Close
About
FAQ
Home
Collections
Login
USC Login
Register
0
Selected
Invert selection
Deselect all
Deselect all
Click here to refresh results
Click here to refresh results
USC
/
Digital Library
/
University of Southern California Dissertations and Theses
/
Structural significance of magnetic field and gravity observations near the Los Angeles aqueduct, northwest Antelope Valley, California
(USC Thesis Other)
Structural significance of magnetic field and gravity observations near the Los Angeles aqueduct, northwest Antelope Valley, California
PDF
Download
Share
Open document
Flip pages
Contact Us
Contact Us
Copy asset link
Request this asset
Transcript (if available)
Content
STRUCTURAL SIGNIFICANCE OF MAGNETIC FIELD AND GRAVITY
OBSERVATIONS NEAR THE LOS ANGELES AQUEDUCT,
NORTHWEST ANTELOPE VALLEY, CALIFORNIA
by
J e f f r e y F r a n c is Eppink
A T hesis P r e s e n te d to t h e
FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA
In P a r t i a l F u l f i l l m e n t of th e
R equirem ents f o r th e Degree
MASTER OF SCIENCE
(G e o lo g ic a l S c ie n c e s)
O c to b e r, 1981
UMI Number: EP58684
All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.
Dissertation Publishing
UMI EP58684
Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code
uest
ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106 - 1346
UNIVERSITY O F S O U T H E R N CALIFO R N IA
THE G R ADUATE SC H O O L
U N IV ER SITY PARK
LO S A N G ELE S. C A L IF O R N IA 9 0 0 0 7
This thesis, written by
Jeffrey _ F r anci s _ _ E pp i_n k...........
under the direction of his...Thesis Committee,
and approved by all its members, has been pre
sented to and accepted by the Dean of The
Graduate School, in partial fulfillment of the
requirements for the degree of
Master of Science
Dean
THESIS /COMMITT]
f/ ] Chairman f /
ABSTRACT
To i n v e s t i g a t e th e s t r u c t u r a l n a tu r e of a llu v iu m - c o v e r e d
b asem ent, an i n t e g r a t e d m ag n e tic f i e l d and g r a v i t y survey was
u n d e rta k e n in th e n o r th w e s te rn r e g i o n of th e A ntelope V a lle y j u s t
s o u th of th e Tehachapi M ountains. A t o t a l m agnetic f i e l d map, as w e ll
as a sim ple Bouguer g r a v i t y map, was com piled. Trend s u r f a c e s and
r e s i d u a l maps were a l s o computed. G e o p h y sica l a n o m a lie s were modeled
w ith sim u lta n e o u s m agnetic f i e l d and g r a v i t y c a l c u l a t i o n s .
D ata a n a l y s i s i n d i c a t e s t h a t th e g r a n i t i c basem ent i s in tr u d e d by
Miocene v o l c a n i c ro ck s which a r e l o g i c a l l y an e x te n s io n of th e
Rosamond H i l l s . The d a ta a l s o show th e p re s e n c e of two phases of
f a u l t i n g . The f i r s t e p iso d e i s r e p r e s e n t e d by th e Sand H i l l s t h r u s t
f a u l t , which p ro b ab ly extends southw estw ard alo n g th e w e s te rn edge of
th e w e s te rn Antelope V alley b a s i n and i s r e s p o n s i b l e f o r u p l i f t of th e
Tehachapi M ountains s o u th e a s t of th e G arlock f a u l t . I t has a v e r t i c a l
s e p a r a t i o n of over 400 m and was a c t i v e i n P l e i s t o c e n e tim e as
e v id e n c e d by u p l i f t e d piedm ont f a n s . The Sand H i l l s t h r u s t f a u l t i s a
c o u n t e r p a r t to the a c t i v e White Wolf f a u l t . T ogether th e s e f a u l t s
bound th e h o r s t t h a t forms th e Tehachapi M ountains. At p r e s e n t th e
Tehachapi and Mojave b lo c k s ap p ear to be coupled a c r o s s th e Sand H i l l s
f a u l t .
The second phase of d e fo r m a tio n i s r e p r e s e n t e d by a s e t of
n o r t h w e s t - s t r i k i n g f a u l t s . These a r e the Cottonwood-Willow S p rin g s ,
T y le r h o r s e , and th e p r e v io u s ly u n re c o g n iz e d Bean Canyon f a u l t . The
Cottonwood and Willow Springs f a u l t s a r e c o n tin o u s in th e basem ent
r o c k . These f a u l t s a r e p re d o m in a n tly r i g h t - l a t e r a l w ith minor
southw estw ard d i p - s l i p . They t r a n s e c t th e Sand H i l l s f a u l t w ith a
cu m u la tiv e d isp la c e m e n t of 2.7 km and a c o u n te r - c lo c k w is e r o t a t i o n of
i t s t r a c e . These f a u l t s a r e a p ro d u c t of th e s t r e s s f i e l d a s s o c i a t e d
w ith t h e San Andreas f a u l t .
ACKNOWLEDGMENTS
i
I
I would l i k e to thank Dr s . P e t e r M alin, Tom Henyey, and Greg [
I
D avis f o r c r i t i c a l l y rev ie w in g th e m a n u s c rip t. I am e s p e c i a l l y ,
in d e b te d to Dr. Malin fo r h i s h e lp and guidance d u rin g th e c o u rse of ,
th e p r o j e c t . He was alw ays w i l l i n g to l i s t e n to my id e a s and to
p ro v id e me w ith encouragement and s u p p o r t . I v a lu e him as a f r i e n d ;
and a m entor and someday I ' l l pay him back f o r th e lunch t h a t he :
bought me-
I am a l s o deeply g r a t e f u l to my w if e , c h i l d r e n , and in -la w s who j
have put up w ith my g r a d - s c h o o l a c t i v i t i e s of th e p a s t 2 V2 y e a r s . j
W ithout t h e i r p a t i e n c e and u n d e r s ta n d in g I d o n 't know how I would have j
1
1
made i t . 1
I
P a r t i a l ( a c t u a l l y i t was s u b s t a n t i a l ) f i n a n c i a l s u p p o rt f o r t h i s j
i
p r o j e c t came from th e Geophysics group as w e ll as th e G raduate Student !
R esearch Fund f o r which I sa y , "Muchas g r a c i a s hombres, and h a s ta la j
v i s t a ! "
TABLE OF CONTENTS
ABSTRACT....................................................................................................................................... i i
ACKNOWL EDGMENTS..................................................................................................................... i v
1. INTRODUCTION..................................................................................................................... 1
2. GEOLOGIC SETTING........................................................................................................... 4
2 .1 . GEOGRAPHY............................................................................................................. 4
2 .2 . STRUCTURE............................................................................................................. 5
2 .3 . STRATIGRAPHY..................................................................................................... 7
3. FIELD METHODS AND DATA REDUCTION................................................................. 9
3 .0 .0 G eneral S t a te m e n t ........................................................................ 9
3 .1 . MAGNETIC METHOD............................................................................................. 9
3 .1 .1 F ie ld T e c h n iq u e s.......................................................................... 9
3 . 1 . 2 Data R e d u c tio n and E r r o r A n a l y s i s .................................. 10
3 .1 .3 Trend S u r f a c e s ............................................................................... 12
3 .1 .4 D ata R e s u l t s ..................................................................................... 13
3 .2 . GRAVITY METHOD................................................................................................ 16
3 .2 .1 F i e ld T e c h n iq u e s . ........................... 16
3 .2 .2 Data R eduction and E r ro r A n a l y s i s .................................. 18
3 .2 .3 A l l u v i a l D e n s i t y .......................................................................... 21
V
3 . 2 . 4 Trend S u r f a c e s ................................................................................. 22
3 .2 .5 Data R e s u l t s ...................................................................................... 22
4. DISCUSSION.......................................................................................................................... 25
5. SUMMARY AND CONCLUSIONS......................................................................................... 32
REFERENCES.................................................................................................................................. 36
ILLUSTRATIONS........................................................................................................................... 40
APPENDICES.................................................................................................................................. 78
vi
| 1. INTRODUCTION
I
This s tu d y u s e s g e o p h y s ic a l methods to i n v e s t i g a t e f a u l t
! s t r u c t u r e s i n th e w e s te rn Mojave b lo c k of s o u th e r n C a l i f o r n i a . The
j
| r e g io n of i n t e r e s t i s s i t u a t e d n e a r th e boundary of two p h y s io g r a p h ic
■ p r o v in c e s : th e S i e r r a N evada-T ehachapi M ountains p ro v in c e and th e
i
| Mojave D e se rt p ro v in c e (Ja h n s, 1954). The Tehachapi M ountains form a
! complex h o r s t betw een th e G re a t V a lle y to th e n o r th and th e Mojave
i
| b lo c k to th e s o u th . The range i s a p ro d u c t of l a t e Cenozoic
i d e fo rm a tio n (Buwalda, 1954) and has r i s e n 750 to 1000 m w ith r e s p e c t
| to th e Mojave b lo c k and over 1600 m w ith r e s p e c t to th e G reat V a lle y .
S t r u c t u r a l l y , th e w e s te rn Mojave D e s e rt i s bounded by th e San
Andreas and G arlock f a u l t s , and i s i n t e r n a l l y c h a r a c t e r i z e d by w est
I and n o r t h w e s t - s t r i k i n g d e x t r a l f a u l t s . These f a u l t s a r e s u b - p a r a l l e l
i
! to the San Andreas and have been used by v a r io u s a u th o r s (Cummings,
! 1976, 1980; G a rfunkel, 1974; Luyendyk and o t h e r s , 1980) to e x p la in
j
! Neogene c r u s t a l r o t a t i o n s and d e fo rm a tio n w ith in th e Mojave b lo c k .
| The l a r g e s t of th e s e f a u l t s w i t h i n t h e A ntelope V a lle y i s th e Rosamond
1 f a u l t zone (of which the Willow S prings f a u l t i s a segment) t h a t
bounds th e Miocene v o l c a n i c ro ck s of th e Rosamond H i l l s . The purpose
! of t h i s stu d y i s to i n v e s t i g a t e th e s t r u c t u r a l n a tu r e of a l l u v i a l -
c o v e re d basem ent in a p o r t i o n of th e n o rth w e s t A ntelope V a lle y (see
| F ig . 1), where, i n th e Q u a te rn a ry , t e c t o n i c i n f l u e n c e s t h a t have '
i
i shaped th e Tehachapi M ountains and t h e w e s te r n Mojave can be se e n . j
P a r t i c u l a r a t t e n t i o n i s fo cu se d on some s p e c i f i c , u n re s o lv e d !
s t r u c t u r a l problem s. These in c lu d e th e c o n t i n u i t y of th e Cottonwood
and Willow Springs f a u l t s , the o r i e n t a t i o n s , d is p la c e m e n ts and e x te n t
of th e T y le r h o r s e and Sand H i l l s f a u l t s , and basem ent f a u l t i n g w ith o u t
s u r f a c e e x p r e s s io n ( i . e . th e s o u th e r n boundary of th e Tehachapi
b l o c k ) . F u r th e r , th e p o s s i b l e e x te n s i o n i n t o th e a llu v iu m -c o v e re d
s tu d y a r e a of th e Miocene Glen H i l l Form ation of th e v o l c a n i c Rosamond
H i l l s to th e e a s t i s e x p lo re d . These problem s a r e r e s o lv e d w ith
c o n s i d e r a t i o n of th e s u rro u n d in g g e o lo g y , namely s u r f a c e t r a c e s of
f a u l t s in th e p e r im e te r of th e study a re a (noted on F ig . 1) , and
exposed b e d ro c k of th e Tehachapi M ountains and Rosamond H i l l s .
The s t r u c t u r e of th e a r e a was s t u d i e d u s in g t o t a l m ag n e tic f i e l d
and g r a v i t y m easurem ents. By m odeling th e p o t e n t i a l f i e l d s , v a r i o u s
s a l i e n t c h a r a c t e r i s t i c s of th e basem ent s t r u c t u r e a r e examined — th e
l i n e a r e x t e n t , d is p la c e m e n t, dip a n g l e , i n t e r a c t i o n , and r e l a t i v e ages
o f th e f a u l t s . The models a l s o y i e l d i n f o r m a tio n on th e rock ty p es '
t h a t com prise th e basem ent.
That a t l e a s t some of t h e s e f a u l t s may be a c t i v e i s su g g e ste d in
a r e c e n t stu d y by Leary and o t h e r s (1981). Using th e Los Angeles !
aq u e d u ct (which c ro s s e s th e f a u l t s i n th e w e s te rn Mojave) as a long-
b a s e l i n e t i l t m e t e r , th ey found e v id e n c e f o r t i l t an o m alies a t s t a t i o n s
n e a r t h e s e f a u l t s . Aqueduct flow d a t a from 1979 r e v e a le d t i l t - r e l a t e d
w a t e r - l e v e l f l u c t u a t i o n s of up to 15 cm on s e c t i o n s of th e aq u ed u ct
found w i t h i n th e study a r e a . In one p a r t i c u l a r i n s t a n c e , sudden
downward s h i f t i n g of th e s e w a te r l e v e l s was follow ed th e n e x t day by a
M 5.2 e a rth q u a k e l o c a t e d 175 km to th e s o u th e a s t in th e Mojave
D e s e r t . In 1975, under s i m i l a r c ir c u m s ta n c e s , a w a te r l e v e l anomaly
j from th e same p o r t i o n of th e a q u e d u ct was re c o rd e d p re c e d in g an j
ie a r th q u a k e (M 4.7) from th e same a r e a as th e e a r l i e r M 5.2 e v e n t. |
j In l i g h t of th e c lo s e te m p o ra l a s s o c i a t i o n of th e w a te r l e v e l |
jan o m a lie s w ith th e e a r th q u a k e s , Leary and o t h e r s (1981) a t t r i b u t e |
j t h e s e flow f l u c t u a t i o n s to l o c a l t i l t sy m p a th e tic to th e r e g i o n a l J
i |
j s t r e s s e s c a u sin g th e e a r th q u a k e s . They n o te t h a t , due to e x te n s i v e !
I '
j c o v e r by a llu v iu m , no s u r f a c e e x p r e s s io n s of f a u l t i n g on which such |
I i
; I
!m otion could ta k e p la c e occur a c r o s s th e aq u ed u ct in t h i s a r e a , j
I I n s t e a d , they imply t h a t th e anomalous c r u s t a l t i l t i n g may be due to a j
| j
|b u r i e d j u n c t i o n of th e Cottonwood and Willow S prings f a u l t s . I t i s j
' hoped t h a t th e r e s u l t s of t h i s work w i l l p r o v id e a b e t t e r s t r u c t u r a l
j
i
I framework i n which to i n t e r p r e t t h e i r d a t a .
! 2. GEOLOGIC SETTING
|
I
i
i
| 2.1 GEOGRAPHY
i
I
j The study a r e a i s s i t u a t e d a lo n g th e s o u t h e a s t e r n m argin of th e
i
| Tehachapi M ountains and e x te n d s southw ard i n t o th e A ntelope V a lle y
j (shown i n F ig . 1) , c om prising 125 s q u a re km. I t i s l o c a t e d w ith in
IKern County and bounded by 34° 51' to 34° 58' N l a t i t u d e and 118° 20'
i
S t o 118° 30' W lo n g it u d e . The n e a r e s t town i s Rosamond, 20 km to the
l e a s t . The f i e l d a re a i s s p a r s e l y p o p u la te d , and paved a c c e s s i s
I !
■afforded by Rosamond Blvd. The Los Angeles a q u e d u c t, which flows
i
[n o r th e a s t to s o u th w e st, c u ts d i a g o n a l l y a c ro s s th e f i e l d a r e a .
I i
I E l e v a t io n s range from 1200 m a t th e Tehachapi M ountains in th e
n o r t h w e s t e r n p o r t i o n of th e f i e l d a r e a to 750 m n e a r th e A ntelope
I V a lle y f l o o r to t h e s o u th and s o u th w e s t. T o p o g r a p h ic a lly , th e f i e l d
jarea i s g e n tly i n c l i n e d and w ith l i t t l e r e l i e f ex c ep t f o r the Sand j
I Hi 11s and o t h e r u p l i f t e d piedm onted s u r f a c e s which a b u t th e w e ste rn ;
e x te n t of th e f i e l d a r e a and su rro u n d Cottonwood Wash. D rainage i s
ig e n e r a l l y to th e so u th or s o u t h e a s t . The m ajor ephem eral stream s a re
Cottonwood Creek and th o s e from T y le rh o r s e and Gamble House canyons.
! V e g e ta tio n i s dom inated by c r e o s o t e bush which grows one to t h r e e
[meters in h e i g h t . This v e g e t a t i o n , which covers ro u g h ly 70 p e rc e n t of
j
t h e study a r e a , l i m i t e d placem ent of g r a v i t y s t a t i o n s to roadways
[which were c l e a r to l i n e - o f - s i g h t s u r v e y in g .
I
W ith in th e f i e l d a re a numerous roads a r e p r e s e n t , running
g e n e r a l l y a lo n g s e c t i o n and V4 - s e c t i o n l i n e s . These roads a r e a
p ro d u c t of th e boom and b u s t lan d s p e c u l a t i o n and s u b d i v i s i o n t h a t
o c c u rr e d i n th e I 9 6 0 's . Most of th e roadways a r e now abandoned and
a r e l a r g e l y overgrown w ith v e g e t a t i o n . C o l l e c t io n of th e f i e l d d a ta
was c a r r i e d o u t over a p e r i o d of se v en months d u rin g th e f a l l , w i n t e r ,
and s p r in g of 1980-81.
2 .2 STRUCTURE
The a r e a c o n s id e re d h e re has been in c lu d e d i n numerous s t u d i e s
d e a l i n g w ith th e w e s te rn Mojave D e s e rt. The e a r l i e s t works in c lu d e
th o se by Johnson (1911), Hershey (1920), and Thompson (1929), which
d e s c r i b e th e T e r t i a r y ro ck s of th e Rosamond H i l l s , and th e broad
s t r u c t u r a l f e a t u r e s and ground w a te r c o n d it io n s of th e A ntelope
V a l l e y .
Simpson (1934) was th e f i r s t to re c o g n iz e th e Willow S prings
f a u l t d u rin g re c o n n a is s a n c e mapping of th e A ntelope V a lle y . He mapped
t h e f a u l t e a stw a rd to Rosamond, naming i t th e Rosamond f a u l t - In h i s
g e o lo g ic map (1934, p404, p i . 5 ), Simpson a l s o i n c lu d e d th e Sand H i l l s
f a u l t . I n t e r e s t i n g l y , he m is ta k e n ly i d e n t i f i e d i t as p a r t of the
G arlock f a u l t . Wiese and Fine (1950), in a p aper d e s c r i b i n g th e
s t r u c t u r a l s t y l e of th e w e s te r n Mojave, c h a r a c t e r i z e d th e A ntelope
V a lle y as c o n s i s t i n g of f a u lt- b o u n d e d n o r t h w e s t - t i l t e d b l o c k s . They
w ere t h e f i r s t to r e c o g n iz e th e Cottonwood and T y le rh o r s e f a u l t s .
Of th e s e fo u r f a u l t s w ith in th e stu d y a r e a , th e Willow S p r in g s ,
Cottonwood, T y le rh o rs e , and Sand H i l l s ( r e f e r to F ig . 1) , th e f i r s t
t h r e e a r e g e n e r a l l y p a r a l l e l to one a n o th e r , s t r i k i n g n o r th w e s t. The
Sand H i l l s f a u l t s t r i k e s n o r t h e a s t . T h e ir e x i s t e n c e has been
d e te rm in e d l a r g e l y on th e b a s i s of a l l u v i a l s u r f a c e s c a r p s .
The Willow Springs f a u l t forms a prom inent a l l u v i u m - c u t t i n g
s c a rp of up to 20 m in h e i g h t . The sc a rp i s over 5 km in l e n g th and
'f a c e s southw ard. The high s id e to t h e n o r t h i s d i s s e c t e d by numerous
sm all g u l l i e s . U n t i l about 12 y e a rs ago, when groundw ater pumping was
a c c e l e r a t e d on th e n o r th s id e of t h e f a u l t , numerous s p rin g s used to
flow a lo n g th e s c a r p , th e l a r g e s t a t Willow S p rin g s . Although th e
Rosamond f a u l t i s r i g h t - l a t e r a l (Burke and P o n t i, 1981), sig n s of
h o r i z o n t a l d isp la c e m e n t a r e not e v id e n t on th e s u r f a c e sc arp of th e
Willow Springs f a u l t . On th e b a s i s of carbon d a ti n g , Burke and P o n ti
t e n t a t i v e l y i n d i c a t e t h a t th e Willow S prings f a u l t sc a rp i s about 6000
y e a r s o ld .
I n t e r p r e t a t i o n of a e r i a l p hotos d u rin g t h i s study s u g g e s ts t h a t
th e Cottonwood f a u l t i s r i g h t - l a t e r a l . In a t l e a s t one case i t
o f f s e t s a stre a m by 400 m. Scarps i n a llu v iu m range up to 30 m in
h e i g h t . The s c a rp s do n o t alw ays f a c e i n th e same d i r e c t i o n ,
i n d i c a t i n g t h a t th e f a u l t i s p re d o m in a te ly a s t r i k e - s l i p f e a t u r e .
This f a u l t t r a n s e c t s a sm all ro o f pen d an t n e a r th e head of Cottonwood
C reek. Here, m arble on th e so u th w e st s id e of th e f a u l t i s o f f s e t
n e a r l y 300 m r e l a t i v e to th e n o rth w e s t s id e (D ib b le e , 1963). The
Cottonwood f a u l t te r m in a te s a g a i n s t th e n o r t h e a s t - s t r i k i n g L i t t l e Oak
Canyon f a u l t a bout 2 km from th e G arlo ck f a u l t .
The T y le rh o r s e f a u l t , which i s l o c a t e d n o r th of th e Cottonwood
f a u l t , c u ts o l d e r a llu v iu m a t th e mouth of Gamble S prings Canyon. The
f a u l t a l s o d i a g o n a lly o f f s e t s ro ck s of th e T y le rh o r s e roof pendant
w i t h i n th e m ountain range i n a r i g h t - l a t e r a l sen se- I t i s not c e r t a i n
w hether i t can be tr a c e d n o rth w estw a rd to th e G arlock f a u l t (D ib b le e ,
1963)- The T y le rh o rs e roof p e n d a n t, r e c e n t l y mapped a t l a r g e - s c a l e
f o r q u a rry in g p u rp o s e s , shows an abundance of sm all f a u l t s w ith
movements s i m i l a r to th e T y le r h o r s e f a u l t . These f a u l t s d i s p l a y a
cu m u la tiv e d isp la c e m e n t of 600 m (Bob W ells, C a l i f o r n i a P o r tla n d
Cement C o., 1981, p e rs - comm-)-
Sand H i l l s f a u l t , found i n th e southw est p o r t i o n of th e study
a r e a , bounds th e s o u th e a s t s id e of th e Sand H i l l s . S u rface e x p r e s s io n
o f th e f a u l t i s t r a c e a b l e f o r a b o u t 3 km. The Sand H i l l s a re an
asym m etric a n t i c l i n a l u p l i f t . The n o rth w e s t s id e of th e a n t i c l i n e
d i p s a p p ro x im a te ly 5°, w hereas t h e s o u th e a s t s id e d ip s much more
s t e e p l y and i s t r u n c a te d by th e Sand H i l l s f a u l t . The f a u l t e d f l a n k
o f th e Sand H i l l s r i s e s ab o u t 70 m e te rs and i s h ig h ly d i s s e c t e d ,
form ing b a d la n d to p o g ra p h y .
A survey of g ro u n d -w ate r r e s o u r c e s i n th e w e s te rn Mojave
i n d i c a t e s t h a t v e r t i c a l d isp la c e m e n t of th e Sand H i l l s f a u l t a c t s as a
p a r t i a l b a r r i e r to th e movement of groundw ater (D urbin, 1978). Water
l e v e l d i f f e r e n t i a l s of as much as 90 m occur a c r o s s th e f a u l t . Wiese
and F ine (1950) b e li e v e d th e Sand H i l l s f a u l t to be a h i g h - a n g le
r e v e r s e f a u l t d ip p in g no rth w estw ard tow ard th e Tehachapi M ountains.
2.3 STRATIGRAPHY
The stu d y a r e a i s l a r g e l y covered by Q u atern ary s u r f i c i a l
d e p o s i t s . The only exposed c o n s o li d a te d m a t e r i a l s p r e s e n t a r e
g r a n i t i c ro ck s and o l d e r m etam orphic ro o f p e n d a n ts found on th e
n o r t h e r n and n o r th w e s te rn edges of th e study a r e a in th e Tehachapi
M ountains p r o p e r . The g r a n i t i c ro ck i s a b i o t i t e - r i c h q u a r tz
m onzonite which p ro b ab ly makes up much of th e basem ent rock i n th e
stu d y a r e a . G r a n it i c basem ent ro ck s from a d ja c e n t p o r ti o n s of th e
i Tehachapi M ountains have been d e te rm in e d to be J u r a s s i c i n age
: ( S h a r r y , 1981).
V o lc a n ic ro c k s , s i m i l a r to t h o s e of th e Rosamond H i l l s may be
p r e s e n t i n th e s u b s u rf a c e w i t h in th e e a s t e r n p o r t i o n of th e stu d y
a r e a . The Rosamond H i l l s a r e t h e c l o s e s t exposure of v o lc a n ic
m a t e r i a l . These h i l l s c o n ta in Miocene v o lc a n ic rock of th e Glen H i l l
fo rm a tio n . The rock i s r h y o l i t i c i n c o m p o sitio n and i s found as pod
l i k e i n t r u s i v e s w i t h in q u a rtz m onzonite ( J . C row ell, 1980, p e r s .
comm.). Willow Springs M ountain, l o c a t e d about 10 km e a s t of th e
stu d y a r e a forms th e w esternm ost ex p o su re of th e s e v o l c a n i c s .
The a llu v iu m has been d iv id e d i n t o o l d e r a llu v iu m of P l e i s t o c e n e
age and Recent a llu v iu m (D ib b le e , 1963). The o l d e r a llu v iu m ,
o c c u r r in g i n th e w e s te r n and n o r th w e s t e r n p o r t i o n s of th e study a r e a ,
i s l o c a l l y t i l t e d , deformed and d i s s e c t e d , form ing piedm ont f a n s .
U n d is s e c te d younger a llu v iu m co v e rs th e e a s t e r n p o r t i o n of th e f i e l d
a r e a in th e form of a b a ja d a . I t i s a c t i v e l y s u p p lie d w ith sedim ent
from Cottonwood Creek and ephem eral stream s debouching from T y le rh o rs e
and Gamble S prings canyons.
Two d r i l l h o l e s (Fig 2) l o c a t e d w i t h i n th e study a r e a , one in th e
southw est p o r t i o n and the o th e r in th e n o r t h e a s t , p e n e t r a t e d n e a r l y
1000 m of a l l u v i a l sed im en ts b e f o r e b ottom ing i n g r a n i t i c basement
(D ib b le e , 1963).
3- FIELD METHODS AND DATA REDUCTION
3•0•0 G e n e ral Statem ent
In t h i s study m agnetic f i e l d and g r a v i t y methods were used in
co m b in atio n to d e l i n e a t e basem ent s t r u c t u r e and c o m p o s itio n a l
changes. G ra v ity su rv e y s a r e l a r g e l y s e n s i t i v e to basement d e p th .
Since changes i n basem ent ro ck d e n s i t i e s a r e u s u a l l y no t v e ry l a r g e
-and l a t e r a l changes i n sedim ent d e n s i t y a r e g e n e r a l l y n e g l i g i b l e ,
v a r i a t i o n s of th e g r a v i t y f i e l d l a r g e l y r e f l e c t in changes i n th e
t h i c k n e s s of th e s e d im e n ts . On th e o t h e r hand, th e m agnetic
s u s c e p t i b i l i t y of a se d im e n ta ry l a y e r i s u s u a l l y sm all r e l a t i v e to
m a g n e tic c o n t r a s t s a c r o s s c o m p o s itio n a l b o u n d a rie s w i t h i n th e
b a sem en t. As such, m agnetic f i e l d s u rv e y s a r e g e n e r a l l y more
r e s p o n s iv e to changes in basem ent rock type th a n g r a v i t y s u rv e y s . I f
basem ent r e l i e f t h a t i s due to f a u l t i n g i s p r e s e n t , th en anom alies
s e e n i n g r a v i t y d a ta sh o u ld a l s o have a m ag n e tic s i g n a t u r e .
3.1 MAGNETIC MEHTODS
3 .1 .1 F ie ld Techniques
The m ag n etic f i e l d survey p o r t i o n of th e stu d y c o n s i s t e d of 732
t o t a l f i e l d m easurem ents. The g r i d was run over e x i s t i n g roadways
( t r a v e r s e s shown in F ig s . 3 to 7) a t a s t a t i o n s p a c in g of about 150 m
(1/10 m i l e ) . Two p ro to n p r e c e s s i o n m agnetom eters, a p o r t a b l e f i e l d
m agnetom eter (G eom etries model G816) and a c o n ti n u o u s - r e c o r d i n g
magnetom eter (Geom etries model G801), were u s e d . Both have a
9
r e s o l u t i o n of 1 gamma. Hie t o t a l f i e l d i n t e n s i t y , as m easured by the
m agnetom eters, i s th e m agnitude of th e e a r t h ' s f i e l d v e c t o r
in d e p e n d e n t of i t s d i r e c t i o n ( B r e in e r , 1973). The c o n tin u o u s -
r e c o r d in g m agnetom eter was used as a base s t a t i o n w i t h in th e f i e l d
a r e a to r e c o r d d i u r n a l changes i n th e e a r t h ' s m ag n etic f i e l d .
