C33-C32 119.8(6) C34-C33-H33 120.1 C32-C33-H33 120.1 C33-C34-C35 120.2(6) C33-C34-H34 119.9 C35-C34-H34 119.9 C36-C35-C34 117.4(7) C36-C35-H35 121.3 C34-C35-H35 121.3 N12-C36-C35 123.2(6) N12-C36-H36 118.4 C35-C36-H36 118.4 N13-C37-C38 124.2(5) N13-C37-H37 117.9 C38-C37-H37 117.9 C37-C38-C39 118.5(5) C37-C38-H38 120.8 C39-C38-H38 120.8 C38-C39-C40 118.5(5) C38-C39-H39 120.7 C40-C39-H39 120.7 C41-C40-C39 119.1(5) C41-C40-H40 120.5 C39-C40-H40 120.5 N13-C41-C40 122.0(4) N13-C41-C41 116.8(5) C40-C41-C41 121.2(6) C5-Mn1-C1 89.6(2) C5-Mn1-C4 92.6(2) C1-Mn1-C4 89.2(2) C5-Mn1-C6 178.01(19) C1-Mn1-C6 90.5(2) C4-Mn1-C6 89.3(2) C5-Mn1-C2 88.2(2) C1-Mn1-C2 89.2(2) C4-Mn1-C2 178.2(2) C6-Mn1-C2 89.8(2) C5-Mn1-C3 90.7(2) C1-Mn1-C3 178.3(2) C4-Mn1-C3 89.2(2) C6-Mn1-C3 89.3(2) C2-Mn1-C3 92.4(2) 270 N11-Mn2-N9 161.98(16) N11-Mn2-N8 98.83(16) N9-Mn2-N8 97.36(14) N11-Mn2-N10 96.74(14) N9-Mn2-N10 73.50(13) N8-Mn2-N10 96.66(15) N11-Mn2-N7 96.71(15) N9-Mn2-N7 95.34(14) N8-Mn2-N7 73.87(15) N10-Mn2-N7 164.61(14) N11-Mn2-N12 73.62(17) N9-Mn2-N12 92.00(15) N8-Mn2-N12 166.17(15) N10-Mn2-N12 95.74(15) N7-Mn2-N12 95.20(15) C7-N7-C11 118.8(4) C7-N7-Mn2 124.9(4) C11-N7-Mn2 115.9(3) C16-N8-C12 119.0(5) C16-N8-Mn2 124.6(4) C12-N8-Mn2 113.8(3) C17-N9-C21 118.3(4) C17-N9-Mn2 124.2(3) C21-N9-Mn2 117.2(3) C26-N10-C22 118.6(4) C26-N10-Mn2 124.9(3) C22-N10-Mn2 116.4(3) C27-N11-C31 118.9(4) C27-N11-Mn2 123.1(4) C31-N11-Mn2 117.9(4) C36-N12-C32 118.9(5) C36-N12-Mn2 125.0(3) C32-N12-Mn2 115.8(4) C37-N13-C41 117.7(5) Table A4. 6 Torsion angles (°) for MnCN 3 _Bipy N7-C7-C8-C9 0.6(9) C7-C8-C9-C10 -1.6(9) C8-C9-C10-C11 1.3(8) C9-C10-C11-N7 0.0(8) C9-C10-C11-C12 179.6(5) N7-C11-C12-N8 19.5(6) C10-C11-C12-N8 -160.2(5) N7-C11-C12-C13 -161.2(5) C10-C11-C12-C13 19.1(8) N8-C12-C13-C14 2.5(8) C11-C12-C13-C14 -176.8(5) C12-C13-C14-C15 0.6(9) C13-C14-C15-C16 -2.7(9) C14-C15-C16-N8 1.8(9) N9-C17-C18-C19 0.0(8) C17-C18-C19-C20 1.2(7) C18-C19-C20-C21 -1.8(7) C19-C20-C21-N9 1.1(7) C19-C20-C21-C22 180.0(4) N9-C21-C22-N10 -1.4(6) C20-C21-C22-N10 179.6(4) N9-C21-C22-C23 177.5(4) C20-C21-C22-C23 -1.5(7) N10-C22-C23-C24 0.3(7) C21-C22-C23-C24 -178.5(5) C22-C23-C24-C25 0.2(8) C23-C24-C25-C26 -1.1(8) C24-C25-C26-N10 1.6(8) N11-C27-C28-C29 1.1(9) C27-C28-C29-C30 -2.1(9) C28-C29-C30-C31 1.4(8) C29-C30-C31-N11 0.4(7) C29-C30-C31-C32 -179.5(5) N11-C31-C32-N12 6.3(6) C30-C31-C32-N12 -173.8(4) N11-C31-C32-C33 -172.9(5) C30-C31-C32-C33 7.0(7) N12-C32-C33-C34 0.0(8) C31-C32-C33-C34 179.2(5) C32-C33-C34-C35 -0.7(8) C33-C34-C35-C36 0.6(8) C34-C35-C36-N12 0.1(8) N13-C37-C38-C39 -1.1(9) C37-C38-C39-C40 1.0(8) C38-C39-C40-C41 0.3(8) C39-C40-C41-N13 -1.7(7) C39-C40-C41-C41 177.8(5) C8-C7-N7-C11 0.7(8) 271 C8-C7-N7-Mn2 -172.5(4) C10-C11-N7-C7 -1.0(7) C12-C11-N7-C7 179.3(4) C10-C11-N7-Mn2 172.9(4) C12-C11-N7-Mn2 -6.8(5) C15-C16-N8-C12 1.4(8) C15-C16-N8-Mn2 -158.9(4) C13-C12-N8-C16 -3.5(7) C11-C12-N8-C16 175.9(4) C13-C12-N8-Mn2 158.8(4) C11-C12-N8-Mn2 -21.8(5) C18-C17-N9-C21 -0.7(7) C18-C17-N9-Mn2 173.4(4) C20-C21-N9-C17 0.2(7) C22-C21-N9-C17 -178.8(4) C20-C21-N9-Mn2 -174.4(3) C22-C21-N9-Mn2 6.6(5) C25-C26-N10-C22 -1.1(7) C25-C26-N10-Mn2 -177.3(4) C23-C22-N10-C26 0.1(7) C21-C22-N10-C26 179.0(4) C23-C22-N10-Mn2 176.7(4) C21-C22-N10-Mn2 -4.4(5) C28-C27-N11-C31 0.7(8) C28-C27-N11-Mn2 -175.0(4) C30-C31-N11-C27 -1.4(7) C32-C31-N11-C27 178.5(4) C30-C31-N11-Mn2 174.5(4) C32-C31-N11-Mn2 -5.6(5) C35-C36-N12-C32 -0.7(8) C35-C36-N12-Mn2 -174.9(4) C33-C32-N12-C36 0.7(7) C31-C32-N12-C36 -178.6(4) C33-C32-N12-Mn2 175.4(4) C31-C32-N12-Mn2 -3.9(5) C38-C37-N13-C41 -0.3(8) C40-C41-N13-C37 1.7(7) C41-C41-N13-C37 -177.9(5) Table A4. 7 Anisotropic atomic displacement parameters (Å 2 ) for MnCN 3 _Bipy U 11 U 22 U 33 U 23 U 13 U 12 C1 0.034(3) 0.036(3) 0.045(3) -0.018(2) 0.006(2) -0.005(2) C2 0.032(3) 0.043(3) 0.048(3) -0.013(2) 0.003(2) -0.008(2) C3 0.039(3) 0.033(3) 0.044(3) -0.012(2) 0.005(2) -0.011(2) C4 0.033(3) 0.049(3) 0.063(4) -0.024(3) 0.012(3) -0.015(3) C5 0.039(3) 0.036(3) 0.059(4) -0.023(3) 0.002(3) -0.004(2) C6 0.024(3) 0.027(2) 0.058(4) -0.021(2) -0.003(2) 0.004(2) C7 0.038(3) 0.064(4) 0.053(4) -0.025(3) 0.011(3) -0.010(3) C8 0.045(3) 0.071(4) 0.058(4) -0.024(3) 0.013(3) -0.004(3) C9 0.059(4) 0.054(3) 0.045(3) -0.024(3) 0.013(3) -0.007(3) C10 0.057(4) 0.039(3) 0.041(3) -0.015(2) 0.001(3) -0.005(3) C11 0.042(3) 0.025(2) 0.038(3) -0.009(2) 0.001(2) -0.002(2) C12 0.056(3) 0.027(2) 0.037(3) -0.004(2) -0.004(2) -0.014(2) C13 0.080(4) 0.043(3) 0.038(3) -0.011(2) 0.002(3) -0.022(3) C14 0.095(5) 0.069(4) 0.046(4) -0.011(3) -0.001(4) -0.053(4) C15 0.056(4) 0.064(4) 0.047(4) -0.008(3) 0.002(3) -0.030(3) C16 0.041(3) 0.055(3) 0.054(4) -0.015(3) 0.002(3) -0.021(3) C17 0.029(3) 0.038(3) 0.049(3) -0.026(2) 0.002(2) 0.000(2) C18 0.029(3) 0.031(3) 0.056(4) -0.022(2) -0.005(2) 0.001(2) C19 0.036(3) 0.033(3) 0.048(3) -0.014(2) -0.009(2) -0.001(2) C20 0.028(3) 0.036(3) 0.050(3) -0.019(2) -0.001(2) -0.006(2) C21 0.025(2) 0.028(2) 0.049(3) -0.021(2) 0.006(2) -0.007(2) 272 U 11 U 22 U 33 U 23 U 13 U 12 C22 0.027(3) 0.027(2) 0.044(3) -0.018(2) 0.005(2) -0.005(2) C23 0.033(3) 0.029(2) 0.049(3) -0.013(2) 0.008(2) -0.003(2) C24 0.035(3) 0.037(3) 0.050(3) -0.019(3) 0.015(2) -0.004(2) C25 0.032(3) 0.030(3) 0.067(4) -0.017(3) 0.007(3) 0.003(2) C26 0.033(3) 0.025(2) 0.051(3) -0.012(2) 0.011(2) -0.002(2) C27 0.045(3) 0.037(3) 0.053(4) -0.003(3) 0.005(3) -0.006(3) C28 0.057(4) 0.041(3) 0.061(4) -0.002(3) 0.006(3) -0.007(3) C29 0.058(4) 0.038(3) 0.059(4) -0.004(3) 0.013(3) -0.007(3) C30 0.058(4) 0.032(3) 0.063(4) -0.015(3) 0.030(3) -0.019(3) C31 0.036(3) 0.027(2) 0.051(3) -0.014(2) 0.021(3) -0.007(2) C32 0.041(3) 0.041(3) 0.053(3) -0.026(3) 0.023(3) -0.019(3) C33 0.054(4) 0.053(3) 0.068(4) -0.030(3) 0.024(3) -0.027(3) C34 0.058(4) 0.063(4) 0.084(5) -0.044(4) 0.028(4) -0.036(3) C35 0.040(3) 0.073(4) 0.086(5) -0.046(4) 0.011(3) -0.018(3) C36 0.034(3) 0.046(3) 0.073(4) -0.028(3) 0.007(3) -0.010(3) C37 0.036(3) 0.036(3) 0.071(4) -0.013(3) -0.001(3) -0.001(2) C38 0.041(3) 0.041(3) 0.070(4) -0.023(3) 0.013(3) -0.011(3) C39 0.046(3) 0.044(3) 0.059(4) -0.026(3) 0.019(3) -0.015(3) C40 0.040(3) 0.041(3) 0.046(3) -0.017(2) 0.007(2) -0.016(2) C41 0.028(2) 0.034(2) 0.041(3) -0.012(2) 0.003(2) -0.011(2) Mn1 0.0313(4) 0.0331(4) 0.0459(5) -0.0163(4) 0.0078(4) -0.0084(4) Mn2 0.0301(4) 0.0256(4) 0.0467(5) -0.0134(3) 0.0093(3) -0.0061(3) N1 0.041(3) 0.046(3) 0.051(3) -0.017(2) 0.007(2) -0.010(2) N2 0.034(2) 0.042(2) 0.065(3) -0.022(2) 0.006(2) -0.011(2) N3 0.042(3) 0.042(2) 0.049(3) -0.005(2) 0.002(2) -0.014(2) N4 0.054(3) 0.052(3) 0.101(4) -0.044(3) 0.007(3) -0.013(3) N5 0.062(3) 0.045(3) 0.050(3) -0.019(2) 0.012(2) -0.018(2) N6 0.033(2) 0.036(2) 0.048(3) -0.012(2) 0.005(2) 0.0009(19) N7 0.034(2) 0.039(2) 0.040(3) -0.0136(19) 0.0045(19) -0.0042(19) N8 0.040(2) 0.031(2) 0.043(3) -0.0092(18) 0.001(2) -0.0055(19) N9 0.026(2) 0.0283(19) 0.050(3) -0.0212(18) 0.0072(18) -0.0017(17) N10 0.027(2) 0.0204(18) 0.048(3) -0.0101(18) 0.0063(18) -0.0039(16) N11 0.036(2) 0.028(2) 0.050(3) -0.0112(19) 0.013(2) -0.008(2) N12 0.034(2) 0.034(2) 0.058(3) -0.019(2) 0.007(2) -0.0056(19) N13 0.036(2) 0.037(2) 0.053(3) -0.014(2) 0.002(2) -0.010(2) Table A4. 8 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for MnCN 3 _Bipy x/a y/b z/c U(eq) H7 0.4676 0.8415 0.1536 0.064 H8 0.5952 0.7716 0.0379 0.075 H9 0.5197 0.6720 -0.0313 0.066 H10 0.3232 0.6375 0.0221 0.057 273 x/a y/b z/c U(eq) H13 0.1660 0.5644 0.1096 0.065 H14 -0.0411 0.5525 0.1665 0.078 H15 -0.1713 0.6915 0.2405 0.067 H16 -0.0896 0.8272 0.2654 0.059 H17 0.3852 0.6119 0.3103 0.047 H18 0.4499 0.4617 0.4316 0.047 H19 0.3362 0.4705 0.5700 0.048 H20 0.1552 0.6280 0.5800 0.045 H23 -0.0058 0.7735 0.5805 0.048 H24 -0.1805 0.9370 0.5721 0.053 H25 -0.2176 1.0726 0.4361 0.056 H26 -0.0756 1.0452 0.3129 0.049 H27 0.0044 1.0341 0.1212 0.061 H28 -0.0361 1.2267 0.0232 0.072 H29 0.0846 1.3538 0.0144 0.071 H30 0.2332 1.2929 0.1085 0.066 H33 0.3506 1.2295 0.2105 0.069 H34 0.4904 1.1453 0.3105 0.077 H35 0.5161 0.9428 0.3925 0.076 H36 0.4007 0.8314 0.3681 0.061 H37 0.2463 0.2258 0.5873 0.061 H38 0.3457 0.2250 0.4477 0.062 H39 0.2572 0.3714 0.3281 0.06 H40 0.0716 0.5177 0.3563 0.05 Refrences 1. Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D., Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48 (1), 3-10. 2. Sheldrick, G. M., Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C Struct. Chem. 2015, 71 (1), 3-8. 3. Huebschle, C. B.; Sheldrick, G. M.; Dittrich, B., ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44 (6), 1281-1284. 4. Sheldrick, G. M., A short history of SHELX. Acta Crystallogr., Sect. A Found. Crystallogr. 2008, 64 (1), 112-122. 5. Farrugia, L. J., ORTEP-3 for windows - a version of ORTEP-III with a graphical user interface (GUI). J. Appl. Crystallogr. 1997, 30 (5, Pt. 1), 565. 