The f i e l d s t a t i o n m easurem ents were made w ith th e p o r t a b l e
m agnetom eter. Hie s e n s o r was mounted atop a 2.5 m aluminum p o le to
red u ce ground n o i s e . Three r e a d in g s were re c o rd e d a t each s t a t i o n
s i t e . Care was ta k e n to e l i m i n a t e t h e i n f l u e n c e of m e t a l l i c o b j e c t s
. such as c a r s , b a rb - w ir e f e n c e s , and th e l i k e ; a l l m easurem ents were
t a k e n a t l e a s t 35 m from them. In th e c a se of p o w e rlin e s and the
a q u e d u c t, a s h o r t , p e r p e n d i c u l a r l i n e of c l o s e - s p a c e d t e s t
m easurem ents was ta k e n ; t h i s d e te rm in e d th e d i s t a n c e a t which m agnetic
i n f l u e n c e s due to th e s e s o u rc e s was i n s i g n i f i c a n t . The o ffe n d in g
, s o u r c e was s u b s e q u e n tly a v o id e d by t h i s d i s t a n c e f o r a l l r e a d i n g s .
3 .1 .2 Data R eduction and E rro r A n a ly s is
D ata r e d u c t io n c o n s i s t e d of c o r r e c t i o n s to th e m agnetic f i e l d
d a ta fo r d i u r n a l d r i f t and d i f f e r e n c e s a t t i e - p o i n t s . The d i u r n a l
d r i f t was removed u s in g th e b a s e s t a t i o n d a ta . A t i e - p o i n t c o r r e c t i o n
was made b e c au se over th e c o u rs e of th e su rv ey f a c t o r s such as
p r e c i p i t a t i o n induced ground a n d / o r a tm o s p h e ric c u r r e n t s which
a f f e c t e d r e a d in g s i n a c o n s ta n t manner f o r a giv en f i e l d day. These
changes were d e te rm in e d and a p p l i e d to e n t i r e t r a v e r s e s . T i e - i n s
which were l e s s th an +. $ gammas were n o t c o r r e c t e d . E rro r from t h i s
s o u rc e i s th u s assumed to be +_ 5 gammas.
10
R e l a t i v e to th e p o r t a b l e m agnetom eter, th e b a se s t a t i o n
m agnetom eter c o n s i s t e n t l y r e c o r d e d m easurem ents 17 - 20 gammas
low er. This in tr o d u c e s a p ro b a b le e r r o r of _+ 1.5 gammas i n t o the
d i u r n a l c o r r e c t i o n . I n v a r i a b l y , m agnetic m easurem ents r e c o rd e d a t a
g iv e n f i e l d s t a t i o n were w i t h i n _+ 3 gammas, and i n most c a se s w i t h in _+
2 gammas. E rro rs i n f i e l d m easurem ents a r e th u s assumed to be l e s s
th a n _+ 2 gammas. At about 1 p e r c e n t of th e s t a t i o n s , re a d in g s were
m arkedly d i f f e r e n t from background v a l u e s . These r e a d in g s were
a t t r i b u t e d to very l o c a l i z e d s o u rc e s such as unseen and b u r ie d a u to
p a r t s ( th e r e were many junked a u to b o d ie s i n th e a r e a ) and were
d e l e t e d .
Although e r r o r s a s s o c i a t e d w ith th e d e te r m i n a ti o n of th e f i n a l
m agnetic f i e l d v a lu e s a r e not alw ays in d ep e n d e n t of one a n o th e r , a
f i r s t - o r d e r a p p ro x im a tio n of th e combined e r r o r can be found by u sin g
an e q u a tio n of e r r o r due to th e sum of th e in d e p e n d e n t e r r o r s . As
g iv e n by B ev in g to n (1969):
EC=(EX2 + Ey 2 + . . . ) 1/2 (eq 1.)
2 2
Ec i s th e combined e r r o r and Ex , Ey a r e th e in d e p e n d e n t e r r o r s . For
t h e m a g n e tic f i e l d survey th e r e s u l t i n g combined e r r o r i s _+ 6 gammas.
The s p a t i a l d i s t r i b u t i o n of m easurem ents i s im p o rta n t in d e f i n i n g
t h e q u a l i t y of th e a r e a l p i c t u r e d e r i v e d from th e d a ta . I d e a l l y , d a ta
p o i n t s sho u ld be r e g u l a r l y d i s t r i b u t e d . But s a t i s f a c t o r y i n f o r m a tio n
c a n be d e r iv e d from l e s s u n ifo rm d i s t r i b u t i o n s p ro v id e d they a r e not
c l u s t e r e d . In th e c o u rse of p r e p a r in g tr e n d s u r f a c e maps from th e
d a t a ( d e s c r ib e d i n th e n e x t s e c t i o n ) a c o e f f i c i e n t of s p a t i a l
r e l i a b i l i t y was c a l c u l a t e d . This c o e f f i c i e n t d e te rm in e s w hether d a ta
p o i n t s a r e s u f f i c i e n t l y u n ifo rm to i n s u r e m ea n in g fu l r e s u l t s - On the
b a s i s of th e l a t t e r m easure, th e d a ta p o i n ts were d e te rm in e d to be
a d e q u a te ly spaced to p r o v id e r e l i a b l e r e s u l t s .
3 .1 .3 Trend S u rfa c e s
The t o t a l m agnetic i n t e n s i t y d e te rm in e d f o r each s t a t i o n was used
to c o n s t r u c t a t o t a l m agnetic f i e l d c o n to u r map (F ig . 2 ). The c o n to u r
s p a c in g i s 20 gammmas which i s a d e q u a te to a llo w m ag n e tic an o m alies to
be c l e a r l y d i s p l a y e d , b u t i s l a r g e r th a n th e e r r o r a s s o c i a t e d w ith th e
m easurem ents. The c o n to u r v a lu e s a r e r e l a t i v e , w ith a range of 180
gammas. The a b s o lu t e m agnetic f i e l d v a lu e s ranged from 49,879 to
50,051 gammas. These v a l u e s , a lo n g w ith th e l a t i t u d e and l o n g it u d e of
each s t a t i o n , a r e l i s t e d i n Appendix A.
To a i d in d a ta a n a l y s i s , t r e n d s u r f a c e f i t t i n g was used as a
f i l t e r i n g p r o c e s s to h i g h l i g h t l o c a l i z e d basem ent s t r u c t u r e i n
c o n t r a s t to r e g i o n a l e f f e c t s . The a n a l y s i s and c o n to u r in g were
p erform ed u s in g a computer program c a l l e d SYMAP (Dougenik and Sheehan,
1975). In t r e n d s u r f a c e a n a l y s i s , an e q u a tio n r e p r e s e n t i n g a 2-
d im e n s io n a l s u r f a c e i s f i t t e d to th e d a ta u s in g a l e a s t - s q u a r e s
c r i t e r i o n ; i . e . th e sum of th e s q u a re d d e v i a t i o n s betw een th e d a ta
v a lu e s and th e h e ig h t of th e computed s u r f a c e i s m inim ized.
D i f f e r e n c e betw een th e o b se rv e d d a t a v a lu e s and th e tr e n d s u r f a c e a re
th e r e s i d u a l s . The tr e n d s u r f a c e r e p r e s e n t s th e r e g i o n a l i n f l u e n c e s
and th e r e s i d u a l s i n d i c a t e l o c a l v a r i a t i o n s . D e t a i l e d d i s c u s s i o n of
t r e n d s u r f a c e a n a l y s i s can be found i n Agocs (1966) and C horley
(1974) .
F i r s t through s i x t h tr e n d s u r f a c e s and r e s i d u a l maps were
computed. The h i g h e r o r d e r tr e n d s u r f a c e s ten d e d to m inim ize th e
r e s i d u a l s w h ile e n hancing s p u rio u s f i e l d v a l u e s , and t h e r e f o r e were of
l im it e d u se i n t h i s s tu d y . The lower o r d e r r e s i d u a l maps were more
e f f e c t i v e i n em phasizing l o c a l g e o lo g i c s t r u c t u r e .
The f i r s t o r d e r m agnetic f i e l d tr e n d s u r f a c e i s shown i n F ig u re
3. I t s complementary r e s i d u a l map i s shown i n F ig u re 4. The t h i r d
o r d e r tr e n d s u r f a c e and r e s i d u a l maps a r e shown in F ig u re s 5 and 6.
As w ith th e t o t a l m ag n e tic f i e l d map (F ig . 2) , th e s e maps a r e
c o n to u re d a t an i n t e r v a l of 20 gammas.
3 . 1 . 4 D ata R e s u l ts
The f i r s t o r d e r r e g i o n a l t r e n d a p p a re n t i n th e m agnetic
o b s e r v a t io n s i s g iv en by a p la n e (F ig . 3 ), which r i s e s to th e
s o u th w e st a t a r a t e of 7 gammas/km. The o r i e n t a t i o n of t h i s tre n d
s u r f a c e i s l a r g e l y d i c t a t e d by h ig h m agnetic f i e l d v a lu e s i n th e lower
s o u t h e a s t and w e s t - c e n t r a l p o r t i o n s of th e f i e l d map a re a -
The t h i r d o rd e r tre n d s u r f a c e ( F ig . 5) more c l o s e l y f i t s th e
o b s e rv e d m ag n e tic f i e l d - The t r e n d s u r f a c e i s c h a r a c t e r i z e d by a
c e n t r a l dome which g rad e s i n t o e a s t - w e s t c o n to u rs to th e s o u t h e a s t .
The dome i s f la n k e d on th e n o r th w e s t by n o r t h e a s t - s o u t h w e s t tr e n d in g
c o n t o u r s .
The f i r s t and t h i r d o r d e r r e s i d u a l maps (F ig s . 4 and 6 ), as w e ll
as th e t o t a l m agnetic f i e l d map (F ig . 2), r e v e a l an u n d u la tin g
p o t e n t i a l f i e l d s u r f a c e t h a t can be e a s i l y d iv id e d i n t o 3 domains.
These a r e : (1) a s o u t h e a s t e r n s e c t i o n of e a s t - w e s t tr e n d i n g c o n to u r s ,
13
(2) a dom inating r id g e of hig h m agnetic i n t e n s i t i e s e x te n d in g
d i a g o n a l ly n o r t h e a s t - s o u t h w e s t a c r o s s th e map, and (3) a n o rth w e s t
p o r t i o n of th e map showing g e n e r a l l y p a r a l l e l c o n to u r s - These
s e c t i o n s a r e h e r e a f t e r r e f e r r e d to as th e m ag n e tic f i e l d ' s
s o u t h e a s t e r n , c e n t r a l r id g e and n o r th w e s t e r n domains.
In th e s o u t h e a s t e r n domain, th e h i g h e s t m agnetic i n t e n s i t i e s on
t h e map a r e found a t th e extrem e s o u th e r n p o r t i o n of th e s e c t i o n . To
th e n o r t h , e a s t - w e s t t r e n d i n g g r a d i e n t s of 100 gammas/km and 80
gammas/km a r e s e p a r a te d by a 1000 gamma p l a t e a u (F ig . 2) . The f i e l d
r e a c h e s a minimum of 900 gammas w i t h i n an e a s t - w e s t tr e n d i n g t r o u g h .
F u r t h e r to th e w e st, th e c e n t r a l r id g e domain c o n s i s t s of a
n o r t h e a s t - s o u t h w e s t t r e n d i n g m agnetic h ig h t h a t i s a bout 4 km w ide.
I t s w id th s u g g e s ts t h a t i t i s due to a r e l a t i v e l y deep f e a t u r e . The :
980 and 1000 gamma c o n to u r l i n e s ( F ig . 2 ), and th e 0 c o n to u r l i n e
(F ig- 4 and 6) a p p ro x im a te ly o u t l i n e th e r i d g e . The r id g e i s topped
by 1040 and 1020 gamma c lo s e d c o n to u rs (F ig . 2 ) . The n o rth w e s t s i d e
o f th e r id g e i s c h a r a c t e r i z e d by a t r a n s i t i o n to th e somewhat p a r a l l e l
c o n to u rs of th e n o r th w e s te rn dom ain. The s o u t h e a s t e r n s id e i s more
a b r u p t . Here c o n to u r l i n e s change o r i e n t a t i o n from n o r t h e a s t -
so u th w e st to an e a s t - w e s t tr e n d r e p r e s e n t a t a t i v e of th e s o u t h e a s t e r n
domain.
The n o r th w e s te rn domain i s c h a r a c t e r i z e d by r e l a t i v e l y c l o s e -
spaced p a r a l l e l c o n to u r s . These c o n to u rs d e c re a s e away from th e
c e n t r a l r i d g e . The 920 gamma c o n to u r forms an e lo n g a t e d , c lo s e d
tro u g h ( F ig . 2 ).
14
L ineam ents i n th e d a ta a p p e a r a s f l e x u r e s of c o n to u r l i n e s . They
a r e a l s o d e fin e d by edges or n o se s of c lo s e d or p a r t i a l l y - c l o s e d
c o n to u r s , and p a r a l l e l c o n to u r s . The maps a r e dom inated by f i v e
lin e a m e n t s . These a r e c a l l e d h e re th e Willow S p rin g s , Cottonwood,
T y le r h o r s e , Sand H i l l s , and Bean Canyon lin e a m e n ts .
The s te e p g r a d i e n ts of th e s o u t h e a s t e r n domain d e f in e th e Willow
S prings lin e a m e n ts (WS-B, WS-B). T raced w estw ard i n t o th e c e n t r a l
r id g e domain, th e s e lin e a m e n ts a r e l e s s w e l l - d e f i n e d , a lth o u g h th e
n o r t h e r n lin e a m e n t (WS-A) a p p e a rs to be c o n tin u o u s w ith th e Cottonwood
lin e a m e n t (CTW).
The Cottonwood lin e a m e n t i s w e l l - d e l i n e a t e d i n th e m agnetic f i e l d
d a ta where th e c e n t r a l r id g e (1020 c o n to u r , F ig. 2; 0 c o n to u r , F ig . 6)
i s p in ch e d . I t i s a l s o d e fin e d by c lo s e d c o n to u rs (F ig s . 4 and 6 ).
In th e n o r th w e s te r n domain, th e Cottonwood lin e a m e n t i s se en to o f f s e t
c o n to u rs 1 V2 tan i n a r i g h t - l a t e r a l s e n s e (F ig s . 2 and 4 ) .
In t h i s same domain, th e T y le rh o r s e lin e a m e n t (TYL) i s d e fin e d by
n o se d c o n to u r s (980, 960 on F ig . 2; -2 0 , 0, on F ig . 4 ) . There i s a ls o
f le x u r e i n th e 920 gamma c lo s e d c o n to u r a t t h i s lin e a m e n t (F ig . 2 ).
T raced southw estw ard, th e T y l e rh o r s e lin e a m e n t p in c h e s th e c o n to u rs of
and forms a s a d d le a to p th e c e n t r a l r id g e (F ig . 2 ). The c o n to u rs a r e
o f f s e t 1 to 1 V2 tan by t h i s lin e a m e n t. The T y le rh o r s e lin e a m e n t does
n o t a p p e ar to ex ten d i n t o th e s o u t h e a s t e r n domain.
The Sand H i l l s lin e a m e n t i s d e f i n e d by p a r a l l e l c o n to u rs on the
s o u th e a s t s i d e of the c e n t r a l dom ain. I t i s not c o n tin u o u s , but i s
d i s j o i n t e d a lo n g i t s n o r t h e a s t - s o u t h w e s t d i r e c t e d le n g th by th e o th e r
lin e a m e n ts . In th e so u th w e ste rn p o r t i o n of th e m agnetic f i e l d maps
( n e a r t h e d r i l l h o le) , th e Sand H i l l s lin e a m e n t (SH-A) i s d e fin e d by
c l o s e - s p a c e d c o n to u rs betw een h ig h and low c lo s e d c o n to u r s . To th e
n o r t h e a s t , th e lin e a m e n t (SH-B, SH-C, SH-D) i s b e s t d e l i n e a t e d in
F igure 2 where i t p a r a l l e l s th e 980, 1000 and 1020 c o n to u r s . Segment i
E (SH-E) i s b e t t e r d e f in e d i n th e g r a v i t y d a ta , a lth o u g h i t i s seen to j
form th e edge of a m agnetic low on th e t h i r d o r d e r t r e n d r e s i d u a l map
(F ig . 6 ).
The Bean Canyon lin e a m e n t (BC), i s found i n th e n o r t h e r n e x te n t
of th e m agnetic f i e l d ' s c e n t r a l domain. I t i s most c l e a r l y seen i n
F ig u r e 6 w here i t forms th e n ose of t h e 0 and +40 gamma c o n to u r s .
3.2 GRAVITY MEASUREMENTS
3 .2 .1 F i e ld Techniques
T his stu d y i n c o r p o r a t e s t h e r e s u l t s of 232 g r a v i t y
o b s e r v a t i o n s . The g r a v i t y netw ork (shown by dashed l i n e s i n F ig s . 8
t o 12) was e s t a b l i s h e d l a r g e l y a lo n g e x i s t i n g roadways p r e v io u s ly
o ccu p ied w ith m agnetic m easurem ents. G ra v ity o b s e r v a t io n s f o r a l l
s t a t i o n s were ta k e n u s in g a Worden M aster g r a v i t y m ete r (No. 758) .
This m eter has a c a l i b r a t i o n c o n s ta n t of .0877 m gals p e r d i a l d i v i s i o n
and was r e c a l i b r a t e d by th e m a n u f a c tu r e r p r i o r to th e b e g in n in g of th e
f i e l d work. The m eter h a s a r e s o l u t i o n of j+ 0.01 m gal.
F i e l d p ro c e d u re s employed t h e s i n g l e loop method i n which
r e a d in g s were ta k e n a t a b a se s t a t i o n a t th e b e g in n in g and end of each
lo o p . A s i n g l e b ase s t a t i o n was s e t up f o r t h i s p u rp o se a t the
i n t e r s e c t i o n of Rosamond Blvd. and 140th West. Use of th e b a se
s t a t i o n a llo w e d d e te r m i n a ti o n of in s tr u m e n t d r i f t and t i d a l e f f e c t s .
16
Base s t a t i o n re a d in g s were ta k e n a p p ro x im a te ly every 2 h o u rs . In
g e n e r a l , th e m eter proved to be q u i t e s t a b l e . A check of th e a c c u ra c y
o f th e l e v e l i n g b u b b le s (as recommended by th e m a n u fa c tu re r) was
com pleted each m orning to i n s u r e p r o p e r m eter p e rfo rm a n c e .
At l e a s t two re a d in g s were ta k e n a t each s t a t i o n . A d d i t io n a l j
r e a d in g s were re c o rd e d i f th e two m easurem ents d i f f e r e d by more th a n
0 .3 d i a l d i v i s i o n s . This was n e c e s s a r y a t only a sm a ll number of :
s t a t i o n s .
S ta k e s and spray p a i n t were used to mark s t a t i o n l o c a t i o n s .
S u b s e q u e n tly , th e v e r t i c a l l o c a t i o n of each s t a t i o n was surveyed u s in g
a H e w le tt-P a c k a rd 3810A T o ta l S t a t i o n d i s t a n c e m ete r. This m ete r has
a range of 1.6 km u t i l i z i n g i n t e r n a l c o r r e c t i o n s f o r e a r t h c u r v a t u r e
and r e f r a c t i o n due to te m p e ra tu re and h u m id ity .
Z e n ith a n g le a c c u ra c y of th e d i s t a n c e m eter i s ±_ 30 s e c o n d s ,
p r o d u c in g a maximum v e r t i c a l e r r o r of _+ 23 cm a t maximum ra n g e , j
However, th e m a j o r it y of s t a t i o n s were s h o t a t a d i s t a n c e of l e s s th a n
1 .6 km so t h a t th e p ro b a b le e r r o r i s c o n s id e r a b ly l e s s . In f a c t f o r ;
one s u rv e y in g loop of n e a r l y 30 km, v e r t i c a l c lo s u r e was a c c u r a te t o |
l e s s th a n 1 m. This re d u c e s to an maximum e r r o r of a p p ro x im a te ly _+ 2
c m / s t a t i o n . Although com pensating s y s te m a t ic e r r o r s were p ro b a b ly
in v o lv e d i n terms of l e v e l i n g th e m e te r, e t c . , t h i s sm a ll e r r o r does
i n d i c a t e t h a t th e e l e v a t i o n s d e te rm in e d a r e more a c c u r a t e th a n th e
maximum e r r o r i n d i c a t e d above would s u g g e s t. In a d d i t i o n , a m easure
of v e r t i c a l c o n t r o l was p ro v id e d by benchmarks l o c a t e d on th e Los
A ngeles a q u e d u ct which runs d i a g o n a l ly a c ro s s th e f i e l d a r e a . These
benchmarks were e s t a b l i s h e d by th e Los Angeles Departm ent of Water and
Power and were u sed as t i e - p o i n t s i n our s u rv e y .
The d i s t a n c e betw een s t a t i o n s was a l s o m easured u s in g th e
d i s t a n c e m ete r. S t a t i o n l o c a t i o n s were p l o t t e d on 7 V2 m inute USGS
to p o g ra p h ic q u a d ra n g le s u s in g roadway p o s i t i o n s on th e q u a d ra n g le maps
and th e su rv e y e d s t a t i o n s p a c in g . The l a t i t u d e and lo n g itu d e of each
p o in t was th e n d i g i t i z e d by com puter. H o r iz o n ta l a c c u ra c y of th e
d i s t a n c e m e te r i s a p p ro x im a te ly 5 mm/km which f a r exceeds th e needs of
t h i s s tu d y . The main so u rce of e r r o r i s th e map p l o t t i n g of th e
s t a t i o n p o s i t i o n s . The maximum e r r o r of s t a t i o n l o c a t i o n s i s
c o n s id e r e d to be +_ 15 m.
In th e g r a v i t y t r a v e r s e s , a s t a t i o n s p a c in g of a p p ro x im a te ly .4
km ( V4 m ile ) was u s e d . This sp a c in g was chosen b e c au se p r e l i m i n a r y
r e s u l t s of th e m ag n e tic o b s e r v a t i o n s i n d i c a t e d t h a t i t would be
s u f f i c i e n t to r e c o r d th e g e o l o g i c a l f e a t u r e s of i n t e r e s t w h ile
a ll o w i n g a maximum amount of a r e a to be c o v ered . A p p r o p r ia te t i e -
l i n e s were e s t a b l i s h e d to i n s u r e t h a t no p o i n t i n th e i n t e r i o r of th e
su rv e y a r e a was g r e a t e r th a n 1-2 km (3/4 m ile) from a g r a v i t y
s t a t i o n . A n a ly sis w ith th e SYMAP program i n d i c a t e d t h a t th e g r a v i t y
s t a t i o n l o c a t i o n s a r e a d e q u a te ly d i s t r i b u t e d so t h a t an o m alies can be
r e s o l v e d .
3 . 2 . 2 . D ata R e d u c tio n and E r ro r A n a ly s is
M eter r e a d in g s from each s t a t i o n were c o r r e c t e d f o r in s tru m e n t
and t i d a l d r i f t . D r i f t curves were assumed to be l i n e a r betw een b a se
s t a t i o n r e a d i n g s . As an a d d i t i o n a l check, m easurem ents were ta k e n on
c r o s s - l i n e s which d u p l ic a te d p r e v io u s s t a t i o n r e a d i n g s . Agreement
18
betw een d u p l i c a t e d s t a t i o n s was g e n e r a l l y b e t e r th a n _+ .05 tngals- No !
c o r r e c t i o n was made f o r th e s e d i f f e r e n c e s .
R e d u c tio n of th e r e l a t i v e g r a v i t y v a lu e s to sim p le Bouguer
an o m a lie s was a c h ie v e d fo llo w in g p ro c e d u re s o u t l i n e d in N e t t l e t o n ;
(1 9 7 6 ). Bouguer anomaly v a lu e s a r e a m easure of s p a t i a l v a r i a t i o n s i n j
th e g r a v i t y f i e l d and can be i n t e r p r e t e d in term s of s u b s u r f a c e
l a t e r a l d e n s i t y v a r i a t i o n s . Sim ple Bouguer g r a v i t y v a lu e s a r e
de te rm in e d by a p p ly in g c o r r e c t i o n s f o r l a t i t u d e , th e v e r t i c a l d e c re a s e
o f g r a v i t y w ith i n c r e a s e i n e l e v a t i o n ( f r e e - a i r c o r r e c t i o n ) and th e ;
mass above th e r e f e r e n c e p la n e ( Bouguer c o r r e c t i o n ) . :
The l a t i t u d e c o r r e c t i o n was made u s in g th e i n t e r n a t i o n a l g r a v i t y
f o r m u la :
g t = 9 78.049 (1+0.0052884 s i n 20 - 0.0000059 s i n 22 9) (eq 2)
where gt e q u a ls th e t h e o r e t i c a l g r a v i t y i n g a ls and 0 e q u a ls th e ,
l a t i t u d e of th e s t a t i o n . The g r a v i t y v a r i a t i o n a lo n g a n o r t h - s o u t h
l i n e f o r sm all ran g e s i n l a t i t u d e can be d e te rm in e d by d i f f e r e n t i a t i n g
e q u a ti o n (2) w ith r e s p e c t to l a t i t u d e :
d ( g t ) /d 0 = .817 s i n 2 0 m gals/km (eq 3)
At 35° l a t i t u d e , an e r r o r of 15 m i n s t a t i o n l o c a t i o n , as e s tim a te d in
i
t h i s s tu d y , t r a n s l a t e s i n t o a g r a v i t y c o r r e c t i o n of +_ .012 m g als.
The f r e e a i r and Bouguer c o r r e c t i o n s can be combined i n t o a
s i n g l e e l e v a t i o n f a c t o r , f :
f = 0.3086 - 0.04193 * r h o mgals/m (eq 4)
where rho i s th e d e n s it y i n g / c c . The d e n s it y used was 2.13 gm/cc I
( s e e s e c t i o n 3 . 2 . 3 ) . With r e l a t i v e s t a t i o n e l e v a t i o n s known to th e
n e a r e s t +_ 23 cm t h i s i n tr o d u c e s an e r r o r of HH.05 m g als. Follow ing
c o n v e n tio n , th e e l e v a t i o n f a c t o r f o r t h e g r a v i t y d a ta was computed to
a datum of sea l e v e l . Logs from th e w e lls w i t h in th e f i e l d a r e a
i n d i c a t e t h a t g r a n i t i c basem ent rock o c c u rs a t a d e p th of over 100 m
below sea l e v e l so t h a t use of t h i s datum i s r e a s o n a b l e .
T e r r a i n c o r r e c t i o n s p roved to be u n n e c e s s a ry . The b a ja d a , which
c o v ers 90 p e r c e n t of th e stu d y a r e a , has a g r a d u a l l i n e a r s lo p e . The
t r e n d s u r f a c e a n a l y s i s perform ed on t h e d a ta e n t i r e l y removed e f f e c t s
due to th e l o c a l g r a d e .
Where p o s s i b l e , and i n most c a s e s , s t a t i o n s were l o c a t e d on an
a r e a of ground t h a t was l e v e l or g e n tl y s lo p in g f o r a t l e a s t a 15 m
r a d i u s , through zone B of Hammer's (1939) t e r r a i n c o r r e c t i o n c h a r t .
A lso, c o r r e c t i o n s f o r zones C th ro u g h I of Hammer's c h a r t were
computed u s in g fo u r s t a t i o n s . The s t a t i o n s were chosen a t o p p o s ite
ends of th e b a ja d a , p r o v id in g examples of b e s t and w orst c a se s f o r
t e r r a i n c o r r e c t i o n . C o r r e c tio n s w ere computed f o r 2 s t a t i o n s along
Rosamond Blvd. in th e s o u th e rn p o r t i o n of th e f i e l d a r e a — i t was
a n t i c i p a t e d t h a t they would have th e s m a l l e s t c o r r e c t i o n s . Two
s t a t i o n s i n t h e n o r th w e s te r n p o r t i o n of th e f i e l d a r e a were
a n t i c i p a t e d to have th e l a r g e s t t e r r a i n c o r r e c t i o n s due to th e
p r o x im ity of th e Tehachapi M ountains. The maximum c o r r e c t i o n p o s s i b l e
f o r t h e s e s t a t i o n s i s .66 m gals, and th e minimum i s .01 m gals. These
s t a t i o n s a r e s e p a r a te d by 12 km, s u g g e s tin g a g r a d i e n t of .05
m gals/km .
Assuming th e independence of t h e d i f f e r e n t e r r o r s i n d e te rm in in g
th e Bouguer anomaly v a l u e s , th e combined e r r o r can be e v a lu a te d by th e
s q u a re r o o t of th e sum of th e e r r o r s s q u a re d ( e q . 1). Hence, the
| combined e r r o r i s _+ 66 mgals- T his e r r o r sh o u ld be c o n s id e re d
!
| c h a r a c t e r i s t i c p r i m a r i l y of s t a t i o n s c l o s e r to th e Tehachapi M ountains
j b e c a u s e i t i s l a r g e l y due to t e r r a i n e f f e c t s .
i
i
| 3 - 2 .3 A l l u v i a l D e n sity
I
■ The c h o ic e of d e n s i t y used i n th e d e te r m i n a ti o n of Bouguer
i
! an o m a lie s i s im p o r ta n t. A d e n s i t y which i s too g r e a t removes too much
i
]
j mass and r e s u l t s in Bouguer g r a v i t y v a lu e s which a r e too low; use of
!
| too l i t t l e a d e n s i t y v a lu e has th e o p p o s it e e f f e c t . Thus, some
j knowledge of th e l o c a l rock d e n s i t y i s n e c e s s a r y .
i
| For t h i s stu d y th e d e n s i t y of Cenozoic se d im e n ts above basem ent
! was d e te rm in e d by th e " N e t t l e t o n Method" (D obrin 1976). A s h o rt
i
j g r a v i t y p r o f i l e of 12 s t a t i o n s spaced a p p ro x im a te ly 50 m was run over
; a s e t of two h i l l s - The h i l l s a r e composed t o t a l l y of a llu v iu m . The
| sim ple Bouguer v a lu e s fo r each of th e s e 12 s t a t i o n s was d e riv e d i
r e l a t i v e to t h e lo w e st s t a t i o n u s in g d e n s i t i e s r a n g in g from 1 .5 to 2.8
I
: g / c c . These curves a r e shown i n F ig u re 7. The curve which shows a
j ;
i minimum c o r r e l a t i o n w ith th e to pography most a c c u r a t e l y r e f l e c t s th e :
i p ro p e r d e n s i t y . This d e n s i t y was d e te rm in e d to be 2.13 g /c c which was
I u se d f o r su b se q u e n t d a ta r e d u c t i o n .