274 APPENDIX 5: ADDITIONAL INFORMATION FOR ARSENIC AND ANTIMONY CYANIDES (CHAPTER 6) A5.1 Experimental details A5.1.1 Materials and apparatus All reactions were carried out in Teflon-FEP ampules that were closed by stainless steel valves. Volatile materials were handled in a Pyrex glass vacuum line. Non-volatile materials were handled in the dry nitrogen atmosphere of a glove box. AsF 3 (Advanced Research Chemicals) and Me 3 SiCN (Aldrich) were purified by fractional condensation prior to use. SbF 3 (Ozark Mahoning) and 2,2’-bipyridine (Aldrich) were used as received. Solvents were dried by standard methods and freshly distilled prior to use. The NMR spectra were recorded at 298 K on Bruker AMX-500, Varian NMRS-600, or Varian NMRS-500 spectrometers. Spectra were externally referenced to neat nitromethane for 14 N NMR spectra or neat tetramethylsilane for 1 H and 13 C NMR spectra. Raman spectra were recorded in baked-out Pyrex glass capillaries or J.Young NMR tubes in the range 4000–80 cm -1 on a Bruker Equinox 55 FT-RA or Bruker Vertex 70/RAMII FT-RA spectrophotometers, using a Nd-YAG laser at 1064 nm. Infrared spectra were recorded in the range 4000-400 cm -1 on Bruker Alpha, Bruker Vertex 70 or Midac M Series FT-IR spectrometers using KBr or AgCl pellets. The pellets were prepared inside the glove box using an Econo Press (Thermo Scientific) and transferred in a closed container to the spectrometer before placing them quickly into the sample compartment which was purged with dry nitrogen to minimize exposure to atmospheric moisture and potential hydrolysis of the sample. A5.1.2 Crystal structure determination The single-crystal X-ray diffraction data were collected on a Bruker SMART APEX DUO 3-circle platform diffractometer, equipped with an APEX II CCD detector, using Mo Kα radiation (TRIUMPH curved-crystal monochromator) from a fine-focus tube or Cu Kα radiation (multi- layer optics) from an IµS micro-source. The diffractometer was equipped with an Oxford Cryosystems Cryostream 700 apparatus for low-temperature data collection. The frames were integrated using the SAINT algorithm to give the hkl files corrected for Lp/decay. 1 The absorption correction was performed using the SADABS program. 2, 3 The structures were solved by intrinsic 275 phasing 4, 5 and refined on F 2 using the Bruker SHELXTL Software Package and ShelXle. 6-9 All non-hydrogen atoms were refined anisotropically. ORTEP drawings were prepared using the ORTEP-3 for Windows V2.02 program. 10 Further crystallographic details can be obtained from the Cambridge Crystallographic Data Centre (CCDC, 12 Union Road, Cambridge CB21EZ, UK (Fax: (+44) 1223-336-033; e-mail: deposit@ccdc.cam.ac.uk) on quoting the deposition no. CCDC 1456400 – 1456402. A5.1.3 Preparation of [M(CN) 3 ] (M = As, Sb) To a frozen mixture of MF 3 (1.0 mmol) and CH 3 CN (1.5 mL) inside a Teflon-FEP ampule at -196 ℃, Me 3 SiCN (317 mg, 3.2 mmol) was condensed in vacuo. The mixture was allowed to warm to ambient temperature and stirred for 1 hour. All volatile materials (Me 3 SiF, CH 3 CN, excess Me 3 SiCN) were pumped off first at -20 °C and later at ambient temperature, leaving behind [M(CN) 3 ] as a colorless solid in quantitative yield. [As(CN) 3 ]: colorless solid; yield: 149 mg (weight expected for 1.00 mmol: 153 mg). 13 C NMR (THF, 25 °C) δ = 114 ppm; 14 N NMR (THF, 25 °C) δ = -125 ppm; Raman (200 mW) 𝜈 = 2210 (7.9), 2201 (10.0), 575 (0.2, br), 462 (4.7), 457 (4.3), 453 (3.0), 415 (4.3), 370 (0.1), 285 (0.3), 146 (4.5), 131 (3.9), 120 (4.1), 84 (0.9) cm -1 ; IR (KBr) 𝜈 = 2210 (m, sh), 2201 (s), 457 (vs), 446 (vs, sh), 418 (m, sh) cm -1 . [Sb(CN) 3 ]: colorless solid; yield: 198 mg (weight expected for 1.00 mmol: 200 mg). 13 C NMR (THF, 25 °C) δ = 122 ppm; 14 N NMR (THF, 25 °C) δ = -134 ppm; Raman (50 mW) 𝜈 = 2192 (10.0), 387 (0.9, sh), 359 (3.3), 338 (2.6), 136 (1.0), 126 (1.8), 89 (0.4) cm -1 ; IR (KBr) 𝜈 = 2193 (s), 2184 (s) cm -1 . A5.1.4 Preparation of [M(CN) 3 ·(2,2’-bipy)] (M = As, Sb) To a frozen mixture of MF 3 (1.0 mmol), 2,2’-bipyridine (156 mg, 1.00 mmol) and CH 3 CN (1.5 mL) inside a Teflon-FEP ampule at -196 ℃, Me 3 SiCN (317 mg, 3.2 mmol) was condensed in 276 vacuo. The mixture was allowed to warm to ambient temperature and stirred for 1 hour. All volatile materials (Me 3 SiF, CH 3 CN, excess Me 3 SiCN) were pumped off first at -20 °C and later at ambient temperature, leaving behind [M(CN) 3 (2,2’-bipy)] as a colorless solid in quantitative yield. [As(CN) 3 ·(2,2’-bipy)]: colorless solid; yield: 302 mg (weight expected for 1.00 mmol: 309 mg). 13 C NMR (THF, 25 °C) δ = 114 ppm; 14 N NMR (THF, 25 °C) δ = -121 ppm; Raman (50 mW) 𝜈 = 3076 (3.5), 3064 (4.4), 3010 (1.2), 1590 (9.5), 1573 (9.5), 1483 (3.3), 1447 (5.4), 1302 (3.6), 1237 (4.0), 1147 (1.1), 1045 (1.7), 995 (10.0), 765 (2.2), 615 (1.0), 224 (1.2), 102 (5.8) cm -1 ; IR (KBr) 𝜈 = 3093 (vw), 3070 (vw), 3012 (vw), 2945 (vw), 2283 (w), 2254 (m), 2170 (sh), 2189 (br), 2000 (s), 1588 (w), 1562 (vw), 1490 (vw), 1472 (w), 1435 (m), 1363 (w), 1309 (w), 1238 (w br), 919 (w), 755 (m), 456(s), 446 (s) cm -1 . [Sb(CN) 3 ·(2,2’-bipy)]: colorless solid; yield: 345 mg (weight expected for 1.00 mmol: 351 mg). 13 C NMR (THF, 25 °C) δ = 121ppm; 14 N NMR (THF, 25 °C) δ = -131 ppm; Raman (50 mW) 𝜈 = 3065 (3.5), 3009 (0.9), 2173 (1.7), 2158 (2.6), 2143 (1.6), 1593 (10.0), 1574 (7.0), 1493 (4.7), 1484 (2.5), 1448 (3.1), 1312 (8.1), 1238 (2.7), 1157 (1.4), 1047 (1.7), 996 (5.2), 766 (2.4), 225 (1.6), 103 (5.8) cm -1 ; IR (KBr) 𝜈 = 3145 (w), 3129 (w), 3106 (w), 3089 (w), 3064 (w), 2173 (s), 2158 (m), 2142 (m), 1598 (s), 1575 (m), 1494 (s), 1475 (s), 1446 (s), 1429 (s), 1319 (m), 1310 (m), 1252 (m), 1237 (m), 1177 (m), 1164 (sh), 1152 (m), 1099 (w), 1074 (w), 1064 (w), 1041 (w), 1017 (sh), 1007 (s), 909 (vw), 807 (vw), 769 (s), 732 (m), 650 (w), 623 (w), 603 (m), 562 (sh), 542 (m), 511 (m), 473 (m), 461 (m), 453 (m) cm -1 . A5.2 Crystal Structure Data Figure A5. 1 Asymmetric unit in the crystal structure of As(CN) 3 277 Figure A5. 2 Crystal packing in the structure of As(CN) 3 Figure A5. 3 Asymmetric unit in the crystal structure of [As(CN) 3 •2,2’-bipy] Figure A5. 4 Crystal packing in the structure of [As(CN) 3 •2,2’-bipy]. 278 Figure A5. 5 Asymmetric unit in the crystal structure of [Sb(CN) 3 •2,2’-bipy]. Figure A5. 6 Crystal packing in the structure of [Sb(CN) 3 •2,2’-bipy] Table A5. 1 Sample and crystal data for As(CN) 3 Identification code As(CN)3 Chemical formula C 3 AsN 3 Formula weight 152.98 g/mol Temperature 100(2) K Wavelength 0.71073 Å Crystal size 0.074 x 0.086 x 0.321 mm Crystal habit clear colourless blade Crystal system monoclinic Space group C 1 2 1 Unit cell dimensions a = 9.2143(5) Å α = 90° b = 6.8535(4) Å β = 102.4320(10)° c = 8.8669(5) Å γ = 90° Volume 546.82(5) Å 3 Z 4 279 Density (calculated) 1.858 g/cm 3 Absorption coefficient 6.081 mm -1 F(000) 288 Table A5. 2 Data collection and structure refinement for As(CN) 3 Diffractometer Bruker APEX DUO Radiation source fine-focus tube, MoKα Theta range for data collection 2.35 to 30.50° Index ranges -13<=h<=13, -9<=k<=9, -12<=l<=12 Reflections collected 6213 Independent reflections 1649 [R(int) = 0.0280] Coverage of independent reflections 99.6% Absorption correction multi-scan Max. and min. transmission 0.6620 and 0.2460 Structure solution technique direct methods Structure solution program SHELXTL XT 2013/1 (Bruker AXS, 2014) Refinement method Full-matrix least-squares on F 2 Refinement program SHELXTL XL 2014/7 (Bruker AXS, 2014) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 1649 / 1 / 65 Goodness-of-fit on F 2 1.021 Final R indices 1563 data; I>2σ(I) R1 = 0.0159, wR2 = 0.0313 all data R1 = 0.0177, wR2 = 0.0317 Weighting scheme w=1/[σ 2 (F o 2 )+(0.0038P) 2 ] where P=(F o 2 +2F c 2 )/3 Absolute structure parameter 0.0(0) Largest diff. peak and hole 0.400 and -0.292 eÅ -3 R.M.S. deviation from mean 0.063 eÅ -3 Table A5. 3 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for As(CN) 3 x/a y/b z/c U(eq) As1 0.20464(2) 0.47831(6) 0.23579(2) 0.00986(6) C1 0.2791(3) 0.6992(4) 0.1332(3) 0.0146(5) C2 0.3948(3) 0.3426(3) 0.2500(3) 0.0133(5) C3 0.2789(3) 0.5993(4) 0.4375(3) 0.0140(5) N1 0.3124(3) 0.8249(3) 0.0647(3) 0.0211(5) N2 0.4997(3) 0.2551(3) 0.2528(3) 0.0206(5) N3 0.3105(3) 0.6720(3) 0.5553(3) 0.0216(5) Table A5. 4 Bond lengths (Å) for As(CN) 3 As1-C3 1.956(3) As1-C2 1.964(2) As1-C1 1.964(3) C1-N1 1.134(3) C2-N2 1.133(3) C3-N3 1.138(3) 280 Table A5. 5 Bond angles (°) for As(CN) 3 C3-As1-C2 90.59(10) C3-As1-C1 90.47(10) C2-As1-C1 89.94(10) N1-C1-As1 174.5(3) N2-C2-As1 175.7(2) N3-C3-As1 174.5(2) Table A5. 6 Anisotropic atomic displacement parameters (Å 2 ) for As(CN) 3 U 11 U 22 U 33 U 23 U 13 U 12 As1 0.01027(10) 0.00951(9) 0.00996(10) 0.00015(18) 0.00255(7) 0.0023(2) C1 0.0169(13) 0.0156(12) 0.0110(13) -0.0008(10) 0.0027(10) 0.0046(10) C2 0.0164(13) 0.0120(12) 0.0114(12) -0.0005(9) 0.0029(10) 0.0019(10) C3 0.0166(13) 0.0110(11) 0.0149(13) 0.0021(10) 0.0046(10) 0.0039(10) N1 0.0249(13) 0.0198(12) 0.0188(13) 0.0012(10) 0.0054(10) -0.0012(10) N2 0.0187(11) 0.0207(12) 0.0216(13) -0.0022(10) 0.0023(10) 0.0057(10) N3 0.0280(13) 0.0196(12) 0.0173(13) -0.0004(10) 0.0051(11) 0.0029(10) Table A5. 7 Sample and crystal data for [As(CN) 3 •2,2’-bipy] Identification code AsCN3Bipy Chemical formula C 13 H 8 AsN 5 Formula weight 309.16 g/mol Temperature 100(2) K Wavelength 0.71073 Å Crystal size 0.180 x 0.208 x 0.295 mm Crystal habit clear colourless prism Crystal system monoclinic Space group P 1 21/c 1 Unit cell dimensions a = 13.3539(7) Å α = 90° b = 9.3052(5) Å β = 115.4120(10)° c = 11.5324(6) Å γ = 90° Volume 1294.37(12) Å 3 Z 4 Density (calculated) 1.586 g/cm 3 Absorption coefficient 2.618 mm -1 F(000) 616 Table A5. 