T h is d e n s i t y i s a r e p r e s e n t a t i v e v a lu e f o r th e Cenozoic sed im en ts
; of th e stu d y a r e a . Mabey (1960), i n a r e g i o n a l g r a v i t y stu d y showed
I t h a t T e r t i a r y se d im e n ts of th e w e s t e r n Mojave a v e ra g e 2.21 g /c c - In a
!
g r a v i t y s tu d y of th e Colorado D e s e rt a d ja c e n t to th e Mojave, Sumner
i (1972) found a v a lu e of 2.15 g /c c f o r se d im e n ta ry f i l l l e s s th an 2 km
j t h i c k .
I 21
'3 - 2 . 4 Trend S u rfa c e s
| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The r e l a t i v e g r a v i t y v a lu e s d e te rm in e d i n t h i s survey were t i e d
to C a l i f o r n i a b a s e s t a t i o n No. 301 ( g r a v i t y = 979.4829 mgals Chapman,
;1966) n e a r Mojave, C a l i f o r n i a . The a b s o l u t e g r a v i t y alo n g w ith the
's im p le Bouguer g r a v i t y of each s t a t i o n i s l i s t e d in Appendix B. The
|s im p le Bouguer g r a v i t y v a lu e s were u sed to c o n s t r u c t th e g r a v i t y map
shown in F ig u re 8. Values a r e c o n to u re d a t an i n t e r v a l of 2 m g als.
The c o n to u r v a lu e s a r e r e l a t i v e to th e minimum Bouguer v a lu e of the
I f i e l d a r e a and have a range of 38.4 m g als.
j As w ith th e m agnetic f i e l d o b s e r v a t i o n s , tr e n d s u r f a c e a n a l y s i s
| was a p p li e d to th e g r a v i t y d a t a . Using SYMAP, tr e n d s u r f a c e s and
f
i r e s i d u a l s were computed f o r o r d e r s one through s i x . The f i r s t and
'second o r d e r r e s i d u a l maps proved to be th e most u s e f u l . The f i r s t
i
;o r d e r t r e n d s u r f a c e and r e s i d u a l maps a r e shown in F ig u re s 9 and 10.
I The second o r d e r tr e n d s u r f a c e and r e s i d u a l maps a r e shown i n F ig u re s
11 and 12. T h e ir c o n to u r i n t e r v a l i s 1 mgal. P o s i t i o n s of the
'g r a v i t y l i n e s a r e a l s o shown. I t sh o u ld be n o te d t h a t not a l l th e
g r a v i t y t r a v e r s e s a re in th e same p l a c e s as th e m agnetic f i e l d
t r a v e r s e s .
; 3 .2 .5 D ata R e s u l ts
The m a g n e tic f i e l d and g r a v i t y maps show s i m i l a r anomaly
p o s i t i o n s . However, th e r e g i o n a l e f f e c t s of th e m agnetic and g r a v i t y
f i e l d s , as se en i n t h e i r r e s p e c t i v e p l a n a r tr e n d s u r f a c e s , s t r i k e a t a
h ig h a n g le to one a n o th e r . The m ag n e tic f i e l d f i r s t o r d e r t r e n d
I s u r f a c e (F ig . 3) s t r i k e s a b o u t N40°W, w hereas th e g r a v i t y f i r s t o rd e r
tr e n d s u r f a c e (F ig . 9) s t r i k e s N70°E.
i The Bouguer g r a v i t y map (F ig . 8) r e v e a ls a p o t e n t i a l f i e l d t h a t
i s w ith o u t th e h ig h and low c l o s u r e s se en on th e t o t a l m agnetic f i e l d
map. I t shows th e p re s e n c e of s tr o n g r e g i o n a l i n f l u e n c e s which a re
seen in th e f i r s t o rd e r tr e n d s u r f a c e (F ig . 9) w hich, as would be
e x p e c te d , s lo p e s up tow ard t h e T ehachapi M ountains. The t r e n d s u r f a c e
has a g r a d i e n t of 3 m gals/km .
The second o r d e r t r e n d s u r f a c e (F ig . 11) more a c c u r a t e l y d e p ic t s
th e n a t u r e of th e r e g i o n a l g r a v i t y f i e l d th a n th e f i r s t o rd e r tr e n d
| s u r f a c e . Contours i n i t s s o u th e r n r e g i o n a r e s l i g h t l y concave,
; g ra d in g i n t o th e more p a r a l l e l c o n to u r l i n e s to th e n o r th w e s t . On
; t h i s b a s i s , th e Bouguer g r a v i t y map (F ig . 8) d i s p l a y s two domains: a
s o u t h e a s t e r n domain of a r c u a t e , more w idely spaced c o n to u r s , and a
n o r th w e s t e r n domain of g e n e r a ll y p a r a l l e l and somewhat e v e n ly -s p a c e d
c o n to u r s . The boundary betw een th e s e two domains l i e s betw een th e 8
and 10 mgal c o n to u r l i n e s .
U n lik e t h e m agnetic f i e l d d a ta , th e r e s i d u a l g r a v i t y maps (F ig s .
10 and 12) do n o t r e f l e c t th e domains j u s t o u t l i n e d . However, th e
g r a v i t y r e s i d u a l maps do show s i g n i f i c a n t l y more d e t a i l th a n does th e
Bouguer g r a v i t y map. F e a tu re s c l e a r l y m a n if e s te d in th e r e s i d u a l maps
a r e s e e n a s s u b t l e c o n to u r d e v i a t i o n s on th e Bouguer g r a v i t y map.
The r e s i d u a l maps a r e c h a r a c t e r i z e d by an abundance of c lo s e d
i c o n to u r s . The second o r d e r r e s i d u a l map shows a g r e a t e r number of
n o n - p a r a l l e l and c lo s e d c o n to u rs th a n does th e f i r s t r e s i d u a l map,
1 r e f l e c t i n g a c l o s e r f i t of i t s t r e n d s u r f a c e to th e d a ta - This i s
23
I e s p e c i a l l y t r u e i n th e s o u t h e a s t e r n s e c t i o n of th e g r a v i t y maps.
i
Lineam ents p r e s e n t i n th e m agnetic o b s e r v a t io n s a r e a l s o seen i n
j t h e g r a v i t y d a ta . In th e s o u t h e a s t p o r t i o n of th e maps, th e Willow
i Springs lin e a m e n ts a r e ob serv ed to occur a t d e v i a t i o n s in g e n e r a l l y
!
' p a r a l l e l c o n to u r s . This i s e s p e c i a l l y e v id e n t on th e f i r s t o rd e r
r e s i d u a l map (F ig . 10) . The n o r t h e r n lin e a m e n t (WS-A) ro u g h ly
t
! c o in c i d e s w i t h th e n o r t h e r n edge of t h e s o u t h e a s t e r n g r a v i t y domain.
The Cottonwood and T y le rh o rs e lin e a m e n ts s t r i k e a t a h ig h a n g le
j
I t o th e c o n to u rs of th e Bouguer g r a v i t y map. These lin e a m e n ts a re
j c l e a r l y d e f in e d i n th e r e s i d u a l maps where they form pods of h ig h s and
lows and s m a ll l i n e a r r id g e s and t r o u g h s . The Cottonwood lin e a m e n t
ia p p e a rs to be a lig n e d w ith th e n o r t h e r n Willow S prings lin e a m e n t (WS-
A) , a lth o u g h th e c o n tin u o u s n a t u r e of th e s e lin e a m e n ts seems to be
muddled by th e p re s e n c e of th e Sand H i l l s l in e a m e n t.
The Sand H i l l s lin e a m e n t i s o r i e n t e d p a r a l l e l to th e m ajor
c o n to u rs of th e g r a v i t y d a t a . But, as i n th e m agnetic f i e l d d a ta , i t
i s d i s j o i n t e d . P a r t s of th e Sand H i l l s lin e a m e n t (SH-A, SH-B) a re
d e f in e d by 5 mgal d e c l i v i t i e s in th e d a ta (F ig . 12). Segment C (SH-C)
i s marked by th e s o u t h e a s t e r n edge of an anomalous h ig h . T his hig h
a l s o s e r v e s to d e f in e th e c r o s s - c u t t i n g Cottonwood and T y le rh o rs e
i l in e a m e n t s . Segment E (SH-E) i s m ost c l e a r l y seen on th e second o r d e r
r e s i d u a l map. The Bean Canyon lin e a m e n t i s marked by a bending of
|c o n to u r s i n t h e n o r t h e a s t p o r t i o n of t h e g r a v i t y maps.
24
4. DISCUSSION
i Anomalies p r e s e n t in b o th th e m ag n e tic s and g r a v i t y o b s e r v a t io n s
I
jean be r e l a t e d to th e g eology. The l i n e a r f e a t u r e s p r e s e n t a re
e lo n g a te d and len d them selves to 2 -d im e n sio n a l m o d elin g . In t h i s
s tu d y , th e m odeling was perform ed u s in g a computer program developed
I
!by Cady and Sweeney (1981). This program s im u lta n e o u s ly c a l c u l a t e s
g r a v i t y and m a g n e tic s an o m alies p e r p e n d i c u l a r to th e s t r i k e of "2 V2 "
d im e n s io n a l b o d i e s . The 2 V2 - d i m e n s i o n a l i t y r e f e r s to the f a c t t h a t
:the p o ly g o n a l prism s a r e assumed to t e r m in a te w i t h i n a f i n i t e d i s t a n c e
a long t h e i r a x e s . The th e o ry of such 2 V2 -d im e n s io n a l c a l c u l a t i o n s
ihave been p u b lis h e d by Shuey and P a s q u a le (1973, m agnetic f i e l d ) and
Cady (1980, g r a v i t y ) .
In a l l c a s e s , t o e l i m i n a t e r e g i o n a l e f f e c t s , m odeling was
c a l c u l a t e d to f i t p r o f i l e s drawn from r e s i d u a l s . The l o c a t i o n s of th e
p r o f i l e s a c r o s s l i n e a r f e a t u r e s were s e l e c t e d u s in g t h r e e c r i t e r i a :
(1) th e p r o f i l e s were drawn as p e r p e n d i c u l a r l y as p o s s i b l e to th e
a d j a c e n t p o r t i o n s of th e lin e a m e n ts to p r e s e r v e th e 2 - d im e n s io n a lity
of th e s e f e a t u r e s ; (2) as much as p o s s i b l e , th e p r o f i l e l o c a t i o n s were
s e l e c t e d a t high a n g le s to th e c o n to u r s of th e m ag n e tic f i e l d and
g r a v i t y maps; (3) w ith th e above c o n s t r a i n t s i n mind, th e p r o f i l e s
w ere drawn where p o s s i b l e to t a k e ad v an tag e of t r a v e r s e l i n e s to
i n s u r e maximum f i d e l i t y in d a ta r e p r e s e n t a t i o n . P r o v is i o n s f o r
rem nant m agnetism were n o t made i n c a l c u l a t i n g th e m agnetic f i e l d s .
I
iThis i s r e a s o n a b le b e c au se th e J u r a s s i c p a le o m a g n e tic p o le fo r N orth
25
[America i s n e a r th e p r e s e n t m a g n e tic p o le (S. Lund, 1981, p e r s .
icomm.). As s t a t e d p r e v i o u s l y , much of th e basem ent i s p ro b a b ly
i
J u r a s s i c g r a n i t i c ro ck . However, t h e e f f e c t s of t e c t o n i c r o t a t i o n s ,
' t r a n s l a t i o n s , and o v e r p r i n t i n g a r e unknown and a r e assumed to be
i
'm inim al. On th e b a s i s of geology and th e m odeling of th e p o t e n t i a l
f i e l d s , th e lin e a m e n ts o c c u r r in g i n b o th th e m agnetic f i e l d and
i g r a v i ty d a t a a r e i n t e r p r e t e d to be f a u l t s .
j
The Willow Springs lin e a m e n ts a r e modeled i n p r o f i l e A-A' ( F ig .
13) . The f i g u r e r e v e a ls th e p r e s e n c e of two basem ent f a u l t s which
iwere i n t e r p r e t e d p r i m a r i l y on th e b a s i s of th e m agnetic p r o f i l e . The
im agnetic r e s i d u a l shows two d i s t i n c t h ig h s . A ttem pts to model th e
d a ta on th e b a s i s of one f a u l t t r a c e f a i l to produce two s e p a r a t e
!
's i g n a t u r e s . Models which employ t h e u s e of b u r ie d l e n s - l i k e prism s of
c o n t r a s t i n g s u s c e p t i b i l i t i e s i n s t e a d of f a u l t - b l o c k s can p r o v id e
p r o p e r p o s i t i o n i n g of anomaly p e a k s , b u t th e a m p litu d e of th e
lanom alies w i l l be too sm all u n le s s t h e prism s a r e i n c r e a s e d to f a u l t -
b lo c k s i z e . U nlike t h e m a g n e tic s r e s i d u a l , th e g r a v i t y r e s i d u a l does
n o t show th e p re s e n c e of two d i s c r e t e peaks a s s o c i a t e d w ith th e
f a u l t s . The la c k of th e s e peaks was r e s o lv e d i n th e g r a v i t y r e s i d u a l
by d e c r e a s in g th e d e n s it y of th e basem ent b lo c k to th e n o r t h . The
s i g n i f i c a n c e of t h i s i s d i s c u s s e d l a t e r .
The s o u th e r n b ranch (lin e a m e n t WS-B) has no s u r f a c e t r a c e , which
i s p ro b ab ly a lac k of r e c e n t m otion. The n o r th e r n f a u l t (lin e a m e n t
WS-A) c o rre s p o n d s to th e s u r f a c e b re a k of th e Willow Springs f a u l t .
iThese f e a t u r e s a r e modeled as high a n g le f a u l t s . S ince th e Willow
] S prings f a u l t (lin e am e n t WS-A) a p p e a rs co n n ected w ith th e Cottonwood
f a u l t and i s p a r t of th e Rosamond f a u l t system , i t i s most l i k e l y a
! s t r i k e - s l i p f e a t u r e . I t , however, a ls o a p p e a rs to have a d i p - s l i p
component w ith a throw of a t l e a s t 80 m.
P o s s i b l e g e o lo g ic c o n f i g u r a t i o n s of th e Cottonwood and T y le rh o r s e
f a u l t s a r e modeled i n F ig u re 14 ( p r o f i l e B - B ') . These f a u l t s occur in
g r a n i t i c b a sem en t, p ro b a b ly q u a r tz m o n zo n ite, b e n e a th a cover of 200
t o 300 m of a llu v iu m . Both th e m ag n e tic and g r a v i t y r e s i d u a l s a re
dom inated by th e T y le rh o rs e f a u l t .
The Cottonwood f a u l t , as n o te d b e f o r e , i s c h a r a c t e r i z e d by
d e x t r a l o f f s e t . I t i s modeled as h aving a dip of n e a r l y 90° w ith
T i t t l e or no a p p a r e n t v e r t i c a l d is p la c e m e n t. The T y le r h o r s e f a u l t , on
th e o th e r hand, shows an a p p a re n t throw of 130 ra and d ip s to th e
^southwest, i n a d d i t i o n to i t s s t r i k e - s l i p d is p la c e m e n t. The f a c t t h a t
i t d ip s to th e so u th w e st may r e p r e s e n t n o rm a l-ty p e dip s l i p a c r o s s th e
f a u l t - This dip i s a l s o e v id e n c e d by i t s p o t e n t i a l anomaly t h a t
b c c u rs s l i g h t l y southw ard of th e s u r f a c e t r a c e . I t sho u ld be n o te d ,
however, t h a t th e a p p a re n t throw co u ld be due to th e j u x t a p o s i t i o n of
d i s s i m i l a r basem ent topography by s t r i k e - s l i p movement.
P r o f i l e C-C' (F igs- 2, 15) i n d i c a t e s th e Sand H i l l s f a u l t has two
b ra n c h e s i n t h i s a r e a . The f a u l t s were modeled as r e v e r s e f a u l t s in
o r d e r to r e f l e c t th e s te e p g r a d i e n t s a s s o c i a t e d w ith th e m agnetic and
g r a v i t y r e s i d u a l p r o f i l e s . A ttem pts to model t h e s e f e a t u r e s as norm al
f a u l t s p ro d u ce s s h a llo w e r g r a d i e n t s . The sm a ll f a u l t (SH-E) was added
to produce th e sm all p l a t e a u a s s o c i a t e d w ith th e g r a v i t y r e s i d u a l
p r o f i l e (F ig . 15) . Throughout th e m odeling, th e nearby d r i l l h o le was
used to c o n s t r a i n th e d e p th to b a sem en t.
27
The Sand H i l l s f a u l t presum ably o ccu rs in g r a n i t i c rock b e n e ath
an e x te n s i v e cover of a llu v iu m . The s m a lle r , s o u t h e a s t e r l y b ra n c h
(lin e a m e n t SH-E) has a v e r t i c a l s e p a r a t i o n of 175 m. The l a r g e r
b ran c h (lin e a m e n t SH-A) has a v e r t i c a l s e p a r a t i o n of 400 m; i t i s
e x p re s s e d a t th e s u r f a c e as th e s o u t h e a s t e r n boundary of th e Sand
H i l l s . Other p o r t i o n s of th e Sand H i l l s f a u l t (lin e a m e n ts SH-B, SH-D)
c o in c i d e w ith g r a v i t y g r a d i e n t s of roughly 7 mgals/km (F ig . 12) and,
by a n a lo g y , have s i m i l a r throw s and dip n o rth w estw a rd toward th e
T ehachapi M ountains.
The long w av elen g th m ag n e tic and g r a v i t y a n o m a lie s c o rre sp o n d to
r e g i o n a l g e o l o g i c a l f e a t u r e s . The m ag n e tic f i e l d ' s s o u t h e a s t e r n
domain, which i s c h a r a c t e r i z e d by a trough of e a s t - w e s t tre n d in g
c o n to u r s , s u g g e s ts th e p re s e n c e of Miocene r h y o l i t i c i n t r u s i v e s
s i m i l a r to t h o s e of th e Rosamond H i l l s . T his i s e v id e n t in an
a e ro m a g n e tic map of th e A ntelope V a lle y (F ig . 16), where a tro u g h of
low c o n to u r v a lu e s i s se en to c o in c i d e w ith th e w e s te r n p o r t i o n of th e
Rosamond H i l l s . The low e xtends westward i n t o th e s o u t h e a s t e r n
p o r t i o n of th e study a r e a . C o n se q u e n tly , th e v o l c a n i c i n t r u s i v e s of
th e Rosamond H i l l s a r e l i k e l y to e x i s t under s e d im e n ta ry cover of th e
stu d y a r e a .
A nother l i n e of e v id e n c e s u p p o r ts t h i s c o n c lu s io n . In o rd e r to
model th e g r a v i t y v a lu e s a c r o s s th e Willow S prings f a u l t (F ig . 13), a
low er d e n s i t y (2.62 g /c c ) was used f o r th e n o rth e rn m o s t basement
b l o c k . The lower d e n s i t y may r e f l e c t v o l c a n i c m a t e r i a l w ith in th e
basem ent. S ince th e b u t t e s of th e Rosamond H i l l s a r e r h y o l i t i c , and
r e l a t i v e to q u a r tz m o n zo n ite, r h y o l i t e has a d e n s i t y c o n t r a s t of a b o u t
I .15 g /c c ( T e lf o r d and o t h e r s , 1976), a m ix tu re of t h e s e two rock ty p es
would p r o v id e th e lower d e n s i t y t h a t was m odeled.
The m a g n e tic f i e l d ' s c e n t r a l r i d g e , as seen on th e a e ro m ag n e tic
jmap, e x te n d s to th e so u th w est out of th e stu d y a r e a . As t h i s anomaly
i s a s s o c i a t e d w ith th e Sand H i l l s f a u l t , i t i n d i c a t e s t h a t th e f a u l t
’ c o n tin u e s to th e so u th w e st i n t o th e w e s te r n A ntelope V a lle y .
Mabey (1960) perform ed a r e g i o n a l g r a v i t y survey of th e w e s te rn
Mojave. A p o r t i o n of h i s map i s shown i n F ig u re 17. Based on a
s c o a r s e r d a ta s e t and red u ced a t a d i f f e r e n t d e n s i t y (2-67 g / c c ) ,
|
i Mabey's map b r o a d ly r e f l e c t s th e p r e s e n c e of th e two g r a v i t y domains
j s e e n i n t h i s s tu d y . On F ig u re 17, t h e s o u t h e a s t e r n domain i s r e v e a le d
to be p a r t of a l a r g e g r a v i t y low c e n te r e d in th e w e s te rn A ntelope
i
I
; V a lle y . Mabey s u g g e s ts t h a t th e C enozoic se d im e n ta ry f i l l w i t h i n t h i s
: b a s i n may be as deep as 2500 m. P r o j e c t i o n of th e Sand H i l l s f a u l t to
; t h e so u th w e st c o in c id e s w ith th e w e s te r n edge of t h i s b a s in - The
Willow S prings f a u l t a p p e a rs to o c c u r i n a s a d d le betw een t h i s b a s i n
i
| and a n o th e r t o th e n o r t h e a s t .
The s u r f a c e p r o j e c t i o n s of th e f a u l t s i n v e s t i g a t e d i n t h i s study
a re shown i n th e a e r i a l p h o to g ra p h of F ig u re 18. The geometry of
f a u l t i n g as i n t e r p r e t e d i n th e study a r e a i n d i c a t e s t h a t two ph ases of
f a u l t i n g have ta k e n p la c e : an e p is o d e of n o r t h w e s t - s o u t h e a s t d i r e c t e d
c o m p re ssio n as e v id e n c e d by th e Sand H i l l s f a u l t and a younger e p iso d e
r e p r e s e n t e d by presum ably a c t i v e n o r t h w e s t - s t r i k i n g f a u l t s .
The Sand H i l l s f a u l t has a s t r i k e s i m i l a r to th e G arlock f a u l t ,
a lth o u g h i t s dip and d isp la c e m e n t d i f f e r from t h a t s i n i s t r a l s t i k e -
29
| s l i p f a u l t . I t i s o f f s e t i n a r i g h t - l a t e r a l s e n s e by th e th ro u g h g o in g
;n o r t h w e s t - s t r i k i n g f a u l t s : Cottonwood-W illow S p r in g s , T y le r h o r s e , and
what i s i d e n t i f i e d i n t h i s study as th e Bean Canyon f a u l t . None of
: t h e s e f a u l t s has a s u r f a c e e x p r e s s io n in th e a llu v iu m of th e c e n t r a l
p o r t i o n of th e study a re a . The Bean Canyon f a u l t was p r e v io u s ly
u n re c o g n iz e d and i t s e x is t e n c e has been d e te rm in e d s o l e l y on th e b a s i s
! o f g e o p h y s ic a l d a ta ; however, n e a r Bean Canyon, i t a p p e a rs to c o in c id e
j
w ith th e c o n ta c t betw een g r a n i t i c ro c k and a ll u v iu m . This i s e v id e n t
|o n t h e a e r i a l p h o to .
The Sand H i l l s f a u l t i s a r e v e r s e f a u l t . V e r t i c a l d isp la c e m e n t
( a s s o c i a t e d w ith th e f a u l t i s p a r t i a l l y r e s p o n s i b l e f o r th e u p l i f t of
t h a t p o r t i o n of th e T ehachapis which l i e s betw een th e A n telo p e V alley
[ S t u d y a r e a a n d t h e G a r l o c k f a u l t . A c c o r d i n g t o D i b b l e e (1963), t h e
i
u p l i f t of th e T ehachapis o c c u r r e d d u rin g P l i e s t o c e n e tim e, as
js u g g e s te d by th e g r a d u a l s o u th e a s tw a rd s lo p e of o ld e r o s i o n a l s u r f a c e s
p r e s e r v e d on t h e c r e s t of th e ran g e and by a s i m i l a r t i l t of piedmont
f a n s . This o l d e r a llu v iu m , most of which l i e s to th e west of th e
i
stu d y a r e a , has been e l e v a t e d to form a mesa which s ta n d s 125 m above
th e A ntelope V alley f l o o r . The c o r r i d o r - l i k e Cottonwood Wash i s
i
i n c i s e d i n t o th e mesa. I t i s n o t f a u l t c o n t r o l l e d , b u t r a t h e r i s an
a n te c e d e n t stre a m v a l l e y . The c h a n n e l has r e a c t e d v i g o r o u s l y to
u p l i f t due to th e Sand H i l l s t h r u s t to become e n tr e n c h e d w i t h i n th e
a llu v iu m .
T o t a l o f f s e t of th e Sand H i l l s f a u l t by th e Cottonwood-Willow
S p rin g s , T y le rh o r s e , and Bean Canyon f a u l t s amounts to a bout 2.7 km.
These f a u l t s a r e a l l s i m i l a r i n o r i e n t a t i o n and s e n s e of movement to
30
t h e San Andreas f a u l t , which l i e s 25 km to th e so u th a c ro s s th e
A ntelope V a lle y .
The n o r t h w e s t - s t r i k i n g f a u l t s a r e a p ro d u c t of th e r e g i o n a l
s t r a i n f i e l d a s s o c i a t e d w ith t h e San Andreas tr a n s f o r m and a r e
t h e r e f o r e r e l a t e d to p l a t e i n t e r a c t i o n s . The f a u l t s a p p e ar to
r e p r e s e n t a change i n th e o r i e n t a t i o n of th e l o c a l s t r e s s f i e l d from
t h a t which p roduced th e Sand H i l l s t h r u s t and u p l i f t e d t h e T eh ach ap is.
Sbar and o t h e r s (1979), u s in g s t r a i n r e l a x a t i o n m easurem ents from
t h e w e s te r n Mojave n e a r th e San Andreas f a u l t , have found t h a t th e
maximum co m p re ssiv e s t r e s s i s o r i e n t e d n o r t h - n o r t h e a s t a t s i t e s
l o c a t e d 15 km from th e f a u l t - T h is o r i e n t a t i o n i s p a r a l l e l to th e
maximum p r i n c i p a l s t r e s s i n f e r r e d from f a u l t p la n e s o l u t i o n s and
compares f a v o r a b ly w ith deep h y d r o f r a c t u r e s t r e s s m easurem ents (Zoback
and o t h e r s , 1980) from th e a r e a .
O f f s e t t i n g of th e Sand H i l l s f a u l t t r a c e a lo n g th e n o r th w e s t-
s t r i k i n g f a u l t s a ls o i n d i c a t e s t h a t c o u n te r - c l o c k w is e r o t a t i o n has
o c c u rr e d . This i s p a r t i c u l a r l y e v id e n t when view in g segment C of th e
Sand H i l l s f a u l t which a p p e a rs to have r o t a t e d i n a c o u n te r - c lo c k w is e
manner, which i s c o n s i s t e n t w ith th e dynamics of movement betw een two
d e x t r a l f a u l t s . E x te n sio n , such as t h a t se en to occur on th e
T y l e r h o r s e f a u l t , a l s o s e rv e s t o f a c i l i t a t e c o u n te r - c lo c k w is e r o t a t i o n
of b lo c k s betw een r i g h t - l a t e r a l f a u l t s .
31
5. SUMMARY AND CONCLUSIONS
j An i n t e g r a t e d m agnetic f i e l d and g r a v i t y stu d y was com pleted i n
1 a n a l l u v i a t e d r e g i o n of th e A n te lo p e V alley a d ja c e n t to th e Tehachapi
M ountains. S urface b r e a k s of th e Willow S p rin g s , Cottonwood,
T y le rh o r s e , and Sand H i l l s f a u l t s occur i n th e bedrock p e rip h e ry of
i
th e a r e a s t u d i e d . The stu d y was u n d e rta k e n to d e te rm in e th e
i s t r u c t u r a l n a t u r e of th e a l l u v i a l c o v e re d basem ent a t th e t r a n s i t i o n
I
|fro m th e Tehachapi M ountains to th e n o r th w e s te r n A ntelope V a lle y ,
j A t o t a l m agnetic f i e l d map was com piled from 732 ground m agnetic
f i e l d m easurem ents. Using t r e n d s u r f a c e a n a l y s i s , r e s i d u a l maps were
i
id e v e lo p e d and u sed to d e l i n e a t e basem ent s t r u c t u r e . A d d i t i o n a l l y , a
isim p le Bouguer g r a v i t y map was com piled u s in g 232 g r a v i t y
!d e te r m i n a ti o n s - Trend s u r f a c e a n a l y s i s was used to d e te rm in e and
iremove r e g i o n a l e f f e c t s from th e g r a v i t y d a ta as w e l l .