8 Data collection and structure refinement for [As(CN) 3 •(2,2’-bipy)] Diffractometer Bruker APEX DUO Radiation source fine-focus tube, MoKα Theta range for data collection 1.69 to 30.53° Index ranges -18<=h<=19, -13<=k<=13, -16<=l<=16 Reflections collected 31434 Independent reflections 3945 [R(int) = 0.0536] Coverage of independent reflections 99.6% Absorption correction multi-scan 281 Max. and min. transmission 0.6500 and 0.5120 Structure solution technique direct methods Structure solution program SHELXTL XT 2013/1 (Bruker AXS, 2014) Refinement method Full-matrix least-squares on F 2 Refinement program SHELXTL XL 2014/7 (Bruker AXS, 2014) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 3945 / 0 / 172 Goodness-of-fit on F 2 1.050 Δ/σ max 0.001 Final R indices 3228 data; I>2σ(I) R1 = 0.0273, wR2 = 0.0568 all data R1 = 0.0417, wR2 = 0.0607 Weighting scheme w=1/[σ 2 (F o 2 )+(0.0249P) 2 +0.6558P] where P=(F o 2 +2F c 2 )/3 Largest diff. peak and hole 0.652 and -0.861 eÅ -3 R.M.S. deviation from mean 0.082 eÅ -3 Table A5. 9 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [As(CN) 3 •(2,2’- bipy)] x/a y/b z/c U(eq) C1 0.34809(14) 0.70008(18) 0.82578(16) 0.0149(3) C2 0.43845(15) 0.86714(19) 0.70177(16) 0.0151(3) C3 0.21404(14) 0.82449(18) 0.58954(17) 0.0149(3) C4 0.11914(16) 0.5552(2) 0.70153(19) 0.0213(4) C5 0.04549(16) 0.4618(2) 0.71701(19) 0.0234(4) C6 0.03468(17) 0.3257(2) 0.6645(2) 0.0253(4) C7 0.09731(17) 0.2883(2) 0.59968(19) 0.0220(4) C8 0.16954(14) 0.38926(18) 0.58789(16) 0.0148(3) C9 0.23590(14) 0.35476(18) 0.51610(16) 0.0143(3) C10 0.27805(17) 0.21709(19) 0.51866(18) 0.0201(4) C11 0.33976(17) 0.1904(2) 0.45050(19) 0.0230(4) C12 0.35567(16) 0.3001(2) 0.38010(19) 0.0219(4) C13 0.31028(17) 0.4339(2) 0.38226(19) 0.0226(4) N1 0.35145(14) 0.70073(16) 0.92644(15) 0.0197(3) N2 0.49528(14) 0.96542(18) 0.72327(15) 0.0228(3) N3 0.13996(14) 0.90062(17) 0.54907(17) 0.0244(4) N4 0.18085(12) 0.52213(15) 0.63927(15) 0.0158(3) N5 0.25169(13) 0.46335(16) 0.44846(15) 0.0175(3) As1 0.33909(2) 0.69164(2) 0.65143(2) 0.01072(5) Table A5. 10 Bond lengths (Å) for [As(CN) 3 •(2,2’-bipy)] C1-N1 1.142(2) C1-As1 1.9637(17) C2-N2 1.146(2) C2-As1 2.0256(18) C3-N3 1.141(2) C3-As1 1.9502(17) C4-N4 1.341(2) C4-C5 1.381(3) 282 C4-H4 0.95 C5-C6 1.384(3) C5-H5 0.95 C6-C7 1.384(3) C6-H6 0.95 C7-C8 1.395(2) C7-H7 0.95 C8-N4 1.351(2) C8-C9 1.484(2) C9-N5 1.347(2) C9-C10 1.394(2) C10-C11 1.384(3) C10-H10 0.95 C11-C12 1.377(3) C11-H11 0.95 C12-C13 1.389(3) C12-H12 0.95 C13-N5 1.335(2) C13-H13 0.95 Table A5. 11 Bond angles (°) for [As(CN) 3 •(2,2’-bipy)] N1-C1-As1 177.71(16) N2-C2-As1 175.75(16) N3-C3-As1 177.61(17) N4-C4-C5 124.06(17) N4-C4-H4 118.0 C5-C4-H4 118.0 C4-C5-C6 117.77(18) C4-C5-H5 121.1 C6-C5-H5 121.1 C5-C6-C7 119.54(18) C5-C6-H6 120.2 C7-C6-H6 120.2 C6-C7-C8 119.11(17) C6-C7-H7 120.4 C8-C7-H7 120.4 N4-C8-C7 121.71(17) N4-C8-C9 117.48(15) C7-C8-C9 120.80(16) N5-C9-C10 122.62(16) N5-C9-C8 116.10(15) C10-C9-C8 121.28(16) C11-C10-C9 119.10(17) C11-C10-H10 120.5 C9-C10-H10 120.5 C12-C11-C10 118.83(17) C12-C11-H11 120.6 C10-C11-H11 120.6 C11-C12-C13 118.36(18) C11-C12-H12 120.8 C13-C12-H12 120.8 N5-C13-C12 124.16(17) N5-C13-H13 117.9 C12-C13-H13 117.9 C4-N4-C8 117.81(15) C13-N5-C9 116.92(15) C3-As1-C1 90.91(7) C3-As1-C2 86.94(7) C1-As1-C2 85.96(7) Table A5. 12 Torsion angles (°) for [As(CN) 3 •(2,2’-bipy)] N4-C4-C5-C6 -0.2(3) C4-C5-C6-C7 0.2(3) C5-C6-C7-C8 -0.5(3) C6-C7-C8-N4 0.7(3) C6-C7-C8-C9 -178.32(18) N4-C8-C9-N5 -35.2(2) C7-C8-C9-N5 143.90(18) N4-C8-C9-C10 145.33(17) C7-C8-C9-C10 -35.6(3) N5-C9-C10-C11 0.8(3) C8-C9-C10-C11 -179.77(17) C9-C10-C11-C12 -1.3(3) C10-C11-C12-C13 1.0(3) C11-C12-C13-N5 -0.1(3) C5-C4-N4-C8 0.4(3) C7-C8-N4-C4 -0.7(3) C9-C8-N4-C4 178.39(16) C12-C13-N5-C9 -0.5(3) 283 C10-C9-N5-C13 0.1(3) C8-C9-N5-C13 -179.36(16) Table A5. 13 Anisotropic atomic displacement parameters (Å 2 ) for [As(CN) 3 •(2,2’-bipy)] U 11 U 22 U 33 U 23 U 13 U 12 C1 0.0180(8) 0.0107(7) 0.0165(8) 0.0006(7) 0.0078(7) 0.0006(7) C2 0.0158(8) 0.0172(8) 0.0126(8) -0.0007(7) 0.0064(7) -0.0010(7) C3 0.0156(8) 0.0108(7) 0.0180(8) -0.0010(6) 0.0068(7) -0.0029(6) C4 0.0235(9) 0.0171(8) 0.0287(10) -0.0049(8) 0.0164(8) -0.0021(7) C5 0.0212(9) 0.0268(10) 0.0277(10) -0.0027(8) 0.0157(8) -0.0036(8) C6 0.0261(10) 0.0258(10) 0.0286(10) -0.0028(8) 0.0161(8) -0.0118(8) C7 0.0268(10) 0.0163(9) 0.0251(9) -0.0037(7) 0.0131(8) -0.0088(7) C8 0.0164(8) 0.0125(7) 0.0144(8) 0.0001(6) 0.0054(7) -0.0024(6) C9 0.0168(8) 0.0092(7) 0.0157(8) -0.0017(6) 0.0059(7) -0.0025(6) C10 0.0283(10) 0.0100(8) 0.0224(9) -0.0004(7) 0.0111(8) -0.0004(7) C11 0.0294(10) 0.0121(8) 0.0277(10) -0.0030(8) 0.0124(8) 0.0035(8) C12 0.0269(10) 0.0198(9) 0.0239(9) -0.0045(8) 0.0156(8) 0.0013(8) C13 0.0340(11) 0.0149(8) 0.0255(10) 0.0016(8) 0.0191(9) 0.0010(8) N1 0.0275(8) 0.0149(7) 0.0183(7) 0.0002(6) 0.0114(6) 0.0014(6) N2 0.0245(8) 0.0240(8) 0.0209(8) -0.0035(7) 0.0108(7) -0.0072(7) N3 0.0201(8) 0.0141(7) 0.0351(9) 0.0020(7) 0.0080(7) -0.0008(6) N4 0.0178(7) 0.0118(6) 0.0200(7) -0.0007(6) 0.0102(6) -0.0013(6) N5 0.0250(8) 0.0115(7) 0.0196(7) 0.0013(6) 0.0130(7) 0.0022(6) As1 0.01389(8) 0.00829(8) 0.01086(8) -0.00005(7) 0.00613(6) 0.00063(7) Table A5. 14 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [As(CN) 3 •(2,2’- bipy)] x/a y/b z/c U(eq) H4 0.1265 0.6488 0.7372 0.026 H5 0.0036 0.4899 0.7622 0.028 H6 -0.0154 0.2585 0.6728 0.03 H7 0.0912 0.1950 0.5637 0.026 H10 0.2646 0.1426 0.5665 0.024 H11 0.3706 0.0980 0.4523 0.028 H12 0.3967 0.2848 0.3312 0.026 H13 0.3216 0.5091 0.3335 0.027 Table A5. 15 Sample and crystal data for [Sb(CN) 3 •(2,2’-bipy)] Identification code Sb(CN)3*bipy Chemical formula C 13 H 8 N 5 Sb Formula weight 355.99 g/mol Temperature 100(2) K Wavelength 1.54178 Å Crystal size 0.010 x 0.010 x 0.050 mm 284 Crystal habit clear colourless needle Crystal system monoclinic Space group P 1 21/c 1 Unit cell dimensions a = 6.6947(5) Å α = 90° b = 15.6570(10) Å β = 97.912(5)° c = 11.9640(7) Å γ = 90° Volume 1242.12(14) Å 3 Z 4 Density (calculated) 1.904 g/cm 3 Absorption coefficient 17.563 mm -1 F(000) 688 Table A5. 16 Data collection and structure refinement for [Sb(CN) 3 •(2,2’-bipy)] Diffractometer Bruker APEX DUO Radiation source IuS microsource, CuKα Theta range for data collection 4.68 to 68.45° Reflections collected 2195 Coverage of independent reflections 96.5% Max. and min. transmission 0.8440 and 0.4740 Structure solution technique direct methods Structure solution program SHELXTL XT 2014/4 (Bruker AXS, 2014) Refinement method Full-matrix least-squares on F 2 Refinement program SHELXTL XL 2014/7 (Bruker AXS, 2014) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 2195 / 141 / 173 Goodness-of-fit on F 2 1.119 Final R indices 1759 data; I>2σ(I) R1 = 0.0723, wR2 = 0.1782 all data R1 = 0.1009, wR2 = 0.2244 Weighting scheme w=1/[σ 2 (F o 2 )+(0.1299P) 2 +17.2464P] where P=(F o 2 +2F c 2 )/3 Largest diff. peak and hole 3.423 and -1.682 eÅ -3 R.M.S. deviation from mean 0.393 eÅ -3 Table A5. 17 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [Sb(CN) 3 •(2,2’- bipy)] x/a y/b z/c U(eq) C1 0.530(2) 0.6814(8) 0.2468(13) 0.022(3) C2 0.827(3) 0.7209(9) 0.0854(13) 0.030(3) C3 0.817(2) 0.8231(8) 0.2725(13) 0.023(3) C4 0.776(2) 0.5349(9) 0.0451(11) 0.018(3) C5 0.738(2) 0.4627(10) 0.9787(13) 0.023(3) C6 0.689(3) 0.3891(11) 0.0318(14) 0.030(3) 285 x/a y/b z/c U(eq) C7 0.676(3) 0.3894(11) 0.1461(14) 0.031(3) C8 0.7241(19) 0.4641(8) 0.2060(12) 0.017(2) C9 0.725(2) 0.4651(10) 0.3307(13) 0.024(3) C10 0.709(3) 0.3895(11) 0.3902(13) 0.029(3) C11 0.721(3) 0.3919(11) 0.5089(14) 0.034(4) C12 0.744(2) 0.4689(10) 0.5627(12) 0.022(3) C13 0.762(2) 0.5416(10) 0.4951(13) 0.027(3) N1 0.3541(19) 0.6819(9) 0.2411(13) 0.028(3) N2 0.817(3) 0.7551(9) 0.9983(12) 0.040(3) N3 0.810(2) 0.8943(8) 0.2814(11) 0.031(3) N4 0.7686(18) 0.5374(8) 0.1543(10) 0.019(2) N5 0.749(2) 0.5407(9) 0.3843(11) 0.024(2) Sb1 0.85117(15) 0.67694(4) 0.26234(8) 0.0211(4) Table A5. 18 Bond lengths (Å) for [Sb(CN) 3 •(2,2’-bipy)] C1-N1 1.17(2) C1-Sb1 2.132(15) C2-N2 1.16(2) C2-Sb1 2.211(16) C3-N3 1.121(19) C3-Sb1 2.304(13) C4-N4 1.314(17) C4-C5 1.39(2) C4-H4 0.95 C5-C6 1.38(2) C5-H5 0.95 C6-C7 1.38(2) C6-H6 0.95 C7-C8 1.39(2) C7-H7 0.95 C8-N4 1.357(18) C8-C9 1.49(2) C9-N5 1.35(2) C9-C10 1.39(2) C10-C11 1.41(2) C10-H10 0.95 C11-C12 1.37(2) C11-H11 0.95 C12-C13 1.41(2) C12-H12 0.95 C13-N5 1.32(2) C13-H13 0.95 N4-Sb1 2.560(12) Table A5. 19 Bond angles (°) for [Sb(CN) 3 •(2,2’-bipy)] N1-C1-Sb1 177.8(14) N2-C2-Sb1 170.7(13) N3-C3-Sb1 176.1(14) N4-C4-C5 124.4(13) N4-C4-H4 117.8 C5-C4-H4 117.8 C6-C5-C4 117.1(14) C6-C5-H5 121.4 C4-C5-H5 121.4 C5-C6-C7 120.3(16) C5-C6-H6 119.9 C7-C6-H6 119.9 C6-C7-C8 118.3(15) C6-C7-H7 120.9 C8-C7-H7 120.9 N4-C8-C7 121.8(13) N4-C8-C9 118.5(13) C7-C8-C9 119.7(14) 286 N5-C9-C10 121.1(14) N5-C9-C8 118.0(14) C10-C9-C8 120.9(14) C9-C10-C11 119.6(15) C9-C10-H10 120.2 C11-C10-H10 120.2 C12-C11-C10 119.0(15) C12-C11-H11 120.5 C10-C11-H11 120.5 C11-C12-C13 117.1(14) C11-C12-H12 121.4 C13-C12-H12 121.4 N5-C13-C12 124.7(14) N5-C13-H13 117.7 C12-C13-H13 117.7 C4-N4-C8 118.0(12) C4-N4-Sb1 119.5(9) C8-N4-Sb1 122.5(9) C13-N5-C9 118.5(14) C1-Sb1-C2 88.0(7) C1-Sb1-C3 82.3(5) C2-Sb1-C3 75.3(5) C1-Sb1-N4 80.7(4) C2-Sb1-N4 78.4(4) C3-Sb1-N4 149.1(5) Table A5. 20 Torsion angles (°) for [Sb(CN) 3 •(2,2’-bipy)] N4-C4-C5-C6 0.(2) C4-C5-C6-C7 1.(2) C5-C6-C7-C8 -3.(3) C6-C7-C8-N4 5.(2) C6-C7-C8-C9 -176.0(14) N4-C8-C9-N5 7.(2) C7-C8-C9-N5 -172.4(14) N4-C8-C9-C10 -171.0(14) C7-C8-C9-C10 10.(2) N5-C9-C10-C11 -1.(3) C8-C9-C10-C11 176.5(15) C9-C10-C11-C12 2.(3) C10-C11-C12-C13 -2.(3) C11-C12-C13-N5 3.(2) C5-C4-N4-C8 1.(2) C5-C4-N4-Sb1 178.9(11) C7-C8-N4-C4 -4.(2) C9-C8-N4-C4 177.0(12) C7-C8-N4-Sb1 178.9(11) C9-C8-N4-Sb1 -0.5(17) C12-C13-N5-C9 -3.(2) C10-C9-N5-C13 2.(2) C8-C9-N5-C13 -176.1(13) Table A5. 21 Anisotropic atomic displacement parameters (Å 2 ) for [Sb(CN) 3 •(2,2’-bipy)] U 11 U 22 U 33 U 23 U 13 U 12 C1 0.032(4) 0.020(6) 0.014(6) -0.002(5) 0.010(4) 0.002(4) C2 0.058(9) 0.015(6) 0.019(5) -0.007(4) 0.009(5) -0.008(6) C3 0.035(7) 0.019(4) 0.016(6) 0.004(4) 0.003(5) 0.004(4) C4 0.031(7) 0.012(5) 0.012(4) 0.001(4) 0.008(4) -0.004(4) C5 0.032(7) 0.019(5) 0.017(5) -0.003(4) 0.000(5) 0.004(5) C6 0.045(9) 0.019(6) 0.025(6) 0.002(4) 0.001(5) 0.000(5) C7 0.055(10) 0.019(5) 0.020(5) 0.000(4) 0.003(5) -0.004(5) C8 0.018(5) 0.015(4) 0.016(4) 0.003(3) 0.000(4) 0.004(4) C9 0.034(7) 0.020(5) 0.018(4) 0.001(3) 0.003(4) 0.000(4) C10 0.049(10) 0.021(6) 0.019(5) 0.001(4) 0.008(5) 0.003(5) C11 0.061(11) 0.021(6) 0.021(6) -0.001(4) 0.011(5) -0.002(6) 287 U 11 U 22 U 33 U 23 U 13 U 12 C12 0.027(7) 0.022(5) 0.017(5) -0.003(4) 0.002(4) -0.001(5) C13 0.037(8) 0.023(6) 0.020(5) -0.002(4) 0.002(4) -0.003(5) N1 0.031(5) 0.034(8) 0.018(7) -0.003(6) -0.003(4) 0.002(4) N2 0.083(11) 0.014(6) 0.022(5) -0.001(4) 0.007(6) -0.010(7) N3 0.051(8) 0.018(4) 0.025(7) 0.001(4) 0.007(6) 0.002(4) N4 0.029(6) 0.017(4) 0.012(4) -0.001(3) 0.004(3) 0.001(4) N5 0.031(6) 0.020(5) 0.020(4) -0.001(4) 0.000(4) 0.002(4) Sb1 0.0328(6) 0.0132(5) 0.0177(5) 0.0009(4) 0.0057(4) -0.0003(3) Table A5. 22 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [Sb(CN) 3 •(2,2’- bipy)] x/a y/b z/c U(eq) H4 0.8101 0.5860 0.0094 0.021 H5 0.7444 0.4640 -0.1001 0.028 H6 0.6643 0.3378 -0.0104 0.036 H7 0.6360 0.3397 0.1826 0.038 H10 0.6889 0.3367 0.3511 0.035 H11 0.7135 0.3407 0.5507 0.041 H12 0.7488 0.4733 0.6422 0.026 H13 0.7845 0.5951 0.5321 0.032 A5.3 Computational Results Figure A5. 7 Optimized structures of the metal tricyanide species at the B3LYP//aug-cc-pVDZ(C,N)/ aug-cc- pVDZ-PP(M) levels 288 Table A5. 23 Cartesian Coordinates for As(CN) 3 at the B3LYP//aug-cc-pVDZ(C,N)/ aug-cc-pVDZ-PP(M) level AS 0.000000 0.000000 0.672012 C 0.000000 1.653942 -0.332676 C 1.432356 -0.826971 -0.332676 C -1.432356 -0.826971 -0.332676 N 2.365132 -1.365510 -0.770869 N 0.000000 2.731019 -0.770869 N -2.365132 -1.365510 -0.770869 Table A5. 24 Cartesian Coordinates for Sb(CN) 3 at the B3LYP//aug-cc-pVDZ(C,N)/ aug-cc-pVDZ-PP(M) level SB -0.000054 -0.000093 -0.610394 C -1.507539 -0.976729 0.546740 C 1.600005 -0.817121 0.546292 C -0.092267 1.794045 0.546368 N 2.549463 -1.301715 1.014074 N -2.402270 -1.556544 1.014078 N -0.146972 2.858772 1.013807 Table A5. 25 Cartesian Coordinates for [As(CN) 3 •(HCN) 3 ] at the B3LYP// aug-cc-pVDZ(H)/aug-cc- pwCVDZ(C,N)/ aug-cc-pwCVDZ-PP(M) level AS -0.000066 -0.000674 -0.031259 C -0.989083 1.307448 1.036804 C -0.640768 -1.512123 1.034054 C 1.626519 0.199336 1.038276 N -1.050291 -2.478665 1.534383 N -1.621220 2.144566 1.538676 N 2.666912 0.327370 1.541672 N -2.834112 -0.348041 -1.096411 N 1.115419 2.628895 -1.093005 N 1.721947 -2.274488 -1.096069 C 2.410387 -3.186439 -1.262082 C 1.562587 3.680323 -1.259592 C -3.968642 -0.485967 -1.261053 H 3.051287 -4.035330 -1.412050 H 1.978977 4.659087 -1.409686 H -5.024681 -0.614442 -1.409891 Table A5. 26 Cartesian Coordinates for [Sb(CN) 3 •(HCN) 3 ] at the B3LYP// aug-cc-pVDZ(H)/aug-cc- pwCVDZ(C,N)/ aug-cc-pwCVDZ-PP(M) level C 0.00000000 1.65394266 -1.41775151 289 C 1.43235636 -0.82697133 -1.41775151 C -1.43235636 -0.82697133 -1.41775151 N 2.36513181 -1.36550949 -1.85594577 N -0.00000000 2.73101897 -1.85594577 N -2.36513181 -1.36550949 -1.85594577 N 1.78139232 1.02848733 1.48663466 N -1.78139232 1.02848733 1.48663466 N 0.00000000 -2.05697467 1.48663466 C 0.00000000 -3.13688773 2.48397462 C -2.71662446 1.56844386 2.48397462 C 2.71662446 1.56844386 2.48397462 H 0.00000000 -3.92294630 3.20993048 H -3.39737116 1.96147315 3.20993048 H 3.39737116 1.96147315 3.20993048 Sb 0.00000000 0.00000000 -0.41306419 Table A5. 27 Cartesian Coordinates for [As(CN) 3 •(2,2’-bipy)] at the B3LYP//aug-cc-pVDZ(C,N)/ aug-cc-pVDZ- PP(M) level N 4.10378 -2.23071 -0.14738 C -1.82970 0.84824 -0.04723 C -0.38459 2.65261 -0.17215 C -1.41345 3.57561 0.02435 C -2.70608 3.08894 0.20835 C -2.91582 1.71168 0.17125 C -2.03387 -0.63204 -0.09688 C -1.13830 -2.74407 0.17831 C -2.34878 -3.37233 -0.12277 C -3.44088 -2.56647 -0.44447 C -3.28358 -1.18144 -0.43286 H 0.64131 2.99539 -0.30837 H -1.19396 4.64191 0.04287 H -3.54007 3.76783 0.38699 H -3.91330 1.31167 0.33772 H -0.25587 -3.33827 0.42511 H -2.42332 -4.45890 -0.11279 H -4.40233 -3.00807 -0.70718 H -4.11979 -0.54007 -0.70254 N -0.97792 -1.41651 0.18814 N -0.57682 1.32714 -0.20241 N 1.34589 0.11641 2.72454 As 1.63186 -0.30169 -0.33724 N 3.17785 2.33399 -0.96205 C 2.69395 1.32855 -0.63105 C 3.27528 -1.41248 -0.12148 C 1.50022 -0.01814 1.58018 Table A5. 28 Cartesian Coordinates for [Sb(CN) 3 •(2,2’-bipy)] at the B3LYP//aug-cc-pVDZ(C,N)/ aug-cc-pVDZ- PP(M) level N 4.22945 -2.09760 -0.14845 C -2.03936 0.85115 -0.08959 C -0.60789 2.67961 -0.08268 C -1.66227 3.59172 -0.02833 290 C -2.96140 3.09020 -0.00895 C -3.14962 1.71006 -0.03875 C -2.21151 -0.63528 -0.11531 C -1.20987 -2.71586 -0.30419 C -2.42321 -3.39208 -0.17195 C -3.57734 -2.62856 -0.00032 C -3.47287 -1.23923 0.02797 H 0.42301 3.03307 -0.09314 H -1.45731 4.66053 -0.00081 H -3.82023 3.76005 0.03055 H -4.16046 1.31262 -0.02327 H -0.27985 -3.27349 -0.43276 H -2.45400 -4.48029 -0.19651 H -4.54993 -3.10651 0.11559 H -4.37047 -0.64349 0.16806 N -1.10427 -1.38376 -0.27618 N -0.78226 1.35080 -0.11647 N 0.74230 -0.60653 2.79651 N 3.03867 2.74753 0.04043 C 2.58156 1.67576 0.01012 C 3.34893 -1.33457 -0.09106 C 1.05751 -0.42687 1.69052 Sb 1.48561 -0.17043 -0.40046 References 1. SAINT+, V8.27B: Bruker AXS, Madison, WI, 2011. 2. SADABS, V2012-1: Bruker AXS, Madison, WI, 2012. 3. Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D., J. Appl. Crystallogr. 2015, 48, 3-10. 4. Sheldrick, G. M., Acta Crystallogr. 2015, A71, 3-8. 5. SHELXL, 2014/7: G. M. Sheldrick, 2014. 6. Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B., J. Appl. Crystallogr. 2011, 1281-1284. 7. SHELXTL, V2014/1: Bruker AXS, Madison, WI, 2014. 8. Sheldrick, G. M., Acta Crystallogr. 2008, A64, 112-122. 9. Sheldrick, G. M., Acta Crystallogr. 2015, C71, 3-8. 10. Farrugia, L. J., J. Appl. Crystallogr. 1997, 30, 565-565. 291 APPENDIX 6: ADDITIONAL INFORMATION FOR GROUP 13 CYANIDES (CHAPTER 7) A6.1 Crystallographic Information A6.1.1 Crystal Structure Report for [PPh 4 ][Ga(CN) 4 ] Figure A6.1 Projection of packing of [PPh 4 ][Ga(CN) 4 ] perpendicular to 010 plane 292 Figure A6. 2 Asymmetric unit of [PPh 4 ][Ga(CN) 4 ] Table A6.1 Sample and crystal data for [PPh 4 ][Ga(CN) 4 ] Identification code TPPGaCN4 Chemical formula C 28 H 20 GaN 4 P Formula weight 513.17 g/mol Temperature 100(2) K Wavelength 0.71073 Å Crystal system tetragonal Space group I 41/a Unit cell dimensions a = 14.2613(16) Å α = 90° b = 14.2613(16) Å β = 90° c = 12.4082(14) Å γ = 90° Volume 2523.6(6) Å 3 Z 4 Density (calculated) 1.351 g/cm 3 Absorption coefficient 1.177 mm -1 F(000) 1048 Table A6.2 Data collection and structure refinement for [PPh 4 ][Ga(CN) 4 ] Diffractometer Bruker APEX DUO Radiation source fine-focus tube, MoKα Theta range for data collection 2.18 to 30.52° Index ranges -20<=h<=20, -20<=k<=20, -17<=l<=17 Reflections collected 30872 Independent reflections 1923 [R(int) = 0.0283] Coverage of independent reflections 99.8% Absorption correction multi-scan Structure solution technique direct methods Structure solution program SHELXTL XT 2013/1 (Bruker AXS, 2014) 293 Refinement method Full-matrix least-squares on F 2 Refinement program SHELXTL XL 2014/7 (Bruker AXS, 2014) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 1923 / 0 / 77 Goodness-of-fit on F 2 1.045 Final R indices 1761 data; I>2σ(I) R1 = 0.0222, wR2 = 0.0633 all data R1 = 0.0251, wR2 = 0.0654 Weighting scheme w=1/[σ 2 (F o 2 )+(0.0325P) 2 +1.9082P] where P=(F o 2 +2F c 2 )/3 Largest diff. peak and hole 0.322 and -0.337 eÅ -3 R.M.S. deviation from mean 0.47 -3 Table A6. 3 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for TPP 2 GaCN 5 . x/a y/b z/c U(eq) C1 0.43866(8) 0.65377(8) 0.21445(9) 0.0246(2) C2 0.42602(7) 0.31873(7) 0.46086(7) 0.01701(17) C3 0.41632(7) 0.41555(7) 0.44830(8) 0.01887(18) C4 0.35630(7) 0.46433(7) 0.51673(9) 0.0233(2) C5 0.30584(8) 0.41733(8) 0.59555(9) 0.0256(2) C6 0.31634(8) 0.32110(9) 0.60849(9) 0.0263(2) C7 0.37674(8) 0.27148(7) 0.54203(8) 0.0230(2) N1 0.40120(8) 0.59771(7) 0.26457(9) 0.0326(2) P1 0.5 0.25 0.375 0.01486(10) Ga1 0.5 0.75 0.125 0.01962(8) Table A6. 4 Bond lengths (Å) for TPP 2 GaCN 5 C1-N1 1.1451(15) C1-Ga1 1.9698(11) C2-C3 1.3964(13) C2-C7 1.4009(13) C2-P1 1.7914(9) C3-C4 1.3921(14) C3-H3 0.95 C4-C5 1.3870(16) C4-H4 0.95 C5-C6 1.3898(17) C5-H5 0.95 C6-C7 1.3866(15) C6-H6 0.95 C7-H7 0.95 P1-C2 1.7913(9) P1-C2 1.7913(9) P1-C2 1.7913(9) Ga1-C1 1.9698(11) Ga1-C1 1.9698(11) Ga1-C1 1.9698(11) 294 Table A6. 5 Bond angles (°) for TPP 2 GaCN 5 N1-C1-Ga1 178.26(11) C3-C2-C7 120.41(9) C3-C2-P1 122.21(7) C7-C2-P1 117.38(7) C4-C3-C2 119.14(9) C4-C3-H3 120.4 C2-C3-H3 120.4 C5-C4-C3 120.50(10) C5-C4-H4 119.7 C3-C4-H4 119.7 C4-C5-C6 120.19(10) C4-C5-H5 119.9 C6-C5-H5 119.9 C7-C6-C5 120.13(10) C7-C6-H6 119.9 C5-C6-H6 119.9 C6-C7-C2 119.59(10) C6-C7-H7 120.2 C2-C7-H7 120.2 C2-P1-C2 110.72(3) C2-P1-C2 107.01(6) C2-P1-C2 110.72(3) C2-P1-C2 110.71(3) C2-P1-C2 107.01(6) C2-P1-C2 110.72(3) C1-Ga1-C1 108.51(3) C1-Ga1-C1 108.51(3) C1-Ga1-C1 111.41(7) C1-Ga1-C1 111.41(7) C1-Ga1-C1 108.51(3) C1-Ga1-C1 108.51(3) Table A6. 