The f a u l t s a r e c o n s i s t e n t l y p r e s e n t as a n o m a lie s i n b o th th e
m agnetic f i e l d and g r a v i t y d a t a . W e ll-d e f in e d lin e a m e n ts a r e
^ a s s o c i a t e d w ith th e W illows S p r in g s , Cottonwood, T y le rh o r s e and Sand
H i l l s f a u l t s . Another p r e v i o u s l y u n re c o g n iz e d f a u l t , th e Bean Canyon
f a u l t , i s e v id e n t in th e d a ta . The Cottonwood and Willow Springs
f a u l t s were d e te rm in e d to be c o n n e cte d ; th ey r e p r e s e n t d i f f e r e n t
t r a c e s of t h e same f e a t u r e .
S e p a r a te domains, of r e g i o n a l g e o lo g ic s i g n i f i c a n c e were a ls o
seen in th e d a t a . The m agnetic f i e l d ' s s o u t h e a s t e r n domain, composed
o f e a s t - w e s t tr e n d i n g c o n to u r s , i s a s s o c i a t e d w ith th e p re s e n c e of
32
M iocene r h y o l i t e s . These v o l c a n i c s may l o g i c a l l y be c o n s id e re d
s i m i l a r to th e v o l c a n i c rocks of th e Rosamond H i l l s to th e e a s t . The
m a g n e tic f i e l d ' s c e n t r a l r id g e domain i s c o r r e l a t e d w ith th e
r e l a t i v e l y d e e p - s e a te d Sand H i l l s f a u l t . A s o u t h e a s t e r n g r a v i t y
domain i s r e l a t e d to th e deep, s e d i m e n t - f i l l e d b a s i n of th e w e s te rn
A ntelope V a lle y . I t i s p ro b a b le t h a t th e Sand H i l l s f a u l t bounds th e
w e s te r n edge of t h i s b a s in .
The basem ent s t r u c t u r e c o n t a i n s two e p is o d e s of f a u l t i n g . The
n o r t h e a s t - s t r i k i n g Sand H i l l s f a u l t i s o f f s e t by o t h e r younger
n o r t h w e s t - s t r i k i n g f a u l t s . The Sand H i l l s f a u l t has 400 m of r e v e r s e
d is p la c e m e n t. I t i s r e l a t e d to th e u p l i f t of th e Tehachapi
M o u n tain s. The younger s e t of f a u l t s , th e Cottonwood-Willow S p rin g s ,
T y le rh o rs e and Bean Canyon, o f f s e t th e Sand H i l l s t r a c e by 2.7 km.
These f a u l t s a r e p red o m in an tly r i g h t - l a t e r a l s t r i k e - s l i p , a lth o u g h
th ey have minor components of s o u t h e r l y d i p - s l i p . They a re su b
p a r a l l e l to th e San Andreas t r a n s f o r m zone and have developed in
re s p o n s e to th e same s t r e s s re g im e . The j u x t a p o s i t i o n of th e s e two
p h a s e s of f a u l t i n g , w h ile d i s c r e t e i n th e Q u a te rn a ry , p ro b ab ly
r e p r e s e n t s a continuum of r e g i o n a l s t r a i n s a s s o c i a t e d w ith th e San
A ndreas and G arlock f a u l t s .
The G arlock f a u l t i s th o u g h t to be a fundam ental c r u s t a l boundary
betw een B asin and Range e x te n s io n to th e n o r th and th e more s t a b l e
Mojave b lo c k to th e so u th (Davis and B u r c h f i e l, 1973). Thus, th e
Tehachapi M ountains a re b e in g f o r c e d westward alo n g th e G arlock
f a u l t . One e f f e c t of t h i s i s th e b e n d in g of th e San Andreas a t i t s
ju n c t u r e w ith th e G arlock f a u l t . S i m i l a r l y , th e San B e rnardino
iM o u n tain s a r e u p l i f t e d where th e San Andreas f a u l t bends and i s
i n t e r s e c t e d by th e P in to Mountain f a u l t . However, i t i s e v id e n t t h a t
I th e u p l i f t of th e m ountain block was n o t a d i r e c t consequence of
I movements a lo n g th e G arlock f a u l t , s i n c e th e t r a c e of th e G arlock l i e s
j w e l l w i t h i n t h e range (Buwalda, 1954). Buwalda s u g g e s ts i n s t e a d t h a t
; th e T ehachapis form a h o r s t which i s bounded on th e n o rth w e s t by th e
| W hite Wolf f a u l t . This f a u l t i s a t h r u s t h a v in g a l a r g e s i n i s t r a l
component of s l i p and i s r e s p o n s i b l e f o r th e u p l i f t of th e
i
j n o r th w e s t e r n m argin of th e T e h a ch a p is. V e r t i c a l dispacem ent on th e
i
: White Wolf f a u l t i s c o n s i d e r a b l e ; th e Tehachapis form an im p re s s iv e
i m a s s if above th e San Jo a q u in V a lle y . The f a u l t i s p r e s e n t l y a c t i v e
and was th e s i t e of the 1952 A rv in -T e h a c h ap i e a rth q u a k e , m agnitude
! 7 .7 . G e o d e tic work perform ed b e f o r e and a f t e r th e e a rth q u a k e i n d i c a t e
t h a t th e upper p l a t e moved 2 to 3 f e e t h o r i z o n t a l l y and r o s e about 2
f e e t .
' Buwalda does n o t i d e n t i f y a s o u t h e a s t e r n c o u n t e r p a r t to th e White
Wolf f a u l t . However, r e s u l t s of t h i s stu d y i n d i c a t e t h a t th e Sand
H i l l s t h r u s t f a u l t i s such a f e a t u r e — i t forms th e s o u th e a s te r n
I
boundary betw een th e Tehachapi M ountains and th e w e s te rn A ntelope
V a l le y . T o g e th er w ith th e W hite Wolf f a u l t , i t forms th e h o r s t t h a t
com prises th e Tehachapi M ountains. At p r e s e n t , th e Sand H i l l s f a u l t
! does n o t a p p e a r to be a c t i v e and, i n f a c t , th e w e s te r n Mojave has been
a s e is m ic f o r th e p a s t 50 y e a rs (Meade and Sm all, 1966) . This may
i n d i c a t e t h a t t h e Mojave b lo ck and th e T ehachapis a r e coupled a t t h i s
; tim e .
One e x p l a n a t i o n f o r th e h i g h e r s e i s m i c i t y of th e White Wolf f a u l t
i s t h a t , s in c e th e T ehachapis and th e Mojave a r e coupled a c r o s s the
Sand H i l l s f a u l t a t t h i s tim e , l a r g e - s c a l e s t r e s s e s a s s o c i a t e d w ith
t h e G arlock c au se th e W hite Wolf f a u l t to r e a c t . A lso, t h e r e i s
e v id e n c e t h a t th e Tehachapi M o u n tain s, n e a r Tejon p a s s , r e p r e s e n t a
| t r a n s i t i o n from th e t h i c k e r c r u s t of th e w e s te r n Mojave to th e t h i n n e r i
i
! c r u s t of th e San Jo a q u in V a lle y (Oh, 1971). Thus, th e White Wolf
f a u l t i s r e l a t i v e l y l e s s encumbered. T h r u s tin g i s p r e s e n t b e c a u s e th e ;
Tehachapi b lo c k i s somewhat w edge-shaped (when c o n s id e r e d as bounded
by t h e s e two f a u l t s ) and i t s w estw ard p r o g r e s s i s impeded by th e San j
A ndreas. In such a m odel, when s l i p p a g e does o ccu r on th e Sand H i l l s
f a u l t , i t would p ro b ab ly have a 001153o nent of l e f t - s l i p , a ;
c h a r a c t e r i s t i c n e i t h e r confirm ed n o r r e f u t e d by t h i s s tu d y .
REFERENCES
Agocs, W. B ., 1951, L e a st s q u a re s r e s i d u a l anomaly d e te r m i n a ti o n :
Geophys. v. 16 p. 686-696.
B eving ton, P. R. , 1969, Data r e d u c t i o n and e r r o r a n a l y s i s f o r th e
p h y s i c a l s c ie n c e s : New York, M cGraw-Hill, 336 p .
Burke, D. , and P o n t i, D. , 1981, d a ta i n p r e p a r a t i o n , U.S. Geol.
Survey, Menlo Park, C a l i f .
Buwalda, J . P. , 1954, Geology of th e T ehachapi M ountains,
C a l i f o r n i a , i n J a h n s , R. H. , e d . , Geology of s o u th e r n
C a l i f o r n i a : C a l i f o r n i a Div. Mines B u ll. 170, chap 2, p t- 9, p.
132-142.
Cady, J. W. , 1980, C a l c u l a t i o n of g r a v i t y and m ag n e tic anom alies of
f i n i t e - l e n g t h r i g h t p o ly g o n a l p ris m s: G eophysics, v. 45 p. 1507-
1512.
Cady, J. W. and Sweeney, R. E. , 1980, Program 2HDP0T f o r 2 1 /2 -
d im e n sio n a l m odeling — u s e r ' s m anual: U.S. G eol. Survey, Denver,
C o l o . , 68 .
Chapman, R. H. , 1966, G ra v ity b a s e s t a t i o n netw ork: C a l i f o r n i a Div.
Mines and Geology Spec. Rept. 90, 49 p .
C h o rle y , R. J. and H a g g e tt, P . , 1965, Trend s u r f a c e mapping i n
g e o g r a p h ic a l r e s e a r c h in S p a t i a l A n a l y s is - a Reader i n
S t a t i s t i c a l G ra p h ic s , P r e n t i c e H a ll, p. 195-217.
Coons, R. L . , W oollard, G. P . , , and H ershey, G. L ., 1967, S t r u c t u r a l
s i g n i f i c a n c e and a n a l y s i s of m id - c o n tin e n t g r a v i t y h ig h : Am.
36
| Assoc. P e t r o l . G e o lo g is ts B u l l . , v. 51, p. 2381-2399.
: Cummings, D . , 1980, M echanics of f a u l t i n g d e fo r m a tio n and
i
i s e i s m o t e c t o n i c zoning, Mojave D e s e r t, C a l i f o r n i a [ a b s . ] : U.S.
I
Geol. Surv. O p e n - file r e p o r t 81-503, p. 21-23.
; Cummings, D. , 1976, Theory of p l a s t i c i t y a p p li e d to f a u l t i n g , Mojave
D e s e r t, s o u th e r n C a l i f o r n i a : G eol. Soc. America B u l l . , v. 84, p.
1407-1422.
D a v is , G. A ., and B u r c h f i e l , B. C. , 1973, G arlock f a u l t , an
i n t r a c o n t i n e n t a l tr a n s f o r m s t r u c t u r e , s o u th e r n C a l i f o r n i a : G eol.
I ’
Soc. America B u l l . , v - , 84, p. 1407-1422.
■ D ib b le e , T. W. J r . , 1963, Geology of th e Willow Springs and Rosamond
q u a d r a n g le s , C a l i f o r n i a , U .S. G eol. Survey B u ll. 1089-c, 253 p.
I
; D o b rin , M., 1976, I n t r o d u c t i o n to g e o p h y s ic a l p r o s p e c t i n g , T h ird
!
' e d . , New York, M cGraw-Hill, 630 p.
D ougenik, J. A ., and Sheehan, D. E ., 1975, SYMAP u s e r ' s r e f e r e n c e
m anual, f i f t h ed- , L a b o ra to ry f o r Computer G raphics and S p a t i a l
A n a ly s is , Cambridge, Mass.
D urbin, T. J. , 1978, C a l i b r a t i o n of a m a th e m a tic a l model of th e
A ntelope V a lle y g ro u n d -w ate r b a s i n , C a l i f o r n i a : U.S. G eol. Survey
W ater-Supply Paper 2046, 128 p.
G a rfu n k e l, Z ., 1974, Model f o r th e l a t e Cenozoic t e c t o n i c h i s t o r y of
t h e Mojave D e s e rt, C a l i f o r n i a , and i t s r e l a t i o n to a d ja c e n t
r e g i o n s : Geol Soc. America B u l l . , v. 85, p. 1931-1944.
i Hammer, S . , 1939, T e r r a in c o r r e c t i o n s f o r g r a v im e te r s t a t i o n s :
j G eophysics, v. 4 p. 184-194
iH e rsh e y , 0. H. , 1920, Some T e r t i a r y f o rm a tio n s of s o u th e r n
37
j C a l i f o r n i a : Am. G e o lo g is t, v. 29, p. 349-372.
J e n n in g s , C. W., and S tra n d , R. G. ,1969, Los Angeles s h e e t , Geol map
? of C a l i f o r n i a ; s c a l e 1/250000, C a l i f . Div. Mines and Geology.
i
| Johnson, H. R . , 1911, Water r e s o u r c e s of A ntelope V a lle y ,
| C a l i f o r n i a : U.S. Geol. Survey W ater-Supply Paper 278, 92 p.
L eary, P. C ., and M alin, P. E. S t r e l i t z , R. A ., and Henyey, T. L. ,
i 1981, P o s s i b l e t i l t phenomena o b serv ed as w a te r l e v e l anom alies
|
: alo n g th e Los Angeles a q u e d u c t: Geophys. R esearch L e t . , v. 8, p .
i
| 225-228.
| Luyendyk, B. P . , K am erling, M. J . , and T e r r e s , R . , 1980, Geom etric
model f o r Neogene c r u s t a l r o t a t i o n s i n s o u th e r n C a l i f o r n i a : Geol
1
]
Soc. America B u l l . , v . 91, p. 211-217.
j
I Mabey, D. R ., 1960, G ra v ity su rv ey of th e w e s te r n Mojave d e s e r t ,
i C a l i f o r n i a : U.S. Geol. Survey P r o f . Paper 316-D, 73 p.
i
I
jMeade, B. K. and Sm all, J. B ., 1966, Sm all, c u r r e n t and r e c e n t
movement on th e San Andreas f a u l t : C a l i f . Div. Mines and Geol.
! B u l l . , v. 190, p. 385.
N e t t l e t o n , L. L. , 1976, G ra v ity and m ag n e tic s in o i l p r o s p e c t in g :
New York, McGraw-Hill, 464 p .
Oh, J. S ., 1971, A g r a v i t y survey and i t s i n t e r p r e t a t i o n in th e
v i c i n i t y of th e San Andreas and G arlock f a u l t s in s o u th e rn
C a l i f o r n i a [u n p u b lish ed M. S. t h e s i s ] : Univ. of S outhern C a l i f . ,
Los A ngeles, C a l i f o r n i a . , 102 p .
I
| Sbar, M. L. , E ngelder, T. E. , Plumb R . , and M a rs h a ll, S ., 1979,
I S tr e s s p a t t e r n n e a r th e San Andreas f a u l t , P alm dale C a l i f o r n i a ,
' from n e a r - s u r f a c e i n s i t u m easurem ents: J o u r. Geophys. R esearch,
38
i v . 84, p. 156-164.
S h a r ry , J . , 1981, Geology of th e T ehachapi M ountains [Ph. D d i s s . in
p r e p a r a t i o n ] , Mass. I n s t . T echn., Boston Mass.
Shuey, R. T. , and P a s q u a le , A ., 1973, End c o r r e c t i o n s in m agnetic
| p r o f i l e i n t e r p r e t a t i o n : G eo p h y sics, v . 38 p. 507-512.
j Simpson, E. C . , 1934, Geology and m in e r a l d e p o s i t s of th e E liz a b e th
| Lake q u a d ra n g le , C a l i f o r n i a : C a l i f o r n i a Div. Mines Report 30,
| chap. 4, p. 371-415.
!
i
I Sumner, J . R. , 1972, T e c to n ic s i g n i f i c a n c e of g r a v i t y and
i
!
I a e ro m a g n e tic i n v e s t i g a t i o n s a t th e head of th e Gulf of
i
| C a l i f o r n i a : Geol. Soc. America B u l l . , v . 83, p. 3103-3120.
; T e lfo r d , W. M., G e l p a r t , L. P ., S h e r i f f , R. E ., and Kays, D. A .,
I
| A p p lied g e o p h y s ic s , Cambridge U n i v e r s i t y P r e s s , 860 p.
Thompson, D. G ., 1929, The Mojave D e s e rt r e g i o n , C a l i f o r n i a : U.S.
Geol. Survey W ater-Supply P aper 5 78, 759 p.
U.S. Geol. Survey, 1970, A erom agnetic map of A ntelope V a lle y and
p a r t of th e G arlock f a u l t zone, s o u t h - c e n t r a l C a l i f o r n i a : U.S.
Geol Survey In v . Map GP-695.
W iese, J . H. , and Fine S. F. , 1950, S t r u c t u r a l f e a t u r e s of w e s te rn
A ntelope V a lle y , C a l i f o r n i a : Am. Assoc. P e tro le u m G e o lo g is ts
B u l l . , v . 34, p. 1647-1658.
Zobach, M. D. , Tsukahar, H. , and Hickman, S ., 1981, S t r e s s
m easurem ents a t dep th in th e v i c i n i t y of th e San Andreas f a u l t :
i m p l i c a t i o n s f o r m agnitude of s h e a r s t r e s s a t d ep th : J o u r.
Geophys. R esearch, v . 85, p. 6157-6173.
39
ILLUSTRATIONS
F ig u re 1. Index map showing l o c a t i o n of stu d y a r e a and p r e v i o u s l y -
; known f a u l t t r a c e s .
: F ig u re 2. T o ta l m agnetic f i e l d map.
1
\ F ig u r e 3. M agnetic f i e l d t r e n d s u r f a c e map, f i r s t o r d e r .
; F ig u re 4.
!
M agnetic f i e l d r e s i d u a l map, f i r s t o r d e r .
| F ig u r e 5.
1
M agnetic f i e l d t r e n d s u r f a c e map, t h i r d o r d e r .
| F ig u re 6 . M agnetic f i e l d r e s i d u a l map, t h i r d o r d e r .
, F ig u r e 7. D e n s ity of a llu v iu m as d e te rm in e d by th e N e t t l e t o n method -
; F ig u re 8. Simple Bouguer g r a v i t y m ap.
F ig u re 9. G ra v ity tr e n d s u r f a c e map, f i r s t o r d e r .
; F ig u re 10. G r a v ity r e s i d u a l map, f i r s t o r d e r . :
F ig u re 11. G ra v ity tr e n d s u r f a c e map, second o r d e r . j
F ig u re 12.
1
G r a v ity r e s i d u a l map, second o r d e r . j
F ig u re 13.
i
S e c tio n A -A '- P r o f i l e a c r o s s Willow S p rin g s lin e a m e n t i
and i t s i n t e r p r e t a t i o n . j
F i g u r e 14. S e c tio n B -B '- P r o f i l e a c r o s s Cottonwood and T y le rh o r s e I
I
lin e a m e n ts and i t s i n t e r p r e t a t i o n . !
F i g u r e 15. S e c tio n C -C '- P r o f i l e a c r o s s Sand H i l l s lin e a m e n ts and
i t s i n t e r p r e t a t i o n .
F i g u r e 16. A erom agnetic map of th e w e s te r n A n te lo p e V a lle y .
F ig u r e 17. Bouguer g r a v i t y map of t h e w e s te r n A n te lo p e V a lle y .
F ig u re 18. A e r ia l p h o to g ra p h of stu d y a r e a showing s t r u c t u r a l f e a
t u r e s .
41
F ig u re 1. Index map showing l o c a t i o n of study a re a and p re v io u s ly -
known f a u l t t r a c e s . (A f te r J e n n in g s and S tra n d , 1969.)
42
STUDY AREA
^ROSAMOND
. N ! " / \ \ — ^ V
HILLS
,v
V
Rosamond Blvd.
MOJAVE
138
v v
i# Fairmont
^ Res.
GORMAN 33 ROSAMOND
,0 LANCASTER
PALMDALE ANTELOPE
BUTTES
VENTURA
AZUSA f LOS N
ANGELES
MILES
F ig u re 2. T o t a l m ag n e tic f i e l d map. Contour i n t e r v a l = 20 gammas.
C ontours a r e r e l a t i v e . WS-A, WS-B = Willow Springs l in e a m e n t,
segm ents A and B; CTW = Cottonwood lin e a m e n t; TYL = T y le rh o r s e
lin e a m e n t; SH-A th ro u g h E = Sand H i l l s lin e a m e n t; segments A
th ro u g h E, BC = Bean Canyon l in e a m e n t.
44
- 34°57,30’
34°55'
34°52'30"
F ig u re 3. M agnetic f i e l d t r e n d s u r f a c e map, f i r s t o r d e r . Contour
i n t e r v a l = 20 gammas. Note o r i e n t a t i o n of c o n to u r s w ith r e s p e c t
t o F ig . 9.
46
*34° 57'30" —
•34°55* -
i34° 52‘ 30"
M AGNETIC FIELD TREND SURFACE M AP, FIRST ORDER
r
. MAGNETIC TRAVERSE
I _______________ I
DRILL HOLE
!!8° 30 M8°27 30 118° 25*
118°22 30 118° 20'
3 4 °5 7 '3 0 "
3 4°5 5*
3 4 ° 52* 30"
F ig u re 4. M agnetic f i e l d r e s i d u a l map, f i r s t o r d e r ,
i n t e r v a l = 20 gammas. Lineam ent n o t a t i o n same as F ig . 2
Contour
48
M AG NETIC FIELD RESIDUAL M AP, FIRST O RDER
3 4 ° 57'30" ~
3 4 ° 55' -
3 4 °5 2 30 -
/
I
DRILL HOLE
LINEAMENT
MAGNETIC TRAVERSE
L I 8° 30 I i8° 27 30 I ‘3° 25’ 13° 22'30" II8°20'
- 3 4 ° 5 7 ,30"
i
- 34°55'
3 4 o 52'30" !
F i g u r e 5. M a g n e tic f i e l d t r e n d s u r f a c e map, t h i r d o rd e r* C o n to u r
i n t e r v a l = 20 gammas.
50
3 4 o 57'30"
3 4 ° 55'
3 4 ° 5 2 ‘ 30"
MAGNETIC FIELD TREND SURFACE MAP, THIRD ORDER
90
L
1 0 0 0 ---- 1 ----- ------
MAGNETIC TRAVERSE DRILL HOLE
! 16° 27 30 113 ° 25 118° 20 118° 22 30
- 3 4 ° 5 7 ’30"
- 3 4 ° 5 5 '
- 3 4 ° 5 2 30
F i g u r e 6. M a g n e tic f i e l d r e s i d u a l map, t h i r d o r d e r .
i n t e r v a l = 20 gammas. L in eam en t n o t a t i o n same a s F ig . 2.
C o n to u r
52
M AGNETIC FIELD RESIDUAL M AR THIRD ORDER.
34° 57'30"
34° 55' ”
34°52’30" -
-L
r
LiNE AMENT MAGNETIC TRAVERSE
I
DRILL HOLE
18° 30* 118° 27*30" II8°25 11S ° 22 30 118° 20
- 34°57'30"
- 34° 55'
- 34°52'30"
F i g u r e 7. D e n s ity of a llu v iu m a s d e te r m in e d by t h e N e t t l e t o n
m eth o d . P ro p e r d e n s i t y i s t h a t w hich l e a s t m atc h es to p o g ra p h y i n
a p o s i t i v e o r n e g a ti v e s e n s e . C o r r e c t d e n s i t y i s ta k e n to be
2 .1 3 g / c c .
54
1.5
L G ra v ity p r o f i l e s fo r various d e n s itie s ^ ^
(n
C 1.0
M
_J
_l
.5
Topogr aphy
* 12 h
cn
loi
200
METERS
250 300 350
F i g u r e 8. S im ple B ouguer g r a v i t y map. C o n to u r i n t e r v a l = 2 m g a ls .
C o n to u rs a r e r e l a t i v e to minimum Bouguer g r a v i t y v a l u e .
L in e a m e n t n o t a t i o n same a s F ig . 2.
56
SIMPLE BOUGUER GRAVITY MAP
3 4 ° 5 7 ' 3 0
3 4 ° 55*
34°52'30'
tgaaW U mujimmJ-
KM . DRILL HOLE GRAVITY TRAVERSE
F i g u r e 9. G r a v ity t r e n d s u r f a c e map, f i r s t o r d e r . C o n to u r i n t e r v a l
= 4 m g a ls -
58
GRAVITY TREND SURFACE MAP. F1RST ORDER
•340 57'30'
BM
34°55*
I
DRILL HOLE KM GRAVITY TRAVERSE
118 0 2 O '
113 0 3 O'
cn
F i g u r e 10. G r a v ity r e s i d u a l map, f i r s t o r d e r . C o n to u r i n t e r v a l
m g a l. L ineam ent n o t a t i o n same a s F ig . 2.
G RAVITY RESIDUAL M AR FIRST ORDER
34 °57' 30
+ 4
34° 55'
+6
34°52,30l
2 5 0
LINEAMENT KM GRAVITY TRAVERSE DRILL HOLE
118° 30' II8°27’30’1 18° 25' 118° 22' 30" 118° 2 O'
O')
- 3 4 ° 5 7 ,30"
3 4 ° 5 5 ‘
34o52'30"
F i g u r e l l . G r a v ity t r e n d s u r f a c e map, se c o n d o r d e r - C o ntour
i n t e r v a l = 4 m g a ls .
GRAVITY TREND SURFACE MAR SECOND ORDER
3 4° 57'30' 34 ° 5 7 ° 30'
BM
3 4° 55' 3 4 ° 55'
I ______
3 4 ° 5 2 ' 3 0
DRILL HOLE GRAVITY TRAVERSE KM
118°3o' 118°2?' 30" ! 18° 25* II8°22'30" 118°20'
F i g u r e 12. G r a v ity r e s i d u a l map, se c o n d o r d e r . C o n to u r i n t e r v a l = 1
m g a l. L in eam en t n o t a t i o n same a s F ig . 2.
64
34°57'30"
34° 55'
34°52'30"
F i g u r e 13. S e c ti o n A -A '- P r o f i l e a c r o s s W illow S p rin g s lin e a m e n t
and i t s i n t e r p r e t a t i o n . M a g n e tic f i e l d v a l u e s a r e i n gammas.
G r a v it y v a l u e s a r e i n m g a ls . N ote t h a t t h e r e a r e d i f f e r i n g
s c a l e s f o r o b s e rv e d and r e s i d u a l g r a v i t y p r o f i l e s . Bottom fram e
shows g e o lo g i c i n t e r p r e t a t i o n . Rho = d e n s i t y i n g / c c , k =
m a g n e tic s u s c e p t i b i l i t y i n cgs u n i t s , v e r t i c a l e x a g g e r a t i o n = 3x.
66
: 1 1 oo
OBSERVED MAGNETIC FIELD
1080
TOTAL MAGNETIC FIELD
i 1 0 4 0
+20 !
RESIDUAL
THIRD ORDER
m
co
o
cz
i 1000
9 6 0
jo
!uj
r 920
-4 0
C A L C U L A T E D RESIDUAL
SIMPLE BOUGUER GRAVITY
+ 1
C A L C U L A T E D RESIDUAL
m
co
i o
cz
OBSERVED GRAVITY
i cc
; U J
I
r~
RESIDUAL, SECOND ORDER
7 KM
ALLUVIUM
P = 2.13
K = NEGLIGIBLE
200
4 0 0
J o n
|cr
;u j
£ 6 0 0
- " P = 2 . 6 7
/ K = . 0 0 2 5 3 K = . 0 0 2 3 8 K = . 0 0 2 5 3
8 0 0
1000
F i g u r e 14. S e c t i o n B - B '- P r o f i l e a c r o s s C ottonw ood and T y le r h o r s e
lin e a m e n ts and i t s i n t e r p r e t a t i o n . M a g n e tic f i e l d v a l u e s a r e i n
gammas. G r a v ity v a l u e s a r e i n rag a ls. N o te t h a t t h e r e a r e
d i f f e r i n g s c a l e s f o r o b s e rv e d and r e s i d u a l g r a v i t y p r o f i l e s .
B ottom fram e shows g e o lo g i c i n t e r p r e t a t i o n . Rho = d e n s i t y i n
g / c c , k = m a g n e tic s u s c e p t i b i l i t y i n cgs u n i t s , v e r t i c a l
e x a g g e r a t i o n = 3x.
68
5
B
10 40
TOTAL MAGNETIC FIELD
1020
OBSERVED MAGNETIC FIELD
1000
+ 4 0
- 2 0 3J
m
w
o
9 6 0
= CALCULATED RESIDUAL
-20
- 4 0
RESIDUAL, THIRD ORDER
SIMPLE BOUGUER GRAVITY + 3 3 0
26 +2
OBSERVED GRAVITY
o
U J
22
UJ
CO
RESIDUAL, FIRST
ORDER
= CALCULATED RESIDUAL
7 KM
ALLUVIUM
K = NEGLIGIBLE
200
< /> “
u j _ '
i- 4 0 0 -
UJ
K = . 0 0 2 6 /
K = .0 0 2 5 6 0 0
8 0 0
F i g u r e 15. S e c ti o n C -C '- P r o f i l e a c r o s s Sand H i l l s lin e a m e n ts and
i t s i n t e r p r e t a t i o n . M a g n e tic f i e l d v a l u e s a r e i n gammas.
G r a v it y v a l u e s a r e i n m g a ls . N o te t h a t t h e r e a r e d i f f e r i n g
s c a l e s f o r o b s e rv e d and r e s i d u a l g r a v i t y p r o f i l e s . B ottom fram e
show s g e o lo g i c i n t e r p r e t a t i o n . Rho = d e n s i t y i n g / c c , k =
m a g n e tic s u s c e p t i b i l i t y i n cg s u n i t s , v e r t i c a l e x a g g e r a t i o n - 3x.
70
METERS observed o b s e r v e d
1 0 4 0
TOTAL MAGNETIC
1020
FIELD
1000 + 20
OBSERVED
MAGNETIC FIELD
9 8 0
- 2 0 9 6 0
RESIDUAL, FIRST
ORDER
- 4 0
CALCULATED
RESIDUAL
- 6 0
20
SIMPLE BOUGUER GRAVITY
+ 2
OBSERVED GRAVITY
= CALCULATED
RESIDUAL
RESIDUAL, FIRST
^ ORDER
-2
-3
- 4
O 2 3 4 5 6 7KM
200
ALLUVIUM
4 0 0
K = NEGLIGIBLE
6 0 0
_i
8 0 0
1000
K = . 0 0 2 5
200
4 00
71
RESIDUAL RESIDUAL
F i g u r e 16. A e ro m a g n e tic map of t h e w e s te r n A n te lo p e V a l le y . Study
a r e a i s o u t l i n e d . C o n to u r i n t e r v a l = 20 gammas. (From USGS,
1970. )
72
'-J
GO
8
1 1 I N
T 8 3 7 0
5782
s
S cham p-R afK lt
W h ite/O a k L «d g e
-JifDAD MT :\\
r 5 ?
Tip Fop M ine
C a s tu s M ine
D ouole EafRe I V m e
1 lT,on
iHow S
^ f u f f R anch \ \ 1
5974
A q u ed u b i
^ijopicu M iri'e ^ ij y
< n 2 / 5 8
r n es R an ch
E R N C O U N T
| \ L Q S - " ^ L G E T E S - C Q I J N T Y
E -A ntelope A q u e d u c t S tatio n
sw
R I 6 W
P rrre'C arry u n oS'ct ioul
R f MOUNTAIN
S a w m ill * x .
M t Ranch
ra irrn o n t n e s e n c a s te r
u S lie r;
/ S A W Mill Ml 0
F i g u r e 17. B ouguer g r a v i t y map o f t h e w e s t e r n A n te lo p e V a lle y .
Study a r e a i s o u t l i n e d . (From M abey, 1 9 6 0 .)
74
Rosamond
KERN___
ANGELES
.
Fairmont
F i g u r e 18. A e r i a l p h o to g r a p h o f s tu d y a r e a show ing s t r u c t u r a l
f e a t u r e s . WS-A, WS-B = W illow S p rin g s f a u l t , se g m e n ts A and B;
CTW= C ottonw ood f a u l t ; TYL = T y l e r h o r s e f a u l t ; SH-A th ro u g h E =
Sand H i l l s f a u l t , s e g m e n ts A th r o u g h E, BC = Bean Canyon f a u l t .
GF = G a rlo c k f a u l t , CW = C ottonw ood Wash, SH = Sand H i l l s , LAA
=Los A n g eles A q u e d u c t, W SM = W illow S p rin g s M o u n ta in . Study a r e a
l i m i t s a r e o u t l i n e d .
76
77
APPENDICES
Appendix A. T o ta l m agnetic f i e l d s t a t i o n s .
A ppendix B. G r a v ity s t a t i o n s .
78
Appendix A. T o ta l m a g n e tic f i e l d s t a t i o n s . M agnetic v a lu e s m
1
4
E T
6
* ’
9
10
1 1
i 2
1 3
14
15
1 6
17
1 y
19
20
2 1
24
•-* cr
2 6
c l r
2 9
3 0
3 1
34
c -
■ Z *
36
r
> : q
40
41
42
43
4 4
45
46
47
43
49
5 0
51
LfiT I T U Ii
F
4 5 2 " 59 . 3
4 * 5 :l " 0 4 ■ r
4 ° 5 3 " 0 9 ■ i'
4° 53 " 1 5 a ii!
4° 53 " 20 . 8
4 ° 5 3 ■ ' 3 1 . S
4 c‘ 5 3 •i' r*. ii
4 * 5 3 " 4 2 - 4
4° 53 4 7 . 6
4° 53 " 5 3 . 1
4° 53
• ' cr
O
« — i
4° 54 " 0 4 ■ d
4':' 52
■ ' cr cr
•_ i ■ _ >. 4
4 5 2 " 50 . 6
4 ° 5 2 " 45 . 6
4':'52 " 4 0 2
4 5 2 " 36 . 1
4 5 2 " 3 1 . 0
4':'52 " 2 6 . ii!
4 ° 5 2 " 2 1 ■ J
4 ° 5 2 " 16
cr
■ J
4° 52 ■ ' 1 1 » ii
4 ° 5 2 " 0 6 m
4 ,:' 52 " 0 0 m O
4 5 1
• ' cr cr
■ J J
cr
■ J
4° 51 " 4 9 ■ r
4° 51 " 45 . 5
4° 51 " 45 ■ r
4 * 5 1 " 4 5 . 6
4 5 1 " 45
cr
■
4 ° 5 1 " 4 5
• ”i
4 * 5 1 ' 4 5 ■ b
4 * 5 1 " 4 5 . 6
4 * 5 1 " 4 5 . 5
4 5 1 " 45
•T j
4 * 5 1 ' 4 5 . 1
4 * 5 1 " 4 5 . 1
4 * 5 1 " 4 5 ■ J
4 ° 5 1 " 4 4 . 9
4 5 1 " 4 5 . 0
4 0 5 1 " 4 4
o
4 * 5 1 ' 4 4 m r
4 ,:'51 " 44 ■ r
4° 51 " 4 4 a o
4* 51 " 45 . 0
4 5 1 " 42 . b
4 ° 5 1 " 42 ■ d
4 * 5 1 " 42 . 0
4° 51 " 42 ■ J
4 * 5 1 " 43 ■ O
4*51 " 43 • b
N G I TUHE R E R D I H
O 2 2 ' 41 . 0 " 4 9 9 7 9
d c L"40. 9 " 49 9 7 6
,“ l d Ii!" 4 0.
•”« 1 1
49972
ii! ii!" 4 0.
O M
49 9 71
ii! ii!"40. 6 H * 4 9 9 b b
ii! ii!" 4 0.
cr ii
. j 4 9 95 3
d ii!" 4 0 . 0 " 49 9 4 7
d ii!" 4 0. d 49 944
ii! ii!" 4 0 .
” I*
49 9! -J 9
ii! ii!" 4 0 .
• “« II
4 9 9 3 3
ii! ii! "40.
* ! , ■ I'
4 9 9 3 1
ii! ii!" 4 0. 5 " 4 9 9 d
ii! ii!"40. 4" 49 93 5
,J ii! ii!" 4 0 . j! 4 9 9 9 0
ii! ii!" 4 0. i " 4 9 9 9 2
ii! ii!" 4 0 . l " 4 3 4 4 4
ii! ii!" 4 0 . 9 " 4 9 9 9 6
!J ii! ii!" 41 . 0 !! 5 0 0 0 2
ii! ii!" 41 . 1 " 5 0 0 0 4
ii! ii!" 41 . 0 " 5001 1
ii! ii!" 41 . d 5001 4
ii! ii! " 41 .
cr ii
.^i
5 0 2 7
ii! ii!" 44 .
1 1
5 0 0 3 3 :
,J ii! ii!" 44. 4 " 5 0 0 3 6
1 - 1 ii! ii!" 44.
-i II
5 0 0 5 0
IJ d ii!" 44. y 5 0 0 5 9
ii! ii! " 41 . 6 " 5 0 0 5 9
ii! ii! " 34. 6 " 5 010i 6 0
d ii! ii! 14" 5 010 5 6
,-i ii! ii! ii! ii! . 1 " 5 01015 7
ii! ii!"15. 4" 5 0 0 54
- .ii 0 o .
i-i II
5 0 0 5 4
•j v V
0 2 . 4" 5 0 0 5 3
,:i 2 1 " 56.
J n
50054
2 1 " 49 . y 5010 52
2 1 " 44. 0 '* 5 0 0 5 5
° 2 1 j y , d 5 0 0 5 2
O 2 1
> ! d m l " 5 0 0 5 6
2 1 " 1 3 . 9 " 5 0 0 5 2
2 1 " 1 2 . 6 " 5 0i 0 5 3
O 21
" 0 1 . 6 " 5 0 0 5 9
2 0 " 55 . 3 " 5 0 0 6 2
2 0 " 49. 4" 5 0 0 6 9
° 2 0 " 43. 5 " 5 0 0 7 1
c' 2 0 3 3 . d 5 0i 0 7 2
2 0 3 2 • r 5 0 0 3 2
c' 2 0 2 6 . 9 1 1 5 0 0 3 0
2 0 " 2 0 .
4 "
5 0 0 3 3
° 2 0 "14. 0 " 5 0 0 3 5
2 2 " 4 9 . 4 " 50067
* “■
1 1 1 ^ L “1 0 F ft
8 0
cr *-i
._5 ^
C ■-»
■ J •
54
c - cr
.J -J
c -
• J O
57
C
i~ '
59
60
61
6 2
6 3
64
65
6 6
6 7
6 S
69
7Q
71
r d
f’ ■ • i *
74
7 5
7 6
r' r'
r o
7 9
8 0
81
8 4
i“. cr
O \J
8 6
8 i '
Q
9 0
9 1
9 2
9 3
94
9 5
9 6
9 7
9 8
9 9
U O
01
02
0 3
L.RTITIJDE LONG ITUHE
4° 51 4 3 . 6 "
4° 51 4 3, 7"
4*51 4 3 . 7 "
4° 51 4 3 . 4 "
4*51 4 3 . 6 1 1
4 * 5 i 43. 6 "
4* 51 43. 5"
4* 51 43. 8 "
4* 51 43. 6 "
4*51 43 . 9 1 1
4*5 1 43 . 6 "
4 * 5 1 4 3 . 3 "
4 * 5 i 43. 5"
4*51 43. 4"
4 * 5 1 43, 5"
4*51 43. 6 "
4*51 43. 9"
4 * 5 1 44. 0"
4*51 44. 1 1 1
4*51 44. 4"
4*51 4 5 . 2 "
4*51 4 4 . 9 "
4 * 5 1 4 5 . 0 "
4*51 4 4 . 9 "
4*51 4 5 . 1 "
4*51 45. 3"
4*52 2 6 . 8 "
4* 5 2 2 6 . 6 "
4* 52 3 1 . 7 "
4*52 36. 7"
4 * 5 2 4 1 .9 "
4* 5 2 4 6. 8 "
4*52
cr -i -i 11
•-1 cl ■ -J '
4*52 5 7 . 4 "
4 * 5 3 0 2 . 9 "
4*53 07. 9"
4 * 5 3 1 3 .4 "
4* 53 1 8 . 8 "
4*53 2 3 . 6 "
4 * 5 3 2 8 . 9 "
4*5 3 3 3 . 6 "
4 * 5 3 y y > y
4*53 43. 8 "
4 * 5 3 4 9 . 3 "
4*5 3 54. 2"
4 * 5 3 5 9 . 3 "
4 * 5 1 49. 6"
4 * 5 1 5 5 . 0 "
4 * 5 2 0 0 . 8 1 1
4*52 0 5 .6 "
4*52 1 1 .4 "
4*52 1 6 .2 "
PERU INi
2 8 0 0 . 9 " 5 0 0 6 5
* 23" 18.7 " 5 0 0 5 5
* 2 3 " 2 4 . 6 " 5 0 0 5 0
* 23" 3 0 .3 " 5 0 0 4 6
*23' 36. 1 " 5 0 0 4 2
* 2 3 " 4 2 . 1 " 5 0 0 3:6
* 2 3 " 4 7 . 8 " 5 0 0 2 9
* 2 3 " 5 3 . 8 " 5 0 0 2 5
* 2 3 " 5 9 . 8 " 5 0 0 2 2
*24 0 5 .6 " 5 0 0 1 8
* 2 4 " 1 1 . 7 " 5 0 0 1 4
* 2 4 " 1 7 . 4 " 5 0 0 1 0
* 2 4 " 2 3 . 2 "
i!^ 4 * -* jl '-^ 1 4
* 2 4 " 2 8 . 9 "
^ -ii cj q jij
* 2 4 " 3 4 . 6 " 4 9 9 9 5
* 2 4 " 4 0 . 5 " 49 987
* 2 4 " 4 6 . 2 " 4998 4
* 2 4 " 5 1 . 8 " 4 9 9 9 5
* 2 4 " 5 7 . 7 " 499 8 2
* 2 5 " 0 5 . 4 " 499 7 8
* 2 5 " 1 2 . 1 " 49 9 72
* 2 5 " 1 8 . 7 " 49 964
* 2 5 " 2 5 . 0 " 499 66
* 2 5 " 3 1 . 8 " 49 96 1
* 2 5 " 3 8 . 1 " 4995 9
* 2 5 " 4 5 . 4 " 49 95 4
* 2 5 " 5 1 . 2 " 499 6 8:
* 2 5 " 5 1 . 1 " 4 9 9 8 1
* 2 5 " 5 1 . 1 " 4 9 9 8 2
* 2 5 " 5 0 . 3 " 4 9 9 9 7
* 2 5 " 5 0 . 2 " 5 0 0 0 0
* 2 5 " 5 0 . 1 " 5 0 0 0 6
* 2 5 " 4 9 . 8 " 5 0 0 0 8
* 25 " 49 . 9 1 1 5 0 0 1 7
* 2 5 " 4 9 . 9 " 5 0 0 2 1
* 2 5 " 5 0 . 0 " 5 0017
* 2 5 " 4 9 . 4 " 5 0 0 1 0
* 2 5 " 4 9 . 1 " 5 0 0 1 2
* 2 5 " 4 8 . 8 " 500 1 2
* 2 5 " 4 8 . 3 " 5 0 0 1 4
* 2 5 " 4 8 . 4 " 5 0 0 1 0
* 2 5 " 4 8 . 1 " 5 0 0 1 2
* 2 5 " 4 7 . 8 " 5 0 0 0 7
* 2 5 " 4 7 . 8 " 5 001 8:
* 2 5 " 4 7 . 2 " 5 0012
* 2 5 " 4 7 . 0 " 5 0 O 1 7
* 2 0 " 3 5 . 4 " 5 0 04 5
* 2 0"3 5 . 4 " 5 0 0 2 0
* 2 0 " 3 5 . 4 " 4 9 9 9 4
* 2 0 " 3 5 . 3 " 4 9 97 7
* 2 0 " 3 4 . 9 " 4 997 0
a , r r
81
04
0 5
06
07
0 8
09
1 0
1 1
12
13
14
15
16
17
18
19
20
21
24
cr
£ 6
29
3 0
3 1
34
35
3 6
r'
3 9
40
4 1
42
4 3
44
4 5
46
47
48
4 9
50
5 1
52
cr; j
54
55
LATITUDE LONGITUDE READING
4° 5 2 " 2 1 . 5 " 118° 2 0 " 3 3 . 5 " 49960
4 ° 5 2 " 2 6 . 7 " 1 18 0 2 0 "3 3 . 4 " 499 36
4 * 5 2 " 3 1 . 2 " 1 1 8 ° 2 0 " 3 3 . 4 " 49994
4 5 2 " 3 6 . 6 " 11 8 * 2 0 " 3 3 . 9 1 1 5001 1
4° 5 2 ' '4 1 . 3 " 1 1 8 ° 20 " 33. 7" 50025
4 ,:' 52 " 46 . 2 " 1 1 8 ° 20''33 . 9 " 500 17
4 5 2 " 5 1 . 3 " 1 1 8 * 2 0 " 3 4 . 0 " 5 0 0 1 5
4° 52" 56 . 6 " 11 8 ° 20 " 34 . 2 1 1 500 1 4
4 * 5 3 " 0 1 . 5 " 11 8 ° 2 0 " 3 3 . 8 1 1 5 0 0 0 3
4 ° 5 3 " 0 6 . 0 " 118 ° 2 0 "3 3 . 5 " 4 9 9 7 3
4 ° 5 3 " 1 0 . 7 " 1 i 8 ° 2 0 " 3 3 . 4 " 49944
4°53" 1 5 . 7 " 1 1 8 ° 2 0 " 3 3 . 6 " 499 19
4 0 5 3 " 2 0 . 7 " 11 8 * 2 0 " 3 3 . 1 1 1 49922
4 ° 5 3 " 2 4 . 9 " 118 ° 2 0"3 3 . 0 " 4 9 9 2 6
4 ° 5 3 " 2 9 . 9 " 1 1 8 ° 2 0 " 3 2 . 9 " 49923
4 ° 5 3 " 3 4 . 5 " 1 1 8 ° 2 0 " 3 3 . 2 " 49922
4 ° 5 3 " 3 9 . 1 " 1 18° 2 0 " 3 2 . 8 " 49918
4 ,:' 53 " 43 . 8 " 1 1 8 ° 20 " 32 . 9 " 499 19
4 ° 5 3 " 4 8 . 2 " 1 1 8 ° 2 0 " 3 3 . 2 " 49910
4 0 5 3 "5 3 . 7 " 1 18° 2 0"3 2 . 8 " 4 9901
4 ° 5 3 " 5 8 . 8 " 1 1 8 ° 2 0 " 3 2 . 7 " 49891
4 0 5 4 ■ 0 4i 1 1 1 1 1 go 20 " 33 . 0 1 1 49894
4 0 5 4 " 0 6 . 5 " 11 8 2 1 " 37. 3 " 4 9 9 0 1
4 ° 5 4 " 0 1 .4 " 118°2 1 " 3 7 . 1 " 49903
4 0 53!" 5 5. 9 " 1 18° 21 " 37. 2" 49902
4 * 5 3:" 5 0 . 6 " 1 18° 21" 37. 2" 49901
4 0 5 3 "4 5 . 3 " 1 1 8 0 2 1 "3 6 . 9 " 49910
4 0 5 3"4 0 . 4 " 1 1 8 ° 2 1 " 3 7 . 4 " 4991 1
4':‘ 5 3 " 35 . 3 " 11 8 ° 21" 37. 3" 49923
4 5 3 " 3 0 . 0 " 11 8 0 2 1 " 3 7 . 4 " 4 9 9 3 3
4 °5 3 " 2 4 . 9 " 1 1 8 ° 2 1 " 3 7 . 6 " 49934
4 ° 5 3 " 1 9 . 4 " 1 1 8 ° 2 1 " 3 7 . 7 " 49953
4 ° 5 3 " 1 4 . 2 " 1 1 8 ° 2 1 " 3 7 . 7 " 49956
4 ° 5 3 " 0 9 . 2 " 1 1 8 ° 2 1 " 3 7 . 7 " 49967
4'- 53 " 04 . 0 " 11 8 0 2 1 3 7 . 8 " 4 9 9 8 3
4':' 5 2 " 58 . 7 " 1 1 8 ° 21 " 38 . 0 " 499 9 3
4* 52" 52. 8 " 1 18° 21 " 38. 4" 49997
4 ° 5 2 " 4 7 . 6 " 1 1 8 ° 2 1 " 3 8 . 1 " 49995
4 ° 5 2 " 4 2 . 6 " 1 1 8 ° 2 1 " 3 8 . 4 " 50002
4 * 5 2 " 3 7 . 1 " 118 0 2 1 " 3 8 . 5 " 5 0 0 0 0
4 ° 5 2 " 3 2 . 1 " 1 1 8 ° 2 1 " 3 8 . 3 " 49988
4 - 5 2 " 2 6 . 8 " 11 8 0 2 1 " 3 8 . 6 " 4 9 9 7 9
4 ° 5 2 " 2 1 . 8 " 1 13 0 2 1 " 3 8 . 9 " 49975
4 0 5 2" 1 6 . 9 " 1 1 3 0 2 1 " 3 8 . 9 " 49974
4 ° 5 2 " 1 1 . 6 " 1 1 8 ° 2 1 " 3 9 . 1 " 49979
4 0 5 2 " 0 6 . 6 " 11 3 2 1 " 3 9 . 1 " 49 9 9 3
4 0 5 2 " 0 0 . 8 " 11 iE i * 2 1 " 3 9 . 0 " 5 0 0 0 6
4 0 5 1 " 5 6 . 4 " 11:3 0 2 1 " 3 9 . 2 " 5 0 0 1 9
4 - 5 1 " 5 1 . 4 " 113* 2 1 " 3 9 . 2 " 5 0 0 35
4 ° 5 4 " 0 6 . 4 " 1 1 8 ° 2 3 " 4 5 . 3 " 49957
4 5 4 " 0 0 . 8 " 11 8 2 3 " 4 4 . 7 " 4 9 9 5 9
4 - 5 3 " 5 6 . 3 " 113 °2 3 " 4 4 . 5 " 49957
82
LOT ITUriE LONGITUDE REfiDINi
5 9
6 0
61
6 £
6 3
6 4
6 5
6 6
6 7
6 S
6 9
70
71
i * O
74
75
7 6
l' l'
r’ o
7 9
8 0
31
9 0
9 1
9 £
9 3
94
95
9 6
9 9
:00
:0 1
: 0 2'
: 0 3
:04
:05
:06
'0 7
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
cr
51
■ ■ j
cr “i
•_ * O 4 6 . iii
53 4 1
j
c -
.J ."l 3 6 . i
C “|
.J . * 1 3 0 . 6
53 24 . 9
cr
,_i .j;i
1 3 . 9
53 13 . 4
5 3 0 P
p
5 3 0 3
p
C
-I cl
C i"
-I C. 4
5 2 5 3 . 0
52 47
9
52 42 . 5
cr
■J cl 3 6 . 6
54 0 5 . 9
54 0 0 . 9
5 - •
c r
. j . 4
50 . 2
c
. j , - t
45
4 0
23 "44.7" 4 9 96 0
cl "44. 3 1 1 4 9 9 6 2
"43.5" 49 96 6
•“
"43.4" 4 9 9 6 8
1
" 4 3 . 6 " 4 9 974
cl - " 4 3 . 6 " 4 9 97 3
■ “
“4 3 .7 " 49 97 8
cl •- "43.6" 4 9 97 4
“
"43. 5" 4 997 9
cl - Z"44.3" 49 976
"44.7" 4 9 9 8 1
"44. 8" 4 9 9 8 3i
cl - Z" 4 4 . 7 1 1 4 9 9 3 0
"45. 2" 4 9 9 8 6
cl " 45.2 " 49 9 88
24 “4 4 . 5 " 4 9 9 8 9
24 "44.7" 4 9 9 8 1
2 4 " 4 4 . 8 " 4 9 9 8 6
24 " 4 4 . 6 " 4 9 9 8 9
2 4 " 4 4 . 3 " 4 9 9 9 1
24 "45.0" 4 9 9 9 3
24 " 4 5 . 4 1 1 4 9 9 9 2
24 "45.2" 4 9 9 9 1
24
O 1 1
4 9 9 9 0
2 4 4 9 9 8 6
24 "26.0" 4 9 9 8 4
2 4 " 1 9 . 9 " 4 9 9 8 0
24 " 14.0" 49 987
2 4 " 0 7 . 8 1 1 4 99 72
24 "01.7" 4 99 71
“i “
"55. 3 1 1 49 977
cl • Z" 49 . 3 1 1 4 9 9 7 2
• “> t
" 2 4 . 4 1 1 4 9 9 8 0
" 17. 9" 4 9 9 8 3:
•" » ■ “
11. 0" 499 77
"05.2" 4 9 9 8 1
• ”i • “
"5 9 . 1 " 4 9 9 7 8
"52.7" 4 9 9 74
cl cl "47.0" 4 99 6 8
•-» ■ -
•_ « ■ 4 996 0
ci 7 1 d l 1 1 49951
ClL 2 1.0" 4 994 7
“l • ”
■ ' 14.9 " 4 994 5
" 0 8 . 6 " 4 994 1
"0 2 . 2 " 4 9 9 3 -: 8
"5 5 . 3 " 4 9 9 3 1
"49.1" 4 9 9 3 5
"41.6" 4 9 9 3 3:
"35.4" 4 9 9 3 3
"2 3 . 5 " 4 9 9 2 7
"22.5" 4 9 9 2 9
" 16.4" 4 9 9 3 0
83
2 0 8
ii 0
9
2 1 0
2 1 1
2 12
2 1
2 14
15
2 16
2 1 r"
li. 1
o
2 1
9
2 2 0
2 2 1
224
2 3 9
2 40
241
242
2 43
244
245
246
247
248
249
250
251
252
2 53
254
54
54
5 4
LATITUDE
0 7
0 3
0 0
57
5 3
50
46
43
3 9
3 6
cr
1 7
1 5
1 2
0 8
05
0 2
58
55
51
4 8
44
54' 0 5
cr
,_ i
54 0 8 y
54 1 4 i
54 1 9 » '*
54 25
5 4 3 0 0
5 4 34
9
54 3 9 r'
54' 44 4
54 ' 4 9
9
54 5 0 0
54 ' 5 0
“i
54' 50
cr
,_i
54 ' 50
c
._i
54 ' 50 5
54 '
cr cr
._i ,j 4
55' 0 0
“j
55 ' 05
c*
.J
5 5 1 0 5
55 ' 15 l'
55 ' 20 1
cr cr ■
.J
cr
c i • J G
cr cr *
_i ._i
3 0 5
I TUDE READ IN
1 " 1 0 . 2 " 4 9 92 9
1 " 0 3 . 9"
0 " 5 8 . 1 " 49922
0 " 52. 4" 4 9 9 25
0 4 6 . 4" 4 9 9 3 0
0 '' 4 O .
T 1 1
i 4 9 92 5
2 " 41 .
O 1 1
4 9 9 2 7
' c L"46. 0 " 4 9 9 3 4
c L" 5 0.
* -! 1 1
4 9 9 3 7
d "54. 6 "
4 4 4. -1H
"59. 0 " 49 9 4 7
U 3 . 9 1 1 4 9 9 5 3
U 8 . 4 9 9 5 6
j " 1 2 .
cr ii
._ i
4 9 96 3
j "17.
ii
4 9 9 7 0
•j
" 21 . 6 " 4 9 96 5
2 6 . 9 1 1 4 9 9 72
°2 4
* 24
o 24
* 2 4
o 24
* 2 4
o 24
* 25
* 25
° 25
° 2 5
i j -i cr
i-i cr
" Cl 'J
O cr
i' i -i cr
" cl J
t j -i cr
2 6
■ - 2 6
2 6
2 6
2 6
° 2 6
2 6
2 6
2 6
2 6
0 2 6
2 6
44
4 9
cr ■ “!
. 2 *
57
02
0 6
1 1
1 6
21
2 6
3 0
45
47
47
4 8
4 8
4 8
4 9
4 9
4 9
4 9
55
01
07
1 3
21
20
20
28
20
21
2 1
24
‘t ? ? r i
4 9 9 7 6
4 9 97 7
4 9 97 3
4 9 97 0
4 997 0
4 9 96 7
4 9 97 0
4 9 9 i'14
4 9 97 U
4 9 9 7 3
4 9 9 6 9
5 0 0 1 6
5 0 0 1 6
5 0 0 1 6
5 0 0 3 3
5 0 0 2 9
5 0 0 3 8
5 0 0 3 5
5 U 0 3 6
5 0 0 3 5
5 0 0 3 4
5 0 0 3 2
5 0 0 3 2
5 0 0 3 3
5 0 0 3 1
5 0 0 3 4
5 0 0 3 6
50035
5 0 0 2 9
5 0 0 2 4
508 1 8
5 0 0 0 8
5 0 0 0 2
4 q 9 9 9
84
: b 0
:6 i
! 6 2
! 6 3
164
:65
1 6 6
2 b o r
! 6 8
!69
'70
'71
. f ill
! r'
174
:75
' 7 6
, I I
. r o
1 7 S
! 8 0
'8 1
284
2 H b
' ft ft
! 9 0
:9l
! 9 2
! 9 3
:94
;95
2 9b
! 9 i'1 '
! 9 8
1 4 4
; 0 0
: 0 1
102
: 0 3
104
:0 5
! 0 h
107
! 0 S
! 0 9
1 1 0
! 1 1
. J . J
5 5
5 5
5 6
5 6
5 6
5 6
5 6
5 6
5 6
5 b
5 6
57 "
57 "
5 7 '
5 4"
5 4"
54 "
54"
5 4 "
54 "
54 "
54"
54"
54"
54"
54"
54"
54 "
54 "
54"
54"
54 "
cr cr • '
•J • _ >
55"
5 5"
55"
55"
5 5
5 5 "
55"
5 5 "
55"
5 5"
5 6 "
UDE LONG 11 UDE
“i cr
._j . j
C II
■ _l 1 1 S* 26" 25 . 6
4 0 ■ 2 1 1 8 ° 2 6 " ill f’ . 0
4 5 ■ 2 1 1 8 ° 2 6 " cL y
j
50
cr ii
■ •_ ! 1 1 3 2 6 " 2 9 ■ y
5 5 . 4" 1 1 0 : 2 6 " 3 0 ■ r
0 1 0
cr ii
1 1 8 * 2 6 " 31 . 6
0 5 ■ i * 1 1 8 2 6 "
• “ “i
. y
1 0 . 6 " 1 1 8 ° 2 6 " 3 4 ■ 2
1 4 . 2 " 1 1 3 ° 2 6 " y 5 . i
1 0: ■ 1 1 3 * 2 6 " 36 ■ y
!= : y
“t II
1 1 3 2 6
■ “ c*
1 ■ r *
ii! y . 1 " 1 1 8 ° 2 6 " 3 5 . lii
y . 0 " 1 1 8 ° 2 6 " 34 . 9
o r
O M
1 1 3 ° 26" 35 ■ 0
4 3 . 0 1 " 1 1 3 * 2 6 " 3 4 . 3
4 8 . 0 " 1 1 8 ° 2 6 " 34 ■ 2
C * “i
,_ i .-i
. 0 " 1 1 8 ° 2 6 " ■ i
5 8 . 2 '' 1 1 3 ,:,2 6 J . 4
013 . 4" 1 1 3 ,:‘2b . 5
0 7 . 6" 1 1 3 * 2 6 " 3 4 ■ 1 1 1
1 1 . 9" 1 1 8 2 6 '
■ j “i
9
45 . 4" 1 1 8 2 6 " 20 . 4
40
" * ? II
■ r 1 1 8 2 6 " 20
•j
3 5 . 5" 1 1 8 ° 2 6 " 2 0 . 0
0! 0 1. 6 1 1 118° 26" 20 ■ ii!