6 Torsion angles (°) for TPP 2 GaCN 5 C7-C2-C3-C4 -0.67(15) P1-C2-C3-C4 178.85(7) C2-C3-C4-C5 -0.79(15) C3-C4-C5-C6 1.41(17) C4-C5-C6-C7 -0.55(17) C5-C6-C7-C2 -0.90(17) C3-C2-C7-C6 1.52(16) P1-C2-C7-C6 -178.04(9) C3-C2-P1-C2 -110.19(10) C7-C2-P1-C2 69.35(6) C3-C2-P1-C2 129.06(9) C7-C2-P1-C2 -51.39(7) C3-C2-P1-C2 8.32(8) C7-C2-P1-C2 -172.14(8) Table A6. 7 Anisotropic atomic displacement parameters (Å 2 ) for TPP 2 GaCN 5 U 11 U 22 U 33 U 23 U 13 U 12 C1 0.0267(5) 0.0245(5) 0.0226(5) -0.0002(4) 0.0012(4) 0.0028(4) C2 0.0178(4) 0.0187(4) 0.0146(4) -0.0020(3) 0.0003(3) -0.0002(3) C3 0.0185(4) 0.0188(4) 0.0193(4) -0.0012(3) -0.0013(3) -0.0021(3) C4 0.0230(5) 0.0201(4) 0.0268(5) -0.0062(4) -0.0012(4) 0.0002(4) C5 0.0234(5) 0.0293(5) 0.0241(5) -0.0105(4) 0.0026(4) 0.0002(4) C6 0.0292(5) 0.0302(5) 0.0197(5) -0.0034(4) 0.0080(4) -0.0040(4) C7 0.0297(5) 0.0208(4) 0.0184(4) -0.0003(3) 0.0051(4) -0.0014(4) N1 0.0370(5) 0.0295(5) 0.0313(5) 0.0053(4) 0.0046(4) 0.0007(4) P1 0.01626(14) 0.01626(14) 0.0120(2) 0 0 0 Ga1 0.02068(9) 0.02068(9) 0.01750(12) 0 0 0 295 Table A6. 8 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for TPP 2 GaCN 5 x/a y/b z/c U(eq) H3 0.4503 0.4477 0.3938 0.023 H4 0.3498 0.5303 0.5094 0.028 H5 0.2640 0.4510 0.6408 0.031 H6 0.2821 0.2892 0.6630 0.032 H7 0.3846 0.2059 0.5515 0.028 A6.1.2 Crystal Structure Report for [PPh 4 ] 2 [In(CN) 5 ] Figure A6. 3 Projection of packing of [PPh 4 ] 2 [In(CN) 5 ] perpendicular to 010 plane 296 Figure A6. 4 Asymmetric unit of [PPh 4 ] 2 [In(CN) 5 ] Table A6. 9 Sample and crystal data for [PPh 4 ] 2 [In(CN) 5 ] Identification code PPH4_InCN Chemical formula C 53 H 40 InN 5 P 2 Formula weight 923.66 g/mol Temperature 100(2) K Wavelength 0.71073 Å Crystal size 0.354 x 0.505 x 0.657 mm Crystal system monoclinic Space group C 1 2/c 1 Unit cell dimensions a = 12.9394(16) Å α = 90° b = 13.5510(17) Å β = 101.883(2)° c = 25.306(3) Å γ = 90° Volume 4342.1(9) Å 3 Z 4 Density (calculated) 1.413 g/cm 3 Absorption coefficient 0.662 mm -1 F(000) 1888 Table A6. 10 Data collection and structure refinement for [PPh 4 ] 2 [In(CN) 5 ] Diffractometer Bruker APEX DUO Radiation source fine-focus tube, MoKα Theta range for data collection 1.65 to 30.56° Index ranges -18<=h<=18, -19<=k<=19, -36<=l<=36 Reflections collected 52531 Independent reflections 6625 [R(int) = 0.0371] Absorption correction multi-scan Max. and min. transmission 0.8000 and 0.6700 297 Structure solution technique direct methods Structure solution program SHELXTL XT 2013/1 (Bruker AXS, 2014) Refinement method Full-matrix least-squares on F 2 Refinement program SHELXTL XL 2014/7 (Bruker AXS, 2014) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 6625 / 0 / 277 Goodness-of-fit on F 2 1.160 Δ/σ max 0.001 Final R indices 6054 data; I>2σ(I) R1 = 0.0317, wR2 = 0.0740 all data R1 = 0.0363, wR2 = 0.0758 Weighting scheme w=1/[σ 2 (F o 2 )+(0.0235P) 2 +10.5114P] where P=(F o 2 +2F c 2 )/3 Largest diff. peak and hole 0.829 and -1.426 eÅ -3 R.M.S. deviation from mean 0.079 eÅ -3 Table A6. 11 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [In(CN) 5 ] x/a y/b z/c U(eq) C1 0.5 0.1026(2) 0.25 0.0220(5) C2 0.40430(14) 0.35181(13) 0.29576(7) 0.0161(3) C3 0.37029(14) 0.26554(14) 0.17039(7) 0.0171(3) C4 0.46511(13) 0.72096(12) 0.34139(6) 0.0127(3) C5 0.41213(14) 0.63118(13) 0.32887(7) 0.0171(3) C6 0.33199(14) 0.62358(14) 0.28315(7) 0.0189(3) C7 0.30290(14) 0.70631(15) 0.25073(7) 0.0183(3) C8 0.35317(14) 0.79601(15) 0.26382(7) 0.0176(3) C9 0.43543(13) 0.80371(14) 0.30873(7) 0.0149(3) C10 0.60745(13) 0.85286(12) 0.41506(7) 0.0119(3) C11 0.64629(13) 0.91174(13) 0.37776(7) 0.0150(3) C12 0.66862(14) 0.01081(13) 0.38865(7) 0.0169(3) C13 0.65495(14) 0.05139(13) 0.43720(8) 0.0174(3) C14 0.61990(14) 0.99302(14) 0.47513(7) 0.0176(3) C15 0.59486(13) 0.89406(13) 0.46418(7) 0.0146(3) C16 0.68588(13) 0.66045(12) 0.38715(7) 0.0127(3) C17 0.78544(13) 0.70470(13) 0.39878(7) 0.0151(3) C18 0.87357(14) 0.65307(14) 0.38960(7) 0.0176(3) C19 0.86271(15) 0.55763(14) 0.36964(8) 0.0194(3) C20 0.76364(16) 0.51295(14) 0.35820(9) 0.0229(4) C21 0.67505(15) 0.56415(14) 0.36656(8) 0.0198(4) C22 0.52768(13) 0.67344(12) 0.45546(6) 0.0118(3) C23 0.59759(13) 0.62003(12) 0.49436(7) 0.0129(3) C24 0.56719(14) 0.59199(13) 0.54185(7) 0.0153(3) C25 0.46839(14) 0.61846(13) 0.55078(7) 0.0164(3) C26 0.39734(14) 0.66939(14) 0.51125(7) 0.0167(3) 298 x/a y/b z/c U(eq) C27 0.42567(13) 0.69676(13) 0.46313(7) 0.0149(3) N1 0.5 0.0199(2) 0.25 0.0324(6) N2 0.36083(13) 0.39624(12) 0.32279(6) 0.0198(3) N3 0.31410(13) 0.26722(12) 0.12898(6) 0.0199(3) P002 0.57162(3) 0.72632(3) 0.39903(2) 0.01069(8) In1 0.5 0.26525(2) 0.25 0.01314(5) Table A6. 12 Bond lengths (Å) for [PPh 4 ] 2 [In(CN) 5 ] C1-N1 1.121(4) C1-In1 2.204(3) C2-N2 1.142(2) C2-In1 2.2002(18) C3-N3 1.146(2) C3-In1 2.3416(18) C4-C9 1.399(2) C4-C5 1.400(2) C4-P002 1.7901(17) C5-C6 1.389(2) C5-H5 0.95 C6-C7 1.394(3) C6-H6 0.95 C7-C8 1.386(3) C7-H7 0.95 C8-C9 1.392(2) C8-H8 0.95 C9-H9 0.95 C10-C15 1.402(2) C10-C11 1.406(2) C10-P002 1.8007(17) C11-C12 1.389(3) C11-H11 0.95 C12-C13 1.390(3) C12-H12 0.95 C13-C14 1.390(3) C13-H13 0.95 C14-C15 1.394(2) C14-H14 0.95 C15-H15 0.95 C16-C17 1.396(2) C16-C21 1.401(2) C16-P002 1.8046(17) C17-C18 1.397(2) C17-H17 0.95 C18-C19 1.385(3) C18-H18 0.95 C19-C20 1.393(3) C19-H19 0.95 C20-C21 1.393(3) C20-H20 0.95 C21-H21 0.95 C22-C23 1.394(2) C22-C27 1.409(2) C22-P002 1.7917(17) C23-C24 1.392(2) C23-H23 0.95 C24-C25 1.390(3) C24-H24 0.95 C25-C26 1.394(3) C25-H25 0.95 C26-C27 1.392(2) C26-H26 0.95 C27-H27 0.95 In1-C2 2.2002(18) In1-C3 2.3417(18) Table A6. 13 Bond angles (°) for [PPh 4 ] 2 [In(CN) 5 ] N1-C1-In1 180.0 N2-C2-In1 174.83(16) N3-C3-In1 173.76(15) C9-C4-C5 120.05(16) C9-C4-P002 121.36(13) C5-C4-P002 118.58(13) 299 C6-C5-C4 119.96(17) C6-C5-H5 120.0 C4-C5-H5 120.0 C5-C6-C7 119.68(17) C5-C6-H6 120.2 C7-C6-H6 120.2 C8-C7-C6 120.52(16) C8-C7-H7 119.7 C6-C7-H7 119.7 C7-C8-C9 120.20(17) C7-C8-H8 119.9 C9-C8-H8 119.9 C8-C9-C4 119.54(17) C8-C9-H9 120.2 C4-C9-H9 120.2 C15-C10-C11 119.48(16) C15-C10-P002 120.48(13) C11-C10-P002 120.02(13) C12-C11-C10 120.26(16) C12-C11-H11 119.9 C10-C11-H11 119.9 C11-C12-C13 119.91(16) C11-C12-H12 120.0 C13-C12-H12 120.0 C14-C13-C12 120.28(17) C14-C13-H13 119.9 C12-C13-H13 119.9 C13-C14-C15 120.36(16) C13-C14-H14 119.8 C15-C14-H14 119.8 C14-C15-C10 119.65(16) C14-C15-H15 120.2 C10-C15-H15 120.2 C17-C16-C21 119.71(16) C17-C16-P002 120.29(13) C21-C16-P002 119.99(13) C16-C17-C18 119.93(16) C16-C17-H17 120.0 C18-C17-H17 120.0 C19-C18-C17 120.21(17) C19-C18-H18 119.9 C17-C18-H18 119.9 C18-C19-C20 120.10(17) C18-C19-H19 119.9 C20-C19-H19 119.9 C21-C20-C19 120.18(17) C21-C20-H20 119.9 C19-C20-H20 119.9 C20-C21-C16 119.86(17) C20-C21-H21 120.1 C16-C21-H21 120.1 C23-C22-C27 120.60(15) C23-C22-P002 120.27(12) C27-C22-P002 118.70(13) C24-C23-C22 119.58(16) C24-C23-H23 120.2 C22-C23-H23 120.2 C25-C24-C23 120.17(16) C25-C24-H24 119.9 C23-C24-H24 119.9 C24-C25-C26 120.24(16) C24-C25-H25 119.9 C26-C25-H25 119.9 C27-C26-C25 120.40(16) C27-C26-H26 119.8 C25-C26-H26 119.8 C26-C27-C22 118.92(16) C26-C27-H27 120.5 C22-C27-H27 120.5 C4-P002-C22 108.41(8) C4-P002-C10 109.97(8) C22-P002-C10 108.09(8) C4-P002-C16 111.34(8) C22-P002-C16 109.89(8) C10-P002-C16 109.08(8) C2-In1-C2 115.56(9) C2-In1-C1 122.22(5) C2-In1-C1 122.22(5) C2-In1-C3 94.05(6) C2-In1-C3 85.85(6) C1-In1-C3 90.10(5) C2-In1-C3 85.85(6) C2-In1-C3 94.05(6) C1-In1-C3 90.10(5) C3-In1-C3 179.81(9) 300 Table A6. 14 Torsion angles (°) for [PPh 4 ] 2 [In(CN) 5 ] C9-C4-C5-C6 1.8(3) P002-C4-C5-C6 -177.38(14) C4-C5-C6-C7 -1.7(3) C5-C6-C7-C8 -0.1(3) C6-C7-C8-C9 1.8(3) C7-C8-C9-C4 -1.7(3) C5-C4-C9-C8 -0.1(3) P002-C4-C9-C8 179.05(13) C15-C10-C11-C12 -2.2(3) P002-C10-C11-C12 176.49(13) C10-C11-C12-C13 1.6(3) C11-C12-C13-C14 0.6(3) C12-C13-C14-C15 -2.1(3) C13-C14-C15-C10 1.4(3) C11-C10-C15-C14 0.7(2) P002-C10-C15-C14 -177.98(13) C21-C16-C17-C18 0.3(3) P002-C16-C17-C18 179.82(13) C16-C17-C18-C19 -0.8(3) C17-C18-C19-C20 0.5(3) C18-C19-C20-C21 0.3(3) C19-C20-C21-C16 -0.8(3) C17-C16-C21-C20 0.5(3) P002-C16-C21-C20 -179.03(15) C27-C22-C23-C24 -1.8(3) P002-C22-C23-C24 170.49(13) C22-C23-C24-C25 -1.0(3) C23-C24-C25-C26 2.9(3) C24-C25-C26-C27 -1.9(3) C25-C26-C27-C22 -0.9(3) C23-C22-C27-C26 2.8(3) P002-C22-C27-C26 -169.64(14) C9-C4-P002-C22 131.18(14) C5-C4-P002-C22 -49.67(16) C9-C4-P002-C10 13.20(16) C5-C4-P002-C10 -167.65(13) C9-C4-P002-C16 -107.82(15) C5-C4-P002-C16 71.33(16) C23-C22-P002-C4 145.29(14) C27-C22-P002-C4 -42.25(16) C23-C22-P002-C10 -95.53(15) C27-C22-P002-C10 76.92(15) C23-C22-P002-C16 23.41(16) C27-C22-P002-C16 -164.14(13) C15-C10-P002-C4 115.97(14) C11-C10-P002-C4 -62.69(15) C15-C10-P002-C22 -2.20(16) C11-C10-P002-C22 179.13(13) C15-C10-P002-C16 -121.66(14) C11-C10-P002-C16 59.67(15) C17-C16-P002-C4 131.01(14) C21-C16-P002-C4 -49.50(17) C17-C16-P002-C22 -108.86(14) C21-C16-P002-C22 70.63(16) C17-C16-P002-C10 9.47(16) C21-C16-P002-C10 -171.03(14) Table A6. 