2 5
"7 II
■ r 1 1 8 ° 2 6 " 20 . l
2 1
-? n
■ r 1 1 3 ° 2 6 " 20 . l
1 6
•~i M
1 1 8 ° 2 6 " 19 ■ y
1 2 . 0 " 1 1 8 C 26" 1 9 • 9
019 . 1 " 1 1 8 ° 2 8 J . ii!
1 4 . 2 1 1 3 ° 2 0 "
• * 1 ' T «
1 9
-t ii
1 1 8 * 2 0 " . 1
2 4 . 1 " 1 1 8 ° 2 0 "
•j “i
. 4
2 9 . 1 " 1 1 3 ° 2 0 o y
“l
3 3
i” i il
1 1 3 ,:' 2 0 y . 3
3 9 . 0 " 1 1 3 ° 2 0 "
T ; c*
■ J
45 . 0 " 1 1 3 ° 2 0 -• j
o
50 . 2 1 1 118° 20" 3 4 . 0
5 5
M
1 18° 20
:y; j
. 8
0 0 1. 4" 1 1 8 2 0 .y .y ■ r
0 5 ■ 9 " 1 1 3 ° 2 0"
“i “i
■ y
1 2 . 1 " 1 1 3 ° 2 0 " 3 4 . ii!
1 7 . 4" 1 1 8 2 0 o .j! . 9
iii y . 2 1 1 8 ° 2 0 " 3 4 . 4
2 9
-i ii
1 1 8 ° 2 0 " 34 . 5
3 4 ■ f 1 1 3 * 2 0 " 34 . 6
40 . 6 M 1 1 3 * 2 0 " 34
c*
■ J
45 - 9 1 1 1 1 0 : 2 0 " 35 ■ ii!
51
n
113° 20" 3 4 9
5 6
C 1 !
■ J 1 1 0: ° 2 0 " 35 . i
0 1
“» I'
1 1 8 ° 2 0 " 3 4 9
05
* " ? II
■ I 113° 20" 3 5 I I ill
READ INi
4 9 9 9 9
5 0 0 0 1
5 0 0 0 7
5 0 017
5 0 0 2 3
5 0 0 2 9
5 0 0 2 7
5 0 02 5
5 0 0 2 0
5 0 0 1 0
4 9 9 8 9
499 7 0
49 954
49 94 0
4 9 9 2:8
49 9 4 0
49 92 2
49 91 3
49916
49 92 0
4 9 9 2! 0
5 0 0 2 .' 7
5 0 0i 2 9
5 0 013 0
5 01012 8
5 0 0 2i 1
5 01012 8
5 0 014 1
5 0 012i 2
4 9 8 8 7
49 835
4 9 8 8 2
4 9 3 7 9
4 9 3 8 4
4 ftft ft
4 9 3 9 2:
4 9 2! 9 8
4 9 8 9 4
49 895
4 9 9 1 2:
49921
49 917
4 9 9 3 8
'-J ^ ‘ -4
4 9 9 3 1
49 92 2 :
49926
4 9 9 2:4
4 9 9 2:5
4 9 9 3 1
49 9 4 2
49 947
85
LATITUDE LONGITUDE READ I Hi
3 9
40
41
42
43
44
45
46
47
43
i^. '™ l
50
51
6 0
61
6 2
F i > !
4° 56
4 ° 5 6
4 ,:i 5 5
4* 5 5
4 5 5
4° 5 5
4° 55
4° 55
4° 5 5
4 ° 5 5
4° 5 5
4 ° 5 5
4 ° 5 5
4° 5 4
4° 54
4° 54
4*54
4° 5 4
4 5 4
4*54
4 ,:’54
4° 54
4 ,:'54
4*54
4 5 4
4° 54
4° 54
4 5 4
4 ,:'54
4 * 5 4
4° 54
4° 54
4*54
4*54
4*55
4 ,:'55
4 5 5
4° 55
4° 55
4*55
4 * 5 5
4 5 5
4° 55
4° 55
4° 55
4° 55
4 5 6
4° 56
4 ,:'54
4 5 4
4° 54
4° 54
0 7 2
0 2
j^ i
56 9
c r “ i
0
4 6 » i“
41 f
-i o
0
3 3 i
1 8 4
1 3
cr
0 8 f
0 3
■ I
cr i” i
._i i~i £
5 3
48
Ii
42
r 4
27 1
21 0
1 6 t
1 1 t
09 l£
16
1
1
C l 1
4
-i “i
6
• j C i
1
40
9
45 0
49 4
cr -i
f
57
! - ■
0 2 3
07 4
1 2 5
1 7 4
2 7
1
•-« f
42
4 6
51
cr
5 6 £
0 1 c
1 2 i= i
28 5
20 6
2 0 f
2 8 i''
0
0
2 0
0 . 6
0 . 3
1 . 5
1 . 5
1 . 4
1 . 4
• “ C
isi ■
1 . 1
2. 1
1 . 9
1 . 9
1 . 8
1 . 9
2 . 4
2 . 0
2 . 0
3 9 . 9
4 6 . 3
52. 4
4 9 9 2 9
4 9 9 3 5
4 9 9 3 9
4 99 4 7
4 9 941
4 995 0
49 947
4 9 9 3 8
49 94 0
4 9 9 3 2
4 9 9 3 4
4 9 9 2 2
4 9 9 0 9
4 9915
4 9 9 2 0
4991 9
4 9916
4 991 6
4 991 3
4 99 1 1
4 9 8 9 5
49 898
4 9 9 0 3
4 9 92 7
1 * ^ ‘ '" d l”l
49 927
4 9 9 3 1
4 9 9 3 3
4 9 9 3 6
4 9 9 3 9
ii^ . 4 4 ii^., -j
49 94 2
4 9 95 3
4 9 9 5 6
49 964
4 9971
49 9 76
4 9 9 8 2
4 9 9 8 8
4 9 9 9 5
4 8 '* * ^ 6
5 9 0 8 2
5 0 0 0 7
5 0 0 0 2
5001 1
5 0 0 1 0
5 0 0 1 0
5 0 0 1 4
4 9 :3 E
4 986
4 9 8 £
4 9 8 E
86
LRTI TUBE LONGITUDE READING
6 8
6 9
7 0
71
74
75
7 9
8 0
81
84
8 9
9 0
9 1
9 2
9 3
94
95
98
9 7
9 8
3 9
9
4 0 0
4 0 1
40 2
40
■Z‘
40 4
40 . j
40 b
40 r *
40 8
40
9
4 1 0
4 1 1
4 12
41
4 1 4
4 1
cr
,_i
4' 54
4' 54
4' 54
4 ‘ 5 4
4' 54
4' 54
4'- 54
4' 54
4' 54
4 ’ : 54
4'- 5 4
4 ,; 54
4 '■54
4'- 5 4
4'- 54
4': 5 4
4'- 5 4
4 ‘ : 54
4'- 57
4 57
4': 57
4': 5 7
4 5 8
4': 5 8
4': 5 8
4': 58
4': 5 8
4 ,: 5 8
4 ,: 5 8
4 ,; 56
4': 56
4 ,; 58
4 ‘ : 56
4': 5 6
4 ,: 5 6
4': 5 8
4': 56
4': 56
4': 56
4': 5 6
4': 54
4- 54
4': 54
4': 54
4': 54
4': 54
4': 54
4': 54
4': 54
4': 54
4': 54
4': 54
2 0
20
20
20
20
20
20
20
20
2 0
20
20
21
2 0
21
21
21
21
1 8. 5
1 4 .0
0 9. 1
0 4 . 0
5 9 . 1
5 4 . 2
4 9. 3
4 4 . 2
3 9. 8
2 4 . 1
5 8. 9
5 3. 7
4 8 . 3
4 3. 0
1 7 .4
1 2 . 4
58 . 0
54 . 2
50. 8
4 7 . 0
4 3 . 7
2 9 . 0
25 . 4
1 4 .4
04 r 4 9 8 8 4
1 0 9 11 4 9 8 8 0
1 r *
•71 I I
4 9 8 Si 2
* 7 * "
4 9 8 8 r
■7
9
9 11 4 9 8 9 5
49 0 4 9 9 0 0
c
7 0 "
4 3 1— t '“ r l l,_ ^
0 2 r’ 4 9 8 9 8
0 8
0 M
4 9 9 0 7
14 9 11 499 1 1
•7
1 £ M 4 99 2 0
“
1 ' 4" 49 9 2 0
4 11 49 9 27
47 c! 4 9 9 2 8
c:
4 4 " 4 9 9 3 6
0 0 6 " 49 9 35
0 6 9 " 4 4 H . “1 '4
1 2 1 " 49 9 41
45 0 " 4 9 9 8 5
43 0 " 4 9 9 8 6
41 8 11 5 0 0 0 4
41 1 1 1 5 0 0 1 0
41 2 5 0 0 0 2
41 0 " 5 0 0 0 1
41 5 11 5 0 010 2
41 5 "
4 9 9 9 9
41 r" 4 9 9 9 7
41 6 " 5 0 ti 0i 9
41 5 " 5 0 01 0 0
4 0 6 " 5 01010 '.3
■ j?
9 " 5 010 3 9
9 " 5 0 0 0 9
: ] 8 0 " 4 9 9.3 6
“
8 0 " 49 96 4
8 1 " 49951
O
6 " 4 9 94 7
8
1 1
4 9 9 '3 6
jlj
i' 4 9 9 3 0
8 6 " 49 9 1 8
•7
8 i 4 9 9 2 6
4 9 " 4 99 1 4
4 r 1 " 4 9 9 1 7
cr
1 0 " 4 99 1 6
5
m
4 9 92 8
f 9
•-1 n
499 17
0 3 4" 4 991 8
0 \ 2 499 1 7
1 1 6 " 499 1 9
1 b 0 " 4 9 9 2 0i
•7
0 4" 4 9 9 2 4
•7
4 0 11 4 9 9 2 4
•7 •71
1 1 1
tij. * " ^ i j-'
87
416
4 1 7
41 3
4 1 9
420
421
422
42 3
424
425
42 6
427
428
429
430
431
432
43 3
434
435
4 3 6
43 7
4 3 8
4 3 9
440
441
4 4 2
443
444
445
446
447
448
44 9
4 50
451
452
4 53
454
455
4 56
457
4 58
4 59
4 6 0
461
4 62
46 3
464
4 65
4 66
4 67
LRTITUnE
56 5 1 . 4
56 4 6 . 3
56 3 5 . 9
56 3 1 . 3
56 2 5 . 9
56 2 1 . 1
56 1 6 . 6
56 1 1 . 4
56 0 6 . 9
56 0 1 . 8
55 5 6. 8
cr cr
•J 5 2 . 0
c c
._l 4 7 . 1
cr cr
•J 4 2 . 5
5 5
• j
55 3 1 . 8
5 5 2 6 . 6
5 5 2 8 . 2
c cr
._i 1 4 . 0
c cr
•J -J 0 8 . 7
c c
._l ._l 0 3. 7
54 5 8. 7
54 4 7 . 7
54 42 . 7
54 3 8 . 0
54 3 3 ■ 3
54
o
54 2 2 . 6
54 1 6 . 4
54 1 1 . 5
54 4 9 . 0
54 44. 1
54 3 9 . 2
54 34 . 3
54 2 7 . 0
54 2 1 . 7
54 1 6 .1
54 1 1 .1
cr cr
•J J 1 5 . 3
cr cr
. j .j 1 5 .1
cr cr
.J 1 5 .3
55 1 5 . 0
cr c-
1 4 .1
55 1 4 . 3
55 1 4 . 0
55 1 3 . 6
5 5 1 4 . 2
cr cr
. J 1 4 . 3
cr cr
\J J 1 4 . 4
55 2 0 . 9
55 1 8 . 4
cr cr
. J 1 6 . 1
NG I T U n E RERDIH
*22 "4 5 . 9 " 5 0 0 1 9
' 4 5 . 9 " 5 0 0 27
,J d •- ' 4 6 . 5 " 5 0 0 3 4
,J cl Z ■ ' 46 . 3 " 5 0 0 2:0
u V ;-
" 4 6 . 6 " 5 0 0 1 8
d !- " 4 6 . 8 " 50 0 17
cl Z " 46.7" 5 0 0 0 9
cl Z " 46 .5 " 5 0 0 1 1
° d £ " 4 6 . 8 " 5 0 0 0 6
cl I " 46.7" 5 0 0 0 7
cl' Z "46.6"
4 9 9 9 9
,J cl' -I " 4 6 . 1 " 5 9 0 0 1
,J d Z " 46.5" 5 L t 0 0 2
* j v ;-
" 46.2" 5 0 0 0 01
* ■ ' d Z " 45.9" 4 9 9 9 6
cl Z " 4 5 . 8 " 4 9 9 8 8
■ j -
" 4 5 . 5 " 4 9 9 8 6
d Z " 45.4" 4 9 9 8 5
d Z " 45.4" 4 9 9 8 1
,J cl -I "45.6" 4 99 7 3
d Z "4 5 . 4 " 4 99 72
cl Z" 45.0" 4 9 9 6 8
d Z"45.4 " 4 996 9
d ' - Z" 4 5 . 3 " 4 996 2
d Z " 4 5 . 3 " 4 9 9 6 2
d Z "45.3" 4 9 9 6 1
d Z "45.4" 4 995 7
d Z"45.6" 49 964
d Z "45.3" 4 99 5 8
d 'z "45.0" 4996 1
*24 "46.1" 5 0 0 2 5
* 2 4 "45.7" 5 01012 0
*24 " 4 5 . 1 " 5 0 0 1 8
*24 "44.8" 5 010 1 9
*24 " 4 4 . 3 " 5 010 0 6
*24 "44.3" 4 9 9 9 6
*24 "44.5" 4 9 9 9 5
*24 "44.5" 4 9 9 8 9
*24 "43.2" 5 01012; 6
*24 36. 8 " 5 01014 0
* 24 "30.2" 5 010 3 4
* 24 "23.9" 5 010 2 7
* 24 " 1 0 . 9 " 5 01 0 1 0
* 2 4 "04.4" 5 0 0 0 01
d Z"57.9 " 4 9 9 9 6
d 'z "51.8 " 4 9 9 8 3
d Z "46.5" 4 9 9 8 1
d . “"39.5 " 4 9 9 8 3
v ; -
" 3 2 . 9 " 4997 7
v ^
"49.3" 4 9 9 8 2
d d "54.8" 4 9 9 8 01
'-1
0 0 . 6 " 4 99 7 9
88
LOT I TUBE LON
4 g a
46 9
4 70
471
472
4 73
474
475
4 7 6
477
4 73
4 79
4 3 O
4 3 1
432
43 3
43 4
43 5
4 3 6
43 7
43 3
4 3 9
4 9 0
4 9 1
492
4 9 3
494
495
496
49 7
4 9 3
4 99
5 0 0
501
50 2
5 0 3
50 4
5 0 5
5 0 6
5 0 7
5 0 3
5 0 9
510
51 1
512
5 1 3
514
515
516
517
5 1 3
5 1 9
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4*
4 ’
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
. J . J
55"
c c; ''
■J -J
55 "
54"
54"
54 "
54 "
54"
54"
54"
54"
54"
54 "
54"
54 "
5 4"
54"
54 "
54 "
54"
54 "
54"
54"
54"
54"
54 "
54 "
54 "
54 "
54 "
54 "
54 "
54 "
54 "
54"
■J -J
55
c; cr
■J J
55
5 5
cr cr
■J
cr c
■_i
cr cr
i 3
b
10.
9
0 8 fc l
06 1
0 3
cr
._ l
0 1 1
59 0
56 4
54. cl
52 0
49.
cr
47 4
45. 4
42
9
41 0
3 3
tr-
.j
■ - cr
-J ■
9
3 4 r’
3 4. 2
3 2. 4
:0 . :
2 9. 0
2 b . 4
24. 1
21
9
20 0
i 7 4
14. r
12.
0 9 i'
07 5
0 4 0
0 3 2
02
01 O
02 0
50 4
50 1
50 4
50
9
5 i 0
49. 6
50
cr
,_ i
53
9
54. r
55
■ I;
19.
9
19.
9
19. 1 3
1 9.
C j
GI TUBE EEHD IN
2 3 " 0 6 2 " 4 9 9 8 1
23" 1 1 9 1 1 49975
2 3 " 1 7
O 1 1
4 9 9 7 0
2 3 2 3
cr n
._ i
4 9 974
2 3 " 2 9 4" 4 9 96 9
23" 34 9 " 4 9 96 9
2 3 " 4 0 1 " 49 96 5
23 " 45 6 " 4 9 96 5
2 3 " 5 i 6 " 49 96 a
-i • * cr -p
4 " 49 977
2 4 " 0 3: 4"
4 4 !-! ^
24" 07 4" 4 997 9
2 4" 12 9 " 4 9 9 9 1
24' 18 8 " 4 9 9 9 9
24 " 24 1 " 5 0 0 0 3
2 4" 29 r 5 0 0 0 3
24 " 35 0 " 50012
2 4" 40 6 " 500 1 4
24" 47 8 1 1 5 0 0 0 5
24" 55 0 " 50015
25 " 01 6 " 5 0 0 0 6
2 5 " O 8 y 5 0 0 1 6
24" 46 0 " 5 0 0 i 4
24" 50 o 5 0 0 0 9
24 " 55 6 " 5 0 0 0 2
2 5 " 0 0 9 " 5 0 0 0 7
2 5 " 0 6
C II
.J 5 0 0 0 6
25" 12 1 = 1 1 1 5 0 0 0 7
25" 17 9 1 1 5 0 0 0 9
25 " 2 3
•ii ii
5 0 0 2 0
2 5 " 2 9 5" 5 0 0 1 7
25" 3 5 3 5 0015
2 5 " 4 0 i " 5 0 0 1 7
25 " 46 i* ' 5 0 0 1 5
2 5 " 5 1 0 " 5 0 0 1 2
2 5 " 5 6 4 " 5 0 0 2 6
2 6 " 0 2
i”i II
5 0 0 3: i
2 6 " 0 9
* " < 1 1
5 0 0 2 7
2 7 " 0 9 1 = 1 " 5 0 0 1 3
2 7" 0 3 r 5002 1
26" 57 9 1 1 50021
26 " 51
i“i i I
50025
26 4 6 3 5 0 0 2 5
2 6 " 4 0 4" 5 0 0 3 2
2 6 ' 3 4 .“ 1 5 0 0 2 6
26 2 3
■ “i II
5 0 0 1 4
2 6 17
II
5001 1
26" 1 1
i“i ||
5 0 0 0 1
2 6 " 5 6 0 " 500 1 7
2 6 4 9 9 " 5 0 0 1 3
26 4 3 r' 500 i 7
2 6 3 7 4" 500 14
8 9
LATITUDE LONGITUDE READING
52 0 3 4
C C
•J J 1 9 . 6" 1 i 3 * 2 6 3 1 4 " 5 0 0 1 1
52 1 3 4
cr cr
1 9 . 7 " 1 1 8 ° 2 6
5
" ? U
1 5 0 0 1 2
cr ■ - -i
3 4 55 1 2 . 6 " 1 1 8 ° 2 6 14 4 " 50 02 1
5 iii i ■ ' 3 4
cr cr
•J ■ J 1 5 . 4 " 1 1 8 2 6 O 9 5 " 50 01 8
5 2 4 3 4 55 1 7 . 6 " 1 1 8 ° 2 6 0 3 r ’ 5 0 0 2 0
c r •" cr
.j cL -J 3 4 54 5 1 . 0 " 1 1 8'-' 2 0 6 5 0 0 3 5
5 2 6 3 4° 5 4 5 1 . 3 " 11 y d ( 0 0 0 " 5 0 0 3 9
5 2 7 3 4 ,: 54 5 1 . 2 " 11 y ,j 2 b 54 2 1 1 5 0 0 3 9
cr • * * * ! "i
•J cl O 3 4 54 5 1 . 1 " 1 1 8 ° 2 6 4 8 1 " 5 0 0 4 0
52 9 3 4 54 5 3 . 6 " 1 1 8 ° 2 6 44 0" 5 0 0 4 3
5 3 0 3 4 54 5 3 . 6 " 1 1 8 ° 2 6
- » 'I'
4 " 5 0 0 3 4
531 3 4 54
cr ii
. “ i o m . j
i i o o cr
1 1 ii. J 16 6 " 5 0 0 2 0
cr .-i
3 4 54 3 8 . 4 "
1 1 f t F
16 6 " 5 O O 1 8
5 3 3 3 4 54 4 3 . 1 "
1 1 ft ° F i 16
-? I I
r 5 0 0 2 0
5 3 4 3 4 54 4 7 . 7 "
1 1 ft '-1 F i
16 6" 5 0 0 2 3
cr •- cr
•J -I 3 4° 54 52 . 9 "
1 1 p ; o • ;> p ;
17 0 " 5 O O 3 1
5 ’ -3 5 3 4 54 5 7 . 4 " 1 1 8 ° 2 5 1 7 5 0 0 2 9
cr •- - r *
• _ i o r 3 4
cr cr
•J J 0 2 . 9 " 1 1 8 '- 2 5 18 ii! " 5 0 0 3 1
5 3 S 3 4
cr cr
.j ._ i
0 8 . 2 "
1 1 ft P
13 6 " 5 0 0 3 7
53 9 3 4 55 1 3 . 5 "
1 1 jlj O ■ " » cr
18
-? ii
r 5 £i 0 3 9
5 4 0 3 4 55 1 8 . 6 "
1 1 O O • " ! ' cr
1 8
O 1 1
5 0 0 4 0
541 3 4 55 2 3 . 5 "
1 J ;I ; • : « " * c r
1 9
• - j n
5 0 0 3 6
5 4 2 3 4 55 2 3 . 1 " 1 1 8 ° 2 5 1 9 9 " 5 0 0 4 3
5 43 3 4
cr cr
•J J 3 2 . 9 "
1 i O « : ■ “I cr
20 r 5 0 0 3 9
5 4 4 3 4 ,: 55 3 8 . 1 "
1 1 O O cr
1 1 c. . J 21 b 1 1 5 0 0 4 7
5 4 5 3 4 5 5 4 2 . 7 "
1 1 O O c]
li! ii! 5 1 1 5 0 0 5 1
5 4 6 3 4
C C
._ l ._ l
4 7 . 6 "
1 1 O 'I ' cr
i = i ‘ iJ ii! 5 £i 014 6
5 4 7 3 4 55 5 3 . 1 "
1 1 p
24 ii! 5 0 0 4 1
54 3 3 4 55 5 7 . 7 "
1 1 O ' j cr • -i r
c l J 0 " 5 0 0 3 1
5 4 9 3 4 5 6 0 2 . 5 " 1 1 8 ° 2 5
5 r * 5 0 O 3 2
5 50 3 4 5 6 0 7 . 9 " 1 1 8 ° 2 5 2 6
cr ii
.j 5 0 012 8
551 3 4 5 6 1 3 . 5 "
1 1 ft o " ■ p ;
2 f ii! " 5 0 0 1 2
5 5 2 3 4 5 6 1 8 . 1 "
1 1 ft v F
2 y 0 “ 5 01010 7
5 53 3 4 5 6 2 3 . 1 "
1 1 p ; o p ;
2 y
O 1 1
4 9 9 9 8
5 5 4 3 4 ,: 55 5 5 . 4 " 1 1 8 * 2 6 0 5
l ” l I I
5 0101016
5 5 5 3 4 55 5 4 . 9 " 1 13°2 6 0 0 5" 5 0 011 4
5 56 3 4 5 5 5 4 . 2"
i h i” i" i • “ cr
1 1 O cl J 5 5 .ji 5 0 011 5
5 5 7 3 4 55 5 3 . 4 "
1 1 jlj O “■ cr
50 9 1 1 5 0 0 1 8
5 5 8 3 4 - 55 5 3 . 5 "
1 1 “■ p |
45
-? n
i 5 0 0 1 2
5 5 9 3 4 55
c r “ i -? ii
•_ > o . r
1 1 T - ' P i
3 9
n
r 5 0 0 3 1
5 6 0 3 4 - 55
cr • “ cr u
,_ i .-i m ._ i 1 1 P i
•J 3 b M 5 0 0 3 4
561 3 4 ° 5 5 5 4 . 3 " 1 1 8 2 5 2 y 1" 5 010 3 9
562 3 4 55 4 6 . 0 " 1 113 ° 2 4
cr i-i
_ l Q 6 " 500 41
5 6 3 34° 55 4 6 . 0 " 1 1 3 ° 2 5 0 3 1 " 5 0 0 4 3
564 3 4 55 4 8 . 6 " 1 1 3 ° 2 5 07
r . ii
5 010i 4 9
56 5 3 4 55 5 0 . 4 " 1 1 8 ° 2 5 1 2
-? ii
r 5 0 0 4 7
5 66 34° 55 5 1 . 3 "
i i o o F
18 4 " 500 4 7
567 34'-"' 5 5 1 9 . 3 " 1 1 3 * 2 5 46 2 1 5 010i 2 6
5 6 S 3 4 ‘ :' 55 1 8 . 8 "
i i o o r * cr
4 0 2 5 01012 7
5 6 9 3 4 °
cr cr
._ i .j 1 8 . 5 "
h . i-i -i cr
1 1 O ' d
■ 1 « ' J
9 " 5 01013 8
5 70 3 4 * 55 17 .9 "
i i p ; v f
ii! T 5 01014 0
571 3 4 55 17 .0 " 1 1 8 * 2 5 12 5 " 5 01014 1
90
LRTI TiJDE
h 7 ii! 3 4 0
cr cr ■
■ j _ ■ 1 b O
5 73 34 55" 1 6 d
574 34 55" 15
cr
. j
cr “? cr
■J i' 34 55" 14 9
576 34 54 " 46 9
577 34 5 4 " 5 1 * ”1
5 73 34 5 4 " 5 6 6
5 7 9 34 5 5 " 0 1 6
5 S 0 34 5 5 " 0 6 9
531 34 55" 1 1 6
cr i-i •-«
■ .J C * c l 3 4 55" 16 4
cr “» -i
•_ * O !• 3 4 55 " 21
• ”i
534 3 4 5 5 26 5
cr i-i cr
■J 'I' -J 3 4 5 5 " 3 1
0
536 3 4 55 " 37 1
cr j-i * * : «
-i O i * 34 55 " 42 1
cr i~ i » -i
. j i”i i- i 3 4 55 " 47
5 y 9 3 4 55 55
0
5 9 0 3 4 55" 6 0 0
59 1 34 5 6 " 04
cr
._i
5 92 34 5 6 0i 9 y
5 9 3 34 55 " 41
o
594 3 4 55 " 41 6
595 3 4 55 " 41
■ i
596 3 4 55 " 41 5
5 9 7 3 4 55 " 4 1 1
5 9 8 3 4 55 " 40 r'
5 9 9 34 55 " 41 1
6 0 0 3 4 55 " 41 1
6 0 1 3 4 55 " 41 0
6 0 2 3 4 55 " 41 0
6 0 3 34 54 " 1 1 6
6 04 34 5 4 " 0 9
9
6 0 5 34 54" 1 1 5
6 0 6 34 54" 1 3 0 1
6 0 7 3 4 54" 10 y
6 0 3 34 5 4 " 0 9 2
6 0 9 34 54 0i 6 i'
6 1 0 3 4 54" 04 8
61 1 34 5 4 " 0 3 4
612 34 5 4 " 0 3
6 1 3 34 54" 12 4
614 34 54" 17 0
615 3 4 54 " 22 .-!
6 1 6 3 4 54" 27 0
617 3 4 54 " 31 1 *
6 1 3 3 4 54" 36 f
6 1 9 34 54 " 41 0
620 34 54 " 46 i
62 1 3 4 54 " 51 d
6 2 2 3 4 54" 56 b
b d O 34 55" 01
Ci
1-16 I IU HE R E fi Ii I H
° 2 5 "05. 9 " 5 0 0 4 7
° 24 "59. 8 " 5 01014 6
* 24 " 5 0:. 1 1 1 5 0 0 4 5
* 24 " 4 6 . 4" 5 0 0 4 7
o 2 4
"05. 0 " 4 9 9 8 0i
* 2 4 " 0 6 . 6 " 4 9 9 8 6
* 2 4 " 618. 9" 4 9 9 9 1
* 2 4 " 1 1 .
”■ ■ >
4 8 8 8 1
* 2 4 " 1 3. r ' 5 0 0 0 2
*24 "15. 9 1 1 5 0 0 1 0
*24 " 16. 6 1 1 50 014
*24 " 16. 6 1 1 5 01012 0 1
* 2 4 " 16. y 5 0 0 2 2
* 2 4 "17. i " 5 0 012 4
* 2 4 "17. cl 5 0 0 2 4
*24 "17. r’ 5 01011 9
* 2 4 "17. 6 i! 5 0018
*24 2 2. 0 " 5 0 0 1 7
*24 " 25. 1 1 1 5 01011 8
* 2 4 2 6 . 5 " 5010 1 5
* 2 4 2 izi. 1 1 1 5 0 1 0 1 1 0 1
* 2 4 " 4 8 . 0 " 5 0 0 2 9
* 2 4 " 41 . 2 5 0 0 3 1
* 2 4 " 3 4 . 4"
5 0103
*24 2 7. 6 " 5 010 3 1
*24 "24. 2 1 1 5 0 0 :3 1
*24 " 1 2 . 4 “ 5 01011 3
* 2 4 " 0 7.