15 Anisotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [In(CN) 5 ] U 11 U 22 U 33 U 23 U 13 U 12 C1 0.0294(14) 0.0195(13) 0.0171(12) 0 0.0051(10) 0 C2 0.0151(8) 0.0167(8) 0.0159(8) -0.0001(6) 0.0014(6) -0.0007(6) C3 0.0169(8) 0.0159(8) 0.0194(8) -0.0020(7) 0.0058(6) -0.0015(6) C4 0.0133(7) 0.0139(8) 0.0104(7) 0.0003(5) 0.0016(5) 0.0005(6) C5 0.0186(8) 0.0152(8) 0.0155(8) 0.0004(6) -0.0010(6) 0.0004(6) C6 0.0177(8) 0.0208(9) 0.0162(8) -0.0038(7) -0.0008(6) -0.0001(7) C7 0.0150(8) 0.0268(9) 0.0120(7) -0.0008(7) 0.0004(6) 0.0033(7) C8 0.0164(8) 0.0236(9) 0.0128(7) 0.0048(6) 0.0031(6) 0.0031(7) C9 0.0138(7) 0.0170(8) 0.0144(7) 0.0021(6) 0.0043(6) 0.0006(6) C10 0.0106(7) 0.0115(7) 0.0132(7) 0.0002(6) 0.0015(6) 0.0008(5) 301 U 11 U 22 U 33 U 23 U 13 U 12 C11 0.0149(7) 0.0165(8) 0.0144(7) 0.0000(6) 0.0050(6) -0.0005(6) C12 0.0135(7) 0.0163(8) 0.0211(8) 0.0032(6) 0.0038(6) -0.0019(6) C13 0.0136(7) 0.0128(8) 0.0246(9) -0.0026(6) 0.0010(6) 0.0002(6) C14 0.0176(8) 0.0169(8) 0.0181(8) -0.0053(6) 0.0033(6) 0.0004(6) C15 0.0148(7) 0.0157(8) 0.0133(7) -0.0011(6) 0.0028(6) 0.0002(6) C16 0.0141(7) 0.0133(7) 0.0113(7) 0.0013(6) 0.0038(6) 0.0012(6) C17 0.0146(7) 0.0158(8) 0.0141(7) -0.0024(6) 0.0007(6) 0.0010(6) C18 0.0133(7) 0.0209(9) 0.0175(8) -0.0001(6) 0.0009(6) 0.0014(6) C19 0.0195(8) 0.0177(9) 0.0224(9) 0.0008(7) 0.0074(7) 0.0055(7) C20 0.0254(9) 0.0129(8) 0.0331(10) -0.0035(7) 0.0126(8) -0.0001(7) C21 0.0192(8) 0.0144(8) 0.0283(9) -0.0019(7) 0.0107(7) -0.0026(6) C22 0.0120(7) 0.0123(7) 0.0108(7) -0.0003(5) 0.0019(5) -0.0016(5) C23 0.0124(7) 0.0130(7) 0.0124(7) 0.0005(6) 0.0004(6) -0.0010(6) C24 0.0174(8) 0.0150(8) 0.0115(7) 0.0012(6) -0.0014(6) -0.0027(6) C25 0.0202(8) 0.0167(8) 0.0130(7) -0.0010(6) 0.0048(6) -0.0057(6) C26 0.0141(7) 0.0193(8) 0.0180(8) -0.0014(6) 0.0064(6) -0.0017(6) C27 0.0127(7) 0.0169(8) 0.0149(7) 0.0015(6) 0.0019(6) 0.0000(6) N1 0.0535(18) 0.0213(13) 0.0229(12) 0 0.0089(12) 0 N2 0.0206(7) 0.0200(8) 0.0185(7) -0.0021(6) 0.0039(6) -0.0001(6) N3 0.0214(7) 0.0199(7) 0.0186(7) -0.0013(6) 0.0043(6) 0.0008(6) P002 0.01157(18) 0.01031(19) 0.01009(17) 0.00032(14) 0.00195(14) 0.00009(14) In1 0.01462(8) 0.01210(8) 0.01323(8) 0 0.00410(6) 0 Table A6. 16 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [In(CN) 5 ] x/a y/b z/c U(eq) H5 0.4310 0.5755 0.3516 0.021 H6 0.2972 0.5623 0.2740 0.023 H7 0.2482 0.7012 0.2194 0.022 H8 0.3314 0.8524 0.2421 0.021 H9 0.4712 0.8647 0.3172 0.018 H11 0.6573 0.8837 0.3450 0.018 H12 0.6932 1.0508 0.3630 0.02 H13 0.6696 1.1193 0.4445 0.021 H14 0.6130 1.0207 0.5087 0.021 H15 0.5694 0.8547 0.4898 0.018 H17 0.7933 0.7698 0.4129 0.018 H18 0.9411 0.6835 0.3971 0.021 H19 0.9229 0.5226 0.3637 0.023 H20 0.7565 0.4474 0.3447 0.027 H21 0.6074 0.5339 0.3583 0.024 H23 0.6655 0.6029 0.4885 0.015 H24 0.6141 0.5547 0.5682 0.018 302 x/a y/b z/c U(eq) H25 0.4492 0.6018 0.5839 0.02 H26 0.3292 0.6855 0.5172 0.02 H27 0.3770 0.7306 0.4359 0.018 A6.1.3 Crystal Structure Report for [PPh 4 ] 2 [Tl(CN) 5 ] Figure A6. 5 Projection of packing of [PPh 4 ] 2 [Tl(CN) 5 ] perpendicular to 010 plane Figure A6. 6 Asymmetric unit of [PPh 4 ] 2 [Tl(CN) 5 ] 303 Table A6. 17 Sample and crystal data for [PPh 4 ] 2 [Tl(CN) 5 ] Identification code TlCN_PPh4 Chemical formula C 53 H 40 N 5 P 2 Tl Formula weight 1013.21 g/mol Temperature 100(2) K Wavelength 0.71073 Å Crystal size 1.000 x 1.100 x 1.200 mm Crystal habit clear pale bronze Prism Crystal system monoclinic Space group C 1 2/c 1 Unit cell dimensions a = 12.9401(13) Å α = 90° b = 13.5660(13) Å β = 101.6670(15)° c = 25.347(3) Å γ = 90° Volume 4357.6(7) Å 3 Z 4 Density (calculated) 1.544 g/cm 3 Absorption coefficient 3.823 mm -1 F(000) 2016 Table A6. 18 Data collection and structure refinement for [PPh 4 ] 2 [Tl(CN) 5 ] Diffractometer Bruker APEX DUO Radiation source fine-focus tube, MoKα Theta range for data collection 1.64 to 30.77° Index ranges -18<=h<=18, -19<=k<=19, -36<=l<=36 Reflections collected 52577 Independent reflections 6748 [R(int) = 0.0365] Coverage of independent reflections 98.7% Absorption correction multi-scan Max. and min. transmission 0.1150 and 0.0910 Structure solution technique direct methods Structure solution program SHELXTL XT 2014/3 (Sheldrick, 2014) Refinement method Full-matrix least-squares on F 2 Refinement program SHELXTL XL 2014/3 (Bruker AXS, 2014) Function minimized Σ w(F o 2 - F c 2 ) 2 Data / restraints / parameters 6748 / 0 / 277 Goodness-of-fit on F 2 1.138 Δ/σ max 0.003 Final R indices 6492 data; I>2σ(I) R1 = 0.0262, wR2 = 0.0604 all data R1 = 0.0279, wR2 = 0.0609 Weighting scheme w=1/[σ 2 (F o 2 )+(0.0233P) 2 +15.8230P] where P=(F o 2 +2F c 2 )/3 Largest diff. peak and hole 3.391 and -2.912 eÅ -3 R.M.S. deviation from mean 0.108 eÅ -3 304 Table A6. 19 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [Tl(CN) 5 ] x/a y/b z/c U(eq) C1 0.5 0.8973(2) 0.25 0.0206(6) C2 0.63584(18) 0.73308(17) 0.33348(10) 0.0170(4) C3 0.40426(17) 0.64771(17) 0.29608(9) 0.0154(4) C4 0.68623(16) 0.33866(15) 0.38709(8) 0.0119(4) C5 0.67576(19) 0.43475(17) 0.36648(10) 0.0184(4) C6 0.7646(2) 0.48582(18) 0.35821(11) 0.0222(5) C7 0.86341(19) 0.44091(18) 0.36971(10) 0.0185(4) C8 0.87422(18) 0.34546(17) 0.38941(9) 0.0165(4) C9 0.78588(17) 0.29414(17) 0.39849(9) 0.0147(4) C10 0.60767(16) 0.14633(15) 0.41522(8) 0.0106(3) C11 0.64617(17) 0.08719(17) 0.37796(9) 0.0142(4) C12 0.66847(17) 0.98833(17) 0.38892(10) 0.0169(4) C13 0.65522(17) 0.94791(17) 0.43763(10) 0.0170(4) C14 0.62017(18) 0.00656(17) 0.47536(9) 0.0172(4) C15 0.59535(17) 0.10549(16) 0.46439(9) 0.0141(4) C16 0.52839(16) 0.32618(15) 0.45543(8) 0.0107(3) C17 0.59857(16) 0.37997(16) 0.49397(8) 0.0118(4) C18 0.56797(17) 0.40874(16) 0.54141(8) 0.0143(4) C19 0.46909(18) 0.38225(17) 0.55041(9) 0.0151(4) C20 0.39828(17) 0.33070(17) 0.51121(9) 0.0156(4) C21 0.42670(17) 0.30302(17) 0.46327(9) 0.0145(4) C22 0.46554(17) 0.27826(15) 0.34162(8) 0.0121(4) C23 0.43582(17) 0.19533(17) 0.30899(9) 0.0141(4) C24 0.35386(18) 0.20338(19) 0.26414(9) 0.0168(4) C25 0.30354(18) 0.29321(19) 0.25106(9) 0.0178(4) C26 0.33249(18) 0.37550(18) 0.28348(9) 0.0183(4) C27 0.41256(18) 0.36795(17) 0.32921(9) 0.0161(4) N1 0.5 0.9798(3) 0.25 0.0341(8) N2 0.69192(17) 0.73105(16) 0.37481(9) 0.0212(4) N3 0.36068(16) 0.60312(16) 0.32305(8) 0.0191(4) P1 0.57207(4) 0.27288(4) 0.39907(2) 0.00990(9) Tl1 0.5 0.73422(2) 0.25 0.01333(4) Table A6. 20 Bond lengths (Å) for [PPh 4 ] 2 [Tl(CN) 5 ] C1-N1 1.119(5) C1-Tl1 2.213(3) C2-N2 1.148(3) C2-Tl1 2.462(2) C3-N3 1.143(3) C3-Tl1 2.205(2) C4-C9 1.400(3) C4-C5 1.401(3) C4-P1 1.803(2) C5-C6 1.393(3) 305 C5-H5 0.95 C6-C7 1.393(3) C6-H6 0.95 C7-C8 1.385(3) C7-H7 0.95 C8-C9 1.397(3) C8-H8 0.95 C9-H9 0.95 C10-C15 1.402(3) C10-C11 1.405(3) C10-P1 1.803(2) C11-C12 1.388(3) C11-H11 0.95 C12-C13 1.393(3) C12-H12 0.95 C13-C14 1.389(3) C13-H13 0.95 C14-C15 1.395(3) C14-H14 0.95 C15-H15 0.95 C16-C17 1.397(3) C16-C21 1.405(3) C16-P1 1.792(2) C17-C18 1.395(3) C17-H17 0.95 C18-C19 1.392(3) C18-H18 0.95 C19-C20 1.396(3) C19-H19 0.95 C20-C21 1.391(3) C20-H20 0.95 C21-H21 0.95 C22-C27 1.401(3) C22-C23 1.403(3) C22-P1 1.793(2) C23-C24 1.393(3) C23-H23 0.95 C24-C25 1.390(4) C24-H24 0.95 C25-C26 1.392(3) C25-H25 0.95 C26-C27 1.393(3) C26-H26 0.95 C27-H27 0.95 Tl1-C3 2.205(2) Tl1-C2 2.462(2) Table A6. 21 Bond angles (°) for [PPh 4 ] 2 [Tl(CN) 5 ] N1-C1-Tl1 180.0 N2-C2-Tl1 173.8(2) N3-C3-Tl1 175.0(2) C9-C4-C5 119.6(2) C9-C4-P1 120.22(16) C5-C4-P1 120.18(17) C6-C5-C4 119.9(2) C6-C5-H5 120.1 C4-C5-H5 120.1 C7-C6-C5 120.1(2) C7-C6-H6 120.0 C5-C6-H6 120.0 C8-C7-C6 120.4(2) C8-C7-H7 119.8 C6-C7-H7 119.8 C7-C8-C9 120.0(2) C7-C8-H8 120.0 C9-C8-H8 120.0 C8-C9-C4 120.1(2) C8-C9-H9 120.0 C4-C9-H9 120.0 C15-C10-C11 119.43(19) C15-C10-P1 120.56(16) C11-C10-P1 120.00(16) C12-C11-C10 120.3(2) C12-C11-H11 119.8 C10-C11-H11 119.8 C11-C12-C13 120.0(2) C11-C12-H12 120.0 C13-C12-H12 120.0 C14-C13-C12 120.1(2) C14-C13-H13 120.0 C12-C13-H13 120.0 C13-C14-C15 120.5(2) C13-C14-H14 119.7 C15-C14-H14 119.7 306 C14-C15-C10 119.6(2) C14-C15-H15 120.2 C10-C15-H15 120.2 C17-C16-C21 120.83(19) C17-C16-P1 120.20(16) C21-C16-P1 118.55(16) C18-C17-C16 119.40(19) C18-C17-H17 120.3 C16-C17-H17 120.3 C19-C18-C17 120.0(2) C19-C18-H18 120.0 C17-C18-H18 120.0 C18-C19-C20 120.4(2) C18-C19-H19 119.8 C20-C19-H19 119.8 C21-C20-C19 120.4(2) C21-C20-H20 119.8 C19-C20-H20 119.8 C20-C21-C16 118.9(2) C20-C21-H21 120.5 C16-C21-H21 120.5 C27-C22-C23 120.0(2) C27-C22-P1 118.61(16) C23-C22-P1 121.35(16) C24-C23-C22 119.4(2) C24-C23-H23 120.3 C22-C23-H23 120.3 C25-C24-C23 120.4(2) C25-C24-H24 119.8 C23-C24-H24 119.8 C24-C25-C26 120.3(2) C24-C25-H25 119.8 C26-C25-H25 119.8 C25-C26-C27 119.9(2) C25-C26-H26 120.1 C27-C26-H26 120.1 C26-C27-C22 119.9(2) C26-C27-H27 120.0 C22-C27-H27 120.0 C16-P1-C22 108.45(10) C16-P1-C10 108.09(10) C22-P1-C10 110.02(10) C16-P1-C4 109.62(10) C22-P1-C4 111.38(10) C10-P1-C4 109.22(10) C3-Tl1-C3 115.68(12) C3-Tl1-C1 122.16(6) C3-Tl1-C1 122.16(6) C3-Tl1-C2 85.49(8) C3-Tl1-C2 94.12(8) C1-Tl1-C2 90.36(6) C3-Tl1-C2 94.12(8) C3-Tl1-C2 85.49(8) C1-Tl1-C2 90.36(6) C2-Tl1-C2 179.28(11) Table A6. 