•-i ii
5 010 016
* 2 4 " 0 0 1 . 1 " 5 0 0 0 1 0
d • “ I" 5 3 . 8 " 5 0 0 0 1 1
* J d O" 4 5 . 0 1 1
° 2 b "25. 8 “
5 01010:
° 2 b 3 2 • 1 " 5 010 0 .' 5
2 b o y . 9 1 1 5 0 0 3 1
c* 2 b " 4 5 . 6 1 1 5 01013 4
° 2 b " 5 0 .
cr ii
._ i 5 0 0 0i 0 ;
° 2 6 5 6 .
-i ii
5 010 0:0i
C L 1 * "0 1 . 9 1 1 5 0 0 0:1
~ c l r ' ' 0 7 .
•Z f 1 1
5 01012 9
d 7 " 1 2 .
- 1 I I
5 0 0 2 7
d I 7 1 6 . 5" 5 0 0 3 5
d 7 "17. 0 " 5 01013 8
c l r ’"14. 0 " 5 01014 1
” c l r ' " 1 3 .
-r ii
i 5 0 0 4 0 i
d r ’ " 1 2 .
O 1 1 5 0 y 4 4
iL "14. 5 " 5 0U43
d 7 "15. 2 1
5 0 0 4 4
d \ "14. 0 " 5 0 014 01
d 7 " 1 2 . r ' 5 0 0 0:4
“ c l r’ 1 1 . 6 " 5 01013 0 !
O
1 1 . 4" 5 0 0 3 3
“ CL l' 1 0 . 1 1 1 5 010 2 8:
91
LATITUDE LONGITUDE READING
b 2 4
b 2
cr
._i
b 2 b
b 2 i *
b . 2 y
b
2
9
b
”*
0
b
2 l
b
2 2
b
O
b
•J
4
b
”l cr
b
3
b
b 3 r
b 3 8
b 3
9
b 4 0
6 41
b 4 2
b
4 J
b
44
b
4
I C j
b 4 b
b 4 » '
b 4 y
b 4
9
b
cr
. j
0
b
cr
. j
1
b
cr
. j
b
c
. j
3
b
5 4
6
cr
5
b
56
b 5 i'
b
C
..J s
b
c
.J 9
b 6 0
b b 1
b b 2
6 b y
b b 4
b b
cr
._i
b b b
b b
i'
b b
i“r
b
b
9
b I * 0
b i' 1
b
I * ’ 2
b » ' .
b f 4
b
I * ' 5
4 ° 5 5
4° 55
4 ° 5 5
4'- 55
a i“i c r c r
4 -J • J
a r i c r c r
4 -i -J
4'- 55
4 5 5
4 5 5
4 0 5 5
4 * 5 5
4 5 5
4 ,:' 55
4° 56
4 ■ = ■ 56
4° 56
4 * 5 6
4 * 5 6
4° 56
4*56
4*56
4 5 6
4 ,:'56
4 * 5 2
.4 f i c c r
4 - J
4 5 5
4 * 5 5
4*54
4° 54
4° 54
4 5 4
4*54
4*54
4*54
4 * 5 4
4*53
4*53
4* ‘
4* 53
4 * 5 3
4* 53
4* 53
4* 52
4* 53
4*53
4 * 5 3
4*53
4*!!
4* =
4*1=
4* =
4*52
0 7 6
1 2 j
1 6
9
21 0
■ ” b ■J
3 0
•” i c r
J
4 0 0
44 4
43
9
51 r *
54 r
53 3
0 3 1
07 2
1 1 y
16 1
2 1 1
25
9
3 0 6
3 5 1
3 9
• j
4 3 r *
1 9
• ”i
3 6 2
2 3 6
0 9 l'
52 0
O i* 1
5
1 4
0 6 4
0 8 3!
1 2 4
1 6 y
59 0
5 3 b
47 9
3 6 2
3 6 o
3 0 \
10 0
c r i_ i
■J O {
4 7 cL
41 2
24 4
24 4
24 1
20 b
14 b
06 0
4 9
2 7 0 9 4 " 5 0 0 2 5
2 ■ * ’ 0 3 6 " 5 0 0 1 9
2 !* ' 0 7 4" 5 0 0 1 7
0 7
cr ii
5 0 0 1 0
12 i' 0 7 r 5 0 0 0 7
2 r * 0 8 i " 5 0 0 0 4
2 i' 0 8 5 " 5 0 0 0 5
2 r* 0 y 5 0 0 0 5
2 7 10 ( 5 0 0 0 5
2 7 14 0 " 5 0 0 0 3
c l r 19 ii! 4 9 9 9 2
2 i* ‘ 7 1 1 499 7 6
2 r’ 25
O H
4 99 55
2 7 23
O II
499 37
2 7 3 1
• J II
4 992 0
2 r * 34 2 1 1 4 99 2 0
2 r * 3 6
ii
r 4 992 1
2 r * 3 a b 1 1 499 2 6
-* 17 3 9 0 " 4 9 9 3 1
2 7 3 9 4 " 4 9 9 3 7
2 7 39 6 " 499 43
C m l 41 3 499 4 3
2 r * 41 r ' 4 994 3
25
C *
cl 1 "
9 3 q j 3
2 9 13 6 " 49 94 5
29 15 0 " 4 9 9 3 3
29 84 1 " 49991
2 y 51 6 " 4 9 9 9 5
2 y 34 6 " 5 0 0 0 6
2 y 13 4" 50 0 1 1
2 7 51 0 " 50 021
2 7 2 7 6 1 1 5 0 0 3 7
2 7 15 f * 5 0 6 3 3
c L i' 16 9 1 1 5 0 O 4 0
2 7 14 0" 5 0 0 3 7
cl l'* 53 1 " 5 0 0 0 3
2 r
cr i”
•J O r 500 15
2 i'* 58
O I *
5 0 0 1 6
2 i* ’ 56
j ii
5001 1
2 r‘ 5 6 .j 5 0 0 1 3
2 i* * 55 6 " 5 0 0 1 4
2 7 57 r’ 4 9 9 9 9
2 7 57
O 1 1
5 0 0 0 3
2 7 5 3 0 " 5 0 0 0 0
2 y 0 0 r’ 5 0 0 0 3
2 i'' j a 5 " 5 0 0 0 7
2 7 20
• “ II
5 0 0 3 5
2 7 0 0 r * 990 1 1
2 6 41 i " 5 0 0 4 2
2 b 2 6 0 " 50 0 53
2 b 1 1 r * 5 0 0 4 6
cr
47
ii
4 9 9 9 5
92
b 8 @
68 1
6 8 2
6 8 3
6 8 4
6 8 5
6 o 6
6 8 7
6 8 8
6 8 9
6 9 0
6 9 1
6 9 2
6 9 3
6 9 4
6 95
69 6
69 7
6 9 8
£ 9 9
7 0 0
70 1
7 02
7 0 3
70 4
7 0 5
7 0 6
70 7
7 0 8
7 0 9
7 1 0
71 1
7 1 2
7 1 3
7 1 4
7 1 5
716
7 1 7
7 1 8
7 1 9
72 0
72 1
7 2 4
"7 *" Ej
72 6
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
1 — 1
TUIi ~
5 3 ' 5 0 0
c r
■ J 2 *
c r
. “ t _ !
c r
,_ i
5 3 " 18 5
C T • ”
,_ l .J i
" 01 4
C T ”i
" 5 2
■ - >
S
3 6 i
“i
' '3 ' '3 ' £
52 " 1 3
9
52 ' 0 0
-i
51 ■ 46
o
51 " 4 4 i''
51 " 4 4
cr
,_ i
51 " 46 5
”|
" 01 0
52 '-!!-! 1
5 2 " 5 3
2
5 3 " 0 8 9
C T C T
. J
" 4 9
9
5 5 ' 4 4 8
5 5 " 5 0 5
5 5 " 5 0
9
5 5 " 51 0
5 5 " 5 7 r
5 6 ' 0 6 5
5 6 " 0 7 r
5 5 " 48 o
5 6 " 00 1
5 b 1 0
56 2 6 4
56 " 4 0 i “!
5 6 ' ' 56 3
C T T *
• _ > 1 " 12 2
C T ~7
•J f " 3 1 £
5 7 " 5 0 9
5 8 ' 0 6 4
5 6 ■ ' 5 1 r
C T
•j r
c r -7
" 0 9
2
•J 1
C T -7
•j r ' ' 4 0
i ' '
c r c r
._ i .j
" 5 0
o
c r c r
._ i .j
■ ' 5 0 0
5 6 0 3 4
5 6 " 17 y
5 6 2 9 0
5 6 " 4 6
£
5 7 " 0 5 1
c r - 7
•J r " 14 5
c r -7
■ J i 2 9
5 7 3 6 r
5 6 " 14 0
5 6 2 y 4
5 6 ' 4 4 1
iNGITUDE RERDIN
o 2 7
" 1 2 . 2 " 5 0051
* 26 " 5 8 . 4 " 5 0 0 4 2
2 6 " 4 7 . 0 " 5 0 0 4 8
° 26 " 5 6 . 8 "
5 0 0 4 4
2 i- ' " 0 1 . 1 " 5 0 0 4 0
2 6 “ 49. 1 "
F i 0 0:-!
2 6 " 4 8 . 8 " 5 0 025
2 6 " 5 5 . 7 " 5 0 0 1 0
2 i'' 0 6 . 7 " 5 0 0 0 0
v i?
' 0 6 . 5 " 49 98 7
° 2 6 " 2 5 . 6 " 49 97 O
2 6 " 1 0 . 0 " 4 9 9 6 3
° 25 " 5 2 . 8 " 49951
* 2 5 ■ ' 52. 7" 49 97 1
° 2 5 " 5 0 . 3 " 5 0 0 1 5
* 2 5 " 5 0 . 1 " 5 0 0 1 9
2 5 " 5 0 . 2 " 5 0 0 0 8
2 7 " 1 3 .5 " 5 0 0 0 9
2 7 " 1 1 . 6 " 5 0 0 0 5
V i * ' *
" 3 0 . 2 " 4 9 9 9 3
o - j 7
" 4 8 . 4 " 4 9 9 8 0
,j c. y "0 5 . 7 " 4 9 9 8 1
ci " 2 5 . 9 " 4 9 9 8 3
c- y " 4 0. 0 1 1 4 994 7
d y " 5 8 . 4 " 4 9 9 3 5
2 9 " 1 1 . 6 " 4 9 9 3 1
■ - * 2 9
'' 0 5 . 9 " 4 9 9 2 8
0 2 9 ' 0 5 . 8 " 4 9 9 3 1
° 2 9 " 0 4 . 2 " 4 9 9 3 3
2 9 "0 4 . 6 " 4 994 3
Q
0 0 . 3 " 4 99 2 0
c' 2 9 " 0 1 .9 " 499 21
2 9 " 1 4 . 4 " 4 9 9 2 O
o 2 9
" 1 3 . 0 1 1 49923
2 9
" 1 2 . 9 " 49 922
,J cl y " 4 6 . 9 " 5 0 0 1 9
cl O" 4 6 . 5 " 4 9 9 8 0
cl l! " 4 6 . 5 " 4 9 9 0 1
2 -J " 4 8 . 4 " 4 9 9 2 5
2 4 " 1 8 . 9 1 1 4 9 9 3 9
24 " 1 8 . 9 " 5001 3
'-■2 4 27. 0" 5 U 0 1 3
°24 " 3 4 . 3 " 4 9 9 9 6
2 4
"46. 1 " 4 9 9 7 3
* 2 4 "58. 1 " 4 9 9 3 3
° 2 5 " 0 3 . 4 "
4 ‘ -j S ! - • ' 4
° 2 4 "5 9 . 2 " 4 9915
° 2 4 " 5 6 . 5 " 4 9 9 2 1
*24 " 5 1 . 3 " 4 9 9 3 1
* 2 5 ' 2 6 . 5 " 5 0 0 1 2
* 2 5 ' 3 0 . 6 " 49 93 4
* 2 5 "3 1 .7 " 49 94 9
93
LATITUDE LONGITUDE READING
72 S 34° 57 0 0 3 " 1 1 ”i
2 5 " 3 7 . 7 " 4 9 916
729 3 4*57 10. 1 " 11
-!
2 5 " 4 4 . 6 " 4 9 9 2 6
7 3 0 3 4 ° 5 7 2 6 8 " 1 1 2 5 " 4 7 . 5 " 4 9 9 6 5
731 3 4 ° 57 •-« r* ■1 " 11 -i
2 5 " 5 2 . 3 " 5 0 0 0 4
r d 3 4 ° 57 51 6 " 11 3° 2 5 " 5 9 . 6 " 4 9 9 5 8
A ppendix B. G ra v ity s t a t i o n s .
95
ECU IUER |
LATITUDE
1 i-i L 1 — T
L _ L i M ' J i TUB E EL E V HII ON GRAVITY GRfi v 'ITY !
f
m e t e r s > k g a 1 ■ £ ■ > '■ r r i g a l s > |
1 3 4 * 5 5 "4 9 , 3 "
1 1 ] I ] ' I ' C ]
O f '
" * 3 ! |
■ 1 1 1 0 9 . 51 9 7 9 . 4 37 3 30 .30 1
2 3 4 0 5 5 "4 9 . 3 " i 1 3 * 2 3 "21
■ j > |
11 1 1 a f * O 9 7 9 . 4 3 7 2 30 . 6 0 '
3 3 4 ° 55 "4 9 = 7 " 1 i 3 2 3 " 06 a r ' 1101 a £6 97 9 . 4 393 30 .50
4 3 4 ° 55 "4 9 . 5 " 1 1 3 2 7
■ ' c r * “ i
■ J G. 6 ! l 1 1 0 0 a y y 97 9 . 4 389 30 . 00 i
!j
■ . h r i c r c r
■ 2 > 4 ' -J - J "4 9 . 6 " 1 1 3 2 > ■ ' " 1 8
i l
a I i 0 7 6 .46 9 7 9 . 4 4 33 2 9 . 00 j
b 3 4 * 5 5 "4 9 . 5 "
J 1 ; = ; O ■ - > 1 7
" 04
c r i i
i 0 3 0 . 95 9 7 9 . 4 4 1 5 c i y . 30 i
i ' 3 4 ° 55 "4 9 . 3 " 1 1 8 ° 2 6 " 47
I I
i
076 . 3 J 9 7 9 . 4 4 1 9 c l | ' .70 j
' g 3 4 * 5 5 "5 5 . 2 " 1 1 8 * 2 6 " 19
c r i i
l 0 3 2
1 "7
. i ! 9 7 9 . 4 4 0 7 c l f ' .90
C j
3 4 ° 55 "5 5 . 5 " 1 1 3 2 b " 00
G 1 1
l 379 « b 7 9 7 9 . 4 4 0 3
y 7
.40 !
i 0 3 4 ° 55 "5 4 . 2 "
1 j i- i r i - c r
1 1 O ' J " 44 . 4 " l 074 . 49 9 7 9 . 4 4 1 2 2 b . 68 !
1 i 3 4 5 5 "5 0 . 3 "
1 O 0 C T
" 1 3 . 0 " i 0 64 . 42 97 9 . 4 4 1 9
■ “ c r
c ! . • J .00 |
12 3 4 ° 55 "4 2 . 9 " 113*24 5 i . 0 " i 0 4 6 7 3 97 9 . 4 4 4 4 ii! y . 40
1 3 3 4 5 5 "4 2 . 4 " 113 ° 24 " 35 . 4 "
i
0 3 3 . 91 9 7 9 . 4 4 5 6 c i ! ii! . 70
14 3 4 * 5 5 "4 2 . 1 " 113 ° 24 " 2 0 . 1 " l 0 2 9 . 6 7 97 9 . 4 4 6 4 21
_ ..
. 78
15 3 4 5 5 "4 2 . 3 " 113*24 y . 4 " l 3 1 8 . 6 7 9 7 9 . 4 4 7 7 20 . 6 0 1
16 3 4 ° 55 "5 4 . 3 "
i |I | O ' 3 > c r
‘ 7
. 4 " i 874 . 43
97 9 . 4 4 0 6
26 .00
17 3 4 ° 56 "1 2 . 3 " 1 1 8 * 2 5 29 9 "
i
1 04 = i ' " - J 9 7 9 . 4 3 5 3 2 y . 3 0
18 3 4 5 6 "2 7 . 1 "
i i i -t r i c r
1 1 O ii _ i
■ ■ j “ i i l
a 1 ' l 129 . 9 6
9 7 9 . 4 3 1 5 29 . 9 0
19 3 4 ° 5 6 " 3 3 , 9 "
■ j ■ ] j lj O c r ,
" 35
c r i l
a l 154 . 01 9 7 9 . 4 2 7 3 31 .20
20 3 4 ° 5 6 "5 1 . 1 "
■ ] 1 C | 0 ^
39 . 4 " l 179 = 63 9 { 9 , 4 2 3 O ■ G 2
21 3 4 ° 55 "4 9 . 3 " 113 * 26 3 2
c r ! i
a - J l 072 . 92 9 7 9 . 4 4 2 3 cl f . 3 0
22 3 4 ° 5 6 "0 0 . 3 " 113*26
■ ■ ■ - c
■ I1 ■ _ >. 5 " l 091 . 54 9 7 9 . 4 39 6 2! y . 9 0
2 o 3 4 ° 5 6 "1 3 . 4 " 113°26 " 4 0
i “ r M
i 124 93 9 7 9 . 4 34 6 31 .60
24 3 4 5 6 "3 1 . 0 " 1 1 8 * 2 6 " 40 . 4 " l 149 . 52 9 7 9 . 4 3 0 7
■ J
.50
■ _ ; i c r
3 4 ° 56 "4 4 . 3 " 1 1 8 * 2 6 " 49
■ “ 1 1
l 172 . 20 9 7 9 . 4 2 7 5
■ “ c r
O - J.50
£ .
3 4 ° 5 7 "0 0 . 1 " 113 ° 26 " 39 . 5 " 1 185 « 29 9 7 9 . 4 2 5 2 36 . 5 0
c l 1 3 4-5 7 " 1 0 . 3 " 1 1 8 2 6 " 39
O 1 1
i 211 . 96 9 7 9 . 4 2 1 0
■ j C ;
. 48
2 y 3 4 ° 55 "4 9 . 6 "
1 v 7
" 36
■ “ * *
i 101 . 7 9 9 7 9 . 4 336 2 9
. 90
2 9 3 4 ° 56 " 0 3 . 1 " 1 1 ' ■ * ci ■ * ' " 48
n
■ i 1 113
l ~ i
9 7 9 . 4 3 7 3 31 . 4 8
3 0 3 4 ° 56 "1 8 . 8 " 1 I S * 27 42
■ j n
l 142 . 04 9 7 9 . 4 3 2 5 3 3 .30
31 3 4 ° 56 "2 9 . 1 " 11 S* 27 " 43
■ “ A
l 173 . cl \ 9 7 9 . 4271
J C T
. 0 0
3 2 3 4 ° 56 "43.2" 113*27 * 4 f c «
■ j m
l 285 « 67 9 7 9 . 4 2 1 7 , 10
C T 1
LATITUDE NGITUDE
39
40
41
42
43
44
45
46
47
43
4 9
50
1
;< X >
4 5 5 56 0
4° 56 10 0
4° 5 6 ii 3 0
4° 5 6 3 6 J
4° 56 49 r
4° 5 7 02
• j
4° 57 0 3
5
4 * 5 6 50
4° 56 34
o
4° 5 6 2' 2 ii'
4° 56 0 8 !i!
4 * 5 5 54 9
4 5 7 02 o
4° 5 6 50 6
4° 5 6 3 6 0
4° 5 6 2 2
if!
4° 56 10 ii
4° 5 5 56
cr
._!
4 0 5 3
-.i
r
4 5 3 3 2 8
4° 51 46 r ’
4° 51 47 0
4° 51 47 6
4° 52 01 (
4 * 5 2 17 0
4° 5 2 2 9
5
4 ■ ' 5 2 41 ! i
4 * 5 2 56 1
4° 5 3
09
ii*
4° 53 20
9
4':‘ 53 31
9
4° 5 3 45 1
4 5 3
CT i- i
. J
6
1 1
■ i ^
X i
• I
i
1 ii !i! 4 6
V
' i i t i 45
4
1 2! 2! 4 6 0
' 2 2! 45 9
1 22 4 6 1
' 2 2 4 6 4
1 22 4 8
cr
.j
1 2 4 3 r
' V * -!
51
3
' il! 2 51 2
' ii' J 51 0
’ !i' - i
4 9
4
'21
. H •"
"+ .i
cr
.j
• 1
C _ X 4 2 o
'21 42
o
'21 42 o
' 2 1 42
9
'21 42
'21 05 4
' 2 0 49
'21 04 !i
' 2 0 43
“j
BQU : ijer
ELEVATION GRAVITY GRA v 'ITY
( h i e t e r s > '■ gal ■ =
j
I rn g a 1 s >
1001 . 22 9 7 9 .4 5 06 20 . 00
1 0 2 6 . 52 97 9 .4 4 6 y 2 2 . 00
1 0 5 0 . 9 3 9 7 9 .4 4 3 0 24 . 0 0
106 8 . f’ i''
9 y . 4409
2 6 . 00
1 0 9 6 . 6 2 97 9.48 6 1 ii C . 70
1114. r 97 9.4:: o 3 2 9 . 10
1 127. 49 9 7 9.44 2 6 31 . 3 0
1 0 9 6 . 84 i * * ■ 4 ■ "34 29 .80
1092. 2 2 97 9.49
cr
r - j i. r’. 70
1064. 21 9 7 9 .4 4 1 9
-i cr
ii ■ J . 7 0
1037. 47 97 9 .4 4
cr cr
•J -J 2 : . 20
1 0 2 0 . y 2 9 79.44 7 6 21 .30
1051 . f’ O 9 7 9 .4 4 4 3 2 6 . 90
1 0 3 6 . 64 979.44 70
• -1 c
cl -J . 40
1014. 6 3 9 7 9 .4 5 0 1 !i! O. 4 0
9 9 3. 7 0 9 79 .4 5 3 2 21 . 5 0
975. 8 6 9 7 9 .4 5 58 19 . 9 0
967. 41 97 9 .4 5 61 13 . 1 0
3 3 2. 43 9 79.47 9 2 o .24
y 3 3 . 02 9 7 9 . 4 7 9 4
il«
. 52
776. 6 8 9 7 9 .4 9 28 f’.39
774. 46 9 7 9 .4 9 3 3 r’.64
771 . 21 9 7 9.49 5 2 8 .31
r \ . 50 9 7 9.49 3 9 f . 8 3
i''17 9. 13 97 9 .4 9 21 ( . 6 4
7 y b . 0 1 9 7 9.491 3
o
. 4 0
7 91. 0 3 9 7 9.49 9 4
C ;
. 13
3 0 0 . 2 y 97 9 . 4c 69 i”i
. 05
3 0 5. 6 4 9 7 9.49 5 6 8 . 24
8 1 9. 45
4 .■ * 4 i 4 2 9
o
. 7 9
3 3 0. 43 9 7 9 . 4c 01 8 ■ fr f
8 3 6 . 54 9 7 9 .4 7 8 6
c
. 8 4
y 4 4. 2 2 9 7 9 .4 7 65 -!
.71
E 0 U: uer
LATI TUBE LONG IT U D
c
U ELEVATION GRfl VITY G R AVITY
m e t e r s
• • 9
al s> ( iy i g a! s >
b 6 3 4 54 " 1 3. 1 " 118*20' « 6 fi •-! S 3 !-!
979 . 4 7 4 1
C ;
. 79
6 7' 34 54 ' 24.
“ 7 1 1
l' 1 18* 2 0 '' 3 6 ■ 8 b 2 . 8 4 979 . 4728 y . 94
6 3 3 4 54 3 y . 4" 1 1 8 * 2 0 "3 6 .4" o i’ ’ iii ■ o r’ 9 7 9 .469 y
9
a d d
69 34 - 54 51. 4" 1 1 8 ° 20 '' r’. 0 " 83 2 .9 6 979 . 4679
9
. 35
70 34 55 ' 04. • 2' 118°20" r' . 5" 893. 12 9 79 • 4662 1 0 . 70
71 34 55 '17.
O ii
118°20" o r
“ 7 II
■ f 9 0 4 .9 7 9 79 . 4645 1 1 . 90
"7
34 55 34.
ir ii
._ i
1 1 8 2 0 " O C i
“i II
9 2 0 .5 8 9 79 . 4625 13 . 70
7
3 4 55 ' 44. l 118*20" j y
Ii
9 3 0 . 4 9 9 79 .4614 15 . 00
74 3 4 55
‘ cr » ~ i
._ i i~ i ,
6 " 1 1 8 * 2 0 "3 9 . 4 “ 9 4 5 .9 4 9 79 . 4597 17 . 00
75 34 ■ ' 5 b ' 10 . • 2' 1 1 8 * 2 0 "3 9 . 4" 9 5 7 .2 6 9 79 . 4583 11 3. 40
7 6 34 5 b ’ 0 2 .
"7 II
f 1 1 8 2 U 55 .4"
i-j C C • ”i ,“i
y -i1 -i'« d y 9 7 9 . 4586 18 . 10
> ■ ' r 34 55 ' 59. 6 " 118*21" 0 8 . 8 1 1 9 5 5 . 0 2 9 79 . 4591 18 . 50
i' 8 34 55 ' 55. d N 1 13*2 1 " d r *. 0 " 9 5 4 .8 3 979 . 4535 17 .70
7 9 3 4 -55 ' 41 .
“ 7 II
1 1 18*21" 42 . 2 9 5 4 . Si 979 . 4572 16 . 10
3 0 34 = 5 5 ' 34. • 2' 1 18*21' 57 . i' 9 5 4 .6 3 979 . 4569 15 . 60
31 34 55 29. 6 1 1
j 1 Jl| O "i “i * *
12 . 0 " 955. 1 0 9 79 . 4563 15 . 50
3 3 3 4 55 ' 25.
“ 7 II
r
1 1 O 'j '
24 . 9 1 1 9 5 5 .8 2 9 7 9 . 4565 15 . 30
y 3 34 55 ' 21 .
“i ii
1 1 o o v * '
45 . 8 1 1 9 5 4 .0 0 9 79 . 4570 15 . 20
84 3 4 55 13.
“ 7 II
r
1 i o O V ■ j • '
06 . 9 ,! 9 5 7 .0 3 9 7 9 . 4562 14 . 9 0
“i cr
O -J 34
o cr cr
■ .j.j
' 07. d 1 1
1 1 jlj O ;"| ;2 ; • '
1 9
^ ii
. i 9 5 6 .7 9 979 .4562 14 . 70
3 ! 6 34 5 5 ' 01 .
O 1 1 ;2; 0 * “l * 2;
2 7
> ■
9 5 7 .0 6 9 7 9 . 4561 14 . 50
C ' i * 34 54 ' 54.
O 1 1 1 1 O O ■ “« ; j ■ '
3 9 . 9" 956.41 979 . 4564 14 . 50
S3 34 54 52. 5"
i h r, n “i -i • *
1 1 ■ -* lL . _ i 4 9
~ f ii
. i 9 5 5 .3 3 9 79 . 4571 14 .90
S 9 34 54 " 45. 9" 118*24" 0 b . 0 " 9 5 6 .6 4 9 79 . 4577 15 .70
90 34 = ■ 54 ' 42.
O 1 1
118*24" 18 . 2 " 9 5 5 .9 3 979 . 4584 16 . 20
91 3 4 54 35.
“ 7 II
1 118*24" 3 4
-| I!
9 5 5 .7 2 979 . 4587 1 6 . 30
9 2 34 54 ' 3 5. 0 " 118*24" 50
1 1
9 5 4 .6 8 979 . 4593 16 . 60
9 3 34 = 54 3 3 .
“ 7 1 !
1 118*25" 0 7 . 5" 9 5 4 . 60 9 7 9 . 4593 16 . 60
94 34 = 54 '31. 5" 118*25"
1 o
X i.i. 9 " 9 5 4 .0 9 979 .459 6 16 . 79
95 34 = 54 ' 25 . 7 1 1 118*25" 31 . 5" 9 5 4 .4 3 9 79 . 459 3 16 . 80
9 6 34 54 20 = 4" 118*25" 4 8 . 9" 9 5 4 .9 4 9 7 9 . 460 7 17 . 70
9 r'1 34 54 " 0 6 »
O ii 1 1 C ' O cr, '
49 . 1 " 9 3 8 . 8 3 979 . 4 6 2 9 1 6 . 10
9 8 34 5 3 ■ ' 5 2 .