22 Anisotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [Tl(CN) 5 ] U 11 U 22 U 33 U 23 U 13 U 12 C1 0.0316(18) 0.0106(14) 0.0192(15) 0 0.0047(13) 0 C2 0.0169(10) 0.0164(10) 0.0188(10) -0.0014(8) 0.0062(8) -0.0004(8) C3 0.0149(9) 0.0155(10) 0.0154(10) -0.0002(8) 0.0023(8) 0.0012(7) C4 0.0143(9) 0.0113(9) 0.0110(9) -0.0017(7) 0.0044(7) -0.0015(7) C5 0.0195(10) 0.0125(10) 0.0259(12) 0.0020(8) 0.0114(9) 0.0032(8) C6 0.0261(12) 0.0113(10) 0.0322(13) 0.0036(9) 0.0134(10) -0.0010(8) C7 0.0189(10) 0.0178(11) 0.0208(11) -0.0012(8) 0.0084(8) -0.0054(8) C8 0.0138(9) 0.0182(11) 0.0170(10) 0.0001(8) 0.0019(8) -0.0018(8) C9 0.0152(9) 0.0146(9) 0.0137(9) 0.0024(8) 0.0013(7) -0.0001(7) C10 0.0105(8) 0.0097(9) 0.0115(9) 0.0001(7) 0.0019(7) -0.0009(6) C11 0.0148(9) 0.0158(10) 0.0129(9) 0.0008(7) 0.0048(7) 0.0004(7) C12 0.0153(10) 0.0158(10) 0.0201(11) -0.0031(8) 0.0048(8) 0.0014(8) C13 0.0141(9) 0.0119(10) 0.0242(11) 0.0026(8) 0.0020(8) 0.0004(7) 307 U 11 U 22 U 33 U 23 U 13 U 12 C14 0.0189(10) 0.0165(10) 0.0166(10) 0.0053(8) 0.0041(8) 0.0007(8) C15 0.0165(9) 0.0146(10) 0.0116(9) 0.0012(7) 0.0040(7) 0.0000(7) C16 0.0126(9) 0.0114(9) 0.0081(8) 0.0000(7) 0.0020(7) 0.0010(7) C17 0.0120(9) 0.0127(9) 0.0099(9) -0.0002(7) 0.0005(7) 0.0009(7) C18 0.0178(10) 0.0141(10) 0.0098(9) -0.0009(7) 0.0000(7) 0.0022(7) C19 0.0201(10) 0.0154(10) 0.0108(9) 0.0014(7) 0.0055(8) 0.0053(8) C20 0.0137(9) 0.0183(10) 0.0161(10) 0.0010(8) 0.0060(8) 0.0014(7) C21 0.0128(9) 0.0166(10) 0.0145(9) -0.0005(8) 0.0036(7) -0.0010(7) C22 0.0142(9) 0.0129(10) 0.0093(8) 0.0000(7) 0.0026(7) -0.0007(7) C23 0.0145(9) 0.0160(10) 0.0127(9) -0.0035(8) 0.0045(7) -0.0009(7) C24 0.0164(10) 0.0230(11) 0.0114(9) -0.0061(8) 0.0040(8) -0.0041(8) C25 0.0164(10) 0.0257(11) 0.0106(9) 0.0011(8) 0.0012(7) -0.0031(8) C26 0.0185(10) 0.0203(11) 0.0147(10) 0.0036(8) -0.0001(8) 0.0012(8) C27 0.0193(10) 0.0143(10) 0.0133(10) -0.0004(8) -0.0002(8) -0.0002(8) N1 0.060(2) 0.0197(16) 0.0250(17) 0 0.0132(16) 0 N2 0.0219(10) 0.0218(10) 0.0205(10) -0.0011(8) 0.0056(8) -0.0014(8) N3 0.0208(9) 0.0190(10) 0.0178(9) 0.0020(7) 0.0046(7) 0.0004(7) P1 0.0119(2) 0.0092(2) 0.0088(2) -0.00040(17) 0.00268(17) -0.00016(17) Tl1 0.01608(6) 0.01179(5) 0.01333(6) 0 0.00583(4) 0 Table A6. 23 Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for [PPh 4 ] 2 [Tl(CN) 5 ] x/a y/b z/c U(eq) H5 0.6082 0.4651 0.3581 0.022 H6 0.7577 0.5513 0.3447 0.027 H7 0.9237 0.4760 0.3640 0.022 H8 0.9417 0.3149 0.3967 0.02 H9 0.7934 0.2289 0.4124 0.018 H11 0.6570 0.1150 0.3451 0.017 H12 0.6928 -0.0518 0.3632 0.02 H13 0.6702 -0.1198 0.4451 0.02 H14 0.6130 -0.0209 0.5089 0.021 H15 0.5702 0.1450 0.4901 0.017 H17 0.6665 0.3968 0.4879 0.014 H18 0.6146 0.4464 0.5675 0.017 H19 0.4497 0.3993 0.5834 0.018 H20 0.3303 0.3144 0.5173 0.019 H21 0.3782 0.2690 0.4363 0.017 H23 0.4713 0.1343 0.3174 0.017 H24 0.3322 0.1471 0.2424 0.02 H25 0.2491 0.2985 0.2198 0.021 H26 0.2977 0.4367 0.2745 0.022 H27 0.4312 0.4235 0.3519 0.019 308 A6.2 Spectroscopic Data A6.2.1 Vibrational Spectrum of [PPh 4 ][Ga(CN) 4 ] Figure A6. 7 Vibrational Spectrum of [PPh 4 ][Ga(CN) 4 ] Raman 𝜈/cm -1 : 3086(0.5), 2960(0.1) 2903(0.2), 2207(0.2), 2185(0.4), 2048(0.1), 1587(0.7), 1575(0.3), 1181(0.2), 1159(0.2), 1110(0.2), 1098(0.3), 1028(0.5), 1002(1.0), 680(0.3), 638(0.1),617(0.3), 251(0.4), 197(0.4). IR 𝜈/cm -1 : 3060(w), 2958(w), 2898(vw), 2200(m), 2181(w), 1589(m), 1482(m), 1436(s), 1322(s), 1254(m), 1184(m), 1109(vs), 1072(vw), 1044(w), 996(w), 847(s), 755(m), 724(vs), 691(s), 616(vw), 526(vs), 432(m) A6.2.2 Vibrational Spectrum of [PPh 4 ] 2 [In(CN) 5 ] 309 Figure A6. 8 Vibrational Spectrum of [PPh 4 ] 2 [In(CN) 5 ] Raman 𝜈/cm -1 : 3064(0.5), 2959(0.1), 2904(0.2), 2225(0.1), 2207(0.2), 2186(0.2), 2121(0.2), 1586(0.8), 1574(0.4), 1184(0.3), 1159(0.3), 1097(0.4), 1027(0.7), 1002(1.0), 679(0.4), 616(0.4), 253(0.5), 201(0.4) IR 𝜈/cm -1 : 3060(w), 2958(w), 2902(vw), 2200(m), 1587(m), 1517(w), 1483(m), 1438(s), 1322(m), 1255(m), 1181(m), 1108(s), 1071(vw), 1038(w), 995(w), 915(w), 847(s), 757(m), 722(vs), 691(s), 616(vw), 526(vs), 458(vw). 310 A6.2.3 Vibrational Spectrum of [PPh 4 ] 2 [Tl(CN) 5 ] Figure A6. 9 Vibrational Spectrum of [PPh 4 ] 2 [Tl(CN) 5 ] Raman 𝜈/cm -1 : 3063(0.4), 2955(0.2), 2904(0.2), 2187(0.5), 2048(0.3), 1587(0.8), 1573(0.6), 1517(0.5), 1182(0.5), 1165(0.5), 1098(0.5), 1001(1.0), 679(0.5), 615(0.5), 257(0.7), 196(0.7) IR 𝜈/cm -1 : 3057(w), 2956(w), 2898(vw), 2201(w), 2166(m), 2142(w), 1585(w), 1517(vw), 1483(w), 1438(s), 1364(vw), 1319(w), 1252(m), 1188(m), 1156(w), 1108(s), 1071(vw), 997(w), 913(w), 845(s), 722(vs), 693(s), 528(vs) A6.3 Computational Studies A6.3.1 Optimized geometries of Ga(CN) 3 (B3LYP, MP2) Figure A6. 10 Optimized geometries of Ga(CN) 3 (B3LYP, MP2) 311 Cartesian coordinates in Angstroms B3LYP MP2 Atoms x y z Atoms x y z Ga 0.000000 0.000000 0.000000 Ga 0.000000 0.000000 0.000000 C 0.000000 1.917117 0.000000 C 0.000000 1.892604 0.000000 C 1.660272 -0.958558 0.000000 C 1.639043 -0.946302 0.000000 C -1.660272 -0.958558 0.000000 C -1.639043 -0.946302 0.000000 N 2.667880 -1.540301 0.000000 N 2.670791 -1.541982 0.000000 N 0.000000 3.080602 0.000000 N 0.000000 3.083964 0.000000 N -2.667880 -1.540301 0.000000 N -2.670791 -1.541982 0.000000 A6.3.2 Optimized geometries of [Ga(CN) 4 ] - (B3LYP, MP2) Figure A6. 11 Optimized geometries of [Ga(CN) 4 ] - (B3LYP, MP2) Cartesian coordinates in Angstroms B3LYP MP2 Atoms x y z Atoms x y z Ga -0.000046 -0.000049 -0.000017 Ga 0.000000 0.000000 0.000000 C 0.038072 1.759273 0.918270 C 1.128085 1.128085 1.128085 C 1.422567 -0.055239 -1.383147 C -1.128085 -1.128085 1.128085 C 0.309316 -1.444870 1.325203 C -1.128085 1.128085 -1.128085 C -1.769916 -0.259115 -0.860335 C 1.128085 -1.128085 -1.128085 N 2.257582 -0.087624 -2.194869 N -1.816242 -1.816242 1.816242 N 0.060368 2.791861 1.457210 N 1.816242 1.816242 1.816242 N 0.490919 -2.292898 2.103049 N -1.816242 1.816242 -1.816242 N -2.808699 -0.411163 -1.365305 N 1.816242 -1.816242 -1.816242 312 A6.3.3 Optimized geometries of [Ga(CN) 5 ] 2- (B3LYP, MP2) Figure A6. 12 Optimized geometries of [Ga(CN) 5 ] 2- (B3LYP, MP2) Cartesian coordinates in Angstroms of [Ga(CN) 5 ] 2- B3LYP MP2 Atoms x y z Atoms x y z Ga 0.000000 0.000000 0.000000 Ga 0.000000 0.000000 0.000000 C 0.000000 0.000000 2.038365 C 0.000000 2.002411 0.000000 C 0.000000 2.224605 0.000000 C 0.000000 0.000000 2.197362 C 1.765276 0.000000 -1.019182 C -1.734138 -1.001205 0.000000 C 0.000000 -2.224605 0.000000 C 0.000000 0.000000 -2.197362 C -1.765276 0.000000 -1.019182 C 1.734138 -1.001205 0.000000 N 0.000000 0.000000 3.206709 N 0.000000 3.197210 0.000000 N 0.000000 3.397463 0.000000 N 0.000000 0.000000 3.397225 N 2.777091 0.000000 -1.603355 N -2.768865 -1.598605 0.000000 N 0.000000 -3.397463 0.000000 N 0.000000 0.000000 -3.397225 N -2.777091 0.000000 -1.603355 N 2.768865 -1.598605 0.000000 A6.3.4 Optimized geometries of [Ga(CN) 6 ] 3- (B3LYP, MP2) 313 Figure A6. 13 Optimized geometries of [Ga(CN) 6 ] 3- (B3LYP, MP2) Cartesian coordinates in Angstroms B3LYP MP2 Atoms x y z Atoms x y z Ga 0.000000 0.000000 0.000000 Ga 0.000000 0.000000 0.000000 C 0.000000 0.000000 2.207503 C 0.000000 0.000000 2.167327 C 0.000000 2.207503 0.000000 C 0.000000 2.167327 0.000000 C 2.207503 0.000000 0.000000 C 2.167327 0.000000 0.000000 C 0.000000 0.000000 -2.207503 C 0.000000 0.000000 -2.167327 C 0.000000 -2.207503 0.000000 C 0.000000 -2.167327 0.000000 C -2.207503 0.000000 0.000000 C -2.167327 0.000000 0.000000 N -3.382065 0.000000 0.000000 N -3.368530 0.000000 0.000000 N 0.000000 -3.382065 0.000000 N 0.000000 -3.368530 0.000000 N 0.000000 0.000000 -3.382065 N 0.000000 0.000000 -3.368530 N 3.382065 0.000000 0.000000 N 3.368530 0.000000 0.000000 N 0.000000 0.000000 3.382065 N 0.000000 0.000000 3.368530 N 0.000000 3.382065 0.000000 N 0.000000 3.368530 0.000000 A6.3.5 Optimized geometries of In(CN) 3 (B3LYP, MP2) Figure A6. 14 Optimized geometries of In(CN)3 (B3LYP, MP2) Cartesian coordinates in Angstroms 314 B3LYP MP2 Atoms x y z Atoms x y z In 0.000000 0.000000 0.000000 In 0.000000 0.000167 0.000000 C 0.000000 2.107232 0.000000 C -1.728631 1.147058 0.000000 C 1.824917 -1.053616 0.000000 C 1.858214 0.922445 0.000000 C -1.824917 -1.053616 0.000000 C -0.129600 -2.069975 0.000000 N 2.833202 -1.635750 0.000000 N 2.926268 1.452386 0.000000 N 0.000000 3.271500 0.000000 N -2.722231 1.806133 0.000000 N -2.833202 -1.635750 0.000000 N -0.204022 -3.259285 0.000000 A6.3.6 Optimized geometries of [In(CN) 4 ] - (B3LYP, MP2) Figure A6. 15 Optimized geometries of [In(CN) 4 ] - (B3LYP, MP2) Cartesian coordinates in Angstroms B3LYP MP2 Atoms x y z Atoms x y z In -0.000019 -0.000032 -0.000215 In 0.000031 0.000084 0.000186 C 0.167203 -1.248708 1.773152 C 0.846205 -1.768407 0.857479 C -0.007902 2.094598 0.586433 C -0.240095 -0.274840 -2.107891 C 1.691064 -0.378337 -1.315152 C -1.907679 0.382787 0.890641 C -1.850439 -0.467528 -1.044138 C 1.301371 1.660387 0.358781 N -0.011862 3.217381 0.900742 N -0.374156 -0.428337 -3.282848 N 0.256744 -1.917758 2.723833 N 1.318469 -2.754278 1.335723 N 2.597580 -0.581406 -2.019736 N -2.971343 0.595990 1.387443 N -2.842268 -0.718013 -1.603587 N 2.026981 2.586099 0.559231 315 A6.3.7 Optimized geometries of [In(CN) 5 ] 2- (B3LYP, MP2) Figure A6. 16 Optimized geometries of [In(CN) 5 ] 2- (B3LYP, MP2) Cartesian coordinates in Angstroms B3LYP MP2 Atoms x y z Atoms x y z In 0.000000 0.000000 0.000051 In 0.000000 0.000000 0.000000 C 0.000000 0.000000 2.248323 C 0.000000 2.202731 0.000000 C 0.000000 2.366177 0.000044 C 0.000000 0.000000 2.339086 C 1.946875 0.000000 -1.124400 C 1.907621 -1.101366 0.000000 C 0.000000 -2.366177 0.000044 C 0.000000 0.000000 -2.339086 C -1.946875 0.000000 -1.124400 C -1.907621 -1.101366 0.000000 N 0.000000 0.000000 3.417712 N 0.000000 3.398707 0.000000 N 0.000000 3.538478 0.000188 N 0.000000 0.000000 3.538469 N 2.959619 0.000000 -1.709055 N 2.943367 -1.699354 0.000000 N 0.000000 -3.538478 0.000188 N 0.000000 0.000000 -3.538469 N -2.959619 0.000000 -1.709055 N -2.943367 -1.699354 0.000000 A6.3.8 Optimized geometries of [In(CN) 6 ] 3- (B3LYP, MP2) Figure A6. 17 Optimized geometries of [In(CN) 6 ] 3- (B3LYP, MP2) 316 Cartesian coordinates in Angstroms B3LYP MP2 Atoms x y z Atoms x y z In 0.000000 0.000000 0.000000 In 0.000000 0.000000 0.000000 C 0.000000 0.000000 2.395228 C 0.000000 0.000000 2.351341 C 0.000000 2.395228 0.000000 C 0.000000 2.351341 0.000000 C 2.395228 0.000000 0.000000 C 2.351341 0.000000 0.000000 C 0.000000 0.000000 -2.395228 C 0.000000 0.000000 -2.351341 C 0.000000 -2.395228 0.000000 C 0.000000 -2.351341 0.000000 C -2.395228 0.000000 0.000000 C -2.351341 0.000000 0.000000 N -3.569781 0.000000 0.000000 N -3.552441 0.000000 0.000000 N 0.000000 -3.569781 0.000000 N 0.000000 -3.552441 0.000000 N 0.000000 0.000000 -3.569781 N 0.000000 0.000000 -3.552441 N 3.569781 0.000000 0.000000 N 3.552441 0.000000 0.000000 N 0.000000 0.000000 3.569781 N 0.000000 0.000000 3.552441 N 0.000000 3.569781 0.000000 N 0.000000 3.552441 0.000000 A6.3.9 Optimized geometries of Tl(CN) 3 (B3LYP, MP2) Figure A6. 18 Optimized geometries of Tl(CN) 3 (B3LYP, MP2) Cartesian coordinates in Angstroms B3LYP MP2 Atoms x y z Atoms x y z Ga 0.000000 0.000000 0.000000 Tl 0.000000 0.000000 0.000000 C 0.000000 1.917117 0.000000 C 0.000000 2.093133 0.000000 C 1.660272 -0.958558 0.000000 C -1.812706 -1.046566 0.000000 C -1.660272 -0.958558 0.000000 C 1.812706 -1.046566 0.000000 N 2.667880 -1.540301 0.000000 N -2.844942 -1.642528 0.000000 N 0.000000 3.080602 0.000000 N 0.000000 3.285056 0.000000 317 N -2.667880 -1.540301 0.000000 N 2.844942 -1.642528 0.000000 A6.3.10 Optimized geometries of [Tl(CN) 4 ] - (B3LYP, MP2) Figure A6. 19 Optimized geometries of [Tl(CN) 4 ] - (B3LYP, MP2) Cartesian coordinates in Angstroms B3LYP MP2 Atoms x y z Atoms x y z Tl -0.000073 0.000013 -0.000025 Tl 0.000000 0.000000 0.000000 C -0.703792 -1.890135 0.921628 C 1.247435 1.247435 1.247435 C 1.310418 -0.463226 -1.727946 C -1.247435 -1.247435 1.247435 C -1.745780 1.180138 -0.691134 C -1.247435 1.247435 -1.247435 C 1.139601 1.173215 1.497526 C 1.247435 -1.247435 -1.247435 N 1.999466 -0.706453 -2.636559 N -1.936246 -1.936246 1.936246 N -1.073856 -2.884239 1.405711 N 1.936246 1.936246 1.936246 N -2.663751 1.800681 -1.054152 N -1.936246 1.936246 -1.936246 N 1.738599 1.789864 2.285222 N 1.936246 -1.936246 -1.936246 A6.3.11 Optimized geometries of [Tl(CN) 5 ] 2- (B3LYP, MP2) Figure A6. 20 Optimized geometries of [Tl(CN) 5 ] 2- (B3LYP, MP2) 318 Cartesian coordinates in Angstroms B3LYP MP2 Atoms x y z Atoms x y z Tl 0.000000 0.000000 0.000336 Tl 0.000000 0.000000 0.000000 C 0.000000 0.000000 2.284837 C 0.000000 2.193741 0.000000 C 0.000000 2.471790 0.000909 C 0.000000 0.000000 2.468481 C 1.977241 0.000000 -1.144119 C -1.899835 -1.096870 0.000000 C 0.000000 -2.471790 0.000909 C 0.000000 0.000000 -2.468481 C -1.977241 0.000000 -1.144119 C 1.899835 -1.096870 0.000000 N 0.000000 0.000000 3.453974 N 0.000000 3.388887 0.000000 N 0.000000 3.645178 0.001408 N 0.000000 0.000000 3.669796 N 2.989184 0.000000 -1.729657 N -2.934862 -1.694443 0.000000 N 0.000000 -3.645178 0.001408 N 0.000000 0.000000 -3.669796 N -2.989184 0.000000 -1.729657 N 2.934862 -1.694443 0.000000 A6.3.12 Optimized geometries of [Tl(CN) 6 ] 3- (B3LYP, MP2) Figure A6. 21 Optimized geometries of [Tl(CN) 6 ] 3- (B3LYP, MP2) Cartesian coordinates in Angstroms B3LYP MP2 Atoms x y z Atoms x y z Tl 0.000000 0.000000 0.000000 Tl 0.000000 0.000000 0.000000 C 0.000000 0.000000 2.476612 C 0.000000 0.000000 2.408290 C 0.000000 2.476612 0.000000 C 0.000000 2.408290 0.000000 C 2.476612 0.000000 0.000000 C 2.408290 0.000000 0.000000 C 0.000000 0.000000 -2.476612 C 0.000000 0.000000 -2.408290 C 0.000000 -2.476612 0.000000 C 0.000000 -2.408290 0.000000 C -2.476612 0.000000 0.000000 C -2.408290 0.000000 0.000000 319 N -3.651578 0.000000 0.000000 N -3.610095 0.000000 0.000000 N 0.000000 -3.651578 0.000000 N 0.000000 -3.610095 0.000000 N 0.000000 0.000000 -3.651578 N 0.000000 0.000000 -3.610095 N 3.651578 0.000000 0.000000 N 3.610095 0.000000 0.000000 N 0.000000 0.000000 3.651578 N 0.000000 0.000000 3.610095 N 0.000000 3.651578 0.000000 N 0.000000 3.610095 0.000000
Abstract (if available)
Abstract
Several new transition metal (Ti, Zr, Hf, Nb and Ta) azides are reported. Adducts of Nb and Ta fluorides were formed by reaction with 2,2’-bipyridine and 1,10-phenanthroline and azides were prepared by additional reaction with Me₃SiN₃. The Ti, Zr, and Hf hexaazido complexes were formed by reaction of 2 moles of PPh₄N₃ and Me₃SiN₃ in acetonitrile. The second half of this thesis describes the novel cyanides [PPh₄][Ga(CN)₄], [PPh₄]₂[In(CN)₅] and [PPh₄]₂[Tl(CN)₅] obtained from the corresponding metal fluorides [MF₃] (M = Ga, In, Tl) by fluoride-cyanide exchange reactions with Me₃SiCN in the presence of stoichiometric amounts of [PPh₄][CN] in acetonitrile solution. M'(CN)₃ (M' = As, Sb) were formed by the reaction of M'F₃ and Me₃SiCN. All the novel compounds are characterized by their single crystal X-ray structure, spectroscopy, and computational studies and in the case of the azides their energetics.
Linked assets
University of Southern California Dissertations and Theses
Conceptually similar
PDF
Sulfuryl fluoride in organic synthesis and materials chemistry
PDF
Hydrogen fluoride addition reactions and a fluorinated cathode catalyst support material for fuel cells
PDF
Total synthesis of specialized pro-resolving lipid mediators and their analogs
PDF
On the pursuit of pushing the limits: from the isolation of highly reactive intermediates to the synthesis of energetic materials
PDF
Selective fluoroalkylation methods and synthesis of water-soluble organic molecules for organic redox flow batteries
PDF
Towards selective fluoroalkylating reactions: synthesis and mechanistic studies
PDF
New bifunctional catalysts for ammonia-borane dehydrogenation, nitrile reduction, formic acid dehydrogenation, lactic acid synthesis, and carbon dioxide reduction
PDF
Improving the sustainability of conjugated polymer synthesis via direct arylation polymerization
PDF
Investigation of mechanisms of complex catalytic reactions from obtaining and analyzing experimental data to mechanistic modeling
PDF
Towards groundbreaking green energetic materials
PDF
Investigations in cooperative catalysis: synthesis, reactivity and metal-ligand bonding
PDF
Direct C−H arylation for the synthesis of conjugated polymers
PDF
Design, synthesis, and biological evaluation of novel therapeutics for cancer
PDF
Understanding the mechanism of oxygen reduction and oxygen evolution on transition metal oxide electrocatalysts and applications in iron-air rechargeable battery
PDF
Exploring new frontiers in catalysis: correlating crystal chemistry and activity in layered silicates
PDF
Molecular dynamics study of energetic materials
PDF
Expanding the library of surface ligands for semiconductor nanocrystal synthesis and photovoltaic applications
PDF
Ruthenium catalysis for ammonia borane dehydrogenation and dehydrative coupling
PDF
Singlet halofluorocarbenes: Modes of generation and their reactions with alkenes and various heteroatom nucleophiles
PDF
Synthesis and photophysical characterization of phosphorescent cyclometalated iridium (III) complexes and their use in OLEDs
Asset Metadata
Creator
Deokar, Piyush
(author)
Core Title
Synthesis, characterization and reaction chemistry of polyazides and cyanometallates
School
College of Letters, Arts and Sciences
Degree
Doctor of Philosophy
Degree Program
Chemistry
Publication Date
04/19/2017
Defense Date
10/10/2016
Publisher
University of Southern California
(original),
University of Southern California. Libraries
(digital)
Tag
azides,chemistry,computational calculations,cyanides,cyanometallates,energetic materials,inorganic chemistry,metal fluorides,OAI-PMH Harvest,polyazides,reactions,spectroscopy,synthesis
Format
application/pdf
(imt)
Language
English
Contributor
Electronically uploaded by the author
(provenance)
Advisor
Prakash, G. K. Surya (
committee chair
), Gupta, Malancha (
committee member
), Haiges, Ralf (
committee member
)
Creator Email
deokar.piyush@gmail.com
Permanent Link (DOI)
https://doi.org/10.25549/usctheses-c40-316386
Unique identifier
UC11213657
Identifier
etd-DeokarPiyu-4886.pdf (filename),usctheses-c40-316386 (legacy record id)
Legacy Identifier
etd-DeokarPiyu-4886.pdf
Dmrecord
316386
Document Type
Dissertation
Format
application/pdf (imt)
Rights
Deokar, Piyush
Type
texts
Source
University of Southern California
(contributing entity),
University of Southern California Dissertations and Theses
(collection)
Access Conditions
The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law. Electronic access is being provided by the USC Libraries in agreement with the a...
Repository Name
University of Southern California Digital Library
Repository Location
USC Digital Library, University of Southern California, University Park Campus MC 2810, 3434 South Grand Avenue, 2nd Floor, Los Angeles, California 90089-2810, USA
Tags
azides
chemistry
computational calculations
cyanides
cyanometallates
energetic materials
inorganic chemistry
metal fluorides
polyazides
reactions
spectroscopy
synthesis