”7 II
1 1 13*25" 4 9 a r' 9 2 4 . 67 9 79 . 464 9 14 . 60
v£>
00
LATITUDE LONGITUDE
9 9
00
01
02
0 3
04
05
0 6
07
03
0 9
10
1 1
12
13
14
15
16
17
13
1 9
20
21
24
2b
4° 5 3
4° 53
4 0 5 3
4 5 3
4° 52
4° 52
4° 52
4° 52
4° 51
4° 51
4 * 5 1
4* 51
4° 51
4 5 1
4 * 5 1
4 * 5 1
4 5 1
4 * 5 1
4° 51
4° 51
4-'51
4 5 2
4 5 2
4° 52
4° 52
4,;,52
4*53
4° 5 3
4*53
4*53
4*53
4*54
4*54
3 9. 5
2 7 . 0
1 3. 9
0 1 . 9
47. 1
35. 1
2 2 . 1
0 3. 7
45. 4
4 5 . 5
45. 6
45. 5
45. 5
45
45
45
45
46
4 6 . 2
4 6 .4
00. 3
13.5
26. 7
3 9. 0
54. 7
07. 2
18.1
3 1 . 2
44. 1
57. 1
11.8
24. 3
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
i l
11
11
1 1
1 1
11
11
11
11
1 1
11
11
1 1
11
11
! 5 4 9 .3
: 5" 5 0 . 1
: 5 " 5 0 . 5
: 5 " 5 0. 9
:5" 51. l
:5" 51 . 4
:5" 52. 4
: 5 " 5 2 . 5
C •' C -|
, J J m O
!5" 5 2 .4
:5" 37. 1
15" 21 . 0
! 5 0 5 . 0
:4" 4 3 .5
:4" 33. 2
4 16.9
: 4" 0 2 . l
! 3 4 6 .3
:3 " 3 1 .0
: 3' 15.0
:2 " 53 . 5
:2" 43. 5
:2 " 43 . 2
:2 '' 42 . 9
:2" 42. 6
:2 " 41 . 6
:2" 41 . 6
•2" 42. 1
:2" 41 . 2
: 2 " 4 1 . 3
•2 "41. 6
:2" 42. 2
! 2 4 -J . 9
vo
VO
ELEVATION
< r n e t. e r s >
GRAVITY
' ■ g a l s >
EOUGUER
GRAVITY
' ■ r n g a 1 3 >
911 1 1 97 9 .4 6 6 9 13 30
8 9 9 50 9 7 9 .4 6 31 1 1 70
8 9 2 3 4 9 7 9 .4 6 3 4 10 20
|“| -| c
O C 1 J 9 9 9 F9 .4 6 3 3 ri 30
3 7 6 44 9 r' 9 . 469 3 b 9 1
3 6 9 4 6 9 7 9 .4 6 9 7
cr
.j
49
36 1
- 1 f.
9 7 9 .4 7 0 4 4 05
I -! C -|
C 1 -J • j 31 9 7 9 .4 7 0 8 2 54
3 4 6 31 9 7 9 .4 7 1 4 1 c. y
341 71 9 7 9 .4 7 1 8 y 2
3 3 9 31 9 7 9 .4 7 2 0 12
O O i' j o 97 9 .4 7 2 4 0 00
835 93 9 7 9 .4 7 2 3 10
3 3 2 6 3 9 7 9 .4 7 3 9 47
3 2 3 9 3 9 7 9 .4 7 4 9 6 1
824 r o 97 9 .4 7 5 8 60
3 2 2 6 b 9 7 9 .4 7 6 3 6 5
317
cr cr
•J J 9 7 9 .4 7 7 5 7 6
3 1 3 56 97 9 .4 7 8 7 1 07
3 0 8 34 979.4801 1 40
304 16 9 7 9 .4 3 1 3 1 66
8 0 0 94 9 7 9 .4 3 2 5 ci 46
8 0 6 9 5 9 7 9 .4 8 1 3 2 y y
3 1 3 42 9 7 9 . 4 8 0 0 o O J
8 2 0 21 97 9 .4 7 3 9 9 3
331 9 2 9 7 9 .4 7 6 7 4 f c i.
3 3 9 4 9 9 7 9 .4 7 5 2
C
•J 2 0
347 9 1 9 7 9 .4 7 3 3
c *
.J 86
357 59 9 79.4721 6 60
3 6 9 J 3 9 7 9 .4 7 0 6 i 9 4
331 3 3 9 7 9 .4 6 3 3 3 6 2
8 9 3 6 9 7 9 .4 6 6 2
’ -j e
C “I
• J
9 0 4 01 9 7 9 .4 6 4 4 1 0 . 3 0
100
132
134
135
1 3 b
137
133
1 3 9
148
141
142
i 43
144
145
14b
147
143
149
150
151
152
154
15b
157
153
1 59
1 3 0
1 6 1
162
163
1 6 4
LHTITUDE L .CNGITL DE ELEV HI ION GRAVITY
ECU
GRfi
GUE
■/1 T
4 *54'33 .1" IIS
o 22 4
4.0"
rn < = • t e
916. 0 y
( g a 1 s
979.4 623
'■ rn g a 1 3
1 1 . 3 0
4° 54"49.3" l i e o22' 43 . 0"
9
2b. 2 J 979.46 0 8 1 2 . 20
4° 55" 02 . 3 1 1 l i e 0 22 " 45 . 0 "
9
3 6 .
c* * -i
._! .-1
979.4594 1 0 , 30
4° 55"39.2" l i e 0 2 2 " 4 6 . 0 " 964. 02 979.4557 1 b . 30
4': '55"44.0" l i e 0 2 2 " 4 6 . 1 "
9
8 2 . 3 b 979.4533 18 . 20
4 , : '51 "46.6" l ie 0 2 2 " 4 3 . 1 " l’ ’9 9 . 14 979.4 82 9 2 . 13
4 ° 5 1 " 4 6 . 5" HE ,J 2 2 2 7 . 0 \ 95 . ii! 9 7 9 . 4 843 2 . 70
4 51"4 6 . 6 " 1 1 e * 2 2 " 1G. 6 " 91 . 04 979.4 8 5 9 . 38
4° 51 "46. 6 " HE * 2 1 " 53 . 3 l’ ’ 8 7 63 979.4 376 4 . 3 2
4° 51 "46. 7" HE 0 2 1 " 33. 6 " r34. O O 979.4 8 9 2 5 . 13
4° 51 "46. 7" HE 2 1 " 2 1.4" r ’8 0 . 0 r * 979.4910 6 . 10
4° 55" 30. 4" HE 2 1 " 42 . 6 " 9 42. 43 979.4585 14 . 40
4': '55' 17.9" HE 0 2 1 " 4 1 . 9 "
9
91 979.4 603 12 . 70
40
55"04 . 4" 11E* 21"41 . 6 " 9 1 3. 19 979.4624 1 1 . 30
4° 5 4 " 5 0 . 7 " HE 0 2 1 ' 4 1 . 4 " 9 0 0. 2 i' 979.4644 10 . 10
40
54" 37.5" HE 2 1 " 39.7"
0 0
21 979.4664
9
. 13
40
54" 24. 2" HE 0 2 1 " 38 . 9 " f 0 . 04 9 79.46 83 E i
cr ~ i
B J P
40
54" 12.5" HE 0 2 1 " 39 . 9 " 7 0 . 24 979.47 00 8 ■ 2 3
40
53" 57. 2" HE 0 2 1 ':- 9.4" 6 0 . 15 979.4724 8 B 83
40
53"33.9" 11E 0 2 1 " : 9 . 9 " 47.
p O
9 79.4746 f*. 2 1
4 c
53 "31.8" HE * 2 1 " :
O • J 1 1
41 . 04 979.4761 fr . 02
40
53' 18.3" HE 0 2 1 ' : * 1 * a 3 3 2 ■ 12 979.4781 h i b r 0
40
53" 05. 8 " HE
O 1 ■ ■ ■
8 . 5" 24. 49 979.4799 b
cr “1
a ' J -J'
40
52" 51.3" HE 0 2 1 ':
O 7H
'_ 1 8 J 14. 05 979.4819 5
. 90
40
ij 2 1 >
O p n
0 6 . E i 9 9 79.4 8 3 4
E *
.J 5
40
52" 26. 5" HE
O 2 1 ■ ' b
9 . 4 " 0 0 . 61 979.4 84 2 4 . 64
4° 52" 12.7" HE 0 2 1 " E9 . 8 " 94. 05 979.4 8 5 9 4 . 60
4'- 51 "59. 6 " HE 0 2 1 " 3 9 . 4" 1 E l 6 . E i 8 97 9 . 4 88 0 4 . 86
40
55" 42. 2" HE 2 3 49,2" 1 0 0 6 . J 3 979.449 6 19 . 80
40
55" 28.1" HE * 2 3 ' 49.1" 99 4 . 64 9 7 9 . 4 508 13 . 10
40
55" 15.4" HE * 2 3 " 43 . 0 "
9
C > O a 7 9 979.4523 17 . 00
4'- 5 5"0 1 . 7" 11E 0 2 3 " 47 3 "
967,
7 8
979.4552 16 . 00
40
54" 37.1" HE 0 2 3 " 4 8 = , 0 " 947. 03 979.4599 15 . 50
101
LRTITUDE
bD
6 6
6 7
68
69
"’G
' - i
i
74
_ 4
98
9 1
9 2
9 3
9 4
9 5
91 >
h 7
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4'
4°
4°
4*
4°
4*
4°
4°
4*
4°
4°
4'
4 2 3 . 4
4 11.1
■j cr i- i -i
■ J O 3 O
■j
4 3 . 5
: j 0 . 4
J 17.1
3'
0 3. 9
c l 49. 9
cL 33. 1
d 2 4 . 3
p .j
1 0 . 8
1 5 9 . 7
4' 22. 4
4' 0 8 . 7
j 56. 2
o 4 0 6
3 3 0 4
j 30 o
■ Ii
3 0 9
3 0
t^ i
3 31 i
■ 3 3 0 4
3 0
31
31
9
cr
.j
3 31 9
3 3 2 l
2 •i1 r b6
2 24.
p
2 1 1
9
1 59 8
4 45.
n r
. j
n r
.J
00 f *
* 2 2 '' 4 7 . 8
* J 2 c " 4 6 . 5
,J 2 ■ : " 46. 1
IJ 2 i
1 - 1 2 2 " 44. 5
,J 2 ■ ■" 44. 6
fJ 2 i "45. 0
,J 2 2 " 45. 2
,J 2 2 " 45. 3
2 2 " 45. 2
" 2 ■ -
a cr n r
4 _i ■ ■ J
tJ 2 2 46. 0
*24 4 6 . 7
*24 4 6 . i
*24 " 46. 3
" 46. 4
*24 4 6 . 2
*24 2 3. 9
*24 " 14.0
■ ' -i
■ ' cr “ 7 cr
• I » O '' C T “I ■ j
* 2 2 " 2 5 0
* 2 2 ' 0 5 8
* 2 1 "53 0
* 2 1 "20 0
*24"48 o
*24"4 3 4
* 2 4 " 4 9 0
* 2 4 " 4 9 r
* 25" 19 0
* 2 5 " 2 G 2
BO UGLIER
.EVHTION GRfi v' I T V GRfi v11 T
rn e t. e r >
g
= L 1 S .1 ' < rn g al s
9
26. 66 9 7 9 . 4621 13 . 00
914.78 979 . 4640 12 . 00
902.2 8 9 7 9 . 4653 10 . 30
c y y > ■ -* d 97 9 . 4674 i“i
. 9 i
74.61 9 7 9 . 4694 f*. 6 3
6 2 . 42 97 9 .4716
f\
. 6' 6
5 2, 86 979 . 4730
r
,_i . 36
4 3 . 8 1 9 7 9 . 4743 4 . 86
35. 34 979 . 4757 4 . 1 1
29. 80 9 7 9 .4764
■j
. 24
2 5. F t 2 979 . 4769 . 41
21 . 74 9 7 9 . 4773 i
“7 cr
. r - j
1 “
4 0 . 05 979 . 4613 15 . 1 0
9
2 3. 86 979 . 4636 13 . 601
9 0 9 . 3 6 9 7 9 . 4656 12 . 10
96. 27 979 . 4676 10 . 80
8 f a 8 4 979 . 4683
9
. 94
8 2 . 6 5 9 7 9
a j~,
9 ■ c l c l
79. 92 9 7 9 ■ 41 * 9 y » b ?
7 6,9 8 1 9 79 b 4 6 9 'J i ~ i . 04
71.21 9 7 9 m 4 1 ” * 1 l-^ r . 3 4
6 6 . 65 9 79 . 4706 r . 03
6 1 r . 6! 2 9 79 . 4714 b B f Cl
54. 52 9 7 9 . 4725 b
cr
■ I 1 J
4 9 . 98 9 7 9 . 4736 6 . 42
46. 53 9 7 9 . 4746 b . 6 7
33. 46 9 7 9 . 4784 r . 62
52. 40 9 7 9 . 4726 4 . r 3
47. 34 9 7 9 . 4727 ■ 2 ' . 48
41 . 39 979 . 47 33 c l . 46
■ “ t cr cr
O r . J J 9 79 . 4736 1 . 51
9
7 0.94 979 . 4569 13 . 010
9 9 8 . 54 9 7 9 . 4540 1 9 . 80
102
E O U 3 Ll E
L A T I T U D E L J N G I T U 2 ~ b L- 6 v" ri T I U N LiRfl v' I T V GRfl v' I T
( m i=-1,
- r s )
■ ; g -=l 1 s > ( rn g Ell S
1 9 8 3 4 ° 5 5 ' 1 8 . 2 " 11 3 * 2 5 " 2 8 * 7 !i
1 0 1 6 . 1 2 9 7 9 4 4 9 9 2 1 . 7 0
1 9 9 3 4 5 5 ' 3 1 . 7 " 11 3* 2 5 ' 2 2 ■ 9 l! 1 0 3 7 . 9 4 9 7 9 4 4 6 3 d j . 2 0
2 0 0 3 4 ° 5 5 ' 4 5 . 8 " l l 3 * 2 5 ' 2 5 . 4 11 1 0 6 2 7 3 9 7 9 4 4 2 4 2 5 . 0 0
2 0 1 3 4 * 5 4" 1 6 . 5 " 11 3 * 2 6 ' 0 3 ■ b 9 5 2 . 2 6 9 7 9 4 6 1 4 17 . 7 0
2 0 2 3 4 ° 5 4 ' 1 1 . 6 " 11 3 * 2 6 " 2 1 o 9 H 9 5 4 . 12 9 7 9 4 6 1 1 17 . 7 0
2 0 3 3 4 ° 5 4 " 0 9 . 0 " 11 3 * 2 6 ' 3 9
O 51
9 5 6 n C' < 9 7 9 4 6 0 7 17 . 9 0
2 6 4 3 4 ° 5 4 ' 0 8 . 8 " 11 3 * 2 6 ' 5 7 ■ d ' 9 6 0 . 9 3 9 7 9 4 6 0 0 18 . 10
2 0 5 3 4 0 5 3" 5 9 . 3 " 1 i 3 * 2 7 ' 1 4
cr it
9 4 9 . 5 4 9 7 9 4 6 2 3 17 . 7 0
2 0 6 3 4 0 5 3 ' 5 3 . 9 " 11 3 * 2 7 " 0 0
O M
9 4 0 . 4 6 9 7 9 4 6 3 6 16 . 3 0
2 0 7 3 4 ° 5 3 ' 4 6 . 5 " 11 z> ■ 2 6 ‘■+ 4
cr i i
9 3 1 . 0 2 9 7 9 4 6 4 8 15 . 8 0
2 0 8 3 4 ° 5 3 ' 3 8 . 3 " 11 3 * 2 6 ' 3 0 a b 9 2 1 . 4 3 9 7 9 4 6 6 2 14 . 9 0
2 0 9 3 4 ° 5 3 " 2 8 . 4 " 11 3* 2 6 ' 1 8 . i " 9 1 2 . 2 1 9 7 9 4 6 7 0 13 . 4 0
2 1 0 3 4 ° 5 3 ' 0 6 . 3 " 11 3 * 2 6 " 1 2 . i " 8 9 4
cr cr
B - J - J 9 7 9 4 6 8 5 10 . 5 0
2 1 1 3 4 * 5 2 ' 5 5 . 4 " 11 3 * 2 6 ' 2 0
" 7 ! 1
■ f 3 9 0 . 0 0 9 7 9 4 6 8 6 9
. 4 2
2 1 2 3 4 * 5 2 ' 4 5 . 0 " 11 3 * 2 6 ' 3 8
■j II
8 9 1 . 3 4 9 7 9 4 6 7 6
0
■ Z' (
2 1 3 3 4 * 5 2 ' 3 5 . 6 " 11 3 * 2 6 " 3 6 . 9" 8 8 9 . 4 6 9 7 9 4 6 7 1 f
2 1 4 3 4 * 5 2 ' 2 2 . 4 " 11 3 * 2 6 " 4 7 ■ 0 8 9 7 . 5 9 9 7 9 4 6 6 4 5
O
2 1 5 3 4 * 5 2 ' 1 1 . 9 " 11
Z < > j ■- £ ■ ' CT.
C . b ■ J 1 0 0 “ 8 8 1
CT
■ ■ J c l 9 7 9 4 6 6 9 4 . 8 0
2 1 6 3 4 * 5 1 ' 5 5 . 1 " 11 3 * 2 7 ' 0 9 „ 9 11
i“ i ~~y ” 3
o f r . 6 3 9 7 9 4 6 6 8
o
. 4 3
2 1 7 3 4 * 5 1 ' 4 5 . 2 " 11 3 * 2 7 ' 0 3
■ j i i
8 6 5 . 19 9 7 9 4 6 7 9 1 . 6 1
2 1 8 3 4 * 5 1 " 4 4 . 9 " 11 3 2 6 4 7
O n
8 5 2 . 8 0 9 7 9 4 7 0 1 1 . 0 7
2 1 9 3 4 * 5 1 "4 5 . 0 " 11 3 * 2 6 " 3 2 . i m 3 4 3 . 8 8 9 7' 9 4 7 1 7 . 6 8
2 2 0
3 4 * 5 1 ' 4 4 . 4 " 11 3 * 2 6 1 0 . d 8 4 0 . 2 1 9 7 9 4 7 2 2 . 3 6
2 2 1 3 4 * 5 4 ' 3 3 . 9 " 11 ' ■ * ' iii b d d . 4" 9 7 5 9 7 9 4579 19 . 30
222 3 4 * 5 4 ' 5 0 . 7 " 11 3 * 2 b ' 2 2
■7 It
B 1 9 95 . 68 9 r '19 4547 21 . 30
2 2 3 3 4 * 5 5 ' 0 3 . 7 " 11 3 0 2 6 ' 2 3 B S " 1010 . 96 9 7 9 4523 d ib . 60
224 3 4 * 5 5 ' 2 0 . 7 " 11 3 ° 2 6 ' 2 3 ■ o 1 034 . 84 979 4482 24 . 20
2 2 3 4 * 5 5 ' 3 2 . 2 " 11 b ' ■ 2 b 27 . 4" 1 049 . 14 9 7 9 4458 . 20
2 2 6
3 4 * 5 4 ' 2 1 . 6 " 11
I; 0 27' 2 F i
. 0 " 969 . 42 9 79 4597 19 . 9 0
v Z' " J ?
34*54"36.2 " 11 3 IJ 1 d i * ‘ c i b . 5 " 991 . 00 9 79 4 560 21 . 30
d d o 3 4 * 5 4 ' 4 9 . 6 " 11 3 ,J d 7 d b . 5 " 997 . 63 9 79 4551 d d . 1 0
2 2 34*55"84.2" 11
■ r ■ “ ■ ' -?
i 1 “ d r cl • ' B l " 1015 . 69 9 79 4526 d 4 . 00
2 3 0 34*55"20.0 " 11 3 ''s d ! ' ■ c i i1 '
iT j
1 047 . 4 8 9 7 9 4 4 70 25 . 70
103
B OU: ue
LATITUDE L J H i j I TUDE ELEVATION GRAVI TV ORA VI T
( rn e t e r z ') C g a 1 s > ( rn g a 1 s
2 31 3 4 5 5 ' 3 5 . 2 " 11 3*2 7 " 3 2. 0 " 1069.4 2 9 7 9 .4 4 3 7 27 . 60
d J 2 3 4° 5 4 " 0 7 .5 " 11
■ i 2 7 " 3 1 .
j II
9 5 9 .5 2 9 7 9 .4 6 0 9 13 . 60
2 3 3 3 4 5 4 " 1 0 .9 " 11 z'IJ ii! r *" 54. 9" 9 6 9 .0 5 9 7 9 .4 5 9 5 19 . 4 0
d 3 4 3 4° 5 3 " 5 9 .1 " 11 I* ,J 2 i *
■ ' CT i “ i
.J t “i m
f - 9 7 6 .3 9 9 7 9 .4 5 6 9 IS . 10
d
■ c
Z ‘ 34° 53 " 4 5 .9 " 11 ,J ii! r *"59. r 1001.01 9 7 9 .4 503 17 . 10
d 3 b 3 4 5 3 !" 2 9 .5 " 11 -iC i 2 7
C T
•j r . 6" 1002.45 9 7 9 .4 4 9 3 16 . 00
d j r 3 4° 5 3 " 1 6 .1 " 11 !■ d i'*
■ ' c * r.
■ J C > .
"7 II
r 1 0 0 3 . 7 2 9 7 9 .4 4 3 6 14 . 30
d 3 3 3 4° 5 3 " 0 3 .2 " 11 D 2 7
■ ' cr ”■
■ J 'I' u9 1 1 1002.22 9 7 9 .4 4 3 5 14 . 00
ii!3 9 3 4 0 5 2 " 4 7 .9 " 11
-[ Z '
'5 9 . 1 1 1 1 0 3 3 . 2 4 9 7 9 .4 4 0 5 12 . 50
4 0 3 4° 5 3 " 2 3 .1 " 11
I; 'J 2 7
' 41 . 4" 9 9 2 .5 5 9 7 9 .4 5 1 4 15 . 30
41 34° 53 ii- 1 ■ i i "i 2 7 " 24. 5" 979. 13 979.4541 15 . 10
4 2 3 4 c' 5 3 2 3 .7 " 11 ii,J 2 1 * *" 0 7 . • I i 9 6 3 .7 6 979.4561 14 . 80
4 3 3 4° 5 3 " 2 4 .7 " 11 3 0 2 b "53. 6" 9 5 6 . 0 2 9 7 9 .4 5 3 5 14 . 50
4 4 34° 55 " 4 1 .7 " 11 3° 21 " 42. 2 954.31 979.4571 16 . 0 0
45 34° 55 " 2 1 .3 " 11 : ! ii 2 " 45. !-! 1 1
9 5 4 .0 0 9 7 9 .4 5 7 0 15 . 2 0
4 b 3 4 •' 5 1" 4 6 .7 " 11 31 = 1 21 ■ 3 * 3 ■6" 7 3 4 .3 3 9 7 9 .4 3 9 2
5
. 13
47 3 4 * 5 4 " 5 2 .5 " 11 :!1 - 1 2 b " 4 9 . r * 9 5 5 .3 3 979.4571 15 . 00
43 3 4 0 5 1" 4 5 .9 " 11 31 - 1 ii' -J 4 6 .
• j M
3 1 7 .5 5 9 7 9 .4 7 7 6
9
49 3 4 0 5 4 " 3 5 .0 " 11 3° 2 4 " 5 0. 2 9 5 4 .6 3 9 7 9 .4 5 9 2 16 . 50
50 34° 53 " 3 0 .4 " 11 3 2 -• " 44. 5" 374.61 9 7 9 .4 6 9 5 f’. 63
51 3 4° 5 3 " 3 1 .2 " 11 3,J 2 2 " 41 .
I I
3 5 7 .5 9 979 .4 7 2 1 b . 60
c r
J c i.
34° 53 " 3 1 .3 " 11 3° 21 " 3 3.
•j II
3 4 1 .0 4 9 7 9 .4 7 6 2 f’. 10
cr
J O 3 4° 5 3 " 3 1 .9 " 11 3 0 2 6 " 34. 4" 3 3 0. 4 3 9 7 9 .4 3 0 2 i~ i. 75
54 3 4 5 1 " 4 5 .5 " 11 3° 2 4 " 43. 5" 3 3 2 .6 3 9 7 9 .4 7 3 9 . 43
55 34° 54 " 3 1 .5 " 11 3 * 2 5 " 1 3. 9" 9 5 4 .0 9 97 9 .4 5 9 6 16 . 70
• ”i
56 3 4 5 4 " 2 0 .4 " 11
Z * O “i cr
" 43. 9" 9 5 4 .9 4 9 7 9 .4 6 0 6 17 . 60
CT
J f 3 4 5 1 " 4 5 .4 " 11
Z * ij “i cr
2 ■4" 341.71 9 79.471 3 2 9
CT |“ .
-i O 3 4 0 5 4 " 1 1 .6 " 11 3 0 2 b "21. 9" 9 5 4 .1 2 9 79.461 1 17 . 70
• “l
59 3 4 0 5 5 " 5 4 .3 " 11 3 ■ ' 2 5 2 ! '' . 4" 1074.43 9 7 9 .4 4 0 7 26 . 10
60 3 4 0 5 5 " 4 2 .2 " 11 i!, _ l 2 - 3"49. 2 1 6 0 6 . 3 3 9 7 9 .4 4 9 6 19 . 30
2 61 3 4 0 5 3 " 5 9 .3 " 11 = i1 = 1 2 ' 7
"14. 5" 9 4 9 . 54 9 7 9 .4 6 2 4 17 . 30
2 6 2 3 4 * 5 4 " 0 7 .0 " 11 3IJ 2 r *"01. 9" 9 4 9 .7 0 9 7 9 .4 6 2 5 IS . 10
2 6 3 3 4° 5 4 " 0 7 .4 " 11 31 - 1 2 i ' " 0 2 .
1 H
j. 9 5 6 .7 3 9 7 9 .4 6 1 0 13 , 10
LATITUDE LONGITUDE
4’:■54' 08 0
4’: 54' 69
j!
4':■54' 09 1
4,:■54' 10 4
4 .:
•54' 1 1 0
4': 54' 1 1 . 0
4': 54' 1 1
5
4 ,: 54' 1 1 7
4': 54' 1 1 . f-
4': 54' 1 1 .
6
C ; 0 v |iT
54. 4
8 0 2 6 53. 0
8 ° 28 5 1 . 8
8 ° 26 5 0 . 3
8*26 49. 0
8 ° 26 45. 9
c r - i ij-i
ELEVATION
( m e t e r s )
GRAVITY
(g al s >
BOUGUER
GRAVITY
< rn g a 1 s >
9 5 8 . 5 9 9 7 9 . 4 6 0 7 13. 2 0
9 6 1 . 2 5 9 7 9 .4 6 0 1 13. 2 0
9 6 1 . 9 5 9 7 9 . 4 6 0 0 18. 2 0
9 6 0 . 9 8 9 7 9 . 4 6 0 2 18. 30
956. 17 9 7 9 . 4 6 1 3 1 8 . 30
9 6 1 . 4 2 9 7 9 .4 6 0 1 18. 30
9 6 2 . 4 4 9 7 9 . 4 5 9 9 18. 30
9 6 2 . 0 9 9 7 9 . 4 5 9 9 1 8 . 3 0
9 4 8 . 6 0 9 7 9 . 4 6 1 4 16. 80
9 4 4 . 2 2 9 7 9 . 4 6 2 8 17. 30
Linked assets
University of Southern California Dissertations and Theses
Conceptually similar
PDF
A geophysical study of the proposed eastern extension of the Garlock Fault.
PDF
Geology and engineering aspects of Boraxo Pit, Death Valley, California
PDF
Wavenumber filtering of gravity data and its application to interpreting structure in the Western Transverse Ranges of southern California.
PDF
Shallow seismic refraction studies at the strong-motion seismograph stations in Cholame Creek Valley, California
PDF
Geologic and magnetic survey of Osborn Bank, California
PDF
Magnetostratigraphy of Peninsular Ranges Terrane Upper Cretaceous strata: Point Loma Formation, San Diego, California
PDF
A comparative study of the faculties of the junior colleges of California and of Missouri
PDF
Sedimentology of southeast Pacific deep-sea cores
PDF
Petrography and statistical analysis of the Tapeats Sandstone (late Precambrian-Cambrian), southeastern California
PDF
Strike slip displacement along the Camp Rock Fault, central Mojave Desert, San Bernardino, California
PDF
Recent motion of the geomagnetic field direction as recorded in sediments of Lake Tahoe, California-Nevada
PDF
Placement and follow-up in the public secondary schools of California
PDF
Subsurface geology of Sentous zone development, Inglewood oil field, California.
PDF
A seismicity study for portions of the Los Angeles Basin, Santa Monica Basin, and Santa Monica Mountains, California.
PDF
Observations of surface waves from the shuttle imaging radar-A
PDF
Application of spectral ratios as a forward modeling technique in the comparison of crustal and upper mantle structures beneath the Rio Grande Rift and the Oslo Garden (i.e. Graben]
PDF
Application of station delays as a function of epicentral azimuth and distance to earthquakes occurring within the Los Angeles Basin
PDF
The relationship between reading ability and success in junior high school mechanical drawing and agriculture.
PDF
Sedimentary structures in vibra-cores from the Oxnard Shelf, California
PDF
Morphology and possible origin of a submarine gravity transport feature offshore of central California
Asset Metadata
Creator
Eppink, Jeffrey Francis (author)
Core Title
Structural significance of magnetic field and gravity observations near the Los Angeles aqueduct, northwest Antelope Valley, California
Degree
Master of Science
Publisher
University of Southern California
(original),
University of Southern California. Libraries
(digital)
Tag
geophysics,OAI-PMH Harvest
Language
English
Contributor
Digitized by ProQuest
(provenance)
Permanent Link (DOI)
https://doi.org/10.25549/usctheses-c30-86246
Unique identifier
UC11225688
Identifier
usctheses-c30-86246 (legacy record id)
Legacy Identifier
EP58684.pdf
Dmrecord
86246
Document Type
Thesis
Rights
Eppink, Jeffrey Francis
Type
texts
Source
University of Southern California
(contributing entity),
University of Southern California Dissertations and Theses
(collection)
Access Conditions
The author retains rights to his/her dissertation, thesis or other graduate work according to U.S. copyright law. Electronic access is being provided by the USC Libraries in agreement with the au...
Repository Name
University of Southern California Digital Library
Repository Location
USC Digital Library, University of Southern California, University Park Campus, Los Angeles, California 90089, USA
Tags
geophysics